
DOCKING PROBLEMS OF SEA SURFACE VEHICLES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İSMAİL ÇAĞDAŞ YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2019

Approval of the thesis:

DOCKING PROBLEMS OF SEA SURFACE VEHICLES

submitted by İSMAİL ÇAĞDAŞ YILMAZ in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Mehmet Kemal Leblebicioğlu
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Mehmet Önder Efe
Computer Eng. Dept., Hacettepe University

Prof. Dr. Mehmet Kemal Leblebicioğlu
Electrical and Electronics Eng. Dept., METU

Prof. Dr. Asım Egemen Yılmaz
Electrical and Electronics Eng. Dept., Ankara University

Prof. Dr. Çağatay Candan
Electrical and Electronics Eng. Dept., METU

Assist. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Eng. Dept., METU

Date: 31/01/2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İsmail Çağdaş Yılmaz

Signature :

iv

ABSTRACT

DOCKING PROBLEMS OF SEA SURFACE VEHICLES

Yılmaz, İsmail Çağdaş

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mehmet Kemal Leblebicioğlu

January 2019, 132 pages

This thesis covers parallel docking (parallel parking) problem for unmanned surface

vehicles (USVs). First, a mathematical model for a USV with two propellers is con-

structed by using Newton-Euler formulation. Kinematics and dynamic equations cre-

ate 6 degrees-of-freedom model. A hierarchical motion control approach is imple-

mented on this model. Two kinds of guidance laws, line-of-sight (LOS), and pure

pursuit (PP) are employed for way-point travelling at the strategic level of the hi-

erarchy. At the control allocation level, a finite horizon model predictive controller

(MPC) and a cascaded PID controller are designed and tuned to optimize path fol-

lowing the performance. These guidance and control methods are implemented for

parallel docking, which is treated as a way-point generation problem. Path genera-

tion for docking is handled in two stages. In the first stage, by solving a constrained

optimal control, a path is found which provides that the vehicle reaches the port of

the parking region with minimum control demands. By using a continuous curvature

path function, the vehicle is taken from port to parking slot. The path following and

energy consumption performances of the USV under the parallel docking manoeu-

vres are evaluated for different combinations of guidance laws and controller designs

v

at the second stage. Finally, experimental validation has been realized on a scaled

boat with model predictive control and pure-pursuit guidance methods.

Keywords: unmanned surface vehicles, mathematical modeling, line-of-sight guid-

ance, pure-pursuit guidance, model predictive control, cascaded PID control, parallel

docking, constrained optimal control

vi

ÖZ

SU ÜSTÜ ARAÇLARI İÇİN KENETLENME PROBLEMİ

Yılmaz, İsmail Çağdaş

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Kemal Leblebicioğlu

Ocak 2019, 132 sayfa

Bu tez, insansız yüzey araçları (İYA) için paralel kenetlenme (paralel park etme) prob-

lemini kapsamaktadır. İlk olarak, iki tane pervanesi bulunan bir İYA için Newton-

Euler metodu kullanılarak bir matematiksel model elde edilir. Kinematik ve dinamik

denklemler kullanılarak 6 serbestlik derecesine sahip bir model oluşturulur. Bu mo-

del üzerinde bir hiyerarşik hareket kontrol yaklaşımı uygulanır. Hiyerarşinin stratejik

seviye kısmında iki çeşit güdüm yöntemi; görüş hattı (GH) ve katıksız takip (PP)

yol noktası takibi için kullanılmaktadır. Hiyerarşinin kontrol dağıtım seviyesinde ise,

sonlu ufka sahip model öngörülü denetleyici ve bir katlı PID denetleyici tasarlanmış

ve aracın yol izleme performansını en iyilemek için parametreleri ayarlanmıştır. Daha

sonra, bu güdüm ve kontrol metotları yol noktaları oluşturma problemi olarak görü-

len paralel kenetlenmede uygulanır. Kenetlenme için yol oluşturma iki aşamada ele

alınır. İlk aşamada, kısıtlı bir en iyi kontrol çözümü aracın park bölgesinin kıyısına

gelmesi sağlanır. İkinci aşamada, sürekliliğe sahip eğimli bir yol fonksiyonu kullana-

rak, araç kıyıdan park alanına yöneltilir. İYA’nın yol takip ve enerji harcama perfor-

mansı farklı güdüm ve kontrol yöntemlerinin kombinasyonları ile değerlendirilir. Son

olarak, model öngörülü denetleyeci ve katıksız takip güdüm yöntemini kullanılarak

vii

ölçeklendirilmiş bir tekne üzerinde deneysel doğrulama gerçekleştirilmiştir.

Anahtar kelimeler: insansız yüzey araçları, matematiksel modelleme, görüş hattı gü-

dümü, katıksız takip güdümü, model öngürülü denetleyici, katlı PID denetleyici, pa-

ralel kenetlenme, kısıtlı en iyi kontrol

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Mehmet Kemal

Leblebicioğlu for his remarkable guidance, valuable advices, and supports during the

this study. His feedbacks and comments broadened my horizon.

I would like to present my gratitude to Dr. Kenan Ahıska who helped me like a co-

supervisor throughtout the thesis study. Without his help and contribution, this study

could not be completed.

I would like to express my very great appreciation to Sıdıka Bengür and Mustafa

Burak Gürcan for their support and tolerance.

I owe a very important debt to Murat Kumru and İzzet Kağan Erünsal for their master

studies and papers.

I am so grateful to my colleagues Mete Erbay, Gökhan Özdoğan, Özkan Yılmaz and

my friend Hasan Mercimek for their kind help and contributions.

I would also like to thank Ali Galip Beydilli and employees of Desistek Inc. for their

technical solutions.

Advice and comments given by Onur İlhan, Yaser Yurtcan and Raha Shabani have

been a great help in software development and hardware setup.

I would like to acknowledge my company ASELSAN Inc. for financial and technical

supports especially for experimental validation and conference supports.

The last but not least, I am really thankful to my family, notably my mother Hafize

Yılmaz, for their endless support and always believing in me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ALGORITHMS . xxi

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation of the Study . 1

1.2 Literature Review . 2

1.3 Outline of the Dissertation . 6

2 MATHEMATICAL MODELING OF A SEA SURFACE VEHICLE 9

2.1 Introduction . 9

2.2 Vectorial Model . 10

2.3 Kinematics . 11

xi

2.3.1 Coordinate Frames and Notations 11

2.3.2 Transformations . 14

2.3.2.1 Linear Velocity Transformation 14

2.3.2.2 Angular Velocity Transformation 15

2.3.2.3 6 DoFs Kinematic Equations 15

2.4 Rigid Body Dynamics . 15

2.4.1 Translational Motion about CG 17

2.4.2 Rotational Motion about CG 19

2.4.3 Translational and Rotational Motion about CO 20

2.5 Added Mass Dynamics . 23

2.6 Hydrodynamic Damping Forces . 27

2.7 Restoring Forces . 30

2.8 Thruster Forces . 33

2.9 Air Drag Forces . 34

2.10 Environmental (Disturbance) Forces 35

2.11 Implementation . 37

2.12 Simulation Results . 37

2.12.1 Case study: Zero Input – Zero Initial State 38

2.12.2 Case study: Zero Input – Nonzero Initial State 38

2.12.2.1 +10 Degrees Roll Rotation 39

2.12.2.2 +10 Degrees Pitch Rotation 40

2.12.2.3 -0.1 Meter Submersion of the Vehicle in Fluid 40

2.12.3 Case study: Nonzero Input – Zero Initial State 42

xii

2.12.3.1 Equal Thruster Inputs – Zero Initial States 42

2.12.3.2 Non equal Thruster Inputs – Zero Initial States 43

3 GUIDANCE . 47

3.1 Introduction . 47

3.2 Guidance Laws . 49

3.2.1 Line-of-Sight (LOS) Guidance 51

3.2.2 Pure-Pursuit (PP) Guidance 53

4 CONTROLLER (AUTOPILOT) DESIGNS OF THE UNMANNED SUR-
FACE VEHICLE . 55

4.1 Introduction . 55

4.2 Preliminary Work Before Autopilot Design 56

4.2.1 Linearization of the Nonlinear System 56

4.2.2 Determination of the Appropriate Sample Time 57

4.3 Model Predictive Control . 58

4.3.1 Discrete-time State-Space Model with Embedded Integrator . . 59

4.3.2 Optimization Problem . 62

4.3.2.1 Constraints of the Optimization Problem 64

4.3.3 Numerical Solution of Quadratic Programming for MPC . . . 66

4.3.3.1 Primal-Dual Method 69

4.3.4 MPC Parameters Tuning . 72

4.4 Cascaded PID Controller . 74

4.4.1 Particle Swarm Optimization 78

4.4.2 Tuning of the Cascaded PID Controller Parameters 81

xiii

4.5 Comparison Between MPC and Cascaded PID Controllers 84

5 PARALLEL DOCKING PROBLEM FOR UNMANNED SURFACE VE-
HICLES . 85

5.1 Introduction . 85

5.2 Problem Definition . 86

5.3 Entrance to Parking Site . 87

5.3.1 Optimal Path Between ps and pf for Forward Docking Ma-
neuver . 87

5.3.2 Solution of the Optimal Control Problem 89

5.3.2.1 Scenario I . 89

5.3.2.2 Scenario II . 92

5.4 Backward Docking Maneuver . 94

5.5 Results . 95

6 EXPERIMENTAL SETUP AND RESULTS 101

6.1 Introduction . 101

6.2 Physical Components and Hardware 102

6.2.1 Model Boat and Its Components 102

6.2.2 Autopilot Board and Its External Components 105

6.3 Software Architecture of the Pixhawk Autopilot Card 106

6.4 Experimental Results . 110

7 CONCLUSION AND FUTURE WORKS 115

7.1 Summary and Remarks . 115

7.2 Future Works . 118

REFERENCES . 119

xiv

APPENDICES

A GUIDANCE DERIVATION . 125

A.1 Calculation of LOS point from LOS Equations 125

A.1.1 Case 1 . 125

A.1.2 Case 2 . 126

A.2 Computation of Continuous Reference Yaw Angle 127

xv

LIST OF TABLES

TABLES

Table 2.1 SNAME notations for surface vehicles, [48]. 12

Table 2.2 Calculation of the elements of the inertia matrix. 17

Table 3.1 Way-point information for motion control hierarchy. 50

Table 4.1 Controller parameters used in Fig. 4.3. 73

Table 4.2 Parameters of the PSO algorithm. 81

Table 4.3 Optimized parameters of the cascaded PID controller. 83

Table 4.4 Controller parameters used in Fig. 4.7. 84

Table 5.1 Adjusted parameters of the GA. 90

Table A.1 Relation between state and unity circle quadrants by using ∆x and

∆y. 130

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Body-fixed frame of a surface vehicle [22]. 12

Figure 2.2 Axes and origin of NED (local navigation frame) [25]. 13

Figure 2.3 Explanation of −→rg|i, −→rb|i, −→rg and origin of CO and CG [22]. . . . 18

Figure 2.4 Representation of transverse meta-centric stability [22]. 30

Figure 2.5 Graphical user interface for the mathematical model. 38

Figure 2.6 Case study: zero input zero state - linear position of the system. . 39

Figure 2.7 Case study: zero input zero state - angular position of the system. 39

Figure 2.8 Case study: +10 degrees roll rotation - linear position of the

system. 40

Figure 2.9 Case study: +10 degrees roll rotation - angular position of the

system. 41

Figure 2.10 Case study: +10 degrees pitch rotation - linear position of the

system. 41

Figure 2.11 Case study: +10 degrees pitch rotation - angular position of the

system. 42

Figure 2.12 Case study: -0.1 meter submersion - linear position of the system. 43

Figure 2.13 Case study: -0.1 meter submersion - angular position of the system. 43

xvii

Figure 2.14 Case study: equal thruster inputs and zero initial states - linear

position of the system. 44

Figure 2.15 Case study: equal thruster inputs and zero initial states - angular

position of the system. 44

Figure 2.16 Case study: non-equal thruster inputs and zero initial states -

linear position of the system. 45

Figure 2.17 Case study: non-equal thruster inputs and zero initial states -

angular position of the system. 45

Figure 3.1 Levels of the motion control. 48

Figure 3.2 Representation of a basic guidance system for a USV by using

block diagram. 49

Figure 3.3 Representation of pure-pursuit (PP) and line-of-sight (LOS) guid-

ance techniques in 2D. 51

Figure 4.1 Time delay of the input signal [26]. 58

Figure 4.2 Block diagram representation of MPC. 59

Figure 4.3 Results of the MPC on the s-shape path with different optimized

parameter values. 73

Figure 4.4 PID controller in discrete time. 75

Figure 4.5 Representation of the cascaded PID controller. 75

Figure 4.6 Overall cascaded PID controller feedback loop. 77

Figure 4.7 Results of the cascaded PID controller on the s-shape path with

different optimized parameter values. 83

Figure 5.1 Representation of parallel parking with important parking points. 86

Figure 5.2 Energy optimal path for Scenario I represented in blue line. . . . 90

xviii

Figure 5.3 Evaluation of the cost function for Scenario I. 91

Figure 5.4 Initial and optimal control torques for Scenario I. 91

Figure 5.5 Effect of the disturbance on optimal control signals. 92

Figure 5.6 Energy optimal path for Scenario II represented with blue line. . 93

Figure 5.7 Evaluation of the cost function for Scenario II. 93

Figure 5.8 Initial and optimal control torques for Scenario II. 94

Figure 5.9 Optimal and sub-optimal paths and generated way-points for

Scenario I. 96

Figure 5.10 Simulation of PID+LOS and PID+PP methods for Scenario I. . . 96

Figure 5.11 Simulation of MPC+LOS and MPC+PP methods for Scenario I. 97

Figure 5.12 Optimal and sub-optimal paths and generated way-points for

Scenario II. 97

Figure 5.13 Simulation of PID+LOS and PID+PP methods for Scenario II. . 98

Figure 5.14 Simulation of MPC+LOS and MPC+PP methods for Scenario II. 98

Figure 5.15 Average cross track of the vehicle for four different combination

of controller and guidance method: MPC+PP in cyan, MPC+LOS in

green, PID+PP in red, PID+LOS in blue. 99

Figure 5.16 Energy consumption of the vehicle for four different combina-

tion of controller and guidance method: MPC+PP in cyan, MPC+LOS

in green, PID+PP in red, PID+LOS in blue. 100

Figure 6.1 Pacific Islander Tugboat. 102

Figure 6.2 View from stern with propellers of Pacific Islander Tugboat. . . . 103

Figure 6.3 Motor and ESC used in experimental setup, respectively. 104

xix

Figure 6.4 Experimentally obtained thrusts (N) vs. applied voltage (V)

plot [17]. 104

Figure 6.5 Li-Po battery that provides electric power for all the system. . . . 105

Figure 6.6 A view of Pixhawk autopilot card [2]. 105

Figure 6.7 Software layers of the PX4 [35]. 107

Figure 6.8 High-level software architecture designed in Pixhawk controller. 108

Figure 6.9 Motion of the vehicle during experiment in 2D represented in

blue line. 110

Figure 6.10 Comparison between reference yaw angle ψ̂ and yaw angle of

the vehicle, ψ, during experiment . 111

Figure 6.11 Comparison between reference surge speed û and surge speed

of the vehicle, u, during experiment 111

Figure 6.12 Applied left thrust and right thrust commands during the motion,

respectively. 112

Figure 6.13 Sampling times during the motion with small jitters. 113

Figure 6.14 Voltage (V) vs. time (sec) and current (A) vs. time (sec) plots. . 113

Figure A.1 Process for obtaining continuous desired yaw angle. 128

Figure A.2 state and angle information on unity circle 129

xx

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Hildreth’s quadratic programming algorithm 71

Algorithm 2 PSO method for tuning of cascaded PID controller parameters. 82

xxi

LIST OF ABBREVIATIONS

ASV Autonomous Surface Vehicle

DoF Degree of Freedom

COLREGs International Regulations for Avoiding Collisions at Sea

ESC Electronic Speed Controller

GA Genetic Algorithm

IMU Inertial Measurement Unit

LMPC Linear Model Predictive Control

LOS Line-of-Sight

MPC Model Predictive Control

NGC Navigation, Guidance and Control (NGC)

NED North-East-Down

OS Operating System

PID Proportional Integral Derivative

PSO Particle Swarm Optimization

PWM Pulse with Modulation

PP Pure Pursuit

RPM Revolutions Per Minute

USV Unmanned Surface Vehicles

ZOH Zero Order Hold

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

Demands of full autonomy are increasing for unmanned surface vehicles (USVs), in

other words, autonomous surface vehicles (ASVs), with each passing day which are

employed in observing environmental changes and abnormalities, handling military

tasks, conducting scientific research in lakes, seas, and oceans [32]. More robust and

reliable systems have been made thanks to ever-improving controller designs which

reduce human intervention on surface crafts to the point of disappearing.

Design and implementation procedures of navigation, guidance and control (NGC)

systems for a USV have become crucial according to the International Regulations

for Avoiding Collisions at Sea (COLREGs) [13]. COLREGs defines possible sce-

narios for collisions and describes some manoeuvring techniques to prevent potential

crashes [3]. Errors and failures such as amateur manoeuvring by human conduct

cause marine collisions and accidents the percentages of which are approximately es-

timated to be between 89% and 96% [43]. All of these issues can be prevented or

minimized by making an autonomous vehicle with the aid of proven, commercially

available, compact hardware equipment which includes global navigation satellite

system (GNSS) receiver, inertial measurement units (IMUs), communication network

etc. [33].

One of the challenging aspects of designing and modeling a USV is to deal with

coupled and nonlinear dynamics. Some physical parameters are generally not known

in a precise manner [36]. However, their values can be assumed to be in a certain

range by considering dependencies of model parameters on each other. Consequently,

1

this difficulty puts NGC systems in an important role.

The marine research community has furthered rapid improvement and state-of-art

control applications to make the autonomous USVs for many years. These applica-

tions which depend on the vehicle dynamic model, offer robust, stable and accident-

free motion [13].

In this study, the main aim is to dock a USV in parallel to a parking spot autonomously.

To achieve this purpose, it is decided that effective autopilot and guidance algorithms

are employed for motion control. These challenging algorithms offer highly suitable

motion guarantees successful manoeuvring for USVs. The proposed methods are

later verified on a scaled boat in physical experiments.

1.2 Literature Review

Great number of kinetics and kinematics model publications are available in the liter-

ature [28], [19], [22], [11]. A mathematical model which is composed of kinematics

and dynamics equations is important for sophisticated control design. Newton’s (sec-

ond) law of motion in 6 degree-of-freedom (DoF) are the first approach to obtain

dynamics of the model as follows:

Mν̇ =
k∑

j=1

Fj (1.1)

M represents the mass (inertia) matrix of the system. The generalized acceleration

vector which is the derivation of linear and angular velocities with respect to time is

denoted by ν̇. In (1.1), there is k number of forces and moments which are acting on

the vehicle. Each force and moment vector is indicated by six components:

Fj = [Xj Yj Zj Kj Mk Nk]
T (1.2)

Generalized position vector is given in (1.3), which is composed of position, Euler

angles and velocity vector, (1.4), whose elements are linear and angular velocities

which are represented by making use of SNAME notation [48]:

η , [x y z φ θ ψ]T (1.3)

2

ν , [u v w p q r]T (1.4)

Keeping (1.1) in mind, Fossen [20] has developed a new demonstration for math-

ematical modeling of underwater vehicles by using Newton-Euler equations. This

representation which is also used for surface vehicles with some changes, is based on

the derivation of robot dynamics [15]. Developed kinematic equations are represented

in vector form in the following equation:

M (q)q̈ +C(q, q̇) = τ (1.5)

(1.5) includes Coriolis and centripetal matrix, C, in addition to inertia matrix M .

τ vector indicates torques acting on the vehicle and q is the joint angle vector. The

model has been developed with further research and assumptions to improve the con-

troller design. The followings are assumed in the modeling procedure: mass of the

USV is uniformly distributed along the body (1), centre of gravity coincides with

body-fixed frame (2), motions of a USV are in an ideal fluid (3), sway-yaw and surge-

sway dynamics are decoupled (4) [47], [32]. The final form of the robot-like dynamics

representation is written in (1.6):

Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ (1.6)

where D(ν) represents the summation of the linear and nonlinear damping matrix,

g(η) shows the buoyancy forces and moments, and g0 denotes the static restoring

forces and moments. Some physical properties on the system can easily be observed

in (1.6). M is known to be the symmetric and positive definite matrix, C(ν) is the

skew-symmetric and positive-semidefinite matrix. D(ν) matrix has positive-definite

property. Throughout the thesis, (1.6) is adopted as the dynamic equation of the

system for controller designs.

The kinematic model does not include any specific rule for USVs. The rate of change

in positions and in Euler angles with respect to time are easily obtained by making

linear and angular velocity transformations. In a number of researches, it can be

shown that a 6 DoF model is to be reduced to a 3 DoF by considering only surge-

sway-yaw dynamics in planar motion [28], [19].

Control of USVs motion is generally divided into three levels [10]. The first level

is named as strategic (organizational) level. Second is the tactical (task) level which

3

is composed of advanced controllers. The last stage is known as execution (servo)

level. Strategical level includes guidance algorithms which are implemented for path

following, path manoeuvring, trajectory tracking and set-point regulation (or point

stabilization) [8]. In this study, guidance algorithms are employed for path following

purpose. In literature, plenty of research has been published for path following task.

Caccia et al. [12], have used a combination of (PD) and (PI) guidance methods to

produce suitable references for surge speed and heading commands to track a straight

line. Control task is implemented in the dual-loop feedback loop on an unmanned

catamaran. Naeem’s study [38] includes a guidance algorithm which is employed for

the simple line-of-sight (LOS) method besides way-point tracking plan for differential

drive Springer USV. However, its controller only takes the heading angle as a refer-

ence. Oh and Sun [40] have used a LOS guidance scheme to produce yaw angle refer-

ence for a 3 DoF USV. Apart from other LOS approaches, reference heading angle of

the USV is calculated without using atan() function. This guidance method which is

called a linear-like LOS approach is performed in simulations to follow a curved path.

Pearson et al. [41] have utilized high-level fuzzy logic way-point heading guidance

method for a USV. An autonomous underwater vehicle (AUV) is launched and recov-

ered via this guidance law which is implemented on a USV. Proposed guidance law

generates the desired speed and heading angle for low-level controllers. USV tries to

minimize the cross-track error between the USV and AUV by following the intended

path. Pure-pursuit (PP) and line-of-sight (LOS) guidance methods were employed to

determine surge speed and yaw angle references for task level controllers.

At the tactical level, controllers take references generated from guidance algorithms

and produce torque commands for actuators. Design procedures of controllers cover

some essential features. To be able to realize autonomous driving, controllers should

handle environmental disturbances, model uncertainties and short-term failures of

sensors. Most of the USVs in the market are underactuated since actuation in sway

motion is not economically and practically feasible in the general sense. In the lit-

erature, a significant number of controllers have been suggested to meet the need

caused by the difficulties of handling an underactuated control. Surge speed, yaw an-

gle (yaw rate), collaboration with other unmanned systems, roll stabilization, course

keeping, manoeuvring, positioning aspects and features are among the manipulated

4

variables for USVs [38]. Kumru et al. [30] have suggested a linearized and inter-

polated PID technique in a simulation environment to control surge speed and yaw

angle of the USV which is also employed in this study. The proposed PID controller

parameters have been optimized in accordance with the thruster characteristic of the

system. Breivik et al. [10] have studied on straight line target tracking using surge

speed and yaw rate controller instead of yaw angle control for USVs. Controller de-

sign procedure covers a novel velocity control method which is similar to agility and

manoeuvrability concepts of the aircraft vehicle. Pereira et al. [42] have designed

a weighted controller design for a USV which composes of two propellers and a

single rudder to realize station keeping. Heading autopilot includes a PD controller

only. While proportional term tries to minimize yaw angle error, derivative term is

multiplied by yaw rate. It has been found that putting an integral term improves the

performance of error minimization. Oh, and Sun [40] have utilized standard quadratic

programming (QP) to solve linearized MPC controller outputs. In their study, all the

states are included in the QP problem and limited between specific values. Degree-

of-freedom is incremented by one to enhance the path tracking performance. Zheng

et al. [55] have constructed a nonlinear and a linear model predictive controllers to

track a circular path without employing any guidance rule. Effects of the prediction

horizon are calculated at different sampling rates. Comparison of linear and nonlinear

MPC is demonstrated on multiple figures. Li and Sun [31] have applied a novel dis-

turbance rejection MPC (DC-MPC) method to control ship heading dynamics. The

controller is implemented in the simulation environment in the presence of modeled

environmental disturbances. Disturbances are constituted from two different of si-

nusoidal signals. Performance of the DC-MPC is compared for different prediction

horizons. In this study, surge speed and yaw angle dynamics of the USV have been

controlled via model predictive and cascaded proportional-derivative-integral (PID)

control techniques.

This thesis study is a follow-up of some previously realized dissertations, and publica-

tions under the supervision of Prof. M. Kemal Leblebicioğlu. First of all, Ahıska [4]

has derived a mathematical model for a USV which is composed of only one thruster

and one rudder. In his study, PID and LQR controllers are designed to attain de-

sired yaw angle and surge speed. Guidance and obstacle avoidance algorithms are

5

implemented to drive the USV safely. Experimental validation is performed for PID

controllers and experimental, and simulation results are compared with each other. In

Erünsal’s study [17], successive system identification methods have been experimen-

tally utilized to obtain mathematical model parameters of the USV which is employed

in this thesis study as well. PID based piecewise controllers and Sliding Mode Con-

troller (SMC) techniques are executed in a simulation environment to reach desired

yaw angle and surge speed. Erünsal et al. [18] have also published a paper to ob-

tain the model parameters of USVs. The final values of the model parameters are

found by conducting consecutive experiments for the proposed identification scheme.

Kumru [29] has investigated navigation and control algorithms in his thesis study as

well. A mathematical model whose parameters are identified in Erünsal’s thesis is

used. Integration of Inertial Navigation System (INS) and Global Navigation Satel-

lite System (GNSS) are provided to design a suitable navigation algorithm. A loosely

couple navigation scheme suitable for additional magnetometer measurements is de-

veloped to obtain a better navigation solution. LQR and feedback linearization based

controllers are utilized and compared with each other. Kumru et al. [30] have sur-

veyed some task level control allocation methods for achieving the path following the

performance of USVs. The study covers pole placement, feedback linearization, PID

and sliding mode controller techniques. Disturbance rejection abilities of all these

employed controllers are discussed by Monte Carlo simulations.

1.3 Outline of the Dissertation

This study covers mathematical modeling, guidance and control methods, docking

manoeuvres strategies of the USV whose parameters are previously obtained. Intro-

duction chapter is comprised of the motivation of the thesis and literature surveys

where selected publications are referenced for the methods in the following chapters.

In Chapter 2, derivation of a 6 DoF mathematical model is explained in detail. The

modeled USV has two identical left and right thrusters without any actuators such

as rudder. First of all kinematic equations are obtained for position updates. Rigid

body inertia, Coriolis and centripetal matrices are found in the rigid body dynamics

section. Simplified added mass dynamics are attached to rigid body dynamics. Linear

6

and nonlinear hydrodynamic damping forces and moments are presented. Buoyancy,

gravitational, air drag forces and moments acting on the rigid body are obtained in

vector forms. Torques produced by motors are modeled as input. Wave disturbances

generated by wind is taken as an environmental disturbance effect. MATLAB simu-

lations of the proposed model are demonstrated at the end of this chapter.

Motion control hierarchy is introduced in Chapter 3. Generation of the reference

signals from two types of guidance algorithms which are line-of-sight (LOS) and

pure-pursuit (PP) take part in this chapter.

In Chapter 4, first of all, the linearization technique of the nonlinear model and se-

lection of the sampling time are briefly described. The design procedure of MPC

and solution of the quadratic programming problem are introduced. Then, the sec-

ond controller technique, cascaded PID, is employed and tuned by using the particle

swarm optimization technique. Parameters of the MPC and cascaded PID controller

are optimized on the "S" shape curved path, and their performances are illustrated.

In Chapter 5, the docking problem for a USV is solved in two stages. Optimal con-

trol rule is employed for obtaining the path which is to be followed by the vehicle

between an initial point and the parking point. Then, a geometric approach is utilized

for a backward motion to take the vehicle into the parking slot. Next, way-points are

generated from these paths. Finally, combinations of guidance and controller algo-

rithms are compared in simulations.

In Chapter 6, physical and hardware components section includes features of the

model boat and the selected hardware equipment. Later, the software architecture

of the autopilot card is investigated in detail. At the end of this chapter, experimen-

tal validation of the study for MPC and PP combination is expressed, and results are

presented in figures.

The last chapter briefly summarizes the whole thesis and gives information about

future work. Some suggestions for follow-up studies are listed.

In the appendix part, the details of the yaw angle calculation in Chapter 3 are ex-

pressed to overcome the discontinuity problem of the arctangent function at some

values.

7

8

CHAPTER 2

MATHEMATICAL MODELING OF A SEA SURFACE VEHICLE

2.1 Introduction

A mathematical model for an unmanned surface vehicle, (USV), which has two

thrusters is constructed in the scope of this chapter. The model is obtained from the

kinematics of a physical system representing a USV and comprises external forces

acting on the hull including torque commands for controlling the vehicle and the dis-

turbances due to waves. The body of the boat is taken as rigid, and equations of

motion which are used to construct the mathematical model are based on rigid body

theory.

A mathematical model can be derived by using different kinds of techniques. In

this thesis, similar to that in robot model which is later adopted for marine vehicles

by [22], a model with a set of equations in vector form is used. This model includes

rigid body dynamics: mass and inertia, centripetal and Coriolis forces, gravitational

and buoyancy forces, and damping forces. Furthermore, the vehicle can be exited by

some external forces and moments due to various sources: thrusters, air drag due to

vehicle speed and wind, and disturbances due to waves and currents. Air drag forces

act on the aerial or buoyant part of the vehicle. Control commands are applied to

the vehicle via thrusters located at its aft. The longitudinal motion of the vehicle is

obtained with the cumulative product of the thrusters, and yaw motion is acquired

with uneven thruster commands. In addition to the forces mentioned above, there

are disturbance forces due to environmental effects, like wave, wind, sea and ocean

currents. They are essential to be used in the stability analysis of the system. There is

no rudder on the vehicle in contrary to traditional surface vehicles; therefore rudder

9

forces and moments are not investigated in this thesis.

This chapter covers the following subjects in detail. First of all, Fossen’s robot-like

vectorial model which is used to define the kinetic equations of the sea surface vehicle

will be explained briefly. After that, kinematics will be expressed for vector transfor-

mation from body to inertial frame, and coordinate transformation between these two

frames is shortly described. Rigid body dynamics and forces will be discussed. In

the end, simulation of the model with a parameter set found by using system identifi-

cation techniques [17] is run in MATLAB software environment. According to some

initial conditions, simulation results obtained from MATLAB will be demonstrated

and discussed.

2.2 Vectorial Model

Robot-like vectorial model is adopted as a standard model by the international com-

munity due to its easy implementation [22]. The system can be easily examined for

stability and motion characteristics because of the properties of inertia, Coriolis and

centripetal matrices. These properties are also useful for computational purposes to

reduce the number of coefficients to be considered in the design of controllers. The

vectorial model (2.1) can be directly written as follows:

M (q)q̈ +C(q, q̇) = τ (2.1)

Six degrees-of-freedom (DoFs) vectorial representation is used in this equation. Iner-

tia and Coriolis matrices of the system are demonstrated by M and C, respectively.

For the vector of joint angles, q is used. The term τ represents moment and forces

acting on the vehicle. This simple equation is extended and modified for equations of

motion of sea surface vehicles by using [24], [21] and [7]:

Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.2)

In addition to the above matricesM andC,Dmatrix describes hydrodynamic damp-

ing. g(η) stands for the buoyancy and gravity forces. Static restoring forces and mo-

ments are indicated with g0. Disturbance forces due to environmental effects which

10

are wind and wave forces are τwind and τwave, respectively. States or variables for

equations (2.2) are represented in vectorial form as follows:

η , [x y z φ θ ψ]T (2.3)

ν , [u v w p q r]T (2.4)

Model shown in (2.2) may be converted to the following equation to bring forces

right-hand side of the equation:

Mν̇ +C(ν)ν = τd + τg + τt + τa + τdis (2.5)

Inertia, centripetal and Coriolis matrices include the added mass dynamics in the left-

hand side of (2.5). Right-hand side consists of hydrodynamic damping forces and

moments τd, buoyancy and gravitational forces and moments τg, thruster forces and

moments τt, air drag forces and moments τa, and disturbance forces and moments

τdis. (2.5) will be considered as a reference to derive equations of motion and is

inclusively explained in this chapter.

2.3 Kinematics

Kinematics is described as a motion of objects without knowledge of the causes of

forces [25]. In navigation problems, linear and angular positions, velocities, acceler-

ations and angular rates of a coordinate frame must be aligned with respect to another

frame to update these values in both frames for equations of motion. In kinematics,

geometrical aspects of motion are examined to find relations among variables defined

in both coordinate frames. A coordinate frame is identified with its origin and axes

orientations. Any vector, including positions, velocities and accelerations can be rep-

resented in different coordinate frames. Local (reference) and body-fixed coordinate

frames, and transformations are briefly explained in the scope of this section.

2.3.1 Coordinate Frames and Notations

Two main navigation frames are utilized to implement guidance and controller meth-

ods in the scope of this study. One of them is called the body-fixed coordinate frame,

11

Figure 2.1: Body-fixed frame of a surface vehicle [22].

and the other is North-East-Down (NED) reference frame. Body-fixed coordinate

frame is located on the vehicle, as shown in Fig. 2.1. Notations of this figure are

based on Society of Naval Architects and Marine Engineers (SNAME) standards [48].

Forces, moments, linear and angular velocities, position and Euler angles are given

with their symbols in Table 2.1.

Table 2.1: SNAME notations for surface vehicles, [48].

DoF

Forces
and

Moments
Linear and

Angular Velocities

Position
and Euler’s

Angles

(1) motion in x-direction (surge) X u x

(2) motion in y-direction (sway) Y v y

(3) motion in z-direction (heave) Z w z

(4) rotation in x-axis (roll) K p φ

(5) rotation in y-axis (pitch) M q θ

(6) rotation in z-axis (yaw) N r ψ

Body-fixed coordinate frame is represented by b = {xb, yb, zb} axes and ob, which is

the origin of it. Angular and linear velocities and forces and torques are expressed

12

in body frame. Then they are transformed into a reference frame which is defined as

NED frame for calculation of equation of motion. NED frame has axes with n =

{xn, yn, zn} and origin on. The North is pointed toward xn axis, yn axis indicates

East, and in order to represent downwards of the normal to the Earth’s surface, zn is

used. This reference frame is also called as a local navigation frame. The position

and Euler angles of the vehicle are calculated in the NED frame. Fig. 2.2 illustrates

the NED frame with its axes and the origin. State vector includes 12 variables which

consist of position, Euler angles, linear and angular velocities in x, y, and z directions.

This vector can be represented as follows:

state , [x y z φ θ ψ u v w p q r]T (2.6)

Following notations that are listed below are used to derive equations throughout this

chapter.

vbb|n , [u v w]T : Linear velocities of ob with respect to {n} expressed in {b},

wb
b|n , [p q r]T : Angular velocities of ob with respect to {n} expressed in {b},

f bb , [X Y Z]T : Forces with acting point ob in {b},

mb
b , [K M N]T : Moments about ob in {b},

Θnb , [φ θ ψ]T : Euler angles between {n} and {b}.

The attitude and position vectors of the reference frame, local navigation (NED)

2.1 Coordinate Frames 27

Figure 2.3 shows the origin and axes of an ECEF frame. The z-axis is the same
as that of the corresponding ECI frame. It always points along the Earth’s axis of
rotation from the center to the north pole (true not magnetic). The x-axis points
from the center to the intersection of the equator with the IERS Reference Merid-
ian (IRM) or Conventional Zero Meridian (CZM), which defines 0° longitude. The
y-axis completes the right-handed orthogonal set, pointing from the center to the
intersection of the equator with the 90° east meridian. Again, note that a few authors
define these axes differently. The ECEF coordinate system using the IRP/CTP and the
IRM/CZM is also known as the Conventional Terrestrial Reference System (CTRS),
and some authors use the symbol t to denote it.

The Earth-centered Earth-fixed coordinate system is important in navigation
because the user wants to know his or her position relative to the Earth, so its real-
izations are commonly used as both a reference frame and a resolving frame.

2.1.3 Local Navigation Frame

A local navigation frame, local level navigation frame, or geodetic, geographic, or
topocentric frame is denoted by the symbol n (some authors use g or l). Its origin is
the object described by the navigation solution. This could be part of the navigation
system itself or the center of mass of the host vehicle or user.

Figure 2.4 shows the origin and axes of a local navigation frame. The axes are
aligned with the topographic directions: north, east, and vertical. In the convention
used here, the z-axis, also known as the down (D) axis, is defined as the normal to

z
e

y
e
 x

e

o
e
 0° 90°E

Figure 2.3 Origin and axes of an Earth-centered Earth-fixed frame. (From: [1]. ©2002 QinetiQ
Ltd. Reprinted with permission.)

o
n

z
n

x
n
 (N)

y
n
 (E)

y
n
 (E)

x
n
 (N)

z
n

(D)

o
n

Figure 2.4 Origin and axes of a local navigation frame.
Figure 2.2: Axes and origin of NED (local navigation frame) [25].

13

frame, is expressed as η = [pbb|n
T

Θnb
b
b

T
]T . The body-fixed velocity vector, which

is constituted from linear and angular velocities is represented ν = [vbb|n
T
wb
b|n

T
]T =

[v1
T v2

T]T . Generalized forces and moments vector is described as τ = [f bb
T
mb

b
T

]T .

2.3.2 Transformations

Position and orientation of the vehicle are calculated in North-East-Down (NED)

frame. Inertial sensors whose measurements are angular and linear velocities, the

orientation of the body are located on the rigid body. These values in the body-fixed

frame must be converted to NED frame (local navigation frame). In the next part, the

transformation of the linear and angular velocities vector from body-fixed to NED

frame will be explained.

2.3.2.1 Linear Velocity Transformation

Rotation matrix (also called coordinate transformation matrix) is used to convert the

presenter of a vector such as a linear velocity of a USV between two frames. This

matrix is denoted asRβ
α. By multiplying this matrix with a linear velocity vector in α

frame, a related velocity vector is found in β frame. Inversely, related velocity vector

in α frame is obtained by multiplying the transformation matrix Rα
β with a linear

velocity vector in β frame. The final form of the transformation matrix is a function

of Euler angles and is indicated in the following equation.

Rn
b (Θnb) =

c(θ)c(ψ) −c(θ)s(ψ) + s(φ)s(θ)c(ψ) s(φ)s(ψ) + c(φ)s(θ)c(ψ)

c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ)

−s(θ) s(φ)s(θ) c(φ)c(θ)

(2.7)

where c(·) is the cosine operator whereas s(·) is the sine operator. Linear velocity

vector defined in the reference frame is obtained from the following equation:

vnb|n = ṗnb|n = Rn
b (Θnb)v

b
b|n (2.8)

ṗnb|n is time derivative of the position of ob with respect to {n} expressed in {n}.

14

2.3.2.2 Angular Velocity Transformation

When angular velocity vector of the body frame, wb
b|n, is converted to the reference

frame, rate of change of the Euler angles with respect to time is obtained in the ref-

erence frame. The angular velocity transformation matrix which is the function of

Euler’s angle is represented as TΘ(Θnb):

TΘ(Θnb) =

1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

 (2.9)

The related rate of changes in Euler angles is mathematically indicated by:

Θ̇nb = TΘ(Θnb)w
b
b|n (2.10)

2.3.2.3 6 DoFs Kinematic Equations

(2.8) is combined with (2.10) to write a single equation for kinematic calculations.

Rate of changes of the position and orientation with respect to time in vector form are

described at the following equation:

η̇ = JΘ(η)ν (2.11)

Explicitly,
 ṗ

n
b|n

Θ̇nb

 =

R

n
b (Θnb) 03×3

03×3 TΘ(Θnb)

 v

b
b|n

wb
b|n

 (2.12)

where JΘ is a modified transformation matrix that is used for transforming linear and

angular velocity of ob with respect to the reference frame expressed in the body-fixed

frame to rate of change of position and Euler angles.

2.4 Rigid Body Dynamics

Rigid body dynamics of surface vehicles are the essential part of the mathematical

modeling. Inertia MRB and Coriolis and centripetal matrices CRB(ν) of the rigid

body are found from these dynamics. Lagrangian formalism with using Kirchoff’s

15

equation or Newton-Euler equations is derived from satisfying the following equation

which is in the vector form [24]:

MRBν̇ +CRB(ν)ν = τ (2.13)

RB is the abbreviation of the rigid body. ν represents the vector of angular and linear

velocities with variables ν = [u v w p q r]T . τ stands for the torque and moment

vector, and it is written as τ = [X Y Z K M N]T . Origin of the body frame and

centre of gravity which are used later are abbreviated as CO and CG, respectively.

Newton’s second law is written in popular form for surface vehicles according to the

following equation:

m−̇→vg|i =
−→
fg (2.14)

where
−→
fg is a vector which acts on the centre of gravity CG of the vehicle, −̇→vg|i stands

for acceleration of theCGwith respect to the inertial frame, andm is the total amount

of mass of the vehicle. According to Newton’s first law, if
−→
fg = 0, vehicle rests (if its

velocity is zero) or keeps its velocity in constant speed. Euler’s axioms which were

derived from Newton’s second law are defined as conservation of linear, −→pg, and the

angular momentum,
−→
hg. Euler’s first and second axioms are described in (2.15) and

(2.16), respectively.

i∂−→pg
∂t

=
−→
fg = m−̇→vg|i (2.15)

i∂
−→
hg
∂t

= −→mg = Ig
˙−−→wg|i (2.16)

where−→mg is moment vector acting on CG of the body. Linear and angular velocity of

the CG with respect to i, inertial frame, are represented as −→vg|i and −−→wg|i, respectively.
i∂

∂t
is a derivative operator that can be expressed time differentiation of a vector in the

inertial frame. Inertia dyadic, Ig, is described by inertia matrix or tensor. Elements

of this matrix are calculated using the equations on following Table 2.2. Positive

definite inertia matrix, Ig that satisfies Ig = IgT > 0, is represented with its elements

as follows:

Ig =

Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx Izy Iz

 (2.17)

16

Table 2.2: Calculation of the elements of the inertia matrix.

Moments of inertia Products of inertia

Ix =
∫
V

(y2 + z2)ρmdV , about xb axis Ixy =
∫
V
xyρmdV =

∫
V
yxρmdV = Iyx

Iy =
∫
V

(x2 + z2)ρmdV , about yb axis Ixz =
∫
V
xzρmdV =

∫
V
zxρmdV = Izx

Iz =
∫
V

(x2 + y2)ρmdV , about zb axis Iyz =
∫
V
yzρmdV =

∫
V
zyρmdV = Izy

In order to derive equations of motion for surface vehicles, two essential assumptions

are adopted [22]. First of all, the craft is rigid. It means that craft has no individual

elements of mass, so there is no force acting on an individual mass. The second

assumption that NED frame {n} is inertial. This assumption ignores forces because

of Earth’s motion relative to the star-fixed inertial reference system. These forces can

be negligible when it is compared with hydrodynamic forces. So linear velocity of

CG with respect to {i} and angular velocity of {b} with respect to {i} are written

again:

−→vg|i ≈ −−→vg|n (2.18)
−−→wb|i ≈ −−→wb|n (2.19)

Differentiation of a vector, −→a , with respect to time in reference frame has following

relation with differentiation of −→a with respect to time in the body-fixed frame (or

moving frame) and angular velocity of CO with respect to {i}:
i∂−→a
∂t

=
b∂−→a
∂t

+−−→wb|i ×−→a (2.20)

2.4.1 Translational Motion about CG

Position vector of CG with respect to {i}, −→rg|i (or it is assumed according to assump-

tion −−→rg|n), is expressed in the following equation and relation can be shown in Fig.

2.3:
−→rg|i = −→rb|i +−→rg (2.21)

or,
−−→rg|n = −→rb|n +−→rg (2.22)

17

Figure 2.3: Explanation of −→rg|i, −→rb|i, −→rg and origin of CO and CG [22].

−→rg is the vector from CO to CG , and it is indicated by component form as rg =

[xg yg zg]
T . By using (2.21), the time differentiation of the −→rg is written as:

i∂−−→rg|n
∂t

=
b∂

∂t
(−→rb|n +−→rg) (2.23)

Furthermore,
−−→vg|n = −→vb|n + (

i∂−→rg
∂t

+−−→wb|n ×−→rg) (2.24)

Due to the fact that vehicle is a rigid body and CG does not change in time, i.e.,
i∂−→rg
∂t

= 0, so the final form of (2.23) is formulated:

−−→vg|n = −→vb|n +−−→wb|n ×−→rg (2.25)

The equation of translational motion is derived by the help of (2.15) and (2.25). It

follows that

−→
fg =

i∂

∂t
m−−→vg|n

=
b∂

∂t
m−−→vg|n +m−−→wb|n ×−−→vg|n

= m(˙−−→vg|n +−−→wb|n ×−−→vg|n) (2.26)

and

f bg = m(v̇bg|n + S(wb
b|n)vbg|n) (2.27)

18

Skew-symmetric matrix operator, S(·), which is substituted for cross product calcu-

lation, is defined with arbitrary vectors, a = [a1 a2 a3]T and b = [b1 b2 b3]T in

R3:

S(a) =

0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.28)

a× b = S(a)b (2.29)

2.4.2 Rotational Motion about CG

The equation of rotational motion is written using (2.20) and Euler’s second axiom in

(2.16). Following steps are done to derive rotational motion:

−→mg =
i∂

∂t
Ig
−−→wb|n

=
b∂

∂t
(Ig
−−→wb|n) +−−→wb|n × (Ig

−−→wb|n)

=
b∂

∂t
(Ig
−−→wb|n)− (Ig

−−→wb|n)×−−→wb|n (2.30)

and

mb
g = Igẇ

b
b|n − S(Igw

b
b|n)wb

b|n (2.31)

Let a and b be two arbitrary vectors in ∈ R3. Cross-product of two vectors has a

relation:

a× b = −b× a (2.32)

In this way, the statement −−→wb|n × (Ig
−−→wb|n) can be written as −(Ig

−−→wb|n) × −−→wb|n. The

equation of motion with respect to the centre of gravity is written in component form

according to (2.27) and (2.31):

mI3×3 03×3

03×3 Ig

 v̇

b
g|n

ẇb
b|n

+

mS(wb

b|n) 03×3

03×3 −S(Igw
b
b|n)

v

b
g|n

wb
b|n

 =

 f

b
g

mb
g

 (2.33)

where the inertia matrix of rigid body is MCG
RB =

mI3×3 03×3

03×3 Ig

, the Coriolis and

centripetal matrix is CCG
RB =

mS(wb

b|n) 03×3

03×3 −S(Igw
b
b|n)

 with respect to center of

19

gravity of the vehicle. The implicit form is indicated by:

MCG
RB

 v̇

b
g|n

ẇb
g|n

+CCG

RB

v

b
g|n

wb
b|n

 =

 f

b
g

mb
g

 (2.34)

2.4.3 Translational and Rotational Motion about CO

Newton-Euler equations are calculated at the centre of gravity of the vehicle with

(2.27) and (2.31). These equations are transformed to rigid-body frame thank to kine-

matic relations. For this purpose, (2.25) may be expressed as:

vbg|n = vbb|n +wb
b|n × rbg

= vbb|n − rbg ×wb
b|n

= vbb|n + ST (rbg)w
b
b|n (2.35)

v

b
g|n

wb
b|n

 =

I3×3 ST (rbg)

03×3 I3×3

v

b
b|n

wb
b|n

 (2.36)

H(rbg) ∈ R3 is a transformation matrix which converts linear and angular velocity

from the CG to CO. It and its transpose are explained by:

H(rbg) =

I3×3 ST (rbg)

03×3 I3×3

 , HT (rbg) =

 I3×3 03×3

S(rbg) I3×3

 (2.37)

(2.34) is multiplied withHT (rbg) from left to preserve positive definiteness and sym-

metry properties of the matrices in the equation of motion, This gives the following

formula:

HT (rbg)M
CG
RBH(rbg)

 v̇

b
b|n

ẇb
b|n

+HT (rbg)C

CG
RBH(rbg)

v

b
g|n

wb
b|n

 = HT (rbg)

 f

b
g

mb
g

(2.38)

Rigid body mass, MCO
RB , and Coriolis and centripetal, CCO

RB , matrices with respect to

body-fixed frame become:

MCO
RB ,HT (rbg)M

CG
RBH(rbg), MCO

RB = MT CO

RB > 0 (2.39)

CCO
RB ,HT (rbg)C

CG
RBH(rbg), CCO

RB = −CT CO

RB ≥ 0 (2.40)

Explicitly,

MCO
RB =

 mI3×3 −mS(rbg)

mS(rbg) Ig −mS2(rbg)

 (2.41)

20

CCO
RB =

 mS(wb

b|n) −mS(wb
b|n)S(rbg)

mS(rbg)S(wb
b|n) −S

((
Ig −mS2(rbg)w

b
b|n
))

 (2.42)

while MCO
RB is a unique matrix, CCO

RB can be represented in different ways. It may

be found by utilizing the Lagrangian approach with Kirchoff’s equations. v1 = vbb|n,

v2 = wb
b|n, and ν = [v1

T v2
T]T were defined earlier. The kinetic energy of the

vehicle that is defined in quadratic form is described as [44]:

T =
1

2
νTMν (2.43)

MCO
RB can be written with its entries as follows:

MCO
RB =

M11 M12

M21 M22

 (2.44)

where M11 = mI3x3, M12 = −mS(rbg), M21 = −mS(rbg) and M22 = Ig. Now,

(2.43) may be explicitly expressed as:

T =
1

2

(
vT1M11v1 + vT2M12v2 + vT1M21v1 + vT2M22v2

)
(2.45)

Kirchoff’s equations are formulated by:

∂

∂t

(∂T
∂v1

)
+ v2 ×

∂T

∂v1

= τ1 (2.46)

∂

∂t

(∂T
∂v2

)
+ v2 ×

∂T

∂v2

+ v1 ×
∂T

∂v1

= τ2 (2.47)

Time differentiations of the kinetic energy with respect to v1 and v2:

∂T

∂v1

= M11v1 +M12v2 (2.48)

∂T

∂v2

= M21v1 +M22v2 (2.49)

The equation of motion is written according to (2.46) and (2.47) :

M11 M12

M21 M22

v̇1

v̇2

+

 03×3 −S(M11v1 +M12v2)

−S(M11v1 +M12v2) −S(M21v1 +M22v2)

v1

v2

 =

τ1

τ2

(2.50)

So, alternative representation of CCO
RB is obtained as:

CCO
RB =

 03×3 −mS(v1)−mS(v2)S(rbg)

−mS(v1) +mS(rbg)S(v2) −S(Ibv2)

 (2.51)

21

where Ib = Ig −mS2(rbg).

Ib =

Ix +m(y2
g + z2

g) −Ixy −mxgyg −Ixz −mxgzg
−Iyx −mxgyg Iy +m(x2

g + z2
g) −Iyz −mygzg

−Izx −mxgzg Izy −mygzg Iz +m(x2
g + y2

g)

 =

Ibx Ibxy Ibxz

Ibyx Iby Ibyz

Ibzx Ibzy Ibz

(2.52)

MCO
RB is explicitly written with its indices form in the following matrix:

MCO
RB =

m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ibx Ibxy Ibxz

mzg 0 −mxg Ibyx Iby Ibyz

−myg mxg 0 Ibzx Ibzy Ibz

(2.53)

Following matrix indicates indices of the Coriolis and centripetal matrix, CCO
RB .

CCO
RB =

0 0 0

0 0 0

0 0 0

−m(ygq + zgr) m(ygp+ w) m(zgp− v)

m(xgq − w) −m(zgr + xgp) m(zgq + u)

m(xgr + v) m(ygr − u) m(xgp+ ygq)

m(ygq + zgr) −m(xgq − w) −m(xgr + v)

−m(ygp+ w) m(zgr + xgp) −m(ygr − u)

−m(zgp− v) −m(zgq + u) m(xgp+ ygq)

0 −Ibyzq − Ibxzp+ Ibzr Ibyzr + Ibxyp− Ibyq
Ibyzq + Ibxzp− Ibzr 0 −Ibxzr − Ibxyq + Ibxp

−Ibyzr − Ibxyp+ Ibyq Ibxzr + Ibxyq − Ibxp 0

(2.54)

When CO corresponds exactly CG, rbg = [0 0 0]T is satisfied. Thus, MCO
RB and

CCO
RB matrices become more simple. Entries whose values are zero of MCO

RB matrix

22

increase. MCO
RB turns out to be a diagonal matrix like:

MCO
RB =

mI3×3 03×3

03×3 diag(Ix, Iy, Iz)

 =

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix 0 0

0 0 0 0 Iy 0

0 0 0 0 0 Iz

(2.55)

CCO
RB matrix becomes:

CCO
RB =

0 0 0 0 mw −mv
0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 Izr −Iyq
−mw 0 mu −Izr 0 Ixp

mv −mu 0 Iyq −Ixp 0

(2.56)

2.5 Added Mass Dynamics

Surface vehicles move along partially submerged in fluid. When a rigid-body goes

around the water surface, it has to move out fluid of its headway. This phenomenon

is indicated as ‘added mass’, sometimes is called ‘virtual mass’, or ‘ascension to

mass’ [11]. In order to find appropriate equations of motion, dynamics of the ambient

fluid must be added to (2.38) or (2.50). These dynamics include inertia, centripetal

and Coriolis matrices which are derived from the kinetic energy approach of Kirchoff

[27]. The vehicle needs kinetic energy produced by thrusters to move. This energy

must be greater than the kinetic energy of the surrounding fluid. Otherwise, vehicle’s

motion is steady. Dynamic equations of the added mass are completely expressed

with state variables and partial differentiation of forces and moments with respect to

acceleration [4], [11], [27]:

XA = Xu̇u̇+Xv̇v̇ +Xẇẇ +Xṗṗ+Xq̇ q̇ +Xṙṙ

+Xẇuq + Yẇvq + Zẇwq + Zṗpq + Zq̇qq + Zṙrq

−Xv̇ur − Yv̇vr − Yẇwr − Yṗpr − Yq̇qr − Yṙrr (2.57)

23

YA = Yu̇u̇+ Yv̇v̇ + Yẇẇ + Yṗṗ+ Yq̇ q̇ + Yṙṙ

−Xẇup− Yẇvp− Zẇwp− Zṗpp− Zq̇qp− Zṙrp

+Xu̇ur +Xv̇vr +Xẇwr +Xṗpr +Xq̇qr +Xṙrr (2.58)

ZA = Zu̇u̇+ Zv̇v̇ + Zẇẇ + Zṗṗ+ Zq̇ q̇ + Zṙṙ

+Xv̇up+ Yv̇vp− Yẇwp+ Yṗpp+ Yq̇qp+ Yṙrp

−Xu̇uq −Xv̇vq −Xẇwq −Xṗpq −Xq̇qq −Xṙrq (2.59)

KA = Ku̇u̇+Kv̇v̇ +Kẇẇ +Kṗṗ+Kq̇ q̇ +Kṙṙ

+Xẇuv + Yẇvv + Zẇwv + Zṗpv + Zq̇qv + Zṙrv

−Xv̇uw − Yv̇vq − Yẇww − Yṗpw − Yq̇qw − Yṙrw

+Xṙuq + Yṙvq + Zṙwq +Kṙpq +Mṙqq +Nṙrq

−Xq̇ur − Yq̇vr − Zq̇wr −Kq̇pr −Mq̇qr −Mṙrr (2.60)

MA = Mu̇u̇+Mv̇v̇ +Mẇẇ +Mṗṗ+Mq̇ q̇ +Mṙṙ

−Xẇuu− Yẇvu− Zẇwu− Zṗpu− Zq̇qu− Zṙru

+Xu̇uw + xv̇vw +Xẇww +Xṗpw +Xq̇qw +Xṙrw

−Xṙup− Yṙvp− Zṙwp−Kṙpp−Mṙqp−Nṙrp

+Xṗur + Yṗvr + Zṗwr +Kṗpr +Kq̇qr +Kṙrr (2.61)

NA = Nu̇u̇+Nv̇v̇ +Nẇẇ +Nṗṗ+Nq̇ q̇ +Nṙṙ

+Xv̇uu+ Yv̇vu+ Yẇwu+ Yṗpu+ Yq̇qu+ Yṙru

−Xu̇uv −Xv̇vv −Xẇwv −Xṗpv +Xq̇qv −Xṙrv

+Xq̇up+ Yq̇vp+ Zq̇wp+Kq̇pp+Mq̇qp+Nṙrp

−Xṗur − Yṗvr − Zṗwr −Kṗpr −Kq̇qr −Kṙrr (2.62)

XA, YA, ZA are the added forces andKA,MA,NA stand for the moments which come

from added mass dynamics. Xu̇ =
∂X

∂u̇
is the abbreviation of the partial derivative of

force in surge direction with respect to acceleration in surge direction. Other partial

derivative terms can be interpreted similarly. Some terms from (2.57) to (2.62) may

be simply written as follows [4]:

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

24

a3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr

a4 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

a5 = Xq̇u+ Yq̇v + Yq̇w +Kq̇p+Mq̇q +Mṙr

a6 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr (2.63)

Using from (2.57) to (2.63), the simple equation is written as follows:

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

︸ ︷︷ ︸
−MA

u̇

v̇

ẇ

ṗ

q̇

ṙ

+

0 0 0 0 a3 −a2

0 0 0 −a3 0 a1

0 0 0 −a2 a1 0

0 a3 −a2 0 a6 −a5

−a3 0 a1 −a6 0 a4

a2 −a1 0 a5 −a4 0

︸ ︷︷ ︸
−CA(ν)

u

v

w

p

q

r

=

XA

YA

ZA

KA

MA

NA

(2.64)

(2.64) is added the left-hand side of to (2.38) or (2.50) by multiplying it −1. Added

mass inertia matrix, MA, is positive definite, i.e. MA > 0. Added Coriolis and

centripetal matrix,CA(ν), is a positive semi-definite matrix which satisfiesCA(ν) =

−CA(ν)T ≥ 0. It makes that CA(ν) is skew-symmetric and it conserves the feature

of overall Coriolis and the centripetal matrix is skew-symmetric. For surface vehicles,

the heave, roll, pitch modes are disregarded due to the fact that these variables are

small according to surge speed. MA and CA(ν) are simplified when the magnitude

25

of the surge speed, |u|, becomes considerably larger than zero [21]:

MA = −

Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 Yṙ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Nv̇ 0 0 0 Nṙ

(2.65)

and

CA(ν) = −

0 0 0 0 0 −Yv̇v −
Yṙ +Nv̇

2
r

0 0 0 0 0 Xu̇u

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Yv̇v +
Yṙ +Nv̇

2
r −Xu̇u 0 0 0 0

(2.66)

When forward speed becomes zero (u ≈ 0), Nv̇ can be replaced with Yṙ and the

(2.64) can be rewritten as follows:

Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 Yṙ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Nv̇ 0 0 0 Nṙ

u̇

v̇

ẇ

ṗ

q̇

ṙ

+

0 0 0 0 0 −Yv̇v − Yṙr
0 0 0 0 0 Xu̇u

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Yv̇v + Yṙr −Xu̇u 0 0 0 0

u

v

w

p

q

r

=

XA

YA

0

0

0

NA

(2.67)

Since MA = MT
A and MA > 0. This provides that inertia matrix is symmetric.

When it is added to the body-fixed inertia matrix, symmetric property of the overall

26

system is preserved. As a conclusion overall inertia,M , and Coriolis and centripetal,

C(ν), matrices of the surface vehicle is defined by the following equations:

M = MCO
RB +MA (2.68)

C(ν) = CCO
RB (ν) +CA(ν) (2.69)

2.6 Hydrodynamic Damping Forces

The damping matrix is situated on the left-hand side of the (2.5). To put damp-

ing force in matrix form, it is generally written as a summation of the four kinds of

damping components [21]:

D(ν) = DP (ν) +DS(ν) +DW (ν) +DM(ν) (2.70)

Hydrodynamic damping matrix, D(ν), is a real, strictly positive and non-symmetric

matrix that is convenient to be written as, D(ν) > 0 for all ν ∈ R6. Radiation-

induced potential damping is represented by DP (ν). Linear skin and quadratic skin

friction are called DS(ν). In the presence of wave in the environment, wave drift

damping DW (ν) occurs. DM(ν) stands for the damping due to vortex shedding.

Damping forces and moments are found by multiplying damping matrix D(ν) with

velocity vector, ν:

D(ν)ν = τd. (2.71)

Radiation-induced potential damping: It is also called linear frequency-dependent

potential damping. Potential damping occurs in a body that oscillates with the wave

excitation frequency in the absence of incident waves. At low frequencies, potential

damping terms can be negligible against viscous damping.

Friction: When surface vehicles have motion in low frequency, linear skin friction

due to the laminar boundary layer is regarded as a friction damping factor. At the

high frequencies, quadratic skin friction is taken into account because of the turbulent

boundary layer.

Wave Drift Damping: This kind of damping that is derived from second-order wave

theory in the presence of the wave. Wavelength, wavelength encounter angle, vehi-

cle’s forward speed (for higher sea state) and wave encounter frequency are a func-

27

tion of the wave drifting damping [11]. This damping appears like added resistance

against the motion of the vehicle.

Damping due to Vortex Shedding: While the vehicle moves in a viscous fluid, fric-

tional forces occur due to the fact that the system is not conservative with respect to

energy. This phenomenon is also called ‘interference drag’ and happens at the sharp

edges of the vehicle because of the shedding of vortex sheets. Force equation of the

viscous damping due to the vortex shedding can be written as follows:

f(U) =
1

2
ρCD(Rn)A|u|u (2.72)

Force is a function of the forward speed of the vehicle, u, and |u| is the absolute

value of the forward speed. The submerged cross-sectional area of the vehicle is

represented by A. Water density is indicated by ρ. CD(Rn) is the drag coefficient

function of Reynold’s number which is formulated as:

Rn =
UD

k
(2.73)

where D stands for the characteristic length of the body, and k is used to describe the

kinematic viscosity coefficient. By considering abovementioned damping elements,

the damping matrix is separated into two matrices which are linear damping matrix

and nonlinear damping matrix:

D(ν) = Dl(ν) +Dn(ν) (2.74)

Linear and nonlinear damping matrices are represented byDl(ν) andDn(ν), respec-

tively. The terms which come from linear and nonlinear damping components may

not be physically separated from each other. However, linear damping matrix for

surface vehicles is expressed by ‘Damping Model for Dynamic Positioning of Ships’

whereas nonlinear damping matrix is explained via ‘Nonlinear Damping Model for

High-Speed Maneuvers’ in [19]. By neglecting heave, roll, pitch modes, the surge

mode may be decoupled from steering modes (sway and yaw) with x − z symmetry

for low-speed ships. Linearized damping matrix in (2.74) can be written in compo-

28

nent form as follows:

Dl = −

Xu 0 0 0 0 0

0 Yv 0 0 0 Yr

0 0 Zw 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Nv 0 0 0 Nr

(2.75)

At low speeds, Nv = Yr is taken to obtain symmetric linear damping matrix, i.e.,

Dl = DT
l . Assuming that surge is decoupled, nonlinear damping matrix can be

written by adding Z|w|w|w| term according to Norrbin’s nonlinear model [39]:

Dn(ν) = −

X|u|u|u| 0 0 0 0 0

0 Y|v|v|v|+ Y|r|v|v| 0 0 0 Y|v|r|v|+ Y|r|r|r|
0 0 Z|w|w|w| 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 N|v|v|v|+N|r|v|r| 0 0 0 N|v|r|v|+N|r|r|r|

(2.76)

where,

X|u|u =
1

2
ρAxCx (2.77)

Cx > 0 is the current coefficient which is determined from experiments when the

vehicle is in up to 1.0 m/s currents and Ax is the frontal project area. Other terms can

be easily found by arranging (2.77). Matrix Dn(ν) can be simplified by neglecting

|r|r and |r|v components which are considered small against surge speed, u. So

nonlinear damping matrix becomes:

Dn = −

X|u|u|u| 0 0 0 0 0

0 Y|v|v|v| 0 0 0 Y|v|r|v|
0 0 Z|w|w|w| 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 N|v|v|v| 0 0 0 N|v|r|v|

(2.78)

Derivation of the damping matrix is done under some assumptions. The body of the

vehicle is assumed symmetrical, and it has a box shape. Reynold number is accepted

29

to be higher than 104, i.e., Rn > 104. Components Z|w|w|w| and Zw which are ob-

tained from z-direction are taken into account for damping force calculations.

2.7 Restoring Forces

Combination of the buoyancy and gravitational forces is simply called restoring forces.

For surface vehicles, the bouncy force acts through the centre of the submerged part,

CB, and gravitational force acts through the centre of gravity, CG. Although forces

act on these points, they must be transformed to the body-fixed frame by knowing

rbg = [xg yg zg]
T to calculate equations of motion correctly. Restoring forces, τg,

appear in right hand-side of (2.5).

A hypothetical point,MT , is defined to find out static stability. It is called meta-centre

that is obtained from an intersection of a vertical line through theCB and the newCB

when the vehicle is moved, or tilted in the fluid. Restoring forces are obtained from

meta-centric heights, the position of CG and CB, and water planer area of the craft.

Meta-centric heights include two quantities that one of them is transverse meta-centric

height (in meter), GMT , and other is longitudinal meta-centric height (in meter),

GML. Meta-center, CB, and new CB are shown in Fig. 2.4. The phenomenon

of a craft floating on a fluid is explained by Archimedes equation that is based on

Figure 2.4: Representation of transverse meta-centric stability [22].

30

a balance between the weight of vehicle and weight of water displacement of the

submerged part. This relation is simply formulated as follows:

mg = ρgO (2.79)

where O is the displaced water volume. ρw = ρw(T o) is the water density which

depends on the temperature and salt ratio of the water. When a body is not in motion

in z-direction, i.e. z = 0, (2.79) is satisfied. Any change in z-direction changes

buoyancy forces, so restoring forces (also called hydrostatic forces) acting on the

body is calculated:

Z = mg − ρwg[O + δO(z)]

= −ρwgδO(z) (2.80)

To simplify (2.80) some assumptions are made. Firstly, the rigid body of the surface

vehicle is assumed box-shaped. Water planer area which is the function of z position,

Awp(z), is accepted to be constant, i.e. Awp(z) = Awp(0). The density of the water is

also assumed to be constant. Restoring forces is rewritten in compact and components

forms:

Z ≈ −ρwgAwpz = z0z (2.81)

δf br =

0

0

Z

 ≈

0

0

z0z

 (2.82)

where z0 = −ρwgAwp is a constant. The final form of the restoring forces are ex-

plained in the body-fixed frame using (2.6) and (2.82):

δf br = Rn
b (Θnb)

−1δfnr = Rb
n(Θbn)−1δfnr

= z0z

− sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

 (2.83)

Furthermore, restoring force in the z-direction can be written:

δf br = Rn
b (Θnb)

−1δfnr = Rb
n(Θbn)

0

0

−ρwgO

 = −ρwgO

− sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

 (2.84)

31

The contribution of restoring forces defined in (2.78) to moments is negligibly small

because buoyancy force is considerably larger. Cross product operation is done be-

tween moment arms (in roll and pitch) and buoyancy force to find moments which

arise from buoyancy forces. Moments arm is obtained from 2.4 as follows:

rbr =

−GMT sin(θ)

GML sin(φ)

0

 (2.85)

Cross product between (2.85) and (2.84) gives:

mb
r = rbr × δf br = −ρwgO

GMT sin(φ) cos(θ) cos(φ)

GML sin(θ) cos(θ) cos(φ)

(−GML cos(θ) +GMT) sin(φ) sin(θ)

 (2.86)

Restoring forces and moments can be written in vector form as

τg =

δf

b
r

mb
r

 =

−z0z sin(θ)

z0z cos(θ) sin(φ)

z0z cos(θ) cos(φ)

−ρwgOGMT sin(φ) cos(θ) cos(φ)

−ρwgOGML sin(θ) cos(θ) cos(φ)

−ρwgO(−GML cos(θ) +GMT) sin(φ) sin(θ)

(2.87)

When the roll and pitch angles are near zero or too small, and displacement in the

z-direction is quite small. Small angle assumption can be implemented to reduce

calculation. Trigonometric functions can be arranged such that sin(θ) ≈ θ, sin(φ) ≈
φ, cos(θ) ≈ 1, cos(φ) ≈ 1. By considering this assumption, (2.87) becomes:

τg =

δf

b
r

mb
r

 =

−z0zθ

z0zφ

z0z

−ρwgOGMTφ

−ρwgOGMLθ

−ρwgO(−GML +GMT)φθ

≈

0

0

z0z

−ρwgOGMTφ

−ρwgOGMLθ

0

(2.88)

Meta-centric heights can be determined by basic hydrostatic [22]. Transverse, BMT ,

and longitudinal, GML, radii of curvature may be estimated:

GMT =
IT
O
, GML =

IL
O

(2.89)

32

where O is the displaced water volume, IT and IL which are the moments of area

about water plane are calculated as follows:

IT =

∫ ∫ A

wp

y2dA, IL =

∫ ∫ A

wp

x2dA (2.90)

If water planer area is taken as rectangular, i.e. Awp = BL where B and L are the

beam and length of the craft, (2.90) can be approximated as:

IT ≈
1

12
B3L, IL ≈

1

12
L3B (2.91)

Traverse and longitudinal meta-centric are defined as, respectively

GMT = BMT −BG

GML = BML −BG (2.92)

2.8 Thruster Forces

As it was previously mentioned vehicle includes two thrusters that are located at

the aft. One of them is on the left side, and other is on the right side of the craft.

Assuming that effect of the rotation is negligible, moments produced by the left and

right thrusters are formulated as follows:

mR = rtR × ftR (2.93)

mL = rtL × ftL (2.94)

where rtR and rtL represent position vectors (lever arm) from the centre of gravity

to the right and left thrusters, respectively. ftR indicates the force produced by right

thruster, and ftL is used for the force which is generated by the left thruster. mR,mL

are the moments induced by the right and left thrusters, respectively. Combination of

these forces and moments is written in vector form as follows:

τt =

ftR
mR

+

ftL
mL

 (2.95)

τt represents the forces and moments produced by thrusters in which it is defined in

the right side of the (2.5).

33

2.9 Air Drag Forces

A substantial part of the vehicle moves in the air. Consequently, wind and air drag

give rise to forces and moments on the vehicle. These are indicated by a vector form

and denoted by τa in (2.5). They are proportional to the velocity of the vehicle with

respect to air or wind velocity. This relative velocity, vr, is found by subtracting the

velocity, va, of the air from the linear velocity of the body vb in (2.96) [4].

vr = vb − va (2.96)

Now air drag forces are indicated by:

Fa = AaPaCd,a = [Fax Fay Faz]
T . (2.97)

In the left-hand side, Fa stands for forces of air drag which act on the rigid-body. Aa

is the buoyant part of the vehicle in the air. Cd,a represents the air drag coefficient.

Air pressure is denoted by Pa, and it is approximated by [21]:

Pa ≈ 2.56v2
r (2.98)

(2.98) states that air pressure is proportional with the square of relative velocity. Some

underlying assumptions are made to find torques which result from the cross product

between the moment arm and the air drag forces acting on the body. The first as-

sumption is that the body is symmetrical, small and box-shaped contrary to a large

vessel. Secondly, the air drag forces are equally distributed along the buoyant part

of the body, and the centre of gravity is taken as a midpoint of the craft. From this

assumptions, the moment arms and torques produced by air drag force are written:

λ ≈
[
l

2

wi

2

h

2

]T
(2.99)

Ta = λ× Fa (2.100)

where l, wi and h represent the length, width, height of the body, respectively. Ta

indicates moments of the air drag forces. It is assumed that aerodynamic centre of

the vehicle coincides with the gravitational centre. So, vector form of the air drag

moments and torques are explained as [17]:

Ta = −[Fax sgn(u) Fay sgn(v) Faz sgn(w)]T (2.101)

34

τa = [F T
a T T

a]T (2.102)

u, v and w are linear velocity components. The sign function sgn(•) in (2.101) is

expressed as with x ∈ R:

sgn(x) =

−1, x < 0

0, x = 0

1, x > 0

(2.103)

2.10 Environmental (Disturbance) Forces

Environmental forces and moments that are produced from different kinds of distur-

bance sources may be classified into three main environmental categories as follows:

• Waves which are induced by wind (τwave)

• Wind effects (τwind)

• Ocean currents (τcurrent)

All the disturbance forces are taken as only one force, τdis, in the left-hand side of the

(2.5). From these three forces, since wind-generated forces which are the modeled

forces for surface vehicles are taken into account in the mathematical model.

Wind-generated waves are composed of a summation of a large number of compo-

nents. For the sake of simplicity, wave spectra are considered with one peak fre-

quency. Ai denotes wave amplitude, and i is the wave component which is related to

the density function of the spectrum. Square of the wave amplitude has relation with

spectrum as follows:

A2
i = 2S(wi)4w (2.104)

where wi is the circular random frequency of the i− th component. It takes value in

the frequency interval 4w which is described as a constant difference between two

successive frequencies. Wave number of the single wave component, ki, can be found

that 2π is divided by the wavelength of the i− th wave component, λi.

ki =
2π

λi
(2.105)

35

Using (2.104) and (2.105) wave elevation, ζ(x, t), which is the function of x-(forward)

position and time is written with its first order and second order components:

ζ(x, t) =
N∑

i=1

Ai cos(wit− kix+ φi) +
N∑

i=1

1

2
A2
i cos 2(wit− kix+ φi) (2.106)

where φi is the random phase angle which is uniformly distributed in [0, 2π) and is

independent of time. For example, the density function of the Pierson-Moskowitz

spectrum is used to obtain first-order wind-generated wave forces [21]. Spectrum is

the function of gravitational constant, g, and significant wave height, Hs.

S(w) = Aw−5e−Bw
−4

(2.107)

where A = 8.1× 10−3g2 and B =
3.11

H2
s

. When the values of A and B are substituted

in (2.107), the final form of the spectral density function obtained as follows:

S(w) = 8.1× 10−3g2w−5e
3.11

H2
s
w−4

(2.108)

First order wind-generated wave forces which consist of the surge, sway forces and

yaw torque is based on block shape ship assumption. To be able to find these forces,

wave slope must be found from the derivation of the first term of (2.106) with respect

to x-position. Wave slope of i− th wave component, si, calculated as:

si(x, t) =
∂ζ(x, t)

∂x
= Aiki sin(wit− kix+ φi) (2.109)

For a moving vehicle, wi is replaced with we and above equation is simply written by

assuming x = 0. (2.109) becomes:

si(t) = s0,i(t) = Aiki sin(wet+ φi) (2.110)

As a result, first order disturbance forces in surge and sway and moment in yaw are

formulated:

Xwave(t) =
N∑

i=1

ρwgBLT cos(β −Ψ)si(t) (2.111)

Ywave(t) =
N∑

i=1

−ρwgBLT sin(β −Ψ)si(t) (2.112)

Nwave(t) =
N∑

i=1

1

24
ρwgBL(L2 −B2) cos(β −Ψ)si(t) (2.113)

36

where B and L indicate beam and length of the surface vehicle, respectively. Draft

of the submerged part of the vehicle is represented by T . The angle between the

heading of ship and wave direction is mathematically explained by β−Ψ. Disturbance

forces and torques vector is written in the following equation by using from (2.111)

to (2.113):

τdis = [Xwave Ywave 0 0 0 Nwave]
T . (2.114)

2.11 Implementation

The mathematical model is derived in the continuous-time domain using Newtonian

or Lagrangian dynamics. In order to implement the mathematical model which is

defined earlier in this chapter, some discretization techniques must be applied in a

computer environment. To able to discretize model, forward and backward Euler

integration which is comprehensively expressed in [22] is used. This method is ac-

cepted as a stable method for the under-damped second-order system and utilized for

nonlinear models to discretize them. If this method applied to (2.11) and (2.13), two

discrete equations are obtained. Forward and backward Euler equations are repre-

sented respectively,

ν(k + 1) = ν(k) + Ts
{
M−1(τ −C(ν(k))ν(k)

}
(2.115)

η(k + 1) = η(k) + JΘ(η(k))ν(k + 1) (2.116)

In (2.115), Ts represent the time interval, i.e., sampling time, which is taken as 0.05

second.

2.12 Simulation Results

A MATLAB GUI which calls the function of the discretized mathematical model is

used for simulation purposes. This GUI can be seen at the following in Fig. 2.5. In

this part, behaviour of the vehicle are investigated without giving an initial torque and

with providing a torque input to the system.

37

Figure 2.5: Graphical user interface for the mathematical model.

2.12.1 Case study: Zero Input – Zero Initial State

In this state, it is expected that the boot is stationary. Acting forces on the vehicle do

not change with time. Absolute value buoyancy force is equal to the absolute value

of the gravitational force. So, the rate of change in the linear velocity and the angular

velocity is zero. Damping forces and moments are not available in this scenario.

Simulation time is taken five seconds. It is understood from Figs. 2.6 and 2.7 that

initial states of the system η(k) = 0, ν(k) = 0 will remain zero for all k.

2.12.2 Case study: Zero Input – Nonzero Initial State

This case is investigated in two parts which are composed of roll and pitch rotation. In

both cases, the boat is rotated about +10 degrees. In this scenario, it is understood that

boot becomes stable and stationary after a while. During this simulation, restoring and

damping force dominantly act on the vehicle to make it stable in a fluid. Simulation

time is taken as 20 seconds for both cases.

38

Figure 2.6: Case study: zero input zero state - linear position of the system.

2.12.2.1 +10 Degrees Roll Rotation

Giving an initial roll rotation to the system makes a small change in the y-direction.

Position in x, y and z directions becomes zero after some time, as can be seen from

Fig. 2.8. Angular position in roll direction has an exponentially decreasing oscillation

Figure 2.7: Case study: zero input zero state - angular position of the system.

39

due to the dominant damping force. This oscillation can be observed in Fig. 2.9.

2.12.2.2 +10 Degrees Pitch Rotation

When the ship is stable and stationary in standing fluid, it is tough to perform a test

about pitch rotation. So simulation results give useful information about pitch rota-

tion. The scenario is made by rotating the vehicle in the pitch rotation about +10

degrees. It can be seen from Fig. 2.10 that there is no displacement in 3-D. Due to

the fact that the vehicle has an oscillation in a fluid, the dominant force acting on the

vehicle is naturally restoring force. Exponentially deceased oscillation arising from

restoring force can be seen in Fig. 2.11.

2.12.2.3 -0.1 Meter Submersion of the Vehicle in Fluid

For this test, the vehicle is pushed from its centre of gravity into the water about 0.1

meters in the z-direction. Oscillation is observed in the z-direction in Fig. 2.12, until

gravitational and buoyancy forces balance each other. In the end, it is found out that

restoring force becomes dominant in this scenario. Because of the fact that there is

no rotating forces and torques, it can be seen in Fig. 2.13 that rotation in roll, pitch

Figure 2.8: Case study: +10 degrees roll rotation - linear position of the system.

40

Figure 2.9: Case study: +10 degrees roll rotation - angular position of the system.

and yaw direction preserve initial values.

Figure 2.10: Case study: +10 degrees pitch rotation - linear position of the system.

41

2.12.3 Case study: Nonzero Input – Zero Initial State

In this scenario, it is given initial torque to the system in order to observe the be-

haviour of the vehicle. Firstly, the same amount of torques applied to the left and

right thrusters. When the same amount of torques applied both thrusters, it is expected

that the vehicles start moving or preserve in the forward direction (x-direction). An-

other test is related to the differently valued torques to the thrusters. When a different

amount of torques applied to the thrusters, vehicle heads for the side of larger applied

torque. Simulation time is determined as 5 seconds for two tests.

2.12.3.1 Equal Thruster Inputs – Zero Initial States

Applied torques to the left and right thruster is given, τLt = [5 0 0]T and τRt =

[5 0 0]T , respectively. Linear position and angular rate can be seen Fig. 2.14 and

2.15, respectively.

Figure 2.11: Case study: +10 degrees pitch rotation - angular position of the system.

42

Figure 2.12: Case study: -0.1 meter submersion - linear position of the system.

2.12.3.2 Non equal Thruster Inputs – Zero Initial States

Applied torques to the left and right thruster is given, τLt = [2 0 0]T and τRt =

[5 0 0]T , respectively. Linear position and angular rate can be seen Fig. 2.16 and

2.17, respectively.

Figure 2.13: Case study: -0.1 meter submersion - angular position of the system.

43

Figure 2.14: Case study: equal thruster inputs and zero initial states - linear position

of the system.

Figure 2.15: Case study: equal thruster inputs and zero initial states - angular position

of the system.

44

Figure 2.16: Case study: non-equal thruster inputs and zero initial states - linear

position of the system.

Figure 2.17: Case study: non-equal thruster inputs and zero initial states - angular

position of the system.

45

46

CHAPTER 3

GUIDANCE

3.1 Introduction

Guidance in terms of engineering perspective is defined as the process for guiding

the predefined or subsequently identified a path of an object with respect to the

given point which may be stationary or moving [37]. This given point is generally

called way-point, but it is named as a target in missile literature. A vehicle or an au-

tonomously controlled system (such as a surface, a marine or an aerial vehicle) may

be a guided object. At the beginning of the 20th century, guidance was firstly imple-

mented for unmanned boats which are remotely controlled for military purposes. [37].

Then it is used for complicated control systems in a wide range of applications, e.g.,

from ground vehicles to ballistic missiles.

The motion of a USV is investigated in some categories: path following, trajectory

tracking and point stabilization according to traditional guidance literature [10]. Path

manoeuvring problem fills the gap between trajectory tracking and path following

problems [46]. In target tracking, a stationary or moving target whose instantaneous

position and velocity are known is tracked to realize guidance mission. Path following

problem is described as following a predefined path which is composed of way-points.

In contrast to path following; trajectory tracking is used to follow a path of the target

by a guided object along a calculated trajectory that is predefined. The objective of

the path manoeuvring is to obtain vehicle manoeuvres by considering constraints on

path and vehicles on the predefined path.

Control of the motion of the unmanned surface vehicle whose mathematical model is

obtained in the previous chapter is investigated in three levels as it is seen in Fig. 3.1.

47

These levels are called strategic, tactical and execution control levels, [10], [51]. The

first level is called as strategic, or organization level includes kinematic calculations

which come from a human operator and/or guidance system. Strategic level some-

times is named as kinematic control which can directly correspond guidance laws. In

this level, reference information, e.g., vehicle surge speed and yaw angle are obtained

via guidance rules from the vehicle position and way-point or target position using

geometric calculation. After that, applied torque and moment for actuators are deter-

mined by a kinetic controller to be able to generate desired motion. These controllers

should overcome the uncertainties of the system parameters and environmental ef-

fects. Control allocation assists kinetic control block to distribute input command or

signal to actuators of the vehicle. At final, individual actuator controllers produce

fixed sample rate signals to motors in execution level. So, it can be understood that

whether vehicle achieves to move the desired position or not, that is determined by

guidance law.

Guidance
System

Human
Operator

Interaction

STRATEGIC (ORGANIZATIONAL) LEVEL

Kinetic Control

Control Allocation

TACTICAL (TASK) LEVEL

EXECUTION (SERVO) LEVEL

Plant
(System)

Environmental
Effects

Navigation
Sensor Fusion & Filtering

Figure 3.1: Levels of the motion control.

48

3.2 Guidance Laws

For an under-actuated USV with two thrusters, guidance law generally produces surge

speed and yaw angle references for autopilots [5]. Due to the fact that vehicle moves

on the water surface, path following or target tracking purposes is achieved in 2-D via

some guidance techniques. As can be seen in Fig. 3.2, only kinematic information

of the vehicle and predetermined way-points are taken as inputs. In a path following

problem, reference commands for autopilots may be obtained by reducing the dis-

tance between the planar way-point, pw[k] , [xw[k] yw[k]]T ∈ R2, [10] and the

position of the vehicle, p[k] , [x[k] y[k]]T ∈ R2:

lim
k→∞

(pw − p[k]) = 0 (3.1)

where pw[k] is taken as pw since way-points are assigned as fixed points on a path

throughout the motion of the vehicle in the scope of this study. Once, the USV enters

or hits to the neighbourhood of a way-point, which is called circle of acceptance,

guidance algorithms are calculated for the subsequent way-point to generate reference

surge speed and yaw angle. A circle of acceptance (CoA), which can be seen in Fig.

3.3, around each way-point, is expressed as follows:

√
(xw − x[k])2 + (yw − y[k])2 ≤ Rw (3.2)

where Rw is the radius of CoA for way-point pw. Radius information is stored in

the way-points table because there are different CoA values for each way-point. The

Guidance
Algorithm

Desired Surge Speed, udes

Desired Y aw Angle, ψdes

Way Points, [p1,p2, . . . ,pn]
T

V ehicle P lanar Position, p = [x, y]T

Figure 3.2: Representation of a basic guidance system for a USV by using block

diagram.

49

value of a CoA is practically taken as one or two-fold of the USV length for path

tracking. The radius of CoA may be arranged according to manoeuvre requirements

for parallel docking (parking) case. Each way-point includes some information that

composes of x and y position of way-point, motion direction which can be backward

and forward, radius circle of acceptance (CoA), and surge speed. The yaw angle is

calculated according to the position information. Then, path tracking is achieved with

the help of reference yaw angle and other way-point information. Table 3.1 which can

be considered an array whose rows are composed of each way-point information is

represented below.

Table 3.1: Way-point information for motion control hierarchy.

way-point index x position y position

Motion direction
(Forward or
Backward) CoA

Reference
surge speed

1 x1 y1 1 or 2 R1 u1

2 x2 y2 1 or 2 R2 u2

...
...

...
...

...
...

...
...

...
...

...
...

n− 1 xn−1 yn−1 1 or 2 Rn−1 un−1

n xn yn 1 or 2 Rn un

n way-points are described in Table 3.1. For embedded programming, this table can

be written in the program or sent to program as an array in real-time. Planar position

of way-point i is represented by pi = [xi yi]
T ∀ i ∈ Z[1,n]. Forward and backward

motions are represented with integers as 1 and 2, respectively. Controllers produce

forces and torques according to motion in order to move forward and backward direc-

tion. This information is also important for forward or backward desired yaw angle

calculations which are explained later in this section. Circle of acceptance and refer-

ence surge speed data are expressed as Ri and ui ∀ i ∈ Z[1,n], respectively.

There are lots of suitable guidance techniques to achieve way-point tracking and path

following performances. Whereas some techniques need three points which are the

50

y

x

pw

pw−1

Rk

pLOS

ψPP

CoA for pw

nLpp

ψLOS

LOS V ector

PP V ector

αw−1

Cross Track Error

Figure 3.3: Representation of pure-pursuit (PP) and line-of-sight (LOS) guidance

techniques in 2D.

previous way-point, pw−1, current way-point, pw, and vehicle surface position, p[k],

some only use pw and p[k] to give reference autopilot inputs. Line-of-sight (LOS), is

categorised as three-point scheme, and pure-pursuit (PP), is classified as a two-point

guidance method. Strategies are presented and implemented to be able to carry out

path following and parking capabilities of the vehicle.

3.2.1 Line-of-Sight (LOS) Guidance

LOS method directs the orientation of the craft into the direction along the line be-

tween two successive way-points. As shown in Fig. 3.3, the geometry of the LOS

approach may be described with the current way-point pw, the previous way-point

pw−1, and the instantaneous vehicle position p[k]. p[k] is situated at the centre of a

circle with the radius of n-fold of the ship length: nLpp [23]. The line-of-sight point,

51

pLOS , is the point which is on the line segment between way-point pw−1 and pw. The

solution of pLOS[k] is obtained from the below equations (3.3) and (3.4):

(xlos[k]− x[k])2 + (ylos[k]− y[k])2 = (nLpp)
2 (3.3)

ylos[k]− yw−1

xlos[k]− xw−1

=
yw − yw−1

xw − xw−1

= tan(αw−1) (3.4)

The radius of the circle, nLpp, in ((3.3)) should be sufficiently larger than the radius

of CoA, Rw which is defined in ((3.2)), i.e., nLpp ≥ Rw. This relation provides

the existence of a solution. pLOS is selected as the closest point to pw for forward

motion. On the other hand, pLOS is chosen as the closest point to pw−1 as the USV

is driven backward [14]. Calculations to obtain pLOS is comprehensively explained

in Appendix A.1. Desired yaw angles, ψLOS,forward[k] and ψLOS,backward[k] at each

sampling time are formulated as (3.5), respectively.

ψLOS,forward[k] = atan2(ylos[k]− y[k], xlos[k]− x[k])

ψLOS,backward[k] = atan2(y[k]− ylos[k], x[k]− xlos[k])
(3.5)

Return of atan2(,) function is a single value in [−π, π], [54]. The main reason to

use this function is that arctan(
y

x
) could not give correct result when x < 0. Sign

of variable x and y in atan2(y, x) are separately known to determine appropriate an-

gle without losing information. However, atan2(,) has an important drawback due

to discontinuity at the −π or +π junction. Rapid change in the desired yaw angle,

ψd[k], cause unintended behaviours during the motion. A reference model before

tactical level implementation can be proposed to prevent abnormal heading calcula-

tion [23]. Discontinuity issue can be handled by mapping ψd[k] angle from [−π, π] to

(−∞,∞). Then the reference model gives a proper angle value. Continuous desired

angle is eventually found by making re-mapping from (−∞,∞) to [−π, π]. Mapping

and re-mapping process are inclusively explained in Appendix A.2. Desired surge

speed commands are taken as constant to fed a controller for each line segment:

lim
k→∞

(uw − u[k]) = 0 (3.6)

where uw indicates the desired surge speed between two way-points pw and pw−1.

When the vehicle is in a CoA, velocity reference is calculated for next way-point.

52

3.2.2 Pure-Pursuit (PP) Guidance

Pure pursuit guidance algorithm, also known as two-point way-point guidance method,

is applied for tracking a way-point regardless of the path as illustrated in Fig. 3.3. PP

method is comprised of the instantaneous vehicle position p[k] and the interested

way-point, pw. Previous way-point, pw−1, is allocated to memory for the cross-track

error calculations. PP approach may be an appropriate choice for path following when

the distance between two consecutive way-points is relatively small. Heading of the

vehicle is tried to align with the closest distance between the instantaneous position

of the vehicle and the interested way-point. Reference yaw angles are calculated in

(3.7) for forward and backward motions, respectively.

ψd,forward[k] = atan2(yw − y[k], xw − x[k])

ψd,backward[k] = atan2(y[k]− yw, x[k]− xw)
(3.7)

Only two points, the position of the vehicle and current interested way-point position

are enough to calculate the desired yaw angle for backward and forward motion. The

problem that is encountered due to discontinuity in atan2(,) function also exists for

PP method. As in the case with LOS guidance, the same methodology is applied to

obtain continuous yaw angle information for motion in Appendix A.2.

For current way-point, reference surge speed of the vehicle is given to the tactical

(task) level controller to achieve velocity objective of the guidance method given in

(3.6). It can be considered that the surge speed of the vehicle may be decreased in

proportion to current velocity due to obtaining reasonable manoeuvre.

53

54

CHAPTER 4

CONTROLLER (AUTOPILOT) DESIGNS OF THE UNMANNED SURFACE

VEHICLE

4.1 Introduction

In this chapter, model predictive control (MPC) and cascaded proportional-derivative-

integral (PID) methods are implemented for the tactical level control of an unmanned

surface vehicle whose mathematical model and its parameters have been obtained

earlier using Fossen’s well-known vectorial model and kinematic equations that are

suitable for designing controllers. The vehicle has two propellers as control actuators

which are driven by two motors at the aft. Applied forces to the propellers are taken

as control inputs. The objective of the controllers is to reach the desired yaw angle

and surge velocity references as much as possible. Since rudder is not available in

boat model, yaw position is controlled by the generating imbalance between left and

right thruster inputs.

Disturbance forces such as wind, current etc. are not taken into account in the design

of the controllers. Left and right thrusters take their commands via control allocation

which is explained in 3.1.

First of all, linearization of the state equations and appropriate sampling time selec-

tion are investigated. Then, linear MPC, (LMPC), and cascaded PID controllers are

designed. Parameters of the controllers are tuned on an "S" shape curve using line-of-

sight guidance algorithm which was explained in Chapter 3.2.1. Simulation results

and path tracking performance of LMPC and cascaded PID are stated and compared

55

at the end of this chapter.

4.2 Preliminary Work Before Autopilot Design

4.2.1 Linearization of the Nonlinear System

To be able to make easier or effortless controller design, using a linear model can be

one of the useful ways. Linearization of the system at an operating point gives some

information about the nonlinear systems in the neighbourhood of that operating point.

By obtaining state space representation, it can be understood whether the designed

controller provides an adequate response or not. Following the nonlinear vectorial

model equations will be linearized to design an MPC controller.

η̇ = JΘ(η)ν (4.1)

Mν̇ +C(ν)ν = τt + τg + τd + τa (4.2)

As can be understood from (4.2), disturbance forces and torques which are coming

from environmental effects are not added to the system dynamics in contrary to gen-

eral vectorial model. States of the linear and nonlinear model which consist of 6-DoF:

positions and Euler angles, linear and angular velocities. Applied forces to left and

right thrusters are taken as control inputs. States and input vector are rewritten in

different forms as follows:

x = [ηT νT]T (4.3)

u = [uL uR]T (4.4)

The closed form of the equations (4.1) and (4.2) might be represented by the vectors

above. The nonlinear system equations are a function of the state and input vector.

This function is written as:

ẋ = f(x,u) (4.5)

where f ∈ R12, x ∈ R12 and u ∈ R2. The following relation is obtained when (4.5) is

linearized via Taylor series expansion at the operating point, (xo,uo):

∆̇x = f(x0,x0) +
∂f(x,u)

∂x

∣∣∣∣
(x0,u0)

∆x+
∂f(x,u)

∂u

∣∣∣∣
(x0,u0)

∆u+ H.O.T. (4.6)

56

simply,

∆̇x ≈ f(x0,x0) +
∂f(x,u)

∂x

∣∣∣∣
(x0,u0)

∆x+
∂f(x,u)

∂u

∣∣∣∣
(x0,u0)

∆u. (4.7)

since ẋo = f(x0,u0), ∆x = x − xo and ∆u = u − uo.
∂f(x,u)

∂x
= A

′
(t) ∈

R12x12 and
∂f(x,u)

∂u
= B(t) ∈ R12x2 are the Jacobian matrices of the nonlinear

function with respect to state and input vectors, respectively. The contribution of the

high order terms in the equation can be negligible, so they may be disregarded in

the linearized state space representation. After substituting Jacobians at the operating

point, (xo,uo), and time, t, (4.5) can be represented in the state space representation

as follows:

∆ẋ(t)

0

 =

A

′
(t) f(x0,u0)

0 0

︸ ︷︷ ︸
A(t)

∆x(t)

1

+

B

′
(t)

1

︸ ︷︷ ︸
B(t)

∆u(t) (4.8)

where A(t) ∈ R13x13, B(t) ∈ R13x2. In controller design, surge speed, u, and yaw

angle, ψ, are taken as controlled states whose reference signals are produced via

guidance algorithms. Output equations can be written in vector form as follows:

y(t) =

u
ψ

 = [zeros(2, 5) eye(2) zeros(2, 6)]︸ ︷︷ ︸

C(t)

x(t) +D(t)u(t) (4.9)

whereC(t) ∈ R2x13 matrix with zero indices exceptC1,6 = 1 andC2,12 = 1,D(t) =

0 ∈ 02x2.

4.2.2 Determination of the Appropriate Sample Time

Sample time plays a critical role in order to make reasonable and approximate sys-

tems for discrete controller design and simulate the nonlinear system in a computer

environment. Zero-order hold (ZOH) is the one of the most used technique to dis-

cretize system, and it is chosen to make discrete time controllers. In Fig. 4.1, an input

signal which is the controller output is represented with the ZOH approach. As can

be understood from the figure, the input signal or controlled signal has a time delay

amount of h/2. h implies sampling time of the signal. If sampling time is not chosen

57

Figure 4.1: Time delay of the input signal [26].

very well, discrete time system might be unstable or less stable compared to its con-

tinuous counterpart. In any case, delays introduce instability to the system, but it can

be brought into a tolerable level. As a rule of thumb, half of the delay time is chosen

to be smaller than one-tenth of the response time [26]. This relation can be written in

(4.10) and (4.11) as follows:
h

2
≤ Tr

10
(4.10)

To write more simply,

h ≤ Tr
5

(4.11)

Response time can be found via step response of the closed-loop system. It is accepted

63% of the rise time which is the required amount of response from 10% to 90%, 5%

to 95% or 0% to 100% according to under-damped, over-damped conditions.

4.3 Model Predictive Control

Model predictive control, shortly MPC, which is also called receding horizon control,

finds a control sequence along with finite output and control horizons by solving

constrained or unconstrained optimization problem. At each time instant, an optimal

control input sequence is calculated and only the value at the first time instant of

control horizon sequence is applied to the system. This procedure is repeated in each

58

Linear Model
Predictive
Controller

P lant

x

y

ψ

u

v

r

uL[k]

uR[k]

Q R

Physical & State Constraints

Np Nc

[
ψ̂[k + 1] ψ̂[k + 2] . . . ψ̂[k +Np]

]T

[
û[k + 1] û[k + 2] . . . û[k +Np]

]T

Figure 4.2: Block diagram representation of MPC.

sampling instant within an optimization window to calculate the optimal control input

sequence and to minimize errors between references and outputs.

4.3.1 Discrete-time State-Space Model with Embedded Integrator

This study covers the linear model predictive controller, LMPC, which is designed

for the discrete-time system with an appropriately chosen sampling time, Ts, whose

definition is in 4.2.2. Discrete-time state-space equations are written as follows:

xd[k + 1] = Ad xd[k] + Bd u[k] (4.12)

y[k] = Cd xd[k] + Dd u[k] (4.13)

where Ad matrix represents the discrete time state matrix at time k with the same

dimension A(t). Bd matrix shows discrete time input matrix at time k with same

dimension B(t). Both A(t) and B(t) are previously defined in (4.8). Cd is used for

discrete time output matrix which is equal to C(t) defined in (4.9). In this system,

input does not directly affect the outputs. Therefore, Dd = 0 in state space (4.13)

will not be written any more. The dimension of the state vector, xd[k], is same as the

number of columns in Ad matrix and dimension of the input vector, u[k], is two due

to the two thruster in the system. Proposed discrete-time model predictive controller

59

finds optimal incremental input movement, ∆u[k], instead of sequence, u[k]. So,

integral action on the controller is achieved to eliminate steady-state errors without

the necessity of steady-state information about the control, u[k] = u[k− 1] + ∆u[k],

and the steady state of the state variable, xd[k]. First of all, the difference of state

vectors between k + 1 and k is calculated using (4.12) as follows:

xd[k + 1]− xd[k] = Ad(xd[k]− xd[k − 1]) +Bd(u[k]− u[k − 1]) (4.14)

where the difference of the current and previous states at k+1 is indicated by, ∆xd[k+

1] = xd[k + 1] − xd[k], and at time k, ∆xd[k] = xd[k] − xd[k − 1], respectively.

Difference of the input vectors are obtained in the same way as ∆u[k] = u[k]−u[k−
1]. Then, (4.14) is implicitly rewritten by using above informations as follows:

∆xd[k + 1] = Ad∆xd[k] +Bd∆u[k] (4.15)

To be able to write an augmented state space model with embedded integrators,

∆xd[k] and y[k] is gathered in one vector that is called augmented state vector as

x[k] = [∆xd[k]T y(k)]T . Difference between y(k + 1) and y(k) is expressed in the

following equations.

y[k + 1]− y[k] = Cd(xd[k + 1]− xd[k]) = Cd∆xd[k + 1]

= CdAd∆xd[k] +CdBd∆ud[k] (4.16)

So, augmented state space equation is written in compact form by using (4.15) and

(4.16) as follows:

∆xd[k + 1]

y[k]

︸ ︷︷ ︸
x[k + 1]

=

 Ad 0d

T

CdAd I2×2

︸ ︷︷ ︸
Ak

∆xd[k]

y[k]

︸ ︷︷ ︸
x[k]

+

 Bd

CdBd

︸ ︷︷ ︸
Bk

∆u[k]

y[k] = [0d I2×2]︸ ︷︷ ︸
Ck

∆xd[k]

y[k]

 (4.17)

where 0d ∈ R2x12 is zero matrix. Augmented state space model which used for LMPC

design is finally denoted by the triplet (Ak,Bk,Ck). The characteristic equation of

Ak matrix is represented as follows:

ρ(λ) = det(λI −Ak) =

λI −Ad 0d

T

−CdAd (λ− 1)I2×2

 (4.18)

60

where ρ(λ) = (λ − 1)2 det(λI −Ad) = 0. As can be understood from this relation

at least two eigenvalues are on the unit circle. It means that the augmented model

includes two embedded integrators which provide an integral action for MPC.

MPC calculates future control signals for finite control horizon, Nc, and uses pre-

dicted output signals whose horizon is equal to the length of the optimization window,

Np. These two tuning parameters must be successfully adjusted to be able to attain

adequate performance from the proposed model predictive controller. The prediction

horizon Np is chosen to be greater than or equal to control horizon, Nc. The existence

of embedded integrator in the controller design may cause unstable system responses

whenNp becomes too large. Furthermore, the stability of the system could not be sat-

isfied with small Np and Nc values [53]. Optimal incremental control horizon, (4.19),

is sequentially written from sampling instant k to k +Nc − 1 by

{∆u[k],∆u[k + 1], . . . ,∆u[k +Nc − 1]} (4.19)

Using these control sequence and the triplet (Ak,Bk,Ck), future predicted state and

output variables are sequentially written as follows,

x[k + 1] = Akx[k] +Bk∆u[k]

x[k + 2] = Akx[k + 1] +Bk∆u[k + 1]

= A2
kx[k] +AkBk∆u[k] +Bk∆u[k + 1]

...

x[k +Np] = A
Np

k x[k] +A
Np−1
k Bk∆u[k] +A

Np−2
k Bk∆u[k + 1]

+ · · ·+ANp−Nc

k Bk∆u[k +Nc − 1] (4.20)

Above state vectors are multiplied with output matrix Ck to determine sequentially

future predicted output vectors which are the function of the current state vector, x[k]

and control horizon vectors defined in (4.20).

y[k + 1] = CkAkx[k] +CkBk∆u[k]

y[k + 2] = CkAkx[k + 1] +CkBk∆u[k + 1]

= CkA
2
kx[k] +CkAkBk∆u[k] +CkBk∆u[k + 1]

...

y[k +Np] = CkA
Np

k x[k] +CkA
Np−1
k Bk∆u[k] +CkA

Np−2
k Bk∆u[k + 1]

61

+ · · ·+CkA
Np−Nc

k Bk∆u[k +Nc − 1] (4.21)

These equations are written in matrix form by defining the following future predicted

output vector and a future control vector, respectively.

Y = [yT [k + 1] yT [k + 2] . . . yT [k +Np]]
T

∆U = [∆uT [k] ∆uT [k + 1] . . . ∆uT [k +Nc − 1]]T (4.22)

and,

Y = Fx[k] +Φ∆U (4.23)

where,

F =

CkAk

CkA
2
k

...

CkA
Np

k

,

Φ =

CkBk 0 0 . . . 0

CkAkBk CkBk 0 . . . 0
...

CkA
Np−1
k Bk CkA

Np−2
k Bk CkA

Np−3
k Bk . . . CkA

Np−Nc

k Bk

(4.24)

4.3.2 Optimization Problem

Constrained quadratic optimization problem is solved along specified prediction (op-

timization window) and control horizons. Errors between predicted and reference

outputs over the optimization window are aimed to be optimized in order to find min-

imum control effort. The cost function of the MPC is algebraically written as follows:

min
∆U

{
J(∆U)

}
=

Np∑

i=1

(ŷref [k + i]− y[k + i])T Q (ŷref [k + i]− y[k + i])

+
Nc−1∑

i=0

∆u[k + i]T R∆u[k + i] (4.25)

The above equation is a function of the current state control input sequence ∆U . First

summation term composes of summed quadratic convex functions which reflect error

between references and predicted output vectors. Symmetric, diagonal and positive

62

semi-definite Q, Q ≥ 0, is the weight matrix for track errors minimization and sat-

isfies convexity property of the cost function. The second term which is a function

of future incremental control trajectory is added to cost function in order to reduce

control effort (applied amount energy) of the system as much as possible. Diago-

nal, symmetric positive definite R = rwI2×2, R > 0, is the other weight matrix for

minimizing incremental control effort with its diagonal element, rw. The objective

function can be represented in a more compact matrix form using (4.22), (4.24) and

(4.25) as follows:

J = J(∆U) = (Ŷ − Y)T Q̄(Ŷ − Y) + ∆UT R̄∆U (4.26)

where the reference output vector within its prediction trajectory is defined as

Ŷ T = [ŷTref [k + 1] ŷTref [k + 2] . . . ŷTref [k +Np]]T (4.27)

Since vector ŷref [k + i] ∈ R2 where i ∈ [0, . . . , Np]. Q̄ ∈ R2Np×2Np

≥0 and R̄ ∈
R2Nc×2Nc
>0 is diagonal, positive, semidefinite and definite matrices, Q̄ ≥ 0 and R̄ > 0,

respectively, in following form:

Q̄ =

Q 0 · · · 0 0

0 Q · · · 0 0
...

...
...

0 0 · · · Q 0

0 0 · · · 0 Q

, R̄ =

R 0 · · · 0 0

0 R · · · 0 0
...

...
...

0 0 · · · R 0

0 0 · · · 0 R

(4.28)

By using (4.23) , explicit form of (4.26) is expressed as

J(∆U) = (Ŷ − (Fx[k] +Φ∆U))T Q̄(Ŷ − (Fx[k] +Φ∆U)) + ∆UT R̄∆U

= (Ŷ − Fx[k])T Q̄(Ŷ − Fx[k])− 2∆UTΦT Q̄(Ŷ − Fx[k])

+ ∆UTΦT Q̄Φ∆U + ∆UT R̄∆U

= ∆UT (ΦT Q̄Φ+ R̄)∆U − 2∆UTΦT Q̄(Ŷ − Fx[k])

+ (Ŷ − Fx[k])T Q̄(Ŷ − Fx[k]) (4.29)

∆U is utilized as a vector which is minimized using quadratic programming tech-

niques in the objective function (4.29). To be able to write this function more com-

pact, following terms simply denoted as 2(ΦT Q̄Φ + R̄) = E and −2ΦT Q̄(Ŷ −

63

Fx[k]) = d. Also note that E is symmetric and positive semi-definite matrix since

Q̄, positive semi-definite matrix, and R̄, positive definite matrix, are defined as in

(4.28). Remaining term, (Ŷ − Fx[k])T Q̄(Ŷ − Fx[k]), has not any effect on the

optimization problem and calculation of this term is not necessary.

4.3.2.1 Constraints of the Optimization Problem

Constraints play an essential role in model predictive controllers because of physical

and operational limits. When convex quadratic cost function (4.29) is solved regard-

less of constraints, a global optimum solution is found. It may not satisfy physical

input constraints which are limited to certain minimum and maximum values. If the

result of the unconstrained optimization problem is saturated rather than incorporat-

ing constraints into it, the control signal may deteriorate and lead to overshoot in the

physical system.

Constraints can be classified into there major types [53]. First two types which are

mostly called as hard constraints are related to control variables, u[k], and their incre-

mental variations, ∆u[k]. Another constraint type, soft constraint, which compose of

output variable y[k] or state variable x[k]. Hard constraints are only added as a sub-

ject term to the optimization problem in this study due to the fact that soft constraints

take part as minimized terms in the cost function of the optimization problem.

• Inequality Constraints

At time k, following two equations represent the rate of change limits and amplitude

limits of control signals, respectively. Since control signal is in vectorial form, each

component of the control signals is separately represented.

∆uminL ≤ ∆uL[k] ≤ ∆umaxL

∆uminR ≤ ∆uR[k] ≤ ∆umaxR

∆umin ≤ ∆u[k] ≤ ∆umax (4.30)

and,

uminL ≤ uL[k] ≤ umaxL

uminR ≤ uR[k] ≤ umaxR

u

min ≤ u[k] ≤ umax (4.31)

64

where ∆umin = [∆uminL ∆uminR]T , lower limits are taken as ∆uminL = ∆uminR .

∆umax = [∆umaxL ∆umaxR]T , upper limits are taken to be ∆umaxL = ∆umaxR . Sim-

ilarly, umin = [uminL uminR]T , lower limits for control amplitude are defined as uminL =

uminR , while upper limit of control amplitude is formulated as umax = [umaxL umaxR]T ,

upper limits are taken as umaxL = umaxR . When constraints are considered over control

horizon, i.e., k ∈ [0, . . . , Nc − 1], following inequality forms are written by the help

of (4.30) and (4.31).

∆umin ≤ ∆u[k] ≤ ∆umax

∆umin ≤ ∆u[k + 1] ≤ ∆umax

...

∆umin ≤ ∆u[k +Nc − 1] ≤ ∆umax

∆Umin ≤ ∆U ≤ ∆Umax (4.32)

and,

umin ≤ u[k] ≤ umax

umin ≤ u[k + 1] ≤ umax
...

umin ≤ u[k +Nc − 1] ≤ umax

Umin ≤ U ≤ Umax (4.33)

Two-sided inequality constraint will be separated into two inequalities to solve the op-

timization problem by using matrix property, for example, constraint (4.32), ∆Umin ≤
∆U ≤ ∆Umax, is divided into two parts as follows

−∆U ≤ −∆Umin

∆U ≤ ∆Umax

⇔

−I
I

∆U ≤

−∆Umin

∆Umax

 (4.34)

Constraints are especially considered for all future times, and all input constraints can

be written in the form of ∆u[k+ i], i ∈ [0, 1, . . . , Nc− 1]. So amplitude of the future

control inputs may be written in the following form:

u[k]

u[k + 1]
...

u[k +Nc − 1]

=

I

I
...

I

u[k − 1] +

I 0 · · · 0

I I · · · 0
... . . .

I I · · · I

∆u[k]

∆u[k + 1]
...

∆u[k +Nc − 1]

(4.35)

where u[k − 1] is (k − 1)th sampling time instant of control signal whose value is

already known. If k is equal to zero and initially zero input is applied to the system,

65

then its value becomes zero, i.e., u[k−1] = 0. Otherwise, it can be any value between

its lower and upper limits. By taking into account the incremental variation on the

control signal as the optimization variable, the general form of the hard inequality

constraints will be represented by

M∆U ≤ γ. (4.36)

• Equality Constraints

Equality constraints can be written by using state space equations which are already

obtained in (4.17) from time k to k +Np as

x[k + i+ 1] = Akx[k + i] +Bku[k + i]

y[k + i] = Ckx[k + i] (4.37)

where i ∈ [0, 1, . . . , Np] and for k≥Nc input sequences are taken asu[k] = u[k+1] =

· · · = u[k +Np]. These equality equations are already calculated to determine future

state variable and future output variables that take part in (4.29). Because of this

feature, equality constraints are not repeatedly solved in the optimization problem.

The solution of the mentioned quadratic problem with inequality constraint at the

global minimum point satisfies the equality constraints.

4.3.3 Numerical Solution of Quadratic Programming for MPC

The constrained optimization problem with its objective function and inequality con-

straints whose derivation is done in the previous section can be finally expressed as:

J(∆U) =
1

2
∆UTE∆U + ∆UTd

M∆U ≤ γ. (4.38)

where matrices, E,d,M and vector γ, are previously defined. Without loss of gen-

erality, weight or diagonal terms of MPC matrices are taken as positive that makes

E is semidefinite due to Q̄ and R̄. The objective function, J(∆U), is minimized via

Lagrange multipliers subject to inequality constraints. Adding a Lagrange multiplier

66

vector to the objective function increases the number of design parameters in the min-

imization function. Only unknown parameters are entities of the ∆U vector to appear

in the objective function. As it stands now,

J(∆U ,λ) =
1

2
∆UTE∆U + ∆UTd+ λT (M∆U − γ.) (4.39)

where λ is the Lagrange multiplier vector whose size m is equal to the number of

inequality constraints in the optimization problem. Since the number of inequality

constraints can be larger than the number of minimized control variables, active and

inactive constraints may be observed in the problem. If Mi∆U = γi is satisfied,

constraint Mi∆U ≤ γi is said to be active. Otherwise, when Mi∆U < γi becomes

constraint is considered that it is inactive. Mi is the i−th row of inequality constraint

matrix,M , and γi is the i−th row of the constraint vector, γ. The first step is to min-

imize the objective function with a Lagrange multiplier is to take partial derivatives

with respect to the vectors ∆U and λ.

∂J
∂∆U

= E∆U + d+MTλ = 0 (4.40)

∂J
∂λ

= M∆U − γ. (4.41)

If all the constraints had satisfied their conditions, the minimization process would

have been straightforward. The optimal values of ∆U and λ vectors are obtained

from (4.40) and (4.41) as follows, respectively,

λ = −(ME−1MT)−1(γ +ME−1d) (4.42)

∆U optimal = −E−1(MTλ+ d)

= −E−1d−E−1MTλ = ∆U glabal −E−1MTλ (4.43)

where ∆U glabal = −E−1d is the global solution of the (4.29) without any constraint.

The correction term, −E−1MTλ, comes from inequality relations. Unfortunately,

this solution is not valid because of the fact that constraints include two-sided in-

equality in the proposed optimization problem. That’s why only one side of these

constraints which are explained in detail at 4.3.2.1 will satisfy the given relation. To

handle this problem, Kuhn-Tucker conditions are simply determined with regard to

active and inactive constraints in terms of Lagrange multiplier. Four necessary Kuhn-

Tucker conditions are formulated by

E∆U + d+MTλ = 0

67

M∆U − γ ≤ 0

λT (M∆U − γ) = 0

λ ≥ 0, (4.44)

When the optimization problem includes inequality constraints, they must be ex-

plained in term of a set of active constraints [53]. Their index number is the element

of Sact and necessary condition are rewritten by using this index number as follows:

E∆U + d+
∑

i ∈ Sact

λiM
T
i = 0

Mi∆U − γi = 0, i ∈ Sact
Mi∆U − γi < 0, i /∈ Sact

λi ≥ 0, i ∈ Sact
λi = 0, i /∈ Sact. (4.45)

The optimal solution of the MPC controller is found by using active constraint which

means that equation satisfies Mi∆U − γi = 0. Mi and γi are the i-th row of com-

patible inequality constraint matrix and vector, respectively. When these constraints

become equality constraint, corresponding Lagrange multiplier, λi is taken as a non-

negative number, i.e., λi ≥ 0. Otherwise,Mi∆U−γi < 0 is inactive constraint with

its Lagrange multiplier, λi = 0. By taking these relations into consideration, (4.42)

and (4.43) are rewritten with active inequality matrix,Mact, and vector, γact,

λact = −(MactE
−1MT

act)
−1(γact +MactE

−1d) (4.46)

∆U optimal = −E−1(MT
actλact + d)

= −E−1d−E−1MT
actλact = ∆U glabal −E−1MTλact (4.47)

Active Lagrange multipliers can be obtained from theActive Set Method or Primal-

Dual Method. Primal-Dual Method is only implemented to find active inequal-

ity constraints due to the fact that model predictive control can include larger tuning

parameters.

68

4.3.3.1 Primal-Dual Method

The convex quadratic optimization problem with the symmetric and positive definite

matrix,E, defined in (4.38) is written in the Lagrangian dual problem is to maximize,

θ(λ) over λ ≥ 0, where [6]

θ(λ) = inf
λ ≥ 0
{1

2
∆UTE∆U + ∆UTd+ λT (M∆U − γ) : ∆U ∈ R2Nc} (4.48)

Convexity property of the function (1/2)∆UTE∆U + ∆UTd+λT (M∆U − γ) is

preserved with a defined λ variable, i.e. λ ≥ 0; then necessary and sufficient Kuhn-

Tucker condition found by taking the gradient of (4.48) with respect to ∆U becomes

E∆U +MTλ+ d = 0 (4.49)

In the view of the above information, the dual problem is denoted as

maximize
λ

1

2
∆UTE∆U + ∆UTd+ λT (M∆U − γ)

subject to E∆U +MTλ = −d

λ ≥ 0

(4.50)

Positive definitiveness property of E, i.e. E−1 exists, provides unique solution to

4.49 as follows,

∆U = −E−1(d+MTλ) (4.51)

When a unique solution is substituted in (4.48), maximized optimization problem

becomes

θ(λ) =− 1

2
(E−1(d+MTλ))TE(−E−1(d+MTλ))

− (E−1(d+MTλ))Td− λT (ME−1(d+MTλ)− γ)

= −1

2
dTE−1d− 1

2
λTME−1MTλ− λTME−1d− λγ (4.52)

To simply represent the equation,K ,ME−1MT and v , γ +ME−1d matrices

are defined. Now, (4.52) implicitly is written as

θ(λ) = −1

2
λTKλ− λTv − 1

2
dTE−1d (4.53)

69

Finally, the dual optimization problem which is obtained from the primal problem in

simple terms is represented as follows:

minimize
λ

J(λ) =
1

2
λTKλ+ λTv +

1

2
dTE−1d

subject to λ ≥ 0

(4.54)

(1/2)dTE−1d term of the above equation has any effect on minimization problem to

find λ value. So, (4.54) can be simplified by deleting that term as

minimize
λ

J(λ) =
1

2
λTKλ+ λTv

subject to λ ≥ 0

(4.55)

The solution of the dual problem can be easily obtained in comparison with the primal

problem. Active indexes of λ vector are used to find corresponding active inequali-

ties,Mact and γact which formMact∆U
optimal = γact.

This problem is solved in two steps. First of all, the global optimal solution is

obtained, ∆U global = −E−1d, and then all the constraints are checked whether

∆U global satisfies inequalities or not. If M∆U global ≤ γ, then Hildreth’s quadratic

algorithm stops. If not, the basis vector ei = [0 0 . . . 1 0 . . . 0]T is utilized

as direction vector to to determine λact value. Activeness of the index Lagrangian

multiplier, λi, is understood when it becomes zero or not. When λi gets zero or neg-

ative value, it is said that its corresponding constraint is inactive and λact,i is taken

zero. Update procedure of λi is calculated within predetermined iteration window

using K matrix and v vector in (4.55). Update procedure of the Lagrange multiplier

is calculated using following two equations.

αk+1
i = − 1

Kii

[vi +
i−1∑

j=1

Kijλ
k+1
j +

n∑

j=i+1

Kijλ
k
j] (4.56)

λk+1
i = max(0,αk+1

i) (4.57)

k stands for the iteration index. Kij is the ijth entry of K matrix. jth row of the λ

vector is denoted by λj whilst ith row of the v is corresponded vi. n is the row num-

ber of the Lagrangian multiplier λ. The algorithm stops when reach the maximum

70

Algorithm 1: Hildreth’s quadratic programming algorithm
Input: Φ, F , Q̄, R̄,M , γ, N, ε

Output: ∆U optimal

Data: E, d,K, v, λ, λprev, α, l, n

1 Compute E ← 2ΦT Q̄Φ+ R̄, d← −2ΦT Q̄(Ŷ − Fx[k])

2 Compute ∆U global ← −E−1d

3 l = 0

4 for i = 1→ n do

5 if (Mi,∗∆U
global > γi) then

6 l← l + 1

7 if l = 0 then

8 ∆U optimal ← ∆U global

9 return ∆U optimal

10 Compute K ←ME−1MT , v ← γ +ME−1d

11 λ← 0

12 for i = 1→ N do

13 λprev ← λ

14 for i = 1→ n do

15 Compute α← 1

Ki,i

(Ki,∗λ−Ki,iλi + vi)

16 Compute λi ← max(0, α)

17 if
(

(λ− λprev)T (λ− λprev) < ε

)
then

18 break

19 Compute ∆U optimal ← −E−1d−E−1Mλ

20 return ∆U optimal

/* Mi,∗ and Ki,∗ are the ith row of M and K matricies, respectively */

/* γi and λi are the ith element of γ and λ vectors, respectively */

/* N represents the maximum iteration number */

/* n indicates the size of λ vector */

71

iteration number or change in the Lagrangian multiplier are smaller than termination

value, ε, e.g. (λk − λk−1)T − (λk − λk−1) < ε. Thus, it is guaranteed that λact

vector includes either zero or positive values. Pseudo code of Hildreth’s quadratic

programming can be seen in Algorithm 1 with defined matrices and vectors above.

4.3.4 MPC Parameters Tuning

Four tuning parameters, Np (output horizon), Nc (control horizon),Q andR (weight

matrices on errors and control effort, respectively), are adjusted to satisfy robustness

and optimality of the controller. Increasing Np to a reasonable value improves the

performance of the MPC. However, the selection of Np plays a critical role due to the

embedded integrators in the state matrix. If it is selected quite small, the robustness of

the controller becomes poor. When Np is large, stability problem on the system can

be observed as indicated in 4.3.1. Increasing Nc value too much causes deterioration

on the control signals and spreads control effort to a larger horizon. Besides, short

horizon values of Nc may enlarge the initial control effort. Positive semi-definite di-

agonal Q matrix is defined as the weight matrix to adjust the effect of the reference

tracking based errors to cost function. Its first diagonal element is corresponding to

surge speed error while other is the weight term of the yaw angle error. When ma-

noeuvring without settling a path is performed, the diagonal entity of the Q related

to surge speed can be increased. To be able to make collision-free docking, manoeu-

vring plays an important role at the border or edge of the parking region and slot. The

diagonal element of the Q which corresponds to yaw angle should be increased to

realize better path following. Positive definite diagonal R matrix adjusts the incre-

mental control effort along the input horizon. Diagonal entities of R are set equal to

each other hence thrusters of the vehicle is assumed to be identical.

Parameters of the MPC are tuned along an s-shaped path using LOS guidance. 15 ≤
Np ≤ 40, 2 ≤ Nc ≤ 15, 0.001 ≤ R11 = R22 ≤ 5 , and 1 ≤ Q11, Q22 ≤ 200

are specified as intervals to tune parameters of the MPC. Optimized path following

performance is achieved by Np = 25, Nc = 10, R11 = R22 = 0.01, Q11 = 50 and

Q22 = 100 values.

Some simulation results of MPC with LOS guidance rule are plotted for the optimized

72

Figure 4.3: Results of the MPC on the s-shape path with different optimized parame-

ter values.

parameters and three parameter sets in Fig. 4.3. Ground truth indicates the shortest

path that is represented with a black colour and dash line. Table 4.1 includes sim-

ulation parameters and their average cross-track errors. Optimized MPC parameters

are in the first row. Other parameters are selected as the variation of the optimized

parameters.

Table 4.1: Controller parameters used in Fig. 4.3.

Colour Np Nc Q11 Q22 R11 = R22 Avg. Err.(m)

——— 25 10 50 100 0.01 0.1365

——— 30 10 50 100 0.01 0.1513

——— 25 5 50 100 0.01 0.1627

——— 25 10 50 100 5 0.1868

73

4.4 Cascaded PID Controller

PID is one of the most used controller technique that can be readily employed in com-

plex control systems. Path tracking performance of the surface craft whose dynamic

state equations are coupled and nonlinear can be simply achieved by using PID con-

trollers. PID control is carried out by utilizing and adjusting proportional, Kp1 , inte-

gral, Ki1 , and derivative, Kd1 , gains whose notation is represented in Fig. 4.4. These

gains take on the task to reduce error or differences between reference signals, ŷ1[k],

and output (measured) signal, y1[k], by considering performance criterion in the con-

troller design. There are various objective functions to minimize track errors at time

instant k,
{
e1[k] , ŷ1[k]− y1[k], e2[k] , ŷ2[k]− y2[k], ..., en[k] , ŷn[k]− yn[k]

}
.

Integral of absolute errors, IAE, is used as a cost function for parameter tuning the

PID controller within the scope of this study. IAE is formulated as follows:

IAE =
∣∣e1[k]

∣∣+
∣∣e2[k]

∣∣+ ... +
∣∣en[k]

∣∣ (4.58)

Error minimization is achieved by taking tuning parameters as variables in an opti-

mization window for each PID controller. As mentioned in the introduction section,

4.1, optimization window will be chosen as "S" shape curvature path for PID con-

trollers. After finding proper tuning parameters by using optimization, adjusted val-

ues of the PID controller in discrete time is applied to find control effort. The output

of a PID controller,U1, which is the control input variable for a system, is formulated

as:

U1[k] = Kp1e1[k] +Ki1Ts

k∑

i=0

e1[i] +Kd1

e1[k]− e1[k − 1]

Ts
(4.59)

where U1 is the output of the first PID controller, and Ts is the sampling time of a

discrete system. As it can be understood from (4.59), Kp1 is directly multiplied with

the error value. In the second term, errors which are from time instant 0 to k are

summed and multiplied with Ki1Ts to minimize steady-state errors. It integrates the

errors from the beginning until error value reaches to zero. The last term can predict

the future behaviour of error by taking the difference between current and previous

sampling time instant while other terms are lack of future prediction. It produces

Kd1/Ts times rate of change error in sampling time k. The derivative term sometimes

74

Ki1Ts
k∑

i=0

e1[i]

Kp1

Kd1

e1[k]− e1[k − 1]

Ts

ŷ1[k] +

e1[k] +
+

+ U1[k]

−

y1[k]

Figure 4.4: PID controller in discrete time.

may increase system response more than expected, so settling time becomes too big

and may cause harmful oscillations.

Yaw angle and surge speed errors are minimized by using the linearized vehicle dy-

namics in the previous controller, MPC in section 4.3. However, minimizing these

error by using PID is not sufficient for rapid movements and manoeuvre. When the

robust and stable controller is desired, a cascaded PID control loop can be proposed

(PID)1 (PD)2

(PID)3

Plant

0.5

0.5

U(L−R)[k]

U(L+R)[k]

ψ̂[k]

+

eψ[k] r̂[k]

+

er[k]

û[k]

+

eu[k]

UL[k]

UR[k]

U(L−R)[k]

U(L+R)[k]

+

+

−
+

ψ[k]

r[k]

u[k]

− ψ[k] − r[k]

− u[k]

Figure 4.5: Representation of the cascaded PID controller.

75

for yaw rate error minimization. Cascaded PID becomes useful if there are signifi-

cant differences in dynamics between the controlled state and the process variables.

So control effort is calculated from an intermediate measured signal whose dynamics

faster than control signal [49]. Block diagram of proposed cascaded PID controller

can be shown in Fig. 4.5. As can be understood from Fig. 4.5, the upper part which

is responsible for tracking of yaw angle is composed of two nested control loops.

Outer loop controller, sometimes also called primary loop, minimizes yaw angle er-

ror, eψ[k], between reference yaw angle, ψ̂[k], and yaw angle, ψ[k], at sampling time

instant k. The output of the (PID)1 controller is obtained as reference yaw rate, r̂[k],

by using (4.59) and Fig. 4.4 as follows:

r̂[k] = Kp1eψ[k] +Ki1Ts

k∑

i=0

eψ[i] +Kd1

eψ[k]− eψ[k − 1]

Ts
(4.60)

(4.60) determines the output of the outer loop controllers as a reference for inner or

also called the secondary feedback control loop. It should be taken into consideration

that choice of internal measured variable, r[k], must be close relation with the external

measured signal, ψ[k] to make tight or fast responsive feedback loop [49]. As it is

known from (2.10), Θ̇nb = TΘ(Θnb)w
b
b|n, the derivative of yaw angle is directly

related to yaw angle rate. It should also be noted that the secondary loop has a much

faster response than the primary loop and environmental disturbances directly act in

its loop. Its controller, (PD)2, does not include an integral term because of the fact

that it causes overshoot response in the primary loop to eliminate steady-state error.

It can be interpreted that secondary loop integrator behaves like a proportional gain

in the primary loop. This overshoot can be reduced or even eliminated by using some

techniques such as carefully handled integrator windup with anti-windup strategies

[52] which is out of scope in this study. The secondary feedback control loop only

includes proportional and derivative action in order to find torque difference between

left and right thruster , U(L−R)[k], by minimizing er[k] = r̂[k]− r[k].

U(L−R)[k] = Kp2er[k] +Kd2

er[k]− er[k − 1]

Ts
(4.61)

(PID)3 controller is employed to track reference surge speed, û[k], which is pro-

duced by strategic level guidance algorithms. (4.59) is utilized with optimized con-

troller gains Kp3 , Ki3 , Kd3 for proportional, integral and derivative calculations, re-

spectively. Appropriate control effort, produced by (PID)3, which is the summa-

76

Surge, Y aw
and, Y aw Rate
Controller

U(L−R)[k] +

U(L+R)[k] +

0.5

0.5

Plant

ψ[k]

y[k]

x[k]

u[k]

v[k]

r[k]

State
V ector

Multivariable PSO Optimization

State
Feedback

[eψ[k], eu[k]]
T[ψ̂[k], û[k]]T

+

Optimized Gains [Kp1 ,Ki1 ,Kd1 ,Kp2 ,Kd2 ,Kp3 ,Ki3 ,Kd3]
T

+

−

UL[k]

UR[k]

− [ψ[k], u[k]]T

1

Figure 4.6: Overall cascaded PID controller feedback loop.

tion of left and right thrusters is tried to be found to minimize surge speed error,

eu[k] = û[k]− u[k], as small as possible in.

U(L+R)[k] = Kp3eu[k] +Ki3Ts

k∑

i=0

eu[i] +Kd3

eu[k]− eu[k − 1]

Ts
(4.62)

Thus, the cascaded PID method enhances the stability and robustness of the overall

controller design. The applied torques, UL and UR, for left and right thrusters may be

readily obtained from (4.63), respectively. It should be noted that physical constraints

on the thrusters must be taken into consideration by saturating them their maximum

and minimum limits before applying these torque values to the system.

UL[k] =
U(L+R)[k] + U(L−R)[k]

2

UR[k] =
U(L+R)[k]− U(L−R)[k]

2

(4.63)

The cascaded PID control structure finds UL and UR torques which are applied to

the system in each sampling time. Gains of the controllers, are not be tuned in each

time instant. They are found via ’Particle Swarm Optimization, (PSO),’ that is one of

the evolutionary optimization techniques on the predefined ’S’ shaped curvature path.

The proposed method to tune cascaded PID variables is explained in the next section.

77

4.4.1 Particle Swarm Optimization

Gains of the cascaded included PID controllers must be tuned to obtain robust and

stable system responses. As it can be seen in Fig. 4.6, gain vectorG = [Kp1 Ki1 Kd1

Kp2 Kd2 Kpd Ki3 Kd3]
T is taken as design parameters. The cost function of the

(4.64) is minimized with variables of G subject to given constraints. Particle swarm

optimization technique is employed to find a better G vector within an optimization

window which is determined as a curved path with time duration from 0 to k. Gains

of the PID controllers are considered as particles of a swarm of the optimization

problem. Values that can be taken by particles are restricted as Gmin ≤ G ≤ Gmax.

Changes of swarm values from one sampling time to another, ∆G or v, is also re-

stricted within a range, i.e. ∆vmin ≤ ∆v ≤ ∆vmax, to preserve best swarm particles

if they are available. At the same time, physical constraints on the left and right

thrusters must be kept in their limits, umin ≤ u[k] ≤ umax, during the optimization.

CostFunction J(G) =

{ k∑

i=0

|eu[i]|+ |eψ[i]|+ |er[i]|
}

subject to Gmin ≤ G ≤ Gmax,

umin ≤ u[k] ≤ umax.

(4.64)

Particle swarm optimization, PSO, which is one the most used evolutionary optimiza-

tion techniques, is applied to multi-variable optimization problems for many years. It

does not only imitates human social behaviours but also simulates the social skills of

animals by considering them in groups, [45], [16]. PSO is based on an improvement

of the performances of individuals and their groups by observing them individually

and collectively. Group or swarm can be represented with their individuals from 1 to

N for cascaded PID controller as follows:

G1 = [{Kp1}1 {Ki1}1 {Kd1}1 {Kp2}1 {Kd2}1 {Kp3}1 {Ki3}1 {Kd3}1]T ,

G2 = [{Kp1}2 {Ki1}2 {Kd1}2 {Kp2}2 {Kd2}2 {Kp3}2 {Ki3}2 {Kd3}2]T ,

... =
... ,

GN = [{Kp1}N {Ki1}N {Kd1}N {Kp2}N {Kd2}N {Kp3}N {Ki3}N {Kd3}N]T .

(4.65)

where {Kp1}1 represents the first particle of the first individual,G1, which means that

the proportional term of the PID1 controller in the first individual. Other particles

78

can easily be explained by the help of previously indicated notation. Some basic

swarm ideas are fulfilled in the PSO optimization techniques to update particles of

the swarms meaningfully. These ideas are categorized into three phenomena as:

• Inertia: Each particle in the individual wants to keep its current behaviour

based upon its old habits and tendency which are proven to be successful in the

past. When the gain parameters are updated, this feature will become a more

dominant factor because of the fact that deterioration has to be prevented for

good gain values.

• Influence by society: People in the community are impressed by one who has

more successful than others. So, most of the people try to imitate him/her

footsteps and behaviour naturally. One of the updated criteria of the gains of

the cascaded PID controller is to approximate the swarms to best swarm,Gbest

in each iteration.

• Influence by neighbours: Interaction of the people with their neighbours is

more influential than society. One can directly share his/her failures, success

with close people. At the beginning of optimization, neighbourhood relation

is assigned to each swarm based on some topologies. Ring topology that is

explained in [45] is adopted to update particle value term which comes from

this influence.

The dimension of the multi-variable optimization problem, n, is equal to the length

of the gain vector length(G∗) = 8. A population has N candidate solutions which

means that one of the vectors in this set {G1, G2, . . . , GN} is candidate solu-

tion, i.e. Gi. is the best minimization vector over given set i ∈ [1, N]. Each

particles in the individual, Gi = [gi,1 gi,2 . . . gi,n]T , is moving with some velocity

vi = [vi,1 vi,2 . . . vi,n]T , i ∈ [1, N], through the search space. This is the essential

property of PSO optimization technique which is a fundamental difference between

PSO and other evolutionary optimization algorithms. Gi values are updated dynam-

ically from one generation to next by using inertia, the influence of neighbours and

society properties. Ratios of influences are selected randomly to update velocity or

approaching vectors. These ratios can be considered as learning rates from others.

Maximum learning rates are represented with {φ1}max and {φ2}max for the influence

79

of society and neighbour, respectively. φ1 defines the cognition learning rate which is

a random variable uniformly distributed in [0, {φ1}max], i.e. φ1,i[k] ∼ U [0, {φ1}max]
for i ∈ [1, n]. Likewise, social learning rate is also a uniformly distributed random

variable in [0, {φ2}max], i.e. φ2,i[k] ∼ U [0, {φ2}max] for i ∈ [1, n]. Inertia term to

preserve current velocity of particles also has a weight term, w, which is defined as a

constant during the optimization. So, particles want to maintain their velocities while

learning from their neighbour and society. By considering the above information,

velocity update for the i− th particle of the swarm is formulated as follows:

vi,1 = wvi,1 + φ1,1(gi,1,best − gi,1) + φ2,1(gi,neig∗,1 − gi,1),

vi,2 = wvi,2 + φ1,2(gi,2,best − gi,2) + φ2,2(gi,neig∗,2 − gi,2),

... =
... ,

vi,n = wvi,n + φi,n(gi,n,best − gi,n) + φ2,n(gi,neig∗,n − gi,n).

(4.66)

where velocity vector vi, is considered as change of the PID parameters of the par-

ticle i. It is written as vi = [
{

∆Kp1

}
i

{
∆Ki1

}
i

{
∆Kd1

}
i

{
∆Kp2

}
i

{
∆Kd2

}
i{

∆Kp3

}
i

{
∆Ki3

}
i

{
∆Kd3

}
i
]T . Best PID parameters for each individual that give

the minimum value is indicated by
{
G
}
i,best

= [
{
Kp1

}
i,best

{
Ki1

}
i,best

{
Kd1

}
i,best{

Kp2

}
i,best

{
Kd2

}
i,best

{
Kp3

}
i,best

{
Ki3

}
i,best

{
Kd3

}
i,best

]T . Each individual has two

neighbours that come from the previously explained ring topology. The closest neigh-

bour of individual i,Gi,neig∗ = [
{
Kp1

}
i,neig∗

{
Ki1

}
i,neig∗

{
Kd1

}
i,neig∗

{
Kp2

}
i,neig∗{

Kd2

}
i,neig∗

{
Kp3

}
i,neig∗

{
Ki3

}
i,neig∗

{
Kd3

}
i,neig∗]

T , whose particles give the mini-

mum result in (4.64) is selected to be employed in (4.66). Likewise, two learning rates

are transformed into vector forms as φ1 and φ2 to be able to write (4.66) implicitly

as follows:

vi = wvi + φT1 (Gi,best −Gi) + φT1 (Gi,neig∗ −Gi) (4.67)

(4.67) must be restricted in the predefined limit, vmin ≤ v ≤ vmax, which can be

seen in (4.64) for preventing particles search space leaving. Update equation of the

PID parameters in a particle with related the velocity vector is expressed as

Gi = Gi + vi (4.68)

(4.68) can be considered as position update procedure which means that PID param-

eters are updated by summing them with a rate of changes in them. The final value of

80

Gi is also limited,Gmin ≤ G ≤ Gmax, to keep it within the search domain otherwise

particle may move away from its optimum solution point. All the particles which are

numbered from 0 to N are updated with (4.67) and (4.68). The pseudo code of PSO

can be seen in Algorithm 2.

4.4.2 Tuning of the Cascaded PID Controller Parameters

PID parameters which are values in the range of {0 ≤ Kp1 ≤ 100, 0 ≤ Ki1 ≤
10, 0 ≤ Kd1 ≤ 0.5} ∈ PID1, {0 ≤ Kp2 ≤ 50, 0 ≤ Kd2 ≤ 0.5} ∈ PID2 and

{0 ≤ Kp3 ≤ 200, 0 ≤ Ki3 ≤ 10, 0 ≤ Kd3 ≤ 0.5} ∈ PID3 are tuned by using

PSO technique on the s-shape path. Parameters of the PSO which can be shown in

Table 4.2 are selected via trial and error method. Since PSO is a kind of evolutionary

algorithm, positions and velocities of the individuals are generated randomly. In each

evaluation, PSO may give different results. In order to get rid of this problem, the

PSO algorithm is repeated 100 times. Later, the best particle in each evaluation is

selected as a candidate solution for the path following problem. Mean of all the best

candidates are taken to minimize randomness of the algorithm. The final values of

the optimized cascaded PID controller parameters are written in the following Table

4.3.

Table 4.2: Parameters of the PSO algorithm.

Generation End of the path

Number of Particle 500

Swarm Inertia, w 0.5

Cognition Learning Rate, {φ1}max 0.6

Social Learning Rate, {φ2}max 0.6

Maximum Position Vector,GT
max [100 10 0.5 50 0.5 200 10 0.5]T

Minimum Position Vector,GT
min [0 0 0 0 0 0 0 0]T

Maximum Velocity Vector, vTmax [1 0.1 0.01 1 0.01 1 0.1 0.01]T

Minimum Velocity Vector, vTmax [-1 -0.1 -0.01 -1 -0.01 -1 -0.1 -0.01]T

81

Algorithm 2: PSO method for tuning of cascaded PID controller parame-

ters.
Input: w, {φ1}max , {φ2}max , N, Gmax, Gmin, vmax, vmin, σ, T

Initialize: N individualsGi ∈
[
U
[
0, {Kp1}max

]
U
[
0, {Ki1}max

]

U
[
0, {Kd1}max

]
U
[
0, {Kp2}max

]
U
[
0, {Kd2}max

]
U
[
0, {Kp3}max

]

U
[
0, {Ki3}max

]
U
[
0, {Kd3}max

]]T
, i ∈ [0, N]

Number of N vi ∀ individuals ∈
[
U
[
{∆Kp1}min , {∆Kp1}max

]

U
[
{∆Ki1}min , {∆Ki1}max

]
U
[
{∆Kd1}min , {∆Kd1}max

]

U
[
{∆Kp2}min , {∆Kp2}max

]
U
[
{∆Kd2}min , {∆Kd2}max

]

U
[
{∆Kp2}min , {∆Kp3}max

]
U
[
{∆Ki3}min , {∆Ki3}max

]

U
[
{∆Kd3}min , {∆Kd3}max

]]T
, i ∈ [0, N]

Initialize best−so−far position ∀ individuals : Gi,best ← Gi, i ∈ [0, N]

iteration← 0

1 while iteration ≤ T (End of the path) do

2 for i = 1→ N do

3 Generate φ1 = [φ1,1 . . . φ1,8]T with φ1,k ∼ U [0, {φ1}max]T , k ∈ [0, 8]

4 Generate φ2 = [φ2,1 . . . φ2,8]T with φ2,k ∼ U [0, {φ2}max]T , k ∈ [0, 8]

5 Neighbours{Gi} ← {σ nearest neighbour of Gi}
6 Gi,neig∗ ← arg minG {J(G) : G ∈ Neighbours{Gi}} , look (4.64)

7 vi ← wvi + φT1 (Gi,best −Gi) + φT2 (Gi,neig∗ −Gi)

8 if vi > vmax then

9 vi ← vmax

10 else if vi < vmin then

11 vi ← vmin

12 Gi ← Gi + vi

13 ifGi > Gmax then

14 Gi ← Gmax

15 else ifGi < Gmin then

16 Gi ← Gmin

17 Gi,best ← arg min {J(Gi), J(Gi,best)}

18 iteration← iteration+ 1

82

Table 4.3: Optimized parameters of the cascaded PID controller.

Kp1 Ki1 Kd1 Kp2 Kd2 Kp3 Ki3 Kd3

10.83 2.0 0.025 26.07 0.025 150.73 1.50 0.016

In Fig. 4.7, results of the controller with LOS guidance rule are plotted for optimized

values of parameters and different valued parameters. Ground truth that is represented

with a red colour and dashed line is the shortest path which is composed of way-

points. In Table 4.4, simulation parameters are represented with average cross-track

errors. Optimized PID is in the first row. Other parameters are the variation of the

optimized parameters.

Figure 4.7: Results of the cascaded PID controller on the s-shape path with different

optimized parameter values.

83

Table 4.4: Controller parameters used in Fig. 4.7.

Colour Kp1 Ki1 Kd1 Kp2 Kd2 Kp3 Ki3 Kd3 Avg. Err.(m)

——— 10.83 2.0 0.025 26.07 0.025 150.73 1.50 0.016 0.1474

——— 5.83 2.0 0.025 26.07 0.025 150.73 1.50 0.016 0.1529

——— 10.83 5 0.025 26.07 0.025 150.73 1.50 0.016 0.1555

——— 10.83 2.0 0.025 26.07 0.025 150.73 5 0.016 0.2190

4.5 Comparison Between MPC and Cascaded PID Controllers

Both controllers fulfil the path following task on the "S" shaped curved path. MPC di-

rectly uses linearized system dynamics and minimizes errors between references and

measured signals while it reduces the control effort according to its performance cri-

terion. It also generates a control sequence for the specified input horizon by consid-

ering the defined constraints. Cascaded PID controller performs error minimization

between references and state feedback signals. If its outputs exceed the physically

applicable maximum and minimum torque values, then they are saturated. Saturation

process affects the robustness of the controller and responses of the system. Perfor-

mance criterion for the comparison between MPC and cascaded PID controller is to

calculate average cross track errors. As can be seen in Tables 4.1 and 4.4, MPC gives

better results compared to cascaded PID controller as it is expected.

84

CHAPTER 5

PARALLEL DOCKING PROBLEM FOR UNMANNED SURFACE

VEHICLES

5.1 Introduction

Autonomously docking a USV to a parking slot can be considered as a subset of two

phenomena which are path planning and path following. The path (route) planning

part is the determination of the path along which vehicles goes from an initial position

to a final point. In the path following, the vehicle autonomously goes by tracking the

group of way-points along the optimal and sub-optimal paths and finalizes its motion

in the parking slot. First of all, the craft is docked itself into an interim parking region

where its orientation parallel is parallel to the parking slot. Then, it starts moving

backwardly from this region to its parking point. A path that optimizes the control

effort, i.e., an energy-optimal pathway is proposed to find an appropriate path at the

first stage. In the second step, it must be determined a path which includes smooth

manoeuvres for parallel parking by considering obstacles in the region.

A manoeuvring path generation problem for docking (parking) has been partially

solved in many different ways; by solving an optimal control method (time minimum

or energy minimum), or by using heuristic approaches for example utilizing fuzzy

logic, or by using geometric rules [50]. Combinations of these approaches are adopted

to find feasible way-point for docking manoeuvres in the scope of this thesis study.

85

5.2 Problem Definition

After completing a mission, the vehicle should start following an optimally found

path which begins at the ps = [xs ys]
T on the quadratic circle and ends at the pf =

[xf yf]
T planar point as it may be seen in Fig. 5.1 with for two scenarios. Vehicle’s

orientation should be parallel to the port at the forward point, pf .

An intermediate point, pi = [xi yi]
T , that is defined by considering park corners is

utilized to obtain a curved path for docking to a parking slot. The path between pf

and pi are followed backward. Then, the vehicle continues to its motion to park

a docking slot whose length is about the twice of vehicle’s dimensions. From this

point, the way-points to accomplish the necessary docking manoeuvre between pi

and pp = [xp yp]
T are generated via a proposed geometric rule, and the guidance and

controller laws are employed to the vehicle to follow this path. A docking manoeuvre

path, which can be shown as blue colour in the above figure, is produced between

intermediate point, pi, and parking point, pp for a parking slot of a predetermined

size.

The vehicle may approach the parking region in any direction; however, it should be

Figure 5.1: Representation of parallel parking with important parking points.

86

noted that planar symmetry simplifies the solution of the problem. Parallel docking

problem is treated as a way-point generation problem that may be dealt with in two

steps: while the first stage is entrance to the parking site, the second part is to fulfil

the backward docking manoeuvre. Some of these way-points and important points

are illustrated in Fig. 5.1.

5.3 Entrance to Parking Site

It is accepted that the vehicle passes through a way-point on a quadratic circle whose

centre at pc, and a radius has a reasonable value. This way-point is described as the

starting point, ps, which is represented in Fig. 5.1, at the beginning of parking. The

vehicle directs its orientation from this point to the intermediate point, pi, as its next

way-point. However, the orientation of the craft should be parallel to the parking slot

at pi before beginning backward docking manoeuvre. Therefore, forward point, pf

as an additional point, which is also indicated in Fig. 5.1, should be specified as the

next way-point to fix orientation (yaw angle, ψ) of the vehicle parallel to the port.

Once the USV arrives at the forward point, the next way-point will is assigned as the

intermediate point, which is the point backward docking manoeuvre will start.

The distance between ps and pf is a function of initial speed, u, orientation ψ, ap-

proaching angle α of the vehicle, and it should be optimized for obtaining an energy-

optimal path. Only π/2 ≤ α < π is represented in 5.1, and the intermediate point,

pi, is located at the left side of the forward point, pf . A symmetric problem may be

solved for 0 ≤ α < π/2, and pf will be at the left side of pi in this scenario. As a

consequence of that the docking problem is described in π/2 ≤ α−ψ ≤ 3π/2. Here

note that the symmetric problem is to be easily solved for π ≤ α − ψ ≤ 3π/2. The

optimization will be performed by addressing the following optimal control problem

to determine energy efficient path.

5.3.1 Optimal Path Between ps and pf for Forward Docking Maneuver

Optimal control problem, (5.1), is proposed solved to obtain an optimal path between

ps and pf . It is defined open-loop optimal control as two-point boundary value prob-

87

lem with free time. Initial state x(t0) = x0 at time t0, final state x(tf) = xf at time

tf , constraints on the states and inputs are known. x̂(tf) = x̂f indicates the desired

final states. The objective function and its constraints of the optimal control problem

in continuous time are given in the following equation.

CostFunction J(u(t)) =

∫ tf

t0

h(u(τ))dτ

subject to x(t0) = x0, x(tf) = xf

ẋ(t) = f(x(t),u(t))

umin ≤ u(t) ≤ umax, t ∈ [t0, tf]

xi + L ≤ xf and y(t) ≥ yf

|ψ(tf)| ≤ 5◦.

(5.1)

h(u(t)) = u(t)TR(t)u(t) is expressed as control effort cost which is minimized to

find energy-optimal path, and time-varying positive definite R(t) matrix is taken as

constant, i.e. R(t) = R. ẋ(t) = f(x(t),u(t)) is the state equations of continuous

time system which is written as inequality constraints. u(t)min ≤ u(t) ≤ u(t)max

indicates constraints on the inputs. To avoid collisions at the parking site and make the

orientation of the vehicle parallel in the forward position, xi + 2L ≤ xf and y ≥ yf ,

in a planar position, are added as inequality constraints (L indicates the length of the

vehicle). (5.1) is discretized for numerically calculating optimal input sequences.

CostFunction J(U) =

kf−1∑

k=k0

u[k]TRu[k]

subject to x[k = k0] = x0, x[k = kf] = xf

x[k + 1] = f(x[k],u[k]), k = k0, k0 + 1 . . . , kf − 1 (look 2.11)

umin ≤ u[k] ≤ umax, k = k0, k0 + 1 . . . , kf − 1

xi + L ≤ x[kf] and y[k] ≥ yf

|ψ[kf]| ≤ 5◦.

(5.2)

whereU vector is the input sequence, and its entities are variables of the optimization

problem (5.2). kf − k0 = N samples are taken, and the number of unknowns in the

problem becomes 2×N because of the two inputs. x[k0] = x(t0) and x[kf] = x(tf)

should be satisfied. By keeping relations the same, other terms are only written in

discrete-time. The constrained quadratic optimization problem is solved to find an

88

optimal control sequence, U optimal =
[
u[k]T u[k + 1]T . . . u[kf − 1]T

]T , which

gives the energy efficient path for the USV.

5.3.2 Solution of the Optimal Control Problem

Large scale optimization problem one of the "Global Optimization Toolbox" of MAT-

LAB, genetic algorithm (GA), is employed to be able to solve above discrete-time

system [34]. It is suitable for solving most of the constrained and unconstrained,

highly nonlinear, smooth or nonsmooth optimization problems which may not be

easily found from other methods. Principles of the GA are based on evolutionary op-

timization algorithms. At each generation, many of individuals in a population have

the ability to reproduce to share their genetic information (crossover). The lifetime

of each individual in the population is limited. Small variations in individuals allow

the evolutionary process to produce a new generation apart from previous (mutation).

Survival in the population is directly and positively correlated with reproducing of in-

dividuals (elitism) [45]. All these biological factors are also taken into consideration

for the optimization problem, (5.2), to obtain a possible optimal control sequence.

5.3.2.1 Scenario I

The following scenario is selected to demonstrate the performance of the optimiza-

tion algorithm: initial point state being p[k0] = ps = [x[k0] y[k0]]T = [−3.66 7]T ,

u[k0] = 1 m/sec, and ψ[k0] = 0 rad and one forward point state pf = [xf , yf]
T =

[8 2]T , u[kf] = 0 m/sec, and ψ[kf] = 0 rad at time kf . The upper limit of the

control input is taken as 40 N, i.e. umax = [40 40]T , and the lower limit is set as

umin = [-40 -40]T The radius of the quadratic circle is set as R = 10 meter. An ini-

tial population, i.e. sequence of control inputs represented with black colour in Fig.

5.2, which is obtained via MPC+LOS combination is given to GA as an initial popu-

lation in order to obtain a faster convergence. Parameters of the GA are indicated in

the following Table 5.1.

Energy-optimal path found from GA algorithm is demonstrated in Fig. 5.2 with the

blue colour path. It should be understood that first, the orientation of the vehicle is

89

Table 5.1: Adjusted parameters of the GA.

Generation Limit 10000

Population Size 50

Elitism 10% of population size

Mutation Adaptive

Crossover Fraction 0.7

directed toward the final forward point pf . When the craft reaches the parking region,

it starts manoeuvring to dock itself parallel to the border. When the orientation of the

vehicle satisfies the neighbourhood of the desired yaw angle, −ε ≤ ψ[k] ≤ ε, in

addition to meeting position requirements, xi + L ≤ x
[
k ≤ kf

]
and y[k ≤ kf] ≥ yf ,

constraints of the optimization problem are satisfied before final time.

Fig. 5.3 shows the change in the cost value during the GA optimization process. At

Figure 5.2: Energy optimal path for Scenario I represented in blue line.

90

PauseStop

Figure 5.3: Evaluation of the cost function for Scenario I.

the initial, the best individual in the population has 2.96 × 106 cost value. At the

termination of the GA, in generation 666, the cost of the best-valued individual is

calculated as 1.23 × 106. GA algorithm improves the cost value approximately by

41.6%. It can be seen that GA improves cost function slowly due to the dimension of

Figure 5.4: Initial and optimal control torques for Scenario I.

91

Figure 5.5: Effect of the disturbance on optimal control signals.

the optimization problem. The sequence of the optimal control input for left and right

thrusters are represented in Fig. 5.4. GA finds appropriate input signals which satisfy

boundary input constraints. If these signal are directly applied to derive the vehicle

existence of the wave generated by wind (equations are given in 2.10), the path in

Fig. 5.5 is obtained. This figure shows that the optimal path can be used to generate

way-points for the vehicle; nevertheless, guidance and autopilot control is necessary

for robustness.

5.3.2.2 Scenario II

The second scenario is as follows: p[k0] = ps = [x[k0] y[k0]]T = [1.58 11.4]T ,

u[k0] = 1 m/sec, and ψ[k0] = 20◦ and forward point state pf = [xf , yf]
T = [8 2]T ,

u[kf] = 0 m/sec, and ψ[kf] = 0 rad. Constraints of the optimal control problem and

parameters of the same GA algorithm are same with Scenario 1, 5.3.2.1. An initial

population, i.e. a sequence of control inputs resulted in the trajectory with black in

Fig. 5.6, which is obtained via MPC+LOS combination. This sequence is also given

to GA as an initial population in order to obtain a faster solution.

92

Figure 5.6: Energy optimal path for Scenario II represented with blue line.

Evaluation of the cost function during the optimization process can be seen in Fig.

5.7. At the initial, the best individual in the population gives 5.55 × 106 cost value.

PauseStop

Figure 5.7: Evaluation of the cost function for Scenario II.

93

Figure 5.8: Initial and optimal control torques for Scenario II.

At the termination, GA stops in generation 1463, where the cost of the best valued

individual is calculated as 2.76×106. GA algorithm is improved the initial cost value

approximately by 49.7%. Optimal input sequences are demonstrated with blue lines

in Fig. 5.8.

5.4 Backward Docking Maneuver

After vehicle reaches to the forward point, it follows a continuous curvature path

to approach its parking slots. This curve is defined between the intermediate point,

pi = [xi yi]
T , and the parking points pp = [xp yp]

T . To be able to realize collision-

free parking manoeuvre, pi, pp and edges of the parking slot should be known [14].

In this study, docking manoeuvre to the parking slot is achieved by following way-

points on the 4 parameters logistic continuous curve s-shape. This curve also satisfies

collision avoidance at the edge of the slot by considering the geometry of the craft,

and yaw rate of the vehicle is restricted to a predefined maximum value during the

manoeuvre. This path obtained from the following equation and conditions [50]:

y =
yp − yi

1 + (x−xp
C

)B
+ yi

x ≥ xp ≥ 0, yi > yp > 0, B > 2, C > 0

(5.3)

94

where variables B and C adjust shape and slope of the curve which is employed for

executable path following. Curved path obtained from (5.3) also guarantees zero yaw

angle, i.e. ψ = 0, at the neighbourhood of pi and pp with well-defined B and C

parameters. An example of the proposed path is illustrated in Fig. 5.1 with blue

colour.

5.5 Results

The parallel docking problem for the USV with different values of initial speed, ve-

hicle pose and approaching angle of the vehicle is solved for all the combinations of

autopilot and guidance law designs. Energy consumption (E) and average cross-track

error d are calculated in (5.4) along the motion.

E =

kf−1∑

k=k0

{
1

2
m (u[k]2 + v[k]2) +

1

2
Iz r[k]2

}

d =
1

kf − k0

kf−1∑

k=k0

|(y∗w − y∗w−1)x[k]− (x∗w − x∗w−1)y[k] + x∗wy
∗
w−1 − y∗wx∗w−1|√

(y∗w − y∗w−1)2 + (x∗w − x∗w−1)2

︸ ︷︷ ︸
The closest distance at time k

(5.4)

Note that energy consumption, E, is composed of the kinetic and rotational energy

components. u[k] and v[k] indicate surge and sway speeds, respectively. r[k] is the

yaw rate of the vehicle at time k. m and Iz denote mass and inertia terms, respec-

tively. Average cross-track error, d, is calculated from summed cross-track errors.

p∗w−1 = [y∗w−1 x
∗
w−1]T and p∗w = [y∗w x

∗
w]T are the two consecutive way-points at time

k. Indexed summation variable is the closest distance of (x[k], y[k]) from the line

which passes through p∗w−1 and p∗w.

In Scenario I, 5.3.2.1, way-points on the optimal path are generated with for speed of

1 m/s, approaching angle of 2π/3 rad, and initial vehicle heading angle of 0 rad, i.e.

ψ = 0 in Fig. 5.9. Guidance algorithms are compared by using PID controllers for

this scenario in Fig. 5.10. Average cross tracking errors are 0.0501 and 0.0832 meters

for LOS and PP, respectively. Energy consumption of the PID+LOS combination is

37.80 J while PID+PP combination consumes 36.95 J.

95

Figure 5.9: Optimal and sub-optimal paths and generated way-points for Scenario I.

The same scenario is applied to the MPC controller and its guidance method combi-

nations. Fig. 5.11 illustrates MPC+LOS and MPC+PP simulations blue and red lines,

respectively. Average cross tracking errors are measured as 0.0443 and 0.0812 meters

for LOS and PP, respectively. Energy consumption of the MPC+LOS combination is

calculated as 33.9 J while the motion of the MPC+PP combination requires 35.60 J.

Figure 5.10: Simulation of PID+LOS and PID+PP methods for Scenario I.

96

Figure 5.11: Simulation of MPC+LOS and MPC+PP methods for Scenario I.

For the second scenario, 5.3.2.2, way-points on the optimal path are generated with

for speed of 1 m/s, approaching angle of 110◦, and initial vehicle heading angle of

Figure 5.12: Optimal and sub-optimal paths and generated way-points for Scenario

II.

97

Figure 5.13: Simulation of PID+LOS and PID+PP methods for Scenario II.

20◦ rad, i.e. ψ = 0 in Fig. 5.12. PID+LOS and PID+PP combinations are plotted in

Fig. 5.13. Average cross tracking errors are 0.0592 and 0.1386 meters for LOS and

PP, respectively. Energy consumption of the PID+LOS combination is 35.01 J while

PID+PP combination consumes 36.13 J. MPC controller and its guidance method

combinations are demonstrated for Scenario II in Fig. 5.14 Average cross tracking er-

Figure 5.14: Simulation of MPC+LOS and MPC+PP methods for Scenario II.

98

rors are calculated as 0.0578 and 0.1330 meters for LOS and PP, respectively. Energy

consumption of the MPC+LOS combination is estimated as 34.83 J while the motion

of the MPC+PP combination requires 35.86 J.

For different values of initial vehicle pose and approaching angle, tracking perfor-

mances of MPC+LOS, MPC+PP, PID+LOS and PID+PP are presented in Fig. 5.15.

It is observed that none of the combinations of the autopilot and guidance designs vi-

olate the parking site limitations. This validates our approach of tuning the controller

parameters with an objective to optimize the path following performances. It is found

that LOS guidance law drives the vehicle closer to the reference trajectory and MPC

performs better compared to PID autopilot.

In Fig. 5.16, energy consumptions of the USV performing parallel docking manoeu-

vres under the rule of different combinations of autopilot and guidance designs are

shown as a function of approaching angle and initial yaw position. It is observed that

the energy consumption of the vehicle does not change dramatically between differ-

ent designs. It is observed that LOS guidance law drives the vehicle in a more energy

efficient manner, better performing along with MPC.

Figure 5.15: Average cross track of the vehicle for four different combination of

controller and guidance method: MPC+PP in cyan, MPC+LOS in green, PID+PP in

red, PID+LOS in blue.

99

Figure 5.16: Energy consumption of the vehicle for four different combination of

controller and guidance method: MPC+PP in cyan, MPC+LOS in green, PID+PP in

red, PID+LOS in blue.

100

CHAPTER 6

EXPERIMENTAL SETUP AND RESULTS

6.1 Introduction

One of the guidance techniques, pure-pursuit (PP), and one the controller methods,

model predictive control (MPC) are implemented on board for experimental vali-

dation of the thesis. Pacific Islander Tugboat which is represented in Fig. 6.1 is

employed to fulfil experimental work. This boat is equipped with the motor driving

system, cooling system, regulator, batteries as a rigid body. The mathematical model

of the vehicle which is derived in Chapter 2 is used with its previously identified

parameters, [17], to be able to design an onboard controller. Entirely open source

Pixhawk 1 Flight Controller which is fitted onto the middle front section of the tug-

boat is employed for experimental validation. Embedded software, also can be called

firmware, which is run on NuttX Operating System (OS) runs in real-time for collect-

ing sensor data, driving motors via electronic speed controller (ESC), communication

with the ground station, estimating state variables, recording logs during the experi-

ment. Motion control hierarchy defined in Chapter 3 is satisfied fast and reliably via

embedding controller and guidance methods in stable firmware. The ground station

is only used for sending start and stop commands, and for receiving monitoring in-

formation of the boat such as battery and sensor fusion status, the number of used

positioning satellites etc.

This chapter is divided into three major parts that are hardware components and soft-

ware part and experimental results and validation. Part of hardware components in-

cludes detailed information about the model boat, autopilot card, ESC, motors, sen-

sors. In software parts, the software architecture for experimental validation is ex-

101

plained in detail. Last part includes the results of the experimental study.

6.2 Physical Components and Hardware

This section gives information about the technical and physical specification of the

modeled USV. First of all model boat is introduced along with its components. Later,

autopilot card employed for the experimental result is explained with its sensors and

peripherals.

6.2.1 Model Boat and Its Components

A modified 1:40 scale Pacific Islander Tugboat is considered as the vehicle with di-

mensions of 900x290x260 mm. It is a one-piece fibreglass hull with rubber fenders

as tires, and its weight is 11 kg including all the equipment (ESCs, motors, batteries,

ballast weights, autopilot card etc.), shown in Figure 6.1. The propellers located at the

aft render the vehicle highly manoeuvrable so that it can almost turn around its centre

of gravity without altering its linear position and it can travel up to 3 m/s. Two distinct

Figure 6.1: Pacific Islander Tugboat.

102

four-bladed propellers that are made of brass have clockwise and counter-clockwise

turning capacity with appropriate ESCs and motors. Each propeller is surrounded by

Kort Nozzle that provides effective control of the stream of water passing through it.

The function of the Kort Nozzles is to change the direction of the thrust using a servo

motor which is connected to each nozzle. Dynamics of the nozzles are not included

and ignored in this study by doing servo motor motionless and fixing them during

motion. The vehicle can be viewed from the stern with propellers and Kort nozzles in

Fig. 6.2.

Brushless, waterproof motors whose rated values are same and ESCs are used to drive

the modelled vehicle for experimental purposes. Two 3360SL 3180 KV motors and

Seaking-120 A-V3 ESCs are employed to turn the thrusters in clockwise and counter-

clockwise directions. This equipment can be seen in Figs. 6.3a and 6.3b.

Duties of the ESCs are to take pulse-width modulation (PWM) signals which are

square pulse waves between 0 and 5 volts. PWM signals are produced based upon

duty cycle technique which is expressed as the percentage of ’on’ time of rectangu-

lar or square wave in a period. ESC interprets duty cycles and produces a constant

voltage (negative or positive valued) during that period. The generated voltage value

is applied to the electrical motor that is high currents resisting. Then, the motor shaft

which is coupled with the propeller shaft starts rotating with a known RPM value

because of the applied voltage. Since outputs of the controller or system inputs are

Figure 6.2: View from stern with propellers of Pacific Islander Tugboat.

103

(a) A 3360SL 3180 KV motor (b) A 120 A-V3 ESC

Figure 6.3: Motor and ESC used in experimental setup, respectively.

torque command, thrust-voltage characteristic given in Fig. 6.4 must be known to

control of the boat motion.

Selection of the battery plays a crucial role to feed all the electronic components.

ESCs serve as a bridge between battery and motors. It consumes most of the electric

power in battery cells. Remain power is used for Pixhawk autopilot card, sensors

and small water pump. In order to draw constant and proper current for electronics

system, Li-Po battery is selected as a power supply. It has been decided that a three

any linear force in the reverse thrust direction. With these assumptions are in mind,

different PWM values for the specific and measured battery voltage are applied to the

thrusters separately and thrust values are recorded. The recorded PWM values are

evaluated with battery voltage and for both thrusters, voltage versus thrust figures are

obtained. Considering that, in the test that thrusters work, both battery voltage values

and PWM values are recorded, corresponding voltage values applied to motors can

be found and input to the model. For left and right thrusters, linearly interpolated

thrust-voltage relation is given in the Figure 3.13.

Figure 3.13: Thrust-voltage relation

The experiments show that, battery voltage variation during the experiment cannot be

recorded due to data loss during experiment. The expected situation is that battery

voltage slightly falls during tests. Furthermore, it is seen that accuracy of linear force

gauge is "1 N". As a result, it is decided that for both left and right thrusters, two

parameters are included for the voltage thrust lookup table. It is assumed that there

can be maximum amount of 5% offset and 10% line scale up in the look-up tables.

These four parameters are also included in the list of parameters to be optimized.

These are named as LTO, LT S, ,RTO, RT S where L means left, TO and T S are thruster

offset and thruster scale.

52

Figure 6.4: Experimentally obtained thrusts (N) vs. applied voltage (V) plot [17].

104

Figure 6.5: Li-Po battery that provides electric power for all the system.

cells 3300 mAh, 11.1 V lithium-polymer (Li-Po) battery, in Fig. 6.5, is used for

experimental work.

6.2.2 Autopilot Board and Its External Components

Pixhawk R© 1 autopilot board whose software and hardware are open source has been

determined to conduct experiments. It may be used in commercial and scientific un-

manned systems due to its flexible and customizable hardware and software. Light-

weight, efficient and very stable NuttX, kind of real-time operating system (RTOS),

can efficiently perform real-time control system tasks without any need to compan-

ion computer. Software development is carried out in C/C++ programming language

with or without using an open source integrated development environment (IDE).

Pixhawk autopilot card can be seen in Fig. 6.6. Two hardware modules, named as

Flight Management Unit (FMU) and Input/Output (IO), are integrated for full system

functionality. FMU can be considered that it is the main component of the autopilot

Figure 6.6: A view of Pixhawk autopilot card [2].

105

card. All the programs, sensor fusion, control algorithms are operated on the FMU.

FMU includes an ARM Cortex-M4F micro-controller running at 168 MHz with DSP,

1024 KB (kilobyte) of flash memory and 192 KB of RAM. A 3 axis gyro (a L3GD20

by ST Microelectronics) for orientation, a 3 axis accelerometer and a 3 axis gyro (a

MPU-6000 by Invensense) for determining outside influences, a compass (magne-

tometer) combination of a accelerometer (a LSM303D by ST Microelectronics) for

heading and a barometric pressure sensor (a MS5611 by Measurement Specialities

Inc.) for determining altitude are the sensors that are located on the FMU. Following

physical interfaces are used for connectivity 1x I2C, 1x CAN, 4x UART.

IO module is the carrier board between FMU and other external devices and modules.

It contains its own 24 MHz cortex-M3 micro-controller and stacks. It has direct

battery input power supply which provides 5V stable DC and limits the current for

FMU. 8 high-speed servo PWM signal pins are available to drive motors. 2 solid

relays and a variety of PPM-SUM/SBUS input connectors are the other connectivity

part of the I/O module.

A group of peripherals is employed to perform communication, to obtain position and

altitude information from the GNSS system, to measure wind velocity, to activate and

deactivate the PWM outputs. A pair of 433 MHz, plug-and-play, 500 mW HKPilot

telemetry radios provides communication between the ground station and autopilot

card to send basic commands and MAVLink packets. A Ublox Neo-M8N GPS with

compass provides position and minimal acquisition times from GPS, GLONASS and

Galileo satellite systems with 10 Hz navigation update rate. External compass or mag-

netometer gives yaw angle information between autopilot and true North. JST-GH

MS4525DO digital airspeed sensor by mRo measures the wind velocity. Necessary

safety switch with an internal indicator LED is used for activating and deactivating

the PWM outputs. It can be so useful in case of emergency.

6.3 Software Architecture of the Pixhawk Autopilot Card

Pixhawk has a sophisticated software architecture, also known as (PX4), which can

be divided into four essential layers. All these layers can be seen in Fig 6.7. Lower

106

Flight Control

Embedded Hardware (MCU + sensors)

NuttX RTOS

Sensor Drivers Actuator Drivers

Object Request Broker (uORB)

State Estimation …

…

Fig. 2: The different layers of the software architecture make
the system horizontally and vertically modular.

publisher 2

process

publisher 1

serial port sensor

topic 1 topic 2
publish()

subscribe()subscribe()

read() read() or subscribe()

Fig. 3: A single process can subscribe (consume) and publish
multiple topics, allowing it to interface at different rates.

Our contribution consists of the PX4 middleware which
provides devices drivers and a micro object request broker
(µORB). The presented experimental results were obtained
using the PX4 flight stack, which is a selection of estimators
and controllers developed in close collaboration with the
open source community. All hardware plans and the complete
source code are available under a permissive BSD (software)
and CC-BY-SA license (hardware) on the project website
[14]. Although not formally certified, the system design
is oriented towards several industry standards: The device
drivers and operating system are modeled after the POSIX
[15] interface standards. The off-board communication is
using the commonly used MAVLink protocol [16]. The
onboard networking is following the UAVCAN standard
proposal [17].

A. µORB Middleware

The object request broker provides a data structure for data
distribution. It follows the one-to-many publish-subscribe
design pattern: A publisher wanting to share information
advertises a topic. A topic is defined as a semantic message
channel such as ’attitude’ or ’position’. A subscriber can
subscribe to a topic, and after the subscription is established
ask at his own pace for new data (polling), or be woken from
the thread sleep state at the instant new data is available. As
Fig. 3 depicts a process can be both publisher and subscriber
at the same time, and subscribe and publish to multiple
topics.

Our implementation of this design pattern has particular
strengths for realtime control applications:

• The topic handle is implemented as virtual file, allowing
listeners to do blocking waits on interfaces and drivers
(such as serial ports) and topics in parallel. This is
commonly not supported by middleware solutions but
saves a complete worker thread.

• The read-write lock of the publication allows efficient
concurrency and ensures atomic reads and writes of the
complete topic content.

• Subscribers can ask for a notification limit, allowing a
subscriber to receive the topic only every N millisec-
onds. This is important for the efficiency of high-rate
topics such as the 1KHz accelerometer updates.

• The asynchronous / blocking wait approach combined
with the task priority setup of the operating system
allows for minimal latency and deterministic scheduling
in the control pipeline. Low-priority tasks and high-
priority real time control tasks can be mixed.

B. Applications

Each state estimator and controller in the PX4 stack is
implemented as standalone application, which is started with
a main() function and then subscribes / publishes to different
topics. Applications can be started and stopped at runtime.

C. Work Queue and HRT Callbacks

For applications that repeatedly only execute one function,
such as device drivers, three different work queues to execute
callbacks are available: The low priority and high priority
work queues and the high resolution timer (HRT) callbacks.
The two work queues execute in the normal application
context, while the HRT callbacks operate in interrupt context
for time-critical functions. Work queue entries are part of
the normal scheduling and can access all operating system
interfaces, HRT callbacks should be kept as short as possible
and only support a subset of the OS API calls. However, HRT
callbacks can publish to µORB topics.

D. Companion Computer

As this system is designed as deeply embedded system,
the average robotic application will also provide a companion
computer, commonly running ROS on Linux [18][19][3]. We
not only offer a ROS interface for feedback and control,
but go one step further: Our framework supports the native
operation of nodes originally designed for the autopilot on
ROS. This is feasible as the node centered design of the
deeply embedded solution has the same architecture as on
a Linux platform. Therefore we also build our software-in-
the-loop simulation based on the ROS native port.

Figure 4 shows the architecture of the joint deeply embed-
ded + Linux setup. Some components are exclusive to one
of the platforms, e.g. the actuator drivers on the embedded
platform or e.g. a simultaneous localization and mapping
pipeline on the Linux system. Nodes that suit both envi-
ronments can be executed on either platform. This has the
particular benefit of allowing a proven version of a controller
to run on the safety-critical deeply embedded controller,
while testing a new version or different implementation on

Figure 6.7: Software layers of the PX4 [35].

two fragments constitute the first layer which consists of device drivers and specific

software for the micro-controller unit. The second layer is the real-time operating sys-

tem of the autopilot card which provides interfaces between upper and lower layers.

Micro object request broker (uORB) is included in the third layer to make efficient

interprocess communication. The uppermost fragment is the application layer for

customizable applications such as states estimation, flight control programs etc.

Besides the above explanations, there is a general robotic layer, which known as mid-

dleware that includes drivers of the sensors, uORB publish-subscribe message bus,

communication with the external peripherals and devices. Software architecture has

well adjusted three features. Its all functionality can be split into reusable compo-

nents. Internal communication between modules is done via asynchronous publish/-

subscribe messaging. It may handle an unpredictable workload.

Representation of PX4 software architecture with Middleware blocks and component

of the Motion Control stacks can be seen in Fig. 6.8. The upper part of the figure is the

Middleware, and the lower part indicates Motion Control (flight stack) blocks. Role of

the message bus, uORB, is to provide communications between each module with the

help of publish/subscribe messages. Parameters can be upload to autopilot via param

program card and saved to EEPROM/SD Card/ FLASH via logger program. Basic

commands which are sent from the ground station and information of the preferred

message which is sent to the ground station are fulfilled by using the mavlink program.

MAVLink block uses particular communication message frames to transmit data over

107

Storage

External
Connectivity Drivers

Motion Control

Parameters

param

EEPROM / SD Card /
FLASH

gps, compass

Message BusMAVLink

mavlink

via UART / UDP

Logging

logger

To SD Card or via
MAVLink

Program

surface_vehicle_control

Mixing and ESC / Servo
control

PWM (UART/CAN)

Raw IMU data,
Airspeed

Gyro data

Position
Setpoints

uORB

Guidance

guidance
(PurePursuit (PP))

Output Driver

mixer
(fmu/px4io)

Sensors Hub
sensors

Handle failover and
transform sensor data

Position & Attitude
Estimator

ekf2 (Extended
Kalman Filter)

IMU data,
Airspeed

State Machine

commander

Mode Switching /
Arming / ...

IMU Drivers

via SPI, UAVCAN, I2C

GNSS & Compass

accelerometer,
gyroscope,
barometer

Airspeed, Telemetry

GPS,
Optical
Flow,
Distance

Surge Speed
& Yaw Angle
References

Actuator
Control Commands

Surge Speed & Yaw
Angle Controller

controller
(Model Predictive
Control (MPC))

Figure 6.8: High-level software architecture designed in Pixhawk controller.

108

telemetry radio from/to ground station or autopilot card. Measurements of the sensors

are implemented with each sensor driver in the Drivers block.

Raw data of sensors from GPS, compass, accelerometer, gyroscope, barometer and

airspeed are sent to Sensor Hub, Position & Altitude Estimator and Surge Speed &

Yaw Angle Controller blocks which are in the Motion Control block for sensor fusion

and other purposes. In the Sensor Hub block, sensors data is transformed, and failover

is handled by the help of sensors program. This block gives proper and improved raw

data for estimation. Revised extended Kalman filter program, ekf2, processes mea-

surements of sensors by using the Estimation and Control Library (ECL) and gives

estimated quaternion, attitudes, linear and angular velocities, position and sensor bi-

ases in the North-East-Down and Global frame. All the information is shared with

related programs via uORB message packets. This program can also detect and report

significant and critical sensor failures to a user.

State Machine block is responsible for sending commands from the ground station to

Pixhawk board. There are lots of useful commands such as monitoring current RAM

and CPU usage of the autopilot card, starting/stopping motors, rebooting systems etc.

In this study, the commander program is also used for sending start/stop commands

to the user-defined surface_vehicle_control program. It also provides fast response

to stop motion in case of emergency. The surface_vehicle_control program starts a

constant time loop where pp_guidance and controller programs are called. Position

setpoints (way-points) and estimated local position in NED frame are taken as inputs

in the guidance program and are converted to reference surge speed and yaw angle.

The pure-pursuit method is employed to obtain references.

After, Surge Speed & Yaw Angle Controller which includes controller program block

produces actuator control inputs from reference values and estimated surge speed and

yaw angle of the vehicle. Heavy matrix calculations are done for the model predictive

controller by the aid of lightweight, dependency-free Matrix Library [1]. Its output

is applied torques for left and right thrusters. They are scaled in a range, [-1, 1],

by considering maximum and minimum torque values is obtained from Fig. 6.4.

Propellers turn in the backward direction when outputs in [-1, 0). Forward rotations

of the propeller are accomplished with actuator commands in (0, 1]. Propellers are

109

at the standstill position with 0 actuator commands. At the final stage, mixer program

converts control commands of actuators to PWM signals to drive motors.

6.4 Experimental Results

Experiments were done with model predictive control (MPC) and pure pursuit (PP)

guidance combination for forwarding motion. It can be shown in Fig. 6.9 that the

vehicle tries to track a path which is drawn with black line segments. These line

segments represent the shortest route. Path illustrated with red line shows the simu-

lation result. The path includes 9 way-points with varying size circle-of-acceptances

(CoAs). The experimental result is indicated by blue curvature path. It should be

noted that the experimental result and simulation are almost overlapping over most of

the motion.

Reference yaw angle, ψ̂, and vehicle’s yaw angle, ψ, are plotted in the Fig. 6.10. ψ̂

and ψ are represented by blue and red lines, respectively. The error between these two

variables is considerably small. This performance can also redound on the previous

Fig. 6.9. It should be noted that the experiment was done by using rope. Although

Figure 6.9: Motion of the vehicle during experiment in 2D represented in blue line.

110

Figure 6.10: Comparison between reference yaw angle ψ̂ and yaw angle of the vehi-

cle, ψ, during experiment

its effect so small, it can affect the system response when manoeuvres occur. When

the surface_vehicle_control program was run, the reason for starting time simulation

is between 40 and 50 is due to the timestamp of the autopilot card.

Figure 6.11: Comparison between reference surge speed û and surge speed of the

vehicle, u, during experiment

111

Surge speed tracking performance of the controller is pointed out in Fig. 6.11. The

blue colour plot indicates the reference surge speed, û, the red colour plot is the vehi-

cle’s surge speed, u during the motion. As it is seen in the figure, reference speed, û,

is given with lower values. In small surge speeds, bias values of the speed measure-

ments which comes from estimation (ekf2 program) could approach reference value.

It is hard to estimate surge speed in lower values due to biases on estimated linear ve-

locities. Also, using low-cost IMUs sometimes give untrusted measurements which

dramatically affect system behaviour. Keep in mind that this study was performed on

the first generation Pixhawk autopilot card.

Experimentally produced forces for thrusters are represented in Fig. 6.12. The max-

imum thrust value is taken 40 N while the minimum amount of torque is −40 N in

accord with Fig. 6.4. Duration of the control loop is determined by setting a sub-

scription interval of a uORB messages. This interval also implies the sampling rate.

It is shown in Fig. 6.13 that Pixhawk autopilot card performs well with 0.1 second

sampling rate which includes quite small jitters.

Pixhawk is capable of measuring current and voltage during the motion. These values

Figure 6.12: Applied left thrust and right thrust commands during the motion, respec-

tively.

112

Figure 6.13: Sampling times during the motion with small jitters.

are filtered by autopilot card to be able to observe smooth values. In Fig 6.14, current

and voltage values of the battery are demonstrated.

Figure 6.14: Voltage (V) vs. time (sec) and current (A) vs. time (sec) plots.

113

114

CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Summary and Remarks

The primary purpose of this thesis is to enhance full autonomy abilities of unmanned

surface vehicles. Essential parts of the study are guidance and controller chapters

utilized in the parallel docking (parking) problem. These comprise the structural ele-

ments of the motion control hierarchy. Desired docking path for the full autonomous

motion was obtained via the combination of optimal control and geometric approach.

The mathematical model with identified parameters which was successfully obtained

in [17], became important especially controller design. Kinematic equations with dy-

namic equations which were derived from Fossen’s vectorial model [19] established

nonlinear six-degrees-of-freedom (6-DOF) mathematical model. After broad liter-

ature surveys were done for modeling, it has been decided that the vectorial model

was the most appropriate one for controller design. First, kinematic relations between

body and NED (reference) frame were formulated to make a meaningful transforma-

tion between frames. The model includes the rigid body and added mass, Coriolis

and centripetal dynamics together for unmanned surface vehicles. Firstly, rigid body

dynamics were obtained by two different methods that are Newton-Euler and La-

grangian with Kirchoff’s equations. Then other external forces and moments that

come from damping, gravity, buoyancy and air drag phenomena acting on the vehi-

cle’s body were added to rigid body dynamics. Environmental forces and moments

which result from wave, wind, ocean current are also taken into consideration for

stability analysis. Some terms in the dynamic equations were neglected due to their

insignificant effect in the motion. The mathematical model was verified with MAT-

115

LAB simulations along had a series of test cases. So, the reliable mathematical model

was validated before controller design.

The following step was to derive guidance algorithms which are defined in the strate-

gic (organizational) level of the motion control hierarchy, in Fig. 3.1. Various guid-

ance algorithms in the literature were searched for solving parallel docking prob-

lem. Two of them which are reliable for autopilot design were implemented in real-

time and simulation purposes. Guidance algorithms produce reference yaw angle

and surge speed information from vehicle’s current planar position and related way-

point. Propellers of the vehicle have the capability of turning clockwise and counter-

clockwise directions. So reference surge speed can be produced either positive or

negative according to motion direction. First proposed guidance algorithm was line-

of-sight (LOS) guidance which directs the vehicle towards to line segment between

two consecutive way-points. The second algorithm, pure-pursuit (PP) guidance or

way-point guidance, were implemented to track path. Each method was compared

for measuring path tracking performances in parallel docking scenarios. It has ob-

served that LOS gives better results than PP guidance according to cross-track error

and energy consumption.

After obtaining reference surge speed and yaw angle, controllers have been investi-

gated and designed to realize motion of the vehicle. Two kinds of autopilot algo-

rithms, model predictive control (MPC) and cascaded PID were implemented. The

main purpose was to developed MPC which is more suitable than the PID controller

when system dynamics are considered to become powerful for autonomous applica-

tions. The second controller cascaded PID has been designed to make a comparison

with MPC. Tuned parameters of both controllers were obtained along an "S" shaped

curvature path. Adjustable variables of MPC were optimized in the defined range.

Particle swarm optimization method was utilized to find best cascaded PID param-

eters. The linearized mathematical model was used for the MPC method whereas

cascaded PID makes use of nonlinear system model. Path tracking and disturbance

rejecting performances were compared to each controller. It has predictably observed

that MPC has higher performance than cascaded PID even it was designed with the

linearized mathematical model.

116

Next stage was to define the problem of parallel docking which is also named as

manoeuvre planning for autonomous parallel parking. It was discussed in two steps.

In the first step, the vehicle reaches the parking side by making its orientation in

parallel with the port. The desired path was obtained by solving a constraint optimal

control problem according to an initial and final position, environmental constraints.

Then, it backwardly follows a set of way-points on the continuous-curvature path in

the second stage. The route between a parking and initial point of which backward

manoeuvres starts is formed from geometric methods. "S" shape 4 parameter logistic

continuous curvature equations are used for parallel docking. Combinations of the

previously defined controller and guidance algorithms were compared to determine

the best method. It has been observed that LOS guidance law derives the vehicle

closer to the reference trajectory and MPC performs better compared to cascaded

PID autopilot.

Finally, MPC controller and PP guidance methods are utilized in the motion control

hierarchy in hardware implementation with Pixhawk Flight controller card on the 1:40

scale Pacific Islander Tugboat. Due to harsh environmental conditions and limited

time, tests were done for only forward parallel parking in ODTÜ Yalıncak Gölet. It

was found out that vehicle’s path following performance is adequate for this guidance

and autopilot combination. All mathematical calculations were done in the control

loop for the considerably small sampling time meanwhile other background processes

like sensor fusion, publishing/subscribing data etc. were executed in real-time.

I learned lots of useful knowledge during the thesis study. It was so challenging how

to make a vehicle autonomous for an intended purpose. Determination of the guid-

ance algorithms and their implementation for real-time problem made this study dif-

ficult especially at angle changes of discontinuous functions. Other challenging work

was to design an embedded real-time model predictive controller which includes high

dimension matrices multiplication, summation and inversion. Experimental work was

implemented with low cost, open source and error-prone hardware and software.

117

7.2 Future Works

This study covers the parallel docking of an unmanned surface vehicle by the help of

way-point generation, guidance and controller design based on a derived mathemat-

ical model. Although all the proposed methods were implemented in the simulation

environment, only the combination of MPC and PP guidance was executed for exper-

imental study.

As future works, the following studies can be done:

• Tests were done in the large reservoir lake. An open olympic pool can be a

good choice to fulfil parallel docking which includes backward motion. So,

other controller and guidance combination can be easily achieved.

• Thrust - PWM (pulse with modulation) characteristics of each motor are not

known very well. By obtaining a relation between thrust and PWM, more reli-

able autonomous tasks may be achieved.

• It should be noted that updating hardware such as IMUs, GNSS receiver, com-

pass, autopilot cards and their software will improve future experimental re-

sults. It is expected that enhancing the vehicle with extra positioning sensors

makes a significant contribution to update state information.

More complex autonomous tasks can be performed with many USVs. In these days,

a collaboration between many unmanned vehicles becomes a hot topic in the control

area. These works could be achieved via proven hardware and software, such as

ROS (Robot Operating System), MAVROS (Micro Aerial Vehicle Robot Operating

System), Dronecode SDK (Software Development Kit) etc.

118

REFERENCES

[1] Leightweight, dependency free matrix library. https://github.com/

PX4/Matrix, 2018. [Online; accessed 25-July-2018].

[2] Pixhawk 1 flight controller. https://docs.px4.io/en/flight_

controller/pixhawk.html, 2018. [Online; accessed 21-March-2018].

[3] International regulations for prevention of collisions at sea. http://www.

jag.navy.mil/distrib/instructions/COLREG-1972.pdf, 22

September 2009. [Online; accessed 13-October-2018].

[4] K. Ahıska. Control and guidance of an unmanned sea surface vehicle. Master’s

thesis, Middle East Technical University, September 2012.

[5] M. Azzeri, F. Adnan, and M. Zain. Review of course keeping control system

for unmanned surface vehicle. Jurnal Teknologi, 74(5):11–20, 2015.

[6] M. S. Bazaraa, H. D. Sherali, and C. Shetty. Nonlinear Programming: Theory

and Algorithms. 2006.

[7] S. P. Berge and T. I. Fossen. On the Properties of the Nonlinear Ship Equa-

tions of Motion. Mathematical and Compuer Modelling of Dynamical Systems,

6(4):365–381, 2000.

[8] M. Bibuli, M. Caccia, L. Lapierre, and G. Bruzzone. Guidance of unmanned

surface vehicles: Experiments in vehicle following. IEEE Robotics Automation

Magazine, 19(3):92–102, Sep. 2012.

[9] M. Breivik. Nonlinear maneuvering control of underactuated ships. Master’s

thesis, Norwegian University of Science and Technology, June 2003.

[10] M. Breivik, V. E. Hovstein, and T. I. Fossen. Straight-Line Target Tracking for

Unmanned Surface Vehicles. Modeling, Identification and Control, 29(4):131–

149, 2008.

119

https://github.com/PX4/Matrix
https://github.com/PX4/Matrix
https://docs.px4.io/en/flight_controller/pixhawk.html
https://docs.px4.io/en/flight_controller/pixhawk.html
http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf
http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf

[11] A. W. Browning. A mathematical model to simulate small boat behaviour. PhD

thesis, Bournemouth Polytechnic (University), October 1990.

[12] M. Caccia, M. Bibuli, R. Bono, and G. Bruzzone. Basic navigation, guidance

and control of an unmanned surface vehicle. Autonomous Robots, 25(4):349–

365, Nov 2008.

[13] S. Campbell, W. Naeem, and G. Irwin. A review on improving the autonomy of

unmanned surface vehicles through intelligent collision avoidance manoeuvres.

Annual Reviews in Control, 36(2):267 – 283, 2012.

[14] I. Ç. Yılmaz, K. Ahıska, and M. K. Leblebicioğlu. Parallel docking problem for

unmanned surface vehicles. In 2018 15th International Conference on Control,

Automation, Robotics and Vision (ICARCV), pages 744–749, Nov 2018.

[15] J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley

series in electrical and computer engineering: control engineering. Pearson-

/Prentice Hall, 1989.

[16] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine

and Human Science, pages 39–43, Oct 1995.

[17] I. K. Erünsal. System Identification and Control of a Sea Surface Vehicle. Mas-

ter’s thesis, Middle East Technical University, September 2015.

[18] I. K. Erunsal, K. Ahıska, M. Kumru, and M. K. Leblebicioğlu. An approach for

system identification in unmanned surface vehicles. In 2017 17th International

Conference on Control, Automation and Systems (ICCAS), pages 194–199, Oct

2017.

[19] T. Fossen and J. Gravdahl. Marine Control Systems: Guidance, Navigation and

Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, 2002.

[20] T. I. Fossen. Nonlinear modelling and control of underwater vehicles. PhD

thesis, Norwegian Institute and Technology, June 1991.

[21] T. I. Fossen. Guidance and Control of Ocean Vehicles, 1994.

120

[22] T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.

2011.

[23] T. I. Fossen, M. Breivik, and R. Skjetne. Line-of-sight path following of under-

actuated marine craft. IFAC Proceedings Volumes, 36(21):211 – 216, 2003. 6th

IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC 2003),

Girona, Spain, 17-19 September, 1997.

[24] T. I. Fossen and O.-E. Fjellstad. Nonlinear modelling of marine vehicles in

6 degrees of freedom. Mathematical and Computer Modelling of Dynamical

Systems, 1(1):17–27, 1995.

[25] P. D. Groves. Principles of GNSS Inertial and Multi-Sensor Integrated Naviga-

tion Systems - GNSS Technology and Applications. 2008.

[26] F. Haugen. Advance Dynamics and Control. 2010.

[27] F. H. Imlay. The complete expressions for added mass of a rigid body moving

in an ideal fluid.

[28] K. D. Do, J. P. Control of Ships and Underwater Vehicles. 2009.

[29] M. Kumru. Navigation and Control of an Unmanned Sea Surface Vehicle. Mas-

ter’s thesis, Middle East Technical University, September 2015.

[30] M. Kumru, M. K. Leblebicioğlu, I. K. Erünsal, and K. Ahıska. A survey on

tactical control algorithms for path tracking unmanned surface vehicles. In

2016 14th International Conference on Control, Automation, Robotics and Vi-

sion (ICARCV), pages 1–6, Nov 2016.

[31] Z. Li and J. Sun. Disturbance compensating model predictive control with ap-

plication to ship heading control. IEEE Transactions on Control Systems Tech-

nology, 20(1):257–265, Jan 2012.

[32] Z. Liu, Y. Zhang, X. Yu, and C. Yuan. Unmanned surface vehicles: An overview

of developments and challenges. Annual Reviews in Control, 4:71 – 93, 2016.

[33] J. E. Manley, A. Marsh, W. Cornforth, and C. Wiseman. Evolution of the au-

tonomous surface craft autocat. In OCEANS 2000 MTS/IEEE Conference and

121

Exhibition. Conference Proceedings (Cat. No.00CH37158), volume 1, pages

403–408 vol.1, Sep. 2000.

[34] MATLAB. Genetic algorithm. https://www.mathworks.com/

help/gads/genetic-algorithm.html, 2018. [Online; accessed 13-

September-2018].

[35] L. Meier, D. Honegger, and M. Pollefeys. Px4: A node-based multithreaded

open source robotics framework for deeply embedded platforms. In 2015 IEEE

International Conference on Robotics and Automation (ICRA), pages 6235–

6240, May 2015.

[36] A. Motwani, S. Sharma, R. Sutton, and P. Culverhouse. Interval kalman filter-

ing in navigation system design for an uninhabited surface vehicle. Journal of

Navigation, 66:639–652, 09 2013.

[37] N.A. Shneydor. Missile Guidance and Pursuit: Kinematics, Dynamics and Con-

trol. 1998.

[38] W. Naeem, R. Sutton, and T. Xu. An integrated multi-sensor data fusion al-

gorithm and autopilot implementation in an uninhabited surface craft. Ocean

Engineering, 39:43–52, 2012.

[39] N. H. Norrbin. Theory and observations on the use of a mathematical model for

ship manoeuvring in deep and confined waters. Proceedings of the 8th Sympo-

sium on Naval Hydrodynamics, page 123, 01 1971.

[40] S.-R. Oh and J. Sun. Path following of underactuated marine surface ves-

sels using line-of-sight based model predictive control. Ocean Engineering,

37(2):289–295, 2010.

[41] D. Pearson, E. An, M. Dhanak, K. von Ellenrieder, and P. Beaujean. High-level

fuzzy logic guidance system for an unmanned surface vehicle (usv) tasked to

perform autonomous launch and recovery (alr) of an autonomous underwater

vehicle (auv). In 2014 IEEE/OES Autonomous Underwater Vehicles (AUV),

pages 1–15, Oct 2014.

122

https://www.mathworks.com/help/gads/genetic-algorithm.html
https://www.mathworks.com/help/gads/genetic-algorithm.html

[42] A. Pereira, J. Das, and G. S. Sukhatme. An experimental study of station keep-

ing on an underactuated asv. In 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3164–3171, Sep. 2008.

[43] A. M. Rothblum. Human error and marine safety. in US Coastguard Research

and Development Centre, pages 1 – 10.

[44] S. Sagatun and T. Fossen. Lagrangian formulation of underwater vehicles’ dy-

namics. Conference Proceedings 1991 IEEE International Conference on Sys-

tems, Man, and Cybernetics, pages 1–6, 1991.

[45] D. Simon. Evolutionary Optimization Algorithms. Wiley, 2013.

[46] R. Skjetne, T. I. Fossen, and P. V. Kokotović. Robust output maneuvering for a

class of nonlinear systems. Automatica, 40(3):373–383, March 2004.

[47] R. Skjetne, O. N. Smogeli, and T. I. Fossen. A Nonlinear Ship Manoeuvering

Model: Identification and adaptive control with experiments for a model ship.

Modeling, Identification and Control, 25(1):3–27, 2004.

[48] SNAME The Society of Naval Architects and Marine Engineers. Nomenclature

for treating the motion of a submerged body through a fluid, 1950.

[49] K. J. Åström and T. Hägglund. Advanced PID Control. ISA - The Instrumenta-

tion, Systems and Automation Society, 2006.

[50] S. Upadhyay and A. Ratnoo. A point-to-ray framework for generating smooth

parallel parking maneuvers. IEEE Robotics and Automation Letters, 3(2):1268–

1275, April 2018.

[51] K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. A. Demetriou.

Control architectures for autonomous underwater vehicles. IEEE Control Sys-

tems Magazine, 17(6):48–64, Dec 1997.

[52] A. Visioli. Practical PID Control. Advances in Industrial Control. Springer

London, 2006.

[53] L. Wang. Model Predictive Control System Design and Implementation Using

MATLAB. 2011.

123

[54] Wikipedia. atan2. https://en.wikipedia.org/wiki/Atan2, 2018.

[Online; accessed 21-March-2018].

[55] H. Zheng, R. R. Negenborn, and G. Lodewijks. Trajectory tracking of au-

tonomous vessels using model predictive control. IFAC Proceedings Volumes,

47(3):8812 – 8818, 2014. 19th IFAC World Congress.

124

https://en.wikipedia.org/wiki/Atan2

APPENDIX A

GUIDANCE DERIVATION

A.1 Calculation of pLOS From LOS Equations

To be able to found an analytic solution for pLOS , distance in x axis, ∆x = xw−xw−1,

and y axis, ∆y = yw − yw−1, of two consecutive way point pw and pw−1 must be

known [9]. Solution includes two cases according to ∆x which can be either ∆x = 0

or |∆x| > 0.

A.1.1 Case 1: ∆x = 0

In this case, slope of the straight line between pw−1 and pw becomes infinity. From

this condition it can be written as xLOS = xw = xw−1. (3.4) is invalid due to the

fraction term. Then, (3.4) is rewritten to solve yLOS[k] as follows:

(yLOS[k]− y[k])2 = (nLpp)
2. (A.1)

(A.1) results in yLOS[k] = y[k]± nLpp. For forward motion, selection of yLOS[k] has

two criteria,

• If ∆y > 0, then yLOS[k] = y[k] + nLpp.

• If ∆y < 0, yLOS[k] = y[k]− nLpp.

For backward motion,

• If ∆y > 0, then yLOS[k] = y[k]− nLpp.

• If ∆y < 0, yLOS[k] = y[k] + nLpp.

125

A.1.2 Case 2: ∆x > 0

Linear algebraic equation of the straight line between two sequential way-points is

written as

yLOS[k] = (
∆y

∆x
)(xLOS[k]− xw−1) + yw−1 (A.2)

or

yLOS[k] = (
∆y

∆x
)(xLOS[k]− xw) + yw. (A.3)

From now on, slope of above line equations is denoted by, d =
∆y

∆x
, x and y axis

components are simply represented by e = xw−1 and f = yw−1, respectively. Using

these relation, square of (A.2) is written

y2
LOS[k] = ((

∆y

∆x
)(xLOS[k]− xw−1) + yw−1)2

= (dxLOS[k] + (f − de))2

= (dxLOS[k] + g)2

= d2x2
LOS[k] + 2dgxLOS[k] + g2 (A.4)

where g is intended to simply show (f − de) in above equation. Now other relation

for yLOS[k]2 comes from (3.3) by explicitly writing it:

(xLOS[k]− x[k])2 + (yLOS[k]− y[k])2 = x2
LOS[k]− 2xLOS[k]x[k] + x2[k]

+ y2
LOS[k]− 2yLOS[k]y[k] + y2[k] = (nLpp)

2 (A.5)

By rewriting the term 2yLOS[k]y[k] = 2y[k](dxLOS[k] + g) and using the above (A.4)

and (A.5), second order hyperbolic equation is stated with only one unknown which

is xLOS[k], [9]:

(1 + d2)x2
LOS[k] + 2(dg − dy − x[k])xLOS[k]

+ x2[k] + y2[k] + g2 − (nLpp)
2 − 2gy[k] = 0 (A.6)

Coefficients of ax2
LOS[k] + bxLOS[k] + c = 0 is represented by

a = 1 + d2

b = 2(dg − dy − x[k])

c = x2[k] + y2[k] + g2 − (nLpp)
2 − 2gy[k]

126

Solution of (A.6) is written in well-known from as

xLOS[k] =
−b±

√
b2 − 4ac

2a
. (A.7)

To find a point on line segment between two sequential way-points,
√
b2 − 4ac > 0

must be satisfied. This is only provided choosing a reasonable nLpp value. If solution

is not exist, then n is carefully increased until finding valid solution. There exists two

possible solutions for forward motion:

• If ∆x > 0, then xLOS[k] =
−b+

√
b2 − 4ac

2a
.

• If ∆x < 0, then xLOS[k] =
−b−

√
b2 − 4ac

2a
.

xLOS[k] is obtained for backward motion

• If ∆x > 0, then xLOS[k] =
−b−

√
b2 − 4ac

2a
.

• If ∆x < 0, then xLOS[k] =
−b+

√
b2 − 4ac

2a
.

After xLOS[k] is obtained from above parabolic (or second order polynomial) equa-

tion, yLOS[k] can be simply obtained from (A.2) or (A.5).

A.2 Computation of Continuous Reference Yaw Angle

As it can be seen in Fig. A.1, atan2(,) takes ∆x and ∆y which are defined previous

section and gives yaw angle of interested LOS guidance method. For PP guidance,

it is defined that ∆x = xw − x[k] and ∆y = yw − y[k], ∆x = x[k] − xw] and

∆y = y[k] − yw for backward motion. ψnow = atan2(∆y,∆x) represent the LOS

or PP angle in time step [k]. Then mapping from [−π, π] to (−∞,∞) is handled.

Mapping offers a solution to discontinuity issue at the −π or π junction. To be able

to make mapping, extra variables state and ψlast are needed. state is the information

where yaw angle produced by guidance law at previous sampling time. It can be

thought that state keeps the information of atan2(,) function by utilizing one of the

four values described in unity circle in Fig. A.2.

127

atan2(,) function

∆x ∆y

mapping from

[−π, π] to (−∞,∞)

reference
model

mapping from

(−∞,∞) to [−π, π]

ψLOS [k]

∈ [−π, π]

∈ (−∞,∞)

ψ[k] ∈ (−∞,∞)

ψd[k] ∈ [−π, π]

ψPP [k]
or

or

ψLOS [k]

ψPP [k]

Figure A.1: Process for obtaining continuous desired yaw angle.

For mapped desired guidance angle, last variable accumulation which represents

the changes from beginning of motion is also be needed. So, reference model can

be fed via continuous angle. It is worthy of note that, all these defined variables

for continuous mapping must be taken as zero when control loop starts. The Guide

Rule computes the accumulate variables that indicates angular change from ψlast to

ψnow in each sampling time [9]. It should be kept in mind that following relation,

accumulate = ψnow − ψlast, is not always valid due to the −π/π discontinuity. So,

memory variable accumulation needs to preserves angle information when jumps

occur. This relation is formulated as accumulation = accumulation+accumulate.

Unity circle defined in A.2 is divided into four quadrant how to determine state vari-

able which takes value from 1 to 4. It means that results atan2(,) function has a

relation with corresponding state. Furthermore, each state case is divided into four

instances due to the changes from ψlast to ψnow. So there are 16 possible and 1 true

accumulation calculation to update it in each sampling time. These 16 possible up-

128

X axis

Y axis

state = 1

state = 2state = 3

state = 4

angle ∈ < 0, π2 >

angle ∈ < 0,−π
2 >angle ∈ < −π

2 ,−π >

angle ∈ < π
2 , π >

Figure A.2: state and angle information on unity circle

dates are listed below from state = 1 to state = 4 by using Table A.1.

• if(current_state == 1) which means sgn(∆y) = 1 and sgn(∆x) = 1

if(prev_state == 1 or prev_state == 2 or prev_state == 4)

accumulate = ψnow − ψlast
else if(prev_state == 3)

if((ψnow + abs(ψlast)) ≤ π)

accumulate = ψnow − ψlast
else

accumulate = (
π

2
− ψlast) +

π

2
+ (π + ψnow)

= ψnow − ψlast + 2π

end

end

prev_state = 1

• else if(current_state == 2) which means sgn(∆y) = −1 and sgn(∆x) = 1

if(prev_state == 1 or prev_state == 2 or prev_state == 3)

accumulate = ψnow − ψlast
else if(prev_state == 4)

129

Table A.1: Relation between state and unity circle quadrants by using ∆x and ∆y.

sgn(∆y) sgn(∆x) Quadrant

1 1 1

−1 1 2

−1 −1 3

1 −1 4

if((abs(ψnow) + ψlast) ≤ π)

accumulate = ψnow − ψlast
else

accumulate = (
π

2
+ ψlast) +

π

2
+ (π − ψnow)

= ψlast − ψnow + 2π

end

end

prev_state = 2

• else if(current_state == 3) which means sgn(∆y) = −1 and sgn(∆x) = −1

if(prev_state == 2 or prev_state == 3)

accumulate = ψnow − ψlast
else if(prev_state == 4)

accumulate = −(π + ψlast)− (π − ψnow)

= ψnow − ψlast − 2π

else

if((abs(ψnow) + πlast) ≤ π)

accumulate = ψnow − ψlast
else

accumulate = (π + ψlast) +
π

2
+ (

π

2
− ψnow)

= ψlast − ψnow + 2π

end

end

prev_state = 3

130

• else if(current_state == 4) which means sgn(∆y) = 1 and sgn(∆x) = −1

if(prev_state == 1 or prev_state == 4)

accumulate = ψnow − ψlast
else if(prev_state == 2)

if(abs(ψnow) + πlast) ≤ π)

accumulate = ψnow − ψlast
else

accumulate = (π − ψlast) +
π

2
+ (

π

2
+ ψnow)

= ψnow − ψlast + 2π

end

else

accumulate = (π − ψlast) + (π + ψnow)

= ψnow − ψlast + 2π

end

prev_state = 4

end

accumulation← accumulation+ accumulate

(prev_state← current_state)

(ψlast ← ψnow)

Only one accumulation value is calculated from 16 possible equations according to

∆y, ∆x and prev_state value, i.e. accumulation = accumulation + accumulate.

Previous state, prev_state, variable is updated with current state, current_state,

variable for next sampling time, (prev_state ← current_state). In order to track

angle change, calculated yaw angle from atan2(,) function is also updated: (ψlast ←
ψnow). At the end, mapping from [−π, π] to (−∞,∞) is obtained.

Continuous mapped reference yaw angle, which is obtained as accumalation vari-

able, is filtered to limit this angle in the vehicle heading dynamics by using nonlinear

(reference) model. This angle is also filtered through reference model to get rid of

higher order derivatives (high frequency components) of the reference signal [19].

So, desired reference angle in continuous domain, ψ[k] ∈ (−∞,∞), is handled.

In the last step, continuous filtered desired yaw angle at time k, ψ[k] should be

131

mapped back from (−∞,∞) to discontinuous region which is defined in (−π, π).

So angle information is transformed from high information region to lower informa-

tion region. There is no need to utilize state and memory variables in this instance.

Reverse mapping algorithm is fulfilled in two steps as follows. First integer number,

n, is obtained, later mapped yaw angle, ψd[k] ∈ (−π, π), is calculated by using this

number.

• Determination of number of 2π for continuous desired yaw angle, ψ[k]

if (sgn(ψ[k]) > 0)

n =

⌊
ψ[k]

π

⌋
/* floor function calculation */

else if(sgn(ψ[k]) < 0)

n =

⌈
ψ[k]

π

⌉
/* ceil function calculation */

else

n = 0

end

remainder = n (mod 2) /* modulo operation of n */

• Determination of ψd[k] variable

if (remainder == 0)

ψd[k] = ψ[k] − n ∗ π
else /* remainder is not equal to zero*/

if (sgn(remainder) > 0)

ψd[k] = ψ[k] − (n+ 1) ∗ π
else /* sign of remainder is smaller than zero*/

ψd[k] = ψ[k] − (n− 1) ∗ π
end

end

So, continuous yaw angle, ψ[k], is mapped to discontinuous desired yaw angleψd[k] ∈
[−π, π]. ψd[k] has importance for simulation and real-time implementation because

of the fact that yaw angle is generally calculated in the region of [−π, π].

132

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation of the Study
	Literature Review
	Outline of the Dissertation

	MATHEMATICAL MODELING OF A SEA SURFACE VEHICLE
	Introduction
	Vectorial Model
	Kinematics
	Coordinate Frames and Notations
	Transformations
	Linear Velocity Transformation
	Angular Velocity Transformation
	6 DoFs Kinematic Equations

	Rigid Body Dynamics
	Translational Motion about CG
	Rotational Motion about CG
	Translational and Rotational Motion about CO

	Added Mass Dynamics
	Hydrodynamic Damping Forces
	Restoring Forces
	Thruster Forces
	Air Drag Forces
	Environmental (Disturbance) Forces
	Implementation
	Simulation Results
	Case study: Zero Input – Zero Initial State
	Case study: Zero Input – Nonzero Initial State
	+10 Degrees Roll Rotation
	+10 Degrees Pitch Rotation
	-0.1 Meter Submersion of the Vehicle in Fluid

	Case study: Nonzero Input – Zero Initial State
	Equal Thruster Inputs – Zero Initial States
	Non equal Thruster Inputs – Zero Initial States

	GUIDANCE
	Introduction
	Guidance Laws
	Line-of-Sight (LOS) Guidance
	Pure-Pursuit (PP) Guidance

	CONTROLLER (AUTOPILOT) DESIGNS OF THE UNMANNED SURFACE VEHICLE
	Introduction
	Preliminary Work Before Autopilot Design
	Linearization of the Nonlinear System
	Determination of the Appropriate Sample Time

	Model Predictive Control
	Discrete-time State-Space Model with Embedded Integrator
	Optimization Problem
	Constraints of the Optimization Problem

	Numerical Solution of Quadratic Programming for MPC
	Primal-Dual Method

	MPC Parameters Tuning

	Cascaded PID Controller
	Particle Swarm Optimization
	Tuning of the Cascaded PID Controller Parameters

	Comparison Between MPC and Cascaded PID Controllers

	PARALLEL DOCKING PROBLEM FOR UNMANNED SURFACE VEHICLES
	Introduction
	Problem Definition
	Entrance to Parking Site
	Optimal Path Between ps and pf for Forward Docking Maneuver
	Solution of the Optimal Control Problem
	Scenario I
	Scenario II

	Backward Docking Maneuver
	Results

	EXPERIMENTAL SETUP AND RESULTS
	Introduction
	Physical Components and Hardware
	Model Boat and Its Components
	Autopilot Board and Its External Components

	Software Architecture of the Pixhawk Autopilot Card
	Experimental Results

	CONCLUSION AND FUTURE WORKS
	Summary and Remarks
	Future Works

	REFERENCES
	GUIDANCE DERIVATION
	Calculation of LOS point from LOS Equations
	Case 1
	Case 2

	Computation of Continuous Reference Yaw Angle

