
 

 

 

 

BRAIN OSCILLATORY ANALYSIS OF VISUAL WORKING MEMORY ERRORS  

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

IGOR MAPELLI 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY OF SCIENCE 

IN 

HEALTH INFORMATICS DEPARTMENT 

 

 
 
 

 
 

FEBRUARY 2019 
  



 
  



 
 
 
 
 
 
 

BRAIN OSCILLATORY ANALYSIS OF VISUAL WORKING MEMORY ERRORS 
 

Submitted by Igor Mapelli in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy of Science in the Health Informatics Department, Middle East Technical University 
by, 
 
Prof. Dr. Deniz Zeyrek Bozşahin 
Dean, Graduate School of Informatics 
 
Assoc. Prof. Dr. Yeşim Aydın Son 

Head of Department, Health Informatics 
 
Assoc. Prof. Dr. Tolga Esat Özkurt 

Supervisor, Health Informatics Dept., METU 
 

 
Examining Committee Members: 
 
Prof. Dr. Ünal Erkan Mumcuoğlu 
Health Informatics Department, METU 
 
Assoc. Prof. Dr. Tolga Esat Özkurt 
Health Informatics Department, METU 
 

Assoc. Prof. Dr. Cengiz Acartürk 

Cognitive Science Department, METU 
 

Assoc. Prof. Dr. Tolga Çukur  

Electrical and Electronics Engineering Department, 
Bilkent University 
 

Prof. Dr. Canan Kalaycıoğlu  

Physiology Department, Medical School, Ankara 
University  
 
 

Date:                    01/02/2019 
 

  



  



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 

 

 

 
 
 
 

Name, Last Name: IGOR MAPELLI 
 

 

 
Signature             :    

  



iv 
 

ABSTRACT 

 
BRAIN OSCILLATORY ANALYSIS OF VISUAL WORKING MEMORY ERRORS 
 

MAPELLI, IGOR 

Ph.D., Health Informatics Department 

Supervisor: Assoc. Prof. Dr. Tolga Esat Özkurt 

 

February 2019, 130 pages 

 

Brain dynamics of memory formation were explored throughout a working memory 
(WM) task. Electroencephalography data were acquired from participants while presented 
with grayscale photos of object categories (each category defined by images sharing a 
common gist). Following a short delay, two probes were shown to test memory accuracy. 
Time-frequency representations of successful and erroneous memories were contrasted. 
Additionally, brain connectivity was studied via coherency and phase-amplitude coupling 
(PAC). Where significant differences were identified, oscillatory properties of false 
memories (a novel item of the same category recognized as familiar) were compared with 
those of successful and erroneous memories. Spectral analysis revealed occipital theta 
power for encoding of successful and false memories to be smaller when compared to 
other memory errors. The reduced theta power indicates successful encoding and reflects 
efficient activation of the underlying neural assemblies. During the retention interval, 
prominent alpha-beta activity over right parieto-occipital channels was found to be larger 
for false memories and errors when compared to correct responses. High levels of alpha-
beta oscillatory activity for errors indicate poor maintenance leading to inefficient 
allocation of WM resources. For false memories, they imply necessary cognitive effort to 
manage an extra semantic and perceptual load induced during encoding. Significant 
fronto-occipital coherency was measured: Possibly, theta and alpha band coherency 
reflect central executive functions of WM, whereas beta band coherency indicates 
coordination of local assemblies related to stimulus representations. Significant 
theta/gamma PAC, linked to WM retention of sequentially encoded stimuli, and 
alpha/gamma PAC, reflecting processing of visuo-spatial information, were also 
observed. 

 

Keywords: Visual Working Memory, False Memory, memory errors, neural oscillations, 
EEG 
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ÖZ 

 
GÖRSEL ÇALIŞMA BELLEĞİ HATALARININ BEYİN OSİLASYON ANALİZİ 

 

MAPELLI, IGOR 

Doktora, Tıp Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga Esat Özkurt 

 

Şubat 2019, 130 sayfa 

 

Çalışma Belleği (ÇB) görevi boyunca, bellek oluşumunun beyin dinamikleri 
incelenmiştir. Nesne kategorilerine ait (her bir kategori, ortak bir özelliği olan görüntülerle 
tanımlanmıştır) gri skala fotoğraflar gösterildiği sırada deneklerden, elektroensefalografi 
(EEG) verileri toplanmıştır. Kısa bir aranın/bekletmenin ardından, belleği test etmek üzere 
deneklere iki görüntü gösterilmiştir. Doğru ve yanlış anıların zaman-frekans temsilleri 
karşılaştırılmıştır. Bununla birlikte tutarlık ve faz-genlik kuplajı (FGK) bağlantısallık 
tahminleri yoluyla beyin bağlantısallığı çalışılmıştır. Önemli farklar tespit edildiğinde, 
sahte anıların salınımlı nitelikleri (aynı kategoriden yeni bir ögenin tanıdık gelmesi) doğru 
ve yanlış anılarınkilerle karşılaştırılmıştır. Spektral analiz, diğer bellek hatalarıyla 
karşılaştırıldığında, doğru ve yanlış anıların kodlanmasındaki oksipital Teta gücünün daha 
düşük olduğunu göstermiştir. Düşük Teta gücü, başarılı kodlamaya işaret etmekte ve altta 
yatan nöral kurulumların etkin şekilde aktive olduğunu göstermektedir. Akılda tutulma 
aralığı boyunca, sağ paryetal-oksipital kanallar üzerindeki baskın alfa-beta aktivitesinin 
doğru yanıtlarla karşılaştırıldığında sahte anı ve hatalardan daha büyük olduğu tespit 
edilmiştir. Hatalar için alfa-beta salınım aktivitesinin yüksek düzeylerde seyretmesi,  ÇB 
kaynaklarının etkin olmayan bir şekilde atanmasına yol açan zayıf tutunmaya işaret 
etmektedir. Sahte anılar için bu, kodlama sırasında tetiklenen ek bir anlamsal ve algısal 
yükün yönetilmesi için gerekli olan bilişsel bir çabayı ifade edecektir. Önemli düzeyde bir 
frontooksipital tutarlık ölçülmüştür: Olasılıkla, Teta ve Alfa bandı tutarlığı, ÇB’nin 
merkezi yönetsel işlevlerini yansıtmakta; Beta bandı tutarlığı ise uyaran temsilleriyle ilgili 
lokal kurulumların koordinasyonunu göstermektedir. Sırayla kodlanan uyaranların ÇB 
tutunumuyla ilgili önemli Teta/Gamma FGK ile görsel-mekansal bilginin işlenişini 
yansıtan Alpha/gamma FGK gözlemlenmiştir.  

Anahtar Sözcükler: Görsel Çalışma Belleği, Sahte Anı, bellek hataları, sinirsel salınımlar, 
EEG   
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CHAPTER 1 

 

1. INTRODUCTION 

Cognition is an intricate process that gives us the ability to extrapolate information from 
the environment while assessing it with our senses. The newly acquired knowledge, 
alongside past experiences, contributes to the thoughts needed to resolve the task at hand. 
Despite successfully performing ordinary as well as unusual actions, cognitive failures 
(Broadbent et al., 1982), i.e., minor slips disrupting the activity underway, may occur 
sporadically. 

While the majority of studies focused on memory and action slips, researchers also 
investigated errors in the context of perception, distractibility and interpersonal 
intelligence (Carrigan & Barkus, 2016). Cognitive factors, such as attention (i.e., the 
ability to allocate resources solely on task-related information), inhibition (i.e., the 
capacity to suppress interfering events) and working memory (WM) (i.e., the storage and 
maintenance of information within short time intervals), affect the rate to which cognitive 
failures occur. There are also others non-cognitive factors, such as dissociative 
experiences, schizotypy, biological, sleep-wake cycle and age, that have been reported to 
influence cognitive failures (for a review: Carrigan & Barkus, 2016). Studying the 
inherent causes of failures may allow to identify the most vulnerable sections of the 
population as well as widen the understanding of the human cognitive system. 
Furthermore, it may be possible to reduce the frequency of cognitive slips by attempting 
to control the underlying factors. 

Featured among the factors affecting the rate of failures, WM encompasses short-term 
memory (STM), i.e., the temporary storage unit and all the processes responsible for 
monitoring, maintaining and manipulating task-relevant information over a brief period 
of time. Given the critical role played by WM in the cognitive apparatus, its efficiency 
comes with no surprise. Nevertheless, it is susceptible to distortions and thus investigating 
the cases where memory fails us can contribute to the understanding of its underlying 
mechanisms. 

Neural oscillations are seen as a fundamental constituent of WM (Lisman & Idiart, 1995; 
Klimesch, 1996; Buzsáki & Draguhn, 2004; Eriksson et al., 2015). As cognitive dynamics 
related to WM unfold in mere seconds, it is important to use the appropriate tools to 
effectively conduct these investigations. For this reason, electroencephalography (EEG), 
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a relatively simple and inexpensive technology, became a common tool used to probe the 
oscillatory dynamics linked to WM. EEG provides an adequate temporal sensitivity, 
which is equatable to magnetoencephalography (MEG) and two orders of magnitude 
faster than the hemodynamic responses recorded via functional magnetic resonance 
imaging (fMRI). The neurophysiological factors contributing to EEG signals are yet to be 
fully understood. It is generally accepted that the voltage fluctuations recorded by EEG 
on the scalp reflect the macroscopic dynamics of populations of neurons in the cortex 
(Cohen, 2014). Whereas EEG provides data with high temporal resolution, it does not 
allow for the precise localization of the sources within the brain, particularly deep brain 
structures. Thus, the hypotheses to be tested should be defined bearing in mind these 
limitations. 

The purpose of this study was to contrast scalp EEG oscillatory activity related to 
successful and erroneous STM of grayscale photos, belonging to distinct categories (e.g., 
“luggage”, “chair”, “car”). Each category was defined by a set of images sharing the 
general thematic information (gist) while differing in the details that characterize the 
individual items (verbatim) (Koutstaal & Schacter, 1997; Brainerd & Reyna, 2002). 
Among memory errors, it has been of further interest to investigate oscillatory traits of 
false memories – when a novel item (lure) like the encoded images (i.e., sharing some of 
their perceptual or semantic properties) is recognized as familiar. To conduct the 
investigation, we devised a challenging WM task with the intent to maximize the rate of 
erroneous memory responses by the encoding of visual stimuli presented sequentially at a 
fast-pace. 

The remainder of the thesis is divided into four chapters. Chapter 2 introduces the human 
visual system, from its anatomical organization to the theoretical accounts of vision and 
perception. The role of human memory within the visual system is then examined with 
added emphasis on the phenomenon of false memory. To close chapter two, the most 
common brain imaging techniques are presented alongside with the relevant 
hemodynamic and electrophysiological studies covering VWM. Chapter 3 outlines the 
materials and methods adopted to carry out the experimental work. Chapter 4 details 
behavioral and EEG oscillatory results. Finally, Chapter 5 discusses the theoretical 
implications of the findings and provides the conclusive remarks. 

Please note that the following chapters includes also paragraphs from Mapelli & Özkurt 
(2019).  
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CHAPTER 2 

 

2. LITERATURE REVIEW 

Life on Earth is strongly dependent from the energy released by the Sun that reaches the 
atmosphere in the form of light. Many organisms evolved to harvest light energy (e.g., 
photosynthesis) and convert it into chemical energy used to fuel their actions. The animal 
kingdom went further as the evolution of the eye allowed for the surveying of the 
landscapes. Some animals (e.g., box jellyfish) have no brain to further interpret the 
sensory data, thus their reactions are simply driven by the detected patterns of light 
intensity. Others, and humans among them, acquire advanced knowledge through the 
analysis of the light that enters the eye, a process known as visual perception. As such, 
visual perception is not a pristine window onto reality. Rather, it is a derived 
representation drawn to assist in the planning of the best course of actions aimed at 
increasing the chances of survival. Phenomena such as adaptations (e.g., after few minutes 
spent outside gazing at the night sky the number and brightness of the stars increase), 
altereffects (e.g., the temporary dark spot we experience following the flash of a photo 
camera) and illusions (e.g., the illusion of the moon being larger when it is close to the 
horizon) are evidence that, despite its proven evolutionary advantage, visual perception 
might not always provide a fully veridical experience. 

2.1. Visual System: Human Eye and Pathways to the Visual Cortex 

Everything we see reaches the brain as a flow of pulses traveling along the nerve fibers. 
All the information the brain uses to create a model of our surrounding comes from these 
stimuli. Given this perspective, it comes as no surprise that illusions, hallucinations and 
all kinds of failures affect our visual experience. 

As described by Stone (2012), within the human eye (Figure 1), the scene is brought to 
focus onto the retina, a light-sensitive layer of tissue covered, not uniformly, by 
photoreceptors. The fovea, a small pit, is filled with cones, i.e., color-sensitive 
photoreceptors. It is the area associated with central vision where humans see in greater 
details. Three types of cones exist which are sensitive respectively to long (red), medium 
(green) and short (blue) wavelengths of light. The fovea contains only cones sensitive to 
long and medium wavelengths. On the outer regions, the number of cones decreases 
leaving space for the rods, photoreceptors more sensitive to light that work better under 
low-light conditions. 
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The light stimulus is converted into electro-chemical energy by the photoceptors; the 
stimuli are then transmitted to the ganglion cells through a series of neurons in the retina 
layer (Figure 2). 

Decomposition of the image into important components (e.g., color, motion) begins from 
the retina. The M (magnocellular) and P (parvocellular) streams are two distinct flows of 
information that start from the retina and extend up to the cortex. In general, the left part 
of the visual field (i.e., left visual hemifield) is projected onto the right part of the retina. 
Similarly, the right part of the visual field (i.e., right visual hemifield) is projected onto 
the left part of the retina (Figure 3). Thus, the information of the right (left) hemifield is 
projected onto the left (right) side of both retinal images. Each hemisphere receives 
information from half visual field. Considering the right eye, retinal projections of the 
right visual hemifield cross to the left hemisphere at the optic chiasm. In contrast, 
information from the left visual hemifield remains on the right hemisphere. The retinal 
projections of the left eye follow an analogous but symmetrical pattern. Each newly 
created bundle (optic tract) connects to a six-layered structure called lateral geniculate 
nucleus (LGN). Each layer contains unique descriptions of the pertaining visual hemifield. 
As the layers are placed on top of each other, the same point of each layer corresponds to 
the same point in the visual field. 

 

Pupil 

Retina 

Fovea Lens 

Cornea 

Optic 
nerve 

Figure 1: Anatomy of the human eye. 
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Light 
Neural signal 

Rod 

Cone Ganglion cell 

Figure 2: Simplified diagram of retinal cell layers. 
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In broad terms, the visual cortex (Figure 4) is organized retinotopically, i.e., contiguous 
points of the retinal image are projected onto contiguous areas in the cortex. The primary 
visual cortex (V1) is the main recipient of the visual signal coming from the retina. For 
every point in the retinal image, V1 extracts implicit features such as orientation, texture, 
motion, contrast, depth, color and brightness. The outgoing connections originate two 
pathways: The dorsal and ventral streams (Ungerleider & Haxby, 1994; Creem & Proffitt, 
2001; Stone, 2012). The ventral stream begins from V1 and reaches the inferior temporal 
cortex (ITC) crossing through V2, ventral V3, V4 and TEO (located at the posterior border 

Optic chiasm 

Optic nerve 

Optic tract 

Lateral geniculate 
nucleus 

Occipital cortex 

Left visual field Right visual field 

Nasal retina 
Temporal retina 

Figure 3: Pathways of the visual system. 
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of the ITC) (Milner & Goodale, 2006). Differently, the dorsal stream defines a more 
complex pattern from V1 to the posterior parietal cortex: While one set of inputs passes 
from the middle temporal region (MT/V5), additional visual information travels across 
V2 and V3 reaching the posterior parietal cortex either via V3A or via the parieto-occipital 
area (Milner & Goodale, 2006). Ventral and dorsal streams are associated with either 
object identification versus spatial relationships (Ungerleider & Haxby, 1994), or 
perception versus guidance of action (Milner & Goodale, 2008) respectively. Moreover, 
the two pathways are interconnected and information is mutually exchanged. As they 
move away from V1, the spatial/retinal organization is gradually supplanted by a features-
based (e.g., color, shape, motion) cortical mapping. 
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Figure 4: Major areas of the human brain and the visual cortex. 
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2.2. Theories of Vision: Framing the Problem of Visual Perception 

Any newly formulated theory of vision must address four prominent issues (Palmer, 
1999): 

o Environment versus organism: Which factors influence the perception process? 
External elements and their condition in the environment, or internal properties of 
the organism, such as the visual nervous system. This dualism may not necessarily 
be mutually exclusive as both internal and external properties might influence 
perception. 

o Empiricism versus nativism: Why are elements perceived as they are? Empiricism 
sees it as consequential to the learning process and knowledge accumulated 
through time. Nativism expects it to be readily available (or it surfaces through 
maturation) from the moment the organism is born and shaped by evolutionary 
processes. 

o Atomism versus holism: How does perception emerge? By assembling each local 
element on the visual field, or the perception of a local element depends on all 
elements on the visual field. 

o Introspection versus behavior: How to derive a theory of perception? From one’s 
own reported experience or from objective measurements of performances. 

Four classical psychological theories attempted to tackle the visual perception problem by 
providing specific answers to the aforementioned matters. Following, a brief account of 
each formulation. 

2.2.1. Structuralism 

Structuralism stands on the assumption that perception emerges from basic atomic 
elements of sensory experience. Memories from prior and recurrent experiences link 
together related atoms. In the context of vision, these atoms refer to small local regions of 
the visual field. They are singularly bound to a photoreceptor and subjected to a local 
experience of color. The concatenation of regions induces the activation of associated 
memories from other sensory modalities. Thus, perception is defined by a rapid execution 
of unconscious processes eliciting associated memories created via repeated interactions 
with the environment. 

2.2.2. Gestaltism 

This theory refutes atomism and empiricism, the basic principles of structuralism. It 
promotes instead a holistic idea suggesting that perception arises from considering the 
whole visual configuration. Less fundamental, the idea that perceptual organization is 
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innate and does not need learning from experience to mature. Another element introduced 
by the gestaltism is the psychophysiological isomorphism. It links statuses of mind and 
brain, i.e., subjects’ perceptual (psychological) experiences are structurally identical to the 
related (physiological) events within the brain. An example to better illustrate the concept 
is given by the primary colors. They are grouped into three pairs: Red opposite to green, 
blue opposite to yellow and black opposite to white. The psychological experience of the 
primary colors and their opposites finds a neural correspondence with three specialized 
neurons decoding respectively red/green, blue/yellow and black/white (De Valois, 1960). 
Additional propositions that were put forward by gestaltists, such as the theory of 
electrical brain fields, were dismissed by the scientific community following experimental 
investigations. 

2.2.3. Ecological optics 

One of the most prominent pioneers in the field was James J. Gibson. Gibson's theory of 
perception (Gibson, 1950) proposed that the visual space is described by the ground, a 
continuous surface composed by connected sub-surfaces. Consequently, the visual space 
is not described by sets of objects but by the information laying on the ground. The theory 
asserts that the information used to build the perception is not collected from a stationary 
point of observation fixating a local isolated area. On the contrary, perception is built 
through an optic flow (a continuous transformation of the image on the retina) generated 
by the organism while exploring the environment. Yet, despite having a continuous flow 
of images on the retina, the relevant information remains mostly invariant. Examples of 
invariants introduced by Gibson are: Density of texture, which might allow the organism 
to understand the dimensions of the explored space; flowing of patterns, movement causes 
the surrounding patterns to flow except for the central point of direction, thus allowing to 
maintain the intended direction; affordances, i.e., provisions found in the environment that 
are relevant, in meaning and utility, to the organism (e.g., water affords to quench the 
thirst, air affords breathable oxygen). Gibson stated that invariants directly contribute to 
perception, as they are readily available without additional processes of transformation or 
extraction. From Gibson's perspective, perception can be built by evaluating the elements 
in the environment without the need of internal processing performed by the organism. A 
refinement of the first theory, which was based upon the notion of retinal image, was later 
proposed: The ecological approach to visual perception (Gibson, 2015) was based on the 
array of ambient light, a set of visual solid angles (or connected components) given a point 
of observation. The author affirmed that perception should not be considered as a process 
of manipulation of sensory inputs, but as a process of extrapolation of invariants from the 
environment. Affordances emerge as assembled invariants following minimal learning 
efforts. They are directly bound to perception, i.e., both physical features and affordances 
of the elements are immediately perceived. The direct perception, Gibson clarified, 
operates on the environment itself (a single-step process) and it is not mediated by sense-
related data (multi-steps process). In general, Gibson distinguished between two types of 
information: Afferent-input information, which refers to information represented as 
impulses in the optic-nerve; and optic-array information, i.e., information in form of light, 
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which is not inside the observer but available from the environment. The latter is the 
information readily available for perception. 

2.2.4. Constructivism 

Constructivism asserted that human visual perception, despite being affected by errors and 
illusions, regularly provides the correct perceptual experience of one’s surrounding. To 
explain such efficiency, the use of additional information, which is dynamically integrated 
with the retinal image by the visual system, must be accounted for. One of the most 
relevant properties pertaining to the constructivist model is the process of unconscious 

inference. As the optical information available from the retinal image is not sufficient to 
resolve the perceptual inverse problem, an additional unconscious process is enrolled. It 
is responsible for the integration and transformation of the two-dimensional information, 
available from the retinal image, into a three-dimensional representation of the 
environment. The inferences made by this unconscious process are based on the likelihood 
principle. Thus, the selected interpretation is the one which provides the higher probability 
of generating the specific retina content (heuristic interpretation process). 

The advent of the digital computer era enabled scientists to develop synthetic simulations 
to test theories, to integrate information processing ideas in the classical domain of 
psychology and to design alternative models likening the brain to a biological processor. 
The ability to generate computer simulations gave rise to connectionist models based on 
neural networks. The idea behind this approach was to create synthetic networks 
mimicking neural circuitry of the brain. Hence, the system would be composed of 
networks of artificial synapses densely interconnected. These artificial synapses would 
work as simplified versions of biological neurons, whose behavior, defined by either 
inhibitory or excitatory states, would depend on nonlinear mathematical equations. As the 
analytical interpretation of such models was not trivial, the study of its behavior had to be 
done through automatized simulations. 

2.3. Visual Attention: Directing Relevant Information into Awareness 

Attention refers to a mental resource that is allocated among competing sources of 
information. Its objective is to facilitate the processing of the relevant information and use 
it to produce a behavioral response or a memory (Lamme, 2003). The sources could be 
externally (e.g., perception of stimuli) or internally (e.g., thoughts, memories) generated. 
Thus, trivially, visual attention accounts for the attention allocated to process visual 
inputs. Visual attention is characterized by two significant properties: The limited capacity 
of the brain for data processing and the ability to filter out unwanted information 
(Desimone & Duncan, 1995). 

Many models have been proposed to explain the selection mechanisms through which 
relevant information reaches awareness (for a detailed review on visual attention, see 
Friedenberg, 2013). Broadbent's filter theory (1958) originally suggested that non-selected 
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sensory data is completely excluded from subsequent processing. Differently, Treisman's 
attenuation theory (1964) does not strictly filter out non-selected information. It posited 
that unattended but relevant data will still be processed. These are named early selection 

models as the filtering is performed prior recognition/categorization and based solely on 
sensory data. In contrast, late selection models hypothesize a delayed process of selection 
whose criteria may be influenced by a variety of properties such as meaning or semantic 
(Deutsch & Deutsch, 1963; Norman, 1968). As for early models, late ones initially filter 
the sensory input. However, following the recognition and prior transferring the 
information into STM, another selection process is performed. At this point, it is 
influenced by the interpretation given to the sensory data. Another proposition describes 
a shifting filter, whom, according to task requirements, can be applied at different stages 
of processing (Posner & Snyder, 1975). 

How competing elements get access to attentional resources? Bundesen (1990) proposed 
that the item with greatest salience, at any given time, is selected and thus included in 
awareness. Top-down directives (e.g., based on context, knowledge, or task instructions) 
could also bias the process favoring specific items. The described mechanism includes 
filtering, i.e., the selection of relevant inputs rather than distracters, and pigeonholing, the 
classification of selected inputs with respect to pertaining categories. As Bundesen 
formulated the theory through mathematical equations, its model could be tested 
thoroughly and accounted adequately for the experimental data. Alternatively, the global 
workspace theory (Baars, 1997) approaches consciousness and selective attention through 
the metaphor of a theater. In this context, the attentional spotlight shines on the stage 
focusing on different actors. The contents under the spotlight reflect the conscious 
experience. While partial awareness is associated with elements at the fringe of the 
spotlight, outside of it there is no awareness. The information brought to awareness by the 
spotlight is broadcasted to the audience. People behind the scenes may influence whatever 
is brought under the light. Information comes from external (sensory input) or internal 
(imagination) sources and compete to access the stage. The audience is composed by 
different unconscious cognitive components responsible for processing information. 

2.4. Visual Memory: Preserving Information Pertaining to the Visual Experience 

Visual memory refers to stored information produced by the visual system that concerns 
perceptual properties of the encoded stimuli. The memory content may range from low-
level information extracted in early visual areas to more abstract higher-level 
representations. As described by Luck & Hollingworth (2008) the visual system is 
composed by three subsystems: Iconic memory, visual short-term memory (VSTM) and 
visual long-term memory (VLTM). Following, an overview of each subsystem. 
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2.4.1. Iconic memory 

Research suggests the existence of two types of iconic memory: The visible persistence 
and the informational persistence. The visible persistence identifies the sustained activity 
associated with photoreceptors and neurons at low-levels of the visual system (probably 
through area V1). It reflects a detailed representation of the visual scene which rapidly 
fades over time. The informational persistence refers to the content which endures the 
offset of the stimulus and it is not part of the fading visual experience. The informational 
persistence encloses two distinct components. The first one is dedicated to spatially 
organized and pre-categorical representations, which reflects the decaying activity in 
intermediate visual regions such as V4. The second component is responsible for more 
abstracts, categorized and amodal representations. The iconic memory is unlikely to 
maintain the available information for the duration required by post-perceptual 
processing. New incoming perceptual information masks the current content, thus 
preventing any comparison or integration with previous visual elements. Iconic memory 
supports higher-level systems (e.g., VSTM) by acting as a temporal smoother of the input 
signal, thus facilitating the consolidation of memories. 

2.4.2. Visual short-term memory 

VSTM stores information concerning a limited number of items. Its capacity varies in 
accordance with the complexity of the stimuli to encode. While VSTM representations 
are not as precise as early visual ones, they are immune to saccades, blinks and brief 
occlusions. Thus, VSTM allows for comparisons with elements separated in space and 
time. The VSTM-related activity generated in response to a stimulus is sustained over 
several seconds following the offset of the stimulus. The limited storage capacity and the 
active maintenance of oscillatory nature prevent any meaningful accumulation of 
information over long periods. Research suggests that VSTM has two subcomponents 
responsible respectively for spatial and object identity information. As discussed in the 
Section 2.3, VSTM appears to be the recipient of information processed by visual 
attention. Furthermore, it helps to keep track of previously attended locations, thus biasing 
attention towards new areas. VSTM plays a role also in transsaccadic integration to ensure 
perceptual continuity as saccadic eye movements disrupt the visual stream. Possibly, it is 
even responsible for creating the correspondence between objects in the presaccade and 
postsaccade input. 

2.4.3. Visual long-term memory 

VLTM contrasts with VSTM in that it possesses a larger storage capacity. Whilst VLTM 
representations are less detailed than the ones of VSTM, they are reliably stored thanks to 
changes in the pattern and strength of synaptic connections. Studies suggest that LTM 
memories are kept within the same systems that underlie perception. VLTM plays a role 
in object and scene categorization via retention of visual features. 
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2.5. Working Memory 

Working memory (WM) is a fundamental constituent of the cognitive system. It 
encompasses short-term memory (STM), i.e., the temporary storage unit and all the 
processes responsible for monitoring, maintaining and manipulating task-relevant 
information over brief intervals (Baddeley, 2003). Following, a brief overview of the most 
common theoretical approaches and WM models. 

2.5.1. Cowan’s embedded process theory 

The theory suggests that WM is structured in two components. The first component 
responsible for activated LTM representations (with no limit of activations). The second 
one, namely the attentional focus, operates across activated LTM areas. It has a suggested 
limited capacity of four chunks, i.e., activated representations and it may contain more 
than a single item per chunk (Cowan, 1999). 

2.5.2. Individual difference-based theories 

Individual difference-based theories rely on a framework that focuses primarily on 
processes linked to WM capacity (Engle & Kane, 2004). Prominence is given to inhibitory 
processes, responsible for protecting memories from interferences. The typical approach 
considers individual differences among subjects by separating them into two groups: High 
and low WM span. The groups differ in accuracy as well as in a variety of experimental 
measurements (e.g., susceptibility to interference, ability to produce lists of items given a 
semantic category). 

2.5.3. Jonides and the mind and brain of short-term memory 

This model is strongly influenced by neuroimaging studies (Jonides et al., 2008). It 
suggests that, across a variety of modalities, perception, STM and LTM activations are all 
located in the same anatomical structures. Supporting evidence and presented conjectures 
are still considered controversial. 

2.5.4. Computational models of working memory 

This class of theories focuses on producing detailed predictions on how the WM functions. 
Thus, each model provides also its own computer simulation. Among several 
computational models, the interactive cognitive subsystems (Barnard, 1985) is regarded 
as the class representative due to its accurate predictions in certain contexts. 
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2.5.5. Baddeley and Hitch's working memory model 

WM is a system with limited resources and modality-specific components (e.g., 
phonological loop) coordinated by a control-committed component, namely the central 

executive. The model has been updated since its first definition made by Baddeley and 
Hitch in 1974. It defines four core components (Baddeley, 2012). The phonological loop 
works with verbal information. It has a limited capacity and stores the information 
sequentially. Vocal or subvocal rehearsal assists the maintenance mechanism. The 
visuospatial sketchpad is an analogue of the phonological loop which concerns 
visuospatial information. The central executive coordinates the activities and it monitors, 
maintains and manipulates task-relevant information. 

How could distinct codes (e.g., phonological and visual code, or LTM and WM 
information) be integrated in the absence of a common storage? To address these 
theoretical concerns the authors further refined their model. A new component was 
introduced, the episodic buffer, which functioned as the necessary common storage used 
to combine information of different origins. 

2.6. Semantic Memory 

The memory component responsible for general knowledge is known as semantic 
memory. As described by Baddeley et al. (2009), the semantic memory shares similarities 
with the episodic memory. Yet, while the latter refers to content bound to a precise 
episodic instance, semantic memory lacks this sense of conscious recollection of the past. 

A considerable amount of research has been done to better understand the relationship 
between semantic and episodic memory. Patients diagnosed with anterograde amnesia 
displayed episodic memory impairment while their semantic memory was mildly affected. 
Differently, retrograde amnesia patients exhibited a compromised episodic memory, but 
they still showed more stable performances when semantic memory was probed. Brain 
imaging techniques contributed to the study of semantic and episodic memories by 
revealing how they activated different neural areas. All these findings consolidate the idea 
that semantic and episodic memory are two distinct components. 

Questions involving general knowledge can be answered quickly: This observation would 
suggest that semantic memory is well organized. Different models have been proposed in 
the attempt to delineate the structure of semantic memory, with the most notable one being 
the spreading activation model (Collins & Loftus, 1975). It hypothesizes a semantic 
memory organized by semantic relatedness – which can also be interpreted as a distance 
measure, i.e., the closer the more related two elements are. Whenever a concept is 
produced, either internally thought or externally stimulated, the pertaining semantic node 
of the network is activated. The activation then spreads towards connected semantic 
elements with a strength that is inversely related to the semantic proximity. Other 
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experiments provided further evidence in support of this model whose general concepts 
allow for different interpretations yet limiting its ability to make accurate predictions. 

In general, information pertaining to a specific object is not stored in a unique brain region. 
Reports suggest that details of an object (e.g., visual properties, tactile information, its 
functionality) may be stored in different brain regions. How this information is quickly 
retrieved and integrated remains an open debate. 

Semantic memory can also store complex information. To reflect this ability, Bartlett, F.C. 
(Bartlett & Kintsch, 1995) introduced the concept of schemas. A schema is a well-defined 
chunk of knowledge describing a sequence of events and associated consequences 
(scripts) or structures and properties of objects (frames). Expectation is an emerging 
functionality associated with the prediction of upcoming events and actions from a given 
script. Schemas also enable the drawing of inferences, thus enhancing the comprehension 
through learning processes. Ultimately, schematic knowledge contributes to an enhanced 
interpretation of visual perception. 

The schematic knowledge appears to facilitate the perception and predictability of the 
surroundings. Yet, it also carries undesired side effects. Schemas influence the way things 
are remembered. In general, people tend to bias information in favor of a consistent 
personal view, to the detriment of accuracy of maintained information (consistency bias). 

Theories based on schemas have been proven useful. Yet, their definitions remain too 
generic and fail to make accurate predictions. Furthermore, memory representations seem 
to be more complex than the given descriptions. The schema theory predicts an error rate 
which is higher than experimental measures, thus highlighting how human memory 
processes are more flexible than the current theoretical account. 

2.7. False Memory 

False memory distortions refer to novel events that a person falsely believes having 
experienced in the past. The term was initially used in the context of childhood abuse 
cases and was popularized by the media (Beckett, 1996). To reproduce this phenomenon 
in a controlled environment, where experimental measurements could be reliably 
collected, the focus shifted towards more specific memory errors for which various 
paradigms were devised (e.g., novel words or pictures falsely recognized as familiar). 
Moreover, nuances in the definition of the term false memory were introduced which, at 
times, were considered controversial (DePrince et al., 2004). 

A common experimental procedure used to induce false memories in LTM is the Deese-
Roediger-McDermott (DRM) paradigm (Deese, 1959; Roediger & McDermott, 1995). 
Typically, sets of words, each grouped according to a common theme, were constructed – 
e.g., “jazz”, “piano”, “note” and “orchestra” all associated with the critical lure “music”. 
These sets, but not the lure, were presented to the participants. Later, during the 
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recognition (or free recall) session, participants would consistently misrecognize (or list) 
the lure as previously studied. 

While the vast majority of research investigated false memories in long-term, some recent 
studies have designed variations of DRM paradigms to explore them over short-term 
periods, mostly through behavioral measurements (Coane et al., 2007; Atkins & Reuter-
Lorenz, 2008; Flegal et al., 2010; Flegal & Reuter-Lorenz, 2014, Olszewska et al., 2015). 
There have also been few studies examining BOLD (blood oxygenation level dependent) 
responses (Atkins & Reuter-Lorenz, 2011) and electrophysiological characteristics (Chen 
et al., 2012; Melnik et al. 2017) in order to determine neuronal markers linked to these 
events. One fMRI study assessed neural correlates of false memory in VWM, while 
subjects performed a modified delayed match-to-sample test with human faces as stimuli 
(Iidaka et al., 2014). Unlike the DRM-like paradigms, the relationship between stimuli 
was defined by perceptual similarities and not by semantic associations. 

2.8. Cognitive Electrophysiology: Reflections of Cortical Functions 

Cognitive electrophysiology investigates the relations between cognitive functions and 
the electrical activity generated by populations of neurons (Cohen, 2014). Beyond 
behavioral data, electrophysiological measures provide additional knowledge to better 
understand cognitive processes of interest. They also provide insight on functional 
properties of neural networks, thus contributing to the development of computational 
models simulating neurobiological or neurophysiological systems. 

2.8.1. Electroencephalogram 

The electroencephalogram (EEG), a noninvasive technology to study human 
electrophysiology, was pioneered by the German psychiatrist Hans Berger in the early 20th 
century (Millett, 2001). Since then, both technical and methodological advancements 
contributed to a rapid expansion of the field. 

EEG records electrical activity on the scalp through electrodes that are placed on the 
subjects’ head. As EEG possesses a high temporal resolution, it is ideal to monitor 
cognitive processes evolving within tens to hundreds of milliseconds. The voltage 
fluctuations measured by EEG are influenced by the underlying populations of neurons, 
thus they are a direct reflection of cortical activity (Wang, 2010; Buzsáki & Wang, 2012). 
The recorded signal is multidimensional inasmuch as time, space, frequency, power and 
phase are beneficial to the characterization of cognitive functions or to the testing of 
theoretical concepts. 

The neurophysiological basis of the EEG signal is yet to be fully explained. The 
postsynaptic responses of pyramidal neurons, predominantly located in the human cortex 
and hypothesized to be central to cognitive processes, are believed to strongly influence 
the EEG signal (Luck, 2005). 
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The electrical activity generated by the neurons leaks through different tissue layers prior 
to be detected by the electrodes on the scalp. Each layer, defined by unique electrical 
properties and structures, contributes to the smearing of the traveling signal (Lopes da 
Silva, 2013). Thus, in contrast with the temporal resolution, EEG spatial resolution is poor 
and does not allow for the precise localization of the sources within the brain. 

2.8.2. Magnetoencephalogram 

The magnetoencephalography (MEG) is a noninvasive technology that records magnetic 
fields generated by neuronal activity within the brain. Cohen (1968) firstly reported of the 
human magnetic alpha rhythm detected by a single magnetic sensor, thus demonstrating 
the feasibility of recording MEG in the proximity of the human head. MEG is closely 
related to EEG since both signals possess analogous time resolution and they both 
originate from synchronized neuronal activity. Like EEG, the measured fluctuations 
recorded by MEG are a direct reflection of cortical activity (Hämäläinen et al., 1993). 

Any flowing electric current generates a magnetic field which is perpendicular to the flow 
and whose direction is determined by the right-hand rule, i.e., while the thumb points in 
the direction of the flow, the remaining fingers show the direction of the magnetic field. 
Within the brain, generated magnetic fields travel unchanged through the different tissue 
layers and skull. The signal generated by the fields are weak, nevertheless the 
sophisticated sensors of MEG systems are still able to detect them. 

Contrary to EEG, MEG has a high spatial resolution. However, the source localization 
based on the analysis of the spatial distributions of the magnetic fields, namely the inverse 
problem, relies on source models (e.g., current dipoles) and assumptions that, if ill-
conceived, may return contrasting results as multiple sources configurations could give 
rise to the magnetic fields detected nearby the head (e.g., the inverse problem has multiple 
solutions) (van Oosterom, 1991). 

2.8.3. Event-related potentials analyses 

Event-related potentials (ERP) are calculated by averaging the EEG signal over many 
trials. The assumption behind this approach is that the brain systematically responds to the 
events of the studied task in a time-locked fashion. This methodology retains a high 
temporal accuracy as there is no temporal filtering (contrary to time-frequency based 
analyses, see Section 2.8.4) or complicated preprocessing steps. While computing ERPs 
one should consider that task-modulated information which is time-locked but non-phase-
locked with task events will no longer be observable following trials averaging. Despite 
the wide literature covering ERPs, their underlying neurophysiological mechanisms are 
still not clearly understood (Pfurtscheller & Lopes da Silva, 1999; Cohen, 2014). 
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2.8.4. Time-frequency based analyses 

Time-frequency based analyses aim at the identification of oscillatory components in 
neural time-series. Furthermore, dependences between oscillations across distinct brain 
regions (connectivity), as well as relations amid oscillations (for frequency, amplitude, or 
phase) and cognitive processes or behavior can also be assessed (Gross, 2014). 

To obtain a time-frequency representation (TFR), the neural time-series need to be 
translated into the frequency domain via, for instance, non-parametric methods such as 
Fourier transform, wavelet transform, or Hilbert transform. 

 

 

Concerning the Fourier transform, one fundamental requirement is that the input data must 
be stationary, i.e., the statistics of the data do not change over time. As this assumption is 
not valid for EEG recordings, which reflect brain activity in the context of a cognitive 
task, a temporally localized frequency decomposition method is used instead (Cohen, 
2014). By using these methods, the assumption, which is considered acceptable for EEG 
recordings, is that for short time intervals the signal is stationary (Florian & Pfurtscheller, 
1995). Another reason to use temporally localized frequency decomposition is that the 
Fourier transform does not reflect changes over time. Thus, for any given trial, following 
the selection of the short time interval (segment), its data are weighted by a tapering 
function (Figure 5). Tapering prior the application of the Fourier transform is 
recommended as it reduces spectral leakages by attenuating the amplitude values at the 
beginning and at the end of the segment (Cohen, 2014; Gross, 2014). Next, another 
segment, which overlap for the most part with the previous one, is selected and the 
procedure is repeated until the end of the trial (for all trials). For each segment separately, 
the absolute value is averaged thus leading to a TFR of each trial. It should be highlighted 
that tapering reduces the temporal resolution of the EEG data, this side effect can be 
mitigated by temporally overlapping the segments. This approach is helpful when 
studying activity at lower frequencies, as opposed to higher frequencies, considering the 

Segment Taper Tapered data TFRs 

Time Time Time Frequency 

Figure 5: Temporally localized frequency decomposition: Diagram of the processing of a 
segment of the trial. 
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higher SNR that characterizes the former. For the latter, multitapering extends the 
aforementioned method as it aims at increasing the SNR of the frequency portraits by 
using multiple tapers each with slightly different temporal settings. More specifically, the 
trial is divided into overlapping segments which are then processed individually. Each 
segment is multiplied by a series of tapers producing tapered time series that concentrate 
the input signal over different time intervals. Time-frequency representations are then 
generated for each tapered set of data and then averaged to produce the final TFR of the 
segment (Figure 6). Once again, for each segment separately, the absolute value is 
averaged thus leading to the TFR of the whole trial. 

 

 

2.8.5. Connectivity analyses 

Brain networks, and more specifically the role they cover for cognition, is a growing topic 
of interest in the field of neuroscience. Research suggests that oscillatory synchronization 
is instrumental to the transfer of information throughout large networks (Sporns, 2010). 

Connectivity indicates the study of two or more signals, from one (e.g., signals in distinct 
frequency bands) or multiple electrodes/regions, based on specific measures such as phase 
and power. The most common connectivity measures are bivariate, e.g., they only assess 
the relationships between two signals, given their simplicity, as opposed to a greater 
complexity of multivariate approaches. It is important to consider that given multivariate 

Segment Tapers Tapered data TFRs Averaged TFRs 

Time 

Time Time Frequency Frequency 

Figure 6: Diagram illustrating the steps applied by the multitapering method. 
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relationships within a network, bivariate correlations may return inflated estimates 
(Cohen, 2014) (Figure 7A). This effect is partially alleviated when comparing different 
conditions of a studied task as both estimates are similarly inflated. 

In the following paragraphs an introduction to the measures of connectivity that were of 
interest in our study: phase-based connectivity and cross-frequency coupling. 

Phase-based connectivity accounts for the distribution of the phase difference between 
two electrodes. The rationale behind this approach is that whenever two areas are 
functionally coupled the timing of their oscillations synchronizes and it can be measured 
by the phase value. Importantly, the phase lag between the two signals is not considered, 
but only the strength of the synchronization is. Furthermore, one should be careful when 
interpreting nonzero-phase lag as it doesn’t imply neither causal nor direct relationship 
(Figure 7). 

 

 

When investigating connectivity, it is important to account for spurious effects induced 
by volume conduction: A single source may generate electrical fields that are large enough 

Figure 7: One should be careful in interpreting bivariate measures in the presence of multivariate 
networks. (A) A bivariate measure would report a nonzero-phase lag between R1 and R2 regions, though 
there is neither causal nor direct relationship between R1 and R2. (B) Considering the two synchronized 
signals for R0 and R1, it might not be possible to understand whether R0 leads R1 or R1 leads R0, without 
additional information. 

R0 

R1 R2 

Lag of 10 ms Lag of 20 ms 

Lag of 10 ms 

(A) 

(B) 
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to be picked up by more than one (usually neighboring) electrode, thus resulting in a 
deceptive zero-phase lag synchronization. However, not all zero-phase lag connectivity is 
explained by volume conduction effects, as it can also reflect real brain synchrony. 

Cross-frequency coupling provides a statistical measure of the relationship between brain 
activities in two distinct frequency bands. It has been associated with many cognitive 
processes and among them, of relevance to our study, those related to WM, i.e., phase-
amplitude coupling (PAC), see Section 2.9. PAC (Figure 8) measures the relationship 
between the phase of a frequency band (usually low frequencies) and the power of another 
(usually high frequencies). 

In the context of WM, as originally hypothesized by Lisman & Idiart (1995), a sequence 
of presented items would be encoded in WM by single gamma cycles (one per item) in 
turn nested within theta periods, thus retaining the sequential structure of the presentation 
(Figure 9). Indeed, recent oscillatory findings support this idea showing significant 
presence of theta phase to gamma amplitude coupling throughout WM tasks (Canolty et 
al., 2006; Axmacher et al., 2010). 

Figure 8: Schematic of phase-amplitude coupling on a 
single electrode. The signal at the top is composed by two 
(fast and slow) oscillations. The power of the fast 
oscillation varies in accordance with the phase of the slow 
oscillation. The signal at the bottom highlight the variation 
of power of the fast oscillation. 
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When studying PAC, low and high frequencies signals can be extracted not only from a 
single electrode but also from two different locations (Figure 10). Relevant to WM, frontal 
theta to posterior gamma PAC has been reported to differentiate between later 
remembered and later forgotten stimuli (Friese et al., 2013), thus supporting the idea that 
the interactions between frontal and posterior regions play an important role during the 
formation of new memories.  

 

 

 

Theta 

Item 1 

Item 2 

Item 3 

Gamma 

Figure 9: Theta phase to gamma amplitude 
coupling in WM. Exemplification of how 
sequential memories are retained in the same 
network. Each memory item is represented by 
distinct groups of active cells (i.e., the associated 
neural code within the network) that fire in 
different gamma cycles within a theta cycle. 
Thus, each item is associated with a specific theta 
phase. During WM retention, the described 
pattern repeats every theta cycle. Adapted from 
Lisman (2010). 
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2.8.6. Frequency bands 

Traditionally, EEG activity is divided into frequency bands, each linked to a wide set of 
perceptual, sensorimotor and cognitive operations. However, these ranges may seem 
artificial at times as they vary on a subject basis and are influenced by task-related factors 
such as cognitive and memory loads (Klimesch, 1997, 1999; Klimesch et al., 1998; 
Haegens et al., 2014). The typical ranges, more commonly found in the literature, are 
defined as follows: Delta (0.5 – 3.5 Hz), theta (4 – 7 Hz), alpha (8 – 12 Hz), beta (13 – 30 
Hz) and gamma (> 30 Hz). Delta, theta and alpha oscillations spread over large portions 
of the cortex and have been hypothesized to reflect integration of cerebral activity across 
distributed neural assemblies via synchronization of coherent activity and phase coupling. 
Conversely, beta and gamma oscillations show lower power values and are 
topographically restricted over smaller regions. 

• Delta band (0.5 – 3.5 Hz) 

Spontaneous slow-waves have been reported propagating throughout the cortex 
during the sleep (SWS). Functionally, SWS may indicate memory consolidation 
realized through a dialog between the hippocampus and neocortical areas 
(Marshall & Born, 2007). Beyond sleep-related functionalities, delta power has 
been reported to increase during concentration, while performing tasks such as 
mental calculations (Fernández et al., 1995; Harmony et al., 1996), semantic tasks 

Parietal gamma 

Frontal theta 

Figure 10: Phase-amplitude coupling with 
frontal theta phase modulating parietal 
gamma power. Adapted from Friese et al. 
(2013) 
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(Fernández et al., 2012) and the Sternberg paradigm (Harmony et al., 1996). 
Possibly, the reported delta power increase observed during mental tasks indicates 
functional cortical deafferentation, or inhibition of the sensory inputs, thus 
preventing interference with the internal concentration (Harmony, 2013). 

• Theta band (4 – 7 Hz) 

Theta oscillations have been extensively linked to memory processes (Klimesch, 
1999; Kahana et al., 2001) and they are hypothesized to reflect cortico-
hippocampal communication (Buzsáki, 1996; Mitchell et al., 2008). Furthermore, 
it has been suggested that top-down coordination exerted by frontal networks over 
recruited subsystems could be reflected by theta phase synchronization (Sauseng 
et al., 2010).  

• Alpha band (8 – 12 Hz) 

Modulation of alpha oscillations has been widely associated with memory 
(Klimesch, 1997; Jensen & Mazaheri, 2010) and attention (Hanslmayr et al., 
2011). A possible functional interpretation is given by the inhibition-timing 
hypothesis (Klimesch et al., 2007) which attributes to alpha oscillations the role of 
protecting relevant cognitive processes from non-related task interferences. 
Specifically, an alpha power decrease reflects cortical excitability of task-related 
regions (Lange et al., 2013). Conversely, an increase in alpha power is associated 
with an inhibition effect over task-irrelevant areas to avert interferences. The 
inhibitory account is further supported by the BOLD signal recorded with fMRI 
which has been shown to negatively correlate with alpha power (Goldman et al., 
2002; Laufs et al., 2003). 

• Beta band (13 – 30 Hz) 

Modulation of beta oscillations has been observed throughout the planning and 
execution of voluntary motor movements (Neuper & Pfurtscheller, 2001). 
Enhanced beta oscillations have been hypothesized to reflect the maintenance of 
the current sensorimotor state. In contrast, a beta decrease would indicate an 
anticipated, or already undergoing, status change (Engel & Fries, 2010). However, 
the beta rhythm has also been reported in tasks that did not require neither planning 
nor performing motor movements. Specifically, when participants performed 
attentional tasks, strengthened phase synchronization within the beta band has 
been hypothesized to reflect communications among task-relevant regions (Gross 
et al., 2004).  

• Gamma band (> 30 Hz) 

Gamma oscillations are considered to reflect cortical activation and they contrast 
with inhibitory characteristics linked to various low-frequency bands (Merker, 
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2013). They have been associated with perception (Crone et al., 2001; Meador et 
al., 2002; Demiralp et al., 2007; Wyart & Tallon-Baudry, 2009), attention (Müller 
et al., 2000; Fries et al., 2001; Jensen et al., 2007) and memory (Tallon-Baudry et 
al., 1998; Herrmann et al., 2004; Gruber et al., 2004; Jensen et al., 2007) processes. 

2.9. Neural Correlates of Visual Working Memory 

In the recent years, the study of human memory through the analysis of brain oscillations 
has linked a wide range of frequencies – from 3 Hz to 100 Hz – to the formation of memory 
traces. Occasionally, depending on the task, contradictory oscillatory behaviors have also 
been observed. In an attempt to reconcile the numerous conflictual observations, 
Hanslmayr & Staudigl (2014) hypothesized that the relationship between cognitive 
processes enrolled during encoding and processes engaged at retrieval, would influence 
the outcome of a studied task. Consequently, also oscillatory markers linked to successful 
memory formation could vary in accordance with task requirements. 

Following this cautionary note about neural correlates of memory traces, in the remaining 
part of this paragraph we proceed by providing the reader with the relevant literature 
covering the visual memory in STM. 

Visual WM refers to visual sensory information that is encoded into internal neural 
representations and subsequently maintained by WM processes. 

Encoding and retention are two critical VWM phases, where improper neural activations 
may lead to memory failures. The initial factor that influences memory performance is the 
translation of the sensory input into VWM representations (Cohen et al., 2012; Killebrew 
et al., 2018). Yet, successful performances do not solely depend on optimal encoding of 
the to-be-remembered information but also the maintenance of it. The efficiency of 
memory processes relies on a tight synchronization of neural oscillations with a precision 
in the millisecond range (Lisman & Idiart, 1995; Klimesch, 1996; Buzsáki & Draguhn, 
2004; Singer, 2009; Palva et al., 2010; Eriksson et al., 2015). Both EEG and MEG, due to 
their higher temporal resolution, have been important tools for the investigation of 
oscillatory dynamics related to encoding and retention of visual information in STM.  

A wide range of studies reported amplitude modulation of theta (for a review Sauseng et 
al., 2010) and alpha (for a review Jensen & Mazaheri, 2010 and Klimesch et al., 2011) 
bands during VWM tasks. 

Intracranial EEG studies demonstrated specifically the occurrence of theta oscillations in 
the human cortex during the encoding interval of a Sternberg task (Howard et al., 2003; 
Rizzuto et al., 2003). Raghavachari et al. (2001) reported event-related theta band activity 
gated at many sites widely dispersed over the cortex. The amplitude of theta oscillations 
increased sharply at the beginning of each trial of the Sternberg task and returned to 
baseline level only after the subject’s response. In a subsequent investigation conducted 
by the same group, the theta power increase was found to be mostly situated in the parieto-
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occipital and temporal cortical regions (Raghavachari et al., 2006). In another study by 
Sederberg et al. (2003), successful memory encoding of words was associated with a 
significant theta power increase predominantly located in the right temporal and frontal 
sites. It has been suggested that cortico-hippocampal feedback loops (Buzsáki, 1996) may 
drive theta activity into cortical regions, reflecting encoding of novel information, by 
maintaining cortical areas of interest into a state of resonance (Klimesch 1996, 2000; 
Klimesch et al., 1997a; Miller, 1991; Mölle et al., 2002). Beyond hippocampal functions, 
the strength of the frontal midline theta activity, a rhythmic activity that reaches its 
maximum around the Fz electrode site, has been linked to sustained attention (Sauseng et 
al., 2007) and found to be positively correlated to WM load and cognitive effort (Gevins 
et al., 1997; Jensen & Tesche, 2002; Onton et al., 2005). For an in-depth review on human 
and animal studies pertaining to WM and the frontal midline theta activity, we refer the 
reader to Hsieh & Ranganath (2014). 

Relevant to WM, the phase of theta has been shown to cover a significant role during 
encoding and retention of sequences. Specifically, the interaction between the phase of 
theta and the amplitude of gamma, namely cross-frequency coupling – originally 
described by Lisman & Idiart (1995) – was proposed as the oscillatory mechanism through 
which sequentially encoded items were retained in WM (see also Section 2.8.5). The theta-
gamma coupling (for a review see Lisman & Jensen, 2013) has been demonstrated in both 
cortex (Canolty et al., 2006) and hippocampus (Maris et al., 2011) while subjects were 
performing WM tasks. For the latter, within WM retention, gamma power has been shown 
to be modulated by the phase of theta and the strength of the coupling was linked to WM 
performance (Axmacher et al., 2010). Notably, the locations associated with significant 
PAC vary according to the content of WM (Jacobs & Kahana, 2009; Fuentemilla et al., 
2010). Additionally, cross-frequency coupling between the phase of theta in frontal 
regions and the amplitude of gamma in posterior areas has been shown to predict encoding 
performance as the strength of coupling was able to discriminate between later 
remembered and later forgotten stimuli (Friese et al., 2013). 

WM is a complex system that might recruit, depending on task requirements, a wide range 
of distinct cognitive processes (e.g., sensory, manipulation, attentional, LTM and multi-
modal integrations). It has been suggested that synchronous theta phase coherence may 
reflect the control exerted by central executive networks over the enrolled sub-systems 
(Sauseng et al., 2004; Sauseng et al., 2010). 

In the context of ERP studies, the ERP-P2 (or P200), a positive electrical potential that 
peaks at around 200 ms after stimulus onset, has been associated to WM (Luck & Hillyard, 
1994; Anllo-Vento & Hillyard, 1996; Tallon-Baudry et al., 1998; Federmeier & Kutas, 
2002; Lefebvre et al., 2005). In a visual semantic priming paradigm that used photographic 
stimuli, the ERP-P2 component was linked to human theta oscillations (phase-lock index 
and power) (Freunberger et al., 2007). 

Complementary to EEG theta power increase observed during encoding, studies also 
reported an alpha power decrease (Klimesch, 1996, 1999; Mölle et al., 2002), which 
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presumably reflects increased excitability of the involved cortical areas (Klimesch et al., 
1997a, Stipacek et al., 2003; Lange et al., 2013). Conversely, a power increase in alpha 
activity is associated with low excitability. For instance, when attention shifts towards 
external visual information, alpha band activity in occipital areas was shown to decrease 
(Worden et al., 2000; Sauseng et al., 2005b) enhancing perceptual performance (Thut et 
al., 2006; Van Dijk et al., 2008; Hanslmayr et al., 2007). On the other hand, when attention 
is directed inwards for maintenance of VWM internal representations, alpha power 
increases (Jensen et al., 2002; Tuladhar et al., 2007) preventing external interferences 
(Rihs et al., 2007; Foxe & Snyder, 2011). Studies using EEG/MEG source modeling 
provided further evidence in support of the inhibition-timing hypothesis by observation of 
alpha power increase over task-irrelevant regions during WM tasks (Haegens et al., 2010; 
Roux et al., 2012). Importantly, alpha frequency was shown to vary across individuals 
(Klimesch, 1999) and the peak frequency in occipital areas was reported to increase along 
with the cognitive load leaking in some cases into the beta band (Haegens et al., 2014). 
Inhibitory alpha power levels during WM maintenance were also reported to positively 
correlate with memory load (Jensen et al., 2002; Tuladhar et al., 2007). 

The functional role of the phase of alpha frequencies was also investigated in the context 
of WM. Specifically, the synchronization of alpha phase has been theorized to facilitate 
cortico-cortical communications (Sauseng et al., 2005a; Klimesch et al., 2007). Moreover, 
alpha/gamma PAC has been suggested to facilitate the formation and maintenance of 
sensory-spatial WM items (Roux & Uhlhaas, 2014; Park et al., 2016). 

Less explored, cortical beta oscillations observed for visual tasks were suggested to reflect 
visual attention (Wróbel, 2000) and were associated with STM processes (Tallon-Baudry 
et al., 1999; Medendorp et al., 2007; Palva et al., 2011) hypothesized to support the 
endogenous reactivation of WM content (Spitzer & Haegens, 2017). Theoretical works 
based on studies on rats suggest that beta rhythms in the association cortex – involved in 
higher-level sensory information processing – complement gamma frequencies during the 
creation and manipulation of cell assemblies. More specifically, the emergent beta activity 
that follows the removal of sensory input (Tallon-Baudry et al., 1999), could reflect the 
transient coordination of excited cell assemblies (Kopell et al., 2011). Additionally, beta 
band oscillations are hypothesized to facilitate the integration of sensory information in 
connecting distinct local networks (Tallon-Baudry et al., 2001; Siegel et al., 2011). In 
relation to visual imagery ability, beta levels were reportedly higher for subjects with 
vivid, in contrast with inadequate, imagery skills. 

Gamma band activity in visual regions has been shown to increase during processing of 
sensory inputs. This increase, that is accompanied by a decrease in lower frequency 
ranges, is sustained until the stimulus offset. Studies linked local gamma activity to the 
processing of individual features of the presented stimulus (Tallon-Baudry et al., 2001; 
Siegel et al., 2011), or to visual awareness and spatial attention (Wyart & Tallon-Baudry, 
2008). As mentioned in earlier paragraphs, gamma amplitudes play a role of interest in 
the context of PACs. Namely theta/gamma PAC and alpha/gamma PAC, with the first 
being linked to the sequential retention of items (Canolty et al., 2006; Axmacher et al., 
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2010) and the latter associated to the formation and maintenance of sensory-spatial inputs 
(Roux & Uhlhaas, 2014; Park et al., 2016). Finally, gamma power in retention has also 
been found to correlate with WM load (Howard et al., 2003). 

The processing of visual information, prior to being transferred into WM, occurs through 
the ventral and dorsal streams (Milner & Goodale, 2006). These are associated with either 
object identification versus spatial relationships (Ungerleider & Haxby, 1994), or 
perception versus guidance of action (Milner & Goodale, 2008) respectively. Functional 
magnetic resonance imaging (fMRI) studies have also contributed to the mapping of 
cortical regions associated with VWM. Reportedly, frontal and parietal BOLD activity 
reflected executive functions (Carpenter et al., 2000; Linden et al., 2003; Osaka et al., 
2004; Brass et al., 2005; Yuan & Raz, 2014; Bettcher et al., 2016) and selective attention 
(Kastner & Ungerleider, 2000; Mayer et al., 2007; Gazzaley & Nobre, 2012). Among the 
different visual-related areas, sustained activity in temporal and occipital regions reflected 
the maintenance of object representations (Grill-Spector et al., 2001; Kourtzi & 
Kanwisher, 2001; Bell et al., 2009). Moreover, two studies applied pattern classification 
techniques to BOLD activity obtained from the visual cortex during the delay period of 
delayed discrimination tasks. They were able to predict, on a trial basis, which type of 
orientation (Harrison & Tong, 2009) and color (Serences et al., 2009) were held in VWM. 
These results supported the view that sensory cortical areas contribute to VWM retention 
of fine-tuned feature information (Pasternak & Greenlee, 2005). 

2.10. Research Questions 

Visual WM, like other critical memory components, is susceptible to distortions. 
Investigating memory failures with respect to successful performances may help to 
understand the underlying neural mechanisms in memory formation. False memories, 
unlike common errors, may arise due to pre-existing semantic associations (Koutstaal et 
al., 2003) and/or prototypical perceptual features (Gutchess & Schacter, 2012) 
additionally elicited by the encoded sequence. Paradigms were devised to study false 
memories by introducing novel items (lures) similar to the encoded items sharing 
perceptual or semantic properties and trapping subjects into erroneous responses 
(DePrince et al., 2004; Brainerd & Reyna, 2005).  

Most of the studies on visual false memories were conducted in the domain of long-term 
memory (Israel & Schacter, 1997; Koutstaal & Schacter, 1997; Seamon et al., 2000; 
Koutstaal et al., 2001; Jones et al., 2006; Baioui et al., 2012), some recent studies have 
explored them over short-term periods. As suggested by the aforementioned theoretical 
accounts based on LTM studies, additional LTM activations induced by the encoded set 
contribute to the occurrences of false memories. This assumption remains valid in the 
STM context where LTM activations may interfere with WM content. Typically, LTM 
investigations use longer lists of stimuli to be studied and longer delays between encoding 
and recognition sessions. An advantage of having trials that last only a few seconds is that 
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participants can be continuously monitored throughout all three main intervals, i.e., 
encoding, retention, recognition. 

In STM, Iidaka et al. (2014) studied visual false memory by presenting subjects with 
human faces as stimuli. The authors reported an active role played by the amygdala amid 
short-term false memory events. Two studies investigated electrophysiological properties 
(Chen et al., 2012; Melnik et al. 2017) in an attempt to identify neural markers of these 
events. Specifically, in a STM DRM study using Chinese words to be encoded (Chen et 
al., 2012), they reported a prominent ERP N400 effect over frontal, central and parietal 
midline electrodes for correctly recognized probes when compared to that of false 
memories. In a modified Sternberg paradigm with short lists of words presented auditorily, 
Melnik et al. (2017) identified prominent alpha band activity in posterior regions 
corresponding to false memories induced by semantic interference. 

To the best of our knowledge, oscillatory correlates associated with visual memory errors 
including false memories in WM have not been investigated, yet. The current study was 
realized to explore the temporal dynamics of EEG oscillatory activity reflecting VWM 
performance. Specifically, we aimed at identifying time-frequency windows and locations 
distinguishing successful and erroneous short-term memories of grayscale photos of 
commonly seen object categories (e.g., “luggage”, “chair”, “car”). Each category was 
defined by a set of images sharing the general thematic information (gist) while differing 
in the details characterizing the individual items (verbatim) (Koutstaal & Schacter, 1997; 
Brainerd & Reyna, 2002). The analysis was primarily concentrated on low frequencies (4 
– 32 Hz), particularly theta and alpha bands, as the aforementioned studies (see Section 
2.9) suggested that they played prominent roles in the encoding and maintenance intervals 
of VWM. 

Observing meaningful EEG gamma band (> 30 Hz) activity is problematic given technical 
limitations and the nature of the signal. As microsaccades and muscle movements generate 
artifacts within the gamma band, it is difficult to discriminate genuine cortical activity 
from artifacts (Yuval-Greenberg et al., 2008; Hipp & Siegel, 2013). Nevertheless, given 
the reports provided by previous VWM studies (see Section 2.9) we intended to explore 
the gamma band looking for discriminatory characteristics at higher frequencies. 

When evaluating WM performance, the investigation of connectivity measures may reveal 
useful information concerning top-down modulation deficiencies, inefficient sequential 
organization, or poor formation of sensory-spatial elements, potentially reflected by phase 
synchronization, theta/gamma PAC and alpha/gamma PAC respectively (see Section 2.9). 

Furthermore, we attempted to induce false memories over short-term periods and looked 
for potential oscillatory markers differentiating them from other types of errors. To this 
end, we devised a challenging VWM task with the intent to maximize the rate of erroneous 
memory responses by the encoding of visual stimuli presented sequentially at a fast-pace. 
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CHAPTER 3 

 

3. MATERIALS AND METHODS 

3.1. Participants 

A total of 40 volunteers partook in this study. Six participants were excluded: One due to 
technical problems, one reported to have given random answers due to drowsiness and 
four provided a selection between two alternatives whenever faced with the paired probes, 
not following the given instructions (see the experimental design provided in Section 3.3). 
Hence, there remained 34 participants (mean age M = 24.88, SD = 4.77, 16 females) for 
the analysis. 

Six subjects contributed only with behavioral data. For the remaining 28 subjects (mean 
age M = 23.54, SD = 3.77, 12 females), EEG data were also recorded. Eligibility criteria 
included right-handedness and no use of medications that may affect the central nervous 
system. All subjects reported normal or corrected-to-normal visual acuity. They were 
informed about the experimental procedure and provided written informed consent prior 
to data collection in accordance with the Declaration of Helsinki. The METU ethics 
committee approved all experimental procedures. 
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Figure 11: (A) Experimental procedure. At the beginning of each trial, a fixation cross was displayed at 
the center of the screen for 1.25 ± 0.25 s. Next, four images were sequentially presented for 0.25 s each. 
After a retention interval lasting for 1.25 ± 0.25 s, two probe images were shown. Participants had a 
maximum time of four seconds to decide whether they had previously seen one (or both) image(s) (“yes” 
answer) or none (“no” answer). Following the “yes” answer, subjects provided additional details 
identifying the remembered images (not shown in the diagram). Feedback was given after each trial. (B)
An example of encoded items (targets) for the category “bag”. (C) Three types of probes were utilized –
i.e., two previously studied items (i.e., target, target), one previously studied item and the lure presented 
in the lower slot of the presentation screen (i.e., target, lure), one previously studied item and the lure 
presented in the upper slot of the presentation screen (i.e., lure, target). 
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3.2. Stimuli 

Dataset used in the experiments consisted of 216 sets of commonly seen object categories 
(e.g., “carpet”, “ball”, “flower”), each comprising four target images to be encoded 
(Figure 11B) and a lure image belonging to the category but being never shown during 
encoding (Figure 11C). All images were converted to grayscale and downsampled to a 
resolution of 500×500 pixels. Pictures were obtained either from the Hemera Photo DVD 
(Hemera Technologies Inc., Gatineau, Québec) or via Google Images. 

3.3. Paradigm 

The experimental procedure can be described as follows (Figure 11A): At the beginning 
of each trial, a fixation cross was shown for 1.25 ± 0.25 s. In the following encoding 
interval, four target images were presented sequentially. Each stimulus was displayed, 
centered on the screen, for 250 ms. Please note that neither a mask nor a blank screen was 
shown during the transition between images. During the ensuing retention interval, a 
fixation cross was shown for 1.25 ± 0.25 s and subsequently, two probe images were 
presented. Participants provided their responses using a gamepad. They had four possible 
answers to classify both probe images labelled as: [new item, new item], [old item, new 

item], [new item, old item] and [old item, old item] (Table 1). They had a maximum time 
of four seconds to respond. They were asked to press the “yes” button if they had 
previously seen one (or both) image(s), meaning at least one image was recognized as old. 
Whereas "no" corresponded to [new item, new item], i.e., both images were identified as 
new. Following the "yes" response, subjects were further required to highlight the 
remembered image(s) using the gamepad joystick as [old item, new item], [new item, old 

item] or [old item, old item]. Notably, the “yes/no” answer was always given with the 
right hand, whereas the joystick was controlled with the left hand. A feedback was given 
at the end of each trial. Subjects were instructed to respond as quickly and accurately as 
possible and they were asked not to yield an answer if they were not sure. 

There were three distinct types of probes (Figure 11C): Lure in the lower slot (target in 
the upper slot), lure in the upper slot (target in the lower slot) or two targets. No trial 
included two novel images in the recognition interval. These properties of the probe 
images were not made explicit to the subjects. 

Many STM studies reported higher rates of memory errors for related versus unrelated 
items, e.g., words (Coane et al., 2007; Atkins & Reuter-Lorenz, 2008; Flegal et al., 2010; 
Melnik et al., 2017) and faces (Iidaka et al., 2014). In order to induce false memories, the 
lure was an exemplar semantically related to the studied category. 

  



34 
 

Table 1: Definition of conditions. Different answers given by the participants – i.e., [new item, new item], 
[old item, new item], [new item, old item] and [old item, old item] – coupled with the types of probes, 
allowed for the characterization of the studied three conditions: Correct, the subject successfully recognized 
the probes; false memory, the lure is presented together with a target – i.e., an encoded item – and the subject 
mistakenly remembers of seen both images; error, the remaining combinations where the subject fails to 
recognize one or both presented images. The error condition was originally subdivided into four additional 
types, but the small number of trials associated with each condition (i.e., type I, II, III, IV) did not allow to 
conduct a meaningful oscillatory analysis. Thus, the error condition groups all these trials together which 
were anticipated to be characterized by poor encoding or retention. 

Types of 
Probes 

Upper slot 

Lower slot 

Conditions 

correct 
false 

memory 

error 

type I type II type III type IV 

Target 

Lure 

Old item 

New item 

Old item 

Old item 
- 

New item 

Old item 

New item 

New item 
- 

Lure 

Target 

New item 

Old item 

Old item 

Old item 
- 

Old item 

New item 

New item 

New item 
- 

Target 

Target 

Old item 

Old item 
- 

Old item 

New item  

OR 

New item 

Old item 

- - 
New item 

New item 

 

It is also important to point out that while in principle it is possible to include trials with 
two new probes, we intended to maximize the number of opportunities to get false 
memory responses by never presenting two new images. As defined by our study (Table 
1), only the types of probes [target, lure] and [lure, target] could have ended with a false 
memory response. Our definition of false memory is not only based on the misrecognition 
of the lure but also on proper encoding by successfully recognizing the accompanying 
target. With two lures we wouldn’t be able to confirm whether the induced false memory 
response was genuine. A further consideration is that in laboratory settings, nuances in the 
definition of the term false memory were introduced (DePrince et al., 2004). 

216 trials of images were randomly presented. Types of probes were randomized and 
balanced throughout the experiment. Three conditions were defined as follows: Correct 
indicating the successfully answered trials; false memory, whenever a lure was 
misrecognized as previously seen and the concomitant target probe was correctly 
identified; and error, whenever either one or both probed targets were not recognized 
(Table 1). 
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In its original definition, the experiment had six conditions as error was subdivided into 
four additional types, i.e., type I, II, III, IV (Table 1). However, the small number of trials 
associated with each error type didn’t allow us to perform a meaningful oscillatory 
analysis, as each type would have been characterized by low signal-to-noise ratio (SNR). 
Thus, the error condition merges together all these trials which we anticipated to be 
characterized by poor memory encoding or retention. Nevertheless, in the following 
chapter we are briefly summarizing behavioral results pertaining to the six conditions (see 
Section 4.1.1). 

The experimental paradigm was implemented in MATLAB® (2014a, The Mathworks, 
Inc., Natick, MA) using the publicly available Psychophysics toolbox extensions 
(Brainard, 1997). 

3.4. Procedure 

EEG recordings were performed in an acoustically insulated and electrically shielded 
room. Images were presented foveally on a 21″ monitor positioned 90 cm from the 
subject’s eyes, thus resulting in a visual angle of 8.41° in both dimensions. Participants 
completed a preparatory session to become acquainted with the task. On average, 
electrodes placement over subjects’ head and training session took one hour. The 
experiment was divided into blocks, each of which composed of ten trials (except for the 
last block made by six trials). Blocks were separated by self-paced rest breaks in between. 
The average duration of the experiment was measured to be 37 min (SD = 10 min). 

3.5. Electroencephalographic Recordings 

EEG data were acquired using a 32-channel BrainAmp amplifier (Brain Products, 
Munich, Germany). Electrodes were mounted in an elastic cap (EasyCap, Herrsching, 
Germany) and positioned according to the standard international 10-20 system. Mastoids 
served as reference, while ground electrodes were placed on the earlobes. 
Electrooculogram data were recorded from a pair of electrodes placed respectively below 
(for vertical movements) and to the right (for horizontal movements) of the right eye. All 
impedance levels were kept below 10 kΩ. Data were sampled at the frequency of 1000 
Hz. 

3.6. Preprocessing and Time-Frequency Analysis 

Data analyses were performed using MATLAB® with the aid of the open-source Fieldtrip 
toolbox (Oostenveld et al., 2011) and in-house scripts. 

We chose the Fieldtrip toolbox as it offers an extended library of high-level functions that 
allow to perform advanced analysis of electrophysiological data while giving full control 
over all the data processing details. 
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Recordings were bandpass filtered offline using a 4th order Butterworth filter with cut-off 
frequencies of 0.2 Hz and 100 Hz. Epochs of three seconds, from -1.00 s to 2.00 s around 
the onset of the first stimulus, were extracted and demeaned. 

During preprocessing of EEG recordings, it is important to consider the presence of 
artifacts that could undermine the quality of the data. One of the most common sources of 
artifacts in EEG studies is eye activity. While subjects are instructed to avoid or to restrict 
blinking during the task, it still remains difficult to obtain artifact-free recordings. The 
simplest solution to tackle the problem is to reject all the segments of the data which are 
affected by artifacts. However, large portion of data could end up being discarded thus 
impacting negatively the study. More advanced techniques have been developed in the 
attempt to limit the damaging effect caused by artifacts, among them the ones based on 
independent component analysis (ICA) (Bell & Sejnowski, 1995; Makeig et al., 1996) has 
been proven effective. Among several ICA algorithms (Hyvärinen & Oja, 2000), our 
analysis used the fastICA implementation (Hyvärinen, 1999). In general terms, ICA is 
typically described in the context of audio recordings at a cocktail party. In this chaotic 
scene, all the voices at the party are recorded through a series of microphones distributed 
across the room. Each microphone will record a cacophony of conversations and 
background noise. Nevertheless, it is possible to isolate an individual voice by considering 
weighted combinations of the recordings of each microphone. Within our domain, ICA 
derives independent sources from EEG signals without considering physical location, or 
structure and extent of the sources. EEG is seen as the output of statistically independent 
and spatially steady potential-generating sources. Given N (= 32 in our case) scalp 
electrodes that pick up correlated signals, ICA separates N sources. Even though ICA is 
generally fit to be used on EEG data, the assumption that the recorded signal is a linear 
mixture of exactly N sources is dubious. Not knowing the exact number of sources 
generating the scalp signal, one should be careful when interpreting the returned ICA 
components.  The topographical distribution of each component (Figure 12A) assists its 
interpretation, i.e., whether a component reflects cortical activity, or other activity related 
to, for instance, muscle movements, eye blinks, heartbeats, or even external, such as line 
noise. Besides spatial topographies, the time course of the components (Figure 12B) can 
also contribute to the successful identification of artifactual components. Thus, EEG data 
can be cleaned by identifying artifacts-related components and then subtracting them from 
the data. Components associated with eye blink artifacts are characterized by 
topographical representations with frontal activity (Figure 12A) and by time courses 
which are mostly flat but occasionally interrupted by high-amplitude spikes in 
correspondence of a blink (Figure 12B). In removing spurious component, we adopted a 
conservative approach, i.e., components were removed only when we were convinced of 
their artifactual origin, not to lose meaningful cortical activity. 
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After removing spurious components, trials (Figure 13A) and channels (Figure 13B) were 
inspected individually and as a visual summary of their variances (Figure 13C). Those 
still heavily affected by artifacts were discarded. 

  

Figure 12: Example of artifact-related component identified by using ICA. (A) The 
topographical representations of the components returned by the ICA algorithm. The 
component 16, highlighted by the red rectangle, is an example of topography 
associated with eye blink artifacts. (B) Time-series linked to the component 16: Clearly 
visible, the generally flat pattern interspersed by high-amplitude spikes generated by 
the blinks (marked with red arrows). 
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Figure 13: Example of a visual inspection from a representative subject. (A) Time courses of sample 
of trials for channel O2. (B) Time courses of a single trial for all the 32 channels. (C) Top-right plot: 
The variance of the recorded signals (considering the non-rejected trials) per channel. Bottom-left plot: 
The variance associated with each trial (considering the non-rejected channels). Top-left plot: 
Representation of the variances computed for both (non-rejected) trials and (non-rejected) channels. 
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Following the removal of noisy trials and components, the average number of trials per 
participant was M = 202.39, SD = 11.96 (correct: M = 105, SD = 13.98; error: M = 78.57, 
SD = 14.97; false memory: M = 18.82, SD = 11.09). Time-frequency power estimates 
were computed using Fourier basis with an Hanning window of 500 ms (Figure 5 and see 
Section 2.8.4). Frequencies ranging from 2 Hz to 32 Hz with 2 Hz increments were 
considered. The time window slid across trials in steps of 50 ms. Power estimates were 
normalized for each subject and condition, as a percentage of variation from baseline: 

��������, 
�� = ���	 ×	����, 
�� − ���������(��)���������(��)  

where �� is the ith frequency bin and 
� is the jth time point. ��������, 
�� and ����, 
�� 
denote respectively the normalized power value (reported as a percentage) and the original 
power estimate for the specific frequency bin �� and time point 
�. ���������(��) is the 
average power value within the baseline for the specific frequency bin ��. Baseline values 
were estimated considering all trials, regardless of the condition, within the time interval 
ranging from -1.00 s to -0.30 s prior to the onset of the first stimulus. 

3.7. Conditions and Trial Selection for the Oscillatory Analysis 

3.7.1.  Correct and error 

The oscillatory investigation contrasted initially correct and error conditions. To control 
for SNR differences, an equal number of trials was selected for each studied condition 
prior to the estimation of the time-frequency portraits. Accordingly, a pseudorandomized 
process selected a subset for the condition with a higher number of trials. Initially, trials 
having response time (RT) lying within one standard deviation from the mean RT of the 
condition were given priority. When the number of trials having RT inside the defined 
range was not enough, trials with RT outside of that range were also considered in order 
to complete the selection process. With this approach we intended to prioritize oscillatory 
data associated with participants’ typical behavioral responses. Possibly, uncommon RTs 
could have been symptomatic of occasional lack of engagement throughout the trial. Thus, 
it was a precautionary step we took to ensure the inclusion of genuine trials in the 
oscillatory analysis. 

3.7.2.  False memory 

After assessing the differences between correct and error conditions, the focus shifted to 
false memory trials. Notably, channels, frequencies and time intervals relevant to the 
correct and error investigation – Section 3.12 – were retained in these subsequent analyses. 
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The study of false memory was separated as a small number of false memory occurrences 
across participants resulted into low SNR that did not allow for a reliable direct 
comparison with correct and error conditions. As a remedy, for each analysis (i.e., 
encoding and retention), all false memory trials were combined with those of the error 
condition (error + false memory), which was then compared with the correct condition. 
Conversely, all false memory trials were then merged with the correct condition (correct 

+ false memory) and the contrast with error condition was re-evaluated. Importantly, false 
memory trials were added in turn to each condition and statistical results were Bonferroni 
corrected to account for multiple comparisons. The rationale behind this approach was to 
use these newly defined conditions, with increased SNR, to highlight pattern similarities 
of false memory with correct and error conditions. 

The trial selection process (analogous to the one described in Section 3.7.1) for the 
combined conditions – i.e., correct + false memory and error + false memory – would 
ensure to retain all false memory trials. 

3.8. Channel Selection and Frequencies of Interest for the Encoding Interval 

Given the perceptual nature of our task, occipital channels were anticipated to play a 
prominent role during the encoding of the visual stimuli. Time-frequency estimates 
(regardless of the condition) revealed conspicuous occipital power increase within theta 
band range with simultaneous power decrease of alpha power immediately after the onset 
of the first stimulus (Figure 14). Thus, we decided to focus the analysis of the encoding 
interval on the occipital channels (O1, Oz, O2) for theta (4 – 8 Hz) and alpha (10 – 14 Hz) 
bands. 
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Figure 14: (A) Grand average time course averaged over occipital channels O1, Oz, and O2. (B) Topographical 
map of theta activity (4 – 8 Hz) during encoding ([0, 1] s). A theta power increase, more prominent in occipital 
regions, was clearly visible. 
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3.9. Channel Selection and the Individual Central Frequency for the Retention 
Interval 

Visual inspection of time-frequency portraits consistently identified alpha-beta band 
activity within the second half of the retention interval, i.e., [1.5, 2.0] s, more prominently 
on the right parieto-occipital channels. Yet, its central frequency and associated bandwidth 
were shown to be subject-dependent – with values ranging from 10 Hz to 26 Hz (Figure 
15A). Accordingly, for each participant, we decided to ascertain the individual central 
frequency (ICF), i.e., the frequency yielding the strongest power increase being consistent 
with the aforementioned pattern. To assess the significance of the right lateralization of 
the observed pattern we performed a dependent t-test considering the mean power from 
each hemisphere computed within the second half of the retention interval, [1.5, 2.0] s, for 
the frequency range [ICF – 2, ICF + 2] Hz over the right (P4, P8, O2) and left (P3, P7, 
O1) channels respectively. Given the found lateralization (t(27) = 4.69, p < 0.0001, r = 
0.67, see Section 4.2 and Figure 23 for the details), the analysis of the retention interval 
focused on the channels (P4, P8, O2) for the frequency band [ICF – 2, ICF + 2] Hz. Figure 
15B and C show the effect of the ICF alignment on grand average plots. 

As the ICF values ranged within the alpha and beta bands, throughout the article we will 
be referring to that as the “alpha-beta band”. Visual cognition studies such as Waldhauser 
et al. (2012) and Michalareas et al. (2016) also reported individual frequency peaks 
spreading over broad alpha and beta band ranges. 
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3.10. Gamma Band Analysis Within the Encoding and Retention Interval 

To explore time-frequency patterns at higher frequencies, an additional preprocessing step 
and different analysis settings were required. A discrete Fourier transform (DFT) filter 
was used to remove residual line noise (50 Hz) and related harmonic (100 Hz). The DFT 
filter needs to be very sharp in order to be effective. Consequently, the data were padded 
up to 10 seconds (mirrored data were used as filling not to bias the estimation of the noise). 
The padding ensured a filtering frequency bin of 1/10 Hz wide. The DFT filter generated 
a constant sine wave (its amplitude estimated from the noise) with a frequency of 50 Hz 
and harmonic which were later subtracted from the original data. As the majority of the 

Figure 15: (A) Distribution of the individual central frequency (ICF) across all participants. ICFs were 
spanning across the alpha and beta bands, between 10 Hz and 26 Hz. (B) Grand average topography, 
following the alignment of ICFs, for the frequency range [ICF - 2, ICF + 2] Hz and for the second half of 
the retention interval ([1.5, 2.0] s). A conspicuous activity in parieto-occipital regions, lateralized in the 
right hemisphere, was notable. (C) Grand average time-frequency portraits prior (left) and following (right) 
ICF alignment averaged over the channels O2, P4 and P8. 
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participants performed the experiment in the Faraday room, no line noise presence was 
observable in the recordings. However, three subjects had performed the experiment 
outside of the Faraday room. Following the filtering of the data, a residual line noise was 
still noticeable (Figure 16). This is caused by the non-stationarity of the line noise in the 
recordings. Time-frequency power estimates for the gamma band (30 Hz to 100 Hz) were 
computed using Fourier basis with the multitaper method (see Section 2.8.4). Discrete 
prolate spheroidal sequences (Slepian sequences) taper was used with a fixed window 
length of 0.2 s and smoothing of the frequencies of ±10 Hz (three tapers) (Figure 6). Note 
that the multitapering in the frequency domain smoothed out the notch introduced by the 
DFT filter.   

 

Grand average topographical patterns for both encoding and retention intervals (Figure 
17) revealed gamma activity more prominent in temporal sites that were consistent across 
subjects – 22 out of 28 subjects showed visible activity on at least one temporal location. 

Frontal gamma activity was less common being observed in 15 out of 28 subjects. Finally, 
7 out of 28 subjects exhibit pronounced gamma activity in occipital areas. 

(A) (B) 

Figure 16: Time-frequency portraits of gamma frequencies for channel O1 
from a representative subject while performing the experimental task outside 
of the Faraday room. (A) The task grand-average TFR prior line noise 
filtering. (B) The task grand-average TFR following the filtering. The line 
noise has been reduced, nevertheless it still remains noticeable. 
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3.11. Statistical Analyses of Behavioral Measurements 

Statistical analyses pertaining to behavioral data were conducted via IBM SPSS® Statistics 
22.0 (IBM Corp., Armonk, NY). Friedman’s ANOVA was used to investigate RT 
differences across conditions as the Kolmogorov-Smirnov test showed that the RT 
distribution was non-normal. When required, post hoc analyses were realized via 
Wilcoxon tests and Bonferroni correction was applied to account for multiple 
comparisons. 

Correlations between RTs (averaged independently from the conditions) and task 
accuracies (i.e., correct response rate) were investigated. Moreover, relationships between 
the rates of the conditions (i.e., correct, false memory and error rates) were also assessed. 
As for the RTs, the Kolmogorov-Smirnov test showed that distributions of the rates of 
conditions were non-normal and hence Spearman's coefficient was used to estimate the 
correlations. 

3.12. Cluster Permutation Statistics 

Statistical analyses of oscillatory data were conducted using the non-parametric cluster-
based permutation test (Maris & Oostenveld, 2007), which controls for the multiple 
comparisons problem. Clusters were defined as two or more contiguous channel-
frequency-time triplets, each showing p < 0.05 (two-sided dependent samples t-test) with 
respect to the conditions. Cluster-level statistics were computed taking the sum of the t-
values within each cluster. The reference distribution was approximated by means of the 
Monte Carlo method with 30000 permutations. The test statistic was defined as the 
maximum of the cluster-level statistics. A cluster was deemed significant if its Monte 
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Figure 17: Grand average for the gamma band (40 – 100 Hz) for (A) encoding and (B)
retention interval. 
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Carlo probability exceeded the threshold of 0.025 for each tail when compared to the 
distribution. 

Analysis of the encoding interval ([0, 1] s) primarily focused on the elicited pattern, i.e., 
theta power increase ([4, 8] Hz) and alpha power decrease ([10, 14] Hz), that was more 
prominent in the occipital areas (O1, Oz and O2) (Figure 14B). Furthermore, during the 
retention interval ([1, 2] s), a conspicuous alpha-beta increase was observed in the right 
parieto-occipital channels (P4, P8 and O2) (Figure 15B). Notably, time-frequency 
estimates of each subject were shifted to align all ICFs and the range of [ICF-2, ICF+2] 
Hz was explored. 

The investigation of the gamma band focused on temporal locations for both the encoding 
and retention intervals. As mentioned in Section 3.10, temporal sites exhibited higher 
gamma power levels. Furthermore, activity in medial temporal lobe (MTL) regions has 
been observed during WM encoding and maintenance (Aggleton et al., 1992; Nichols et 
al., 2006; Axmacher et al., 2007; Race et al., 2013). MTL was also hypothesized to be 
recruited whenever relations between items, or sequences of items were encoded 
(Eichenbaum, 2004; Kumaran & Maguire, 2006). 

As WM studies reported significant correlations between alpha band power values and 
RTs (e.g., Obleser et al., 2012; Bonnefond & Jensen, 2012; Melnik et al., 2017), we 
investigated also potential relationships between oscillatory data within the significant 
clusters and behavioral measures. The correlation was realized via Spearman’s coefficient 
as the Kolmogorov-Smirnov test determined the distributions of the oscillatory parameters 
as non-normal. 

3.13. Connectivity Analyses 

3.13.1. Coherency 

Coherency was selected as a measurement of interest to investigate linear relationships 
across the different EEG channels at a specific frequency (Nolte et al., 2004). In order to 
define coherency, we should consider �(�) and �(�), the Fourier transforms of �(�) and  (�), time series for electrodes x and y respectively. Then, the cross-spectral density is 
defined as follows: 

!"#(�) = 	 〈�(�)�∗(�)〉 
Where 	∗ refers to the complex conjugation and 〈	〉 indicates the expectation value, which 
can only be estimated by averaging a large enough number of epochs. Thus, the coherency 
is defined as follows: 
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Coherency measures the synchronization between two signals – i.e., time series of power 
values for different electrodes – by quantifying the strength of their phase lock. This 
quantity, represented by a complex number A + Bi, is non-directional, hence one can only 
estimate the degree of synchrony between two signals without being able to infer the 
leading source. Coherency estimates at electrode level suffer from volume conduction, a 
spurious contribution to the measured synchronization caused by neural activity from a 
unique source recorded by both channels. The real component A of coherency is mostly 
affected by the false synchrony. Therefore, we decided to keep only B2, the squared 
imaginary part of the coherency, to minimize the effect of volume conduction. It is 
important to note that genuine zero-phase synchrony, which is also a contributing factor 
to the real value A and indistinguishable at a channel level from volume conduction 
effects, is lost. 

The connectivity investigation was conducted on the encoding and retention intervals for 
theta, alpha and beta frequency bands. At first, the analysis attempted to identify 
differences between correct and error conditions. Later, as for the time-frequency study 
(Section 3.7), differences have been reassessed following the inclusion of false memory 
trials in both conditions. 

Time-frequency power values, for the computation of coherency, were estimated using 
Fourier basis and a Hanning window of 1000 ms, thus covering the entire encoding ([0, 
1] s) and retention ([1, 2] s) times respectively. Frequencies ranging from 2 Hz to 32 Hz 
with 1 Hz increments were considered. 

To discriminate genuine coherency estimates from noise, a coherency distribution was 
determined via Monte Carlo method: For each combination of channels, 200 runs were 
executed where coherency between two channels was estimated by shuffling their trials. 
The objective was to determine a confidence level, for each frequency bin, sets as the 
value under which lied 95% of the distribution (Figure 18). 
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Figure 18: An example of coherency distribution obtained via Monte Carlo simulation for a representative 
subject. The objective of the simulation was to estimate the confidence level of the coherency measure. In 
this example the connectivity between the channels O2 and F4 at a frequency of 4 Hz for the condition 
correct was assessed. The Monte Carlo simulation (200 iterations) was repeated for each of the 28 subjects 
and for each condition. It considered the coupling between the seed channels (O1 for encoding and O2 for 
retention) and the remaining 29 channels for each of the 31 frequency points (from 2 Hz to 32 Hz). The 
objective was to determine a confidence level, for each frequency point (see also Figure 19), sets as the 
value under which lied 95% of the distribution (for the current example the value is 0.0196). For clarity of 
visualization, the coherency values were grouped in bins with a width of 0.004. 

As this process revealed to be computationally expensive, the initial focus verted on a 
single seed channel selected a priori for each studied interval. More specifically, time-
frequency portraits of the encoding interval highlighted significant power differences (see 
Section 4.2) in the theta band in occipital channels. As the difference was more 
pronounced in channel O1, it was selected as seed channel for the coherency analysis in 
encoding. Similarly, as the time-frequency study for the retention interval revealed power 
differences in posterior-right regions (see Section 4.2), O2 was the selected seed as it 
carried the stronger difference. 

To approximate for anatomical differences across subjects, channels were divided into 
groups: Left, right and central locations for frontal, middle and posterior areas respectively 
(Figure 19B). The stronger coherency peaks across each region were selected and 
differences evaluated with a paired-sample t-test. 

As one prominent location representing the WM central executive is hypothesized to be 
in frontal regions, we expected to see significant synchronization between occipital and 
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frontal areas. Hence, the analysis primarily focused on the relations between the seed 
channels (O1 for encoding and O2 for retention) and frontal regions, for which frequency 
coherency peaks were identified on a subject basis (Figure 19). Coherency values lower 
than the threshold defined by the confidence level were considered spurious and set to 
zero. Subjects not showing any significant coherency for both conditions were excluded 
from the analysis. 

 

Finally, a conclusive exploratory analysis accounting for potential differences in middle 
and occipital regions was also performed. Further examinations were conducted 
considering the seed channel Oz (for both the encoding and retention intervals) as the 
produced topographical distribution of coherency revealed stronger levels of 
synchronization (see Figure 29A and Figure 31A). The previous simulations estimated a 
confidence level which could be conservatively approximated being around 80% of the 
confidence level of coherence (the square of the coherency and hence a real value) and 
computed as described by Halliday et al. (1995): 

Figure 19: (A) Example from a representative subject of connectivity between the frontal-right (FR) 
region (Fp2, F4, F8 channels) and the seed channel O2. The stronger coherency peak is identified – in 
this case for (O2, Fp2) – and then we verified that it passed the confidence level thus indicating a genuine 
measurement of connectivity. In this specific example, an alpha phase synchrony between O2 and FR 
region is observed which is significant for both conditions and record the stronger values for (O2, Fp2). 
(B) To account for anatomical differences between subjects, channels were partitioned: Left (L), right (R) 
and central (C) locations for frontal (F), middle (M) and posterior (P) areas respectively. 
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1 − (1 − 0.95) /01/ 

Where L is the length of the window in terms of number of samples (i.e., in our case 1 s 
corresponding to 1000 samples). 

Therefore, in this latter analysis, we didn’t perform the computationally expensive process 
of identifying the confidence level from a generated distribution. We used instead the 
aforementioned conservative approximation. 

3.13.2. Phase-amplitude coupling 

Phase-amplitude coupling (PAC) (Figure 8) is a measure of cross-frequency 
synchronization and provides an estimate of dependence between distinct frequency bands 
of a recorded signal (e.g., data from one or two EEG channels). More specifically, in our 
study, the dependence between the bands is defined by the phase time series φL(n) of a 
low-bandpass filtered signal zL(n) and the amplitude envelope time series aH(n) of a high-
bandpass signal zH(n). We used the direct PAC estimate (Özkurt & Schnitzler, 2011) as 
cross-frequency index and it is defined as follows: 

23 =	 1√5
6∑ 89(:);<=/ >?@A(<)6

)∑ 89(:)B;<=/
 

Where N is the length of the time series, and the phase and amplitude time series φL(n) 
and aH(n) are extracted via Hilbert transform. Finally, PAC estimates are corrected, as 
described by Özkurt (2012), in order to retain only genuine cross-frequency coupling. 
More specifically, given a confidence level p (for our study set to 0.01 and Bonferroni 
corrected by the number of low frequency bins times the number of high frequency bins), 
xlim, used to determine the significance of PAC, is defined as follows: 

�C?D = 5 × E>F�1/(F)GB 

Where N is the length of the time series, r = 1 – p, and erf is the error function. 

In order to compute the confidence level for each frequency pair, the amplitude time series 
aH is normalized, i.e., by dividing it for its standard deviation and subtracting its mean. 
The statistics for each frequency pair are then computed as follows: 

H = IJ8K9(:)>?@A(<)
;

<=/
I
B
 

Where 8K9 is the normalized time series of the amplitude values. 
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Only when H > 2�C?D  the associated coupling estimate is accepted, otherwise it is 
nullified. 

Given the aforementioned literature concerning PAC (see Sections 2.8.5 and 2.9), it is of 
interest to investigate if significant differences between correct, errors and false memory 
conditions might be detected in PAC estimates during the encoding and retention intervals 
of our task. Once again, to approximate for anatomical differences across subjects, 
channels were grouped into regions of interest (Figure 19B): Frontal (left, central and 
right) and parietal (central), hypothesized to be recruited by central executive processes 
(Sauseng et al., 2005a); temporal sites (left and right), where the main gamma activity was 
observed in our task; posterior areas (left, central and right), as visual-related locations. 

Two different analyses were performed. First, PAC values were estimated individually for 
each channel, i.e., low-frequency and high-frequency components were extracted from the 
same site. Next, PAC estimates were computed considering couples of channels, i.e., a 
low-frequency source channel was defined as seed and PAC computed considering the 
high-frequency components from the remaining channels. As the latter analysis was 
computationally expensive, only channels from frontal and occipital locations were 
selected as seed given their relevance to the study. 

PAC estimates within a low-frequency interval ranging from 3 Hz to 14 Hz (with 1 Hz 
increment) and a high-frequency band ranging from 30 Hz to 120 Hz (with 2 Hz 
increment) were computed. In order to explore gamma frequencies up to 120 Hz, the initial 
preprocessing filtering (4th order Butterworth filter) was widened, i.e., cut-off frequencies 
of 0.2 Hz and 200 Hz. Next, for PAC on a single channel, theta (3– 5 Hz) to lower gamma 
(30 – 60 Hz) PAC and alpha (8 – 14 Hz) to upper gamma (60 – 120 Hz) PAC portraits 
were studied for higher coupling levels had been observed. When couples of channels 
were considered, the analysis focused on low frequencies ranging from 3 Hz to 8 Hz and 
high frequencies within 30 Hz and 80 Hz given the finding reported by Friese et al. (2013) 
(Section 2.9). 

For each analysis, the PAC peaks across each defined region were selected and differences 
between conditions were assessed with a paired-sample t-test. 
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CHAPTER 4 

 

4. RESULTS 

4.1. Behavioral Analysis 

In its original form, the experiment had defined six conditions, i.e., correct, false memory, 
type I, type II, type III and type IV errors. As the number of trials for each error type were 
not enough to perform a meaningful analysis of oscillatory properties, we decided to 
merge the four error types into one condition, namely error. Nevertheless, few behavioral 
results have been gathered from the six condition settings and they are reported in Section 
4.1.1. Differently, in Section 4.1.2 behavioral results from the three conditions analysis 
are summarized. 

 

4.1.1. Six conditions: Correct, false memory and type I, II, III, IV errors 

For the investigation of potential differences in the rates of conditions, the Mauchly’s test 
indicated that the assumption of sphericity had been violated, χ2(14) = 124.579, p < 10-5, 
therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of 
sphericity (ε = 0.575). The results show a significant effect of the conditions on the 
distribution rate, F(2.876, 97.775) = 487.078, p < 10-5. Significant differences among the 
conditions revealed by Bonferroni corrected post hoc tests are summarized in Table 2A 
and the distribution of the rate across conditions is shown in Figure 20A. 

The analysis demonstrated an effect of task conditions over response time, χ2(5) = 102.71, 
p < 0.00000001. Post hoc analyses were performed with Wilcoxon tests and results were 
Bonferroni corrected thus setting the threshold for significance at 0.0033. Results are 
summarized in Table 2B while median (IQR) RTs are plotted in Figure 20B. 
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Table 2: (A) Subjects’ rate distribution, significant differences of the post hoc investigation. (B) Subjects’ 
RT post hoc analysis results. All effects are reported at a 0.0033 level of significance (significant p values 
are highlighted by an asterisk). 

Subjects’ rate 
distribution 

(post hoc comparison) 
p 

 
Subjects’ RT 

(post hoc comparison) 
p Z r 

correct – false memory < 10-5 
 

false memory – correct 0.966 -0.043 -0.005 

correct – type I error < 10-5 
 

type I error – correct 0.871 -0.162 -0.020 

correct – type II error < 10-5 
 

type II error – correct < 0.00001* -4.522 -0.548 

correct – type III error < 10-5 
 

type III error – correct < 0.000001* -4.937 -0.599 

correct – type IV error < 10-5 
 

type IV error – correct < 0.00001* -4.623 -0.561 

false memory – type I 

error 
< 5·10-5 

 type I error – false 

memory 
0.700 -0.385 -0.047 

false memory – type IV 

error 
< 10-5 

 type II error – false 

memory 
0.001* -3.308 -0.401 

type I error – type II 

error 
< 10-5 

 type III error – false 

memory 
< 0.000001* -4.937 -0.599 

type I error – type III 

error 
< 10-5 

 type IV error – false 

memory 
< 0.00001* -4.554 -0.552 

type I error – type IV 

error 
< 10-5 

 type II error – type I 

error 
< 0.00001* -4.676 -0.567 

type II error – type IV 

error 
< 10-5 

 type III error – type I 

error 
< 0.00001* -4.937 -0.599 

type III error – type IV 

error 
< 10-5 

 type IV error – type I 

error 
< 0.00001* -4.623 -0.561 

  
 type III error – type II 

error 
< 0.00001* -4.937 -0.599 

  
 type IV error – type II 

error 
< 0.00001* -4.577 -0.555 

  
 type IV error – type III 

error 
0.909 -0.114 -0.014 

(A)  (B) 
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4.1.2. Three conditions: Correct, false memory, error 

Participants’ task performance, i.e., correct rate, was M = 51.10 %, SD = 5.88 % in 
average. While the error rate was M = 38.18 %, SD = 7.64 %, false memory occurrences 
rated at M = 9.75 %, SD = 5.30 %. Finally, the unanswered trials accounted for the 
remaining M = 0.97 %, SD = 1.80 %. 

The response time was significantly influenced by task conditions, χ2(2) = 28.294, p < 
0.000001. Wilcoxon tests were used to follow-up this finding. A Bonferroni correction 
was applied and so all effects are reported at a 0.017 level of significance. Median (IQR) 
response time for correct, false memory and error conditions were 1.145 (0.957 to 1.285) 
s, 1.176 (0.900 to 1.302) s and 1.330 (1.055 to 1.581) s, respectively. There were 
significant differences between the error and correct trials (Z = -5.001, r = -0.606, p = 
0.0000006) and between error and false memory trials (Z = -3.753, r = -0.455, p = 
0.000175). However, there was no statistically significant difference in response time 
when comparing correct and false memory conditions (Z = -0.043, r = -0.005, p = 0.966) 
(Figure 21A). Notably, considering only the behavioral data from the 28 subjects that 
provided also EEG data, the aforementioned results remained valid. 
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Figure 20: (A) Participants’ answer rate (percentage) grouped by conditions. The analysis suggested that 
there was a significant effect of the condition on the distribution rate (p < 10-5). the unanswered trials 
accounted for the remaining M = 0.97 % (SD = 1.80 %). (B) Boxplot for the median (IQR) response 
time (RT) for the conditions. correct: 1.145 (0.957 to 1.285) s; false memory: 1.176 (0.900 to 1.302) s; 
type I error: 1.139 (0.906 to 1.372) s; type II error: 1.324 (0.977 to 1.478) s; type III error: 1.794 (1.535 
to 2.039) s; type IV error: 1.903 (1.382 to 2.122) s. For these post hoc tests, a Bonferroni correction was 
applied and so all effects are reported at a 0.0033 level of significance, the results are summarized in 
Table 2B. 
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A negative correlation was found between false memory and error rates (Figure 21B, 
Spearman’s ρ = -0.69, p = 0.000027). 

When the recognition rate of each single stimulus was evaluated according to its serial 
position, we found that the fourth stimulus (M = 92.55 %, SD = 3.71 %)  was successfully 
recognized with a rate that was higher (p < 10-6) than the ones of the other items (Figure 
21C). Please note that the rates were 65.58 ± 9.23 %, 65.56 ± 8.48 % and 67.83 ± 8.98 % 
for the first, second and third items, respectively. Importantly, as we presented two images 
during recognition, these rates do not reflect the global task performance as for a correct 
response subjects need to properly classify both probes (Table 1). Please note that when 
only those 28 subjects having EEG data were considered in the behavioral analysis, all 
aforementioned behavioral results remained statistically valid. 
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Figure 21: (A) Boxplot for the median (IQR) response time (RT) for correct, false memory and error

conditions were 1.145 (0.957 to 1.285) s, 1.176 (0.900 to 1.302) s and 1.330 (1.055 to 1.581) s, 
respectively. Correct and false memory conditions recorded significantly faster RT when compared 
to the error condition (* p = 0.0000006, ** p = 0.000175). (B) False memory and error rates correlated 
negatively (Spearman’s ρ = -0.69, p = 0.000027). Participants who made more errors had lower false 

memory rate. (C) Average accuracy rate and standard deviation as a function of serial position. When 
probed, the fourth stimulus in the series was recognized with significantly higher accuracy (p < 10-6) 
in comparison to the other elements in the sequence. 

(A) 

** 
* 
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4.2. Oscillatory Analysis 

The non-parametric statistical analysis was used to investigate the prominent theta power 
increase and alpha power decrease during the encoding of the stimuli (Figure 14). 
Furthermore, the conspicuous alpha-beta activity in parieto-occipital regions during the 
retention interval (Figure 15B) was assessed. 

The cluster-based permutation test revealed a significant difference between correct and 
error conditions (p(corrected) = 0.0112) in the encoding interval ([0.40, 0.60] s), with error 
eliciting higher theta power ([6, 8] Hz) in all three occipital channels (Figure 22A, B, C). 
When trials from false memory and correct were grouped together and compared with 
error, a significant difference was still identified for [6, 8] Hz and [0.40, 0.55] s (p(corrected) 
= 0.0200), with error showing higher theta activity (Figure 22D). Inversely, no significant 
cluster was found when trials from false memory were added to the error condition and 
differences with correct were reassessed. 

Following the frequency shift for aligning the subjects’ ICF, the analysis within the 
retention interval showed that the reported alpha-beta activity over right parieto-occipital 
channels was significantly higher than the activity over the contralateral channels (Figure 
15B), t(27) = 4.69, p < 0.0001, r = 0.67 (Figure 23). Furthermore, the analysis revealed a 
significant difference between correct and error conditions (p(corrected) = 0.0203), with 
error showing higher power values than those for correct in O2 (at the ICF, [1.50, 1.75] 
s) and P4 (at the ICF, [1.70, 1.80] s; Figure 24A, B, C). The addition of trials from false 

memory to the error condition produced, contrary to the encoding interval, a significant 
cluster (p(corrected) = 0.0393), when compared to correct, in O2 (at the ICF, [1.55, 1.90] s) 
and P4 (at the ICF, [1.75, 1.80] s; Figure 24D). However, no significant difference was 
found out when trials from false memory and correct were merged and compared with 
error. 
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Figure 22: The statistical study of the encoding interval for the conditions correct and error revealed a 
significant difference (p(corrected) = 0.0112) in the upper theta frequencies (6 – 8 Hz) within [0.40, 0.60] s. The 
analysis focused on the occipital channels O1, Oz and O2. (A) Time-frequency plot of the difference in power 
between the conditions averaged across the occipital channels. The area enclosed by the dotted line indicates 
the significant cluster. (B) The topographic contrast between the conditions within the cluster (asterisks and 
labels denote the channels showing significant differences). (C) Variation of upper theta power (and standard 
error), during encoding, averaged over the occipital channels. Within the cluster (dotted line on the x-axis), 
error power values were significantly higher than correct ones. (D) Variation of upper theta power (and 
standard error) within the cluster: When false memory trials were added to the correct condition, a significant 
difference was still observed on the channels O1, Oz and O2 (p(corrected) = 0.0200) at [6, 8] Hz within [0.40, 
0.55] s – inversely, no significant cluster was observed when false memory trials were added to the error

condition. 
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Investigation of the relationships between behavioral and oscillatory properties revealed 
a positive correlation between average ICF power (estimated within the significant cluster 
of the retention interval) and mean RT (Figure 25, Spearman’s ρ = 0.60, p = 0.002; three 
subjects were excluded as their parameters fell out of the 95 % confidence interval). 

Concerning the gamma band investigation, neither the encoding nor the retention 
analyses revealed significant differences over the investigated temporal locations.  
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Figure 23: The analysis of the alpha-beta pattern 
during the second half of the retention interval 
revealed a significant lateralization – t(27) = 4.69, 
p < 0.0001, r = 0.67 – with power values for the 
frequency range [ICF – 2, ICF + 2] Hz over right 
parieto-occipital channels (P4, P8, O2) that were 
higher than the ones observed in the contralateral 
channels (P3, P7, O1). 
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Figure 24: The analysis of the retention interval investigated differences between correct and error

conditions in the right parieto-occipital channels (P4, P8, O2) considering the subjects’ individual 
central frequencies (ICFs). A significant cluster (p(corrected) = 0.0203) was found for the ICF in O2 (at 
[1.50, 1.75] s) and P4 (at [1.70, 1.80] s). (A) Time-frequency portrait of the difference between the 
conditions for the representative channel O2. The region enclosed by the dotted line highlights the 
significant cluster. (B) Topographic pattern of the difference between the conditions within the 
discovered cluster (asterisks and labels denote the channels showing the significant difference). (C)
Variation of ICF power (and standard error) within the retention interval for the representative channel 
O2. Inside the significant region (dotted line on the x-axis), error power values were higher when 
compared to the correct ones. (D) Variation of ICF power (and standard error) within the cluster for the 
representative channel O2: When false memory and error trials were merged, a significant difference 
(p(corrected) = 0.0393) was still measured for the ICF in O2 (at [1.55, 1.90] s) and P4 (at [1.75, 1.80] s) –
inversely, no significant cluster was observed when false memory trials were added to the correct

condition. 
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Preliminary results of the time-frequency investigation pertaining to the study of visual 
working memory errors were presented at the 1st Joint Turkish-German Symposium on 
Human Neuroscience in Berlin, “Brain oscillatory analysis of gist-based short-term false 

memory for visual stimuli: a preliminary study” (2014) and at OHBM in Hawaii, “Alpha 

activity in the posterior regions distinguishes visual false memories and other memory 

errors” (2015).  
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Figure 25: RT and ICF power showed a positive correlation 
(Spearman’s ρ = 0.60, p = 0.0020). Participants with higher 
ICF power responded, on average, slower to the probes. 
Subjects included in the correlation analysis are denoted by 
empty circles. Outliers, highlighted with filled circles, were 
removed from the analysis as their values fell out of the 95 
% confidence interval. 
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4.3. Connectivity Analysis 

4.3.1. Coherency 

The study of the coherency during the encoding interval considered O1 as seed channel. 
The investigation primarily focused on the connectivity between the seed channel and 
frontal regions (left, central, right). Significant levels of alpha phase synchrony were 
observed for many subjects (i.e., left, 25; right, 22; central, 18 out of 28), yet none of the 
regions yielded any significant difference (left, p = 0.9271; right, p = 0.5449; central, p = 
0.7859) between conditions (Figure 26). 

Similarly, the coherency measured within the beta band reached significant levels for most 
of the subjects (i.e., left, 27; right, 25; central, 21 out of 28) but once again no significant 
difference was detected when comparing the conditions (left, p = 0.5283; right, p = 0.6796; 
central, p = 0.3130) (Figure 27). 

Only half of the subjects showed theta band coherency values that were higher than the 
confidence level (i.e., left, 14; right, 16; central, 14 out of 28): No significant differences 
were observed (Figure 28) when contrasting the studied conditions (left, p = 0.6035; right, 
p = 0.4836; central, p = 0.8980). 
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correct error 

Figure 26: Squared imaginary coherency for the alpha band (8 – 12 Hz) during the encoding 
interval. The plots show the grand-averaged topographic maps of coherency (Nolte et al., 
2004) for the condition correct (left) and error (right) considering in-turns all channels as seed 
channels. Highlighted by a red circle is the channel O1 which was selected a priori as seed 
channel for the subsequent statistical investigation (see Section 3.13.1). Coherency values 
were averaged within the entire alpha band. Values were normalized considering the 
maximum coherency level, independently from the condition, within the encoding interval for 
the alpha frequencies. 
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Concerning the study of the coherency within the retention period, O2 was the seed 
channel chosen a priori. Significant levels of alpha phase synchrony were observed for 
most of the subjects (i.e., left, 27; right, 27; central, 27 out of 28), yet none of the regions 
yielded any significant difference (left, p = 0.3931; right, p = 0.1280; central, p = 0.1785) 
between conditions (Figure 29). 
Regarding the beta coherency, values reached significant levels for the great majority of 
the subjects (i.e., left, 28; right, 28; central, 25 out of 28) but without showing significant 
difference among conditions (left, p = 0.2359; right, p = 0.4544; central, p = 0.6521) 
(Figure 30). 
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Figure 27: Squared imaginary coherency for the beta band (13 – 30 Hz) during the encoding 
interval. The plots show the grand-averaged topographic maps of coherency (Nolte et al., 
2004) for the condition correct (left) and error (right) considering in-turns all channels as 
seed channels. Highlighted by a red circle is the channel O1 which was selected a priori as 
seed channel for the subsequent statistical investigation (see Section 3.13.1). Coherency 
values were averaged within the entire beta band. Values were normalized considering the 
maximum coherency level, independently from the condition, within the encoding interval 
for the beta frequencies. 



63 
 

Finally, many subjects showed significant theta band coherency level (i.e., left, 26; right, 
24; central, 15 out of 28) and no significant differences were reported (Figure 31) when 
contrasting the studied conditions (left, p = 0.3699; right, p = 0.0849; central, p = 0.8524). 
The investigation for differences of coherency estimates considering Oz as seed channel 
– observed to have the higher coherency levels, see Figure 29A and Figure 31A – didn’t 
reveal any significant results. More specifically, for the alpha band: Left, p = 0.6824 (27 
subjects); right, p = 0.5780 (28 subjects); central, p = 0.8992 (26 out of 28 subjects). 
Concerning the theta band: Left, p = 0.9458 (23 subjects); right, p = 0.1923 (28 subjects); 
central, p = 0.4431 (18 out of 28 subjects). Table 3 provides a detailed account of the 
statistical results pertaining to the coherency investigation. 
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Figure 28: Squared imaginary coherency for the theta band (4 – 7 Hz) during the encoding 
interval. The plots show the grand-averaged topographic maps of coherency (Nolte et al., 
2004) for the condition correct (left) and error (right) considering in-turns all channels as 
seed channels. Highlighted by a red circle is the channel O1 which was selected a priori as 
seed channel for the subsequent statistical investigation (see Section 3.13.1). Coherency 
values were averaged within the entire theta band. Values were normalized considering the 
maximum coherency level, independently from the condition, within the encoding interval 
for the theta frequencies. 
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Figure 29: Squared imaginary coherency for the alpha band (8 – 12 Hz) during the retention interval. (A)
Grand-averaged topographic maps of coherency (Nolte et al., 2004) for the condition correct (left) and 
error (right) considering in-turns all channels as seed channels. Coherency values are averaged within the 
entire alpha band. Values are normalized considering the maximum coherency level, independently from 
the condition, within the retention interval for the alpha frequencies. Highlighted by a red circle is the 
channel Oz. (B) Grand-averaged topographic map of the squared imaginary coherency for correct and 
error conditions selecting O2 as seed channel. Please note that contrary to the plots (A), the averaging is 
performed considering only the alpha coherency peak and without normalization (identified on a subject 
basis, see also Figure 19). 
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Figure 30: Squared imaginary coherency for the beta band (13 – 30 Hz) during the retention interval. (A)
Grand-averaged topographic maps of coherency (Nolte et al., 2004) for the condition correct (left) and 
error (right) considering in-turns all channels as seed channels. Values are normalized considering the 
maximum coherency level, independently from the condition, within the retention interval for the beta 
frequencies. Coherency values are averaged within the entire beta band. (B) Grand-averaged topographic 
map of the squared imaginary coherency for correct and error conditions selecting O2 as seed channel. 
Please note that contrary to the plots (A), the averaging is performed considering only the beta coherency 
peak and without normalization (identified on a subject basis, see also Figure 19). 
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Figure 31: Squared imaginary coherency for the theta band (4 – 7 Hz) during the retention interval. (A)
Grand-averaged topographic maps of coherency (Nolte et al., 2004) for the condition correct (left) and 
error (right) considering in-turns all channels as seed channels. Coherency values are averaged within the 
entire theta band. Values are normalized considering the maximum coherency level, independently from 
the condition, within the retention interval for the theta frequencies. Highlighted by a red circle is the 
channel Oz. (B) Grand-averaged topographic map of the squared imaginary coherency for correct and 
error conditions selecting O2 as seed channel. Differently from the plots (A), the averaging is done by 
taking only the theta coherency peak and without normalization (selected individually for each subject, 
see also Figure 19). 
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Table 3: Statistical results pertaining to the coherency investigation. Both encoding and retention intervals 
were probed. Mainly, the connectivity between the seed channels (O1 for encoding and O2 for retention) 
and frontal regions was investigated. In a follow-up analysis the connectivity between the seed channel Oz 
and frontal regions was also studied. The table reports all the p values obtained from the t-test analyses 
(Bonferroni corrected). In parenthesis, under the p value, the number of subjects (out of a maximum of 28) 
that showed significant connectivity levels and were therefore kept for the analysis of the specific frequency 
band and region. 

 

Encoding Retention  

frontal left 
frontal 

central 

frontal 

right 
frontal left 

frontal 

central 

frontal 

right 

seed 

Alpha band 

(8 – 12 Hz) 

p = 0.9271 

(25) 

p = 0.7859 

(18) 

p = 0.5449 

(22) 

p = 0.3931 

(27) 

p = 0.1785 

(27) 

p = 0.1280 

(27) 
O2 

Beta band 

(13 – 30 Hz) 

p = 0.5283 

(27) 

p = 0.3130 

(21) 

p = 0.6796 

(25) 

p = 0.2359 

(28) 

p = 0.6521 

(25) 

p = 0.4544 

(28) 
O2 

Theta band 

(4 – 7 Hz) 

p = 0.6035 

(14) 

p = 0.4836 

(14) 

p = 0.8980 

(16) 

p = 0.3699 

(26) 

p = 0.8524 

(15) 

p = 0.0849 

(24) 
O2 

Alpha band 

(8 – 12 Hz) 
   

p = 0.6824 

(27) 

p = 0.8992 

(26) 

p = 0.5780 

(28) 
Oz 

Theta band 

(4 – 7 Hz) 
   

p = 0.9458 

(23) 

p = 0.4431 

(18) 

p = 0.1923 

(28) 
Oz 

 

Preliminary coherency results concerning the studied task were presented at the BIOMAG 
international conference in biomagnetism in Seoul, "Alpha and Theta Synchronization 

Between Occipital and Frontal Regions Distinguish Errors in a Visual Working Memory 

Task" (2016). 

4.3.2. Phase-amplitude coupling 

Significant theta (3 – 5 Hz) to lower gamma (30 – 60 Hz) PAC levels were observed, 
independently from the conditions, in fronto-parietal regions during the encoding of the 
stimuli and in fronto-occipital areas during the retention interval (Figure 32). Yet, the 
assessment of differences between correct, error and false memory did not highlight 
meaningful results. Additionally, a significant alpha (8 – 14 Hz) to upper gamma (60 – 
120 Hz) PAC pattern was detected in both the encoding and retention intervals. More 
specifically, in occipital channels during the encoding of the stimuli and in fronto-occipital 
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areas during the retention interval (Figure 33). Ultimately, following statistical analyses, 
no significant differences were detected between conditions. 
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Figure 32: Theta (3 – 5 Hz) to lower gamma (30 – 60 Hz) PAC levels. Significant values were observed 
(independently from the conditions) yet, no significant difference was observed when comparing 
correct, error and false memory conditions. 

Figure 33: Alpha (8 – 14 Hz) to upper gamma (60 – 120 Hz) PAC levels. Significant values were 
observed (independently from the conditions) yet, no significant difference was observed when 
contrasting correct, error and false memory PAC levels. A significant difference was measured in O1 
(p(corrected) = 0.0036) with encoding showing higher alpha/gamma PAC when compared to the retention 
interval. 
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Finally, PAC estimates computed considering couples of channels (see Sections 2.8.5 
and 3.13.2) did not reveal any significant difference between conditions. Notably, as its 
strength was reported to index encoding quality (Friese et al., 2013), no difference (p > 
0.5) was found when considering the cross-frequency coupling between the phase of 
theta (5 – 8 Hz) in frontal regions and the amplitude of gamma (50 – 80 Hz) in posterior 
areas in both encoding (Figure 34) and retention (Figure 35) intervals. 
 
 
  

Figure 34: Cross-frequency coupling between the phase of theta (5 – 8 Hz) measured in
F4 and the amplitude of gamma (50 – 80 Hz) measured on the remaining channels within 
the encoding interval. The grey area denotes lack of significant PAC. No significant 
difference was observed between conditions (p > 0.5). 
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Figure 35: Cross-frequency coupling between the phase of theta (5 – 8 Hz) measured in 
F4 and the amplitude of gamma (50 – 80 Hz) measured on the remaining channels within 
the retention interval. The grey area denotes lack of significant PAC. No significant 
difference was observed between conditions (p > 0.5). 
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

This study explored the role of cortical brain oscillations in memory by analyzing 
behavioral and EEG data of healthy volunteers performing a challenging VWM task. 
Specifically, we tested whether changes in oscillatory activity and connectivity measures 
during the encoding and retention of four images sequentially presented can predict the 
quality of memory formation.  

We found that theta oscillations during encoding of successful memories exhibited power 
values in occipital channels that were significantly lower when compared to the incorrect 
ones. In the following retention interval, errors elicited alpha-beta (ICF) power values 
higher than those of correct answers in right parieto-occipital channels. Further, we 
investigated the oscillatory properties of false memory over short-term periods. Our 
analysis suggested pattern similarities in theta band during encoding between false and 
successful memories in occipital channels with power values that were lower than the 
error ones. Conversely, during the retention interval, false memory and error showed a 
similar alpha-beta band (ICF) pattern with power levels in right parieto-occipital channels 
that were higher than those of correct answers. 

Investigation of the relationship between behavioral and oscillatory properties revealed a 
positive correlation between average ICF power (within the significant cluster of the 
retention interval) and mean RT. The behavioral analysis further revealed how RTs of the 
error condition were significantly longer than those of correct and false memory. The 
negative correlation between false memory and error rates revealed that subjects who 
performed poorly had lower rates of false memory responses. 

The connectivity analysis revealed significant levels of coherency, as well as significant 
alpha/gamma PAC and theta/gamma PAC. Yet, these measures did not differ significantly 
between conditions. 

5.1. Correct and Error 

Our results showed an association between lower theta power values and successful 
encoding. For errors, a poor sequential encoding of the stimuli was reflected by higher 
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theta power values. Involvement of theta oscillations in WM tasks has been widely 
reported (e.g., Kahana et al., 2001; Jacobs & Kahana, 2010). The observed alpha power 
decrease accompanied by a simultaneous theta power increase was consistent with the 
pattern associated with intentional encoding (Mölle et al., 2002) and memory formation 
(Klimesch et al., 1997b; Osipova et al., 2006). Specifically, theta power increase in 
occipital channels may reflect the formation of cell assemblies. They are reported to be 
functionally related to processes such as feature binding and formation of memories 
(Singer & Gray, 1995; Bastiaansen & Hagoort, 2003; Buzsáki, 2010). Cognitive 
mechanisms during encoding and retrieval periods vary considerably with respect to the 
task specificity, hence altering the corresponding oscillatory processes responsible for 
proper memory formation (Hanslmayr & Staudigl, 2014). Various brain oscillatory 
studies linked successful memory performances to significant increases in theta band 
power during encoding (Sederberg et al., 2003; Osipova et al., 2006; White et al., 2013). 
In contrast, lower levels of theta power corresponding to successful memory formation 
were also observed depending on the brain region of interest and the time of encoding 
(Sederberg et al., 2006; Guderian et al., 2009; Burke et al., 2013). Moreover, subbands of 
theta activity may show opposite tendencies of power levels for correct encoding, i.e., 
higher power for slow theta ~ 3Hz and lower power for fast theta ~8 Hz (Lega et al., 2012). 
This is in line with our findings as the difference in theta activity was observed in the 
upper range (6 – 8 Hz) with lower power levels associated to successful memory 
performance. 

In our task, the fast-paced presentation of detailed grayscale photos led to a challenge in 
encoding. VWM finite capacity (Miller, 1956; Cowan, 2001; Bays et al., 2011; Oberauer 
& Eichenberger, 2013) might not be enough to store all information characterizing each 
presented stimulus. Critically, the fast presentation of images may modify the cognitive 
strategy in the encoding process. Studies comparing individuals with different memory 
capacities found that poor performers had actually stored more information (Vogel et al., 
2005; Zanto & Gazzaley, 2009; Gaspar et al., 2016). The performance of each subject is 
also not constant throughout the task and may vary influenced by many factors such as 
subject’s expertise with the encoded category (Moore et al., 2006) relationship between 
the items (Davachi & Wagner, 2002), encoding conditions (e.g., pace of the presentation, 
Eng et al., 2005), presence of noise (Dean et al., 2008), distractors (Olivers et al., 2006) 
and subject’s cognitive state (e.g., attention level, Prinzmetal et al., 1986). Thus, 
considering the context of our study, lower theta power associated with successful 
memories may be consequential of the encoding strategies that are possibly reflected in 
task-efficient feature binding during memory formation. 

Oscillatory analysis revealed a further difference in the alpha-beta band during the 
retention interval where the error condition elicited higher power values than the correct 
one. The ICF (i.e., the frequency where the observed parieto-occipital pattern was more 
prominent) varied across subjects and therefore was determined individually. ICF values 
spread within the range of alpha and beta bands (10 Hz to 26 Hz). Alpha peak frequency 
in posterior regions has been shown to be subject-dependent and to increase with higher 
cognitive load (Haegens et al., 2014). The observed oscillatory activity in the retention 
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interval is in line with the alpha band inhibition-timing hypothesis (Klimesch et al., 2007). 
Accordingly, the alpha-beta band activity may reflect the suppression of the visual input 
via disengagement of the visual dorsal pathway (Vanni et al., 1997; Cooper et al., 2003; 
Tuladhar et al., 2007; Jokisch and Jensen, 2007; Scheeringa et al., 2009). 

In our study, alpha-beta band activity was lateralized to the right parieto-occipital 
channels. Among studies reporting lateralization of alpha activity in the posterior regions, 
Bonnefond & Jensen (2012) showed the left-lateralized alpha power enabling the 
suppression of anticipated distractors (symbols or letters). Alpha oscillations were also 
found to be modulated by visual attention (Worden et al., 2000). More specifically, prior 
to the onset of the stimulus, alpha power increase was observed over the occipital regions, 
ipsilateral to the cued direction of attention, aiming to suppress irrelevant stimuli 
presented over a to-be-ignored location (Leenders et al., 2018). In a subsequent retention 
interval, an increase in alpha power contralateral to the irrelevant stimulus was related to 
WM maintenance processes responsible for suppressing the distractors. Both Jensen et al. 
(2002) and Scheeringa et al. (2009) reported a right lateralization in the alpha band range 
during the maintenance phase of a verbal WM task. These studies indicate the 
excitatory/inhibitory roles of alpha band. As our study used complex visual stimuli 
centrally located on the screen, the lateralization cannot be explained by shifts in visual 
attention or by factors concerning the spatial location of the stimuli. 

The oscillatory power asymmetry taken with the inhibitory function of alpha band 
suggests an active role of the contralateral regions belonging to the left hemisphere during 
the retention interval in our study. Parra et al. (2014) reported the engagement of left 
posterior cortical areas during maintenance in VWM of multi-feature objects. They 
identified BOLD activity in the left fusiform gyrus (near the LOC) and left parietal cortex 
related to the maintenance of the binding of visual features. In a transcranial alternating 
current stimulation (tACS) study, Tseng et al. (2016) demonstrated the recruitment of 
similar regions of left temporal and parietal cortex, when binding of perceptual features is 
realized within VWM. 

Higher levels of alpha-beta activity recorded for error may be indicative of an inefficient 
allocation of WM storage. This view is supported by the positive correlation of inhibitory 
alpha power and memory load reported during WM maintenance over task-irrelevant 
regions (Jensen et al., 2002; Tuladhar et al., 2007). The positive correlation between alpha-
beta (ICF) power in retention and RTs further supports the idea that higher alpha activity 
values may reflect an inefficient WM performance. Similarly, a positive correlation 
between alpha power and RT in the retention interval was also reported by Roux et al. 
(2012). 

We would like to note that the error condition includes also trials where either of the two 
target probes was recognized correctly. As a poor encoding sequence may include stimuli 
that were encoded properly, the oscillatory contrast between correct and error conditions 
likely weakens. However, this would not affect the character of the reported oscillatory 
markers distinguishing erroneously and correctly encoded trials in essence. 
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5.2. False Memory 

As “memory is often accurate” (Slotnick & Schacter, 2004) by its nature, a lower rate is 
expected for false and erroneous memories compared to the correct responses. Inducing 
high rates of false memory responses is especially challenging for paradigms in STM. 
Some studies such as Atkins & Reuter-Lorenz (2011) and Melnik et al. (2017) have used 
strategies of extra distractors of math questions engaging cognitive faculties in order to 
increase false memory rates. But there was still no comparable number of trials with regard 
to correctly answered trials in those studies. Despite the cognitively demanding task 
involving fast-paced encoding and two different probes to be answered, an average false 
memory rate of 9.75 ± 5.30 % could be obtained in our study.   

Due to insufficient number of false memory trials, we were not able to make a direct 
statistical comparison with the other conditions. However, we assessed potential 
similarities of false memory with correct and/or error by adding in turn false memory 
trials to correct (contrasted with error) and error (contrasted with correct) conditions. 
The balanced number of trials and the increased SNR for the conditions enabled us to 
perform meaningful comparisons. 

Our analysis suggested similarities regarding the encoding pattern between false and 
successful memories. This observation upheld the idea that proper encoding is a 
prerequisite for associative false memories. The negative correlation between error and 
false memory rates is further in line with the idea that even over short-term periods, false 
memories may be a byproduct of adaptive processes allowing an efficient functioning of 
the human memory system (Schacter et al., 2011). 

While false memories shared similar oscillatory characteristics with successful memories 
during encoding, they had similar tendencies with error responses within the retention 
interval. That is, common errors and false memories both showed higher alpha-beta power 
when compared to correct answers. Whereas higher power for errors indicates an 
inefficient use of WM storage, this may not be so for false memories. Considering the 
finding that posterior alpha power increases with WM load during retention (Jensen et al., 
2002; Tuladhar et al., 2007), it possibly reflects extra load caused by pre-existing semantic 
associations (Koutstaal et al., 2003) and/or prototypical perceptual features (Gutchess & 
Schacter, 2012) elicited by the encoded stimuli. 

Please note that, the scope of our task comprised all encoded items within the same 
category. Different category items would modify the encoding mechanism altogether, 
which would increase the variability between the conditions. Moreover, that would likely 
lead to insufficient number of erroneous trials to be compared in oscillatory analysis as 
unrelated probe items are notoriously recognized with much higher rates. A series of 
studies assessed the effect of relatedness on STM and showed that rates of false 
recognitions for related lures were significantly higher than those of unrelated ones (e.g., 
Coane et al., 2007; Atkins and Reuter-Lorenz, 2008; Flegal et al., 2010; Iidaka et al., 2014; 
Melnik et al., 2017). 
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5.3. Connectivity 

5.3.1. Coherency 

The studied task revealed significant theta and alpha coherency between occipital 
channels and frontal areas. Within the retention interval subjects more consistently 
recorded significant levels of coherency (Table 3). As discussed in Section 3.13.1, the 
coherency measure is non-directional, thus it indicates the degree of synchrony between 
channels with no information pertaining to the leading source. Our observations are 
compatible with earlier studies suggesting that the phase synchronization of theta and 
alpha bands between different brain regions may reflect central executive functions of 
WM (Sauseng et al., 2005a; Klimesch et al., 2008). More specifically, a state of alpha 
equilibrium – reflected by increased phase synchronization – would enhance the 
communication between cortical areas (Klimesch et al., 2007). It has been proposed that 
synchronous theta phase coherence may reflect top-down mechanisms through which 
central executive areas exert control over task-relevant regions (Sauseng et al., 2004; 
Sauseng et al., 2010). 

Compatible are also our observations concerning connectivity within the beta frequencies, 
as research highlighted the importance for WM of beta phase synchronization by showing 
strengthened coherence between frontal and parietal areas during WM maintenance 
(Babiloni et al., 2004). It has been hypothesized that beta phase synchronization reflects 
associations between local assemblies related to stimulus representations (Fell & 
Axmacher, 2011). 

5.3.2. Phase-amplitude coupling 

Significant values of theta (3 – 5 Hz) to gamma (30 – 60 Hz) PAC were observed 
throughout both encoding and retention intervals. Even though the strength of cross-
frequency coupling could not index task performance, its presence remains consistent with 
previous studies that linked theta/gamma PAC to the retention in WM of sequentially 
encoded items (Canolty et al., 2006; Jacobs & Kahana, 2009; Fuentemilla et al., 2010; 
Lisman & Jensen, 2013). 

A significant alpha (8 – 14 Hz) to gamma (60 – 120 Hz) PAC was measured throughout 
the task and higher levels were observed for the encoding interval, when compared to 
retention, that differed significantly for channel O1. The reported pattern is compatible 
with previous connectivity investigations where processing of visuo-spatial information 
was characterized by the strengthening of the cross-frequency coupling between alpha 
phase and gamma power in posterior areas (Voytek et al., 2010; Roux & Uhlhaas, 2014; 
Park et al., 2016). 

These observations reinforce the idea that the interaction between slow and fast 
oscillations covers a relevant role in the coordination of information processing. 
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Theta/gamma PAC (for sequentially presented information) and alpha/gamma PAC (for 
spatially distributed information) may reflect distinct WM networks whose enrollment 
depends on WM content (Roux & Uhlhaas, 2014). Alternatively, with reference to the 
alpha-gamma coupling, it may induce a cortical state that facilitates visual encoding (Park 
et al., 2016). 

5.4. Limitations and Future Research 

When investigating the phenomenon of false memory, studies typically use well known 
lists where, for each entry, the relationships between items (lure included) are known (e.g., 
backward/forward associative strength of DRM lists). Our study used photographic 
stimuli from a wide range of categories. As no publicly available dataset satisfied our 
experimental requirements, we have built one specific to our task. The downside of this 
decision was the lack of associative or similarity measures describing the relationships 
between items, thus, for example, the lures were items chosen arbitrarily among the 
studied categories. Furthermore, as cognitive models are refined by using stimuli with 
specific characteristics, the complexity of our dataset made the results more difficult to be 
interpreted within the scope of perceptual and WM theories. It is also important to 
consider that the oscillatory analyses of our research were conducted at a channel level. 
The inability to map the observed results over precise brain locations further reduced our 
capacity to explain them within theoretical contexts. 

Future research may want to adopt a different dataset to systematically manipulate 
perceptual features (e.g., color, shape, orientation) or semantic content of each item. The 
definition of associative or similarity measures would enable to investigate their 
relationship with oscillatory data. Finally, by modifying the recognition interval of our 
task, it would be possible to study oscillatory characteristics associated with the decision 
process following the presentation of the probes. All these changes may contribute to 
refine our findings pertaining to VWM errors and to clarify the relationship between EEG 
oscillatory activity and perceptual and semantic properties of the encoded stimuli. 

5.5. Conclusions 

In this study, we aimed to identify oscillatory markers distinguishing successful and 
erroneous visual memories and investigate oscillatory properties characterizing the 
phenomenon of false memory over short-term periods. We reported of a theta power 
increase in occipital channels that may reflect the formation of cell assemblies linked to 
feature binding or formation of memories. We demonstrated how theta power could index 
the quality of encoding. Our results suggested that the smaller theta power observed for 
correct responses correspond to an optimal encoding. On the contrary, the inefficient 
encoding of erroneous trials was accompanied with higher theta power values. False 
memories revealed a similar trend and contrasted with the pattern characterizing the other 
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memory errors. Thus, a proper encoding strategy may leave participants more vulnerable 
to false memories. 

The inhibitory alpha-beta power observed in the retention interval was higher for 
erroneous memories suggesting that errors are characterized by an inefficient allocation 
of WM storage. On the other hand, higher alpha-beta power levels for false memories 
indicate the failure to manage the extra load induced by the encoded stimuli. The negative 
correlation between the rates of error and false memory further implies that the latter is 
an undesired outcome of adaptive processes responsible for the efficient functioning of 
memory. 
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APPENDIX A 

PRE-EXPERIMENT QUESTIONNAIRE 

PARTICIPANT’S FORM Date: __________________________________ 

GENERAL INFORMATION 

Subject Name: ________________  Phone: ________________ 

Subject ID: ________________  E-Mail: ________________ 

Gender: F ☐ M ☐  Handedness: L ☐ R ☐ 

Age: ________________    

MEDICAL HISTORY 

Vision: ________________  Drugs: ________________ 

Hearing: ________________  Smoking: ________________ 

Sleep: ________________  Alcohol: ________________ 

Physical Exercise: ________________  Coffee/Tea: ________________ 

Menstruation 
Period: 

☐    

EDUCATION INFORMATION 

University: ________________  Mother Tongue: ________________ 

Department: ________________  Other Languages: __________ __/5 

Level: 
UG☐     BS ☐ 

MS☐    PhD☐ 
  __________ __/5 
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APPENDIX B 

PARTICPANTS’ INFORMATION 

Subject ID Age Gender Task 
Success 

Rate (%) 

Task False 
Memory 
Rate (%) 

Task Error 
Rate (%) 

1 26 F 41.6667 4.1667 49.0741 

2 38 F 50.4630 12.5000 37.0370 

3 27 M 52.7778 9.7222 37.5000 

4 21 M 69.4444 10.6481 19.9074 

5 24 M 48.1481 16.6667 35.1852 

6 24 F 55.0926 1.8519 38.8889 

7 22 F 55.5556 10.6481 27.7778 

8 20 M 49.5370 6.0185 41.2037 

9 25 F 41.2037 18.5185 39.3519 

10 21 M 56.9444 7.8704 35.1852 

11 26 M 50.0000 5.5556 44.4444 

12 24 F 51.3889 21.2963 26.8519 

13 21 F 56.9444 9.7222 32.4074 

14 21 F 49.5370 4.1667 46.2963 

15 25 M 50.9259 6.4815 42.5926 

16 23 F 46.2963 4.6296 49.0741 
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17 23 M 45.3704 6.0185 48.6111 

18 21 M 44.4444 9.2593 45.3704 

19 24 M 56.9444 6.4815 36.5741 

20 24 M 50.9259 7.8704 41.2037 

21 28 F 52.3148 20.3704 26.8519 

22 22 F 50.9259 13.8889 35.1852 

23 22 M 62.0370 10.1852 27.7778 

24 20 M 46.2963 8.7963 44.9074 

25 24 M 58.7963 4.6296 33.7963 

26 19 M 47.6852 5.5556 40.7407 

27 18 F 47.6852 6.0185 45.8333 

28 25 M 49.0741 5.5556 45.3704 

Pilot 1 37 F 47.2222 1.8519 50.9259 

Pilot 2 28 F 43.5185 16.2037 39.8148 

Pilot 3 30 F 54.1667 14.8148 31.0185 

Pilot 4 37 M 54.6296 17.5926 27.7778 

Pilot 5 27 F 45.8333 15.7407 37.5000 

Pilot 6 28 M 53.7037 10.1852 36.1111 

Table 4: Participants’ information and task performance, i.e., success (correct), false memory and error 
rates. 
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APPENDIX C 

RESPONSE TIMES 

Subject ID Response 
Time for 

Correct (s) 

Response 
Time for 

False 

Memory (s) 

Response 
Time for 
Error (s) 

1 1.5514 1.8828 1.7989 

2 1.7049 1.4882 1.9935 

3 0.6242 0.6472 0.7862 

4 0.6998 0.7159 0.7267 

5 1.2746 1.3602 1.4139 

6 1.1795 1.4262 1.2145 

7 1.3362 1.2655 1.6290 

8 1.1186 1.2747 1.3105 

9 1.3461 1.3618 1.6204 

10 0.8943 0.9106 0.9473 

11 1.2447 1.3233 1.4398 

12 1.3068 1.2352 1.6472 

13 1.0295 0.8676 1.1364 

14 1.2989 1.2555 1.4498 

15 1.0653 1.2013 1.1366 

16 0.8512 0.7426 1.1711 
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17 0.9051 1.1935 1.0613 

18 1.1976 1.5783 1.2646 

19 1.1332 1.0012 1.2425 

20 0.9742 0.9533 1.0512 

21 1.4456 1.5841 1.7905 

22 1.2653 1.2910 1.5356 

23 0.8745 0.9131 0.9430 

24 0.8344 0.7559 0.9303 

25 1.0748 0.8694 1.4233 

26 1.4675 1.1647 1.8104 

27 1.0487 1.1868 1.4972 

28 0.6328 0.4001 0.7331 

Pilot 1 1.0585 1.1531 1.0558 

Pilot 2 1.2802 1.1089 1.4671 

Pilot 3 1.2770 1.1656 1.5682 

Pilot 4 1.1559 0.8671 1.3489 

Pilot 5 1.2028 1.2951 1.6294 

Pilot 6 0.9951 0.9839 0.9541 

Table 5: Averaged response times for each condition and all subjects. 
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APPENDIX D 

 

 

Subject 01 – ICF = 14 Hz, ICF Bandwidth = [12, 18] Hz 

 

  

Figure 36: Time-frequency representations and topographical plots for each subject.  Power 
values have been normalized considering the (percentage) variation from the mean baseline 
(see Section  3.6). The time t = 0 s corresponds to the onset of the first stimulus to be encoded.
At t = 1 s the retention interval begins. Finally, the time t = 2 s is the earliest probe onset
(Figure 11). The power values plotted in the time-frequency portraits are averaged over the 
posterior right channels (P4, P8, O2). The topographical plots highlight the spatial distribution 
of the power estimated within the time interval [1.55, 1.75] for the specific individual central 
frequencies (see Section 3.9). 
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Subject 02 – ICF = 20 Hz, ICF Bandwidth = [16, 20] Hz 

 

 

 

Subject 03 – ICF = 16 Hz, ICF Bandwidth = [14, 16] Hz 
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Subject 04 – ICF = 24 Hz, ICF Bandwidth = [24, 24] Hz 

 

 

 

Subject 05 – ICF = 14 Hz, ICF Bandwidth = [12, 14] Hz 
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Subject 6 – ICF = 26 Hz, ICF Bandwidth = [20, 28] Hz 

 

 

 

Subject 7 – ICF = 20 Hz, ICF Bandwidth = [16, 22] Hz 
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Subject 8 – ICF = 12 Hz, ICF Bandwidth = [10, 16] Hz 

 

 

Subject 9 – ICF = 18 Hz, ICF Bandwidth = [14, 22] Hz 
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Subject 10 – ICF = 18 Hz, ICF Bandwidth = [12, 20] Hz 

 

 

 

Subject 11 – ICF = 10 Hz, ICF Bandwidth = [8, 12] Hz 
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Subject 12 – ICF = 14 Hz, ICF Bandwidth = [14, 18] Hz 

 

 

 

Subject 13 – ICF = 14 Hz, ICF Bandwidth = [14, 18] Hz 
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Subject 14 – ICF = 16 Hz, ICF Bandwidth = [12, 18] Hz 

 

 

 

Subject 15 – ICF = 18 Hz, ICF Bandwidth = [16, 20] Hz 
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Subject 16 – ICF = 20 Hz, ICF Bandwidth = [20, 22] Hz 

 

 

 

Subject 17 – ICF = 14 Hz, ICF Bandwidth = [14, 14] Hz 
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Subject 18 – ICF = 14 Hz, ICF Bandwidth = [14, 14] Hz 

 

 

 

Subject 19 – ICF = 14 Hz, ICF Bandwidth = [12, 14] Hz 
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Subject 20 – ICF = 18 Hz, ICF Bandwidth = [16, 18] Hz 

 

 

 

Subject 21 – ICF = 14 Hz, ICF Bandwidth = [14, 16] Hz 
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Subject 22 – ICF = 14 Hz, ICF Bandwidth = [12, 22] Hz 

 

 

 

Subject 23 – ICF = 18 Hz, ICF Bandwidth = [16, 18] Hz 
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Subject 24 – ICF = 10 Hz, ICF Bandwidth = [10, 10] Hz 

 

 

 

Subject 25 – ICF = 20 Hz, ICF Bandwidth = [14, 20] Hz 
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Subject 26 – ICF = 16 Hz, ICF Bandwidth = [16, 16] Hz 

 

 

 

Subject 27 – ICF = 20 Hz, ICF Bandwidth = [18, 22] Hz 
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Subject 28 – ICF = 14 Hz, ICF Bandwidth = [14, 14] Hz 
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