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ABSTRACT 

 

OPTIMIZATION APPROACHES FOR CLASSIFICATION AND FEATURE 

SELECTION USING OVERLAPPING HYPERBOXES 

 

Akbulut, Derya 

Doctor of Philosophy, Industrial Engineering 

Supervisor: Prof. Dr. Nur Evin Özdemirel  

Co-Supervisor: Assoc. Prof. Dr. Cem İyigün  

February 2019, 191 pages 

 

In this thesis, an optimization approach is proposed for the binary classification 

problem. A mixed integer programming (MIP) model formulation is used to generate 

hyperboxes as classifiers.  The hyperboxes are determined by lower and upper bounds 

on the feature values, and overlapping of hyperboxes is allowed to reach a balance 

between misclassification and overfitting. For the test phase, distance-based heuristic 

algorithms are also developed to classify the overlap and uncovered samples that are 

not classified by the hyperboxes. A matheuristic, namely Hyperbox Classification for 

Binary classes (HCB), is developed based on the MIP formulation. In each iteration 

of the HCB algorithm, a fixed number of hyperboxes are generated using the MIP 

model, and unclassified sample size is reduced by a hyperbox trimming algorithm. 

Although HCB controls the number of hyperboxes in a greedy manner, it provides an 

overall hyperbox configuration with no misclassification at the end of the training 

phase. HCB is extended as HCB-f with the addition of feature selection property. 

Starting with a single feature, HCB-f inserts features and hyperboxes to the model 

iteratively. When the algorithm terminates, only the set of inserted features are used 

for classification, hence they are selected.  

Keywords: Classification, feature selection, hyperbox, binary class, data mining  
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ÖZ 

 

SINIFLANDIRMA VE ÖZELLİK SEÇİMİ İÇİN ÖRTÜŞEBİLEN HİPER 

KUTU KULLANAN OPTİMİZASYON YAKLAŞIMLARI  

 

Akbulut, Derya 

Doktora, Endüstri Mühendisliği 

Tez Danışmanı: Prof. Dr. Nur Evin Özdemirel  

Ortak Tez Danışmanı: Doç. Dr. Cem İyigün 

Şubat 2019, 191 sayfa 

 

Bu tezde, ikili sınıflandırma problemleri için bir optimizasyon yaklaşımı önerilmiştir. 

Sınıflandırıcı olarak hiper kutu oluşturmak için karma tamsayılı programlama (KTP) 

model formülasyonu kullanılmıştır. Hiper kutular, özellik değerlerinin alt ve üst 

sınırlarından oluşur. Kutuların örtüşmesine izin verilerek, hatalı sınıflandırma ile aşırı 

uyum arasında bir denge oluşturulmaya çalışılmıştır. Test aşaması için, kutuların 

örtüşen alanlarına düşen veya kutularla kapsanmayan örnekleri sınıflandırmak için 

mesafeye dayalı sezgisel algoritmalar da geliştirilmiştir. İkili sınıflar için hiper kutu 

sınıflandırması yöntemi olarak, KTP formülastonuna dayanan bir matematiksel 

sezgisel (HCB) geliştirilmiştir. HCB algoritmasının her aşamasında, KTP modeli 

kullanılarak hiper kutu(lar) üretilir ve sınıflandırılmamış örnek sayısı geliştirilen kutu 

kırpma algoritmasıyla azaltılır. HCB hiper kutu sayısını obur sezgisel yöntemle 

kontrol etmesine rağmen, öğrenme aşaması sonunda hatasız bir hiper kutu 

yapılandırması sağlar. HCB algoritmasına özellik seçimi kabiliyetinin de 

eklenmesiyle, HCB-f geliştirilmiştir. HCB-f algoritması tek bir özellik kullanımıyla  

başlayarak, modele her yinelemede yeni hiper kutu(lar) ya da yeni bir özellik dahil 

eder. Algoritma sonlandığında, özellikler seçilmiş olur.  

Anahtar Kelimeler: Sınıflandırma, özellik seçimi, hiper kutu, ikili sınıflandırma, veri 

madenciliği  
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CHAPTER 1  

 

1. INTRODUCTION 

 

Data mining, by the most general definition, is the effort to extract valuable knowledge 

from a dataset. In the early 1980’s, the term ‘data mining’ was initially used for the 

studies on the analysis of some experimental data, especially for regression analysis, 

as in the study of Lovell (1982). Today, with the accelerated developments in 

computing, the amount of data waiting to be transformed into knowledge has 

extremely increased in almost every field, such as engineering, medicine, finance, and 

so on. Data mining is now a research area in its own right, which covers the learning 

techniques for extracting knowledge.  

Learning in data mining can mainly be performed as unsupervised or supervised 

learning. In unsupervised learning, the information is tried to be extracted from the 

data, without any prior knowledge. For example, in clustering, which is an 

unsupervised learning technique, the problem is partitioning the dataset into groups, 

without any information on the number or characteristics (labels) of the groups. On 

the other hand, in supervised learning, prior information on the data labels is available. 

Here, the aim is to learn the rules/conditions/formulations from the data, which would 

lead to the given prior information.  

Classification is a supervised learning technique in data mining. The dataset in a 

classification problem consists of samples that are described in terms of features, 

where each sample belongs to a known class. The aim is learning the relationship 

between the features and the classes, and then expressing this relationship as a 

classifier in order to predict the class of a newly observed sample.  

Traditionally, the classification problem is attacked by heuristic methods of machine 

learning such as classification trees. Although several optimization approaches have 

also been developed, optimization techniques of operations research, in particular 

mathematical programming, have so far remained unexplored in this area. The main 



 

 

 

2 

 

purpose of this study is to develop such new optimization approaches for the 

classification problem. 

Developments in data collection and computer storage result in datasets having a large, 

sometimes even huge, number of features potentially useful for classification. 

However, many a time, only a small subset of these features is found to be sufficient 

to correctly classify the samples in a dataset. This study also aims at developing 

optimization methods for selecting the features that are needed for classification.  

The main objective of the study is to classify new samples correctly. However, 

extracting the relationships from the data may not be sufficient for developing a good 

classifier. In some cases, the relationships can be modeled and the model may 100 

percent correctly determine the class labels of samples in the given data. However, the 

same model may misclassify a newly observed sample. This may occur because the 

developed model is excessively dependent on the given data and not general enough 

to correctly classify new samples. This situation is called overfitting. In order to deal 

with overfitting, classification is performed in two main phases, namely training and 

testing. The dataset is divided into two subsets as the training dataset and the testing 

dataset (class labels are known in both subsets). In the first phase, classification is 

performed on the training dataset, and the classifier is extracted. In the second phase, 

the classifier is applied to the testing dataset.  If the classifier performs well on the 

training dataset, but not so well on the testing dataset, then the model may be 

overfitting the data. For a good classification method, the classifier must perform well 

on both training and testing datasets. For this, it should occasionally allow overlapping 

regions allocated to classes in feature space. Samples that fall into such overlapping 

regions cannot (and should not) be classified with certainly using the classifier. 

In this study, optimization approaches based on dividing the numerical feature space 

into hyperboxes are proposed for the classification problem. To begin with, based on 

the training dataset, an initial mixed integer programming (MIP) model, Model-MOB, 

extracts the information on the minimum and the maximum values of features for each 

class, thereby defining the hyperboxes. Model-MOB minimizes the weighted sum of 

the number of misclassified samples, the number of overlap samples, and the number 

of hyperboxes used for classification. This model not only minimizes the 
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misclassification of samples, but also tries to keep a balance between misclassification 

and overfitting. It also facilitates selection of features that play a significant role in 

determination of the class labels. 

Model-MOB is successful in classification of small datasets. However, due to high 

computational complexity, it cannot be solved to optimality for large datasets within 

reasonable times. Best solutions reached within limited time result in low 

classification accuracy. To deal with this problem, an alternative formulation, Model-

MO is proposed. The main difference of this model from Model-MOB is that Model-

MO minimizes only the number of misclassified samples and the number of overlap 

samples, by the help of pre-allocation of hyperboxes to the classes. Although Model-

MO outperforms Model-MOB, the allocation of hyperboxes is critically important to 

keep a balance between the classification quality and the run time complexity. 

Therefore, a matheuristic algorithm is developed, which iteratively uses Model-MO 

to classify binary class datasets. Analyzing the preliminary results obtained by this 

matheuristic, it is seen that hyperbox allocation decisions and sample-to-hyperbox 

assignment constraints have some drawbacks on the results. Thus, for the final version 

of the matheuristic, namely Hyperbox Classification of Binary classes (HCB), a new 

model, Model-MOU is proposed and hyperbox allocation decisions are revised. 

Model-MOU does not enforce a sample to be assigned to a hyperbox, but it minimizes 

the number of unassigned samples in the objective function. 

The main idea of HCB matheuristic is adding new hyperboxes into the model 

whenever they are needed, instead of introducing a large set of hyperboxes from the 

beginning. In each iteration, Model-MOU is solved with a free hyperbox for each class 

to which samples can be assigned. Based on the model results, hyperbox(es) are 

trimmed such that no misclassified samples are contained in them. Constraints for 

sample-to-hyperbox assignments and hyperbox boundaries of the trimmed 

hyperbox(es) found in the current iteration are inserted into the Model-MOU for the 

next iteration. Also, a new free hyperbox is introduced instead of the trimmed one. 

Throughout the iterations, the generated constraints restrict the search space whereas 

the addition of new hyperboxes expands it. In addition, the number of samples waiting 
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to be assigned decreases. Overall, the complexity of the problem is kept within 

reasonable limits. 

However, the number of samples and number of hyperboxes are not the only factors 

that create complexity. Although these are controlled, as the number of features 

increases, HCB matheuristic still fails to classify datasets since Model-MOU cannot 

be solved within the time limits. Therefore, HCB is extended to HCB-f, which starts 

with only one feature. The remaining features are added to the model one after another 

whenever they are needed, based on a feature importance ranking obtained by Model-

MOU. This new matheuristic, HCB-f, does not only controls the complexity but also 

selects important features, since it ends up only with using the features that are needed 

to classify the samples. 

To sum up the contributions of this study, optimization methods of operation research 

are used for solving the classification problem through a matheuristic while keeping 

computational complexity under control. Explicit and interpretable classification rules 

are extracted by the construction of hyperboxes. In addition, a balance between the 

misclassification and overfitting is maintained since the overlapping hyperboxes are 

allowed. Contribution of generated hyperboxes (and respective classification rules) to 

classification accuracy is also measured by their power and purity. Finally, 

simultaneous feature selection becomes possible with the implementation of HCB-f.  

The rest of the report is organized as follows. The scope of the study and detailed 

problem definition are given in Chapter 2, including the relevant research questions. 

Chapter 3 overviews the data mining literature on the classification problem. Solution 

approaches to the problem are categorized, and optimization methods are reviewed 

with special emphasis on the hyperbox approach. Chapter 4 is allocated to the 

mathematical modelling formulations Model-MOB and Model-MO for classification 

of multiclass datasets, along with the heuristic method used to classify overlap and 

uncovered samples in the test phase. Experimental results of both models are 

presented, and a comparison of the models is made in this chapter.  In Chapter 5, the 

development process of HCB matheuristic is described. In Chapter 6, classification 

results with HCB matheuristic and contribution of hyperboxes to classification are 

reported. Classification performance of HCB is also compared to classification and 
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regression trees (CART) in this chapter. Chapter 7 is dedicated to HCB-f which is 

capable of performing feature selection along with classification. The report is finally 

concluded in Chapter 8 with a discussion on the developed methods and future 

research directions. 
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CHAPTER 2  

 

2. PROBLEM DEFINITION 

 

Consider an assignment problem with N workers, each having different skill levels on 

M different skills. There are K main tasks to be performed. Each task requires different 

levels on different skills. Given these skill requirements, one can easily model this 

combinatorial optimization problem, to assign workers to tasks in the best way. Now 

consider the same problem from a different perspective. Assume worker-to-task 

assignments are given and we know the skill levels of the workers. This time the aim 

is to extract the skill requirements of the tasks, which is not an assignment problem 

but a classification problem. In data mining terminology, each worker is a sample and 

their skills are features, whereas tasks correspond to classes. Since there is such a close 

relationship between the two problems, it is not improbable to model and solve a 

classification problem using optimization methods. 

The main objective of the study is to minimize misclassification of the samples. 

However, an additional consideration is to keep under control the potential overfitting 

due to optimization used in the training phase, while minimizing misclassification. As 

optimization searches for the ‘best possible’ solution for the training data, the 

overfitting of the data is expected. For example, assume that the objective of the 

optimization model is to minimize the misclassification and the training result has no 

misclassification as illustrated in Figure 1a.  In the test phase, when a new sample that 

belongs to the square class is observed as in Figure 1b, it will be misclassified 

according to the overfitting solution in Figure 1a.  
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Figure 2.1. Overfitting of the data 

As the number of features increases in classification, an additional research question 

concerning the selection of the features arises. In some datasets, hundreds or even 

thousands of features may exist. For these datasets, selecting the most relevant features 

has a major effect on the problem complexity, interpretability and classifier 

performance. Saeys and Larrañaga (2007) present a review on feature selection 

techniques applied in the bioinformatics, since the datasets in this field are high 

dimensional in terms of features. A more general and recent review is also available 

in the study by Chandrashekar and Sahin (2014). An optimization model which is used 

in the training phase should also give some useful information on the relevance of the 

features as part of a classifier.  

In addition to that, as in most of the combinatorial optimization problems, there is a 

time complexity issue for the problem. In fact, the optimization model is to be run 

only once for the training phase, and waiting for hours to obtain the solution may be 

acceptable. However, as the number of features and number of samples increase it 

may be impossible to find even a single feasible solution for the problem due to 

complexity. Hence, obtaining a valid result in reasonable times is also an objective for 

this study.  The proposed model should simultaneously make it easier to find a feasible 

solution, while minimizing misclassification and avoiding overfitting.  

Finally, unlike the artificial neural network and support vector machine approaches, 

which work as ‘black boxes’, it is aimed to have high interpretability on the model 

results to provide ease of understanding the solution and clarity of results.  
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To sum up, the study proposes optimization approaches for the hyperbox classification 

problem, which  

 minimizes misclassification error 

 controls overfitting due to optimization in training phase 

 guides feature selection 

 has high interpretability in terms of the results and 

 can be solved in reasonable time. 

The proposed optimization approach is based on dividing the feature space into 

hyperboxes. In this approach, based on the training data, a mixed integer programming 

(MIP) model extracts the information on the minimum and the maximum values of 

features for each class, thereby defining the hyperboxes. For large datasets where 

solving the MIP model becomes intractable, matheuristic methods are developed. By 

the use of these matheuristic methods all research objectives listed above are satisfied. 

Before the further details on the models and matheuristics, the related literature on the 

subject is given in the following chapter. 
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CHAPTER 3  

 

3. LITERATURE REVIEW 

 

Data mining literature offers two main methodologies as supervised and unsupervised 

learning depending on the data available in a given problem. For example, 

classification is a supervised learning problem as class labels are available whereas 

clustering is an unsupervised learning scheme. Classification, which is the main topic 

of this thesis, is widely studied in many different fields. Some common applications 

of classification can be listed as customer target marketing, medical disease diagnosis, 

multimedia data analysis, biological data analysis, document categorization and 

filtering, and social network analysis as a trendy topic. For example, it is possible to 

track the spam mails or to detect a disease using classification methods (Aggarwal, 

2014). There are many different methods in the literature for data classification. In 

Figure 3.1, some of these methods are grouped under three main approaches, as 

statistical, data driven, and optimization based.  

 

Figure 3.1. Classification Approaches in Data Mining 
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3.1. Statistical and Data Driven Classification Methods 

Statistical methods construct parameterized functions as classifiers. On the other hand, 

data driven approaches iteratively generate the rules or conditions that classify the 

data, without using a parametric function (Engels, 1999).  

Discriminant analysis is a statistical method that uses a linear combination of features 

as the classifier to predict the class of a sample. While constructing this linear 

combination, samples are projected along with the class means and co-variances.  It 

was introduced as a method to separate only two classes (Fisher, 1936). Later, it is 

extended for multi-class problems by Brown (1947). Briefly, within-class variance 

and covariance matrix of the dataset are used. There are also some other variants as 

discriminant correspondence analysis for categorical features (Scholkopf and Muller, 

1999), and canonical discriminant analysis for multi-class problems (Glhan, 1968).  

Bayesian classification is also a statistical approach that uses a probabilistic model as 

a classifier. Based on the class labels, it extracts the joint probability distribution of 

the class and the features. Naïve Bayesian classification is a simplified version of 

Bayesian classification with the assumption of independence between feature pairs.  

In K-nearest neighbor (kNN), which is the earliest data driven approach, each sample 

is considered as a point in space. The main idea is that members of the same class 

must be close to each other. To predict the class of a new sample, its k nearest 

neighbors in the space are determined based on a distance metric. Then, the new 

sample is assigned to the dominant class containing most of these k nearest neighbor 

(Cover and Hart, 1967). 

Tree learning uses a tree structure to classify the samples based on their feature levels. 

The structure can be used for both numerical and categorical features. The root node 

starts with a feature and samples are sorted based on feature levels. The end nodes are 

the decision nodes for class label. The main challenge for this method is to construct 

the near optimal trees. A multi disciplinary survey on the topic is presented by Murthy 

(1998).  
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In artificial neural networks (ANN), feature levels of samples are inputs and the class 

labels are outputs. The input moves one way in the output direction, passing through 

the nodes in the hidden layer(s) of the network. There are some weights assigned to 

select the next node. In the training phase, ANNs search for these weights to correctly 

classify the samples. A review on ANNs is available in Zhang (2000). In Bayesian 

networks, the nodes represent the features, and instead of weights in ANNs, 

conditional probabilities are used to pass through the nodes.  

Kotsiantis (2007) provide a review of classification techniques including the ones 

mentioned above. He compares them in terms of accuracy, speed of learning and 

classification, interpretability, dealing with overfitting, and so on. However, it is 

concluded that, none of the methods dominate the others yet in terms of these criteria. 

For example, tree learning algorithms perform quite well in terms of speed, and they 

are highly interpretable, but their accuracy is in general not so good. On the other 

hand, ANNs are more accurate, but they are not interpretable due to the lack of 

transparency in the process.  

3.2. Optimization Based Classification Methods 

The statistical methods and data driven approaches for classification are heuristics that 

do not search for the global optimality in terms of misclassification error. On the other 

hand, there are some optimization based approaches for classification. It is possible to 

contextualize optimization based classification methods under four main categories, 

namely support vector machines, piece wise linear separators, polyhedral separators, 

and hyperbox classifiers.  

3.2.1. Support Vector Machines 

Support vector machines (SVMs) are introduced in 1992 (Boser et. al., 1992) and 

widely used in classification studies since then. The main idea of the SVMs is to find 

a separating hyperplane for the classes. Figure 3.2 illustrates a hyperplane separating 

two classes, where the circled samples of each class closest to the hyper plane are the 

support vectors. The objective of the optimization problem is to maximize the distance 

(margin) between support vectors, in order to obtain the best separation among the 
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classes. The original form of the SVMs is generated for linearly separable classes. 

However, there are some methods such as using kernel functions to map the data in 

higher dimensions, and then obtaining separable datasets. A specific survey on SVMs 

is presented by (Burges, 1998). Several books on the topic are also available, for 

example Cristianini et al. (2000), and Steinwart and Chrristmann (2008).  

 

Figure 3.2. SVM Classifier 

3.2.2. Piecewise Linear Separators and Polyhedral Separators 

For datasets where the convex hulls of the classes intersect, the classes are not linearly 

separable. Piecewise linear separators are generated to overcome this problem. One of 

the earliest approaches used to design a piecewise linear separator was proposed by 

Sklansky and Michelotti (1980). In the approach, some parameters are required to be 

specified by the user. Later, Park and Sklansky (1989) provided an extension of the 

study with no requirement of parameter specification. Schulmeister and Wysotzki 

(1994) proposed decomposing the convex hulls of the classes into subclasses when 

they intersect. Then, adding linear separators on these subclasses, they obtained 

piecewise separators. A general framework to construct piecewise linear separators 

can also be seen in the study of Demyanov (2005). 

A different approach to classification problem is proposed by approximating a class 

using polyhedral sets (Astorino and Gaudioso, 2002). This approach works for two-

class datasets. A polyhedral set defines a single class and the region outside defines 

the other class. Orsenigo and Vercellis (2007) use a MIP model to generate polyhedral 

classifiers that accurately predict the classes for small sized datasets, by maximizing 

a weighted sum of accuracy, compactness, and active features.  
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Min-max separability is introduced by Bagirov (2005). It is a generalized version of 

linear and polyhedral separability. In this approach, two sets are separated using 

continuous piecewise linear functions. Gasimov and Ozturk (2006) propose a similar 

approach, namely polyhedral conic separation. In this approach a class can be defined 

using more than one polyhedral set, which is the main difference from the polyhedral 

separation. A combination of polyhedral conic separators and min-max separators is 

also proposed by Bagirov et al. (2011) as a two stage global optimization algorithm. 

Visualization of these separators are given in Figure 3.3. 

 

 

Figure 3.3. Geometric Interpretation of Separation Algorithm, (Gasimov and Ozturk, 2006)  

 

3.2.3. Hyperbox Classification 

To the best of our knowledge, hyperbox classifiers were first to be generated by fuzzy 

min-max neural networks in the study of Simpson (1991). However, hyperbox 

classification approach using mathematical programming is proposed by Uney and 

Turkay (2006) for optimization in classification problems. The main difference from 

the optimization based methods described above is that the separation of the classes is 

not performed by a function of features. Instead, a hyperbox is defined by the 
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intersection of intervals each defined on a feature. Each class is then defined by a 

union of some of these hyperboxes. Figure 3.4 illustrates an example of hyperbox 

classification in two dimensions using two features A1 and A2.  
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Figure 3.4. Hyperboxes 

According to the figure, there are two classes: circles and squares. The regions that 

correspond to the classes are defined by 5 different boxes. The solution can be 

interpreted as follows: 

Circle class: (Box 1) ∪ (Box 3) where  

[(10 ≤ A1 ≤ 21) and (21 ≤ A2 ≤ 24)] 

or 

[(12 ≤ A1 ≤ 27) and (9 ≤ A2 ≤ 20)] 

Square class: (Box 2) ∪ (Box 4) ∪ (Box 5) where  

[(6 ≤ A1 ≤ 12) and (6 ≤ A2 ≤ 19)] 

or 

[(12 ≤ A1 ≤ 26) and (6 ≤ A2 ≤ 8)] 

or 

[(27 ≤ A1 ≤ 30) and (12 ≤ A2 ≤ 15)]. 
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In this way, regions are related with the classes in the training phase. For multi-feature 

datasets, two dimensional boxes are not sufficient to define the region, thus the term 

hyperbox is used. Uney and Turkay (2006), formulated the problem as a MIP model 

presented below. 

Model UT 
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nmlkQybcXD lklkmn ,,,                                                        (13) 

 
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  upnnmlia
Q

ypbn imilmn  |,,,            X
1

lmn                                                (15) 

  lonnmlia
Q

ypbn imilmn  |,,,            X
1

lmn                                                (16) 

0, lmnlkmn XXD  

 1,0,,,,2,1,, ilmikilmnilikiklkl ypbmypcypbnypbypypybcyb  

Decision variables 

Binary  (takes the value 1 if): 

:lyb Box l is used 

:ilypb Point i is in box l 

:lkybc Box l represents class k 

:ikypc Point i is assigned to class k 

:ilmnypbn Point i is within bound n with respect to feature m of box l 

:ilmypbm Point i is within bounds of feature m of box l 

:1ikyp Type 1 misclassification of point i  

:2ikyp Type 2 misclassification of point i  

Non negative 

:lkmnXD Value of bound n for box l of class k on feature m  

:lmnX Value of bound n for box l on feature m  

Parameters: 

:ima Value of feature m of point i 

c: Weight for the total number of hyperboxes 

Q: Sufficiently large number 
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Objective function (0) minimizes the sum of total number of misclassified samples 

and total number of hyperboxes used as classifier. 

The explanations of the constraint sets from (1) through (16) are as follows. 

(1) Each point is assigned to one box. 

(2) Each box is assigned to one class. 

(3) Total number of boxes point i is assigned to = total number of classes 

point i is assigned to. 

(4) If a box is assigned to a class, then the box is used.  

(5) If a box is assigned to a class, then at least one point exists in that box. 

(6) If a box is assigned to a class, then at least one point exists in that class. 

(7) For a feature, if a point is within lower and upper bounds of box, then the 

feature of that point is in that box.  

(8) If all features of a point are within the same box, then the point is in that 

box. 

(9) If a point is assigned to a different class, then misclassification of type 1 

occurs for that point.  

(10) If a point is not assigned to its class, then misclassification of type 2 

occurs for that point.  

(11) Lower bound of a box is less than all feature values of points assigned to 

that box. 

(12) Upper bound of a box is greater than all feature values of points assigned 

to that box. 

(13) Bounds of a box exist if the box is assigned to a class. 

(14) Relates two continuous variables. 

(15) Point i is below upper bound of box l for feature m, if the related bound is 

greater than the feature value. 

(16) Point i is above lower bound of box l for feature m, if the related bound is 

less than the feature value. 

The details of the model and some experimental results are reported in Uney and 

Turkay (2006). The model is further discussed and revised in Chapter 4. 
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Model UT is not a time efficient model for large scale problems. There are some later 

studies for hyperbox classification that try to resolve this time complexity issue. Xu 

and Papageorgiou (2009) formulate the same problem without using the box index. 

Instead, they initially assume that each class is enclosed by one hyperbox. After 

solving the MIP model, one additional box is allocated to each of the classes yielding 

misclassified samples, if there are any. Then, the model is solved again. With the 

addition of the hyperboxes iteratively, the number of misclassified samples is tried to 

be minimized. The algorithm terminates when two successive iterations yield the same 

number of misclassified points. The algorithm produces the solutions faster. However, 

a global optimum may not be reached due to the greedy iterative structure. On the 

other hand, by the addition of a new hyperbox, the assignment scheme of the preceding 

iteration is completely changed, which is ineffective in terms of time usage. Maskooki 

(2013) addressed this issue and proposed an alternative algorithm, which keeps the 

assignments obtained in an iteration, and adds a new box only for the misclassified 

samples. In a later study, misclassified samples are weighted in order to enforce the 

algorithm for classifying them correctly (Yang et. al., 2015). 

There are also some box-based approaches developed for binary class datasets. Given 

a nonhomogeneous box that covers samples of both classes, Eckstein et al. (2002) 

work on the maximum box problem where they try to find a pure box containing 

largest number of correctly classified samples. In the study, a branch and bound 

algorithm is applied to generate the maximum box in terms of the number of points 

covered. By iteratively generating the maximum boxes, their algorithm ends up with 

a set of boxes to be used as classifiers. Serafini (2014) focuses on generating boxes 

for only one of the two classes first, and then the remaining class, instead of 

simultaneously generating them for both classes. A large set of preliminary boxes is 

initially given and the minimum number of boxes that cover all the samples of a class 

are selected by using a MIP model formulation. As an extension, the model is modified 

to select a family of boxes which, not only consists of the minimum number of boxes, 

but also has samples that are redundantly covered by as many boxes as possible. This 

redundancy is used as a measure of certainty of the class label in the study. Despite 

the implementation of an optimization model, it is not guaranteed to obtain the optimal 
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number of boxes, because the boxes of the second class are generated sequentially 

based on the box family of the first class. Hammer et al. (2004) and Spinelli (2014) 

start with a trivial initial solution of boxes, and then reduce the number of boxes by 

pruning them. 

In this thesis, a mixed integer programming model formulation is proposed to generate 

overlapping hyperboxes as classifiers. In this model hyperbox-to-class assignments 

are to be determined along with the sample-to-hyperbox assignments. Then, a revised 

model is proposed in which the hyperbox-to-class assignments are given as a problem 

input.  This proposed model formulation is then used in a matheuristic, namely HCB. 

HCB iteratively generates additional hyperboxes as they are needed. These additional 

boxes are used to classify the unclassified portion of the dataset. Sample-to-hyperbox 

assignments constraints of the model are relaxed to allow unassigned samples to be 

classified in later iterations of HCB. Mathematical model formulations are presented 

in Chapter 4, and HCB matheuristic is described in Chapter 5.  

 

3.3. Feature Selection in Classification 

The number of features that define the samples has a major effect on the complexity 

of classification problems. For the datasets having a large number of features, 

obtaining accurate results in reasonable times may be intractable. For these cases, 

selecting a subset of features and using them for classification instead of all features 

improves the performance of the classification algorithm. However, it is important to 

select the proper subset of features, without the loss of essential information on the 

dataset.  

Feature selection is a widely studied topic and there are several methods proposed in 

the literature. Chandrashekar and Sahin (2014) provide a survey on feature selection 

and mainly focus on filter methods, wrapper methods, and embedded methods. Filter 

methods are based on the idea of ranking features with respect to their relevance 

scores, and this filtering process is performed before applying the classification 

algorithm. Wrapper methods search for the best feature subset that maximizes the 



 

 

 

22 

 

classifier performance. This subset may be defined by the sequential addition of the 

features one by one, or with the use of heuristic search algorithms. There are also some 

mathematical model formulations used to determine the best subset by maximizing 

discrimination power of the selected subset (Bertolazzi et al., 2010). However, 

wrapper methods are not time efficient since the dataset is used for training with each 

subset. Embedded methods search for the subset in a similar way as in wrapper 

methods, but they also consider the feature dependencies. Embedded methods 

incorporate feature selection and classifier training. Thus, they are more time efficient 

compared to the wrapper methods. Details of these algorithms can be seen in the 

surveys of Chandrashekar and Sahin (2014), and Kumar and Vinz (2014).  

There are also some specialized reviews on feature selection for high dimensional data 

(Saeys et al., 2007), (Singh et al., 2016). These reviews also categorize the feature 

selection approaches under filter, wrapper, and embedded methods. For most of the 

studies, feature selection method and classification method are independent. For 

example, Fisher score can be used as a filtering method for feature selection and 

classification tree or SVM can be used for the classification part. Li et al. (2017) 

review feature selection on various datasets and present an online repository that 

provides experimental results of feature selection algorithms under different 

classification methods. 

For the HCB-f algorithm proposed in this thesis, a preprocessing for feature ranking 

is performed as in filter methods. However, the method to compute the ranks of 

features is completely different from the known filter methods, since the ranks are 

obtained by solving a MIP formulation which generates hyperbox classifiers using 

each feature individually. As in the wrapper or embedded methods, the HCB-f 

algorithm ends up with a set of features that maximizes the classifier performance. 

However, HCB-f adds the features into the model in their rank order whenever a new 

feature is required, instead of generating several subsets of features and then searching 

for the best performance over these sets. Feature selection method of HCB-f is 

described in Chapter 7 in detail.
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CHAPTER 4  

 

4. MATHEMATICAL MODEL FORMULATIONS FOR CLASSIFICATION 

 

The general scheme of the solution approach is to use an optimization model that 

generates lower and upper bounds on each feature to form hyperboxes, and that gives 

the information of sample-to-hyperbox and hyperbox-to-class assignments. With the 

resulting hyperboxes, any sample in the training phase will be correctly classified, 

misclassified, or an overlap will occur (which falls into overlapping regions of 

multiple hyperboxes of different classes). In the test phase, samples are classified with 

respect to the hyperboxes which they fit into. However, it is not possible to make a 

certain decision on the class of an overlap sample. In addition to that, there may also 

be some uncovered test samples which do not fit into any hyperbox. For classification 

of these uncovered and overlap samples, heuristic approaches are developed for use 

in the test phase. 

To begin with, Model UT, which is a hyperbox generating optimization model, is 

analyzed in detail, and some logical problems are observed concerning the constraints. 

First of all, in constraint set (3), the left hand side of the equality is equal to 1 due to 

constraint (1), and the right hand side is also equal to 1 due to constraint (2), which 

makes constraint (3) redundant. In addition, constraint set (12) implies that, if 

1ilypb   for an i,l pair then, imlkmn aXD    must be satisfied for all k, m. This causes 

constraint (13) to make 1lkybc  for all k. However, this result contradicts the 

constraint (4), since left hand side sums up to K > 1 > ilypb . This leads to infeasibility 

of the model. To eliminate infeasibility, some modifications are proposed in constraint 

sets (11) and (12). These modifications are shown in equations (11a) and (12a), 

respectively. 

  mlki                                      ypbQaXD ilimlkm ,,,11                                 (11a) 

    mlki                ybcQypbQaXD lkilimlkm ,,,112             (12a) 
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Two additional constraints are still needed after the modifications. One constraint is 

to prevent obtaining a trivial and nonsense solution where 0lkybc , for all l, k. The 

other is to ensure that, if point i is assigned to class k and point i is assigned to box l, 

then box l must be assigned to class k. These two constraints are shown in equations 

(17) and (18), respectively.  

 
k

lk l                ybc 1                   (17) 

kl,i,             ypcypbybc ikillk  1                 (18) 

The revised model is referred to as UT-R throughout the rest of the thesis. Model UT-

R is capable of generating the hyperboxes. However, it still has too many integer 

variables and constraints, which is not time efficient for large size problems. In order 

to eliminate these problems, a new mathematical formulation is proposed to be used 

in the training phase and the results are compared with Model UT-R. 

4.1. Mathematical Model Formulation for Hyperbox Generation: Model-MOB 

The proposed MIP formulation is based on the idea of hyperboxes. The model aims to 

find the lower and upper bounds of the hyperboxes on each feature, and gives the 

information of sample-to-hyperbox, and hyperbox-to-class assignments. For example, 

samples of class 1 (triangles) are assigned to box 1 and samples of class 2 (rectangles) 

are assigned to box 2 as in Figure 4.1.  

  

Figure 4.1. Overlapping hyperboxes for classification 

If box 1 is assigned to class 1 and box 2 is assigned to class 2, then there are no 

misclassified samples. But sample a also falls in box 2 and sample b also falls in box 

1 although they are assigned to different hyperboxes, and they are considered as 
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overlap samples. In the proposed model the number of overlap samples is to be 

minimized in the objective function, along with the misclassified samples.  

Indices, decision variables, parameters, and the model formulation are given below. 

Indices 

Nii ,...,2,1            sample :   

Lll ,...,2,1          box        :   

Kkk ,...,2,1              class :   

Mmm ,...,2,1         feature :   

(upper) 2 (lower), 1            bound :  nnn  

In the training data, the number of samples (N), the number of classes (K), the number 

of features (M), and the number of bounds (lower and upper) are known. However, 

the only information about the number of hyperboxes (L) is its minimum, which is 

equal to K. It is possible to solve the model with a large number of hyperboxes, but 

using an excessively large L increases the time complexity of the model. In order to 

deal with this situation, the number L can be tested experimentally at different levels. 

Decision variables: 






otherwise          ,0

  class  tobelongs that box   toassigned is  sample if           ,1
    

kli
Yilk  






otherwise          ,0

  class  toassigned is box  if           ,1 kl
BClk  






otherwise          ,0

  sample of class not the is  which class in iedmisclassif is  sample if           ,1
    

iki
Eik  






otherwise          ,0

 used is box  if           ,1
     

l
Bl  






otherwise          ,0

  feature of boundlower   wrt.box  in falls  sample if           ,1
 1

mli
O ilm  






otherwise         ,0

  feature of boundupper   wrt.box  in falls  sample if          ,1
2

mli
O ilm  
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Non negative:  

mlnX lmn  featurefor  box  of  bound of Value:  

m feauture  wrt.box  in falls  sample if  Positive:  liOilm  

 toassignednot  isit  that ,box  in falls  sample if  Positive:   liTlil  

 toassignednot but  in, falls  sample that boxes ofNumber  :     iTi  

In this model, sample-to-box-to-class assignment is controlled with binary variable 

ilkY . With the use of this variable, it is not necessary to use another binary variable 

lkBC  for box-to-class assignment. However, use of lkBC  helps to significantly 

decrease the number of constraints in the model formulation. ilmO   and ilTl  are binary 

variables and iT  is an integer variable by definition. However, defining them as 

continuous nonnegative variables does not affect their integrality in the solution due 

to constraint sets (30), (31), and (32) with the minimization of the third term in the 

objective function. 

Parameters 

Parameters of the model are derived from the training data, and denoted as follows. 






otherwise          ,0

 class  tobelongs  sample if           ,1 ki
dik  

imaim  sample of  feature of  value Real:  

Note that ima  value can be a negative due to the nature of dataset. Since lmnX  is defined 

as a positive variable in the model, values of ima parameters can be shifted as 

)(min
,

im
mi

imim aaa    MmNi ,...,1 ,,...,1  if there are negative ima values in the 

dataset. 

:Q A big number (must be greater than the largest  value)ima  

𝜀 ∶ A small number 

In addition, there are three cost coefficients c1, c2, and c3 used as multipliers in the 

objective function.   
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Model-MOB 

  
   


L

l

N

i

K

k

N

i

iikl TcEcBcz
1 1 1 1

321min                         (19) 

Subject to 


 


L

l

K

k

ilk NiY
1 1

,...,1                                           1                  (20) 


 


L

l

N

i

ilk KkY
1 1

,...,1                                           1                           (21) 

kliYBC ilklk ,,                                                                           (22) 

klBCB lkl ,                                                                             (23) 

LlBC
K

k

lk ,...,1                                              1
1




                       (24) 

mliYaX
K

k

ilkimlm ,,                                      
1

2  


                           (25) 

mliYQaX
K

k

ilkimlm ,,                        )1(
1

1  


                           (26) 

kidEY ikik

L

l

ilk ,                                    
1




                              (27) 

 mliYQBQOQXYa
K

k

ilklilm

K

k

lmilkim ,,                 )()1()1()1(
11

1  


               (28) 

mliYQBQOQYaX
K

k

ilklilm

K

k

ilkimlm ,,               )()1()2()1(
11

2  


                 (29) 

mliOOO ilmilmilm ,,                           211                          (30) 

liTlMYO il

K

k

ilk

M

m

ilm ,                1
11




                           (31) 

iTlT ili 


                                              
L

1l

                                     (32) 

Objective function (19) minimizes the weighted sum of total number of boxes used, 

total number of samples misclassified, and total number of boxes each sample falls 

into. The coefficients c1, c2, and c3 reflect the importance of the respective terms.  
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Constraint set (20) is to ensure that each sample is assigned exactly to one box and 

one class. By the use of constraint set (21), there is at least one sample and one box 

assigned to each class. In set (22), the consistency of box-to-class and sample-to-box-

to-class assignments is guaranteed. If sample i is assigned to the box l of class k, then 

box l is assigned to class k. Assignment of a box to a class implies the use of that box 

in constraint set (23). Constraint set (24) states that a box can be assigned to at most 

one class. All feature values of a sample must be within lower and upper bounds of its 

assigned hyperbox. This is guaranteed in constraint sets (25) and (26) for upper and 

lower bounds, respectively. Constraint set (27) computes the number of misclassified 

samples. If sample i is assigned to class k, although it does not belong to that class in 

the training data, then ikE takes the value of 1.  

Constraints (20) – (27) ensure the assignment of samples to hyperboxes, hyperboxes 

to classes, and determine the hyperbox bounds. However, it is possible to see a 

solution as illustrated in Figure 4.1. This solution does not violate these sets of 

constraints, and there is no misclassification. The problem here is that samples a and 

b fall in the overlapping regions of the two boxes. For a solution with overlapping 

hyperboxes, the class of a sample that falls into the overlapping region would in fact 

be undecided, which can be generally encountered in many real-world datasets. 

Therefore, it would be beneficial to allow such overlaps and detect them. 

The model in Uney and Turkay (2006) avoids overlaps by enforcing the model to 

strictly separate boxes from each other. Hence, each sample must fall in the region of 

at most one box. Constraint set (8) for this purpose makes sense due to the nature of 

the problem; however, this is an unnecessarily hard constraint.  Moreover, as the size 

of the problem increases, it becomes intractable and impossible to obtain any feasible 

solution for hours with non-overlapping hyperboxes. Also, when all the boxes are 

forced to be separated, the solution becomes strongly data dependent and this may 

cause overfitting. When the constraint is removed from the model, it terminates in 

relatively much shorter time but yields a low quality solution with overlapping boxes. 

This makes the result useless for the test phase of the classification problem.  
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Constraint sets (28) through (32) in Model-MOB are formulated in order to handle the 

tradeoff involving the misclassification, overfitting, and time complexity. In this 

model, the hyperboxes are not forced to be separated completely. Instead variable iT  

is used to count the number of extra hyperboxes that a sample can fit in. The model 

then tries to minimize this. However, for the cases where complete separation of 

hyperboxes is impossible or too hard, the model can still find a feasible solution. 

Constraint set (28) is active when box l is used but sample i is not explicitly assigned 

to box l. ilmO1  takes the value of 1 if sample i is above the lower bound of box l with 

respect to feature m. Set (29) does the same for the upper bound. If ilmO1  and ilmO2  

are both equal to 1, ilmO  also becomes 1 due to constraint set (30), which means that 

sample i is also in the region of box l with respect to feature m. According to constraint 

set (31), if a sample is in the region of a box in terms of all features although it is not 

assigned to that box, ilTl takes the value of 1 indicating an overlap. Finally, constraint 

set (32) counts the total number of additional boxes that the sample can possibly be 

assigned to as described above. 

4.2. Interpretation of Model Results for Classification 

The proposed model generates the hyperboxes which classify the samples in the 

training dataset, minimizing the misclassification and overlap. In practice, the ultimate 

aim of this model is to use the generated hyperbox bounds for classification of the new 

samples in the test phase. If a test sample falls into the region of a generated hyperbox, 

then it is labeled with the class of that hyperbox. However, these bounds are strongly 

dependent on the training dataset. Thus, some uncovered or overlap samples may 

occur in the test phase.  A distance-based heuristic, namely classification of overlap 

and uncovered samples (COUS), is developed for the classification of these samples. 

 

4.2.1. Classification of Overlap Samples using COUS 

Overlap samples can be observed both in training and testing phases, because the 

model does not completely restrict the overlap, but only tries to minimize the number 
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of overlap samples. On the other hand, it is possible to observe an overlap sample in 

the test phase even if there is no overlap sample in the training phase. Because the 

model does not restrict the overlap geometrically, but it counts overlaps only if a 

sample falls into an overlapping region of hyperboxes. As it is mentioned before, any 

enforcement in the solution approach for the classification of an overlap sample 

contradicts with the motivation of this study, which is to prevent overfitting.  In a real 

world problem, any overlap sample in the output should be interpreted as a suspicious 

sample, which does not clearly belong to any class. Actually, it is a member of an 

additional class with the undecided label and it should be examined by subject matter 

experts. However, overlap samples may also be caused by the deficiencies of the 

solution approach. Thus, we still try to assign any overlap sample to one of the classes.  

 

Figure 4.2. Overlap Sample Classification 

Our overlap sample assignment in test phase is illustrated in Figure 4.2. In this case, 

as the sample is closer to the boundary of a hyperbox, it is that much closer to falling 

outside of that box. Based on this fact, the shortest distance of the sample to the 

boundary of each hyperbox is computed, and the sample is assigned to the class of the 

hyperbox having the maximum shortest distance. In the figure, the shortest distances 

for each hyperbox are shown with dashed arrows. When these distances are compared, 

the overlap sample belongs to class 2. The pseudo code of the algorithm is given 

below, where ilShortest  is the shortest distance of sample i to box l, and iMax  is the 

maximum shortest distance for sample i.  
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For  i Set of overlap samples 

  For  l Set of hyperboxes that cover sample i 

0iMax  

ilShortest Large_Number   

For  m = 1 to M 

 imlmimlmilm aXaXdist  21 ,min  

If  ( ililm Shortestdist  ) 

ilmil distShortest   

End If 

   Next m 

If  ( ilShortest iMax ) 

iMax  = ilShortest  

Class of sample i = Class of box l 

End If 

Next l 

Next i 

 

 

4.2.2. Classification of Uncovered samples using COUS 

Uncovered samples differ from the overlap samples as they can be observed only in 

testing phase. Hyperboxes generated by the model cover some regions within the 

feature space, and it is expected to have some uncovered regions outside these 

hyperboxes. For a test sample that falls in an uncovered region, the class label should 

be determined. In this study, it is aimed to assign an uncovered sample to the class of 

the closest hyperbox, without changing the boundaries of the hyperbox. The closeness 

of a sample to a hyperbox is measured by Euclidean distance metric only based on the 

features that do not cover that sample. Figure 4.3 illustrates the case of an uncovered 

sample. According to the figure, the sample does not fit into either of the two 

hyperboxes. However, it is seen that hyperbox 1 covers the sample in terms of feature 

2 bounds. Thus, it is not meaningful to use feature 2 in computing sample’s distance 

to hyperbox 1. For this case, Euclidean distances between sample and hyperboxes are 

computed using only feature 1 for hyperbox 1, and both features 1 and 2 for hyperbox 

2. In the figure, these distances are shown with dashed arrows, and the sample must 

be classified as class 1 since it is closer to hyperbox 1. 
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Figure 4.3. Uncovered Sample Classification 

The algorithm for the classification of the uncovered samples can be summarized as 

follows, where L is the actual number of boxes generated by the model, M is the 

number of features, F is the set of features that do not cover sample, ilmdist is the 

distance of sample i to box l in terms of feature m, and ilDistance  is the Euclidean 

distance between sample i and box l. 

For     ∀i ∈ Set of uncovered samples 

 F = {} 

 MinDistance =Large_Number  

 For  l = 1 to L 

  For m = 1 to M 

If  ( 21 lmimlm XaX  ) 

0ilmdist     

   Else 

 imlmimlmilm aXaXdist  21 ,min  

 F = F∪{m} 

   End If 

  Next m 

   



Fm

ilmil distDistance
2  

If  ( ilDistance ≤ MinDistance ) 

MinDistance = ilDistance  

Class of sample i = class of box l 

End If 

Next l 

Next i 
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4.3. Experimental Results of  Model-MOB 

The MIP formulation is implemented in GAMS and solved using CPLEX 12.0 solver 

for the datasets that are described below. Three identical desktop PCs with Intel Core 

i5 3.0 GHz processor and 4.00 GB RAM are used for the runs, and the run time is 

limited with three hours as a termination rule.  

Table 4.1. Dataset Properties 

Dataset 
Number of 

samples 

Number of 

classes 

Number of 

features 

Simulated 1 (S1) 60 2 2 

Simulated 2 (S2) 60 2 2 

Iris 150 3 4 

Wine 178 3 13 

Seed 210 3 7 

Glass 214 6 9 

Breast Cancer (Wisc.) 683 2 9 

Sonar 208 2 61 

Ionosphere 351 2 35 

Ecoli 336 5 7 

Ten datasets that are given in Table 4.1 are used in the experiments. Simulated 1 and 

Simulated 2 are specifically generated for understanding the model behavior and ease 

of presenting solutions visually, and illustrated in Figure 4.4 and Figure 4.5, 

respectively. All of the remaining datasets are selected form UCI Machine Learning 

Repository (Dua & Karra, 2017).  

 

Figure 4.4. Simulated data 1 
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Figure 4.5. Simulated data 2 

As it is illustrated in Figure 4.4, Simulated 1 with features x and y is separated with 

the x = y line into two classes each having thirty samples. For class 1, x < y and for 

class 2, x > y. For this type of pattern, it is expected to have multiple hyper boxes to 

represent each class, although SVM can easily separate these two classes. Simulated 

2 is a modified version of Simulated 1, such that value of feature y for class 2 samples 

are is increased by 2. In this way, an overlapping region is obtained between the two 

classes over the x = y line as seen in Figure 4.5. 

For all datasets except the simulated ones, 80% of the data is used for training, and 

20% for testing. Thirty additional samples having the same characteristic are 

generated for the test phase of simulated datasets.  

In order to see the performance of Model-MOB, some preliminary experiments are 

conducted and the results are compared with Model UT-R. Weight of misclassification 

in UT-R is taken as 1, the weights c1, c2, and c3 in MOB are also taken as 1 for all 

runs. Note that coefficient c in Model UT-R is equivalent to c1 in Model-MOB. The 

summary of the results is presented in Table 4.2.  
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Table 4.2. Comparison of Model-UTR and Model-MOB 

 Model-MOB  Model UT-R 

 z R. Gap B M O  z R. Gap B M 

S 1 7.00 0.56 5 1 1  7.00 0.56 7 0 

S 2  12.00 0.75 6 6 0  12.00 0.75 5 7 

Iris 5.00 0.40 4 0 1  5.00 0.40 5 0 

Wine 15.00 0.80 3 0 12  N/A N/A N/A N/A 
z: Best integer obtained in one hour, R.Gap: Reported relative gap, B: Number of hyperboxes used 

in the solution, M: Number of misclassified samples, O: Number of overlap samples. 

For Simulated 1, Simulated 2, and IRIS datasets, the differences in the results are not 

significant. However, for the WINE dataset, model UT-R cannot find any feasible 

solutions within the one-hour time limit. The main reason for this may be the 

impossibility of obtaining a non-overlapping solution with Model UT-R.  

For further experimental analysis, Model-MOB is solved under different settings of 

objective function coefficients as described in Section 4.3.1. Then, for each setting, 

testing is performed using the model’s solution.  

4.3.1. Choice of objective function coefficients 

As it is mentioned in Section 4.1, there are three coefficients c1, c2, and c3 used as 

multipliers in the objective function for the number of boxes, the number of 

misclassified samples, and the number of overlap samples, respectively. Each of these 

coefficients are set to three different levels: 0.01, 0.1, and 1. Thus Model-MOB is run 

33 times for each dataset. All of the runs are terminated due to the three-hour time limit 

without reaching optimality.  

Table 4.3 illustrates the classification results for Simulated 1. Results of Model-MOB 

are listed under the Training columns. For the computation of accuracy in the training 

phase, overlap samples are counted as misclassified. Model-MOB results of the test 

phase are obtained only by the use of hyperboxes. Then, COUS heuristic is applied 

for the classification of uncovered and overlap samples, and resulting misclassified 

samples are used in the computation of test accuracy under COUS results.  
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Table 4.3. Classification Results for Simulated 1 dataset 

         Training   Test 

 Coefficients  

B M O A 

 

Model-MOB 

results  COUS results 

Run c1 c2 c3   M O U  M A 

1 1.00 1.00 1.00  6 0 1 0.983  1 2 5  2 0.933 

2 1.00 1.00 0.10  3 0 17 0.717  4 17 2  11 0.633 

3 1.00 1.00 0.01  2 0 30 0.500  4 18 0  10 0.667 

4 1.00 0.10 1.00  2 10 0 0.833  8 0 5  9 0.700 

5 1.00 0.10 0.10  2 10 0 0.833  8 0 5  9 0.700 

6 1.00 0.10 0.01  2 0 30 0.500  4 18 0  10 0.667 

7 1.00 0.01 1.00  2 10 0 0.833  8 0 5  9 0.700 

8 1.00 0.01 0.10  2 10 0 0.833  8 0 5  9 0.700 

9 1.00 0.01 0.01  2 10 0 0.833  8 0 5  9 0.700 

10 0.10 1.00 1.00  7 0 0 1.000  0 0 8  1 0.967 

11 0.10 1.00 0.10  6 0 1 0.983  1 2 5  2 0.933 

12 0.10 1.00 0.01  3 0 17 0.717  5 16 2  12 0.600 

13 0.10 0.10 1.00  5 2 0 0.967  3 0 6  3 0.900 

14 0.10 0.10 0.10  5 1 1 0.967  3 0 6  3 0.900 

15 0.10 0.10 0.01  3 0 17 0.717  4 17 2  12 0.600 

16 0.10 0.01 1.00  2 10 0 0.833  8 0 5  9 0.700 

17 0.10 0.01 0.10  2 10 0 0.833  8 0 5  9 0.700 

18 0.10 0.01 0.01  2 10 0 0.833  8 0 5  9 0.700 

19 0.01 1.00 1.00   7 0 0 1.000   1 0 7   1 0.967 

20 0.01 1.00 0.10  7 0 0 1.000  1 0 7  1 0.967 

21 0.01 1.00 0.01  7 0 0 1.000  0 0 8  1 0.967 

22 0.01 0.10 1.00  7 0 0 1.000  1 0 8  1 0.967 

23 0.01 0.10 0.10  7 0 0 1.000  0 0 8  1 0.967 

24 0.01 0.10 0.01  6 0 1 0.983  1 2 5  2 0.933 

25 0.01 0.01 1.00  6 1 0 0.983  1 0 8  1 0.967 

26 0.01 0.01 0.10  5 2 0 0.967  3 0 6  3 0.900 

27 0.01 0.01 0.01  6 1 0 0.983  1 0 8  1 0.967 

B: Number of hyperboxes used in the solution,  M: Number of misclassified samples, O: Number of 

overlap samples, U: Number of uncovered samples, A: Accuracy 

Among the datasets given in Table 4.1, the model does not perform well on Glass, 

Breast Cancer, Sonar, Ionosphere, and Ecoli. For these datasets, the best training 

accuracy among 27 settings is below 30% on the overall, and the worst accuracy is 

less than 10% as seen in Table 4.4.  
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Table 4.4. Results of Datasets which do not perform well with Model-MOB 

  Accuracy*  

  Worst Best L 

Glass 0.000 0.263 10 

Sonar 0.000 0.042 8 

Breast cancer 0.076 0.238 8 

Ionosphere 0.000 0.000 8 

Ecoli 0.000 0.219 10 
*Accuracy is the fraction of correctly classified samples  
  L: Upper limit on hyperbox index 

This is mainly caused by the model complexity due to the large number of samples, 

classes, and/or features. The model terminates prematurely at the end of three hours. 

Another factor effective on these results is the type of the data. It is observed that the 

model performs better on the datasets with real valued features, whereas binary or 

integer features result in poor performance. Since the results are not satisfactory, these 

datasets are not analyzed any further for the selection of objective function 

coefficients.   

On the other hand, accuracies are over 80% for Simulated 1, Simulated 2, Iris, Wine, 

and Seed datasets. Details of 27 runs for each of these datasets are given in the 

Appendix A. When the accuracies versus objective function coefficients are analyzed, 

both for training and testing phases, it is seen that the setting of the 19th run where c1 

= 0.01, c2 = 1.00, and c3= 1.00 performs better on the overall. For the rest of the study, 

objective function coefficients are fixed at these levels. Table 4.5 illustrates the results 

for this setting, where A is the accuracy, and U is the number of uncovered samples. 

The results are not unexpected, since minimizing the number of hyperboxes is not a 

primary aim, but used only to prevent overfitting with too many hyperboxes (even a 

hyperbox for every single sample). However, it is necessary to use a finite number of 

hyperboxes in Model-MOB. (The maximum possible number of hyperboxes in the 

model is limited with the parameter L.) On the other hand, setting c1 to zero corrupts 

the run time performance of the model since it is effective on the best possible bound 

computation in CPLEX.  
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Table 4.5. Classification results for the selected settings 

  Training results   Test results 

 

B M O A 

 

Model-MOB 

results  COUS results 

   M O U  M A 

S1 7 0 0 1.000  1 0 7  1 0.967 

S2 14 0 0 1.000  3 0 15  5 0.833 

Iris 4 0 0 1.000  1 1 2  1 0.967 

Wine 3 0 7 0.951  0 1 11  0 1.000 

Seed 3 0 33 0.805   2 9 3   3 0.929 
B: Number of hyperboxes used in the solution,  M: Number of misclassified samples, O: Number 

of overlap samples, U: Number of uncovered samples, A: Accuracy 

4.3.2. Cross-validation of the results 

Using the objective function coefficient setting selected above, 5-fold cross 

validations are performed for Iris, Wine, and Seed datasets. Using five folds is 

consistent with the 80% training and 20% testing partitions used before. Thus, results 

of the runs given in Table 4.5 are taken as the first fold, and four more replications are 

conducted for the remaining folds. However, for the simulated datasets, 60 samples 

were used as the training subset and 30 samples in the test subset. In order to be 

consistent with this two-to-one ratio, and to have five replications as for the other 

datasets, four additional replications are conducted by random sub-sampling for 

simulated datasets.   

Detailed results including the misclassified, overlapped, and uncovered sample 

information for the conducted replications can be seen in Appendix B. Summary of 

the cross-validation results are given in Table 4.6 and Table 4.7 for the training and 

test phases, respectively. Table 4.6 also includes the information about hyperbox 

usage. Upper limit on hyperbox index is given in column L, and the average number 

of hyperboxes used in the solutions are given in column B. The number L is decided 

intuitively considering the total number of samples, features, and classes in the dataset. 
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Table 4.6. Cross-validation results for the training phase of Model-MOB 

 Accuracy   

Dataset Mean StDev Min - Max L B 

Simulated 1 1.000 0.000 1.000 – 1.000 20 6.8 

Simulated 2 1.000 0.000 1.000 – 1.000 20 10.6 

Iris 0.995 0.007 0.983 – 1.000 10 4.8 

Wine 0.948 0.013 0.930 – 0.965 10 3.2 

Seed 0.798 0.024 0.768 – 0.833 10 3.4 

 

Table 4.7. Cross-validation results for the test phase of Model MOB 

 Accuracy 

Dataset Mean StDev Min - Max 

Simulated 1 0.947 0.038 0.900 – 1.000 

Simulated 2 0.840 0.028 0.800 – 0.867 

Iris 0.967 0.024 0.933 – 1.000 

Wine 0.950 0.041 0.889 – 1.000 

Seed 0.906 0.027 0.867 – 0.933 

When the results are analyzed, it is seen that training and test accuracies are fairly 

stable. In terms of the mean values the largest differences between training and test 

phases are observed in the Simulated 2, and Seed datasets. For Simulated 2, at least 11 

hyperboxes are generated by Model-MOB in the training phase replications, and none 

of the samples are misclassified or overlap. As the number of the hyperboxes 

increases, they become smaller and highly dependent on the data, and this causes 

larger regions which are not covered by any of the hyperboxes. Thus, more uncovered 

samples occur in the test phase, and any misclassification of these samples decreases 

the accuracy. In fact, this is a good example of overfitting, which justifies minimizing 

the number of hyperboxes in the objective function, and allowing overlap.  

On the other hand, the situation for the Seed dataset is just the opposite. This time, the 

accuracy of test phase is significantly better. The reason for this is the number of 

overlap samples obtained in the training phase, which constitutes the largest overlap 

ratio among all datasets. The overlap samples obtained in the test phase are classified 

using the heuristic, however they are directly counted as misclassified in the training 

phase. This is also an indicator of the performance of the heuristic technique that we 

use.    
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4.3.3. Classification Performance of COUS 

The performance of COUS is also analyzed in the training phase of the experiments. 

The 33 runs performed to select objective function coefficients result in larger number 

of overlap and uncovered samples for undesirable coefficient settings. This situation 

provides an opportunity to test the heuristic on larger samples. Table 4.8 summarizes 

the total number of overlap and uncovered samples obtained in 27 runs for each 

dataset. Misclassification column indicates the incorrectly classified samples by 

COUS, and resulting accuracy is given in the last columns.  

Table 4.8. Overlap and uncovered sample classification of 27 runs using COUS 

  Overlap   Uncovered 

Datasets Total Misclass. Accuracy  Total Misclass. Accuracy 

Simulated 1 92 35 0.620  141 12 0.915 

Simulated 2 94 56 0.404  241 24 0.900 

Iris 32 14 0.563  33 0 1.000 

Wine 19 7 0.632  319 0 1.000 

Seed 227 82 0.639   76 6 0.921 

According to the results, COUS is more accurate for uncovered samples. It is not 

surprising to have lower accuracies for the overlap sample classifications, since their 

characteristic is totally different from the uncovered samples. An uncovered sample is 

caused by uncovered regions of the sample space. This means, hyperbox classifier 

cannot find a chance to label some regions due to lack of training samples in those 

regions. On the other hand, overlapping regions are defined by the hyperbox classifier, 

and they are some sort of undecided regions as mentioned before. The relatively lower 

accuracy of the heuristic is consistent with the undecided situation of these overlap 

samples.  

Beside the undecided case of the overlap samples, still some extra information about 

their classes is provided by the hyperboxes. For the datasets having more than 3 

classes, some of the classes can be eliminated for the sample if overlapping 

hyperboxes do not belong to that class. For example, Iris, Wine, and Seed has 4, 3, and 

7 classes respectively. For a uniformly random assignment, the respective expected 

accuracies would be 1/4, 1/3, and 1/7. However, when we analyze the results in detail, 

it is seen that only two classes cause the overlap on the average. Accuracies which are 

around 50% indicate the indifference of overlap samples between those two classes.  
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4.3.4. Discussion on the results of Model-MOB 

The behavior of Model-MOB, which is proposed to classify datasets in the training 

phase, is analyzed over 10 different datasets. Although the classification ability of the 

generated hyperboxes is good for half of these datasets, it is not possible to state the 

same for the remaining half, namely Breast cancer, Glass, Sonar, Ionosphere, and 

Ecoli.  

The type of features has an important effect since it becomes harder to define valid 

hyperboxes for integer features, especially when the range of the feature values is 

narrow. On the other hand, Model-MOB cannot perform well for some of these five 

datasets although they have a fairly wide range. For example, Breast cancer dataset 

has 9 integer-valued features in the interval [1,10]. However, in the training phase, 

546 samples with 9 features and 2 classes result in a high run time complexity for the 

model. Beside these values, L hyperboxes are allowed in the model initially as the 

limit of index set. Deciding on the value of L is important since smaller L values yield 

more misclassifications and overlaps, whereas larger L values increase the search 

space dramatically. Along with searching the optimal number of hyperboxes, the 

solver also searches for the best combination of those hyperboxes as if it was different 

to use the first or last so many hyperboxes. 

In the literature, there are some studies that consider constructing a time-efficient 

model, which starts with a certain number of hyperboxes and increase this number 

iteratively as needed (See Section 3.2.3). Xu and Papageorgiou (2009) map 

hyperboxes to classes and samples to hyperboxes before solving the MIP model. They 

propose a compact model ready to be solved iteratively, where an additional hyperbox 

is introduced and required mappings are performed before each new iteration. 

However, these preliminary mappings may overly restrict the model. Based on the 

idea of Xu and Papageorgiou (2009), but leaving sample-to-hyperbox assignments to 

the model, an alternative mathematical formulation is proposed in this study as 

described in Section 4.4. 
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4.4. A Relaxed Mathematical Model Formulation: Model-MO 

Without a major difference in the basic mechanism of Model-MOB, a new mixed 

integer programming model is formulated with fewer variables and constraints. This 

model, dropping the term for the number of boxes from the objective function, 

minimizes only the total number of misclassified and overlap samples. This choice 

comes naturally since the number of boxes can be controlled externally. Also our 

experiments with Model-MOB shows that the best results are obtained when the 

objective function coefficient for the number of boxes is smaller (c1 = 0.01) than the 

classification and overlap coefficients (c2 = c3 = 1).  This new model is called Model-

MO in the rest of the study.  

In Model-MO, in addition to initializing the value L for the number of hyperboxes that 

can be used, hyperboxes are also allocated to the classes. However, this produces only 

an upper bound rather than a mapping, since the model does not necessarily use all of 

these allocated hyperboxes. Moreover, the samples are free to be assigned to any of L 

hyperboxes, and overlapping is still allowed. 

Decision variables and parameters of Model-MO are almost the same as those in the 

Model-MOB. Only a new parameter set is defined as   






otherwise          ,0

  class  toallocated is box  if           ,1 kl
Boxkl  

Since the set of hyperboxes a class can use is determined with this parameter, only the 

sample-to-hyperbox assignments are needed to be made. Thus, decision variables Bl 

and BClk used in Model-MOB are not required when the klBox  parameters are used. 

Then, the assignment variable of Model-MO is defined as 






otherwise          ,0

 box  in is  sample if           ,1 li
Yil  

When a sample i is assigned to hyperbox l, it is simultaneously labeled as class k, 

where 1klBox .  
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After these modifications and eliminations, the number of binary variables in Model-

MO is L(1+NK) less than the number of binary variables in Model-MOB. The 

objective function and the constraints of Model-MO are given below.  

Model-MO 


 


N

i

i

N

i

K

k

ik tcEcz 
1

3

1 1

2   min                  (33) 
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1
1




L
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ilY   i                   (34) 
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Objective function given in equation (33) minimizes the weighted sum of 

misclassifications and overlap samples. Each sample is assigned to one hyperbox by 

the constraint set (34). Constraints (35) through (42) are the equivalents of constraints 

(25) through (32) of Model-MOB. Constraint set (43) prevents a sample from being 

both overlap and misclassified. This constraint was not included in Model-MOB, since 
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the sample cannot be overlap and misclassified at the same time for an optimal 

solution. However, it is used as a valid inequality for Model-MO and guarantees to 

prevent this situation even for the non-optimal solutions. In addition, particularly with 

the changes in constraints (38) and (39), there are significantly fewer constraints in 

Model-MO.  

4.5. Experimental Results of Model-MO 

In Model-MOB, the L value is set before running the model, and the hyperbox 

allocations to the classes are performed by the model. For Model-MO, allocation of 

hyperboxes to the classes is given using parameters. The L value and hyperbox 

allocation is tested under two different scenarios. Experiments are conducted on the 

same folds of datasets that are used with Model-MOB, and run time is limited with 

three hours as a termination rule. 

In scenario 1, in order to compare the two models, L is set to the same value as in the 

experiments of Model-MOB, and the hyperboxes are allocated to the classes in 

proportion with the sample sizes of the classes. Summary of the results are given in 

Table 4.9.  It is observed that, some of the hyperboxes are not used although the total 

number of hyperboxes is not minimized in the objective function. Average number of 

used hyperboxes are given in column B. For an unused hyperbox, the lower limits on 

the features are found to be greater than the upper limits, and none of the samples are 

assigned to that infeasible box.  

Table 4.9. Scenario 1 Cross-validation results for the training phase of Model-MO 

 Accuracy   

Dataset Mean StDev Min - Max L B 

Simulated 1* 1.000 0.000 1.000 – 1.000 20 6.8 

Simulated 2* 0.993 0.015 0.967 – 1.000 20 12.2 

Iris* 1.000 0.000 1.000 – 1.000 10 6.8 

Wine 0.965 0.023 0.937 – 0.986 8 4 

Seed 0.894 0.035 0.833 – 0.923 10 3.2 

Breast Cancer 0.610 0.255 0.244 – 0.802 8 3 

Ecoli 0.425 0.070 0.361 – 0.537 10 5.2 

Sonar 0.548 0.073 0.452 – 0.654 8 2.4 

Ionosphere 0.641 0.017 0.614 – 0.657 8 2.4 

Glass 0.392 0.051 0.316 – 0.450 10 6.8 
             *optimal solutions 
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In scenario 2, only two hyperboxes are allocated to each class. In this way, it is aimed 

to see the model performance when the problem size is not unnecessarily increased by 

the unused hyperboxes. As seen in Table 4.10, better results are obtained compared to 

scenario 1.  

Table 4.10. Scenario 2 Cross-validation results for the training phase of Model-MO 

 Accuracy    

Dataset Mean StDev Min - Max L  B 

Simulated 1* 0.937 0.000 0.933 – 0.950 4  4 

Simulated 2* 0.887 0.059 0.833 – 0.983 4  4 

Iris* 0.990 0.004 0.983 – 0.917 6  5 

Wine 0.972 0.021 0.937 – 0.986 6  4 

Seed 0.960 0.009 0.952 – 0.970 6  4.8 

Breast Cancer 0.759 0.059 0.670 – 0.830 4  2.5 

Ecoli 0.842 0.112 0.851 – 0.920 10  6.4 

Sonar 0.613 0.036 0.560 – 0.682 4  3.4 

Ionosphere 0.641 0.017 0.614 – 0.657 4  2 

Glass 0.429 0.070 0.380 – 0.544 10  7.4 

                  *optimal solutions 

As the L values are restricted in scenario 2, the accuracies decreased for Simulated 1, 

Simulated 2, and Iris datasets. This was expected since the optimal accuracies were 

obtained by using more hyperboxes in scenario 1. However, scenario 2 yields better 

results for other datasets within the given time limit, since the problem size is reduced. 

It should be noted that, resulting hyperbox usage is not more than two hyperboxes per 

class in scenario 1 for these datasets. The detailed results of scenario 1 and scenario 

2 are given in Appendix C. 

4.6. Comparison of Model-MO with Model-MOB 

Performance of Model-MOB and Model-MO are compared in terms of classification 

accuracy. Figure 4.6 illustrates the average accuracies of cross-fold validations for 

each model and scenario. Since the cross-fold validation is not performed with Model-

MOB for the last five datasets, the relevant bars in the graph is the result of a single 

fold for those datasets. 
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According to the graph, with the exception of the first three datasets solved to 

optimality by Model-MOB, Model-MO over-performs Model-MOB especially with 

scenario 2. However, even with Model-MO, it is still not possible to obtain the optimal 

solutions within three hours and some results are not satisfying enough.  

 

Figure 4.6. Comparison of classification accuracies for Model-MOB and Model-MO 

Obtaining higher accuracies in scenario 2 indicates that limiting the number of 

hyperboxes reduces the complexity significantly, allowing Model-MO to find better 

solutions within the time limit. However, the limit on the number of hyperboxes for 

each class must be determined in a more systematic manner with an algorithm that 

uses Model-MO and determines the hyperbox limits iteratively. There should be a way 

of determining when a new hyperbox is needed for each class, and hyperboxes should 

be added iteratively upon need to keep complexity under control. This observation 

constitutes the main motivation for a heuristic approach, namely the Hyperbox 

Classification for Binary Classes, which is presented in the following chapter. 
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CHAPTER 5  

 

5. A MATHEURISTIC FOR HYPERBOX CLASSIFICATION FOR BINARY 

CLASSES: HCB 

 

Both Model-MOB and Model-MO are comprehensive models developed to generate 

all necessary hyperboxes simultaneously using the complete training set. 

Experimental results that are presented in Section 4.6 indicate that Model-MO 

outperforms Model-MOB. However, Model-MO still has some complexity issues and 

cannot perform well as the limit on the total number of hyperboxes used increases. 

Obtaining higher accuracies despite the usage of fewer hyperboxes is due to this 

complexity problem. Hyperboxes are computationally expensive; therefore, they 

should be allocated to classes carefully. On the other hand, the number of hyperboxes 

is not the only dimension that increases the complexity. The number of features and 

sample size of the dataset are also effective on the run time complexity. In order to 

overcome this complexity problem, a matheuristic is developed in this study namely 

Hyperbox Classification for Binary classes (HCB).  

In Section 5.1, the motivation for the HCB is given in the light of some preliminary 

tests. Sections 5.2 through 5.5 describe the development process of HCB, and the 

matheuristic HCB is finalized as described in Section 5.6.  

 

5.1. Motivation for the HCB Matheuristic 

Upper bound on the total number of hyperboxes (L), the number of features (M), and 

the number of samples (N) are the three main dimensions that define the run time 

complexity. In order to observe effects of all these dimensions, some preliminary runs 

are conducted for the Breast Cancer dataset. In the first iteration, one hyperbox is 

allocated to each class. The optimal solution is obtained in 1403 seconds. The number 

of misclassified and overlap samples are given as the first iteration in Table 5.1. 
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When the resulting decision variables at iteration 1 are analyzed, it is observed that 

some of the features are neither used in defining the hyperbox boundaries, nor act a 

part in overlap prevention. For example, lower and upper bounds on the 4th feature 

(F4) are set to natural bounds of that feature for the hyperboxes of both classes, and 

these hyperboxes are highly overlapping in terms of F5. Using these information four 

features out of nine can be eliminated since they are found ineffective on the 

classification of samples. With further analysis of the results, it is observed that some 

bounds on values of individual features are sufficient to classify the samples. For 

example, if the value of a sample’s F7 is greater than or equal to 8, then that sample 

belongs to the 2nd class. Hence, it may be possible to pre-classify and so eliminate 

some samples from the dataset before running the model in further iterations, if such 

information about the hyperbox boundaries is used as classification rules.  

In order to see the effect of feature selection and sample elimination, a second iteration 

is conducted, again with a single hyperbox per class. In this iteration features 4, 5, 6, 

and 8 that are found to be ineffective in iteration 1 are removed from the dataset. In 

addition, by using the rules found in iteration 1, samples having an F7 value greater 

than or equal to 8 are pre-classified as 2nd class, and samples having an F3 value less 

than or equal to 1 are pre-classified as 1st class. Only by using these two rules, 314 

samples out of 546 can be pre-classified. These samples do not need to be processed 

by the model anymore, and they can be eliminated from iteration 2. First two iterations 

are summarized in Table 5.1. 

Table 5.1. Result of iteration 2: elimination of features and samples 

   Model-MO Results    

Iter. N F M O A 

CPU  

time (sec) 

Eliminated 

features 

Generated 

rules 

Eliminated 

samples 

1 546 9 39 0 92.86 1403 (4-5-6-8) 
F7 ≥ 8 ⟹ c2 

F3 ≤ 1 ⟹ c1 
314 

2 232 5 36 0 93.41 79 - - - 

N: number of samples, F: number of features, M: number of misclassified samples, O: overlap samples, 

A: percent accuracy 
 

 



 

 

 

49 

 

To sum up, a modified dataset having 5 features and 232 samples is used in iteration 

2 with one free hyperbox for each class, and the optimal solution is obtained in just 79 

seconds, with a higher accuracy. Note that it is impossible to obtain fewer than 39 

misclassified samples using the original dataset and one hyperbox per class, since 

iteration 1 solution is also optimal. The point here is that, the rules generated in 

iteration 1 actually represent two hyperboxes. Thus, one additional hyperbox for each 

class used in iteration 2, are the third and fourth hyperboxes, and these additional 

hyperboxes are used for classification of the remaining samples left after elimination. 

In iteration 3, some other arbitrary runs are conducted on the modified dataset, to see 

the effect of adding new hyperboxes to classes. Table 5.2 illustrates the results of these 

alternative iteration 3 runs. The initial point of all these four runs is the end of iteration 

1. In the first run, one more additional hyperbox is allocated to class 1, however this 

additional hyperbox is not used by the model, and the same result as before is obtained 

in a longer time. In the second run, one additional hyperbox is allocated to class 2, the 

optimal solution is obtained in approximately 4000 seconds, and misclassified 

samples are significantly reduced. In the third run, two additional hyperboxes are 

allocated to class 1. It is seen that, when 2 more hyperboxes are available, the model 

chooses to use all of them, and the classification error again significantly decreases 

compared to iteration 2. However, a proven optimal solution cannot be obtained 

within three hours. In the last run, an additional hyperbox is allocated to each class, 

and the accuracy is decreased to 87 percent, as the model is not solved optimally. 

Table 5.2. Results of iteration 3: addition of hyperboxes 

 Free box allocated to    CPU time 

Run Class 1 Class 2 M O A  (sec) 

1 2 1 36 0 93.41 4970 

2 1 2 25 0 95.42 4006 

3 3 1 26 1 95.24 10800 

4 2 2 11 59 87.18 10800 

The results of these iterations show that feature selection and sample elimination is 

effective on the model performance. On the other hand, selection of the class to which 

a new hyperbox will be added also has a significant effect on the performance as seen 

from alternative runs made in iteration 3.   
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Originally, a large set of hyperboxes, and all the samples with the full set of features 

are introduced to Model-MO with their labels. As mentioned in Section 4.4, there are 

no explicit “use/do not use” decision variables for a feature or for a hyperbox. 

However, the model is capable of making these decisions by setting the hyperbox 

boundaries accordingly. If the bounds for a feature are not set different from the 

natural bounds of that feature for a hyperbox, then it means that that feature is 

redundant for that box. Moreover, the model may set infeasible boundary values for a 

hyperbox (i.e. lower bound is greater than the upper bound), meaning that the 

hyperbox is not in use.  

It should be noted that the options of the solver (Cplex) is adjusted to perform 

branching on sample-to-hyperbox assignments first, and hyperbox boundaries are then 

computed based on the samples assigned to that box. Sample-to-hyperbox assignment 

decision is followed by branching on misclassification variables, which has a higher 

priority than overlap control variables. Hence, first the misclassifications are resolved, 

then the overlaps are determined. However, due to the complexity problem, these 

branches cannot be searched completely and solution terminates before reaching 

optimality. 

Matheuristic HCB is developed to deal with this complexity problem. The initial 

version of HCB still uses Model-MO to generate the hyperbox boundaries. However, 

instead of leaving the branching decision completely to the model solution step, it 

starts with a minimal set of hyperboxes, and determines when to open a new hyperbox 

for a class, based on the results of Model-MO at each iteration. HCB also determines 

the correctly classified samples and fixes their sample-to-hyperbox assignments 

before a new iteration. Sections 5.2, 5.3 and 5.4 describe the initial versions of iterative 

hyperbox addition procedure, fixing sample-to-hyperbox assignments, and using these 

procedures in coordination with Model-MO, respectively. With the modifications 

reported in Section 5.5, the matheuristic HCB is finalized as in Section 5.6. 
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5.2. Iterative Addition of Hyperboxes 

Based on the results that are obtained in Section 5.1, further experiments are conducted 

using four different datasets, namely Simulated 1, Simulated 2, Simulated 3, and 

Simulated 4. First two of these simulated datasets are already presented before. 

Simulated 3 and Simulated 4 are newly generated datasets having two features and 

100 samples (50 samples in each class). Simulated 3 is specifically created such that 

samples can be classified by using only one of the features. Simulated 4 is a modified 

version of Simulated 3 requiring both features for correct classification.  

For all datasets, the same systematic is applied throughout the iterations. In the first 

iteration a single run is conducted by allocating one hyperbox per class.  In the second 

iteration, two runs are conducted, one with an additional hyperbox allocation to class 

1, and the other with an additional hyperbox allocation to class 2. Following the same 

manner in all iterations, a binary tree-like structure is obtained as in Figure 5.1. 

 

Figure 5.1. Illustration of hyperbox allocation to (class1, class2) throughout the iterations 

In the figure, each level represents a single iteration. At any new iteration, the total 

number L of hyperboxes is increased by one, and runs are conducted for these different 

allocation schemes. The numbers written in parentheses describe the number of 

hyperboxes allocated to class 1 and class 2, respectively. The left and the right children 
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of any node are obtained by allocating one new hyperbox to class 1 and class 2, 

respectively. For any of the nodes having more than one hyperbox allocated per class, 

there are exactly two parent nodes. Thus, the structure is not a tree and there are some 

undirected cycles between the nodes.  

Starting from the root node and moving through a branch to select a single node per 

iteration, it is possible to obtain different paths, which yield different hyperbox 

allocation schemes at the final iteration. By the application of HCB, it is aimed to find 

a good path that results in a high classification accuracy. In order to examine the 

behavior of alternative hyperbox allocation schemes, Model-MO runs for the datasets 

are conducted on each node. Note that, for a complete set of N iterations where N+1 

hyperboxes are allocated between the classes at the final iteration, there are N(N+1)/2 

runs are to be conducted.  

 

Figure 5.2. Results for Simulated 1 dataset for all nodes 

Figure 5.2 illustrates the results for Simulated 1 dataset for all nodes. The three rows 

of each node stand for hyperbox allocation to two classes (optimal Model-MO results 

are indicated with an asterisk next to the right parenthesis), misclassified samples in 

two classes, and overlap samples in two classes, respectively. For each row, the left 
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and the right of the comma represent class 1 and class 2, respectively. For example, at 

node (2,4), there are two hyperboxes allocated to class 1 and four hyperboxes allocated 

to class 2, and there are three misclassified samples of class 1 and one overlap sample 

of class 2 in the result. The 100 percent accuracy is obtained by allocating four 

hyperboxes to class 1, and three hyperboxes to class 2.  

The results of Simulated 2, Simulated 3, and Simulated 4 datasets are given in the 

Appendix D. The examination of those results reveal some general properties. First of 

all, the overlap figures are commonly less than the misclassification figures, although 

they are equally weighted in the objective function. The reason of this is the branching 

strategy that is set in the Cplex solver options. The branching is first performed on the 

misclassification decision variables before branching on the overlap related decision 

variables. On the other hand, some properties are important since they guide us for 

hyperbox addition within the HCB. These properties can be summarized as follows. 

1. It is in general better to allocate one more hyperbox to the class with the highest 

number of misclassified samples. 

2. If the newly added hyperbox is not used in the solution, then it is worth trying 

to add it to the other class. 

3. If the accuracy is not improved with the addition of a hyperbox to a class, then 

it is worth trying to add it to the other class.  

4. The run time complexity increases in each iteration due to the increment in the 

total number of hyperboxes. Thus, it may become impossible for the model to 

reach optimality within the time limit for some iterations. This may result in 

obtaining lower accuracies than the ones obtained in the earlier iterations.  

The first three properties above are used for node selection to obtain a good path 

throughout the iterations. On the other hand, the last property indicates that iterative 

addition of hyperboxes is not enough to deal with the complexity issues. As mentioned 

before, feature selection and sample elimination should also be considered in HCB. 

The method and the resulting algorithm described in the following subsection deal 

with reducing the complexity by sample elimination. 
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5.3. The Hyperbox Trimming Algorithm and Fixing Sample-to-Hyperbox 

Assignments 

In the experimental results that are reported above, Model-MO is solved from scratch 

at each node. In fact, it is possible to use the information of correctly classified samples 

and their enclosing hyperboxes generated in an earlier iteration to reduce the problem 

size in the subsequent iterations. Figure 5.3 illustrates the hyperboxes obtained in the 

root node (1,1) of Simulated 3 dataset. As it is seen in Figure 5.3, there are no 

misclassified samples within hyperbox of class 1. It is possible to fix the boundary 

variables of this ‘pure’ hyperbox and pre-classify the samples belonging to that 

hyperbox before the following iteration.   

 

Figure 5.3. Resulting hyperbox at (1,1) of Simulated 3 dataset 

On the other hand, it is not always possible to obtain such pure hyperboxes. Figure 5.4 

illustrates the root node result for Simulated 2 dataset. There are 15 misclassified 

samples, nine from class 1 and six from class 2. For such situations, it is still possible 

to extract some information for classification. The hyperbox of class 1 may be 

trimmed through the dashed line, and the left portion of the hyperbox with no 

misclassification may be fixed before the next iteration, together with the class 

information of the samples within that portion. 

 

Figure 5.4. Hyperbox with misclassified samples 
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Hyperbox Trimming Algorithm (HTA) is developed to fix a portion of the hyperbox 

where all enclosed samples are correctly classified. This trimming operation is to be 

performed only for a single hyperbox, which has the smallest ratio of 

misclassification, where l  denotes the misclassification ratio of hyperbox l. Before 

describing the algorithm, some definitions and initializations are to be made as 

follows. 

index of the hyperbox with minimum misclassification ratio: 

 '
,...,1'

minarg l
Ll

l 


  

set of misclassified samples within hyperbox l:  









 


K
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ikil NiEYiE
1

,...,1,1,1|  

set of correctly classified samples within hyperbox l: 

 KkNiEYiC ik ,...,1,,...,1,1,1| il   

set of correctly classified samples that falls out of the box after trimming on Xlmn: 

2,1,,...,1          Ø  nMmRmn  

number of correctly classified samples that falls out of the hyperbox after trimming 

on Xlmn :  

2,1,,...,1           0  nMmCountmn     

Based on these definitions, the pseudo code of HTA is given in Figure 5.5. Main loop 

of the algorithm is performed until all misclassified samples are left out of the trimmed 

hyperbox. In fact, trimming is equivalent to tightening lower or upper bound values 

Xlmn of the initial hyperbox in terms of each feature. Through the lines 2 to 6, the 

misclassified samples closest to the lower and upper bounds, and their feature values 

are determined. 

After each trimming operation some correctly classified samples may also fall out of 

the updated hyperbox. These samples are counted within the loop between lines 7 and 

16 for all bounds of features, and the sets of these samples are determined. Between 



 

 

 

56 

 

lines 19 and 28, the bound of a feature is selected to be trimmed, such that the 

minimum number of correctly classified samples is left out of the updated hyperbox. 

Finally, the related Xlmn value of the hyperbox, set E, and set C are updated.   

0 Initialize E, C, Rmn, Countmn 

1 While E Ø 

2  For m = 1 to M  

3     


im
Ei

m atrim min1  

4     Eiaaisample im
Ei

imm 


',min|' 1  

5     


im
Ei

m atrim max2  

6     Eiaaisample im
Ei

imm 


',max|' 2  

7   For Ci  

8    If  1mim trima   

9     111  mm countcount  

10     iRR mm 11   

11    End if 

12    If (𝑎𝑖𝑚 >  𝑡𝑟𝑖𝑚𝑚2) 

13     122  mm countcount  

14     iRR mm 22    

15    End if 

16   next i 

17  next m  

18  miscount = C  

19  For m = 1 to M 

20   For n = 1 to 2 

21    If  miscountcountmn   

22     mncountmiscount   

23     𝑚′ = 𝑚 

24     𝑛′ = 𝑛 
25     Bound = 𝑇𝑟𝑖𝑚𝑚𝑛 

26    End If 

27   next n 

28  next m 

29  BoundX nlm ''  

30  E = E / {𝑠𝑎𝑚𝑝𝑙𝑒𝑚𝑛} 

31  C = C / 𝑅𝑚𝑛 

32 End while 

Figure 5.5. Hypebox Trimming Algorithm (HTA) 
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Figure 5.6 illustrates steps in the main loop of HTA. For a hyperbox shown in the 

figure, horizontal axis represents feature 1 and vertical axis feature 2. First, the 

misclassified samples closest to the lower and upper boundaries are determined. For 

example, sample 1 is closest to the lower bound of feature 1, so count1,1 value is 

computed only for this sample, and found to be equal to 3. In other words, three 

correctly classified samples will be trimmed out, if the lower bound of feature 1 is 

updated with respect to sample 1. 

 

Figure 5.6. Illustration of HTA algorithm 

As it is seen in the first table of Figure 5.6, the closest misclassified samples to the 

boundaries are sample 1 and sample 3, where sample 1 is closest to the lower bound 

of feature 1 and upper bound of feature 2, and sample 3 is closest to the lower bound 

of feature 2 and upper bound of feature 1. The minimum of count values computed for 

these four bound values is equal to 3, and it is observed on three different bounds. 

Hence, sample 1 is selected arbitrarily, and the box is trimmed at lower bound of 

feature 1, resulting in the 2nd hyperbox. Since there are still misclassified samples, 

count values are recalculated. This time, a minimum of 2 correct samples are left out 

if the box is trimmed at sample 3 by the lower bound of feature 2. In the 3rd hyperbox, 

there is only 1 remaining misclassified sample, and all count values are computed for 

that one. The trim is performed on the lower bound of feature 2. Finally, 4th hyperbox 

does not contain any misclassified samples, and the algorithm terminates.  
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HTA is a greedy algorithm, so it does not guarantee the maximum possible correctly 

classified samples conserved within the modified hyperbox. However, it is a fast 

algorithm as only 2M bounds are checked for each misclassified sample. In addition, 

HTA is applicable to multi-feature datasets, and it is possible to update all boundaries 

in all dimensions. 

Application of HTA results in a misclassification free hyperbox. Thus, re-

classification of the samples in that hyperbox will be unnecessary for the subsequent 

iterations. In order to avoid this unnecessary effort, sample-to-hyperbox assignments 

for the trimmed box can be fixed throughout the rest of the iterations. This fixing 

reduces run time of the Model-MO due to elimination of decision variables required 

for classification of these samples. 

5.4. Putting HTA, Addition of Hyperboxes, and Sample-to-Hyperbox 

Assignments Together 

Based on the four properties listed at the end of Section 5.2, the branching rules for 

hyperbox allocation are generated. In addition, using the results of HTA, sample 

elimination becomes possible since their hyperbox assignments are fixed. With the 

use of Model-MO followed by HTA and hyperbox addition, a matheuristic algorithm 

called ICB is developed, which constitutes an initial version of HCB. Figure 5.7 

illustrates the flowchart of the ICB algorithm.  

The algorithm starts with allocating a single hyperbox for each class and solving 

Model-MO. Unless the recently allocated hyperbox remains unused, or the total 

number of misclassified and overlap samples (M + O) stays unimproved, a single 

iteration of the ICB will be performed for each increment of the total number of 

hyperboxes. 

 In other words, in general for a node shown in Figure 5.2, Model-MO is solved, HTA 

is run, sample-to-hyperbox assignments are fixed, and one of the two child nodes is 

selected depending on the misclassified and overlap sample quantities of the classes. 

This corresponds to taking one of the two branches emanating from the current node 

in Figure 5.2. 
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Start

Solve Model-MO

Initialize

iter =1

Flag = 0

L = 2

(one hyperbox per class)

Do while M+O   0

Run HTA

Fix sample-to-hyperbox 

assignments

L = L + 1

Allocate additional 

hyperbox to class 1

iter = iter + 1

Flag = 0

Class 1 has more 

misclassified samples
YES

YES

YES

NO

L = L + 1

Allocate additional hyperbox to class 2

iter = iter + 1

Flag = 0

STOP

Allocate last added 

hyperbox to the other 

class.

Flag = 1

iter = iter + 1

NO

Equal number of 

misclassifications

Class 1 has more 

overlap samples
YES

YES

NO

NO Flag = 1 NO

iter = 1

OR

M+O is improved

Hyperboxes are in use

Flag = 1

YES

NO

YES

NO

 

Figure 5.7. Flowchart of ICB Algorithm 

However, if an improvement is not observed on a node, or the hyperbox turns out to 

be unused, then the last allocated hyperbox is transferred to the other class. This 

transfer causes a horizontal move between nodes at the same level, which is not 
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included in Figure 5.2. Allowing horizontal moves between nodes is important since 

it helps exploring the search space. Note that two horizontal moves cannot be 

performed in a row, since it causes a cycle. In the flowchart, Flag = 1 indicates that a 

horizontal move is performed in the last iteration, and prevents cycling between nodes.   

For the cases where a horizontal branch is taken in the current iteration, application of 

HTA differs with respect to hyperbox usage. If there is any unused hyperbox, the 

subsequent branching is performed without applying HTA. However, for the non-

improving nodes where all hyperboxes are in use, HTA is applied before branching. 

At each iteration, as a result of applying HTA and fixing sample-to-hyperbox 

assignments, Model-MO searches for the bounds of only two hyperboxes, and the 

unclassified sample size is always less than or equal to the sample size of previous 

iteration. As a result, run time complexity does not increase due to hyperbox usage or 

sample size throughout the iterations.  

The algorithm terminates when all the samples are classified correctly. As it is 

discussed before, forcing the algorithm to resolve all misclassifications and overlaps 

may cause overfitting. To prevent this overfitting, it is possible to use some thresholds 

on accuracy, or a decision maker may decide whether to continue or stop before the 

next iteration.  

5.4.1. Analysis of Experimental Results 

ICB algorithm is first applied to simulated datasets. The tree given in Figure 5.8 

illustrates the iterations of the algorithm for Simulated 1, where no misclassified or 

overlap samples remain at node (4,4). According to Figure 5.2, the 100 percent 

accuracy was achieved at node (4,3) when none of the hyperboxes or samples are 

fixed. However, there exists one misclassified sample of class 1 for the same node 

when ICB is applied.  
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Figure 5.8. Illustration of ICB for Simulated1 

 

The reason for this is the use of HTA. Since some hyperboxes and the samples 

enclosed within those boxes are fixed, the search space changes and reaching the 

global optimum for the original search space may become impossible. However, it is 

still possible to obtain the same results with the use of additional hyperboxes. Since 

the main aim is minimizing the classification error, the increment on the number of 

hyperboxes is not very critical, as long as the complexity is controlled by reducing the 

dataset size. For the given case, due to the hyperbox and sample fixes, 100% accuracy 

is achieved when there are 4 hyperboxes for each class. 

The total number of hyperboxes, allocation of these boxes to classes, resulting 

misclassified and overlap samples, and the CPU times are shown in Figure 5.8 for 

Simulated 1 dataset. Additional information about the trimmed hyperboxes and 

sample-to-hyperbox assignments are given in Table 5.3. 
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Table 5.3. Result of ICB with Model-MO for Simulated 1 dataset 

Iter. L 

Box 

allocation 

Unused 

hyperbox M O 

Trimmed 

hyperbox 

# of 

samples 

to be 

fixed 

Model 

Accuracy 

% 

Model-

MO CPU 

time (sec) 

1 2 (1,1) - 8,2 0,0 class 1 18 83.33 7.267 

2 3 (2,1) - 7,2 0,0 class 1 5 85.00 9.202 

3 4 (3,1) - 3,2 3,0 class 1 4 86.67 6.984 

4 5 (4,1) - 3,2 3,0 - - 86.67 6.642 

5 5 (3,2) - 0,1 1,0 class 2 8 96.67 7.029 

6 6 (3,3) - 1,0 0,0 class 2 4 98.33 6.971 

7 7 (4,3) - 0,1 0,0 class 1 3 98.33 6.324 

8 8 (4,4) - 0,0 0,0 - - 100.00 6.273 

According to Figure 5.8 and Table 5.3, additional hyperboxes are allocated to class 1 

for the first four iterations, since class 1 has more misclassified samples. Iteration 4 

does not improve the previous objective. Thus, a horizontal branching is performed 

from node (4,1) to (3,2) without applying HTA. At the end of 8 iterations, ICB 

terminates with 100% accuracy at node (4,4). The run time of Model-MO is less than 

10 seconds for each iteration. The total run time of the model is 56.69 seconds. Run 

time of HTA is not reported, since it has a negligible time compared to the run time 

of the model. The total run times of all nodes in Figure 5.2 was approximately 3,620 

seconds, which is far from the performance of ICB.   

The results of ICB are given in Tables 5.4, 5.5, and 5.6 for simulated datasets 2, 3, and 

4 respectively. The datasets are classified with 100% accuracy in the final iteration. 

Without the use of ICB, choice of the L value and hyperbox allocations is an open 

question. Since the run time complexity increases with L, and reaching to a proven 

optimal solution becomes impossible, finding the ideal hyperbox allocation scheme 

with trial and error is a time consuming effort. So far, the ICB algorithm provides a 

reasonable procedure to handle the problem.  
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Table 5.4. Result of ICB with Model-MO for Simulated 2 dataset 

Iter. L 

Box 

allocation 

Unused 

hyperbox M O 

Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed 

Model 

Accuracy 

% 

Model-

MO CPU 

time (sec) 

1 2 (1,1) - 9,6 0,0 class 1 12 91.67 10.89 

2 3 (2,1) - 9,6 0,0 - - 91.67 6.757 

3 3 (1,2) - 16,0 0,0 class 2 12 90.00 7.721 

4 4 (2,2) - 7,10 0,9 - - 53.33 8.464 

5 4 (1,3) class 2 16,0 0,0 - - 90.00 9.176 

6 5 (2,3) - 9,3 0,9 class 1 6 65.00 9.567 

7 6 (3,3) - 1,10 0,9 class 2 3 66.66 10.365 

8 7 (3,4) - 9,0 0,9 class 1 1 70.00 7.109 

9 8 (4,4) - 6,3 0,0 class 2 5 85.00 8.489 

10 9 (5,4) - 0,5 0,3 class 1 2 86.67 8.554 

11 10 (5,5) - 4,3 0,0 class 1 2 88.33 6.401 

12 11 (6,5) - 4,3 0,0 - - 88.33 7.119 

13 11 (5,6) - 5,0 0,2 class 2 2 88.33 6.124 

14 12 (6,6) - 4,2 0,0 class 1 1 90.00 7.319 

15 13 (7,6) - 0,2 3,0 class 2 1 91.67 5.943 

16 14 (7,7) - 0,1 0,2 class 1 2 95.00 8.123 

17 15 (7,8) - 2,0 0,0 class 1 1 96.67 4.021 

18 16 (8,8) - 0,0 0,3 - - 95.00 5.722 

19 16 (7,9) - 2,0 0,0 class 2 1 96.67 4.526 

20 17 (8,9) - 1,0 0,0 Class 2 1 98.33 5.468 

21 18 (9,9) - 0,0 0,0 - - 100.00 4.006 

 

Table 5.5. Results of ICB for Simulated 3 dataset 

Iter. L 

Box 

allocation 

Unused 

hyperbox M O 

Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed 

Model 

Accuracy 

% 

Model-MO 

CPU time 

(sec) 

1 2 (1,1) - 31,0 0,0 class 1 23 69.00 11.315 

2 3 (2,1) - 11,0 1,1 class 1 17 86.00 9.123 

3 4 (3,1) - 8,0 2,0 class 1 4 90.00 7.015 

4 5 (4,1) Class 1 9,0 1,0 - - 90.00 10.106 

5 5 (3,2) - 0,1 1,0 class 2 24 98.00 10.273 

6 6 (3,3) - 1,0 0,0 class 2 25 99.00 4.847 

7 7 (4,3) - 0,0 0,1 class 1 3 99.00 6.125 

8 8 (4,4) - 0,0 0,0 - - 100.00 5.982 
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Table 5.6. Result of ICB with Model-MO for Simulated 4 dataset 

Iter. L 

Box 

llocation 

Unused 

hyperbox M O 

Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed 

Model 

Accuracy 

% 

Model-

MO CPU 

time (sec) 

1 2 (1,1) - 27,0 0,0 class 1 23 73.00 12.173 

2 3 (2,1) - 17,2 0,0 class 1 7 81.00 11.271 

3 4 (3,1) - 15,1 0,0 class 1 4 84.00 13.159 

4 5 (4,1) - 15,1 0,0 - - 84.00 11.213 

5 5 (3,2) - 16,0 0,0 class 2 12 84.00 6.897 

6 6 (4,2) - 15,1 0,12 - - 72.00 12.21 

7 6 (3,3) - 16,0 0,10 class 2 6 83.00 8.772 

8 7 (4,3) - 8,1 3,6 class 1 3 82.00 12.785 

9 8 (5,3) - 7,0 4,3 class 1 4 86.00 25.606 

10 9 (6,3) - 9,1 0,0 class 1 1 90.00 39.951 

11 10 (7,3) class 1 9,1 0,0 - - 90.00 48.106 

12 10 (6,4) class 2 9,1 0,0 - - 90.00 38.332 

13 11 (7,4) - 0,2 0,0 class 2 9 98.00 283.25 

14 12 (7,5) - 0,1 0,0 class 2 12 99.00 98.015 

15 13 (7,6) class 2 0,0 0,1 - - 99.00 46.391 

16 13 (6,7) - 1,0 0,0 class 2 7 99.00 51.443 

17 14 (7,7) class 2 1,0 0,0 - - 99.00 44.681 

18 14 (8,6) - 0,0 0,0 - - 100.00 62.123 

 

As mentioned before, ICB is an initial version of HCB and used to analyze the 

behavior of model throughout the iterations as hyperboxes are added, and sample-to-

hyperbox assignments are fixed. Although the results are promising, there are some 

drawbacks of the ICB algorithm. As shown in Figure 5.9, for the datasets with highly 

overlapping classes, such as Simulated 2 and Simulated 4, obtaining a smooth decrease 

in the (M + O) value is not possible throughout the iterations. Application of HTA 

may cause fluctuations in the (M + O) value, especially on the overlap side. 

 

Figure 5.9. Accuracy throughout the iterations of ICB 
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Figure 5.10 illustrates the resulting hyperboxes of Model-MO at the 3rd and 4th 

iterations of ICB for Simulated 2 dataset. Hyperbox A of class1 was obtained by HTA 

in the 1st iteration, and no hyperboxes and samples were fixed in iteration 2. In the 3rd 

iteration, HTA is applied to hyperbox B of class 2 through the dashed lines. Because 

the model is constrained to assign all samples to a hyperbox, the additional hyperbox 

C allocated to class 1 in iteration 4 highly overlaps with the trimmed hyperbox B' of 

the previous iteration. This makes hyperbox C useless. Finally in iteration 21, fixing 

the two large hyperboxes results in many small hyperboxes to resolve the overlaps.  

 

Figure 5.10. Effect of sample-to-box assignment constraint on HTA and accuracy of Model-MO 

Fluctuations in accuracy increase the number of required iterations for ICB to reach 

the optimal solution. Even for Simulated 2, which has only 60 samples with two 

features, 21 iterations are performed until the optimal solution is found. However, 

applying HTA reduces the problem size and these iterations are not time consuming. 

In addition, it is possible for the decision maker to terminate the algorithm after any 

iteration, if the solution is satisfying enough.  

For some larger sized datasets, this drawback of the ICB algorithm can be more 

crucial. As an example, the first iteration of ICB for Breast cancer dataset results in 

39 misclassified samples and 92.86% accuracy within 1403 seconds. However, in the 

following iterations of ICB, Model-MO cannot be solved optimally within 20 minutes 

and terminates with lower accuracies despite the use of additional hyperboxes. Before 

trying to compensate this complexity issue with feature elimination, Model-MO is 

modified to alleviate this drawback by relaxing the sample assignment constraint. 
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5.5. Relaxing the Assignment Constraint: Model-MOU 

In the light of  the analysis reported in Section 5.4.1, it is observed that enforcing the 

model to assign every sample to a hyperbox can cause a large number of overlap 

samples in some iterations. In order to avoid such situations, Model-MO is revised as 

follows to relax the sample assignment constraint. 

Model-MOU 









 
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 min                (45) 
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ilY   i                   (46) 

i    YEt
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k

L

l

iliki  
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1 1

                 (47) 

(35), (36), (37), (38), (39), (40), (41), (42), (44). 

Objective function given in equation (33) of Model-MO is replaced by equation (45). 

The new objective function minimizes the sum of the numbers of misclassified, 

overlap and unassigned samples. Constraint set (34) is relaxed as in (46); the samples 

are not forced to be assigned to a hyperbox anymore. Instead, the number of 

unassigned samples is to be minimized in the objective function.  Finally, constraint 

set (43) is replaced by (47) to force the sample to be assigned to a hyperbox, if it falls 

into an overlap or misclassification region. The rest of Model-MOU is the same as 

Model-MO.  

The ICB algorithm is tested with Model-MOU for Simulated 2, Simulated 4, and 

Breast cancer datasets. Results are given in Tables 5.7 through 5.9. As an additional 

update in the ICB algorithm, the number of unassigned samples (given in column U) 

is used as the first tie breaker when the number of misclassified samples is the same 

for both classes. 
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Table 5.7. Result of ICB with Model-MOU  for Simulated 2 dataset 

Iter. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

Fixed 

box 

alloc. 

# of 

samples 

to be 

fixed A2 

CPU times 

(sec.) 

M O U A1 

Model 

MOU  
HTA 

1 (1,1) 12,2 0,0 1,0 75.00 1 (1,0) 11 18.33 11.48 0.11 

2 (2,1) 7,6 0,0 2,0 75.00 - - - 18.33 11.2 - 

3 (1,2) 19,0 0,0 0,0 68.33 1 (1,1) 14 41.67 7.12 0.09 

4 (2,2) 5,10 0,0 1,0 73.33 2 (2,1) 9 56.67 10.79 0.09 

5 (2,3) 5,0 0,0 5,3 78.33 2 (2,2) 6 66.67 10.17 0.09 

6 (3,3) 3,3 0,0 4,1 81.67 2 (2,3) 4 73.33 10.8 0.09 

7 (4,3) 0,4 0,1 2,2 85.00 1 (3,3) 2 76.67 9.17 0.07 

8 (4,4) 2,1 0,0 3,2 86.67 1 (4,3) 2 80.00 9.04 0.09 

9 (5,4) 0,1 0,0 3,3 88.33 2 (4,4) 2 83.33 10.95 1.36 

10 (5,5) 0,1 0,1 1,3 90.00 2 (4,5) 1 85.00 11.2 3.01 

11 (5,6) 0,1 0,0 3,1 91.67 2 (4,6) 1 86.67 10.6 1.32 

12 (5,7) 0,1 0,0 3,0 93.33 2 (4,7) 1 88.33 9.8 1.22 

13 (5,8) 0,0 0,0 4,0 93.33 - -  88.33 8.51 - 

14 (6,7) 0,1 0,0 2,0 95.00 1 (5,7) 1 90.00 11.15 1.29 

15 (6,8) 0,0 0,1 2,0 95.00 - - - 90.00 10.55 - 

16 (7,7) 0,1 0,0 1,0 96.67 1 (6,7) 1 91.67 8.55 1.37 

17 (7,8) 0,1 0,0 1,0 96.67 - - - 91.67 8.3 - 

18 (8,7) 0,1 0,0 0,0 98.33 1 (7,7) 1 93.33 8.18 1.13 

19 (8,8) 0,0 0,1 0,0 98.33 - - - 93.33 8.14 - 

20 (9,7) 0,1 0,0 0,0 98.33 2 (8,7) 2 96.67 8.11 0.19 

21 (9,8) 0,0 0,0 0,0 100.0    100.0 7.89   
A1: Accuracy of Model-MOU (%), A2: Accuracy of fixed samples (%) 

Table 5.8. Result of ICB with Model-MOU for Simulated 4 dataset 

Iter. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

Fixed 

box 

alloc. 

# of 

samples 

to be 

fixed A2 

CPU times 

(sec.) 

M O U A1 

Model 

MOU HTA 

1 (1,1) 17,0 0,0 10,0 73 1 (1,0) 23 23 17.34 4.77 

2 (2,1) 14,3 0,0 2,0 81 1 (2,0) 7 30 13.47 0.10 

3 (3,1) 19,0 0,0 3,2 76 - - - 30 6.50 - 

4 (2,2) 17,0 0,0 3,0 80 2 (2,1) 12 42 6.58 0.13 

5 (3,2) 12,1 0,0 5,0 82 1 (3,1) 4 46 14.94 0.10 

6 (4,2) 11,0 0,0 5,0 84 1 (4,1) 4 50 11.97 1.75 

7 (5,2) 11,1 0,0 3,0 85 2 (4,2) 11 61 14.73 0.13 

8 (6,2) 0,11 0,0 7,10 72 - - - 61 13.69 - 

9 (5,3) 1,2 0,0 7,10 80 2 (4,3) 11 72 10.54 0.12 

10 (5,4) 0,0 0,0 4,5 91 1 (5,3) 8 80 9.11 1.80 

11 (5,5) 0,0 0,0 4,2 94 2 (5,4) 11 91 8.10 1.46 

12 (6,5) 0,0 0,0 2,2 96 2 (5,5) 3 94 11.25 1.15 

13 (6,6) 0,0 0,0 2,0 98 1 (6,5) 2 96 7.35 2.48 

14 (7,6) 0,0 0,0 1,0 99 2 (6,6) 2 98 7.69 0.22 

15 (8,6) 0,0 0,0 0,0  100       100 6.90   

A1: Accuracy of Model-MOU (%), A2: Accuracy of fixed samples (%) 
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Table 5.9. Result of ICB with Model-MOU for Breast Cancer dataset 

Iter. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

Fixed 

box 

alloc. 

# of 

samples 

to be 

fixed A2 

CPU times (sec.) 

M O U A1 

Model 

MOU HTA  

1 (1,1) 11,3 5,7 8,7 93 1 (1,0) 224 41 1200 0.27 

2 (2,1) 9,2 5,3 16,22 90 1 (2,0) 105 60 1200 0.13 

3 (1,2) 15,7 6,3 14,55 82 - - - 60 268.27 - 

4 (3,1) 8,1 0,2 8,20 93 2 (2,1) 12 62 1200 3.90 

5 (4,1) 8,1 10,0 7,6 94 1 (3,1) 75 76 1200 0.33 

6 (5,1) 6,0 0,0 55,67 78 - - - 76 671.98 - 

7 (4,2) 5,1 0,9 20,26 87 2 (3,2) 20 80 1200 0.23 

8 (5,2) 2,0 0,0 51,43 82 - - - 80 1200 - 

9 (4,3) 0,0 0,0 55,31 84 2 (3,3) 8 81 1200 2.82 

10 (5,3) 2,0 0,0 53,46 82 - - - 81 1200 - 

A1: Accuracy of Model-MOU (%), A2: Accuracy of fixed samples (%) 

Compared with the results of Model-MO embedded ICB given in Table 5.4, results in 

Table 5.7 shows that ICB with Model-MOU solves Simulated 2 using fewer 

hyperboxes in the same number of iterations. On the other hand, Simulated 4 is solved 

using the same number of hyperboxes in fewer iterations as shown in Table 5.8. 

Figures 5.11 and 5.12 illustrate the accuracies at each iteration of ICB using different 

models. On the x-axis, iterations numbers for Model-MO and Model-MOU do not 

necessarily correspond to the same hyperbox allocation scheme. For Simulated 2 

dataset, it is seen in Figure 5.11 that accuracy increases more smoothly with Model-

MOU compared to Model-MO, and ICB ends up with 100% accuracy. However, it is 

still not possible to state that the accuracy is non-decreasing through the iterations. 

 

Figure 5.11. Simulated 2 – accuracy vs. iterations of ICB with different models 
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For Simulated 4 dataset, accuracy also fluctuates with Model-MOU, as seen in in 

Figure 5.12. However, 100% accuracy is achieved earlier.  

 

Figure 5.12. Simulated 4 – accuracy vs. iterations of ICB with different models 

Under the use of Model-MOU, performance of the ICB algorithm is still not promising 

to reach a 100% accuracy for larger datasets. As seen in Figure 5.13 for Breast Cancer 

dataset, at the end of iteration 10, the accuracy gets worse compared to the first 

iteration. Highest accuracy is observed at iteration 5 with 93.96%, but it is only slightly 

higher than the initial accuracy. Considering the computing time of over four hours 

for those iterations, the experiment for Breast cancer dataset is interrupted at iteration 

10.  

 

Figure 5.13. Breast Cancer – accuracy vs. iterations of ICB with Model-MOU 

Beside the plotted model accuracies (column A1) above, accuracy of fixed samples is 

also reported in Tables 5.7 through 5.9. Accuracies given in column ‘A1’, and plotted 

in the figures above stands for the direct result of mathematical model run, before 

applying the HTA. When HTA is applied, some correctly classified samples are fixed 

in a hyperbox. Accuracy of fixed samples reflects this correctly classified portion of 
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the samples. In other words, this accuracy corresponds to the solved portion of the 

problem and given in the column ‘A2’ of these tables. If the model terminates with 

optimal solution in one iteration, this figure constitutes a lower bound on the model 

accuracy of the succeeding iteration as it is formulated below. 

fff
ii

m

i
ˆ

1


                     (47) 

f i
 is non-decreasing, and 0ˆ f i

 

where 

if
m

i
 iterationat accuracy   MOU- Model:  

if i
 iteration of end at the samples fixed ofaccuracy  :  

if i
 iterationat  model by the samples fixed-non classifiedcorrectly  ofpercent  :ˆ  

Depending on the previously fixed samples and hyperboxes, f i
ˆ  can be either smaller 

than, equal to, or larger than f i
ˆ

1
. This causes obtaining ff

m

i

m

i 1
  for some instances, 

and this is the main reason of the fluctuation in model accuracy.  

The accuracy decreases in some iterations in terms of (M + O) for Model-MO, and (M 

+ O + U) for Model-MOU. When the downturn points of the accuracy plots are 

analyzed, a difference is observed between Model-MO and Model-MOU. The plots 

given in Figure 5.14 illustrate the number of misclassified and overlap samples when 

Model-MO is used in ICB. The vertical dashed lines show the iterations at which the 

accuracy decreases. As it is seen, the source of the accuracy decrease is mainly the 

overlap samples for both Simulated 2 and Simulated 4 datasets. 

 
 

a. Simulated 2 b. Simulated 4 

Figure 5.14. Misclassified and overlap samples in ICB with Model-MO 
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Model-MOU is proposed to eliminate decreases in accuracy by relaxing the sample-

to-hyperbox assignment constraint. Implicitly, it aims to smooth out the accuracy 

fluctuations and reduce the required number of iterations for ICB. As illustrated in 

Figure 5.15, the main reason for accuracy decrease is the unassigned samples as 

opposed to overlap samples when Model-MOU is used. This brings flexibility to the 

procedure because the unassigned samples can be assigned to new hyperboxes 

generated at later iterations. 

These findings indicate the benefit of Model-MOU in reducing the loss of accuracy 

due to overlap samples. However, use of Model-MOU alone does not have a 

substantial impact on reducing the accuracy fluctuations or the number of iterations. 

Hyperbox allocation and trimming rules also need to be revised to improve the 

performance. 

 
 

a. Simulated 2 b. Simulated 4 

Figure 5.15. Misclassified, overlap, and unassigned samples, ICB with Model-MOU 
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hyperbox with the smallest misclassification ratio for trimming does not 

guarantee the largest sample size reduction, because the amount of reduction 

attained by fixing a hyperbox is not known until after applying HTA. As there 

are always only two candidate hyperboxes to be trimmed in each iteration and 

the HTA runtime is short, it is better to apply HTA to both hyperboxes, and 

then trim and fix the one that covers more samples. 

2. In each iteration, hyperbox addition decision is made based on the number of 

misclassified samples. However, Model-MOU also generates unassigned 

samples. Increase in the number of unassigned samples may be caused by the 

lack of a hyperbox for the class of those samples. Thus it is more reasonable 

to add a hyperbox to the class with a higher (M + U) value. 

3. Finally, the most obvious cause is the allocation of a new (free) hyperbox to a 

class in an iteration. If the algorithm chooses to fix the hyperbox of one class 

but adds a new hyperbox to the other class, the former class will have no free 

allocated hyperbox whereas the latter class will have two free hyperboxes in 

the subsequent iteration. As a result, all samples of the former class with no 

free hyperbox remain unassigned or misclassified. An example situation can 

be seen in Table 5.8 for the 2nd and 7th iterations of Simulated 4 dataset.  

In the light of the analysis on experimental results, ICB is revised to alleviate the 

drawbacks that are explained above. The modifications made on the ICB algorithm to 

obtain HCB matheuristic are summarized below. 

 The HTA is applied to trim both hyperboxes in each iteration, and the sample-

to-hyperbox assignments are fixed for the box of class i that covers more 

samples after the trimming.  

 A new hyperbox is added to class j that has more misclassified and unassigned 

(M + U) samples instead of the class that has only more misclassified samples. 

 If i ≠ j, then the sample-to-hyperbox assignments are also fixed for the box of 

class j, and a new (free) hyperbox is also added for class i.  

 Model-MOU is used for the classification instead of Model-MO. 
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After these modifications, it is guaranteed to have two free hyperboxes at each 

iteration. In addition, there will always be a free hyperbox for each class in each 

iteration of HCB. In this way, HCB has additional branches in the search tree as shown 

in Figure 5.16. It is important to note that the model accuracy may still fluctuate due 

to f i
ˆ . However, these fluctuations are expected to decrease by the use of HCB.  

 

Figure 5.16. Hyperbox allocation possibilities to (class 1, class2) throughout the iterations of HCB 

The finalized algorithm for HCB is given in Figure 5.17. Some set and variable 

definitions used within the algorithm is given below. 

D:  Set of all samples. 

P:   Set of samples whose sample-to-hyperbox assignments are fixed. 

Pk:  Set of candidate samples that can be fixed for class k. 

Ht:  Set of hyperboxes for iteration t. 

lk: Index for candidate hyperboxes of class k added to Ht after HTA. 

ek: Number of misclassified and unassigned samples for class k in objective function 

z* of Model-MOU. 

ok: Number of overlap samples for class k in objective function z* of Model-MOU. 
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HCB Algorithm 

1 t = 1 

2 H1: one hyperbox for each class 

3 P = { } 

4 z* = a large value 

5 While z* ≠ 0 

6 SOLVE  Model - MOU for D fixing hyperbox assignments of samples in P using 

hyperboxes in Ht, → S, z* 

7  zt = z* 

8  If t ≠ 1 

9   If l ≠ 0 and (zt ≥ zt-1 or hyperbox l is unused) 

10    Ht = Ht-1  

11    Fix boundaries and sample-to-box assignments for hyperbox lk’ 

12    Update Ht by adding a free hyperbox for class k’ 

13    P = P - Pk ;  P = P  Pk’ 

14 SOLVE  Model - MOU for D fixing hyperbox assignments of 

samples in P using hyperboxes in Ht, → S, z* 

15    zt = z* 
16   End if 

17  End if 

18  CALL HTA for solution S → l1, l2, P1, P2  

19  If |P1| > |P2| and e1 ≥ e2 

20   l = l1; fix boundaries and sample-to-box assignments for hyperbox l1 

21   k = 1; update Ht+1 by adding a free hyperbox for class 1 to Ht 

22   P = P  P1 

23   k’ = 2 

24  Else If |P2| > |P1| and e2 ≥ e1 

25   l = l2; fix boundaries and sample-to-box assignments for hyperbox l2 

26   k = 2; update Ht+1 by adding a free hyperbox for class 2 to Ht 

27   P = P  P2 

28   k’ = 1 

29  Else If |P1| = |P2| and e1 = e2 

30   If   o1 ≥ o2 

31           l = l1; fix boundaries and sample-to-box assignments for hyperbox l1 

32           k = 1; update H t+1 by adding a free hyperbox for class 1 to Ht 

33           P = P  P1 

34           k’ = 2 
35   Else  

36           l = l2; fix boundaries and sample-to-box assignments for hyperbox l2  

37           k = 2; update H t+1 by adding a free hyperbox for class 2 to Ht 

38           P = P  P2 

39           k’= 1 
40   End if 

41  Else   

42   l = 0; fix boundaries and sample-to-box assignments for hyperboxes l1, l2  

43   Update H t+1 by adding a free hyperbox for each class to Ht 

44   P = P  P1 P2 

45  End if  

46  t = t+1 
47 END WHILE 

Figure 5.17. HCB Algorithm 
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In the algorithm, lines 1 to 4 comprise the initialization. The main loop between lines 

5 and 47 is repeated until 100% accuracy is achieved with z* = 0. In line 6, after fixing 

hyperbox assignments for the samples in set P, Model-MOU is solved for dataset D 

using hyperboxes in Ht. Set Ht includes one free hyperbox for each class (l1, l2) 

whereas the boundary variables for all remaining hyperboxes in the set are fixed. 

Solution S of Model-MOU includes all decision variable values required for applying 

HTA at line 18.  HTA is applied to both free hyperboxes and resulting sample size 

values of trimmed hyperboxes (|P1|, |P2|) are reported. e1, e2, o1, and o2 values are 

obtained from objective function z* of solution S. Based on these values, a new 

hyperbox allocation decision is made by setting k along with fixing boundaries and 

sample-to-hyperbox assignments for selected hyperbox(es) between the lines 19 and 

45. Note that the number of overlap samples is used as a tie breaker when the two 

classes are the same in terms of |Pk| and ek values. Between lines 8 and 17, the selected 

class for a new hyperbox allocation is changed from k to k’ if an unused hyperbox or 

an unimproved objective function value is observed in the new Model-MOU solution. 

Beside this change performed in lines 10 through 12, set P is also updated as in line 

13 and Model-MOU is solved again.      

Once the hyperbox to be trimmed is decided, boundary variables of this hyperbox and 

respective sample-to-hyperbox assignment variables are fixed, and new decision 

variables are included in the model for new free hyperbox(es). In the following 

iteration, Model-MOU is solved with this newly constrained search space and new 

variables. Since the new variables are defined only for two free hyperboxes at each 

iteration, increase in the problem size throughout the iterations remain under control.  

 

 





 

 

 

77 

 

CHAPTER 6  

 

6. EXPERIMENTAL RESULTS OF HCB 

In this section, the performance of HCB matheuristic is first analyzed in comparison 

with ICB which utilizes Model-MOU. Due to the satisfactory results of these analyses, 

HCB is used as the classification algorithm in the rest of the experiments, and the 

results are reported. Finally, performance of HCB is compared with  that of the CART 

algorithm (Classification and regression tree). 

6.1. Preliminary Results and Comparison of HCB with ICB 

As preliminary experiments, HCB algorithm is applied to Simulated 2, Simulated 4, 

and Breast Cancer datasets to see the effect of the modifications in the algorithm over 

ICB. For all datasets, 100% training accuracy is achieved. Details of the iterations are 

given in Appendix E. The training accuracies (refer to Model-MOU accuracy for the 

rest of this thesis) for iterations of ICB and HCB are compared in Figures 6.1-6.3 for 

these datasets. 

 

Figure 6.1. Comparison of model accuracies for ICB and HCB – Simulated 2 

 

Figure 6.2. Comparison of model accuracies for ICB and HCB – Simulated 4 
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Figure 6.3. Comparison of model accuracies for ICB and HCB – Breast Cancer 

As seen in the figures, HCB is more stable and performs fewer iterations to reach the 

result. The reason HCB makes fewer iterations is the possibility of directly branching 

from node (n1, n2) to node (n1+1, n2+1) as in Figure 5.16 by adding two hyperboxes 

in the same iteration. Moreover, unused hyperboxes are rarely observed with the HCB 

algorithm. Thus, horizontal actions are also reduced. According to the results, HCB 

outperforms ICB and ICB with Model-MOU in the training phase.  

Table 6.1. Training and test phase accuracies for HCB – Simulated 2, Simulated 4, Breast Cancer 

 Simulated 2  Simulated 4  Breast Cancer 

Iter. 
Training 

accuracy 

Test 

accuracy 
 

Training 

accuracy 

Test 

accuracy 
  

Training 

accuracy 

Test 

accuracy 

1 75.00 70.00  73.00 64.00  92.49 94.89 

2 73.33 90.00  81.00 76.00  89.93 94.89 

3 78.33 86.67  82.00 64.00  85.90 93.43 

4 81.67 83.33  79.00 72.00  89.38 95.62 

5 86.67 86.67  87.00 68.00  91.39 95.62 

6 88.33 86.67  94.00 72.00  93.59 95.62 

7 90.00 86.67  96.00 80.00  95.79 96.35 
8 91.67 83.33  98.00 80.00  96.89 95.62 

9 93.33 83.33  99.00 80.00  97.99 95.62 

10 96.67 83.33  100.00 80.00  98.53 95.62 

11 98.33 83.33  - -  99.08 95.62 

12 100.00 83.33  - -  99.45 95.62 

13 - -  - -   100.00 95.62 

In order to evaluate the classification performance of HCB, test phase accuracies are 

also analyzed at each iteration. Test accuracies for all datasets are given with the 

training accuracies in Table 6.1. The maximum test phase accuracies reached are 

shown in bold, and all of them are obtained in earlier iterations.  
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As a common observation, test accuracies are fixed at a certain iteration and remain 

the same for the rest of the iterations. It is an expected behavior due to the 

characteristics of the generated hyperboxes. First of all, when a test sample falls into 

a fixed hyperbox of the wrong class, that sample will be misclassified for the rest of 

the iterations. In addition, hyperboxes generated in early iterations are larger, and their 

sizes get smaller throughout the algorithm. For example, after the 7th iteration of 

Simulated 4 dataset, three additional hyperboxes are used to classify only six 

remaining samples as it is seen in Table 6.2. One of those hyperboxes covers only one 

sample, thus its effect in the test phase is insignificant.  

Table 6.2. Iteration details of HCB for Simulated 4 dataset 

Iter. Allocation M O U 

Fixed box 

allocation 

# of samples 

to be fixed 

1 (1,1) 17,0 0,0 10,0 (1,0) 23 

2 (2,1) 14,3 0,0 2,0 (2,1) 21 

3 (3,2) 14,1 0,0 1,2 (3,2) 15 

4 (4,3) 9,0 0,1 4,7 (3,3) 11 

5 (4,4) 0,0 0,0 8,5 (4,4) 17 

6 (5,5) 0,0 0,0 4,2 (5,4) 4 

7 (6,5) 0,0 0,0 2,2 (5,5) 3 

8 (6,6) 0,0 0,0 2,0 (6,5) 2 

9 (7,6) 0,0 0,0 1,0 (7,6) 1 

10 (8,6) 0,0 0,0 0,0     

6.2. Contribution of Hyperboxes to Classification 

In order to see the marginal contribution of each hyperbox to classification, two 

hyperbox measures namely ‘purity’ and ‘power’ are developed are computed. Purity 

is about the classification accuracy of a hyperbox, whereas power is related with the 

amount of data classified by a hyperbox. These measures can be defined as follows. 

(49)                                                                                                           

(48)                                                                                                 
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where 

kNk  class in samples ofnumber  : , 
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klkNkl  class of hyperbox  in  class from samples ofnumber  : , 

klM kl  class of hyperbox  in samples iedmisclassif ofnumber  : . 

Using Equations (48) and (49), purity and power values are computed for the 

hyperboxes throughout the iterations of HCB for each dataset. Training phase results 

for Simulated 2 are given in Table 6.3. Since the algorithm terminates with 100% 

training accuracy, there are no misclassified samples at the end, and all of the 

hyperboxes have a purity score of 1.0. The power decreases as the additional 

hyperboxes get smaller in later iterations. The last seven hyperboxes are used to 

classify only one sample each, starting with the 11th iteration. As seen in Table 6.1, 

these small hyperboxes are indeed ineffective in the test phase. 

Table 6.3. Training phase purity and power of hyperboxes obtained with HCB – Simulated 2 dataset 

l Nkl Mkl Iteration Class Purity Power 

1 11 0 1 1 1.0000 0.3667 

2 14 0 1 2 1.0000 0.4667 

3 6 0 3 2 1.0000 0.2000 

4 9 0 2 1 1.0000 0.3000 

5 4 0 4 2 1.0000 0.1333 

6 2 0 4 1 1.0000 0.0667 

7 2 0 6 1 1.0000 0.0667 

8 2 0 5 2 1.0000 0.0667 

9 1 0 6 2 1.0000 0.0333 

10 2 0 7 1 1.0000 0.0667 

11 1 0 9 2 1.0000 0.0333 

12 1 0 8 1 1.0000 0.0333 

13 1 0 9 1 1.0000 0.0333 

14 1 0 11 1 1.0000 0.0333 

15 1 0 10 2 1.0000 0.0333 

16 1 0 12 2 1.0000 0.0333 

17 1 0 12 1 1.0000 0.0333 

The power, and purity of the hyperboxes are also computed for the test phase. Table 

6.4 gives the results for the first four iterations and five hyperboxes of Simulated 2 

dataset. The remaining twelve hyperboxes do not have any contribution to the 

classification of the test samples, including the 6th hyperbox that was finalized at 

iteration 4 in the training phase. Although the power of these hyperboxes for the rest 

is zero, better test accuracies are observed using the hyperboxes generated at iterations 

5, 6, and 7 as seen in Table 6.1.  
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Table 6.4. Test phase purity and power of hyperboxes obtained with HCB – Simulated 2 dataset 

l Nkl Mkl Iteration Class Purity Power 

1 1 0 1 1 1.0000 0.0333 

2 15 3 1 2 0.8000 0.5000 

3 8 0 3 2 1.0000 0.2667 

4 0 0 2 1 - 0.0000 

5 1 2 4 2 1.0000 0.0333 

The fluctuation in the test accuracy is caused by the assignment of unknown and 

overlap samples using the COUS algorithm. Even some slight changes in the hyperbox 

coordinates may alternate the class of an unknown or overlap sample, as it is illustrated 

in Figure 6.4. As seen in Figure 6.4a, two unknown samples marked in red circle is 

assigned to the shown hyperbox of correct class, given the resulting hyperboxes of 

iteration 5. However, this hyperbox is not fixed in that iteration yet and replaced by 

the smaller hyperboxes in the further iterations. As seen in Figure 6.4b, resulting small 

hyperboxes of the correct class are relatively farther, and COUS assigns these samples 

to the closer but incorrect class. The reason for not obtaining the maximum test 

accuracy with the boxes obtained at the final iteration of HCB is an indicator of 

overfitting caused by resolving all overlaps and forcing the samples for assignment. 

 

Figure 6.4. Illustration of test phase results at different iterations of HCB – Simulated 2 

Purity and power values for the hyperboxes of Simulated 4 and Breast Cancer dataset 

are given in Tables 6.5 and 6.6, respectively. As for Simulated 2, power of the 

hyperboxes has a decreasing trend throughout the iterations, as the training accuracy 

increases.  
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Table 6.5. Purity and power of hyperboxes obtained with HCB – Simulated 4 dataset 

    Training phase  Test phase 

l Iter. Class  Nkl Mkl Purity Power   Nkl Mkl Purity Power 

1 1 1  23 0 1.0000 0.4600  3 0 1.0000 0.2500 

2 2 2  12 0 1.0000 0.2400  2 0 1.0000 0.1538 

3 2 1  7 0 1.0000 0.1400  2 0 1.0000 0.1667 

4 3 1  4 0 1.0000 0.0800  2 4 0.0000 0.1667 

5 3 2  11 0 1.0000 0.2200  2 0 1.0000 0.1538 

6 4 1  8 0 1.0000 0.1600  3 0 1.0000 0.2500 

7 5 2  11 0 1.0000 0.2200  1 0 1.0000 0.0769 

8 4 2  11 0 1.0000 0.2200  2 1 0.5000 0.1538 

9 6 1  4 0 1.0000 0.0800  1 0 1.0000 0.0833 

10 7 2  3 0 1.0000 0.0600  0 0 - 0.0000 

11 8 1  1 0 1.0000 0.0200  0 0 - 0.0000 

12 9 2  2 0 1.0000 0.0400  0 0 - 0.0000 

13 10 1  1 0 1.0000 0.0200  0 0 - 0.0000 

14 10 1  2 0 1.0000 0.0400  0 0 - 0.0000 

 

Table 6.6. Purity and power of hyperboxes obtained with HCB - Breast Cancer dataset 

    Training phase  Test phase 

l Iter. Class  Nkl Mkl Purity Power  Nkl Mkl Purity Power 

1 1 1  224 0 1.0000 0.6257  55 0 1.0000 0.6395 

2 2 2  109 0 1.0000 0.5798  34 1 0.9706 0.6667 

3 2 1  105 0 1.0000 0.2933  23 0 1.0000 0.2674 

4 4 1  12 0 1.0000 0.0335  2 0 1.0000 0.0233 

5 3 2  21 0 1.0000 0.1117  5 1 0.8000 0.0980 

6 4 2  15 0 1.0000 0.0798  3 1 0.6667 0.0588 

7 5 1  5 0 1.0000 0.0140  1 0 1.0000 0.0116 

8 5 2  8 0 1.0000 0.0426  2 1 0.5000 0.0392 

9 6 1  4 0 1.0000 0.0112  0 0 - 0.0000 

10 6 2  11 0 1.0000 0.0585  2 0 1.0000 0.0392 

11 8 1  2 0 1.0000 0.0056  0 0 - 0.0000 

12 7 2  9 0 1.0000 0.0479  1 2 1.0000 0.0196 

13 8 2  4 0 1.0000 0.0213  1 0 1.0000 0.0196 

14 12 1  2 0 1.0000 0.0056  0 0 - 0.0000 

15 9 2  4 0 1.0000 0.0213  1 0 1.0000 0.0196 

16 10 2  3 0 1.0000 0.0160  0 0 - 0.0000 

17 11 2  3 0 1.0000 0.0160  1 0 1.0000 0.0196 

18 12 2  2 0 1.0000 0.0106  0 0 - 0.0000 

19 13 1  1 0 1.0000 0.0028  0 0 - 0.0000 

20 13 2  2 0 1.0000 0.0106  0 0 - 0.0000 
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Figure 6.5 illustrates the power of hyperboxes and accuracies for the hyperboxes 

generated in HCB iterations of Simulated 4 dataset. As it is seen, patterns of power 

and accuracy are almost symmetrical around the dashed line. 

 

Figure 6.5. Power and accuracy for Simulated 4 

To summarize, for these three datasets, HCB generates the most powerful hyperboxes 

in the earlier iterations. The later iterations of the algorithm have only incremental 

contributions to the training phase accuracy, and in some cases they even reduce the 

test phase accuracy due to overfitting. This indicates that selecting the hyperboxes of 

an earlier iteration may be more beneficial on the classification performance, as the 

later iterations result in overfitting. The main motivation to develop the HCB 

matheuristic is to deal with the complexity issues. However, it also provides a side 

benefit of assessing contribution of additional hyperboxes for different levels of 

accuracy, instead of reporting only a final configuration with 100% training accuracy 

but somewhat overfitted results. Based on these preliminary results obtained so far, 

HCB seems promising, therefore further experiments are conducted with HCB. 

6.3. Computational Results of HCB 

In order to evaluate the performance of HCB, experiments are extended. Among the 

previously introduced data sets, Simulated 2 and Simulated 4 are used with their five 

folds, since they are more complex versions of Simulated 1 and Simulated 3, 

respectively. Five folds of Breast Cancer dataset are also used due to its multi-feature 

structure. As an example case for larger sized dataset, Skin Segmentation dataset from 
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UCI Machine Learning Repository (Due & Karra, 2017) is selected. As given in Table 

6.7, the source of runtime complexity with Skin Segmentation is the number of 

samples since there are only three features representing the data. HCB matheuristic is 

capable of dealing with this complexity by the use of HTA and fixing sample-to-

hyperbox assignments, but it may not find even an initial solution for some datasets 

as the number of features increases. Therefore, experiments on datasets with larger 

number of features is postponed until after addition of feature selection.  

Table 6.7. Skin Segmentation Dataset 

Dataset 
Number of 

samples 

Number of 

classes 

Number of 

features 

Data type 

Skin Segmentation 194,198 2 3 Integer 

Skin Segmentation has three features that represent the color codes of RGB (Red, 

Green, Blue) each takes values between 0 and 255. The two classes denote human skin 

and non-human skin, which correspond to class 1 and class 2, respectively. Due to the 

variety in human skin colors, samples of class 1 take values in different zones of RGB 

color ranges, which can be resolved using hyperboxes at different locations, and this 

can be an informative exercise for HCB. Smaller subsets of different complexities in 

terms of class separability are generated from Skin Segmentation dataset to see the 

performance of HCB. 

Before generating these subsets, the duplicate samples are removed. Among the 

remaining 51,444 unique samples, 14,654 are class 1 and 36,790 are class 2 samples. 

Subsets are generated in different sample sizes as 1750, 2500, and 7000. Ratio of class 

1 and class 2 samples are taken as 1:2.5 in order to maintain the original scheme. Then, 

samples of class 1 and class 2 are divided into non-overlapping bins of respective 

sizes. For example, bins of 500 samples for class 1 and bins of 1250 samples for class 

2 are used for the 1750 sample case. By cross matching the bins, different subsets are 

generated. In each subset size, two subsets are selected for the experiment and named 

as easy and hard. The terms easy and hard refer to the difficulty level to separate the 

classes of samples due to the interwoven structure of the samples.  
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Table 6.8. Subsets of Skin Segmentation dataset 

Subset Size 

Number of 

samples from 

class 1 

Number of 

samples from 

class 2 Property 

Skin Subset 1 1,750 500 1,250 hard 

Skin Subset 2 1,750 500 1,250 easy 

Skin Subset 3 3,500 1,000 2,500 hard 

Skin Subset 4 3,500 1,000 2,500 easy 

Skin Subset 5 7,000 2,000 5,000 easy 

Skin Subset 6 7,000 2,000 5,000 hard 

The properties of the selected subsets are summarized in Table 6.8 and illustrated in 

Figure 6.6. As seen in the figure, the two classes overlap (samples are interwoven) 

more in hard subsets and less in easy subsets. 

  
a. Skin subset 1 b. Skin subset 2 

  
c. Skin subset 3 d. Skin subset 4 

  
e. Skin subset 5 f. Skin subset 6 

Figure 6.6. Visualization of Skin Segmentation subsets 
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Five folds of the six subsets are generated where 20% is dedicated as the test data. 

However, it is observed that the sample size still causes complexity issues. In the first 

iteration of HCB, a 20-minute run of Model MOU results in so many overlap and 

unassigned samples that it is not computationally feasible to continue with further 

iterations of the algorithm. When the overlaps are analyzed in detail, it is realized that 

they mostly occur among the hyperboxes of the same class. In Model MOU, constraint 

set (41) enforces separation of all hyperboxes even though they belong to same class, 

which makes the formulation intractable as the number of samples increases. Thus, 

the constraint is modified as in (50) to prevent the overlaps only for the hyperboxes of 

different classes. Here 
k

kdik  and 
k

kBoxlk  give the classes of sample i and 

hyperbox l, respectively. 

 
 kk1

   e      wher        1 kBoxkdi,l    tlMY O lkikilil

M

m

ilm            (50) 

However, this modification is not sufficient and the model still terminates in the first 

iteration with many unassigned samples such that an efficient hyperbox containing a 

large number of samples cannot be obtained for HTA. In order to alleviate this 

unassigned samples problem, in the first iteration of HCB, a single hyperbox is created 

by the model such that all samples of the larger class are forced to be assigned to this 

hyperbox.  

In Table 6.9 results of the first iterations for training datasets of five folds with and 

without this assignment constraining are given. In the table, N denotes the total number 

of samples, and N1 and N2 denote the numbers of samples in class 1 and class 2, 

respectively. Also, z1 and z2 denote the objective function values without and with the 

assignment constraining. It is seen that, constraining the model gives better results for 

datasets that are classified as hard, with an exception of subset 1 which yields not 

better but an equal objective function value as given in Table 6.9. For the last two 

subsets, which have 5600 samples in the training dataset, forcing the assignment yields 

better results both for easy and hard cases. During the experiments, this type of 

assignment to a single hyperbox is enforced when it is not possible to obtain an 

efficient solution of the model in the first iteration. 
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Table 6.9. Model results for the first iterations of Skin Segmentation subsets without and with single 

hyperbox assignments 

Dataset N1 N2 N z1 z2
 

skin-s1c1 400 1000 1400 400 400 

skin-s1c2 400 1000 1400 400 400 

skin-s1c3 400 1000 1400 400 400 

skin-s1c4 400 1000 1400 400 400 

skin-s1c5 400 1000 1400 400 400 

skin-s2c1 400 1000 1400 207 400 

skin-s2c2 400 1000 1400 190 400 

skin-s2c3 400 1000 1400 201 400 

skin-s2c4 400 1000 1400 191 400 

skin-s2c5 400 1000 1400 197 400 

skin-s3c1 800 2000 2800 801 800 

skin-s3c2 800 2000 2800 1706 800 

skin-s3c3 800 2000 2800 800 800 

skin-s3c4 800 2000 2800 800 800 

skin-s3c5 800 2000 2800 803 800 

skin-s4c1 800 2000 2800 800 800 

skin-s4c2 800 2000 2800 719 800 

skin-s4c3 800 2000 2800 412 800 

skin-s4c4 800 2000 2800 393 800 

skin-s4c5 800 2000 2800 385 800 

skin-s5c1 1600 4000 5600 1834 1600 

skin-s5c2 1600 4000 5600 1598 1600 

skin-s5c3 1600 4000 5600 1629 1600 

skin-s5c4 1600 4000 5600 5120 1600 

skin-s5c5 1600 4000 5600 5600 1600 

skin-s6c1 1600 4000 5600 2787 1600 

skin-s6c2 1600 4000 5600 1600 1600 

skin-s6c3 1600 4000 5600 3657 1600 

skin-s6c4 1600 4000 5600 5199 1600 

skin-s6c5 1600 4000 5600 3762 1600 

 

Results for Simulated 2 Dataset 

During the preliminary experiments on Simulated 2, 60 training samples and 30 test 

samples were taken and random sub-sampling was used to obtain five replications. In 

this section, 60 training and 15 test samples are used within the 5-fold scheme. The 

results are given in Table 6.10 with the details of each iteration, including the 

hyperbox allocation, model results, the number of samples fixed by HTA, and the 

classification accuracies for training and test phases. 
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Table 6.10. Iteration details of HCB for five folds of Simulated 2 dataset 

Training phase  Test phase 

Fold Iter. L 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

1 

1 2 (1,1) 12,2 0,0 1,0 75.00  1 - 2 25 41.67 11.481 0.171  6 66.67 

2 4 (2,2) 5,10 0,0 1,0 73.33 2 9 56.67 6.747 0.047  3 80.00 

3 5 (2,3) 5,0 0,0 5,3 78.33  1 - 2 6 66.67 5.885 0.102  3 80.00 

4 6 (3,3) 3,3 0,0 4,1 81.67  1 - 2 6 76.67 6.043 0.149  3 80.00 

5 8 (4,4) 0,1 0,1 3,3 86.67 2 2 80.00 5.524 1.719  3 80.00 

6 9 (4,5) 0,1 0,1 3,2 88.33  1 - 2 3 85.00 5.12 1.813  3 80.00 

7 11 (5,6) 0,0 0,1 3,2 90.00 1 2 88.33 5.248 2.317  3 80.00 

8 12 (6,6) 0,0 0,0 3,2 91.67 1 1 90.00 5.565 2.375  3 80.00 

9 13 (7,6) 0,0 0,0 2,2 93.33  1 - 2 2 93.33 4.794 1.703  3 80.00 

10 15 (8,7) 0,0 0,1 0,1 96.67 2 1 95.00 5.562 1.43  3 80.00 

11 16 (8,8) 1,0 0,0 0,0 98.33 1 1 96.67 3.216 0.216  3 80.00 

12 17 (9,8) 0,0 0,0 0,0 100.00   2 100.00 3.685    3 80.00 

2 

1 2 (1,1) 6,8 0,0 1,0 75.00 2 19 31.67 6.251 0.011  3 80.00 

2 3 (1,2) 0,9 2,6 4,0 65.00  1 - 2 18 61.67 2.405 1.828  3 80.00 

3 5 (2,3) 1,2 0,1 7,4 78.33  1 - 2 9 76.67 3.658 0.164  3 80.00 

4 7 (3,4) 0,1 0,0 6,2 85.00 1 5 85.00 6.903 1.406  4 73.33 

5 8 (4,4) 0,0 0,0 4,1 91.67 1 3 90.00 3.528 0.664  4 73.33 

6 9 (5,4) 0,1 0,0 0,1 96.67  1 - 2 3 95.00 3.231 0.078  4 73.33 

7 11 (6,5) 0,1 0,0 0,0 98.33 2 1 96.67 3.488 1.367  4 73.33 

8 12 (6,6) 0,0 0,0 0,0 100.00   2 100.00 3.529     4 73.33 

3 

1 2 (1,1) 6,8 0,0 1,1 73.33 2 17 28.33 7.194 0.168  2 86.67 

2 3 (1,2) 7,8 0,0 1,0 73.33 1 16 55.00 4.811 0.132  2 86.67 

3 4 (2,2) 1,4 0,0 5,2 80.00 1 5 63.33 8.892 0.332  4 73.33 

4 5 (3,2) 0,0 1,1 6,6 78.33 2 5 71.67 9.822 1.239  4 73.33 

5 6 (3,3) 2,1 0,0 4,2 85.00 1 4 78.33 4.49 0.191  3 80.00 

6 7 (4,3) 2,2 0,0 2,1 88.33  1 - 2 4 85.00 4.56 0.207  2 86.67 

7 9 (5,4) 1,1 0,0 1,1 93.33 1 2 88.33 3.362 0.211  3 80.00 

8 10 (6,4) 1,0 0,0 1,2 93.33  1 - 2 2 91.67 4.125 2.057  3 80.00 

9 12 (7,5) 0,0 0,0 2,1 95.00 1 1 93.33 19.643 0.135  3 80.00 

10 13 (8,5) 0,0 0,0 0,2 96.67 2 1 95.00 6.213 0.035  1 93.33 

11 14 (8,6) 0,0 0,0 0,1 98.33 2 1 96.67 5.175 1.013  1 93.33 

12 15 (8,7) 0,0 0,0 0,0 100.00   2 100.00 18.3    1 93.33 

4 

1 2 (1,1) 6,4 0,0 2,0 80.00  1 - 2 34 56.67 8.116 0.172  3 80.00 

2 4 (2,2) 0,5 0,0 7,2 76.67 2 5 65.00 7.508 1.086  3 80.00 

3 5 (2,3) 3,0 0,0 5,2 83.33 1 6 75.00 4.722 1.336  4 73.33 

4 6 (3,3) 1,1 0,0 2,2 90.00 2 4 81.67 7.851 0.195  3 80.00 

5 7 (3,4) 0,1 0,0 3,0 93.33 1 3 86.67 4.207 1.270  4 73.33 

6 8 (4,4) 0,0 0,0 3,1 93.33 1 2 90.00 3.178 1.527  4 73.33 

7 9 (5,4) 0,0 0,0 1,1 96.67  1 - 2 4 96.67 2.504 1.172  4 73.33 

8 11 (6,5) 0,0 0,0 0,0 100.00   2 100.00 2.666    4 73.33 

5 

1 2 (1,1) 9,3 0,0 1,0 78.33  1 - 2 32 53.33 6.764 0.171  4 73.33 

2 4 (2,2) 3,0 0,0 7,7 71.67  1 - 2 6 63.33 5.692 1.398  4 73.33 

3 5 (3,2) 0,3 1,0 2,5 81.67 2 4 70.00 3.991 1.067  4 73.33 

4 6 (3,3) 3,1 0,0 1,2 88.33  1 - 2 7 81.67 3.501 0.187  4 73.33 

5 8 (4,4) 2,0 0,2 0,3 88.33  1 - 2 3 86.67 3.87 0.156  4 73.33 

6 10 (5,5) 1,0 0,0 1,3 91.67  1 - 2 3 91.67 3.511 1.563  4 73.33 

7 12 (6,6) 0,0 0,0 0,2 96.67 2 1 93.33 4.17 1.016  4 73.33 

8 13 (6,7) 0,0 0,0 0,0 100.00   4 100.00 3.056    4 73.33 
    M, O, U : Number of misclassified, overlap, and unassigned samples, respectively 

    AM: Model-MOU accuracy, ATB: accuracy of fixed samples, A: Test phase accuracy, all in percentages      
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On the average, it takes 9.6 iterations and 13.6 hyperboxes to reach 100% training 

accuracy within 61.87 seconds. Maximum hyperbox usage is observed in the first fold 

with 17 hyperboxes throughout 12 iterations. Maximum CPU time is approximately 

103 seconds. Best test accuracy throughout the iterations of all folds is obtained as 

93.33% for the 3rd fold where the average is 78.67%. Consistent with the preliminary 

experimental results, it is again observed that the highest test accuracy is obtained 

before the last iteration for all fold as shown in bold.  

Purity and power values of the generated hyperboxes and their test phase 

performances are summarized in Table 6.11. As described in Section 6.1, purity is 

about the classification accuracy of a hyperbox, whereas power is related with the 

amount of data classified by a hyperbox.  

Table 6.11. Purity and power scores of hyperboxes for five folds of Simulated 2 dataset 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

Fold Iter. L   Nkl Mkl Purity Power AM   Nkl Mkl Power ATB  Nkl Mkl Purity Power A 

1 

1 1  17 2 0.88 0.57     11 0 0.37   1 0 1.00 0.12  

1 2  28 12 0.57 0.93 75.0  14 0 0.47 0.42  3 0 1.00 0.43 66.7 

2 4  13 10 0.23 0.43 73.3  9 0 0.30 0.57  4 0 1.00 0.50 80.0 

3 3  7 1 0.86 0.23 78.3  6 0 0.20 0.67       

4 5  9 0 1.00 0.30   4 0 0.13   0 1 - 0.00  

4 6  3 3 0.00 0.10 81.7  2 0 0.07 0.77      80.0 

5 8  2 0 1.00 0.07 86.7  2 0 0.07 0.80      80.0 

6 7  5 1 0.80 0.17   2 0 0.07        

6 9  1 0 1.00 0.03 88.3  1 0 0.03 0.85      80.0 

7 10  2 1 0.50 0.07 90.0  2 0 0.07 0.88      80.0 

8 12  1 0 1.00 0.03 91.7  1 0 0.03 0.90      80.0 

9 11  1 0 1.00 0.03   1 0 0.03        

9 13  1 0 1.00 0.03 93.3  1 0 0.03 0.93      80.0 

10 15  1 0 1.00 0.03 96.7  1 0 0.03 0.95      80.0 

11 14  1 0 1.00 0.03 98.3  1 0 0.03 0.97      80.0 

12 16  1 0 1.00 0.03   1 0 0.03        

12 17   1 0 1.00 0.03 100  1 0 0.03 1.00          80.0 

2 

1 2  21 6 0.71 0.68 75.0  19 0 0.61 0.37  3 0 1.00 0.38 80.0 

2 1  21 15 0.29 0.72   16 0 0.55   4 0 1.00 0.57  

2 3  2 0 1.00 0.07 65.0  2 0 0.07 0.67  1 0 1.00 0.13 80.0 

3 4  5 2 0.60 0.17 0.0  4 0 0.14   3 1 0.67 0.38  

3 5  6 1 0.83 0.19 78.3  5 0 0.16 0.77      80.0 

4 6  5 0 1.00 0.17 91.7  5 0 0.00 0.86      73.3 

5 8  3 0 1.00 0.10 85.0  3 0 0.10 0.90  0 1 - 0.00 73.3 

6 7  1 0 1.00 0.03   1 0 0.03        

6 9  2 0 1.00 0.07 96.7  2 0 0.07 0.95      73.3 

7 11  1 0 1.00 0.03 98.3  1 0 0.03 0.97      73.3 

8 10  1 0 1.00 0.04   1 0 0.04        

8 12   1 0 1.00 0.03 100   1 0 0.03 1.00          73.3 
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Table 6.11 (continued) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Fold Iter. L   Nkl Mkl Purity Power AM   Nkl Mkl Power ATB  Nkl Mkl Purity Power A 

3 

1 2  21 6 0.71 0.68 73.0  17 0 0.55 0.28  3 0 1.00 0.38 87.0 

2 1  23 8 0.65 0.79 73.0  16 0 0.55 0.55  3 0 1.00 0.43 87.0 

3 4  9 4 0.56 0.31 80.0  5 0 0.17 0.63  2 0 1.00 0.25 73.0 

4 3  5 1 0.80 0.16 78.0  5 0 0.16 0.72  0 1 N/A 0.00 73.0 

5 5  4 1 0.75 0.14 85.0  4 0 0.14 0.78  1 0 1.00 0.13 80.0 

6 7  2 2 0.00 0.07   1 0 0.03        

6 6  4 2 0.50 0.13 88.0  3 0 0.10 0.85  1 0 1.00 0.13 87.0 

7 8  3 1 0.67 0.10 93.0  2 0 0.07 0.88      80.0 

8 9  2 1 0.50 0.07   1 0 0.03        

8 10  1 0 1.00 0.03 93.0  1 0 0.03 0.92      80.0 

9 11  1 0 1.00 0.03 95.0  1 0 0.03 0.93      80.0 

10 13  1 0 1.00 0.03 97.0  1 0 0.03 0.95  1 0 1.00 0.13 93.0 

11 12  1 0 1.00 0.03 98.0  1 0 0.03 0.97      93.0 

12 14  1 0 1.00 0.03   1 0 0.03       93.0 

12 15   1 0 1.00 0.03 100.0   1 0 0.03 1.00          93.0 

4 

1 1  22 4 0.82 0.73   16 0 0.53   3 0 1.00 0.38  

1 2  26 6 0.77 0.87 80.0  18 0 0.600 0.57  4 1 0.75 0.57 80.0 

2 4  5 0 1.00 0.17 77.0  5 0 0.17 0.65      80.0 

3 3  6 0 1.00 0.20 83.0  6 0 0.20 0.75      73.0 

4 5  5 1 0.80 0.17 90.0  4 0 0.13 0.82  0 1 - 0.00 80.0 

5 6  5 1 0.80 0.17 93.0  3 0 0.10 0.87      73.0 

6 8  2 0 1.00 0.07 93.0  2 0 0.07 0.90      73.0 

7 7  2 0 1.00 0.07   2 0 0.07   0 1 - 0.00 73.0 

7 9  2 0 1.00 0.07 97.0  2 0 0.07 0.97  0 1 - 0.00 73.0 

8 10  1 0 1.00 0.03   1 0 0.03        

8 11   1 0 1.00 0.03 100.0   1 0 0.03 1.00      73.0 

5 

1 1  20 3 0.85 0.67   14 0 0.47   4 1 0.75 0.50 73.0 

1 2  27 9 0.67 0.90 78.0  19 0 0.63 0.55  3 1 0.67 0.43  

2 3  6 0 1.00 0.20 72.0  6 0 0.20 0.65  1 0 1.00 0.13 73.0 

3 4  4 0 1.00 0.13 82.0  4 0 0.13 0.72  1 1 0.00 0.13 73.0 

4 5  6 1 0.83 0.20   4 0 0.13        

4 6  5 3 0.40 0.17 88.0  3 0 0.10 0.83      73.0 

5 7  2 2 0.00 0.07   2 0 0.07        

5 8  2 2 0.00 0.07 88.0  1 0 0.03 0.88      73.0 

6 9  2 0 1.00 0.07   2 0 0.07        

6 10  1 1 0.00 0.03 92.0  1 0 0.03 0.93      73.0 

7 12  1 0 1.00 0.03   1 0 0.03 0.95      73.0 

8 11  2 0 1.00 0.07   2 0 0.07        

8 13   1 0 1.00 0.03 100.0   1 0 0.03 1.00           73.0 
          M, O, U : Number of misclassified, overlap, and unassigned samples, respectively. 

          AM: Model-MOU accuracy, ATB: accuracy of fixed samples, A: Test phase accuracy, all in percentages      
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The hyperboxes are first generated by Model-MOU and then trimmed by HTA. In the 

test phase trimmed hyperboxes with a purity score of 1 is used. Thus, purity metric is 

not directly relevant in the test phase. However, when HTA is applied to a hyperbox, 

power of that box decreases, and purity is an indicator for the amount of this decrease. 

A box with a higher purity score is expected to have smaller power loss after HTA.  

In preliminary experiments, a decreasing trend was observed on the power of the 

generated hyperboxes as the number of iterations increases. The results given above 

also support that observation. Moreover, only the hyperboxes of earlier iterations are 

used for classification in the test phase. In Table 6.11, the test accuracies written in 

bold correspond to the last iteration where a test sample falls into a generated 

hyperbox. These test accuracies are equal to the test accuracy at the final iteration. It 

is not always guaranteed to have such kind of an equality, but it is expected to have 

close values since subsequent hyperboxes have decreasing classification power. 

Iteration details and purity and power scores of hyperboxes generated by HCB for 

Simulated 4, Breast Cancer, and Skin Segmentation datasets are given in Appendix F 

and Appendix G, respectively. The results are summarized and discussed below. 

Results for Simulated 4 Dataset 

The first of Simulated 4 dataset was already tested in Section 6.1. HCB algorithm is 

applied for the remaining 4 folds of the dataset. Training and test phase accuracies for 

the dataset are reported in Table 6.12.  

Table 6.12. Training and test phase accuracies throughout the iterations of HCB – Simulated 4 dataset 

 c1   c2   c3   c4   c5 

Iter. Training Test  Training Test  Training Test  Training Test  Training Test 

1 73.00 64.00  71.00 76.00  78.00 80.00  75.00 56.00  73.00 68.00 

2 81.00 76.00  76.00 72.00  79.00 80.00  82.00 72.00  75.00 80.00 

3 82.00 64.00  76.00 76.00  82.00 72.00  82.00 64.00  79.00 84.00 

4 79.00 72.00  81.00 72.00  88.00 76.00  85.00 72.00  83.00 84.00 

5 87.00 68.00  82.00 72.00  91.00 84.00  86.00 76.00  89.00 88.00 

6 94.00 72.00  84.00 80.00  95.00 88.00  92.00 76.00  92.00 84.00 

7 96.00 80.00  89.00 84.00  97.00 88.00  94.00 76.00  95.00 92.00 

8 98.00 80.00  89.00 84.00  99.00 88.00  99.00 84.00  97.00 88.00 

9 99.00 80.00  94.00 96.00  100.0 88.00  100.0 84.00  99.00 92.00 

10 100.0 80.00  98.00 88.00  - -  - -  100.0 92.00 

11 - -  100.0 96.00  - -  - -  - - 
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On the average, 9.8 iterations are performed and 13.8 hyperboxes are used to achieve 

100% training phase accuracy. The best test accuracy is obtained as 96% for the 2nd 

fold and Figure 6.7 illustrates the test phase with generated hyperbox classifier in this 

fold. There are 3 overlap samples and 2 unknown samples in the test phase, and only 

the sample (41,11) is misclassified after applying COUS.  

 

Figure 6.7. Test phase illustration for the second fold of Simulated 4 dataset 

In Figure 6.7, hyperboxes are numbered in generation order. The last three hyperboxes 

10, 11, and 12 are not used in the test phase, and the highest power scores are obtained 

with the first two hyperboxes. 96% test accuracy is first obtained when there are 10 

hyperboxes in iteration 9, after trimming hyperbox 10. In iteration 10, 11th hyperbox 

is added to Model-MOU and selected to be trimmed. New boundaries of free hyperbox 

9 cover sample (18, 40) and sample (19, 33). It decreases the test accuracy to 88% for 

this iteration. Before the final iteration, hyperbox 11 is trimmed and hyperbox 12 is 

added to the model. Finally, boundaries of hyperbox 9 is again changes yielding 96% 

test accuracy in the last iteration.  
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Results for Breast Cancer Dataset 

Breast cancer dataset was already tested in Section 6.1 for its first fold. HCB 

algorithm is applied for the remaining folds of the dataset.  On the average, it takes 

12.4 iterations and 16.8 hyperboxes to reach 100% training accuracy. In most of the 

iterations, Model MOU cannot reach the optimal solution and terminates due to the 

20-minute time limit. Although, this situation is not an obstacle to reach the 100% 

classification accuracy at the end of algorithm, it is an indicator that Model-MOU can 

resolve complexity due to the sample size, but it is not very efficient when the number 

of features is considered. On the average, it takes 12.4 iterations and 16.6 hyperboxes 

are generated to reach 100% training accuracy. 

Similar to the results of simulated datasets, power of the hyperboxes decreases 

throughout the iterations as it is illustrated in Figure 6.8. Approximately after the 10th 

hyperbox (according to the generation order) the power of the hyperboxes converges 

to zero, and they are also inefficient classifiers for the test phase.  

 

 

Figure 6.8. Power of hyperboxes for five folds of Breast Cancer dataset 
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In Table 6.13, training and test accuracies for the five folds of Breast Cancer dataset 

is given. The test accuracies shown in bold corresponds to the iterations where 10 

hyperboxes are generated.  When the final test accuracies are compared with the test 

accuracies with 10 hyperboxes, inefficiency of those hyperboxes is obviously seen. 

Table 6.13. Training and test phase accuracies throughout the iterations of HCB – Breast Cancer 

dataset 

 c1   c2   c3   c4   c5 

Iter. Training Test  Training Test  Training Test  Training Test  Training Test 

1 92.49 93.42  94.87 93.33  93.41 92.75  93.96 93.48  93.77 95.62 

2 89.93 94.89  93.96 92.59  90.48 94.20  94.32 93.48  93.41 95.62 

3 85.9 93.43  84.80 94.81  94.87 92.75  94.69 94.20  95.42 94.89 

4 89.38 95.62  87.73 94.81  96.52 94.20  94.87 95.65  95.60 95.62 

5 91.39 95.62  89.56 95.56  97.07 94.20  94.87 94.20  97.07 94.89 

6 93.59 95.62  91.39 94.07  97.80 93.48  94.87 94.93  96.34 94.16 

7 95.79 95.62  92.31 94.81  98.53 93.48  95.24 95.65  97.25 94.89 

8 96.89 96.35  93.22 94.81  99.63 93.48  96.52 95.65  97.80 94.89 

9 97.99 95.62  95.05 94.81  100.00 93.48  98.17 95.65  98.17 94.89 

10 98.53 95.62  95.05 94.81  - -  99.08 95.65  99.08 94.89 

11 99.08 95.62  97.44 94.81  - -  100.00 95.65  99.45 94.89 

12 99.45 95.62  97.44 94.81  - -  - -  99.82 94.89 

13 100 95.62  97.99 94.81  - -  - -  100.00 94.89 

14 - -  99.08 94.81  - -  - -  - - 

15 - -  99.63 94.81  - -  - -  - - 

16 - -  100.00 94.81  - -  - -  - - 

 

Results for Skin Segmentation Dataset 

In the experiments with five folds of Skin Segmentation subsets, as expected, the easy 

sets consume less CPU time compared to the hard sets. Moreover, the easy/hard 

distinction becomes more effective on the computational time than the sample size. In 

Table 6.14, total CPU times for Model-MOU are given for all folds of subset 1 (hard) 

and subset 4 (easy). Although the sample size of subset 4 is twice as large as that of 

subset 1, it requires less time on the average. In fact, when the CPU times per iteration 

are analyzed, it is seen that in general an iteration takes longer time when there are 

more samples in the dataset. However, the easiness of the dataset results in reaching 

the 100% training accuracy in fewer iterations, yielding shorter completion times in 

total.  
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Table 6.14. CPU times (sec) for Skin subset 1 and Skin subset 4 datasets 

  subset 1 subset 4 

c1 9290.63 3611.40 

c2 3645.03 1705.70 

c3 3503.73 3277.05 

c4 1674.60 2577.90 

c5 2317.30 4519.60 

average 4086.26 3138.33 

For skin subset 1, training and test accuracies throughout the iterations of the algorithm 

are summarized in Table 6.15. On the average, 13.4 hyperboxes are generated in 9.2 

iterations. For all folds, the best test accuracy is obtained before hitting the last 

iterations. Moreover, the best test accuracy among all folds is 100%, and it is not 

obtained as a final iteration result.  

Table 6.15. Training and test phase accuracies throughout the iterations of HCB -  Skin subset 1 

 c1   c2   c3   c4   c5 

Iter. Training Test  Training Test  Training Test  Training Test  Training Test 

1 71.43 65.43  71.43 76.29  71.43 82.57  71.43 71.43  28.57 68.38 

2 83.50 88.86  82.36 80.86  82.14 93.14  82.29 85.43  82.29 86.61 

3 92.21 92.29  83.50 86.57  94.00 90.29  83.21 91.14  86.43 82.91 

4 94.00 96.57  87.64 94.86  97.36 95.14  92.93 93.14  96.86 84.90 

5 94.57 96.86  92.64 93.43  82.14 98.00  97.93 98.57  97.71 98.29 

6 95.07 96.57  97.93 97.43  99.14 97.71  98.86 99.43  97.86 99.72 

7 96.43 98.00  98.43 98.57  99.29 98.86  99.64 99.43  98.86 99.72 

8 97.00 98.57  98.64 99.43  100.00 98.86  100.00 99.43  100.00 99.72 

9 97.71 98.86  99.14 100.00  - -  - -  - - 

10 98.50 98.57  100.00 99.72  - -  - -  - - 

11 99.71 98.86  - -  - -  - -  - - 

12 100.00 98.86   - -   - -   - -   - - 

 

For skin subset 2, it takes 4.6 iterations and 8.2 hyperboxes are generated to reach 

100% training accuracy, on the average. For some folds, the best test accuracy is 

obtained only in final iteration as it is seen in Table 6.16. It can be said that the best 

performance it obtained on the 3rd fold, which results in 100% test accuracy within 

only 3 iterations and 6 hyperboxes.    
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Table 6.16. Training and test phase accuracies throughout the iterations of HCB - Skin subset 2  

 c1   c2   c3   c4   c5 

Iter Training Test  Training Test  Training Test  Training Test  Training Test 

1 85.21 90.31  86.43 83.76  73.33 90.86  86.36 87.14  85.93 90.29 

2 97.36 98.29  97.71 96.87  99.71 99.43  97.86 97.43  98.43 97.43 

3 98.43 98.86  98.79 96.87  100.00 100.00  98.50 98.57  99.57 100.00 

4 99.64 99.72  99.64 96.58  - -  99.00 98.86  100.00 100.00 

5 100.00 99.72  100.00 99.43  - -  99.57 98.86  - - 

6 - -   - -   - -   100.00 100.00   - - 

 

Results for Skin subset 3 are summarized in Table 6.17. It takes 19.6 iterations and 

28.8 hyperboxes on the average to reach 100% training phase accuracy. For the first 

fold of the dataset a test accuracy above 99% is achieved.  

Table 6.17. Training and test phase accuracies throughout the iterations of HCB - Skin subset 3 

 c1   c2   c3   c4   c5 

Iter Training Test  Training Test  Training Test  Training Test  Training Test 

1 71.43 19.57  71.43 27.57  71.43 24.28  71.43 22.86  71.43 28.57 

2 70.68 24.71  55.79 26.00  60.57 20.00  70.86 20.29  64.86 22.86 

3 60.57 30.43  62.71 27.00  64.96 21.43  62.71 28.57  67.93 24.57 

4 54.57 35.43  74.46 55.57  74.79 69.29  64.96 35.43  74.92 32.29 

5 64.96 69.29  81.46 75.00  80.25 85.43  74.46 52.14  77.00 58.29 

6 74.79 73.00  85.43 76.86  81.46 84.86  80.25 51.43  82.29 66.86 

7 78.93 85.43  88.21 84.86  83.50 89.71  81.46 66.43  87.68 75.00 

8 80.25 89.71  88.86 84.86  82.50 91.00  83.64 72.85  85.71 83.50 

9 83.50 89.71  97.25 91.00  89.71 93.00  88.86 80.15  89.95 88.86 

10 81.43 89.71  94.71 93.29  93.00 95.71  85.71 83.71  88.86 85.43 

11 82.50 92.00  97.00 97.29  94.14 97.57  86.14 83.24  89.61 89.71 

12 83.64 95.71  98.86 98.43  95.71 97.57  89.61 86.00  91.39 89.71 

13 93.00 97.57  98.96 97.57  96.36 97.57  93.36 87.71  93.29 89.61 

14 94.25 97.57  98.96 97.86  98.96 97.86  94.96 91.00  94.11 91.00 

15 94.14 98.00  99.36 97.86  97.89 95.29  96.46 92.14  96.00 93.29 

16 96.36 97.57  99.50 98.43  99.50 98.86  97.21 94.54  96.21 95.71 

17 97.89 97.57  99.68 98.43  99.68 95.29  98.86 97.00  98.43 97.57 

18 98.71 97.57  100.00 98.43  100.00 95.29  98.61 98.43  98.86 98.71 

19 99.00 98.14  - -  - -  99.64 99.43  98.92 98.71 

20 100.00 99.14  - -  - -  100.00 98.43  99.00 98.71 

21 - -  - -  - -  - -  99.21 98.71 

22 - -  - -  - -  - -  100.00 98.71 
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Figure 6.9 illustrates the relationship between power of hyperboxes and test accuracies 

for the first folds of Skin subset 3. As usual, test accuracy becomes fairly steady after 

the iteration where power values converge to zero. Here, power of a hyperbox obtained 

by Model-MOU and power after HTA differ as it seen in the figure, but they both have 

a common decreasing trend. The gap between the powers before and after HTA is 

mainly related with the purities of the hyperboxes. If purity is close to 1.00 then the 

gap is smaller, and vice versa. 

 

Figure 6.9. Power vs. test accuracy throughout the iterations of HCB for fold 1 of Skin subset 3 

Skin subset 4 terminates in 4 iterations for all folds with an average of 5.8 hyperboxes. 

The accuracies on each iteration are given in Table 6.18. The best result is obtained 

by last fold having 100% test accuracy with only 5 hyperboxes.  

Table 6.18. Training and test phase accuracies throughout the iterations of HCB - Skin subset 4 

c1   c2   c3   c4   c5 

Training Test  Training Test  Training Test  Training Test  Training Test 

71.43 85.43  71.43 88.00  85.34 89.57  85.96 92.00  86.57 70.00 

98.04 96.29  98.57 95.57  98.57 97.86  98.36 96.00  98.71 96.43 

99.25 99.86  98.75 99.43  99.43 100.00  95.82 98.29  98.96 99.86 

100.00 100.00   100.00 99.86   100.00 100.00   100.00 100.00   100.00 100.00 

On the average, it takes 6.4 iterations and 9.2 hyperboxes to reach 100% training 

accuracy for Skin subset 5. Except the last few iterations, Model-MOU cannot reach 

the optimal solution and terminates due to the 20-minute time limitation. Training and 

test accuracies are given in Table 6.19.  
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Table 6.19. Training and test phase accuracies throughout the iterations of HCB - Skin subset 5 

c1   c2   c3   c4   c5 

Training Test  Training Test  Training Test  Training Test  Training Test 

71.43 73.50  82.14 82.43  71.43 85.57  71.43 69.79  71.43 84.64 

91.16 97.21  88.93 98.14  91.39 93.50  94.23 95.43  90.30 96.43 

95.71 97.43  75.00 98.64  96.16 98.00  94.93 91.29  92.39 97.79 

98.89 98.64  97.96 99.14  99.14 99.29  98.25 98.71  97.59 99.79 

98.89 99.57  99.09 99.00  99.98 99.93  99.46 99.64  99.32 99.86 

99.61 97.21  99.79 99.79  100.00 99.93  100.00 99.79  100.00 99.93 

100.00 100.00  100.00 99.79   - -   - -   - - 

Finally, when HCB is used on Skin subset 6 It takes 13.8 iterations and 19 hyperboxes 

are needed on the average to reach 100% accuracy. Except the last three iterations, 20 

minute of time limit is reached in each iteration of all folds. Accuracy of the iterations 

are given in Table 6.20 The best test accuracy is 100% using the generated 15 

hyperboxes in the first fold.  

Table 6.20. Training and test phase accuracies throughout the iterations of HCB - Skin subset 6 

 c1   c2   c3   c4   c5 
Iter Training Test  Training Test  Training Test  Training Test  Training Test 

1 71.43 64.43  71.43 63.43  71.43 67.38  71.43 62.43  71.43 59.57 

2 76.86 87.21  76.79 74.51  78.13 72.55  78.63 65.57  76.79 63.71 

3 77.70 81.86  78.50 72.28  87.43 75.00  80.35 61.17  77.70 67.00 

4 78.91 89.14  79.04 79.57  89.34 74.14  83.93 76.14  79.04 73.00 

5 87.46 89.71  82.20 81.00  92.85 79.14  85.71 82.29  82.20 79.71 

6 97.66 98.00  84.36 82.14  93.07 81.14  88.43 82.71  87.43 77.43 

7 98.09 98.29  86.11 90.48  94.02 81.14  91.02 85.43  85.71 81.29 

8 98.70 98.50  90.48 97.29  94.75 82.29  92.86 86.57  87.46 89.71 

9 99.64 99.29  91.54 98.50  96.71 89.14  96.54 90.14  90.48 91.00 

10 99.86 99.64  96.43 99.64  98.21 89.14  98.43 96.29  92.86 88.29 

11 100.00 100.00  98.83 99.64  98.92 90.48  98.75 98.83  94.75 93.29 

12 - -  100.00 99.93  99.02 97.29  98.83 98.83  96.64 97.29 

13 - -  - -  99.15 98.83  98.87 98.83  98.92 97.29 

14 - -  - -  99.86 89.83  99.64 99.57  99.64 98.83 

15 - -  - -  100.00 99.36  100.00 99.57  99.84 99.57 

16 - -  - -  - -  - -  100.00 99.57 
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6.4. Comparison with CART 

Tree learning is a widely used method for classification. The classifier rules obtained 

by a classification tree are similar to the rules inherently defined by a hyperbox 

classifier. A classification tree basically starts with a root node and splits the samples 

into two groups of different classes, based on a bounding value of a selected feature 

associated with that node. Splitting of samples into subgroups continues with 

branching from the root node and generation of additional nodes. When the complete 

tree is constructed, each child node corresponds to a classifier rule, giving the bounds 

on the feature values. These bounds can be a lower bound, an upper bound, or an 

interval with both lower and upper bounds on the feature. On the other hand, a 

hyperbox classifier always gives both lower and upper bounds on all features. In 

addition, HCB aims to have a minimal set of classifier rules by the use of Model MOU.  

In this section, a well-known tree learning method CART (Breimen et al., 1984) is 

applied to the selected datasets, and the results are compared with HCB results. As for 

the implementation of CART, Salford Predictive Modeler 8.2 is used during the 

experiments. It should be noted that comparisons are not performed under a time 

limitation basis as HCB takes an optimization approach and requires solving a mixed 

integer program.  

Table 6.21 illustrates the test results of CART and HCB where 100% training accuracy 

is achieved for both methods. The names of the datasets and fold numbers are given 

in the first column. For CART, the number of classifier nodes are reported together 

with the test accuracies. 100% training accuracy for HCB is the result of the final 

iteration, and the number of hyperboxes are reported along with the test accuracies. 

As seen in the table, for all datasets, HCB uses fewer or the same number of 

hyperboxes compared to the number of nodes used by CART, except the 4th fold of 

Skin subset 2. Higher of the two respective test accuracies obtained by CART and 

HCB are shown in bold in the table. Based on these results, it can be said that final 

iterations of HCB in general outperform the complete tree of CART by generating 

higher test accuracies using fewer classifier rules. 
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Table 6.21. CART vs HCB, Comparison of test accuracies for 100% training phase accuracy 

    CART   HCB 

Data set  Nodes  Test Accuracy  Hyperboxes  Test Accuracy 

simulated2c1  19  0.8667  17  0.8000 

simulated2c2  12  0.6667  12  0.7333 

simulated2c3  15  0.8667  15  0.9333 

simulated2c4  11  0.6667  11  0.7333 

simulated2c5   12   0.7333   12   0.7333 

simulated4c1  15  0.7200  14  0.8000 

simulated4c2  13  0.8000  12  0.9600 

simulated4c3  17  1.0000  12  0.8800 

simulated4c4  16  0.8800  17  0.8400 

simulated4c5  16  0.9800  14  0.9200 

breastc1  34  0.9489  20  0.9562 

breastc2  30  0.9407  19  0.9481 

breastc3  27  0.9270  13  0.9348 

breastc4  28  0.9565  15  0.9565 

breastc5   27   0.9343   17   0.9489 

skin-s1c1  28  0.9829  18  0.9886 

skin-s1c2  21  0.9829  10  0.9971 

skin-s1c3  27  0.9743  8  0.9886 

skin-s1c4  31  0.9971  11  0.9943 

skin-s1c5   32   0.9971   13   0.9971 

skin-s2c1  13  1.0000  9  0.9971 

skin-s2c2  13  0.9886  8  0.9943 

skin-s2c3  11  0.9943  6  1.0000 

skin-s2c4  7  1.0000  10  1.0000 

skin-s2c5   11   1.0000   8   1.0000 

skin-s3c1  38  0.9886  29  0.9914 

skin-s3c2  34  0.9529  25  0.9843 

skin-s3c3  46  0.9871  26  0.9529 

skin-s3c4  43  0.9929  30  0.9843 

skin-s3c5   44   0.9914   34   0.9871 

skin-s4c1  14  0.9957  6  1.0000 

skin-s4c2  11  0.9971  5  0.9986 

skin-s4c3  11  1.0000  7  1.0000 

skin-s4c4  11  0.9986  5  1.0000 

skin-s4c5   11   0.9971   6   1.0000 

skin-s5c1  24  0.9993  9  1.0000 

skin-s5c2  16  0.9957  10  0.9979 

skin-s5c3  22  0.9993  9  0.9993 

skin-s5c4  21  0.9993  9  0.9979 

skin-s5c5   17   0.9993   9   0.9993 

skin-s6c1  46  0.9964  15  1.0000 

skin-s6c2  49  0.9979  17  0.9993 

skin-s6c3  49  0.9936  21  0.9936 

skin-s6c4  52  0.9957  18  0.9957 

skin-s6c5   54   0.9993   20   0.9957 
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Table 6.22. CART vs. HCB, Comparison of test accuracies for best test phase accuracy 

  CART   HCB 

Data set Nodes 

Training 

Accuracy 

Best Test 

Accuracy  hyperboxes 

Train 

Accuracy 

Best Test 

Accuracy 

simulated2c1 19 1.0000 0.8667  4 0.7333 0.8000 

simulated2c2 2 0.7500 0.7333  2 0.7500 0.8000 

simulated2c3 2 0.7333 0.8667  13 0.9667 0.9333 

simulated2c4 7 0.9667 0.6667  2 0.8000 0.8000 

simulated2c5 8 0.9167 0.7333  2 0.7833 0.7333 

Simulated4c1 7 0.9400 0.8000  11 0.9600 0.8000 

Simulated4c2 8 0.9700 0.8400  10 0.9400 0.9600 

Simulated4c3 17 1.0000 1.0000  9 0.9500 0.8800 

Simulated4c4 16 1.0000 0.8800  15 0.9900 0.8400 

Simulated4c5 10 0.8300 0.9800  10 0.9500 0.9200 

breastc1 6 0.8768 0.9562  6 0.9139 0.9562 

breastc2 19 0.9638 0.9556  7 0.8956 0.9556 

breastc3 11 0.9348 0.9420  4 0.9048 0.9420 

breastc4 17 0.9638 0.9710  7 0.9487 0.9565 

breastc5 6 0.8986 0.9638  2 0.9377 0.9562 

skin-s1c1 15 0.9950 0.9886  12 0.9771 0.9886 

skin-s1c2 9 0.9900 0.9857  11 0.9914 1.0000 

skin-s1c3 10 0.9929 0.9743  10 0.9929 0.9886 

skin-s1c4 31 1.0000 0.9971  8 0.9886 0.9943 

skin-s1c5 21 0.9964 1.0000  8 0.9786 0.9972 

skin-s2c1 13 1.0000 1.0000  7 0.9964 0.9972 

skin-s2c2 13 1.0000 0.9886  8 1.0000 0.9943 

skin-s2c3 9 0.9986 0.9943  6 1.0000 1.0000 

skin-s2c4 6 0.9993 1.0000  10 1.0000 1.0000 

skin-s2c5 11 1.0000 1.0000  8 1.0000 1.0000 

skin-s3c1 30 0.9986 0.9900  29 1.0000 0.9914 

skin-s3c2 34 1.0000 0.9529  21 0.9886 0.9843 

skin-s3c3 26 0.9950 0.9886  22 0.9950 0.9886 

skin-s3c4 29 0.9968 0.9943  29 0.9968 0.9943 

skin-s3c5 29 0.9939 0.9914  30 0.9886 0.9871 

skin-s4c1 6 0.9971 0.9957  6 1.0000 1.0000 

skin-s4c2 7 0.9989 0.9971  5 1.0000 0.9986 

skin-s4c3 7 0.9993 1.0000  5 0.9994 1.0000 

skin-s4c4 7 0.9993 0.9986  5 1.0000 1.0000 

skin-s4c5 10 0.9996 0.9971  6 1.0000 1.0000 

skin-s5c1 24 1.0000 0.9993  9 1.0000 1.0000 

skin-s5c2 16 1.0000 0.9957  9 0.9979 0.9979 

skin-s5c3 22 1.0000 0.9993  7 0.9998 0.9993 

skin-s5c4 21 1.0000 0.9993  9 1.0000 0.9979 

skin-s5c5 17 1.0000 0.9993  9 1.0000 0.9993 

skin-s6c1 46 1.0000 0.9964  15 1.0000 1.0000 

skin-s6c2 31 0.9986 0.9979  17 1.0000 0.9993 

skin-s6c3 49 1.0000 0.9936  21 1.0000 0.9936 

skin-s6c4 30 0.9980 0.9964  18 0.9964 0.9957 

skin-s6c5 34 0.9984 0.9993  20 0.9984 0.9957 
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As mentioned before, it is possible to have higher test accuracies in earlier iterations 

with HCB. On the other hand, CART can also obtain better test results with trees 

having lower training accuracies. CART follows a forward growing tree to reach 

100% training accuracy, but it can also perform backward pruning on the developed 

full tree. To decide on pruning node, it checks the resulting test accuracy. Enumerating 

all possible pruning operations, it ends up with a smaller tree which has lower training 

accuracy but higher test accuracy. In Salford Predictive Modeler, the pruned tree 

having the best test accuracy is named as optimal tree. The best test accuracies 

throughout the iterations for CART and HCB are also compared along with the 

corresponding training accuracies. This best case comparison is given in Table 6.22. 

As it is seen in the table, best possible test accuracy obtained by HCB outperforms 

CART for most of the instances. In addition, number of nodes are less than number of 

generated hyperboxes only for six instances. 
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CHAPTER 7  

 

7. FEATURE SELECTION 

Experiments conducted so far highlight the challenge of obtaining optimal results due 

to the computational complexity. The HCB algorithm reduces the number of samples 

and keeps the number of hyperboxes under control. However, the number of features 

is still a significate source of problem complexity.  

It is possible to determine the relevant features and an importance order of the features 

based on the results of the mathematical models, as it will be described in Section 7.1. 

However, there is a paradoxical situation such that all features must be used in the 

model to derive the importance order, but it is not possible to obtain the optimal results 

when all features are used for most of the datasets. Thus, the HCB algorithm is revised 

such that the features are included in the model iteratively in a systematic manner as 

it will be explained in Section 7.2. This new version of HCB, which is capable of 

selecting features, is called as HCB-f and facilitates obtaining solutions for 

classification problems in larger sizes.   

 

7.1. Feature Importance Order Based on the Model Results 

The proposed mathematical models Model-MOB, Model-MO, and Model-MOU 

allow overlapping of hyperboxes with a penalty in the objective function. The main 

reason for this is to handle the tradeoff involving misclassification, overfitting, and 

time complexity as mentioned in Section 4.1. Furthermore, when the solutions of the 

problem instances are analyzed, it is observed that the decision variables Oilm related 

with the overlap samples are indicators of the irrelevant features.  

An example with two features and three boxes is illustrated in Table 7.1. There are 

five samples, the first four of them are assigned to hyperbox 2, and the last one is 

assigned to hyperbox 3. O112 = 1, which means that sample 1 also falls into hyperbox 

1 in terms of feature 2. However, O111 = 0 indicates that sample 1 is not within the 
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boundaries of hyperbox 1 in terms of feature 1, therefore there really is not an overlap. 

In order to detect that there is an overlap, both Oil1 and Oil2 must be equal to 1. In the 

example, samples 2 and 3 are both in the overlapping region of hyperboxes 1 and 2. 

Although Oil2 = 1 for samples 1, 4, and 5, they are not in the overlapping region since 

Oil1 = 0. In other words, feature 2 is irrelevant or ineffective for the classification of 

samples 1, 4, and 5.  This property can be used to rank the features with respect to 

their effectiveness on classification.  

Table 7.1. Example for overlap decision variables 

Sample Hyperbox 𝑶𝒊𝒍𝟏 𝑶𝒊𝒍𝟐 

Actual 

hyperbox 

assignment 

1 
1 0 1 

2 
3 0 0 

2 
1 1 1 

2 
3 0 0 

3 
1 1 1 

2 
3 0 1 

4 
1 0 1 

2 
3 0 0 

5 
1 0 1 

3 
2 0 1 

For this purpose, the algorithm given in Figure 7.1 is executed for all features starting 

with the one which has the highest overlap summation rank, since the largest 

summation indicates the highest overlap in terms of that feature. Oilm = 1 shows that 

feature m does not have an effect on classification of sample i. In case of Oilm = 0, it 

is checked whether any other feature j is also effective on classification of sample i. If 

Oilm = 0 for any of j ≠ m and, then feature m is not effective in classifying sample i.  If 

a feature is effective for a number of samples (represented by ‘test’ in the algorithm) 

less than a threshold, then that feature can be removed from the dataset. On the other 

hand, it is possible to rank the features with respect to their test values to have an idea 

about the relative importance of the features. 
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1        Step 1. Summ = 
 

N

i

L

l

ilmO
1 1

 for  m = 1,…,M                          

2        Step 2. Sort Summ in descending order.  

3  rankm = order of m 

4  iter = 1 

5  treshold = 0 

6        Step 3. Select feature m with rankm = iter.  

7  test = 0 

8  effectivei = 0 

9  For i = 1 to N 

10                              For l = 1 to L      

11    If ilmO = 0          

12     effectivei = 1  

13     Exit For l 

14    End If  

15   Next l 

16   If effectivei = 1  

17    For j = 1 to M  

18     If j ≠ m 

19      For l = 1 to L  

20       If iljO = 0 

21        effectivei = 0 

22        Exit For j 

23       End If 

24      Next l   
25     End If 

26    Next j   
27   End If 

28   test = test + effectivei 

29  Next i 

30  If test < threshold 

31   Feature m is removed 

32  End if 

33  iter = iter +1 

34  repeat Step 3 If iter < M 

Figure 7.1. Pseudo code for feature importance algorithm 
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Some experiments are performed to see the performance of the algorithm. First of all, 

a redundant feature z is included in the Simulated 1 dataset as the third feature. This 

feature involves binaries, and both of the classes 1 and 2 include the same number of 

samples with zeros and ones. The resulting dataset is illustrated in the Figure 7.2. As 

seen in the figure, the classes cannot be differentiated on the 3rd axis. When Model-

MOB is run with all three features, it is seen that Oil3 = 1 for all samples and boxes 

which verifies that feature z is irrelevant.  

 

Figure 7.2. Simulated 1 dataset with redundant feature z 

As another experiment, a new binary feature is introduced to simulated 2 dataset. This 

time value of feature z is equal to 1 for all class 1 samples, and it is equal to 0 for all 

class 2 samples. Figure 7.3 illustrates this modified dataset. 

 

Figure 7.3. Simulated 1 dataset with new feature z 

As seen in the figure, the classes are well separated along the z-axis. When the model 

is run with these three features, it converged to optimality within seconds and 1ilmO  

for all samples and boxes for both m = 1 and m = 2. This shows that the two original 

features become irrelevant when a discriminative third feature is added.  
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These two extreme examples show the ability of the algorithm to determine when the 

features are absolutely irrelevant. However, for most datasets, it may not be possible 

to find an absolutely irrelevant feature. For those cases, a positive threshold value may 

be required to declare a feature is redundant. 

Another experiment is conducted to see whether or not the algorithm ranks the features 

in the order of their relevance. Using the solution for the Wine dataset (from section 

4.3), the 13 features are ranked based on the ‘test’ values of the algorithm given in 

Figure 7.1. The lowest ranked feature is the least important, so it is removed from the 

dataset and the model is run with the remaining 12 features. Then, the next lowest 

ranked feature is also removed and the model is run with 11 features. This process is 

repeated until a single feature having the highest rank remains.  

Table 7.2. Order of feature importance of Wine dataset in training phase  

# of 

features 

# of 

boxes 

# of 

misclassification 

# of 

overlaps Accuracy 

Last 

removed 

feature no 

1 6 31 0 0.78 4 

2 3 24 0 0.83 10 

3 4 14 4 0.87 3 

4 3 13 10 0.84 13 

5 3 8 15 0.84 6 

6 4 8 2 0.93 2 

7 3 8 5 0.91 11 

8 3 6 5 0.92 7 

9 3 1 22 0.84 12 

10 4 1 2 0.98 9 

11 3 2 8 0.93 5 

12 4 0 7 0.95 8 

13 3 0 7 0.95  

 

The results of these runs are given in Table 7.2.  According to the results highest 

accuracy in the training phase is 98% and it can be achieved without the use of features 

5, 8 and 9.  In addition, a relatively close accuracy of 93% can also be reached by 

using only six features: 1, 4, 10, 3, 13 and 6. From this point of view, this feature 

ranking method seems to be working. However, it should maintain the consistency in 

the test phase of classification. Results of the test phase presented in Table 7.3 show 

that use of the same six features provides 92% accuracy.  
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Table 7.3. Test results for feature importance order of Wine dataset 

# of 

features 

# of 

boxes 

# of 

misclassification 

# of 

overlaps 

# of 

uncovered  

After 

COUS 

Accuracy 

(A) 

1 6 10 2 0 11 0.69 

2 3 8 1 0 8 0.78 

3 4 4 3 3 7 0.81 

4 3 3 5 4 9 0.75 

5 3 1 4 6 3 0.92 

6 4 1 1 8 3 0.92 

7 3 4 0 7 4 0.89 

8 3 1 0 7 2 0.94 

9 3 1 3 7 4 0.89 

10 4 0 1 11 2 0.94 

11 3 0 2 10 2 0.94 

12 4 0 1 10 1 0.97 

13 3 0 1 12 2 0.94 

Figure 7.4 illustrates the fluctuation in the accuracy depending on the number of 

features that are used in classifying the dataset.  When the number of features is less 

than five, the gap between the accuracies of the training and test phases is higher. 

When more than five features are used, it is seen that the training and test accuracies 

settle down. The graphic also highlights the tradeoff between the effect of adding a 

feature and the run time complexity. For example, when the 9th important feature 

(originally feature 7) is added, the accuracy significantly decreases. The reason for 

this is that Model-MOU cannot be solved to optimality due to run time complexity.   

 

Figure 7.4. Training and test phase accuracies vs. number of features 
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After observing these promising results concerning the feature selection, five fold 

cross validation is performed for the Wine dataset. Training and test accuracy values 

of five folds of cross validation are presented as box plots in Figures 7.5 - 7.6 for each 

of the 13 runs. In the figure, x-axis stands for the number of features used in the 

solution, and the ID of the lastly added feature is given above the boxes. For both 

training and test phases, eliminating the least important three features 5, 8, and 9 does 

not significantly decrease the classification accuracy. This stability continues even 

after elimination of five more features. However, it is important to provide a consistent 

feature set for both training and test phases. Thus, considering the Figure 7.5 and 7.6, 

use of six features (1, 4, 10, 3, 13, 6) may be adequate for the wine dataset. 

 

Figure 7.5. 5-fold results for comparison of runs of Wine dataset – training phase 

 

Figure 7.6. 5-fold results for comparison of runs of Wine dataset – test phase 
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This approach to feature ranking seems to be useful. It is also consistent between the 

training and test phases. However, it requires solving the model starting with all 

features, which makes the approach intractable. Therefore, we turn our attention to 

revising HCB for solving the feature selection problem. 

7.2. HCB-f: Hyperbox Classification for Binary Datasets with Feature Selection 

Since it is not possible to obtain even a feasible solution for large sized problems, it is 

difficult to use the procedure in Section 7.1 to obtain a feature importance order. 

Because of this reason, a different approach is taken to order the features in terms of 

their explanatory power for classification. Model-MOU is solved with one feature at 

a time using one hyperbox for each class for all features of the dataset. The features 

are then ordered according to objective function values where the one that has the 

minimum value is the most explanatory one. This feature ranking can be considered 

as an initialization phase of the algorithm described below, and it is repeated for 

training datasets of all folds in the experiments. In this way, none of the test samples 

can affect the feature selection or the classifier, as proposed as a non-contaminated 

protocol by Kuncheva and Rodrigues (2018).  

The Hyperbox Classification for Binary class datasets with Feature selection (HCB-f) 

algorithm starts with the solution obtained by using the most important feature only 

by allocating one hyperbox for each class. In the rest of the algorithm, the main idea 

is making a decision on either adding new hyperbox(es) or adding a new feature. HCB-

f checks both of these decisions only for the startup iteration. Figure 7.7 illustrates an 

example for the startup iteration of HCB-f. In the root node, ‘1F’ represents that only 

one feature is used in the model, and 𝑧1
∗ is the respective objective function value.  

 

Figure 7.7. Startup iterations for HCB-f 
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In the tree representation, moving down on the right hand side branch corresponds to 

applying the HTA algorithm for a solution S by adding hyperboxes as in HCB. In the 

figure, p samples are fixed for the trimmed hyperbox in solution S. The node ‘1_1F’, 

means that a trimming operation has been performed and still one feature is in use. 

However, it is not required to solve Model-MOU for this node yet. If we move down 

on the left hand side branch of the tree, node ‘0_2F’ represents that hyperbox 

allocation scheme is not changed (0 trimming operation has been performed), but the 

two most important features are used in Model-MOU with respective objective 

function value of 𝑧2
∗.  Based on the solutions, contributions of adding a feature or 

trimming a hyperbox are compared. If the number of correctly classified samples 

within trimmed hyperboxes (reduction in sample size as a result of fixing hyperbox 

assignments) is greater than or equal to the increase in the number of correctly 

classified samples after adding a new feature, i.e. p ≥ *

2

*

1 zz  , then the algorithm 

moves in the direction of hyperbox addition. Otherwise it chooses to move in the 

direction of feature addition. 

The pseudo code for HCB-f is given in Figure 7.8. The initialization procedure 

between lines 1 and 12 stands for the feature ranking and defining sets. The startup 

procedure between lines 13 and 22 represents the first branching described above. The 

main procedure between lines 23 and 43 is repeated until 100% training accuracy is 

achieved. Here, the number of features included is controlled at line 24 in the second 

while loop since the algorithm turns into HCB after all features are included in Model-

MOU. Once the algorithm decides to move in the direction of adding hyperboxes, the 

loop between the lines 25 and 32 is executed. z = *

2

*

1 zz   is recorded at that level, 

and only the number of samples to be fixed (P) is considered and compared with the 

recorded z  value for the upcoming iterations. If the number of the samples that can 

be fixed is beaten by z  at any iteration, then the direction changes, and the algorithm 

starts the loop between the lines  33 and 40. The p value at that level is recorded, and 

the algorithm starts adding a new feature in each new iteration. This time, the z  

value is updated throughout the iterations. If z  value is smaller than the recorded p 

value at any iteration, then the direction changes again and the algorithm goes back to 

adding hyperboxes.  
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1 For m = 1 to M 

2  SOLVE Model-MOU with mth feature only and one hyperbox per class 

3  Let the objective function value be 
*

mo   

4 Next m 

5 F = {f1,f2,…,fM}; list of features in ascending order of 
*

mo  

6 F = {f1} 

7 S :   Solution of Model-MOU  

8 D :  Set of samples 

9 P :   Set of fixed samples; P  = { }, DP  

10 P  :  Set of candidate samples to be fixed 

11 H :  Set of hyperboxes, 1 hyperbox per class initially 

12 H  : Set of candidate hyperboxes to add after HTA 

13  1fFF   

14 SOLVE Model-MOU with feature set F   → *, zS  

15 **
1 zz   

16 CALL HTA for solution S  → ,P  H   

17 p = P  

18 SOLVE Model-MOU with  2fF   and H  → 
*z  

19 
**

2 zz   

20 z  = *

2

*

1 zz   

21 
*
2

*
1 zz   

22 m = 2 

23 While 
*z  ≠ 0 

24  While m ≤ M 

25       While zp   and p > 2 

26             PPP    

27                                            HHH    

28 SOLVE Model-MOU for D  with F and ,H  fixing  

hyperbox assignments of samples in P → *, zS  

29             **
1 zz   

30              CALL HTA for solution S  → P   

31               p = P  

32   End While 

33   While pz  or p ≤ 2 

34            mfF   

35           SOLVE Model-MOU for D  with F and ,H  fixing  

        hyperbox assignments of samples in P → *, zS  

36            **
2 zz   

37                   z  = *

2

*

1 zz   

38           *
2

*
1 zz            

39            m = m+1 

40   End While 

41  End While 

42  CALL HCB  

43 End While 

Figure 7.8. Pseudo code of HCB-f algorithm 
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Here, p and z  account for the absolute improvement of the accuracy of fixed samples 

and the model accuracy, respectively. As p gets smaller, the power of the generated 

hyperboxes decreases. As it is observed in the experiments with HCB, hyperboxes 

with smaller power values are ineffective in the test phase. Thus, for p ≤ 2, algorithm 

does not fix the hyperbox but adds a new feature instead. Note that it is also possible 

to set different treshold values for p, to ensure obtaining more powerful hyperboxes 

with the algorithm. When the algorithm terminates with 100% accuracy, the main 

outcome is the hyperboxes to be used as classifiers as in HCB. However, for HCB-f, 

generated hyperboxes are in different dimensions since set F   changes throughout the 

iterations. The final F   gives the features selected at the end of the algorithm. Hence, 

the main idea is to alternate between adding new hyperboxes and adding new features, 

considering the tradeoff between contributions of these two actions. 

7.3. Experimental Results for HCB-f 

Experiments are conducted to test the performance of HCB-f in terms of classification 

and feature selection. Breast cancer, Hepatitis, Firm, Voting and Sonar datasets from 

UCI machine learning repository (Dua and Karra, 2017), and microarray datasets 

Colon (Alon et al., 1999), Leukemia (Golub et al., 1999), and Lung Cancer (Gordon 

et al., 2002) are used as binary class, multi-feature datasets. Wine dataset, which has 

three classes, is transformed into a two class dataset by merging the 1st and 3rd classes 

in a single class, and then used in the experiments. Five fold cross validation is 

performed for all datasets, and feature ranking is conducted separately using the 

training dataset of each fold. However, for Colon, Leukemia and Lung Cancer 

datasets, which have extremely large number of features, the initialization step for 

feature ranking is performed only for the top 1,000 features selected according to the 

Fisher score. The number of features and the sample sizes of the datasets are given in 

Table 7.4.  

A personal computer with Intel Core i7 2.8 GHz processor and 16.00 GB RAM is used 

for the runs, and the run time for each solution of Model-MOU is limited with 10 

minutes.  
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Table 7.4. Datasets used in experimenting with the HCB-f algorithm 

Dataset 

Number of 

training samples 

Number of  

test samples 

Number of 

features 

Breast Cancer (Wisc.) 546 137 9 

Wine (2 class) 142 36 13 

Hepatitis 124 31 19 

Firm 65 18 13 

Voting 348 87 16 

Sonar 166 42 60 

Colon 49 13 2,000 

Leukemia 58 14 7,129 

Lung Cancer 145 36 12,533 

Table 7.5 summarizes the iterations of HCB-f for the first fold of Breast Cancer 

dataset. In the table, AM is the accuracy of the Model-MOU based on the objective 

function value z*, and ATB is the accuracy reached by the samples in the trimmed 

hyperboxes, after HTA is applied. 

Table 7.5. Iteration details of HCB-f for Breast Cancer dataset – fold 1 

Iteration 

# of 

Samples 

to be 

classified 

Set of 

features 

used 

# of 

hyperboxes 

used z* AM 

# of 

samples 

fixed, p ATB 

1 546 {2} 2 39 0.9286 42 0.0769 

2 504 {2} 3 39 0.9286 51 0.1703 

3 453 {2} 4 39 0.9286 22 0.2106 

4 431 {2} 5 39 0.9286 0 0.2106 

5 431 {2,3} 5 34 0.9377 0 0.2106 

6 431 {2,3,6} 7 32 0.9414 87 0.3700 

7 344 {2,3,6} 8 32 0.9414 19 0.4048 

8 325 {2,3,6} 10 29 0.9469 0 0.4048 

9 325 {2,3,6,7} 10 29 0.9469 166 0.7088 

10 159 {2,3,6,7} 11 29 0.9469 10 0.7271 

11 149 {2,3,6,7} 13 28 0.9487 0 0.7271 

12 149 {2,3,6,7,9} 13 28 0.9487 8 0.7418 

13 141 {2,3,6,7,9} 15 27 0.9505 6 0.7527 

14 135 {2,3,6,7,9} 16 24 0.9560 8 0.7674 

15 127 {2,3,6,7,9} 17 21 0.9615 68 0.8919 

16 59 {2,3,6,7,9} 18 23 0.9579 6 0.9029 

17 53 {2,3,6,7,9} 19 21 0.9615 0 0.9029 

18 53 {2,3,6,7,9,5} 19 21 0.9615 9 0.9194 

19 44 {2,3,6,7,9,5} 21 15 0.9725 4 0.9267 

20 40 {2,3,6,7,9,5} 22 12 0.9780 20 0.9451 

21 30 {2,3,6,7,9,5} 24 8 0.9853 10 0.9817 

22 10 {2,3,6,7,9,5} 26 0 1.0000 10 1.0000 
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The algorithm terminates at the 22th iteration, with 26 generated hyperboxes and using 

the feature set {2,3,6,7,9,5}. When the same dataset was classified using the HCB 

algorithm (see appendix E, Table E.3), there were 20 generated hyperboxes for all 

nine features. HCB-f algorithm increases the total number of hyperboxes compared to 

HCB, however it provides a guidance to eliminate irrelevant features. In addition, the 

set of features that defines a hyperbox in HCB-f is not the same for all hyperboxes. 

For example, the first five hyperboxes are only one dimensional and use feature 2. 

Only the last five hyperboxes make use of all six features that are selected.  

Figure 7.9 illustrates the changes in the number of features, number of hyperboxes, 

and accuracy of fixed samples (ATB) throughout the iterations for the first fold of the 

Breast Cancer dataset. In the figure, the left hand side vertical axis stands for the 

number of features and number of hyperboxes.  

 

Figure 7.9. Progress of HCB-f for Breast Cancer dataset – fold 1 

For the HCB algorithm, power of the generated hyperbox has a decreasing trend 

throughout the iterations in most of the cases. A similar trend is observed for HCB-f 

iterations where the number of features remains unchanged. For example, only one 

feature is used in the first four iterations. During these iterations, increase in the 

accuracy of fixed samples, which is directly related with the power of trimmed 

hyperbox, shows a decreasing trend. However, after adding two new features in the 
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5th and 6th iterations, a jump is observed in the accuracy of fixed samples. The same 

behavior is observed in the 9th iteration where a fourth feature is added. Although this 

is an expected situation, the effect of adding a new feature may not always be that 

strong as the number of samples to be classified is reduced. Also, adding a new 

hyperbox can still cause generation of hyperboxes with higher powers for some 

datasets.  

Compared to the classification algorithm HCB, HCB-f provides feature selection as 

well as classification. Moreover, the iterative manner of feature addition provides a 

control over complexity as a side benefit. Thus, in addition to the number of 

hyperboxes and number of samples to be classified, the number of features, which is 

the final source or factor of complexity, becomes controllable. Figure 7.10 illustrates 

the changes in these three factors of complexity. In the figure, the left hand side axis 

stands for the number of samples to be classified, and the right hand side axis is used 

for the numbers of features and hyperboxes. As the numbers of features and 

hyperboxes increases, the number of samples to be classified decreases, reducing the 

problem size and providing a balance in terms of complexity. The effect of this balance 

is also observed in the experiments. 

 

Figure 7.10. Evolution of complexity factors in HCB-f for Breast Cancer dataset - fold 1 
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As it is reported in Table F.2 of Appendix F for Breast Cancer dataset, Model-MOU 

cannot be solved to optimality in most of the iterations of HCB, and the best result 

reached in 20 minutes was reported. Using HCB-f, optimal results are obtained for all 

iterations of Breast Cancer dataset in less than 120 seconds in total. 

Table 7.6. Cross fold validation results of HCB-f for Breast cancer dataset 

 Training Phase  Test Phase 

Fold Feature set # of hyperboxes  Accuracy 

1 {2,3,6,7,9,5} 26  0.9630 

2 {2,3,6,7,9,5} 26  0.9333 

3 {2,3,6,5,7,8} 25  0.9562 

4 {2,3,7,6,5,8} 24  0.9489 

5 {2,3,6,7,5,8} 24  0.9635 

When the five fold cross validation results of Breast Cancer dataset are analyzed, it is 

seen that six features are selected in all folds as shown in Table 7.6. While features 

2,3,5,6, and 7 are selected in common, features 1 and 4 are not selected in any of the 

folds. Moreover, the features in the set are given in their importance order, and the 

two most important features are the same for all folds. The number of generated 

hyperboxes also varies in a narrow range between 24 and 26. Since the training 

accuracy is 100% for all folds, cross validation test accuracies of a classifier on test 

data of other folds are also 100%. Thus, using the hyperboxes generated in the 5th fold 

yields the best results in terms of test accuracies. Note that, this accuracy is better than 

the best test accuracy reported with HCB. 

Table 7.7 summarizes the results of numerical experiments for the datasets with 

relatively smaller number of features. Features that are selected are listed in their 

importance order. When the results are examined, it is seen that the feature selections 

are fairly consistent among the folds. The detailed results for the folds having the best 

test accuracies are to be discussed further in this section. Details on iteration progress 

for the remaining folds can be seen in Appendix H. 
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Table 7.7. HCB-f cross validation results for Wine, Hepatitis, Firm, Voting, and Sonar datasets 

    Training Phase  Test Phase 

Dataset Fold  F Feature set L  Accuracy 

wine 

(2 class) 

1  5 {10,1,2,3,5} 10  0.9722 

2  4 {10,1,2,3} 10  0.8889 

3  4 {10,1,2,3} 8  0.9167 

4  4 {10,1,2,3} 10  0.9722 

5   4 {10,1,3,4} 8   0.8889 

Hepatitis 

1  6 {17,12,13,14,18,15} 14  0.9032 

2  4 {17,18,14,12} 14  0.8387 

3  5 {17,18,14,12,15} 13  0.8710 

4  6 {17,12,14,18,8,9} 14  0.9032 

5   5 {17,12,18,14,13} 14   0.8065 

Firm 

1  2 {13,7} 6  0.8889 

2  3 {13,6,9} 5  0.9375 

3  1 {13} 2  0.8824 

4  3 {13,7,6} 7  0.8750 

5  4 {13,7,6,9} 5  0.9412 

Voting 

1  11 {4,3,12,5,8,9,7,13,14,15,16} 13  0.9080 

2  12 {4,3,12,5,8,9,13,14,7,15,16,1} 12  0.9540 

3  11 {4,3,12,5,8,9,14,13,7,16,15} 15  0.9655 

4  11 {4,3,5,12,8,9,14,7,13,15,16} 16  0.9770 

5   12 {4,12,3,5,8,9,14,13,7,15,16,11} 16  0.9425 

Sonar 

1  9 {11,9,12,48,10,13,49,51,52} 31   0.8810 

2  9 {11,12,13,10,48,49,9,52,46} 24  0.7805 

3  8 {12,11,13,10,21,49,48,9} 22  0.6829 

4  9 {9,11,51,12,49,48,10,36,52} 22  0.7619 

5   10 {11,9,12,10,14,21,13,49,48,20} 23   0.6905 

   L: Number of hyperboxes, F: Number of features 

For Wine (2 class) dataset, features 1, 2, 3, and 10 are commonly selected in all folds. 

When the method described in section 7.1 was used, features 1, 3, and 10 were also 

found as the important features for Wine dataset. Although the Wine dataset was 

analyzed in its original form consisting of three classes in that experiment, it can be 

said that the results are still consistent for those three features. According to Table 7.7 

the best test accuracies are obtained in the 1st and the 4th folds, each with 10 

hyperboxes. However, using the hyperboxes generated in the 4th fold would be better 

in terms of interpretability, since these hyperboxes are defined with fewer features, 

and they provide simpler classifier rules. Progress of iterations for the 4th fold of Wine 

dataset is illustrated in Figure 7.11 and Table 7.8.  
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Figure 7.11. Progress of HCB-f for Wine (2 class) dataset - fold 4 

In Table 7.8, the first six hyperboxes are defined by one feature, and only the last 

hyperbox is defined in terms of four features. In addition, it is possible to reach 90% 

training accuracy only by using feature 10. 

Table 7.8. Iteration details of HCB-f for Wine (2 class dataset) - fold 4 

Iteration 

# of samples 

to be 

classified 

Set of 

features 

used 

# of 

hyperboxes 

used z* AM 

# of 

samples 

fixed, p ATB 

1 141 {10} 2 15 0.8944 47 0.3310 

2 95 {10} 3 15 0.8944 35 0.5775 

3 60 {10} 4 15 0.8944 14 0.6761 

4 46 {10} 5 15 0.8944 12 0.7606 

5 34 {10} 6 14 0.9014 10 0.8310 

6 24 {10} 8 13 0.9085 0 0.8310 

7 24 {10,1} 8 8 0.9437 0 0.8310 

8 24 {10,1,2} 8 6 0.9577 8 0.8873 

9 16 {10,1,2} 9 2 0.9859 5 0.9225 

10 11 {10,1,2} 10 2 0.9859 0 0.9225 

11 11 {10,1,2,3} 10 0 1.0000 11 1.0000 

         AM: Model-MOU accuracy, ATB: accuracy of fixed samples 

The number of generated hyperboxes are almost the same for all folds of Hepatitis 

dataset as seen in Table 7.7, and the number of selected features is between four and 

six. The best test accuracy of 90% is obtained in the 1st and 4th folds. In both folds, 14 

hyperboxes are generated using at most six features. Details for the 4th fold are given 

in Figure 7.12 and Table 7.9. 
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Figure 7.12. Progress of HCB-f for Hepatitis dataset - fold 4 

After the 3rd iteration in Figure 7.12, three features are included in the model one after 

another. This led to a major jump in accuracy in iteration 6. Eventually, last 10 

hyperboxes are defined by 4 or more features as seen in Table 7.9.  

Table 7.9. Iteration details of HCB-f for Hepatitis dataset – fold 4 

Iteration 

# of 

samples to 

be classified 

Set of features 

used 

# of 

hyperboxes 

used z* AM 

# of 

samples 

fixed, p ATB 

1 124 {17} 2 14 0.8871 39 0.315 

2 85 {17} 4 14 0.8871 7 0.371 

3 78 {17} 5 14 0.8871 0 0.371 

4 78 {17,12} 5 12 0.9032 0 0.371 

5 78 {17,12,14} 5 11 0.9113 0 0.371 

6 78 {17,12,14,18} 5 8 0.9355 50 0.774 

7 28 {17,12,14,18} 7 7 0.9435 8 0.839 

8 20 {17,12,14,18} 9 6 0.9516 0 0.839 

9 20 {17,12,14,18,8} 9 6 0.9516 6 0.887 

10 14 {17,12,14,18,8} 10 6 0.9516 4 0.919 

11 10 {17,12,14,18,8} 12 2 0.9839 0 0.919 

12 10 {17,12,14,18,8,9} 12 1 0.9919 6 0.968 

13 4 {17,12,14,18,8,9} 14 0 1.0000 4 1.000 

   AM: Model-MOU accuracy, ATB: accuracy of fixed samples 

The HCB-f algorithm terminates in at most seven iterations for the Firm dataset. For 

the 3rd fold, 100% train accuracy is obtained at the startup iteration, using just one 

feature and two hyperboxes. However, the corresponding test accuracy for this fold is 

below 90%. The best test accuracy is obtained using five hyperboxes generated in the 

5th fold and four features selected. The main reason of variability in number of 

hyperboxes and feature selection is the limited size of the training dataset. The details 

of iterations for the 5th fold are summarized in Figure 7.13 and Table 7.10.  
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Figure 7.13. Progress of HCB-f for Firm dataset - fold 5 

 

Table 7.10. Iteration details of HCB-f for Firm dataset - fold 5 

Iteration 

# of 

samples to 

be classified 

Set of 

features 

used 

# of 

hyperboxes 

used z* AM 

# of 

samples 

fixed, p ATB 

1 65 {13} 2 3 0.9538 56 0.8615 

2 9 {13} 4 2 0.9692 3 0.9077 

3 6 {13} 5 2 0.9692 0 0.9077 

4 6 {13,7} 5 2 0.9692 0 0.9077 

5 6 {13,7,6} 5 1 0.9846 0 0.9077 

6 6 {13,7,6,9} 5 0 1.0000 6 1.0000 

    AM: Model-MOU accuracy, ATB: accuracy of fixed samples 

For the 5th fold, 94% test accuracy is obtained using five hyperboxes. First three of 

these hyperboxes are defined with only one feature, and 59 out of 65 samples are 

correctly classified by these boxes in the training phase. The last two hyperboxes are 

defined with four features and they classify just six samples. However, these last two 

hyperboxes have significant classifying power in the test phase.  

Voting is a categorical dataset of questionnaire results. Each feature corresponds to 

answering a yes/no question and the answers are coded as 1/0. Due to the binary valued 

features, required rule variation to classify the samples can be obtained using 11-12 

features out of 16 as seen in Table 7.7. The best test accuracy is obtained as 97.7% in 

the 4th fold with 16 hyperboxes. The details for the iterations of this fold are given in 

Figure 7.14. 
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Figure 7.14. Progress of HCB-f for Voting dataset - fold 4 

As seen in the figure, HCB-f adds the second feature immediately, since the classes 

are not separable with just one feature. More than half of the samples can be classified 

using the two-feature hyperboxes generated in iteration 2. Then, eight more features 

are included in the model by iteration 15 where a jump in accuracy is observed. After 

the 15th iteration, the classes are better separable and HCB-f mostly generates 

additional hyperboxes to classify the samples. Details are given in Table 7.11. 

Table 7.11. Iteration details of HCB-f for Voting dataset - fold 4 

Iter. 

# of samples to 

be classified Set of features used L z* AM p ATB 

1 348 {4} 2 14 0.9598 0 0.0000 

2 348 {4,3} 2 14 0.9598 189 0.5431 

3 159 {4,3} 3 14 0.9598 0 0.5431 

4 159 {4,3,5} 3 14 0.9598 0 0.5431 

5 159 {4,3,5,12} 3 14 0.9598 0 0.5431 

6 159 {4,3,5,12,8} 3 14 0.9598 9 0.5690 

7 150 {4,3,5,12,8} 4 14 0.9598 10 0.5977 

8 140 {4,3,5,12,8} 6 14 0.9598 0 0.5977 

9 140 {4,3,5,12,8,9} 6 14 0.9598 4 0.6092 

10 136 {4,3,5,12,8,9} 7 14 0.9598 0 0.6092 

11 136 {4,3,5,12,8,9,14} 7 13 0.9626 0 0.6092 

12 136 {4,3,5,12,8,9,14,7} 7 12 0.9655 0 0.6092 

13 136 {4,3,5,12,8,9,14,7,13} 7 11 0.9684 8 0.6322 

14 128 {4,3,5,12,8,9,14,7,13} 8 14 0.9598 0 0.6322 

15 128 {4,3,5,12,8,9,14,7,13,15} 8 14 0.9598 72 0.8391 

16 56 {4,3,5,12,8,9,14,7,13,15} 9 24 0.9310 17 0.8879 

17 39 {4,3,5,12,8,9,14,7,13,15} 10 22 0.9368 0 0.8879 

18 39 {4,3,5,12,8,9,14,7,13,15,16} 10 16 0.9540 10 0.9167 

19 29 {4,3,5,12,8,9,14,7,13,15,16} 11 14 0.9598 10 0.9454 

20 19 {4,3,5,12,8,9,14,7,13,15,16} 13 10 0.9713 5 0.9598 

21 14 {4,3,5,12,8,9,14,7,13,15,16} 14 3 0.9914 4 0.9713 

22 10 {4,3,5,12,8,9,14,7,13,15,16} 16 0 1.0000 10 1.0000 
L: # of hyperboxes used, AM: Model-MOU accuracy, p: # of samples fixed, ATB: accuracy of fixed samples 
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The worst test results in the experiments are obtained with the Sonar dataset. In this 

dataset, there are 60 decimal features valued in the interval [0,1]. None of the features 

are capable of distinguishing the classes since the feature values for the two classes 

are completely interwoven. Thus HCB-f starts with a low accuracy in all folds. In 

addition, the single feature performances are close to each other, and the feature 

ranking is not as informative as it is for the other datasets. For example, the 11th feature 

is ranked first or second in all folds, and values of this feature (for all samples in 

training and test data) with respect to the classes are plotted in Figure 7.15. As seen in 

the figure, sample values are very close to each other for the two classes. The cut 

points that define hyperbox boundaries are data dependent in the training phase. 

Naturally, this dependency causes instable test phase accuracies.  

 

Figure 7.15. Values of feature 11 for Sonar dataset 

For the five folds of Sonar dataset, 24.2 hyperboxes generated, and nine features are 

selected on the average. The test phase accuracies are in a wide range between 68% 

and 88%. The iterations of the first fold, which is the best one in terms of test accuracy, 

are summarized in Figure 7.15 and Table 7.12. 

 

Figure 7.16. Progress of HCB-f for Sonar dataset - fold 1 
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Table 7.12. Iteration details of HCB-f for Sonar dataset - fold 1 

Iter. 

# of 

samples to 

be classified Set of features used L z* AM p ATB 

1 166 {11} 2 42 0.7470 20 0.1205 

2 146 {11} 4 42 0.7470 15 0.2108 

3 131 {11} 6 42 0.7470 14 0.2952 

4 117 {11} 8 42 0.7470 0 0.2952 

5 117 {11,9} 8 41 0.7530 14 0.3795 

6 103 {11,9} 9 39 0.7651 9 0.4337 

7 94 {11,9} 10 39 0.7651 12 0.5060 

8 82 {11,9} 12 39 0.7651 0 0.5060 

9 82 {11,9,12} 12 37 0.7771 0 0.5060 

10 82 {11,9,12,48} 12 36 0.7831 20 0.6265 

11 62 {11,9,12,48} 14 35 0.7892 8 0.6747 

12 54 {11,9,12,48} 15 30 0.8193 10 0.7349 

13 44 {11,9,12,48} 17 27 0.8373 0 0.7349 

14 44 {11,9,12,48,10} 17 26 0.8434 0 0.7349 

15 44 {11,9,12,48,10,13} 17 25 0.8494 0 0.7349 

16 44 {11,9,12,48,10,13,49} 17 23 0.8614 0 0.7349 

17 44 {11,9,12,48,10,13,49,51} 17 20 0.8795 0 0.7349 

18 44 {11,9,12,48,10,13,49,51,52} 17 18 0.8916 16 0.8313 

19 28 {11,9,12,48,10,13,49,51,52} 18 13 0.9217 6 0.8675 

20 22 {11,9,12,48,10,13,49,51,52} 19 7 0.9578 6 0.9036 

21 16 {11,9,12,48,10,13,49,51,52} 20 6 0.9639 7 0.9458 

22 9 {11,9,12,48,10,13,49,51,52} 21 0 1.0000 9 1.0000 
L: # of hyperboxes used, AM: Model-MOU accuracy, p: # of samples fixed, ATB: accuracy of fixed samples 

Applying feature selection techniques becomes a real prerequisite in many studies on 

classification problems of bioinformatics area, especially for high-dimensional 

microarray datasets (Saeys et al., 2007). HCB-f is tested on microarray datasets Colon, 

Leukemia, and Lung Cancer, which have thousands of features and no more than 150 

samples. Although the run time to solve the Model-MOU with a single feature is less 

than 60 seconds, it takes cumulatively a long time to solve the model for all features. 

Thus, as mentioned before, Fisher scores of the features are computed and the top 

1,000 features are considered in the initialization procedure of HCB-f. The results of 

HCB-f for these datasets are summarized in Table 7.13. Iteration details for the folds 

with highest test phase accuracy is given in this section (see Appendix I for the 

remaining folds). As seen in the table, at most five features are selected for Colon 

dataset and four of them are observed in all folds, with the same ranks. Leukemia and 

Lung Cancer datasets are originally published with separated training and test data 

partitions. The results obtained with these partitions is given in the “original” line.  
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Table 7.13. HCB-f cross fold validation results for Colon, Leukemia, and Lung cancer datasets 

    Training Phase  Test Phase 

Dataset Fold  F Feature set L  Accuracy 

Colon 

1  4 {1671,492,1771,249} 7  0.8333 

2  4 {1671,492,1771,249} 8  0.8333 

3  5 {1671,492,1771,249,512} 9  0.9167 

4  4 {1671,492,1771,249} 10  0.8333 

5  5 {1671,492,1771,249,512} 9  0.9167 

Leukemia 

1  3 {1882,1834,2288} 4  0.9286 

2  1 {3252} 4  0.8667 

3  2 {1834,1882} 4  1.0000 

4  2 {1834,1882} 5  0.9333 

5  1 {4847} 2  0.7857 

Leukemia original  2 {2020,760} 4  0.7941 

Lung Cancer 

1  1 {8005} 4  0.9444 

2  2 {7200,8005} 6  0.9444 

3  1 {3333} 4  0.9167 

4  2 {7765,7200} 5  0.9722 

5  2 {3334,3844} 2   0.9459 

Lung Cancer original  1 {1136} 2  0.9060 

As another experiment, all training and test samples in these datasets are randomly 

divided into five equal parts, and five fold cross validation is performed for these parts. 

The features selected in this experiment are different from the ones that are obtained 

using the original training data. For Leukemia dataset, at most three features are 

selected in the first fold and this yields a test phase accuracy of approximately 93%. 

Interestingly, perfect accuracy is achieved in the 3rd fold of Leukemia with only two 

features and four hyperboxes. For Lung Cancer dataset, the best test phase accuracy 

is about 97% in the 4th fold using five hyperboxes and two features. For Leukemia and 

Lung Cancer datasets, selected features are not the same across the folds. However, 

for both datasets, features selected in any of the folds are ranked by Model-MOU 

among the top 10 for all folds. The training datasets are solved even without requiring 

all those top 10 features.  

Highest test phase accuracy is reported in the 3rd and the 5th folds of the Colon dataset, 

with the same feature space. Details for the iterations of the 3rd fold is given in Figure 

7.17 and Table 7.14. 
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Figure 7.17. Progress of HCB-f for Colon dataset - fold 3 

As seen in the table, 94% of the samples are classified with eight hyperboxes defined 

by only two features in 7th iteration of HCB-f. In order to reach the 100% training 

accuracy, HCB-f adds three more features. These three features are used for only 8th 

and 9th hyperboxes. 

Table 7.14. Iteration details of HCB-f for Colon dataset – fold 3 

Iter. 

# of samples 

to be 

classified Set of features used L z* AM p ATB 

1 50 {1671} 2 7 0.8600 21 0.4200 

2 29 {1671} 4 7 0.8600 8 0.5800 

3 21 {1671} 5 7 0.8600 5 0.6800 

4 16 {1671} 6 6 0.8800 4 0.7600 

5 12 {1671} 7 6 0.8800 0 0.7600 

6 12 {1671,492} 7 5 0.9000 3 0.8200 

7 9 {1671,492} 8 3 0.9400 0 0.8200 

8 9 {1671,492,1771} 8 3 0.9400 0 0.8200 

9 9 {1671,492,1771,249} 8 2 0.9600 0 0.8200 

10 9 {1671,492,1771,249,512} 8 1 0.9800 5 0.9200 

11 4 {1671,492,1771,249,512} 9 0 1.0000 4 1.0000 

L: # of hyperboxes used, AM: Model-MOU accuracy, p: # of samples fixed, ATB: accuracy of fixed samples 

Using the original training samples of Leukemia dataset, HCB-f ends up with two 

features and four hyperboxes in only three iterations as seen in Table 7.15.  
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Table 7.15. Iteration details of HCB-f for the original training dataset of Leukemia 

Iter. 

# of 

samples to 

be classified 

Set of 

features 

used 

# of 

hyperboxes 

used z* AM 

# of 

samples 

fixed, p ATB 

1 38 {2020} 2 1 0.97 26 0.68 

2 12 {2020} 3 1 0.97 7 0.87 

3 5 {2020,760} 4 0 1.00 5 1.00 

Hyperboxes generate interpretable results as mentioned several times before. Selected 

features 2020 and 760 for Leukemia correspond to the genes FAH fumarylacetoacetate 

and epidermal growth factor receptor kinase substrate (Eps8) mRNA, respectively. As 

an example, the resulting hyperbox boundaries are reported in Table 7.16. 

Table 7.16. Hyperbox boundaries for the original training dataset of Leukemia  

Hyperbox  Class Feature Lower bound Upper bound 

1 ALL 2020 0 1286 

2 AML 2020 1286.1 1821 

3 ALL 
2020 1811 1822 

760 -10 71 

4 AML 
2020 1822.1 2633 

760 71.1 9600 

When five folds are used for the Leukemia dataset, perfect test accuracy is obtained in 

the 3rd fold as 100% using the hyperboxes given in Table 7.17. The reason of obtaining 

higher accuracies in this experiment is the larger training dataset size. Originally, 

training dataset and test dataset have the same size. However, 80% of these data are 

used for training in the five fold experiment. As the training sample size gets larger, 

the selected features and generated hyperboxes become more accurate.  

Table 7.17. Hyperbox boundaries for Leukemia dataset – fold 3  

Hyperbox  Class Feature Lower bound Upper bound 

1 ALL 1834 0 274 

2 AML 1834 395 2204 

3 ALL 
1834 275 395 

1882 -200 394 

4 AML 
1834 261 450 

1882 395 14555 

1834: CD33 antigen (differentiation antigen) 

1882: CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) 
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Finally, HCB-f is applied to Lung Cancer dataset. Among the folds, at most two 

features are selected, and the test phase accuracy is higher than 90% even with a single 

feature. The best test accuracy is above 97%, and obtained in the 4th fold using two 

features, namely 37716_at (7765) and 37157_at (7200) and five hyperboxes as seen 

in Table 7.18.  

Table 7.18. Hyperbox boundaries for the original training dataset of Lung Cancer 

Hyperbox  Class Feature Lower bound Upper bound 

1 1 7765 635.91 1595.1 

2 2 7765 0 511.09 

3 1 
7765 511.71 576.1 

7200 683.81 1328.9 

4 2 7765 512.01 576.09 

5 2 
7765 512.01 635.9 

7200 0 683.08 

 

As given in Table 7.13, when the original training dataset of 32 samples is used, 90% 

test accuracy is achieved on the remaining 149 samples. HCB-f selects only one 

feature and generates two hyperboxes for this setting. The resulting boundaries of the 

hyperboxes are given in Table 7.19. 

Table 7.19. Hyperbox boundaries for Lung Cancer dataset - original 

Hyperbox  Class Feature Lower bound Upper bound 

1 1 1136 0 1012 

2 2 1136 1012.1 1862.8 

 1136: 2047_s_at 

 

7.4. Comparison of HCB-f Performance with Recent Studies in the Literature 

  

There are many feature selection approaches proposed in the literature and tested on 

the datasets reported above. However, it is not possible to make a completely fair 

comparison between the proposed feature selection methods, since they yield different 

results under different classifier models. In addition, the validation method (folds, 

generation of training and test datasets) is also effective on the performance.  
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In this section, performance of HCB-f is compared with selected recent studies, which 

use common datasets as the ones in Table 7.4, and results in the best test accuracies to 

the best of our knowledge.  

In the study of Shunmugapriya and Kanmani (2017) the swarm based AC-ABC hybrid 

algorithm combines the characteristics of ant and artificial bee colony optimization 

for feature selection, where ants use exploitation by the bees to determine the best 

feature subset, and bees adapt the ants as their food sources. Performance comparison 

of this method with some other meta-heuristics feature selection methods are available 

in their study. 

Mafarja et al. (2018) have developed the BGOA_EPD meta-heuristic, which combines 

the Grasshopper optimization algorithm (GOA) with evolutionary population 

dynamics to design a wrapper-based feature selection method. GOA is a recent 

population based metaheuristic that mimics the swarming behavior of grasshoppers. 

In their study, k-nearest neighbor (k = 5) with Euclidean metric is used as the 

classification method. BGOA_EPD_tour is the best performing variant of 

BGOA_EPD algorithm which utilizes tournament selection among guiding solutions. 

The performance comparison given in the study indicates that BGOA_EPD_tour 

outperforms metaheuristics such genetic algorithm and particle swarm optimization, 

and filter-based methods such as correlation-based feature selection, fast correlation 

based filter, Fisher score, and information gain.  

 

Table 7.20. Comparison of HCB-f with meta-heuristics 

 HCB-f AC-ABC hybrid1 BGOA_EPD_Tour2 

Dataset SFBest ABest SFavg Aavg SFBest ABest SFavg Aavg 

Breast Cancer  6 96.35 6 95.30 3 99.43 5 98.00 

Hepatitis 6 90.32 5.2 86.45 11 81.29 - - 

Voting 11 97.70 11.4 94.94 - - 5.43 96.60 

Sonar 9 88.10 9 75.94 13 96.74 36.77 91.12 

Colon 5 91.67 4.4 86.67 - - 1064 87.00 

Leukemia 2 100.0 1.8 90.29 - - 3769 93.10 

Lung Cancer 2 97.22 1.6 94.47 27 90.83 - - 
1 Hybrid algorithm using ant colony and bee colony (Shunmugapriya and Kanmani, 2017) 

2 Binary Grasshopper optimization with evolutionary population dynamics. (Mafarja et al., 2018) 
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Table 7.20 summarizes the results of HCB-f matheuristic, AC-ABC hybrid 

(Shunmugapriya and Kanmani, 2017), and BGOA_EPD_ Tour (Mafarja et al., 2018) 

meta-heuristics. Abest stands for to the best test accuracy achieved by the method, and 

SFBest is the number of selected features that gives the best test accuracy. Aavg is the 

average test accuracy, and SFavg is the average number of features selected. Results of 

five folds are averaged for HCB-f, whereas 10 and 30 independent runs are used for 

AC-ABC hybrid and BGOA_EPD_Tour, respectively.  

 

According to results given in Table 7.20 AC-ABC hybrid outperforms HCB-f for 

Breast Cancer and Sonar datasets, and HCB-f performs better than AC-ABC hybrid 

for Hepatitis and Lung Cancer datasets, in terms of test phase accuracy. On the other 

hand, except for the Breast Cancer dataset, numbers of selected features are fewer 

with HCB-f. As seen in the results, BGOA_EPD_tour outperforms HCB-f in terms of 

average test accuracies. However, for Voting, Colon, and Leukemia datasets best test 

accuracies reported by HCB-f are better. In addition, extremely fewer features are 

selected for Colon and Leukemia datasets using HCB-f. 

Although identities of the selected features are important information for datasets, 

many of the studies only report the number of selected features without giving detailed 

information on them. However, it is possible to obtain selected feature domains 

especially in the field of bioinformatics. 

Table 7.21. Features selected with HCB-F for Leukemia and Lung Cancer datasets 

Leukemia  Lung Cancer 

Feature Occurrence  Feature Occurrence 

1882 (Cystatin C) 3  7200 (37157_at) 2 

1834 (CD33) 3  8005 (37954_at) 2 

2288 (adipsin) 1  3333 (33327_at) 1 

3252 (Glutathione) 1  3334 (33328_at) 1 

4847 (Zyxin) 1  1136 (2047_s_at) 1 

2020 (Fumarylacetoacetate) 1  7765 (37716_at) 1 

760 (Cystatin A) 1  3844 (33833_at) 1 
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Lists of selected features with HCB-f are given in Table 7.21 for Leukemia and Lung 

Cancer datasets. The features represented in bold were also selected in the original 

articles that presented the datasets (Golub et al., 1999) and (Gordon et al., 2002).    

The performance of HCB was compared to classification trees using CART in Section 

6.3. In order to make a similar comparison, experimental results of classification tree 

used together with the filter-based feature selection method Fisher score (F-score) are 

taken from the study of Li et al. (2017).  

Table 7.22. HCB-f compared to classification tree and F-score (Li et al., 2017) 

 HCB-f 

 

Decision tree classifier with F-score 

Dataset SFBest ABest 

 

SFmin A SFBest ABest 

Colon 5 91.67  5 74.05 115 79.29 

Leukemia 2 100.0  5 90.35 260 97.50 

Lung Cancer 2 97.22  5 68.90 155 92.55 

According to Table 7.22, HCB-f outperforms classification tree with F-score in terms 

of best test accuracies. The minimal set of features selected by F-score consists of five 

features, and their corresponding test accuracies in decision tree algorithm (given in 

column A) are below than the accuracies reached by HCB-f with only fice or two 

features. On the other hand, the best accuracies of the classification tree algorithm are 

obtained with over 100 features and still lower than those obtained by HCB-f. 
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CHAPTER 8  

 

8. CONCLUSION 

In this thesis, three MIP optimization models, Model-MOB, Model-MO, and Model-

MOU are proposed to classify datasets with numerical features by the use of 

hyperboxes. Using the hyperboxes as classifiers, the results are highly interpretable as 

the boundaries of each class are determined in terms of feature values. Model-MOB 

minimizes the weighted sum of misclassified samples, overlap samples, and the 

number of hyperboxes. In order to improve performance of Model-MOB, hyperbox-

to-class assignments are given as input to Model-MO and the term for the number of 

hyperboxes is removed from the objective function. As a contribution to the existing 

literature, hyperboxes are allowed to overlap to avoid overfitting. Furthermore, in 

Model-MOU, samples are not forced to be assigned to a hyperbox, but the numbers 

of overlap and unassigned samples are minimized in the objective function along with 

the number of misclassified samples. With this approach, Model-MOU can find 

feasible solutions in reasonable times even for the datasets with highly overlapping 

classes. In addition, allowing the overlap prevents overfitting of the dataset, which is 

an undesirable situation in the training phase.  

The resulting hyperboxes of the MIP models are used to classify new samples in the 

test phase. However, it is not possible to classify the overlap and uncovered samples 

using these hyperboxes. For the classification of these samples, a distance-based 

heuristic, COUS, is developed. It is seen in the experiments that accuracy of correctly 

classifying the uncovered samples are above 90% for most datasets. The accuracy of 

classifying overlap samples is lower, which is around 50%. This is natural because 

these samples fall into the overlapping regions of multiple classes. However, the 

results still provide some information about the classes of the overlap samples since 

their possible classes are limited by approximately two classes. This indicates the 

indifference of overlap samples between those two classes.  
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Although Model-MOU is a more efficient model compared to Model-MOB and 

Model-MO, it is still intractable for datasets with large number of samples and 

features. In order to overcome this complexity problem a matheuristic for hyperbox 

classifying of binary classes is developed in this study. The initial prototype of this 

matheuristic, namely ICB, uses Model-MO as the base model. In each iteration, 

Model-MO is solved, pure hyperboxes with no misclassified samples are extracted 

with the hyperbox trimming algorithm (HTA), and respective sample-to-hyperbox 

assignments are fixed. Then, an additional hyperbox is allocated to the class that does 

not have a free hyperbox before the following iteration. The ICB algorithm is tested 

for four simulated datasets and results are found to be promising. However, it is seen 

that ICB also becomes intractable for multi-feature and larger sized datasets. 

Analyzing the causes of this intractability, Hyperbox Classification for Binary dataset 

(HCB) matheuristic is finalized with some modifications on ICB. HCB uses different 

strategies for fixing sample-to-hyperbox assignments in HTA and additional hyperbox 

allocation. Most importantly, it uses Model-MOU, which relaxes sample-to-hyperbox 

assignmets, for the generation of hyperboxes in each iteration. According to the 

experimental results, HCB outperforms ICB in terms of run time, iteration count, and 

final accuracy.  

When the performances of HCB and CART are compared, it is observed that, for most 

of the cases, HCB provides better test scores using fewer classifier rules. This is a 

success indicator in terms of optimality of the number of hyperboxes as well as the 

accuracy. Unfortunately, HCB does not have any control on the feature set, and it is 

not efficient enough to solve the problems in reasonable times as the number of 

features increases. 

The MIP models also support feature selection. Relevance or effectiveness of the 

features to resolve the overlap situation is not all the same. For some datasets, 

overlapping of classes can be resolved without the use of all features in the classifier. 

When the solutions of the problem instances are analyzed, it is observed that the 

decision variables related with the overlap samples are indicators of the irrelevant or 

redundant features. An algorithm is developed based on this property of the model. It 

is seen that a completely redundant feature can easily be detected by this algorithm. 
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Also, it is possible to rank the features according to their levels of effectiveness.  

However, due to the complexity problem, this ranking is not possible for larger sized 

problems. 

Finally, HCB matheuristic algorithm is extended into another matheuristic algorithm, 

HCB-f, to facilitate feature selection. This algorithm first ranks the features using 

Model-MOU. It then adds features into the model iteratively based on this feature 

ranking. Basically, the HCB-f algorithm starts as HCB where the dataset is defined by 

only one feature. The power of generated hyperboxes decreases throughout the 

iterations, and whenever it becomes impossible to trim a hyperbox with no more than 

two samples in it, a new feature is included in the model. The conducted experiments 

show that the HCB-f algorithm terminates with 100% training accuracy without the 

use of all features. HCB-f is not only beneficial for the feature selection, but also 

reduces the complexity of the problems utilizing fewer features.  

In reported experiments, HCB-f focuses on use of a minimal feature set by allowing 

to generate hyperboxes even with only three samples. As the treshold to trim a 

hyperbox is increased, the algorithm would tend to add new features instead of adding 

a new hyperbox. Some further experiments may be performed to see the interaction 

between the number of features and the number of hyperboxes.  

The proposed MIP formulations of Model-MOB, Model-MO, and Model-MOU are 

all capable of solving multi-class datasets. However, HCB and HCB-f are designed 

for binary class datasets in this study. These algorithms can be modified to solve multi-

class datasets as a future extension of this study. 

As other future research issues: 

 Decision variables related with overlap samples can be further explored in all 

three MIP models as indicators of future effectiveness, ranking, or selection. 

Specifically, since Model-MOU does not enforce sample-to-hyperbox 

assignments, overlap decision variables in this model can be even more 

informative. 
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 Some of the datasets used in the experiments have missing values for some 

samples. The MIP models and the heuristics seem to handle these missing 

values without any problems. However, the effect of missing values on the 

proposed classification approach needs to be studied further. 

 Possible ways of speeding up the heuristics, specifically reducing the solution 

time of Model-MOU, should be searched for. This would allow using the 

proposed approach for much larger datasets. 
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APPENDICES 

A. Experimental Results for Objective Function Coefficients of Model-MOB 

Table A1. Test of Coefficients for Simulated 2 

         Training results   Test results 

 Coefficients  

B M O A 

 1st step results  Final results 

Run c1 c2 c3   M O U  M A 

1 1.00 1.00 1.00  3 12 0 0.800  8 0 6  8 0.733 

2 1.00 1.00 0.10  3 0 31 0.483  2 11 5  11 0.633 

3 1.00 1.00 0.01  2 0 46 0.233  5 24 0  18 0.400 

4 1.00 0.10 1.00  2 15 0 0.750  5 0 6  5 0.833 

5 1.00 0.10 0.10  2 15 0 0.750  5 0 6  5 0.833 

6 1.00 0.10 0.01  2 0 46 0.233  5 24 0  18 0.400 

7 1.00 0.01 1.00  2 15 0 0.750  5 0 6  5 0.833 

8 1.00 0.01 0.10  2 15 0 0.750  5 0 6  5 0.833 

9 1.00 0.01 0.01  2 15 0 0.750  5 0 7  5 0.833 

10 0.10 1.00 1.00  14 0 0 1.000  3 0 15  5 0.833 

11 0.10 1.00 0.10  10 0 4 0.933  0 3 15  2 0.933 

12 0.10 1.00 0.01  3 0 31 0.483  2 11 5  11 0.633 

13 0.10 0.10 1.00  5 6 0 0.900  4 0 13  5 0.833 

14 0.10 0.10 0.10  3 12 0 0.800  4 0 5  4 0.867 

15 0.10 0.10 0.01  3 0 31 0.483  2 11 5  11 0.633 

16 0.10 0.01 1.00  2 15 0 0.750  5 0 6  5 0.833 

17 0.10 0.01 0.10  2 15 0 0.750  5 0 7  5 0.833 

18 0.10 0.01 0.01  2 15 0 0.750  5 0 6  5 0.833 

19 0.01 1.00 1.00   14 0 0 1.000   3 0 15   5 0.833 

20 0.01 1.00 0.10  14 0 0 1.000  3 0 15  5 0.833 

21 0.01 1.00 0.01  10 0 4 0.933  0 3 15  4 0.867 

22 0.01 0.10 1.00  14 0 0 1.000  3 0 15  5 0.833 

23 0.01 0.10 0.10  14 0 0 1.000  0 3 15  4 0.867 

24 0.01 0.10 0.01  10 0 4 0.933  0 4 12  4 0.867 

25 0.01 0.01 1.00  14 0 0 1.000  3 0 15  5 0.833 

26 0.01 0.01 0.10  5 6 0 0.900  4 0 13  5 0.833 

27 0.01 0.01 0.01  5 6 0 0.900  4 0 13  5 0.833 

     B: Number of hyperboxes 

     M: Number of misclassified samples 

     O: Number of overlap samples 

     U: Number of uncovered samples 

     A: Accuracy 
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Table A.2. Test of Coefficients for Iris 

         Training results   Test results 

 Coefficients  

B M O A 

 1st step results  Final results 

Run c1 c2 c3   M O U  M A 

1 1.00 1.00 1.00  4 0 3 0.975  1 1 1  1 0.967 

2 1.00 1.00 0.10  3 0 6 0.950  0 3 1  1 0.967 

3 1.00 1.00 0.01  3 0 6 0.950  1 2 1  2 0.933 

4 1.00 0.10 1.00  3 4 0 0.967  4 0 1  4 0.867 

5 1.00 0.10 0.10  3 2 2 0.967  1 1 1  1 0.967 

6 1.00 0.10 0.01  3 0 6 0.950  1 2 1  1 0.967 

7 1.00 0.01 1.00  3 4 0 0.967  5 0 1  5 0.833 

8 1.00 0.01 0.10  3 4 0 0.967  1 4 1  2 0.933 

9 1.00 0.01 0.01  3 1 3 0.967  1 1 1  1 0.967 

10 0.10 1.00 1.00  4 2 0 0.983  1 0 2  1 0.967 

11 0.10 1.00 0.10  4 0 2 0.983  1 1 0  2 0.933 

12 0.10 1.00 0.01  3 0 6 0.950  0 3 1  1 0.967 

13 0.10 0.10 1.00  5 0 0 1.000  1 0 5  1 0.967 

14 0.10 0.10 0.10  3 0 6 0.950  0 3 1  3 0.900 

15 0.10 0.10 0.01  3 0 6 0.950  0 3 1  2 0.933 

16 0.10 0.01 1.00  3 12 0 0.900  1 2 1  3 0.900 

17 0.10 0.01 0.10  3 4 0 0.967  5 0 1  5 0.833 

18 0.10 0.01 0.01  3 4 0 0.967  5 0 1  5 0.833 

19 0.01 1.00 1.00   4 0 0 1.000   1 1 2   1 0.967 

20 0.01 1.00 0.10  4 0 3 0.975  1 1 1  2 0.933 

21 0.01 1.00 0.01  3 0 6 0.950  1 2 1  1 0.967 

22 0.01 0.10 1.00  4 2 0 0.983  1 0 1  1 0.967 

23 0.01 0.10 0.10  4 2 0 0.983  1 0 1  1 0.967 

24 0.01 0.10 0.01  4 0 1 0.992  1 1 2  1 0.967 

25 0.01 0.01 1.00  4 2 0 0.983  1 0 1  1 0.967 

26 0.01 0.01 0.10  4 2 0 0.983  1 0 1  1 0.967 

27 0.01 0.01 0.01  3 1 3 0.967  1 1 1  2 0.933 

     B: Number of hyperboxes 

     M: Number of misclassified samples 

     O: Number of overlap samples 

     U: Number of uncovered samples 

     A: Accuracy 
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Table A.3. Test of Coefficients for Wine 

         Training results   Test results 

 Coefficients  

B M O A 

 1st step results  Final results 

Run c1 c2 c3   M O U  M A 

1 1.00 1.00 1.00  3 0 7 0.951  1 0 12  1 0.972 

2 1.00 1.00 0.10  3 0 7 0.951  0 1 11  0 1.000 

3 1.00 1.00 0.01  3 0 7 0.951  0 1 11  0 1.000 

4 1.00 0.10 1.00  3 0 7 0.951  1 0 12  1 0.972 

5 1.00 0.10 0.10  3 0 7 0.951  0 1 12  1 0.972 

6 1.00 0.10 0.01  3 0 7 0.951  1 0 12  1 0.972 

7 1.00 0.01 1.00  3 0 7 0.951  1 0 12  1 0.972 

8 1.00 0.01 0.10  3 0 7 0.951  1 1 12  1 0.972 

9 1.00 0.01 0.01  3 0 7 0.951  0 1 11  0 1.000 

10 0.10 1.00 1.00  3 0 7 0.951  0 1 11  0 1.000 

11 0.10 1.00 0.10  3 0 7 0.951  0 1 12  1 0.972 

12 0.10 1.00 0.01  3 0 7 0.951  0 1 12  0 1.000 

13 0.10 0.10 1.00  3 3 2 0.965  1 1 13  2 0.944 

14 0.10 0.10 0.10  3 0 7 0.951  1 0 12  1 0.972 

15 0.10 0.10 0.01  3 0 7 0.951  0 1 11  0 1.000 

16 0.10 0.01 1.00  3 6 1 0.951  0 0 11  0 1.000 

17 0.10 0.01 0.10  3 0 7 0.951  1 0 12  1 0.972 

18 0.10 0.01 0.01  3 0 7 0.951  0 1 12  1 0.972 

19 0.01 1.00 1.00   3 0 7 0.951   0 1 11   0 1.000 

20 0.01 1.00 0.10  3 0 7 0.951  0 1 11  0 1.000 

21 0.01 1.00 0.01  3 0 7 0.951  0 1 11  0 1.000 

22 0.01 0.10 1.00  3 3 2 0.965  1 1 13  2 0.944 

23 0.01 0.10 0.10  3 0 7 0.951  1 1 13  2 0.944 

24 0.01 0.10 0.01  3 0 7 0.951  0 1 12  0 1.000 

25 0.01 0.01 1.00  3 6 1 0.951  1 1 12  2 0.944 

26 0.01 0.01 0.10  3 6 1 0.951  1 1 13  2 0.944 

27 0.01 0.01 0.01  3 0 7 0.951  1 0 12  1 0.972 

 B: Number of hyperboxes 

 M: Number of misclassified samples 

 O: Number of overlap samples 

 U: Number of uncovered samples 

 A: Accuracy 
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Table A.4. Test of coefficients for Seed 

         Training results   Test results 

 Coefficients  

B M O A 

 1st step results  Final results 

Run c1 c2 c3   M O U  M A 

1 1.00 1.00 1.00  3 1 37 0.775  1 12 3  5 0.881 

2 1.00 1.00 0.10  3 0 33 0.805  2 9 3  4 0.905 

3 1.00 1.00 0.01  3 0 33 0.805  2 9 3  8 0.810 

4 1.00 0.10 1.00  3 2 24 0.846  2 7 4  7 0.833 

5 1.00 0.10 0.10  3 0 33 0.805  2 9 3  4 0.905 

6 1.00 0.10 0.01  3 0 57 0.663  1 11 2  5 0.881 

7 1.00 0.01 1.00  3 0 33 0.805  2 9 3  9 0.786 

8 1.00 0.01 0.10  3 57 4 0.639  20 4 1  21 0.500 

9 1.00 0.01 0.01  3 0 33 0.805  2 9 3  4 0.905 

10 0.10 1.00 1.00  3 54 16 0.586  8 1 3  9 0.786 

11 0.10 1.00 0.10  3 0 36 0.787  2 9 3  10 0.762 

12 0.10 1.00 0.01  3 0 33 0.805  2 9 3  4 0.905 

13 0.10 0.10 1.00  3 111 23 0.207  19 4 1  23 0.452 

14 0.10 0.10 0.10  3 0 35 0.793  2 9 3  4 0.905 

15 0.10 0.10 0.01  3 0 33 0.805  2 9 3  3 0.929 

16 0.10 0.01 1.00  3 0 38 0.775  2 10 3  5 0.881 

17 0.10 0.01 0.10  3 1 35 0.787  2 9 2  4 0.905 

18 0.10 0.01 0.01  3 0 33 0.805  2 9 3  4 0.905 

19 0.01 1.00 1.00   3 0 33 0.805   2 9 3   3 0.929 

20 0.01 1.00 0.10  3 0 63 0.627  14 7 2  16 0.619 

21 0.01 1.00 0.01  3 0 33 0.805  2 9 3  4 0.905 

22 0.01 0.10 1.00  4 15 39 0.680  3 5 3  4 0.905 

23 0.01 0.10 0.10  4 0 33 0.805  2 9 5  9 0.786 

24 0.01 0.10 0.01  3 0 33 0.805  2 9 3  4 0.905 

25 0.01 0.01 1.00  3 0 40 0.763  3 10 2  12 0.714 

26 0.01 0.01 0.10  3 1 35 0.787  1 12 3  5 0.881 

27 0.01 0.01 0.01  3 0 35 0.793  2 9 3  4 0.905 

       B: Number of hyperboxes 

       M: Number of misclassified samples 

       O: Number of overlap samples 

       U: Number of uncovered samples 

       A: Accuracy 
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B. Cross-validation Results for Model-MOB 

Table B.1. Results of cross-validations for Model-MOB 

    Training results   Test results 

  

B M O A 

 1st step results  Final results 

  Run  M O U  M A 

simulated 

1 

1 7 0 0 1.000  1 0 7  1 0.967 

2 8 0 0 1.000  3 0 4  3 0.900 

3 7 0 0 1.000  1 2 5  2 0.933 

4 6 0 0 1.000  2 0 4  2 0.933 

5 6 0 0 1.000   0 0 6   0 1.000 

simulated 

2 

1 14 0 0 1.000  3 0 15  5 0.833 

2 14 0 0 1.000  5 1 5  6 0.800 

3 13 0 0 1.000  4 0 8  5 0.833 

4 11 0 0 1.000  3 0 5  4 0.867 

5 13 0 0 1.000   4 1 5   4 0.867 

Iris 

1 4 0 0 1.000  1 1 2  1 0.967 

2 4 0 1 0.992  1 2 1  1 0.967 

3 4 1 1 0.983  0 0 7  0 1.000 

4 5 0 0 1.000  0 3 1  1 0.967 

5 4 0 0 1.000   2 0 3   2 0.933 

Wine 

1 3 0 7 0.951  0 1 11  0 1.000 

2 3 0 5 0.965  1 0 15  2 0.944 

3 3 0 8 0.944  2 2 10  4 0.889 

4 3 0 7 0.951  0 1 11  1 0.972 

5 3 0 10 0.930   2 1 9   2 0.944 

Seed 

1 3 0 33 0.804  2 9 3  3 0.929 

2 4 1 34 0.792  1 8 1  2 0.933 

3 3 0 35 0.792  2 9 3  3 0.900 

4 3 2 26 0.833  3 5 5  3 0.900 

5 4 0 39 0.768   2 10 0   4 0.867 

B: Number of hyperboxes 

M: Number of misclassified samples 

O: Number of overlap samples 

U: Number of uncovered samples 

A: Accuracy 
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C. Cross-validation Results for Model-MO 

 

Table C.1. Results of Cross-validations for Model-MO 

    Scenerio 1   Scenerio 2 

  

L B M O A 
 

L B M O A   Run 

simulated 

1 

1 

20 

7 0 0 1.000  

4 

4 4 0 0.933 

2 8 0 0 1.000  4 4 0 0.933 

3 7 0 0 1.000  4 4 0 0.933 

4 6 0 0 1.000  4 4 0 0.933 

5 6 0 0 1.000  4 3 0 0.950 

simulated 

2 

1 

20 

15 0 0 1.000  

4 

4 10 0 0.833 

2 10 2 0 0.967  4 8 0 0.867 

3 14 0 0 1.000  4 9 0 0.850 

4 11 0 0 1.000  4 1 0 0.983 

5 11 0 0 1.000  4 6 0 0.900 

Iris 

1 

10 

6 0 0 1.000  

6 

4 1 0 0.992 

2 7 0 0 1.000  4 1 0 0.992 

3 7 0 0 1.000  5 1 1 0.983 

4 7 0 0 1.000  5 1 0 0.992 

5 7 0 0 1.000  5 1 0 0.992 

Wine 

1 

8 

4 2 1 0.979  

6 

4 0 2 0.986 

2 4 0 3 0.979  4 0 3 0.979 

3 4 1 8 0.937  4 0 9 0.937 

4 4 0 2 0.986  4 0 2 0.986 

5 3 1 7 0.944  4 0 4 0.972 

Seed 

1 

15 

3 8 7 0.911  

6 

4 4 4 0.952 

2 3 8 8 0.905  4 4 4 0.952 

3 3 6 22 0.833  5 5 0 0.970 

4 3 4 13 0.899  4 6 0 0.964 

5 3 7 6 0.923  4 6 1 0.958 
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Table C.1 (continued) 

    Scenerio 1   Scenerio 2 

  

L B M O A 
 

L B M O A   Run 

Breast 

Cancer 

1 

8 

2 19 288 0.438  

4 

2 35 145 0.670 

2 2 1 121 0.777  3 5 88 0.830 

3 2 12 96 0.802  4 11 131 0.740 

4 3 7 109 0.788  2 8 111 0.782 

5 2 0 413 0.244  2 10 114 0.773 

Ecoli 

1 

15 

6 0 131 0.394  

10 

5 9 83 0.648 

2 5 1 99 0.537  7 16 5 0.920 

3 5 0 138 0.361  9 19 20 0.851 

4 5 3 119 0.449  5 27 2 0.889 

5 5 0 133 0.384  6 21 4 0.904 

Sonar 

1 

8 

2 0 91 0.452  

4 

3 1 72 0.560 

2 2 8 49 0.657  3 16 50 0.602 

3 2 5 74 0.524  3 19 45 0.614 

4 2 13 64 0.536  4 12 45 0.657 

5 2 16 45 0.633  4 15 46 0.633 

Ionosphere 

1 

8 

2 96 0 0.657  

4 

2 96 0 0.657 

2 2 97 0 0.654  2 97 0 0.654 

3 2 100 0 0.643  2 100 0 0.643 

4 2 108 0 0.614  2 108 0 0.614 

5 2 102 0 0.636  2 102 0 0.636 

Glass 

1 

10 

5 56 61 0.316  

10 

5 47 58 0.386 

2 8 18 76 0.450  6 4 102 0.380 

3 7 57 49 0.380  5 9 69 0.544 

4 7 14 91 0.386  7 50 55 0.386 

5 8 20 78 0.427  7 3 91 0.450 

B: Number of hyperboxes 

M: Number of misclassified samples 

O: Number of overlap samples 

U: Number of uncovered samples 

A: Accuracy 
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D. Results of Model-MO for All Nodes in Search Tree 

 

Figure D.1. Model-MO results for Simulated 2 dataset for all nodes 

Note: 100% accuracy is achieved at node (8,6) 
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Figure D.2. Model-MO results of Simulated 3 dataset for all nodes 

 

 

 

 

 

 

 

 

 



 

152 

 

 

Figure D.3. Model-MO results for Simulated 4 dataset for all nodes 

Note: 100% accuracy is achieved at node (7,5) 
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E. Preliminary Results of HCB 

Table E.1. Preliminary Result of HCB for Simulated 2 dataset 

Iter. Alloc. M O U AM 

Class of 

Trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

Model 

CPU 

time 

(sec) 

HTA 

CPU 

time 

(sec) 

1 (1,1) 12,2 0,0 1,0 75.00 1, 2 25 41.67 11.481 0.171 

2 (2,2) 5,10 0,0 1,0 73.33 2 9 56.67 6.747 0.047 

3 (2,3) 5,0 0,0 5,3 78.33 1, 2 6 66.67 5.885 0.102 

4 (3,3) 3,3 0,0 4,1 81.67 1, 2 6 76.67 6.043 0.149 

5 (4,4) 0,1 0,1 3,3 86.67 2 2 80.00 5.524 1.719 

6 (4,5) 0,1 0,1 3,2 88.33 1, 2 3 85.00 5.12 1.813 

7 (5,6) 0,0 0,1 3,2 90.00 1 2 88.33 5.248 2.317 

8 (6,6) 0,0 0,0 3,2 91.67 1 1 90.00 5.565 2.375 

9 (7,6) 0,0 0,0 2,2 93.33 1, 2 2 93.33 4.794 1.703 

10 (8,7) 0,0 0,1 0,1 96.67 2 1 95.00 5.562 1.43 

11 (8,8) 1,0 0,0 0,0 98.33 1 1 96.67 3.216 0.216 

12 (9,8) 0,0 0,0 0,0 100.00   100.0 3.685  

 

Table E.2. Preliminary Result of HCB for Simulated 4 dataset 

Iter. Alloc. M O U AM 

Class of 

Trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

Model 

CPU 

time 

(sec) 

HTA 

CPU 

time 

(sec) 

1 (1,1) 17,0 0,0 10,0 73.00 1 23 23.00 17.344 4.766 

2 (2,1) 14,3 0,0 2,0 81.00 1, 2 21 44.00 13.474 0.312 

3 (3,2) 14,1 0,0 1,2 82.00 1, 2 15 59.00 10.259 0.112 

4 (4,3) 9,0 0,1 4,7 79.00 2 11 70.00 8.371 1.320 

5 (4,4) 0,0 0,0 8,5 87.00 1, 2 17 87.00 8.677 2.922 

6 (5,5) 0,0 0,0 4,2 94.00 1 4 91.00 6.534 1.219 

7 (6,5) 0,0 0,0 2,2 96.00 2 3 94.00 6.639 1.227 

8 (6,6) 0,0 0,0 2,0 98.00 1 2 96.00 6.465 1.367 

9 (7,6) 0,0 0,0 1,0 99.00 1 1 97.00 4.268 1.102 

10 (8,6) 0,0 0,0 0,0 100.00          
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Table E.3. Preliminary Result for HCB for Breast Cancer dataset 

Iter. Alloc. M O U AM 

Class of 

Trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

Model 

CPU 

time 

(sec) 

HTA 

CPU 

time 

(sec) 

1 (1,1) 11,3 5,7 8,7 92.49 1 224 41.03 1200.00 0.273 

2 (2,1) 9,2 5,3 16,22 89.93 1, 2 214 80.22 1200.00 0.534 

3 (3,2) 3,9 0,1 11,53 85.90 2 21 84.07 1200.00 1.848 

4 (3,3) 4,1 1,0 13,39 89.38 1, 2 15 86.81 1200.00 1.416 

5 (4,4) 4,2 4,0 8,16 91.39  1, 2 13 89.19 1200.00 1.500 

6 (5,5) 2,1 0,0 5,27 93.59  1, 2 15 91.94 1200.00 4.218 

7 (6,6) 1,1 0,0 3,18 95.79 2 9 93.59 750.886 2.119 

8 (6,7) 2,0 0,0 3,12 96.89 1, 2 6 94.69 1200.00 1.423 

9 (7,8) 0,0 0,0 1,10 97.99 2 4 95.42 216.04 1.594 

10 (7,9) 0,0 0,0 1,7 98.53 2 3 95.97 112.224 1.348 

11 (7,10) 0,0 0,0 1,4 99.08 2 3 96.52 54.009 1.317 

12 (7,11) 0,0 0,1 1,1 99.45 1, 2 4 97.25 35.994 1.5 

13 (8,12) 0,0 0,0 0,0 100.0     100.0     
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F. Iteration Details of HCB 

Table F.1. Iteration Details of HCB – Simulated 4 dataset (remaining folds) 

Training Phase  Test Phase 

  

Iter.  L 

Box 

alloc. 

 

Model-MOU Results Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 2

 

1 2 (1,1)  18,0 2,2 7,0 71.0 1 13 13.0 29.08 2.58  6 76.0 

2 3 (2,1)  11,5 0,0 0,8 76.0 2 10 23.0 20.16 1.91  7 72.0 

3 4 (2,2)  11,5 0,0 0,8 76.0 1 10 33.0 17.08 2.49  6 76.0 

4 5 (3,2)  6,8 0,1 2,1 81.0 2 9 42.0 15.71 1.92  7 72.0 

5 6 (3,3)  14,0 0,1 0,3 82.0 1 8 50.0 14.91 0.82  7 72.0 

6 7 (4,3)  5,0 1,0 0,10 84.0 2 8 58.0 15.77 0.11  5 80.0 

7 8 (4,4)  4,0 0,0 1,6 89.0 2 8 66.0 13.54 2.54  4 84.0 

8 9 (4,5)  5,0 0,0 3,3 89.0 1 5 71.0 14.23 2.25  4 84.0 

9 10 (5,5)  0,0 0,0 6,0 94.0 1 14 85.0 12.63 1.72  1 96.0 

10 11 (6,5)  0,0 0,0 2,0 98.0 1 2 87.0 12.85 0.52  3 88.0 

11 12 (7,5)  0,0 0,0 0,0 100.0   13 100.0 13.23    1 96.0 

F
o

ld
 3

 

1 2 (1,1)  21,0 0,0 4,7 68.0 1 21 21.0 34.61 1.50  5 80.0 

2 3 (2,1)  17,2 0,1 0,1 79.0 1-2 32 53.0 30.21 2.16  5 80.0 

3 5 (3,2)  1,4 0,6 3,4 82.0 2 9 62.0 13.47 1.23  7 72.0 

4 6 (3,3)  1,4 0,0 5,2 88.0 1-2 18 8.0 12.51 0.15  6 76.0 

5 8 (4,4)  2,0 0,0 5,2 91.0 1 5 85.0 13.61 1.26  4 84.0 

6 9 (5,4)  0,0 0,0 3,2 95.0 1 5 90.0 12.17 1.03  3 88.0 

7 10 (6,4)  0,0 0,0 1,2 97.0 2 5 95.0 12.10 1.14  3 88.0 

8 11 (6,5)  0,0 0,0 1,0 99.0 1 3 98.0 12.17 1.12  3 88.0 

9 12 (7,5)  0,0 0,0 0,0 100.0   2 100.0 12.35    3 88.0 

F
o

ld
 4

 

1 2 (1,1)  25,0 0,0 0,0 75.0 1 20 20.0 19.25 1.46  11 56.0 

2 3 (2,1)  16,2 0,0 0,0 82.0 1-2 16 36.0 16.01 0.11  7 72.0 

3 5 (3,2)  15,0 0,0 0,3 82.0 1-2 11 47.0 12.21 1.47  9 64.0 

4 7 (4,3)  7,0 3,1 0,4 85.0 1 21 68.0 10.55 0.09  7 72.0 

5 9 (5,4)  7,0 3,0 1,3 86.0 1-2 15 83.0 7.84 1.06  6 76.0 

6 11 (6,5)  2,0 0,0 3,3 92.0 1-2 6 89.0 6.81 1.45  6 76.0 

7 13 (7,6)  1,0 0,0 2,3 94.0 1-2 5 94.0 7.02 1.71  6 76.0 

8 15 (8,7)  1,1 0,0 0,0 98.0 1-2 4 98.0 7.01 0.16  4 84.0 

9 17 (9,8)  0,0 0,0 0,0 100.0   2 100.0 7.27    4 84.0 

F
o

ld
 5

 

1 2 (1,1)  21,2 0,0 0,4 73.0 1 20 20.0 44.41 0.12  8 68.0 

2 3 (2,1)  14,1 0,0 5,5 75.0 1-2 18 38.0 15.61 0.09  5 80.0 

3 5 (3,2)  2,15 0,0 4,0 79.0 1 21 59.0 34.67 0.12  4 84.0 

4 6 (3,3)  0,1 0,0 12,4 83.0 1-2 21 80.0 9.36 2.00  4 84.0 

5 8 (4,4)  3,0 0,0 7,1 89.0 1 6 86.0 7.50 1.57  3 88.0 

6 9 (5,4)  4,0 0,0 2,2 92.0 1 3 89.0 7.00 1.27  4 84.0 

7 10 (6,4)  3,0 0,0 1,2 95.0 1 3 92.0 7.36 1.96  2 92.0 

8 11 (7,4)  0,0 0,0 1,2 97.0 1-2 5 97.0 6.68 1.78  3 88.0 

9 13 (8,5)  0,0 0,0 0,1 99.0 2 1 98.0 6.57 0.21  2 92.0 

10 14 (8,6)  0,0 0,0 0,0 100.0   2 100.0 6.62    2 92.0 
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Table F.2. Iteration Details of HCB – Breast Cancer dataset (remaining folds) 

Training Phase  Test Phase 

  

Iter  L 

Box 

alloc. 

 

Model-MOU Results Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 2

 

1 2 (1,1)  8,2 3,7 6,2 94.87 1 326 59.71 1200 0.195  9 93.33 

2 3 (2,1)  9,0 6,0 9,9 93.96 1 - 2 96 77.29 1200 0.595  10 92.66 

3 5 (3,2)  3,4 0,0 9,67 84.80 2 30 82.78 1200 1.196  7 94.81 

4 6 (3,3)  1,1 3,1 10,51 87.73 2 16 85.71 1200 1.164  7 94.81 

5 7 (3,4)  1,2 0,0 9,45 89.56 2 11 87.73 1200 1.090  6 95.56 

6 8 (3,5)  0,0 1,0 14,32 91.39 2 13 90.11 1200 2.446  8 94.07 

7 9 (3,6)  1,2 2,3 16,27 92.31 2 5 91.03 1200 2.105  7 94.81 

8 10 (3,7)  0,1 1,0 11,24 93.22 2 6 92.12 1200 1.346  7 94.81 

9 11 (3,8)  0,1 1,1 9,15 95.05 2 10 93.96 1200 3.150  7 94.81 

10 12 (3,9)  0,1 1,1 9,11 95.05 1 - 2 10 95.79 1200 2.030  7 94.81 

11 14 (4,10)  0,1 1,1 5,10 97.44 2 3 96.34 213 1.940  7 94.81 

12 15 (4,11)  0,0 1,1 5,7 97.44 2 3 96.89 654 0.960  7 94.81 

13 16 (4,12)  0,0 0,1 6,7 97.99 2 4 97.62 458 0.765  7 94.81 

14 17 (4,13)  0,0 0,1 6,4 99.08 1 3 98.17 957 1.120  7 94.81 

15 18 (5,13)  0,0 0,1 0,1 99.63 1 4 98.90 546 0.612  7 94.81 

16 19 (6,13)        100.0   6 100.0 321    7 94.81 

F
o

ld
 3

 

1 2 (1,1)  9,6 6,9 2,4 93.41 1 - 2 476 87.18 1200 2.174  10 92.75 

2 4 (2,2)  4,2 1,1 8,36 90.48 2 17 90.29 1200 3.693  8 94.20 

3 5 (2,3)  4,2 1,1 5,15 94.87 2 21 94.14 867 3.364  10 92.75 

4 6 (2,4)  6,2 1,1 3,6 96.52 2 9 95.79 91 2.772  8 94.20 

5 7 (3,4)  5,1 1,1 1,7 97.07 1 8 97.25 54 5.054  8 94.20 

6 8 (3,5)  4,1 2,2 1,2 97.80 2 6 98.35 38 5.260  9 93.48 

7 10 (4,6)  4,1 1,1 0,1 98.53 1 - 2 4 99.08 27 0.303  9 93.48 

8 12 (5,7)  1,0 0,1 0,0 99.63 1 - 2 4 99.82 27 2.850  9 93.48 

9 13 (6,7)        100.0   1 100.0 28     9 93.48 

F
o

ld
 4

 

1 2 (1,1)  9,5 9,5 1,5 93.96 1 338 61.90 1200 0.453  9 93.50 

2 3 (2,1)  12,2 6,0 3,8 94.32 1 - 2 85 77.47 1200 0.655  9 93.50 

3 5 (3,2)  12,2 6,0 0,9 94.69 1 - 2 35 83.88 1200 0.824  8 94.20 

4 7 (4,3)  11,2 3,4 0,8 94.87 2 21 87.73 1200 1.036  6 95.70 

5 8 (4,4)  10,2 7,0 0,9 94.87 1 - 2 13 90.11 1200 1.043  8 94.20 

6 10 (5,5)  6,2 4,0 1,14 94.87 2 12 92.31 1200 1.254  7 94.90 

7 11 (5,6)  6,3 2,0 1,14 95.24 2 12 94.51 1200 1.277  6 95.70 

8 12 (5,7)  0,3 0,1 3,12 96.52 2 11 96.52 1200 1.402  6 95.70 

9 13 (5,8)  3,2 0,0 1,4 98.17 2 6 97.62 645 1.325  6 95.70 

10 14 (5,9)  1,1 0,0 1,2 99.08 1 8 99.08 846 2.005  6 95.70 

11 15 (6,9)  0,0 0,0 0,0 100.0   5 100.0 191    6 95.70 
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Table F.2 (continue) 

Training Phase  Test Phase 

  

Iter.  L 

Box 

alloc. 

 

Model-MOU Results Class of 

trimmed 

hyperbox 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 5

 

1 2 (1,1)  4,2 3,5 14,6 93.77 1 296 54.21 1200 1.409  6 95.60 

2 3 (2,1)  4,2 6,8 4,12 93.41 1 - 2 102 72.89 1200 2.124  6 95.60 

3 5 (3,2)  6,1 4,2 4,8 95.42 1 18 76.19 1200 1.264  7 94.90 

4 6 (4,2)  6,1 2,2 3,10 95.60 2 46 84.62 1200 2.525  6 95.60 

5 7 (4,3)  4,1 1,2 5,3 97.07 1 - 2 39 91.76 1200 1.277  7 94.90 

6 9 (5,4)  3,1 1,2 4,9 96.34 2 14 94.32 876 2.003  8 94.20 

7 10 (5,5)  2,1 1,1 4,6 97.25 2 6 95.42 594 0.877  7 94.90 

8 11 (5,6)  1,1 1,1 2,6 97.80 2 3 95.97 1200 0.457  7 94.90 

9 12 (5,7)  0,1 0,1 2,6 98.17 1 - 2 8 97.44 648 1.086  7 94.90 

10 14 (6,8)  0,0 0,0 1,4 99.08 2 5 98.35 912 0.526  7 94.90 

11 15 (6,9)  0,0 0,0 1,2 99.45 2 3 98.90 214 2.805  7 94.90 

12 16 (6,10)  0,0 0,0 0,1 99.82 2 4 99.63 178 2.736  7 94.90 

13 17 (6,11)  0,0 0,0 0,0 100.0 2 2 100.0 54    7 94.90 
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Table F.3. Iteration details of HCB – Skin subset 1 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 1

 

1 (1,1) 400,0 0,0 0,0 71.43 2 547 39.07 4.21 5.28  121 65.43 

2 (1,2) 10,22 2,195 0,2 83.50 2 214 54.36 1200 1.26  39 88.86 

3 (1,3) 0,18 1,83 0,7 92.21 1 - 2 321 77.29 1200 1.68  27 92.29 

4 (2,4) 6,0 0,0 58,20 94.00 1 - 2 193 91.07 1179 3.16  12 96.57 

5 (3,5) 6,0 0,19 36,15 94.57 1 21 92.57 1200 2.12  11 96.86 

6 (4,5) 6,0 1,0 46,16 95.07 1 21 94.07 1200 1.63  12 96.57 

7 (5,5) 9,2 0,0 26,13 96.43 1 13 95.00 1200 2.13  7 98.00 

8 (6,5) 0,0 0,0 26,16 97.00 1 19 96.36 1200 1.82  5 98.57 

9 (7,5) 0,1 0,0 16,15 97.71 1 - 2 20 97.79 637.82 3.11  4 98.86 

10 (8,6) 0,1 0,5 7,8 98.50 1 - 2 16 98.93 140.78 2.69  5 98.57 

11 (9,7) 0,0 0,0 0,4 99.71 1 - 2 11 99.71 38.09 2.10  4 98.86 

12 (9,9) 0,0 0,0 0,0 100.0   4 100.0 90.72    4 98.86 

F
o

ld
 2

 

1 (1,1) 400 0,0 0 71.43 2 535 38.21 9.85 3.02  83 76.29 

2 (1,2) 13,6 198,17 0,13 82.36 1 172 50.50 1200 1.28  67 80.86 

3 (2,2) 87,1 0,124 7,12 83.50 2 212 65.64 1200 2.52  47 86.57 

4 (2,3) 87,0 62,8 5,10 87.64 1 142 75.79 687.0 2.14  18 94.86 

5 (3,3) 0,3 0,0 0,100 92.64 2 150 86.50 242.59 1.80  23 93.43 

6 (3,4) 0,3 0,0 11,15 97.93 2 74 91.79 151.4 2.02  9 97.43 

7 (3,5) 0,3 0,0 11,8 98.43 1 67 96.57 48.84 1.90  5 98.57 

8 (4,5) 0,3 0,0 0,16 98.64 1 - 2 29 98.64 52.76 2.42  2 99.43 

9 (5,6) 0,0 0,0 0,12 99.14 1 - 2 10 99.36 24.70 1.98  0 100.0 

10 (5,8) 0,0 0,0 0,0 100.0   9 100.0 27.73    1 99.71 

F
o

ld
 3

 

1 (1,1) 400,0 0,0 0,0 71.43 2 541 38.64 9.95 3.43  61 82.57 

2 (1,2) 50,9 158,8 6,12 82.14 1 - 2 453 71.00 1200 2.30  24 93.14 

3 (2,3) 51,2 1,0 25,93 94.00 2 131 80.36 1200 2.27  34 90.29 

4 (2,4) 21,0 1,0 28,34 97.36 1 86 86.50 325.15 1.70  17 95.14 

5 (3,4) 0,11 0,0 0,26 82.14 2 77 92.00 63.02 2.59  7 98.00 

6 (3,5) 0,9 0,1 0,2 99.14 2 - 2 90 98.43 256.86 1.50  8 97.71 

7 (3,7) 0,0 0,0 5,5 99.29 2 - 2 12 99.29 415.72 1.80  4 98.86 

8 (3,9) 0,0 0,0 0,0 100.0   10 100.0 33.04    4 98.86 

 

 



 

159 

 

Table F.3 (continue) 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 4

 

1 (1,1) 400,0 0,0 0,0 71.43 2 557 39.79 35.22 5.91  100 71.43 

2 (1,2) 45,16 142,6 2,37 82.29 1 288 60.36 1200 4.97  51 85.43 

3 (2,2) 24,5 1816,0 0,20 83.21 1 - 2 283 80.57 268.86 4.74  31 91.14 

4 (3,3) 7,0 0,0 0,92 92.93 2 149 91.21 39.55 0.93  24 93.14 

5 (3,4) 0,3 0,0 0,92 97.93 2 70 96.21 24.90 1.36  5 98.57 

6 (3,5) 0,2 0,0 0,14 98.86 1 - 2 37 98.86 34.64 3.42  2 99.43 

7 (3,7) 0,0 0,0 0,5 99.64 1 - 2 14 99.86 41.12 1.37  2 99.43 

8 (3,8) 0,0 0,0 0,0 100.0   2 100.0 30.31 5.79  2 99.43 

F
o

ld
 5

 

1 (1,1) 400,0 0,0 0,0 28.57 2 542 38.71 14.30 4.63  111 68.38 

2 (1,2) 2,8 199,18 0,0 82.29 1 - 2 313 61.07 1200 3.04  47 86.61 

3 (2,3) 0,24 17,7 0,142 86.43 1 - 2 218 76.64 293.56 3.25  60 82.91 

4 (3,4) 1,26 2,4 0,11 96.86 2 132 86.07 339.88 1.82  53 84.90 

5 (3,5) 0,24 2,4 0,2 97.71 1 - 2 105 93.57 132.18 1.66  6 98.29 

6 (4,6) 0,11 2,15 0,0 97.86 1 - 1 28 95.57 222.75 1.36  1 99.72 

7 (6,6) 0,10 2,16 0,1 98.86 1 28 97.57 88.43 3.42  1 99.72 

8 (7,6) 0,0 0,0 0,0 100.0   34 100.0 26.21    1 99.72 
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Table F.4. Iteration details of HCB – Skin subset 2 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 1

 

1 (1,1) 151,5 28,0 0,20 85.21 1 - 2 1020 72.86 245.16 1.39  34 90.31 

2 (2,2) 0,2 2,0 2,31 97.36 2 188 86.29 28.22 1.40  6 98.29 

3 (2,3) 0,2 0,0 0,20 98.43 2 -2 155 97.36 120.40 1.43  4 98.86 

4 (2,5) 0,0 0,2 0,3 99.64 2 - 2 17 98.57 13.35 1.22  1 99.72 

5 (2,7) 0,0 0,0 0,0 100.0  20 100.0 30.11   1 99.72 

F
o

ld
 2

 

1 (1,1) 125,7 44,0 0,27 86.43 1 - 2 1025 73.21 523.12 1.34  57 83.76 

2 (2,2) 0,1 0,0 11,20 97.71 2 200 87.50 67.04 1.83  11 96.87 

3 (2,3) 3,4 0,0 7,3 98.79 1 - 2 158 98.79 36.01 2.14  11 96.87 

4 (3,4) 0,0 0,0 0,5 99.64 2 5 99.14 24.15 0.99  12 96.58 

5 (3,5) 0,0 0,0 0,0 100.0  12 100.0 18.56   2 99.43 

F
o

ld
 3

 1 (1,1) 160,1 16,0 0,24 73.33 1 - 2 1013 72.36 426.15 0.17  32 90.86 

2 (2,2) 7,8 0,0 1,0 99.71 2 - 2 365 98.43 4.81 25.81  2 99.43 

3 (2,4) 0,0 0,0 0,0 100.0  22 100.0 18.30 18.12  0 100.0 

F
o

ld
 4

 

1 (1,1) 145,6 18,0 0,23 86.36 1 - 2 1017 72.64 426.51 4.24  45 87.14 

2 (2,2) 0,5 8,0 0,17 97.86 2 65 77.29 82.16 2.13  9 97.43 

3 (2,3) 3,2 6,1 9,0 98.50 1 49 80.79 46.15 1.32  5 98.57 

4 (3,3) 3,0 3,1 7,0 99.00 1 - 2 185 94.00 19.20 1.99  4 98.86 

5 (4,4) 0,1 2,3 0,1 99.57 2 - 2 42 97.00 22.61 0.96  4 98.86 

6 (4,6) 0,0 0,0 0,0 100.0  42 100.0 19.07   0 100.0 

F
o

ld
 5

 

1 (1,1) 145,5 18,0 11,19 85.93 1 - 2 1020 72.86 246.09 0.17  34 90.29 

2 (2,2) 6,1 8,0 5,2 98.43 1 - 2 354 98.14 43.12 1.40  9 97.43 

3 (3,3) 3,0 2,0 0,1 99.57 1 - 2 15 99.21 37.47 1.07  0 100.0 

4 (4,4) 0,0 0,0 0,0 100.0  11 100.0 12.00   0 100.0 

 

 

 

 

 

 



 

161 

 

 

Table F.5. Iteration details of HCB – Skin subset 3 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimme

d box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.)    

M O U AM 

Model 

MOU  HTA   M A 

F
o

ld
 1

 

F
o

ld
 2

 

F
o

ld
 3

 

F
o

ld
 4

 

F
o

ld
 5

 

1 (1,1) 800,0 0,0 0,0 71.43 2 424 15.14 6 10.65  563 19.57 

2 (1,2) 800,0 0,0 0,21 70.68 2 253 24.18 1200 9.55  527 24.71 

3 (1,3) 544,0 51,0 245,264 60.57 1-2 135 29.00 1200 5.39  487 30.43 

4 (2,4) 0,975 0,42 4,251 54.57 1 182 35.50 1200 17.22  452 35.43 

5 (3,4) 471,324 1,15 53,117 64.96 1-2 517 53.96 1200 6.31  215 69.29 

6 (4,5) 29,230 18,15 110,334 74.79 2 183 60.50 1200 4.55  189 73.00 

7 (4,6) 1,21 53,6 102,407 78.93 2 184 67.07 1200 1.81  102 85.43 

8 (4,7) 78,16 21,73 105,254 80.25 1-2 269 76.68 1200 2.13  72 89.71 

9 (5,8) 18,17 29,38 116,244 83.50 1-2 138 81.61 1200 3.57  72 89.71 

10 (6,9) 4,8 13,54 211,230 81.43 1-2 62 83.82 1200 1.45  72 89.71 

11 (7,10) 1,1 47,13 211,221 82.50 2 21 84.57 1200 1.53  56 92.00 

12 (7,11) 1,2 4,49 188,214 83.64 1-2 65 86.89 1200 3.73  30 95.71 

13 (8,12) 1,23 32,19 59,62 93.00 1-2 141 91.93 1200 2.66  17 97.57 

14 (8,13) 1,23 31,19 59,28 94.25 2 64 94.21 1200 2.4  17 97.57 

15 (9,13) 1,2 31,13 68,49 94.14 1 44 95.79 1200 4.09  14 98.00 

16 (10,13) 10,9 5,13 26,39 96.36 1 39 97.18 955 2.3  17 97.57 

17 (11,13) 1,6 0,13 13,26 97.89 1 25 98.07 1034 24.47  17 97.57 

18 (11,14) 1,4 0,0 13,18 98.71 2 30 99.14 709 3.79  17 97.57 

19 (12,15) 1,3 0,0 9,15 99.00 1-2 14 99.64 490 2.66  13 98.14 

20 (13,16) 0,0 0,0 0,0 100.0  10 100.0 232 3.65  6 99.14 

F
o

ld
 2

 

1 (1,1) 800,0 0,0 0,0 71.43 2 410 14.64 8 24.27  507 27.57 

2 (1,2) 800,0 0,0 0,438 55.79 2 637 37.39 1200 12.31  518 26.00 

3 (1,3) 427,214 0,0 113,290 62.71 1-2 340 49.54 1200 7.60  511 27.00 

4 (2,4) 110,36 238,206 3,121 74.46 1-2 479 66.64 1200 3.07  311 55.57 

5 (3,5) 0,12 7,3 115,382 81.46 2 203 73.89 1200 2.68  175 75.00 

6 (3,6) 10,8 0,0 260,130 85.43 1 173 80.07 1200 4.16  162 76.86 

7 (4,6) 12,9 21,5 134,149 88.21 2 179 86.46 1200 6.12  106 84.86 

8 (4,7) 0,10 0,0 93,209 88.86 1 57 88.50 1200 1.05  106 84.86 

9 (5,7) 15,0 32,25 5,0 97.25 1-2 142 93.57 1200 3.96  63 91.00 

10 (6,8) 0,19 0,0 35,94 94.71 2 44 95.14 1200 2.51  47 93.29 

11 (6,9) 0,4 3,2 24,51 97.00 1-2 53 97.04 1200 1.53  19 97.29 

12 (7,10) 0,0 5,2 2,23 98.86 2 20 97.75 714 1.33  11 98.43 

13 (7,11) 0,0 1,2 16,10 98.96 1 12 98.18 384 1.29  17 97.57 

14 (8,11) 0,0 1,2 3,23 98.96 2 12 98.61 612 2.46  15 97.86 

15 (8,12) 0,0 1,1 13,3 99.36 1 5 98.79 514 2.23  15 97.86 

16 (9,12) 0,0 1,1 3,9 99.50 1-2 10 99.14 224 1.09  11 98.43 

17 (10,13) 0,0 1,0 2,6 99.68 1-2 15 99.68 332 2.03  11 98.43 

18 (11,14) 0,0 0,0 0,0 100.0   9 100.0 264   11 98.43 
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Table F.5 (continue) 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.)    

M O U AM 

Model 

MOU  HTA   M A 

F
o

ld
 3

 

F
o

ld
 2

 

F
o

ld
 3

 

F
o

ld
 4

 

F
o

ld
 5

 

1 (1,1) 800,0 0,0 0,0 71.43 2 506 18.07 9 26.12  530 24.28 

2 (1,2) 800,0 0,0 0,304 60.57 2 609 39.82 1200 9.55  560 20.00 

3 (1,3) 410,51 0,20 210,290 64.96 1-2 301 50.57 1200 12.13  550 21.43 

4 (2,4) 220,160 0,6 17,303 74.79 1-2 457 66.89 1200 5.45  215 69.29 

5 (3,5) 108,62 9,47 37,290 80.25 2 198 73.96 1200 7.16  102 85.43 

6 (3,6) 129,45 0,22 235,88 81.46 1 138 78.89 1200 2.35  106 84.86 

7 (4,6) 108,32 0,27 35,260 83.50 2 96 82.32 1200 3.85  72 89.71 

8 (4,7) 119,39 10,27 175,120 82.50 1 157 87.93 1200 1.56  63 91.00 

9 (5,7) 16,27 4,18 82,145 89.71 1-2 127 92.46 1200 3.22  49 93.00 

10 (6,8) 19,23 6,17 45,86 93.00 2 39 93.86 1200 1.08  30 95.71 

11 (6,9) 17,5 5,18 32,87 94.14 1-2 47 95.54 1200 2.75  17 97.57 

12 (7,10) 8,12 0,6 38,76 95.71 1-2 32 96.68 1200 2.04  17 97.57 

13 (8,11) 7,15 0,3 62,15 96.36 1 28 97.68 1200 1.65  17 97.57 

14 (9,11) 0,2 1,4 5,17 98.96 2 5 97.86 815 1.31  15 97.86 

15 (9,12) 3,1 2,2 27,24 97.89 1 14 98.36 642 1.45  33 95.29 

16 (10,12) 0,0 2,5 4,9 99.50 1-2 24 99.21 564 1.86  8 98.86 

17 (11,13) 0,0 0,0 3,6 99.68 1-2 18 99.86 648 1.03  33 95.29 

18 (12,14) 0,0 0,0 0,0 100.0   4 100.0 325    33 95.29 

F
o

ld
 4

 

1 (1,1) 800,0 0,0 0,0 71.43 2 462 16.50 9 20.12  540 22.86 

2 (1,2) 800,0 0,0 0,16 70.86 2 248 25.36 1200 14.52  558 20.29 

3 (1,3) 544,0 55,0 245,200 62.71 1-2 156 30.93 1200 8.35  500 28.57 

4 (2,4) 227,82 54,42 325,251 64.96 1 182 37.43 1200 6.82  452 35.43 

5 (3,4) 368,221 10,17 47,52 74.46 1-2 407 51.96 1200 7.23  335 52.14 

6 (4,5) 47,286 18,15 62,125 80.25 2 183 58.50 1200 3.56  340 51.43 

7 (4,6) 1,21 53,21 102,321 81.46 2 192 65.36 1200 2.89  235 66.43 

8 (4,7) 78,21 27,73 136,123 83.64 1-2 263 74.75 1200 3.56  190 72.85 

9 (5,8) 56,19 18,85 92,42 88.86 1-2 126 79.25 1200 2.19  139 80.15 

10 (6,9) 26,15 12,23 126,198 85.71 1-2 80 82.11 1200 3.48  114 83.71 

11 (7,10) 1,1 47,13 211,221 86.14 2 21 82.86 1200 2.13  117 83.24 

12 (7,11) 2,6 8,9 156,110 89.61 1-2 69 85.32 1200 3.5  98 86.00 

13 (8,12) 5,2 8,12 123,36 93.36 1-2 141 90.36 1200 1.16  86 87.71 

14 (9,13) 1,2 6,1 108,23 94.96 1-2 96 93.79 1200 1.65  63 91.00 

15 (10,14) 1,2 5,12 54,22 96.46 1 44 95.36 1200 1.23  55 92.14 

16 (11,14) 2,1 0,7 39,29 97.21 1 39 96.75 867 2.56  38 94.54 

17 (12,14) 1,1 2,3 21,4 98.86 1 37 98.07 495 2.08  21 97.00 

18 (13,14) 0,1 2,1 12,23 98.61 2 30 99.14 651 1.89  11 98.43 

19 (13,15) 0,0 2,1 7,3 99.64 1-2 14 99.64 563 0.59  4 99.43 

20 (14,16) 0,0 0,0 0,0 100.0   10 100.0 321    11 98.43 
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Table F.5 (continue) 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.)    

M O U AM 

Model 

MOU  HTA   M A 

F
o

ld
 5

 

1 (1,1) 800,0 0,0 0,0 71.43 2 512 18.29 12 16.74  500 28.57 

2 (1,2) 800,0 0,0 82,100 64.86 2 248 27.14 1200 10.61  540 22.86 

3 (1,3) 216,328 28,12 256,58 67.93 1-2 164 33.00 1200 7.75  528 24.57 

4 (2,4) 84,120 26,0 237,235 74.92 1 168 39.00 1200 3.43  474 32.29 

5 (3,4) 177,63 34,22 192,156 77.00 1-2 407 53.54 1200 1.86  292 58.29 

6 (4,5) 168,121 10,44 67,86 82.29 2 183 60.07 1200 2.36  232 66.86 

7 (4,6) 47,86 18,15 62,117 87.68 2 105 63.82 1200 8.78  175 75.00 

8 (4,7) 1,16 40,21 102,220 85.71 1-2 263 73.21 1200 3.55  116 83.50 

9 (5,8) 18,21 27,60 68,87 89.95 1-2 141 78.25 1200 2.16  78 88.86 

10 (6,9) 46,19 18,85 102,42 88.86 1-2 101 81.86 1200 2.35  102 85.43 

11 (7,10) 16,8 12,23 75,157 89.61 2 21 82.61 1200 2.26  72 89.71 

12 (7,11) 10,12 11,16 54,138 91.39 1-2 76 85.32 1200 1.96  72 89.71 

13 (8,12) 2,6 4,11 98,67 93.29 1-2 150 90.68 1200 1.26  73 89.61 

14 (9,13) 5,2 8,12 103,35 94.11 1-2 97 94.14 1200 1.70  63 91.00 

15 (10,14) 3,6 15,1 79,8 96.00 1-2 56 96.14 1200 1.26  47 93.29 

16 (11,15) 3,6 5,16 54,22 96.21 1 26 97.07 1200 2.05  30 95.71 

17 (12,15) 2,1 0,7 39,29 98.43 1-2 44 98.64 1200 2.03  17 97.57 

18 (13,16) 1,2 2,3 20,4 98.86 1 17 99.25 913 1.23  9 98.71 

19 (14,16) 2,1 2,6 12,7 98.92 2 5 99.43 768 1.08  9 98.71 

20 (14,17) 1,1 3,7 13,3 99.00 1 6 99.64 812 1.09  9 98.71 

21 (15,17) 1,1 1,2 5,12 99.21 1-2 7 99.89 562 2.06  9 98.71 

22 (16,18) 0,0 0,0 0,0 100.0   3 100.0 298   9 98.71 
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Table F.6. Iteration details of HCB – Skin subset 4 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results Class of 

trimmed 

box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.) 

 M A M O U AM 

Model 

MOU  HTA  

F
o

ld
 1

 

1 (1,1) 800,0 0,0 0,0 71.43 2 1620 57.86 1200.0 7.664  102 85.43 

2 (1,2) 1,2 1,30 9,15 98.04 1 - 2 1014 94.07 1200.0 0.586  26 96.29 

3 (2,3) 0,0 0,0 21,0 99.25 1 100 97.64 1200.0 1.143  1 99.86 

4 (3,3) 0,0 0,0 0,0 100.0  66 100.0 11.4   0 100.0 

F
o

ld
 2

 

1 (1,1) 800,0 0,0 0,0 71.43 2 1618 57.79 1200.0 
15.21

4 
 84 88.00 

2 (1,2) 2,2 6,28 4,2 98.57 2 337 69.82 248.4 1.062  31 95.57 

3 (1,3) 0,16 13,0 6,0 98.75 1 662 93.46 235.8 2.44  4 99.43 

4 (2,3) 0,0 0,0 0,0 100.0  183 100.0 21.5   1 99.86 

F
o

ld
 3

 

1 (1,1) 6,38 18,1 104,0 85.29 2 1616 57.71 1200.0 2.105  73 89.57 

2 (1,2) 2,29 7,5 0,0 98.46 1 - 2 795 86.11 1200.0 1.183  15 97.86 

3 (2,3) 0,5 3,4 6,0 99.36 1 - 1 365 99.14 863.2 1.953  0 
100.0

0 

4 (4,3) 0,0 0,0 0,0 100.0  24 100.0 13.9   0 100.0 

F
o

ld
 4

 

1 (1,1) 0,44 0,0 0,349 85.96 2 1607 57.39 1200.0 3.852  56 92.00 

2 (1,2) 6,30 0,0 0,0 98.36 1 349 69.86 1200.0 0.613  28 96.00 

3 (1,3) 0,18 0,13 0,5 95.82 1 - 2 729 95.89 163.1 1.957  12 98.29 

8 (2,3) 0,0, 0,0 0,0 100.0  115 100.0 14.8   0 100.0 

F
o

ld
 5

 

1 (1,1) 1,1 0,40 0,346 86.57 2 1615 57.68 1200.0 3.848  210 70.00 

2 (1,2) 5,30 1,0 0,0 98.71 2 346 70.04 1200.0 0.582  25 96.43 

3 (1,3) 13,0 10,0 6,0 98.96 1 - 2 702 95.11 1200.0 0.859  1 99.86 

4 (3,3) 0,0 0 0,0 100.0  137 100.0 15.7   0 100.0 
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Table F.7. Iteration details of HCB – Skin subset 5 

   Training Phase      Test Phase 

 It. 

Box 

alloc. 

Model-MOU Results 

Class of 

trimme

d box 

# of 

samples 

to be 

fixed ATB 

CPU times 

(sec.)  M A 

M O U AM    

Model 

MOU  HTA     

F
o

ld
 1

 

1 (1,1) 1600,0 0,0 0,0 71.43 2 3212 57.36 11.481 0.171  1484 73.50 

2 (1,2) 1,41 65,312 23,53 91.16 1 - 2 1727 88.20 6.747 0.047  156 97.21 

3 (2,3) 2,3 179,0 2,1 95.71 1 343 94.32 5.885 0.102  144 97.43 

4 (3,3) 0,0 20,1 0,41 98.89 2 176 97.46 6.043 0.149  76 98.64 

5 (3,4) 0,1 20,8 3,30 98.89 2 71 98.73 5.524 1.719  24 99.57 

6 (3,5) 0,2 5,10 3,2 99.43 1 41 99.61 5.12 1.813  156 97.21 

7 (3,6) 0,0 0,0 0,0 100.0  20 100.0 21.307    0 100.0 

F
o

ld
 2

 

1 (1,1) 800,0 0,200 0,0 82.14 2 3214 57.39 13.1 14.56  246 82.43 

2 (1,2) 2,38 162,298 75,45 88.93 1 1129 77.55 938.3 9.25  26 98.14 

3 (2,2) 160,760 25,15 235,205 75.00 1-2 786 91.59 826.3 7.46  19 98.64 

4 (3,3) 4,2 80,25 2,1 97.96 2 306 97.05 765.2 3.21  12 99.14 

5 (3,4) 0,1 12,6 20,12 99.09 1-2 77 98.43 265.2 1.02  14 99.00 

6 (4,5) 1,1 4,3 2,1 99.79 2 76 99.79 235.5 2.30  3 99.79 

7 (4,6) 0,0 0,0 0,0 100.0   12 100 23.3   3 99.79 

F
o

ld
 3

 

1 (1,1) 1600,0 0,0 0,0 71.43 2 3229 57.66 15.6 16.15  202 85.57 

2 (1,2) 2,38 57,315 36,34 91.39 1-2 1628 86.73 846.1 6.12  91 93.50 

3 (2,3) 2,3 168,25 15,2 96.16 1 480 95.3 658.2 2.35  28 98.00 

4 (3,3) 1,1 6,7 25,8 99.14 1-2 215 99.14 356.2 1.05  10 99.29 

5 (4,4) 0,0 1,0 0,0 99.98 2 47 99.98 265.5 1.56  1 99.93 

6 (4,5) 0,0 0,0 0,0 100.0   1 100 56.2   1 99.93 

F
o

ld
 4

 

1 (1,1) 1600,0 0,0 0,0 71.43 2 3213 57.38 26.6 26.10  423 69.79 

2 (1,2) 2,15 95,125 65,21 94.23 2 684 69.59 985.2 5.46  64 95.43 

3 (2,3) 2,3 156,65 17,41 94.93 1-2 1007 87.57 765.2 6.18  122 91.29 

4 (3,3) 2,1 23,15 22,35 98.25 1 550 97.39 468.5 2.66  18 98.71 

5 (4,3) 0,1 3,4 15,7 99.46 1-2 111 99.38 562.2 2.01  5 99.64 

6 (5,4) 0,0 0,0 0,0 100.0   35 100 120.1   3 99.79 

F
o

ld
 5

 

1 (1,1) 1600,0 0,0 0,0 71.43 2 3213 57.38 19.8 19.20  215 84.64 

2 (1,2) 35,68 226,103 26,85 90.30 1 981 74.89 879.5 4.68  50 96.43 

3 (2,2) 2,18 61,301 35,9 92.39 2 632 86.18 798.6 9.15  31 97.79 

4 (2,3) 4,2 55,26 23,25 97.59 1-2 628 97.39 816.0 1.05  3 99.79 

5 (3,4) 1,2 6,9 15,5 99.32 1-2 112 99.39 552.2 2.06  2 99.86 

6 (4,5) 0,0 0,0 0,0 100.0   34 100 68.5   1 99.93 
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G. Purity and Power scores of Hyperboxes generated by HCB 

Table G.1. Purity and power scores of hyperboxes generated by HCB – Simulated 4 dataset  

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 2

 

1 1  18 1 0.94 0.34 71.0  13 0.25 13.0  5 1 0.80 0.45 76.0 

2 2  46 15 0.67 0.98 76.0  10 0.21 23.0  5 1 0.80 0.36 72.0 

3 3  12 1 0.92 0.23 76.0  10 0.19 33.0  2 0 1.00 0.18 76.0 

4 4  37 15 0.59 0.79 81.0  9 0.19 42.0  3 0 1.00 0.21 72.0 

5 5  12 1 0.92 0.23 82.0  8 0.15 50.0  2 0 1.00 0.18 72.0 

6 8  19 4 0.79 0.4 84.0  8 0.17 58.0  3 1 0.67 0.27 80.0 

7 7  8 0 1.00 0.17 89.0  8 0.17 66.0      84.0 

8 6  5 0 1.00 0.09 89.0  5 0.09 71.0  3 0 1.00 0.07 84.0 

9 10  14 0 1.00 0.26 94.0  14 0.26 85.0      96.0 

10 11  2 0 1.00 0.04 98.0  2 0.04 87.0      88.0 

11 12  1 0 1.00 0.02   1 0.02        

11 9  12 0 1.00 0.26 100  12 0.26 100  1 0 1.00 0.07 96.0 

F
o

ld
 3

 

1 1  21 0 1.00 0.42 68.0  21 0.42 21.0  5 1 0.80 0.38 80.0 

2 2  45 17 0.62 0.90   22 0.44 43.0  4 0 1.00 0.33  

2 3  13 3 0.77 0.26 79.0  10 0.20 53.0  3 1 0.67 0.23 80.0 

3 4  15 5 0.67 0.30 82.0  9 0.18 62.0  2 0 1.00 0.17 72.0 

4 5  16 4 0.75 0.32   9 0.18 71.0  1 0 1.00 0.08  

4 6  10 1 0.90 0.20 88.0  9 0.18 80.0  1 0 1.00 0.08 76.0 

5 8  6 2 0.67 0.12 91.0  5 0.10 85.0  2 0 1.00 0.15 84.0 

6 9  5 0 1.00 0.10 95.0  5 0.10 90.0  1 0 1.00 0.08 88.0 

7 7  5 0 1.00 0.10 97.0  5 0.10 95.0      88.0 

8 10  2 0 1.00 0.04 99.0  2 0.04 97.0      88.0 

9 11  2 0 1.00 0.04   2 0.04        

9 12  1 0 1.00 0.02 100  1 0.02 100          88.0 

F
o

ld
 4

 

1 1  23 0 1 0.46 73.0  23 0.46 23.0  3 0 1.00 0.25 64.0 

2 2  47 14 0.70 0.94   12 0.24   2 0 1.00 0.15  

2 3  11 3 0.73 0.22 81.0  9 0.18 44.0  2 0 1.00 0.17 76.0 

3 4  5 1 0.80 0.1   4 0.08   2 4 N/A 0.17  

3 5  35 14 0.60 0.7 82.0  11 0.22 59.0  2 0 1.00 0.23 64.0 

4 7  11 0 1.00 0.22 79.0  11 0.22 70.0  3 0 1.00 0.25 72.0 

5 6  12 9 0.25 0.24   8 0.16   1 0 1.00 0.23  

5 8  10 1 0.90 0.2 87.0  9 0.18 87.0  2 1 0.50 0.15 68.0 

6 9  4 0 1.00 0.08 94.0  4 0.08 91.0  1 0 1.00 0.08 72.0 

7 10  3 0 1.00 0.06 96.0  3 0.06 94.0      80.0 

8 11  2 0 1.00 0.04 98.0  2 0.04 96.0      80.0 

9 12  1 0 1.00 0.02 99.0  1 0.02 97.0      80.0 

10 13  1 0 1.00 0.02   1 0.02        

10 14  2 0 1.00 0.04 100  2 0.04 100          80.0 
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Table G.1 (continue) 

      Training Phase Test Phase 

   Model MOU  After HTA  After HTA 

Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 5

 

1 1  18 1 0.94 0.34 71.0  13 0.25 13.0  5 1 0.80 0.45 76.0 

2 2  46 15 0.67 0.98 76.0  10 0.21 23.0  5 1 0.80 0.36 72.0 

3 3  12 1 0.92 0.23 76.0  10 0.19 33.0  2 0 1.00 0.18 76.0 

4 4  37 15 0.59 0.79 81.0  9 0.19 42.0  3 0 1.00 0.21 72.0 

5 5  12 1 0.92 0.23 82.0  8 0.15 50.0  2 0 1.00 0.18 72.0 

6 8  19 4 0.79 0.4 84.0  8 0.17 58.0  3 1 0.67 0.27 80.0 

7 7  8 0 1.00 0.17 89.0  8 0.17 66.0      84.0 

8 6  5 0 1.00 0.09 89.0  5 0.09 71.0  3 0 1.00 0.07 84.0 

9 10  14 0 1.00 0.26 94.0  14 0.26 85.0      96.0 

10 11  2 0 1.00 0.04 98.0  2 0.04 87.0      88.0 

11 12  1 0 1.00 0.02   1 0.02        

11 9  12 0 1.00 0.26 100  12 0.26 100  1 0 1.00 0.07 96.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

168 

 

Table G.2. Purity and power scores of hyperboxes generated by HCB – Breast Cancer dataset 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 1  340 4 0.988 0.960 92.5  224 0.633 61.0  55 0 1.000 0.640 93.4 

2 2  116 2 0.983 0.604   109 0.568   34 1 0.971 0.667 94.9 

2 3  159 14 0.912 0.449 89.9  105 0.297 84.1  23 0 1.000 0.267 94.9 

3 5  21 0 1.000 0.109 85.9  21 0.109 86.3  5 1 0.800 0.098 93.4 

4 4  12 0 1.000 0.034   12 0.034   2 0 1.000 0.023 95.6 

4 6  21 4 0.810 0.109 89.4  15 0.078 89.9  3 1 0.667 0.059 95.6 

5 7  6 1 0.833 0.017   5 0.014   1 0 1.000 0.012 95.6 

5 8  12 5 0.583 0.063 91.4  8 0.042 92.1  2 1 0.500 0.039 95.6 

6 9  4 0 1.000 0.011   4 0.011        

6 10  12 1 0.917 0.063 93.6  11 0.057 95.8  2 0 1.000 0.039 95.6 

7 12  9 0 1.000 0.047 95.8  9 0.047 96.2  1 2 -1.000 0.020 95.6 

8 11  2 0 1.000 0.006   2 0.006        

8 13  4 0 1.000 0.021 96.9  4 0.021 97.6  1 0 1.000 0.020 96.4 

9 15  5 1 0.800 0.026 98.0  4 0.021 98.2  1 0 1.000 0.020 95.6 

10 16  3 0 1.000 0.016 98.5  3 0.016 0.0       

11 17  3 0 1.000 0.016 99.1  3 0.016 99.1  1 0 1.000 0.020 95.6 

12 14  2 0 1.000 0.006   2 0.006        

12 18  2 0 1.000 0.010 99.5  2 0.010 99.6      95.6 

13 19  1 0 1.000 0.003   1 0.003        

13 20  2 0 1.000 0.010 100  2 0.010 100      95.6 

F
o

ld
 2

 

1 1  340 4 0.988 0.960 94.9  326 0.921 59.7  78 0 1.000 9.750 93.3 

2 3  10 0 1.000 0.028   10 0.028   3 0 1.000 0.429  

2 2  177 15 0.915 0.922 94.0  86 0.448 77.3  21 1 0.952 2.625 92.6 

3 5  35 3 0.914 0.182 84.8  30 0.156 82.8  3 0 1.000 0.375 94.8 

4 6  21 4 0.810 0.109 87.7  16 0.083 85.7  1 0 1.000 0.125 94.8 

5 7  13 1 0.923 0.068 89.6  11 0.057 87.7  0 1 N/A 0.000 95.6 

6 8  16 1 0.938 0.083 91.4  13 0.068 90.1      95.6 

7 9  7 2 0.714 0.036 92.3  5 0.026 91.0      94.8 

8 10  6 0 1.000 0.031 93.2  6 0.031 92.1  1 1 0.000 0.125 94.8 

9 11  10 1 0.900 0.052 95.1  10 0.052 94.0      94.8 

10 4  10 2 0.800 0.028   6 0.017 95.1      94.8 

10 12  4 0 1.000 0.021 95.1  4 0.021 95.8      94.8 

11 14  3 0 1.000 0.016   3 0.016 96.3  5 0 1.000 0.625 94.8 

12 15  3 0 1.000 0.016 97.4  3 0.016 96.9      94.8 

13 16  4 0 1.000 0.021 97.4  4 0.021 97.6      94.8 

14 13  3 0 1.000 0.008 98.0  3 0.008 98.2  1 0 1.000 0.125 94.8 

15 18  4 0 1.000 0.011 99.1  4 0.011 98.9      94.8 

16 17  2 0 1.000 0.010 99.6  2 0.010       94.8 

16 19  4 0 1.000 0.011 100  4 0.011 100      94.8 
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Table G.2 (continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 3

 

1 1  332 12 0.964 0.949   331 0.946   64 1 0.984 8.000  

1 2  178 18 0.899 0.908 93.4  145 0.740 87.2  34 0 1.000 4.857 92.8 

2 4  17 0 1.000 0.087 90.5  17 0.087 90.3  6 0 1.000 0.750 94.2 

3 5  21 0 1.000 0.107 94.9  21 0.107 94.1  11 0 1.000 1.375 92.8 

4 3  11 1 0.909 0.031 96.5  9 0.026 95.8  3 0 1.000 0.375 92.4 

5 6  10 1 0.900 0.051 97.1  8 0.041 97.3       

6 7  5 1 0.800 0.014   4 0.011       93.5 

6 8  6 3 0.500 0.031 97.8  2 0.010 98.4  1 1 0.000 0.125 93.5 

7 9  1 0 1.000 0.003   1 0.003        

7 10  3 0 1.000 0.015 98.5  3 0.015 99.1      93.5 

8 11  2 0 1.000 0.006   2 0.006 99.5       

8 12  2 0 1.000 0.006 99.6  2 0.006 99.8      93.5 

9 13  2 0 1.000 0.006 100  2 0.006 100          93.5 

F
o

ld
 4

 

1 1  342 9 0.974 0.961 94  338 0.949 61.9  59 1 0.983 7.375 93.5 

2 2  174 18 0.897 0.916   80 0.421   15 0 1.000 2.143  

2 3  5 0 1.000 0.014 94.3  5 0.014 77.5      93.5 

3 4  7 0 1.000 0.020   7 0.020   1 0 1.000 0.125  

3 5  94 18 0.809 0.495 94.7  28 0.147 83.9  12 1 0.917 1.500 94.2 

4 7  65 18 0.723 0.342 94.9  21 0.111 87.7  14 0 1.000 1.750 95.7 

5 6  3 0 1.000 0.008   3 0.008        

5 8  43 17 0.605 0.226 94.9  10 0.053 90.1  5 1 0.800 0.625 94.2 

6 10  30 10 0.667 0.158 94.9  12 0.063 92.3  3 0 1.000 0.375 94.9 

7 11  20 8 0.600 0.105 95.2  12 0.063 94.5  2 0 1.000 0.250 95.7 

8 12  21 1 0.952 0.111 96.5  11 0.058 96.5  1 0 1.000 0.125 95.7 

9 13  10 3 0.700 0.053 98.2  6 0.032 97.6  1 1 0.000 0.125 95.7 

10 14  7 2 0.714 0.037 99.1  5 0.026 98.5      95.7 

11 9  3 0 1.000 0.008   3 0.008        

11 15  5 0 1.000 0.026 100  5 0.026 100          95.7 

F
o

ld
 5

 

1 1  321 7 0.978 0.902 93.8  296 0.831 54.2  49 0 1.000 6.125 95.6 

2 3  64 5 0.922 0.180   28 0.079   6 0 1.000 0.857  

2 2  83 9 0.892 0.437 93.4  74 0.389 72.9  23 1 0.957 2.875 95.6 

3 4  28 6 0.786 0.079 95.4  18 0.051 76.2  3 0 1.000 0.375 94.9 

4 5  54 3 0.944 0.284 95.6  46 0.242 84.6  14 1 0.929 1.750 95.6 

5 6  10 1 0.900 0.028   8 0.022        

5 7  35 2 0.943 0.184 97.1  31 0.163 91.8  7 0 0.000 0.875 94.9 

6 9  18 2 0.889 0.095 96.3  14 0.074 94.3  1 1 0.000 0.125 94.2 

7 10  8 2 0.750 0.042 97.3  6 0.032 95.4      94.9 

8 11  3 1 0.667 0.016 97.8  3 0.016 96.0      94.9 

9 8  4 0 1.000 0.011   4 0.011 96.7       

9 12  5 1 0.800 0.026 98.2  4 0.021 97.4      94.9 

10 14  6 1 0.833 0.032 99.1  5 0.026 98.4  1 1 0.000 0.125 94.9 

11 15  3 0 1.000 0.016 99.5  3 0.016 98.9      94.9 

12 16  4 0 1.000 0.021 99.8  4 0.021 99.6      94.9 

13 17  2 0 1.000 0.006 100  2 0.006 100          94.9 
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Table G.3. Purity and power scores of hyperboxes generated by HCB – Skin subset 1 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 2  1000 400 0.600 1.000 71.4  547 0.547 39.1  143 1 0.9930 0.572 65.4 

2 3  236 10 0.958 0.236 83.5  214 0.214 54.4  46 0 1.0000 0.184 88.9 

3 1  392 25 0.936 0.980   183 0.458   39 2 0.9487 0.390  

3 4  138 0 1.000 0.138 92.2  138 0.138 77.3  38 0 1.0000 0.152 92.3 

4 5  160 6 0.963 0.400   118 0.295   32 0 1.0000 0.320  

4 6  75 0 1.000 0.188 94.0  75 0.188 91.1  13 0 1.0000 0.130 96.6 

5 7  39 19 0.513 0.039 94.6  21 0.021 92.6  2 0 1.0000 0.008 96.9 

6 9  26 1 0.962 0.065 95.1  21 0.053 94.1  3 0 1.0000 0.030 96.6 

7 10  23 2 0.913 0.058 96.4  13 0.033 95.0  4 0 1.0000 0.040 98.0 

8 11  19 0 1.000 0.048 97.0  19 0.048 96.4  55 0 1.0000 0.550 98.6 

9 8  10 0 1.000 0.010   10 0.010        

9 12  10 1 0.900 0.025 97.7  10 0.025 97.8  4 0 1.0000 0.040 98.9 

10 13  8 0 1.000 0.020   8 0.020   2 0 1.0000 0.020  

10 14  8 1 0.875 0.008 98.5  8 0.008 98.9  1 0 1.0000 0.004 98.6 

11 15  8 0 1.000 0.020   8 0.020   2 0 1.0000 0.020  

11 16  3 0 1.000 0.003 99.7  3 0.003 99.7      98.9 

12 17  2 0 1.000 0.002   2 0.002        

12 18  2 0 1.000 0.002 100  2 0.002 100          98.9 

F
o

ld
 2

 

1 2  1000 400 0.600 1.000 71.4  535 0.535 38.2  137 0 1.0000 0.548 76.3 

2 1  354 8 0.977 0.885 82.4  172 0.430 50.5  19 0 1.0000 0.190 80.9 

3 3  321 211 0.343 0.321 83.5  212 0.212 65.6  35 0 1.0000 0.140 86.6 

4 4  142 0 1.000 0.355 87.6  142 0.355 75.8  34 0 1.0000 0.340 94.9 

5 5  150 0 1.000 0.150 92.6  150 0.150 86.5       

6 7  74 0 1.000 0.074 97.9  74 0.074 91.8  19 0 1.0000 0.076 93.4 

7 6  87 2 0.977 0.218 98.4  67 0.168 96.6  12 0 1.0000 0.120 97.4 

8 8  10 0 1.000 0.010   10 0.010   3 0 1.0000 0.012  

8 9  20 2 0.900 0.050 98.6  19 0.048 98.6  15 0 1.0000 0.150 98.6 

9 10  3 0 1.000 0.008   3 0.008   1 0 1.0000 0.010  

9 11  7 0 1.000 0.007 99.1  7 0.007 99.4  2 0 1.0000 0.008 100 

10 12  7 0 1.000 0.007   7 0.007   1 0 1.0000 0.004  

10 13  2 0 1.000 0.002 100  2 0.002 100  0 1 N/A 0.000 99.7 

F
o

ld
 3

 

1 2  1000 400 0.600 1.000 71.4  541 0.541 38.6  46 2 0.9565 0.184 82.6 

2 1  333 17 0.949 0.833   239 0.598   140 0 1.0000 1.400  

2 3  491 215 0.562 0.491 82.1  214 0.214 71  38 1 0.9737 0.152 93.1 

3 5  201 52 0.741 0.201 94.0  131 0.131 80.4  16 1 0.9375 0.064 90.3 

4 4  86 0 1.000 0.215 97.4  86 0.215 86.5  33 0 1.0000 0.330 95.1 

5 6  77 0 1.000 0.077 82.1  77 0.077 92.0  18 0 1.0000 0.072 98.0 

6 7  85 10 0.882 0.213   75 0.188   32 0 1.0000 0.320  

6 8  15 0 1.000 0.015 99.1  15 0.015 98.4  4 0 1.0000 0.016 97.7 

7 9  7 0 1.000 0.018   7 0.018        

7 10  5 0 1.000 0.005 99.3  5 0.005 99.3  2 0 1.0000 0.008 98.9 

8 11  5 0 1.000 0.013   5 0.013        

8 12  5 0 1.000 0.005 100  5 0.005 100  8 0 1.0000 0.008 98.9 
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Table G.3 (Continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 4

 

1 2  1000 400 0.600 1.000 71.4  542 0.542 39.8  35 0 1.0000 0.140 71.4 

2 1  347 22 0.937 0.868 82.3  104 0.260 60.4  138 0 1.0000 1.380 85.4 

3 3  342 210 0.386 0.342   209 0.209 74.3  43 0 1.0000 0.172  

3 4  91 3 0.967 0.228 83.2  140 0.350 80.6  13 0 1.0000 0.130 91.1 

4 6  140 0 1.000 0.140 92.9  78 0.078 91.2  15 0 1.0000 0.060 93.1 

5 7  70 0 1.000 0.070 97.9  132 0.132 96.2  47 0 1.0000 0.188 98.6 

6 5  24 0 1.000 0.060   80 0.200 97.9  7 0 1.0000 0.070  

6 8  13 0 1.000 0.013 98.9  25 0.025 98.9      99.4 

7 9  10 1 0.900 0.010   14 0.035 99.5  8 0 1.0000 0.080  

7 10  5 0 1.000 0.005 99.6  14 0.014 99.9  1 0 1.0000 0.004 99.4 

8 11  2 0 1.000 0.002 100  28 0.070 100  17 0 1.0000 0.170 99.4 

F
o

ld
 5

 

1 2  1000 400 0.600 1.000 28.6  18 0.045 38.7  17 0 1.0000 0.170 68.4 

2 1  389 26 0.933 0.973   16 0.040 46.1  23 0 1.0000 0.230  

2 3  332 201 0.395 0.332 82.3  542 0.542 61.1  35 0 1.0000 0.140 86.6 

3 4  299 31 0.896 0.748   104 0.260 71.1  138 0 1.0000 1.380  

3 5  83 17 0.795 0.083 86.4  209 0.209 76.6  43 0 1.0000 0.172 82.9 

4 7  134 1 0.993 0.134 96.9  140 0.350 86.1  13 0 1.0000 0.130 84.9 

5 6  182 28 0.846 0.455   78 0.078 91.8  15 0 1.0000 0.060  

5 8  25 0 1.000 0.025 97.7  132 0.132 93.6  47 0 1.0000 0.188 98.3 

6 9  90 26 0.711 0.225   80 0.200 94.6  7 0 1.0000 0.070  

6 10  14 0 1.000 0.014 97.9  25 0.025 95.6      99.7 

7 11  29 0 1.000 0.073 98.9  14 0.035 97.6  8 0 1.0000 0.080 99.7 

8 12  18 0 1.000 0.045   14 0.014 98.9  1 0 1.0000 0.004  

8 13  16 0 1.000 0.040 100  28 0.070 100  17 0 1.0000 0.170 99.7 
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Table G.4. Purity and power scores of hyperboxes generated by HCB – Skin subset 2 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 1  249 8 0.968 0.623   245 0.613   68 1 0.985 0.680  

1 2  944 179 0.810 0.944 85.2  775 0.775 72.9  193 0 1.000 0.769 90.3 

2 4  190 2 0.989 0.190 97.4  188 0.188 86.3  30 0 1.000 0.120 98.3 

3 3  155 0 1.000 0.388   155 0.388   49 0 1.000 0.490  

3 5  17 0 1.000 0.017 98.4  17 0.017 98.6  1 0 1.000 0.004 98.9 

4 6  13 0 1.000 0.013   13 0.013   1 0 1.000 0.004  

4 7  4 0 1.000 0.004 99.6  4 0.004 99.8      99.7 

5 8  1 0 1.000 0.001   1 0.001 99.9       

5 9  2 0 1.000 0.002 100  2 0.002 100  1 0 1.000 0.004 99.7 

F
o

ld
 2

 

1 1  282 7 0.975 0.705   246 0.615   52 0 1.000 0.520  

1 2  935 166 0.822 0.935 86.4  779 0.779 73.2  167 1 0.994 0.665 83.8 

2 4  200 0 1.000 0.200 97.7  200 0.200 87.5  72 0 1.000 0.287 96.9 

3 5  19 4 0.789 0.019   15 0.015 88.6  10 0 1.000 0.040  

3 6  151 3 0.980 0.378 98.8  143 0.358 98.8  44 1 0.977 0.440 96.9 

4 3  11 0 1.000 0.028   11 0.028 99.6  3 0 1.000 0.030  

4 7  1 0 1.000 0.001 99.6  1 0.001 99.6      97.7 

5 8  5 0 1.000 0.005 100  5 0.005 100          99.4 

F
o

ld
 3

 

1 1  241 1 0.996 0.603   240 0.600   63 0 1.000 0.630  

1 2  959 176 0.816 0.959 85.6  773 0.773 72.4  165 0 1.000 0.657 90.9 

2 3  160 0 1.000 0.400   160 0.400 83.8  35 0 1.000 0.350  

2 4  205 1 0.995 0.205 97.7  205 0.205 98.4  70 0 1.000 0.279 99.4 

3 5  9 0 1.000 0.009   9 0.009 99.1  10 0 1.000 0.040  

3 6  13 0 1.000 0.013 100  13 0.013 100  2 0 1.000 0.008 100 

F
o

ld
 4

 

1 1  254 7 0.972 0.635   250 0.625   51 0 1.000 0.510  

1 2  767 0 1.000 0.767 86.4  767 0.767 72.6  150 0 1.000 0.598 87.1 

2 4  81 10 0.877 0.081 97.9  65 0.065 77.3  10 0 1.000 0.040 97.4 

3 3  53 1 0.981 0.133 98.5  49 0.123 80.8      98.6 

4 6  86 4 0.953 0.215   74 0.185 86.1       

4 5  111 0 1.000 0.111 99.0  111 0.111 94.0  85 0 1.000 0.339 98.9 

5 7  30 2 0.933 0.075   27 0.068 95.9  45 0 1.000 0.450  

5 8  16 1 0.938 0.016 99.6  15 0.015 97.0  2 0 1.000 0.008 98.9 

6 9  14 0 1.000 0.014   14 0.014 98.0  5 0 1.000 0.020  

6 10  30 0 1.000 0.030   28 0.028 100  2 0 1.000 0.008 100 

F
o

ld
 5

 

1 1  253 3 0.988 0.633   238 0.595 17.0  8 0 1.000 0.080  

1 2  950 177 0.814 0.950 85.9  782 0.782 72.9  155 0 1.000 0.618 90.3 

2 3  154 0 1.000 0.385   154 0.385 83.9  93 0 1.000 0.930  

2 4  200 0 1.000 0.200 98.4  200 0.200 98.1  75 0 1.000 0.299 97.4 

3 5  4 1 0.750 0.010   3 0.008 98.4  55 0 1.000 0.550  

3 6  12 0 1.000 0.012 99.6  12 0.012 99.2  3 0 1.000 0.012 100 

4 7  5 0 1.000 0.013   5 0.013 99.6  2 0 1.000 0.020  

4 8  6 0 1.000 0.006 100  6 0.006 100  12 0 1.000 0.048 100 
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Table G.5. Purity and power scores of hyperboxes generated by HCB – Skin subset 3 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 2  2000 800 0.600 1.000 71.4  424 0.212 15.1  72 0 1.000 0.144 19.6 

2 3  1577 800 0.493 0.789 70.7  253 0.127 24.2  60 1 0.983 0.120 24.7 

3 1  11 0 1.000 0.014   11 0.014        

3 4  1030 595 0.422 0.515 60.6  124 0.062 29  22 0 1.000 0.044 30.4 

4 5  743 117 0.843 0.929 54.6  182 0.228 35.5  17 0 1.000 0.085 35.4 

5 6  720 436 0.394 0.360   430 0.215   75 0 1.000 0.150  

5 7  200 37 0.815 0.250 65  87 0.109 54      69.3 

6 9  195 46 0.764 0.098 74.8  183 0.092 60.5  2 0 1.000 0.004 73.0 

7 10  190 6 0.968 0.095 78.9  184 0.092 67.1  43 0 1.000 0.086 85.4 

8 8  357 29 0.919 0.446   155 0.194        

8 11  134 45 0.664 0.067 80.3  114 0.057 76.7  6 0 1.000 0.012 89.7 

9 12  220 32 0.855 0.275   119 0.149   19 0 1.000 0.095  

9 13  40 18 0.550 0.020 83.5  19 0.010 81.6      89.7 

10 14  37 7 0.811 0.046   33 0.041   5 0 1.000 0.025  

10 15  29 0 1.000 0.015 81.4  29 0.015 83.8      89.7 

11 17  22 2 0.909 0.011 82.5  21 0.011 84.6      92.0 

12 16  30 1 0.967 0.038   30 0.038   6 0 1.000 0.030  

12 18  35 0 1.000 0.018 83.6  35 0.018 86.9  58 0 1.000 0.116 95.7 

13 20  142 1 0.993 0.071 93  141 0.071 91.9  129 0 1.000 0.258 97.6 

14 19  123 28 0.772 0.154 94.3  64 0.080 94.2  16 0 1.000 0.080 97.6 

15 22  56 1 0.982 0.070 94.1  44 0.055 95.8  18 0 1.000 0.090 98 

16 23  45 18 0.600 0.056 96.4  39 0.049 97.2  55 0 1.000 0.275 97.6 

17 21  25 0 1.000 0.013 97.9  25 0.013 98.1  7 0 1.000 0.014 97.6 

18 24  28 3 0.893 0.035   20 0.025   37 0 1.000 0.185  

18 25  10 0 1.000 0.005 98.7  10 0.005 99.1  3 0 1.000 0.006 97.6 

19 26  12 2 0.833 0.015   10 0.013   14 0 1.000 0.070  

19 27  4 0 1.000 0.002 99  4 0.002 99.6  2 0 1.000 0.004 98.1 

20 28  8 1 0.875 0.010   6 0.008 99.9  5 0 1.000 0.025  

20 29  4 0 1.000 0.002 99.4  4 0.002 100  19 0 1.000 0.038 99.1 
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Table G.5 (continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 2

 

1 2  2000 800 0.600 1.000 71.4  410 0.205 14.6  1 0 1.000 0.002 27.6 

2 3  1238 800 0.354 0.619 55.8  637 0.319 37.4  153 0 1.000 0.306 26.0 

3 1  473 214 0.548 0.591   191 0.239 44.2  17 0 1.000 0.085  

3 4  491 427 0.130 0.246 62.7  149 0.075 49.5  31 0 1.000 0.062 27.0 

4 5  420 136 0.676 0.525   276 0.345 59.4  14 0 1.000 0.070  

4 6  768 454 0.409 0.384 74.5  203 0.102 66.6      55.6 

5 8  207 7 0.966 0.104 81.5  203 0.102 73.9  98 0 1.000 0.196 75.0 

6 7  215 15 0.930 0.269 85.4  173 0.216 80.1  23 0 1.000 0.115 76.9 

7 10  179 0 1.000 0.224 88.2  179 0.224 86.5  37 1 0.973 0.185 84.9 

8 9  77 10 0.870 0.039 88.9  57 0.029 88.5  105 0 1.000 0.210 84.9 

9 11  106 0 1.000 0.053   106 0.053 92.3  27 4 0.852 0.054  

9 12  87 19 0.782 0.044 97.3  36 0.018 93.6  69 1 0.986 0.138 91.0 

10 13  48 3 0.938 0.060 94.7  44 0.055 95.1  30 0 1.000 0.150 93.3 

11 14  56 15 0.732 0.028   32 0.016 96.3  24 0 1.000 0.048  

11 15  23 1 0.957 0.012 97.0  21 0.011 97.0  8 0 1.000 0.016 97.3 

12 17  23 1 0.957 0.012 98.9  20 0.010 97.8  2 0 1.000 0.004 97.3 

13 16  34 4 0.882 0.043 99.0  12 0.015 98.2  4 1 0.750 0.020 97.6 

14 18  12 0 1.000 0.015 99.0  12 0.015 98.6  22 0 1.000 0.110 97.9 

15 19  5 0 1.000 0.006 99.4  5 0.006 98.8  1 0 1.000 0.005 97.9 

16 20  6 0 1.000 0.003   6 0.003 99.0  6 0 1.000 0.012  

16 21  4 0 1.000 0.002 99.5  4 0.002 99.1  10 0 1.000 0.020 98.6 

17 22  14 1 0.929 0.018   13 0.016 99.6  5 1 0.800 0.025  

17 23  2 0 1.000 0.001 99.7  2 0.001 99.7  1 0 1.000 0.002 98.4 

18 24  7 0 1.000 0.009   7 0.009 99.9  4 0 1.000 0.020  

18 25  2 0 1.000 0.001 100  2 0.001 100          98.4 
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Table G.5 (continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 3

 

1 2  2000 800 0.6000 1.0000 71.43  506 0.2530 18.07  44 0 1.000 0.088 24.28 

2 3  1194 800 0.3300 0.5970 60.57  609 0.3045 39.82  142 3 0.979 0.284 20.00 

3 1  486 118 0.7572 0.6075   161 0.2013   21 0 1.000 0.105  

3 4  482 365 0.2427 0.2410 64.96  140 0.0700 50.57  28 0 1.000 0.056 21.43 

4 5  420 136 0.6762 0.5250   229 0.2863   35 0 1.000 0.175  

4 6  768 454 0.4089 0.3840 74.79  228 0.1140 66.89  15 0 1.000 0.030 69.29 

5 8  207 7 0.9662 0.1035 80.25  198 0.0990 73.96  75 2 0.973 0.150 85.43 

6 7  215 15 0.9302 0.2688 81.46  138 0.1725 78.89  42 0 1.000 0.210 84.86 

7 9  179 0 1.0000 0.2238 83.50  96 0.1200 82.32  37 1 0.973 0.185 89.71 

8 10  77 10 0.8701 0.0385 82.50  157 0.0785 87.93  81 0 1.000 0.162 91.00 

9 11  106 0 1.0000 0.1325   82 0.1025   27 2 0.926 0.135  

9 12  87 19 0.7816 0.0435 89.71  45 0.0225 92.46  69 1 0.986 0.138 93.00 

10 13  55 9 0.8364 0.0688 93.00  39 0.0488 93.86  30 0 1.000 0.150 95.71 

11 14  56 5 0.9107 0.0700   37 0.0463   10 0 1.000 0.050  

11 15  23 17 0.2609 0.0115 94.14  10 0.0050 95.54  8 0 1.000 0.016 97.57 

12 17  26 8 0.6923 0.0130   20 0.0100   2 0 1.000 0.004  

12 16  34 12 0.6471 0.0425 95.71  12 0.0150 96.68  4 1 0.750 0.020 97.57 

13 18  42 15 0.6429 0.0525 96.36  28 0.0350 97.68  11 0 1.000 0.055 97.57 

14 19  9 2 0.7778 0.0113 98.96  5 0.0063 97.86  1 0 1.000 0.005 97.86 

15 20  16 1 0.9375 0.0200 97.89  14 0.0175 98.36  6 0 1.000 0.030 95.29 

16 21  16 2 0.8750 0.0080   11 0.0055 0.00  2 0 1.000 0.004  

16 22  19 5 0.7368 0.0238 99.50  13 0.0163 99.21  5 1 0.800 0.025 98.86 

17 23  9 0 1.0000 0.0045   9 0.0045   1 0 1.000 0.002  

17 24  9 0 1.0000 0.0113 99.68  9 0.0113 99.86  4 0 1.000 0.020 95.29 

18 25  1 0 1.0000 0.0013   1 0.0013        

18 26  3 0 1.0000 0.0015 100.00  3 0.0015 100.0          95.29 
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Table G.5 (continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 4

 

1 2  2000 800 0.6000 1.0000 71.43  462 0.2310 16.50  68 2 0.9706 0.1360 22.86 

2 3  1432 800 0.4413 0.7160 70.86  248 0.1240 25.36  60 1 0.9833 0.1200 20.29 

3 1  24 0 1.0000 0.0300   24 0.0300        

3 4  1030 544 0.4718 0.5150 62.71  132 0.0660 30.93  22 0 1.0000 0.0440 28.57 

4 5  594 82 0.8620 0.7425 64.96  182 0.2275 37.43  17 0 1.0000 0.0850 35.43 

5 6  816 221 0.7292 0.4080   320 0.1600   75 2 0.9733 0.1500  

5 7  681 368 0.4596 0.8513 74.46  87 0.1088 51.96      52.14 

6 9  215 47 0.7814 0.1075 80.25  183 0.0915 58.50  2 0 1.0000 0.0040 51.43 

7 10  198 1 0.9949 0.0990 81.46  192 0.0960 65.36  43 0 1.0000 0.0860 66.43 

8 8  357 21 0.9412 0.4463   155 0.1938   12 0 1.0000 0.0600  

8 11  336 78 0.7679 0.1680 83.64  108 0.0540 74.75  36 1 0.9722 0.0720 72.85 

9 12  205 19 0.9073 0.2563   102 0.1275   34 2 0.9412 0.1700  

9 13  129 56 0.5659 0.0645 88.86  24 0.0120 79.25      80.15 

10 14  201 15 0.9254 0.2513   51 0.0638   5 0 1.0000 0.0250  

10 15  82 26 0.6829 0.0410 85.71  29 0.0145 82.11      83.71 

11 17  68 11 0.8382 0.0340 86.14  21 0.0105 82.86      83.24 

12 16  45 6 0.8667 0.0563   34 0.0425   6 0 1.0000 0.0300  

12 18  37 1 0.9730 0.0185 89.61  35 0.0175 85.32  58 0 1.0000 0.1160 86.00 

13 20  142 2 0.9859 0.0710 93.36  141 0.0705 90.36  78 1 0.9872 0.1560 87.71 

14 19  72 2 0.9722 0.0900   64 0.0800   16 0 1.0000 0.0800 91.00 

14 21  35 1 0.9714 0.0175 94.96  32 0.0160 93.79       

15 22  49 2 0.9592 0.0613 96.46  44 0.0550 95.36  18 0 1.0000 0.0900 92.14 

16 23  45 2 0.9556 0.0563 97.21  39 0.0488 96.75  26 1 0.9615 0.1300 94.54 

17 24  38 1 0.9737 0.0475 98.86  37 0.0463 98.07  7 0 1.0000 0.0350 97.00 

18 25  20 0 1.0000 0.0250   20 0.0250   17 1 0.9412 0.0850  

18 26  11 1 0.9091 0.0055 98.61  10 0.0050 99.14      98.43 

19 27  10 0 1.0000 0.0125   10 0.0125   14 0 1.0000 0.0700  

19 28  4 0 1.0000 0.0020 99.64  4 0.0020 99.64  2 0 1.0000 0.0040 99.43 

20 29  6 0 1.0000 0.0075   6 0.0075 99.86  2 0 1.0000 0.0100  

20 30  4 0 1.0000 0.0050 100.00  4 0.0050 100.0  1 0 1.0000 0.0050 98.43 
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Table G.5 (continue) 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 5

 

1 2  2000 800 0.6000 1.0000 71.43  512 0.0000 18.29  72 2 0.9722 0.1440 28.57 

2 3  1512 800 0.4709 0.7560 64.86  248 0.1240 27.14  56 1 0.9821 0.1120 22.86 

3 1  715 328 0.5413 0.8938   32 0.0400        

3 4  918 216 0.7647 0.4590 67.93  132 0.0660 33.00  35 0 1.0000 0.0700 24.57 

4 5  612 120 0.8039 0.7650 74.92  168 0.2100 39.00  17 0 1.0000 0.0850 32.29 

5 6  816 177 0.7831 0.4080   320 0.1600   75 1 0.9867 0.1500  

5 7  266 63 0.7632 0.3325 77.00  87 0.1088 53.54      58.29 

6 9  215 121 0.4372 0.1075 82.29  183 0.0915 60.07  19 0 1.0000 0.0380 66.86 

7 10  352 168 0.5227 0.1760 87.68  105 0.0525 63.82  39 0 1.0000 0.0780 75.00 

8 8  345 16 0.9536 0.4313   155 0.1938   23 0 1.0000 0.1150  

8 11  113 1 0.9912 0.0565 85.71  108 0.0540 73.21  36 1 0.9722 0.0720 83.50 

9 12  205 21 0.8976 0.2563   102 0.1275   34 2 0.9412 0.1700  

9 13  79 18 0.7722 0.0395 89.95  39 0.0195 78.25      88.86 

10 14  169 19 0.8876 0.2113   72 0.0900   25 0 1.0000 0.1250  

10 15  86 46 0.4651 0.0430 88.86  29 0.0145 81.86      85.43 

11 17  64 16 0.7500 0.0320 89.61  21 0.0105 82.61      89.71 

12 16  68 12 0.8235 0.0850   35 0.0438   6 0 1.0000 0.0300  

12 18  76 10 0.8684 0.0380 91.39  41 0.0205 85.32  32 1 0.9688 0.0640 89.71 

13 20  136 6 0.9559 0.1700   124 0.1550   78 1 0.9872 0.3900  

13 19  80 2 0.9750 0.0400 93.29  26 0.0130 90.68      89.61 

14 21  66 2 0.9697 0.0825   64 0.0800   16 0 1.0000 0.0800  

14 22  42 5 0.8810 0.0210 94.11  33 0.0165 94.14      91.00 

15 23  54 6 0.8889 0.0675   30 0.0375   18 0 1.0000 0.0900  

15 24  36 3 0.9167 0.0180 96.00  26 0.0130 96.14      93.29 

16 26  35 2 0.9429 0.0438 96.21  26 0.0325 97.07  10 0 1.0000 0.0500 95.71 

17 25  28 1 0.9643 0.0350   27 0.0338   7 0 1.0000 0.0350  

17 27  19 2 0.8947 0.0095 98.43  17 0.0085 98.64      97.57 

18 29  17 2 0.8824 0.0085 98.86  17 0.0213 99.25  2 0 1.0000 0.0100 98.71 

19 28  5 1 0.8000 0.0063 98.92  5 0.0025 99.43      98.71 

20 30  8 1 0.8750 0.0100 99.00  6 0.0075 99.64      98.71 

21 21  5 1 0.8000 0.0063   4 0.0050        

21 32  4 1 0.7500 0.0020 99.21  3 0.0038 99.89      98.71 

22 33  2 0 1.0000 0.0025   2 0.0010        

22 34  1 0 1.0000 0.0005 100.0  1 0.0013 100.0          98.71 
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Table G.6. Purity and power scores of hyperboxes generated by HCB – Skin subset 4 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 2  2000 800 0.600 1.000 71.4  1620 0.810 82.1  136 0 1.000 0.272 85.4 

2 1  797 32 0.960 0.996   679 0.849   139 0 1.000 0.695  

2 3  351 10 0.972 0.176 98.0  335 0.168 36.2  119 0 1.000 0.238 96.3 

3 4  100 0 1.000 0.125 99.3  100 0.125 39.8  58 0 1.000 0.290 99.9 

4 5  45 0 1.000 0.023   45 0.023   45 0 1.000 0.090  

4 6  21 0 1.000 0.026 100  21 0.026 42.1  5 0 1.000 0.025 100 

F
o

ld
 2

 

1 2  2000 800 0.600 1.000 71.4  1618 0.809 57.8  401 0 1.000 0.802 88.0 

2 3  360 10 0.972 0.180 98.6  337 0.169 69.8  89 0 1.000 0.178 95.6 

3 1  781 29 0.963 0.976 98.8  662 0.828 93.5  167 1 0.994 0.835 99.4 

4 4  45 0 1.000 0.023   45 0.023 95.1  8 0 1.000 0.016  

4 5  138 0 1.000 0.173 100  138 0.173 100  34 0 1.000 0.170 99.9 

F
o

ld
 3

 

1 2  1620 24 0.985 0.810 85.3  1616 0.808 57.7  344 0 1.000 0.688 89.6 

2 1  738 12 0.984 0.923   654 0.818   138 0 1.000 0.690  

2 3  328 29 0.912 0.164 98.5  141 0.071 86.1  67 0 1.000 0.134 97.9 

3 4  140 5 0.964 0.175   122 0.153   56 0 1.000 0.280  

3 5  243 0 1.000 0.122 99.4  243 0.122 99.1  88 0 1.000 0.176 100 

4 6  23 5 0.783 0.029   17 0.021   5 0 1.000 0.025  

4 7  7 0 1.000 0.009 100  7 0.009 100          100 

F
o

ld
 4

 

1 2  1607 0 1.000 0.804 86.0  1607 0.804 57.4  371 0 1.000 0.742 92.0 

2 3  369 6 0.984 0.185 98.4  349 0.175 69.9  76 0 1.000 0.152 96.0 

3 1  781 30 0.962 0.976   685 0.856   158 0 1.000 0.790  

3 4  49 2 0.959 0.025 95.8  44 0.022 95.9  50 0 1.000 0.100 98.3 

4 5  115 0 1.000 0.144 100  115 0.144 100  93 0 1.000 0.465 100 

F
o

ld
 5

 

1 2  1615 0 1.000 0.808 86.6  1615 0.808 57.7  376 0 1.000 0.752 70.0 

2 3  354 6 0.983 0.177 98.7  346 0.173 70.0  115 1 0.991 0.230 96.4 

3 1  784 29 0.963 0.980   663 0.829   9 0 1.000 0.045  

3 4  26 0 1.000 0.013 99.0  39 0.020 95.1  136 0 1.000 0.272 98.5 

4 5  132 8 0.939 0.165   117 0.146   55 0 1.000 0.275  

4 6  20 0 1.000 0.025 100  20 0.025 100  7 0 1.000 0.035 99.9 
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Table G.7. Purity and power scores of hyperboxes generated by HCB – Skin subset 5 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter. Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

1 2  4000 1600 0.600 1.000 71.4  3222 0.806 57.5  267 0 1.000 0.267 73.5 

2 1  1617 353 0.782 1.000   1081 0.676   263 0 1.000 0.658  

2 3  695 66 0.905 0.174 91.2  646 0.162 88.4  691 0 1.000 0.691 97.2 

3 4  343 0 1.000 0.214 95.7  343 0.214 94.5  97 0 1.000 0.243 97.4 

4 6  176 0 1.000 0.110 98.9  176 0.110 97.6  39 0 1.000 0.098 98.6 

5 5  101 18 0.822 0.025 98.9  71 0.018 98.9  15 0 1.000 0.015 99.6 

6 7  43 2 0.953 0.011 99.6  41 0.010 99.6  19 0 1.000 0.019 97.2 

7 8  16 0 1.000 0.004   16 0.004   6 0 1.000 0.006  

7 9  4 0 1.000 0.001 100  4 0.001 100  1 0 1.000 0.001 100 

F
o

ld
 2

 

1 2  4000 1000 0.750 1.000 82.1  3214 0.804 57.4  283 0 1.000 0.283 82.4 

2 1  1219 353 0.710 0.762 88.9  1129 0.706 77.6  138 0 1.000 0.345 98.1 

3 3  683 1 0.999 0.171   681 0.170   677 1 0.999 0.677  

3 4  174 53 0.695 0.109 75.0  105 0.066 91.6  149 0 1.000 0.373 98.6 

4 5  306 0 1.000 0.191 98.0  306 0.191 97.1  73 0 1.000 0.183 99.1 

5 7  60 0 1.000 0.038   60 0.038   42 0 1.000 0.105  

5 8  17 0 1.000 0.004 99.1  17 0.004 98.4  5 0 1.000 0.005 99.0 

6 6  54 0 1.000 0.014   54 0.014   22 0 1.000 0.022  

7 9  22 0 1.000 0.006 99.8  22 0.006 99.8  5 0 1.000 0.005 99.8 

7 10  12 0 1.000 0.003 100  12 0.003 100  2 0 1.000 0.002 99.8 

F
o

ld
 3

 

1 2  4000 1600 0.600 1.000 71.4  3229 0.807 57.7  308 0 1.000 0.308 85.6 

2 1  1251 27 0.978 0.782   956 0.598   228 0 1.000 0.570  

2 3  693 30 0.957 0.173 91.4  672 0.168 86.7  650 0 1.000 0.650 93.5 

3 4  480 0 1.000 0.300 96.2  480 0.300 95.3  124 0 1.000 0.310 98.0 

4 6  164 0 1.000 0.103   164 0.103   47 0 1.000 0.118  

4 5  51 0 1.000 0.013 99.1  51 0.013 99.1  26 0 1.000 0.026 99.3 

5 8  17 0 1.000 0.004   17 0.004   3 0 1.000 0.003  

6 7  30 0 1.000 0.019 100  30 0.008 100  11 0 1.000 0.011 99.9 

6 9  1 0 1.000 0.000 100  1 0.000 100  0 0     99.9 

F
o

ld
 4

 

1 2  4000 1600 0.600 1.000 71.4  3213 0.803 57.4  292 0 1.000 0.292 69.8 

2 3  693 26 0.962 0.173 94.2  684 0.171 69.6  671 0 1.000 0.671 95.4 

3 1  1545 144 0.907 0.966   988 0.618   224 0 1.000 0.560  

3 4  47 28 0.404 0.012 94.9  19 0.005 87.6  2 0 1.000 0.002 91.3 

4 5  550 0 1.000 0.344 98.3  550 0.344 97.4  152 0 1.000 0.380 98.7 

5 7  77 15 0.805 0.048   62 0.039   21 0 1.000 0.053  

5 6  49 0 1.000 0.012 99.5  49 0.012 99.4  28 0 1.000 0.028 99.6 

6 8  34 0 1.000 0.021 100  34 0.009 100  4 0 1.000 0.004  

6 9  1 0 1.000 0.000 100  1 0.000 100  0 0     99.8 

F
o

ld
 5

 

1 2  4000 1600 0.600 1.000 71.4  3213 0.803 57.4  255 0 1.000 0.255 84.6 

2 1  1520 176 0.884 0.950 90.3  981 0.613 74.9  211 0 1.000 0.528 96.4 

3 3  640 3 0.995 0.160 92.4  632 0.158 86.2  711 0 1.000 0.711 97.8 

4 4  559 0 1.000 0.349   559 0.349   139 0 1.000 0.348  

4 5  92 12 0.870 0.023 97.6  69 0.017 97.4  21 0 1.000 0.021 99.8 

5 6  60 0 1.000 0.038   60 0.038   49 0 1.000 0.123  

5 7  52 0 1.000 0.013 99.3  52 0.013 99.4  6 0 1.000 0.006 99.9 

6 8  30 0 1.000 0.019   30 0.008   5 0 1.000 0.005  

6 9  4 0 1.000 0.001 100  4 0.001 100  2 0 1.000 0.002 99.9 
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Table G.8. Purity and power scores of hyperboxes generated by HCB – Skin subset 6 

        Training Phase Test Phase 

    Model MOU  After HTA  After HTA 

 Iter Box   Nkl Mkl Purity Power AM   Nkl Power ATB  Nkl Mkl Purity Power A 

F
o

ld
 1

 

 

1 2  4000 1600 0.600 0.714 71.43  2068 0.369 36.93  304 0 1.000 0.304 64.43 

2 1  1314 236 0.820 0.821 76.86  974 0.609 54.32  197 0 1.000 0.493 87.21 

3 3  1098 183 0.833 0.196 77.70  592 0.106 64.89  93 0 1.000 0.093 81.86 

4 5  159 0 1.000 0.028 78.91  163 0.029 67.80  149 0 1.000 0.149 89.14 

5 6  835 340 0.593 0.149 87.46  793 0.142 81.96  344 0 1.000 0.344 89.71 

6 4  562 7 0.988 0.351   521 0.326   39 0 1.000 0.098  

6 7  297 11 0.963 0.053 97.66  266 0.048 96.02  66 0 1.000 0.066 98.00 

7 9  45 0 1.000 0.008 98.09  45 0.008 98.04  13 0 1.000 0.013 98.29 

8 8  70 2 0.971 0.044   68 0.043   46 0 1.000 0.115  

8 10  38 2 0.947 0.007 98.70  34 0.006 98.64  12 0 1.000 0.012 98.50 

9 11  40 3 0.925 0.025   34 0.021   85 0 1.000 0.213  

9 12  19 0 1.000 0.003 99.64  19 0.003 99.59  5 0 1.000 0.005 99.29 

10 14  12 0 1.000 0.002 99.86  12 0.002 99.80  3 0 1.000 0.003 99.64 

11 13  3 0 1.000 0.002   3 0.002   10 0 1.000 0.025  

11 15  8 0 1.000 0.001 100.0  8 0.001 100.0  15 0 1.000 0.015 100.0 
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H. Progress of HCB-f for Datasets with Smaller Number of Features 
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Figure H.1. Progress of HCB-f for Breast Cancer dataset 
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Figure H. 2. Progress of HCB-f for Wine Dataset (2 class) 
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Figure H.3. Progress of HCB-f for Hepatitis Dataset 
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Figure H.4. Progress of HCB-f for Firm dataset 
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Figure H.5. Progress of HCB-f for Voting dataset 
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Figure H.6. Progress of HCB-f for Sonar dataset 
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I. Progress of HCB-f for Microarray Datasets 
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Figure I.1. Progress of HCB-f for Colon dataset 
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Figure I.2. Progress of HCB-f for Leukemia dataset 
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Figure I.3. Progress of HCB-f for Lung Cancer dataset 
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