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ABSTRACT

PERFORMANCE EVALUATION OF REAL-TIME NOISY SPEECH
RECOGNITION FOR MOBILE DEVICES

Yurtcan, Yaser
M.S., Department of Information Systems
Supervisor: Assoc. Prof. Dr. Banu Günel Kılıç

February 2019, 67 pages

Communication is important for people. There are many available communication
methods. One of the most effective methods is through the use of speech. People
can comfortably express their feelings and thoughts by using speech. However, some
people may have a hearing problem. Furthermore, understanding spoken words in a
noisy environment could be a challenge even for healthy people. Speech recognition
systems enable real-time speech to text conversion. They mainly involve capturing of
the sound waves and converting them into meaningful texts.

The use of speech recognition on mobile devices has been possible with the devel-
opment of cloud systems. However, delivering a robust and low error rate speech
recognition system in a noisy environment still is a major problem. In this study,
different speech samples have been recorded using a compact microphone array in
noisy environments and a data set has been created by processing them through a
real-time noise cancellation algorithm. A portable design of a mobile system with
noise cancellation hardware and software was proposed to convert spoken words to a
meaningful text.

Comprehensive tests were performed on several clean, noisy and denoised speech sam-
ples to measure the speech recognition performance of different cloud systems, noise
robustness of the proposed system, the effect of gender on the speech recognition per-
formance, and the performance improvement. The experimental results show that the
proposed system provides good performance even in a noisy environment. It is also
inferred from the results that in order to apply speech recognition using cloud based
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systems on mobile devices, the noise level has to be low or real-time noise cancellation
algorithms are needed. The proposed system improves speech recognition accuracy
in noisy environments. Thus, the achieved performance and portable design together
enable the system to be used in daily life.

Keywords: Speech Recognition, Speech Processing, Cloud Systems, Word Error Rate,
Mobil Devices
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ÖZ

MOBİL CİHAZLARDA GERÇEK ZAMANLI GÜRÜLTÜLÜ KONUŞMA TANIMA
PERFORMANS DEĞERLENDİRİLMESİ

Yurtcan, Yaser
Yüksek Lisans, Bilişim Sistemleri Bölümü
Tez Yöneticisi: Doç. Dr. Banu Günel Kılıç

Şubat 2019 , 67 sayfa

İletişim insanlar için önemlidir. Birçok iletişim kurma yöntemi bulunmaktadır. Bunlar
arasında en etkili olanı konuşmadır. Konuşma ile insanlar duygularını ve düşüncele-
rini rahat bir biçimde ifade edebilmektedir. Bununla birlikte, bazı insanların işitme
problemi olabilir. Dahası, gürültülü bir ortamda konuşulan kelimeleri anlamak sağlıklı
insanlar için bile zor olabilir. Konuşma tanıma sistemleri, metin dönüşümüne gerçek
zamanlı konuşma sağlar. Konuşma tanıma sistemleri genellikle ses dalgalarının yaka-
lanmasını ve anlamlı metinlere dönüştürülmesini içerir.

Mobil cihazlarda konuşma tanıma kullanımı, bulut sistemlerinin geliştirilmesi ile müm-
kün olmuştur. Ancak, gürültülü ortamlarda gürbüz ve düşük hata oranlı konuşma
tanıma sistemi sağlamak hala önemli bir sorundur. Bu çalışmada, gürültülü ortam-
larda kompakt bir mikrofon dizisi kullanılarak farklı konuşma örnekleri kaydedilmiş
ve gerçek zamanlı bir gürültü engelleme algoritmasıyla işlenerek bir veri kümesi oluş-
turulmuştur. Konuşulanları anlamlı bir metne dönüştürmek için gürültü engelleme
donanımı ve yazılımı olan taşınabilir bir mobil sistem önerilmiştir.

Farklı bulut sistemlerinin konuşma tanıma performansını, önerilen sistemin gürültüye
dayanlıklılığını, konuşmacının cinsiyetinin konuşma tanıma performansına etkisini ve
performans iyileştirmeyi ölçmek için temiz, gürültülü ve gürültüden temizlenmiş ko-
nuşma örnekleri üzerinde kapsamlı testler yapılmıştır. Deney sonuçları, önerilen sis-
temin gürültülü ortamlarda bile iyi performans sergilediğini göstermektedir. Sonuç-
lardan ayrıca anlaşılmıştır ki, mobil cihazlarda bulut tabanlı sistemleri kullanarak
konuşma tanıma yapmak için gürültü seviyesi düşük olmalıdır veya gerçek zamanlı
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gürültü iptali algoritmalarına ihtiyaç duyulmaktadır. Önerilen sistem gürültülü ortam-
larda konuşma tanıma doğruluğunu arttırmaktadır. Böylece, elde edilen performans
ve taşınabilir tasarım, sistemin günlük hayatta kullanılmasına olanak sağlamaktadır.

Anahtar Kelimeler: Konuşma Tanıma, Konuşma İşleme, Bulut Sistemler, Kelime Hata

Oranı, Mobil Cihazlar
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CHAPTER 1

INTRODUCTION

Communication is vital for human beings. In today’s world, there are many ways
to communicate information. Generally, there are three types of communication:
Oral/speech, written, and body language. Speech is the most efficient form of com-
munication that enables humans to share their thoughts and ideas. It is also a fast
communication type that leads to instant feedback. Humans would not be able to de-
scribe many feelings without speech. However, it is sometimes difficult to understand
what is spoken, especially in a noisy environment. Furthermore, this problem could
be a challenge leading to many negative effects. Speech recognition systems overcome
this problem by enabling real-time speech to text conversion.

Speech recognition systems enable people to understand spoken words to a certain
level in noisy environments. General uses of these systems are voice dialing, com-
mand and control, dictations, and aided communication and monitoring. In the past
five decades, speech recognition technology has made significant progress. Initially,
the systems were not sufficient to provide robust solutions with a low error rate. Im-
provement in processors’ computing power, development of advanced algorithms, the
invention of better noise performance microphones, and availability of a large speech
text data set contributed to this progress. These contributions enabled researchers
to develop complex systems to analyze sounds and ensure correct word recognition.
Modern speech recognition systems involve many subsystems. They include micro-
phones to capture sound waves, and cloud computing systems to convert sounds to
basic language units and construct words from phonemes. Over the past four decades,
researchers have attempted to develop robust systems with low error rate. The key
indicators of successful speech recognition systems are the low error rate, robustness
and real-time operation.

Today’s solutions make it possible to use speech recognition systems in our daily
lives by utilizing mobile devices. Apple’s Siri (Speech Interpretation and Recognition
Interface) and Samsung’s Bixby are the best examples of mobile device applications.
People can use these systems to find out where the nearest restaurant is, to set alarms,
to call people, to read emails, and much more. These systems are designed to work
on a command and control basis. For example, the user gives a command and waits
for an action. In addition to these systems, there are applications that translate
spoken words instantaneously into text. The major technology companies Google,
Microsoft, and IBM have such applications and these applications work with cloud
systems. These applications instantly translate given speech into text and do not take
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any action like Apple’s Siri and Samsung’s Bixby. In addition, such systems work in
an unlimited dictionary compared to other systems.

Speech recognition systems on mobile devices generally provide sufficient results in a
quiet environment but provide insufficient results under noisy conditions. In a noisy
environment, the problem of speech recognition with a low error rate still persists. In
this study, we have developed a system to overcome the speech recognition problem on
mobile devices in noisy environments. This system allows real-time speech recognition
with a low error rate up to a certain noise level.

In this chapter, problem definition, motivation, the scope of the thesis, the structure
of the thesis and the objectives of the thesis are presented.

1.1 Problem Definition

As stated earlier, communication is crucial for human beings. Unfortunately, many
people lose the ability to understand spoken words in noisy environments, especially,
elderly people and people that have a hearing problem. Even healthy people can
have difficulties in understanding speech in environments with a noise level above 80
decibels (dB). Any unwanted audible sound is called noise. In communication, the
noise level is measured by signal to noise ratio and expressed as S/N or SNR. This
ratio is measured in dB and is found by the following formula SNR;

SNR = 10log Ps
Pn

(1.1)

where Ps is the power of the signal and Pn is the power of the noise. If Ps and Pn
are equal, the SNR is equal to 0 and the noise level is competing with the signal. So,
what is the meaning of noise? Although there is more than one description of the
noise, it is basically referred to as any unwanted disturbing sounds.

The noise is context dependent. For example, if two people are speaking simultane-
ously which one is noise depends on the context and the listener. The main problem
in such situations is the presence of background noise and more than one speaker.
There are different types of noise such as mechanical noise, traffic noise, people noise,
and loud music, etc., which people are exposed to in their daily lives. Noise makes
it more difficult to have a conversion and thus people need to give more attention to
the speaker, which causes listener fatigue. The effect of background noise on speech
recognition is more detrimental for older people [1].

Noise level is also an important problem for automatic speech recognition systems.
The SNR is the main factor that affects the speech recognition performance [2]. The
higher the SNR, the higher the quality of the incoming signal. Since the environment
where mobile devices are used cannot be controlled, background noise is a major
problem for speech recognition on mobile devices.

Most speech recognition applications on mobile devices are context dependent which
means they try to perceive the speech as a meaningful sentence. For example, if the
recognized sentence is "What is the weather life", it is changed to a meaningful form
as "What is the weather like?".
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Today’s speech recognition systems provide sufficient results in quiet environments,
but in noisy environments, the results are more than 100%. It would be nice to have
speech recognition applications that show the same performance in both noise-free
and noisy environments.

In our study, we aim to improve the performance of speech recognition on mobile
devices in noisy environments. For this purpose, a compact microphone array is used
for source separation to remove unwanted noise before speech recognition. We have
also developed an application as a hearing assistant which shows what is spoken on
the screen in real-time. Results show that the overall system is superior to standard
ones.

1.2 Motivation

The main motivation of this study is to overcome speech recognition problems in noisy
environments which have been worked on for the past the 50 years. The study aims to
develop a portable mobile system that increases speech intelligibility and provides a
better speech recognition rate. By using the proposed system and its portable feature,
we want to overcome the problem of speech recognition in any noisy environments
up to a certain level. Thus, people with hearing problems can gain the ability to
understand what is spoken in the environment with the help of our designed system.

1.3 Objectives of the Thesis

This study has the following objectives:

• To find out which cloud system provides better speech recognition performance.

• To measure the effect of the noise level on speech recognition performance.

• To examine how robust the designed system is to noise.

• To investigate the effect of speaker gender on recognition performance.

• To quantify the performance improvement achieved with the developed noise
cancellation algorithms.

1.4 Scope of the Thesis

The aim of this study is to improve noisy speech recognition performance on mobile
devices. This study approaches the problem as a system design issue and integrates
suitable hardware and software components to achieve the desired results. Therefore,
improving the existing noise cancellation or speech recognition algorithms is beyond
the scope of this thesis.
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1.5 Structure of the Thesis

The rest of this thesis is organized as follows:

In Chapter 2, we provide an overview of the speech recognition technology, explain
how speech recognition relates to deep learning, explain and compare cloud systems’
performance, describe challenges, explain conventional noise cancellation methodolo-
gies, and present metrics for evaluating speech recognition performance.

In Chapter 3, the proposed system is described in detail, explain the specifications
of the noise cancellation algorithm used, state reasons of selected transfer media and
describe an application of speech recognition.

In Chapter 4, experimental setup is explained together with, covered speech recogni-
tion factors.

In Chapter 5, detailed results are provided and discussed.

In Chapter 6, concludes the thesis.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, an overview of speech recognition, deep learning for speech recognition,
relation with cloud-computing, speech recognition on mobile devices, challenges for
applications using speech recognition, noise cancellation methodology, audio trans-
mission to a mobile device, and evaluation of speech recognition performance are
investigated.

2.1 Overview of Speech Recognition

2.1.1 What is speech recognition?

As the name indicates, speech recognition is translation of spoken words into text.
A speech recognition system basically captures sound signals, makes some process on
them and converts them into text. The term "speech recognition" has been used since
the early 1950s, when Audrey and his team at Bell Labs designed a machine capable of
understanding spoken digits [3]. The machine had limited accuracy that was speaker-
dependent. Since that time, there have been many breakthroughs in technology. In
the early 1950s, computers had limited computational power and limited training data.
Machine learning had not been introduced; there were no advanced algorithms; and no
high-tech microphones were present. Now there are available powerful computers that
perform millions of operations per second, high-tech microphones such as microelectro-
mechanical systems (MEMS) microphones, cloud-computing technology, and improved
learning techniques, including deep learning.

Adopting technological improvements has led to higher performance achievements that
deliver robust and low error rate speech recognition systems. Apples SIRI (Speech
Interpretation and Recognition Interface), Microsoft’s Cortona and Google’s Voice
Search are prominent examples. These are very popular applications that enable users
to interact with mobile devices via voice command. They are also internally linked
with web search engines (Google and Microsoft Bing) that indexed the entire web [3]
which allow the users to search for such things as the nearest restaurants, today’s
weather, and other information. Speech recognition has evolved from understanding
spoken digits to understanding the meaning of what is said and facilitating the taking
of appropriate action.

The basic speech recognition system consists of three main components, as illustrated
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in Figure 2.1.

Figure 2.1: The Components of a Basic Speech Recognition System

The components of basic speech recognition systems are introduced in the next sec-
tion.

2.1.1.1 Preprocessing and Feature Extraction

Preprocessing is the first step in speech recognition systems. In the following steps,
digital format of speech signals are needed. However, the captured (recorded) speech
signals are analog and they need to be transformed into a digital format for further
analysis and processing. Transferring analog signals into digital format and applying
basic filtering technique to remove some artefacts are called preprocessing. Feature ex-
traction is the most important part of speech recognition. Good feature extraction can
increase speech recognition performance. Feature extraction reduces the variability of
speech signals since the speech signals have the changing characteristic over time [4].
It extracts the required significant parameters of speech signals and eliminates irrel-
evant unimportant parameters/features while dividing the speech signals into short
frames (generally 20-25 ms duration and shifted 10 ms) [5]. By doing so, a quantitative
representation of the speech signal is achieved for further processing. An important
point is that the frames must be short duration so that speech signals can be viewed as
stationary. Some of the extracted parameters are information on the speaker and the
recognition of utterances. There are many features, such as Mel-frequency cepstral
coefficients (MFCC) [6], Mel-scale cepstral coefficients (MEL) [7], Linear Predictive
Coefficients (LPC) [8] obtained Linear Predictive Analysis (LPA) [4], and Perceptual
Linear Predictive Coefficients (PLP) [4].

MFCCs are the most popular technique. They provide high accuracy with low com-
plexity [6]. They are based on the variations of human hearing. Their performance is
more sensitive to background noise and the number of filters used [9]. MEL models
approximately the human hearing by scaled frequency. The frequency either scaled
linear or algorithmic [7].

LPC is a method which provides robust and high accuracy of speech features effi-
ciently by reducing required information on speech signal [8]. LPA is a static feature
extraction method that is based on the assumption of past speech samples. The idea
is that the current speech sample can be described by observation of past samples over
a duration. However, it can not clearly recognize the words with similar utterances,
because of the inherent assumptions. Different bit rates, the delay of the system, and
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computational complexity affect the performance of the LPA [4].

PLP eliminates artefacts and hence improves speech recognition performance. It is
short duration There are mainly three aspects: the critical-band resolution curves,
the equal-loudness curve, and the intensity-loudness power law [7]. There are some
common part with LPC. However, PLP is more efficient.

2.1.1.2 Decoding and Text

Decoding is the process of recognizing the text equivalent of the speech by using the
output of the feature extraction. There are two types of decoding models, acoustic
models and language models.

An acoustic model is the main part of the speech recognition system and is also
called as the pronunciation model. These models provide a statistical representation
of the sounds that make up words [10]. They play a very critical role in achieving a
noise robust and high accuracy recognition system. They provide a relation between a
speech sound and its corresponding phonetics. Thus they need to be trained with very
large datasets that include various speakers of various ages and genders to provide a
robust speaker independent system. There are several available acoustic models. Most
widely used ones are the Hidden Markov Model (HMM) and Gaussian Mixture Model
(GMM).

HMM is a widely accepted and feasible acoustic model used since the 1980s [11].
It is a statistical model that divides the obtained feature vectors into states. The
states represent phoneme units of each word. For instance, the word "when" consists
of "wh", "e", and "n" phone units. Each phoneme unit has different features with
different distribution that is directly affected by the previous and next state. So, each
phoneme HMM consists of three states and the "when" HMM has 9 states. Thus HMM
has a set of different states that represent the characteristic of sound signal in order
to find the relation of one state to another to make up the corresponding the word.
HMM needs to be trained with a large amount of acoustic data to find the correct
phone units. A large acoustic data set for HMM significantly reduces the recognition
time.

GMM is a statistical model. Gaussian distribution are evaluating mean, variance
and weight for representing GMM [12]. GMM is estimated as the probability density
function. It is computationally efficient and easy to be implemented. It considers
sound signals as consists of the sum of several independent components. GMM de-
termines the relationship between input and states of HMM by means of expectation-
maximization (EM) [12].

Language models calculate the probability of next sequence of words [13]. The aim is
to determine the most suitable sequences of words from the signal. It is a statistical
model, because the assumption of the next sequence is required by utilizing a training
data set. The accuracy of the correct assumption is closely related to the training data
set. Language models are language-specific and each language has its own limitations
and characteristics.
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The most commonly used language model in speech recognition is the n-gram language
model. There are available other language models including bi-gram and tri-gram.
Language models in speech recognition systems help to predict the best next-word
sequences by considering previous n-1 words. It is thus used to distinguish similar
word groups.

Language models decide on the next possible word considering the previous word and
the training data set. The previous word is crucial, because it provides information on
what the next word should be to follow the previous one. For example, if we examine
the following sentence, "What is weather ...?", what should be the last word in the
sentence? (like or life). In this case, the used language model and the data set play
an important role.

In the bi-gram model, the probability of the next word depends on only the previous
single word. So, the probability equations of the next word should be:

P (weather|life) (2.1)

P (weather|like) (2.2)

In the tri-gram model, the probability of the next word depends on the previous two
words. So, the probability equations of the next word should be:

P (is, weather|life) (2.3)

P (is, weather|like) (2.4)

In the n-gram model, the probability of the next word depends on only the previous
n-1 words. The choice of n depends on an application and number of words in the
sentence. It is more suitable for long sentences. Generally, the previous three or four
words provide the necessary information.

2.1.2 History of Speech Recognition

The first speech recognition system, namely the Audrey machine, was invented at Bell
Laboratories in 1952 [14]. Some of its features [14];

• It was a fully analog system.

• It could understand only words of digits with pauses in between.

• It was a speaker dependent system and recognized digits spoken by a single voice
who already adjusted to the system.

• Achieved 97-99% accuracy with the dependent speaker.
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From the 1950s to the 1960s, limited digits and numbers could be recognized with
speaker-dependent systems [15].

The 1970s decade saw many innovations in the speech recognition area. Continu-
ous speech recognition was introduced, where the user was not required to pause
in between words. In 1971, the Defense Advanced Research Agent Project Agency
(DARPA) recognized the importance of speech recognition and established the Speech
Understanding Research (SUR) program [16]. This program supported a group at
Carnegie Mellon University, led by Raj Reddy, that developed the Harpy Speech
Recognition. Other innovations in speech recognition systems created by this group
include speaker-independent speech recognition, continuous speech recognition sys-
tem, and Hearsay, Dragon, Harpy, and Sphinx I/II systems.

Harpy was a machine that had the ability to understand around 1011 words [17].
It was developed after the Hearsay-I system and the Dragon system so that it had
the features of the Hearsay-I system and the Dragon system. Hearsay-I was the first
successful attempt of continuous speech recognition that was not required to pause in
between words. It was the first time speech was modeled as a hidden stochastic process
in Dragon systems. Harpy had taken advantage of both systems, thus presenting the
new search concept beam of search. A beam search was used for efficient searching
and matching [3]. In the following years, many features including speaker-independent
speech recognition and a large number of vocabularies were added to Harpy. Sphinx
I/II systems could be described as a new version of Harpy [18].

The HMM approach to speech recognition was used by James Baker, who was a
student of Raj Reddy at Carnegie Mellon University in 1976. The HMMs are gen-
erally used to deal with the variability of speech. While older approaches simply
searched sound patterns and phonemes for words, HMM models predicted possible
words. HMM became popular in the 1980s, and its popularity continued to increase
in the following years. It supports a generic technique that is still used in many multi-
languages speech recognition systems. From the 1980s to the 2000s, the following
developments in speech recognition occurred;

• Almost all speech recognition systems used HMM as an acoustic model.

• Large-vocabulary, continuous, and speaker-independent systems were designed.

• Microsoft established a speech recognition research group led by Xuedong Huang.

• Commercial speech recognition products were introduced.

From the early 2000s to the present, the following developments were seen and con-
tinues to progress:

• Deep learning methods were applied to speech recognition systems, replacing
older methods and resulting in tremendous progress in recognition rate. Com-
panies invested in deep learning technologies to provide robust and high-accuracy
speech recognition applications. As an example, Microsoft reduced the error rate
of their speech recognition by 30% in 2012 [19].
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• The major technology companies Google, Microsoft, and IBM provided cloud
system application programming interfaces (APIs) that enabled users to in-
stantly translate spoken words to text.

• The use of cloud systems made speech recognition systems available to use in
mobile devices, such as Apple’s Siri in 2011. Many high-accuracy applications
have been developed since then.

• Speech recognition accuracy reached that of human accuracy which is around
5.0%.

In summary, speech recognition has progressed considerably along with recent devel-
opments over the past 70 years. In particular, using both deep learning methods and
cloud systems have greatly affected these systems, and increased accuracy.

2.1.3 Speech to Text Systems

Generally, speech to text systems can be explained by converting speech signals into
meaningful text. Historically, the initial goal in the field of speech recognition was
to convert the speech signals to text form with low word error rate. Over the years,
the evolution of technology has led to increasing computing power and adopting cloud
systems. Thus its application areas have increased. The application areas can be
categorized into two major systems: Voice/Speech Command Systems and Automatic
Speech Recognition Systems (ASR). Voice/Speech command systems have a wide
range of applications. Some of them are Voice Dialling, Robotics, Interactive Voice
Response, Aided Communication and Monitoring, and Voice Control Systems.

The ultimate development of speech to text systems are for two basic reasons: The
increase in application areas for voice services and significant improvement in speech
recognition technologies [20]. As shown above, voice command systems have a wide
range of applications and these examples can be increased. A common feature in
all applications is converting the speech signals into meaningful text and taking the
necessary action by means of text.

The ASR, being the subject of this study, is a speech recognition system that converts
speech signals into the corresponding meaningful text without facilitating an appro-
priate action. ASR systems could be used to see what is spoken on screen instantly.
In this thesis, the aim is to convert noisy speech signals to a meaningful text by using
noise cancellation and cloud systems.

2.2 Deep Learning for Speech Recognition

Deep learning is one of the research areas of machine learning that is based on learning
data representations. It is also known as deep structured learning. It is composed of
multiple layers, such that each consecutive layer uses the output from the previous
layer as input. Each layer is connected to the previous and the next layer. The layers
are called:
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1. Input Layer: Receives input data and then passes input to the first hidden
layer.

2. Hidden Layer(s): Compute mathematical operations with the given input.
The word "Deep" is related to have how many hidden layers are presented.

3. Output Layer: Returns the result.

To achieve better results, deep learning systems need very large data set and large
computational power. In older algorithms, if the amount of data is increased, the
performance also increases to a certain level. Thereafter, it remains constant. In
the case of deep learning, the performance continues to increase. Unlike traditional
machine learning systems, deep learning systems can handle very large sets of raw data
and learn by feeding raw data with representations that are automatically detected
or classified by representative learning [21]. These kinds of methods have played an
important role in the solution and development of problems that have been going on
for many years in speech recognition [22,23].

The components of basic speech recognition systems are introduced in the previous
section. HMM and GMMwere used together before deep learning techniques were used
in this field. The shortcoming of GMMs is overcome as a result of the advancement in
computing power, and the development of machine learning techniques. This has led
to the use of deep learning methods, which has become inevitable in speech recognition
systems, with the help of Deep Neural Networks (DNNs). The advantages of DNN
include:

1. Time for overfitting, fine tuning, and training are reduced.

2. The DNN can handle data representation problem.

3. The use of DNN and HMM improve word recognition rate. This hybrid architec-
ture can efficiently handle very large amount of data by removing uncertainties.
Also, this architecture facilitates the use of speech recognition on mobile devices.

2.3 Speech Recognition Using Cloud Computing

The definition of cloud computing basically revolves around: storing, analyzing, and
processing of data by connecting remote servers via the internet [24]. It is a new era
for computing as it overcomes the limitation of resources [25]. The service provider,
such as Amazon Web Services and Microsoft Azure, manages the resources which
are based on demand quantities. The number of resources required by the user can
change from time to time. The service providers thus need to adjust resources due
to the elasticity of cloud-based services. Initially, cloud-based services were used on
computers with sufficient internet speed connection. Over the years, advancement in
computing power and increasing battery life facilitated the use of cloud computing on
mobile devices. Thus, mobile devices became pervasive. Even though there have been
many considerable technological advancements in mobile devices, the available appli-
cations involve much computation and data. This does not make sense to compute
locally on the mobile devices; rather, cloud computing services are used. There is a
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novel framework, developed to overcome mobile application constraints, which comes
along with a module which recommends a dynamic decision mechanism, whether the
application could better be run locally or through the use of cloud services [26]. By
adopting the cloud services, it provides offloading, storing and computing data to the
cloud, thus saving computation energy and storage.

Speech recognition is one of the most widely used application areas in cloud computing.
Nowadays, the great majority of speech recognition applications on mobile devices use
the cloud for the recognition task. The major technology companies provide APIs that
enable audio signals or its feature vectors to be sent to the cloud server through the
internet. Thereafter, their responsibilities would be and waited for. This process
basically consists of 3 steps:

1. By sending audio signals from the mobile application to a cloud server.

2. By converting audio signals to meaningful text on the cloud system.

3. By sending the text equivalent results to the mobile application.

The cloud servers not only process and recognize the audio signals, it also determines
the intent of the recognized text, by using a large vocabulary dataset. Using cloud
computing has an enormous advantage to overcome mobile device constraints. Despite
all the advantages, there are some shortcomings that should be considered when using
speech recognition systems. They are:

1. Reliability: The cloud systems could be used at any time. The computing load
may change from time to time. The cloud systems must ensure that they could
provide services at any time in any quantity. Most of the cloud systems back up
their systems to prevent communication outages.

2. Privacy and Security: In cloud computing, all data and computing resources
are moving to the cloud. Thus, their privacy and security depend on the cloud
system’s security measures. The security and privacy problems do often happen
and these are the challenges of our time. Big technological companies, even
Google and Twitter [27, 28], can not fully solve this problem [25]. In our case,
we are assuming that no private data will be used, so these issues are out of our
concern.

The cloud computing should have minimum response delay and maximum accuracy
in order to make use of it our in daily lives. Due to technological improvements in the
past decades, there are many available ASR systems which include Google, Microsoft,
and IBM, so on. Since there are many available options, it becomes very difficult to
make a choice among them. Since most of the cloud systems operate with low delay,
the two essential features we are looking for are noise robustness and low word error
rates. By considering these two features, we chose to investigate major three cloud
systems: Google, Microsoft, and IBM.

We compared above mentioned ASR systems with a number of different aspects ex-
plained in the following sections.
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2.3.1 Google

Google has a speech group to develop speech recognition systems which started in
2005 [29]. Since then, the group has been innovating many different speech recognition
systems. Some of them are Goog411, Voice Search on Mobile Devices, Voice API for
Android Operating System (OS), Youtube Transcription, and Speech Recognition API
for Cloud Systems.

Since machine learning and artificial technologies are used for speech recognition sys-
tems, these led to significant improvements in WER. Google currently achieved WER
of 4.9%, which is the same as the human accuracy and the lowest error rate among
the other systems. That is a big improvement since Google achieved 23% in 2013 and
8% in 2015. The secret of this success is the investments made in machine learning
and deep learning technologies over the years according to Pichai [30]. Google speech
API has the following advantages:

1. It recognizes more than 80 languages and dialects.

2. Multi-audio encodings are supported, including FLAC, AMR, PCMU, and Linear-
16 [31].

3. It informs about other possible interpretations of the audio.

4. It uses both remote procedure call (gRPC) and representational state transfer
(REST) protocols.

2.3.2 IBM

IBM is one of the well-established technology companies that manufactures mainly
computer hardware and software. IBM researchers have been dealing with speech
recognition since the 1950s. Since then, IBM has developed many speech recognition
products. Some of them are IBM 701, IBM Shoebox, Pioneering Speech Recognition,
IBM Via Voice, and IBM Watson.

IBM Watson’s WER is 5.5% which is close to human accuracy [32]. It was 43% in
1995, 15.2% in 2004, and 6.9% in 2016. IBM has been advancing developing in deep
learning technologies over the years [33]. The technology company has been using
different acoustic and language models together to achieve better performance, with
an ultimate aim of exposing both acoustic and language models with a very large data
set to achieve higher accuracy. IBM Watson has the following advantages:

1. Multi-audio encodings are supported, including WAV, FLAC, and PCM.

2. It recognizes and supports 7 languages [34].

3. It uses both REST and WebSocket protocols.
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2.3.3 Microsoft

Microsoft is another technology company that develops mainly software products such
as Windows Operating Systems. The company has also involved in speech recognition
by hiring top researchers from the Carnegie Mellon University to develop the Sphinx-
II speech recognition system in 1993 [35]. This group has continued to grow since then
and have developed several speech recognition systems. Some of them are as follows:
Microsoft SAPI, Microsoft Voice Command, Microsoft Cortana, and Microsoft Bing.

According to Xuedong Huang, the following three characteristics have enabled the
speech technology to reach human accuracy [36].

1. Data: When speech recognition systems are used frequently, more data is col-
lected and the systems get better by learning from those data garnered.

2. Computing Power: Mobile devices are resource-constrained. Cloud computing
provides resources for recognition.

3. Machine Learning: When artificial intelligence technologies improved, researchers
tried to use DNNs to train systems for better understanding.

Microsoft has made a major progress in speech recognition by adopting DNN and
Computational Network Toolkit (CNTK). CNTK provides optimizations in order to
run deep learning algorithms much faster [37]. Microsoft Speech Assistant and Cortana
uses both CNTK and GPU clusters to ingest more data [37]. Microsoft’s current WER
is 5.1% which is close to human accuracy [38]. It was 6.3% in 2016 and around 17%
four years ago [38]. Microsoft Bing Speech has the following advantages:

1. Multi-audio encodings are supported, including WAV, PCM, and Linear-16.

2. It recognizes and supports around 28 languages.

3. It uses both REST and WebSocket protocols.

2.4 Speech Recognition on Mobile Devices

Mobile devices or Smartphones have been very popular over the last decade. Many
vendors produce smartphones that come with advanced computational power and
heuristic features. They became popular with the introduction of Apple’s iPhone in
2007. In 2017, the number of smartphone users was around 2.32 billion worldwide
[39]. Since almost one-third of the world population uses a smartphone, there is
undoubtedly stiff competition among vendors to garner customers. The vendors need
to provide longer battery life and better computation power, due to resource feasibility
of mobile devices. Applications could run locally or in cloud services on mobile devices.
Speech recognition is one of the applications that its computation could be offloaded
to a remote service such as cloud. Speech recognition could also run locally. Due
to the limitation of mobile devices, Apple’s Siri prefers running remotely in cloud
services. This is achieved by sending its audio or feature vectors to the cloud server
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by means of the internet, thereafter a response is waited. The mobile device could be
thought of as a client and at the same time, a cloud server. This process basically
consists of 3 steps:

• By sending audio from client to cloud server.

• By converting audio to meaningful text.

• By sending equivalent text results to the client.

It is noteworthy to state that these phases should have minimum latency in order to
satisfy the real-time performance.

In this study, we used a mobile device for speech recognition. To recognize speech we
used the cloud system to decrease the computation power, which in turn results in
increasing the battery life.

2.5 Challenges for Applications Using Speech Recognition

Speech recognition has been studied for the past five decades, and it has been used in
many different areas, such as voice dialing, web surfing, health care, and many others.
Appreciable progress has been recorded from the 1950s, to make robust and speaker
independent speech recognition systems. Since the DARPA sponsored the SUR pro-
gram, WER became the main metric for speech processing evaluation [3]. As of today,
the best word error rate is 4.9% which is the same as that of human, as claimed by
Google [40]. Google achieved 23% in 2013. As indicated in the numbers, there has
been a big improvement. To achieve low error rate with a robust speaker-independence
system, the researchers had to overcome some challenges. Theses challenges include
speaker dependence, accuracy, latency, noise robustness, and reliability of the system.
Each of these challenges are discussed in the following sections.

2.5.1 Speaker Dependence

Speech signals have a large range of variability. Each person has unique sound char-
acteristics such that it is impossible to produce the exact same sound with different
people. Even the same person cannot reproduce exactly the same sound when it is
attempted [41]. There is always an occurrence of little variations. Environmental
conditions should also be taken into consideration.

Variability of speech signals and their handling is the main challenge for the ASR
systems. It is possible to get a high accuracy rate for single speaker speech in a quiet
environment. However, adding some background noise to the environment, changing
speaker, changing microphone or moving microphone position according to the speaker
may result in lower accuracy. So, speech recognition designers must take these into
account.

For variability, speech recognition systems can be divided into two categories:
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• Speaker Independent (SI) Systems: They are designed to recognize any
speaker’s speech. It is necessary to train SI systems with a large number of
different people so that they could provide almost the same accuracy for all.

• Speaker Dependent (SD) Systems: The SD systems focus on sounds that
are produced by specific speakers. They show good performance for the specific
speaker, but poor performance for different speakers [42]. They learn speaker’s
voice characteristics through training using the speaker’s voice.

Mostly, old systems were SD systems due to technological limitations. SI systems
require more memory and computational power which were absent in initial speech
recognition systems. Since the speech recognition’s application areas are getting wider,
most people use these systems for different purposes. This, however, forces today’s
speech recognition systems to be speaker independent systems. The aim is to provide
the best accuracy independently from the person speaking.

2.5.2 Delay

Delay is another crucial parameter for speech recognition systems. Especially, when
cloud-based speech recognition systems are involved, there should be minimum delay
due to cloud access through the network. When the delay gets higher, speech recog-
nition systems produce more inconsistent results, increasing the WER and making
the system unusable. The performance is aimed to be consistent in all circumstances.
Delay can vary under different network conditions. When the network is involved,
the following directly affect the speech recognition systems’ performance: The packet
loss, jitter (i.e., the time variation of received packets), used network protocol, and
bandwidth.

The packet loss and jitter have a significant effect on delay [43]. The used network
protocol determines whether there will be a packet or not. Due to accuracy most
of the cloud systems use Transmission Control Protocol (TCP) connection. TCP is
guaranteed for packet reception. However, by using User Datagram Protocol (UDP),
round trip time becomes minimized, which is desirable for real-time requirement, but
causes poor performance in recognition. Typical bandwidth is around 2 Mbps for 3G
connection and around 12 Mbps for 4G connection. Most of the mobile devices use
at least 3G connection for their internet access, which is enough to transmit audio
through the internet.

2.5.3 Noise and Interference

One of the fundamental challenges of speech recognition systems is noise and speech
interference. Noise is present almost in all environments. Its characteristics may vary
over time as the environment changes. Every day, people are exposed to more or
less amount of noise in almost all environments. Various types of noise that humans
could be exposed to are interfering speech and other sounds, traffic noise, crowd noise,
machine noise, white Gaussian noise, and so on.
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According to an experiment that was conducted in the United States, the majority
of the population who are exposed to a noisy environment could be predisposed to
hearing problems [44]. Any unwanted audible sound is called noise. Yet, the noise
level is an important parameter that affects the extent of hearing problems. It is also
important for speech recognition systems.

Normal speech is around 55-65 dB. Prolonged exposure to any sound that is above
80 dB (A) is damaging to the ear and requires intervention. Noise also affects speech
intelligibility in daily life. This specifically, affects older people, children, and people
who are suffering from hearing problems [45, 46]. Noise reduces people’s quality of
life. In some situations like military communication, missing even a word would not
be acceptable. In the real world, speech communications usually involve multiple
speakers and more or less background noise. Since most of the speech recognition
systems require a microphone to capture sound waves, the microphone should be
placed near the speaker. This, however, might be impossible because from time to
time, there is always a certain distance between the speaker and the microphone. In
this case, original speech signals are distorted by the reverberation of environment
and the speech interference [47]. A classical example is cocktail party effect in which
a number of people are talking at the same time with background music [48]. In this
case, some questions could come to mind:

1. How can speech recognition systems recognize what people are saying?

2. Which speaker should the speech recognition system focus on?

In order to handle these situations, speech recognition systems use many microphones
that are directed to a specific person, rather than others [49]. However, the captured
speech signals by microphones generally contain additive noise. Noise can degrade the
speech recognition systems’s accuracy. There are some other factors that could affect
the speech recognition performance under noise. They are:

1. Gender: Human hearing ranges from 20 to 20000 Hz. The frequency ranges
of the voice of male and female are different. Generally, female voices have a
higher frequency than male voices. This means that male voices are spread over
lower frequency bands which make them vulnerable to background noise, which
frequently occupy lower frequencies.

2. Reverberation: It is generally explained as the elongation of sound waves as a
result of its reflections on surfaces. Speech communication occurs in noisy and
reverberant environments. Reverberation causes degradation of speech recog-
nition performance due to the distortion of the original speech signal [50]. To
achieve better recognition performance in reverberant environments, SNR should
be higher [51].

As a result, noise, speech interference and reverberation are the main factors that
directly affect the speech recognition performance. In the following section, noise
cancellation methods found in the literature would be delved into.
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2.5.4 Reliability of the System

Speech recognition systems must be reliable under all circumstances. Reliability can
be described as the ability of the system to keep operating over time and producing
the same results. It is indispensable for these systems. As the systems evolve, the
results are expected to be better. Nowadays, most of the speech recognition systems
use the cloud technology. This means that the whole vocabulary dataset and used
algorithms are stored in the cloud systems. So, it is easier to categorically state that
the reliability of these kind of systems depends on the cloud systems. Aside from
the cloud systems, noise robustness and speaker dependence also directly affect the
reliability of the systems.

2.6 Noise Cancellation Methodologies

Today, most of the cloud systems provide speech recognition accuracy which is the
same as humans. However, it is not clear how these system’s accuracies are tested.
The technology companies claim that these systems repel noise. However, despite
all these improvements, the success of these systems in a noisy environment is still
insufficient. Most of the time, performance tests are conducted under low level noise
or in noiseless environments, which poses a challenge to achieving a high success rate
in a noisy environment. There are different approaches to overcome noise in a speech
signal.

Noise cancellation can be described as removing noise contamination from the speech.
As pointed out in Section 2.5.3, speech recognition degrades due to additive noise
and reverberation. Moreover, noise characteristics can change from time to time and
from place to place. Also, there are different types of noise which was explained
in Section 2.5.3. Therefore, its estimation and cancellation is a problem. For these
reasons, there is no generally accepted versatile methodology that could be applied for
noise cancellation. So, the applied methodologies could change due to noise types and
characteristics. We will examine mostly widely used noise cancellation methodologies
found in the literature.

• Generic Noise Cancellation Algorithms: Noise Cancellation Algorithms
eliminate noise from speech signal and increase the SNR while preserving the
characteristics of original speech signal. They generally run on a specially de-
signed processor, like Digital Signal Processors (DPSs), due to required high
computing power. It is generally assumed that the amplitude of the ambient
noise is low. The most commonly used algorithm is spectral subtraction.

– Spectral Subtraction: Spectral subtraction is the most widely used sin-
gle channel noise removing technique [52]. In this method, the noise is
estimated in short pause intervals and subtracted from the speech to in-
crease speech intelligibility [53]. Additive background noise is assumed to
be stationary for the estimation of noise in short pauses.

• Filtering Techniques: Filtering attempts to eliminate unwanted noise from
the original signal by extraction of useful information and preserving the original
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signal. There are several filtering techniques. However, all filters do not perform
equally. Some of them are:

– Kalman Filter: Kalman filter estimates uncertainties of variables and
minimizes the mean square error by observing the signal over time [54].
It is also called as linear quadratic estimation. In speech recognition ap-
plications, bidirectional Kalman filter eliminates non-stationary noise from
the speech signal by utilizing the previous state. It consists of two steps.
The first step, which is prediction, estimates the variables along with their
uncertainties. The second step, which is correction, obtains the variables
improved by using feedback control [55]. It is a recursive algorithm. It can
be used in real-time applications by utilizing the past and the present state
information. Thus, no additional memory is required.

– Adaptive Filter: Adaptive filtering technique first analyses the charac-
teristics of the noise and then adjusts itself with estimation error. These
two steps work together to feedback the system by modifying coefficients
of the applied filters [56]. It is time-dependent because of changing speech
signal parameters. Most adaptive filters are digital filters. They are used
in many applications such as Telecom systems and digital cameras.

• Active Noise Cancellation (ANC) Techniques: ANC is a technique that
attempts to attenuate low-frequency noise. Specially designed circuits produce
a signal the same frequency as noise, however, only phase flipped by 180 degrees.
Thus, noise is neutralized with the generated wave. This technique is mostly
used in noise cancelling headphones, to increase audio quality by eliminating low-
frequency noise. ANC performs well for lower frequencies and its performance
rapidly decreases when the ambient noise level increases [57].

• Beamforming Techniques: Beamforming techniques aim to eliminate noise
contamination by focusing on the arrival of signal direction using microphone
arrays. The beam could be focused on the source signal. Arrays of micro-
phones that consist of more than one microphone are used in beamforming so
that unwanted noise, interfering sounds, and reverberation can be eliminated
by separating the incoming signals from the others [58]. Since the SNR is usu-
ally low, more than one microphone is required to achieve good signal quality,
because utilizing several microphones provides better spatial diversity. Beam-
forming with a microphone array improves speech intelligibility due to the fact
that unwanted sounds are rejected.
The most common approach of beamforming is delay-and-sum method [59]. In
this method, input to each channel of array microphone is delayed to achieve
time-alignment of the incoming speech signal for constructive addition of waves.
Time-aligned inputs are then weighted and summed to focus on the target di-
rection [60]. Thus, any additive noise signal that is misaligned is eliminated.
Besides the delay and sum beamforming, filter and sum beamforming is also
widely used. A linear filter is applied to each channel of the array microphone
and the results are summed.

• Blind Source Separation (BSS) Techniques: BSS techniques are used to
separate individual signals from their mixture [61]. They do not assume any
information in regards to the source of the signal and interferences. Moreover,
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they do not require any training stage. Most widely used BSS technique, which is
known as the Independent Component Analysis (ICA) assumes that the signals
are statistically independent [62]. Moreover, the mixtures are assumed to be
instantaneous mixtures, i.e., weighted and summed signals, which does not take
into account the effect of reverberation, which results in signals convolved with
different room transfer functions and then added.
Trying to achieve the ICA in the frequency domain is an option, so that the
convolution in time domain becomes multiplication in the frequency domain
and instantaneous mixture assumption can be made. However, in this case, the
permutation problem occurs [63]. As a general restriction of ICA, the number
of microphones in the array should be the same or more than the number of
signals in the mixture, which is known as the determined, or over-determined
cases, respectively.
BSS techniques consist of two steps. The first is identification step which deter-
mines the number of the independent speech signal and assigns them to a set of
parameters. The second is separation step which eliminates the mixture using
parameters obtained in the identification step.
To separate mixture signals in the under-determined case, i.e., when the num-
ber of microphones in the array is fewer than the signals in the mixture, time-
frequency binary masking has been proposed. The masking term refers to fil-
tering in the time-frequency domain. Initially, the Gaussian mixture of mixture
speech signals are filtered in the frequency domain [64]. Then, the speech signals
are filtered in the time domain to eliminate stronger noise energy, as a result of
which the desired speech signals energy remains [65]. This process basically in-
creases speech intelligibility. After these two steps, the speech signals are ready
for recognition.

2.7 Evaluation of Noise Cancellation Methodologies

Among the several methods examined above, none of them meets our requirements
because the assumptions made in these methods. The advantages and limitations of
the methods are given in Table 2.1.

Unlike the standard noise cancellation algorithms, the chosen sound decomposition
method, which will be described in Chapter 3 does not impose any limitation on the
spectro-temporal characteristics of the noise. In fact, the noise may be another speech
signal as in the case of two or more people talking simultaneously. In such a situation
which source is the target and which ones are the noise depends on the listener. For
these reasons, the assumptions made by many noise cancellation algorithms, such
as noise is occupying low frequencies, or noise is additive white Gaussian, etc. [66]
are not valid. Similarly, the performance of deep learning-based systems aiming at
noisy speech recognition could only be improved for some simple types of noise, other
than interfering speech [67]. ICA-based signal separation can not run in real-time
and does not perform well in reverberant environments. Beamforming with large
arrays can achieve good sound source isolation, however, they are not practical for use
with mobile devices. Therefore, we have utilized a sound decomposition methodology
specific to the requirements of a mobile system. The detailed explanation of this
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Table2.1: Comparison of Noise Cancellation Methods

Method Advantages Limitations
BSS Techniques No training phase required.

No assumption is made about
the source of the signal and
other interferences.

The number of microphones
should be equal to or higher
than the number of sources.
Sources are assumed to be in-
dependent and sparse.

ANC Techniques Increased noise attenuation. The noise frequency should be
low.

Spectral Subtrac-
tion

Easy implementation. The noise should be station-
ary.

Kalman Filtering Provides the estimation qual-
ity and the variance of the es-
timation error. Mostly used
in digital platforms.

The states should be Gaus-
sian. Used only in linear sys-
tems.

Adaptive Filter-
ing

Computed in real-time. It can be generally assumed
that the amplitude of ambient
noise is low.

Beamforming
Technique

It can separate the targeted
source easily from the mixture
using a microphone array.

Separating speech from the
noise with a high SNR re-
quires forming narrow beams,
which requires the use of sev-
eral microphones. Further-
more, using multiple micro-
phones with spacing between
them results in a large array
size, which may not be prac-
tical in the case of mobile de-
vices.

system can be found in Section 3.3.

2.8 Audio Transmission to a Mobile Device

Audio transmission is another criteria for verification of the real-time requirement
of the system. There were two options; cable and wireless data transmission. Both
options provide sufficient data transmission rates for the real-time requirement. The
wireless data transmission was chosen due to the following reasons: Flexibility, mo-
bility, low cost, ease of use on mobile devices, and no cable restriction. However,
there are some disadvantages with respect to a cabled communication, such as lower
reliability and lower data rates [68]. Two solutions come to mind when it comes to
wireless data transmission in mobile devices: Bluetooth and WiFi (Wireless Fidelity).

Bluetooth is wireless communication is based on the radio system. It is used for trans-
ferring information between two or more devices. It is designed for both short range
and low bandwidth communications, such as sound data transferring. It can also be
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used in different application areas such as printers, voice transmission between mobile
devices, headsets and so on. Bluetooth communication is designed for establishing a
personal network between devices, by replacing cable connection [69].

WiFi is also wireless communication, yet, is not based on the radio system. It allows
devices to communicate across both the internet and the local wireless network. It
is designed for long range and high bandwidth communications, like streaming video
via the internet. Since the internet gets involved, the WiFi application area is very
wide such as video conferencing, surfing on the web and so on.

The detailed features of both Bluetooth and WiFi are shown below in Figure 2.2.

Figure 2.2: Comparison of Bluetooth and WiFi

2.9 Evaluation of Speech Recognition Performance

We have explained the speech recognition system and the factors that affect their
performance in the previous sections. However, how exactly can we evaluate the
performance of these systems? Is it enough to just convert speech to meaningful text
form? How can we decide which speech recognition system is better? Two metrics are
very useful when evaluating the performance of speech recognition systems: Accuracy
and noise robustness.

Accuracy is the first and the most important metric when evaluating the performance
of speech recognition. This is because all proposed speech recognition systems are
introduced by explaining their accuracy rate. However, it may not always be clear how,
i.e., under which conditions the accuracy was tested; especially in a noisy environment.
Therefore, noise robustness is another evaluative metric. As stated earlier, most of the
speech recognition systems provide poor performance in a noisy environment. Both
accuracy and noise robustness will be delved into in subsequent sections.

2.9.1 Accuracy

The accuracy can be described as the closeness of the correctly identified words to
the actually spoken words. The accuracy is a key metric for speech recognition sys-
tems. Since the early years, the ultimate aim of the researchers has been to obtain the
best accuracy for speech recognition. When major technology companies introduce
new speech recognition systems, they often brag about having the lowest error rate.
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Craig Federighi, for example, who was Apple’s senior vice present of software engi-
neering, stated that Apple’s Siri is more accurate than Google’s in 2015. A number
of researchers, engineers, and scientists have been working to improve the accuracy of
speech to text conversion. In order to evaluate the performance of speech recognition,
the following four metrics can be used: Correct Word Rate (CWR), Word Accuracy
Rate (WAR), Sentence Error Rate (SER), and Word Error Rate (WER).

In the following equations, S denotes the total number of substitutions, I denotes the
total number of insertions, D denotes the total number of deletions, and N denotes
the total number of words to be referenced.

CWR is calculated by the following formula:

CWR = N −D − S
N

x100 (2.5)

WAR is calculated by the following formula:

WAR = N −D − S − I
N

x100 (2.6)

SER is calculated by the following formula:

SER = numberofcorrectsentences

totalofcorrectsentences
x100 (2.7)

WER is calculated by the following formula:

WER = D + S + I

N
x100 (2.8)

Besides the above metrics, there are also some other metrics, such as the Character
error and utterance error. However, they are only used for specific purposes. In this
study, we use WER metric, which is widely used in the speech recognition domain.
Moreover, all speech recognition systems show the WER as a performance parameter.
However, WER has some disadvantages such as:

• The result can exceed 100% if the sum of the number of deletions, substitutions
and insertions exceed the total number of words.

• It does not tell how successful the system is. It just states that one is better
than the other.

Over the years, the researchers, engineers, and scientists have tried to reduce the WER,
thus improving the accuracy of speech recognition. WER was around 43% in 1995 as
achieved by IBM. It was 15.2% in 2004, and Microsoft achieved 6.3%WER in 2016 [37].
As stated earlier, the contemporary and the best WER is 4.9% as claimed by Google.
This is the same error rate as humans. The error rate has been drastically reduced
due to a number of breakthroughs in the speech recognition technology, such as the
improvement in speech decoding techniques, artificial intelligence, cloud computing
and development of devices that have more computational power. This is definitely a
big leap in progress. It was not possible to achieve these word error rates sixty years
ago. As technology evolves, scientists still continue to improve the accuracy. The
ultimate goal is to achieve better speech accuracy than humans.
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2.9.2 Noise Robustness

One of the fundamental metrics of speech recognition systems is noise robustness.
Noise robustness can be expressed as the speech recognition system’s ability to with-
stand decreases in SNR. Noise is present almost in all environments, thus the captured
signals by microphones generally contain speech with additive noise. Noise degrades
speech recognition systems’ accuracy as well as the speech intelligibility. Noise ro-
bustness is essential, since speech recognition systems are generally used in noisy
environments, such as a voice assistant on a busy street.

The speech recognition systems’ performances vary according to the noise level and
its spectro-temporal characteristics. The majority of speech recognition systems work
reasonably well in quiet environments, yet produce high error rates in noisy environ-
ments. Both academic researchers and engineers from various industries have been
working on this problem, i.e., noise robustness [70].

Besides noise, speech interference and reverberation are other factors that leads to
the degradation of speech intelligibility. While the speech recognition systems of ma-
jor technology companies are claimed to process noisy audio data from various media
smoothly; most of them are vulnerable to noise, speech interference, and reverberation.
When SNR decreases, the performance of speech recognition systems decreases drasti-
cally. In this thesis, the performances of major speech recognition systems have been
tested with noisy speech to determine their noise robustness, and a system has been
proposed to provide reasonable speech recognition accuracy in noisy environments.
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CHAPTER 3

METHODOLOGY

In this chapter, we will describe the systems that came to the forefront in the design
phase. Their components and subsystems will be explained in detail.

3.1 System Design Overview

In this thesis, we will mainly focus on speech recognition on mobile devices. The design
consists of two subsystems: The accessory and the device. The accessory subsystem
consists of three sub-parts: Data acquisition, digital signal processing, and Bluetooth
transmitter.

Figure 3.1: The Accessory Subsystem of the Design

Data Acquisition: Data acquisition captures sound signals in the environment via
a microphone array. It then amplifies the captured sound signals and converts these
analog signals to digital.
Digital Signal Processing (DSP): The DSP executes a sound decomposition al-
gorithm on the digital signals.
Bluetooth Transmitter: Bluetooth transmitter transmits the processed signals to
a mobile device through a single channel.

The device subsystem consists of two sub-parts: Mobile application and cloud system.
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Figure 3.2: The Device Subsystem of the Design

Mobile Application: This application runs on a mobile device that receives the
denoised speech signals from the accessory subsystem via Bluetooth. It sends them
to the cloud servers and shows the text equivalent of the conversations on the mobile
device screen in real time. For the facility of testing within the mobile application, we
chose the Android operating system.
Cloud System: The cloud system receives the audio signals via the internet, converts
them into a meaningful text and sends them to the mobile device application. For the
cloud system, we chose to use Google, since it has the lowest word error rate.

Apart from this design, there could be the option of running the noise cancellation
algorithm on the mobile device. In this case, the system would not perform in real
time, due to the resource limitation problem in mobile devices. Moreover, transmitting
multichannel audio would be necessary, which would complicate the system. Executing
the noise cancellation algorithm on the mobile device would also cause the battery to
be depleted in a short time. If the application is required to work for a long period,
an extra battery would be needed.

In this study, we implemented the whole device subsystem. The accessory subsystem,
apart from the Bluetooth Transmitter had already been implemented as part of [71]
and was made available for this study. The details of the proposed system are provided
in the following sections.

3.2 Data Acquisition

Figure 3.3: Data Acquisition Part of the Design
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This part consists of two sub-parts. The first part consists of a tetrahedral microphone
array. The second part consists of a preamplifier and an analog to digital converter.

In the designed system, there were several options for the microphone array. We
chose to use the tetrahedral microphone array due to its advantages. Determining
the location of the speech sources by microphone arrays to carry out beamforming
is a problem for speech processing applications [72]. Capturing speech signals from
all directions surrounding the microphone is essential for a mobile application. Since
Uniform Linear Arrays (ULA)s or other planar geometries could not cover the space
in 3D, a 3D symmetric geometry was needed. For a mobile application, a compact
size and limited number of microphones is also essential. The key feature of the
tetrahedral microphone array is that the microphones are closer to each other. In this
way, a compact structure is provided to be compatible with mobile devices. It allows
the reception of four-channels of audio signals in such a format that the pressure pW (t)
as well as the pressure gradients on the x, y, z-axes, pX(t), pY (t), pZ(t), respectively,
can be obtained [73].

The preamplifier receives four channel audio signals, increases the voltage to a level
sufficient to make it compatible with the analog to digital converter. The analog to
digital converter receives four channel pre-amplified audio signals and converts them
to the digital form with 44.1 kHz sampling frequency and 16 bits. Thereafter, it
transmits them to the digital signal processing unit.

Note that there may be more than one speaker at the same time in the environment
and which one is noise depends on the context and the listener. Therefore, it is not
possible to perform an automatic analysis on the captured sound signals. For this
reason, it is expected that the listener should turn the microphone array’s front to the
desired position. In this way, the target sound will always be at 0°with respect to the
microphone array. Since the microphone array has a three-dimensional symmetrical
structure, this rotation could also be done digitally. However, this would still require
input from the listener via a separate component, such as a rotary switch, a touchpad
like device, etc. which would be connected to the DSP.

In order to test this design we needed large data sets to determine its accuracy and
robustness under noise. Therefore, we used prerecorded audio files and simulated the
signals that would be obtained with this design. The details of the prerecorded audio
files are explained under Section 4.1.
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3.3 Noise Cancellation Algorithm Specifications

Figure 3.4: Noise Cancellation Algorithm Part of the Design

In this part, the received four-channel digital audio signals are processed on the DSP
device in real-time. The DSP receives four-channel audio signals applies noise cancel-
lation algorithm on it and sends the clean audio signal to the Bluetooth transmitter.

This algorithm based on blind source separation technique (see Section 2.6). The real-
time sound decomposition with the obtained signals is performed by an acoustic vector
processing technique, based on spatial filtering method by determining the direction
of the acoustic intensity vector [71]. In this method, the signals showing the pressure
and pressure gradients are first converted to the time-frequency domain. For each
time-frequency range, the direction of the active intensity vector lies in parallel to the
direction of the sound source.

γ (ω, t) = tan−1 Re{p∗
W (ω,t) pY (ω,t)}

Re{p∗
W (ω,t) pX(ω,t)} (3.1)

Re{ }, denotes the computation of the real value, * denotes the complex conjugate,
ω denotes angular frequency, and t denotes for time. The noise-free speech signal is
obtained by filtering s(ω, t), the pressure signal with a spatial filter f(γ(ω, t);µ, κ)
oriented in the speech direction:

s(ω, t) = pW (ω, t)f(γ(ω, t);µ, κ) (3.2)

This function is chosen for the spatial filter used since the directions of acoustic in-
tensity vectors calculated for a sound source in the presence of reclections resembles
the von Mises distribution [74], which is the circular equivalent of the Gauss function:

f(θ;µ, κ) = eκ cos(θ−µ)

2πI0(κ) (3.3)

Here, the κ concentration parameter, the µ source direction angle, and the θ current
direction angle; I0(κ) denotes the modified Bessel function in the zeroth order. In
this method, it is assumed that the directions of the target sounds are known, or the
directions of the sounds are first determined [73]. Thereafter, the filtering can be done
for these directions. For speech recognition, it is sufficient to specify only the target
direction.
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3.4 Transfer Media Selection

The detailed explanation of transfer media options was provided in Section 2.8. Both
Bluetooth and WiFi provide wireless communication by using radio signals. However,
the basic distinction is their purpose of design. While Bluetooth is essentially designed
for short range and low power consumption; conversely, WiFi provides long range and
high power consumption. By considering data rate, both are sufficient for transferring
audio signals. These two options do not have much superiority over each other, and
both can be used in our system. Bluetooth has been chosen because the application
needs to run for a long time and the power consumption of Bluetooth outperforms
that of WiFi.

3.5 Mobile Platform Speech Recognition Application

This part of the system consists of two parts: Mobile Application and Cloud System.
The mobile application runs locally on a mobile device, while the cloud system runs
on the cloud server. These two systems share information through an API provided
by the cloud system.

These systems were examined in detail regarding the Speech Recognition Using Cloud
Computing in Section 2.3. The WER is the main performance metric for speech
recognition systems and there was a competition between systems to achieve the lowest
word error rate on the first trial [3]. All are easy to use and can be deployed on mobile
devices; however, it was observed that the Google API has the lowest word error rate
among them. Initially, we performed many tests among the three of them (see Section
4.3.1). It can be inferred from the results that Google provides better accuracy. So,
Google was be used in our system.

After choosing the cloud system, we needed to select an operating system for mobile
application development. Google provides an API for both Android and iOS operating
systems, which together are used by 99.6% of new smartphones [75]. 74.2% of all
mobile phones worldwide use the Android operating system as of January of 2018 [76],
indicating that Android is significantly more widely used than iOS. There are other
reasons why Android is preferable to iOS, as follows:

1. The mobile application is easier to test within Android than within iOS.

2. Android is open source.

3. Android is more flexible than iOS.

Due to the reasons stated above, we chose to use the Android operating system for
developing an application in order to reach a wider audience.
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CHAPTER 4

PERFORMANCE ANALYSIS

In this chapter, we will explain the experimental setup and cover the factors affecting
speech recognition. Also, detailed information about the performed tests and the
obtained results will be presented.

4.1 The Experimental Setup

The ASR is a technique that is used to automatically convert speech signals into
corresponding meaningful text. In order to design the proposed system, we need
to ensure that it provides sufficient results in more difficult acoustic environments.
Toward that end, a variety of tests were performed using very large datasets. Different
audio files were selected from various sources. We conducted the following tests with
the prepared setup: Context independent tests, context independent rhyme tests,
context independent tests with different SNRs, and context dependent tests.

Although the design proposed in Section 3 was implemented partially (i.e., apart from
the Blueetooth tranmission, which was replaced with an audio cable) and was working
in real-time, it was not suitable for carrying out detailed tests. In order to create the
various audio files used for tests, the audio signals that would be obtained from the
proposed design were simulated using real impulse response recordings made with the
tetrahedral microphone array of the design, convolving them with clean speech signals
and applying the noise cancellation algorithm. In this way, the speech signals and test
conditions could be varied and a large set of audio files could be generated.

The characteristics of the audio files of the data sets we use in the tests are given below.
For context independent test, we used prerecorded mono audio files that contain a full
sentence. The sampling rate was 44100 Hz. The audio files consisted of 1200 different
speech samples that were obtained from 300 words spoken in English by four different
speakers, two females and two males. The samples were developed by the Public
Safety Communications Research Group (PSCR) [77]. The following is an example
of the speech sentences; Please select the word went. Each sentence begins with the
phrase Please select the word. Only the last word of the sentence changes. A total of
4800 samples were generated by the following methods:

1. Mixing 1200 speech samples with restaurant noise in which the target sources
were at 30°and the restaurant noise was at 130°.
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2. Applying noise cancellation algorithms with three different window sizes to the
mixed samples. Window sizes were 512, 1024, and 2048, respectively. A shorter
window size increases the separation performance, but also increases the arte-
facts.

Tests were conducted on a total of 6000 sound samples, consisting of 4800 generated
sound samples and 1200 original sounds. The entire data set was tested using Google
and IBM Watson cloud systems. For the Microsoft Bing cloud system, only clean
audio files were tested.

For the context independent rhyme test, we used the same prerecorded mono audio
files that were used in the context independent test. The only difference is that, in-
stead of the whole sentences, only the last words of the sentences (the words that were
changed) were tested. The reason for this is that the modified rhyme test measures
speech intelligibility independent of the content [78,79]. We only used the Google cloud
system because it provides better accuracy than the other cloud systems. Unlike the
modified rhyme test procedure used to evaluate the performance of ASR technique,
all rhymed words were tested separately, and no options were presented. In analyzing
the performance of the ASR technique, it is essential to conduct the evaluation inde-
pendent of the context. Otherwise, it may be possible to estimate a word that would
normally not be understood from the context.

For the context independent test with different SNRs, we used the partial prerecorded
mono audio files that were used for the context independent test. We produced dif-
ferent speech samples from the dataset. The audio files consist of 100 different speech
samples obtained from 50 words spoken by two different speakers, one female, and
one male. A total of 1100 samples were generated by adding noise to the original
speech samples and then cleaning them by applying the noise cancellation algorithm.
The input SNRs for the samples were 0, 3, 6, and 9 dB. The tests were conducted
on a total of 1200 sound samples containing 1100 generated sound samples and 100
original sounds. This test measured how robust the designed system was to changes
in the noise level. Again, only the Google cloud system was used for this test.

For the context dependent test, we used both prerecorded mono files and stereo audio
files that contain full sentences. The original speech samples consisted of 10 different
sentences in English obtained from 20 different speakers, 10 females, and 10 males.
The contents of these audio files are given in the Appendix B. The sampling rate was
44100 Hz and the files had 16-bit resolution. Initially, we combined all the sentences
of one speaker into a single audio file and obtained 200 original clean speech samples.
Then the noisy recordings were obtained by mixing female speech and male speech.
The sample from the first female speaker was mixed with the sample from the first
male speaker; the sample from the second female speaker was mixed with the sample
from the second male speaker, etc. While mixing, the female speaker was positioned
at 0°and the male speaker’s position was changed to 30°, 60°, 120°, and 180°with
respect to the microphone array. This positioning was achieved by convolving the
speech samples with the room impulse responses recorded when the sound source was
at these positions in a listening room with a reverberation time of 0.32 s. A total of
1600 samples were generated with a mixture of four different angles, 30°, 60°, 90°, and
180°, respectively Tests were made on a total of 1800 sound samples that consist of
1600 generated sound samples and 200 original sounds. Again, only the Google cloud
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system was used for this test.

Since the datasets used in this study were very large and diversified, it took a long
time to record, process, and analyze them. Therefore, we prepared a testing routine
that included three applications that run on a computer to reduce the amount of
testing time:

1. Audio Reader

2. Output Collector

3. Speech Recognition Performance Evaluator

Audio Reader: This application basically reads audio files from the database and
sends the information to cloud servers using an API that was provided by the cloud
systems. The cloud systems send back meaningful text that is equivalent to the
audio content. Finally, corresponding texts are stored in the database. A different
application was developed for each cloud system. The applications were developed by
using Java language for Google and IBM and C# language for Microsoft.

Figure 4.1: Reading the Audio Files and Converting them to Text

Output Collector: It reads all the text files that were stored by the audio reader
application and it collects them into a single file based on the audio source. These
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data are required for further analysis because we need to determine the robustness
and word error rate changes due to the audio source. This application was developed
using Java language.

Figure 4.2: Reading the Audio Files and Collecting the Text Files into a Single
File

Evaluation of Speech Recognition Performance: It reads the output of the
audio equivalent text files and corrects the text files; it then calculates the WER
using the Levenshtein Distance algorithm [80]. There are multiple implementation
fields of Levenshtein Distance algorithm. Speech recognition implementation is used
in this study. Speech recognition implementation of Levenshtein Distance algorithm
is a metric to calculate the difference rate of two given strings. The output 0.00%
indicates that two given strings are identical. Note that the similarity rate can be
higher than 100.0%. This application was developed using MATLAB environment.

4.2 The Covered Speech Recognition Factors

The speech recognition challenges were explained in detail in Section 2.5. We con-
ducted a variety of tests using very large data sets to measure the performance of
the designed system. While designing the test procedures, the following issues were
considered:

• In all the tests, an equal number of female and male were evaluated using an
equal number of speech samples. In addition, the prerecorded speech samples of
at least 12 different female and male speakers were tested. These procedures were
executed to measure both the impact of the speakers’ voices and the speaker’s
gender on the recognition performance.

• In context dependent rhyme tests, we used prerecorded audio files that have
different SNRs to show the speech recognition performance changes based on
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Figure 4.3: The Evaluation of Speech Recognition Performance

the noise level. The following SNRs were used: 0, 3, 6, and 9 dB.

• In the context independent tests, we used three major cloud systems: Google,
IBMWatson, and Microsoft to test the prerecorded audio files. Different systems
were used to measure the recognition performance of the systems and to also
observe which of the three systems outperformed the others. In addition, these
systems were used to examine how they behave in relation to noisy audio files.

• In the context independent test, we used separated and mixed speech samples
from females and males to test how the designed system handles different sound
characteristics of female and male voices. In addition, we also had the oppor-
tunity to compare intra-gender speech recognition performances, i.e., among
different male speakers as well as among different female speakers.

The designed test procedures were explained in detail above. By considering these
procedures, the factors covered can be summarized as noise, speaker dependence and
speech interference.

Although the covered factors mentioned above were evaluated, no separate tests were
designed to determine the system latency. Among the cloud systems considered, only
Google cloud provides a feature to measure the speech-to-text conversion latency time.
Using this feature it was found that the latency varies between 20-35 ms. This takes
into account the time that elapses through the network, which is known as the response
time for cloud systems. In fact, all of the tested cloud systems stated that conversion
of spoken audio to text occurred in real time. However, the speech rate should also be
considered. In all the test samples, the speaker’s speech rate was average and instant
conversion may not be possible for quicker speech.

We could not evaluate the cloud system data privacy and security, either, which are
also important for our targeted applications. However, it is known that each cloud
system has its own rules to protect data. For example, the data is always accessed via
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encrypted channels and stored with at least 256-bit Advanced Encryption Standard
(AES-256). Thus, no data can be stolen in accordance with these rules.

4.3 Results

In order to evaluate the performance of the designed system, a variety of tests were
conducted using very large datasets. The test results are presented separately for
each different test. An overview of the results follows immediately. For the reported
WERs, 0.00 corresponds to 0.00% and 1.00 corresponds to 100.00%.

4.3.1 Context Independent Test Results

The WERs for context independent tests using Google, IBM Watson, and Microsoft
Bing Cloud Systems are given in Tables 4.1, 4.2, and 4.3, respectively. In the tables,
NCA 1, NCA 2, and NCA 3 represent the noise cancellation algorithms applied with
window sizes of 512, 1024, and 2048 samples, respectively. NO, means no output, i.e.,
the system did not provide any output. Clean means that there is no noise in the
audio files. Noisy means that audio files were mixed with restaurant noise. All audio
files were tested with Google and IBM Watson cloud systems. Only the clean audio
files were tested with Microsoft Bing cloud system, as it gave higher WERs even for
clean audio files. So, it was unnecessary to test its performance under noise.

Table4.1: WERs for Context Independent Tests Using Google Cloud System

Speaker Clean Noisy NCA 1 NCA 2 NCA 3
F1 0.0401 1.9956 0.1417 0.1774 0.1694
F2 0.0497 1.8671 0.1047 0.1165 0.1212
M1 0.0778 4.4653 0.2828 0.2815 0.3597
M2 0.0497 4.1138 0.1115 0.1456 0.1231
Average 0.0543 3.1104 0.1601 0.1802 0.1933

Table4.2: WERs for Context Independent Tests Using IBM Watson Cloud Sys-
tem

Speaker Clean Noisy NCA 1 NCA 2 NCA 3
F1 0.3874 NO 0.8127 0.7747 0.8256
F2 0.3648 NO 0.8072 0.7955 0.7804
M1 0.4245 NO 1.2367 1.3035 1.0748
M2 0.3641 NO 1.0479 1.0310 0.9702
Average 0.3852 NO 0.9761 0.9762 0.9127

For the results obtained with Google cloud system:

• Female WERs are distinctly lower than male WERs in a noisy environment.

• In clean and NCA-applied audio files, the average female WERs are lower than
the average male WERs.
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Table4.3: WERs for Context Independent Tests Using Microsoft Bing Cloud
System

Speaker Clean Noisy NCA 1 NCA 2 NCA 3
F1 0.3658 NO NO NO NO
F2 0.2759 NO NO NO NO
M1 0.8217 NO NO NO NO
M2 0.3106 NO NO NO NO
Average 0.4435 NO NO NO NO

• The lowest WERs are recorded for clean audio files.

• The speaker M1 has the highest WER of 446.53% achieved among the noisy
audio files, and F1 has the lowest WER of 4.01% achieved among the clean
audio files.

For the results obtained with IBM cloud system:

• The cloud system did not provide any output for noisy audio files, which was
unexpected.

• Female WERs are slightly lower than male WERs in clean audio files.

• The average WERs for females are much lower than the average WERs for males.

• The lowest WERs are achieved for clean audio files.

• The speaker M1 has the highest WER of 123.67% when NCA 1 was applied to
the audio files, and M2 has the lowest WER of 36.41% achieved among the clean
audio files.

For the results obtained with Microsoft cloud system:

• Only clean audio files were tested.

• The WERs for females are lower than the average WERs for males.

• The speaker M1 has the highest WER of 82.17% achieved, and F2 has the lowest
WER of 27.59% achieved.

Among the clean audio files, for Google cloud, the average WER performance was
5.43% which is 7 times better than the performance of IBM Watson (38.52%), and 8
times better than the performance of Microsoft Bing (44.35%). By considering NCA-
applied results, the average WERs in Google cloud were 16.01%, 18.02%, and 19.33%
when window sizes are 512, 1024, and 2048, respectively. However, average WERs for
IBM Watson were 97.61%, 97.62%, and 91.33%, respectively. As observed, Google
cloud clearly provides a lower error rate than IBM, which we expected. When window
sizes become larger, Google WER increases, but IBM WER decreases.

In the results obtained fromMicrosoft and IBMWatson cloud systems, different WERs
were obtained when noise cancellation algorithms with different window sizes were
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applied. In addition, all of the obtained WERs are better than the WERs from
the noisy audio files. After applying the algorithms, NCA 1, NCA 2, and NCA
3, the results were 19.42, 17.26, and 16.08 times better, respectively, than the results
obtained for noisy audio files in the Google cloud system on average. A shorter window
size improves the separation performance, but also increases the level of artifacts.
Since the test results show that the shorter window size performs better, it can be
said that the level of artifacts does not adversely affect the recognition performance.
In the IBM cloud system, the improvement cannot be calculated, because no output
could be obtained for the noisy audio files. However, it can only stated NCA3 provides
better results among them.

As seen from the information presented in Tables 4.1 and 4.2, Google cloud has the
lowest WERs among the three tested cloud systems. We had investigated Google
cloud, IBM Watson, and Microsoft Bing cloud systems in Section 2.3. The Google
cloud system was reported to have the lowest WER among the other tested cloud
systems, which we verified. In addition, we showed that the Google cloud can produce
an output even for noisy speech. Since our study aims to measure how robust the
designed system is in noisy environments and quantify the improvement achieved with
noise cancellation, we need to get output for noisy speech, too. Since only Google cloud
provided an output for noisy speech, only it was used in all of the subsequent tests.
The used Google cloud speech recognition jar version is 0.34.0-alpha and accessed
February 2018.

4.3.2 Context Independent Rhyme Test Results

The WERs for context independent rhyme tests are given in Table 4.4. In addition,
the results for different word groups are given in Tables 4.5 and 4.6. There were 50
word groups, and each word group consisted of six rhyming words. The word lists in
these word groups are given in Appendix A. In the tables, the following abbreviations
are used:

• WGN: Word Group Number

• NCA1F1: Noise Cancellation Algorithm 1 with Female Speaker Number 1

• NCA1M1: Noise Cancellation Algorithm 1 with Male Speaker Number 1

• NCA1F2: Noise Cancellation Algorithm 1 with Female Speaker Number 2

• NCA1M2: Noise Cancellation Algorithm 1 with Male Speaker Number 2

• CF1: Clean Female Speaker Number 1

• CF2: Clean Female Speaker Number 2

• CM1: Clean Male Speaker Number 1

• CM2: Clean Male Speaker Number 2

NCA 1, NCA 2, and NCA 3 represent the noise cancellation algorithms applied with
window sizes of 512, 1024, and 2048 samples, respectively. Clean means that there is
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no noise in the audio files. Noisy means that audio files were mixed with restaurant
noise.

Table4.4: WERs for Independent Rhyme Tests

Speaker Clean Noisy NCA 1 NCA 2 NCA 3
F1 0.1867 0.8533 0.3367 0.3767 0.3967
F2 0.2433 0.9400 0.4433 0.4567 0.4600
M1 0.2650 0.9957 0.7267 0.7167 0.7300
M2 0.2300 0.9867 0.4633 0.5300 0.4967
Average 0.2312 0.9440 0.4925 0.5200 0.5208

Table4.5: WERs for Independent Tests for First 25 Word Groups

WGN NCA1F1 NCA1F2 NCA1M1 NCA1M2 CF1 CF2 CM1 CM2
1 0.33 0.33 0.83 0.50 0.16 0.16 0.33 0.16
2 0.33 0.00 1.00 0.66 0.16 0.00 0.00 0.00
3 0.00 0.33 0.16 0.33 0.00 0.16 0.33 0.00
4 0.33 0.33 0.50 0.16 0.00 0.00 0.33 0.16
5 0.00 0.33 0.66 0.50 0.16 0.16 0.00 0.33
6 0.50 0.83 0.66 0.00 0.16 0.50 0.00 0.00
7 0.33 0.50 0.50 0.50 0.00 0.00 0.00 0.00
8 0.16 0.33 0.83 0.50 0.33 0.16 0.50 0.33
9 0.50 0.50 1.00 0.16 0.33 0.50 0.33 0.33
10 0.83 0.50 0.83 0.66 0.16 0.50 0.50 0.66
11 0.33 1.00 0.83 0.83 0.33 0.50 0.50 0.66
12 0.66 0.66 1.00 0.83 0.50 0.83 0.50 0.33
13 0.66 0.50 1.00 0.66 0.16 0.50 0.33 0.50
14 0.16 0.33 1.00 0.33 0.16 0.33 0.50 0.33
15 0.00 0.50 0.66 0.16 0.00 0.33 0.00 0.16
16 0.33 0.16 1.00 0.16 0.33 0.16 0.16 0.16
17 0.50 0.50 0.50 0.33 0.50 0.33 0.33 0.33
18 0.33 0.50 0.50 0.00 0.00 0.16 0.33 0.16
19 0.16 0.33 0.83 0.33 0.00 0.00 0.33 0.16
20 0.33 0.33 0.66 0.33 0.16 0.33 0.16 0.33
21 0.50 0.50 0.50 0.66 0.00 0.00 0.00 0.16
22 0.16 0.16 0.50 0.33 0.00 0.00 0.00 0.00
23 0.16 0.00 1.00 0.33 0.00 0.00 0.00 0.00
24 0.16 0.33 0.83 0.50 0.00 0.00 0.33 0.00
25 0.33 0.33 0.83 0.83 0.16 0.00 0.16 0.16

As seen in Table 4.4, because only one word was tested, the error rate varies from
0.00% to 100.00%, unlike in the other tests. The lowest WERs were achieved for clean
audio files. The average WERs for females is lower than the average WERs for males.
However, when we examine them separately, in some cases the WERs for males is
lower than the WERs for females. The applied algorithms NCA 1, NCA 2, and NCA
3 provide an average of 1.91, 1.81, and 1.81 times improvement, respectively, when
compared with noisy audio files for the Google cloud. Shorter window sizes increase
the separation performance, but also increase the artifacts. However, test results show
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Table4.6: WERs for Context Independent Tests for Next 25 Word Groups

WGN NCA1F1 NCA1F2 NCA1M1 NCA1M2 CF1 CF2 CM1 CM2
26 0.50 0.16 0.66 0.50 0.16 0.16 0.00 0.33
27 0.50 0.33 1.00 0.66 0.66 0.33 0.50 0.33
28 0.00 0.66 0.83 0.33 0.00 0.00 0.00 0.00
29 0.66 0.50 0.83 0.66 0.33 0.16 0.33 0.16
30 0.33 0.00 0.66 0.50 0.00 0.00 0.16 0.00
31 0.00 0.33 1.00 0.83 0.16 0.33 0.83 0.50
32 0.16 0.66 0.83 0.83 0.16 0.16 0.33 0.50
33 0.50 0.33 1.00 1.00 0.16 0.16 0.16 0.16
34 0.33 0.33 0.66 0.50 0.16 0.33 0.00 0.16
35 0.50 0.50 0.83 0.50 0.33 0.33 0.66 0.33
36 0.16 0.50 0.83 0.33 0.00 0.16 0.16 0.00
37 0.16 0.33 0.50 0.33 0.16 0.16 0.16 0.33
38 0.50 0.83 1.00 0.50 0.33 0.33 0.50 0.50
39 0.33 0.83 0.83 0.66 0.16 0.16 0.50 0.16
40 0.00 0.33 0.50 0.00 0.16 0.16 0.33 0.00
41 0.50 0.50 0.83 0.16 0.33 0.16 0.16 0.16
42 0.33 0.66 0.33 0.50 0.00 0.33 0.00 0.16
43 0.16 0.16 0.50 0.50 0.00 0.16 0.00 0.16
44 0.16 0.83 0.83 0.33 0.33 0.33 0.33 0.16
45 0.50 0.50 0.50 0.50 0.33 0.50 0.33 0.50
46 0.50 0.16 0.66 0.66 0.16 0.16 0.33 0.33
47 0.83 0.83 0.66 0.83 0.66 0.66 0.83 0.66
48 0.16 0.66 0.50 0.33 0.16 0.33 0.00 0.00
49 0.50 0.66 0.16 0.16 0.33 0.50 0.50 0.16
50 0.33 0.33 0.66 0.33 0.16 0.33 0.16 0.16

that the shorter window size performs better for Google cloud.

We think cloud systems may recognize certain words better because of their length or
in general their content. To better analyze this situation, we examined 50 rhyming
word groups separately. As seen Tables 4.5 and 4.6, for clean audio files, the average
score for WGN 7, 22, and 23 was 0.00%, whereas the average score for WGN 12 was
54.00%, which is the highest WER among clean audio files. In NCA1, WGN 7 had
the lowest average WER score at 29.00%, whereas WGN 12 had the highest average
WER score at 78.75%. WGN 7 consists of the following words; teak, team, teal, teach,
tear and tease. WGN 12 consists of the following words; sum, sun, sung, sup, sub, and
sud. Our objective in doing this test was to be able to determine if speech-recognition
systems recognize certain word groups better than others. Results show it is indeed
the case.

4.3.3 Context Independent Tests with Different SNR

The WERs for the context independent tests with different SNRs are presented in
Table 4.7. Speech samples from one female speaker and one male speaker were used
in the context independent tests, denoted by F1 and M1, respectively in Table 4.7.
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The following SNRs were used: 0, 3, 6, and 9dB.

Table4.7: Context Independent Tests with Different SNRs

Speaker Audio Type 0dB
SNR

3dB
SNR

6dB
SNR

9dB
SNR

F1 Clean 0.028 0.028 0.028 0.028
Noisy 1.1312 0.295 0.105 0.04
Noise Cancelled 0.139 0.050 0.034 0.034

M1 Clean 0.044 0.044 0.044 0.044
Noisy 4.0043 0.7627 0.1597 0.083
Noise Cancelled 0.1753 0.1493 0.092 0.068

The results clearly indicate that as SNR increases, WER decreases. As SNR increases
from 0dB to 3dB, 6dB, and 9 dB, respectively, the noise cancellation algorithm was
applied to the audio files, the improvement rates increased 8.13, 5.90, 3.08 and 1.17
times for the female speaker and 22.84, 5.10, 1.73 and 1.22 times for the male speaker.
Figure 4.4 and Figure 4.5 show the WERs against different SNRs for the female and
male speakers, respectively.

Figure 4.4: Context Independent Tests with Different SNR Results for the Female
Speaker

As the SNR increases from 0 dB, WER decreases rapidly for a certain period and
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Figure 4.5: Context Independent Tests with Different SNR Results for the Male
Speaker

then the rate of change decreases. We predict that the change in WER will be limited
when the SNR is equal to or greater than 9dB. When the information presented in
Figure 4.4 and Figure 4.5 is examined together,it can be seen that the recognition
performance for female speaker is better than the performance for male speaker in all
of the tests. This could be due to the fact that frequency bands occupied by male
voices are more masked by noise. The spectrums of the original, noisy, and noise
cancelled signals whose SNRs are 3 dB are given in Appendix C.

4.3.4 Context Dependent Test Results

The following tests were carried out within the scope of content dependent tests:

1. Individual tests for female speakers

2. Individual Tests for male speakers

3. Context dependent tests male speaker position at 30°

4. Context dependent tests male speaker position at 60°

5. Context dependent tests male speaker position at 120°
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6. Context dependent tests male speaker position at 180°

First, the audio files of female and male speakers were tested individually. These
results can be found in Table 4.8. Then, we have combined all sentences of a speaker
as a single audio file. Finally, we separated all combined audio files. The WERs
obtained for the mixtures and separated speakers for different source positions are
presented in Tables 4.3.4, 4.10, 4.11, and 4.12. Mix_Female and Sep_Female indicate
that the WERs were for the female speaker from the mixture and separated signal,
respectively. Similarly, Mix_Male and Sep_Male indicate that the WERs were for
the male speaker output. Mix_Ave are the average of the results of male and female
speakers.

Table4.8: Context Dependent Test Results For Individual Female and Male
Speakers

Speaker Female Speaker Male Speaker
1 0.0214 0.0234
2 0.0286 0.0143
3 0.0143 0.0448
4 0.0214 0.0687
5 0.0143 0.0143
6 0.0143 0.0214
7 0.0143 0.0448
8 0.0291 0.0286
9 0.0214 0.0497
10 0.0143 0.0214
Average 0.01934 0.03314

Speakers Mix_Female Mix_Male Mix_Ave Sep_Female Sep_Male
F1_M1 0.2936 1.0154 0.6545 0.1079 10.510
F2_M2 0.8327 0.2869 0.5598 1.7665 0.3939
F3_M3 1.0647 0.0817 0.5732 5.5683 0.3274
F4_M4 1.0798 0.1961 0.6379 0.6420 1.5517
F5_M5 0.9164 0.8864 0.9014 0.2152 2.9310
F6_M6 0.9834 0.5893 0.7863 0.3519 1.3572
F7_M7 0.2398 1.0486 0.6442 0.1196 8.1230
F8_M8 0.9354 0.5357 0.7355 3.7522 3.0297
F9_M9 0.7930 0.7125 0.7527 1.0628 1.7208
F10_M10 0.8982 0.9130 0.9056 0.6782 2.5537
Average 0.8037 0.6265 0.7151 1.4264 2.3039

Table4.9: Context Dependent Test Results for the Case When Male Speaker
Position is at 30°

When WERs are investigated in Table 4.8, it can be seen that all WERs for both
female and male speakers are very low, i.e. they have been recognized with high
accuracy. The values are even lower than the average WERs specified by the Google
cloud system. When we examine the WERs separately, in some cases both male and
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Table4.10: Context Dependent Test Results for the Case When Male Speaker
Position is at 60°

Speakers Mix_Female Mix_Male Mix_Ave Sep_Female Sep_Male
F1_M1 0.2979 1.0025 0.6502 0.7637 10.650
F2_M2 0.8123 0.3320 0.5721 4.8450 0.2367
F3_M3 1.0738 0.0644 0.5691 7.7950 0.2722
F4_M4 1.1044 0.2173 0.6608 4.8542 1.8620
F5_M5 0.9058 0.8693 0.8875 0.4331 4.1903
F6_M6 0.9866 0.5740 0.7803 1.8428 4.7226
F7_M7 0.2358 1.0992 0.6675 0.6365 3.0594
F8_M8 0.9465 0.4508 0.6986 5.0733 0.7967
F9_M9 0.7641 0.6800 0.7220 1.8492 1.6009
F10_M10 1.1142 0.9813 1.0447 3.0658 4.7795
Average 0.8241 0.6270 0.7252 3.1158 2.2585

Table4.11: Context Dependent Test Results for the Case When Male Speaker
Position is at 120°

Speakers Mix_Female Mix_Male Mix_Ave Sep_Female Sep_Male
F1_M1 0.4681 0.9023 0.6852 2.2559 6.6595
F2_M2 0.8500 0.2290 0.5395 6.2250 0.1173
F3_M3 1.0647 0.0745 0.5696 10.5667 0.0985
F4_M4 1.0706 0.1055 0.5880 7.2671 0.2484
F5_M5 0.9941 0.3202 0.6571 1.3385 0.8841
F6_M6 1.0038 0.3616 0.6827 4.5303 0.5180
F7_M7 0.3711 1.0021 0.6866 1.0705 0.7555
F8_M8 0.9594 0.2391 0.5992 6.9167 0.0974
F9_M9 0.8911 0.4728 0.6819 5.8028 0.3026
F10_M10 0.9894 0.5261 0.7577 8.3100 0.7122
Average 0.8662 0.4233 0.6447 5.4283 1.0393

Table4.12: Context Dependent Test Results for the Case When Male Speaker
Position is at 180°

Speakers Mix_Female Mix_Male Mix_Ave Sep_Female Sep_Male
F1_M1 0.3965 1.0010 0.6987 0.4619 No Output
F2_M2 0.8450 0.2356 0.5403 5.3417 No Output
F3_M3 1.0647 0.0817 0.5745 11.0667 No Output
F4_M4 1.0860 0.1472 0.6166 5.1547 No Output
F5_M5 0.8520 0.5346 0.6933 0.8589 No Output
F6_M6 1.0113 0.4954 0.7533 3.3462 No Output
F7_M7 0.2816 0.9953 0.6384 0.5447 No Output
F8_M8 0.9688 0.3003 0.6345 5.6267 No Output
F9_M9 0.8042 0.5259 0.6650 4.1549 No Output
F10_M10 0.9012 0.6690 0.7851 4.1179 No Output
Average 0.8211 0.4986 0.6599 4.0674 NA
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female WERs (1.43%) are almost one-fourth of WERs (4.9%) of Google cloud system
explained. This is an unexpected situation. This situation may be explained by the
following reasons;

1. Audio files were recorded in a noiseless environment.

2. Audio files are context dependent which means that the cloud system can correctly
identify the sentences with predictions, even if they are misinterpreted.

3. The data sets may have been used by others before. In this case, the Google cloud
system may have already been trained using these data sets.

We believe that the explanations 2 and 3 mentioned above are very likely, because
we have used prerecorded audio files which anyone can access through the use of
the internet and Google cloud system is known to exploit the context to make a
prediction [81].

In Table 4.3.4, the mixtures and separated audio files were examined for the case when
the female speaker is positioned at 0°, and the male speaker is positioned at 30°. The
following results were observed:

• The lowest WER is achieved for the female speaker output of the mixture
when speakers are F7_M7 and, the highest WER is achieved when speakers
are F4_M4.

• The lowest WER is achieved for the male speaker output of the mixture when
speakers are F3_M3 and, the highest WER is achieved when speakers are
F7_M7.

• The average of WERs when the output is calculated according to the female
speaker output of the mixtures is 80.37% and according to the male speaker
output is 62.65%, which are close to each other.

• The lowest WER is achieved for the female speaker output of the separated
sounds when speakers are F1_M1 and the highest WER is achieved when speak-
ers are F3_M3.

• The lowest WER is achieved for the male speaker output of the separated sounds
when speakers are F3_M3 and the highest WER is achieved when speakers are
F1_M1.

• The average of WERs when the output is calculated according to the female
speaker output of the separated sounds is 67.82% and according to the male
speaker output is 255.37%.

In Table 4.10, the mixtures and separated audio files were examined for the case when
the female speaker is positioned at 0°, and the male speaker is positioned at 60°. The
following results were observed:
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• The lowest WER is achieved for the female speaker output of the mixture
when speakers are F7_M7 and, the highest WER is achieved when speakers
are F4_M4.

• The lowest WER is achieved for the male speaker output of the mixture when
speakers are F4_M4 and, the highest WER is achieved when speakers are
F7_M7.

• The average of WERs when the output is calculated according to the female
speaker output of the mixtures is 111.42% and according to the male speaker
output is 98.13%.

• The lowest WER is achieved for the female speaker output of the separated
sounds when speakers are F5_M5 and the highest WER is achieved when speak-
ers are F3_M3.

• The lowest WER is achieved for the male speaker output of the separated sounds
when speakers are F8_M8 and the highest WER is achieved when speakers are
F1_M1.

• The average of WERs when the output is calculated according to the female
speaker output of the separated sounds is 306.58% and according to the male
speaker output is 477.95%.

In Table 4.11, the mixtures and separated audio files were examined for the case when
the female speaker is positioned at 0°, and the male speaker is positioned at 120°. The
following results were observed:

• The lowest WER is achieved for the female speaker output of the mixture
when speakers are F7_M7 and, the highest WER is achieved when speakers
are F4_M4.

• The lowest WER is achieved for the male speaker output of the mixture when
speakers are F4_M4 and, the highest WER is achieved when speakers are
F7_M7.

• The average of WERs when the output is calculated according to the female
speaker output of the mixtures is 98.94% and according to the male speaker
output is 52.61%.

• The lowest WER is achieved for the female speaker output of the separated
sounds when speakers are F7_M7 and the highest WER is achieved when speak-
ers are F3_M3.

• The lowest WER is achieved for the male speaker output of the separated sounds
when speakers are F8_M8 and the highest WER is achieved when speakers are
F1_M1.

• The average of WERs when the output is calculated according to the female
speaker output of the separated sounds is 831.00% and according to the male
speaker output is 71.22%.
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In Table 4.12, the mixtures and separated audio files were examined for the case when
the female speaker is positioned at 0°, and the male speaker is positioned at 180°. The
following results were observed:

• The lowest WER is achieved for the female speaker output of the mixture
when speakers are F7_M7 and, the highest WER is achieved when speakers
are F4_M4

• The lowest WER is achieved for the male speaker output of the mixture when
speakers are F3_M3 and, the highest WER is achieved when speakers are
F1_M1.

• The average of WERs when the output is calculated according to the female
speaker output of the mixtures is 90.12% and according to the male speaker
output is 66.90%.

• The lowest WER is achieved for the female speaker output of the separated
sounds when speakers are F1_M1 and the highest WER is achieved when speak-
ers are F3_M3.

• No output was produced in case of male speaker output of the separated sounds.

• The average of WERs when the output is calculated according to the female
speaker output of the separated sounds is 411.79%.

After careful consideration of all observations, it can be said that there is no single
mixture or separated output that always provides the lowest WER or the highest
WER. Although there are exceptions, in general if an output (separated or mixture)
gives the highest (or lowest) WER for one speaker, it gives the lowest (or highest)
WER for the other speaker. This means one of the speakers usually dominates the
mixture and is separated better.

Generally speaking, it is expected that the WER for separated sounds should be
lower than the WER of corresponding mixture. However, the results show that it
is not always true. For example, in Table 4.3.4, for the speakers F7_M7, the WER
calculated for male speaker output for the mixture was 104.86% and for separated
output 812.30%. There are also examples of the opposite. It can be explained by the
calculation of WER. When mixtures are recognized, the number of deletions would
usually be 0, as there are more spoken words in the test sample than in the reference.
Therefore, the misrecognized words are considered as substitutions. Since in the
mixtures, the speeches of both speakers overlap, the number of insertions would also
be limited. This artificially lowers the WERs for the mixtures. In fact, manual
comparison of the recognized sentences for the mixtures and the separated sounds
reveals that the recognized sentences for the separated sounds are more correct and
meaningful than the recognized sentences for the mixtures considering their content,
although the WER is higher for the former than the latter.

In some cases, the WER is too high. It is even larger than 500%. When we examined
the outputs for these cases, it was seen that the cloud system did not produce an output
or a sentence that consisted of several words; instead, just one or two words were
output. For example, in Table 4.3.4, for mixture of the speakers F1_M1 the output
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was Philosophers Education, for which the correct output should be Philosophers of
education often differ in their views on the nature of knowledge. Since the number of
deletions in this case is very high, this leads to a very high WER. It is thought that
such errors might be due to a problem in the real-time transfer of speech frames in
between mobile application and cloud system, such as due to packet loss, rather than
a problem in the recognition itself.

Figure 4.6: Context Dependent Mixture Test Different Male Speaker Position
Results

As it can be seen from Figure 4.6,the WERs for the mixtures for changing source
direction is almost the same for the female speech, but different for the male speech.
It is due to the fact that for these test cases the direction of the female speaker stays
the same at 0°, but the direction of the male speaker changes. Although the distances
between the speakers and the microphone array are the same in all cases, the direction
change in the male speaker’s position may lead to higher or lower signal levels due to
constructive or destructive additions of early reflections. Therefore, the signal levels
of male speech would be different for different directions. The lowest WER is achieved
when male speaker is positioned at 120°.

As it can be seen from Figure 4.7, the average of WERs calculated according to the
male speech outputs is lower than the female speech outputs. The WERs calculated
according to the separated female speech output increases with increasing angular dif-
ference between the speakers, since the separation performance also increases. How-
ever, at 180°, there seems to be a problem in the separation performance. For this
direction, there is no output produced for the male speech.
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Figure 4.7: Context Dependent Separation Test Male Speaker Position Results
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CHAPTER 5

DISCUSSIONS

The results of all the performed tests are given in the previous section. Here, we will
interpret the results and compare them with the studies in the literature.

By looking at the WERs, we have compared the speech recognition performances of
different cloud systems. Google cloud has clearly produced better speech recognition
results than other systems. The study also showed that Google achieved 1.50 times
better performance than Microsoft and 1.81 times better performance than IBM [82].
It also produced output for noisy recordings, which shows that it is more robust
against noise than other systems. Our findings are in line with other studies which
compared these systems. For example, in a study conducted in 2017 [83], Google’s
recognition performance was found to be twice better than Microsoft’s speech recog-
nition performance, with WERs of 9% by Google and 18% by Microsoft while using
clean audio files. In another study performed in 2017 [84], Google achieved 1.3 times
better performance than IBM and 1.6 times better performance than Microsoft. In
our study, Google achieved 5.43% while Microsoft achieved 44.35%. When we checked
the studies that compare recognition performances, it was found that different tests
have been performed as well as different metrics, most of which were mentioned in
Section 4.1. However, Google was found to be superior in most cases.

The gender bias in Google cloud’s speech recognition performance has been studied
before [85], which found that male speech is recognized much better than female
speech. Google also released an application that makes speech recognition for children
[86] and in this study, WER for female speech was found to be lower than for male
speech. In our study, we have also found that for the mixtures of two speakers,
the male speech is recognized with higher accuracy than female speech. However, it
was vice versa when they were tested individually. Also, in the mixtures, the signal
levels of both speakers are not always equal, which might explain discrepancies in
the performance. Therefore, our results do not indicate gender bias in the recognition
performance. When the speech signals were contaminated with restaurant background
noise, the average WER was found to be 0.822. After noise cancellation, the average
WER reduced to 0.092. Accuracy is improved 5.1 times. This improvement supported
our expectations from the system.

As can be seen in Figures 4.4, and 4.5, speech recognition performance is negatively af-
fected by noise. When the noise level increases, speech intelligibility decreases and this
leads to higher WERs. However, when noise cancellation is applied, the WER stays
almost constant and is not affected much by noise. This also realizes our expectations
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from the system.

As it can be inferred from Tables 4.4 and 4.1 that provide results for context inde-
pendent tests and context independent rhyme tests, respectively, better accuracy is
achieved for the former, i.e., when words are used in a sentence, rather than individ-
ually. While the context independent tests were in the form of "please select the word
went" where only the last word changes, in context independent rhyme tests only one
word was used. Misrecognition of the last word in the former test would result in a
WER of 0.2 (1 substitution/5 words), whereas in the latter test 1 (1 substitution/1
word). Despite this bias, using words in a sentence results in only 1.25 times better
recognition performance.

In Table 4.3.4, 4.10, 4.11, and 4.12, the mixtures and the separated audio files were
examined according different positioning of the speakers, resulting in different angular
spacing between them, thereby affecting the separation performance. Our expecta-
tions were the following;

1. WERs for clean, i.e., interference free speech signals would be lower than the WERs
obtained for mixtures and separated signals

2. WERs for separated signals would be lower than the WERs obtained for mixtures.

3. With increasing angular separation between the speakers, the WERs for separated
signals would decrease.

Except for expectation 1, others were not fully realized. Separated signals resulted in
higher WERs than the mixtures. In such cases, intersection of sets of words obtained
from the reference and the test sample could be used for better speech recognition
performance evaluation. While the WERs for separated male speech decreases (with
the exception of the 180°, where no output was received), the WERs for separated
female speech increases with increasing angular spacing. The reason for these could be
explained by the difference in the number of words present in mixtures and in separated
signals. Since, there are fewer words in the latter, WER calculation penalizes the
separated signals.
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CHAPTER 6

CONCLUSIONS

In this thesis study, a portable real-time speech recognition system for mobile devices
was proposed with the aim of increasing the speech recognition performance in noisy
environments. Main limiting design constraints were real-time operation, a small size
for the microphone array, capturing signals from all directions without any preferred
direction of operation and limited processing power of mobile devices. Therefore,
the design handled the noise cancellation operation in a separate accessory which
transferred the denoised speech to the mobile device. The mobile device was then
used to forward this signal to the cloud and display the received response. Running
the noise cancellation algorithms on a mobile device was also considered. However,
this option has not been selected due to the resource limitation problem, found in
most battery powered devices.

The designed system is different from the existing solutions, which cannot provide
sufficient speech recognition accuracy in noisy environments. Instead of conventional
noise cancellation algorithms, which depend on the low-frequency noise assumption,
a system specific algorithm was utilized in the designed system, which is based on
source separation using a compact microphone array.

The designed system is a cloud based system. We used different cloud system speech
APIs provided by IBM, Microsoft, and Google, to compare their recognition rates
(see Section 4.3.1). After making careful observations, it was revealed that Google
performs better than other cloud systems. While IBM was slightly better than Mi-
crosoft, Google was the only cloud system that provided an output for noisy record-
ings. Google’s speech recognition is context dependent and works quite successfully
in a noiseless environment. For example, a sentence like "What is the weather life"
would automatically be corrected as "What is the weather like". Human beings also
perceive speech according to the context and make such corrections. When speech is
present in the form of a meaningful sentence, rather than a collection of words, the
recognition gets better.

We utilized different audio datasets that included context independent data tests,
context independent rhyme tests, context independent tests with different SNR test
and context dependent test in order to show the effect of the noise, the noise level,
the speaker and the gender of the speaker on speech recognition performance. The
outcomes of the tests showed that the Google cloud’s speech recognition performance
does depend on the speaker or the gender of the speaker.
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The detailed results show that WERs are too high for noisy audio files. This indicates
that applications based on speech recognition with mobile devices cannot be used
in noisy environments. However, the speech recognition performance obtained after
applying a noise reduction algorithm through the designed system was very close to
that of the clean recordings.

The performance of the designed system in noisy environments is well (see Section
4.3.3) and thus the system is not affected until the SNR is equal to 9 dB. Moreover,
running the developed application on mobile devices improves the usability of the
system and makes it portable. And also, using a tetrahedral microphone array enables
the designed system to capture sounds from all directions. Besides all the features of
the designed system, working in real-time was the most challenging feature.

In the future, we would like to test the performance of the system under wind noise
and if necessary develop a specific wind noise removal algorithm. It is also among the
plans to make the performance measurements for the Turkish language and compare
them with the English language.
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APPENDIX A

LIST OF WORD GROUPS USED IN CONTEXT
INDEPENDENT RHYME TESTS

1. Word Group: went, sent, bent, dent, tent, rent
2. Word Group: hold, cold, told, fold, sold, gold
3. Word Group: pat, pad, pan, path, pack, pass
4. Word Group: lane, lay, late, lake, lace, lame
5. Word Group: kit, bit, fit, hit, wit, sit
6. Word Group: must, bust, gust, rust, dust, just
7. Word Group: teak, team, teal, teach, tear, tease
8. Word Group: din, dill, dim, dig, dip, did
9. Word Group: bed, led, fed, red, wed, shed
10. Word Group: pin, sin, tin, fin, din, win
11. Word Group: dug, dung, duck, dud, dub, dun
12. Word Group: sum, sun, sung, sup, sub, sud
13. Word Group: seep, seen, seethe, seek, seem, seed
14. Word Group: not, tot, got, pot, hot, lot
15. Word Group: vest, test, rest, best, west, nest
16. Word Group: pig, pill, pin, pip, pit, pick
17. Word Group: back, bath, bad, bass, bat, ban
18. Word Group: way, may, say, pay, day, gay
19. Word Group: pig, big, dig, wig, rig, fig
20. Word Group: pale, pace, page, pane, pay, pave
21. Word Group: cane, case, cape, cake, came, cave
22. Word Group: shop, mop, cop, top, hop, pop
23. Word Group: coil, oil, soil, toil, boil, foil
24. Word Group: tan, tang, tap, tack, tam, tab
25. Word Group: fit, fib, fizz, fill, fig, fin
26. Word Group: same, name, game, tame, came, fame
27. Word Group: peel, reel, feel, eel, keel, heel
28. Word Group: hark, dark, mark, bark, park, lark
29. Word Group: heave, hear, heat, heal, heap, heath
30. Word Group: cup, cut, cud, cuff, cuss, cub
31. Word Group: thaw, law, raw, paw, jaw, saw
32. Word Group: pen, hen, men, then, den, ten
33. Word Group: puff, puck, pub, pus, pup, pun
34. Word Group: bean, beach, beat, beak, bead, beam
35. Word Group: heat, neat, feat, seat, meat, beat
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36. Word Group: dip, sip, hip, tip, lip, rip
37. Word Group: kill, kin, kit, kick, king, kid
38. Word Group: hang, sang, bang, rang, fang, gang
39. Word Group: took, cook, look, hook, shook, book
40. Word Group: mass, math, map, mat, man, mad
41. Word Group: ray, raze, rate, rave, rake, race
42. Word Group: save, same, sale, sane, sake, safe
43. Word Group: fill, kill, will, hill, till, bill
44. Word Group: sill, sick, sip, sing, sit, sin
45. Word Group: bale, gale, sale, tale, pale, male
46. Word Group: wick, sick, kick, lick, pick, tick
47. Word Group: peace, peas, peak, peach, peat, peal
48. Word Group: bun, bus, but, bug, buck, buff
49. Word Group: sag, sat, sass, sack, sad, sap
50. Word Group: fun, sun, bun, gun, run, nun
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APPENDIX B

LIST OF SENTENCES USED IN CONTEXT
DEPENDENT TESTS

1. The female produces a litter of two to four young in November and December.

2. Their solution requires development of the human capacity for social interest.

3. His most significant scientific publications were studies of birds and animals.

4. In recent years she has primarily appeared in television films such as Little Gloria.

5. Unusually high levels of radiation were detected in many European countries.

6. For the first time in years the Republicans also captured both houses of Congress.

7. The South Carolina educational radio network has won national broadcasting
awards.

8. Modern electronics has become highly dependent on inorganic chemistry.

9. Much of the ground beef consumed in the United States comes from Derrick House

10. Philosophers of education often differ in their views on the nature of knowledge
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APPENDIX C

SPECTRUM OF THE ORIGINAL, NOISY, AND
NOISE CANCELLED SIGNALS WITH 3 DB SNR
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