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ABSTRACT

EFFICIENT IMPLEMENTATION OF TMVP-BASED PRIME FIELD
MULTIPLICATION AND ITS APPLICATIONS TO ECC

Tagkin, Halil Kemal
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

February 2019, [69| pages

The need for faster and practical cryptography is a research topic for decades. For
elliptic curve cryptography, which is proposed independently by Koblitz and Miller
in 1985 as a more efficient alternative to RSA, the applications of it in real life started
after 2000s. Today, most of the popular applications and protocols like Whatsapp,
Signal, 10S, Android, TLS, SSH, Bitcoin etc. make use of elliptic curve cryptography.

In this thesis, we present a new representation of finite field multiplication which is
one of the basic building blocks for the ECC using Toeplitz matrix-vector product
(TMVP) and discuss its arithmetic cost and comparison. In addition, we evaluate the
delay complexity of the proposed algorithm when computations are performed using
multi-core systems. We also describe how to choose proper prime fields that make
use of Toeplitz matrices to get faster field arithmetic. Then, we give parameter choice
details to select prime fields that support TMVP operations and propose some prime
fields to work on. We propose a new multiplication algorithm over [Fy255_19 where the
de-facto standard Curve25519 algorithm is based on. The proposed algorithm for the
underlying finite field multiplication exploits the TMVP and achieves salient results.

We also introduce the safe curve selection rationale and discuss about attacks on ECC.
Next, we propose a new curve choice parameter and safe curve generation process.
Finally, we introduce the Curve2663 and give details about its implementation and

vii



benchmark results and conclude the thesis.

Keywords: Toeplitz matrix-vector product, Elliptic curve cryptography, Polynomial
multiplication, Finite field multiplication, Montgomery curve, Safe curves
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0z

TMVC TABANLI VERIMLI ASAL CISIM CARPMASI GERCEKLEMESI VE
ELIPTiK EGRi KRIPTOGRAFI’YE UYGULAMALARI

Taskin, Halil Kemal
Doktora, Kriptografi Boliimii
Tez Yoneticisi  : Dog¢. Dr. Murat Cenk

Subat 2019, [69] sayfa

Daha hizli ve pratik sifrelemeye duyulan ihtiyag, onlarca yildir bir arastirma konu-
sudur. 1985 yilinda Koblitz ve Miller tarafindan bagimsiz olarak RSA’ya daha etkin
bir alternatif olarak Onerilen eliptik egri kriptografisinin gercek hayattaki uygulama-
lar1 2000’11 yillardan sonra baglamigtir. Giintimiizde Whatsapp, Signal, 10S, Android,
TLS, SSH, Bitcoin gibi popiiler uygulamalarin ve protokollerin ¢ogu eliptik egri krip-
tosistemler (EEK) kullanmaktadirlar.

Bu tez calismasinda, Toeplitz matris-vektor ¢carpimim1 (TMVC) kullanarak EEK’nin
temel yapi taslarindan birisi olan sonlu cisim ¢arpimi ic¢in yeni bir gdsterim sunu-
yoruz ve bu gosterimin aritmetik maliyetini ve karsilastirmasini ele aliyoruz. Buna
ek olarak, ¢ok ¢ekirdekli sistemler kullanilarak hesaplamalar yapildiginda algoritma-
mizin gecikme karmagsikligini hesapliyoruz. Ayrica daha hizli cisim aritmetigi elde
etmek icin Toeplitz matrislerini kullanabilecegimiz uygun asal cisimlerin nasil seci-
lecegini de agikliyoruz. Ardindan, TMVC’yi destekleyen asal cisimlerin se¢ilmesinin
ve lizerinde calisilabilecek asal cisimlerin Onerilmesi i¢in parametre se¢ilmesinin de-
taylarini veriyoruz. Curve25519 algoritmasinin iizerine ingaa edildigi Fo2s5 19 sonlu
cismi tizerinde TMVC kullanan yeni bir ¢carpma algoritmas1 gosterimi oneriyoruz.
Onerdigimiz bu algoritma dikkat ¢ekici sonuclar elde etmektedir.

Ayrica giivenli egri se¢imi gerekcelerini ortaya koyup, EEK’ye yapilan ataklar hak-
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kinda bilgi veriyoruz. Daha sonra yeni bir eliptik egri se¢cim parametresi ve giivenli
eliptik egri iiretme siirecini oneriyoruz. Son olarak, Curve2663 egrisini tanitiyoruz,
gerceklemesi ve kiyaslama sonuglart hakkinda ayrintili bilgi veriyoruz ve tezi sonug-
landirtyoruz.

Anahtar Kelimeler: Toeplitz matrisi vektor ¢carpimi, Eliptik egri kriptografi, Polinom
carpimi, Sonlu cisim ¢arpimi, Montgomery egrileri, Giivenli egriler
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CHAPTER 1

INTRODUCTION

Classical Diffie-Hellman methods are getting slower due to their key size. In the
mean time, the applications of elliptic curve cryptography in real life started after
2000s [11], which led to faster asymmetric operations. Nowadays, Edwards [5] and
Montgomery [23]] curves are studied in detail, and several elliptic curves in these
forms [3} 4,16, (10, 14, [19] are published and deployed in the field. Thus, this research

also focuses specifically on Montgomery curves.

The finite fields that elliptic curves are defined over can be categorized as binary
extension fields and prime fields with primes bigger than 2. Due to the developments
in the area [16, 34], the interest turned to prime fields over which new elliptic curves

are mostly defined. This thesis focuses on prime fields, too.

NIST has several approved curves for ECC. But after the NIST’s Dual_EC_DRBG
incident [29] and IETF’s request to CFRG for alternative elliptic curves [12], the
search for new elliptic curves which can be generated in a transparent and verifiable
way emerged. Looking for a proper elliptic curve on which a cryptosystem can be
built is a trade off between being theoretically secure and being implemented effi-
ciently in real life. This leads to the question if we can find an elliptic curve with the
highest security and fastest implementation. To answer this question, there are lots
of on going efforts and new elliptic curve proposals. The NIST curves are already
efficient enough for this purpose. However, due to the reasons mentioned at the be-
ginning, alternatives such as Curve25519 [4] are also widely deployed in the field and
included in new standard drafts [28]. It became the de-facto standard for the industry

and used in many popular applications such as Whatsapp, Signal, Threema, i0OS, An-



droid etc.[20], which makes it a gripping target to work on. NIST also announced that
the upcoming draft of SP 800-186 will specify Curve25519. Additionally, its associ-
ated key agreement scheme, X25519, will be considered for inclusion in a subsequent

revision to SP 800-56A [28]].

The Curve25519 function is an IF,-restricted x—coordinate only scalar multiplication
on F(F,), where p is the prime number 22°5 — 19 and F is the elliptic curve y* =
23 + 48666222 + x. It is known for being faster than NIST Curves and makes use
of Montgomery curves. The design choice is based on selection of primes as close
as possible to a power of 2 to save time in field operations. There are various studies
regarding the implementation for Curve25519, which mostly exploit specific CPU

architectures with special instructions [13} (17, 24].

For the elliptic curve operations, the underlying finite field operations are crucial in
terms of performance. Thus, improving complexity of multiplication is an important
problem in computer algebra. In the literature, there are several methods and ap-
proaches dealing with optimizing the complexity of multiplication. This thesis also
proposes and discusses some new complexity results based on Toeplitz matrix-vector

multiplication a.k.a Toeplitz matrix-vector product (TMVP) in depth.

A measure of efficiency of polynomial multiplication is to count the number of co-
efficient multiplications required. If polynomials f(z) and g(x) both have degree n,
then both have n + 1 coefficients, and each coefficient of f(x) is multiplied by every
coefficient of g(z). Thus, multiplying two polynomials of degree n in the standard
way requires (n + 1)? number multiplications. Therefore, complexity of polynomial
multiplication is one of the major problems in computer algebra. If we can express
the finite field multiplications as polynomial multiplications, we can use polynomial
multiplication methods on finite fields. In general, these methods focus on integer
arithmetic but it is possible to extend and improve these methods to finite fields. Be-

sides, polynomial multiplications can also be expressed as matrix vector product.

For the underlying finite field multiplication operation, the schoolbook algorithm to-
gether with the refined Karatsuba algorithm leads to the best known results in elliptic
curve based cryptography [4]. It is shown in [1] that using TMVP, new algorithms

can be constructed with better complexities.



TMVP method also has advantages when the algorithm is implemented in multi-core

CPUs thanks to its independent submatrix computations.

The preliminaries are presented in Chapter [2] The rest of the thesis is organized as

follows:

In Chapter[3] we introduce the key parts of the TMVP and their arithmetic costs, then,
propose a new finite field multiplication algorithm based on TMVP. We also choose
and propose new finite fields and their representations that have Toeplitz matrix suit-
able field multiplication operations with better complexity compared to schoolbook
algorithms. Moreover, to take advantage of this method for the Curve25519, we build

a new representation which is in Toeplitz matrix form and get salient results in Chap-

ter 4]

After prime field parts, in Chapter [5| we give details for choosing safe curves with
respect to different criteria and attacks. We also propose a new criteria for categoriz-
ing curves. At the end, we define the safe elliptic curve selection algorithm and run it
with MAGMA software [36]. We find and propose a new elliptic curve that meets the

criteria we defined. After explaining its details, we conclude the thesis.






CHAPTER 2

PRELIMINARIES

In this chapter, we summarize the basics of finite fields and elliptic curves. First,
we briefly introduce the definition of finite fields with its operations. Next, we give

details for elliptic curves and its applications to cryptography.

2.1 Finite Fields

A field consists of a set F together with two operations, namely, addition (+) and

multiplication (). It satisfies:

1. (F,+) is an additive abelian group with identity 0.
2. (F\{0},-) is a multiplicative abelian group with identity 1.

3. The distributive property of multiplication; (z + y) -z = = - z + y - z for all
r,y,z €F.

If the defined set [F is a finite set, then, the field is said to be finite and we use the
notation I, such that ¢ is the order of a finite field which is the number of the elements
in the field. A finite field exists if and only if the order of the field ¢ is a prime or
power of a prime. We can write ¢ as the power of a prime p such that ¢ = p™ for
m > 1. Characteristic of the field is defined as the value of p. If we have ¢ = p thatis
m = 1, [F is called as a prime field and for the case m > 2, [ is called as an extension

field.



Prime Fields

Let p be a prime number. The set {0,1,2,...,p — 1} together with addition and
multiplication over modulo p forms a finite field of order p. We will use the [,
notation for this field throughout the thesis. The study in this thesis focuses on prime

fields with characteristic > 2.

Field Operations

By definition, any element = € F has an additive inverse —z such that x + (—z) = 0,

1 — 1. For the subtraction

and similarly has a multiplicative inverse ! such that z-x~
operation x — y, the inverse of the y is used, and similarly for the division operation

x/y, inverse of the y is used as follows:

r—y=xz+(-y)
x/y:x-y_l.

Note that, the cost for the subtraction operation is the sum of an addition cost and an
additive inversion cost, similarly, the cost for the division operation is the sum of a

multiplication cost and a multiplicative inversion cost.

Prime Field Arithmetic

The performance of ellipic curves depends heavily on the prime field arithmetic, espe-
cially, field multiplication and inversion. Thus, performing arithmetic in prime field

IF,, is at the heart of the elliptic curve cryptography.

We focus on prime fields with big characteristic, e.g. p > 22°°. Hence, the length of
the elements will be larger than 200—bit. However, CPU architecture sizes are mostly

multiples of 8. Most common architectures are in 32—bit and 64—bit sizes.

Let elements of [, be the integers from 0 to p — 1 and m = [log,p] be the length of
p. Assume the CPU architecture size is n—bit. In this case, the word count will be
[ = [m/n] where each word will fit into the CPU register. After this point, a field

element x € I, can be represented as an array x = (x1-1, 212, ..., T, 21, Tg) Where

6



xo 1s the least significant word and array values zg, x4, ..., ;o are n—bit, x;_; is
(m —n(l — 1))—bit. From now on, the arithmetic operations will be handled on these
arrays. A detailed representation called radix—2" is discussed in Sections [3.2] and

3.3.1

Addition and Subtraction

The addition and subtraction operations on [F,, is handled on arrays with adding or
subtracting the corresponding values while taking carry values into account. The
Algorithm (1| shows prime field addition operation, including the reduction part at the

end. Similarly, Algorithm [2]shows prime field subtraction operation.

Algorithm 1 Prime Field Addition
Input: x = (16171,95172, T2, T, X0), Y = (yzfuyzfQ, Y2, YL, Y0)i T, Y € F,

Output: 2z =2+ y;2 = (211, 21-2, . . ., 22, 21, %) € F).

I 29 < To + Yo

2: if zp € [0,2") then ¢ <0

3: elsec<1

4: end if

5: forifrom1to!—1do

6: Zi< Tty +c

7. if z; € [0,2") then ¢ < 0

8: elsec+ 1
9: end if
10: end for

11: ifc=1then z <+ 2z —p
12: elseif z > pthen z < z —p
13: end if

14: return z




Algorithm 2 Prime Field Subtraction

Input: = = (2,1, 212, ..., %2, 21, 20), Y = (Y1—1,Yi—2, - - -, Y2, Y1, Y0); 2,y € F,
Output: z =2 —y;2 = (211, 21-2, . . ., 22, 21, 20) € F).

l: Zp <= Zo — Yo

2: if zp € [0,2") then ¢ <+ 0

3: elsec <+ 1

4: end if

5: forifrom1to!/—1do

6: i T — Y —C

7. if 2 €[0,2") then ¢+ 0

8: elsec+ 1
9: end if
10: end for

11: ifc=1then 2z < 2z +p
12: end if

13: return z

Multiplication and Division

Let z,y,z € [F, and suppose we want to compute the product x - y = z. For a
multiplication over [, there are two phases: The first phase is multiplication and the
second phase is reduction. In Algorithm 3] the schoolbook method for multiplication

is given without reduction part.

Considering the array representation with n—bit word size of the elements, the mul-
tiplication of each array values will result in a 2n—bit value. To store these values, Z
and ¢, values are used as temporary state values where size of each value is n—bit and
(1) is a double-word sized number which is the concenation of these values where

to 1s the least significant word.

For the division operation, one can use the combination of the operations inversion,

multiplication and reduction.



Algorithm 3 Prime Field Multiplication Without Reduction
Input: = = (z;-1,21-2,.. ., T2, 21,20), Y = (Yi—1,Yi—25 - - -, Y2, Y1, Y0); T,y € I},
Output: 7 =z -y; 7 = (Zo—2, Lot—3, - .., L2, Z1, Zp) s.t. Z; € [0,27).

1: for i from 0 to 2/ — 1 do

2: Z; +— 0

3: end for
4. for i fromOto/ —1do
5: t1 <0

6: for jfromOto/ — 1do

7: (tito) < Ziyj +xi - yi + 1
8: Zivj < 1o
9: end for

10: Ziv 1

11: end for

12: return Z

Reduction

Reduction part in field multiplication is an important part of the total cost. Especially,
elliptic curve operations make heavy use of field multiplication. Hence, reduction
with low cost should be considered. Based on the form of the prime number of the
field, the reduction algorithms can be less expensive. There are various methods such

as Barrett reduction or Montgomery reduction for arbitrary prime numbers.

Considering the prime fields, form of the prime number plays a crucial role. In Sec-
tion [3.3.2] prime number forms are discussed. In this thesis, we focus on prime num-
bers with the form p = 2k —rst.or>0, namely, Crandall primes. Thus, we give a
straightforward method for reduction over Crandall primes in Algorithm[4] Note that,
values t{, t; are (m — n(l — 1))—bit values as introduced in prime field arithmetic

part.



Algorithm 4 Reduction for Crandall Primes
Il’lpllt: J = (221_27 Loj_3y ..., bo, L1, Zo) s.t. Z; € [O, 2”)

Output: 2 = (21,2 9,...,22,21,20); 2 € Fp,st.p=2F —r
1: forifromOto/— 2do

2: (tlt(]) — Z; + Zi+l

3: zi + to
4: Zit1 ¢ Zit1 T 4
5: end for

6: (thty) < z1-1+ Z1-1 + Zoya
IR

8: zo < 2o+ 1t}

9: (t1to) < 2o

10: 2o < to

11: 21 ¢ 21+t

12: return z

Inversion

The multiplicative inverse of a nonzero element = € F, is denoted as z~*. To cal-
culate 7!, there are various methods such as extended Euclidean algorithm, binary
inversion algorithm, Montgomery inversion method and Fermat’s little theorem. We
will focus on the method that uses Fermat’s little theorem as it introduces a constant-
time algorithm and can be optimized further for a specific prime number. Fermat’s
little theorem states that for any nonzero element z € F,, we get 2P~ = 1 mod p.
From this equation, we can deduce 27~2 = 2! mod p. Thus, computing 2*~? mod p

yields the inverse of the element.

Unfortunately, for the case p = 2% — r, the optimizations are not simple as it depends
on both £ and r. Generalization of the inversion on Crandall primes are discussed
in [33]]. Most of the time, the inversion algorithm requires meticulously handcrafted
lifting method. We use an optimized example of inversion over Faz2es_3 as it is intro-

duced in [27]. The pseudocode of the inversion algorithm is given in Algorithm [5]

10



Algorithm 5 Inverse of an Element on [Fy266_3 using Fermat’s Little Theorem

Input: x € Fozes_3

Output: 225 € Fo2e6_3
1:
2:

3:

15:
16:
17:
18:
19:
20:
21:
22:

23:

tg <
t1 <ty

ty < 2

Lty 13

s lg — 13-t

ty + t2
for ¢ from 1 to 2 do
ty + t2

end for

oty 12
cly 15 - U3
D tg < 12

. for < from 1 to 7 do

te < t2

end for

tg < tg - t5

ty + t2

for i from 1 to 15 do
ty 12

end for

tr < t7 - tg

ty  t2

for ; from 1 to 31 do

24

25:

26:

27:

28:

29:

30:

31:

32:

33:

34

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

ty < 13

end for

tg < tg - tr

tg < t2

for i from 1 to 63 do
tg + t2

end for

to  tg - tg

to < t2

for : from 1 to 127 do
t1o < 13,

end for

t10 < t10 - tg

t1y 13,

for i from 1 to 6 do
tyy < 13,

end for

lig < t11 - 14

lig < t12 - 12

tig <t

for i from 1 to 3 do
tio < t2,

end for

lig < ti2- 11

return 3
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2.2 Elliptic Curves

An elliptic curve E over a field I, is defined as the equation
E(F,) = {oc} U{(z,y) € F, x F, | y* = 2° + Az + B}

where oo is the point at infinity and the discriminant of the curve A = 4A3 +27B% #
0. The condition A # 0 ensures that £ has no singular point.

There are three different curve forms which are used by majority of the deployed
elliptic curves in cryptography. We will be using the following notations, for the
short Weierstrass form, twisted Edwards form and Montgomery form, respectively

[14]:

EI,?,’B: y? =2* + Az + B,
EXd . az® + 9 =14 day?,

E]‘@’B: By =2 + Az? + 2

The Short Weierstrass form can be used to describe any type of elliptic curve over
prime fields. But, the other two forms can only represent elliptic curves with orders

satisfying the condition "4 divides # E(F,)".

Note that all three forms have two parameters. But, most of the time, due to the
efficiency requirements, one of them is fixed. Thus, the curves are only defined by
one parameter. Usually, the fixed parameter, for short Weierstrass form, is A = —3;

for twisted Edwards form, is @ = 1 and for Montgomery form, is B = 1.

Additionally, every twisted Edwards curve defined over a prime field I, is birationally
equivalent to a Montgomery curve which is defined on the same prime field and vice
versa. The transformation from twisted Edwards to Montgomery form are defined as
follows [3]: Assume we have the Edwars curve 2 + y* = 1 + da?y? where d(1 — d)
is nonzero defined over F,. Substituting = u/v and y = (v — 1)/(u + 1), we
get the Montgomery curve Bv? = u® + Au? + u where A = 2(1 + d)/(1 — d) and
B=4/(1—-ad).

12



Adding Points on an Elliptic Curve

Let E{fV’B be an elliptic curve. Let P, = (x1,y1), P, = (22,y2) be points on Eé‘V’B

with Py, Py # oo. Define P, + P, = P3 = (w3, y3) as follows:
1. Ifl'l 7é T,
T3 =m? — 1] — Ty, y3 = m(r; — x3) — Yy where m = (yo — 1)/ (22 — 11).
2. If &1 = xo but y; # 4o, then P + P, = oo.

3. If P, = Pyand y; # 0;
r3 =m? — 2z, y3 = m(z; — x3) — vy where m = (322 + A)/(2y).

4. IfPlngandylzo;Pl—l—Pz:oo.

For an explicit database of formulas for different elliptic curve forms, readers are

referred to [[7].

The Group Law

The following properties are satisfied for the addition of points on an elliptic curve
E;

1. (Commutativity) P, + P, = P, + P, forall P, P, on E.

2. (Identity) P + oo = P for all P on F.

3. (Inverse) For a point P on £, there exists a point, denoted as — P satisfying

P+ (—P) =00

4. (Associativity) (P; + P) + Py = Py + (P, + P3) forall P, P, Py on E.

These properties show the points on £ form an abelian additive group.

Scalar Multiplication

Let P be a point on the elliptic curve F and k£ > 0 be an integer. The scalar multipli-

cation (a.k.a point multiplication) kP = () where P and () on E is defined as adding
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the P to itself k times:
kP:P+P+~--+Ii.

k times

This method is the exhaust way to compute the result. There are methods such as
Double-and-add, Windowed method, Sliding-window method, Non-adjacent form

method and Montgomery ladder method that speeds up the multiplication.

Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) can be used to create Public Key Cryptography
(PKC) primitives using elliptic curves over finite fields. ECC was first proposed by
Koblitz [22]] and Miller [26] independently in 1985 as a more efficient alternative
to RSA [31]. Moreover, ECC achieves same security level with smaller key size
compared other PKC primitives based on integer factorization or finite field discrete

logarithm problem.

Suppose Alice and Bob want to agree on a secret value using an unsecure channel. An
elliptic curve based Diffie-Hellman (ECDH) key exchange is the following protocol

in its simplest form:

1. Alice and Bob agree on an elliptic curve E(FF,) with a public point P € E(F,)

with large prime order.
2. Alice creates a secret integer a and computes a P = F,. She sends it to Bob.
3. Bob creates a secret integer b and computes bP = P,. He sends it to Alice.
4. Alice computes a P, = abP.
5. Bob computes bP, = baP = abP.

6. Using the common secret abP, Alice and Bob can derive their secret shared

encryption key.
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CHAPTER 3

TMVP-BASED FIELD MULTIPLICATION

Using Toeplitz matrices to perform field operations more efficient has been showed in
several studies [1},35]]. In this chapter, we will give details about TMVP and propose
10-dimensional decomposition for matrix multiplication. We will also define criteria
to get a Toeplitz matrix suitable form on every prime field with primes in Crandall
form. Depending on this idea, we will choose some prime fields to work on and

explain their representations.

3.1 Toeplitz Matrix-vector Multiplication

A Toeplitz matrix is a matrix in which each descending diagonal from left to right is

constant. The form of an n x n Toeplitz matrix can be represented as follows:

Qo ay a2 MR ¢ 7O |
Qn Qo a e Qp_2
An41 Qp Qg e Qp—3

L @2(n—-1) " Gpy1  Gn ap |

The 2—way and 3—way approaches for binary extension fields in [15]] can easily be
converted to the multiplication over the ring of integers. We advise the readers to
check [[15] for a comprehensive work about TMVP and its cost computation over

binary extension fields. For a TMVP of size 2 over the ring of integers, we have:

Ty T Vi P+ P
TV — o 11| ol _ 1 2
Ty T Vi P+ P
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where T 1s 2 x 2 Toeplitz matrix and

P =Ty(Vo + V1)
Py = (T, = To)W
P3 - (TQ — To)‘/o

Using TMVP of size 2, the cost of computing 7" - V' is 3M + 3A + 2A4. While using
schoolbook method, the cost is 4M + 2A4 where M is the cost of a multiplication
operation, A and A4 are the costs of addition operations for single and double precision

words, respectively. Thus, using TMVP, we save 1M, but get extra 1A + 2A4.

For a TMVP of size 3, we have:

Ty Tv T Vo Py + Py + Fs
V=T33 Th T |- | Vi |=| .—FP+DPF
Ty T3 1o Vo P —P - P

where 7' is 3 x 3 Toeplitz matrix and

P =(Ty+T5+Ty)Vy Py =Ti(Vi = V)
Py =T5(Vo — V1) P =(To+ T+ 15V
Py =To(Vo — Va) Ps=(To+ T\ + Ty) Vs

Using TMVP of size 3, the cost of computing 7'V is 6M+8A + 6A4, using schoolbook
method, the cost is 9M + 6A4. Thus, using TMVP, we save 3M, but get extra 8A.

For a TMVP of size 4, we can split the matrix into four 2 x 2 Toeplitz matrices which
enables the recursive computation. It should be noted that the recursive use of this
algorithm results in more gaining in the computation. This will be discussed in the

following sections.

3.2 The Proposed Decomposition for 10-Dimensional TMVP

In this section, we will propose a 10-dimensional TM VP strategy to be used for field

multiplication. Suppose we want to multiply two 10—term polynomials, namely, f(x)
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and g(z);

fla) =Y i o) = 3 g

The straightforward method to multiply these polynomials is the schoolbook multi-

plication. We can compute f(x) - g(x) = h(x) as follows:

When the polynomials are multiplied in modulo z'° — 1, one can write this multipli-

cation using the matrix operations which yields the following matrix equation:

9o 9o 9s 91 96 95 9a 93 G2 G Jo ho
g1 90 99 9s 91 96 95 g1 g3 G2 fi hy
92 91 9o 99 9s 97 Go g5 91 93| |Jf2 he
g3 92 91 9o 99 9s 97 9o Y5 gu| |[3 hs
ga 93 G2 G Go 9o 98 91 Yo 95| |Ja| _ |ha
gs 91 93 92 91 Go Go 98 g1 9| |/fs hs
g6 95 91 93 92 91 9o 9o 9s gr| |Je he
g7 96 95 91 93 92 91 Go Yo Gs f7 hz
gs 97 96 95 92 93 92 91 Yo Yo e hs
(99 9s 97 96 95 91 g3 92 91 Go| |Jo] | g |

Please note that the 10 x 10 matrix is in Toeplitz matrix form. Hence, we can use
TMVP operations to compute the result. For the building blocks, we have TMVP
computations for the sizes 2 X 2 and 3 x 3 as introduced in previous section. Thus,
we develop our strategy to mount these operations for the corresponding matrix mul-

tiplication.

The size 10 has been chosen specificially for the ease of implementation on both
32—bit and 64—bit implementations. The matrix will be splitted into upper and lower
triangular matrices where each of them will be splitted into 5 X 5 matrices later. This

decision will enable efficient implementation of the matrix multiplication even with
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bigger coefficients. The splitted form of the operation is shown below:

g0 00 0 000 0 0 0 0] [0 g9 g5 99 96|95 90 95 92 o1 | [ fo ]
g1 9 0 0 0[O0 0 O 0 O 0 0 g9 gs 97|96 95 94 93 G2 fi
g2 91 9o 0 00 0 0 0 O 0 0 0 g9 93|97 96 95 Ga G3 J2
g3 92 ¢ 9o 0,0 0 0 0 0 0 0 0 0 99|98 g7 96 95 9a s
91 93 92 91 9| 0 0 0 0 0 N 0 0 0 0 Ojge gs 97 96 95 | S
95 94 93 92 g1|9 0 0 0 O 0 0 0 0 010 g9 95 97 s 5
96 95 91 93 92| g O 0 0 00 0 0 0[]0 0 g9 gs g7 s
97 96 95 91 93|92 g1 g O O 00 0 0 00 0 0 g9 gs I
9s 97 96 95 91|93 92 G Go O 0000 0,0 0 0 0 g s
| 90 9s 97 96 95|91+ 93 92 91 g | [0 O 0 O 00 0O 0 0O O] | fo |

We can split this matrix into submatrices to mount 2 x 2 or 3 x 3 TMVP operations.

The matrix can be splitted into submatrices as follows:

Asts Osx5 BOle A25><5 A15><5 BOs><1

5% 5 05><5 A25X5

L 410x10 L 4 10x1 L 410x10 L 4 10x1

where matrices A; fori = 0, 1, 2 are 5 x 5 matrices, B; for j = 0, 1 are 5 x 1 matrices

and Osy5 1S b X 5 zero matrix.

Note that, 5 X 5 matrices can be split asymmetrically into 1 column by 4 columns or 3
columns by 2 columns and vice versa for both case. Thus, considering all split forms
that allows to mount 2 x 2 or 3 x 3 TMVP, there are 4* + 4* = 512 different forms.
We have investigated all such forms and figured out the one with the lowest cost as

details are introduced in the following subsections.

We need to compute the products: AgBy, AgB1, A1 By, A1B1, A2 By and A;B;. The

computation details of every operation is given in the following subsection.
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3.2.1 Computation of Submatrices

3.2.1.1 Computing Ay B,

KyLy, , + KL

2124 K31z1 Lia1

AOBO - KO4><4 K ' - KOLO4:L'1 + K1L14x1

lag1

L - 5x5 <4 5x1 L - 5%x5

K,Lo : will be calculated later with TMVP approach.

0
KLt g -{f4} — M= M
L 90 ]
e
KyLy : _goooo}- jil =AM +384 = IM
- 2
_ | S5 ]
KLo: [ o] f] —IM=0

Last additions cost extra 5Aq4 additions. But, we have K;L; with no cost and K, L,
with only 1M, thus, total cost is:

Cost(KyLo) +2M+ 1a4

3.2.1.2 Computing Ay B,

KQ Nolxl + K3N1 1ol

2124 K3111

AOBl = KO4><4 K14m1 ) = K0N04m1 + KlNlélwl

L <4 5x5 - 5x1 L - 5X5



K,Ny : will be calculated later with TMVP approach.

0
KN, - 8 -[fg} — 4M = 1M
L 90 ]
e
K,Ny : -goooo}- Jf% = 4M 4385 = IM
B 7
_ | s ]
KN [0 ][ g —IM=0

Last additions cost extra 5A4 additions. But, we have K4/N; with no cost and K| N,

with only 1M, thus, total cost is:

Cost(KyNy) + 2M + 184

3.2.1.3 Computing A, B,

P04><4 P14a:1 L04m1 POL
A1B0 - . =

0421 + Pl L14:nl

PyLy,  + PL

L d5x5 d5x1 L L1zt d5x5

FyLy :  will be calculated later with TM VP approach.

g1
P.L; : ZZ ] — aM
[ 94 ]
e
Pyl : [99 g8 gr 96}' j:l = 4M + 3Ry
2
[ f5 ]
PL : [95}-[]04] — 1M
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Last additions cost extra A4 additions, thus, total cost is:

COSt(PoLo) + oM + 8Ad

3.2.1.4 Computing A, B,

P04><4 P14.7:1 N04m1 PON04.7:1 + P1N14.7:1
AlBl = . -

PyN,,, + PNy,

- ’ “t 4 5x5 4 5x1 L x 4 5%x5

PyNy : will be calculated later with TMVP approach.

[
PNy : 9 ‘[f9} = iM
g3
| 94
s
I f6
PNot | go gs g7 96}' =AM+ 3Rq
- I
_ | fs
P3Ny 95]'[]09] = 1M

Last additions cost extra 5A, additions, thus, total cost is:

Cost(PyNy) + IM + 8R4

3.2.1.5 Computing A; B,

lig1
’ !
lag1 R04><4 R0L04xl + R1L1411
Ay By = | L =

0421

’ ’

RyLy, ., + R3L

dsxs L d5x1 L Lz d5x5

3121
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RyLy : will be calculated later with TMVP approach.

0
R,L. : 3 -[fo} — M =0
_0_
e
R,L, _oooo}- f =AM +38; =0
- 3
_ | f1
R,L, - _0]-[]-‘0] —IM=0

Last additions cost extra bA4 additions. But, we have no cost, thus, total cost is:

Cost(RyLy)
3.2.1.6 Computing A, B,
Nilzl
R14zl R04><4 RON(;4I1 + R1N14zl
AyBy = : N(;4zl =
L ~ 3121 2124 ds5x5 L 15%1 L R2N01,,1 + RSNllzl

0
RN, 3 [f5} =4M =0
_0_
e
R,N, [0000}- j:? — M+ 3E; =
8
| o
BN (o] ] 5 ] — M= 0

22
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Last additions cost extra A4 additions. But, we have no cost, thus, total cost is:

Cost(RyN,)

3.2.1.7 Computing the cost for KL, and KN,

g1 9|0 0 fo
0
KoLo— g2 g1 90 ) i
gz g2 191 9o fa
| 94 93|92 g1 | _f3_
XQ‘XO 01
B T + 15
T+ 15

Ty = Xo(Co+ Ch), Ty = (X1 — Xo)Ch, T = (X2 — Xo)Co
Total cost is:

Cost(KyLo) = 3(M(2)) + 8A + 44

where, M (2) is the cost of computing 2 x 2 TMVP.

g1 9|0 O f5
0
K(]NO: g2 g1 90 ) fe
g3 92|91 Yo I
91 9392 g | | fs
REIE "
XQ\XO D,
_ T, + 15
T, + 13

Ty = Xo(Do + Dy), Ty = Dy(X1 — Xo), T3 = Do(Xa — Xo)
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We have (X; — Xj) and (X5 — X)) computed already, thus, total cost is:

Cost(KyNo) = 3(M(2)) +8A +4A4
“3a (X1 — Xo)

+ —3A < (XQ — X())

3(M(2)) +2a +42q

where, M (2) is the cost of computing 2 x 2 TMVP.

3.2.1.8 Computing the cost for 7, L, and Fy /N,

g5 g4 |93 g2 Jo
PLo = g6 G5 | 9a g3 _ bil
g7 96|95 94 f2
95 9709 95 | | 3
_nn| o
v | a
B T+ 15
T+ 13

Ty =Yo(Co+ C1), To = C1 (Y1 — Yp), T3 = Cp(Ya — V)

We have (Cyy + C7) computed already, thus, total cost is:

Cost(PyLo) = 3(M(2)) +8A +4Aq
+ —2A < (Co + Cl)
3 (M(2)) +6A +4Aq
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where, M (2) is the cost of computing 2 x 2 TMVP.

g5 94|93 g2 Is
PNy = g6 J5 |94 g3 . e
gr g6 |95 94 Iz
| 98 97|96 95 | | IE |
Y| Yi | | Do
vy | D
B T+ 15
T+ 13

Ty =Yo(Do + D1), Tr = Di(Y1 = V), T3 = Co(Y2 — Yo)
We have (Do + D), (Y1 — Yp) and (Y3 — Y) computed already, thus, total cost is:

Cost(PyNy) = 3 (M(2)) +8A +484

—2A < (Do + D1>
s e (KoY
+ —3a “ (Ys—Y0)

3(M(2)) +4Rq

where, M (2) is the cost of computing 2 x 2 TMVP.

3.2.1.9 Computing the cost for 1L, and RN,

99 98|97 Ys fi
R — 0 99|98 97 fo
olo = .
0 0|g9 98 I3
0 010 g9 | | fa]
[aln] [4
0| Z c,
RS
T+ 13
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Ty = Zo(Cy + C), Ty = C, (Yo — Zy), Ty = Cy(0 — Zy)
Total cost is:
Cost(RyLy) = 3 (M(2)) + 5A + 4B4

where, M (2) is the cost of computing 2 x 2 TMVP.

g9 g8 | 97 Ge fe
RN — 0 go|9s g7 _ fz
v 0 0]go gs I8
| 0 010 g9 | | fo]
[an] [
0|2 D!
B T+ 15
T, + 15

Ty = Zy(Dy + D), Ty = D (Yo — Zy), Ts = Dy(0 — Z)
We have (Y2 — Zj) and (0 — Z;) computed already, thus, total cost is:

Cost(RyN,) = 3(M(2)) +8A +4A4

+ —3A +— (0—Zp)

3(M(2)) +2a +4A4

where, M (2) is the cost of computing 2 x 2 TMVP.

3.2.2 Arithmetic Cost and Comparison

As discussed in the previous section, we have AqBgy, AqB;, A1By, A1B1, A3By
and A, B; computed using TMVP method. The cost decomposition of the proposed

algorithm is given in Table[3.1] The costs are based on the products of 5 x 5 matrices.
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Table 3.1: The Cost Computation of Matrices

Product Cost
Ao By Cost(KyLoy) + 2M + 1A4
Ay B, Cost(KyNy) + 2M+ 1284
A, B, Cost(PyLg) + 9M + 8R4
A By Cost(PyNoy) + IM + 8R4
(
(£ No)

AyBy  Cost(RyL
AyB; Cost(RyN,

The Cost() function in the table returns the cost of computing the corresponding
TMVP and KNy, PyLo, PyNo, RyL, and RN, are corresponding TMVP operations
for the matrices AgB, A1 By, A1 B1, Ay By and A, By, respectively.

To compute 4 x 4 TMVP, we can use 2 x 2 TMVP method and cost will be as follows:

Cost(Myxs) = Cost(Moys) + 8A + 4Aq
where the cost for Ms.- has been discussed in Section
Total cost for computing the TMVP operations are listed as follows:
COSt(KOL0> = 3 (M2><2) +8A +4Ad

COSt(KON(]) = 3 (M2><2) +2A +4Ad

COSt(PDLQ) = 3 (M2><2) +6A +4Ad
COSt(PONo) = 3 (M2><2) +4Ad
COSt(ROLB) = 3 (M2><2) +5A +4Ad

Cost(RyNy) = 3(Mayy) +2B  +4R4

18 (Mayo) +23A +24A4

The cost of a multiplication by M55 can be computed both using TMVP and school-
book multiplication method. Thus, we get two different costs for it, as discussed in

Section We obtain two different costs at the end. The cost comparison is given
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in the Table[3.2]

Table 3.2: The Cost Comparison of Algorithms

Method Cost

The Proposed Method #1 77M + 77A + 109A4
The Proposed Method #2 95M + 23A + 10934
Bernstein [4] 101M + 92A4

Note that, A is the single word addition operation and it is assumed that the cost of
computing 2A is equivalent computing 1A4. The Proposed Method #1 uses TMVP
to compute My, and The Proposed Method #2 uses schoolbook multiplication. The
cost for the multiplication with the coefficients are ignored since it varies for ev-
ery prime field and will have same cost on both proposed methods and Bernstein’s
method.

Comparing the results with Bernstein’s complexity, we get the following savings and

redundant operations.
e The Proposed Method #1: —24M and +56A4
e The Proposed Method #2: —6M and +29A4

We saved multiplications but got extra additions and expect to have improvements
based on this trade off. Theoretically, using Method #1, if we have a platform that
has the cost of 1M is equivalent to at least 2.33A4, our algorithms have better results
in terms of total operation cost. The improvements are discussed in Sections and

[5.3] A reference implementation is given in Appendix [Al

3.2.3 Delay Evaluation

The delay complexity for n x n Toeplitz matrix is defined as D(n) = 2log,(n)Dy +
Da where Dy and D, are the delays of computing field multiplication and addition
operations, respectively.

We have evaluated the delay complexity of the Proposed Method #1 when it is imple-
mented using a four-core parallel implementation. In this case, we will have comput-

ing paths C, Cs, C5 and C.
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Using first three paths, we compute the matrices mentioned in Section 4.2] and last
path is for extra operations. Delay for paths C} and C is 18Dy + 57Dy, for C} is
18Dy + 584 and for Cy is 22Dy + 29DD,.

G| P P2 P3 P4 IS
G| p7 P8 P9 P10 | P11 | P12
G| P13 P14 P15 P16 P17| P18 |
Gpiglm| P21 | P22 | P23 | P24 | P25| P26 |

Figure 3.1: Four-core Parallel Implementation Delay Overview

Path ('; contains the delay of the computations of matrices KLy and KV as stated
in Figure with parts Py, P», P3 and P, and the delay costs are 9Dy, 2505, 9Dy and
21DD,, respectively.

Similarly, path Cy is for PyLy and Py Ny with parts Pr(9Dy), Ps(25D4), Py(9Dy) and
Pyo(19Dy), path Cj is for RyL, and RyN, with parts Pj3, P4, Py5 and P having
the same delay costs with path C. The paths P5(4Dy), Pi1(5Da), Pi7(4D4) and
Py5(41Da) represent the final additions.

The path C, represents the delay for extra computations mentioned in the Table [3.1]
with parts Pig, Pag, Py, Pso, Po3 and Psy. We finalize the computation with the mul-
tiplication of the constant as mentioned in Section 4.2 with delay costs represented in
parts Ps(7D3), P12(8Da), Pis(8Da) and Pys(7Dy).

As shown in Figure [3.1] the final addition operations have to wait for matrix opera-
tions be completed which causes a gap in path C. But, the critical path is Cj since it
has the longest delay that corresponds to the delay of the algorithm.

If algorithm is implemented in single-core, its delay would be 76Dy + 201D,. Com-
paring it with the delay of the critical path, we can deduce the proposed four-core

parallel implementation is almost embarrassingly parallel.

3.3 TMYVP-Friendly Prime Fields

As it is introduced in [2} [35], TMVP method can be used for the finite field multipli-
cation to get faster implementations. But the main problem is to find a proper matrix
representation for the field elements which is in Toeplitz matrix form. It is possible
to manipulate the coefficients and get TM VP suitable results. Being TMVP-Friendly

means the matrix representation of the corresponding prime field yields a matrix in
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Toeplitz form. This thesis focuses on finding and improving TMVP-Friendly prime
fields and element representations without doing complex manipulations. To accom-

plish this, we will stick with the radix-2" representation.

3.3.1 Toeplitz Matrix Formed Field Element Representation

Prime field elements are usually represented as big integers and these integers are
usually divided into several small chunks called limbs, so that field operations can be
carried out as sequences of operations on limbs. A radix-2" representation represents

an element f in a b—bit prime field as (fy, fi, ..., f{s/s1-1), such that

b/r]—1

[
f= fi2ll.
0

Field arithmetic can then be carried out using operations on limbs. To calculate limb
size, assume the platform that the field operations will be implemented has n—bit
CPU register size. Let f be an element of prime field I, where p is a k—bit prime

number. Define ¢ as the number of limbs where [k/t] < n. We can split f as follows:

f=Uo/TR/E Jo/TR/EL s fra/ TR/E], fioa/m] 3.1
where m = k — [k/t](t —1),0 < m < n and f;/b indicates the limb f; has b—bit
length.

For the parameters that satisfy the condition in (3.1]), we get a TMVP suitable matrix
representation. We expect the coefficients in the matrix as small as possible.

To define the upperbound for the coefficient size, assume we have same parameters
as with at most 2¢ — 1 different coefficients in the matrix representation. Let ¢;
be a cofficient in the matrix with a length of b—bit. For each different coefficient ¢; in

the matrix, the following condition should be met:
2(n—T[k/t] —1)<b (3.2)

Using (3.1I) we can decide if the representation can be implemented on a specific
platform and we can define an upperbound for the coefficients using the (3.2). If the
bound is exceeded, field operation can not be implemented using the defined CPU
register size. (3.1 and (3.2) form the essential criterias to choose proper prime fields.
Hence, we can choose proper parameters to build a representation that is in Toeplitz

matrix form.
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3.3.2 Prime Number Forms

There are different prime forms such as Mersenne primes (2% — 1), Crandall primes
(2% —¢), Special Montgomery primes (2°c— 1), Montgomery-friendly primes (2% (2! —
¢) — 1), Solinas primes (2¥ — 2! + ... 4+ 1) etc.

Considering (3.2]), we expect to have coefficients as small as possible to use much
more space in registers to minimize redundancy. Using Mersenne primes would result
in getting smallest possible coefficients as the subtraction part of the prime form is
fixed to 1. This would be useful but the reduces flexibility of choosing primes.
However, Crandall primes have flexibility with the parameter ¢. Considering [3.2]
primes with ¢ < 2! [10] might have performance similar or close to Mersenne

primes. Thus, this property makes Crandall primes a good choice for our case.

3.3.3 New Prime Fields

Using (3.1) and (3.2), we have searched for suitable prime fields with different sizes
using MAGMA software [36]. We have focused on 32—bit and 64—bit implementations

and have decided to work on the following prime fields.

1. Fao266_3 [21] with 10 terms on 32—bit platform.

N

. Fasse_3 [32] with 13 terms on 32—bit platform.

3. Fass2_3 with 10 terms on 64—bit platform.

4. Fgss5_3 with 10 terms on 64—bit platform.

5. Fyss0_5 with 10 terms on 64—bit platform.

6. Focor_; [27] with 10 terms on 64 —bit platform.

Any prime field multiplication operation that is represented with a Toeplitz matrix
form with limb size ¢ = 10 according to (3.1)) can be implemented efficiently using

the method introduced in Section [3.2]
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3.3.3.1 Representation for Fy26_5

Let f be an element of prime field Fo2ss 3. Using (3.1) with the parameters n =
32,k = 266,t = 10, we get the following representation:

F=100/27, f1/27, 227, f3/27, f4/27, f5/27, f6/27, f2/27, f5/27, fo/23]

We can also represent the element as a polynomial as follows:

f(il?) — fO + 227f11' + 254f2$2 + 281f3$3 + 2108f4l'4
+ 2135f533’5 + 2162f6$6 + 2189]071,7 + 2216f8378 + 2243f9$9

Let f,g and h in € Fy266_3, we can compute the f - g = h with the following matrix

representation:

g0 480 48gs 48g; 48gs 48g5 48gs 48gs 48gx 48| [fo|  [hol
g1 9o 4899 48gs 48g; 48gs 48gs 48gs 4893 48go N1 hy
92 91 go 4899 48gs 48g; 48gs 48gs 489y 48g3 f2 ha
95 92 g1 Yo 4899 48gs 4897 48gs 48gs 48gs| |/fs hs
99 93 92 G go 4899 48gs 4897 48¢gs 48gs| | fi| _ |fa
G 9 9 9 g1 g 48y 48gs 48¢: 48¢s| |fs| |Bs
g6 95 94 g3 92 g1 Go 48gy 48gs 48gr| |fs he
97 9 95 9+ 93 92 g1 go 4899 48gs| |/f7 hz
98 91 96 95 91 g3 G2 g1 Go 48go| |Jfs hs
99 95 97 9 g5 912 g3 92 g1 Go| [fo] |ho]

3.3.3.2 Representation for Fys:5_5

Let f be an element of prime field Fosas 3. Using (3.1) with the parameters n =
64, k = 545,t = 10, we get the following representation:

f = 1[/0/55, f1/55, f2/55, f3/55, f1/55, f5/55, f6/55, f1/55, fs/55, fo/50]

We can also represent the element as a polynomial as follows:

f(@) = fo+2% fiz + 2" foa® + 29 faa® 4 2220 fy2!
402 P 4 980 £ 6 L 98B p T L gM0 £ 8 | o195 0
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Let f,g and h in € Fys45_3, we can compute the f - g = h with the following matrix

representation:

g0 9699 96gs 9697 96gs 9695 9691 9695 9692 96g:| [fo] [
g1 go 96g9 96gs 96g7 96gs 9695 9694 9693 96g2 fi hy
go g1 go 9699 96gs 96g7 96gs 9695 9694 9693 fa ho
gs g2 g1 go 96g9 96gs 9697 9696 9695 9694 I3 hs
9o 93 92 G go 9699 96gs 9697 96gs 96gs| |fa| _ |fa
G 9 g9 9 g1 g 969 96gs 96g: 96gs| |fs| |hs
96 95 94 g3 92 g1 go 9699 96gs 96g7| |fs he
g9r 9 95 9« 93 G2 g1 Ggo 9699 96gs| | [z h7
g8 91 96 95 912 g3 G2 g1 Go 96go| |/fs hs
99 98 97 9 95 9+ g5 92 g1 Go| |So] [ho]

A special case for Fgsus_g is radix-2°4" representation. This representation with
64—bit CPU architecture has similar matrix form in with Curve25519’s radix-225°
representation [4] with 32—bit CPU architecture. Limbs can be represented as fol-

lows using radix-2°*® representation:

f=11o/55, f1/54, f2/55, f3/54, f1/55, f5/54, f6/55, f2/54, fs/55, fo/54]

We can also represent the element as a polynomial as follows:

f((E) _ f() + 255f133 + 2109]02:1:,2 + 2164f3$3 + 2218f4$4
+ 2273](‘51,5 + 2327]['61,6 4 2382]673:7 + 2436](‘81,8 + 2491 f9x9
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In this case, we can compute the f - ¢ = h with the following matrix representation:

go 699 3gs 697 396 695 392 6gs 392 6g1 Jo ho
g1 9o 399 39s 397 396 395 3912 393 392 fi hy
g2 291 9o 6gg 3gs G6gr 3gs 695 391 6gs| |/2 he
g3 92 91 Go 399 39s 397 39 395 394| |[3 hs
94 293 92 21 9o 6go 3gs 6gr 395 Ggs| |fa| _ |fa
95 94 93 92 91 G0 399 39s 397 396 Is N hs
96 295 91 295 g2 201 go Oge 3gs 6gr| |Jfo he
gr 96 95 91 93 92 g1 go 399 3gs| |J7 hz
gs 291 9o 295 91 295 92 201 go 6go| |[s hs
99 98 97 96 95 94 93 G2 g1 9o| |Jo] |ho

This representation allows to mount any field operation improvement that is made for

[Fo255_19 on 32—Dbit to Fys45 _3 on 64—Dbit.

3.3.3.3 Representation for o550 _5

Let f be an element of prime field Fosso 5. Using (3.1) with the parameters n =
64, k = 550,t = 10, we get the following representation:

f=1/0/55, f1/55, f2/55, f3/55, f1/55, f5/55, f6/55, f7/55, fs/55, fo/55]

We can also represent the element as a polynomial as follows:

f(ZE) — fO + 255flx 4 2110f2132 + 2165f31’3 + 2220f4$4
+ 2275f5$5 + 2330f6x6 + 2385f7$7 + 2440f8x8 + 2495f9$9

Note that the polynomial representation is same as it is in Fosas 3. Besides, this
TMVP suitable form is also a radix-2°° representation, there is no redundancy on the
most significant limb.

Let f,g and h be in € Fyss0_5. We can compute the f - ¢ = h with the following

matrix representation:
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_Slo 599 5gs 597 Ogs 5HYs Oga 5gs 5Y2 591— _f 0_ _ho_
g1 9o 599 O5gs 997 5gs Ogs Oga 5g3 Yo fi hy
92 91 9o 59 5gs 597 5gs 595 Sga Og3| | [2 ho
9s 92 91 Yo 599 59s 597 596 595 Og1| |[s hs
91 g3 G2 g1 Go Sgs 5gs 5Hgr 5gs 55 ) 1 o ha
95 91 93 G2 g1 Go DGy 5Hgs Hgr HYe B - hs
96 95 9+ 93 92 G1  Jo 999 5gs Ogr e he
g7 96 95 92 g3 G2 g1 Go Hgo Hgs fz hz
gs 91 95 95 Y9a Y3 92 91 Go Ogo| |Js hs

(99 95 97 9 95 91 Gz G2 G Go| |Jo i

Note that, all three matrix representations are suitable for TMVP and satisfy (3.2).
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CHAPTER 4

SPEEDING UP CURVE25519

4.1 Curve25519

The Curve25519 [4] function is a z—coordinate only scalar multiplication on E(IF,),

where p is the prime number 22° — 19 and F is the elliptic curve:

y? = 2° + 48666227 +

4.1.1 The radix-22°° Representation for Fy2s:_ ;g

According to Bernstein’s representation [4], assume we want to compute f - g = h
where f, g and h in € Fy255_19. The integers are splitted into limbs using radix-22°-

representation as follows [4]:

f=110/26, f1/25, f2/26, f3/25, f1/26, f5/25, f6/26, f7/25, fs/26, fo/25]
g = [90/26791/25792/26793/25794/26795/25796/26797/257 98/26799/25]
h = [ho/26, hy/25, ha /26, hs/25, hy/26, hs /25, he/26, h7 /25, hg /26, hg/25]

Thus, any element of the field can be represented as the concatenation of the limbs as

follows:

f = Follfsll f2 Il fell S5l fall fsll f2ll f1l fo

9 = 9oll9sl|lg7lgelgslg4ll g3l g2l 91 1| 90
h = hg||hs||hz||he | hs|| hallhs|| el 1 || o

where the operation || is the bitwise concatenation and fy, go and hg are the least sig-

nificant limbs. We represent the elements as polynomials with coefficients indicating
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the cumulative bit-size of the previous limbs:

f(ﬂ?) :fO + 226'](‘11, 4 251f2$2 T 277f3$3 T 2102f4x4 + 2128f5565+
2153f6«776 + 2179f7277 + 2204f8$8 + 2230f9$9

g(l’) :go+22691I+25lg2$2+277g3133+2102g4x4+212895x5+

2153 2179 2204 2230

g6 + 2" gra” + 22 gga® + 220 gga?
h(x) =ho + 2Rz + 2 hor? + 27 hga? + 212yt 4 2254

2153h6$6 + 2179]17377 + 2204h8x8 + 2230h9$9

As a result, each polynomial represents its value at 1. We get the following matrix

representation:

0 38g0 1995 3997 1995 38g5 199: 38g5 19¢2 38g:] [fo|  [ho
g1 go 1999 1995 19¢g7 19¢g¢ 19g5 1994 1993 1999 fi hq
92 201 go 3899 1998 3897 1996 3895 1994 38gs| |/fa he
g3 g2 g1 9o 1999 19gs 1997 19¢g¢ 19g5 19g4 3 hs
94 293 92 291 go 3899 19gs 3897 199 38gs| |fa| _ [T
G 9 9 9 o g 199 1995 19g: 19gs| |fs| |Bs
g6 295 g1 293 92 201 go 3899 19gs 3897 e he
g9r 96 95 91 93 92 g1 9o 1999 19gs| | /f7 hz
9s 297 96 295 91 295 g2 291 go 38go| |Jfs hs
99 98 97 9 95 9a g3 92 g1 Go| [fo] |ho]

Basic schoolbook method is used to compute the h. Thus, cost of computing 5 is
100M+81A4 and 1M+ 1144 for final reduction to get reduced coefficiens of /, namely,
hg, ..., hg. Note that, shift and masking (bitwise AND) operation costs are ignored.

Hence, total cost is;

101IM + 92A4.

4.2 Multiplication Over Fy2s5_¢9 Using TMVP

The radix-2%5 representation which is described in Section [4.1.1} is not suitable for

mounting TMVP operations since the matrix is not in Toeplitz form.
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Using (3.1) and (3.2) with the parameters n = 32,k = 255,t = 10, we get the
following matrix representation which is in Toeplitz form. The representations of f, g

and h are defined as follows:

f=[10/26, f1/26, f2/26, f3/26, f1/26, f5/26, f6/26, f1/26, fs/26, fs/21]
g :[90/26;91/26792/26793/26794/26,95/26,96/26797/26798/26799/21]
h =[ho/26, h1/26, ha/26, hs/26, hy/26, hs/26, he/26, h7/26, hg/26, hg/21]

We represent the elements as polynomials with coefficients indicating the cumulative

bit-size of the previous limbs as follows:

f((L’) :fO + 226f1$ + 252f2$2 + 278f3$3 + 2104f4$4 + 2130f5135+
2156f6x6 + 2182f7137 + 2208f8x8 + 2234f9$9

g(x) :go+22691$+25292172+27893I3+2104g4$4+213095l‘5+

2156 2182 2208 2234

gor® + 2% gra” + 22 gga® 4 2% gga®
h(z) =ho + 22°h iz + 2°2hox? + 278 hga® + 2'1%h 2t 4+ 2130h 25+

2156h6$6 =+ 2182h7l’7 4 2208h8$8 4 2234h9.1'9

We get the following matrix representation for the new field multiplication method:

90 608y 608gs 608g; 603g5 603gs 603g; 603gs 608, 608g1| [fo]  [ho]
g1 go 608gy 608gs 608g; 608gs 608g5 608gs 608g3 608g2 fi hy
92 % go 608gg 608gs 60897 608gs 608gs 608gs 608g; f2 he
g3 92 I go 608gy9 608gs 608g7 608gs 608g5 6084 I3 hs
94 g 92 9 go 6089y 608gs 608g7 60895 608gs| |fa| _ |ha
G 9 9 9 g g 608 608gs 603g: 608gs| |fs| |hs
g6 g5 G4 g3 92 G go 608gy9 608gs 608g7 o he
g7 96 g5 G4 g3 92 G 9o 608gy 608gs Iz hz
gs g7 g6 g5 94 93 92 G go 608g9 s hs
| 9 g8 g7 96 s 94 93 92 9 90| fo]  |ho]

Please note that, using this representation with schoolbook method does not make
sense since the constant coefficient here is 608 (a 10-bit integer) and the limbs
wouldn’t fit into registers. But, total result fits in registers. Thus, this representa-
tion can work and be useful. This is where the TMVP has advantages and makes this
presentation possible to be implemented in an efficient way. To achieve this, we can

split the matrix above into chunks and handle each part as follows:
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[ g9 0 0 0 0[O0 0 0 0 O ] [ 0 g0 985 g7 96|95 94 93 G2 G ] [ fo ]
g1 9 0 0 0[O0 0O 0 0 O 0 0 g9 g5 gr|9 95 92 93 Go fi
9 g 9 0 070 0 0 0 O 0 0 0 g9 gs|97 96 95 g1 Gs e
g3 92 91 9o 0[O0 0 0 0 O 0 0 0 0 go|gs 97 96 95 Ga I3
912 93 92 g1 90| 0 0 0 0 O 4608 0 0 0 0 O|ge 9s 97 go G5 ‘ fa
g5 9+ 93 92 g1l O 0O 0 0 0 0 0 0 010 g g8 g7 Yo Is
g6 g5 91 93 92191 g O 0 O 00 0 0 0[]0 0 g9 gs 97 fe
g7 96 95 91 93|92 91 g9 0 O 000 0 0 0,0 0 0 g9 gs fr
gs g7 96 95 94|93 92 g1 go O 00 0 0 0[O0 0 0 0 g fs

| 99 98 97 96 95|94 93 G2 91 Go | 1000 0 0,0 0 0 0 0] | fo |

To compute this, one can use the strategy introduced in Section [3.2] The only extra
part is the multiplication with the constant. Using the advantage of splitting the ma-
trix into upper and lower triangular matrices, we can easily handle the multiplication
operation with 608 at the end of the computation. Note that, 608 can be decomposed
as follows:

608 =2°-19 =2°(2" + 2! +1) =27 420 4+ 2°
So, to multiply an integer « with 608, one can use 3 shifts and 2A4:

608 = (r << 9)+ (z << 6) + (z << b)

The cost of the shift operation can be ignored and the total cost for computing a total
of 10 multiplications by 608 will cost extra 20A4 operations. Hence, the total cost
will be as described in Table[3.2] with an extra 20A4 operations.

4.3 Implementation and Benchmark Results

Our algoritm is based on 32-bit word size, thus, we focused on 32-bit implementa-
tions. To benchmark our algorithm, we have used different platforms including x86

and 32-bit ARM and compiled it on each platform with different configurations.

For x86 implementation, we use macOS Sierra with Apple LLVM gcc 4.2.1 compiler
on Intel i7-4750HQ CPU with 16GB RAM and for ARM implementation, we use
Raspbian 8 with gcc 4.9.2 on Raspberry Pi 2 with ARMv71 CPU and 1GB RAM.

We have implemented our field multiplication algorithm using C programming lan-

guage and compared our results with the finite field multiplication function fe_mul
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of ref10 [37] implementation.

We have compiled the finite field multiplication functions for both implementations
on each platform using every optimization level of gcc and executed each result mul-
tiple times and got an avarage timing for each execution. Our results are better at
optimization level 2 and 3 [18] on x86 implementation up to %13 and has close tim-

ing results on ARM.
Table 4.1: Implementation Benchmark Comparison Over [Fy2s55_1g

Platform Algorithm Opt. Level Timing (Avg.)
x86 Proposed Method #1 -02 75ns

x86 ref10 -02 80ns

x86 Proposed Method #1 -03 70ns

x86 ref10 -03 80ns

ARMvV71  Proposed Method #1 -02 2600ns
ARMvV71  refl0 -02 2600ns

We also give implementation cycles of the algortihms as an extended result in Ta-
ble d.2] The results are obtained with gcc 4.2.1 compiler using optimization level 3
and fast-math and no—common options enabled on Intel 17-4750HQ with Hyper
Threading disabled. The counts listed in the table are obtained by taking a mini-
mum of 107 operations for each field multiplication algorithm. TT means TMVP and
TMVP, TSB means TMVP and Schoolbook for 4 x 4 and 2 X 2 matrix operations

respectively.

Table 4.2: Field Multiplication Implementation Cycles Over Fa2s5_1g

Implementation Reference Cycles | Comparison to TSB
refl0 (4, 137] 104.94 | -12.59%

Proposed Method #1 (TT) | This Thesis, [35] | 93.81 | -2.22%

Proposed Method #2 (TSB) | This Thesis, [35] | 91.73
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CHAPTER 5

ELLIPTIC CURVES SEARCH

5.1 Choosing Safe Elliptic Curves

In Chapter [3] we have introduced proper prime fields and in this chapter we discuss
how to find safe elliptic curves based on those prime fields. To accomplish this, we
first introduce known attacks against against elliptic curves and give our safe curve
search process details. The search codes and process details mentioned in this chapter

are given in Appendix

5.1.1 Curve Parameters

To define curve parameters, it is vital to define the underlying prime field first. As we
discussed on previous sections, we already have our prime fields defined. Therefore,

we should consider our parameters to define a curve.

In this thesis, we focus on Montgomery curves with B fixed to 1 and with
x—coordinate only representation. After defining the curve, one should specify a
base point B = (z1,y;) on the curve with a prime order. We expect to find a base

point with z; value as small as possible.

5.1.2 Attacks

When the parameters are fixed to define an elliptic curve, attacks against the curves

should be tested to verify if the selected parameters satisfy the security requirements.
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For this purpose, we follow the SafeCurves project [8] which offers an elegant ap-

proach for addressing different point of views.

Assume we have an elliptic curve Eﬁ’l defined over prime field [F, with a base point
B = (z1,y1) where order of the base point is k, order of the curve "n = tk", such
that £ is prime and 4 divides ¢. The curves should be tested against at least the attacks

defined below.

5.1.2.1 Pollard’s Rho Attack

[30] is the best known method for solving the elliptic curve discrete logarithm prob-
lem [25] which has exponential time complexity O(y/n) where n is the order of
the elliptic curve. But the improved attacks [9] reduces the complexity around
< ”Tk) ~ 0.8862v/k additions where k is the order of the base point. Thus, we
expect to have this value at least 2!°° as described in SafeCurves. However, for the
sake of being lightweight and short-term key usage, this limit can be streched down

to around 2% which also allows to find new alternative curves.

5.1.2.2 Small-subgroup Attack

Our curve choice assumption have order n = tk, where k is the large prime order
of the specified base point B and ¢ is a small cofactor. The possible orders of curve

points can be divisors of ¢ and £ times divisors of £.

Assume Alice and Bob are exchanging keys with an ECDH protocol and an attacker
impersonated Alice is sending a point () with small order instead of Alice’s legitimate
public key to Bob. Then, Bob computes b() where b is Bob’s secret key and reveal the
result to complete key exchange. Since Q has small order, the attacker can check all
possibilites for b under the modulo of order () which possibly results in finding the

correct value for b modulo order of Q.

To protect the curve against these types of attack, one can choose base point’s order
as a prime and equals to curve order but this is not possible in our case since 4 divides

t due to Montgomery form. Another protection is choosing b as a multiple of ¢ such
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that b = ¢r for a random r mod k. At worst case, this attack reduces security at most

[log,(t)]-bit [8].

5.1.2.3 Twist Security

Twist security is first introduced in [4] for the special case when the curve form is
Montgomery with z-coordinate only representation. Considering any point (z;,y;) €
IF,,, around half of the x; values are in I, and the remaining half of the points corre-
spond to a point on the quadratic twist of the IF,, [14]. Instead of checking if a point
corresponds to the curve itself of its quadratic twist every time, choosing a safe twist
is a much more elegant way for defining a safe curve. Thus, while searching for new

curves, every check that is done for the curve itself should be repeated for its twist.

5.1.2.4 Other Attacks

As well as the attacks mentioned here, SafeCurves lists some other attack parameters
to consider such as additive and multiplicative transfers, multiplicative embedding
degree, invalid curve attacks and its combination with small-subgroup attacks and

complex-multiplication field discriminant etc.

Our curve selection method covers only attacks mentioned in this chapter. Readers

are advised to check SafeCurves [|8]] for details.

5.1.3 New Curve Choice Parameter

We introduce a new parameter called Order Type and define types from 1 to 5 in Table

Table 5.1: Order Type Parameter Details

Order Type | Cofactor for Curve Order | Cofactor for Twist Order | Example Curves

Type 1 4 4 (101, [19], E-382, E-521

Type 2 4or8 4or8 This Thesis (Curve2663), Curve383187, [4], [6]
Type 3 4d 4or8 -

Type 4 4or8 4d

Type 5 4d 4d
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Order Type 1 curves are the hardest to discover but the safest ones against Pollard’s
Rho attack. Most of the popular Edwards or Montgomery curves are in the class of

Order Type 2 such as Curve25519 etc.

Type 3, Type 4 and Type 5 curves have at least one order cofactor as 4d where d is
an arbitrary integer. Type 5 elliptic curves have the most relaxed cofactors with both

curve itself and its twist can have order cofactos upto 4d.

Relaxing the parameters enables finding new curves but affects the security margin
because of Pollard’s Rho and Small-subgroup attack’s cost. Hence, this trade off
makes sense to find new alternative curves without compromising the expected se-
curity level. Here, we expect to have d as small as possible and also expect smallest
number of different primes in its canonical factorization. Especially, for high-security
curves (where security margins are bigger than 256-bit) having flexible d values could

allow to discover new elliptic curves.

5.1.4 The Proposed Safe Curve Generation Process

We introduce a safe curve generation algorithm which focuses on the criterias defined

above. The algorithm is given in Algorithm [6]

5.2 New Curve Parameters

5.2.1 Curve2663

We follow the popular naming convention and use Curve2663 for our proposed curve

name. Following the algorithm described above, we find the Montgomery curve
BN 2 = 2% 42071027 + o
defined over prime field Fy266_5 with order 23k where k is a prime.

k = 2202 4 741069371118823650710854304055602610\
2607498625779807844927895183684117667522393
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Algorithm 6 Safe Curve Search
Choose a big prime p = 1 mod 4 or p = 3 mod 4.

if Not IsPrime(p) then return false
end if
Use Equations [3.1 and [3.2] to check if the prime field I, is suitable for TMVP-
Based field arithmetic.
Choose a Montgomery curve y* = z* + Az? + z, where A% — 4 is nonzero in F,,.
Choose a base point B = (x1, y;) of prime order & on the curve.
Check if (21, y1) is on the curve.
Check if k is prime.
Check if kB = 0.
Check the cost for Pollard’s rho attack is above 2'%, i.e. 0.8862v/k > 210,
Check if the security against the twist attacks is above 2%,
Check the cost for Pollard’s rho attack against the twist is above 2'%°, ie.
0.8862v/E > 2100,
if All checks above are satisfied then return E;' : 4> = 23 + Az? + z defined
over [F,, with base point B = (1, y1).
else
Select a new A value and check the conditions again.

end if
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Simirlarly, twist of the curve has order 22k’ where £’ is a prime.

E = 225 1 3560785642376507194780385644645258867021

Base Point B = (z1,y;) has order k with z-coordinate equals 17.

(x1,71) = (17,943507226411813093766456 75877820961\
234965813488916730811382919029489257823763054)

The cost for Pollard’s rho attack is around 2313257 and for Twist’s is around 21318257

The details for the search process are given in Appendix

5.3 Implementation and Benchmark Results

We have proposed the TMVP-Friendly representation for o266 5 in Section
and followed the strategy introduced in Section [3.2] for its implementation. The only
extra part is the multiplication with the constant which is similarly discussed for
Fo255_19 in Section We can easily handle the multiplication operation with 48

at the end of the computation and 48 can be decomposed as follows:
48 =2° + 2
Thus, to multiply an integer = with 48, one can use 2 shifts and 1A4:
r-48 = (x << b) + (v << 4)

The cost of the shift operation can be ignored and the total cost for computing 10
multiplications by 48 will cost extra 1024 operations. Hence, the total cost will be as

described in Table [3.2] with an extra 10A4 operations.

Source code for a 32-bit reference implementation of Curve2663 can be accessed

online. [1]

The code is written in ANSI C which is portable. Thus, it can be compiled for any
platform. Reference implementation contains five different field multiplication im-

plementations. For three of them, we have followed the implementation strategies

! Seelhttps://gitlab.com/hktaskin/curve2663 for the code.

48


https://gitlab.com/hktaskin/curve2663

Table 5.2: Field Multiplication Implementation Cycles

Implementation | Reference Cycles | Comparison to TT
refl0 (4, 37] 119.07 | -16.58%

donna (4] 137] 108.43 | -8.39%

Kummer [27] 263.96 | -62.37%

TT This Thesis, [35] | 99.33

TSB This Thesis, [35] | 101.35 | -1.99%

for ref£10 and donna implementations of Curve25519 [4] in SUPERCOP [37] on
[Fy266_3 and modified the implementation given in [27]] to make it work with ANSI
C. Besides these field multiplication implementations, we have implemented two dif-
ferent TMVP-Based implementations of the proposed methods using the strategy in-
troduced in [35]]. First implementation of us makes use of TMVP on both 4 x 4 and
2 x 2 matrix multiplications. The second implementation uses schoolbook matrix

multiplication algorithm instead of TMVP for the 2 X 2 matrix multiplications.

The compiler for benchmarking we use is gcc [18] on macOS Sierra with Apple
LLVM gcc 4.2.1 on 2.0 GHz Intel 17-4750HQ with Hyper Threading disabled. We
have tested several different compiler optimization arguments and combinations to
get faster results for all implementations. We have selected the compiler optimization

level 3 along with —~ffast-math and —fno-common options.

Table [5.2] shows the avarage implementation cycle counts of 5 different field multi-
plications. The counts listed are obtained by taking a minimum of 10® operations for
each field multiplication algorithm. TT means TMVP and TMVP, TSB means TMVP

and Schoolbook for 4 x 4 and 2 X 2 matrix operations respectively.

Our reference scalar multiplication implementation uses Montgomery Ladder to com-
pute scalar multiples of points on the curve and only implements variable base point
scalar multiplication. We follow the same strategy as described in [4]. For modular

_1:

inversion, the algorithm is optimized using the fact x 2P~? resulting in a constant

time algorithm with the strategies introduced in [4} 27]].

Table[5.3|shows the avarage implementation cycle counts of scalar multiplication with
5 different field multiplications. The counts listed are obtained by taking a minimum

of 50K operations for each scalar multiplication algorithm. The Kummer implemen-

49



Table 5.3: Scalar Multiplication Implementation Cycles

Implementation | Scalar Mult. Cycles | Comparison to TSB
Ref10 319837 -14.56%

Donna 278875 -2.01%

Kummer 673724 -59.44%

TT 281392 -2.89%

TSB 273261

tation focuses specifically on Intel AVX2 implementation, besides, our implementa-

tion strategy is making the code portable. In this respect, we have re-implemented the

Kummer algorithm using ANSI C intrinsics. Thus, the drastic improvement ratio of

our algorithm against Kummer implementation can be explained in this fashion.
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CHAPTER 6

CONCLUSION

The need for faster and practical cryptography has been an attractive research area
due to the fact that cryptographic operations are the most expensive part in an appli-
cation in general. Especially, asymmetric operations are the slowest part. With the

introduction of ECC, speeding up ECC operations became a focused research area.

ECC operations are based on finite field arithmetic. Therefore, in this thesis, we have
focused on optimizations for finite field arithmetic, especially, finite field multiplica-
tion. Furthermore, we also gave details of choosing safe primes and proposed a new

curve.
Overall, the contributions of this thesis can be summarized as follows:

In Chapter 3} we have presented the work related to TMVP and proposed a decom-
postion for 10-dimensional TMVP for field multiplication. We have searched for all
possible combinations to find a new representation that is efficient, and the proposed
algorithm is built on the new representation. Next, we have discussed the arithmetic
cost of our proposed multiplication algorithm which resulted in better complexity
compared to schoolbook multiplication. We have also evaluated the delay complex-
ity of the proposed algorithm using four-core implementation to stress its efficiency
when it is implemented in multi-core systems and showed that it can be implemented
as almost embarrassingly parallel. Finally, we have introduced a method to build
TMVP-Based element representation on prime fields and proposed some prime fields

that have promising forms for implementation.

In Chapter 4, we have proposed a new algorithm for finite field multiplication over
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Fy255_19 using TMVP method and implemented the proposed algorithm on differ-
ent platforms including x86 and ARM. Next, we have tested and compared our im-
plementation with different configurations on these platforms and showed that the
proposed algorithm has promising results indicating TMVP method can be used effi-

ciently for multiplication in Fa2s5_1g.

In Chapter [5] we have introduced a methodology to search and choose safe curves
and gave details of safe curve generation process. Next, we have defined a new cri-
teria called "Order Type" for cofactor categorization of the curves. Finally, we have
proposed a new curve called Curve2663 that we have found using the proposed safe

curve generation algorithm and demonstrated its details and benchmark results.
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APPENDIX A

SOURCE CODE OF 10-DIMENSIONAL TMVP
IMPLEMENTATION

We provide a naive reference ANSI C implementation of the proposed 10-

dimensional TMVP Implementation for field multiplication over Fozes 3.

1 // fe_mul_tmvp.c

3  #include <stdio.h>

5 #define FE_MUI,_TYPE TMVP_TMVP

6 //#define FE_MUI_TYPE TMVP_SCHOOLBOOK

8 typedef uint32_t fe[1l0];
9 static const uint64_t cmask27 = Ox7ffffff;
10 static const uint64_t cmask23 = Ox7fffff;

12 uinté64_t P11, P2, P3, P4,

13 PFl, PF2, PF3, PF4, PF5, PF6, PF7, PFS8,
14 PT1, PT2, PT3;

15 uint64_t R[20];

7 // T (2x2) % V (2x1) = M (2x1)
18 void Two_tmvp (uint64_t +MO, uint64_t M1,

19 uint64_t TO, uinté64_t T1, uint64_t T2,
20 uint64_t V0, uint64_t V1)

21 {

2 // 3M + 3A + 2Ad

23 PT1 = TO * (VO + V1);

24 PT2 = (T1 - TO) = VI1;

25 PT3 = (T2 - TO) * VO;

26 +*MO0 = (PT1 + PT2);

27 +*M1 = (PT1 + PT3);

28 }
29
30 // T (2x2) = V (2x1) = M (2x1)
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

void Two_schoolbook (uint64_t +MO,
uinté64_t TO,
uinté64_t VO,

// 4M + 2Ad

*MO = (TO = VO);
*MO +=(T1 = V1);
*M1 = (T2 % VO0);
+*M1 +=(TO0 = V1);

// T is TMVP (4x4) = V (4x1)

// &MO, &§M1, &M2, &§M3
// T0, T1, T2, T3, T4, T5,
// vo, vi, vz, V3
void Four_by_four (uint64_t

uint64_t
uint64_t
uint64_t
uint64_t
{

// +MO = (TO+V0) +

// #M1 = (T4xV0) +

// *M2 = (T5+V0) +

// *M3 = (T6+V0) +

uint64_t T1,
uint64_t V1)

uint64_t T2,

uint64_t +Ml,uinté64_t
uint64_t TO,
uint64_t T3,
T5,uint64_t To,
V1,uint64_t V2,

uint64_t T1,
uint64_t T4,
uint64_t VO,
uint64_t V3)

(T1+V1)
(TOxV1)
(T4+V1)
(T5+V1)

+ + + o+
+ + + +

#ifdef FE_MUIL_TYPE_ TMVP_SCHOOLBOOK
Two_schoolbook (&PF1, &PF2,T0,T1,T4,V0,V1);
Two_schoolbook (&PF3, &PF4,T5,T4,T6,V0,V1);

( )
)

’

Two_schoolbook (&PF5, &PF6,T2,T3,T1,V2,V3

Two_schoolbook (4PF7, &PF8,T0,T1,T4,V2,V3
#elif defined FE_MUL TYPE_TMVP_TMVP

Two_tmvp (&PF1, &PF2,T0,T1,T4,V0,V1

r

( )i
Two_tmvp (&PF3, «PF4,T5,T4,T6,V0,V1);
Two_tmvp (&PF5, «PF6,T2,T3,T1,V2,V3)

( )

Two_tmvp (&PF7, &PF8,T0,T1,T4,V2,V3

’

’

67

68

69

70

71

72

73

74

75

76

71

78

79

80

#endif
*MO = (uint64_t) (PF1 +
*M1 = (uint64_t) (PF2 +
*M2 = (uint64_t) (PF3 +
*M3 = (uinté64_t) (PF4 +

void fe_mul_tmvp(fe h,fe f,fe qg)

{
// A0BO

Four_by_four (&R[1],&R[2],&R[3],&R[4],
(uint64_t)f[1], (uint64_t)f[0],0LL,0LL,
(uint64_t) f[2], (uint64_t) f[3], (uint64_t) f[4],



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

(uint64_t)g[0], (uint64_t)gl[l],
(uint64_t)g[2], (uint64_t)g[3]);

R[0] = ((uint64_t)f[0] =
R[4] += ((uint64_t)f[0]
// AIBO
Four_by_four (&R[5], &R[6]
(uint64_t) f
(uint64_¢t)f
(uint64_¢t) f
(uint64_t)g
R[5] += ((uint64_t)f[1]
R[6] += ((uint64_t)f[2]
R[7] += ((uint64_t)f[3]
R[8] += ((uint64_t)f[4]
R[9] = ((uint64_t)f[9]
R[9] += ((uint64_t)f[8]

((
((
R[9] += ((uinté64_t)f[7]
((
((

*

[
[
[
[

[1
(2
[5
[8

*

*

(uint64_t)g[0]);

(uint64_t)gl4])

[71,&R[8],

14

R
], (uint64_t)f[4], (uint64_t)f[3],
]
]
]

[
(uint64_t)f[6], (uint64_t)f[7],
, (uint64_t)g[0], (uint64_t)g[1l],
, (uint64_t)gl[3]);

uint64_t)g[4]
uint64_t)gl[4]
uint64_t)g[4]
uint64_t)g[4]

’
’

( ) )
( ) )
( ) )i
( ) )
(uint64_t)g[0]);
(uint64_t)g[l]);
(uint64_t)g(2]);
( )g )
( ) )

uint64_t)g[3]
uint64_t)gl[4]

’

’

], (uinte64_t)f[0],0LL,0LL,
], (uint64_t) f[3], (uint64_t)f[4],
1, (uint64_t)g[6], (uint64_t)gl[7],
]

)i

(uint64_t)g[5])

(uint64_t)g[9])

R[9] += ((uint64_t)f[6]
R[9] += ((uint64_t)f[5]
// AOBI
Four_by_four (&P1, &P2, &P3, &P4,
(uint64_t) f
(uint64_t) f
(uint64_t)g
(uint64_t)g
R[5] += ((uint64_t)f[0]
R[6] += (uint64_t)P1;
R[7] += (uint64_t)P2;
R[8] += (uint64_t)P3;
R[9] += (uint64_t)P4;
R[9] += ((uint64_t)f[0]
// A2B0O

Four_by_four (&R[10], &

R[11],
(uint64_t) £[9],
(uint64_t)f[6],
(uint64_t)g[2],

R[12],&R[13],

(uint64_t) f[8], (uint64_t)f[7],
0LL,O0LL, OLL, (uinté64_t)g[1],
(uint64_t)g[3], (uint64_t)g[4]);

], (uint64_t)f[4], (uint64_t)f[3],

// AlBI

Four_by_four (&P1, &P2,&P3, &P4,
(uint64_t) £
(uint64_t) f
(uint64_¢t)f
(uint64_t)g

[5
(2
[8
[7

( [
], (uint64_t)f[6], (uint64d_t)f[7],
1, (uint64_t)g[5], (uint64_t)gl[6],
1, (uint64_t)gl[8]);
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131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

R +=
R[ +=
R[11] +=
R[11] +=
R[12] +=
R[12] +=
[13] +=
R[13] +=
R[14] =
R[14] +=
R[14] +=
R[14] +=
R[14] +=
// A2B1

(uint64_t)P1;
((uint64_t)f[1]

(uint64_t)P2;
((uint64_t)f[2]

(uint64_t)P3;
((uint64_t) f[3]

(uint64_t)P4;
((uint64_t) f[4]

((uinté64_t) f[9]
((uint64_t) £[8]
((uint64_t) f[7]
((uint64_t) f[6]
((uint64_t) f[5]

* (uint64_t)g[9]);
* (uint64_t)gl[9]);
* (uint64_t)gl[9]);

* (uint64_t)g[9]);

* (uint64_t)g[5])

* (uint64_t)g[6]);

* (uint64_t)gl[7]);
) 1)
) 1)

’

’

+ (uint64_t)g[8
+ (uint64_t)g[9

’

Four_by_four (sR[15],&R[16],&R[17],&R[18],
f£[9],f[8]1,f[7],f[6],0LL,0LL,0LL,
glél,gl71,9181,909]);

R[19]

// Adding matrices

R[0] += (
R[1] += (
R[ +=
R[ +=
R +=
R[ +=
RI +=
R[ +=
R[8] += (
//R[9] +=

= 0LL;

R[10] << 5) +

(

(R[11] << 5) +
(R[12] << 5) +
(R[13] << 5) +
(R[14] << 5) +
(R[15] << 5) +
(R[16] << 5) +
(R[17] << 5) +
(R[18] << 5) +

(R[19] << 5) + (R[19] << 4

// Reduction

P1
Pl
P1
P1
P1
P1
P1
P1
P1
P1
P1

R[O]
R[1]
R[2]
R[3]
R[4]
R[5]
R[6]
R[7]
R[8]
R[9]
R[0]

>> 27; R[0] &=
>> 27; R[1] &=
>> 27; R[2] &=
>> 27; R[3] &=
>> 27; R[4] &=
>> 27; R[5] &=
>> 27; R[6] &=
>> 27; R[7] &=
>> 27; R[8] &=
>> 23; R[9] &=
>> 27; R[0] &=

and multiplication with 48

(R[10] << 4));
(R[11] << 4));
(R[12] << 4));
(R[13] << 4));
(R[14] << 4));
(R[15] << 4));
(R[16] << 4));
(R[17] << 4));
(R[18] << 4));

)

7

cmask27; R[1] += P1;
cmask27; R[2] += P1;
cmask27; R[3] += P1;
cmask27; R[4] += P1;
cmask27; R[5] += P1;
cmask27; R[6] += P1;
cmask27; R[7] += P1;
cmask27; R[8] += P1;
cmask27; R[9] += P1;
cmask23; R[0] += (P1
cmask27; R[1] += P1;
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181

182

183

184

185

186

187

188

189

190

191

192

= (uint32_t)R[O

’

] ) ]
h[1l] = (uint32_t)R[1];
h[2] = (uint32_t)R[2];
h[3] = (uint32_t)R[3];
h[4] = (uint32_t)R[4];
h[5] = (uint32_t)R[5];
h[6] = (uint32_t)R[6];
h[7] = (uint32_t)R[7];
h[8] = (uint32_t)R[8];
h[9] = (uint32_t)R[9];
}
Listing 1: Reference Implementation of TMVP-Based Field Multiplication
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APPENDIX B

SOURCE CODES AND PROCESS DETAILS FOR CURVE
SEARCH

To find a finite field with prime characteristic of the form 2" + ¢, we use the following

MAGMA code for n € [255,600] and ¢ € [1, 1000].

FILE := "~/Desktop/fieldsearch_output.txt";

1

2 for j:=255 to 600 do

3 for i:=1 to 1000 do

4 if (IsPrime(27j+i)) then

5 fprintf FILE, "2"%0+%0,+,%0,%0\n",3,1,3,1;
6 end if;

7 if (IsPrime(27j-i)) then

8 fprintf FILE, "2"%0-%0,—,%0,%0\n", j,1i,73,1;
9 end if;

10 end for;

11 end for;

Listing 2: Prime Number Search Code
We have found 2562 different prime numbers as the result of the computation above.
We chose the following primes as start point: 2206 — 3 2336 _ 3 9452 _ 3 9545 _
3,2%0 — 5,
To find proper elliptic curves on these finite fields, we look for the following condi-
tions:

Define a montgomery curve 3% = 2 + Ax? + x;
1. Where (A — 2)/4 is as small as possible
2. Order of the curve is close to a prime (like 4p or 8p);

3. Order of the twist of the curve is close to a prime (like 4p or 8p);
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To find the order of the curve we use MAGMA’s Order () function which is defined
as "Order(E): The order of the group of K-rational points of E, where E is an elliptic
curve defined over the finite field K." in Magma Handbook [36].

To find the twist of the curve we use MAGMA’s Twists () function which is defined
as "Twists(E): Given an elliptic curve over a finite field K, returns the sequence of all
nonisomorphic elliptic curves over K which are isomorphic over an extension field.
The first of these curves is isomorphic to E. " in Magma Handbook. This function
returns two elliptic curves where the first one is the curve itself and second one is the
twisted form of the curve. After finding a suitable curve, one can easily check other
conditions against attacks mentioned in Section[5.1.2]

Before we start exhaustive search, to verify our code works properly, we have tested
the code with Elliptic Curve defined by y? = 23 + 48666222 + x over Fys5_19 which
is the Curve25519.

We use the following MAGMA code for this purpose.

1 n := 266;

2 c := 35

3 A := 20710;

4

5 K := GF(2"n - c);

6 QOx<x> := PolynomialRing (K) ;
7 I := Integers();

8

9 printf "n = %o\n",n;

10 printf "c = %o\n",c;

11 printf "A = %$o\n",A;
12 printf "K: %o\n",K;
13 printf "Qx: %o\n",Qx;

14 printf "I: %o\n",I;

16 £ := x"3 + Axx"2 + x;
17 E := EllipticCurve (f);
18 printf "f(x) = %o\n",f;

19 printf "E: %o\n",E;

20

21 TList := Twists(E);

2 printf "Number of Twists = %o\n", #TList;

23 for j := 1 to #TList do

24 printf "\n-————————- Twist #%0 —————————— \n%o\n", j, TList []J];
25 ord := Order (TList[3j]);

26 printf ">>> Order = %o\n",ord;

27 try

28 if IsPrime(I! (ord/2)) then
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29 printf ">>> 2p\n";

30 elif IsPrime(I! (ord/4)) then
31 printf ">>> 4p\n";

32 elif IsPrime(I! (ord/8)) then
33 printf ">>> 8p\n";

34 end if;

35 catch e

36 z = 1;

37 end try;

33 end for;

Listing 3: Safe Curve Search Code
The search code supplied above finds the Curve2663. The code takes 3 fixed pa-
rameters, namely, n, c and A. It is possible to extend this code by creating loops on
the parameter A to search massively on a wide range of curves. Using this kind of
parallelization, search space can be distributed over multiple cores.
We have searched for curves over different prime fields using 23 cores for the ranges

for each finite field mentioned in the Table

Table B.1: Search Ranges for Elliptic Curves

Prime Field | "A" Coefficient Range | # of Curves | Avg. Time | CPU Hours
2266 _ 3 6 — 80002 20000 32 sec 177 hours
2336 _ 3 6 — 1140002 285000 94 sec 7441 hours
2462 _ 3 6 — 68002 17000 328 sec 1548 hours
2545 3 6 — 140002 35000 710 sec 6902 hours
2550 _ 5 6 — 60002 15000 959 sec 3995 hours

We have spent a total of 20063 CPU hours (nearly 836 CPU days) for curve search
process. First result that fits into our conditions was the elliptic curve defined by
y? = 23 + 207102% + z over Fy266_5 where details were introduced in Section

2266

After finding this result, we have stopped working on the field — 3, and focused

on other fields.
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