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ABSTRACT

STOCHASTIC PATIENT APPOINTMENT SCHEDULING FOR
CHEMOTHERAPY

Demir, Nur Banu
M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Melih Çelik

Co-Supervisor : Assist. Prof. Dr. Serhat Gül

February 2019, 77 pages

Chemotherapy appointment scheduling is a challenging problem due to uncertainty

in pre-medication and infusion durations. We formulate a two-stage stochastic mixed

integer programming model for chemotherapy appointment scheduling problem un-

der the limited availability and number of nurses, and infusion chairs. The objective

is to minimize the expected weighted sum of nurse overtime and patient waiting time.

We sampled the pre-medication and infusion durations based on real data of a major

oncology hospital. The computation times for the problem are significantly long even

for the case of single-scenario problems. In order to strengthen the formulation, valid

bounds and symmetry breaking constraints are incorporated. A Progressive Hedging

Algorithm is implemented in order to solve the improved formulation. We enhance

the algorithm through a penalty update method, cycle detection and variable fixing

mechanisms, and linearization of the model objective function. We conduct numeri-

cal experiments to compare the progressive hedging algorithm with several schedul-

ing heuristics from the relevant literature. We generate managerial insights related

to the impact of the number of nurses and chairs on appointment schedules. Finally,
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we estimate the value of stochastic solution to assess the significance of considering

uncertainty.

Keywords: chemotherapy, scheduling, appointment scheduling, stochastic program-

ming, progressive hedging
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ÖZ

BELİRSİZ SÜRELER ALTINDA KEMOTERAPİ RANDEVULARININ
ÇİZELGELENMESİ

Demir, Nur Banu
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Melih Çelik

Ortak Tez Yöneticisi : Dr. Öğr. Üyesi. Serhat Gül

Şubat 2019 , 77 sayfa

Kemoterapi randevu planlama problemleri hastaların premedikasyon ve infüzyon sü-

relerinin belirsizliğinden kaynaklı olarak zorlayıcı bir problemdir. Bu problemi çöz-

mek için iki fazlı stokastik karışık tam sayı programlama tekniğinden yararlanıldı.

Problemde hemşirelerin ve kemoterapi koltuklarının sayıları ve uygunlukları göz önüne

alındı. Amaç hastaların bekleme sürelerinin ve hemşirelerin fazla mesailerinin bek-

lenen ağırlıklı toplamının en azlanması olarak belirlendi. Premedikasyon ve infüz-

yon süreleri Hacettepe Onkoloji Hastanesi’nin gerçek verilerine dayalı olarak oluş-

turuldu. Bir senaryolu problemlerde bile çözüm süresinin yüksek olması sebebiyle

formülasyon sınırlar ve simetriyi kıran kısıtlarla güçlendirildi. Hastaların sırasını ve

randevu saatlerini belirleyebilmek için İlerlemeli Tedbir algoritması uygulandı. Al-

goritma ceza katsayısının güncellenmesi, döngülerin tespit edilmesi, değişkenlerin

sabitlenmesi ve modelin amaç fonksiyonunun doğrusallaştırılması yöntemleri ile ge-

liştirildi. İlerlemeli tedbir algoritması literatürdeki bazı sezgisel çizelgeleme yöntem-

leriyle sayısal deneyler yapılarak karşılaştırıldı. Hemşire ve kemoterapi koltuk sayı-

larının randevu çizelgelerine olan yönetimsel etkileri incelendi. Son olarak, stokastik
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çözümün değeri değerlendirilerek belirsizliği ele almanın önemi tespit edildi.

Anahtar Kelimeler: kemoterapi, çizelgeleme, randevu çizelgeleme, stokastik prog-

ramlama, ilerlemeli tedbir
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To all cancer patients...

ix



ACKNOWLEDGMENTS

I would like to thank my advisors Assist. Prof. Dr. Melih Çelik and Assist. Prof. Dr.

Serhat Gül for their endless support during my MS study. I learned a lot from them,

they taught me how to conduct a research. They always encouraged me to make my

research better with their excellent guidance. Both of my advisors are mentors for me

in my academic career.

I would like the thank the examining committee members of my thesis Assoc. Prof.
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CHAPTER 1

INTRODUCTION

Healthcare expenditures constitute a large share in the countries’ economies. Accord-

ing to the statistics of the Organisation for Economic Co-operation and Development

(OECD), the United States (US) has spent 17.1% of its gross domestic product on

healthcare expenditures in 2017 [1]. On the other hand, budgets for healthcare expen-

ditures are insufficient in developing countries, which results in a rate of death that

could otherwise be prevented. In order to have a better healthcare system, resources

should be correctly allocated to the clinics for satisying the needs of patients while

reducing the expenditures. Since the resources dedicated to healthcare operations are

limited, the need for efficient methods for planning araises every day. The impor-

tance of quantitative models and decision support tools has been realized to achieve

efficient healthcare management. Hence, Operations Research plays an important

role in improving healthcare operations.

Cancer is the second most prevalent cause of death globally according to statistics, af-

ter heart disase [2]. The estimated number of deaths from cancer was 9.6 million, and

approximately 17 million new cancer cases are estimated to have appeared globally

in 2018 [3]. According to the National Cancer Institute (NCI), it was also expected

that 1,735,350 people were diagnosed as a cancer patient and 609,640 people will

have lost their life due to cancer in the US in 2018. Furthermore, new cancer cases

per year will increase to 23.6 million by 2030 [4]. In 2017, the estimated expendi-

tures for the cancer treatment were $147.3 billion in the US. In Turkey, approximately

91,000 people die from cancer and 163,500 people are diagnosed as a cancer patient

every year [5]. Since many people are affected by this disease, it is crucial to have

planning systems which decrease costs and increase patient satisfaction at the same
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time.

Chemotherapy is a frequently used method in order to cure cancer patients. Chemother-

apy drugs are injected to patients with the purpose of preventing the growth and

spread of tumor cells in order to destroy cancerous tissues. Chemotherapy treatment

is an exhausting process for patients, since side effects may be observed during or

after the treatment. To reduce the intensity of the side effects, pre-medication drugs

are injected to patients before initializing the treatment. After the pre-medication

process, the patients receive chemotherapy drugs. These drugs should be given to

patients based on predetermined frequency and doses.

Designing patient schedules is vitally important due to the limited capacity of the

oncology clinics and time restrictions in the chemotherapy treatment. It is significant

to note that oncology clinics should provide schedules that consider the trade-off

between provider and patient satisfaction. Chemotherapy schedules are created in two

phases in the literature and practice in general. Patients are assigned to days according

to their treatment frequency in the first phase called chemotherapy planning. The

latter phase is called chemotherapy scheduling. The patients are sequenced and their

appointment times are set to create a schedule for a given day in the second phase. In

this study, we concentrate on constructing daily schedules for chemotherapy patients.

There are two criteria that should be considered to evaluate the effectiveness of chemo-

therapy scheduling. These are nurse overtime and patient waiting time. Nurse over-

time is undesirable for providers since it increases operating costs of the clinic. Work-

ing for more than the shift length may also decrease nurse satisfaction. The increased

number of stressed out and dissatisfied nurses would lead to greater nurse turnover

rates. Reducing patient waiting time is also important for clinics to improve patient

satisfaction and service level. Since treatment durations are not actually known in ad-

vance of the treatment, predicted treatment durations are generally used for schedules.

However, this may result in an undesirable amount of waiting time and overtime.

The most complicating factor for chemotherapy patient appointment scheduling is

the uncertainty in treatment durations. The treatment durations are unknown due

to reasons including a change in the prescription list according to patient’s health

status before initiating the treatment, complications with patients, and early treatment
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termination due to the patient not tolerating the treatment [6]. If the decision maker

plans the daily schedule according to the longest possible treatment durations, patient

waiting time can be reduced. However, this may lead to excessive nurse overtime.

If the patients are scheduled based on the shortest possible treatment durations, this

may result in high waiting times in the clinic. Therefore, the decision maker should

handle the uncertainty in treatment durations wisely to avoid long waiting times and

nurse overtime.

The limited availability of chairs and nurses in the system is another crucial factor

in this problem. A patient should simultaneously seize a nurse and an infusion chair

for the treatment. During the pre-medication stage, where the patient receives the

pre-medication drugs if exist in the prescription, a nurse should always stay with

the patient. During chemotherapy infusion, the drugs that are used in chemotherapy

treatment are injected to patients. A single nurse can proctor multiple patients in this

stage.

In this thesis, we study the problem of sequencing patients and setting appointment

times (i.e., scheduled start time) for a chemotherapy unit by considering the avail-

ability of a limited number of nurses and chairs under uncertainty related to pre-

medication and infusion durations. Decisions in our model include: (1) sequenc-

ing patients of a daily appointment list; (2) setting appointment times; (3) assign-

ment of patients to nurses; and (4) assignment of patients to chairs. We modeled

our chemotherapy appointment scheduling problem as a two-stage stochastic mixed

integer programming (SMIP) formulation. We consider an objective function that

minimizes the total expected cost of patient waiting and overtime across a large set of

scenarios sampled through pre-medication and infusion time distributions. We pro-

pose a Progressive Hedging Algorithm (PHA) that utilizes the problem structure to

find near-optimal chemotherapy schedules. In particular, we propose a penalty up-

date method that considers convergence behavior of the primal and dual variables.

The method includes a limit on penalty parameter whose value changes according to

the iteration number. We test a cycle detection and variable fixing mechanism, and

linearize the objective function to improve solution times of scenario subproblems.

We also investigate the impact of varying CPLEX optimality gap for scenario sub-

problems. We compare the PHA with heuristics used in the relevant studies from the

3



appointment scheduling literature. We solve problem instances based on data from a

major oncology hospital. Our experiments provide insight into the issues related to

the following questions.

1. What is the value of considering uncertainty in pre-medication and infusion

durations when scheduling chemotherapy appointments?

2. What is the potential benefit of using the Progressive Hedging Algorithm over

commonly used heuristics from the relevant appointment scheduling literature?

3. Which PHA routines and parameters must be carefully designed to enhance the

algorithm performance and solution quality?

4. How does the nurse-to-chair ratio affect the trade-off between patient waiting

time and nurse overtime?

The organization of the next chapters is as follows. In the next chapter, literature re-

view and the main contributions of the thesis are presented. In Chapter 3, the problem

description and model formulation are given. In Chapter 4, a brief literature review

on the solution methodologies for the two-stage stochastic programs is provided. The

progressive hedging algorithm and its implementation details are also presented in

this chapter. The results of the computational experiments are demonstrated in Chap-

ter 5. The concluding remarks and further research ideas are discussed at Chapter

6.
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CHAPTER 2

LITERATURE REVIEW

In outpatient chemotherapy clinics, many different strategic, tactical and operational

decisions can be addressed using operations research models. A detailed review of

operations research studies on several different aspects of cancer care is provided in

Saville et al. [7]. Chemotherapy planning and patient appointment scheduling have

recently taken particular attention in this area. Deterministic and stochastic mathe-

matical programming formulations, dynamic programming methods, Markov deci-

sion processes (MDP), heuristic approaches, simulation models have been used for

studying chemotherapy planning and appointment scheduling problems. Our litera-

ture review specifically focuses on chemotherapy planning and scheduling problems.

The reader is referred to Lame et al. [8] for an extensive review on the subject.

Since we study an outpatient chemotherapy appointment scheduling problem, articles

from the general outpatient appointment scheduling literature may also help under-

stand the nature of the problem. To keep our review compact, we refer the readers to

Gupta and Denton [9], Cayirli and Veral [10], Javid et al. [11] for oupatient schedul-

ing studies on primary care and specialty care. Furthermore, the differences between

general outpatient scheduling and outpatient chemotherapy scheduling problems were

discussed in Heshmat and Eltawil [12].

We do not restrict our review with the studies that focuses on only the treatment phase

of chemotherapy (i.e. pre-medication and infusion). Some studies also consider the

steps that need to be completed before the treatment starts. These steps are the follow-

ing: (1) blood tests, (2) oncologist evaluation, (3) drug preparation in the pharmacy.

The third step is always conducted on the day of treatment. However, the first and

second steps may be conducted in an earlier day in some clinics. A patient’s blood
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test result determines whether or not the patient is ready to go through the treatment.

After the blood test results are received from the laboratory, the treatment of the pa-

tient is either approved or postponed after the oncologist evaluates the results. In case

the treatment is approved, a drug preparation order is provided to the pharmacist. The

treatment can start when the chemotherapy drug is prepared.

The remainder of the literature review is organized as follows: We investigate de-

terministic chemotherapy planning and scheduling problems and their solution ap-

proaches at Section 2.1. In Section 2.2, studies on stochastic chemotherapy planning

and scheduling are discussed.

2.1 Deterministic Chemotherapy Planning and Scheduling Problems

In this category of articles, values of parameters for chemotherapy planning and

scheduling problems are assumed to be deterministic. These parameters represent

pre-medication and infusion durations, punctuality of patients, cancellations, results

of the lab tests, and number of available nurses.

Turkcan et al. [13] handled chemotherapy planning and scheduling problems in a

hierarchical manner. In the first formulation, the aim is to minimize treatment delays

while assigning the new patients to treatment days. It was assumed that the plans of

the patients that are already scheduled should be preserved. After determining the

daily patient lists, the authors focused on the daily patient scheduling problem by

considering resource availabilities and acuity levels of the patients. They split the

whole time period into slots and assumed that the treatment length of the patient is

predetermined in the planning phase. In a similar context, a multi-criteria optimiza-

tion problem was studied by Condotta and Shakhlevich [14]. In this study, patients

were assigned to days, which also determined the following appointment days of the

patients, as the number of days between consecutive visits was known. Next, the ap-

pointment time setting, and patient-nurse allocations were made before the treatment

day. The objectives are to minimize the patient waiting time and maximum nurse

workload. The authors also revised the daily schedules on the days of treatment.

Heshmat and Eltawil [15] studied the chemotherapy planning problem with two as-
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pects. The first one is finding optimal dosages of the chemotherapy drugs, whereas

the second one is the assigning the new patients’ first treatments to future days by con-

sidering the existing patients in the schedule. The aim was to minimize the amount

of cancerous tissues, idle and overtime of nurses, and treatment delays of the pa-

tients. The authors also considered the pharmacists’ working hours and proposed a

sequential approach to determine the drug schedules and first-treatment days of the

new patients.

The performances of constraint programming and MIP models were compared in

[16]. It was shown that constraint programming outperforms its MIP counterpart by

a range between 14% and 37% with respect to the makespan. An important con-

straint in their model limits the number of patients served by a nurse to four at any

point in time. Oncologist evaluation and pharmacy preparation stages were studied in

addition to the treatment stage in the model developed in [17]. Nurses were always

assumed to be ready for the treatment, so the scarce resources were the oncologists

and chemotherapy chairs. The authors compared the performances of the Lagrangian

relaxation-based heuristics and local search heuristics, and concluded that Lagrangian

relaxation-based heuristics perform better in terms of patient waiting times.

Liang et al. ([18]) discussed two different care delivery models for treatment of pa-

tients, namely functional and primary care delivery models. In the functional care

delivery model, it is allowed to assign a different nurse to a patient at each treatment

visit. On the other hand, a specific nurse is responsible for the patient’s treatment in

the primary care delivery model. The workload among nurses tends to show higher

variability in the primary care delivery model, compared to the functional care deliv-

ery model. The authors constructed a mathematical programming model to minimize

nurse overtime and total excess workload for the case of primary care delivery model.

In their formulation, acuity levels of patients are taken into account and there is an

upper bound on the assigned accuity level for each nurse in a time slot. Skill levels

of the nurses are also included in the model. For the functional care delivery model,

they aimed to minimize the total nurse overtime and patient waiting time within a

multi-objective optimization model framework.

Santibanez et al. [19] summarized the difficulties of scheduling chemotherapy ap-
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pointments and consequences of inefficient scheduling in terms of their impact on

chemotherapy patients. While assigning appointment times to patients, the planner

should consider the preferences of patients, capacity of the pharmacy and laboratory,

schedules of the oncologists, and overtime for nurses. To determine the chemother-

apy schedules, a timetable was prepared in [20], where it was assumed that laboratory

tests and oncologist evaluation are completed on the previous day of the treatment.

Pharmacist availability is an important concern in the scheduling process. As a con-

clusion, pharmacist and nurse efficiencies were improved, and the patient waiting

times were reduced in the oncology clinic.

Heshmat et al. [21] proposed a two-stage solution approach for the chemotherapy

appointment scheduling problem. In the first stage, patients were grouped using clus-

tering algorithms. In the latter stage, the cluster of patients were assigned to nurses,

chairs, and time slots by solving a mathematical programming model. Huggins et

al. [22] considered a mathematical programming model to maximize chair utilization

while considering the workloads of the pharmacists and nurses. They constructed

two phases in the solution approach. In the first phase, a mathematical programming

model was developed to assign patients to time slots. In the second phase, results of

the mathematical programming model were validated with a simulation study. Two

heuristics were developed to assign patients to the infusion chairs by Sevinc at al.

[23]. They decomposed the problem into two phases. In the first phase, the laboratory

tests are scheduled. An algorithm was constructed to determine the daily patient list

for the laboratory. If a patient’s health status is not well enough to take chemotherapy

treatment, that patient’s lab test is shifted to another day. The patients who are able

to obtain an oncologist approval according to their test results are then assigned to

infusion chairs in the second phase. To obtain a solution to this scheduling problem,

the authors benefited from multiple knapsack problem heuristics.

The makespan and weighted flow time were minimized in [24] to schedule appoint-

ments of the chemotherapy patients. The authors expressed deterministic treatment

durations in terms of time slots by assuming that a nurse can make only one setup

at a given time, as in our study. Other aspects considered in the study are the patient

priorities and lunch-coffee breaks of the nurses. The authors solved their appointment

scheduling problem by formulating an integer programming model.
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Our study differs from the studies summarized in this section since our study consid-

ers uncertainty in the durations of chemotherapy pre-medication and infusion.

2.2 Stochastic Chemotherapy Planning and Scheduling Problems

There are various parameters that might be considered uncertain in chemotherapy

planning and scheduling problems. The articles discussed below consider the uncer-

tainty associated with chemotherapy treatment and drug preparation durations, results

of the lab tests, punctuality of patients, nurse availability, and acuity levels of the pa-

tients.

Gocgun and Puterman [25] used an MDP formulation to dynamically assign pa-

tients to future days while considering target treatment days of the patients. Since

chemotherapy treatment is highly sensitive to the deviation from the target treatment

day, the authors penalized the deviation from the target days. Moreover, they ensured

that the time window constraints defined for the treatments were not violated. They

obtained solutions for the MDP formulation using a linear programming based ap-

proximate dynamic programming approach. Alvarado and Ntaimo [26] formulated

three different mean-risk stochastic integer programming models for the chemother-

apy appointment planning and scheduling problem. Acuity levels, treatment dura-

tions, and nurse availability were represented by stochastic parameters in their prob-

lem description. Their model was formulated to provide a solution for a single pa-

tient. In other words, the authors assumed that the appointments of earlier patients

were already booked. They made their planning and scheduling decision for the cur-

rent patient by considering the remaining time slots in the future days. The objective

was to minimize the deviation from the target treatment start day for the new patient,

patient waiting time, and nurse overtime. In our study, we consider planning the daily

schedules of multiple patients without using time slots.

In a thesis study, Tanaka [27] assigned patients to the infusion chairs using online

bin packing heuristics. It was assumed that each infusion chair has a seperate patient

list for the treatments. In other words, a patient should wait until a specific chair is

available for the treatment. Due to this reason, a single server model for each in-
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fusion chair was constructed. Different types of lab tests before the infusion were

considered. A patient might have a scheduled lab test, and the durations of the lab

tests may vary. The uncertainty in drug preparation and nursing durations before the

infusion, such as taking vitals and assessment was taken into account. However, the

study assumed that the treatment durations including pre-medication and chemother-

apy infusion are deterministic. Different bin packing heuristics were implemented to

solve the problem.

Mandelbaum et al. [28] considered uncertain treatment durations and unpunctual

patients. They constructed a data-driven approach for the problem of patient appoint-

ment scheduling, assuming that the infusion chairs are the only servers of the system.

Therefore, the impact of limited nurse availability on a schedule is not considered in

this study.

A discrete event simulation model was developed to see the effect of different opera-

tional decisions on the patient waiting time, clinic overtime, and resource utilization

in an outpatient oncology clinic in [29]. The authors included oncology visits, lab

tests, drug preparation, and chemotherapy treatments in their model. The aim was

to develop a coordinated appointment scheduling system by considering the flow of

the patients. The stochastic elements in the simulation model included unpunctual

arrivals of patients and all service durations. However, the uncertainty was not con-

sidered in the mathematical programming model used to create schedules.

The study that is most similar to the one in this thesis work was conducted by Cas-

taing et al. [6], where the authors constructed a two-stage stochastic integer program

to determine patient appointment times in an outpatient chemotherapy clinic in order

to minimize the expected patient waiting time and total time required for all treat-

ments (i.e., clinic closure time). The authors assumed that an initial schedule was

already created. Their model allows to make small revisions on the existing schedule

as they assumed the sequence of patients can not be changed. They set appointment

times for a given sequence of patients and considered multiple chairs, but a single

nurse in the clinic. The binary variables in the second stage makes the model difficult

to solve. Therefore, a two-phase heuristic, which facilitates setting the values of those

variables, was implemented to solve the problem. This study differs from Castaing
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et al. [6] in a number of ways. First, we do not make the restricting assumption that

the patient sequence is fixed. Hence, our model does more than the refinement of the

existing schedules. The model can be used to create an initial schedule. Moreover, we

consider multiple nurses in the clinic. A patient can be assigned to any of the nurses

for treatment. Therefore, our model is applicable to clinics operating based on func-

tional care delivery model. On the other hand, the model of Castaing et al. [6] can be

used by clinics functioning according to primary care delivery model. Furthermore,

their model must be solved separately for each nurse, as it considers a single nurse.
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CHAPTER 3

THE CHEMOTHERAPY APPOINTMENT SCHEDULING PROBLEM

In this thesis, we define the Chemotherapy Appointment Scheduling Problem based

on our observations of the chemotherapy operations at the Hacettepe University On-

cology Hospital in Ankara, Turkey, which is one of the prominent oncology centers

in the country.

3.1 Chemotherapy Operations in the Hacettepe Outpatient Chemotherapy Unit

The Hacettepe Outpatient Chemotherapy Unit consists of 32 chemotherapy chairs, 28

of which are used for treatments. The remaining four chairs are reserved for support-

ive care. The number of patients receiving treatment varies between 60 and 85 on a

given day. On average, 10 nurses, including a head nurse, provide service to patients

each day. A daily shift starts at 8:00 and ends at 17:00 (unless overtime is needed),

with a lunch break between 12:00-13:00. The daily schedule of patients is arranged

by the head nurse, who assigns appointment times, chairs and nurses to the patients.

Our observations at the chemotherapy unit aimed to capture the operations conducted

until and during the chemotherapy treatment. The blood tests and oncologist evalua-

tions are carried out on a different day before the treatment. The results of these tests

are examined by the oncologist to decide whether the patient has convenient health

status to receive a chemotherapy treatment. When the oncologist approves the treat-

ment protocol, she updates or confirms the dosages of the drugs. The drugs are then

prepared in the pharmacy lab before the patient arrives at the hospital for her treat-

ment. During each treatment visit, a patient receives two types of medications: (i)

pre-medication drugs, which are injected prior to the chemotherapy infusion to help

13



prevent side effects; and (ii) chemotherapy infusion drugs, which are used for cancer

treatment.

There are certain time slots that the patients are assigned to according to their esti-

mated treatment duration, which is predicted according to the types and dosages of

the drugs injected. During a day, the unit makes use of four time slots: 8:00-10:30,

10:30-12:00, 13:00-15:30 and 15:30-17:00. If the estimated treatment duration of a

patient is less than the length of a slot, the patient is given an appointment time so

that the expected end of treatment is within the same slot. Otherwise, the patient can

be assigned to more than one slot. If the estimated treatment duration of a patient is

longer than those of other patients, the head nurse prefers to assign this patient to the

beginning of the workday in order to prevent overtime. In the rare case that the es-

timated duration of the treatment exceeds 270 minutes, the appointment is generally

split into two parts, one in the morning and one in the afternoon. Given the uncertain-

ties in the treatment times, the two main objectives in designing the schedule are to

ensure that (i) each patient can actually start their treatment at the pre-determined ap-

pointment time without waiting, and (ii) all patients are treated before 17:00, thereby

avoiding overtime.

The treatment of a patient consists of a sequence of events, as illustrated in Figure

3.1. A patient that arrives to the unit is immediately registered and becomes available

for treatment at the appointment time. If a nurse and/or chair is not available at the

time, the patient has to wait for the treatment. A nurse calls the patient when an

infusion chair and the nurse both become available. After the patient is seated in a

chemotherapy chair, the nurse measures the fever and blood pressure, and establishes

a vascular access to start the pre-medication process. Note that a small minority of

the patients may not need pre-medication drugs. However, the vast majority starts the

infusion process after the pre-medication process ends. When the infusion process is

over, the patient is discharged, and the nurse calls the next patient to the chair that has

become available.
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Figure 3.1: Patient flow chart for treatment process

In general, each nurse may be responsible for up to four patients at a given time. The

Hacettepe Outpatient Chemotherapy Unit applies a modified form of the functional

care delivery, where in line with this procedure each patient can be assigned to dif-

ferent nurses in subsequent visits. However, nurse-patient assignments in the clinic

also consider the type of cancer and expected duration of treatment, which may limit

the pool of nurses that can be assigned to the patient. The balance of both criteria is

aimed to be satisfied to create equity between nurses.

3.2 A Two-Stage Stochastic Mixed-Integer Programming Model for the Chemother-

apy Appointment Scheduling Problem

We formulate a two-stage stochastic mixed-integer programming (SMIP) model for

the Chemotherapy Appointment Scheduling Problem, motivated by the operations at

the Hacettepe Outpatient Chemotherapy Unit. In particular, we study the problem of

sequencing patients and setting appointment times for a chemotherapy unit by con-

sidering the availability of nurses and chairs under uncertainty about pre-medication

and infusion durations. We sequence patients of a daily appointment list, set appoint-

ment times, and assign patients to nurses and chairs in our model. We consider an

objective function that minimizes a weighted combination of patient waiting time and

overtime.

In Section 3.2.1, we provide background information on two-stage stochastic pro-

gramming, followed by our assumptions and the details of our stochastic program-

ming model in Section 3.2.2. We end this section by proposing a number of valid
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inequalities and bounds to strengthen the model in Section 3.2.3.

3.2.1 Background Information on Stochastic Programming

Stochastic Programming is a method for modeling optimization problems that in-

clude uncertainty. The uncertainty is included in the model with different data sets

of stochastic parameters. The uncertain parameters are represented by defining sce-

narios, and each scenario is associated with a probability of occurence. The aim is to

minimize (or maximize) the expected value of the objective function, which depends

on the decisions and realizations of random variables at each stage.

The most commonly used form of a stochastic program is a two-stage stochastic

programming model, where the uncertainty on the random variables is fully revealed

at an instant. The decisions that are made without full information of the random

events are called first-stage decisions. After uncertainty is revealed, the second-stage

decisions are taken. The second-stage decisions depend on the first-stage decisions

and realizations of scenarios. The general representation of the two-stage stochastic

linear program is given as follows:

min z = cTx+ Eξ[min q(ω)Ty(ω)] (3.1)

s.t. Ax = b (3.2)

T (ω)x+Wy(ω) = h(ω) (3.3)

x ≥ 0, y ≥ 0 (3.4)

In this model, the first-stage decision vector is represented by x, and the first stage

costs and parameters are given by vectors c, b, and matrix A. The second-stage de-

cision vector is denoted by y and the uncertainty is shown with the random events

ω ∈ Ω. q(ω), h(ω) and T (ω) are the parameters of the second-stage problem. The

"here-and-now" decision x is made before the uncertainty about future realizations

of ξ is resolved. After the actual realization of ξ becomes known, the second stage

problem is optimized [30].

The objective function (3.1) includes a mathematical expectation with respect to ξ.

Since it may be challenging to compute the expected value, the following determin-
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istic equivalent formulation can be constructed:

min z = cTx+Q(x) (3.5)

s.t. Ax = b (3.6)

x ≥ 0 (3.7)

where Q(x) is defined as the recourse function:

Q(x) = EξQ(x, ξ(ω)) (3.8)

Q(x, ξ(ω)) = miny{q(ω)Ty | Wy = h(ω)− T (ω)x, y ≥ 0} (3.9)

3.2.2 Two-Stage Stochastic Mixed-Integer Programming Formulation

In this section, we discuss our two-stage SMIP model for the chemotherapy appoint-

ment scheduling problem. The advantage of using SMIP model can be solving the

stochastic program using the MIP formulation. We first list the assumptions made in

the model:

Assumptions:

• We ignore some of the events shown in Figure 3.1, and focus on the three main

events in between the patient appointment time and treatment completion time

in the model. The events we consider include patient waiting, pre-medication,

and infusion (see Figure 3.2).

• Patients can be treated by any available nurse, as is the case for functional care

delivery. Nurses are also assumed to be identical.

• A nurse can perform only one patient’s pre-medication process at any time.

• A nurse can proctor the infusion process of multiple patients while conducting

the pre-medication process of a patient.

• Patients become ready exactly on the appointment time for treatment.

• Each patient’s health status is well enough to complete the treatment. There-

fore, we omit the exceptional cases that the a nurse and/or chair may become

idle due to early termination of treatments.
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Figure 3.2: Chronology of Main Events in the Chemotherapy Unit

At the first stage of the model, patients are sequenced and their appointment times are

set. Then, pre-medication and infusion durations are realized. At the second-stage,

patients are assigned to nurses and chairs. Note that nurse and chair assignments are

trivial, because each patient is assigned to the first available chair and nurse in all

scenarios. Furthermore, the sequence of patients is not allowed to be changed in the

second stage. The remaining decision variables at the second stage help determine

patient waiting time, discharge time, and nurse overtime.

Nurse overtime and patient waiting time are the criteria considered in the model.

Overtime is calculated separateley for each nurse that works for more than the planned

shift length. Overtime is also a surrogate measure for idle time due to the positive cor-

relation between these two values. Chairs become idle due to two reasons. First, treat-

ment of a patient may finish earlier than the appointment time of the subsequent pa-

tient. Second, longer than expected durations of pre-medications may prevent nurses

from initiating the treatment of a waiting patient. Waiting occurs when the treatment

starts later than the appointment time of the patient, which may happen when pre-

medications or infusions for the previous patients may last longer than expected. The

unavailability of nurses or chairs may also cause waiting.

We assume a finite set of scenarios representing uncertainty in pre-medication and in-

fusion durations. Given these scenarios, we formulate the following two-stage SMIP

model for our problem based on sets, parameters, first and second stage decision vari-

ables summarized in Table 3.1.
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Table 3.1: Notation

Sets

I Set of patients

C Set of chairs

Ω Set of scenarios

N Set of nurses

Parameters

sωi preparation time of patient i ∈ I in scenario ω ∈ Ω

tωi infusion length of patient i ∈ I in scenario ω ∈ Ω

pω probability of scenario ω ∈ Ω

H Shift duration of nurses

L Overtime limit of nurses

λ tradeoff parameter in the objective function in the interval [0, 1]

First Stage Decision Variables

bij =

1, if patient i ∈ I precedes patient j ∈ I in daily appointment list

0, otherwise

ai appointment time of patient i ∈ I

Second Stage Decision Variables

xωin =

1, if patient i ∈ I is assigned to nurse n ∈ N in scenario ω ∈ Ω

0, otherwise

yωic =

1, if patient i ∈ I is assigned to chair c ∈ C in scenario ω ∈ Ω

0, otherwise

wωi waiting time of patient i ∈ I in scenario ω ∈ Ω

dωi discharge time of patient i ∈ I in scenario ω ∈ Ω

Oω
n overtime of nurse n ∈ N in scenario ω ∈ Ω
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min Q(a,b) (3.10)

bij + bji = 1 ∀i, j ∈ I, j > i (3.11)

aj ≥ ai −M(1− bij) ∀i, j ∈ I, j 6= i (3.12)

bij ∈ {0, 1} ∀i, j ∈ I (3.13)

ai : integer ∀i ∈ I (3.14)

where

Q(a,b) = Eξ[Q(a,b, ξ(ω))]

is the expected recourse function, and

Q(a,b, ξ(ω)) = min
{
λ
∑
i∈I

pωwωi + (1− λ)
∑
n∈N

pωOωn

}

∑
n∈N

xωin = 1 ∀i ∈ I (3.15)

∑
c∈C

yωic = 1 ∀i ∈ I (3.16)

ai + wωi + sωi + tωi = dωi ∀i ∈ I (3.17)

aj + wωj ≥ ai + wωi + sωi −M(3− bij − xωin − xωjn) ∀i, j ∈ I, j 6= i,∀n ∈ N (3.18)

aj + wωj ≥ dwi −M(3− bij − yωic − yωjc) ∀i, j ∈ I, j 6= i,∀c ∈ C (3.19)

aj + wωj ≥ ai + wωi −M(1− bij) ∀i, j ∈ I, j 6= i (3.20)

Oωn ≥ dωi −H −M(1− xωin) ∀i ∈ I, ∀n ∈ N (3.21)

Oωn ≤ L ∀n ∈ N (3.22)

dωi , w
ω
i ≥ 0 ∀i ∈ I (3.23)

Oωn ≥ 0 ∀n ∈ N (3.24)

xωin ∈ {0, 1} ∀i ∈ I, ∀n ∈ N (3.25)

yωic ∈ {0, 1} ∀i ∈ I, ∀c ∈ C (3.26)
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The objective function in (3.10) only includes the expected second-stage cost, since

there is no contribution from the first stage to the objective function. The expected

second-stage cost aims to minimize the expected weighted sum of total patient wait-

ing time and nurse overtime. First-stage constraints are given by (3.11)-(3.14). The

patient precedence relations are determined with constraints (3.11). If patient i ∈ I
is scheduled before the patient j ∈ I , the corresponding bij value should be equal to

1. Constraint (3.12) establishes the relationship between the binary precedence vari-

ables and appointment times, in that if patient i ∈ I precedes patient j ∈ I in the

list, then the appointment time of patient i ∈ I should be no later than that of patient

j ∈ I . Binary and integrality restrictions on the first-stage variables are represented

in constraints (3.13) and (3.14), respectively.

In the second stage, nurse and chair assignments are made based on the realized treat-

ment durations. For each scenario representing a set of chemotherapy durations, a

subproblem is solved to obtain second stage decisions. The constraints for the second

stage scenario subproblems are expressed by (3.15)-(3.26). Constraints (3.15) and

(3.16) enforce every patient to be assigned to exactly one nurse and one chair, respec-

tively. Constraints (3.17) calculate the patient discharge time, which is equal to the

sum of the patient appointment time, waiting time, and durations of pre-medication

and infusion. Constraints (3.18) ensure that if patient i ∈ I and j ∈ I are assigned

to the same nurse, and patient i ∈ I is scheduled before j ∈ I , then the treatment

start time of patient j ∈ I should be after the end of pre-medication of patient i ∈ I .

Similar relation also holds for chair-precedence relationship, which is demonstrated

in constraints (3.19). If two patients are assigned to the same chair, the latter one’s

treatment may begin only after the discharge time of the former one. By constraints

(3.20), a patient’s treatment start time should be earlier than those of the patients that

are scheduled later. Lastly, overtime of a nurse should be either zero or the difference

between the discharge time of the last discharged patient assigned to this nurse and

the shift length, as determined by constraints (3.21). In oncology units, it is desired

to have limited overtime to enhance nurses’ working conditions and preserve equity

among the nurses. A predetermined bound is included to ensure this in the model,

which also tightens the feasible region of the formulation. The associated constraint

is provided in equation (3.22). The remaining constraints are the sign and binary
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restrictions on the second-stage decision variables.

3.2.3 Improvements in the Formulation

Based on the preliminary runs, it is observed that solving even one-scenario problem

instances necessitates significantly long solution times. Consequently, symmetry-

breaking constraints and valid bounds are added in order to strenghten the formula-

tion.

The first set of constraints relates to breaking symmetry with respect to the overtime

of nurses. Since nurses are assumed to be identical, the schedules of the nurses are

interchangable. By convention, we enforce the overtime of nurse with index 1 to be

no less than those of the other nurses. In this way, overtime amount may be assigned

in non-increasing order of nurse indices. The mathematical representation of this

constraint is as in equation (3.27):

Oω
n ≥ Oω

n+1 ∀n ≤ |N | − 1,∀ω ∈ Ω (3.27)

Note that balancing nurse workload is not among the main objectives in our study.

However, the upper limit introduced by constraint (3.22) defines an acceptable bound

and hence prevents excessive imbalance. Therefore, adding constraint (3.27) into the

model results in an implementable solution. Furthermore, the preferred nurses for

overtime work can be changed each day, since the model proposes a schedule for a

single day.

Another issue with symmetry occurs while assigning patients to the nurses. To over-

come this issue, the first patient scheduled is assigned to nurse 1. If patient i ∈ I

is the first patient in the schedule, then the summation of the bij values over j ∈ I

should be |I| − 1, where |I| refers to the size of the patient set. The mathematical

representation of this constraint is given in equation (3.28). For the first patient in the

schedule, the left-hand-side of the constraint is equal to 1, forcing xωi1 to be equal to

1 for patient i ∈ I for nurse 1 in every ω ∈ Ω. A similar set of constraints that assign

the first patient scheduled to chair 1 is not observed to have substantial effect in the
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solution times.∑
j 6=i

bij − (|I| − 2) ≤ xωi1 ∀i ∈ I, ω ∈ Ω (3.28)

Lastly, a lower bound on nurse overtime is defined using the structure of the prob-

lem. If one can equally distribute the summation of treatment durations to chairs, the

resulting average total treatment time per chair provides the smallest possible value

for the maximum of patient discharge times. Therefore, the calculated average value

is a lower bound for the sum of nurse shift time and overtime of nurse 1, since the

overtime of nurse 1 is at least as high as all others according to equation (3.27). The

mathematical representation of this constraint is shown in equation (3.29).

Oω
1 +H ≥

∑
i∈I(s

ω
i + tωi )

|C|
∀ω ∈ Ω (3.29)

As proposed in [31], the appointment and waiting times of the first patient in the

schedule can be assigned to zero to reduce the number of decision variables. Ac-

cording to the results of preliminary experiments, adding such time assignments does

not have a significant effect to reduce the computation times, and thus these are not

included in the formulation.

Equations (3.27)-(3.29) are added to the main model and used in the computational

experiments.
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CHAPTER 4

SOLUTION METHODOLOGY

SMIP models are in general computationally demanding mainly due to the large

amount of variables and constraints depending on the number of scenarios [32]. De-

composition based solution methods are generally utilized to solve such models in

the literature. The well-known stage decomposition algorithm proposed by Slyke

and Wets [33], L-shaped method, cannot be applied on stochastic programs in case

there are binary variables in the second stage as in our SMIP formulation. To handle

those cases, Laporte and Louveaux [34] extended the method and proposed Integer

L-shaped algorithm. However, one should assume that only binary variables exist

in the first stage to implement the algorithm. Some other solution methods concern

the difficulty associated with having binary variables in the second stage through ap-

proaches based on value function and set convexification [35], [36]. These disjunctive

decomposition-based branch-and-cut algorithms are known to be very effective, but

they can also be applied on models with only binary variables in the first stage. In our

formulation, the first stage includes both binary and general integer variables.

Scenario decomposition based approaches are also frequently used to solve SMIP

models. The Progressive Hedging Algorithm (PHA) has been increasingly preferred

among them (Gul et al. [37], Hvattum et al. [38], Gonçalves et al. [39]). The PHA,

proposed by Rockafellar and Wets [40], is based on augmented Lagrangian relaxation

technique. The algorithm decomposes the problem into single-scenario subproblems,

and aims to obtain an admissible solution that is feasible for all scenarios by aggre-

gating the scenario solutions at each iteration. It requires reformulation of the model

to attain a structure appropriate for scenario decomposition. It then relaxes the con-

straints that enforce the first-stage decisions to be the same for every scenario in the
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reformulation and penalizes the violation of these constraints by introducing a La-

grangian term and quadratic penalty term in the objective function. The algorithm

is shown to converge to the optimal solution for convex models. Since our model

includes general integer and binary decision variables, it is not convex. Therefore,

PHA is used as a heuristic approach for the Chemotherapy Appointment Scheduling

Problem. Note that there are several evidences in the literature showing that the PHA

is a good heuristic for SMIP models (Gul et al. [37], Crainic et al. [41], Watson and

Woodruff [42])

In the next section, general steps of the PHA are given, followed by a literature review

on different applications of the PHA. We make use of a number of approaches from

the literature to modify the PHA, which is discussed in the last part of this chapter.

4.1 The Progressive Hedging Algorithm

We first reformulate our SMIP model to facilitate scenario decomposition. In the re-

formulation for PHA, which we call as SMIP-R (see Appendix A.1 for the model),

non-anticipativity constraints are explicitly formulated. To formulate these constraints,

a copy of a first-stage variable must be created for each scenario. The constraints then

enforce the first-stage decision variables to be equal to each other across all scenarios

to prevent anticipation of the future. Since the appointment time values (ai) and the

precedence relationship variables (bij) are dependent on each other, there is no need

to include non-anticipativity constraints for the latter. In SMIP-R, non-anticipativity

constraints for the appointment time values are given by:

aωi = ai ∀i ∈ I,∀ω ∈ Ω, (4.1)

where the ai values represent the consensus variable for appointment time of patient

i ∈ I . Prior to the PHA implementation, these non-anticipativity constraints are

relaxed, and their violation are penalized with two terms in the objective function.

In the first term, the amount of violation for each patient is multiplied by Lagrangian

multipliers denoted by µωi ∀i ∈ I,∀ω ∈ Ω. The second term is a quadratic component

that takes the square of these violations, and multiplies them by
ρ

2
, where ρ denotes
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the penalty parameter. The revised objective function is given below.

λ
∑
i∈I

∑
ω∈Ω

pωwωi + (1− λ)
∑
n∈N

∑
ω∈Ω

pωOω
n +

∑
i∈I

∑
ω∈Ω

µωi (aωi − ai) +

ρ

2

∑
i∈I

∑
ω∈Ω

||aωi − ai||2 (4.2)

To have a separable formulation, ai in (4.2) is replaced by âi, a consensus parameter

that is equal to the weighted average of appointment times over all scenarios, where

the weights are equal to the probabilities of scenarios.

âi =
∑
ω∈Ω

pωaωi ∀i ∈ I (4.3)

The resulting structure of the objective function and constraint set allows the SMIP-R

to be decomposed into scenario subproblems, which are solved independently at each

iteration of the algorithm.

The general steps of the PHA, shown also in Algorithm 1, are as follows: In step 1, al-

gorithm parameters are initialized. Penalty parameter of the quadratic term ρ is set as

a positive constant value of ρ0, and the Lagrangian multipliers µω(v)
i ∀i ∈ I,∀ω ∈ Ω

are initialized as 0 at iteration v=1. In step 2, each scenario subproblem is solved.

Note that quadratic penalty and Lagrangian terms are ignored in the first iteration. In

step 3, the appointment time values obtained for every patient and scenario are used

to calculate the consensus parameters âi for every patient i ∈ I . In step 4, the penalty

parameter ρ is updated by multiplying it with a pre-determined positive constant α.

By using the value of the penalty parameter, Lagrange multipliers are updated consid-

ering the distance between scenario solutions and the consensus parameter value. At

the end of each iteration, the termination criterion is checked. If all first-stage solu-

tions are identical, the algorithm stops. Otherwise, the algorithm returns to step 2 and

solves scenario subproblems with the updated values of the multipliers and consensus

parameter.

4.2 Literature Review on the Progressive Hedging Algorithm

The PHA is used in various application areas where the problem involves stochastic

components. In this section, a literature review for different applications and modifi-

cations of the PHA is provided.
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Algorithm 1 Progressive Hedging Algorithm
1: Step 1: Initialization:
2: Let v=1
3: ρ(v) = ρ0

4: µ
ω(v)
i = 0 ∀i ∈ I,∀ω ∈ Ω

5: Step 2: Solving scenario-subproblems:
6: if v = 1;
7: For each ω ∈ Ω; ignore Lagrangian and quadratic penalty terms and solve
8: scenario subproblems to obtain:
9: aωi

(v) ∀i ∈ I,∀ω ∈ Ω
10: end if
11: else
12: For each ω ∈ Ω; scenario subproblems to obtain:
13: aωi

(v) ∀i ∈ I,∀ω ∈ Ω
14: end else
15: Step 3: Calculate the consensus parameters:
16: âi =

∑
ω∈Ω

pωa
ω(v)
i ∀i ∈ I

17: Step 4: Update penalty parameters:
18: if v > 1;
19: ρ(v+1) = αρ(v)

20: end if
21: Step 5: Update Lagrange Multipliers:
22: µωi

(v+1) = µωi
(v) + ρ(v)(aωi

(v) − âi) ∀i ∈ I,∀ω ∈ Ω
23: Step 6: Termination:
24: if all first stage solutions are the same, then stop.
25: a

ω(v)
i = âi ∀i ∈ I,∀ω ∈ Ω

26: end if
27: else
28: Set v= v+1;
29: end else
30: return to Step 2

An inventory routing problem was studied with uncertain customer demands by Hvat-

tum et al. [38]. Scenario trees were used to represent the stochastic nature, and the

PHA is extended with some innovations such as dynamic multiple penalty parame-

ters and heuristic intermediate solutions. The penalty parameter is increased when

the distance between the scenario solutions and the consensus parameter increases.

When the consensus parameters at consecutive iterations moves farther away from

each other, the penalty parameter is reduced. They also fixed the integer variables

that are identical for all scenario subproblems at an intermediate iteration.

Gul et al. [37] formulated a multi-stage stochastic mixed integer program for a
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surgery planning problem. The authors used bundle concept to represent common

decisions in different scenarios. The bundle constraints, as non-anticipativity con-

straints, are dualized and placed in the objective function of the deterministic equiv-

alent model used in PHA. Since the quadratic term in the objective function in-

cluded only binary decision variables, the subproblems solved in the algorithm be-

came mixed integer programs. The penalty term was updated according to the method

suggested by Hvattum et al. [38]. The Lagrangian penalty parameters were also up-

dated by checking the majority of the scenario decisions.

Gade et al. [43] studied the stochastic unit commitment problem and used the PHA

to solve their problem. The authors proposed a method to find lower bounds from the

PHA in any iteration by taking the expectation of the related scenario solutions. The

method can be applicable to both two-stage and multi-stage stochastic mixed-integer

programs. By using dual prices, a mathematical model for every scenario was solved

by using an objective function that consists of similar terms with the PHA except the

quadratic term. The authors concluded that the bound obtained from an intermediate

iteration of the PHA can be quite tight. In the same study, they bundled scenarios,

and solved the resulting bundle subproblems to increase the speed of convergence.

They observed that scenario bundling not only provides smaller number of iterations

but also improves lower bound quality. The same authors worked on the stochastic

unit commitment problem in [44] and solved scenario subproblems approximately

in the early iterations of the PHA, since obtaining exact solutions from the scenario

subproblems is not a necessity for the algorithm. After the second iteration, they lin-

early reduced the optimality gap value that is used to terminate the CPLEX iterations.

Since variable fixing provides fast solutions in the later iterations, reducing gap does

not increase the solution times significantly.

A number of modifications to improve convergence behavior and computation times

of the PHA are suggested by Watson and Woodruff [42], who classified the changes

made in the algorithm in four categories: computing effective ρ values, accelerating

convergence, termination criteria and detecting cyclic behaviour. In the first category,

ρ was updated proportionally to the cost coefficient associated with the relevant deci-

sion variable. The aim was to construct a heuristic approach to determine the values

of ρ for improving the convergence. For the second category, they considered variable
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fixing and slamming. The values of the decision variables that did not change within

some predefined amount of iterations were fixed to reduce solution times. By giving

up slightly on the solution quality, the solution times could be significantly improved.

In slamming, decision variables are fixed before the convergence where the scenario

solutions are close enough to each other. The decision variable is recommended to

be fixed to the maximum value observed in the scenario solutions to preserve feasi-

bility. Termination criterion is determined by examining the total value of deviation

from the consensus variable. A limit for total deviation can be set to allow small

differences within the scenarios to reduce the solution times. For the fourth category,

the behaviour of the Lagrangian penalty term was observed to detect cycles. When

a cyclic behaviour was observed for a particular first-stage variable, the values of the

variable in all scenario subproblems were fixed to the maximum of them.

The PHA was applied to stochastic networks by Mulvey and Vladimirou [45], where

a new technique to update the penalty parameter dynamically is suggested. The tech-

nique can prohibit stalling and ill-conditioning solution structures, which occurs when

the algorithm gets stuck at suboptimal solutions. The penalty parameter update tech-

nique is given by:

ρ(v+1) = (αρ(v))η (4.4)

where η is a positive parameter used to control the value of the penalty parameter.

In their method, the choices of α and η have significant importance for convergence.

On the other hand, the authors also suggest that the penalty parameter can be reduced

when the scenario solutions are close to convergence to the consensus variable. To

decrease the solution times of the scenario subproblems, obtaining inexact solutions

may also be beneficial.

Other studies that propose modifications to the PHA include Gonçalves et al. [39],

where serial and parallel implemantations of PHA were studied on a operations plan-

ning problem of a hydrothermal system, Atakan et al. [46], where the PHA was used

to solve the nodal relaxations in the nodes of branch-and-bound method for stochas-

tic mixed integer programs, and Helgason and Wallace [47], who used approximate

individual scenario solutions in the PHA in an application in the fishery management.
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4.3 Modifications on the Progressive Hedging Algorithm

When the PHA is applied to the Chemotherapy Appointment Scheduling Problem,

even single-scenario subproblems require substantial computational times, which deem

realistically-sized instances of the problem impossible to solve in reasonable time. A

number of issues contribute to this issue. The first one is the quadratic term used in

the objective function of the subproblems, whereas the second one is the choice of

penalty parameter update method. We investigate other improvement ideas on the

PHA by detecting and favoring solutions found in the majority of the scenario sub-

problems, detecting cycles, and varying the optimality gap parameter of CPLEX to

obtain approximate scenario subproblem solutions to decrease solution times. We

also propose a lower bounding scheme for nurse overtime by benefiting from the

structure of the PHA. In the following sections, these modifications on the PHA are

presented.

4.3.1 Handling the Quadratic Term in the Objective Function

The scenario subproblems solved at each iteration of the PHA includes a quadratic

term in the objective function, which makes them difficult to solve. This term looks

as follows:

ρ

2

∑
i∈I

∑
w∈Ω

||aω(v)
i − âi||2 =

ρ

2

∑
i∈I

∑
ω∈Ω

(a
ω(v)
i )2 − ρ

∑
i∈I

∑
ω∈Ω

(a
ω(v)
i âi) +

ρ

2

∑
i∈I

âi
2

(4.5)

Since âi is a parameter, the only quadratic part is the first term on the right-hand side

of (4.5). Our aim is to use a method to handle this term in a fast manner without

sacrificing significantly from the solution quality. For this end, we attempt three

different approaches:

1. Nonlinear optimization using commercial solvers

2. Second-order cone programming (SOCP)

3. Linearization of the quadratic term
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For the first approach, Nonlinear Optimization package of CPLEX 12.8 is used. The

quadratic term is included in the objective function without making any change in

the algorithm. In the second approach, additional variables are defined to convert the

quadratic term into a appropriate format for second-order cone programming. For the

third approach, two alternatives are available in the PHA literature. The quadratic

term is linearized using a piecewise linear function in Watson et al. [48]. Alterna-

tively, Helseth [49] dynamically approximated the quadratic term by benefiting from

tangent line approximation. In particular, linear cuts that approximate the quadratic

term are added to scenario subproblems to have a linear objective function.

Based on our preliminary experiments, we decided to use the third approach since it

outperforms the other two in terms of the computational times significantly. In fact,

due to the use of linearized penalty components in the objective function, we call

our algorithm as linearized progressive hedging algorithm (LPHA). The linearization

method that we use, which is based on the approach in [49], is explained next.

Taylor’s approximation can be useful to estimate (a
ω(v)
i )2. A general form of Taylor’s

approximation is given by:

f(m) ≈ f(n) + f ′(n)(m− n) (4.6)

where n is an operating point that helps to evaluate f(m). In our problem, two dif-

ferent values can be used as the operating point to estimate the value of aω(v)
i . These

include the consensus parameter value and the appointment time obtained for the

same scenario in iteration (v− 1), respectively. Based on our preliminary experiment

results, we chose the second option while formulating the linear cuts. A new vari-

able gω(v)
i is defined to represent (a

ω(v)
i )2. The definition of parameters and decision

variables for the proposed linear cuts are given as follows:

g
ω(v)
i : variable used to approximate the value of (aωi )2 for patient i in scenario ω

(a
ω(v)
i )2 ≥ (a

ω(v−1)
i )2 + 2(a

ω(v−1)
i )(a

ω(v)
i − aω(v−1)

i ) (4.7)

(g
ω(v)
i ) ≥ (a

ω(v−1)
i )2 + 2(a

ω(v−1)
i )(a

ω(v)
i − aω(v−1)

i ) (4.8)

The cuts in (4.8) are added to scenario subproblems at each iteration until it is noticed

that the value of gωi does not change from one iteration to another.
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4.3.2 Choice of Penalty Parameter Update Method

In the PHA, the penalty parameter ρ is updated by multiplying it with constant α in

every consecutive iteration. When the multiplier α is set to 1, the penalty parameter

becomes stable in the algorithm. Previous studies have shown that low values of ρ

tend to improve the quality of the solutions at the expense of longer computational

times. On the other hand, high values of the penalty parameter can lead to oscilla-

tions in the solutions and the algorithm generally converges faster to a low-quality

solution. Therefore, it is crucial to find a balance between solution time and qual-

ity using an appropriate level of the penalty parameter over iterations. Designing a

well-performing penalty update method is challenging due to this trade-off. Besides

there is no straightforward way to select the initial value of the penalty parameter; it

is mostly dependent on the objective function coefficients and scales of the decision

variable values in the problem.

One way to resolve the trade-off between solution quality and computational time is

to apply a dynamic penalty parameter scheme by updating the value of the parameter

in subsequent iterations. In this study, we use a method inspired by the approach

discussed in Hvattum and Lokketangen [38]. In this method, two parameters are made

use of by exploiting the relationship between the primal and dual. The first parameter,

denoted by ∆p measures the square of the difference between consensus parameters

for the appointment time of each patient at consecutive iterations. If ∆p is increasing,

this means that consensus parameter is changing at a greater rate. This also implies

that the current value of consensus parameter is not promising, and therefore it is risky

to enforce convergence immediately. The second parameter denoted by ∆d, compares

the convergence behaviour of the first-stage variable to the consensus parameter at

consecutive iterations. If ∆d is increasing, this indicates that the first-stage variables

in different scenario subproblems are farther away from the consensus parameter.

In our implementation of the penalty parameter update method, when ∆d increases

in consecutive iterations, penalty parameter ρ is multiplied by a constant α that is

greater than 1. By this way, the algorithm becomes inclined to converge faster. If

the difference between ∆d in consecutive iterations is not positive, the behaviour of

the ∆p is observed. If ∆p is rising, the penalty parameter is reduced by a factor of
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1
α

. If both consecutive ∆p and ∆d differences are negative, the penalty parameter is

preserved constant.

Based on preliminary results, we observe that penalty parameter can quickly climb to

very large values as a result of multiplying with α. In terms of convergence, higher

penalty parameter values lead the algorithm to prematurely converge to suboptimal

solutions. To avoid this issue, the value of penalty parameter is bounded above by a

pre-determined parameter ρu, so that the algorithm can converge to a higher quality

solution.

It is observed in our preliminary experiments that keeping the penalty parameter small

is beneficial in terms of solution quality. However, if the predefined bound for the

penalty parameter is kept smaller than needed during the iterations, this may result

in excessive computational times. To avoid this, we preserve a small bound at the

earlier iterations to obtain high quality solutions, and then we increase the limit in the

later iterations to achieve fast convergence. The details of the penalty update method

is provided below in Algorithm 2. In the algorithm, ρu1 and ρu2 refer to two different

penalty parameter limits, where ρu1 < ρu2 . Furthermore, iterlimit corresponds to the

iteration value at which the upper bound is changed from ρu1 to ρu2 .

4.3.3 Cycling and Majority Value Detection

Cycles are frequently observed within a typical implementation of the PHA. This

behaviour may prevent convergence. We benefit from the idea of cycling prevention

suggested by Watson and Woodruff [42]. The appointment time values may appear

identical over several consecutive PHA iterations. The direct consequence of this

is that the consensus parameter values remain constant over the iterations. On the

other hand, Lagrangian multipliers change in every iteration since we update their

values using Step 5 of Algorithm 1. While updating the Lagrangian multipliers, the

differences between appointment time values and consensus parameter are penalized

by multiplying it with a penalty parameter. Due to this reason, Lagrangian multipliers

vary over iterations even if the appointment time and consensus parameter values

stay the same. Hence, any cycling behaviour of the algorithm can be detected by

examining the behaviour of the Lagrangian multipliers.
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Algorithm 2 Penalty Update Method with Limit

1: ∆p
(v) =

∑
i∈P

(âi
(v) − âi(v−1))2

2: ∆d
(v) =

∑
i∈P

∑
ω∈Ω

(a
ω(v)
i − âi(v))2

3: if v ≤ iterlimit

4: ρu = ρu1

5: else

6: ρu = ρu2

7: if ∆d
(v) −∆d

(v−1) > 0 & ρ(v) < ρu;

8: ρ(v+1) = αρ(v)

9: elseif ∆d
(v) −∆d

(v−1) > 0

10: ρ(v+1) = ρu

11: elseif ∆p
(v) −∆p

(v−1) > 0

12: ρ(v+1) = 1
α
ρ(v)

13: elseif ρ(v) ≤ ρu;

14: ρ(v+1) = ρ(v)

15: else ρ(v+1) = ρu

Watson and Woodruff [42] used a hashing scheme to detect cycles. In our case, we

would like to detect cycles in integer appointment times for each patient. Therefore,

we have to check the behavior of the Lagrangian multipliers associated with each

patient. In their approach, Watson and Woodruff [42] first generated hash weights for

each scenario (zω). In our algorithm, hash weights are the random numbers between

0 and 1. These hash weights are then multiplied with the Lagrangian multipliers (µωi ).

Hash value for each patient is calculated in every iteration as:

hi =
∑
ω∈Ω

zωµ
ω(v)
i ∀i ∈ I (4.9)

Note that zω values are selected different from probability of occurence of each sce-

nario (pω). Otherwise, hi value would be zero. To detect cycling, we compare val-

ues of hi in consecutive iterations. Since the continuous values of hash weights and

Lagrangian multipliers may result in non-integer hash values, we compare the hash

values of patients in consecutive iterations by using a small threshold value. If the

difference between the hash values are smaller than the threshold value over three
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consecutive iterations, it is considered as the indicator of a cycle. The cycle then

needs to be broken to maintain algorithm convergence.

After a cycle is detected, the appointment time for patient i can be fixed to a certain

value. There might be different approaches for fixing the appointment time, which

include the minimum and maximum appointment times observed among all scenario

subproblem solutions for that patient in the previous iteration. However, based on our

preliminary experiments, we fix the appointment time to the one that is most repeat-

edly observed among subproblem solutions, which we call the majority value. We

use this approach after the first 50 iterations of the PHA, since there is high varia-

tion in the appointment times of a patient across different scenarios in the beginning

iterations.

A common observation in our preliminary experiments was that for many patients, the

appointment times for a majority of the scenarios converged quickly, whereas those of

the remaining scenarios failed to converge for many iterations. To overcome this, we

fix the appointment time of a patient if there is convergence in 80% of the scenarios.

Although this may reduce the solution quality, it significantly reduces computational

times.

4.3.4 Varying CPLEX optimality gap value in the subproblems

In the earlier iterations of the PHA, computation times to solve the subproblems are

longer since the algorithm uses lower values of penalty parameter ρ. However, the

PHA does not need optimal solutions of the subproblems for the convergence. We

may heuristically solve the subproblems to decrease the solution times. For this pur-

pose, we use the idea proposed by Watson and Woodruff [42], where the CPLEX opti-

mality gap value for the subproblems is varied according to the convergence behavior.

In particular, it is monotonically decreased by checking the following condition:

gapv+1 = min

{ ∑
i∈I,âi(v) 6=0

∑
ω∈Ω

|aω(v)
i − âi(v)|
âi

(v)
, gapv

}
(4.10)

The gap value is decreased if the appointment times of the patients get closer to the

consensus parameter. Otherwise, we keep the gap value equal to that of previous iter-
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ation. The initial gap value is determined according to the results of the preliminary

experiments.

Using approximate solutions within the PHA may either improve solution quality by

making greater amount of iterations or reduce it because of the low-quality solutions

particularly at the earlier iterations. The details of this procedure and results are

discussed at Chapter 5.

4.3.5 Lower Bound Structure for Nurse Overtime

In the first iteration of the PHA, the scenario subproblems are solved without adding

any Lagrangian or quadratic term. Since the durations are known in each subproblem,

it is obvious that the waiting times for all patients will be zero in the optimal solution.

The only term that contributes to the subproblem objective function in this case is

the summation of nurse overtime values. Since the scenario solution obtained in

the first iteration is decided in a deterministic environment, the resulting total nurse

overtime value constitute a lower bound for the associated scenario subproblem in the

subsequent iterations. The summary of this procedure is shown in Figure 4.1.
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Figure 4.1: Lower Bound for Nurse Overtime within Progressive Hedging Algorithm
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we discuss the computational experiments for our chemotherapy ap-

pointment scheduling problem. We test the methods using data gathered from the

Outpatient Chemotherapy Unit at Hacettepe Oncology Hospital from November 2017

to March 2018. The data set includes realized pre-medication and infusion times as

well as planned treatment durations for all patients.

In our experiments, Microsoft Visual C++ 2017 is used for the implementation of the

algorithm using CPLEX 12.8 Concert Technology. The computations were performed

with Intel (R) Core (TM) i7-4790 CPU @3.10 GHz and 16GB RAM.

In Section 5.1, we summarize the generation of instances based on data from Hacettepe

Oncology Hospital. The methods proposed to improve scenario subproblem solution

times are tested in Section 5.2. The sensitivity of the linearized progressive hedging

algorithm (LPHA) to the algorithm parameters is investigated in Section 5.3. The

performance of the LPHA is assessed in Section 5.4. Sensitivity analysis on model

parameters is conducted to generate managerial insights in Section 5.5. Finally, the

value of stochastic solution (VSS) is estimated in Section 5.6.

5.1 Generating Problem Instances

We conduct each experiment on a problem instance set that consists of 10 instances.

We generate those problem instances by sampling pre-medication and infusion dura-

tions in our data set. The treatment duration of a cancer patient ranges in between 16

and 240 minutes. The duration for a pre-medication phase varies between 0 and
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36 minutes, whereas infusion durations change between 16 and 217 minutes. In

Hacettepe Outpatient Chemotherapy Unit, the schedules are designed for half-day

periods. Therefore, if the estimated duration of a treatment exceeds four hours, the

treatment is split into two sessions. To mimic the current practice followed in the unit,

we also design half-day schedules.

First of all, data set at hand is clustered according to planned durations for treatments.

Four different planned duration classes are formed by specifying lower and upper

limits of class intervals as: 20-45, 45-100, 100-150, 150-240 minutes. For each class,

the actual pre-medication and infusion durations are analyzed. The intervals for the

realized pre-medication and infusion durations for the defined classes as well as the

probability of observing the defined classes in the data set are provided in Table 5.1.

Table 5.1: Pre-medication and infusion intervals and the probabilites of observing the

defined classes

Duration Interval

(min.)

Probability of Observing

the Class

Pre-medication

Interval

Infusion

Interval

[20, 45] 0.10680 [0, 14] [16, 44]

[45, 100] 0.23301 [6, 35] [29, 80]

[100, 150] 0.23786 [8, 26] [74, 132]

[150, 240] 0.42233 [6, 27] [125, 217]

To generate treatment durations for a patient, we first draw a random number be-

tween zero and one in order to determine her class. Next, pre-medication and infu-

sion durations of the patient are drawn from the associated intervals based on uniform

distribution.

We consider a set of 10 problem instances in our experimental runs. The instances

are labeled as i_j_k where i, j, and k refer to the instance number, number of patients

and scenarios, respectively.
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5.2 Solving Scenario Subproblems

Several scenario subproblems are solved at each iteration of our algorithm. Therefore,

reducing the computational effort spent on the solution of a subproblem would pro-

vide significant benefits. In this section, we evaluate different approaches to improve

solution times of scenario subproblems. We perform analyses for both strenghtening

the model formulation and enhancing the structure of the PHA. For this purpose, we

firstly investigate the effects of using different approaches while handling the nonlin-

ear term in the algorithm.

5.2.1 Selection of a technique to solve nonlinear scenario-subproblems

Each scenario subproblem has a nonlinear objective function due to the quadratic term

necessary for smooth convergence of the PHA. We test three different approaches to

handle the quadratic programming formulation in the subproblem: (1) using CPLEX

as nonlinear optimization solver, (2) treating the model as second-order cone program

(SOCP), and (3) replacing the quadratic term by its linear approximation. We perform

a test to compare the performances of the approaches in small-size problems. The first

two approaches are comparable with each other in terms of computation times. On

the other hand, the third one outperforms the others in terms of computation times

without sacrificing much from the quality of solutions. Therefore, we use the third

approach for solving the scenario-subproblems and call this approach as Linearized

Progressive Hedging Algorithm (LPHA).

5.2.2 Effect of symmetry-breaking constraints and bound on nurse overtime

The mathematical programming model for chemotherapy appointment scheduling

problem is strenghtened with equations (3.27), (3.28), and (3.29) as given in Chapter

3. These equations make scenario subproblems easier to solve by breaking symmetry

within the nurses and by determining a lower bound on overtime level of Nurse 1.

Since the feasible region of the mathematical programming model becomes narrower

after adding these constraints to the scenario subproblems, we expect lower compu-
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Table 5.2: Effect of varying CPLEX optimality gap value on the performance of

LPHA

Initial optimality gap = default Initial Optimality Gap = 0.1 Initial Optimality Gap = 0.15

Instance

name

Objective

Value

Run

Time (s)

Number

of Itera-

tions

Objective

Value

Run

Time (s)

Number

of Itera-

tions

Objective

Value

Run

Time (s)

Number

of Itera-

tions

1_8_50 48.53 2866.40 107 49.63 2669.47 128 47.78 2123.33 128

2_8_50 47.78 6651.35 124 48.35 9434.17 128 47.44 7124.02 121

3_8_50 59.92 2103.39 109 60.09 2196.83 118 59.76 3117.67 113

4_8_50 35.35 4187.46 120 34.95 2994.86 109 38.31 2964.76 172

5_8_50 53.72 3555.59 103 54.03 3306.86 127 54.05 3623.33 117

6_8_50 51.50 3521.03 106 49.05 2771.02 121 49.45 2511.32 118

7_8_50 41.96 5682.71 112 45.65 5464.81 123 47.76 6351.17 141

8_8_50 53.82 3084.82 118 53.07 2652.60 126 57.76 3664.83 112

9_8_50 57.72 2225.59 110 57.64 2662.63 123 58.42 3366.93 111

10_8_50 48.25 3614.74 111 48.46 3873.18 123 48.97 3561.55 116

Average

Values

49.85 3749.31 112 50.09 3802.64 123 50.97 3840.89 125

tational times in solving them. We apply the LPHA on the formulation including

these constraints, and the resulting computation times are compared with those found

based on the formulation without these constraints. The computational times are im-

proved after adding the symmetry breaking constraints and bound on overtimes for

nurses. The results show that the effect of these constraints becomes more explicit

when patient, nurse, and chair numbers are increased.

5.2.3 Tests for varying CPLEX optimality gap value in the subproblems

A technique for solving scenario subproblems approximately based on optimality gap

values that vary over iterations was introduced in Chapter 4, subsection 4.3.4. The

optimality gap values exhibit monotonically nonincreasing behavior over iterations

due to the given rule. In this part, we perform experiments to see the effects of this

technique in the computational times and quality of solutions by starting with two

different initial optimality gap values of 10% and 15%. The results of the experiments

are presented in Table 5.2. During these experiments, we fixed some parameters of

the problem. The value of λ, number of patients, nurses and chairs are fixed to 0.3, 8,

2, and 4, respectively.
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The technique is compared with the LPHA that uses default CPLEX optimality gap

value while solving subproblems (Default CPLEX optimality gap is 0.0001%.). There

is no guarantee that the overall computation times decrease when the optimality gap

is increased, because the algorithm may converge after larger amount of iterations.

Indeed, the one that uses default CPLEX optimality gap value performs the best in

terms of solution quality and run time on average. Due to insufficient basis for the

use of rule, we do not vary the optimality gap in our further experiments.

5.3 Sensitivity analysis on LPHA parameters

In this part, we conduct experiments to evaluate the sensitivity of the LPHA to the

algorithm parameters. As there are many parameters associated with the LPHA, we

perform preliminary experiments to fix some of them before elaborating on others. As

a result, the initial values of Lagrangian multipliers (µω(v)
i ) are fixed to zero since there

is no significant effect of changing this parameter. We also fix number of patients,

nurses, and chairs in the experiments presented at this section to see the effect of the

LPHA parameters clearly. In the experiments presented at this section, we assumed

two nurses, four chairs, and eight patients are present in the unit. The value of λ is

also fixed to 0.3.

The effects of different values set for α, ρ, ρu1 , and iterlimit are tested based on a

one-way sensitivity analysis approach. First, we investigate the effect of α on the

performance of the algorithm.

5.3.1 Effect of α in the performance of LPHA

The parameter α is the step size that determines the rate of change in the penalty

parameter ρ. The parameter ρ may be updated by a factor of α, 1, or
1

α
according to

the changes in the ∆p and ∆d, defined in Chapter 4. When α takes higher values, it

means the penalty parameter varies significantly during the consecutive iterations. On

the other hand, small values of α smoothly change the value of the penalty parameter.

When the deviation in the penalty parameter is smaller, we expect convergence in

longer computational times to a higher quality solution. We set three different values
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of α (1.5, 2, 4) to observe the effect of it in both computational times and solution

quality. In Table 5.3, the results of the experiments on 10 different instances are

presented.

Table 5.3: Effect of α change in the algorithm performance

α=1.5 α=2 α=4

instance

name

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

1_8_50 47.47 3687.45 91 48.52 2866.40 107 49.83 2431.25 112

2_8_50 50.07 9377.71 130 47.78 6651.35 124 47.38 4997.25 107

3_8_50 58.91 3321.66 109 59.92 2103.39 109 59.32 1750.90 104

4_8_50 35.92 6958.45 113 35.35 4187.46 120 35.57 3045.20 104

5_8_50 53.68 6223.86 120 53.72 3555.59 103 56.90 4297.17 124

6_8_50 55.44 5717.47 115 51.45 3521.03 106 55.36 2579.76 75

7_8_50 43.24 12811.90 129 41.96 5682.71 112 43.49 4428.96 105

8_8_50 57.45 7213.58 111 53.82 3084.82 118 51.77 3319.27 107

9_8_50 56.99 5357.53 109 57.72 2225.59 110 61.29 2042.10 112

10_8_50 48.60 5081.09 119 48.25 3614.74 111 49.00 3089.77 110

Average

Values

50.78 6575.07 115 49.85 3749.31 112 50.99 3198.16 106

The table also indicates the average values of the objective values of the instances and

average computation times in these three different settings. We observe that the case

of α = 2 performed better than other cases in terms of average objective value. The

computation time decreases with increasing values of α as expected. The number of

iterations needed until convergence also decreases as α increases. When the value of

α is larger, the penalty parameter ρ can reach larger values in earlier iterations. This

makes solving scenario subproblems easier, and thus reduces the subproblem solution

time. Due to this reason, it is not surprising to have smaller computational times with

larger α values.

The value of α is aimed to be fixed to a resonable value where we have a balanced

circumstance between solution time and quality. When α = 4, the computation times

are more promising. On the other hand, the solutions are not consistently strong

through instances in terms of quality. We have much worse solutions compared to

other α settings for some instances. Therefore, we fix α = 2 which gives better and
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consistently good enough solutions in reasonable amount of time.

5.3.2 Effect of initial value of ρ in the performance of LPHA

There are various factors that affect the behaviour of the penalty parameter value ρ.

The first one is the initial value of it in the first iteration. According to the previous

literature, the lower values of ρ yields better quality solutions in longer computa-

tional times. To test the effect of the initial value of ρ, three different values are used

(0.0001, 0.01, and 0.1). The experimental results are provided in Table 5.4.

Table 5.4: Effect of change in initial value of penalty parameter (ρu1) in the perfor-

mance of LPHA

ρ=0.0001 ρ=0.01 ρ=0.1

instance

name

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

1_8_50 48.526 2866.4 107 63.43 2814.73 124 56.87 2330.27 90

2_8_50 47.78 6651.35 124 47.682 3161.57 107 48.90 3273.86 112

3_8_50 59.916 2103.39 109 58.778 1531.13 79 60.11 2012.09 135

4_8_50 35.346 4187.46 120 34.292 2167.90 109 34.78 1956.05 110

5_8_50 53.722 3555.59 103 60.372 3115.91 108 53.04 3271.82 103

6_8_50 51.496 3521.03 106 50.376 2397.60 170 55.00 2213.27 110

7_8_50 41.96 5682.71 112 53.858 3640.15 123 47.52 3364.41 98

8_8_50 53.822 3084.82 118 56.998 1912.18 120 52.97 1609.74 82

9_8_50 57.722 2225.59 110 63.962 2144.96 139 57.56 1573.98 76

10_8_50 48.25 3614.74 111 54.97 3129.26 93 48.32 3347.27 111

Average

Values

49.85 3749.31 112 54.47 2601.54 117 51.51 2495.28 103

The computation times decrease significantly with the increase in the initial value of

ρ. Since the increase in the initial value of ρ may create an undesirable increase in

the objective values for some instances, we avoid using initial ρ value as 0.01 and 0.1

in the additional experiments. The lower values of the penalty parameters provide

consistently good objective function values.
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5.3.3 Effect of upper limit on penalty parameter ρu1 on the performance of

LPHA

As stated in Chapter 4, the value of the penalty parameter ρ is limited using an upper

bound ρu1 on its value. This prevents faster convergence of the algorithm to premature

solutions due to high penalty parameter values. There is a trade-off between solution

quality and computational times to be considered while selecting the value of ρu1 . For

this purpose, we used three different values as 0.1, 0.5, and 0.7 to test the performance

of the algorithm. The experimental results are provided in Table 5.5.

Table 5.5: Effect of change in first upper limit of penalty parameter (ρu1) on the per-

formance of the LPHA

ρu1 =0.1 ρu1 =0.5 ρu1 =0.7

instance

name

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

Objective

Value

Run

Time (s)

Number

of Iter-

ations

1_8_50 48.53 2866.40 107 55.58 2803.66 124 60.45 2407.81 131

2_8_50 47.78 6651.35 124 48.92 7049.39 145 48.75 6157.34 147

3_8_50 59.92 2103.39 109 78.58 1923.07 135 81.89 1786.41 110

4_8_50 35.35 4187.46 120 47.70 4295.61 155 53.20 3951.52 177

5_8_50 53.72 3555.59 103 77.79 3594.69 133 85.35 3600.41 131

6_8_50 51.50 3521.03 106 60.24 3342.44 110 66.24 3603.25 203

7_8_50 41.96 5682.71 112 41.83 5552.75 103 41.80 5217.23 129

8_8_50 53.82 3084.82 118 55.79 3088.51 121 55.47 2885.80 118

9_8_50 57.72 2225.59 110 66.17 2246.98 157 74.21 2133.24 152

10_8_50 48.25 3614.74 111 58.06 3175.75 126 57.95 3117.85 123

Average

Values

49.85 3749.31 112 59.07 3707.29 131 62.53 3486.09 142

According to the results provided in Table 5.5, the best solutions with respect to the

solution quality are obtained with a smaller value of ρu1 . When the value of ρu1 is in-

creased, the algorithm needs more iterations for convergence. Since the larger penalty

parameter values make scenario subproblems easier to solve, the time spent for com-

pleting an iteration decreases. The table also reveals that the average computational

times for the cases where ρu1 = 0.1 and ρu1 = 0.5 are close to each other. However,

the second one needs 19 additional iterations for convergence on average. When ρu1
is raised to 0.7, the computational times are improved, but the objective value deteri-
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orated by 25% with respect to the case where ρu1 = 0.1. Since there is no significant

difference in the computation times, we use 0.1 for ρu1 for further experiments.

5.3.4 Effect of iteration limit for changing ρu1 to ρu2 on the performance of the

LPHA

In the LPHA, we use ρu1 as an upper bound for the value of the penalty parameter up to

a predetermined iteration whose value is represented by iterlimit in Algorithm 2 pre-

sented at Chapter 4. After iterlimitmany iterations, the upper bound on penalty limit

is increased to ρu2 . We set reasonable values for iterlimit, because very large values

of iterlimit may lead to limited values of ρ even when the iteration number reaches

a considerable amount. This in turn may result in excessive computation times until

convergence. On the other hand, having a limited value of ρ over a large amount

of iterations would improve solution quality. We try three different alternatives for

determining the value of iterlimit as 50, 70 and 100, because the computation times

increase significantly, once the iterlimit exceeds 100 according to our preliminary

experiments. The values of the objective function and computation times are given in

Table 5.6.

Table 5.6: Effect of change in iteration limit (iterlimit) in the algorithm performance

iteration limit:50 iteration limit:70 iteration limit:100

Instance

Name

Objective

Value

Run

Time (s)

Last

İter.

Objective

Value

Run

Time (s)

Last

İter.

Objective

Value

Run

Time (s)

Last

İter.

1_8_50 49.062 2606.36 162 50.68 2977.85 150 48.53 2866.40 107

2_8_50 50.844 6102.86 152 47.07 6468.69 101 47.78 6651.35 124

3_8_50 65.392 1767.93 78 60.78 2024.65 108 59.92 2103.39 109

4_8_50 63.502 3929.76 153 43.95 4337.01 147 35.35 4187.46 120

5_8_50 63.376 3342.84 141 60.20 3513.85 172 53.72 3555.59 103

6_8_50 51.446 3601.86 75 51.50 3585.05 83 51.50 3521.03 106

7_8_50 65.104 5820.1 129 41.95 5729.8 132 41.96 5682.71 112

8_8_50 56.122 3395.29 128 84.89 2764.47 98 53.82 3084.82 118

9_8_50 62.976 2801.51 209 59.88 2151.71 89 57.72 2225.59 110

10_8_50 48.778 4061.35 174 48.62 3538.37 97 48.25 3614.74 111

Average

values

57.66 3742.99 140 54.95 3709.15 118 49.85 3749.31 112

The average computation times are close to each other in the three settings of iterlimit.
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When the iterlimit is set to lower values, the algorithm starts to use higher values of

ρ earlier iterations. Both the quality of the solutions and number of iterations spent

to achieve convergence worsen. Since the computational times are similar, we use

iterlimit as 100 in our experiments.

5.4 Assessment of the LPHA Performance

In this section, we evaluate the performance of the LPHA by conducting comparisons

with CPLEX and commonly used scheduling heuristics from the literature, respec-

tively. In the experiments of this section, the value of λ is 0.3.

5.4.1 Comparison with CPLEX

To validate the performance of the LPHA, we first compared our solutions with

CPLEX solutions. Since CPLEX cannot find the optimal solutions in three hours

of time limit even for problem instances having 8 patients, 5 scenarios, 2 nurses and

4 chairs. We decrease the number of patients to 7 for this experiment. We used five

different λ values on 10 different instances. The objective values, run times, and op-

timality gap of the algorithm for all instances are provided at Table A.1 in Appendix

2.

On the average, CPLEX spends eight times as much time as the LPHA to find the

optimal solution. The average optimality gap for the LPHA solutions is 7.28%, while

it is less than 0.35% in 25% of the instances.

5.4.2 Comparison with Scheduling Heuristics

We compare the performance of the LPHA with various combinations of sequencing

and appointment time setting heuristics from the relevant literature. We sequence pa-

tients using four different sequencing heuristics: increasing mean of treatment time

(SPT), decreasing mean of treatment time (LPT), increasing variance of treatment

time (VAR), and increasing coefficient of variation of treatment time (CoV). We con-
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sider job hedging heuristic for determining planned lengths of patient appointments.

Before discussing the implementaion details of the heuristics, the structure of the

model in terms of first and second stage decisions is investigated. When values for

patient precedence bij and appointment time ai variables become known in the first

stage, it is then easy to settle on the second stage decisions. The optimal nurse and

chair assignment decisions at this stage can be made even using a simple rule that

checks bij values. The rule would favor the patient preceding others in the list while

assigning the first available nurse and chair. Next, actual treatment start time for each

patient can be determined accordingly, and their waiting times are revealed according

to the discharge time of the previously scheduled patients. By checking discharge

times of the patients treated by a nurse, overtime value for each nurse can be eas-

ily calculated. Since solving the second-stage problem is easy, finding a heuristic

approach to solve the first-stage problem is a more critical issue. After setting the

first-stage variable values, we call CPLEX rather then using the simple rule to solve

the second-stage problem, as CPLEX finds the optimal solution within a very short

amount of time.

To create schedules, we first choose one of the the four sequencing heuristics dis-

cussed above. There are two different durations that may affect the sequencing rules,

average pre-medication and infusion durations. We use average treatment time, which

is equal to the summation of those two values.

After the sequence is fixed, we utilize the job hedging heuristic to set patient appoint-

ment times [49]. We apply the heuristic in accordance with the approach also used in

Gul [50], Castaing et al. [6], Gul et al. [51]. We sort durations for the relevant patient

class in the data set in non-increasing order, and calculate the kth percentile of the

set to use it for determining the planned treatment duration of a patient. Since there

are two different chemotherapy durations in the problem, the percentile values asso-

ciated with them are separately determined, and the summation of those two values

is considered while setting patient appointment times. The steps of the scheduling

heuristic that combines job hedging with one of the sequencing heuristics, LPT, is

demonstrated in Algorithm 3.

We vary the percentile values between 40% and 75% for all sequencing rules. Table
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Algorithm 3 Job Hedging Heuristics for LPT Rule
Step 1:

Calculate the average treatment duration represented by averagei for every patient.

averagei =
∑

ω∈Ω s
ω
i +tωi

|Ω| ∀i
Step 2:

Sort the values of the averagei according to LPT rule, assign index numbers to

patients and sequence the patients according to their index numbers.

Step 3:

Assign bij values according to index numbers found at Step 2.

Step 4:

Set appointment times according to given percentile level of job hedging heuristic.

If the index of the patient is less than or equal to the both of the numbers of chair

and nurse, the appointment time of the associated patient is assigned as zero.

The appointment times of the other patients are set sequentially according to their

index numbers by checking the first estimated available time of nurse and chair

simultaneously.

Step 5:

Call CPLEX to obtain second stage decisions and objective function value.

5.7 compares the performances of the heuristics with the LPHA. The table illustrates

the average gap between the solutions of LPHA and each combination of sequencing

and job hedging heuristic for a specific percentile level.

The results show that the LPHA outperforms all combinations of heuristics signifi-

cantly. On the average, LPT rule performs better than the other sequencing rules. This

result makes sense since the patients with longer treatment durations are assigned to

the earlier hours of the day also at the outpatient chemotherapy unit in Hacettepe

Oncology Hospital. Note that the LPHA improves the solutions of even the best-

performing and commonly used rule, LPT, by 27%. Furthermore, the percentiles

60%, 55%, 60%, and 65% used for assigning appointment times is the best in terms

of quality of the solutions on the average for sequencing rules SPT, LPT, VAR, and

CoV, respectively. The detailed computational results for different sequencing rules

are provided in Tables A.13-A.16 in Appendix.
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Table 5.7: Average gap values between the solutions of the LPHA and heuristics using

different sequencing and job hedging levels

Percentile used

in job hedging

Average gap

for SPT

Average gap

for LPT

Average gap for

VAR

Average gap

for CoV

45% 37.8% 27.1% 35.9% 31.4%

50% 36.4% 25.4% 34.4% 29.5%

55% 34.8% 25.0% 32.5% 28.2%

60% 34.5% 25.9% 32.2% 28.4%

65% 34.8% 27.3% 32.6% 29.1%

70% 35.6% 29.1% 33.8% 27.2%

75% 37.7% 31.7% 35.2% 29.0%

Average Values 35.9% 27.4% 33.8% 29.3%

5.5 Sensitivity Analysis on Model Parameters

In this section, we present a sensitivity analysis on the model parameters to generate

managerial insights. The value of λ and number of nurses and chairs are varied for

this purpose.

5.5.1 Varying value of λ

The chemotherapy unit manager would typically consider the trade-off between pa-

tient waiting time and nurse overtime while designing schedules. To illustrate the

scope of this trade-off, we vary the value of λ, which is the objective function co-

efficient associated with patient waiting time, between 0 and 1. λ = 0 refers to the

extreme case where nurse overtime is the only performance measure for the model.

On contrary, λ = 1 means that patient waiting time is important while nurse overtime

is taken into account only through the upper limit imposed in the constraint set. We

test different values of λ on an instance set by incrementing it by 0.1 at each time. We

fixed the values of the number of patients, nurses, and chairs to 8, 2, and 4, respec-

tively in these experiments. The results of all experiments are provided at Appendix

2 in Tables A.2-A.12. In Table 5.8, the summary of the experimental results is pro-

vided. Figure 5.1 clearly illustrates the trade-off between patient waiting time and

nurse overtime with reference to λ values.
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Table 5.8: The values of the average patient waiting time and nurse overtime in chang-

ing λ

λ Average Waiting

time per scen.

Average Over-

time per scen.

0 414.72 41.98

0.1 88.91 46.37

0.2 41.83 55.49

0.3 22.32 61.66

0.4 14.15 64.86

0.5 9.23 68.21

0.6 6.16 75.48

0.7 3.52 84.78

0.8 1.38 96.89

0.9 0.55 110.76

1 0.04 300.00

As can be observed from both Table 5.8 and Figure 5.1, the average patient waiting

time decreases with increasing λ value since its importance gets higher. When λ =

1, most instances find zero waiting times for the patients by allocating the largest

possible treatment durations to patients which increases idle time of resources and

hence overtime. In some instances, the resulting total patient waiting time is not zero,

since feasibility can not be preserved in some cases due to the limit on nurse overtime.

Since there is no term to force to minimize nurse overtime in the objective function

in this case, overtime of the nurses is equal to maximum allowable overtime amount,

which is denoted as L in our mathematical programming formulation presented in

Chapter 3. As we set L to 150 minutes and we have two nurses in these experiments,

the average total nurse overtime equals 300 minutes.

Another interesting observation is the change in computational times while varying

λ. When λ = 1, the scenario subproblem models directly assign overtime values

to their upper limits and focuses on minimizing waiting times. The computation

times generally appears to be lower in this case. On the other hand, solving scenario

subproblems takes longer in λ = 0 case. In some instances, the algorithm converges

to a solution in one iteration by assigning 0 to appointment times of the all patients.

Note that the cases where λ is 0 and 1 are not realistic for the unit manager. These

values are only useful for obtaining information about the structure of the problem.
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Figure 5.1: Average patient waiting time and nurse overtime values in changing λ

The manager may choose a λ value between those extreme points according to the

goals of the units. In our experiments, we fix λ as 0.3, which assigns particular

importance to nurse overtime, in the remainder of our experiments.

5.5.2 Varying values of number of nurses and chairs

The decision maker in the chemotherapy unit would also be interested in investigating

the effect of using different levels of chairs and nurses on the performance measures.

For this purpose, we vary the number of nurses and chairs in our instance sets. The

chair and nurse numbers are varied betweeen 4 and 6, and 1 and 3, respectively. We

do not consider the case where we have 3 nurses and 4 chairs since the corresponding

nurse to chair ratio is not realistic. We repeat the experiments in 10 different instances

under fixed λ value as 0.3 and take the average values of objective function values and

run times in order to see the effect better. The summary is provided at Table 5.9.

As expected, when the number of chairs or nurses is increased, the average objective

value decreases. The marginal benefits associated with an increase in the number of

resources is higher when the base value is smaller. As an example, when the number

of chairs is changed from 4 to 5, the objective value decreases by approximately 45%

when there is only one nurse in the unit. On the other hand, if it is changed from 5 to

6, the decrease in the objective function is 25%.
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Table 5.9: Sensitivity of the objective value and computational time to the number of

chairs and nurses

Objective Value Run Time (s)

Number of Chairs Number of Chairs

4 5 6 4 5 6

Number of Nurses

1 64.95 35.69 26.49 1428.88 1323.04 1338.4

2 49.85 14.57 5.36 3111.90 2567.85 1357.32

3 Not solved 9.62 1.49 Not solved 8337.14 4111.17

Another interesting issue is the change in the computation times. An increase in

the number of chairs generally makes subproblems easier to solve resulting with a

reduction in the solution times. However, if the number of nurses becomes larger,

computation times increase significantly. Therefore, the number of nurses is a crucial

factor that makes subproblems complicating to solve.

The chemotherapy unit manager should examine the trade-offs between the resource

levels and performance measures. In some cases, it might not be a good idea to

increase the resource levels in order to increase the service level of the unit since the

effect in nurse overtime and patient waiting time might not be significant.

5.6 Estimating the Value of Stochastic Solution (VSS)

A measure for evaluating the success of stochastic programs is the value of stochastic

solution. To identify this measure, expected value solution is needed. If all random

variables are replaced with their expected values, we have a simple problem called

expected value problem or mean value problem. Expected value solution denoted

by x̄(ξ̄) is obtained from the mean value problem. Then, the optimal second-stage

scenario subproblem solutions are found according to x̄(ξ̄) and ξ. The expected ob-

jective value associated with mean value solution is denoted as EEV . VSS is defined

as the difference between EEV and the objective value of recourse problem, denoted

by RP (i.e. VSS = EEV-RP). It measures the benefit of using stochastic programming

solution over the mean value solution. In other words, VSS is a cost of excluding

uncertainty while giving the first stage decisions.
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In this part, we estimated the value of stochastic solution (VSS) for our instance set

for five different λ values under fixed values of number of patients, nurses, and chairs.

In Table 5.10, the average values of the VSS under different λ setting is provided.

Table 5.10: Average values of Value of stochastic solution (VSS) in changing λ values

λ EEV LPHA VSS

0.3 60.32 49.85 17.4%

0.4 56.06 44.58 20.5%

0.5 51.88 38.72 25.4%

0.6 47.92 33.89 29.3%

0.7 44.62 27.89 37.5%

As expected, VSS is always positive in our experimental runs. Therefore, considering

uncertainty in chemotherapy appointment scheduling problem is valuable to minimize

total weighted sum of patient waiting time and nurse overtime. According to results

provided at Table 5.10, VSS increases monotonically with increasing λ values in

terms of quantity and percentage. The LPHA improves the solutions of mean value

problem by 26% on average. The values of VSS for every instance based on different

λ values are given at Table A.17 in Appendix.
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CHAPTER 6

CONCLUSION

The ability of operations research to help improve the healthcare systems has been

increasingly attracting the attention of healthcare practitioners. The need of using

scarce resources effectively makes OR tools valuable for chemotherapy clinics, which

aim to reduce costs while meeting certain service levels to satisfy the needs of the

patients.

Over the recent years, due to the increase in the prevalence of cancer the demand for

chemotherapy units has been growing, and these units should have efficient planning

and scheduling structures. In this thesis, we focused on the Chemotherapy Appoint-

ment Scheduling Problem, where patients are sequenced and assigned appointment

times by considering the availability of nurses and infusion chairs at the same time.

The uncertainty in both the pre-medication and infusion durations are considered in

the study. The aim is to design an appointment schedule in order to minimize the

expected weighted sum of patient waiting time and nurse overtime. A two-stage

stochastic mixed integer programming formulation is used to formulate the problem.

The uncertain durations of chemotherapy are represented with scenarios in the stochas-

tic programming formulation. Solving the problem even with a small-size scenarios

with CPLEX is computationally challenging. Therefore, a scenario decomposition

based algorithm, Progressive Hedging, is implemented to solve the problem. The

PHA is enhanced through a number of modifications. A penalty parameter update

method is proposed, where the parameters are set dynamically and controlled us-

ing changing limits. A cycle detection method is used to guarantee convergence of

the algorithm. A variable fixing procedure is incorporated to reduce overall compu-

tation times. Subproblem solution times are improved through symmetry-breaking
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constraints and bounds imposed on nurse overtime in the constraint set, and by lin-

earization of the quadratic term in the objective function. The resulting algorithm

after enhancements is called as linearized PHA (LPHA).

The proposed method is implemented based on real data from the Hacettepe Outpa-

tient Chemotherapy Unit. To evaluate the performance of algorithm, the LPHA is

compared with CPLEX in small-size problems. Moreover, combinations of common

sequencing and job hedging heuristics are used to validate the performance of the al-

gorithm. The results show that the LPHA outperforms commonly used heuristics in

all cases. At last, VSS is estimated to assess the value of considering uncertainty in

our problem. It is found that the LPHA improves the solutions of mean value problem

significantly.

Our solution approach can be useful for chemotherapy unit managers to evaluate the

effects of appointment schedules on nurse overtime and patient waiting time. The

unit managers can also observe the effects of changing the level of resources in the

chemotherapy unit.

For further research, availability of the lab tests and oncologist evaluations can be

included in the problem. Furthermore, an integrated model that considers both the as-

signment of patients to treatment days and appointment time setting under uncertainty

can be constructed. Moreover, variation in cancer types can be considered while as-

signing patients to nurses since the workload associated with different types of cancer

patients can be different. In this study, we assumed that chemotherapy drugs are made

ready in pharmacy before the associated patient arrives at the clinic. We can also add

constraints related to pharmacist availability into our model structure.

Another important direction of further research is to enhance our algorithm perfor-

mance by solving scenario subproblems using parallel computing. This application

may reduce the computation times, which can be beneficial for solving instances of

larger size.
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APPENDIX A

APPENDIX

A.1 Deterministic Equivalent Model

min

(
λ
∑
i∈I

∑
ω∈Ω

pω ∗ wωi + (1− λ)
∑
n∈N

∑
ω∈Ω

pω ∗Oωn
)

(A.1)

∑
n∈N

xωin = 1 ∀i,∀ω (A.2)

∑
c∈C

yωic = 1 ∀i,∀ω (A.3)

bωij + bωji = 1 ∀i, j > i, ∀ω (A.4)

aωi + wωi + sωi + tωi = dωi ∀i,∀ω (A.5)

aωj + wωj ≥ aωi + wωi + sωi −M ∗ (3− bij − xωin − xωjn) ∀i, j 6= i, ∀n, ∀ω (A.6)

aj + wωj ≥ dwi −M ∗ (3− bij − yωic − yωjc) ∀i, j 6= i,∀c,∀ω (A.7)

aj + wωj ≥ ai + wωi −M ∗ (1− bij) ∀i, j 6= i,∀ω (A.8)

aωj ≥ aωi −M(1− bωij) ∀i,∀j, j 6= i (A.9)

Oωn ≥ dωi −H −M ∗ (1− xωin) ∀i,∀n,∀ω (A.10)

aωi = ai ∀i,∀ω (A.11)

bωij ∈ {0, 1} ∀i,∀j,∀ω (A.12)

aωi : integer ∀i,∀ω (A.13)

dωi , w
ω
i ≥ 0 ∀i,∀ω (A.14)

Oωn ≥ 0 ∀n, ∀ω (A.15)

xωin ∈ {0, 1} ∀i,∀n, ∀ω (A.16)

yωic ∈ {0, 1} ∀i,∀c,∀ω (A.17)
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A.2 Computational Results

Table A.1: The comparison of CPLEX and LPHA in terms of run times and solution

quality

Instance

Name

λ CPLEX

Run Time

(s)

LPHA

Run Time

(s)

Optimality

Gap

Instance

Name

λ CPLEX

Run Time

(s)

LPHA

Run Time

(s)

Optimality

Gap

1_7_5 0.3 1170.83 57.24 0.00% 1_7_5 0.4 362.52 109.89 0.00%

2_7_5 0.3 3240.29 93.90 1.99% 2_7_5 0.4 2156.81 61.45 2.46%

3_7_5 0.3 128.08 87.60 1.71% 3_7_5 0.4 933.56 89.58 5.60%

4_7_5 0.3 1844.45 189.23 0.11% 4_7_5 0.4 1432.53 153.41 20.38%

5_7_5 0.3 296.37 76.53 5.92% 5_7_5 0.4 151.23 88.38 6.76%

6_7_5 0.3 1700.64 62.11 0.21% 6_7_5 0.4 182.79 91.95 0.00%

7_7_5 0.3 2346.25 105.45 3.88% 7_7_5 0.4 1362.48 153.93 0.32%

8_7_5 0.3 1260.36 119.79 4.60% 8_7_5 0.4 380.14 144.58 10.23%

9_7_5 0.3 67.43 82.39 0.00% 9_7_5 0.4 42.72 75.85 15.03%

10_7_5 0.3 1438.54 170.56 11.17% 10_7_5 0.4 4056.88 143.27 6.47%

1_7_5 0.5 177.53 69.60 0.00% 1_7_5 0.6 506.65 68.48 22.36%

2_7_5 0.5 1761.27 92.76 0.00% 2_7_5 0.6 423.79 83.69 13.73%

3_7_5 0.5 166.52 70.96 7.30% 3_7_5 0.6 123.64 103.29 10.96%

4_7_5 0.5 714.66 121.44 10.22% 4_7_5 0.6 1045.98 242.22 7.68%

5_7_5 0.5 204.49 94.31 3.18% 5_7_5 0.6 30.45 74.90 6.60%

6_7_5 0.5 98.00 74.48 0.35% 6_7_5 0.6 78.27 81.95 17.33%

7_7_5 0.5 3245.87 101.99 13.67% 7_7_5 0.6 1030.65 80.51 13.05%

8_7_5 0.5 139.54 120.72 9.34% 8_7_5 0.6 85.60 95.44 12.12%

9_7_5 0.5 18.02 18.02 0.00% 9_7_5 0.6 11.40 87.79 3.88%

10_7_5 0.5 250.64 151.71 9.65% 10_7_5 0.6 252.95 252.95 19.93%

1_7_5 0.7 28.52 81.32 0.19% 6_7_5 0.7 89.42 125.24 9.31%

2_7_5 0.7 82.45 89.53 4.76% 7_7_5 0.7 569.01 118.51 10.48%

3_7_5 0.7 50.29 102.48 15.07% 8_7_5 0.7 260.97 125.25 17.04%

4_7_5 0.7 571.25 155.46 2.80% 9_7_5 0.7 6.39 62.71 3.92%

5_7_5 0.7 98.81 144.71 5.43% 10_7_5 0.7 404.12 158.14 16.72%
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Table A.2: The objective function values and computational times in λ=0

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0 40.64 330.34 40.64 527.2 1

2_8_50 0 26.26 370.14 26.26 4952.4 1

3_8_50 0 53.32 562.92 53.32 41931.0 87

4_8_50 0 26.54 505.62 26.54 5946.2 75

5_8_50 0 43.72 405.22 43.72 9928.2 73

6_8_50 0 69.74 205.82 69.74 14743.3 141

7_8_50 0 25.96 385.52 25.96 33398.2 45

8_8_50 0 41.76 412.54 41.76 25366.1 88

9_8_50 0 48.32 582.86 48.32 10391.1 79

10_8_50 0 43.52 386.22 43.52 2090.1 45

Table A.3: The objective function values and computational times in λ=0.1

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.1 48.01 71.46 45.40 2864.67 79

2_8_50 0.1 43.32 69.10 40.46 4754.1 89

3_8_50 0.1 62.94 82.78 60.74 2452.78 97

4_8_50 0.1 33.77 67.34 30.04 4086.91 107

5_8_50 0.1 56.39 142.16 46.86 6063.13 83

6_8_50 0.1 51.23 83.36 47.66 3186.1 94

7_8_50 0.1 47.48 127.58 38.58 8484.27 81

8_8_50 0.1 53.78 75.92 51.32 3099.45 106

9_8_50 0.1 59.59 96.04 55.54 3673.18 102

10_8_50 0.1 49.73 73.38 47.10 5140.55 102
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Table A.4: The objective function values and computational times in λ=0.2

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.2 51.96 40.12 54.92 3417.39 120

2_8_50 0.2 46.61 46.66 46.60 8083.15 123

3_8_50 0.2 65.50 35.58 72.98 2630.93 81

4_8_50 0.2 37.11 37.48 37.02 4172.93 123

5_8_50 0.2 57.12 40.24 61.34 3845.47 109

6_8_50 0.2 52.03 38.62 55.38 2744.92 104

7_8_50 0.2 46.79 39.46 48.62 7130.74 109

8_8_50 0.2 56.92 48.34 59.06 3259.41 107

9_8_50 0.2 63.35 53.96 65.70 2884.88 114

10_8_50 0.2 50.17 37.82 53.26 4002.62 109

Table A.5: The objective function values and computational times in λ=0.3

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.3 48.53 22.08 59.86 2866.4 107

2_8_50 0.3 47.78 25.38 57.38 6651.35 124

3_8_50 0.3 59.92 24.86 74.94 2103.39 109

4_8_50 0.3 35.35 18.98 42.36 4187.46 120

5_8_50 0.3 53.72 14.34 70.60 3555.59 103

6_8_50 0.3 51.50 20.92 64.60 3521.03 106

7_8_50 0.3 41.96 21.94 50.54 5682.71 112

8_8_50 0.3 53.82 26.76 65.42 3084.82 118

9_8_50 0.3 57.72 25.20 71.66 2225.59 110

10_8_50 0.3 48.25 22.70 59.20 3614.74 111
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Table A.6: The objective function values and computational times in λ=0.4

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.4 43.56 12.18 64.48 2530.1 111

2_8_50 0.4 42.28 17.64 58.70 5844.23 104

3_8_50 0.4 53.04 15.20 78.26 2183.64 106

4_8_50 0.4 31.87 12.72 44.64 5560.51 114

5_8_50 0.4 48.53 15.82 70.34 2973.45 113

6_8_50 0.4 45.85 12.36 68.18 2380.83 105

7_8_50 0.4 37.15 9.14 55.82 4851.53 92

8_8_50 0.4 46.64 13.02 69.06 2337.24 106

9_8_50 0.4 52.73 16.38 76.96 2352.67 116

10_8_50 0.4 44.12 17.04 62.18 3513.1 107

Table A.7: The objective function values and computational times in λ=0.5

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.5 38.03 7.16 68.90 2451.82 102

2_8_50 0.5 35.36 10.18 60.54 3944.89 106

3_8_50 0.5 48.09 14.60 81.58 1986.8 124

4_8_50 0.5 27.73 6.38 49.08 3110.06 116

5_8_50 0.5 43.15 9.18 77.12 2796.64 122

6_8_50 0.5 38.07 7.32 68.82 1572.54 109

7_8_50 0.5 32.49 8.80 56.18 4815.07 109

8_8_50 0.5 40.44 7.34 73.54 3117.24 110

9_8_50 0.5 46.39 13.82 78.96 2134.49 119

10_8_50 0.5 37.44 7.48 67.40 3690.67 113

69



Table A.8: The objective function values and computational times in λ=0.6

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.6 33.03 2.88 78.26 2408.78 118

2_8_50 0.6 31.21 7.96 66.08 5257.42 106

3_8_50 0.6 40.32 9.72 86.22 2791.85 123

4_8_50 0.6 25.04 3.18 57.84 3818.79 101

5_8_50 0.6 34.82 7.08 76.44 2426.51 111

6_8_50 0.6 38.74 6.60 86.96 1813.71 106

7_8_50 0.6 32.09 5.80 71.52 3790.68 109

8_8_50 0.6 33.01 5.06 74.94 2228.72 84

9_8_50 0.6 38.23 6.06 86.48 1607.98 106

10_8_50 0.6 32.39 7.28 70.06 4147.56 98

Table A.9: The objective function values and computational times in λ=0.7

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.7 27.11 1.42 87.06 1644.6 105

2_8_50 0.7 28.24 6.00 80.14 3080.84 117

3_8_50 0.7 31.17 5.42 91.26 1713.83 107

4_8_50 0.7 23.78 2.26 73.98 3241.36 109

5_8_50 0.7 33.81 3.20 105.24 1474.77 121

6_8_50 0.7 25.38 3.80 75.74 1490.14 184

7_8_50 0.7 21.57 3.72 63.22 4996.25 109

8_8_50 0.7 33.17 0.50 109.40 1993.38 132

9_8_50 0.7 29.89 4.88 88.26 1550.67 90

10_8_50 0.7 24.81 3.96 73.46 4183.31 114
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Table A.10: The objective function values and computational times in λ=0.8

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.8 22.34 0.90 108.10 1330.26 104

2_8_50 0.8 19.74 1.28 93.60 3986.52 109

3_8_50 0.8 23.16 0.94 112.06 1233.73 117

4_8_50 0.8 18.20 1.94 83.22 4466 137

5_8_50 0.8 20.60 1.40 97.42 1348.25 120

6_8_50 0.8 17.44 2.36 77.78 1430.71 108

7_8_50 0.8 16.28 2.24 72.44 3069.5 116

8_8_50 0.8 24.26 0.80 118.12 1268.36 114

9_8_50 0.8 23.17 0.60 113.46 1326.47 138

10_8_50 0.8 19.62 1.36 92.68 1988.29 127

Table A.11: The objective function values and computational times in λ=0.9

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 0.9 10.72 0.10 106.28 891.30 119

2_8_50 0.9 11.86 0.98 109.76 1435.51 114

3_8_50 0.9 11.58 1.42 103.04 854.67 107

4_8_50 0.9 11.22 0.10 111.30 2739.09 114

5_8_50 0.9 12.60 0.26 123.66 1217.01 113

6_8_50 0.9 13.72 1.80 121.00 1296.95 114

7_8_50 0.9 9.69 0.34 93.88 2106.68 105

8_8_50 0.9 9.80 0.34 94.90 877.36 99

9_8_50 0.9 11.26 0.08 111.84 969.25 90

10_8_50 0.9 13.28 0.10 131.92 1502.72 107
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Table A.12: The objective function values and computational times in λ=1

Instance

Name

λ Objective

Value

Average Wait-

ing time per

scen.

Average

Overtime

per scen.

Run Time

(s)

Number of

Iterations

1_8_50 1 0.06 0.06 300.00 1102.28 85

2_8_50 1 0.00 0.00 300.00 903.70 101

3_8_50 1 0.02 0.02 300.00 832.04 87

4_8_50 1 0.00 0.00 300.00 1091.66 63

5_8_50 1 0.16 0.16 300.00 814.09 72

6_8_50 1 0.00 0.00 300.00 1407.37 87

7_8_50 1 0.00 0.00 300.00 1656.73 92

8_8_50 1 0.10 0.10 300.00 1238.44 90

9_8_50 1 0.02 0.02 300.00 1010.90 100

10_8_50 1 0.02 0.02 300.00 1241.01 85
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Table A.13: Objective values and run times of job hedging heuristics for SPT rule

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

1_8_50

40% 73.86 4.94

48.53 6_8_50

40% 89.40 3.40

51.50

45% 72.78 5.30 45% 86.20 3.69

50% 71.15 3.82 50% 84.77 3.00

55% 70.38 2.23 55% 84.19 3.07

60% 69.55 3.08 60% 85.69 2.17

65% 71.41 2.92 65% 86.08 1.90

70% 72.41 2.00 70% 88.95 1.85

75% 73.93 2.11 75% 90.19 2.03

2_8_50

40% 60.44 2.22

47.78 7_8_50

40% 79.50 6.19

41.96

45% 57.44 2.10 45% 78.61 4.04

50% 54.48 1.86 50% 76.40 3.05

55% 53.50 1.86 55% 76.008 3.92

60% 54.75 1.80 60% 76.47 3.12

65% 56.41 1.45 65% 78.46 2.12

70% 60.73 1.54 70% 81.44 2.70

75% 62.68 1.57 75% 82.63 2.47

3_8_50

40% 86.88 5.23

59.92 8_8_50

40% 91.48 5.35

53.82

45% 85.86 5.19 45% 90.05 2.72

50% 84.29 5.67 50% 88.03 2.74

55% 84.56 2.85 55% 87.73 3.00

60% 85.69 1.98 60% 88.22 2.09

65% 85.68 2.47 65% 88.43 1.94

70% 88.11 2.02 70% 93.49 1.82

75% 89.08 2.11 75% 95.21 1.77

4_8_50

40% 73.53 6.44

35.35 9_8_50

40% 90.31 6.95

57.72

45% 72.54 6.12 45% 88.37 6.04

50% 71.22 4.91 50% 86.76 3.22

55% 71.21 4.41 55% 86.71 3.44

60% 70.95 3.43 60% 86.80 2.88

65% 71.61 2.96 65% 86.72 2.06

70% 73.09 2.08 70% 89.32 1.81

75% 75.76 2.00 75% 89.86 1.95

5_8_50

40% 83.17 4.68

53.72 10_8_50

40% 77.12 4.76

48.25

45% 81.88 3.72 45% 75.74 6.29

50% 79.81 3.25 50% 74.57 3.07

55% 79.57 4.31 55% 74.40 4.21

60% 79.62 2.31 60% 74.08 3.27

65% 80.29 2.47 65% 74.44 2.11

70% 82.06 1.72 70% 76.12 2.49

75% 84.12 1.84 75% 77.12 1.41
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Table A.14: Objective values and run times of job hedging heuristics for LPT rule

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

1_8_50

40% 68.20 7.08

48.53 6_8_50

40% 66.62 6.21

51.50

45% 66.67 6.71 45% 67.17 6.43

50% 67.02 6.26 50% 65.77 3.66

55% 71.18 5.63 55% 65.30 3.43

60% 71.68 4.75 60% 69.83 2.54

65% 70.58 2.57 65% 69.48 3.04

70% 78.53 2.51 70% 72.36 1.77

75% 78.95 1.46 75% 76.47 2.29

2_8_50

40% 63.27 5.37

47.78 7_8_50

40% 55.98 8.16

41.96

45% 60.47 5.50 45% 52.42 7.10

50% 59.59 4.19 50% 52.87 7.56

55% 59.80 4.32 55% 54.20 3.76

60% 62.52 4.84 60% 54.61 3.06

65% 69.01 2.22 65% 53.81 3.20

70% 72.66 2.58 70% 55.63 1.58

75% 74.37 2.29 75% 57.62 2.25

3_8_50

40% 82.47 5.50

59.92 8_8_50

40% 72.23 3.92

53.82

45% 82.47 4.65 45% 69.39 3.60

50% 84.10 3.86 50% 68.97 3.67

55% 83.77 2.43 55% 72.58 3.64

60% 83.85 5.27 60% 73.22 3.26

65% 85.79 2.66 65% 74.41 2.37

70% 83.05 2.54 70% 78.74 1.45

75% 88.82 1.48 75% 78.63 1.73

4_8_50

40% 51.01 6.66

35.35 9_8_50

40% 77.17 7.54

57.72

45% 48.15 6.76 45% 78.21 6.34

50% 45.94 6.34 50% 76.53 4.29

55% 44.69 6.78 55% 77.20 2.73

60% 43.53 6.43 60% 81.02 1.68

65% 47.91 3.29 65% 83.19 2.01

70% 48.37 2.34 70% 82.63 1.96

75% 49.84 2.17 75% 86.89 1.41

5_8_50

40% 74.90 7.87

53.72 10_8_50

40% 72.10 6.12

48.25

45% 74.53 7.50 45% 70.74 6.11

50% 73.76 7.62 50% 74.16 5.37

55% 73.12 6.47 55% 75.64 2.33

60% 73.52 3.50 60% 78.25 3.11

65% 74.67 2.28 65% 78.37 2.34

70% 80.73 1.68 70% 82.46 1.21

75% 84.83 1.82 75% 89.32 1.18
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Table A.15: Objective values and run times of job hedging heuristics for VAR rule

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

1_8_50

40% 69.09 6.17

48.53 6_8_50

40% 87.45 5.98

51.50

45% 68.11 5.96 45% 85.23 6.67

50% 66.57 3.75 50% 83.72 2.08

55% 65.91 3.49 55% 82.86 2.10

60% 65.05 3.04 60% 83.91 2.22

65% 67.08 2.98 65% 85.38 2.00

70% 68.16 2.06 70% 86.19 1.94

75% 69.64 2.70 75% 87.26 1.73

2_8_50

40% 59.68 4.55

47.78 7_8_50

40% 77.14 5.70

41.96

45% 56.90 4.25 45% 76.26 4.91

50% 54.03 4.34 50% 74.12 3.93

55% 53.33 3.94 55% 73.58 3.53

60% 55.16 2.69 60% 73.87 2.64

65% 56.91 1.53 65% 75.95 2.17

70% 61.19 1.79 70% 78.62 1.92

75% 63.34 2.47 75% 79.90 1.77

3_8_50

40% 87.06 5.06

59.92 8_8_50

40% 88.48 5.86

53.82

45% 85.83 6.32 45% 86.06 3.14

50% 84.01 5.18 50% 82.25 3.15

55% 84.09 3.34 55% 81.28 3.48

60% 85.14 2.47 60% 80.70 2.02

65% 85.11 2.30 65% 82.37 2.29

70% 87.34 1.93 70% 81.74 2.08

75% 88.51 1.93 75% 83.51 1.71

4_8_50

40% 71.17 5.57

35.35 9_8_50

40% 90.00 5.75

57.72

45% 70.30 5.73 45% 88.19 4.07

50% 69.16 5.47 50% 86.58 3.31

55% 69.30 3.60 55% 86.50 3.28

60% 69.62 2.84 60% 86.77 3.11

65% 70.51 2.58 65% 86.71 2.36

70% 71.72 2.58 70% 89.27 1.90

75% 72.45 2.67 75% 89.75 2.07

5_8_50

40% 78.68 4.44

53.72 10_8_50

40% 74.62 6.27

48.25

45% 76.47 5.03 45% 73.32 5.81

50% 74.27 3.12 50% 72.19 6.12

55% 74.01 3.70 55% 72.39 3.22

60% 74.57 2.60 60% 71.86 2.61

65% 77.14 2.30 65% 72.66 2.62

70% 76.26 2.40 70% 73.21 2.56

75% 74.12 1.74 75% 74.47 1.40
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Table A.16: Objective values and run times of job hedging heuristics for increasing

CoV rule

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

Instance

Name

Percentile Objective

Value

Run

Time (s)

LPHA

Objective

Value

1_8_50

40% 67.95 7.793

48.53 6_8_50

40% 66.84 3.934

51.50

45% 66.67 6.50 45% 67.22 3.97

50% 67.24 6.18 50% 66.27 3.56

55% 71.68 6.43 55% 65.76 3.61

60% 72.06 5.01 60% 70.98 3.01

65% 70.37 1.83 65% 70.72 2.48

70% 78.50 2.87 70% 72.05 2.23

75% 68.56 1.82 75% 76.35 2.03

2_8_50

40% 63.74 6.17

47.78 7_8_50

40% 56.92 8.00

41.96

45% 60.95 6.66 45% 54.08 6.74

50% 61.01 7.93 50% 52.41 3.69

55% 60.96 7.31 55% 53.13 7.18

60% 64.00 3.48 60% 53.85 3.75

65% 69.48 3.71 65% 53.61 2.96

70% 73.58 1.62 70% 55.69 2.66

75% 75.40 3.20 75% 57.18 2.34

3_8_50

40% 93.90 5.85

59.92 8_8_50

40% 73.24 4.66

53.82

45% 92.46 3.87 45% 71.79 3.88

50% 91.14 3.73 50% 69.18 3.41

55% 90.83 2.83 55% 69.08 2.83

60% 91.04 2.89 60% 68.53 2.53

65% 91.63 3.08 65% 70.72 2.06

70% 92.13 2.23 70% 72.90 1.83

75% 93.81 2.12 75% 76.28 1.72

4_8_50

40% 68.64 6.37

35.35 9_8_50

40% 82.69 4.20

57.72

45% 65.07 4.02 45% 81.16 4.10

50% 64.09 3.38 50% 80.26 3.57

55% 63.58 3.29 55% 79.17 2.54

60% 64.26 2.64 60% 77.91 2.52

65% 65.21 2.27 65% 77.59 2.44

70% 66.89 1.84 70% 78.21 1.82

75% 68.18 2.57 75% 79.16 2.27

5_8_50

40% 83.18 5.47

53.72 10_8_50

40% 73.25 4.99

48.25

45% 80.75 4.48 45% 70.96 4.60

50% 79.02 3.37 50% 67.66 3.22

55% 78.71 2.90 55% 66.66 2.64

60% 78.64 2.55 60% 64.34 2.36

65% 56.92 2.23 65% 64.60 2.87

70% 54.08 2.10 70% 67.59 2.13

75% 52.41 1.86 75% 68.56 2.58

76



Table A.17: VSS values for 10 different instances in varying λ values

Instance

Name

lambda EEV LPHA VSS Instance

Name

lambda EEV LPHA VSS

1_8_50 0.3 63.36 48.53 23.4% 1_8_50 0.4 56.43 43.56 12.87

2_8_50 0.3 49.95 47.78 4.3% 2_8_50 0.4 48.88 42.28 13.5%

3_8_50 0.3 72.00 59.92 16.8% 3_8_50 0.4 64.49 53.04 17.8%

4_8_50 0.3 39.48 35.35 10.5% 4_8_50 0.4 37.63 31.87 15.3%

5_8_50 0.3 66.74 53.72 19.5% 5_8_50 0.4 62.10 48.53 21.8%

6_8_50 0.3 64.84 51.50 20.6% 6_8_50 0.4 61.96 45.85 26.0%

7_8_50 0.3 49.27 41.96 14.8% 7_8_50 0.4 47.56 37.15 21.9%

8_8_50 0.3 64.23 53.82 16.2% 8_8_50 0.4 59.50 46.64 21.6%

9_8_50 0.3 69.84 57.72 17.4% 9_8_50 0.4 64.09 52.73 17.7%

10_8_50 0.3 63.47 48.25 24.0% 10_8_50 0.4 57.97 44.12 23.9%

1_8_50 0.5 52.08 38.03 27.0% 1_8_50 0.6 46.50 33.03 29.0%

2_8_50 0.5 47.45 35.36 25.5% 2_8_50 0.6 45.94 31.21 32.1%

3_8_50 0.5 58.87 48.09 18.3% 3_8_50 0.6 54.57 40.32 26.1%

4_8_50 0.5 36.41 27.73 23.8% 4_8_50 0.6 34.22 25.04 26.8%

5_8_50 0.5 57.20 43.15 24.6% 5_8_50 0.6 51.94 34.82 32.9%

6_8_50 0.5 55.22 38.07 31.1% 6_8_50 0.6 50.84 38.74 23.8%

7_8_50 0.5 43.41 32.49 25.2% 7_8_50 0.6 41.24 32.09 22.2%

8_8_50 0.5 54.45 40.44 25.7% 8_8_50 0.6 49.67 33.01 33.5%

9_8_50 0.5 61.98 46.39 25.2% 9_8_50 0.6 55.50 38.23 31.1%

10_8_50 0.5 51.73 37.44 27.6% 10_8_50 0.6 48.74 32.39 33.5%

1_8_50 0.7 40.97 27.11 33.8%

2_8_50 0.7 44.07 28.24 35.9%

3_8_50 0.7 48.74 31.17 36.0%

4_8_50 0.7 33.74 23.78 29.5%

5_8_50 0.7 46.31 33.81 27.0%

6_8_50 0.7 50.58 21.57 57.4%

7_8_50 0.7 42.06 33.17 21.1%

8_8_50 0.7 48.13 29.89 37.9%

9_8_50 0.7 49.66 24.81 50.0%

10_8_50 0.7 41.90 25.38 39.4%
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