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ABSTRACT 

 

NONLINEAR BEHAVIOUR AND STRESS CONCENTRATIONS IN 

NATURAL FIBER COMPOSITES UNDER TRANSVERSE LOADING 

 

Çakmakçı, Onur 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. F. Suat Kadıoğlu 

Co-Supervisor: Assoc. Prof. Dr. Barış Sabuncuoğlu 

 

February 2019, 143 pages 

 

Natural fiber reinforced polymer composite materials attracted attention of the 

researchers recently. Some of them, especially flax fiber composites, do have quite 

favorable mechanical properties compared to synthetic fibers like E-glass. In this 

study, micromechanical model of flax fiber reinforced composite under transverse 

loading is investigated and compared with conventional synthetic fibers. The study 

includes variety of strains and response of the material under large deformations. 

Finite element models employing representative volume elements like single fiber, 

hexagon and random are utilized. Fiber volume fractions of 40% and 60% are applied 

for the multiple fiber packaging types. According to the results, increasing fiber 

volume ratio affected the magnitude of the stress concentrations proportionally. Stress 

concentrations spread more uniformly with increasing strain inputs. The presence of 

neighboring fibers affected the stress concentrations of each other. Results of the 

comparison case studies revealed that stiffness contrast between fiber and the matrix 

significantly contributes to the high stress concentrations. The most uniform 

transverse stress concentration state observed was the flax fiber’s for all comparison 

cases with conventional fibers. 
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ÖZ 

 

ENİNE YÜKLEME ALTINDAKİ DOĞAL ELYAFLI KOMPOZİTLERDE 

GERİLME YOĞUNLAŞMALARI VE DOĞRUSAL OLMAYAN 

DAVRANIŞLARIN İNCELENMESİ 

 

Çakmakçı, Onur 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. F. Suat Kadıoğlu 

Ortak Tez Danışmanı: Doç. Dr. Barış Sabuncuoğlu 

 

Şubat 2019, 143 sayfa 

 

Doğal elyaf katkılı kompozit malzemeler son yıllarda araştırmacıların fazlasıyla 

ilgisini çekmektedir. Bu malzemelerden bazıları, özellikle keten elyafı, E-Cam gibi 

sentetik elyaflara kıyasla oldukça iyi mekanik özellikler sergilemektedir. Bu tez 

çalışmasında, mikromekanik olarak modellenmiş bir keten elyaf katkılı kompozitin 

enine yükleme altındaki davranışları incelenmiştir ve söz konusu malzeme 

alışılagelmiş sentetik elyaflarla kıyaslanmıştır. Çalışma birden çok gerinim girdisini 

ve malzemenin yüksek deformasyon altındaki tepkisini içermektedir. Tek, altıgen ve 

rastgele elyaf dağılımlı temsili hacim elemanlara sahip sonlu elemanlar modelleri 

kullanılmıştır. Analizler çoklu elyaf modelleri için %40 ve % 60 hacimsel elyaf 

oranlarında gerçekleştirilmiştir. Elde edilen sonuçlara göre, artan hacimsel elyaf oranı 

gerilme yoğunlaşma büyüklüklerini doğru orantılı olarak etkilemektedir. Yüksek 

gerinim girdilerinde gerilme yoğunluklarının daha düzgün dağıldığı gözlemlenmiştir. 

Elyaf ve reçine arasındaki katılık farkının kıyaslama analiz çalışması sonuçlarına göre 

yüksek gerilme yoğunlaşmalarında oldukça etkili olduğu anlaşılmıştır. Tüm 

kıyaslama analizlerinde enine yükleme koşulunda en düzenli gerilme 

yoğunlaşmalarının keten elyaf katkılı kompozitlerde görüldüğü tespit edilmiştir. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Natural fiber reinforced composites have been used in several areas of industry mainly 

as secondary structural components. Due to new developments during the last decade, 

better understanding of their mechanical behavior is required. The idea of using 

natural fiber reinforced composites in primary structural applications, demanded 

researchers/engineers to explore the material more than ever before. Material behavior 

of natural fiber reinforced composites under loading conditions depends on various 

factors like fiber type, resin type, adhesion between fiber-matrix assembly, fiber 

volume fraction, manufacturing method, harvesting methods, post-processing 

methods etc. Unlike the synthetic fibers, natural fibers exhibit different responses 

because of their intrinsic properties. The investigations on this field will allow people 

to develop and use this eco-friendly material in many fields concerning the adverse 

effects of synthetic fibers to the environment. To do so, various loading aspects, 

material modeling and simulation techniques, correlation methods should be 

investigated. Tailor-made composite materials are quite popular in structural 

applications in which they are employed on the direction of loading coinciding with 

the material’s stiffest direction. However, considering the other loading directions, 

material sometimes could unexpectedly yield and fail. In the content of natural fiber 

composites, studies mostly focus on longitudinal loading conditions. A transverse 

loading study will give an idea about how these materials response to a different 

loading cases and how the integrity of the composite is affected at the end. 

1.1. Aims and Objectives of the Study 

The main aim of this study is to develop a numerical model in order to investigate 

material behavior with several differences compared to the previously studies 
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conducted in this field. Computational modeling is performed for the flax fiber 

composites by using a similarity based finite element approach. The study differs from 

the previous ones in many aspects. First and the most important is that natural fiber 

reinforced composite is investigated under transverse loading conditions with high 

strain setting. Majority of the studies in the literature was performed for longitudinal 

tensile modes for small strains. The number of studies in transverse loading conditions 

is quite a few. To be able to fully understand the material, whole behavior should be 

examined including the transverse response. Considering the structural applications, 

material strength apart from the main loading directions is vital due to possible 

combined loading cases. Hence, this study is beneficial considering the understanding 

of these new materials. 

The second aspect is that this study is conducted in micromechanical level with several 

representative volume element approaches. Conducted studies in literature generally 

focus on macro level responses of a single finite element model. In the content of this 

study, natural fiber composite response is investigated both single and multiple fiber 

assemblies to observe the effect of fibers on stress concentrations on the matrix as 

well.  

Another important benefit of this study is that whole FE models are created 

parametrically by using scripts, which allows conducting more analyses in minor 

intervals avoiding using the software’s graphical user interface that takes long time 

for each iteration. Hence, this approach can further enhance the modeling of micro-

structural behavior.  

The additional objectives of the research are as follows: 

1. Understanding the behavior of natural fiber composites under transverse loading 

conditions; 

2. Implementing a method to obtain and quantify the stress concentrations in terms 

of numerical values; 
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3. Understanding the parameters of a natural fiber reinforced composite which could 

influence high stress concentration for prescribed loading; 

4. Comparing the natural fibers with conventional synthetic fibers and evaluating the 

applicability; 

5. Investigating the response of the composite under high deformations. 

The thesis does not cover the damage, failure and fatigue behavior of natural fiber 

reinforced composites. Furthermore, the effect environmental conditions like 

temperature, pressure, humidity are neglected in the content of this study. 

1.2. Research Methodology 

The study starts with introduction to natural fiber reinforced polymer composites 

(NFPC). This section focuses on the definition and the concept of the material. Fiber 

and matrix of NFPCs are introduced. Then the selected natural fiber, flax, and its 

composites are investigated. An extensive literature survey is conducted since the 

essence of the study originates from this knowledge. After that, a novel finite element 

model is created and material models are selected. The description of these models are 

given in related sections. By using these material and finite element models, 

simulation studies are carried out with different parameters. At each run, a different 

aspect of composite is investigated. Stress concentrations occurring in matrices are 

calculated and plotted via a mathematical software. Next, the results are presented 

with plots and images. Finally, conclusions are presented. The methodology used in 

this thesis is summarized in Figure 1.1. 
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Figure 1.1. Research Methodology of the thesis 

 

1.3. Outline of the Study 

This thesis consists of 7 chapters. The summary of each chapter is given below: 

CHAPTER 1. Introduction: Information about the content and the format of the thesis 

is given. Aims, objectives and methodology are mentioned. 

CHAPTER 2. Literature Review: A detailed introduction about NFPCs are made. The 

constituents of NFPCs, i.e. fiber and matrix, and their effects on composite’s 

mechanical properties are explained thoroughly. Mechanical and morphological 

properties of flax fiber is investigated. Stress-strain behavior is explored thoroughly. 

Extensive literature survey about the composites made of this fiber is presented. 

CHAPTER 3. Objective of the Thesis: Purpose and motivation of the study is 

explained. 

CHAPTER 4. Material Modeling of the Flax Fiber Composite: Material models to be 

used in FE analyses are given for fiber and the matrix. 

CHAPTER 5. FEM Description of the Flax Fiber Composite: 3 different 

representative volume elements are introduced, namely, single fiber, hexagon and 
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random. Boundary conditions to apply these RVEs are determined. Details regarding 

model discretization are explained. 

CHAPTER 6. Analysis Results: Created FE model results are presented. Simulations 

are carried out in Abaqus® finite element solver. Model creation and submission is 

done by using Python® scripts. Extracted results are post-processed with Matlab® to 

get stress concentration plots. 

CHAPTER 7. General Conclusions: The summary and outcomes of the conducted 

research are presented. The results are discussed. 

APPENDIX A: Analysis regarding flax fiber’s elastic state is presented. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Introduction to Natural Fiber Reinforced Polymer Composites 

Natural Fiber Reinforced Polymer Composite (NFPC) is a kind of man-made material 

consisting of a high strength natural fiber and a polymer resin matrix. NFPC industry 

is currently a growing market due to this type of material’s superior properties like 

relatively low weight, low cost, non-abrasive nature, biodegradability, and relatively 

good mechanical properties [1]. Reinforcing fibers are extracted from plants, animals, 

minerals and subjected to certain chemical processes to be readily used in composite 

forms. NFPCs are great candidates to be green materials, which at the end will make 

great contribution to environmental sustainability. Synthetic fiber reinforced 

composites production processes are cumbersome due to energy requirements and 

they also have poor recycling properties [2]. NFPC’s are commonly used in 

automobile industry as interior design elements in the present state. Applications of 

natural fibers are also common in sports industry, house decoration, furniture, musical 

instruments etc. 

 

Figure 2.1. Industrial use of NFPC examples [3, 4] 



 

8 

 

2.1.1. Constituents of NFPCs 

As in the case of conventional composites, an NFPC is made of a stiff and strong 

reinforcing fiber and a tough and soft matrix material. In this section, general 

properties of fibers and matrices are elaborated. 

2.1.1.1. Fiber 

Natural fibers can be obtained from various sources like plants, animals and geological 

resources.  Plant originated natural fibers contain cellulosic substances, whereas 

animal based ones contain proteins. Hard and woody nature of plant fibers make them 

preferable for high performance applications and they are the most common ones 

whereas the animal based ones are utilized in textile industry.  

The performance of the composite is related to strength, orientation, physical 

properties and interfacial adhesion properties of fibers [1, 5-8]. 

 

 

Figure 2.2. Classification of Natural Fibers [9] 

 

Reinforcing plant fibers exist in various forms and shapes: bast fibers (jute, flax, 

ramie, hemp, kenaf); seed fibers (sisal, pineapple, abaca); grass and reed fibers  (rice, 
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corn, wheat) and core fibers (hemp, kenaf and jute) [10]. World production amount 

per 103 ton can be observed in Table 2.1 

Table 2.1. Natural fiber production rate (Reprinted from [10] with permission from Elsevier) 

Fiber Source World Production (103 ton) 

Cotton Lint 18,450 
Jute 2,300 

Kenaf 970 

Flax 830 

Sisal 378 

Roselle 250 

Hemp 214 

Coir 100 

Ramie 100 

Abaca 70 

 

In general, bast fibers have the highest absolute and specific tensile properties among 

the other type of plant fibers. Leaf and seed fibers come afterwards. This is mainly 

due to function of fiber in the plant itself. Bast fibers provide rigidity and stiffness to 

the plant stems, therefore they should have the highest strength, leaf fibers come across 

with winds repetitively so they should have toughness, whereas seed fibers do not 

have any structural responsibility, so they lack those properties unlike the previous 

ones [11]. A number of mechanical properties of bast, leaf and seed fibers could be 

seen in Table 2.2 
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Table 2.2. Mechanical Properties of several plant fibers [10, 12-19] 

Fiber 
Density 

(g/cm3) 

Tensile 

Modulus 

(GPa) 

Specific Tensile 

Modulus (GPa/gcm-3) 

Tensile Strength 

(MPa) 

Specific Tensile 

Strength (MPa/ gcm-3) 

Failure 

Strain 

Bast       

   Flax 1.45-1.55 28-100 19-65 343-1035 237-668 2.7-3.2 

   Hemp 1.45-1.55 32-60 22-39 310-900 214-581 1.3-2.1 

   Jute 1.35-1.45 25-55 19-38 393-773 291-533 1.4-3.1 

Leaf       

   Sisal 1.40-1.45 9-28 6-19 347-700 248-483 2.0-2.9 

   Pineapple 1.44-1.56 6-42 4-27 170-727 118-466 0.8-1.6 

   Banana 1.30-1.35 8-32 6-24 503-790 387-585 3.0-10.0 

Seed       

   Cotton 1.50-1.60 5-13 3-8 287-597 191-373 6.0-8.0 

   Coir 1.10-1.20 4-6 3-5 131-175 119-146 15-30 

   Oil Palm 0.70-1.55 3-4 2-4 248 160-354 25.0 

 

Not all of the natural fiber types are used for reinforcement purposes. As it is 

mentioned earlier, bast and some of the leaf fibers are made use of due to their rigid 

structures whereas most of the seed fibers are used for toughening purposes. In order 

to elaborate on the mechanical properties of a natural fiber, one should first go into 

details of basic cell structure. Unit cell of reinforcing natural fibers are composed of 

two types: technical and elementary. Given in the Figure 2.3, the difference could be 

noticed. Technical fibers, also defined as fiber bundles, is a group of fiber consisting 

10 to 40 fibers whereas elementary fiber is a single one [20]. 

 

 
 

Figure 2.3. (a) Technical and elementary fiber; (b) SEM image of an elementary fiber. Copyright (2003) 

Wiley. Used with permission from [21] 

 

(a) (b) 
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Internal structure of an elementary fiber consists cellulose, hemicellulose, lignin, 

pectin, waxes and other components. Main constituent, which provide the actual 

stiffness, is cellulose in the form crystalline cellulose.  

Table 2.3. Chemical Composition of some common natural fibers [10]. 

Fiber Cellulose (%) Hemicellulose (%) Lignin (%) Waxes (%) 

 

 

 

 (%) 

Flax 71 18.6-20.6 2.2 1.5 

Kenaf 72 20.3 9 - 

Jute 61-71 14-20 12-13 0.5 

Hemp 68 15 10 0.8 

Ramie 68.6-76.2 13-16 0.6-0.7 0.3 

Abaca 56-63 20-25 7-9 3 

Sisal 65 12 9.9 2 

Coir 32-43 0.15-0.25 40-45 - 

 

The fiber does have non-crystalline cellulose as well, but in terms of intermolecular 

bonds it is inferior compared to crystalline. Cellulose molecules are helically wound 

around the cell walls with a certain angle. This helix angle is called micro fibril angle 

and it affects the tensile properties profoundly [11]. Another parameter affecting the 

performance of a natural fiber is the aspect (length-to-diameter) ratio. Long fibers are 

better at stress transfer when they are used in a composite laminate. This phenomenon 

is explained as an uncut fiber acts like a continuous beam. If the same length is 

replaced by bunch of a short fibers, at each transition region, a stress concentration 

point is created and strength of the overall structure diminishes. Therefore, fibers with 

high length and small diameter are preferred to be used in structural applications [5, 

22-24]. Some of the mentioned parameters for natural fibers are listed in Table 2.4 
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Table 2.4. Structural Parameters of Several Natural Fibers [11, 18, 24-29] 

Fiber 
Cellulose Content 

(wt %) 

Cellulose 

Crystallinity (%) 

Micro fibril Angle 

(degree) 

Aspect Ratio 

(Length/Diameter) 
Luminal Porosity (%) 

Bast      

   Flax 64-71 50-90 5-10 1750 2-11 

   Hemp 70-74 50-90 2-6 900 2-11 

   Jute 61-72 50-80 8 100 10-16 

Leaf      

   Sisal 66-78 50-70 10-25 100 10-22 

   Pineapple 70-82 44-60 10-15 450 10-22 

   Banana 44-64 45-55 10-12 150 35-53 

Seed      

   Cotton 85-93 50-90 46 1000 5 

   Coir 32-43 27-33 30-49 35 30-50 

   Oil Palm 40-50 20-30 42-46 100 5-10 

 

2.1.1.2. Matrix 

Matrix materials in NFPCs can be thermoplastic, thermoset, rubber or biodegradable. 

Molecular structure of the thermoplastic matrix is suitable for becoming softer at 

elevated temperatures and return to its original form when it is cooled down. Contrary 

to this, thermoset resins have strong chemical bonds, which makes them amenable to 

be treated in relatively low temperatures. The most commonly used thermoplastic 

matrix types in NFPCs are polypropylene (PP), polyethylene, poly vinyl chloride 

(PVC); whereas phenolic, epoxy and polyesters are the thermoset resins [30, 31]. 

Shah et. al (2013) explain that natural composites with an aim of utilization in 

structural applications generally have thermoset matrices owing to three main reasons 

[11]. First, mechanical properties of thermoset matrices are superior due to their 

inherent molecular structure compared to thermoplastics. After curing process, they 

develop a highly rigid network of covalent molecular structures. Due to that, they 

show better performance in tensile loading. Second reason is easy application potential 

because of low processing temperatures and low viscosity. Unlike the thermoplastic 

curing, process temperatures typically below 100°C do not damage and degrade the 

natural reinforcement at the end; either no or little performance loss is observed. Low 
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viscosity makes the composite manufacturing process more versatile. In such case, 

liquid composite molding techniques could be used and high performance material 

requirements can be satisfied due to error-free manufacturing. Third reason is the shear 

properties caused by chemical interface which is formed with natural fibers. 

Thermoset resins are polar in nature like plant fibers. This feature makes them to be 

compatible with reinforcing fibers unlike thermoplastics which tend to be nonpolar. 

There are other types of matrices used in natural fibers. Rubber matrices are one of 

them. Primary rubber matrices are natural rubber (NR-most common one), styrene 

butadiene rubber (SBR), butyl rubber (IIR), butadiene rubber (BR), nitrile rubber 

(NBR), chloroprene rubber (CR), ethylene propylene diene rubber (EPDM), 

polyurethane and silicon rubbers [32]. Use of bio-degradable matrices is a rather new 

development in the content of NFPCs. The idea of using a natural resin together with 

a natural reinforcement draw attention of many authors.  In their work O’Donnell et. 

al [33] examined the plant oil-based natural composites (acrylated epoxidized soy 

bean oil). They successfully achieved to produce laminates with mechanical strengths 

enough to be employed in housing and automotive applications. Oksman et.al [34] in 

their work, demonstrated the PLA (Poly Lactic Acid) based flax composites have 50% 

increased performance compared to thermoplastic polypropylene matrix and indicated 

that PLA based composites could replace conventional thermoplastic composites. 

Girones et. al [35] examined corn starch based sisal and hemp composites and reported 

promising results in terms of performance increase. In their work, Pickering et. al. [32] 

summarized some of the natural and biodegradable matrices that can be seen in Table 

2.5  

Table 2.5. Natural and Biodegradable Matrices [32]. 

Natural Substances Synthetic Substances 

Polysaccharides Poly(amides) 

Starch Poly(anhydrides) 

Cellulose Poly(amide-enamines) 

Chitin Poly(vinyl alcohol) 

Proteins Poly(vinyl acetate) 
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Collagen/gelatin Polyesters 

Casein, albumin, fibrogen, silks Poly(glycolic acid) 

Polyhydroxyalkanoates Poly(lactic acid) 

Lignin Poly(caprolactone) 

Lipids Poly(orthoesters) 

Shellac Poly(ethylene oxides) 

Natural Rubber Poly(phosphazines) 

 

The matrices used with natural reinforcing fibers can be enhanced in terms of 

mechanical performance by using certain chemical and physical methods, which is 

explained in the upcoming sections.  

2.1.2. Mechanical Properties of NFPCs 

Natural fiber composites draw great interest due to their advantages over conventional 

composite materials like low cost, high specific strength, high strength-to-weight 

ratio, relatively good mechanical properties, non-abrasive nature and biodegradability 

[30]. However, these materials are not free from problems. In this section, mechanical 

properties of NFPCs are explained. 

In terms of structural applications, mechanical properties of NFPCs are driven by 

several parameters, such as fiber type, pre-process of the fiber, fiber-matrix interface, 

fiber volume fraction, and manufacturing method. 

Fiber type is the dominant element, which affects the tensile properties of NFPCs. As 

it is indicated in Section 1.1.1, Natural fibers can be classified as bast, leaf, core, grass, 

and reed fibers. Bast fibers are the superior in terms of mechanical properties 

compared to other types due to their chemical composition and cellular structure [11]. 

These types of fiber are rich in terms of crystalline cellulose content. Cellulose gives 

strength and rigidity to the fiber, therefore tensile properties of a fiber is proportional 

to cellulose content. Other properties related to fiber type are micro-fibril angle and 

aspect ratio. 
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Figure 2.4. Schematical representation of plant cell structure. (Reprinted from [36] with permission 

from Elsevier) 

 

Micro-fibril angle (MFA) is the angle between helically wound micro-fibrils at S2-

layer and the longitudinal direction of the fiber. As this angle gets smaller, crystalline 

cellulose aligns with fiber and the loading direction in the composite which increases 

tensile strength at the end.  

Aspect ratio is the ratio of fiber length-to-diameter. High aspect ratio is favorable in 

terms of strength of a natural fiber. This is because long fibers with small cross-section 

are better at stress transfer. Liu et. al [37] investigated the length effect of kenaf fiber 

reinforced plastics under impact loading and concluded that as the fiber length 

increases impact strength of the composite increases as well due to increasing fiber 

bridging effect. Bridging effect is a phenomenon that occurs during delamination of 

fiber-reinforced composites in which fibers form bridge like structures on the crack 

opening and slow down the crack growth. Therefore, fiber aspect ratio is an important 

parameter of a NFPC. 

In order to use a natural fiber in a composite application, it must go through an 

extraction and preparation process. Fiber quality is highly variable due to this process 

and it affects the mechanical properties profoundly. The final product is special to the 

application that it will be used. The fibers could be in the forms of mats, unidirectional 

prepregs, woven fabrics, non-woven fabrics etc. Retting is the initial operation of 

extracting bast fiber from woody substance and cellular tissues where the fibers reside 
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in the plant stem [38]. Whole process can be seen in Figure 2.5. Process parameters 

are effective on mechanical properties of the final product as well. The purpose of the 

whole operation is to obtain uniform, long, and undamaged fiber bundles to be used 

in consolidated composite forms. As it is indicated, process may show some difference 

from producer to producer but in order to ensure a consistent quality suppliers use 

batch mixing across several crops, harvests, and years [11]. 

 

 

Figure 2.5. Bast fiber extraction & production stages [38] 

 

Another performance driving parameter is fiber-matrix interface. As it is indicated in 

Section 1.1.1, the most commonly used matrix types are thermosets and 

thermoplastics. Among them, thermosets are more suitable for structural applications 

due to load bearing capacity to be used in high performance composite applications, 

low processing temperatures, low viscosity for different type of consolidation 

methods, and better compatibility with plant fibers. Polymer matrices are nonpolar 

and hydrophobic in nature, since the natural fibers consists polar hydrophilic 

substances like cellulose, inferior stress transfer issues arise [5]. The very first 
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performance treatment starts from this interface. Fiber-matrix adhesion could be 

improved using several chemical and physical techniques. These methods focus on 

cleaning fiber surface and removing impurities to assure better adhesion. Besides, 

some of the techniques abrade the fiber surface in micro level. By doing so, bonding 

between matrix and fiber further strengthens. Some of treated and untreated fiber 

composite properties can be seen in Figure 2.6. 

 

 

Figure 2.6. Tensile strength of NFPCs with or without treatment [5, 39, 40] (Reprinted from [5] with 

permission from Elsevier) 

 

Haque et. al investigated chemical treatment of palm and coir reinforced 

polypropylene composites [41].  He used benzene diazonium salt to increase 

compatibility of fibers with the matrix. Hydroxyl group in the natural fiber, which is 

responsible for high water absorption, is converted to diazo group, by doing so better 

mechanical properties are obtained. Cantero used various chemical treatments 

including maleic anhydride (MA), maleic anhydride-polypropylene copolymer 

(MAPP), vinyl trimethoxy silane (VTMO) to enhance adhesion characterics of flax 

fibers to the polypropylene matrix [42]. At the end of his work, he observed wettability 

characteristics, flexural and tensile strength properties was improved. Saha [43] 

conducted a study regarding treatment of jute fibers with alkali (NaOH) solution. He 
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dipped the fibers 0.5% alkali solution followed by a 30 minutes alkali stream. The 

indicated results were quite satisfactory in which uniaxial tensile strength has been 

increased up to 65%. The physico-chemical characterization of fibers that he made 

revealed that non-cellulosic matters that are removed properly with the aid of this 

process gave rise to an increase in tensile strength. Fiber volume fraction is the next 

parameter which affect mechanical properties of NFPCs. Shalwan et. al [5] classified 

the effect of volume fraction into two categories: theoretical and experimental. 

Theoretical models, which include rule of mixtures (ROM), have proportional relation 

with volume fraction and tensile strength. Real case is not alike. Up to certain limit, 

tensile strength of a composite increases with increasing fiber volume fraction. Yet, 

excessive amount of fiber in a composite laminate may deteriorate the fiber matrix 

interface and diminishes the stress transfer rate, at the end, results in an inferior 

structural composite. In their work, Brahim et. al [44] investigated influence of volume 

fraction in unidirectional Alfa/Polyester composite. They prepared specimens with 12, 

21, 32 and 44 % volume ratios. What they observed was a direct proportion between 

increasing volume ratio and longitudinal modulus. Jacob [45] studied mechanical 

properties of Sisal/Oil Palm hybrid natural fiber composite. He found out that increase 

of fiber concentration resulted with an increase in elastic modulus of the composite. 

But tensile strength and tear strength diminished after a specific value. Shibata et. al 

[24] conveyed in their work that volume fraction increase up to 60% in kenaf and 66% 

in bagasse increased the flexural modulus. After that, due to insufficient resin, it was 

reported that flexural modulus diminished.  

Each NFPC system exhibit different behavior due to highly scattering parameters 

related to manufacturing, harvesting, processing and design. The optimum values 

could only be reached via theoretical and experimental efforts. Some of the optimum 

fiber concentrations that give rise to maximum tensile properties can be observed from 

Table 2.6. 
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Table 2.6. Optimum fiber volume ratios for different NFPCs [5, 24, 30, 41, 44-51] 

Material Optimum Fiber Concentration (%) 

Sisal-oil palm/natural rubber ≈ 30 

Coir/PP ≈ 15 

Palm/PP ≈ 15 

Hemp/PP ≈ 40-50 

Flax/HDPE ≈ 20 

Rice/HDPE ≈ 5-10 

Kenaf/PP ≈ 40 

Jute/PP ≈ 40 

Hemp/PLA ≈ 35 

Jute/PBS ≈ 20 

Alfa/polyester ≈ 44 

Sisal/rubber ≈ 30 

Oil palm/rubber ≈ 30 

Kenaf/corn-starch ≈ 50 

Bagase/corn-starch ≈ 50 

Ramie cloth/polyester ≈ 30 

 

Manufacturing method of natural fiber composite systems is quite effective on the 

performance. As the fiber content increases, it becomes harder to consolidate the 

NFPC [11]. Common methods for NFPC manufacturing is injection molding, 

compression molding, vacuum infusion, hand layup, prepregging and resin transfer 

molding (RTM). The system to be used changes mostly according to matrix type as 

viscosity and cure temperature are the key factors. Among the mentioned 

manufacturing methods, compression molding is the most common one which can be 

used with both thermoplastic and thermoset resins. Due to mentioned compaction 

difficulties, composites with desirable volume fractions and mechanical properties 

sometimes could not be manufactured. Other techniques which utilize liquid resins 

could defect the composite because of porosities as well. Therefore, the method to be 

used for NFPC production is vital in terms of performance. 

Natural fiber reinforced polymers are not free from problems for sure. To summarize 

these merits; water absorption characteristics, poor dimensional stability, poor thermal 
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performance, unknown long term properties like fatigue and impact strength can be 

counted. 

2.1.3. Selection of Natural Fiber and Matrix Assembly 

General performance parameters of natural fiber composites are mentioned in the 

previous section. As it is indicated, mechanical properties show great scatter 

considering consolidated forms of fibers with resin due to various reasons. Thinking 

of the task in which NFPC will be employed, like structural applications, one shall 

have deep knowledge of fiber’s properties. Therefore, the fiber and its matrix 

assembly have to be scrutinized profoundly.  

Among the all types of natural fibers, bast fibers are known to perform best in loading 

applications. Since a structural task will mainly include a loading application, the fiber 

to be selected shall be one of them. In this sense, flax fiber comes into prominence 

considering the literature. Some properties of flax are quite competitive compared to 

synthetic fibers which can be observed in Table 2.7. Especially E-Glass is thought to 

be replaced by flax fiber in certain structural applications. 

Table 2.7. Some Properties of flax and synthetic fibers [11, 17, 30] 

Fiber 
Density 

(g/cm3) 

Elongation 

(%) 

Tensile 

Strength (MPa) 

Elastic 

Modulus (GPa) 

Flax 1.45-1.55 2.7-3.2 500-1500 28-100 

E-Glass 2.5 0.5 2000-3000 70 

S-Glass 2.5 2.8 4570 86 

Aramid 1.4 3.3-3.7 3000-3150 63-67 

Carbon (PAN-

based) 
1.4 1.4-1.8 400 230-240 

 

Due to its superior properties, flax fiber is selected to be investigated in this thesis. Its 

mechanical properties are further explored in Section 2.2.  
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Epoxy as a thermoset matrix is quite handy in terms of processing and is very versatile. 

Its elastic-plastic properties are explored many times by various authors. Available 

data in the literature is enough to model it mathematically. Therefore, the matrix is 

selected as epoxy to be used in this study. 

2.2. Flax Fiber and Its Composites 

In this section, natural composites reinforced with flax fibers and the fiber itself are 

elaborated 

2.2.1. Flax Fiber: an introduction 

Flax (Linum usitatissimum) is a member of Linaceae family. Its cultivated plants grow 

up to 1.2 meters having slender stems. The leaves of the plant are glaucous green, 

slender lanceolate, 20-40 mm long and 3 mm wide. The flowers are blue, about 20 

mm in diameter. The plant is known to be used ever since ancient times, even dated 

back up to 36,000 years ago [52]. It is mainly grown for its seeds to be used in foods 

and for its oil apart from reinforcement. 

 

 

 

Figure 2.7. (a) Flax field with flowers; (b) Retting of a flax field [53]. 

 

The extraction of flax fiber requires series of operations. The very first operation is 

dew-retting which can be seen in Figure 2.7-b. The plant is placed in the field for a 

(a) (b) 
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certain period of time in order to loosen and get the fiber bundles separated from the 

stem. During this phase, plant is rotated to be exposed to sun light in both sides. As it 

is indicated in section 2.1.2, retting is effective on fiber’s mechanical performance. 

Upon completion of retting process, the stem and woody core are segmented and some 

of the loosened long fibers are extracted. This process is called scotching. The next 

step is to clean and form the thick, rough fibers in order to obtain high quality technical 

fibers. Long and short fibers are separated for different uses, like prepregs, woven and 

non-woven forms [20]. 

2.2.1.1. Flax Fiber Composition and Morphology 

As in the case of other natural fibers, flax is composed of fiber bundles. These bundles 

consist of technical fibers and the technical fibers contain elementary fibers as shown 

in Figure 2.8. Technical fibers are thin long fibers containing 10 to 40 elementary 

fibers; elementary fibers are single plant cells mostly between 10 to 25 µm in diameter; 

20 to 50 mm in length [25]. 

 

 

 

Figure 2.8. (a) Schematic representation of flax fibre [25]; (b) Flax fiber bundle (Reprinted from [54] 

with permission from Elsevier) 

 

Internal structure of flax fiber is no different compared to general natural fiber 

structures. It is composed of primary and secondary cell walls. Secondary cell walls 

are named as S1, S2, and S3 respectively. Inter-cell walls are filled with lumen. The 

secondary wall includes high percentage and crystalline cellulose which is responsible 

(b) (a) 
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for stiffness and strength. The cellulose is helically wound around S2 layer at an MFA 

about 10 degrees [55]. The orientation angle affects the response of the fiber under 

loading which is elaborated in upcoming sections thoroughly. The other materials 

present in the flax fiber’s internal structure together with cellulose (64.1-75%) are 

hemicellulose (11-20.6 %), pectin (1.8-2.3%), lignin (2-2.5%), waxes (1.5-1.7%), 

lipids and ashes [20, 56]. Representation of an elementary fiber’s core structure could 

be observed in Figure 2.9.  

 

 

 

Figure 2.9. (a) Internal structure of elementary flax fiber (Reprinted from [55] with permission from 

Elsevier); (b) Representation of crystalline and amorphous cellulose. Copyright (1963) Wiley. Used 

with permission from [57] 

 

2.2.1.2. Flax Fiber Mechanical Properties 

The characterization of flax fiber is more or less similar to the other natural fibers. 

Yet, properties like chemical composition, cellulose content and crystallinity, length, 

shape, diameter, strength and stiffness values scatter vastly from fiber to fiber 

depending on the growing and harvesting conditions.  

Tensile properties of flax fibers are superior to other types of natural fibers which 

make them great candidates to replace E-Glass in certain applications [25, 58]. The 

major problem regarding the flax fibers is that strength and stiffness values of 

elementary and technical fibers are not alike. As it is defined previous section, 

(a) (b) 



 

24 

 

technical fiber is a group in which certain amount of elementary fibers are resident. 

Strength and elastic modulus values of elementary fibers are 1500-1800 MPa and 60-

80 GPa respectively, yet these properties are about 800-1500 MPa and 55-75 GPa in 

technical fibers [56, 59]. This is mainly due to the fact that layers of low strength 

pectin are filled in between elementary fibers inside of the technical fibers. As a result, 

load bearing capacity of technical fibers diminishes. 

The very first step to understand the mechanical behavior of a material is to perform 

testing. Many authors used different techniques to obtain stress-strain behavior of the 

flax fiber like single fiber test (SFT), dry fiber bundle test, and impregnated fiber 

bundle test (IFBT) [60]. Each test has its own difficulties and advantages. For 

example, in SFT, it is cumbersome to obtain and prepare a single fiber. IFBT requires 

a decent micromechanical model and several assumptions to calculate single fiber’s 

mechanical properties. Charlet [61] used MTS type electromechanical testing 

equipment to obtain stress-strain curve of an elementary flax fibre. He found out that 

stress-strain curve had three sections: first linear part until 0.3% of deformation, a 

nonlinear part between 0.3 and 1.5%, then a second linear part until the rupture (Figure 

2.10). He explained this duality with the inherent structure of the fiber: in the first part 

due to global loading of the fiber each cell wall is deformed, then second nonlinear 

zone could be associated with elasto-visco-plastic deformation of the fiber caused by 

the possible re-arrangement of the amorphous cell materials like pectins and 

hemicellulose, meanwhile microfibrils align with loading direction. Afterwards, in the 

final region, linear elastic response of aligned microfibrils could be observed. 
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Figure 2.10. Stress-Strain curve of an elementary flax fiber (Reprinted from [61] with permission 

from Elsevier) 

 

In another study of the author, he obtained mean tensile properties of a set of 90 

elementary flax fibers with large scatters. Strength value, ultimate strain, initial 

modulus, and final modulus values are found to be 1256±619 MPa, 2.5±1.1, 54±29 

GPa, 62±32 GPa respectively [59]. Coroller et. al. [62] tested three different originated 

elementary flax fibers and an E-Glass fiber. They reported that while glass fiber 

exhibited a quasi-linear behavior, all flax fibers’ stress-strain curves were divided into 

3 sections, two linear and a nonlinear in between. Figure 2.11 depicts the behavior of 

the fibers. 

 

Figure 2.11. Stress-strain curve of E-Glass and elementary flax fibers (Dashed line: E-Glass; Straight 

Line: Hermes Flax; Dotted Lines: linear part of the curve where Young’s modulus is measured) 

(Reprinted from [62] with permission from Elsevier) 
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In their work, they also calculated the tensile properties of elementary flax and E-glass 

fibers. From the values, it is obvious that origin of the plant has tremendous effect on 

tensile characteristics which could be observed in Table 2.8. 

Table 2.8. Tensile properties of elementary fibers [62]. 

Fiber Young’s Modulus (GPa) Stress at break (MPa) Strain at break (%) Fiber Diameter (µm) 

Hermes Flax 48.9 ± 12.0 1066 ± 342 2.8 ± 0.8 18.6 ± 3.9 

Andrea Flax 48.3 ± 13.8 841 ± 300 2.2 ± 0.8 18.1 ± 3.9 

Marilyn Flax 57.1 ± 15.5 1135 ± 495 2.1 ± 0.6 13.9 ± 2.7 

E-Glass 70.3 ± 5.8 1765 ± 432 2.9 ± 1.0 17.9 ± 1.9 

 

Bensadoun et.al. [60] tested the elementary flax fibers in accordance with NF EN 

1007-4 standard for advanced technical ceramics and obtained the stress-strain curve. 

What they observed was a behavior which includes two linear zones and a nonlinear 

zone in between. The first elastic modulus of the fiber (57.0 ± 13 GPa) is measured at 

approximately 0.3% strain; whereas secondary modulus is calculated at about 1% 

(44.5 ± 14 GPa). The scatter of the values is not low due to highly variable properties 

of the plant fiber itself.  

 

 

Figure 2.12. Tensile test results on elementary flax fiber. Dotted line represents stress-strain curve, 

full line is tangent modulus. [60] 
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Since it is quite cumbersome to execute dry fiber bundle test on elementary fibers and 

discontinuities of technical fibers create difficulty on uniform loading, impregnated 

fiber bundle tests are utilized [60]. Arbelaiz et. al. [63] investigated short flax fiber 

bundle/polypropylene composites. They used different fiber volume fractions in their 

specimens. Tensile and three-point bending tests were carried out. Stress strain curve 

they obtained is presented in Figure 2.13. Linear and nonlinear trend can also be seen 

in the plot. In this method fiber’s tensile properties are back calculated making use of 

micromechanical theoretical models. 

 

 

Figure 2.13. Tensile stress vs strain curve of flax fiber bundle/PP composite with chemical treated 

(hollow shape) and untreated (solid shapes) fibers. (Reprinted from [63] with permission from 

Elsevier) 

 

Mechanical properties of flax fiber can also be determined via impregnated fiber 

bundle testing. The fiber itself is not directly tested in this method; instead, 

consolidated composite specimens are employed. Obtained results are utilized in order 

to calculate the single fibers properties making use of micromechanical theoretical 

models. In this method calculated values are dependent on the validity and power of 

the used micromechanical equations. Bensadoun et. al. [60] asserted that it is not a 

blocking factor for stiffness determination but for the strength, local fiber 

misorientations, fiber-matrix adhesion and fiber volume fraction have to be 
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considered. They calculated strength and stiffness of the fibers via following 

equations: 

 

 𝐸𝑓 =
𝐸𝑐 − 𝐸𝑚(1 − 𝑣𝑓)

𝑣𝑓
 (Eq. 1) 

  𝜎𝑢,𝑓 =
𝜎𝑐 − 𝜎𝑚

′ (1 − 𝑣𝑓)

𝑣𝑓
 (Eq. 2) 

 

where 𝐸𝑚 is the elastic modulus of the matrix, 𝐸𝑓 is the longitudinal modulus, 𝑣𝑓 is 

the volume fraction ratio, and 𝜎𝑢,𝑓 is the longitudinal strength of the fiber. Whole “c” 

subscripted parameters are related to composite specimens whereas 𝜎𝑚
′  is calculated 

from the equation below: 

 

  𝜎𝑚
′ = 𝐸𝑚𝜀𝑢,𝑐 (Eq. 3) 

 

The authors’ findings as the result of the study are initial and secondary longitudinal 

modulus which were found to be 59.8 ± 2.4 GPa; 40.8 ± 3.5 GPa respectively. The 

ultimate strength of the flax fiber was calculated as 527 ± 138 MPa. 

The key note to be deduced from these studies is that flax fibers do not exhibit fully 

linear behavior up to rupture when they are loaded in tensile unlike synthetic fibers. 

Due to their natural cell structure, they show elasto-viscoplastic material responses. 

2.2.2. Flax Fiber Composites Mechanical Properties 

Previous section has focused on stress-strain behavior of elementary and technical flax 

fibers. In this section, mechanical properties of flax fiber and its matrix assembly are 

elaborated.  
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Flax fiber reinforced composites are not only in the form of monofilament 

configurations. These fibers also exist in the forms of mats, rovings, fabrics and yarns. 

Each type of architecture form has its own manufacturing methods like film stacking, 

hand lay-up, compression molding, filament winding, manual winding, resin transfer 

molding, injection molding and pultrusion [56]. 

Flax fiber composites in the form of mats are the most primitive examples of 

composite forms and they are used with thermoplastic matrices. Garkhail et. al. [64] 

compared the flax fiber mat-polypropylene composite with glass mat reinforced 

thermoplastics. They also investigated the fiber length and fiber volume ratio effect 

on the performance. The conclusion they reached was stiffness of flax fiber 

composites were comparable to E-glass, but strength of the flax fiber reinforced 

composite was far below the E-glass counterpart. That is mainly due to random 

distribution and low aspect ratio of the fibers making the matrix to carry the most of 

the load. In order to prevent this, different fiber architectures are introduced. 

Unidirectional (UD) fiber composites having high stiffness in longitudinal direction 

make possible to design the structure in a more customized fashion. These kinds of 

composites are advantageous in terms of strength and stiffness. Yet, limitations in 

manufacturing of curved surfaces cause further type of fabric architectures to be 

introduced. Examples of different textile architectures could be seen in Figure 2.14 

 

 

  

 

Figure 2.14. Textile architecture forms used in flax fiber composites, (a) woven, (b) braided, (c) 

knitted, (d) non-crimp fabric [20] 

 

(a) (b) (c) (d) 
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Fabric type reinforcements are good for dimensional stability and easy handling, with 

inferior properties compared to UD composites [20]. Tailorable structure allows 

designers to create laminates that are reinforced for more than one principle directions. 

But due to crimping effects (bending of the fiber on top of each other) underneath each 

and every fiber group, the overall integrity in terms of stiffness and strength 

diminishes. Despite manufacturing limitations and difficulties, UD fiber composites 

are still favorable considering tensile properties. Besides, anisotropy of flax fiber 

structures requires laminated forms to be balanced and symmetric to have quasi-

isotropic properties. Stress-strain curve of several UD and woven fabric composites 

are given in Figure 2.15. Intrinsic nature of flax fiber is also reflected to the composite 

laminates where there exist two linear regions and a nonlinear region in between. From 

Figure 2.15, it is clear that unidirectional forms have superior stiffness and strength 

compared to woven forms.  

 

 

Figure 2.15. Stress-strain curves of various flax/epoxy composites with different forms [20] 

 

Apart from textile architectures, properties which affect the mechanical performance 

of NFPCs are also valid for flax fiber composites like micro fibril angle (MFA), matrix 

fiber adhesion, matrix, fiber volume fraction etc. When MFA is oriented in loading 
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direction, composite will exhibit superior properties. Shah et. al. [65] investigated the 

MFA effect on tensile properties of flax-polyester composite. They showed that as the 

MFA converges to loading direction, in their case 0°, composite’s elastic properties 

improved. The stress-strain curves could be seen in Figure 2.16. 

Likewise, when matrix fiber adhesion is properly set up via certain chemical 

treatments, macro structure will be more sustainable in terms of mechanical strength. 

Considering the matrix itself; either thermoset, thermoplastic or natural resins, the 

compatibility with fiber or elastic-plastic properties are key parameters for structural 

composites. 

 

 

Figure 2.16. Stress-strain curve for various MFAs in flax-polyester composite (Copyright (2012) 

Wiley. Used with permission from [65]) 

 

Volume fraction of fiber in the composite laminate is another critical design parameter 

as mentioned earlier. As this ratio increases up to a limit, tensile properties of the 

composites enhance. But after this limit, due to lack of resin in the laminate, poor 

wetting conditions or voids, structural parameters are badly influenced; consequently, 

one ends with an inferior composite assembly. 

2.3. Finite Element and Micromechanical Modeling of Flax Fiber Composites  
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Previous sections focused on general properties of natural fibers and flax fibers and 

their composites. As indicated in section 1.3, flax fiber and epoxy matrix is selected 

as composite assembly. In this section, models developed in the literature are 

examined which are about prediction of elastic properties, development of finite 

element models based on unit cell, and constitutive models. This classification is made 

considering the historical development of the studies. 

2.3.1. Prediction of Elastic Properties 

In order to use a material in engineering applications, the very first step is to determine 

its mechanical properties like Young’s modulus, Poisson ratio, strain-stress at failure, 

stress strain plots, fracture toughness etc. Studies conducted within this frame mainly 

include an experimental procedure and a basic linear model to correlate. For this 

purpose, rule mixtures and reverse rule of mixture equations are vastly used. In this 

approach there are several assumptions like fibers are uniformly distributed 

throughout the matrix, matrix is free of voids, perfect bonding is assured between 

matrix and fibers, applied loads are either parallel or normal to the fiber direction, no 

residual stress in the lamina, and both fiber and matrix behave as linearly elastic 

material.  

Baley [55] tested flax fiber/epoxy composite under tensile loading then tried to predict 

the Young’s modulus considering volume fraction ratio and evolution of MFA during 

testing. He used Halpin-Tsai equations to calculate longitudinal elastic modulus of 

flax fiber: 

 
𝑀

𝑀𝑚
=
1 + 𝜉𝜂𝑉𝑓 

1 − 𝜂𝑉𝑓
 (Eq. 4) 

where 

 𝜂 =

𝑀𝑓
𝑀𝑚

− 1

𝑀𝑓
𝑀𝑚

+ 𝜉

 (Eq. 5) 
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𝑀 stands for 𝐸𝐿, 𝐸𝑇 or 𝐺𝐿𝑇; 𝑀𝑓 is 𝐸𝑓, 𝐸𝑚 or 𝐺𝑓; and 𝑀𝑚 is 𝐸𝑚 or 𝐺𝑚. The subscripts 

m, f, L, T represent matrix, fiber, longitudinal and transverse respectively. 𝑉𝑓 is 

volume fraction of fiber and 𝜉 is the shape factor. After some mathematical 

manipulations, he obtained modulus of elasticity in x-direction loading: 

 𝐸𝑥 = (
1

𝐸𝐿
+
𝜃2

𝐺𝐿𝑇
)

−1

 (Eq. 6) 

 

For a fiber volume fraction of 73.8%, calculated modulus of elasticity value is 99.940 

GPa where the test result was 91.803 GPa which is quite similar to experimental values 

considering an elementary linear model. 

Shah et. al. [65] investigated flax fiber composites subjected to off-axis loading. They 

used conventional rule of mixtures and Chamis formulae to calculate longitudinal and 

transverse modulus of elementary flax fiber, where “c” and “𝜃” stands for composite 

and loading direction, respectively: 

 𝐸𝑐,𝜃 = [
1

𝐸𝑐,𝜃
cos4 𝜃 + (

1

𝐺𝑐12
−
2𝜈𝑐12
𝐸𝑐,0

) cos2 𝜃 sin2 𝜃 +
1

𝐸𝑐,90
sin4 𝜃]

−1

 (Eq. 7) 

 

In order to calculate shear modulus, they used Halpin-Tsai equation: 

  𝐺𝑐12 =
𝐺𝑚(1 + 𝜉𝜂𝑉𝑓)

(1 − 𝜂𝑉𝑓)
  (Eq. 8) 

where  

  𝜂 =

𝐺𝑓
𝐺𝑚

− 1

𝐺𝑓
𝐺𝑚

+ 𝜉

 (Eq. 9) 
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In order to calculate flax fiber’s longitudinal tensile modulus, rule of mixtures was 

used: 

  𝐸𝑓,0 =
1

𝑉𝑓
[𝐸𝑐,0 − 𝑉𝑚𝐸𝑚] (Eq. 10) 

 

The results they obtained were stated to be in agreement with experiments. They 

calculated fiber’s longitudinal modulus as 45.8 GPa. Furthermore, they also calculated 

shear modulus and transverse modulus of flax fiber as 2.0 GPa and 3.9 GPa 

respectively. 

Kersani et. al.[66] studied the damage initiation and development in flax/epoxy 

composites under quasi-static tension. The authors prepared different laminate 

configurations including [0°]8,  [0°, 90°]2𝑆,  [−45°, +45°]2𝑆 and 

[0°, 90°, +45°, −45°]𝑆 to obtain tensile properties of flax fiber and its composites. The 

specimens were tested in tensile loading in which they exhibit mostly brittle behavior 

except for [−45°, +45°]2𝑆 laminate. Bilinear zone was also evident in his results 

(Figure 2.17) which was attributed to intrinsic change of stiffness of flax fibers with 

deformation. In order to model the laminates mathematically, he used classical 

laminate theory with ply idealizations and Chamis formulae. Flax fiber’s longitudinal 

and transversal moduli values were calculated as 𝐸𝐿 = 70 GPa; 𝐸𝑇 = 8 GPa 

respectively; whereas Poisson coefficients were found as 𝑣𝐿𝑇 = 𝑣𝑇𝑇 = 0.25. One of 

the most important deductions they made was absence of transverse cracks in flax 

reinforced composite. They explained this phenomenon making use of low stiffness 

contrast between epoxy and flax fibers. 
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Figure 2.17. Stress-strain curves for laminates (a) [0°]8, (b) [0°,90°]2S, (c) [0°,90°,+45°,-45°]S , (d) 

[-45°,+45°]2S [66] 

 

Baiardo et. al. [67] studied composites of flax fiber with polyester resin. They 

investigated change in tensile modulus with fiber content. They found out that tensile 

modulus increases with increasing fiber content then he fitted the results using 

modified rule of mixture: 

 𝐸 = 𝜂0𝜂1𝑉𝑓𝐸𝑓 + (1 − 𝑉𝑓)𝐸𝑚 (Eq. 11) 

 

where 𝐸, 𝐸𝑓, 𝐸𝑚 are moduli of composite, fiber and matrix respectively, 𝑉𝑓 is fibre 

volume fraction and 𝜂0 and 𝜂1 are fiber fibre orientation and length efficiency factors. 

The authors defined length efficiency factor considering Cox Shear Lag model [68] 

as: 

  𝜂1 = [1 −
tanh(𝑛𝑎)

𝑛𝑎
] (Eq. 12) 
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where 

  𝑛 = √[
2𝐺𝑚

𝐸𝑓 ln(2𝑅/𝑑)
] (Eq. 13) 

 

𝑎 is the aspect ratio, 𝐺𝑚 is the matrix shear modulus, and 2𝑅 is the distance between 

each fiber and its nearest neighbor. Calculated values 𝐸𝑓 = 27 GPa, 𝐸𝑚 = 0.446 GPa, 

and 𝐺𝑚 = 165 MPa with 𝜂0 = 0.194 showed parallelism with experimental values 

shown in Figure 2.18. 

 

 

Figure 2.18. Variation of Young’s Modulus with changing volume fraction ratio (hollow circles: 

experimental values; dashed line: equation results) (Reprinted from [67] with permission from Elsevier) 

 

One of the earliest studies made in this field is conducted by Lamy et. al. [69]. In their 

work, they attempted to predict stiffness of flax fiber-epoxy composites using a 

mathematical formulation based on an averaging technique among 12 class of fibers 

with diameters from 5µm to 35 µm. Longitudinal elastic modulus of UD composite is 

proposed to be calculated via equation below: 
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  𝐸𝐿 =∑𝑉𝑓𝑖𝐸𝑖 + (1 − 𝑉𝑓)𝐸𝑚

𝑛

𝑖=1

 (Eq. 14) 

 

where 𝑖 is class number, 𝑉𝑓𝑖 is fiber volume fraction of diameter 𝑑𝑖. Authors claimed 

𝑉𝑓𝑖 to be proportional to the cross section of the fiber which at the end leads to 𝑉𝑓𝑖 =

𝑛𝑖𝑑𝑖
2, where 𝑛𝑖 is the number of fibers in each class. Then, Eq.14 took the form: 

 𝐸𝐿 = 𝑉𝑓∑
𝑛𝑖𝑑𝑖

2

∑ 𝑛𝑖𝑑𝑖
2𝑛

𝑖=1

𝐸𝑖 + (1 − 𝑉𝑓)𝐸𝑚

𝑛

𝑖=1

 (Eq. 15) 

 

The results obtained from the mathematical model were compared with experimental 

results which could be observed in Figure 2.19. Authors, to conclude, made a 

correlation in between fiber diameter, fiber volume fraction, and matrix modulus and 

stated that as the fiber diameter increases, elastic modulus decreases. 

 

 

Figure 2.19. Evolution of stiffness with volume fraction ratio (Reprinted by permission from Springer 

Nature: [69]) 

 

Similar study is conducted by Garkhail et. al. [64] which was also mentioned in 

previous chapters with a different aspect.They used rule of mixtures and Cox Shear 
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Lag model to predict tensile modulus and strength of the flax/PP and flax/MAPP, as 

well. The results they obtained are presented in Figure 2.20: 

 

 
 

Figure 2.20. (a) Tensile modulus vs fiber length curve, (b) Tensile strength vs fiber length curve hollow 

and solid points represent flax/PP and flax/MAPP respectively. (Reprinted by permission from Springer 

Nature: [64]) 

 

Madsen et. al. [70] investigated the effect of porosity unlike all the other studies which 

idealize the composite assembly as void free. They created a theoretical model by 

taking the porosities that are caused by production and structurally aspects into 

account. The anisotropy of the flax fiber was also taken into account while creating 

the modified form of rule of mixture. The theoretical model used was derived as 

follows: 

 

 𝑣𝑐 = 𝑣𝑓 + 𝑣𝑚 + 𝑣𝑝 (Eq. 16) 

 

where c, f, m, p represent composite, fiber, matrix and porosity respectively. Then 

Eq.16 could be rewritten using volume and weight fractions: 

 

 

(a) (b) 
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𝑣𝑐 =
𝑚 .𝑊𝑓

𝜌𝑓
+
𝑚 .𝑊𝑚
𝜌𝑚

+ 𝑉𝑝 . 𝑣𝑐 

𝑣𝑐 =

𝑚 .𝑊𝑓
𝜌𝑓

+
𝑚 .𝑊𝑚
𝜌𝑚

1 − 𝑉𝑝
 

(Eq.17) 

 

where m, 𝜌, 𝑊, 𝑉 describe mass of composite, density, weight fraction and volume 

fraction respectively. Volume fractions for fiber and matrix were evaluated by the 

authors as: 

 𝑉𝑓 =
𝑣𝑓

𝑣𝑐
=

𝑊𝑓
𝜌𝑓

𝑊𝑓
𝜌𝑓
+
𝑊𝑚
𝜌𝑚

(1 − 𝑉𝑝) (Eq. 18) 

  𝑉𝑚 =
𝑣𝑚
𝑣𝑐
=

𝑊𝑚
𝜌𝑚

𝑊𝑓
𝜌𝑓
+
𝑊𝑚
𝜌𝑚

(1 − 𝑉𝑝) (Eq. 19) 

 

As it is indicated earlier, the authors modeled porosity in two components namely 

𝑉𝑝(𝑝𝑟𝑜𝑐) and 𝑉𝑝(𝑠𝑡𝑟𝑢𝑐) which indicate porosities caused by manufacturing process and 

structural aspects such as fiber type and orientation. Afterwards, a new function based 

on fibre weight fraction was introduced: 

 𝛼 =
(1 −𝑊𝑓)𝜌𝑓

𝑊𝑓𝜌𝑚
 (Eq. 20) 

  𝑉𝑓 =
1

1 + 𝛼
(1 − (𝑉𝑝(𝑝𝑟𝑜𝑐) + 𝑉𝑝(𝑠𝑡𝑟𝑢𝑐))) (Eq. 21) 

  𝑉𝑚 =
1

1 + 𝛼
(1 − (𝑉𝑝(𝑝𝑟𝑜𝑐) + 𝑉𝑝(𝑠𝑡𝑟𝑢𝑐))) (Eq. 22) 

 

In order to calculate longitudinal (𝐸1) and transverse (𝐸2) moduli values, rule of 

mixture was used with fibre anisotropy ratio (fa): 
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 𝐸1 = (𝑉𝑓 + 𝐸𝑓 + (1 − 𝑉𝑓)𝐸𝑚)(1 − 𝑉𝑝)
2
 (Eq. 23) 

  𝐸2 = (
(𝐸𝑓𝑓𝑎)𝐸𝑚

(1 − 𝑉𝑓)(𝐸𝑓𝑓𝑎) + 𝑉𝑓𝐸𝑚
) (1 − 𝑉𝑝)

2
 (Eq. 24) 

 

Then process and structural void terms were formulated as below: 

 𝑉𝑝(𝑝𝑟𝑜𝑐) = 0.06 𝑊𝑓 (Eq. 25) 

  
𝑉𝑝(𝑠𝑡𝑟𝑢𝑐) = 0.32 𝑊𝑓 − 0.20 𝑓𝑜𝑟 𝑊𝑓 > 0.625 

 𝑒𝑙𝑠𝑒 𝑉𝑝(𝑠𝑡𝑟𝑢𝑐) = 0 
(Eq. 26) 

 

Longitudinal and transverse moduli values were calculated using (Eq.23) and (Eq.24). 

The authors fitted theoretical model to the experimental data and the results they 

reached are presented in the Figure 2.21. 

 

  

Figure 2.21. (a) Stiffness and (b) Strength vs fibre volume fraction plots; hollow points: axial 

experimental results; full points: transverse experimental results; dotted lines uncorrected rule of 

mixture data; full lines: corrected rule of mixture and anisotropy included data. (Reprinted from [70] 

with permission from Elsevier) 

 

In the content of elastic property prediction, several publications are investigated. 

Since these are the early studies in this field, they mostly contain experiments and 

theoretical models to fit the trend of the behavior of flax fiber composites. Again, most 

of the studies focuses on longitudinal behavior and lack the transverse properties. One 

(a) (b) 
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vital deduction from this section is done by Kersani implying the transverse moduli 

mismatch between matrix and the fiber is low which contradicts with the case in 

synthetic fibers [66]. 

 

2.3.2. Development of Finite Element Models 

After determination of elastic properties phase, development of finite element models 

to simulate the behavior of flax fiber composites under loading conditions is the next 

step. To fulfil this task, various authors created micromechanical models based on 

reproducibility of a unit cell and solve the problems with the predetermined boundary 

conditions. In this type of studies, a supplementary theoretical model is sometimes 

derived and compared with the results obtained from FEM simulations.  

Straumit et. al. [71] investigated the flax fiber and flax/epoxy composite moduli 

making use of a finite element model. Different from the other works, they took fiber 

misalignment into account while creating the FE model. The 3D model was created 

using X-Ray computed tomography images. By doing so, a complete and realistic 

geometry was assured which is shown in Figure 2.22. 8-node linear brick elements 

(C3D8) are used in FE model. The material properties were input to ABAQUS® 

software in the form of engineering constants.  
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Figure 2.22. (a) X-Ray imaging and (b) FE Model of quasi-UD flax/epoxy composite [71]. 

 

Properties of matrix and fiber were taken as follows: 𝐸𝑚 = 2.7 GPa, 𝑣𝑚 = 0.23, 

𝐸𝑓,𝑇 = 10 GPa, 𝑣𝑓 = 0.25. After simulations and a series of experimental procedures, 

they calculated flax fiber’s modulus 63.0 ± 1.46 GPa, which is consistent with the 

experimental results: 62.4 ± 2.87 GPa. 

Modniks et. al. [72] modeled short flax fiber reinforced polymer composite using a 

unit cell to reproduce the tensile stress-strain behavior. They performed numerical 

studies on flax/polypropylene (PP) and flax/maleic-anhydride-grafted polypropylene 

(PPM). Orientation averaging approach was used in the model starting from the 

equation: 

  𝜎𝑖𝑗
𝑐 (𝜺𝒄) =

1

4𝜋
∫ ∫ 𝜎𝑖𝑗

𝑈𝐷(𝜺𝒄, 𝜑, 𝜃)𝑓(𝜑, 𝜃) sin 𝜃𝑑𝜃𝜑𝑑𝜃
𝜋

0

2𝜋

0

 (Eq. 27) 

 

where 𝑓(𝜑, 𝜃) represents fiber orientation distribution density as function of 𝜑 and 𝜃 

angles. 𝜎𝑖𝑗
𝑈𝐷(𝜺𝒄, 𝜑, 𝜃) designates the stress under a prescribed strain in a UD 

composite’s unit cell. The theoretical model used in matrix was Ramberg-Osgood 

equation: 

(a) (b) 
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 𝜀 =
𝜎

𝐸
(1 + 𝑎 (

𝜎

𝜎0
)
𝑛−1

) (Eq. 28) 

 

where 𝐸 is the Young’s modulus, 𝑎, 𝜎0, and n stand for model parameters. The FE 

model was created using 20-node quadratic brick elements (C3D20) with symmetry 

boundary conditions which could be seen in Figure 2.23. 

 

 

Figure 2.23.  Representative unit cell in uniaxial tension. (Reprinted from [72] with permission from 

Elsevier) 

 

Material properties were input as: 𝐸𝑚 = 1.6 GPa, 𝜈 = 0.4, 𝜎0 = 16 MPa, 𝑎 = 0.235, 

and 𝑛 = 5.44. The authors assumed flax fiber to be linear elastic with a modulus of 

69 GPa and 1.21 mm long. The results obtained from FEM were agreeing with the 

theoretical model and presented for volume fraction of 0.20 in the Figure 2.24. The 

solid lines represent the experimental results whereas dashed lines represents the 

theoretical model used in FEM. They concluded that predicted diagrams were found 

to be in reasonable agreement with the experimental data up to 1.5 % strain. 
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Figure 2.24. Stress-strain diagrams with volume fraction ratio of 0.2 for (a) Flax/PP and (b) 

Flax/PPM. Reprinted from [72] with permission from Elsevier) 

 

Beakou et. al. [73] studied tensile strength flax fiber bundles. In their work, they 

modeled the fiber bundles in FE modeling tool. Based on optical micrographs, they 

recreated the bundle geometry. The key point of their study was to investigate middle 

lamella which is the zone in between two elementary fibers. Middle lamella was 

represented using bilinear cohesive zone model. In order to reduce of the 

computational cost, one quarter of the bundle (Figure 2.25) geometry was considered 

by the authors. Discretization was made with elements having 20 nodes and 3 DOF 

per node. 

 

 

 

 

Figure 2.25. (a) Staggered geometry of post processed FEM, (b) Discretized fibers, (c) Idealized 

schematic lamella representation (Reprinted from [73] with permission from Elsevier) 

(a) (b) 

(a) 

(b) (c) 
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Elastic properties were taken as: 𝐸𝐿 = 48.48 GPa, 𝐸𝑇 = 13.29 GPa, 𝐺𝐿𝑇 = 𝐺𝑇𝑇 =

2.95 GPa, and 𝜈𝐿𝑇 = 0.183. After simulations, it was determined that middle lamella 

region is critical in terms of load carrying capacity of fiber bundle. The experimental, 

simulation, and literature data results regarding bundle strength could be seen in 

Figure 2.26. 

 

 

Figure 2.26. Bundle strength vs Gauge length plot. (Reprinted from [73] with permission from 

Elsevier) 

 

Another numerical modeling study of flax fiber reinforced polymer composite was 

performed by Sliseris et. al. [74]. They created representative volume elements filled 

with short flax fibers having different aspect ratios making use of an algorithm. FE 

model of flax fibers was discretized with tetrahedron elements as shown in Figure 

2.27. The study included 4 main material models for fibers, defects of fibers, interface 

zones in fiber bundles, and matrix. They modeled fiber with linear elastic, isotropy 

with a Young’s modulus of 54 GPa, and Poisson’s ratio of 0.2. Defects of the fibers 

were modeled with brittle material constitutive law and a transverse modulus of 2 GPa. 

In the interface zone, brittle material law was utilized as well with 1.627 GPa, Poisson 

ratio of 0.35 and transverse modulus of 0.3 GPa. Finally, polypropylene matrix was 
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modeled using plasticity with isotropic hardening having a tensile modulus of 1.627 

GPa, Poisson’s ratio of 0.35 and yield strength of 1.627 MPa.  

 

 

 

Figure 2.27. (a) Microstructures with different orientations; (b) Discretization of flax fibers with 

tetrahedron elements  (Reprinted from [74] with permission from Elsevier) 

 

Then, numerical model was compared with experimental data which seemed to be in 

fairly good agreement. Stress-strain behavior and tensile modulus according to aspect 

ratios can be seen in Figure 2.28. 

 

 

 

Figure 2.28. (a) Stress-Strain curve with simulation and experimental values; (b) Variation of tensile 

modulus with respect to aspect ratio (Reprinted from [74] with permission from Elsevier) 

 

(a) (b) 

(a) (b) 
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Thuault et. al. [75] modeled elementary flax fiber and simulated numerically to 

explore tensile mechanical behavior using finite element analysis. They made use of 

experimental data to develop a numerical multilayer model of flax fiber. In their 

model, flax fiber was assumed to be a 20µm in diameter and 800 µm long cylinder. 

S1, S2, S3 layers were modeled with hollow cylinders and lumen is modeled in the 

central cavity (Figure 2.29). Quadratic 3D elements were used in finite element 

modeling. The MFA and S2 layer effects on tensile modulus were tried to be explored 

in detail. Young’s moduli values of cellulose and hemicellulose were input as 134 and 

16 GPa, respectively. Poisson’s ratios were selected as 0.1 and 0.2. 

 

 

 

Figure 2.29. (a) FE modeling of elementary flax fiber; (b) micro fibril arrangement [75] 

 

Finally, simulations showed that fiber mechanical properties are dramatically affected 

by S2 layer and MFA, cellulose content has an influence on fiber mechanical 

properties, and fiber ultrastructure drastically influence flax fiber longitudinal 

modulus values. 

2.3.3. Constitutive Models 

In this section, studies including a constitutive model are mentioned. These types of 

studies can be considered as the most advanced and current type of studies made in 

this field. Authors make use of a continuum mechanics approach to fully represent the 

mechanical properties of the flax fibers and compare simulation results with the 

(a) (b) 
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experimental data. For this purpose, rheological models are utilized which are based 

on elastic, plastic and viscous aspects. 

Andersons et. al. [76] studied the quasi-UD flax fiber/epoxy composite based on 

orthotropy assumption. In their work, they used a semi empirical tensor-linear model 

to describe the nonlinear deformation under combined loading. They combined the 

deformation of UD ply with an elementary laminate theory to characterize stress-strain 

diagrams of laminated composites under tension. The governing theoretical model 

used is as follows: 

 𝜀𝜑 = 𝑎𝜑𝜎𝜑 sinh(𝑝(𝛔)) / 𝑝(𝛔) (Eq. 29) 

 

where 𝑝 is a nonnegative scalar function of the stress tensor and 𝑃 is a continuous, 

strictly increasing function whose inverse function of 𝑝(𝑃) could be expressed in 

finite analytical form. For a nonlinear response in both tension and compression, 

authors used Lagzdins [77] form for 𝑝 = 𝑝(𝛔) as: 

 𝑝(𝛔) = (𝑏𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙)
1/2
  (Eq. 30) 

 

𝜀𝜑 and 𝜎𝜑 stand for the strain and stress in the loading direction, and b is nonnegative 

definite tensor. 𝑎𝜑 is respective compliance which is expressed as: 

 𝑎𝜑 =
cos4 𝜑

𝐸1
+
sin4𝜑

𝐸2
+ (

1

𝐺12
−
2𝜈12
𝐸1

) sin2𝜑 cos2 𝜑 (Eq. 31) 

 

The theoretical model was compared with experimental data by the authors, as well 

for different loading directions: 
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Figure 2.30. Stress-Strain diagrams for loading angles (a) 0°, 15°; (b) 30°, 45°, 75° (Reprinted from 

[76] with permission from Elsevier) 

 

The close agreement between dashed and full lines is obvious from stress-strain curves 

of Figure 2.30 that theoretical modeling of the authors was accurate. 

Poilâne et. al.[78] investigated flax fiber reinforced polymers under uniaxial loading 

in terms of volume fraction, titration of yarn reinforcement and temperature. In order 

to have a full understanding of the specimens in terms of elasticity, viscoelasticity, 

and viscoplasticity, they developed a phenomenological model based on eight 

independent parameters. They claimed that nonlinear behavior could only be 

attributed to viscoplastic effects and the model was created based on two hardening 

modes: linear and nonlinear. Material and mechanical behavior model could be 

explained briefly: the authors partitioned the total strain into two parts elastic 

(reversible strain) and inelastic (viscoelastic and viscoplastic): 

 𝜀 = 𝜀𝑒 + 𝜀𝑖𝑛 = 𝜀𝑒 + 𝜀𝑣𝑒 + 𝜀𝑣𝑝 (Eq. 32) 

 

Then state equations are written as: 

 𝜎 = 𝜌
𝜕𝜓

𝜕𝜀𝑒
 (Eq. 33) 

  𝜒𝑖 = 𝜌
𝜕𝜓

𝜕𝛼𝑖
 (Eq. 34) 

(b) (a) 
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where 𝜒𝑖 and 𝛼𝑖 stand for inelastic parameters, 𝜌 is density, and 𝜎 is the Cauchy’s 

stress. Then internal variable evolution is: 

 𝜀̇𝑖𝑛 =
𝜕𝛺

𝜕𝜎
= 𝜀̇𝑣𝑒 + 𝜀̇𝑣𝑝 (Eq. 35) 

  𝛼̇𝑖 = −
𝜕𝛺

𝜕𝑋𝑖
 (Eq. 36) 

 

Then inelastic parameters were determined and system of equations were solved to 

get viscoelastic and viscoplastic responses. Finally, they obtained a repetitive stress-

strain curve from simulations based on developed constitutive model and compared 

with experimental data: 

 

 

Figure 2.31. Stress-strain plot with experimental data and simulation (Reprinted from [78] with 

permission from Elsevier) 

 

Rubio-Lopez et. al. [79] studied a rheological model to predict viscoplastic behavior 

of NFRCs. Their model was based on utilization of elastic, plastic, and viscous 

elements to determine mechanical response of the material under certain loading 

conditions. The model consisted of three branches in parallel: nonlinear elastic 

behavior of the material was modeled with Yeoh model, viscous behavior was 
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modeled with Maxwell model, and plasticity was represented by frictional analogy to 

the Maxwell model: 

 

 

Figure 2.32. Author's philosophy of modeling NFPCs. (Reprinted from [79] with permission from 

Elsevier) 

 

Governing equation for nonlinear Yeoh model under uniaxial tension is given below: 

 𝜎𝑌𝑒𝑜ℎ =
2𝜖(3 + 𝜖(3 + 𝜖))((1 + 𝜖)2𝐶1 + 𝜖

2(3 + 𝜖)(2(1 + 𝜖)𝐶2 + 3𝜖
2(3 + 𝜖)𝐶3))

(1 + 𝜖)2
 (Eq. 37) 

 

where 𝐶1, 𝐶2, 𝐶3 are the elastic constants. The viscous behavior was introduced with 

Maxwell model as indicated. This analogy includes a series spring damper system of 

which stress is the same but strain is the sum of each component. From spring 

definition: 

 𝜎 = 𝐾 ∙ 𝜖 (Eq. 38) 

 

where 𝐾is spring constant and from viscous damper definition: 

  𝜎 = 𝜂
𝑑𝜖

𝑑𝑡
  (Eq. 39) 

 

where 𝜂 is damping constant, strain rate equation takes the form: 
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  𝜎̇𝑀𝑎𝑥𝑤𝑒𝑙𝑙 +
𝐾

𝜂
∙ 𝜎𝑀𝑎𝑥𝑤𝑒𝑙𝑙 = 𝐾 ∙ 𝜖̇  (Eq. 40) 

 

The plasticity was introduced via third branch which is the spring and a frictional 

element in series. This equation is 2 phase, at first model stiffness is dominated by the 

spring element up to activation of frictional element whose role is to set up a limit for 

the stress: 

  
𝑖𝑓 𝜀 < 𝜀𝑦 → 𝜎𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐾𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∙ 𝜖 

𝑖𝑓 𝜀 ≥ 𝜀𝑦 → 𝜎𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑌 
(Eq. 41) 

 

Then the constitutive equation of the global model becomes: 

  𝜎 = 𝜎𝑌𝑒𝑜ℎ + 𝜎𝑀𝑎𝑥𝑤𝑒𝑙𝑙 + 𝜎𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (Eq. 42) 

 

After derivation of global model, authors calibrated their model for unknown 

parameters. Finally, the comparison of experimental data (redline) and theoretical 

model (dotted line) for flax/PLA composite with different strain rates is presented in 

Figure 2.33. 

 

  

Figure 2.33. Comparison of experimental results and theoretical model of Flax/PLA composite for (a) 

small and (b) high strain rates (Reprinted from [79] with permission from Elsevier) 

(b) (a) 
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Studies including constitutive models of flax fiber composites are rather new field. 

Since parameters needed to create the models require extensive testing and not readily 

found in the literature, there are not many works published by authors. As it is 

explained above, most of the models are based on phenomenological models, which 

include a constitutive relation simulation on each aspect of the subject.  

To sum up, this section mainly focused on material and finite element modeling 

studies published on the area of flax fiber composites. Studies are classified according 

to their advancement level. In the Section 2.3.1, preliminary studies conducted in this 

field are illustrated. Experiments to determine Young’s modulus of the flax fiber and 

stress-strain behavior of both flax fiber and its composite were the main subjects. After 

determination of modulus (mostly longitudinal) then by using a linear 

micromechanical model, authors tried to predict this value without any simulations. 

What authors lacked were the transverse moduli, which is quite difficult to measure 

through the experiments. In the second part Section 2.3.2, somewhat more advanced 

studies are scanned. These studies include a FEM together with a theoretical 

micromechanical model. Developed FEMs benefit from the reproducibility of a RVE 

(representative volume element). Some of them contain results which were also 

correlated using experimental data. The last section addresses a few constitutive 

models for flax fiber composites. Investigated studies in this section contain 

computational mechanics models that are the most advanced type found in the 

literature. Yet, as indicated previously, since this is a relatively recent field, one could 

not find a wealth of information on many aspects. In general, having recognized the 

nonlinear and inelastic nature of deformation, authors created phenomenological 

constitutive models and calculated the stress-strain responses of various strain rate 

inputs. 
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CHAPTER 3  

 

3. OBJECTIVE OF THE THESIS 

 

In this chapter, objective and motivation of the thesis is elaborated and literature survey 

is summarized. 

Use of NFRCs in structural application is a recent development. As indicated earlier, to 

be able to use these materials in dedicated applications, the material itself must be 

explored thoroughly. In this content, authors made several investigations to reveal the 

materials’ intrinsic mechanical properties. Among the others, flax fiber and its composites 

came to the forefront with its superior characteristics. As a first step, experiments to 

predict elastic properties are conducted. Many authors tried to predict the mechanical 

behavior with a basic linear mathematical expression. Later on, as the know-how 

increased, detailed modeling and simulation works started. Flax fiber and its composites 

are modeled with FEM tools and modeling studies are supported with experiments. 

Furthermore, these models are used to fit a theoretical equation. Afterwards, constitutive 

phenomenological models are created which show the most advanced and recent status of 

this field. In the majority of the studies examined, the fiber and composites are explored 

under longitudinal tensile loading conditions which is the stiffest direction of the fiber. 

With its good specific properties, flax fibers are thought to replace some synthetic fibers 

like E-glass, yet only longitudinal merits are not enough. Glass fibers are isotropic 

materials whose properties are direction-independent. When used in composites under 

transverse loading, due to very high stiffness contrast with resins, probability of crack 

formation and a possible following failure is imminent [66]. For this very reason, the 

substitute material should overcome this weakness. Transverse stiffness of flax fiber is 

not as much as its longitudinal stiffness so that it has the potential to be introduced as this 

“substitute” material. In some of the publications, authors claimed that absence of 
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transverse crack needs to be investigated in detail [65, 66]. Transverse properties and 

response under high strain of flax fiber and its composites have to be scrutinized further 

to gain this know-how.  

Currently, what exist in the literature could be shortly listed as well evaluated elastic 

properties of natural fibers including flax; stress-strain diagrams, micromechanical RVE 

based FE analyses and phenomenological models based on constitutive relations. What 

does not exist but needed for this “substitute” material is a material model and a complete 

FEA so that stress concentrations under transverse loading with high deformations can be 

examined. Similar studies are conducted in the literature but for different materials and 

focus points. In their work Sabuncuoglu and his co-workers [80] studied the stress 

concentrations in steel fiber composites having a hexagonal cross section under transverse 

loading conditions, and compared with conventional materials. Different volume 

fractions and multiple fiber packaging types were used in their RVEs. The obtained results 

demonstrate how stress concentrations change under transverse loading for different fiber 

geometries, volume fractions and packaging types. 

 

Figure 3.1. Max. principal stress distribution in the matrix with (a) circular and (b) hexagonal fiber cross 

sections [80] 

In this thesis flax/epoxy composite is modeled and subjected to transverse loading 

conditions to investigate the stress concentrations including high strain inputs. 
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Comparisons with conventional synthetic fibers, namely carbon and glass fibers is done, 

as well. Modeling and material details are explained in forthcoming sections. 

A Short summary of the publications that is reviewed is given in Table 3.1. As indicated 

earlier, RVE under transverse loading conditions is not common in literature especially 

in the flax fiber composites field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

Table 3.1. Literature review summary 
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CHAPTER 4  

 

4. MATERIAL MODELING OF THE FLAX FIBER COMPOSITE 

 

 In this section, material modeling philosophy used in FE analyses in the content of 

the thesis is elaborated. Material model for each composite constituent is mentioned 

and methods are explained thoroughly. As indicated in previous sections, selected 

natural fiber and resin are flax and epoxy, respectively. 

4.1. Flax Fiber Material Model 

Being one of the stiffest bast fiber, flax fiber is known to have good mechanical 

properties. But its stress-strain behavior under tensile loading is quite different 

compared to classical synthetic fibers such as glass and carbon. In the previous part, 

the methods to obtain fiber’s elastic properties are mentioned. In order to model the 

flax fiber for FEA, main approaches are observed to be based on linear elasticity and 

hyperelasticity [20, 74, 78, 92]. 

4.1.1. Flax Modeling Using Linear Elastic Approach 

The mechanical behavior of solids is driven by constitutive stress-strain relations. 

These equations express the stress as a function of strain, strain rate, strain history, 

temperature and material properties. Elastic models do not include rate or history 

effects. The models can be defined as deformable continua which retract to their 

original shapes when deformation inducing loads are removed. In the linear elastic 

approach, constitutive stress-strain law is restricted to be linear. Most of the materials 

such as metals, plastics, ceramics, rock, concrete exhibit linear behavior under small 

deformations [81]. In linear elastic approach, material is assumed to be either isotropic 

or anisotropic. Isotropy is a fundamental material property which is related to 

directional independent mechanical behavior.  
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Figure 4.1.  (a) Plane of symmetry, (b) planes of symmetry of orthotropic materials 

 

Isotropic materials have infinite number of symmetry planes whereas anisotropic 

materials have a limited number of material symmetry. Isotropic elastic behavior can 

be modeled with two independent elastic constant: Young’s modulus, 𝐸, and 

Poisson’s ratio, 𝜈. In the case of orthotropy, required independent elastic constants to 

represent material behavior is 9. Elastic compliance can be written as: 

 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾12
𝛾13
𝛾23}
 
 

 
 

=

[
 
 
 
 
 
1/𝐸1 −𝜈21/𝐸2 −𝜈31/𝐸3 0 0 0

−𝜈12/𝐸1 1/𝐸2 −𝜈32/𝐸3 0 0 0
−𝜈13/𝐸1 −𝜈23/𝐸2 1/𝐸3 0 0 0

0 0 0 1/𝐺12 0 0
0 0 0 0 1/𝐺13 0
0 0 0 0 0 1/𝐺23]

 
 
 
 
 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23}

 
 

 
 

 (Eq. 43) 

 

Complete representation of flax fiber is assumed to be done making use of transversely 

isotropic material model which is a special subclass of orthotropy. This case 

characterizes plane of isotropy at every point in the material. In order to determine the 

material parameters, assuming 1-2 plane to be the plane of isotropy, one can write, 

 𝐸1 = 𝐸2 = 𝐸𝑝 (Eq. 44) 

  𝜈31 = 𝜈32 = 𝜈𝑡𝑝 (Eq. 45) 
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  𝜈13 = 𝜈23 = 𝜈𝑝𝑡 (Eq. 46) 

  𝐺13 = 𝐺23 = 𝐺𝑡 (Eq. 47) 

  
𝜈𝑡𝑝

𝐸𝑡
=
𝜈𝑝𝑡

𝐸𝑝
 (Eq. 48) 

  𝐺𝑝 =
𝐸𝑝

2(1 + 𝜈𝑝)
 (Eq. 49) 

 

where 𝑝 and 𝑡 stand for in-plane and transverse, respectively. The resulting tensor 

consists of 5 independent elastic constants to characterize the behavior of transversely 

isotropic material. Then, elastic compliance takes the form 

 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾12
𝛾13
𝛾23}
 
 

 
 

=

[
 
 
 
 
 
 
1/𝐸𝑝 −𝜈𝑝/𝐸𝑝 −𝜈𝑡𝑝/𝐸𝑡 0 0 0

−𝜈𝑝/𝐸𝑃 1/𝐸𝑃 −𝜈𝑡𝑝/𝐸𝑡 0 0 0

−𝜈𝑝𝑡/𝐸𝑝 −𝜈𝑝𝑡/𝐸𝑝 1/𝐸𝑡 0 0 0

0 0 0 1/𝐺𝑝 0 0

0 0 0 0 1/𝐺𝑡 0
0 0 0 0 0 1/𝐺𝑡]

 
 
 
 
 
 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23}

 
 

 
 

 (Eq. 50) 

 

In order to model flax fiber as orthotropic material with transverse isotropy, these 

constants have to be found. Yet, constants must satisfy the stability requirements [82] 

provided below as well, 

 𝐸1, 𝐸2, 𝐸3, 𝐺12, 𝐺13, 𝐺23 > 0 (Eq. 51) 

  |𝜈12| < (𝐸1/𝐸2)
1/2  (Eq. 52) 

   |𝜈13| < (𝐸1/𝐸3)
1/2  (Eq. 53) 

  |𝜈23| < (𝐸2/𝐸3)
1/2  (Eq. 54) 

  1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13 > 0 (Eq. 55) 

 

where 1-2 plane is plane of isotropy and 3 is the direction perpendicular to it. (Eq. 55) 

is the inequality which assures compressible material behavior. As the left-hand side 

approaches zero, material exhibits incompressible behavior [82]. These constants are 

selected from literature, i.e. mostly cited publications in flax fiber field of study. Three 
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candidate sets of constants to be used in FE analyses are selected. These parameters 

given in Table 4.1 

 

Table 4.1. Flax fiber orthotropic constants, compiled from literature 

Elastic  

Constant 
Dataset#1 REF  Dataset #2 REF  Dataset #3 REF 

𝐸3 70.0 GPa [66] 62.3 GPa [60] 70.0 GPa [66] 

𝐸1 8.0 GPa [66] 5.8  GPa [60] 8.0 GPa [66] 

𝐺31 4.6 GPa [20] 4.6 GPa [20] 4.6 GPa [20] 

𝐺12 1.9 GPa [83] 1.87 GPa [84] 2.5 GPa [85] 

𝜈31 0.25 [66] 0.25 [66] 0.25 [66] 

 

Each set is tested with given stability requirements using equations 51-55. The only 

dataset that satisfies the stability conditions is number 3. Therefore, these 5 

independent material parameters are selected to be used in orthotropic material 

modeling of flax fiber under transverse isotropy assumption.  

4.1.2. Flax Modeling Using Hyperelastic Approach 

Hyperelastic approach to model flax fiber is an alternative method in the study. As it 

is mentioned in literature review section, actual response of the flax under loading is 

inelastic, visco-elastic plastic. But it is quite complex and cumbersome to model this 

material with those mechanical aspects and the readily available knowledge in the 

literature. Recalling the stress-strain curve of flax fiber, the bilinear and a nonlinear 

zone indicate that modeling flax fiber requires a different treatment. 
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Figure 4.2. (a) Flax fiber stress-strain curve (Reprinted from [61] with permission from Elsevier) ; (b) 

representative linear and hyperelastic stress-strain curve [86] 

 

From Figure 4.2, behavior of flax fiber subjected to tension shows some resemblance 

with hyperelastic material behavior which is isotropic and nonlinear. Yet, although the 

stress strain curves are similar, the behavior of flax fiber depicted in Figure 4.2 occurs 

at much smaller strain values compared to most of the hyperelastic materials. In order 

to use this material model properly in FEA, parameters have to be determined in 

advance. To do so, material test data module of ABAQUS® is used. In this module, 

several types of test data including uniaxial, biaxial, planar, and volumetric need to be 

input, then these experimental data are fit to a strain energy potential by the software. 

Convergence information of input data is presented at the end to select the most 

appropriate strain energy potential with its parameters to model the subject as closely 

as in the real case. In this study, particularly for flax fiber, only available test data is 

uniaxial test which is in fact not fully accessible. The data points to be used in material 

modeling are extracted from a frequently cited stress-strain curve taken from literature 

[61]. An open-source software is used to extract the data points from the stress-strain 

curve. Due to lack of test data regarding biaxial, planar and volumetric, only uniaxial 

test data is used.  

 

(a) (b) 
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Figure 4.3. Test data input to ABAQUS® 

 

Since transverse tensile test of a single fiber is very hard to conduct, an assumption is 

made using the information on the literature. The obtained data points are scaled 1-to-

10 [23] in terms of stress and stress-strain curve is reconstructed (Figure 4.4), and 

input to software is done using scaled data points. The reason of this scaling is that 

transverse tensile testing of a single elementary fiber is quite troublesome, and nearly 

impossible. Due lack of knowledge in the literature about transverse testing, this 

assumption is made based on reviewed publications.  
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Figure 4.4. Scaled Stress-Strain curve used for the transverse load application 

 

As explained above, scaled data points are input to software as shown in Figure 4.3. 

After an evaluation, software suggests different strain energy potentials which could 

be used in modeling, yet, with different stability results. The models suggested by the 

software are Mooney-Rivlin, Polynomial, Reduced Polynomial, Ogden, Arrude-

Boyce, Van Der Waals and Marlov. Two models showing a good agreement with the 

test data is selected, namely, Ogden and Reduced Polynomial strain energy functions. 

Stability limit information of these both functions is shown in Figure 4.5. 
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Figure 4.5. Output of (a) Ogden; (b) Reduced polynomial strain energy functions 

 

The analysis results suggest the Ogden and Reduced Polynomial strain energy 

functions are suitable for input data to be used to model the hyperelastic behavior. The 

formulation of these models are as follows, 

 𝑈𝑂𝐺𝐷𝐸𝑁 =∑
2𝜇𝑖
𝛼𝑖
(𝜆̅1

𝛼𝑖 + 𝜆̅2
𝛼𝑖 + 𝜆̅3

𝛼𝑖 − 3) +∑
1

𝐷𝑖
(𝐽𝑒𝑙 − 1)2𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 (Eq. 56) 

 

where 𝜆̅𝑖 are the deviatoric principal stretches 𝜆̅𝑖 = 𝐽
−
1

3 𝜆𝑖 ; 𝜆𝑖 are the principal 

stretches; N is strain energy function order; and 𝜇𝑖, 𝛼𝑖 , 𝐷𝑖 are the material parameters. 

(a) 

(b) 
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 𝑈𝑅,𝑃𝑜𝑙𝑦 = ∑ 𝐶𝑖𝑗(𝐼1̅ − 3)
𝑖(𝐼2̅ − 3)

𝑗 +∑
1

𝐷𝑖
(𝐽𝑒𝑙 − 1)2𝑖

𝑁

𝑖=1

𝑁

𝑖+𝑗=1

 (Eq. 57) 

 

where  𝐶𝑖𝑗 and 𝐷𝑖 are material parameters; 𝐼1̅ and 𝐼2̅ are the first and second deviatoric 

strain invariants defined as: 

 
𝐼1̅ = 𝜆̅1

2
+ 𝜆̅2

2
+ 𝜆̅3

2
 

𝐼2̅ = 𝜆̅1
−2
+ 𝜆̅2

−2
+ 𝜆̅3

−2
 

(Eq.58) 

 

Parameters calculated via the software is presented in Table 4.2 and Table 4.3 

Table 4.2. Ogden Strain Energy Function Parameters Calculated by ABAQUS® 

𝝁𝟏 𝜶𝟏 𝝁𝟐 𝜶𝟐 𝝁𝟑 𝜶𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑 

-1642856 2.000113 1075070 4.000112 568991.1 -1.99988 0 0 0 

 

Table 4.3. Reduced Polynomial Strain Energy Function Parameters Calculated by ABAQUS® 

𝒄𝟏𝟎 𝒄𝟐𝟎 𝒄𝟑𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 

555.8089 -41831.2 34467917 0 0 0 

 

Stress-strain curve is reconstructed with literature data points and strain energy 

function parameters to see the agreement, which could be observed in Figure 4.6. 
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Figure 4.6. Stress-strain plot of evaluated hyperelastic potential functions and the literature test data 

 

From the plot it is clear that Ogden strain energy function shows quite similar behavior 

compared to the test data. Therefore, it is eligible to be used in FEA as flax fiber 

material model. Note that while hyperelastic model gives a stress strain behavior 

similar to that of flax fiber, the transverse isotropic nature of fibers is not represented.  

4.2. Epoxy Matrix Material Modeling 

Epoxy is a commonly used thermoset type resin. In this study epoxy is modeled as 

elastoplastic material. Materials elastic properties and plastic strain data are selected 

from literature [87].  

Table 4.4. Epoxy matrix elastic properties 

Material Property Value 

Young’s Modulus, 𝐸  2. 95 GPa 

Poisson’s Ratio, 𝜈 0.4 

 

Isotropic hardening is employed for plastic region. Strain input as material property is 

total strain, which is calculated as: 
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 𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙 (Eq. 59) 

 

where 𝜀𝑒𝑙 is the elastic strain, 𝜀𝑒𝑙 = 𝜎/𝐸; 𝜀𝑝𝑙 is the plastic strain which is taken from  

[87]. With all this information, stress-strain diagram of epoxy is constructed in Figure 

4.7: 

 

  

Figure 4.7. Epoxy matrix total stress-strain: (a) the entire curve; (b) zoomed view up to 0.02 strain [87] 

 

4.3. Material Models Used in Thesis 

To model the flax fiber, two alternative approaches seem to be appropriate for the 

analyses. These are orthotropy with transverse elasticity and hyperlasticity. 

Considering nature of the fiber, anisotropic and nonlinear behavior, both models have 

deficiencies. In linear elastic approach, material itself does not behave linearly under 

high deformations. Yet, for small strains, these nonlinear behavior does not make 

much difference. Additionally, directional dependent properties are better emphasized 

and reflected to models via orthotropic elastic approach. On the other hand, since 

material response is nonlinear, inelastic approach seems to be more appropriate at first 

glance. But, Ogden strain energy function is valid for isotropic materials and direction-

dependent behavior would be lacked if this model was selected. To reflect anisotropy, 

4th order strain potentials are needed which cannot be found in the literature. 

Considering the main focus in this study, transverse behavior is more crucial and is a 

(a) (b) 
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reason of choice in itself. Elastic properties of synthetic fibers used in this study for 

comparison also presented in Table 4.5 (L and T represent longitudinal and transverse 

respectively): 

Table 4.5. Elastic properties of synthetic fibers 

Glass Carbon 

E = 72 GPa EL   = 276 GPa 

ν = 0.25 ET   = 10.3 GPa 

 GTT = 3.8 GPa 

 GLT  = 27.9 GPa 

 νLT  = 0.26 

 

In summary, considering their advantages and disadvantages, flax fiber is decided to 

be modeled using orthotropic elastic approach. However, the validity of this choice 

will be checked by analyzing stresses on the flax fiber itself in Appendix A. By doing 

so, all five independent elastic constants are selected from literature given in section 

4.1.1 on Table 4.1, dataset number 3. As mentioned, epoxy is modeled by elasto-

plastic approach. 
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CHAPTER 5  

 

5. FEM DESCRIPTION OF THE FLAX FIBER COMPOSITE 

 

In this chapter, finite element models are created to investigate stress concentrations 

in the flax fiber composite. Three types of RVEs (Representative Volume Element) 

are used through the evolution of the study, namely; single RVE, hexagon RVE and 

random RVE. Analysis models, discretization, mesh structure, material models, 

element types, geometric constraints, boundary conditions, and post-processing 

methods are mentioned. All these aspects are created via Python® scripts and 

calculations are performed in Abaqus® finite element software. 

RVE is a statistical representation of the typical material properties [88]. In order to 

simulate the material properly, there are some criteria to be satisfied within the concept 

of RVE. RVE should be selected sufficiently large with respect to micromechanical 

model. Furthermore, the information it contains has to well reflect the microstructure, 

and shall be a good representation of a continuum [88]. Elementary flax fiber shape is 

assumed to be circular, and diameter is taken 25 µm as determined for the average 

value of flax fibers [89]. The bonding between fiber and the matrix is assumed perfect. 

Several authors also made this assumption as indicated in Section 2.3.1. Most of the 

studies including this assumption is based on linear elastic modeling approaches [54, 

65, 67, 69]. A mesh sensitivity study is also conducted and presented in the results 

section. Hereinafter, RVEs containing the information of conducted research are used 

in FEA. 

5.1. Single Fiber RVE of Flax-Epoxy Composite 

Initially, single fiber model is constructed to observe stress concentrations on the 

vicinity of fiber itself without the effect of other fibers. For this purpose, a square RVE 

(Figure 5.1) is created with edge dimensions 15 times diameter of the fiber, which is 
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375 µm with a thickness of 37.5 µm, to prevent the edge effect on the stress 

distribution. With this representation, fiber is assumed to be in an infinite medium. 

 

 

Figure 5.1. Single fiber RVE dimensions 

 

After creation of geometry, material properties and boundary conditions are assigned 

respectively. As it is explained in previous chapter, flax fiber is modeled as orthotropic 

with transverse elasticity and epoxy matrix is modeled elasto-plastic. Next step is 

discretization. The model is meshed considering proper calculation of stresses around 

the fibers accurately, meaning that interface regions between fiber and matrix is 

modeled with denser meshes as shown in Figure 5.2. The thickness and width of those 

elements are assigned as 0.01 and 0.005 of fiber diameter, respectively. A sensitivity 

analysis is conducted as well, showing that assigned mesh size is dense enough to 

obtain accurate results with reasonable computational cost. Since the model includes 

some nonlinearity the element type used in analyses is C3D8R for both fiber and 

matrix, eight-node with reduced integration. Then, boundary conditions are assigned 

to the analysis model.  
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Figure 5.2. Single RVE mesh structure 

 

The RVE is exposed to transverse strain from right and left surfaces, which is x-

direction (direction-1). Top and bottom surfaces in y-direction (direction-2) are kept 

free, whereas front and back surfaces in z-direction (direction-3) are constrained so as 

not to move (Figure 5.3). List of boundary conditions could be seen in Table 5.1 

Table 5.1. Single RVE boundary conditions 

Surface Displacement Value 

Right 𝑈1    𝜀0/2 × 𝑅𝑉𝐸 𝑆𝑖𝑑𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 

Left 𝑈2 −𝜀0/2 × 𝑅𝑉𝐸 𝑆𝑖𝑑𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 

Front 𝑈3 0 

Back 𝑈4 0 

Top 𝑈5 Free 

Bottom 𝑈6 Free 

 

After assigning boundary condition, analyses are run with various transverse strain 

values. Then, normal and shear stress concentrations around the fiber itself, and 

horizontal stress concentrations from the surface of the fiber to the RVE edge is 

obtained in the post process stage. 
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Figure 5.3. Boundary conditions shown on the RVE 

 

5.2. Hexagon RVE of Flax-Epoxy Composite 

After completion of single fiber RVE, hexagon RVE is created as second step. One 

reason to use hexagon RVE is that it gives more accurate and credible results 

compared to other regular packing types like square [90]. Just like single fiber RVE, 

vicinity of central fiber is properly seeded to obtain 2 layers of finer meshes. Being 

different from the previous case, fiber volume ratios are introduced to the analysis 

model. Model dimensions are determined with respect to fiber diameter and volume 

fraction ratio. Short edge of RVE is 𝐴, long edge is 𝐵 and 𝑟𝑓 is the fiber radius (Figure 

5.4). Making use of fiber volume ratio, geometry and constant thickness, dimensions 

of RVE are calculated as: 

 𝑣𝑓 =
𝐴𝑓𝑖𝑏𝑒𝑟𝑡

𝐴𝑅𝑉𝐸𝑡
=
2𝜋𝑟𝑓

2

𝐴𝐵
,   𝐵 = 𝐴√3  → 𝐴 = √

2𝜋𝑟𝑓
2

𝑣𝑓√3
 (Eq. 60) 
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Figure 5.4. Hexagon RVE: a) Dimensions, b) isometric view with 0.4 and 0.6 fiber volume fractions 

with the same fiber diameter 

 

Then material properties are assigned to related regions including central fiber, quarter 

fibers and the matrix. Boundary conditions are defined as follows: transverse strain is 

applied in x-direction and Poisson contraction is applied for the other directions. After 

that, RVE is discretized with C3D8R type elements, 8-node reduced integration with 

hourglass control. Fine mesh density in the vicinity of the central fiber is essential to 

obtain stresses properly. Boundary conditions are shown and listed in Figure 5.6 and 

Table 5.2 respectively, indices 𝑇 stands for transverse, whereas 𝐿 stands for 

longitudinal.  

 

 

Figure 5.5. Mesh structure of hexagon RVE 

a) b) 

𝑣𝑓 = 0.4 𝑣𝑓 = 0.6 
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Figure 5.6. Boundary conditions shown in hexagon RVE 

 

Table 5.2. Boundary conditions for hexagon RVE 

Side Displacement Value 

X1 𝑈𝑥 𝐴
𝜀0
2

 

X2 𝑈𝑥 −𝐴
𝜀0
2

 

Y1 𝑈𝑦 𝐵
𝜀0
2
𝜈𝑇𝑇 

Y2 𝑈𝑦 −𝐵
𝜀0
2
𝜈𝑇𝑇 

Z1 𝑈𝑧 𝑡
𝜀0
2
𝜈𝑇𝐿 

Z2 𝑈𝑧 −𝑡
𝜀0
2
𝜈𝑇𝐿 

 

5.3. Random RVE of Flax-Epoxy Composite 

Random is the third and final type of RVE that is investigated in the content of the 

thesis. Due to inherent nature of the flax fibers, whether they are used in UD forms or 

others, random distribution is quite appropriate for simulations. As in the case of 

previous ones, RVE is created with calculated dimensions, but since multiple fibers 
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are modeled, a distribution technique is required. For this purpose, a randomization 

algorithm is taken from literature that is developed by Melro et. al. [91] and 

implemented to the model. The code randomly distributes fibers in a certain RVE 

according to the fiber diameter and requested fiber volume ratio. Fiber volume fraction 

is also introduced to analysis models. Assigned boundary conditions are the same with 

hexagon RVE as shown in figure below: 

 

 

Figure 5.7. Boundary conditions for random RVE 

 

Being different from hexagon RVE, periodic boundary conditions (PBC) are applied 

to random distribution as well in order to simulate a large system by using the unit 

cell. In the PBC, each nodes on sides of the RVE is connected to a symmetric 

hypothetical counter node. By doing so, computational cost is avoided and the 

response of the large model is representatively calculated.  

The mathematical explanation of PBC is as following. The displacement field for the 

periodic structure can be written as: 
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  𝑢𝑖(𝑥1, 𝑥2, 𝑥3) = 𝜀𝑖𝑗
0𝑥𝑗 + 𝑢𝑖

∗(𝑥1, 𝑥2, 𝑥3) (Eq. 61) 

 

where 𝜀𝑖𝑗
0  is the global strain tensor and 𝜀𝑖𝑗

0 𝑥𝑗 is the linear distributed displacement 

field, and  𝑢𝑖
∗(𝑥1, 𝑥2, 𝑥3) is the periodic function from one unit cell to the another one 

which stands for a modification to the linear displacement field due to the 

heterogeneous structure of the composite. Because the periodic array of the repeated 

unit cells represents a continuous body, conditions of continuous displacements and 

same traction distributions at the opposite parallel boundaries, have to be satisfied at 

the neighboring unit cell boundaries. Eq. 61 could satisfy the continuous displacement 

related requirement but it cannot hold for the latter since the term 𝑢𝑖
∗(𝑥1, 𝑥2, 𝑥3) is not 

known. Each unit cell boundary surface have to be seen in parallel pairs, and the 

displacement of these opposite boundaries can be written as: 

 

  𝑢𝑖
𝑘+ = 𝜀𝑖𝑗

0𝑥𝑗
𝑘+ + 𝑢𝑖

∗  (Eq. 62) 

  𝑢𝑖
𝑘− = 𝜀𝑖𝑗

0𝑥𝑗
𝑘− + 𝑢𝑖

∗ (Eq. 63) 

 

where 𝑘+and 𝑘− depict the 𝑘𝑡ℎ couple of two opposite parallel boundary surfaces of 

a repeated unit cell. Taking into account 𝑢𝑖
∗(𝑥1, 𝑥2, 𝑥3) is the same at two parallel 

boundaries due to periodicity, the difference between Eq. 62 and Eq. 63 becomes 

 

  𝑢𝑖
𝑘+ − 𝑢𝑖

𝑘− = 𝜀𝑖𝑘
0 (𝑥𝑗

𝑘+ − 𝑥𝑗
𝑘−) = 𝜀𝑖𝑗

0∆𝑥𝑗
𝑘 (Eq. 64) 

 

∆𝑥𝑗
𝑘 is constant for each pair of the parallel boundary surfaces with specified 𝜀𝑖𝑗

0 , right 

hand side of the equation becomes constant [93]. The statement given in Eq. 64 is 
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defined to the finite element solver via tying node function and it specifies 

displacement difference between two opposite boundaries. Yet, Eq. 64 does not 

guarantee traction continuity conditions. The traction continuity condition can be 

written as  

 

  𝜎𝑛
𝑘+ − 𝜎𝑛

𝑘− = 0,         𝜎𝑡
𝑘+ − 𝜎𝑛

𝑘− = 0 (Eq. 65) 

  

where 𝑛 and 𝑡 stand for normal and shear stresses at the corresponding parallel 

boundary surfaces. For general periodic boundary value problems, equations 64 and 

65 are a complete set of boundary conditions. In order to reflect PBC defined in (Eq. 

64) to the FEM, the meshing at each two paired boundary surfaces have to be the same. 

At each pairing node, only two displacement components coming from constraint 

equation (Eq. 64) is stored. Then it is reflected to FEM via a code. 

In the RVE numerical analyses, average strain and stress over all elements are 

computed by taking the stress and strain from each and every element and multiplying 

them with the volume of that very element. The average stress and strain components 

are defined as: 

 

  𝜎𝑖𝑗 =
1

𝑉
∫ 𝜎𝑖𝑗𝑑𝑉
𝑉

 (Eq. 66) 

  𝜀𝑖̅𝑗 =
1

𝑉
∫ 𝜀𝑖𝑗𝑑𝑉
𝑉

 (Eq. 67) 

 

The strain energies calculated by different boundary conditions have to satisfy the 

following inequality for the same value of 𝜀𝑖̅𝑗 
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  𝑈𝑡 ≤ 𝑈𝑝 ≤ 𝑈𝑑 (Eq. 68) 

 

where 𝑡, 𝑝 and 𝑑 superscripts stand for homogeneous traction boundary conditions, 

periodic boundary conditions and displacement boundary conditions respectively 

[93]. It is obvious that homogeneous displacement boundary conditions overestimate 

the effective moduli which is calculated as: 

  𝐶𝑖𝑗𝑘𝑙 =
𝜎𝑖𝑗

𝜀𝑘𝑙
 (Eq. 69) 

On the contrary, homogeneous traction boundary conditions underestimate it. The 

PBC illustration is depicted in Figure 5.8. 

 

 

Figure 5.8. Representation PBC and Random RVE 

 

Analysis models of 0.6 and 0.4 fiber volume fraction can be observed from Figure 5.9. 
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Figure 5.9. Random RVEs with fiber volume fraction of (a) 0.6 and (b) 0.4 

 

Then, model is discretized with C3D8R elements considering the close vicinity of 

each fiber to obtain a proper stress distribution.  

 

(a) 

150µm x 150µm  

(b) 

175µm x 175µm 
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Figure 5.10. Mesh structures of random RVEs with fiber volume ratios of (a) 0.6 and (b) 0.4 

 

5.4. Evaluation Method of Stress Outputs 

After running the analyses with different parameter inputs, which is explained in next 

chapter, the stress outputs are obtained. In this part, methodology to evaluate the stress 

concentrations is explained. 

At the end of each run maximum stress values, radial, shear stresses around the fiber 

within a predefined path are extracted and printed via Python® script. Then, these 

(a) 

(b) 
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values are normalized with average composite stress in load direction as given in (Eq. 

70). 

 

 

𝐾𝑟 =
𝜎𝑟𝑟
𝜎𝑥𝑎𝑣𝑒

 

𝐾𝑟𝜃 =
𝜎𝑟𝜃
𝜎𝑥𝑎𝑣𝑒

 

𝐾𝑥 =
𝜎𝑥
𝜎𝑥𝑎𝑣𝑒

 

(Eq.70) 

 

The schematical representations of radial, shear stresses around the fiber are given in 

Figure 5.11. 

 

 

Figure 5.11. Calculated stress components for the thesis: (a) radial stress; (b) shear stress; (c) horizontal 

stress concentration measurement direction along RVE; (d) Path around the fiber from which stress 

concentration is measured 

 

(a) (b) 

(c) (d) 
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Bringing together all the outputs, stress concentrations around a single fiber starting 

from 0° to 180° (for single and hexagon RVE) and 360° (for random RVE) are created, 

results are presented in Chapter 6. 
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CHAPTER 6  

 

6. ANALYSIS RESULTS 

In this chapter, analysis results regarding single, hexagon and random RVEs are 

presented. All the post-process tasks are carried out via scripts. Upon completion of 

analyses, the output files are processed with Matlab® to present neat outputs regarding 

stress concentrations. The analysis durations for different type of RVEs are presented 

in the table below. Random RVE cases are solved in a super computer with 48 CPUs 

and 64 GB of memory whereas single and hexagon RVEs are solved in 4 CPUs with 

6 GB of memory computer.  

Table 6.1. Flax Fiber RVE analyses solution times 

RVE CPU Time (Sec) 

Single Fiber RVE 363.50 

Hexagon RVE (vf = 0.4) 296.50 

Hexagon RVE (vf = 0.6) 129.50 

Random RVE (vf = 0.4) 384.40 

Random RVE (vf = 0.6) 202.30 

 

As indicated previously, a mesh sensitivity analysis is conducted to observe if it the 

results converge or not. The configuration is selected as hexagon RVE, maximum 

stress vs number of element curve is plotted. From the results of the analysis which is 

shown in Figure 6.1, it is apparent that results do converge. It is possible to state that 

the size and the configuration of the elements are proper and the analyses based on 

this mesh is reliable. 
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Figure 6.1. Mesh sensitivity analysis results 

 

6.1. Single Fiber RVE Results  

Section 6.1 focuses on stress concentration results of single RVE under prescribed 

boundary conditions that is mentioned in part 5.1. Initially, bilinear Young’s modulus 

effect is investigated. Then material modeling approaches are compared (Section 

6.1.2). Thirdly, the fiber is subjected to different transverse strains (Section 6.1.3) and 

last step is comparison with synthetic fibers like glass and carbon (Section 6.1.4). 

6.1.1. Young’s Modulus Duality Case Study 

As explained in section 3, flax fiber stress-strain behavior is bilinear meaning that it 

does have two values of Young’s modulus. Considering the material modeling 

approach in this study, that is orthotropic (Section 4.1.1); the effect of this duality 

should be further investigated. For this purpose, a comparison study is conducted. 

Bensadoun et. al. [60] studied this duality of elementary flax fiber. According to their 

test results, two elastic moduli are observed: 𝐸𝑓1 = 57.0 GPa, and 𝐸𝑓2 = 44.5 GPa 

for strain intervals of 0 to 0.001 and 0.003 to 0.005. Nevertheless, the problem here is 

that they are all in longitudinal direction. Since the focus point in this study is the 

transverse property, 1-to-10 scaling assumption is used [23] and moduli are taken as, 

𝐸𝑇1 = 5.7 GPa and 𝐸𝑇2 = 4.45 GPa. Additionally, since it is a comparison study, 



 

89 

 

material is assumed as isotropic for the sake of simplicity. For an input strain of 0.2 

%, the obtained results are presented in Figure 6.2, Figure 6.3 and Figure 6.4. 

 

Figure 6.2. Single Fiber RVE Radial stress concentrations of along flax-matrix interface with dual 

transverse moduli for 0.2% strain input. 
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Figure 6.3. Single Fiber RVE Shear stress concentration along fiber matrix interface with dual 

transverse moduli 0.2% strain input. 

 

Figure 6.4. Single Fiber RVE horizontal stress concentration along the path between fiber and the 

model edge with dual transverse moduli 0.2% strain input. 

 

Since the study is performed to have an idea about the effect of two different elastic 

moduli on stress concentrations, the flax material is assumed to be fully isotropic for 

the sake of simplicity. Two separate analyses are run and results are presented 

consecutively. In terms of radial stress concentrations around the fiber-matrix 

interface, the difference between reached maximum values is quite low. The model 

having transverse modulus 𝐸𝑇1 = 5.7 GPa has maximum radial stress concentration, 

𝐾𝑟 = 1.134 whereas the one with second modulus value of  𝐸𝑇2 = 4.45 GPa reaches 

𝐾𝑟 = 1.067 (Figure 6.2). The case in shear stress concentration is also similar. The 

difference between maximum shear stress concentrations is about 0.067 (Figure 6.3). 

Considering the horizontal stress concentrations from Figure 6.4, the variation is 

minimal as well. The difference between these two values is small enough to justify 

the utilization of a single Young’s modulus value to obtain accurate results in terms 

of stress concentrations. 
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6.1.2. Comparison Case Study with Orthotropic and Hyperelastic Flax Fiber 

Although selected material model to be used in analyses is orthotropic, in order to 

compare the stress concentrations in terms of order of magnitude and have a general 

idea, a comparison study is conducted. The inelastic modeling approach which uses 

Ogden strain energy function and the orthotropic elastic modeling approach are 

compared with respect to radial, shear and horizontal stress concentrations as 

presented in Figure 6.5, Figure 6.6 and Figure 6.7 for an input strain of 0.2 %. 

 

 

Figure 6.5. Single Fiber RVE Radial stress concentrations along flax-matrix interface for orthotropic 

(blue) and hyperelastic (red) modeling approaches for 0.2% strain input 
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Figure 6.6. Single Fiber RVE shear stress concentrations along flax-matrix interface for orthotropic 

(blue) and hyperelastic (red) modeling approaches for 0.2% strain input. 

 

 

Figure 6.7. Single Fiber RVE horizontal stress concentration along the path between fiber and the 

model edge for orthotropic (blue) and hyperelastic (red) modeling approaches for 0.2% strain input. 
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Since the focal point in this study is the transverse aspects of the composite, 

hyperelastic approach is insufficient to characterize those features. The modeling 

approach, as mentioned in section 4.1.2, is based on scaling assumption due to lack of 

information to characterize transverse properties completely. Yet, in order to see the 

difference between two approaches, the comparison study is conducted. Considering 

radial stress concentration around the fiber-matrix interface (Figure 6.5), at the starting 

point of the radial path, i.e. 0°, the stress concentration difference is not so much. But, 

between 80° and 100°, the difference is about 0.2 which could be seen from the plot. 

By checking the shear stress concentration plot (Figure 6.6), one can see that towards 

to 45° and 135°, difference between two cases increases which is expected since the 

principle direction for the shear stress is highest in 45°. Finally, horizontal stress 

concentrations can be observed from Figure 6.7, which has the largest difference in 

terms of stress concentrations compared to others. Considering the results, 

hyperelastic and orthotropic modeling approaches do not give very different results, 

but due to mentioned reasons using hyperelastic approach may results with misleading 

outcomes. 

 

6.1.3. Stress Concentrations for Varying Strains 

Single fiber RVE model is subject to various strain values, starting from 0.1 % up to 

5%. Contour plot of two strain values are presented in Figure 6.8 and stress 

concentration distributions in the fiber/matrix interface are given in Figure 6.9, Figure 

6.10 and Figure 6.11.  
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Figure 6.8. Distribution of maximum principle stress for the input strains values of (a) 0.2 %; (b) 2% 

 

(a) 

(b) 
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Figure 6.9. Single Fiber RVE radial stress concentrations along flax-matrix interface for various 

transverse strain inputs starting from 0.1% to 5%. 
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Figure 6.10. Single RVE shear stress concentrations along flax-matrix interface for various transverse 

strain inputs starting from 0.1% to 5%. 
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Figure 6.11. Single Fiber RVE horizontal stress concentration along the path between fiber and the 

model edge for various transverse strain inputs starting from 0.1% to 5%. 
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This case study is conducted to see the effect of strains from 0.1 % to 5%. In this 

analysis, the fiber is orthotropic flax and the matrix is elastoplastic epoxy. Starting 

from Figure 6.8, that color distribution is wider for the high strains meaning that 

stresses are created and distributed in a less concentrated manner. Radial stress 

concentration around fiber matrix interface proves this statement: stress 

concentrations decrease as the strain input increases which can be observed from 

Figure 6.9.  Considering starting point of the path around the fiber, recall Figure 5.11, 

that is the 0° vicinity, highest concentration belong to 0.1 % strain case which is the 

same for shear stress concentrations (Figure 6.10). Horizontal stress concentrations 

have a little fluctuations just after the starting point of the path (Figure 6.11). However, 

at the fiber/matrix interface point and half of the RVE border, it is observed that 

increased strain inputs results with lower concentrations as well. Considering the 

elastic limit strain of the epoxy which is about 0.017, presented in Figure 4.7 (b), stress 

concentrations seen in single fiber RVE is are nearly the same up to this value. As the 

transverse strain input increases over this limit, especially for the radial and shear 

stress concentrations, starting from 𝜀6 = 0.015 stress concentrations starts to 

decrease. It is due to the fact that epoxy matrix yields and it passes to the plastic zone. 

High concentrations in the fiber/matrix interface generate a softening effect. This is 

an important deduction to be able to set a value to the onset of yielding caused by the 

matrix. 

6.1.4. Comparison Case Study with Glass and Carbon Fiber 

In this section flax fiber is compared with glass and carbon fiber with the same amount 

of transverse strain input which is 0.2 %. Radial, shear and horizontal stress 

distribution results are shown in Figure 6.12, Figure 6.13 and, Figure 6.14 

respectively. 
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Figure 6.12. Single Fiber RVE radial stress concentrations along flax-matrix interface for flax (blue), 

carbon (red) and glass (green) fibers for 0.2% strain input. 

 

 

Figure 6.13. Single Fiber RVE shear stress concentrations along flax-matrix interface for flax (blue), 

carbon (red) and glass (green) fibers for 0.2% strain input. 

 



 

100 

 

 

Figure 6.14. Single Fiber RVE horizontal stress concentration along the path between fiber and the 

model edge for flax (blue), carbon (red) and glass (green) fibers for 0.2% strain input. 

 

This comparison case regarding flax, glass and carbon fibers the final case of single 

fiber RVE. In this analysis flax, carbon and glass fibers are subjected to transverse 

loading for a strain input of 0.2 % to evaluate the stress concentrations on the fiber-

matrix interface. The radial and shear stress concentrations along the interface and 

horizontal stress concentrations from the fiber to the edge of RVE is presented in 

Figure 6.12, Figure 6.13, and Figure 6.14. The maximum stress concentrations are 

observed at a slight distance from the fiber matrix interface for horizontal stress 

concentrations. Considering radial stress concentrations, as expected, the highest 

concentration is observed in glass fiber, then comes carbon; and the least is the flax 

fiber. This is mainly due to large stiffness contrast between the fiber and the polymeric 

matrix. The glass fiber is a fully isotropic material meaning that transverse modulus 

is the same as longitudinal one, 72 GPa. The carbon fiber’s transverse modulus is 10 

GPa whereas flax fiber’s is 8 GPa. This deduction is profoundly important for the 

study considering the idea that flax fiber composites may be used as a substitute for 

glass fibers. As indicated earlier, glass and flax fiber’s longitudinal strengths are 
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comparable, but with this transverse property, it is apparent that flax fiber can be more 

promising in terms of mixed mode loading applications. 

6.1.5. Element Type Comparison 

This analysis is conducted to see if elements with reduced integration affect the results 

of the analyses. For this purpose 2 runs are performed with C3D8 and C3D8R 

elements. The CPU time durations for these analyses are presented in table below: 

Table 6.2. CPU time for Single Fiber RVE with C3D8 and C3D8R elements 

Element Type Time (sec) 

C3D8 439.90 

C3D8R 363.50 

 

The results of the analyses could also be seen from the radial, shear and horizontal 

stress concentration distribution plots: 

 

 

Figure 6.15. Radial stress concentration distribution for comparison with C3D8 and C3D8R type 

elements 

 



 

102 

 

 

Figure 6.16. Shear stress concentration distribution for comparison with C3D8 and C3D8R type 

elements 

 

 

Figure 6.17. Horizontal stress concentration distribution for comparison with C3D8 and C3D8R type 

elements 
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The analyses are run for maximum transverse strain input used in the study, which is 

5%. By checking the results, it is quite obvious that reduced integration element 

creates no difference in terms of generated stress concentrations in the vicinity of the 

fiber. The contour plots for both cases where the matrix is in its plastic zone are also 

shown below: 

 

 

Figure 6.18. Contour plots for single RVE (a) C3D8, (b) C3D8R element type comparison with 5% 

transverse strain input 

(b) 

(a) 
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6.2. Hexagon RVE Results 

Section 6.2 focuses on stress concentration results of hexagon RVE under prescribed 

boundary conditions that is mentioned in part 5.2. Studies are compiled in five main 

headlines: first effect of various strains for fiber volume fraction of 0.4 is observed. 

The same procedure is applied for fiber volume ratio of 0.6 as a second step. Thirdly, 

effect of volume fraction on the stress concentrations is investigated. Fourth and fifth 

step is again a comparison study for different volume fraction ratios that includes 

synthetic carbon and glass fibers. Transverse strain input to the RVE is given as 0.2 

% for the comparison case study. 

6.2.1. Stress Concentrations for Varying Strains (νf = 0.4) 

Being different from single RVE, fiber volume fractions are introduced to hexagon 

RVE. According to volume fractions, dimensions of RVEs are arranged and analysis 

geometries are created 

 

 

Figure 6.19. Distribution of maximum principle stresses for the input strains values of (a) 0.2 %, (b) 

2.5 %  

(a) (b) 
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Figure 6.20. Hexagon RVE radial stress concentrations along flax-matrix interface for varying 

transverse strain input starting from 0.1 % to 5% with fiber volume fraction of 0.4 
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Figure 6.21. Hexagon RVE shear stress concentrations along flax-matrix interface for varying 

transverse strain input starting from 0.1% to 5% with fiber volume fraction of 0.4 
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The first case is the investigation of stress concentrations for varying strains with fiber 

volume fraction of 0.4. When radial and shear stress concentrations are examined 

(Figure 6.20 and Figure 6.21), it is seen that strains up to yield limit of polymeric 

matrix create concentrations similar to each other as in the case of single RVE. For 

this case, maximum stress concentration value is reached by lowest strain input, 0.1%. 

Concentrations up to the plastic limit of matrix are similar but starting from 0.015 

strain, concentrations decrease gradually. From these results, it is possible to say that 

stress concentration is inversely proportional to strain input for hexagonal packing 

with volume fraction of 0.4. It can also be deduced that stress concentrations caused 

by high deformations are distributed in the matrix more uniformly compared to low 

strain response. 

6.2.2. Stress Concentrations for Varying Strains (νf = 0.6) 

In this part, the examination of stress concentration for different strains with fiber 

volume fraction of 0.6 is performed. Same procedure with 0.4 volume fraction is 

applied. Contour plot of two different strain input is presented in Figure 6.22. 

 

 

Figure 6.22. Distribution of max. principle stresses for the input strains values of (a) 0.2 %, (b) 2.5 % 

(a) (b) 
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Figure 6.23. Hexagon RVE radial stress concentrations along flax-matrix interface for varying 

transverse strain input starting from 0.001 to 0.05 with fiber volume fraction of 0.6 



 

109 

 

 

 

Figure 6.24. Hexagon RVE shear stress concentrations along flax-matrix interface for varying 

transverse strain input starting from 0.001 to 0.05 with fiber volume fraction of 0.6 
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The results are mostly similar to the previous case. Concentrations remaining below 

the yield limit nearly coincides with each other for both radial and shear stresses. 

Increasing strains above the plastic limit of the matrix creates lower concentrations 

which could be seen in Figure 6.23. For the shear stress concentrations, results 

resemble to the 0.4 volume fraction case which can be observed Figure 6.24, high 

strains cause lower concentrations. One more important result, which can be reached 

from 0.6 volume fraction case is that for the higher input strains, dispersion of stress 

concentration in the matrix is wider, i.e. transitions to the highest concentration 

regions are softer.  

6.2.3. Stress Concentrations for Different Fiber Volume Fraction Ratios 

In this analysis case a comparison study is carried out for different fiber volume 

fractions with the same strain input. Same 0.2 % strain input is used for both volume 

fractions of 0.4 and 0.6. 

 

 

Figure 6.25. Hexagon RVE radial stress concentrations along fiber-matrix interface for fiber volume 

fraction of 0.4 (blue) and 0.6 (red) with 0.2 % transverse strain input 
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Figure 6.26. Hexagon RVE shear stress concentrations along fiber-matrix interface for fiber volume 

fraction of 0.4 (blue) and 0.6 (red) with 0.2% transverse strain input 

 

 

Figure 6.27. Hexagon RVE horizontal stress concentration along the path between fiber and the model 

edge for fiber volume fraction of 0.4 (blue) and 0.6 (red) with 0.2% transverse strain input 
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Obtained radial and shear stress concentrations are slightly higher for 0.6 volume 

fraction (Figure 6.25 and Figure 6.26). On the stress concentrations between fiber and 

the model edge, the model with 0.6 volume fraction apparently has higher values 

(Figure 6.27). Another important deduction of the study is this aspect; as the fiber 

volume fraction increases, local stress concentrations also increase due to stiffness 

contrasts in close vicinities. 

6.2.4. Comparison Case Study with Glass and Carbon Fiber (vf = 0.4) 

This case includes the comparison of flax, carbon and glass fibers for the same strain. 

The comparison is performed with constant strain input (0.2 %) for volume fraction 

of 0.4. Radial, shear and horizontal stress concentration results are presented below. 

 

 

Figure 6.28. Hexagon RVE radial stress concentrations along fiber-matrix interface for flax (blue), 

Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.4 for 0.2% strain input 
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Figure 6.29. Hexagon RVE shear stress concentrations along fiber-matrix interface for flax (blue), 

Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.4 for 0.2% strain input 

 

 

Figure 6.30. Hexagon RVE horizontal stress concentration along the path between fiber and the model 

edge for flax (blue), Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.4 for 0.2% 

strain input. 
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When radial stress concentrations of volume fraction of 0.4 is examined from Figure 

6.28 it is seen that glass fiber has highest stress concentration. Due to the effect of 

quarter fibers in the directions of 60° and 120°, the trend of the curve changes 

compared to single fiber RVE (Figure 6.12). But due to low elastic modulus 

difference, carbon and flax fibers’ trends resemble to the single RVE. One more factor 

affecting these trends is the low fiber volume ratio. Since quarter fibers are distant to 

the central one, their effect decreases. For the shear stress concentrations as observed 

in (Figure 6.29), due to same reason for the radial ones, trend of the curve for carbon 

and flax look like single fiber RVE. Considering the horizontal stress concentrations 

(Figure 6.30), glass fiber creates highest concentrations by far. 

6.2.5. Comparison Case Study with Glass and Carbon Fiber (vf = 0.6) 

Comparison case study for 0.6 volume fraction is the last analysis case for hexagon 

RVE. Results for stress concentrations are presented in Figure 6.31, Figure 6.32 and 

Figure 6.33. 

 

 

Figure 6.31. Hexagon RVE radial stress concentrations along fiber-matrix interface for flax (blue), 

Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.6 for 0.2% strain input 
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Figure 6.32. Hexagon RVE shear stress concentrations along fiber-matrix interface for flax (blue), 

Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.6 for 0.2% strain input 

 

Figure 6.33. Hexagon RVE horizontal stress concentration along the path between fiber and the model 

edge for flax (blue), Carbon (Red) and Glass (green) fibers with fiber volume fraction of 0.6 for 0.2% 

strain input 
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Comparison analysis with 0.6 fiber volume ratio, actually, proves the effect of 

neighboring fibers to the central one. Maximum stress concentrations observed in 0.6 

volume fraction is a bit higher compared to 0.4, which was indicated previously. 

However, when the trends of the stress concentration curves for both radial and shear 

are examined from Figure 6.31 and Figure 6.32, maximum concentrations shift 

towards to 60 and 120 degrees rather than 90 and that is the true effect of the other 

fibers to the central one. Again, due to both the high stiffness contrast and denser 

packing, glass fiber forms the highest concentrations. Then comes the carbon fiber of 

which stress concentration curve has slightly shifted to 60° and 120°. Since it has 

lowest transverse modulus, stiffness contrast is very low and therefore the curve trend 

of flax fiber is very similar to single RVE again. That is a very important deduction 

from the study that flax fiber is superior to glass fiber in hexagonal packing when low 

stress concentrations are demanded. 

6.3. Random RVE Results 

The last model regarding stress concentration study is the random RVE. Similar to the 

hexagon RVE, the model is subjected to 0.2% transverse strain input to observe the 

radial and shear stress concentrations in the matrix. Considering the flax fiber 

composites, it is the most realistic scenario and the final step of the study. In this 

section, stress concentrations for fiber volume fraction ratios of 0.4 and 0.6 is 

investigated (6.3.1, 6.3.2). The fiber, which has the highest stress concentration along 

its interface, is selected considering the FE results and stress concentrations along its 

whole interface, from 0° to 360° considering effects of the other fibers, is calculated 

and presented. After that, flax fiber is compared with carbon and glass for volume 

fractions of 0.4 and 0.6 (6.3.3, 6.3.4). 

Single and hexagon RVEs have one central fiber to be evaluated but the case of 

random RVE is a little bit different. The fiber to be evaluated should be selected among 

a bundle. To do so, one of the stress distribution theories has to be employed to assess 

the stress state in the matrix. In this case, maximum principal stress is used to observe 
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stress distribution since it is a commonly used method to evaluate structural failure for 

brittle materials. 

6.3.1. Stress Concentrations for νf = 0.4 

 

Figure 6.34. Random RVE distribution of maximum principle stresses in the matrix for flax fibers with 

fiber volume fraction of 0.4 for 0.2% strain input 

 

First analysis in this section is the random RVE with fiber volume fraction of 0.4. 

Analysis results in terms of maximum principle stress are demonstrated on Figure 

6.34. Maximum stresses were monitored between two fibers which are close to each 

other in loading direction. Due to its low stiffness, matrix carries most of the induced 

deformation in the loading direction and since there are several fibers in the vertical 

direction, a small volume remains to carry the load. Therefore, observed strain and the 

stress level at the end increase compared to the other portions in the RVE. 
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Figure 6.35. Random RVE distribution of shear stresses in the matrix for flax fibers with fiber volume 

fraction of 0.4 for 0.2% strain input. 

 

 

Figure 6.36. Random RVE radial stress concentrations along fiber-matrix interface for the fiber having 

maximum stress concentrations with fiber volume ratio of 0.4 for 0.2% strain input 
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Figure 6.37. Random RVE shear stress concentrations along fiber-matrix interface for the fiber having 

maximum stress concentrations with fiber volume ratio of 0.4 for 0.2% strain input. 

 

Regarding the shear stress distribution in Figure 6.35, it is observed that highest values 

of stresses are located in between the nearest fibers. Since the principle direction for 

the shear stress is in the 45° under simple tension, obtained contour plot is as expected 

for shear stress distribution. The fiber having highest stresses on its close vicinity is 

crosshatched in Figure 6.34. In the previous analysis models, stress concentration 

measures were given from 0° to 180° due to symmetry. Nevertheless, for random RVE 

case, it is not possible to show such a distribution because neighboring fibers also 

affect the stress state. Therefore, for the random case, radial and shear stress 

concentrations are given for a full fiber circumference. Radial and shear stress 

distribution for the indicated fiber are given in Figure 6.36 and Figure 6.37. As 

mentioned, a regular trend could not be observed in the plots due to the presence of 

other fibers located randomly in the RVE. 
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6.3.2. Stress Concentrations for νf = 0.6 

The next analysis case is the one with 0.6 fiber volume ratio. This time RVE is more 

densely packed with fibers and the remaining volume for the matrix is relatively low 

compared to the previous case which could be observed from Figure 6.38 and Figure 

6.39. 

 

 

Figure 6.38. Random RVE distribution of maximum principle stresses in the matrix for flax fibers with 

fiber volume fraction of 0.6 for 0.2% strain input. 
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Figure 6.39. Random RVE distribution of shear stresses in the matrix for flax fibers with fiber volume 

fraction of 0.6 for 0.2% strain input. 

 

 

Figure 6.40. Random RVE radial stress concentrations along fiber-matrix interface for the fiber having 

maximum stress concentrations with fiber volume ratio of 0.6 for 0.2% strain input. 
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Figure 6.41. Random RVE shear stress concentrations along fiber-matrix interface for the fibers having 

maximum stress concentrations with fiber volume ratio of 0.6 for 0.2% strain input. 

 

Under transverse tension, maximum principle stress is observed in the matrix where 

the fibers are located closest to the edges (Figure 6.38). As in the case of 0.4 volume 

fraction, location of maximum stress observed in the region where mostly strained 

area i.e. the smallest volume that matrix encloses. When the shear stress distribution 

is monitored (Figure 6.39), similar region with 0.4 volume fraction case is seen and it 

is again in the direction of 45° as expected. Radial and shear distributions of the most 

critical region in terms of maximum principle stress distribution are plotted in Figure 

6.40 and Figure 6.41 respectively for the indicated fiber. Comparing two different 

volume fraction cases, it is obvious to state that increasing volume fraction has also 

increased the maximum stress observed in the matrix. Another important deduction 

from these cases is that fibers located near the edges create higher concentrations 

which have to be taken into account by the designers. 
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6.3.3. Comparison Case Study with Glass and Carbon Fiber for νf = 0.4  

In this analysis case, comparison of flax fiber with conventional glass and carbon 

fibers for fiber volume ratio of 0.4 is performed. Same procedure is applied which is 

the determination of highest stressed region under maximum principal stress 

distribution and the extraction of the stresses from the interface of the fiber that is 

located in the close vicinity. Radial and shear stress concentration comparison plots 

of these three fibers for the exact same fiber in each iteration with fiber volume ratio 

of 0.4 are given in Figure 6.42 and Figure 6.43 respectively. 

 

 

Figure 6.42. Random RVE Radial stress concentrations along the fiber-matrix interface for the fibers 

having maximum stress concentrations (crosshatched one in section 6.3.1) for fiber volume fraction of 

0.4 for 0.2% strain input. 
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Figure 6.43. Random RVE Shear stress concentrations along the fiber-matrix interface for the fibers 

having maximum stress concentrations (crosshatched one in section 6.3.1) for fiber volume fraction of 

0.4 for 0.2% strain input 

 

When the radial stress concentration plot is examined, glass fiber undoubtedly 

becomes prominent due to its high stiffness in transverse direction. Carbon and flax 

fiber succeed the glass fiber respectively. The case in shear stress concentration is 

similar as well; glass fiber generates highest stress concentrations among the others. 

For this volume fraction ratio, flax fiber’s behavior in terms of stress is quite stable 

compared to glass and carbon fibers. 

6.3.4. Comparison Case Study with Glass and Carbon Fiber for νf = 0.6 

Final analysis case is the comparison of the fibers for volume fraction of 0.6. Again, 

separate models with three fiber materials are run and highest loaded fiber regions in 

maximum principle stress invariant is selected, stresses are then extracted and plotted 

in terms of radial and shear concentrations. Trend of the plots are different from the 

previous case, since the location of the selected fiber changes for different volume 
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fraction. Yet, what is similar to previous case is that glass fiber again generates highest 

concentrations for both radial (Figure 6.44) and shear (Figure 6.45) stresses. 

 

 

Figure 6.44. Random RVE radial stress concentrations along the fiber-matrix interface for the fibers 

having maximum stress concentrations (crosshatched one in section 6.3.2) for fiber volume fraction of 

0.6 for 0.2% strain input. 
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Figure 6.45. Random RVE shear stress concentrations along the fiber-matrix interface for the fibers 

having maximum stress concentrations (crosshatched one in section 6.3.2) for fiber volume fraction of 

0.6 for 0.2% strain input 

 

The other fibers come consecutively according to their transverse moduli i.e. second 

one is carbon, and then flax. These results are quite coherent with the literature [66]. 

When two volume fraction results are compared, it is seen that higher volume fraction 

also creates higher concentrations for different materials. Comparison of different 

fiber materials give an idea about their possible responses under transverse loading 

conditions. The peaks seen in the stress concentration plots are quite important for the 

structural integrity of the matrix since they represent the most critical regions. As 

mentioned previously, although glass fiber response under longitudinal loading 

conditions is favorable, its performance under transverse loading is not so bright. 

Carbon and flax fibers perform far better under such kind of loading. Comparing 

carbon and flax fiber, due to low transverse stiffness, flax fiber performs better. 

Therefore, the best performer of this comparison case study is the flax fiber. Random 

RVE stress concentration results of flax fiber composite are actually quite promising. 
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Important deductions like effect of fiber volume ratio, stiffness contrast, geometry, 

and fiber packing effect are obtained accordingly. 





 

129 

 

CHAPTER 7  

 

7. GENERAL CONCLUSIONS 

 

7.1. Summary 

Comprehension of the mechanical behavior of natural fiber composites is an important 

milestone regarding the use of these material as structural elements. To be able to 

employ such material for load carrying applications, designers should have a 

fundamental understanding and perception about how this material response to 

mechanical effects for various conditions. In this study, a finite element model based 

on representative volume elements was developed to have an understanding the 

behavior of a natural fiber composites under transverse loading conditions. The study 

started with the investigation of natural fiber composites and its constituents. 

Mechanical properties of such materials were reviewed and a candidate fiber is 

selected to be worked on, namely flax fiber due to its superior properties among its 

counterparts. It was followed by a research about this specific fiber and its composites 

in Chapter 3. The mechanical properties of these type of fibers and its composites were 

scrutinized separately. After that, studies conducted in this field were explored 

thoroughly to have an idea which aspect should be investigated further. Studies 

conducted up to know mostly focused on longitudinal and the macro level responses 

of flax fiber composites. Therefore, a transverse micro modeling method was decided 

to be developed. In order to do so, material models were investigated in Chapter 4. 

Considering the available data on the literature and focal point of the study which is 

the transverse mechanism, material model was selected to be used in representative 

volume elements which is mentioned in Chapter 5. For each type of representative 

volume elements various number of analyses with different scenarios including 

different fiber volume ratios, different material models, different strain inputs and 

comparison of different fibers were run. Obtained results were post-processed in a 
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mathematical software to present them in a neat format. And finally some important 

deductions regarding the study is done in Chapter 6 

7.2. Key Findings and Outcomes 

Several outcomes and key findings are revealed by this study. They can be 

summarized as follows: 

1. Bilinear moduli of flax fiber, presented in Figure 6.2, Figure 6.3, Figure 6.4 in 

Section 6.1.1, do not affect the stress concentrations extensively. Its effect is quite 

minimal therefore can be neglected. 

2. For the strains in the elastic region of the epoxy matrix, stress concentrations show 

very similar trends. After the matrix passes to the plastic zone, stress concentrations 

mostly decrease for increasing strain inputs. 

3. Transverse orthotropy assumption works well for flax fiber in the small strain 

setting, details are explained in Appendix A.  

4. Results of stress concentration for the single RVE resemble to the classical elasticity 

problem “inclusion in infinite media” which is consistent with the infinite medium 

assumption made prior to single RVE geometry creation. 

5. Results of inelastic modeling approach in single fiber RVE do not differ greatly 

from the orthotropic modeling approach. Yet, since hyperelastic modeling is done by 

using isotropic assumptions and focus point of the study is to obtain transverse 

response, it needs to be further improved. 

6. For multiple fiber models (hexagon and random RVEs), fiber volume fraction has 

a direct influence on the stress concentrations. As the fiber volume fraction increases, 

upper limit of stress concentrations increase as well. 

7. The effect of neighboring fibers to the each other is well observed for the multiple 

fiber RVE models. 
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8. Stiffness contrast i.e. difference in Young’s moduli, between matrix and the fiber is 

the most effective factor on the stress concentrations. High contrast causes high stress 

concentrations. Yet in this study, it is revealed that flax fiber composites are more 

likely to be resistant to possible failures in transverse modes since they have much 

lower stress concentrations. 

9. In terms of transverse loading, isotropic material reinforced composites of which 

fiber properties are direction independent, are inferior compared to the ones with low 

transverse modulus. 

10. Stress concentration plots obtained in random RVE setting is quite useful to 

compare the integrity of an UD composite structure. As the number of peaks seen in 

this plot increases, the material may become more prone to possible failures. 

7.3. Future Work 

Considering the outcomes and findings in the study, it is possible to make suggestions 

for the future work. To begin with, all the finite element models are created with 3D 

elements instead of 2D plane stress or plane strain. The depth of the RVEs were quite 

minimal for this work, but considering possible future studies, the depths can further 

be modified and increased for nonplanar loading cases.  

Furthermore, a model with failure modes can be created for static and dynamic 

loading. In this case properties of flax fiber should further be explored and insight of 

the material shall further be extended. 
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8. APPENDIX A 

 

In the investigations that are conducted in epoxy matrix, the fiber itself is excluded. 

The focal point in this study, flax fiber, is selected orthotropic elastic instead of 

hyperelastic as it is mentioned Section 4.3 and the elastic properties of selected flax 

fiber is given in Table 4.1. This assumption is valid in the case that fiber strains are 

within the elastic limits. In this part, stress and strain distribution of fiber is studied to 

check if the flax fibers remain in linear elastic zone. In single RVE configuration, 

model is exposed to maximum transverse strain of 0.05, which is the highest strain 

used in this study, from the right end left hand sides of RVE as given in section 5.1. 

The maximum principle stress and strain distributions are presented in Figure 8.1: 

 

 

Figure 8.1. Maximum (a) Principal stress and (b) strain distributions of flax fiber under transverse 

loading 

(a) 

(b) 
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Maximum strain that fiber is exposed from Figure 8.1 is calculated as 0.017. The 

available data on the literature indicates that bilinear stress-strain behavior of the flax 

fiber is seen in between 0 and 0.3 % of strain and 1.5% to the final rupture [61]. Based 

on this information and the analysis results which is the investigation of dual modulus 

presented in Section 6.1.1 (Figure 6.2, Figure 6.3, and Figure 6.4), the orthotropic 

elastic material model assumption is considered to be acceptable for the stress 

concentration analyses. Stress strain plot of highest strained element is also given in 

Figure 8.2. 

 

 

Figure 8.2. Stress Strain curve of maximum strained element 
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