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ABSTRACT

DOCKING PROBLEMS OF SEA SURFACE VEHICLES

Yilmaz, Ismail Cagdas
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mehmet Kemal Leblebicioglu

January 2019, pages

This thesis covers parallel docking (parallel parking) problem for unmanned surface
vehicles (USVs). First, a mathematical model for a USV with two propellers is con-
structed by using Newton-Euler formulation. Kinematics and dynamic equations cre-
ate 6 degrees-of-freedom model. A hierarchical motion control approach is imple-
mented on this model. Two kinds of guidance laws, line-of-sight (LOS), and pure
pursuit (PP) are employed for way-point travelling at the strategic level of the hi-
erarchy. At the control allocation level, a finite horizon model predictive controller
(MPC) and a cascaded PID controller are designed and tuned to optimize path fol-
lowing the performance. These guidance and control methods are implemented for
parallel docking, which is treated as a way-point generation problem. Path genera-
tion for docking is handled in two stages. In the first stage, by solving a constrained
optimal control, a path is found which provides that the vehicle reaches the port of
the parking region with minimum control demands. By using a continuous curvature
path function, the vehicle is taken from port to parking slot. The path following and
energy consumption performances of the USV under the parallel docking manoeu-

vres are evaluated for different combinations of guidance laws and controller designs



at the second stage. Finally, experimental validation has been realized on a scaled

boat with model predictive control and pure-pursuit guidance methods.

Keywords: unmanned surface vehicles, mathematical modeling, line-of-sight guid-
ance, pure-pursuit guidance, model predictive control, cascaded PID control, parallel

docking, constrained optimal control
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0z

SU USTU ARACLARI ICIN KENETLENME PROBLEMI

Yilmaz, Ismail Cagdas
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Mehmet Kemal Leblebicioglu

Ocak 2019, [I32]sayfa

Bu tez, insansiz yiizey araglari (IYA) icin paralel kenetlenme (paralel park etme) prob-
lemini kapsamaktadir. Ik olarak, iki tane pervanesi bulunan bir IYA i¢in Newton-
Euler metodu kullanilarak bir matematiksel model elde edilir. Kinematik ve dinamik
denklemler kullanilarak 6 serbestlik derecesine sahip bir model olusturulur. Bu mo-
del iizerinde bir hiyerarsik hareket kontrol yaklagimi uygulanir. Hiyerarsinin stratejik
seviye kisminda iki ¢esit giidiim yontemi; goriis hatti (GH) ve katiksiz takip (PP)
yol noktasi takibi i¢in kullanilmaktadir. Hiyerarsinin kontrol dagitim seviyesinde ise,
sonlu ufka sahip model 6ngoriilii denetleyici ve bir katli PID denetleyici tasarlanmig
ve aracin yol izleme performansini en iyilemek icin parametreleri ayarlanmistir. Daha
sonra, bu giidiim ve kontrol metotlar1 yol noktalar1 olusturma problemi olarak gorii-
len paralel kenetlenmede uygulanir. Kenetlenme i¢in yol olusturma iki asamada ele
alinir. Tk asamada, kisitli bir en iyi kontrol ¢6ziimii aracin park bolgesinin kiyisina
gelmesi saglanir. Ikinci asamada, siireklilige sahip egimli bir yol fonksiyonu kullana-
rak, ara¢ kiyidan park alanina yoneltilir. [YA'nin yol takip ve enerji harcama perfor-
mans1 farklh giidiim ve kontrol yontemlerinin kombinasyonlari ile degerlendirilir. Son

olarak, model ongoriilii denetleyeci ve katiksiz takip giidiim yontemini kullanilarak

vii



Olceklendirilmis bir tekne tizerinde deneysel dogrulama gerceklestirilmistir.

Anahtar kelimeler: insansiz yiizey araglari, matematiksel modelleme, goriis hatt1 gii-
diimii, katiksiz takip giidiimii, model 6ngiiriilii denetleyici, katlhi PID denetleyici, pa-

ralel kenetlenme, kisitl en iyi kontrol
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

Demands of full autonomy are increasing for unmanned surface vehicles (USVs), in
other words, autonomous surface vehicles (ASVs), with each passing day which are
employed in observing environmental changes and abnormalities, handling military
tasks, conducting scientific research in lakes, seas, and oceans [32]. More robust and
reliable systems have been made thanks to ever-improving controller designs which

reduce human intervention on surface crafts to the point of disappearing.

Design and implementation procedures of navigation, guidance and control (NGC)
systems for a USV have become crucial according to the International Regulations
for Avoiding Collisions at Sea (COLREGs) [13]. COLREGs defines possible sce-
narios for collisions and describes some manoeuvring techniques to prevent potential
crashes [3]. Errors and failures such as amateur manoeuvring by human conduct
cause marine collisions and accidents the percentages of which are approximately es-
timated to be between 89% and 96% [43|]. All of these issues can be prevented or
minimized by making an autonomous vehicle with the aid of proven, commercially
available, compact hardware equipment which includes global navigation satellite
system (GNSS) receiver, inertial measurement units (IMUs), communication network

etc. [33]].

One of the challenging aspects of designing and modeling a USV is to deal with
coupled and nonlinear dynamics. Some physical parameters are generally not known
in a precise manner [36]. However, their values can be assumed to be in a certain

range by considering dependencies of model parameters on each other. Consequently,

1



this difficulty puts NGC systems in an important role.

The marine research community has furthered rapid improvement and state-of-art
control applications to make the autonomous USVs for many years. These applica-
tions which depend on the vehicle dynamic model, offer robust, stable and accident-

free motion [/13]].

In this study, the main aim is to dock a USV in parallel to a parking spot autonomously.
To achieve this purpose, it is decided that effective autopilot and guidance algorithms
are employed for motion control. These challenging algorithms offer highly suitable
motion guarantees successful manoeuvring for USVs. The proposed methods are

later verified on a scaled boat in physical experiments.

1.2 Literature Review

Great number of kinetics and kinematics model publications are available in the liter-
ature [28]], [19], [22], [11]. A mathematical model which is composed of kinematics
and dynamics equations is important for sophisticated control design. Newton’s (sec-
ond) law of motion in 6 degree-of-freedom (DoF) are the first approach to obtain

dynamics of the model as follows:
My =) F, (1.1)

M represents the mass (inertia) matrix of the system. The generalized acceleration
vector which is the derivation of linear and angular velocities with respect to time is
denoted by v. In (L)), there is £ number of forces and moments which are acting on

the vehicle. Each force and moment vector is indicated by six components:
F;=[X;Y; Z; K; My, NiJ" (1.2)
Generalized position vector is given in (1.3]), which is composed of position, Euler

angles and velocity vector, (I.4), whose elements are linear and angular velocities

which are represented by making use of SNAME notation [48]]:

nExyzo by (1.3)

2



veafuvwpqr]’ (1.4)

Keeping (I.1) in mind, Fossen [20] has developed a new demonstration for math-
ematical modeling of underwater vehicles by using Newton-Euler equations. This
representation which is also used for surface vehicles with some changes, is based on
the derivation of robot dynamics [[15]. Developed kinematic equations are represented

in vector form in the following equation:

M(q)§g+C(q,q) =T (1.5)

includes Coriolis and centripetal matrix, C, in addition to inertia matrix M.
T vector indicates torques acting on the vehicle and q is the joint angle vector. The
model has been developed with further research and assumptions to improve the con-
troller design. The followings are assumed in the modeling procedure: mass of the
USV is uniformly distributed along the body (1), centre of gravity coincides with
body-fixed frame (2), motions of a USV are in an ideal fluid (3), sway-yaw and surge-
sway dynamics are decoupled (4) [47], [32]. The final form of the robot-like dynamics

representation is written in (1.6):
Mp +Cv)v + D)y +9g(n) +go =7 (1.6)

where D(v) represents the summation of the linear and nonlinear damping matrix,
g(n) shows the buoyancy forces and moments, and g, denotes the static restoring
forces and moments. Some physical properties on the system can easily be observed
in (I.6). M is known to be the symmetric and positive definite matrix, C(v) is the
skew-symmetric and positive-semidefinite matrix. ID(v) matrix has positive-definite
property. Throughout the thesis, (I.6) is adopted as the dynamic equation of the

system for controller designs.

The kinematic model does not include any specific rule for USVs. The rate of change
in positions and in Euler angles with respect to time are easily obtained by making
linear and angular velocity transformations. In a number of researches, it can be
shown that a 6 DoF model is to be reduced to a 3 DoF by considering only surge-

sway-yaw dynamics in planar motion [28], [[19].

Control of USVs motion is generally divided into three levels [[10]. The first level

is named as strategic (organizational) level. Second is the tactical (task) level which

3



is composed of advanced controllers. The last stage is known as execution (servo)
level. Strategical level includes guidance algorithms which are implemented for path
following, path manoeuvring, trajectory tracking and set-point regulation (or point
stabilization) [8]]. In this study, guidance algorithms are employed for path following
purpose. In literature, plenty of research has been published for path following task.
Caccia et al. [12], have used a combination of (PD) and (PI) guidance methods to
produce suitable references for surge speed and heading commands to track a straight
line. Control task is implemented in the dual-loop feedback loop on an unmanned
catamaran. Naeem’s study [38]] includes a guidance algorithm which is employed for
the simple line-of-sight (LOS) method besides way-point tracking plan for differential
drive Springer USV. However, its controller only takes the heading angle as a refer-
ence. Oh and Sun [40] have used a LOS guidance scheme to produce yaw angle refer-
ence for a 3 DoF USV. Apart from other LOS approaches, reference heading angle of
the USV is calculated without using atan() function. This guidance method which is
called a linear-like LOS approach is performed in simulations to follow a curved path.
Pearson et al. [41] have utilized high-level fuzzy logic way-point heading guidance
method for a USV. An autonomous underwater vehicle (AUV) is launched and recov-
ered via this guidance law which is implemented on a USV. Proposed guidance law
generates the desired speed and heading angle for low-level controllers. USV tries to
minimize the cross-track error between the USV and AUV by following the intended
path. Pure-pursuit (PP) and line-of-sight (LOS) guidance methods were employed to

determine surge speed and yaw angle references for task level controllers.

At the tactical level, controllers take references generated from guidance algorithms
and produce torque commands for actuators. Design procedures of controllers cover
some essential features. To be able to realize autonomous driving, controllers should
handle environmental disturbances, model uncertainties and short-term failures of
sensors. Most of the USVs in the market are underactuated since actuation in sway
motion is not economically and practically feasible in the general sense. In the lit-
erature, a significant number of controllers have been suggested to meet the need
caused by the difficulties of handling an underactuated control. Surge speed, yaw an-
gle (yaw rate), collaboration with other unmanned systems, roll stabilization, course

keeping, manoeuvring, positioning aspects and features are among the manipulated



variables for USVs [38]]. Kumru et al. [30] have suggested a linearized and inter-
polated PID technique in a simulation environment to control surge speed and yaw
angle of the USV which is also employed in this study. The proposed PID controller
parameters have been optimized in accordance with the thruster characteristic of the
system. Breivik et al. [10] have studied on straight line target tracking using surge
speed and yaw rate controller instead of yaw angle control for USVs. Controller de-
sign procedure covers a novel velocity control method which is similar to agility and
manoeuvrability concepts of the aircraft vehicle. Pereira et al. [42] have designed
a weighted controller design for a USV which composes of two propellers and a
single rudder to realize station keeping. Heading autopilot includes a PD controller
only. While proportional term tries to minimize yaw angle error, derivative term is
multiplied by yaw rate. It has been found that putting an integral term improves the
performance of error minimization. Oh, and Sun [40]] have utilized standard quadratic
programming (QP) to solve linearized MPC controller outputs. In their study, all the
states are included in the QP problem and limited between specific values. Degree-
of-freedom is incremented by one to enhance the path tracking performance. Zheng
et al. [55] have constructed a nonlinear and a linear model predictive controllers to
track a circular path without employing any guidance rule. Effects of the prediction
horizon are calculated at different sampling rates. Comparison of linear and nonlinear
MPC is demonstrated on multiple figures. Li and Sun [31]] have applied a novel dis-
turbance rejection MPC (DC-MPC) method to control ship heading dynamics. The
controller is implemented in the simulation environment in the presence of modeled
environmental disturbances. Disturbances are constituted from two different of si-
nusoidal signals. Performance of the DC-MPC is compared for different prediction
horizons. In this study, surge speed and yaw angle dynamics of the USV have been
controlled via model predictive and cascaded proportional-derivative-integral (PID)

control techniques.

This thesis study is a follow-up of some previously realized dissertations, and publica-
tions under the supervision of Prof. M. Kemal Leblebicioglu. First of all, Ahiska [4]
has derived a mathematical model for a USV which is composed of only one thruster
and one rudder. In his study, PID and LQR controllers are designed to attain de-

sired yaw angle and surge speed. Guidance and obstacle avoidance algorithms are



implemented to drive the USV safely. Experimental validation is performed for PID
controllers and experimental, and simulation results are compared with each other. In
Eriinsal’s study [17], successive system identification methods have been experimen-
tally utilized to obtain mathematical model parameters of the USV which is employed
in this thesis study as well. PID based piecewise controllers and Sliding Mode Con-
troller (SMC) techniques are executed in a simulation environment to reach desired
yaw angle and surge speed. Eriinsal et al. [18] have also published a paper to ob-
tain the model parameters of USVs. The final values of the model parameters are
found by conducting consecutive experiments for the proposed identification scheme.
Kumru [29] has investigated navigation and control algorithms in his thesis study as
well. A mathematical model whose parameters are identified in Eriinsal’s thesis is
used. Integration of Inertial Navigation System (INS) and Global Navigation Satel-
lite System (GNSS) are provided to design a suitable navigation algorithm. A loosely
couple navigation scheme suitable for additional magnetometer measurements is de-
veloped to obtain a better navigation solution. LQR and feedback linearization based
controllers are utilized and compared with each other. Kumru et al. [30] have sur-
veyed some task level control allocation methods for achieving the path following the
performance of USVs. The study covers pole placement, feedback linearization, PID
and sliding mode controller techniques. Disturbance rejection abilities of all these

employed controllers are discussed by Monte Carlo simulations.

1.3 Outline of the Dissertation

This study covers mathematical modeling, guidance and control methods, docking
manoeuvres strategies of the USV whose parameters are previously obtained. Intro-
duction chapter is comprised of the motivation of the thesis and literature surveys

where selected publications are referenced for the methods in the following chapters.

In Chapter 2, derivation of a 6 DoF mathematical model is explained in detail. The
modeled USV has two identical left and right thrusters without any actuators such
as rudder. First of all kinematic equations are obtained for position updates. Rigid
body inertia, Coriolis and centripetal matrices are found in the rigid body dynamics

section. Simplified added mass dynamics are attached to rigid body dynamics. Linear
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and nonlinear hydrodynamic damping forces and moments are presented. Buoyancy,
gravitational, air drag forces and moments acting on the rigid body are obtained in
vector forms. Torques produced by motors are modeled as input. Wave disturbances
generated by wind is taken as an environmental disturbance effect. MATLAB simu-

lations of the proposed model are demonstrated at the end of this chapter.

Motion control hierarchy is introduced in Chapter 3. Generation of the reference
signals from two types of guidance algorithms which are line-of-sight (LOS) and

pure-pursuit (PP) take part in this chapter.

In Chapter 4, first of all, the linearization technique of the nonlinear model and se-
lection of the sampling time are briefly described. The design procedure of MPC
and solution of the quadratic programming problem are introduced. Then, the sec-
ond controller technique, cascaded PID, is employed and tuned by using the particle
swarm optimization technique. Parameters of the MPC and cascaded PID controller

are optimized on the "S" shape curved path, and their performances are illustrated.

In Chapter 35, the docking problem for a USV is solved in two stages. Optimal con-
trol rule is employed for obtaining the path which is to be followed by the vehicle
between an initial point and the parking point. Then, a geometric approach is utilized
for a backward motion to take the vehicle into the parking slot. Next, way-points are
generated from these paths. Finally, combinations of guidance and controller algo-

rithms are compared in simulations.

In Chapter 6, physical and hardware components section includes features of the
model boat and the selected hardware equipment. Later, the software architecture
of the autopilot card is investigated in detail. At the end of this chapter, experimen-
tal validation of the study for MPC and PP combination is expressed, and results are

presented in figures.

The last chapter briefly summarizes the whole thesis and gives information about

future work. Some suggestions for follow-up studies are listed.

In the appendix part, the details of the yaw angle calculation in Chapter 3 are ex-
pressed to overcome the discontinuity problem of the arctangent function at some

values.






CHAPTER 2

MATHEMATICAL MODELING OF A SEA SURFACE VEHICLE

2.1 Introduction

A mathematical model for an unmanned surface vehicle, (USV), which has two
thrusters is constructed in the scope of this chapter. The model is obtained from the
kinematics of a physical system representing a USV and comprises external forces
acting on the hull including torque commands for controlling the vehicle and the dis-
turbances due to waves. The body of the boat is taken as rigid, and equations of
motion which are used to construct the mathematical model are based on rigid body

theory.

A mathematical model can be derived by using different kinds of techniques. In
this thesis, similar to that in robot model which is later adopted for marine vehicles
by [22]], a model with a set of equations in vector form is used. This model includes
rigid body dynamics: mass and inertia, centripetal and Coriolis forces, gravitational
and buoyancy forces, and damping forces. Furthermore, the vehicle can be exited by
some external forces and moments due to various sources: thrusters, air drag due to
vehicle speed and wind, and disturbances due to waves and currents. Air drag forces
act on the aerial or buoyant part of the vehicle. Control commands are applied to
the vehicle via thrusters located at its aft. The longitudinal motion of the vehicle is
obtained with the cumulative product of the thrusters, and yaw motion is acquired
with uneven thruster commands. In addition to the forces mentioned above, there
are disturbance forces due to environmental effects, like wave, wind, sea and ocean
currents. They are essential to be used in the stability analysis of the system. There is

no rudder on the vehicle in contrary to traditional surface vehicles; therefore rudder
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forces and moments are not investigated in this thesis.

This chapter covers the following subjects in detail. First of all, Fossen’s robot-like
vectorial model which is used to define the kinetic equations of the sea surface vehicle
will be explained briefly. After that, kinematics will be expressed for vector transfor-
mation from body to inertial frame, and coordinate transformation between these two
frames is shortly described. Rigid body dynamics and forces will be discussed. In
the end, simulation of the model with a parameter set found by using system identifi-
cation techniques [|17] is run in MATLAB software environment. According to some
initial conditions, simulation results obtained from MATLAB will be demonstrated

and discussed.

2.2 Vectorial Model

Robot-like vectorial model is adopted as a standard model by the international com-
munity due to its easy implementation [22]. The system can be easily examined for
stability and motion characteristics because of the properties of inertia, Coriolis and
centripetal matrices. These properties are also useful for computational purposes to
reduce the number of coefficients to be considered in the design of controllers. The

vectorial model (2.1)) can be directly written as follows:

M(q)§+C(q.q) =T (2.1)

Six degrees-of-freedom (DoFs) vectorial representation is used in this equation. Iner-
tia and Coriolis matrices of the system are demonstrated by M and C, respectively.
For the vector of joint angles, g is used. The term 7 represents moment and forces
acting on the vehicle. This simple equation is extended and modified for equations of

motion of sea surface vehicles by using [24]], [21] and [[7]:

Mv + C(V)V + D(’/)V + 9("7) + go=T + Twind + Twave (22)

In addition to the above matrices M and C, D matrix describes hydrodynamic damp-
ing. g(n) stands for the buoyancy and gravity forces. Static restoring forces and mo-

ments are indicated with gy. Disturbance forces due to environmental effects which
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are wind and wave forces are T,;,q and T,qve, respectively. States or variables for

equations (2.2)) are represented in vectorial form as follows:

[z y z ¢ 60" (2.3)
vauvwpq T]T (2.4)

n

Model shown in (2.2) may be converted to the following equation to bring forces

right-hand side of the equation:

Mv+Cw)v =14+ Ty + Tt + To + Tais (2.5)

Inertia, centripetal and Coriolis matrices include the added mass dynamics in the left-
hand side of (2.3). Right-hand side consists of hydrodynamic damping forces and
moments T4, buoyancy and gravitational forces and moments 7, thruster forces and
moments 7y, air drag forces and moments 7,, and disturbance forces and moments
Tais- (2.3) will be considered as a reference to derive equations of motion and is

inclusively explained in this chapter.

2.3 Kinematics

Kinematics is described as a motion of objects without knowledge of the causes of
forces [25]]. In navigation problems, linear and angular positions, velocities, acceler-
ations and angular rates of a coordinate frame must be aligned with respect to another
frame to update these values in both frames for equations of motion. In kinematics,
geometrical aspects of motion are examined to find relations among variables defined
in both coordinate frames. A coordinate frame is identified with its origin and axes
orientations. Any vector, including positions, velocities and accelerations can be rep-
resented in different coordinate frames. Local (reference) and body-fixed coordinate

frames, and transformations are briefly explained in the scope of this section.

2.3.1 Coordinate Frames and Notations

Two main navigation frames are utilized to implement guidance and controller meth-

ods in the scope of this study. One of them is called the body-fixed coordinate frame,

11



r (yaw)

w (heave)

z

Figure 2.1: Body-fixed frame of a surface vehicle [22].

and the other is North-East-Down (NED) reference frame. Body-fixed coordinate
frame is located on the vehicle, as shown in Fig. Notations of this figure are
based on Society of Naval Architects and Marine Engineers (SNAME) standards [48]].
Forces, moments, linear and angular velocities, position and Euler angles are given

with their symbols in Table

Table 2.1: SNAME notations for surface vehicles, [48]].

Forces Position
and Linear and and Euler’s
DoF Moments | Angular Velocities Angles
(1) motion in x-direction (surge) X U x
(2) motion in y-direction (sway) Y v Y
(3) motion in z-direction (heave) Z w z
(4) rotation in z-axis (roll) K P 10}
(5) rotation in y-axis (pitch) M q 0
(6) rotation in z-axis (yaw) N r WY

Body-fixed coordinate frame is represented by b = {xy, ys, 2, } axes and oy, which is

the origin of it. Angular and linear velocities and forces and torques are expressed
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in body frame. Then they are transformed into a reference frame which is defined as
NED frame for calculation of equation of motion. NED frame has axes with n =
{Zn, Yn, 2z} and origin o,. The North is pointed toward z,, axis, y, axis indicates
East, and in order to represent downwards of the normal to the Earth’s surface, z,, is
used. This reference frame is also called as a local navigation frame. The position
and Euler angles of the vehicle are calculated in the NED frame. Fig. [2.2]illustrates
the NED frame with its axes and the origin. State vector includes 12 variables which
consist of position, Euler angles, linear and angular velocities in z, y, and z directions.

This vector can be represented as follows:
state =[xy z ¢ 0 wvwpqr]’ (2.6)

Following notations that are listed below are used to derive equations throughout this

chapter.

Uy, £ [u v w]" : Linear velocities of o, with respect to {n} expressed in {b},

wg‘n £ p ¢ r]" : Angular velocities of 0, with respect to {n} expressed in {b},
21X Y Z]T: Forces with acting point oy, in {b},
m? 2 [K M N]*: Moments about o, in {b},

Onp = [0 6 )" : Euler angles between {n} and {b}.

The attitude and position vectors of the reference frame, local navigation (NED)

Figure 2.2: Axes and origin of NED (local navigation frame) [25].
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T bT

frame, is expressed as 17 = [p2|n O, 7. The body-fixed velocity vector, which

. . . .ys . T T
is constituted from linear and angular velocities is represented v = [vg‘n wgm T =

T T]

T
[’01 () b ]T.

. : . T
T Generalized forces and moments vector is described as T = [ m)

2.3.2 Transformations

Position and orientation of the vehicle are calculated in North-East-Down (NED)
frame. Inertial sensors whose measurements are angular and linear velocities, the
orientation of the body are located on the rigid body. These values in the body-fixed
frame must be converted to NED frame (local navigation frame). In the next part, the
transformation of the linear and angular velocities vector from body-fixed to NED

frame will be explained.

2.3.2.1 Linear Velocity Transformation

Rotation matrix (also called coordinate transformation matrix) is used to convert the
presenter of a vector such as a linear velocity of a USV between two frames. This
matrix is denoted as R?. By multiplying this matrix with a linear velocity vector in
frame, a related velocity vector is found in 5 frame. Inversely, related velocity vector
in « frame is obtained by multiplying the transformation matrix Rj with a linear
velocity vector in 3 frame. The final form of the transformation matrix is a function

of Euler angles and is indicated in the following equation.

c(O)e() —c(0)s(v) + s(9)s(0)c())  s(d)s(¥) + c(¢)s(0)e(¥)
Ry(Ow) = |c(0)s(v)  c(d)e(v) + s(0)s(0)s(¥)  —s(d)c(v) + c(9)s(0)s(v)

—s(6) s(¢)s(0) c(@)c(0)
2.7)

where ¢(+) is the cosine operator whereas s(-) is the sine operator. Linear velocity

vector defined in the reference frame is obtained from the following equation:

Vi = i = Ry (@m0, (2.8)

ﬁan is time derivative of the position of o, with respect to {n} expressed in {n}.
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2.3.2.2 Angular Velocity Transformation

When angular velocity vector of the body frame, wlb’m, is converted to the reference
frame, rate of change of the Euler angles with respect to time is obtained in the ref-
erence frame. The angular velocity transformation matrix which is the function of

Euler’s angle is represented as T'(©,;):

1 sin(¢)tan(d) cos(¢)tan(d)
Te(On) = |0 cos(o) —sin(¢) (2.9)
0 sin(¢)/cos(d) cos(¢)/ cos(d)

The related rate of changes in Euler angles is mathematically indicated by:

O, = To(On)wh, (2.10)

2.3.2.3 6 DoFs Kinematic Equations

(2.8) is combined with (2.10) to write a single equation for kinematic calculations.
Rate of changes of the position and orientation with respect to time in vector form are

described at the following equation:

n=Je(nv (2.11)
Explicitly,
@nb 03><3 T@(@nb) wgm

where J g is a modified transformation matrix that is used for transforming linear and
angular velocity of o, with respect to the reference frame expressed in the body-fixed

frame to rate of change of position and Euler angles.

2.4 Rigid Body Dynamics

Rigid body dynamics of surface vehicles are the essential part of the mathematical
modeling. Inertia Mpzp and Coriolis and centripetal matrices Crp(v) of the rigid

body are found from these dynamics. Lagrangian formalism with using Kirchoff’s
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equation or Newton-Euler equations is derived from satisfying the following equation

which is in the vector form [24]:
MRBI./—FCRB(V)I/:T (213)

R B is the abbreviation of the rigid body. v represents the vector of angular and linear
velocities with variables v = [u v w p ¢ r]T. 7 stands for the torque and moment
vector, and it is written as 7 = [X Y Z K M N]*. Origin of the body frame and
centre of gravity which are used later are abbreviated as C'O and C'G, respectively.
Newton’s second law is written in popular form for surface vehicles according to the
following equation:

N =
Mg = fy (2.14)

where ?; is a vector which acts on the centre of gravity C'G of the vehicle, v_;,ﬁ stands
for acceleration of the C'G with respect to the inertial frame, and m is the total amount
of mass of the vehicle. According to Newton’s first law, if ?; = 0, vehicle rests (if its
velocity is zero) or keeps its velocity in constant speed. Euler’s axioms which were
derived from Newton’s second law are defined as conservation of linear, 17)9, and the

angular momentum, h,. Euler’s first and second axioms are described in (2.15)) and
(2.16), respectively.

o 3y =iy, @15)
=

Z@h .

o= m, = L, (2.16)

where n_zg is moment vector acting on C'GG of the body. Linear and angular velocity of

the C'G with respect to 4, inertial frame, are represented as @ and @, respectively.
la—t is a derivative operator that can be expressed time differentiation of a vector in the
inertial frame. Inertia dyadic, I, is described by inertia matrix or tensor. Elements
of this matrix are calculated using the equations on following Table 2.2] Positive
definite inertia matrix, I, that satisfies I, = I gT > 0, is represented with its elements

as follows:

(2.17)



Table 2.2: Calculation of the elements of the inertia matrix.

Moments of inertia Products of inertia

I = [,(y* + 2%) pmdV, about z axis | Ly = [, 2ypmdV = [, yzpmdV = I,
I = [, (2* + y*)pmdV, about z, axis | I,. = [, yzpmdV = [, 2ypndV = I,

In order to derive equations of motion for surface vehicles, two essential assumptions
are adopted [22]. First of all, the craft is rigid. It means that craft has no individual
elements of mass, so there is no force acting on an individual mass. The second
assumption that NED frame {n} is inertial. This assumption ignores forces because
of Earth’s motion relative to the star-fixed inertial reference system. These forces can
be negligible when it is compared with hydrodynamic forces. So linear velocity of

CG with respect to {i} and angular velocity of {b} with respect to {i} are written

again:
TRARSITIN (2.18)
Wy, X Wy (2.19)

Differentiation of a vector, @, with respect to time in reference frame has following
relation with differentiation of ‘@ with respect to time in the body-fixed frame (or

moving frame) and angular velocity of C'O with respect to {i}:

ivd  tod
50 = 5 T W X a (2.20)

2.4.1 Translational Motion about C'G

Position vector of C'G with respect to {7}, r_gﬁ (or it is assumed according to assump-

tion m), is expressed in the following equation and relation can be shown in Fig.

2.3t

ol = Ty + T 2.21)
or,
o = T 4 (2.22)



{i} = {n} = inertial frame

Figure 2.3: Explanation of r—gﬁ, r_bﬁ, r_; and origin of CO and CG .

7, is the vector from CO to CG , and it is indicated by component form as r, =

[z, y, 2,)7. By using (Z.21)), the time differentiation of the 7; is written as:

Drgn 0
= —(ry, 2.23
ot o T+ 7g) (2.23)
Furthermore,
— — 187'_; — =
vg|n:'vb|n+( ot —i—'wb|n><'rg) (224)

Due to the fact that vehicle is a rigid body and C'G' does not change in time, i.e.,

5 = 0, so the final form of (2.23)) is formulated:

Vg = Vo + Wi X Ty (2.25)

The equation of translational motion is derived by the help of (2.13) and (2.23)). It
follows that
fo = 5 mYgin

b
= 7MYy, + mwb‘n} X Ugin

ot
= M (D), + Wyp X Vgiy) (2.26)
and
f= m(rogln + S(w,§|n)v2|n) (2.27)
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Skew-symmetric matrix operator, S(-), which is substituted for cross product calcu-
lation, is defined with arbitrary vectors, @ = [a; as a3]’ and b = [by by bs]” in
R3:

0 —das a9
S(a)=| a3 0 - (2.28)
—ao ai 0
axb=S(a)b (2.29)

2.4.2 Rotational Motion about C'GG

The equation of rotational motion is written using (2.20) and Euler’s second axiom in

(2.16). Following steps are done to derive rotational motion:

N

my = EIgw_M
=0 ) + < (1)
= ) - () < 2:30)
and
mg = Igu‘)é’m — S(Igwgln)wé’ln (2.31)

Let a and b be two arbitrary vectors in € R3. Cross-product of two vectors has a
relation:

axb=-bxa (2.32)

In this way, the statement wy),, X (I,wy),) can be written as — (I,wy;,) X Wy, The
equation of motion with respect to the centre of gravity is written in component form

according to (2.27)) and (2.31):

b b b b
mI3><3 03><3 'Ug\n n mS(wb‘n) 03><3 ,vg\n _ g (233)

b b b b

O3x3 Iy | |wy, O3  —S(Tywy,)| |wy, my

N . . . mlzxs O3xs .
where the inertia matrix of rigid body is M§S = . **|, the Coriolis and
03,3 I
: . mS (wy) 033 .
centripetal matrix is C%§ = ( b‘”) ) with respect to center of
033 _S<Igwl€|n)
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gravity of the vehicle. The implicit form is indicated by:

")) b b
v v i
ole gln cG gm [ _ Y
Mg | "+ CRg | Tt =] (2.34)
wg‘n wb‘n mg

2.4.3 Translational and Rotational Motion about CO

Newton-Euler equations are calculated at the centre of gravity of the vehicle with
(2.27) and (2.31)). These equations are transformed to rigid-body frame thank to kine-

matic relations. For this purpose, (2.25) may be expressed as:

vgln = fvé"n + wgln X 'rZ
= vy, — T X wy,
= vy, + 8T (r))wy, (2.35)
”Sm _ I3, 3 ST(rZ) vllzln (2.36)
wgln 033  I3x3 wzln

H (rg) € R? is a transformation matrix which converts linear and angular velocity

from the C'G to C'O. It and its transpose are explained by:

I ST(r? I 0

H('I“b) _ 3x3 ( g) , HT(Tb) _ 3x3 3x3 (237)
O3x3  Isxs S(rh) Iss

(2:34) is multiplied with H™ (r}) from left to preserve positive definiteness and sym-

metry properties of the matrices in the equation of motion, This gives the following

formula:
T/ b\ A gCGC bi’1§| T (. b\ ~CG b”b\ T(b £
H ) MEGH ) | i |+ B e eggm ) | Y | - mT ) | T
Wy, Wy, m,
(2.38)

Rigid body mass, M &S, and Coriolis and centripetal, C§S, matrices with respect to

body-fixed frame become:

CcO
MR = H' (r)) MEFH(r)), Mgy = M55 >0 (2.39)
CcO
CLg £ H ' (rY)CLGH(r)), CLY=-C'pp>0 (2.40)
Explicitly,
mlsys —mS(rt)
MES = . g (2.41)



ms(wan) —mS(’wZ‘n)S(rb)

g

mS(rlg’)S(wé’m) —S((Ig — mSZ(r’;)wgln))

cO _
CRB -

(2.42)

while MS9 is a unique matrix, C%9 can be represented in different ways. It may
be found by utilizing the Lagrangian approach with Kirchoff’s equations. v; = vllj'n,

T

vy = wlf'n, and v = [v17 ©v,7|" were defined earlier. The kinetic energy of the

vehicle that is defined in quadratic form is described as [44]:

1
T = 5VTMV (2.43)

MES can be written with its entries as follows:

M,, M
ME9 = | T (2.44)
M21 M22

where MH = mngg, M12 = —mS(’rS), Mgl = —mS(’r’S) and M22 = Ig. NOW,

(2.43) may be explicitly expressed as:

1
T = 5 (’U{Mﬂ’vl + U;MlQ'UQ + 'U?Mgl’vl + ngQQUQ) (245)

Kirchoff’s equations are formulated by:

0 0T oT

5t (Gor) + 2 % ggr =T (2:40)
o (0T oT oT
5 (o) ¥ 0 X gy H U X G = T2 247

Time differentiations of the kinetic energy with respect to v; and vs:

or
— = MH’Ul + M12’02 (248)
8’01
or
_— = M21’U1 + MQQ’UQ (249)
(9'02

The equation of motion is written according to (2.46)) and (2.47) :

M, M, (1 n 033 —S(M11171+M12172) il T
My Moy Vg —S(M11U1+M12172) —S(M21U1+M227)2) () )

(2.50)
So, alternative representation of C$9 is obtained as:
c99 _ 0353 —mS(vy) — mS(v)S(rh) 251)
—mS(vy) +mS(r}) S (v,) —S(Lyv,)
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where I, = I, — mS*(r}).

Lo+m(y2+22) —Ly—magy, —lL.—mazgz FE K
L=\ —I,—mxzy, I,+ m(xg + zg) —1,, —my,z, IZOE ]5 Izl/)z
—1,, — mxyz, L, —myzz, I+ m(xg + yﬁ) I° Ii’y I°
(2.52)
MEE is explicitly written with its indices form in the following matrix:
m 0 0 0 mzg  —My,
0 m 0 —mzg, 0 m,
0 0 m m —mz 0
MEC — Yo ‘ (2.53)
0 _ng m?/g [Ib [a:by [asz
mzg 0 —my st I?S’ Ié’z
—myg Mgy 0 ]g:r ]gy Is
Following matrix indicates indices of the Coriolis and centripetal matrix, C£9.
0 0 0
0 0 0
0 0 0
o5 -
—m(Yeq + zr)  mlygp+w)  m(zgp —v)
m(xgq —w)  —m(zgr +x4p)  Mm(24q + u)
| m(xyr +0) m(yyr —u)  m(zgp + ygq)
m(ygq + 2g7) —m(zyq — w) —m(zyr +v)
—m(ygp + w) m(zgr + x4p) —m(ygr — u)
—m(zep — v —ml(zyq +u m(xrgp +
(2gp — v) b ( gz ) b b ( gpb ygq)b (2.54)
0 _[yzq - Ixzp =+ [zr [yzr + Izyp - [yq

b b b
Iyzq +1.p—ILr

b b b
=L, r—1,p+ 1,9

0

0

When CO corresponds exactly CG, ) = [0 0 0]" is satisfied. Thus, MES and

C$9 matrices become more simple. Entries whose values are zero of M5 matrix
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increase. MSY turns out to be a diagonal matrix like:

m 0 0 0 0 O
0O m 0 0 0 O
ml. 0 0 0 m 0 0 O
Mgg _ 3x3 3x3 _ (255)
Osx3 diag(1,,1,,1,) 0O 0 0 I, 0 O
0o 0 0 0 I, 0
0O 0 0 0 0 I
CS$9 matrix becomes:
[ 0 0 0 0 maw —m’u-
0 0 0 —mw 0 mu
0 0 0 mv —mu 0
CLY = (2.56)
0 mw  —muv 0 Lr —Ixq
—mw 0 mu  —1Lr 0 Lp
mv —mu 0 I.g —1ILp 0

2.5 Added Mass Dynamics

Surface vehicles move along partially submerged in fluid. When a rigid-body goes
around the water surface, it has to move out fluid of its headway. This phenomenon
is indicated as ‘added mass’, sometimes is called ‘virtual mass’, or ‘ascension to
mass’ [11]. In order to find appropriate equations of motion, dynamics of the ambient
fluid must be added to (2.38) or (2.50). These dynamics include inertia, centripetal
and Coriolis matrices which are derived from the kinetic energy approach of Kirchoff
[27]. The vehicle needs kinetic energy produced by thrusters to move. This energy
must be greater than the kinetic energy of the surrounding fluid. Otherwise, vehicle’s
motion is steady. Dynamic equations of the added mass are completely expressed
with state variables and partial differentiation of forces and moments with respect to

acceleration [4]], [[11]], [27]]:

Xa=Xpu+ X0+ Xpw + Xpp + X4q + Xpr
+ Xyuq + Yyvg + Zywq + Zypq + Z4qq + Zirq
— Xyur — Yyor — Yywr — Ypr — Yyqr — Yerr (2.57)
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Ya=Yuu+ Y0+ Yo+ Ypp + Yyq + Yir
— Xyup — Yyup — Zywp — Zppp — Zyqp — ZiTp
+ Xgur + Xyor + Xywr + Xppr + Xgqr + Xerr
Za = Zyu+ Zy0 + Zph + Zpp + Zyq + Zp1
+ Xyup + Yyup — Yywp + Yipp + Yyqp + Yirp
— Xqug — Xyvq — Xywq — Xypg — X499 — Xirg
Ky=Kyu+ Kyv + Kyw + Kpp + Kgq + Kir
+ Xyuv + Yyvv + Zywo + Zppo + Ziqu + Zirv
— Xpuw — Yyvq — Yyww — Yypw — Yequw — Yirw
+ Xyuq + Yovq + Zywq + Kipg + Myqq + Nyrg
— Xgur — Yyor — Zywr — Kypr — Myqr — Myrr
My = Myt + Myv 4+ Myw + Mpp + Myq + M7

— Xypuu — Yyou — Zywu — Zypu — Zgqu — Ziru

+ Xyuw + zyow + Xyww + Xppw + Xzqw + Xprw

— Xjup = Yivop — Zywp — Kipp — Miqp — Nyrp

+ Xpur + Yyur + Zywr + Kppr + Kyqr + Kprr
Na = Nyt + Ny0 + Nyw + Npp + Nyq + N7

+ Xyuu + Yyou + Yywu + Ypu + Yyqu + Yiru

— Xyuv — Xpvv — Xywv — Xppu + Xgqu — Xjrv

+ Xgqup + Yyup + Zywp + Kypp + Myqp + Nyrp

— Xpur — Yyur — Zywr — Kypr — Kyqr — Kprr

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

X4, Y4, Z 4 are the added forces and K 4, M 4, N 4 stand for the moments which come

0X
from added mass dynamics. X, = —— is the abbreviation of the partial derivative of

ou

force in surge direction with respect to acceleration in surge direction. Other partial

derivative terms can be interpreted similarly. Some terms from (2.57) to (2.62) may

be simply written as follows [4]:

al :XﬂU—FX@U—i‘wa—i‘Xﬁp—i‘qu—i‘X,zT
a2 = Xyu + Yyu + Yyw + Yp + Yyq + Yer
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a3 = Xyu + Yyv + Zyw + Zpp + Zyq + Zir
a4 = Xpu + Yyu + Zyw + Kpp + Kyq + Kir
ad = Xqu + Yyu + Yyw + Kgp + Myq + M;r
ab = X;u+ Yiv+ Zyw + Kip+ Mg+ Nyr (2.63)

Using from (2.57)) to (2.63)), the simple equation is written as follows:

Xo Xo Xo X; Xy Xif |

Yo Vi Yo Y, Y Yil| |

Zy Zy Ly Zy Ly Zi| |w N

K, K, Ky, K, K; K:| |p

M, M, M; M, M; M:| |q

Ny Ny Ny Ny Ny Ni| |7

R _MA
(0 0 0 0 as —ao| |u| [x4]
0 0 0 —a3 O aq v Ya
0 0 0 —-as o 0 w _ 4 (2.64)
0 as —ay 0 ag  —as| | p K4
—az 0 a; —ag 0 ay q My
| a2 —a 0 as —as 0 1L _NA_

~Ca(v)

(2.64) is added the left-hand side of to (2.38)) or (2.50) by multiplying it —1. Added
mass inertia matrix, M 4, is positive definite, i.e. M, > 0. Added Coriolis and
centripetal matrix, C4(v), is a positive semi-definite matrix which satisfies C4(v) =
—C4(v)" > 0. It makes that C4(v) is skew-symmetric and it conserves the feature
of overall Coriolis and the centripetal matrix is skew-symmetric. For surface vehicles,
the heave, roll, pitch modes are disregarded due to the fact that these variables are

small according to surge speed. M4 and C4(v) are simplified when the magnitude
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of the surge speed, |u|, becomes considerably larger than zero [21]:

and

o o o o o

My =—

+ Ny
2

r

s

o O o o O

-X

U

0
0
0
0
0

2 o o o X o
o o o o o o
o o o o o o
o o ©o o o o

o O o o o o
o O o o o o

(2.65)

(2.66)

When forward speed becomes zero (u ~ 0), N; can be replaced with Y; and the

(2.64) can be rewritten as follows:

0
0
0
0

0

0
0
0
0

0

Yov+Yir —X,u

o o o o O

0
0
0
0
0
0

s

0
0
0
0
0
0

gooogﬂo

0
0
0
0
0
0

o O o o o O

< o

o O o o o o
o O o o o o

—Y,v = Yir

Ny

(2.67)

Since My = M?¥ and M, > 0. This provides that inertia matrix is symmetric.

When it is added to the body-fixed inertia matrix, symmetric property of the overall
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system is preserved. As a conclusion overall inertia, M, and Coriolis and centripetal,

C(v), matrices of the surface vehicle is defined by the following equations:

M = MSS + M, (2.68)
C(v) = CRg(v) + Ca(v) (2.69)

2.6 Hydrodynamic Damping Forces

The damping matrix is situated on the left-hand side of the (2.5). To put damp-
ing force in matrix form, it is generally written as a summation of the four kinds of

damping components [21]]:
D(v) = Dp(v) + Ds(v) + Dy (v) + Dy (v) (2.70)

Hydrodynamic damping matrix, D(v), is a real, strictly positive and non-symmetric
matrix that is convenient to be written as, D(v) > 0 for all v € R Radiation-
induced potential damping is represented by Dp(v). Linear skin and quadratic skin
friction are called Dg(v). In the presence of wave in the environment, wave drift
damping Dy, (v) occurs. D), (v) stands for the damping due to vortex shedding.
Damping forces and moments are found by multiplying damping matrix D(v) with

velocity vector, v:

Dv)v =7, (2.71)

Radiation-induced potential damping: It is also called linear frequency-dependent
potential damping. Potential damping occurs in a body that oscillates with the wave
excitation frequency in the absence of incident waves. At low frequencies, potential

damping terms can be negligible against viscous damping.

Friction: When surface vehicles have motion in low frequency, linear skin friction
due to the laminar boundary layer is regarded as a friction damping factor. At the
high frequencies, quadratic skin friction is taken into account because of the turbulent

boundary layer.

Wave Drift Damping: This kind of damping that is derived from second-order wave
theory in the presence of the wave. Wavelength, wavelength encounter angle, vehi-

cle’s forward speed (for higher sea state) and wave encounter frequency are a func-
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tion of the wave drifting damping [11]. This damping appears like added resistance

against the motion of the vehicle.

Damping due to Vortex Shedding: While the vehicle moves in a viscous fluid, fric-
tional forces occur due to the fact that the system is not conservative with respect to
energy. This phenomenon is also called ‘interference drag’ and happens at the sharp
edges of the vehicle because of the shedding of vortex sheets. Force equation of the

viscous damping due to the vortex shedding can be written as follows:
1
fU) = §PCD(Rn)A|U|U (2.72)

Force is a function of the forward speed of the vehicle, u, and |u| is the absolute
value of the forward speed. The submerged cross-sectional area of the vehicle is
represented by A. Water density is indicated by p. Cp(R,,) is the drag coefficient

function of Reynold’s number which is formulated as:
R, = — (2.73)

where D stands for the characteristic length of the body, and % is used to describe the
kinematic viscosity coefficient. By considering abovementioned damping elements,
the damping matrix is separated into two matrices which are linear damping matrix

and nonlinear damping matrix:
D(v) = D(v) + D,(v) (2.74)

Linear and nonlinear damping matrices are represented by D, (v) and D,,(v), respec-
tively. The terms which come from linear and nonlinear damping components may
not be physically separated from each other. However, linear damping matrix for
surface vehicles is expressed by ‘Damping Model for Dynamic Positioning of Ships’
whereas nonlinear damping matrix is explained via ‘Nonlinear Damping Model for
High-Speed Maneuvers’ in [[19]. By neglecting heave, roll, pitch modes, the surge
mode may be decoupled from steering modes (sway and yaw) with z — z symmetry

for low-speed ships. Linearized damping matrix in (2.74) can be written in compo-
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nent form as follows:

(X, 0 0 00 0]
0 Y, 0 00 Y.
0 0 Z, 00 0
D= — 2.75)
0 0 0 00 0
0 0 0 00 0
0O N, 0 00 N,

At low speeds, IV, = Y, is taken to obtain symmetric linear damping matrix, i.e.,
D, = D}'. Assuming that surge is decoupled, nonlinear damping matrix can be

written by adding Z,,,|w| term according to Norrbin’s nonlinear model [39]:

Xupulul 0 0 0 0 0
0 Yiplv] + Yrp|v] 0 0 0 Yplv|+ Yl
D,(v)=—-
0 0 0 00 0
0 0 0 00 0
0 Nulol F Npplrl 0000 Nygpe[o] + Nigpe|r|
(2.76)
where,
1
Kty = 5pA:Cs (2.77)

C, > 0 is the current coefficient which is determined from experiments when the
vehicle is in up to 1.0 m/s currents and A, is the frontal project area. Other terms can
be easily found by arranging (2.77). Matrix D,,(v) can be simplified by neglecting
|r|r and |r|v components which are considered small against surge speed, u. So

nonlinear damping matrix becomes:

[ Xiulul 0 0 00 0 |
0 Yl 0 00 Yl
0 0 Z‘w‘w|w] 0 0 0
D, =- 2.78)
0 0 0 00 0
0 0 0 00 0
0 Npplvl] 0 0 0 Nyylo|

Derivation of the damping matrix is done under some assumptions. The body of the

vehicle is assumed symmetrical, and it has a box shape. Reynold number is accepted
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to be higher than 10%, i.e., R, > 10%. Components Zj,,|w| and Z,, which are ob-

tained from z-direction are taken into account for damping force calculations.

2.7 Restoring Forces

Combination of the buoyancy and gravitational forces is simply called restoring forces.

For surface vehicles, the bouncy force acts through the centre of the submerged part,

C B, and gravitational force acts through the centre of gravity, C'G. Although forces

act on these points, they must be transformed to the body-fixed frame by knowing
b

ro = [z Yy, 2" to calculate equations of motion correctly. Restoring forces, 7,

appear in right hand-side of (2.5).

A hypothetical point, My, is defined to find out static stability. It is called meta-centre
that is obtained from an intersection of a vertical line through the C'B and the new C'B
when the vehicle is moved, or tilted in the fluid. Restoring forces are obtained from
meta-centric heights, the position of C'GG and C'B, and water planer area of the craft.
Meta-centric heights include two quantities that one of them is transverse meta-centric
height (in meter), GM, and other is longitudinal meta-centric height (in meter),
GM . Meta-center, C'B, and new C'B are shown in Fig. The phenomenon

of a craft floating on a fluid is explained by Archimedes equation that is based on

| y
! I

e = - z

| GM,sin($)
4 N

lg

Equilibrium
»

>

Figure 2.4: Representation of transverse meta-centric stability [22].
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a balance between the weight of vehicle and weight of water displacement of the

submerged part. This relation is simply formulated as follows:
mg = pgVv (2.79)

where V is the displaced water volume. p,, = p,(7°) is the water density which
depends on the temperature and salt ratio of the water. When a body is not in motion
in z-direction, i.e. z = 0, is satisfied. Any change in z-direction changes
buoyancy forces, so restoring forces (also called hydrostatic forces) acting on the

body is calculated:

Z =mg — pug|V +0V(2)]
= —puwgdV(z) (2.80)

To simplify (2.80) some assumptions are made. Firstly, the rigid body of the surface
vehicle is assumed box-shaped. Water planer area which is the function of z position,
Ayp(2), is accepted to be constant, i.e. A,,(2) = A,,(0). The density of the water is

also assumed to be constant. Restoring forces is rewritten in compact and components

forms:
Z = —pugAupz = 202 (2.81)
0 0
st =lo| ~| o0 (2.82)
Z 202
where zyp = —p,gA,, is a constant. The final form of the restoring forces are ex-

plained in the body-fixed frame using (2.6) and (2.82)):

0f; = Ry(©)'0f; = R;,(Oy,) 0 f

— sin(0)
= 202 | cos(0) sin(¢) (2.33)
cos(f) cos(9)
Furthermore, restoring force in the z-direction can be written:
0 — sin(0)
5f° = RO, '5f" = R (©,,) 0 = —puwgV |cos(f)sin(¢)| (2.84)
—puwgV cos(f) cos(¢)
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The contribution of restoring forces defined in to moments is negligibly small
because buoyancy force is considerably larger. Cross product operation is done be-
tween moment arms (in roll and pitch) and buoyancy force to find moments which

arise from buoyancy forces. Moments arm is obtained from [2.4]as follows:
—G M7 sin(0)
v, = | GMsin(¢) (2.85)
0

Cross product between (2.85) and (2.84) gives:
G M sin(¢) cos(6) cos(¢)
b= b x 00 = —pugV GM ,sin(6) cos(8) cos(¢) (2.860)
(=G M, cos(0) + GMr) sin(¢) sin(6)

m

Restoring forces and moments can be written in vector form as

—zpz sin(0)
20z cos(6) sin(¢)
. S _ ﬁcos(é) cos(¢) (2.87)
m? —pwgV GM 7 sin(¢) cos(6) cos(¢)

—pwgVG M sin() cos(6) cos(¢)
_—pwgV(—G_ML cos(0) + GMy)sin(¢) sin(6) |

When the roll and pitch angles are near zero or too small, and displacement in the
z-direction is quite small. Small angle assumption can be implemented to reduce
calculation. Trigonometric functions can be arranged such that sin(6) ~ 60, sin(¢) ~

¢, cos(f) ~ 1, cos(¢) =~ 1. By considering this assumption, (2.87)) becomes:

[ —2020 ] [ 0 ]
202¢ 0
T, 5ff - e ~ oz (2.88)
m, —pwgVG M1 —pwgVGMrd
—pwgVGM 0 —pwgVGM 0
| —PugV(=GM+GMr)eb| | 0 ]

Meta-centric heights can be determined by basic hydrostatic [22]. Transverse, BM 7,

and longitudinal, GM 1, radii of curvature may be estimated:

GMr=—, GM;,=— 2.89
T vy L v ( )
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where V is the displaced water volume, /7 and I; which are the moments of area

about water plane are calculated as follows:

A A
hf//fM’h://x%q (2.90)
wp wp

If water planer area is taken as rectangular, i.e. A,, = BL where B and L are the

beam and length of the craft, (2.90) can be approximated as:

1 1
Ir~—B)L., I ~—IL°B 2.91
T 12 ) L 12 ( 9 )

Traverse and longitudinal meta-centric are defined as, respectively

GMp=BMr— BG

GM; =BM,; - BG (2.92)

2.8 Thruster Forces

As it was previously mentioned vehicle includes two thrusters that are located at
the aft. One of them is on the left side, and other is on the right side of the craft.
Assuming that effect of the rotation is negligible, moments produced by the left and

right thrusters are formulated as follows:

mp = T, X fiy (2.93)
my = Ty, X ftL (294)

where r;,, and r;, represent position vectors (lever arm) from the centre of gravity
to the right and left thrusters, respectively. f;, indicates the force produced by right
thruster, and f;, is used for the force which is generated by the left thruster. mpz, m,
are the moments induced by the right and left thrusters, respectively. Combination of

these forces and moments is written in vector form as follows:

T = Fin T T (2.95)

mpr my,

T, represents the forces and moments produced by thrusters in which it is defined in

the right side of the (2.5).
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2.9 Air Drag Forces

A substantial part of the vehicle moves in the air. Consequently, wind and air drag
give rise to forces and moments on the vehicle. These are indicated by a vector form
and denoted by 7, in (2.5). They are proportional to the velocity of the vehicle with
respect to air or wind velocity. This relative velocity, v,., is found by subtracting the

velocity, v, of the air from the linear velocity of the body v, in (2.96)) [4].
UV, =V — U, (2.96)
Now air drag forces are indicated by:
F, = AuP.Cuy = [Fow Foy Fu]" (2.97)

In the left-hand side, F;, stands for forces of air drag which act on the rigid-body. A,
is the buoyant part of the vehicle in the air. Cy, represents the air drag coefficient.

Air pressure is denoted by P,, and it is approximated by [21]:
P, ~ 2.56v? (2.98)

(2.98)) states that air pressure is proportional with the square of relative velocity. Some
underlying assumptions are made to find torques which result from the cross product
between the moment arm and the air drag forces acting on the body. The first as-
sumption is that the body is symmetrical, small and box-shaped contrary to a large
vessel. Secondly, the air drag forces are equally distributed along the buoyant part
of the body, and the centre of gravity is taken as a midpoint of the craft. From this

assumptions, the moment arms and torques produced by air drag force are written:

I wi hl*
A~ {5 o E] (2.99)
T, =\x F, (2.100)

where [, wi and h represent the length, width, height of the body, respectively. T,
indicates moments of the air drag forces. It is assumed that aerodynamic centre of
the vehicle coincides with the gravitational centre. So, vector form of the air drag

moments and torques are explained as [17]:
T, = —[F,,sgn(u) Fuysgn(v) F,.sgn(w)]” (2.101)
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. =[F, T)]" (2.102)

u, v and w are linear velocity components. The sign function sgn(e) in (2.101) is

expressed as with x € R:

-1, <0
sgn(z) = 0, =0 (2.103)
1, >0

2.10 Environmental (Disturbance) Forces

Environmental forces and moments that are produced from different kinds of distur-

bance sources may be classified into three main environmental categories as follows:

e Waves which are induced by wind (Tqe)
e Wind effects (Ting)

e Ocean currents (Teyrrent)

All the disturbance forces are taken as only one force, 7, in the left-hand side of the
(2.5). From these three forces, since wind-generated forces which are the modeled

forces for surface vehicles are taken into account in the mathematical model.

Wind-generated waves are composed of a summation of a large number of compo-
nents. For the sake of simplicity, wave spectra are considered with one peak fre-
quency. A; denotes wave amplitude, and ¢ is the wave component which is related to
the density function of the spectrum. Square of the wave amplitude has relation with

spectrum as follows:

A? = 25 (w;) Aw (2.104)

where w; is the circular random frequency of the : — th component. It takes value in
the frequency interval Aw which is described as a constant difference between two
successive frequencies. Wave number of the single wave component, k;, can be found

that 27 is divided by the wavelength of the ¢ — th wave component, \;.

ki = — (2.105)



Using (2.104) and (2.103)) wave elevation, (z, t), which is the function of z-(forward)

position and time is written with its first order and second order components:

N N
1
((x,t) = ; A; cos(wit — kix + ¢;) + Z §AZQ cos2(w;t — kix + ¢;)  (2.106)

i=1
where ¢; is the random phase angle which is uniformly distributed in [0, 27) and is
independent of time. For example, the density function of the Pierson-Moskowitz
spectrum is used to obtain first-order wind-generated wave forces [21]. Spectrum is

the function of gravitational constant, g, and significant wave height, H.

S(w) = Aw e P (2.107)

3.11
where A = 8.1 x 1073¢? and B = Tz When the values of A and B are substituted

in (2.107), the final form of the spectrgl density function obtained as follows:

3.11 w—4

S(w) = 8.1 x 102 g*w e #Z (2.108)
First order wind-generated wave forces which consist of the surge, sway forces and
yaw torque is based on block shape ship assumption. To be able to find these forces,
wave slope must be found from the derivation of the first term of (2.106]) with respect
to x-position. Wave slope of ¢« — th wave component, s;, calculated as:

o¢(z,t)

si(z,t) =
T

For a moving vehicle, w; is replaced with w,. and above equation is simply written by

assuming = = 0. (2.109) becomes:
Sl(t) = SO,i(t) = Azkl sin(wet + Cbz) (2110)

As a result, first order disturbance forces in surge and sway and moment in yaw are

formulated:
N
Xuave(t) = Y pugBLT cos(B — U)s;(t) (2.111)
z]:Vl
Yuave(t) =Y —pugBLT sin(3 — U)s;(t) (2.112)
z]:Vl 1
Nuave(t) =) ﬂpwgBL(L2 — B?)cos(B — U)s;(t) (2.113)

i=1
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where B and L indicate beam and length of the surface vehicle, respectively. Draft
of the submerged part of the vehicle is represented by 7. The angle between the
heading of ship and wave direction is mathematically explained by S—W. Disturbance

forces and torques vector is written in the following equation by using from (2.111])
to (2.113):
Tdis — [Xwave Ywave O O O Nwave]T' (2114)

2.11 Implementation

The mathematical model is derived in the continuous-time domain using Newtonian
or Lagrangian dynamics. In order to implement the mathematical model which is
defined earlier in this chapter, some discretization techniques must be applied in a
computer environment. To able to discretize model, forward and backward Euler
integration which is comprehensively expressed in [22]] is used. This method is ac-
cepted as a stable method for the under-damped second-order system and utilized for

nonlinear models to discretize them. If this method applied to (2.11)) and (2.13), two

discrete equations are obtained. Forward and backward Euler equations are repre-

sented respectively,

vik+1)=vk)+ T, {M ' (r - Cv(k)v(k)} (2.115)
nk+1)=nk)+ Jo(nk))v(k+1) (2.116)

In (2.115)), T represent the time interval, i.e., sampling time, which is taken as 0.05

second.

2.12 Simulation Results

A MATLAB GUI which calls the function of the discretized mathematical model is
used for simulation purposes. This GUI can be seen at the following in Fig. [2.5] In
this part, behaviour of the vehicle are investigated without giving an initial torque and

with providing a torque input to the system.
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GRAPHICAL USER INTERFACE FOR MATHEMATICAL MODEL SIMULATION
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Figure 2.5: Graphical user interface for the mathematical model.

2.12.1 Case study: Zero Input — Zero Initial State

In this state, it is expected that the boot is stationary. Acting forces on the vehicle do
not change with time. Absolute value buoyancy force is equal to the absolute value
of the gravitational force. So, the rate of change in the linear velocity and the angular
velocity is zero. Damping forces and moments are not available in this scenario.
Simulation time is taken five seconds. It is understood from Figs. [2.6] and [2.7] that

initial states of the system n(k) = 0, v(k) = 0 will remain zero for all k.

2.12.2 Case study: Zero Input — Nonzero Initial State

This case is investigated in two parts which are composed of roll and pitch rotation. In
both cases, the boat is rotated about +10 degrees. In this scenario, it is understood that
boot becomes stable and stationary after a while. During this simulation, restoring and
damping force dominantly act on the vehicle to make it stable in a fluid. Simulation

time 1is taken as 20 seconds for both cases.
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Figure 2.6: Case study: zero input zero state - linear position of the system.

2.12.2.1 +10 Degrees Roll Rotation

Giving an initial roll rotation to the system makes a small change in the y-direction.
Position in z, y and z directions becomes zero after some time, as can be seen from

Fig. [2.8] Angular position in roll direction has an exponentially decreasing oscillation
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Figure 2.7: Case study: zero input zero state - angular position of the system.
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due to the dominant damping force. This oscillation can be observed in Fig. [2.9]

2.12.2.2 +10 Degrees Pitch Rotation

When the ship is stable and stationary in standing fluid, it is tough to perform a test
about pitch rotation. So simulation results give useful information about pitch rota-
tion. The scenario is made by rotating the vehicle in the pitch rotation about +10
degrees. It can be seen from Fig. that there is no displacement in 3-D. Due to
the fact that the vehicle has an oscillation in a fluid, the dominant force acting on the
vehicle is naturally restoring force. Exponentially deceased oscillation arising from

restoring force can be seen in Fig.

2.12.2.3 -0.1 Meter Submersion of the Vehicle in Fluid

For this test, the vehicle is pushed from its centre of gravity into the water about 0.1
meters in the z-direction. Oscillation is observed in the z-direction in Fig. until
gravitational and buoyancy forces balance each other. In the end, it is found out that
restoring force becomes dominant in this scenario. Because of the fact that there is

no rotating forces and torques, it can be seen in Fig. that rotation in roll, pitch
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Figure 2.8: Case study: +10 degrees roll rotation - linear position of the system.
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Figure 2.9: Case study: +10 degrees roll rotation - angular position of the system.

and yaw direction preserve initial values.
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Figure 2.10: Case study: +10 degrees pitch rotation - linear position of the system.
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2.12.3 Case study: Nonzero Input — Zero Initial State

In this scenario, it is given initial torque to the system in order to observe the be-
haviour of the vehicle. Firstly, the same amount of torques applied to the left and
right thrusters. When the same amount of torques applied both thrusters, it is expected
that the vehicles start moving or preserve in the forward direction (z-direction). An-
other test is related to the differently valued torques to the thrusters. When a different
amount of torques applied to the thrusters, vehicle heads for the side of larger applied

torque. Simulation time is determined as 5 seconds for two tests.

2.12.3.1 Equal Thruster Inputs — Zero Initial States

Applied torques to the left and right thruster is given, 7* = [5 0 0] and 77 =
[5 0 0]7, respectively. Linear position and angular rate can be seen Fig. and

[2.15] respectively.
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Figure 2.11: Case study: +10 degrees pitch rotation - angular position of the system.
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Figure 2.12: Case study: -0.1 meter submersion - linear position of the system.

2.12.3.2 Non equal Thruster Inputs — Zero Initial States

Applied torques to the left and right thruster is given, 7/ = [2 0 0] and 7/ =
[5 0 0], respectively. Linear position and angular rate can be seen Fig. m and

[2.T7] respectively.
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Figure 2.13: Case study: -0.1 meter submersion - angular position of the system.

43



[\
ot

[\
o
T

= =

o ot
T T

| |

Linear Positions (m)
ot
T
L

-5 | | I
0 ) 10 15 20

Time (s)

Figure 2.14: Case study: equal thruster inputs and zero initial states - linear position

of the system.
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Figure 2.15: Case study: equal thruster inputs and zero initial states - angular position

of the system.

44



10

o

Linear Positions (m)
&
T
|

1
=
[en)
T
1

-15 | | I
0 ) 10 15 20

Time (s)
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CHAPTER 3

GUIDANCE

3.1 Introduction

Guidance in terms of engineering perspective is defined as the process for guiding
the predefined or subsequently identified a path of an object with respect to the
given point which may be stationary or moving [37]. This given point is generally
called way-point, but it is named as a target in missile literature. A vehicle or an au-
tonomously controlled system (such as a surface, a marine or an aerial vehicle) may
be a guided object. At the beginning of the 20" century, guidance was firstly imple-
mented for unmanned boats which are remotely controlled for military purposes. [37].
Then it is used for complicated control systems in a wide range of applications, e.g.,

from ground vehicles to ballistic missiles.

The motion of a USV is investigated in some categories: path following, trajectory
tracking and point stabilization according to traditional guidance literature [[10]. Path
manoeuvring problem fills the gap between trajectory tracking and path following
problems [46]. In target tracking, a stationary or moving target whose instantaneous
position and velocity are known is tracked to realize guidance mission. Path following
problem is described as following a predefined path which is composed of way-points.
In contrast to path following; trajectory tracking is used to follow a path of the target
by a guided object along a calculated trajectory that is predefined. The objective of
the path manoeuvring is to obtain vehicle manoeuvres by considering constraints on

path and vehicles on the predefined path.

Control of the motion of the unmanned surface vehicle whose mathematical model is

obtained in the previous chapter is investigated in three levels as it is seen in Fig.
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These levels are called strategic, tactical and execution control levels, , . The
first level is called as strategic, or organization level includes kinematic calculations
which come from a human operator and/or guidance system. Strategic level some-
times is named as kinematic control which can directly correspond guidance laws. In
this level, reference information, e.g., vehicle surge speed and yaw angle are obtained
via guidance rules from the vehicle position and way-point or target position using
geometric calculation. After that, applied torque and moment for actuators are deter-
mined by a kinetic controller to be able to generate desired motion. These controllers
should overcome the uncertainties of the system parameters and environmental ef-
fects. Control allocation assists kinetic control block to distribute input command or
signal to actuators of the vehicle. At final, individual actuator controllers produce
fixed sample rate signals to motors in execution level. So, it can be understood that
whether vehicle achieves to move the desired position or not, that is determined by

guidance law.

Human

Operator

TACTICAL (TASK) LEVEL

[ Kinetic Control }

i

[ Control Allocation J

Plant Environmental
(System) Effects

Figure 3.1: Levels of the motion control.

48



3.2 Guidance Laws

For an under-actuated USV with two thrusters, guidance law generally produces surge
speed and yaw angle references for autopilots [5]. Due to the fact that vehicle moves
on the water surface, path following or target tracking purposes is achieved in 2-D via
some guidance techniques. As can be seen in Fig. [3.2] only kinematic information
of the vehicle and predetermined way-points are taken as inputs. In a path following
problem, reference commands for autopilots may be obtained by reducing the dis-
tance between the planar way-point, p,[k] = [v,[k] v.[k]]T € R2, [10] and the
position of the vehicle, p[k] = [z[k] y[k]]" € R2:

lim (p,, — p[k]) =0 3.1

k—o0
where p,,[k] is taken as p,, since way-points are assigned as fixed points on a path
throughout the motion of the vehicle in the scope of this study. Once, the USV enters
or hits to the neighbourhood of a way-point, which is called circle of acceptance,
guidance algorithms are calculated for the subsequent way-point to generate reference
surge speed and yaw angle. A circle of acceptance (CoA), which can be seen in Fig.

[3.3] around each way-point, is expressed as follows:

V(2w — 2[k])? + (y — y[k])2 < Ry (3.2)

where R, is the radius of CoA for way-point p,,. Radius information is stored in

the way-points table because there are different CoA values for each way-point. The

( R

——— Desired Surge Speed, Uges

Guidance
Algorithm

Way Points, [p1,pa, ..., pn]"

——— Desired Yaw Angle, Vges

Vehicle Planar Position, p = [z,y]T

Figure 3.2: Representation of a basic guidance system for a USV by using block

diagram.

49



value of a CoA is practically taken as one or two-fold of the USV length for path
tracking. The radius of CoA may be arranged according to manoeuvre requirements
for parallel docking (parking) case. Each way-point includes some information that
composes of x and y position of way-point, motion direction which can be backward
and forward, radius circle of acceptance (CoA), and surge speed. The yaw angle is
calculated according to the position information. Then, path tracking is achieved with
the help of reference yaw angle and other way-point information. Table[3.T|which can
be considered an array whose rows are composed of each way-point information is

represented below.

Table 3.1: Way-point information for motion control hierarchy.

Motion direction
(Forward or Reference
way-point index | x position | y position Backward) CoA | surge speed
1 T U1 lor2 Rl Uy
2 ) Yo lor2 RQ U9
n—1 Tp—1 Yn—1 lor2 Rn—l Un—1
n T Yn lor2 R, Uy,

n way-points are described in Table[3.1] For embedded programming, this table can
be written in the program or sent to program as an array in real-time. Planar position
of way-point i is represented by p; = [2; y;]7 V i € Zp . Forward and backward
motions are represented with integers as 1 and 2, respectively. Controllers produce
forces and torques according to motion in order to move forward and backward direc-
tion. This information is also important for forward or backward desired yaw angle
calculations which are explained later in this section. Circle of acceptance and refer-

ence surge speed data are expressed as R; and u; V i € Zjy ), respectively.

There are lots of suitable guidance techniques to achieve way-point tracking and path

following performances. Whereas some techniques need three points which are the
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CoA for p,

PP Vector

Pw—-1

Figure 3.3: Representation of pure-pursuit (PP) and line-of-sight (LOS) guidance

techniques in 2D.

previous way-point, p,,_1, current way-point, p,,, and vehicle surface position, p[k],
some only use p,, and p[k| to give reference autopilot inputs. Line-of-sight (LOS), is
categorised as three-point scheme, and pure-pursuit (PP), is classified as a two-point
guidance method. Strategies are presented and implemented to be able to carry out

path following and parking capabilities of the vehicle.

3.2.1 Line-of-Sight (LOS) Guidance

LOS method directs the orientation of the craft into the direction along the line be-
tween two successive way-points. As shown in Fig. [3.3] the geometry of the LOS
approach may be described with the current way-point p,,, the previous way-point
Pw_1, and the instantaneous vehicle position p[k]. p[k] is situated at the centre of a

circle with the radius of n-fold of the ship length: nL,,, [23]]. The line-of-sight point,
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PLos, is the point which is on the line segment between way-point p,,_; and p,,. The

solution of pros[k| is obtained from the below equations (3.3)) and (3.4):

(10s[K] — 2 [k])* + (yios k] — y[k])* = (nLyp)? (3.3)

k] — 4o — Y
Yios[K] — yw-1 — Yo 7 Yo = tan(oy,-1) (3.4)

mlos[l’{:] — Tyw-1 Ty — Tw—1

The radius of the circle, nL,,, in ((3.3)) should be sufficiently larger than the radius
of CoA, R, which is defined in ((3.2)), i.e., nL,, > R,. This relation provides
the existence of a solution. pyog is selected as the closest point to p,, for forward
motion. On the other hand, p;og is chosen as the closest point to p,,_; as the USV
is driven backward [14]. Calculations to obtain p; g is comprehensively explained

in Appendix Desired yaw angles, ¥10s. forward k] and Y108 packwaralk] at each

sampling time are formulated as (3.3)), respectively.

wLOS,forward[k] = atan2(yios[k] — ylk], 10s[k] — 2[k])
1/)Los,backwmd[/€] = atan2(y[k] - ylos[kL x[k] — Zlos [kD

(3.5)

Return of atan2( , ) function is a single value in [—7, 7], [54]. The main reason to
use this function is that arctan(%) could not give correct result when x < 0. Sign
of variable = and y in atan2(y, ) are separately known to determine appropriate an-
gle without losing information. However, atan2( , ) has an important drawback due
to discontinuity at the —7 or +7 junction. Rapid change in the desired yaw angle,
14[k], cause unintended behaviours during the motion. A reference model before
tactical level implementation can be proposed to prevent abnormal heading calcula-
tion [23]. Discontinuity issue can be handled by mapping 4[] angle from [—, 7] to
(—00, 00). Then the reference model gives a proper angle value. Continuous desired
angle is eventually found by making re-mapping from (—oo, o) to [—7, 7]. Mapping
and re-mapping process are inclusively explained in Appendix Desired surge
speed commands are taken as constant to fed a controller for each line segment:

lim (u,, — u[k]) =0 (3.6)

k—o0

where u,, indicates the desired surge speed between two way-points p,, and p,,_1.

When the vehicle is in a CoA, velocity reference is calculated for next way-point.
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3.2.2 Pure-Pursuit (PP) Guidance

Pure pursuit guidance algorithm, also known as two-point way-point guidance method,
is applied for tracking a way-point regardless of the path as illustrated in Fig. [3.3] PP
method is comprised of the instantaneous vehicle position p[k| and the interested
way-point, p,,. Previous way-point, p,,_1, is allocated to memory for the cross-track
error calculations. PP approach may be an appropriate choice for path following when
the distance between two consecutive way-points is relatively small. Heading of the
vehicle is tried to align with the closest distance between the instantaneous position
of the vehicle and the interested way-point. Reference yaw angles are calculated in

(3.7) for forward and backward motions, respectively.

¢d,fo7‘wa7‘d[k] - atan2(yw - y[k]7 Ly — :E[k?])
¢d,backward[k] = atan2(y[k] = Yw, ZL’[k] - xW)

3.7

Only two points, the position of the vehicle and current interested way-point position
are enough to calculate the desired yaw angle for backward and forward motion. The
problem that is encountered due to discontinuity in atan2( , ) function also exists for
PP method. As in the case with LOS guidance, the same methodology is applied to

obtain continuous yaw angle information for motion in Appendix [A.2]

For current way-point, reference surge speed of the vehicle is given to the tactical
(task) level controller to achieve velocity objective of the guidance method given in
(3.6). It can be considered that the surge speed of the vehicle may be decreased in

proportion to current velocity due to obtaining reasonable manoeuvre.
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CHAPTER 4

CONTROLLER (AUTOPILOT) DESIGNS OF THE UNMANNED SURFACE
VEHICLE

4.1 Introduction

In this chapter, model predictive control (MPC) and cascaded proportional-derivative-
integral (PID) methods are implemented for the tactical level control of an unmanned
surface vehicle whose mathematical model and its parameters have been obtained
earlier using Fossen’s well-known vectorial model and kinematic equations that are
suitable for designing controllers. The vehicle has two propellers as control actuators
which are driven by two motors at the aft. Applied forces to the propellers are taken
as control inputs. The objective of the controllers is to reach the desired yaw angle
and surge velocity references as much as possible. Since rudder is not available in
boat model, yaw position is controlled by the generating imbalance between left and

right thruster inputs.

Disturbance forces such as wind, current etc. are not taken into account in the design
of the controllers. Left and right thrusters take their commands via control allocation

which is explained in 3.1

First of all, linearization of the state equations and appropriate sampling time selec-
tion are investigated. Then, linear MPC, (LMPC), and cascaded PID controllers are
designed. Parameters of the controllers are tuned on an "S" shape curve using line-of-
sight guidance algorithm which was explained in Chapter [3.2.1] Simulation results
and path tracking performance of LMPC and cascaded PID are stated and compared
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at the end of this chapter.

4.2 Preliminary Work Before Autopilot Design

4.2.1 Linearization of the Nonlinear System

To be able to make easier or effortless controller design, using a linear model can be
one of the useful ways. Linearization of the system at an operating point gives some
information about the nonlinear systems in the neighbourhood of that operating point.
By obtaining state space representation, it can be understood whether the designed
controller provides an adequate response or not. Following the nonlinear vectorial

model equations will be linearized to design an MPC controller.

n =Jo(n)v 4.1)
M+ CWw=m+T7,+Ta+T, (4.2)

As can be understood from (4.2)), disturbance forces and torques which are coming
from environmental effects are not added to the system dynamics in contrary to gen-
eral vectorial model. States of the linear and nonlinear model which consist of 6-DoF:
positions and Euler angles, linear and angular velocities. Applied forces to left and
right thrusters are taken as control inputs. States and input vector are rewritten in

different forms as follows:

xz=[n" v 4.3)

u = |ug uR]T (4.4)

The closed form of the equations (4.1)) and (4.2]) might be represented by the vectors
above. The nonlinear system equations are a function of the state and input vector.

This function is written as:

T =flx,u) 4.5)

where f € R'?, € R'? and w € R?. The following relation is obtained when (#.3)) is

linearized via Taylor series expansion at the operating point, (x,, u,):

Of (x,u) A:c—i—@f(w’u)

Az = f(xo, o) + D Su

Au+HO.T. (4.6)

(mo,uo) (w()yu())
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simply,

. 0 0
Ko~ flapao) + LW pp Wy ag
or | ou
:I:o,'u()) (1130»71'0)
0 /
since &, = f(xo, uo), Ax = ¢ — x, and Au = u — u,. w = A(t) €
T
0
R'*"12 and w = B(t) € R'™? are the Jacobian matrices of the nonlinear
U

function with respect to state and input vectors, respectively. The contribution of the
high order terms in the equation can be negligible, so they may be disregarded in
the linearized state space representation. After substituting Jacobians at the operating
point, (x,, u,), and time, ¢, (4.3) can be represented in the state space representation

as follows:

Aw(t)| A1) flwo,uo)| |Ax(t) n B(t) Au(t)  (4.8)
0 0 0 1 ! |

-~

A() B(t)

where A(t) € R13#13) B(t) € R'3*2, In controller design, surge speed, u, and yaw
angle, 1, are taken as controlled states whose reference signals are produced via

guidance algorithms. Output equations can be written in vector form as follows:

y(t) = s = \[zeros(2,5) eye(2) zeros(2,6)] x(t) + D(t) u(t) (4.9)
c()

where C(t) € R**!® matrix with zero indices except C1 5 = 1 and Cy12 = 1, D(t) =
0 € 02,

4.2.2 Determination of the Appropriate Sample Time

Sample time plays a critical role in order to make reasonable and approximate sys-
tems for discrete controller design and simulate the nonlinear system in a computer
environment. Zero-order hold (ZOH) is the one of the most used technique to dis-
cretize system, and it is chosen to make discrete time controllers. In Fig. @.1] an input
signal which is the controller output is represented with the ZOH approach. As can
be understood from the figure, the input signal or controlled signal has a time delay

amount of h/2. h implies sampling time of the signal. If sampling time is not chosen
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Figure 4.1: Time delay of the input signal [26].

very well, discrete time system might be unstable or less stable compared to its con-
tinuous counterpart. In any case, delays introduce instability to the system, but it can
be brought into a tolerable level. As a rule of thumb, half of the delay time is chosen

to be smaller than one-tenth of the response time [26]. This relation can be written in

@.10) and (@.11) as follows:

h T,
- < — (4.10)
2710
To write more simply,
T,
h < 5 4.11)

Response time can be found via step response of the closed-loop system. It is accepted
63% of the rise time which is the required amount of response from 10% to 90%, 5%

to 95% or 0% to 100% according to under-damped, over-damped conditions.

4.3 Model Predictive Control

Model predictive control, shortly MPC, which is also called receding horizon control,
finds a control sequence along with finite output and control horizons by solving
constrained or unconstrained optimization problem. At each time instant, an optimal
control input sequence is calculated and only the value at the first time instant of

control horizon sequence is applied to the system. This procedure is repeated in each
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Figure 4.2: Block diagram representation of MPC.

sampling instant within an optimization window to calculate the optimal control input

sequence and to minimize errors between references and outputs.

4.3.1 Discrete-time State-Space Model with Embedded Integrator

This study covers the linear model predictive controller, LMPC, which is designed
for the discrete-time system with an appropriately chosen sampling time, 7, whose

definition is in 4.2.2] Discrete-time state-space equations are written as follows:

xalk + 1) = Agxylk] + Bgulk] (4.12)
ylk] = Cawalk] + Dqulk] (4.13)

where A, matrix represents the discrete time state matrix at time k£ with the same
dimension A(t). B, matrix shows discrete time input matrix at time & with same
dimension B(t). Both A(t) and B(t) are previously defined in (4.8). C is used for
discrete time output matrix which is equal to C(¢) defined in (4.9). In this system,
input does not directly affect the outputs. Therefore, D; = 0 in state space (4.13))
will not be written any more. The dimension of the state vector, x4[k], is same as the
number of columns in A, matrix and dimension of the input vector, u[k], is two due

to the two thruster in the system. Proposed discrete-time model predictive controller
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finds optimal incremental input movement, Aulk], instead of sequence, u[k|. So,
integral action on the controller is achieved to eliminate steady-state errors without
the necessity of steady-state information about the control, u[k] = u[k — 1] + Aul[k],
and the steady state of the state variable, x,4[k|. First of all, the difference of state

vectors between k + 1 and k is calculated using (4.12)) as follows:
:Bd[k' + 1] — .’Ed[/{?] = Ad(wd[k:] — zcd[k — 1]) + Bd(u[k] — ’U,[/{Z — 1]) (414)

where the difference of the current and previous states at k+1 is indicated by, Ax,[k+
1] = x4k + 1] — x4[k], and at time k, Axylk] = x4[k] — 4]k — 1], respectively.
Difference of the input vectors are obtained in the same way as Aul[k| = ulk] —u[k—

1]. Then, (@.14)) is implicitly rewritten by using above informations as follows:

To be able to write an augmented state space model with embedded integrators,
Awxy[k] and y[k| is gathered in one vector that is called augmented state vector as
z[k] = [Az4[k]T y(k)]T. Difference between y(k + 1) and y(k) is expressed in the

following equations.
ylk +1] — y[k] = Ca(xalk + 1] — x4[k]) = CsAzalk + 1]

= CdAdACUd[k'] + CdBdAud[k:] (416)

So, augmented state space equation is written in compact form by using (4.15)) and

(@.16) as follows:

Axylk +1 A 0,7 | |Ax,lk B

x4 ] _ d d xq(k] N d Aulk

y[k] CiA; Iy, y[k] C.B,

~~ - N ~ 7 N ~ ——
x[k+ 1] Ay x k] B;,

Az ik
ylk] = [0g Irxo] al¥] 4.17)
Ci

where 04 € R?#12 is zero matrix. Augmented state space model which used for LMPC
design is finally denoted by the triplet (Ay, By, Cy)). The characteristic equation of

A, matrix is represented as follows:

A - A 047
p(N) = det(\T — Ay) = a a (4.18)
—CyA; (A= 1)Ly
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where p(A) = (A — 1)? det(\ — A,;) = 0. As can be understood from this relation
at least two eigenvalues are on the unit circle. It means that the augmented model

includes two embedded integrators which provide an integral action for MPC.

MPC calculates future control signals for finite control horizon, N., and uses pre-
dicted output signals whose horizon is equal to the length of the optimization window,
N,. These two tuning parameters must be successfully adjusted to be able to attain
adequate performance from the proposed model predictive controller. The prediction
horizon N, is chosen to be greater than or equal to control horizon, N.. The existence
of embedded integrator in the controller design may cause unstable system responses
when NV, becomes too large. Furthermore, the stability of the system could not be sat-
isfied with small IV, and N, values [53]]. Optimal incremental control horizon, (4.19),

is sequentially written from sampling instant £ to k + N, — 1 by
{Aulk], Aulk +1],..., Aulk + N. — 1]} 4.19)

Using these control sequence and the triplet (A, By, C}), future predicted state and

output variables are sequentially written as follows,
xzlk + 1] = Agz[k] + BrAulk]
x|k + 2] = Ayzlk + 1] + BiAulk + 1]
= Alz[k] + ApBrAulk] + BrAulk + 1]

xlk+ N, = A xlk] + A" BiAulk] + Ay 2 BrAulk + 1)
+ o+ AV B Aufk + N, — 1] (4.20)
Above state vectors are multiplied with output matrix C, to determine sequentially

future predicted output vectors which are the function of the current state vector, x k]

and control horizon vectors defined in (4.20).

ylk + 2] = CrLAw[k + 1] + C By Aulk + 1]

y[k + N,] = CLA Y x[k] + CL A, ' B Au[k] + CL A" > B Aulk + 1]
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+ o+ CLAY Y ByAulk + N, — 1] 4.21)

These equations are written in matrix form by defining the following future predicted

output vector and a future control vector, respectively.

Y =y k+1] v [k+2 ... y7[k+N))]"
AU = [Au"[k] Au"[k+1] ... Au'[k+ N, —1]]" (4.22)
and,
Y = Fz[k] + $AU (4.23)
where, i i
C.A,
F = C’“_Ai ,
| CLA;" |
[ C.B, 0 0 0 1
C,.A.B C.B 0 0
b — R S (4.24)
|C.A)"'B, C.A"’B, C,A" By ... CiA," "B;]

4.3.2 Optimization Problem

Constrained quadratic optimization problem is solved along specified prediction (op-
timization window) and control horizons. Errors between predicted and reference
outputs over the optimization window are aimed to be optimized in order to find min-
imum control effort. The cost function of the MPC is algebraically written as follows:

Np

wip {20} = (sl ]yl ) @ gl ) w4
+ z_: Aulk + 17 R Aulk + 1] (4.25)

The above equation is a function of the current state control input sequence AU . First
summation term composes of summed quadratic convex functions which reflect error

between references and predicted output vectors. Symmetric, diagonal and positive
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semi-definite @, Q > 0, is the weight matrix for track errors minimization and sat-
isfies convexity property of the cost function. The second term which is a function
of future incremental control trajectory is added to cost function in order to reduce
control effort (applied amount energy) of the system as much as possible. Diago-
nal, symmetric positive definite R = r,I>«2, R > 0, is the other weight matrix for
minimizing incremental control effort with its diagonal element, r,,. The objective

function can be represented in a more compact matrix form using (4.22)), (4.24) and
(@.29) as follows:

J=JAU)=(Y -Y)"Q(Y - Y) + AU'TRAU (4.26)
where the reference output vector within its prediction trajectory is defined as
Y = [gh[k+1] gh,k+2] ... 95 k+N,) " 4.27)

Since vector §,es[k + i € R? where i € [0,...,N,]. Q € R and R €
Rifgc“N ¢ is diagonal, positive, semidefinite and definite matrices, Q>0and R > 0,

respectively, in following form:

_Q 0 --- 0 O ‘R 0 ... 0 ]
0Q --- 00 O R --- 0
Q=|: : : ,R=|: (4.28)
0O 0 ---Q O 0 0 --- R O
0 0 - 0 Q] 00 -~ 0 |

By using @.23) , explicit form of is expressed as

JAU) = (Y — (Fz[k] + DAU)) ' Q(Y — (Fz[k] + AU)) + AUT RAU
= (Y — Fa[k)"Q(Y — Fxl[k]) — 2AU S Q(Y — Fxl[k])
+ AUT®"QPAU + AUTRAU
= AUT(#7QP + R)AU — 2AUTS"Q(Y — Fxl[k])
+(Y — Fz[k)"Q(Y — Fxlk)) (4.29)

AU is utilized as a vector which is minimized using quadratic programming tech-
niques in the objective function (4.29)). To be able to write this function more com-

pact, following terms simply denoted as 2(#"Q® + R) = E and —287Q(Y —
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Fx[k]) = d. Also note that E is symmetric and positive semi-definite matrix since
Q, positive semi-definite matrix, and R, positive definite matrix, are defined as in
@28). Remaining term, (Y — Fx[k])TQ(Y — Fx[k]), has not any effect on the

optimization problem and calculation of this term is not necessary.

4.3.2.1 Constraints of the Optimization Problem

Constraints play an essential role in model predictive controllers because of physical
and operational limits. When convex quadratic cost function (4.29) is solved regard-
less of constraints, a global optimum solution is found. It may not satisfy physical
input constraints which are limited to certain minimum and maximum values. If the
result of the unconstrained optimization problem is saturated rather than incorporat-
ing constraints into it, the control signal may deteriorate and lead to overshoot in the

physical system.

Constraints can be classified into there major types [53]]. First two types which are
mostly called as hard constraints are related to control variables, u[k], and their incre-
mental variations, Awu[k]. Another constraint type, soft constraint, which compose of
output variable y[k] or state variable x[k|. Hard constraints are only added as a sub-
ject term to the optimization problem in this study due to the fact that soft constraints

take part as minimized terms in the cost function of the optimization problem.
e Inequality Constraints

At time k, following two equations represent the rate of change limits and amplitude
limits of control signals, respectively. Since control signal is in vectorial form, each
component of the control signals is separately represented.

Au'm < Auglk] < Aulpor

| Au™™ < Aufk] < Ay (4.30)
Aup™ < Auglk] < Aulp®

and,

umin S uy, k S ymax .
" < U™ i < ufk] < ume (4.31)
ur]gzn S UR[]{?] S u?ga:p
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where Au™" = [Auf"™ Aup™T, lower limits are taken as Au7™™ = Aupi.

Au™ = [AuT Aumo*]T | upper limits are taken to be Auf%" = Aun®. Sim-
ilarly, w™™ = [u7" w7 lower limits for control amplitude are defined as u7"" =

min

uP™, while upper limit of control amplitude is formulated as u™* = [u7** up®|"

2

upper limits are taken as u7'** = u'5**. When constraints are considered over control

horizon, i.e., k € [0,..., N, — 1], following inequality forms are written by the help
of (4.30) and (@.3T]).

Au™m < Aulk] < Au™

Aum™ < Aulk + 1] < Au™” ,
P AU™" < AU < AU™™ (4.32)

Au™" < Aulk + N, — 1] < Au™*

Vs

and,
umin S ’U;[l{} S PYLLEE

umin S ’U;[k + 1] S umer '
um<yu<yugmne® (4.33)

umin S ’LL[]{J + Nc . 1] S umer
7

Two-sided inequality constraint will be separated into two inequalities to solve the op-
timization problem by using matrix property, for example, constraint (#.32), AU ™" <

AU < AU™* is divided into two parts as follows

& AU < (4.34)
AU < AU™= I AUmes

Constraints are especially considered for all future times, and all input constraints can
be written in the form of Aulk +i],7 € [0,1,..., N. — 1]. So amplitude of the future

control inputs may be written in the following form:

[ wk] | [T (1 0 ol [ Aulk] ]
ulk + 1] I II 0 Aulk + 1]
. = | |uk=-1+ | .
| ulk+N.—1] | | T I I - I |Au[k+ N —1]]

(4.35)
where u[k — 1] is (k — 1) sampling time instant of control signal whose value is

already known. If £ is equal to zero and initially zero input is applied to the system,
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then its value becomes zero, i.e., u[k— 1] = 0. Otherwise, it can be any value between
its lower and upper limits. By taking into account the incremental variation on the
control signal as the optimization variable, the general form of the hard inequality

constraints will be represented by

MAU < ~. (4.36)
e Equality Constraints

Equality constraints can be written by using state space equations which are already

obtained in (4.17) from time k to k + N, as

xlk+i+ 1] = Agx[k +i] + Brulk + 1]
ylk + i) = Crxlk + i (4.37)

where i € [0,1,..., N,] and for k>N, input sequences are taken as u[k] = u[k+1] =
.-+ = ulk + N,|. These equality equations are already calculated to determine future
state variable and future output variables that take part in (4.29). Because of this
feature, equality constraints are not repeatedly solved in the optimization problem.
The solution of the mentioned quadratic problem with inequality constraint at the

global minimum point satisfies the equality constraints.

4.3.3 Numerical Solution of Quadratic Programming for MPC

The constrained optimization problem with its objective function and inequality con-
straints whose derivation is done in the previous section can be finally expressed as:
1 T T
J(AU) = §AU EAU + AU d
MAU < ~. (4.38)
where matrices, E/,d, M and vector =, are previously defined. Without loss of gen-
erality, weight or diagonal terms of MPC matrices are taken as positive that makes

E is semidefinite due to Q and R. The objective function, J(AU), is minimized via

Lagrange multipliers subject to inequality constraints. Adding a Lagrange multiplier
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vector to the objective function increases the number of design parameters in the min-
imization function. Only unknown parameters are entities of the AU vector to appear

in the objective function. As it stands now,
1
JAU,\) = 5AUTEAU + AU d + AT (MAU —~.) (4.39)

where A is the Lagrange multiplier vector whose size m is equal to the number of
inequality constraints in the optimization problem. Since the number of inequality
constraints can be larger than the number of minimized control variables, active and
inactive constraints may be observed in the problem. If M;AU = ~; is satisfied,
constraint M; AU < =; is said to be active. Otherwise, when M;AU < =; becomes
constraint is considered that it is inactive. M, is the ¢ —th row of inequality constraint
matrix, M, and =; is the ¢ —th row of the constraint vector, «y. The first step is to min-
imize the objective function with a Lagrange multiplier is to take partial derivatives

with respect to the vectors AU and .
aJ

9 Ty _
BINGi EAU +d+M"'X=0 (4.40)
oJ

If all the constraints had satisfied their conditions, the minimization process would

have been straightforward. The optimal values of AU and A vectors are obtained

from and as follows, respectively,
A=—(ME'M") ' (y+ ME™'d) (4.42)
AU = —E7Y (M X+ d)
=—E'd—E 'M"A\=AU"" —E'M"X (4.43)

where AU¥®! — — E~1d is the global solution of the (#.29) without any constraint.
The correction term, —E~'M7TX, comes from inequality relations. Unfortunately,
this solution is not valid because of the fact that constraints include two-sided in-
equality in the proposed optimization problem. That’s why only one side of these
constraints which are explained in detail at[4.3.2.1| will satisfy the given relation. To
handle this problem, Kuhn-Tucker conditions are simply determined with regard to
active and inactive constraints in terms of Lagrange multiplier. Four necessary Kuhn-

Tucker conditions are formulated by

EAU +d+M'X=0

67



MAU -~ <0
AM(MAU —~)=0
A >0, (4.44)

When the optimization problem includes inequality constraints, they must be ex-
plained in term of a set of active constraints [53[]. Their index number is the element

of S,.+ and necessary condition are rewritten by using this index number as follows:

EAU +d+ ) M\M/ =0

i € Sact

MAU —~; =0, i€ Sy

M;AU —~; <0, ¢ S,q
Ai >0, 1€ S

A =0, i¢ S (4.45)

The optimal solution of the MPC controller is found by using active constraint which
means that equation satisfies M; AU — ~; = 0. M, and ~; are the i-th row of com-
patible inequality constraint matrix and vector, respectively. When these constraints
become equality constraint, corresponding Lagrange multiplier, A; is taken as a non-
negative number, i.e., A; > 0. Otherwise, M; AU —~; < 0 is inactive constraint with
its Lagrange multiplier, A; = 0. By taking these relations into consideration, (4.42))
and are rewritten with active inequality matrix, M, and vector, v,

Aict = = (Moot E7" ML) " (Noet + My E~'d) (4.46)
AUoptimal — _E—1<MT Aact + d)

act

= —E 'd—E 'M_ Ay = AU —E"'M" Xy~ (447)

act

Active Lagrange multipliers can be obtained from the Active Set Method or Primal-
Dual Method. Primal-Dual Method is only implemented to find active inequal-
ity constraints due to the fact that model predictive control can include larger tuning

parameters.
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4.3.3.1 Primal-Dual Method

The convex quadratic optimization problem with the symmetric and positive definite
matrix, F, defined in (4.38)) is written in the Lagrangian dual problem is to maximize,

O(X) over A > 0, where [6]
1
O(A) = jnf {SAU TEAU + AUTd + AT(MAU — ) : AU € R*N}  (4.48)

Convexity property of the function (1/2)AUTEAU + AUTd +AT(MAU —«) is
preserved with a defined A variable, i.e. A > 0; then necessary and sufficient Kuhn-

Tucker condition found by taking the gradient of (4.48)) with respect to AU becomes

EAU + M XA +d=0 (4.49)

In the view of the above information, the dual problem is denoted as

1
maxi}\mize §AUTEAU + AUTd + X' (MAU —~)
subjectto EAU + M™X = —d (4.50)

A>0

Positive definitiveness property of E, i.e. E~! exists, provides unique solution to

4.49] as follows,
AU = —E'(d+ M™)\) (4.51)

When a unique solution is substituted in (4.48), maximized optimization problem
becomes

O(N) = — %(El(d + MDA\ E(-E*(d+ M™X))

—(E"Y(d+M"X\)'d - A" (ME*(d+ M")\) —~)

= —%dTEld — %)\TMElMT)\ ~AMN'ME'd - My (4.52)

To simply represent the equation, K 2 ME-'M" and v £ v + M E~'d matrices
are defined. Now, (4.52)) implicitly is written as

1 1
O(A) = —EATKA — Ao - §dTE_1d (4.53)
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Finally, the dual optimization problem which is obtained from the primal problem in
simple terms is represented as follows:
. L r T L
minimize J(A) = - AN KA+AXv+-d E 'd
o 2 2 (4.54)
subjectto A >0

(1/2)d” E~'d term of the above equation has any effect on minimization problem to
find A value. So, (#.54) can be simplified by deleting that term as
1
minimize J(A) = “ATKX + Ao
A 2 (4.55)
subjectto A >0

The solution of the dual problem can be easily obtained in comparison with the primal
problem. Active indexes of A vector are used to find corresponding active inequali-

ties, M., and ~,.; which form M, AU — ~_ ..

This problem is solved in two steps. First of all, the global optimal solution is
obtained, AU9** — _E-1d, and then all the constraints are checked whether
AU satisfies inequalities or not. If MAU'°*® < ~, then Hildreth’s quadratic
algorithm stops. If not, the basis vectore; = [0 0 ... 1 0 ... 0] is utilized
as direction vector to to determine A, value. Activeness of the index Lagrangian
multiplier, \;, is understood when it becomes zero or not. When \; gets zero or neg-
ative value, it is said that its corresponding constraint is inactive and A, ; is taken
zero. Update procedure of \; is calculated within predetermined iteration window
using K matrix and v vector in (4.55)). Update procedure of the Lagrange multiplier

is calculated using following two equations.

alt!l = + ZK”Ak“ + Z K;\b (4.56)

j=i+1

A = max(0, ™) (4.57)

k stands for the iteration index. K is the ij®" entry of K matrix. j* row of the A
vector is denoted by A; whilst i*" row of the v is corresponded v;. n is the row num-

ber of the Lagrangian multiplier A. The algorithm stops when reach the maximum

70



Algorithm 1: Hildreth’s quadratic programming algorithm

1

2

3

4

5

6

10

11

12

13

14

15

16

17

18

19

20

Input: &, F, Q, R, M, v, N, €

Output: AUPtmal

Data: E. d, K, v, X\, A\peps i, I,

Compute E + 287Q® + R, d +— —28"Q(Y — Fx[k])

Compute AU « —E~1d
[=0
forio=1—ndo
if (M, AU9 > ~,) then
t [+—1+1
if [ = 0 then
AQJertimal _ Apjglobal
return AU optimal
Compute K <+ ME*M", v+ ~+ ME~'d
A0
fori=1— Ndo
Aprev < A
fori=1—ndo
Compute o < ' (KH)\ — K\ +v;)
Compute A; < m;Lx(O, Q)
if (()\ = XAprew) TN = Apren) < e) then
t break

Compute AU « _E-'d — E-*MX\
return AU °ptimal

/% M;  and K; . are the ith row of M and K matricies, respectively

/% ;i and X; are the it element of v and X wvectors,respectively
/+ N represents the mazimum iteration number

/* n indicates the size of X vector

*/

*/

*/

*/
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iteration number or change in the Lagrangian multiplier are smaller than termination
value, €, e.g. (AP — AFHT — (AF — A*1) < ¢ Thus, it is guaranteed that A,
vector includes either zero or positive values. Pseudo code of Hildreth’s quadratic

programming can be seen in Algorithm [I] with defined matrices and vectors above.

4.3.4 MPC Parameters Tuning

Four tuning parameters, N, (output horizon), IV, (control horizon), Q and R (weight
matrices on errors and control effort, respectively), are adjusted to satisfy robustness
and optimality of the controller. Increasing [V, to a reasonable value improves the
performance of the MPC. However, the selection of N, plays a critical role due to the
embedded integrators in the state matrix. If it is selected quite small, the robustness of
the controller becomes poor. When N, is large, stability problem on the system can
be observed as indicated in[4.3.1] Increasing IV, value too much causes deterioration
on the control signals and spreads control effort to a larger horizon. Besides, short
horizon values of N, may enlarge the initial control effort. Positive semi-definite di-
agonal () matrix is defined as the weight matrix to adjust the effect of the reference
tracking based errors to cost function. Its first diagonal element is corresponding to
surge speed error while other is the weight term of the yaw angle error. When ma-
noeuvring without settling a path is performed, the diagonal entity of the @ related
to surge speed can be increased. To be able to make collision-free docking, manoeu-
vring plays an important role at the border or edge of the parking region and slot. The
diagonal element of the @ which corresponds to yaw angle should be increased to
realize better path following. Positive definite diagonal R matrix adjusts the incre-
mental control effort along the input horizon. Diagonal entities of R are set equal to

each other hence thrusters of the vehicle is assumed to be identical.

Parameters of the MPC are tuned along an s-shaped path using LOS guidance. 15 <
N, <40,2 < N, < 15,0001 < Ry; = Ry <5,and 1 < Q1,Q22 < 200
are specified as intervals to tune parameters of the MPC. Optimized path following
performance is achieved by N, = 25, N, = 10, Ri; = Ry = 0.01, @11 = 50 and
(D22 = 100 values.

Some simulation results of MPC with LOS guidance rule are plotted for the optimized
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Figure 4.3: Results of the MPC on the s-shape path with different optimized parame-

ter values.

parameters and three parameter sets in Fig. 4.3] Ground truth indicates the shortest
path that is represented with a black colour and dash line. Table 4.1] includes sim-
ulation parameters and their average cross-track errors. Optimized MPC parameters

are in the first row. Other parameters are selected as the variation of the optimized

x position(m)

20

parameters.
Table 4.1: Controller parameters used in Fig.
Colour Np NC Qll QQQ R11 = RQQ AVg EI’I‘(IH)
—— | 25 | 10 | 50 | 100 0.01 0.1365
30 | 10 | 50 | 100 0.01 0.1513
251 5 | 50 | 100 0.01 0.1627
—— | 25 | 10 | 50 | 100 5 0.1868
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4.4 Cascaded PID Controller

PID is one of the most used controller technique that can be readily employed in com-
plex control systems. Path tracking performance of the surface craft whose dynamic
state equations are coupled and nonlinear can be simply achieved by using PID con-
trollers. PID control is carried out by utilizing and adjusting proportional, K, , inte-
gral, K;,, and derivative, K, , gains whose notation is represented in Fig. These
gains take on the task to reduce error or differences between reference signals, g [k],
and output (measured) signal, y; [k], by considering performance criterion in the con-
troller design. There are various objective functions to minimize track errors at time
instant &, {e1[k] = gu[k] — y1[k], es[k] = Ga[k] — ya[k], ... €nlk] = Gu[k] — ya[k]}.
Integral of absolute errors, IAE, is used as a cost function for parameter tuning the

PID controller within the scope of this study. IAE is formulated as follows:

IAE = |ey[k]| + |ex[k]| + ... + |en[K]| (4.58)

Error minimization is achieved by taking tuning parameters as variables in an opti-
mization window for each PID controller. As mentioned in the introduction section,
4.1 optimization window will be chosen as "S" shape curvature path for PID con-
trollers. After finding proper tuning parameters by using optimization, adjusted val-
ues of the PID controller in discrete time is applied to find control effort. The output
of a PID controller, U;, which is the control input variable for a system, is formulated

as:
k

ULlk] = Kpperk] + K, T2 Y eali] + Ko, =

=0

(k] — e[k — 1]
T

(4.59)

where U; is the output of the first PID controller, and 7 is the sampling time of a
discrete system. As it can be understood from @.59)), K, is directly multiplied with
the error value. In the second term, errors which are from time instant 0 to k are
summed and multiplied with /;, T to minimize steady-state errors. It integrates the
errors from the beginning until error value reaches to zero. The last term can predict
the future behaviour of error by taking the difference between current and previous
sampling time instant while other terms are lack of future prediction. It produces

K4, /T times rate of change error in sampling time k. The derivative term sometimes
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Figure 4.4: PID controller in discrete time.

may increase system response more than expected, so settling time becomes too big

and may cause harmful oscillations.

Yaw angle and surge speed errors are minimized by using the linearized vehicle dy-

namics in the previous controller, MPC in section .3] However, minimizing these

error by using PID is not sufficient for rapid movements and manoeuvre. When the

robust and stable controller is desired, a cascaded PID control loop can be proposed

k ek rlk erlk
11}[%’0&' (PID); | ]+ O i (PD); +—— U—p)lk]
— [ Y[K] — ]
B} Y[k
U—rlkl +O 0.5 _/||/_ ULl
+
r[k]
_ Ul Plant
U+ ry K] O 0.5 /| R
§ / ]
L ulk]
Q[W (PID)s +—— Uiy p)lK]

Figure 4.5: Representation of the cascaded PID controller.
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for yaw rate error minimization. Cascaded PID becomes useful if there are signifi-
cant differences in dynamics between the controlled state and the process variables.
So control effort is calculated from an intermediate measured signal whose dynamics
faster than control signal [49]. Block diagram of proposed cascaded PID controller
can be shown in Fig. f.5] As can be understood from Fig. [4.5] the upper part which
is responsible for tracking of yaw angle is composed of two nested control loops.
Outer loop controller, sometimes also called primary loop, minimizes yaw angle er-
ror, e, [k], between reference yaw angle, [k], and yaw angle, ¢[k], at sampling time

instant k. The output of the (P D), controller is obtained as reference yaw rate, k],

by using and Fig. [4.4] as follows:

[k] — ey[k — 1]
Ts

k
~ . (&
k] = K, ey[k] + Ki, T, § eyli] + K, ¥

=0

(4.60)

determines the output of the outer loop controllers as a reference for inner or
also called the secondary feedback control loop. It should be taken into consideration
that choice of internal measured variable, k|, must be close relation with the external
measured signal, 1)[k] to make tight or fast responsive feedback loop [49]. As it is
known from (2.10), 0,, = T@(@nb)w2|n, the derivative of yaw angle is directly
related to yaw angle rate. It should also be noted that the secondary loop has a much
faster response than the primary loop and environmental disturbances directly act in
its loop. Its controller, (PD),, does not include an integral term because of the fact
that it causes overshoot response in the primary loop to eliminate steady-state error.
It can be interpreted that secondary loop integrator behaves like a proportional gain
in the primary loop. This overshoot can be reduced or even eliminated by using some
techniques such as carefully handled integrator windup with anti-windup strategies
[52] which is out of scope in this study. The secondary feedback control loop only
includes proportional and derivative action in order to find torque difference between
left and right thruster , Ui, _g)[k], by minimizing e, [k] = 7[k] — r[k].

(k] — e[k — 1]
T

ey
Ur-r)[k] = Kp,e,[k] + K, (4.61)

(PID)s controller is employed to track reference surge speed, u[k], which is pro-
duced by strategic level guidance algorithms. (@.59) is utilized with optimized con-
troller gains K,,,, K;,, K4, for proportional, integral and derivative calculations, re-

spectively. Appropriate control effort, produced by (P1D)3, which is the summa-
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Figure 4.6: Overall cascaded PID controller feedback loop.

tion of left and right thrusters is tried to be found to minimize surge speed error,

eulk] = ulk] — ulk], as small as possible in.

(K] — eulk — 1]
Ts

k
. €y
U(L+R) [k:] = KPBGU[k] + Ki3TS Z eu[l] + Kd:s

=0

(4.62)

Thus, the cascaded PID method enhances the stability and robustness of the overall
controller design. The applied torques, Uy, and Ug, for left and right thrusters may be
readily obtained from (4.63)), respectively. It should be noted that physical constraints
on the thrusters must be taken into consideration by saturating them their maximum

and minimum limits before applying these torque values to the system.

_ Uwsn)[K] + U [F]
2

_ Uwan[F = Up-rK
2

UL[K]
(4.63)
Ur|[K]

The cascaded PID control structure finds Uy, and Ug torques which are applied to
the system in each sampling time. Gains of the controllers, are not be tuned in each
time instant. They are found via ’Particle Swarm Optimization, (PSO),” that is one of
the evolutionary optimization techniques on the predefined ’S’ shaped curvature path.

The proposed method to tune cascaded PID variables is explained in the next section.
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4.4.1 Particle Swarm Optimization

Gains of the cascaded included PID controllers must be tuned to obtain robust and
stable system responses. As it can be seen in Fig. gain vector G = [K,, K;, K,
K,, K4, K,, K;; Ka,]" is taken as design parameters. The cost function of the
(@.64) is minimized with variables of G subject to given constraints. Particle swarm
optimization technique is employed to find a better G' vector within an optimization
window which is determined as a curved path with time duration from 0 to k. Gains
of the PID controllers are considered as particles of a swarm of the optimization
problem. Values that can be taken by particles are restricted as G, < G < Gz
Changes of swarm values from one sampling time to another, AG or v, is also re-
stricted within a range, i.e. Av,,;, < Av < Av,,4., to preserve best swarm particles
if they are available. At the same time, physical constraints on the left and right

thrusters must be kept in their limits, w,,;, < w[k] < 4., during the optimization.

k

CostFunction J(G) = { Z lew[d]| + ley(d]] + |€r[7;”}

1=0

| (4.64)
subject to Grnin < G < G,

Umin S ’U,[k'] S Umaz-

Particle swarm optimization, PSO, which is one the most used evolutionary optimiza-
tion techniques, is applied to multi-variable optimization problems for many years. It
does not only imitates human social behaviours but also simulates the social skills of
animals by considering them in groups, [45]], [16]. PSO is based on an improvement
of the performances of individuals and their groups by observing them individually
and collectively. Group or swarm can be represented with their individuals from 1 to

N for cascaded PID controller as follows:
Gl = [{Kpl}l {Kil}l {Kdl}l {Kp2}1 {Kdz}l {Kp3}1 {Kis}l {de}l]T7
G, = [{Kpl}z {Ki1}2 {Kd1}2 {sz}z {Kd2}2 {Kps}z {Ki3}2 {Kd3}2]T7

I

GN: [{KM}N {Kil}N {Kd1}N {Kp2}N {KdQ}N {Kp:s}N {Kiza}N {Kda}N]T'
(4.65)

where { K, }, represents the first particle of the first individual, G';, which means that

the proportional term of the PID; controller in the first individual. Other particles
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can easily be explained by the help of previously indicated notation. Some basic
swarm ideas are fulfilled in the PSO optimization techniques to update particles of

the swarms meaningfully. These ideas are categorized into three phenomena as:

e Inertia: Each particle in the individual wants to keep its current behaviour
based upon its old habits and tendency which are proven to be successful in the
past. When the gain parameters are updated, this feature will become a more
dominant factor because of the fact that deterioration has to be prevented for

good gain values.

o Influence by society: People in the community are impressed by one who has
more successful than others. So, most of the people try to imitate him/her
footsteps and behaviour naturally. One of the updated criteria of the gains of
the cascaded PID controller is to approximate the swarms to best swarm, Gy

in each iteration.

o Influence by neighbours: Interaction of the people with their neighbours is
more influential than society. One can directly share his/her failures, success
with close people. At the beginning of optimization, neighbourhood relation
is assigned to each swarm based on some topologies. Ring topology that is
explained in [45] is adopted to update particle value term which comes from

this influence.

The dimension of the multi-variable optimization problem, n, is equal to the length
of the gain vector length(G.) = 8. A population has N candidate solutions which
means that one of the vectors in this set {G1, G2, ..., Gy} is candidate solu-
tion, i.e. G;. is the best minimization vector over given set ¢ € [1, N]. Each
particles in the individual, G; = [gi1 ¢i2 - - .gm]T, is moving with some velocity
v; = [v;1 Via ... )T, @ € [1, N], through the search space. This is the essential
property of PSO optimization technique which is a fundamental difference between
PSO and other evolutionary optimization algorithms. G; values are updated dynam-
ically from one generation to next by using inertia, the influence of neighbours and
society properties. Ratios of influences are selected randomly to update velocity or
approaching vectors. These ratios can be considered as learning rates from others.

Maximum learning rates are represented with {¢;}, and {¢,},  for the influence
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of society and neighbour, respectively. ¢, defines the cognition learning rate which is
a random variable uniformly distributed in [0, {¢1},,,,). i-e. ¢1:[k] ~ U[0,{¢1},,..)
for i € [1,n]. Likewise, social learning rate is also a uniformly distributed random
variable in [0, {¢2}, . |, i.e. ¢o;[k] ~ U[0,{¢2},,,,] for i € [1,n]. Inertia term to
preserve current velocity of particles also has a weight term, w, which is defined as a
constant during the optimization. So, particles want to maintain their velocities while
learning from their neighbour and society. By considering the above information,

velocity update for the 7 — th particle of the swarm is formulated as follows:

Vi1 = w01 + G11(Gi1pest — Gi1) + D21(Ginecige1 — gin)s

Vio = WU; 2 + P12(Gi2pest — i2) + P2.2(Gincigr2 — gi2),
(4.66)

3
vi,n = wvi,n + ¢i,n(gi,n,best - gz,n) + ¢2,n(gi,neig*,n - gi,n)-

where velocity vector v;, is considered as change of the PID parameters of the par-
ticle i. It is written as v; = [{AK,, }. {AK; }, {AKy}, {AK,,}, {AKy, ],
{AK,, }Z {AKig}i {AK,, }Z]T Best PID parameters for each individual that give
the minimum value is indicated by {G’}i’best = [{Kp1 }i’best {Kil }i’best {Kd1 }i’best

{Km }i,best {Kd2 }i,best {KPB }i,best {KZB }i,best {de }i,best]T' Each individual has two
neighbours that come from the previously explained ring topology. The closest neigh-
bour of individual i, G neig« = [{Kpl}i,neig* {Kil}i,neig* {Kdl}i,neig* {KPQ}i,neig*

{KdQ}i,neig* {Kp3}i,neig* {Kis}i,mg* {de}i’neig*]T, whose particles give the mini-
mum result in (4.64) is selected to be employed in (4.66)). Likewise, two learning rates
are transformed into vector forms as ¢, and ¢, to be able to write implicitly

as follows:
v; = wv; + ¢’T(Gi,best -G;) + ¢{(Gi,neig* - G)) (4.67)

must be restricted in the predefined limit, v,,;, < v < V42, Which can be
seen in (4.64) for preventing particles search space leaving. Update equation of the

PID parameters in a particle with related the velocity vector is expressed as

(#.68)) can be considered as position update procedure which means that PID param-

eters are updated by summing them with a rate of changes in them. The final value of
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G, is also limited, G,,,;,, < G < G 42, to keep it within the search domain otherwise
particle may move away from its optimum solution point. All the particles which are
numbered from 0 to IV are updated with (4.67) and (4.68). The pseudo code of PSO

can be seen in Algorithm 2]

4.4.2 Tuning of the Cascaded PID Controller Parameters

PID parameters which are values in the range of {0 < K, < 100,0 < K;, <
10,0 < Ky < 0.5} € PIDy, {0 < K,, < 50,0 < Ky, < 0.5} € PID, and
{0 < K,, <200,0 < K;, <10,0 < Ky, < 0.5} € PIDj3 are tuned by using
PSO technique on the s-shape path. Parameters of the PSO which can be shown in
Table 4.2 are selected via trial and error method. Since PSO is a kind of evolutionary
algorithm, positions and velocities of the individuals are generated randomly. In each
evaluation, PSO may give different results. In order to get rid of this problem, the
PSO algorithm is repeated 100 times. Later, the best particle in each evaluation is
selected as a candidate solution for the path following problem. Mean of all the best
candidates are taken to minimize randomness of the algorithm. The final values of

the optimized cascaded PID controller parameters are written in the following Table

A3

Table 4.2: Parameters of the PSO algorithm.

Generation End of the path
Number of Particle 500
Swarm Inertia, w 0.5
Cognition Learning Rate, {¢;}, . 0.6
Social Learning Rate, {¢,} 0.6
Maximum Position Vector, G©, [100 10 0.5 50 0.5 200 10 0.5]7
Minimum Position Vector, G7 . 000000007
Maximum Velocity Vector, v1 [1 0.1 0.01 1 0.01 1 0.1 0.01]
Minimum Velocity Vector, v | [-1 -0.1 -0.01 -1 -0.01 -1 -0.1 -0.01]
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Algorithm 2: PSO method for tuning of cascaded PID controller parame-

ters.

Input: w, {¢1},,.., {P2}ae s Ny Gimazy Gmins Vmaz, Umin, 0, T

Initialize: N individuals G; € lU [0, {Kp: }10e ] U0, {Ki } e |
[0 AK Y] V10K ] U0 ARt U0 1K),
0K o) U0 e | i€ 0]

Number of N v; Vindividuals € {U[{AKpl}mm AAK, D]
U[{AKH} {AKil}ma:p] U[{AKdl }mm ) {AKdl}max]
U [ {Asz }min ) {Asz }ma;r } U [ {AKd2} {AKdZ }maa: }
U [ {AKm }mm ) {AKM }maz } g [ {AKig }mm ) {AKi3}maZ‘ }
U[{Ade} {AKdS}

man

man ’

min ma:p:| 72’6[07]\[}
Initialize best—so— far position V individuals : G pest < G4, i € [0, N]
iteration < 0

1 while iteration < T(End of the path) do

2 fortr=1— Ndo

3 Generate ¢y = (11 ... ¢18)7 with g1 ~ U[0,{¢1},...)" s k € [0,8]
4 Generate ¢y = (a1 ... ¢og|" with oy ~ U[0,{p2},...17, k € [0,8]
5 Neighbours{G;} < {o nearest neighbour of G;}

6 Gineigr < argming {J(G) : G € Neighbours{G;}}, look (4.64)

7 v; — W + P (Gipest — Gi) + O3 (Gineigs — Gi)

8 if v; > v,,,, then

9 t Vi < Umaz

10 else if v; < v,,;,, then

11 t V; < Umin

12 Gz — GZ + v,

13 if G, > G,,.. then

14 t G, — G

15 else if G; < G,,,;,, then

16 t Gl — Gmm

17 Gi,best < arg min {J(GZ), J(Gi,best)}
18 iteration < iteration + 1
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Table 4.3: Optimized parameters of the cascaded PID controller.

Kpl Kil Kdl sz Kdz KP3 Kis de
10.83 | 2.0 | 0.025 | 26.07 | 0.025 | 150.73 | 1.50 | 0.016

In Fig. results of the controller with LOS guidance rule are plotted for optimized
values of parameters and different valued parameters. Ground truth that is represented
with a red colour and dashed line is the shortest path which is composed of way-
points. In Table 4.4 simulation parameters are represented with average cross-track
errors. Optimized PID is in the first row. Other parameters are the variation of the

optimized parameters.

20 -

16 -

12 -

y position(m)
—
o
T

4+

0 5 10 15 20
x position(m)

Figure 4.7: Results of the cascaded PID controller on the s-shape path with different

optimized parameter values.
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Table 4.4: Controller parameters used in Fig.

Colour | K, | K; Kg, K, K, Ky, K, | Kgq, | Avg.Err.(m)

— | 10.83 | 2.0 | 0.025 | 26.07 | 0.025 | 150.73 | 1.50 | 0.016 0.1474
5.83 | 2.0 | 0.025 | 26.07 | 0.025 | 150.73 | 1.50 | 0.016 0.1529
10.83 | 5 | 0.025 | 26.07 | 0.025 | 150.73 | 1.50 | 0.016 0.1555

—— | 10.83 | 2.0 | 0.025 | 26.07 | 0.025 | 150.73 5 | 0.016 0.2190

4.5 Comparison Between MPC and Cascaded PID Controllers

Both controllers fulfil the path following task on the "S" shaped curved path. MPC di-
rectly uses linearized system dynamics and minimizes errors between references and
measured signals while it reduces the control effort according to its performance cri-
terion. It also generates a control sequence for the specified input horizon by consid-
ering the defined constraints. Cascaded PID controller performs error minimization
between references and state feedback signals. If its outputs exceed the physically
applicable maximum and minimum torque values, then they are saturated. Saturation
process affects the robustness of the controller and responses of the system. Perfor-
mance criterion for the comparison between MPC and cascaded PID controller is to

calculate average cross track errors. As can be seen in Tables d.1and 4.4 MPC gives

better results compared to cascaded PID controller as it is expected.
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CHAPTER 5

PARALLEL DOCKING PROBLEM FOR UNMANNED SURFACE
VEHICLES

5.1 Introduction

Autonomously docking a USV to a parking slot can be considered as a subset of two
phenomena which are path planning and path following. The path (route) planning
part is the determination of the path along which vehicles goes from an initial position
to a final point. In the path following, the vehicle autonomously goes by tracking the
group of way-points along the optimal and sub-optimal paths and finalizes its motion
in the parking slot. First of all, the craft is docked itself into an interim parking region
where its orientation parallel is parallel to the parking slot. Then, it starts moving
backwardly from this region to its parking point. A path that optimizes the control
effort, i.e., an energy-optimal pathway is proposed to find an appropriate path at the
first stage. In the second step, it must be determined a path which includes smooth

manoeuvres for parallel parking by considering obstacles in the region.

A manoeuvring path generation problem for docking (parking) has been partially
solved in many different ways; by solving an optimal control method (time minimum
or energy minimum), or by using heuristic approaches for example utilizing fuzzy
logic, or by using geometric rules [50]. Combinations of these approaches are adopted

to find feasible way-point for docking manoeuvres in the scope of this thesis study.
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5.2 Problem Definition

After completing a mission, the vehicle should start following an optimally found
path which begins at the p; = [z ys]” on the quadratic circle and ends at the p; =
[z ys]" planar point as it may be seen in Fig. with for two scenarios. Vehicle’s

orientation should be parallel to the port at the forward point, p;.

An intermediate point, p; = [z; y;]”, that is defined by considering park corners is
utilized to obtain a curved path for docking to a parking slot. The path between p;
and p; are followed backward. Then, the vehicle continues to its motion to park
a docking slot whose length is about the twice of vehicle’s dimensions. From this
point, the way-points to accomplish the necessary docking manoeuvre between p;
and p, = [x, y,)" are generated via a proposed geometric rule, and the guidance and
controller laws are employed to the vehicle to follow this path. A docking manoeuvre
path, which can be shown as blue colour in the above figure, is produced between
intermediate point, p;, and parking point, p, for a parking slot of a predetermined

size.

The vehicle may approach the parking region in any direction; however, it should be

Figure 5.1: Representation of parallel parking with important parking points.
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noted that planar symmetry simplifies the solution of the problem. Parallel docking
problem is treated as a way-point generation problem that may be dealt with in two
steps: while the first stage is entrance to the parking site, the second part is to fulfil
the backward docking manoeuvre. Some of these way-points and important points

are illustrated in Fig. [5.1]

5.3 Entrance to Parking Site

It is accepted that the vehicle passes through a way-point on a quadratic circle whose
centre at p., and a radius has a reasonable value. This way-point is described as the
starting point, p,, which is represented in Fig. [5.1] at the beginning of parking. The
vehicle directs its orientation from this point to the intermediate point, p;, as its next
way-point. However, the orientation of the craft should be parallel to the parking slot
at p; before beginning backward docking manoeuvre. Therefore, forward point, py
as an additional point, which is also indicated in Fig. should be specified as the
next way-point to fix orientation (yaw angle, 1) of the vehicle parallel to the port.
Once the USV arrives at the forward point, the next way-point will is assigned as the

intermediate point, which is the point backward docking manoeuvre will start.

The distance between p, and p; is a function of initial speed, u, orientation v, ap-
proaching angle « of the vehicle, and it should be optimized for obtaining an energy-
optimal path. Only 7/2 < « < 7 is represented in and the intermediate point,
P;, 1s located at the left side of the forward point, p;. A symmetric problem may be
solved for 0 < a < 7/2, and py will be at the left side of p; in this scenario. As a
consequence of that the docking problem is described in 7/2 < o — ¢ < 37 /2. Here
note that the symmetric problem is to be easily solved for 7 < a — ¢ < 37 /2. The
optimization will be performed by addressing the following optimal control problem

to determine energy efficient path.

5.3.1 Optimal Path Between p, and p; for Forward Docking Maneuver

Optimal control problem, (5.1)), is proposed solved to obtain an optimal path between

Ps and py. It is defined open-loop optimal control as two-point boundary value prob-
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lem with free time. Initial state «(fy) = x, at time ¢y, final state «(¢;) = a at time
tr, constraints on the states and inputs are known. Z(¢;) = & indicates the desired
final states. The objective function and its constraints of the optimal control problem
in continuous time are given in the following equation.
ty
CostFunction J(u(t)) = / h(u(T))dr
to

subject to x(ty) = xo, x(ty) =y
o(t) = f(x(l), u(t)) (5.1)
Umin S ’U/(t) S Umaz, te [t07tf]
z;+ L < zyand y(t) > yy

[9(tp)] <5

h(u(t)) = w(t)T R(t)u(t) is expressed as control effort cost which is minimized to
find energy-optimal path, and time-varying positive definite R(¢) matrix is taken as
constant, i.e. R(t) = R. &(t) = f(x(t),u(t)) is the state equations of continuous
time system which is written as inequality constraints. w(t)min < w(t) < w(t)maz
indicates constraints on the inputs. To avoid collisions at the parking site and make the
orientation of the vehicle parallel in the forward position, x; + 2L < z; and y > yy,
in a planar position, are added as inequality constraints (L indicates the length of the

vehicle). (5.1)) is discretized for numerically calculating optimal input sequences.

k1
CostFunction J(U) = Z ulk]” Rulk]

k=ko
subject to xk = ko] = xo, [k =kf] =x;

xlk +1] = f(x[k], ulk]), k =ko,ko+1 ..., ky —1 (look[2.11)
Umin < wlk] < Upag, k=koko+1 ..., kf—1

v + L < x[ky] and y[k] = y;

[W[ks]| < 5°.

(5.2)
where U vector is the input sequence, and its entities are variables of the optimization
problem (5.2). k; — ko = N samples are taken, and the number of unknowns in the
problem becomes 2 x N because of the two inputs. z[ko| = z(ty) and z[k¢] = x(ty)
should be satisfied. By keeping relations the same, other terms are only written in

discrete-time. The constrained quadratic optimization problem is solved to find an
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optimal control sequence, U™ = [u[k]” w[k + 1]7 ... ul[k; — 1]T}T, which

gives the energy efficient path for the USV.

5.3.2 Solution of the Optimal Control Problem

Large scale optimization problem one of the "Global Optimization Toolbox" of MAT-
LAB, genetic algorithm (GA), is employed to be able to solve above discrete-time
system [34]. It is suitable for solving most of the constrained and unconstrained,
highly nonlinear, smooth or nonsmooth optimization problems which may not be
easily found from other methods. Principles of the GA are based on evolutionary op-
timization algorithms. At each generation, many of individuals in a population have
the ability to reproduce to share their genetic information (crossover). The lifetime
of each individual in the population is limited. Small variations in individuals allow
the evolutionary process to produce a new generation apart from previous (mutation).
Survival in the population is directly and positively correlated with reproducing of in-
dividuals (elitism) [45]]. All these biological factors are also taken into consideration

for the optimization problem, (5.2), to obtain a possible optimal control sequence.

5.3.2.1 Scenario I

The following scenario is selected to demonstrate the performance of the optimiza-
tion algorithm: initial point state being plko| = p, = [z[ko] y[ko]]T = [-3.66 7|7,
ulko] = 1 m/sec, and ¢[ko] = 0 rad and one forward point state p; = [z, ys]?7 =
8 2]7, ulkf] = 0 m/sec, and ¥[k;] = O rad at time k;. The upper limit of the
control input is taken as 40 N, i.e. Upqe = [40 4O]T, and the lower limit is set as
Upin = [-40 -40]7 The radius of the quadratic circle is set as R = 10 meter. An ini-
tial population, i.e. sequence of control inputs represented with black colour in Fig.
[5.2] which is obtained via MPC+LOS combination is given to GA as an initial popu-
lation in order to obtain a faster convergence. Parameters of the GA are indicated in

the following Table

Energy-optimal path found from GA algorithm is demonstrated in Fig. [5.2 with the

blue colour path. It should be understood that first, the orientation of the vehicle is
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Table 5.1: Adjusted parameters of the GA.

Generation Limit 10000
Population Size 50
Elitism 10% of population size
Mutation Adaptive
Crossover Fraction 0.7

directed toward the final forward point p;. When the craft reaches the parking region,
it starts manoeuvring to dock itself parallel to the border. When the orientation of the
vehicle satisfies the neighbourhood of the desired yaw angle, —e < 9[k] < ¢, in
addition to meeting position requirements, z; + L < x [k < k:f} and y[k < k] > vy,

constraints of the optimization problem are satisfied before final time.

Fig. [5.3shows the change in the cost value during the GA optimization process. At

12 : —

T
—Optimal Path
—Initial Population's Path
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y position(m)
D
T
|

x position(m)

Figure 5.2: Energy optimal path for Scenario I represented in blue line.
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Figure 5.3: Evaluation of the cost function for Scenario I.

the initial, the best individual in the population has 2.96 x 10° cost value. At the
termination of the GA, in generation 666, the cost of the best-valued individual is
calculated as 1.23 x 10°. GA algorithm improves the cost value approximately by

41.6%. It can be seen that GA improves cost function slowly due to the dimension of
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Figure 5.4: Initial and optimal control torques for Scenario I.
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Figure 5.5: Effect of the disturbance on optimal control signals.

the optimization problem. The sequence of the optimal control input for left and right
thrusters are represented in Fig. [5.4] GA finds appropriate input signals which satisfy
boundary input constraints. If these signal are directly applied to derive the vehicle
existence of the wave generated by wind (equations are given in [2.10)), the path in
Fig. [5.5]is obtained. This figure shows that the optimal path can be used to generate
way-points for the vehicle; nevertheless, guidance and autopilot control is necessary

for robustness.

5.3.2.2 Scenario II

The second scenario is as follows: plko] = p, = [z[ko] y[ko]]? = [1.58 11.4]%,
ulko] = 1 m/sec, and 1[ko] = 20° and forward point state p; = [z, ys]* = [8 2|7,
ulks] = 0 m/sec, and ¢[k] = 0 rad. Constraints of the optimal control problem and
parameters of the same GA algorithm are same with Scenario 1,[5.3.2.1] An initial
population, i.e. a sequence of control inputs resulted in the trajectory with black in
Fig. [5.6] which is obtained via MPC+LOS combination. This sequence is also given

to GA as an initial population in order to obtain a faster solution.
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Figure 5.6: Energy optimal path for Scenario II represented with blue line.

Evaluation of the cost function during the optimization process can be seen in Fig.

At the initial, the best individual in the population gives 5.55 x 10° cost value.
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Figure 5.7: Evaluation of the cost function for Scenario II.
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Figure 5.8: Initial and optimal control torques for Scenario II.

At the termination, GA stops in generation 1463, where the cost of the best valued
individual is calculated as 2.76 x 10°. GA algorithm is improved the initial cost value

approximately by 49.7%. Optimal input sequences are demonstrated with blue lines

in Fig.
5.4 Backward Docking Maneuver

After vehicle reaches to the forward point, it follows a continuous curvature path
to approach its parking slots. This curve is defined between the intermediate point,
pi = [z; y;]", and the parking points p, = [z, y,|”. To be able to realize collision-
free parking manoeuvre, p;, p, and edges of the parking slot should be known [14].
In this study, docking manoeuvre to the parking slot is achieved by following way-
points on the 4 parameters logistic continuous curve s-shape. This curve also satisfies
collision avoidance at the edge of the slot by considering the geometry of the craft,
and yaw rate of the vehicle is restricted to a predefined maximum value during the
manoeuvre. This path obtained from the following equation and conditions [[50]]:
Yp — Yi

- m o (5.3)
r>x, >0, y,>y,>0, B>2,C>0

Y
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where variables B and C' adjust shape and slope of the curve which is employed for
executable path following. Curved path obtained from (5.3)) also guarantees zero yaw
angle, i.e. 1» = 0, at the neighbourhood of p; and p, with well-defined B and C
parameters. An example of the proposed path is illustrated in Fig. [5.1] with blue

colour.

5.5 Results

The parallel docking problem for the USV with different values of initial speed, ve-
hicle pose and approaching angle of the vehicle is solved for all the combinations of
autopilot and guidance law designs. Energy consumption (/) and average cross-track

error d are calculated in (5.4) along the motion.

kp—1

— 1 2 2 1 2
E=>" {im(u[k] +v[k)?) + 5 L r{k] }
k=ko
ky—1
g1 fz (i — )2 (K] — (a3, — 2 )y[K] + 20y 1 — Yo
ky — ko k=ko _ VW =y 1)? + (e, —a,)? )

The closest diggance at time k

(5.4)

Note that energy consumption, £, is composed of the kinetic and rotational energy
components. u[k] and v[k| indicate surge and sway speeds, respectively. r[k] is the
yaw rate of the vehicle at time k. m and I, denote mass and inertia terms, respec-
tively. Average cross-track error, d, is calculated from summed cross-track errors.
Py_1 = Va1 5_i|" and pj, = [ys, @37

k. Indexed summation variable is the closest distance of (x[k], y[k]) from the line

are the two consecutive way-points at time

which passes through p},_; and pj,.

In Scenario I, [5.3.2.1 way-points on the optimal path are generated with for speed of
1 m/s, approaching angle of 27 /3 rad, and initial vehicle heading angle of 0 rad, i.e.
¥ = 0 in Fig. Guidance algorithms are compared by using PID controllers for
this scenario in Fig. [5.10] Average cross tracking errors are 0.0501 and 0.0832 meters
for LOS and PP, respectively. Energy consumption of the PID+LOS combination is
37.80 J while PID+PP combination consumes 36.95 J.
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Figure 5.9: Optimal and sub-optimal paths and generated way-points for Scenario I.

The same scenario is applied to the MPC controller and its guidance method combi-
nations. Fig. @illustrates MPC+LOS and MPC+PP simulations blue and red lines,
respectively. Average cross tracking errors are measured as 0.0443 and 0.0812 meters
for LOS and PP, respectively. Energy consumption of the MPC+LOS combination is
calculated as 33.9 J while the motion of the MPC+PP combination requires 35.60 J.

12

—PID + LOS
—PID + PP
P = = Optimal Path

y position(m)

10

x position(m)

Figure 5.10: Simulation of PID+LOS and PID+PP methods for Scenario I.
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Figure 5.11: Simulation of MPC+LOS and MPC+PP methods for Scenario I.

For the second scenario, [5.3.2.2] way-points on the optimal path are generated with
for speed of 1 m/s, approaching angle of 110°, and initial vehicle heading angle of

12 -

— Optimal Path
_ ¥ Way-points

y position (m)

z position (m)

Figure 5.12: Optimal and sub-optimal paths and generated way-points for Scenario
IIL.
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Figure 5.13: Simulation of PID+LOS and PID+PP methods for Scenario II.

20° rad, i.e. ¢ = 0 in Fig. [5.12] PID+LOS and PID+PP combinations are plotted in
Fig. [5.13] Average cross tracking errors are 0.0592 and 0.1386 meters for LOS and
PP, respectively. Energy consumption of the PID+LOS combination is 35.01 J while
PID+PP combination consumes 36.13 J. MPC controller and its guidance method

combinations are demonstrated for Scenario II in Fig. [5.14] Average cross tracking er-
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—MPC + LOS
—MPC + PP
= = Optimal Path

10~ - Entrance of Park Region
N

y position(m)
(=]
T

-2 0 2 4 6 8 10
z position(m)

Figure 5.14: Simulation of MPC+LOS and MPC+PP methods for Scenario II.
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rors are calculated as 0.0578 and 0.1330 meters for LOS and PP, respectively. Energy
consumption of the MPC+LOS combination is estimated as 34.83 J while the motion

of the MPC+PP combination requires 35.86 J.

For different values of initial vehicle pose and approaching angle, tracking perfor-
mances of MPC+LOS, MPC+PP, PID+LOS and PID+PP are presented in Fig.
It is observed that none of the combinations of the autopilot and guidance designs vi-
olate the parking site limitations. This validates our approach of tuning the controller
parameters with an objective to optimize the path following performances. It is found
that LOS guidance law drives the vehicle closer to the reference trajectory and MPC

performs better compared to PID autopilot.

In Fig. [5.16] energy consumptions of the USV performing parallel docking manoeu-
vres under the rule of different combinations of autopilot and guidance designs are
shown as a function of approaching angle and initial yaw position. It is observed that
the energy consumption of the vehicle does not change dramatically between differ-
ent designs. It is observed that LOS guidance law drives the vehicle in a more energy

efficient manner, better performing along with MPC.
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Figure 5.15: Average cross track of the vehicle for four different combination of
controller and guidance method: MPC+PP in cyan, MPC+LOS in green, PID+PP in
red, PID+LOS in blue.
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Figure 5.16: Energy consumption of the vehicle for four different combination of

controller and guidance method: MPC+PP in cyan, MPC+LOS in green, PID+PP in
red, PID+LOS in blue.
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CHAPTER 6

EXPERIMENTAL SETUP AND RESULTS

6.1 Introduction

One of the guidance techniques, pure-pursuit (PP), and one the controller methods,
model predictive control (MPC) are implemented on board for experimental vali-
dation of the thesis. Pacific Islander Tugboat which is represented in Fig. is
employed to fulfil experimental work. This boat is equipped with the motor driving
system, cooling system, regulator, batteries as a rigid body. The mathematical model
of the vehicle which is derived in Chapter [2] is used with its previously identified
parameters, [[17], to be able to design an onboard controller. Entirely open source
Pixhawk 1 Flight Controller which is fitted onto the middle front section of the tug-
boat is employed for experimental validation. Embedded software, also can be called
firmware, which is run on NuttX Operating System (OS) runs in real-time for collect-
ing sensor data, driving motors via electronic speed controller (ESC), communication
with the ground station, estimating state variables, recording logs during the experi-
ment. Motion control hierarchy defined in Chapter [3|is satisfied fast and reliably via
embedding controller and guidance methods in stable firmware. The ground station
is only used for sending start and stop commands, and for receiving monitoring in-
formation of the boat such as battery and sensor fusion status, the number of used

positioning satellites etc.

This chapter is divided into three major parts that are hardware components and soft-
ware part and experimental results and validation. Part of hardware components in-
cludes detailed information about the model boat, autopilot card, ESC, motors, sen-

sors. In software parts, the software architecture for experimental validation is ex-
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plained in detail. Last part includes the results of the experimental study.

6.2 Physical Components and Hardware

This section gives information about the technical and physical specification of the
modeled USV. First of all model boat is introduced along with its components. Later,
autopilot card employed for the experimental result is explained with its sensors and

peripherals.

6.2.1 Model Boat and Its Components

A modified 1:40 scale Pacific Islander Tugboat is considered as the vehicle with di-
mensions of 900x290x260 mm. It is a one-piece fibreglass hull with rubber fenders
as tires, and its weight is 11 kg including all the equipment (ESCs, motors, batteries,
ballast weights, autopilot card etc.), shown in Figure[6.1] The propellers located at the
aft render the vehicle highly manoeuvrable so that it can almost turn around its centre

of gravity without altering its linear position and it can travel up to 3 m/s. Two distinct

Figure 6.1: Pacific Islander Tugboat.
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four-bladed propellers that are made of brass have clockwise and counter-clockwise
turning capacity with appropriate ESCs and motors. Each propeller is surrounded by
Kort Nozzle that provides effective control of the stream of water passing through it.
The function of the Kort Nozzles is to change the direction of the thrust using a servo
motor which is connected to each nozzle. Dynamics of the nozzles are not included
and ignored in this study by doing servo motor motionless and fixing them during

motion. The vehicle can be viewed from the stern with propellers and Kort nozzles in
Fig.[6.2]

Brushless, waterproof motors whose rated values are same and ESCs are used to drive
the modelled vehicle for experimental purposes. Two 3360SL 3180 KV motors and
Seaking-120 A-V3 ESCs are employed to turn the thrusters in clockwise and counter-
clockwise directions. This equipment can be seen in Figs. [6.3a and [6.3b]

Duties of the ESCs are to take pulse-width modulation (PWM) signals which are
square pulse waves between 0 and 5 volts. PWM signals are produced based upon
duty cycle technique which is expressed as the percentage of ’on’ time of rectangu-
lar or square wave in a period. ESC interprets duty cycles and produces a constant
voltage (negative or positive valued) during that period. The generated voltage value
is applied to the electrical motor that is high currents resisting. Then, the motor shaft
which is coupled with the propeller shaft starts rotating with a known RPM value

because of the applied voltage. Since outputs of the controller or system inputs are

Figure 6.2: View from stern with propellers of Pacific Islander Tugboat.
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(a) A 3360SL 3180 KV motor (b) A 120 A-V3 ESC

Figure 6.3: Motor and ESC used in experimental setup, respectively.

torque command, thrust-voltage characteristic given in Fig. [6.4] must be known to

control of the boat motion.

Selection of the battery plays a crucial role to feed all the electronic components.
ESCs serve as a bridge between battery and motors. It consumes most of the electric
power in battery cells. Remain power is used for Pixhawk autopilot card, sensors
and small water pump. In order to draw constant and proper current for electronics

system, Li-Po battery is selected as a power supply. It has been decided that a three

Thrust vs Woltage Applied
30 T T T ! T T |
: : : : : Left Thruster
— Right Thruster

Thrust(MN)

ns 1 1.4 2 25 3 35 4 4.5
Yaoltage applied()

Figure 6.4: Experimentally obtained thrusts (/V) vs. applied voltage (V') plot .
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Figure 6.5: Li-Po battery that provides electric power for all the system.

cells 3300 mAh, 11.1 V lithium-polymer (Li-Po) battery, in Fig. [6.5 is used for

experimental work.

6.2.2 Autopilot Board and Its External Components

Pixhawk® 1 autopilot board whose software and hardware are open source has been
determined to conduct experiments. It may be used in commercial and scientific un-
manned systems due to its flexible and customizable hardware and software. Light-
weight, efficient and very stable NuttX, kind of real-time operating system (RTOS),
can efficiently perform real-time control system tasks without any need to compan-
ion computer. Software development is carried out in C/C++ programming language
with or without using an open source integrated development environment (IDE).
Pixhawk autopilot card can be seen in Fig. [6.6f Two hardware modules, named as
Flight Management Unit (FMU) and Input/Output (10), are integrated for full system

functionality. FMU can be considered that it is the main component of the autopilot

Figure 6.6: A view of Pixhawk autopilot card .
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card. All the programs, sensor fusion, control algorithms are operated on the FMU.
FMU includes an ARM Cortex-M4F micro-controller running at 168 MHz with DSP,
1024 KB (kilobyte) of flash memory and 192 KB of RAM. A 3 axis gyro (a L3GD20
by ST Microelectronics) for orientation, a 3 axis accelerometer and a 3 axis gyro (a
MPU-6000 by Invensense) for determining outside influences, a compass (magne-
tometer) combination of a accelerometer (a LSM303D by ST Microelectronics) for
heading and a barometric pressure sensor (a MS5611 by Measurement Specialities
Inc.) for determining altitude are the sensors that are located on the FMU. Following

physical interfaces are used for connectivity 1x 12C, 1x CAN, 4x UART.

IO module is the carrier board between FMU and other external devices and modules.
It contains its own 24 MHz cortex-M3 micro-controller and stacks. It has direct
battery input power supply which provides 5V stable DC and limits the current for
FMU. 8 high-speed servo PWM signal pins are available to drive motors. 2 solid
relays and a variety of PPM-SUM/SBUS input connectors are the other connectivity
part of the I/O module.

A group of peripherals is employed to perform communication, to obtain position and
altitude information from the GNSS system, to measure wind velocity, to activate and
deactivate the PWM outputs. A pair of 433 MHz, plug-and-play, 500 mW HKPilot
telemetry radios provides communication between the ground station and autopilot
card to send basic commands and MAVLink packets. A Ublox Neo-M8N GPS with
compass provides position and minimal acquisition times from GPS, GLONASS and
Galileo satellite systems with 10 Hz navigation update rate. External compass or mag-
netometer gives yaw angle information between autopilot and true North. JST-GH
MS4525DO0 digital airspeed sensor by mRo measures the wind velocity. Necessary
safety switch with an internal indicator LED is used for activating and deactivating

the PWM outputs. It can be so useful in case of emergency.

6.3 Software Architecture of the Pixhawk Autopilot Card

Pixhawk has a sophisticated software architecture, also known as (PX4), which can

be divided into four essential layers. All these layers can be seen in Fig Lower
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Figure 6.7: Software layers of the PX4 [35]].

two fragments constitute the first layer which consists of device drivers and specific
software for the micro-controller unit. The second layer is the real-time operating sys-
tem of the autopilot card which provides interfaces between upper and lower layers.
Micro object request broker (uUORB) is included in the third layer to make efficient
interprocess communication. The uppermost fragment is the application layer for

customizable applications such as states estimation, flight control programs etc.

Besides the above explanations, there is a general robotic layer, which known as mid-
dleware that includes drivers of the sensors, uORB publish-subscribe message bus,
communication with the external peripherals and devices. Software architecture has
well adjusted three features. Its all functionality can be split into reusable compo-
nents. Internal communication between modules is done via asynchronous publish/-

subscribe messaging. It may handle an unpredictable workload.

Representation of PX4 software architecture with Middleware blocks and component
of the Motion Control stacks can be seen in Fig. The upper part of the figure is the
Middleware, and the lower part indicates Motion Control (flight stack) blocks. Role of
the message bus, uORB, is to provide communications between each module with the
help of publish/subscribe messages. Parameters can be upload to autopilot via param
program card and saved to EEPROM/SD Card/ FLASH via logger program. Basic
commands which are sent from the ground station and information of the preferred
message which is sent to the ground station are fulfilled by using the mavlink program.

MAVLink block uses particular communication message frames to transmit data over
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Figure 6.8: High-level software architecture designed in Pixhawk controller.
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telemetry radio from/to ground station or autopilot card. Measurements of the sensors

are implemented with each sensor driver in the Drivers block.

Raw data of sensors from GPS, compass, accelerometer, gyroscope, barometer and
airspeed are sent to Sensor Hub, Position & Altitude Estimator and Surge Speed &
Yaw Angle Controller blocks which are in the Motion Control block for sensor fusion
and other purposes. In the Sensor Hub block, sensors data is transformed, and failover
is handled by the help of sensors program. This block gives proper and improved raw
data for estimation. Revised extended Kalman filter program, ekf2, processes mea-
surements of sensors by using the Estimation and Control Library (ECL) and gives
estimated quaternion, attitudes, linear and angular velocities, position and sensor bi-
ases in the North-East-Down and Global frame. All the information is shared with
related programs via uORB message packets. This program can also detect and report

significant and critical sensor failures to a user.

State Machine block is responsible for sending commands from the ground station to
Pixhawk board. There are lots of useful commands such as monitoring current RAM
and CPU usage of the autopilot card, starting/stopping motors, rebooting systems etc.
In this study, the commander program is also used for sending start/stop commands
to the user-defined surface_vehicle_control program. It also provides fast response
to stop motion in case of emergency. The surface_vehicle_control program starts a
constant time loop where pp_guidance and controller programs are called. Position
setpoints (way-points) and estimated local position in NED frame are taken as inputs
in the guidance program and are converted to reference surge speed and yaw angle.

The pure-pursuit method is employed to obtain references.

After, Surge Speed & Yaw Angle Controller which includes controller program block
produces actuator control inputs from reference values and estimated surge speed and
yaw angle of the vehicle. Heavy matrix calculations are done for the model predictive
controller by the aid of lightweight, dependency-free Matrix Library [[1]. Its output
is applied torques for left and right thrusters. They are scaled in a range, [-1, 1],
by considering maximum and minimum torque values is obtained from Fig. [6.4]
Propellers turn in the backward direction when outputs in [-1, 0). Forward rotations

of the propeller are accomplished with actuator commands in (0, 1]. Propellers are
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at the standstill position with 0 actuator commands. At the final stage, mixer program

converts control commands of actuators to PWM signals to drive motors.

6.4 Experimental Results

Experiments were done with model predictive control (MPC) and pure pursuit (PP)
guidance combination for forwarding motion. It can be shown in Fig. [6.9] that the
vehicle tries to track a path which is drawn with black line segments. These line
segments represent the shortest route. Path illustrated with red line shows the simu-
lation result. The path includes 9 way-points with varying size circle-of-acceptances
(CoAs). The experimental result is indicated by blue curvature path. It should be
noted that the experimental result and simulation are almost overlapping over most of

the motion.

Reference yaw angle, {/)\, and vehicle’s yaw angle, 1, are plotted in the Fig. @
and 1) are represented by blue and red lines, respectively. The error between these two
variables is considerably small. This performance can also redound on the previous

Fig. [6.9] It should be noted that the experiment was done by using rope. Although
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Figure 6.9: Motion of the vehicle during experiment in 2D represented in blue line.
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Figure 6.10: Comparison between reference yaw angle QZ and yaw angle of the vehi-

cle, ¥, during experiment

its effect so small, it can affect the system response when manoeuvres occur. When
the surface_vehicle_control program was run, the reason for starting time simulation

is between 40 and 50 is due to the timestamp of the autopilot card.
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Figure 6.11: Comparison between reference surge speed u and surge speed of the

vehicle, u, during experiment

111



Surge speed tracking performance of the controller is pointed out in Fig. [6.11] The
blue colour plot indicates the reference surge speed, u, the red colour plot is the vehi-
cle’s surge speed, u during the motion. As it is seen in the figure, reference speed, u,
is given with lower values. In small surge speeds, bias values of the speed measure-
ments which comes from estimation (ekf2 program) could approach reference value.
It is hard to estimate surge speed in lower values due to biases on estimated linear ve-
locities. Also, using low-cost IMUs sometimes give untrusted measurements which
dramatically affect system behaviour. Keep in mind that this study was performed on

the first generation Pixhawk autopilot card.

Experimentally produced forces for thrusters are represented in Fig. [6.12] The max-
imum thrust value is taken 40 N while the minimum amount of torque is —40 N in
accord with Fig. [6.4] Duration of the control loop is determined by setting a sub-
scription interval of a uORB messages. This interval also implies the sampling rate.
It is shown in Fig. [6.13] that Pixhawk autopilot card performs well with 0.1 second

sampling rate which includes quite small jitters.

Pixhawk is capable of measuring current and voltage during the motion. These values
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Figure 6.12: Applied left thrust and right thrust commands during the motion, respec-

tively.
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Figure 6.13: Sampling times during the motion with small jitters.

are filtered by autopilot card to be able to observe smooth values. In Fig[6.14] current

and voltage values of the battery are demonstrated.

12

T T T
— Filtered voltage (V) ‘

Voltage (V)

10 1 1 1 1 1 1 1 1 1 1
30 40 50 60 70 80 90 100 110 120
Time (sec)
30 T T T
‘—Filtered current (A)‘
S |
K
8]
£
S 20 .
S)
15 1 1 1 1 1 1 1 1 1

1
30 40 50 60 70 80 90 100 110 120
Time (sec)

Figure 6.14: Voltage (V') vs. time (sec) and current (A) vs. time (sec) plots.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Summary and Remarks

The primary purpose of this thesis is to enhance full autonomy abilities of unmanned
surface vehicles. Essential parts of the study are guidance and controller chapters
utilized in the parallel docking (parking) problem. These comprise the structural ele-
ments of the motion control hierarchy. Desired docking path for the full autonomous

motion was obtained via the combination of optimal control and geometric approach.

The mathematical model with identified parameters which was successfully obtained
in [[17]], became important especially controller design. Kinematic equations with dy-
namic equations which were derived from Fossen’s vectorial model [[19]] established
nonlinear six-degrees-of-freedom (6-DOF) mathematical model. After broad liter-
ature surveys were done for modeling, it has been decided that the vectorial model
was the most appropriate one for controller design. First, kinematic relations between
body and NED (reference) frame were formulated to make a meaningful transforma-
tion between frames. The model includes the rigid body and added mass, Coriolis
and centripetal dynamics together for unmanned surface vehicles. Firstly, rigid body
dynamics were obtained by two different methods that are Newton-Euler and La-
grangian with Kirchoff’s equations. Then other external forces and moments that
come from damping, gravity, buoyancy and air drag phenomena acting on the vehi-
cle’s body were added to rigid body dynamics. Environmental forces and moments
which result from wave, wind, ocean current are also taken into consideration for
stability analysis. Some terms in the dynamic equations were neglected due to their

insignificant effect in the motion. The mathematical model was verified with MAT-
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LAB simulations along had a series of test cases. So, the reliable mathematical model

was validated before controller design.

The following step was to derive guidance algorithms which are defined in the strate-
gic (organizational) level of the motion control hierarchy, in Fig. [3.1} Various guid-
ance algorithms in the literature were searched for solving parallel docking prob-
lem. Two of them which are reliable for autopilot design were implemented in real-
time and simulation purposes. Guidance algorithms produce reference yaw angle
and surge speed information from vehicle’s current planar position and related way-
point. Propellers of the vehicle have the capability of turning clockwise and counter-
clockwise directions. So reference surge speed can be produced either positive or
negative according to motion direction. First proposed guidance algorithm was line-
of-sight (LOS) guidance which directs the vehicle towards to line segment between
two consecutive way-points. The second algorithm, pure-pursuit (PP) guidance or
way-point guidance, were implemented to track path. Each method was compared
for measuring path tracking performances in parallel docking scenarios. It has ob-
served that LOS gives better results than PP guidance according to cross-track error

and energy consumption.

After obtaining reference surge speed and yaw angle, controllers have been investi-
gated and designed to realize motion of the vehicle. Two kinds of autopilot algo-
rithms, model predictive control (MPC) and cascaded PID were implemented. The
main purpose was to developed MPC which is more suitable than the PID controller
when system dynamics are considered to become powerful for autonomous applica-
tions. The second controller cascaded PID has been designed to make a comparison
with MPC. Tuned parameters of both controllers were obtained along an "S" shaped
curvature path. Adjustable variables of MPC were optimized in the defined range.
Particle swarm optimization method was utilized to find best cascaded PID param-
eters. The linearized mathematical model was used for the MPC method whereas
cascaded PID makes use of nonlinear system model. Path tracking and disturbance
rejecting performances were compared to each controller. It has predictably observed
that MPC has higher performance than cascaded PID even it was designed with the

linearized mathematical model.
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Next stage was to define the problem of parallel docking which is also named as
manoeuvre planning for autonomous parallel parking. It was discussed in two steps.
In the first step, the vehicle reaches the parking side by making its orientation in
parallel with the port. The desired path was obtained by solving a constraint optimal
control problem according to an initial and final position, environmental constraints.
Then, it backwardly follows a set of way-points on the continuous-curvature path in
the second stage. The route between a parking and initial point of which backward
manoeuvres starts is formed from geometric methods. "S" shape 4 parameter logistic
continuous curvature equations are used for parallel docking. Combinations of the
previously defined controller and guidance algorithms were compared to determine
the best method. It has been observed that LOS guidance law derives the vehicle
closer to the reference trajectory and MPC performs better compared to cascaded

PID autopilot.

Finally, MPC controller and PP guidance methods are utilized in the motion control
hierarchy in hardware implementation with Pixhawk Flight controller card on the 1:40
scale Pacific Islander Tugboat. Due to harsh environmental conditions and limited
time, tests were done for only forward parallel parking in ODTU Yalincak Golet. It
was found out that vehicle’s path following performance is adequate for this guidance
and autopilot combination. All mathematical calculations were done in the control
loop for the considerably small sampling time meanwhile other background processes

like sensor fusion, publishing/subscribing data etc. were executed in real-time.

I learned lots of useful knowledge during the thesis study. It was so challenging how
to make a vehicle autonomous for an intended purpose. Determination of the guid-
ance algorithms and their implementation for real-time problem made this study dif-
ficult especially at angle changes of discontinuous functions. Other challenging work
was to design an embedded real-time model predictive controller which includes high
dimension matrices multiplication, summation and inversion. Experimental work was

implemented with low cost, open source and error-prone hardware and software.
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7.2 Future Works

This study covers the parallel docking of an unmanned surface vehicle by the help of
way-point generation, guidance and controller design based on a derived mathemat-
ical model. Although all the proposed methods were implemented in the simulation
environment, only the combination of MPC and PP guidance was executed for exper-

imental study.

As future works, the following studies can be done:

e Tests were done in the large reservoir lake. An open olympic pool can be a
good choice to fulfil parallel docking which includes backward motion. So,

other controller and guidance combination can be easily achieved.

e Thrust - PWM (pulse with modulation) characteristics of each motor are not
known very well. By obtaining a relation between thrust and PWM, more reli-

able autonomous tasks may be achieved.

e [t should be noted that updating hardware such as IMUs, GNSS receiver, com-
pass, autopilot cards and their software will improve future experimental re-
sults. It is expected that enhancing the vehicle with extra positioning sensors

makes a significant contribution to update state information.

More complex autonomous tasks can be performed with many USVs. In these days,
a collaboration between many unmanned vehicles becomes a hot topic in the control
area. These works could be achieved via proven hardware and software, such as
ROS (Robot Operating System), MAVROS (Micro Aerial Vehicle Robot Operating
System), Dronecode SDK (Software Development Kit) etc.
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APPENDIX A

GUIDANCE DERIVATION

A.1 Calculation of p; s From LOS Equations

To be able to found an analytic solution for pyog, distance in x axis, Ax = T, —T,_1,
and y axis, Ay = ¥, — Yw_1, Of twWo consecutive way point p,, and p,,_; must be
known [9]]. Solution includes two cases according to Ax which can be either Az = 0

or |[Az| > 0.

A.1.1 Casel: Az =0

In this case, slope of the straight line between p,,_; and p,, becomes infinity. From
this condition it can be written as x;05 = T, = T,_1. (3.4) is invalid due to the

fraction term. Then, (3.4) is rewritten to solve yos[k] as follows:

(yros[k] — y[k])* = (nLyy)*. (A.1)

(A1) results in y.os[k] = y[k] £ nL,,. For forward motion, selection of y.og[k] has

two criteria,

o If Ay > 0, then yyos[k] = y[k] + nly,.

o If Ay <0, yroslk] = y[k] — nLyy.
For backward motion,

o If Ay > 0, then yros[k] = y[k] — nLly.
o If Ay <0, yLos[k’] = y[k] + anp.
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A.1.2 Case2: Az >0

Linear algebraic equation of the straight line between two sequential way-points is

written as
A
yroslk] = (52)(@ros[k] = Tu-1) + Yoo (A2)
or
Ay
yroslk] = (E)(ILOSVC] = ZTw) + Yu- (A.3)

A
From now on, slope of above line equations is denoted by, d = —y, x and y axis

Az
components are simply represented by e = x,,_; and f = y,,_1, respectively. Using

these relation, square of (A.2)) is written

VioslH] = (32 rosk] — u1) + )

= (drpos[k] + (f — de))?
= (dzros[k] + g)?
= d*2% o5lk] + 2dgzLos[k] + ¢° (A.4)

where g is intended to simply show (f — de) in above equation. Now other relation

for yros[k]? comes from (3.3) by explicitly writing it:

(zros[k] — 2[k])? + (yros[k] — y[k])? = 270slk] — 2zp0s[k|w[k] + 2°[k]
+Yioslk] = 2yros[klylk] + y*[k] = (nLy,)* (A.5)
By rewriting the term 2y0s[k]y[k] = 2y[k](dxLos|k] + ¢g) and using the above (A.4)
and (A.5]), second order hyperbolic equation is stated with only one unknown which
is l’Los[k], [9]
(1+ d*)atoslk] + 2(dg — dy — z[k])z10s[k]
+a’[k] + y*[k] + 9" — (nLpp)* — 20y[k] =0 (A6)

Coefficients of ax? ,4[k] + bxros[k] + ¢ = 0 is represented by

a=1+d?
b=2(dg — dy — z[k])

c = 2?[k] + y?[k] + ¢* — (nL,p)* — 2gylk]
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Solution of is written in well-known from as

—b+ Vb? — 4dac

2a

JILos[/{Z] = (A7)

To find a point on line segment between two sequential way-points, v/b?> — 4ac > 0
must be satisfied. This is only provided choosing a reasonable n.L,,, value. If solution
is not exist, then n is carefully increased until finding valid solution. There exists two

possible solutions for forward motion:

—b 4+ /b? — 4ac

o If Az > 0, then z05[k] =

2a
b VPZ 14
o If Az < 0, then z10s[k] = ; a@,
a

rros|k] is obtained for backward motion

—b—Vb? —4dac

o If Az > 0, then 27 05[k] =

2a
—b+ Vb2 —4
e If Az < 0, then xLOS[k] = + 9 GJC.
a

After 1 pogk] is obtained from above parabolic (or second order polynomial) equa-

tion, yros[k] can be simply obtained from (A.2) or (A.5).

A.2 Computation of Continuous Reference Yaw Angle

As it can be seen in Fig. [A.T] atan2(, ) takes Az and Ay which are defined previous
section and gives yaw angle of interested LOS guidance method. For PP guidance,
it is defined that Ax = z,, — z[k] and Ay = y,, — ylk], Az = z[k] — z,] and
Ay = ylk] — y,, for backward motion. 1), = atan2(Ay, Ax) represent the LOS
or PP angle in time step [k]. Then mapping from [—7, 7] to (—o0, c0) is handled.
Mapping offers a solution to discontinuity issue at the — or 7 junction. To be able
to make mapping, extra variables state and v, are needed. state is the information
where yaw angle produced by guidance law at previous sampling time. It can be
thought that state keeps the information of atan2( , ) function by utilizing one of the

four values described in unity circle in Fig.
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Ax Ay

L

atan2(,) function

Yros!k]
or |€ [—m,

Ppplk]

mapping from
[—7, 7] to (—o0, 00)
Yros(k]

or |€ (—o00,00)

Ppplk]

reference
model

P[] | € (—00,00)

mapping from
(—00,00) to [—m, 7]

v

Yalk] € [—m, 7]

Figure A.1: Process for obtaining continuous desired yaw angle.

For mapped desired guidance angle, last variable accumulation which represents
the changes from beginning of motion is also be needed. So, reference model can
be fed via continuous angle. It is worthy of note that, all these defined variables
for continuous mapping must be taken as zero when control loop starts. The Guide
Rule computes the accumulate variables that indicates angular change from ), to
Unow 1N each sampling time [9]]. It should be kept in mind that following relation,
accumulate = Ppow — Wiast, 1S not always valid due to the —7 /7 discontinuity. So,
memory variable accumulation needs to preserves angle information when jumps

occur. This relation is formulated as accumulation = accumulation + accumulate.

Unity circle defined in[A.2]is divided into four quadrant how to determine state vari-
able which takes value from 1 to 4. It means that results atan2( , ) function has a
relation with corresponding state. Furthermore, each state case is divided into four
instances due to the changes from .5 t0 ¥,,0,,. S0 there are 16 possible and 1 true

accumulation calculation to update it in each sampling time. These 16 possible up-
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Y axis
A

state = 4 state =1

angle € < 3,7 > angle € < 0,5 >

» X axis

angle € < =3, —7 > angle € < 0,—5 >

state = 3 state = 2

Figure A.2: state and angle information on unity circle

dates are listed below from state = 1 to state = 4 by using Table[A.T]

o if(current_state == 1) which means sgn(Ay) = 1 and sgn(Az) = 1
if(prev_state == 1 or prev_state == 2 or prev_state == 4)
accumulate = VYyow — Viast
else if(prev_state == 3)
H((Ynow + abs(tiast)) < )
accumulate = VYo — WViast
else
accumulate = (g — Yrast) + T + (T + Ynow)

2
= benow - wlast + 2m

end
end

prev_state = 1

e clse if(current_state == 2) which means sgn(Ay) = —1 and sgn(Az) = 1
if(prev_state == 1 or prev_state == 2 or prev_state == 3)
accumulate = Vpow — Viast

else if(prev_state == 4)
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Table A.1: Relation between state and unity circle quadrants by using Az and Ay.

sgn(Ay) | sgn(Az) | Quadrant
1 1 1
-1 1 2
-1 -1 3
1 —1 4

if((abs(wnow) + ¢last) S 7T)
accumulate = Vnow — Viast
else
T T
accumulate = (5 + Vigst) + 5 + (T = Ynow)
== Qﬁlast - @Z}now + 2w

end
end

prev_state = 2

e else if(current_state == 3) which means sgn(Ay) = —1 and sgn(Az) = —1
if(prev_state == 2 or prev_state == 3)
accumulate = VYo — Viast
else if (prev_state == 4)
accumulate = —(T + Yyast) — (T — Ynow)

- wnow - wlast — 27

else
if((abs(Vnow) + Tiast) < )
accumulate = V00 — Vigst
else
accumulate = (T + VYyas) + g + (g — Vnow)
= Yiast — Ynow + 27
end
end

prev_state = 3
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e clse if(current_state == 4) which means sgn(Ay) = 1 and sgn(Az) = —1
if(prev_state == 1 or prev_state == 4)
accumulate = Vpow — Viast
else if(prev_state == 2)
if(abs(Vnow) + Tast) < )

accumulate = Vpow — Viast

else
T T
accumulate = (T — Yyast) + 5 + (5 + Ynow)
= Q/Jnow - ¢last + 2m
end
else

accumulate = (T — Yyast) + (T + Ynow)
- 77Z)now - 2blast + 27

end
prev_state = 4
end
accumulation <— accumulation + accumulate

(prev_state < current_state)

(¢last — wnow)

Only one accumulation value is calculated from 16 possible equations according to
Ay, Az and prev_state value, i.e. accumulation = accumulation + accumulate.
Previous state, prev_state, variable is updated with current state, current_state,
variable for next sampling time, (prev_state <— current_state). In order to track
angle change, calculated yaw angle from atan2( , ) function is also updated: (¢, <

Unow)- At the end, mapping from [—7, 7] to (—00, 00) is obtained.

Continuous mapped reference yaw angle, which is obtained as accumalation vari-
able, is filtered to limit this angle in the vehicle heading dynamics by using nonlinear
(reference) model. This angle is also filtered through reference model to get rid of
higher order derivatives (high frequency components) of the reference signal [19].

So, desired reference angle in continuous domain, ¢ [k] € (—o00, 00), is handled.
In the last step, continuous filtered desired yaw angle at time k, ¢ [k] should be
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mapped back from (—oo, 00) to discontinuous region which is defined in (—m, 7).
So angle information is transformed from high information region to lower informa-
tion region. There is no need to utilize state and memory variables in this instance.
Reverse mapping algorithm is fulfilled in two steps as follows. First integer number,
n, is obtained, later mapped yaw angle, ©4(k] € (—m, ), is calculated by using this

number.

e Determination of number of 27 for continuous desired yaw angle, ¢[k]

if (sgn(y[k]) > 0)

n = LMJ /* floor function calculation */
T

else if(sgn(¢[k]) < 0)

n = {M-‘ /* ceil function calculation */
else "
n=>0
end
remainder = n (mod 2) /* modulo operation of n */

e Determination of 1)4[k| variable
if (remainder == 0)
Yalk] = Y[k] — nxw
else /* remainder is not equal to zero*/
if (sgn(remainder) > 0)
balk] = ¢[k] — (n+1)x7
else /* sign of remainder is smaller than zero*/
Yalk] = ¢k] — (n—1)*m
end

end

So, continuous yaw angle, ¢[k], is mapped to discontinuous desired yaw angle ¢4]k] €
[—7, w]. 14[k] has importance for simulation and real-time implementation because

of the fact that yaw angle is generally calculated in the region of [—7, 7].
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