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ABSTRACT

THE COMPRESSIBLE EULER SYSTEM AND ITS NUMERICAL
ANALYSIS

Yilmaz, Eda
M.S., Department of Mathematics

Supervisor: Assist. Prof. Dr. Baver Okutmustur

January 2019, [50| pages

In this thesis we analyze the compressible Euler equations in one and two dimen-
sions. For this purpose, we firstly consider a particular form of this system, namely
the inviscid Burgers equation, which can be derived by imposing vanishing pressure
to the Euler system. The inviscid Burgers equation leads us to understand the idea
behind discontinuous solutions such as shock and rarefaction waves. A brief analy-
sis of smooth and weak solutions with necessary conditions for choosing physically
meaningful solutions among the others, entropy and Rankine-Hugonoit conditions

are studied in the first part of this work.

In the second part, the derivation of the compressible Euler equations is demonstrated
in one dimension where the thermodynamic aspects are given to understand the na-
ture of the Euler system. Furthermore, in order to illustrate the model numerically,
the stability analysis of three different methods, namely Lax Friedrich, two step Lax
Wendroff, and two step MacCormack methods, are examined in one dimensional
case. We use Sod shock tube problem to test numerical methods since analytic so-

lution of this problem exists. We finalize this work by a particular illustration of the



Euler model in two dimensional case by applying the Lax Friedrich’s method with a

short concluding remark.

Keywords: Compressible Euler equations, Finite difference method, Shock tube
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0z

SIKISTIRILABILIR EULER SISTEMI VE SAYISAL ANALIZI

Yilmaz, Eda
Yiiksek Lisans, Matematik Boliimii

Tez Yoneticisi: Dr. Ogr. Uyesi. Baver Okutmustur

Ocak 2019, [50]sayfa

Bu tezde, sikistirilabilir Euler denklemlerini bir ve iki boyutta analiz ettik. Bu amag
dogrultusunda, 6ncelikle bu sistemin 6zel bir formu olan, Euler sisteminde basing
kaldirlarak elde edilebilen vizkositesiz Burgers denklemini inceledik. Vizkozitesiz
Burger denklemi sok ve seyrelti dalgalar1 gibi siireksiz ¢oziimlerin arkasindaki ana
fikri anlamamiza yol acar. Bu ¢alismanin ilk kisminda, diizgiin ve zayif ¢oziimler
ve fiziksel olarak anlamli c¢oziimleri segmek icin gerekli olan entropi ve Rankine-

Hugonoit kosullarinin kisa analizi ¢alisildi.

Ikinci kistmda, Euler sisteminin yapisim anlamak icin termodinamik kabullerin veril-
digi, bir boyutta sikistirabilir Euler denklemlerinin ¢ikarilis1 yapildi. Ayrica, sayisal
olarak agiklamak i¢in, bir boyutta ii¢ farkli sayisal yontemin kararliligi calisildi. Say1-
sal yontemleri denemek i¢in analitik ¢oziimii olan Sod sok tiip problemini kullandik.
Bu ¢alismayi, Lax Friedrich’s yontemini iki boyutta Euler modeline uygulayarak nok-

taladik.
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CHAPTER 1

INTRODUCTION

Hyperbolic systems of conservation laws are non-linear systems of partial differential
equations. These systems naturally arise in science and engineering problems that
contain compressible flows and conserved quantities. The compressible Euler equa-
tions are a particular example of time-dependent non-linear hyperbolic conservation
laws. The Euler equations identify laws of compressible, inviscid, perfect gases in
stationary coordinates. In 1757, the form of compressible Euler equations consisted
of momentum and continuity equations are published by Euler in [21]. Pierre-Simon
Laplace added an adiabatic condition in a letter in 1816.[6] Finally, the necessity of
conservation of energy was introduced in the second half of the 19th century. The

general form of the Euler equations can be written in the form
U + 0,(F(U)) =0, (11D

where U and F'(U) are the vectors of conserved quantities and fluxes with

P pu
U=|pu and F=| pu>+p |, (12)
E (E+p)u

where p, p, u, and E are density, pressure, velocity, and total energy, respectively.
The Euler equations have become widely used as a test problem in the interest of
testing accuracy of numerical schemes while deriving the new numerical schemes.
The numerical solutions have been studied in various papers of Yee [25], Roe [20],

and Jiang and Shu [15]].



The structure of the thesis is as follows:

In Chapter 2, we start by introducing hyperbolic systems and conservation laws. Since
inviscid Burgers equation is a particular example of the Euler equations, we attempt
to construct solution of it. Then, we introduce the concept of strong solutions, weak
solutions with necessary conditions entropy, and Rankine-Hugonoit jump relations to

obtain physically meaningful solutions.

In Chapter 3, we give the derivation of the compressible Euler equations. Then,
the thermodynamics considerations, entropy and Rangine-Hugoniot conditions are
introduced. Conservative and non-conservative formulations are studied for one di-
mensional Euler equations. In addition to discontinuous solution such as shock and
rarefaction waves, in compressible Euler equations there is one more discontinuity
which is called contact discontinuity is studied. The Riemann problem and shock

tube problem is defined for the Euler equations.

In Chapter 4, analysis of three numerical schemes that we apply to approximate the
solution of Sod shock tube problem in one dimension are performed. In two dimen-

sional case the Riemann problem is solved by first order Lax Friedrich’s method.



CHAPTER 2

HYPERBOLIC CONSERVATION LAWS

2.1 Hyperbolic Systems

Many of partial differential equations arise from science and engineering problems.
These problems contain conserved quantities such as mass, momentum, energy. As a
result of the nature of these problems we have nonlinear or linear systems of partial
differential equation. To obtain these systems we use physical laws like conservation
laws and thermodynamics laws. In this study, we are interested in the structure of
solutions of hyperbolic conservation laws with initial data. The following formula is

a general form of a systems of conservation law;

O+ Y 0, fi(u) =0, >0, 1)
j=1

where z = (21, ...,7,) € R" and u = (uy, ...,u,)” is a vector valued function, and
fi = F(fijy - fn;)T are called flux functions of system. When we say u is conserved

that means it should be a constant with respect to time.

We define hyperbolic systems of conservation law as follows. Let

0 ij
A,(u) = (—f <u>) k 22)
1<i,k<n

5uk

be the Jacobian matrix of f;(u). The system which is given by equation is called

hyperbolic if matrix
Alu,a) = )| a;A;(u) (23)
j=1

diagonalizable that is there is a complete set of n linearly independent corresponding

eigenvectors for any u and any a = (aq, ..., a,) € R"™ and has n real eigenvalues. In



addition if all eigenvalues are distinct, system is said to be strictly hyperbolic.

2.1.1 Conservation Laws
2.1.1.1 Integral and Differential Forms

Derivation of Euler equations by conservation laws is the issue of the next chapter.
Here we only introduce the basic idea behind how conservation laws arise in gas
dynamics. We start with the equation of conservation of mass in one dimensional

case.

Denoting the gas density by p(t, ), we assume that the density and the velocity are
constant in the tube. The cross sectional area in one dimensional case is of the form
|21, x2] and the density is per unit mass in per unit volume. It follows that, we inte-
grate density in any section, the total mass in this section is
x2
.[ p(t,x)dx. (24)
1

Denoting the velocity by u(t, =), the mass flux at time ¢ and point z is
p(t, x)u(t, z) (25)

cause fluid must has the velocity to flow. The rate of change of the mass in [z, 7] is

given by
d [

il

which we call integral form of the conservation law. The only thing we need for

p(t, x)dz = p(t, x1)u(t, x1) — p(t, x2)u(t, v2) (26)

obtaining differential form is to integrate equation in time from ¢; to 5, that is,

T2 i) to to
f p(te, x)dx — J p(ty, x)dx = f p(t,x)u(t, ) — J p(t, x2)ult, z3). (27)
1 z1 t1 t1

Assume that p(¢,x) and u(t, x) are differentiable. By the fundamental theorem of

calculus
p(t27 tla J atp t x (28)
and

p(t, xo)u(t, xo) — p(t, x1)u(t, x1) = JIQ 0 (p(t, v)u(t, x))dx. (29)

4



After substitution (28)) and (29) into it follows that

to T2
J J {Owp(t, z) + Oup(t, z)u(t, z)} dedt = 0. (210)
t1 x1

Since limits of the integrations are arbitrary, the inequality has to be satisfied for any
[21, 2] and [t,t5], thus integrand must be zero. As a result conservation of mass
yields

Orp + 0p(up) = 0, (211)

which is differential form of the conservation law.

2.1.2 Scalar Conservation Laws

We study preliminaries of Euler equations in this subsection. First we study the scalar

case, that is n = 1. The most common notation for the scalar conservation law is

oo + 0, (f (u)) =0, (212)

where u represents the conserved quantity and f is the flux function of fluid flow.

2.1.2.1 Strong Solutions

We take into account the following initial value problem,

Ou+ 0x(f(u)) =0, t>0, zeR
(213)
u(0,2) = ug(x), zeR
andlet f : R — R be a differentiable function. It follows that 0, (f(u)) = 0, f(u)d,u
by the chain rule. Now equation becomes
ou+ Oy f(u)opu =0, t>0, xzeR
(214)
u(0,z) = up(x), zelR.
The solution (214) is called a strong solution if it is differentiable and it satisfies initial

value problem given in (213). We can write equation (214) in the quasilinear form

opu + b(u)d,u = 0, (215)



where b(u) = 0,f(u). Let u be a strong solution of (214) and initial data u, is a
differentiable. We use the method of characteristics for reducing partial differential

equation to a systems of ordinary differential equations. A solution of system,
o = b(u(t, z(1))),
z(0) = o,

(216)

gives us equation of the characteristic curve through the point (0, (). Along this

curve it can be easily shown that u is constant because
opu(t, x(t)) = dwu(t, z(t)) + oprdyu(t, x(t)),
= yu + b(u)du = 0.

As a result we can say that the characteristic curves are straight lines defined by

217)

equation
x = xo + bug(zo))t = 0, (218)

and this provides us to define smooth solutions by initial data.

Now we examine two different cases that depend on b(ug(x)). Let us define the form

of slope of the characteristics by
1

b(uo (i)

m; =

(219)

Case 1: x — b(uo(z)) is increasing

In this case slopes of the characteristics are decreasing. Furthermore, the characteris-
tics cannot intersect. The solution can be defined for all ¢ which is greater than zero.
Case 2: x — b(up(z)) is decreasing

In this case slopes of characteristics are increasing which means characteristics inter-
sect at some point. However at the intersection point characteristics solution cannot
take both values ug(x1) and ug(z2). Furthermore we cannot define the strong solution
for all the time ¢ > 0. That is the reason we need to define weak solutions to extend

the concept of solution.

2.1.2.2 The Linear Advection Equation

The fundamental example of scalar conservation law is the advection equation. If

f(u) = bu where b is a constant then we call the following equation

oy + bo,u = 0,

6



as a linear advection equation. It is a quasilinear partial differential equation. Linear
advection equation with initial data having proper domain has a simple solution. We

consider initial value problem or Cauchy problem of linear advection equation

oru + 0, f (u)

0, —o<zxr<ow, t=0,
(220)
uw(0,7) = ug(x) —o0<x <00,

The solution by characteristics take the form

u(t,x) = uo(z —bt),t = 0.

This solution is the simplest example of a wave solution. Here b is called wave speed,

u(t, z) is called wave and characteristics lines z —bt = constant are called wavefronts.

2.1.2.3 Burgers Equation

Scalar equation

o+ 0 (f(u)) =0,

is nonlinear whenever f(u) is a non-linear function of u. Burgers equation is the
simplest nonlinear equation and the most common problem used for numerical im-

plementations in scalar conservation laws. Original equation studied by Burgers is
Optl + UOL U = €01

where the right hand side of the equation is a viscous term and € > 0 is the constant

of viscosity. Inviscid Burgers equation is
Oiu + ud,u = 0,

where f(u) = $u?, and the viscous term is zero.

2.1.2.4 Shock Information

For a simple explanation of shock waves, we consider characteristics of Burgers equa-
tions defined by

d
d_:zf = u(t, x).



The solution is constant along characteristics for Burgers equation. As a result we
can write characteristic

x(t) = up(xo)t + x0
where uo(z) = u(0,x) and zy = x(0). It means that characteristics are straight lines
and they can intersect or may not cover the entire (¢, z)space. When characteristics
intersect our solution has an infinite slope, waves break and we get a shock form. In
Riemann problem, if the relation between particle speeds is u; > ur we end up with

shock waves and it’s characteristics illustrated in Figure [2.1[b).

up . ‘

\J
\j

a) Initial data b) Characteristics

Figure 2.1: Characteristics for the initial data u;, > ug

2.1.3 Rarefaction Waves

In Riemann problem, other possibility for the relation between particle speeds is u;, <
ug. In this case, characteristics may not intersect; however, they may not cover the
whole space. Furthermore, characteristics separate regions of uniform flow which is
illustrated in Figure[2.2a). Rarefaction fan ensures that separated region can be filled
and it is in Figure[2.2[b).

Definition 1 (Rarefaction fan). A rarefaction wave in which all characteristics arise

from a single point in the xt plane is called rarefaction fan.

Definition 2. Solution of the initial value problem for convex flux with initial condi-

tions
ug(r) =uy for =<0, wug(r)=ur for x>0, (221)

will be in the following form:

If up, < ug, then solution is a rarefaction wave and has the form



o Ifx/t < f(up), thenu(t,z) = up.
o Ifx/t = f'(ug), then u(t,z) = ug.

o If f'(ur) < @/t < f'(ug), then f'(u(t, x)) = x/t.

t t

T T

a) Characteristic for ur, < ug b) The Rarefaction solution

s8Y

X

Figure 2.2: The rarefaction waves

2.1.3.1 Weak Solutions

We are looking for a way to give a meaning to discontinuous solution of following
initial value problem
ou+ 0.(f(u) =0, t>0, xeR, 022)
uw(0,2) = ug(x), z€eR,
Idea behind the weak solution is to arrange partial differential equation by using
smooth test function. Sobolov spaces necessary to introduce weak formulation of
differential equations.[7] We set this smooth function as ¢(t, z), which is differen-
tiable and has a compact support. Having a compact support means ¢(t, z) is zero
for some certain space variables such that || > H. We start to rearrange equation
by multiplying partial differential equation by test function ¢(¢, ), take integration

as needed and use integration by parts to get
o0
.[ f udrd + f(u)dpdt dx + f u(0, z)p(x)dx = 0.
—H<xz<H 0 —H<xz<H

As a result we do not have derivatives of u and f anymore which yields less smooth-

ness. This way we reduce the smoothness requirement to find a solution.

9



Definition 3. The function u(t, z) is called a weak solution of conservation law if the

following

Q0

JOO JOO udrp + f(u)dypdx dt + J u(0, z)p(x)dx = 0,
0 —0

—Q0

holds for all smooth functions ¢ with compact support.

Proposition 1. Strong solutions are also weak solutions. A weak solution which is

continuous and piecewise differentiable is also a strong solution.

The advantage of the weak solution is that it contains discontinuities. However the
weak solutions may not unique which can be considered as disadvantage of them.
Since we deal with physical problems we want our solution to be physically mean-

ingful. In the following, we provide some conditions to obtain more accurate solution.

2.1.3.2 Riemann Problem

An initial value problem that is composed of a conservation law together with a piece-
wise constant data having a single discontinuity is called Riemann problem. The
following initial value problem
o+ ud,u =0, xeR, te Ry,
ur, if oz <0, (223)
u(0,x) =

up if x> 0,

is a Riemann problem for classical (inviscid) Burgers equation. The relation between

uy, and ug identifies form of solution.

Casel: (ur > ug)

In this case solution is given by

uy, if xr — st <0,
u(t, x) =
ug if x — st >0,

where

s = (ur, + ug)/2

10



represents characteristic (shock) speed. The left hand side waves move faster than the
right hand sides and this is the reason that we end up with a shock. To verify that
taller waves move faster than shorter waves, we consider general scalar conservation
law

oz, t) + 0 f (u(z,t)) = uu(x,t) + dpforu = 0.

From characteristic equations the relation between speed of the solution and flux func-

tion
dz ,
- f'(u)
can be obtained. If we apply for Burgers equation, it follows that
dx
—=u
dt ’

which illustrates that taller waves move faster.
Case2: (ur < ug)

The solution given in the first case is also a solution for this case but we get an area
without characteristic; see Figure [2.2((a). This is physically not possible. Our aim is
to obtain physically meaningful solution. Because of that we need rarefaction waves.

Defining solution by the following form
urp if x <ugt,
u(t,r) = z/t if upt <z <ugt, (224)
UR if upt < x,

we cover the area with characteristics and complete solution form.

2.1.3.3 Rankine-Hugoniot Jump Condition

Rankine Hugoniot jump condition provides us to control the discontinuity along char-
acteristics and work at any jump since at a different shock speed we cannot obtain the

weak solution.

Definition 4. Rankine-Hugoniot jump condition is defined by

:f(UL)—f(UR) _m

urp — UR [u]’

11



where s is the shock speed (the speed at discontinuity travel); uy,ur are initial values
given in problem, and f(u) is the arbitrary flux. The notation |.| represents jump

across the discontinuity.

2.1.3.4 Entropy Conditions

Entropy is a measure of disorder i.e, how much energy is not available to do work.
That unavailable energy is of interest in thermodynamics. We examined that the
weak solution may not need to be unique. Besides Rankine-Hugoniot condition an

additional condition is required.

Definition 5. A discontinuity propagating with the speed s given by Rankine-Hugoniot

Jjump condition satisfies the entropy condition if
f'(ug) > s> f'(ug) (225)

holds.

Entropy condition (225) reduces to the form u; > wug for the convex functions.

Definition 6. The function f is convex in the domain [ if and only if

foralla <u <bel.

In limit sense, if we set u — a in the first inequality and v — b on the second

inequality then we obtain

for all a < b. Basically, we observe that convexity implies that f’ is a strictly increas-
ing function. That means solution  satisfies entropy condition f'(uy) > s > f'(ug)
if and only if u;, > wup for the convex functions. The geometric explanation of this

condition is illustrated in Figure 2.3

12



(ur, f(ur))

ol

Figure 2.3: Physically acceptable shock under entropy condition

(ur, f(ur))

>
u
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CHAPTER 3

COMPRESSIBLE EULER EQUATIONS

3.1 Compressibility

The compressibility of a fluid is the measure of the change in density that is produced
in fluid by a specified change in pressure. In general, gases are highly compressible
while most liquids have a very low compressibility. Although there is no incompress-
ible fluids in real life, we use this term with such flows that the change in density with
pressure is so small as to be negligible. This case usually happens with liquids. There
are some factors which make change in pressure like changes in velocity in the flow.
Changes in pressure affect the fluid’s density, thus influencing fluid compressibility.
Applications of compressible fluid theory are used in the design problems of high

speed aerodynamics, rocket and missile propulsion, steam and gas turbines.

3.1.1 Derivation of Conservation Laws for the Euler Equations

Basic equations of fluid dynamics that govern fluid motion are derived from con-
servation of mass, conservation of momentum, and conservation of energy. In the

following section, we make derivation these conservation laws.

3.1.1.1 Conservation of Mass

Basic idea of conservation of mass can be formulated by the following relation :

Rate of change of mass of fluid in control volume with respect to time :

Rate mass flow enters control volume - Rate mass flow leaves control volume

15



In the following, we use divergence theorem to investigate integral approach of mass
conservation. Suppose u(t, z) be the velocity of fluid particles passing through the
point p in the control volume V. We denote fluid density and mass of fluid by p(¢, x)
and m(t), respectively. To express whole mass we take volume integral of density,

that is per unit mass per unit volume, i.e,

mit) = fﬂ ot 2)dV. 31)

The rate of change of mass in control volume with respect to time is given by

om op
e ij ng. (32)

The flow fluid must have a velocity to be able to flow. Since we consider velocity
component passing through the surface, we need to take projection of velocity into
the normal of surface. Let S represent surface area. Mass flow per unit time is denoted

by p(t, x) w.n. To express the whole mass flow we need to take surface integral. The

H pu.n ds. (33)

Next, we apply divergence theorem to the surface integral (33), to get

—MV(p w)dV = Hf %dv (34)

. . - . .
As a result of equation (34)), if we assume that p and u are continuous, we can write

rate of mass flow is of the form

the following equation

A 35
Vip u)+ pn 0 (35)

which is called the continuity equation.

3.1.1.2 Conservation of Momentum

When we compress the gas by applying a force in the region where the density is
higher than neighbourhood, then it spreads out and pushes the gas particular to neigh-
bourhood. As a result we lower the density in this region and raise the density in

neighbourhood. This variation in density causes changes in the velocity.

From Newton’s law of motion we know that momentum is a conserved quantity while

the velocity is not. Factors that affect momentum are pressure and momentum flux.
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Depending on problem, in addition to these terms, we may have gravitational force,
too. Like we did in conservation of mass, we suppose that u(t, x) and p(t, x) represent
velocity and density, respectively. Moreover V' denotes control volume and S denotes
surface area. Density of momentum is product of the density and the velocity. To find
total momentum in control volume, we take volume integral of density of momentum,
that is p(t, x)u(t, ) and momentum flux is (p(¢, z)u(t, x))u(t, z). Since pressure also

affects momentum, total momentum in control volume is
S

Moreover, the rate of change of momentum with respect to time is

m 5(8,0;4) dv. 37)

The rate of change of momentum with respect to time in control volume is equal to

the total force applying on the surface area. We apply divergence theorem and we

substitute what we find in (37)), that is,
JH [ 5(”@’?:@’:0)) +V(pu? + p) ] dv = 0. (38)

Following (38), if we suppose p, u, and p are all smooth then we can express

Ap(t, v)u(t, x))
ot

+V(pu® +p) =0, (39)

which is differential form of momentum equation.

3.1.1.3 Conservation of Energy

To complete derivation of Euler equations, we consider finally the conserved quantity,
energy. The total energy of the fluid is the sum of internal energy and kinetic energy.
For total energy we use the notation £. Kinetic energy is associated with the motion
of the fluid particles with the velocity u(¢,z), and mass of the fluid. The internal
energy arises from translational, rotational, and vibrational energy of motion of the

individual molecules. Indeed we have

1
E = §pu2 + pe. (310)
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The first term in (310)) is the kinetic energy, while pe is the internal energy. We call
e as specific internal energy that is internal energy per unit mass and it is a function
of density and pressure. As done for the laws of conservation we show that, the time
rate of change of energy in control volume is equal to sum of the flux of energy that
acrosses surface and the net rate of work that is done by the pressure. The law of

conservation of energy is

%fff <%Pu2 + pe) v = — Jf EundS — prunds. (311)

We apply the Green’s theorem and the expression (311]) becomes

%”f (%puz N p€> o fﬂv((E + p)u)dV = 0. (312)

If we suppose p, u, and p are all smooth, then we can express the equation (312)) by

o (1 , _
P <§pu + pe) + V((E + p)u) =0, (313)

which is the last equation of the Euler system.

3.1.1.4 The One Dimensional Compressible Euler Equations

In the previous part, we obtained three equations. Putting them together gives the

system of the Euler equations

P pu
pul| + | pu?+p = 0. (314)
E . (E+pu i
Or equivalently,
U+ FU), =0, (315)
where
P pu
U=|pu and F =] pu>+p |. (316)
E (E+p)u

We use second notation when we specify conservative formulation of the Euler equa-

tions.
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3.1.2 Thermodynamic Aspects
3.1.2.1 Equation of State

We derived three equations for four unknowns in the previous section. To obtain a
unique solution of this system of equations, we need additional information. These
equations of states contain two more equations with one more unknown. The equa-

tions of state determines type of fluid like distinguishing air from engine oil.

3.1.2.2 Perfect Gas

For compressible flows there is an interaction between microscopic and macroscopic
levels. Velocity and kinetic energy are macroscopic properties of a system, while in-
ternal energy is average microscopic property of the system. Mechanical properties
describe macroscopic properties and thermodynamic properties describe microscopic
properties. Density and pressure can be considered either mechanical or thermody-
namic. The fluid that satisfies thermal equation of state (ideal gas law) and caloric

equation of state is called a perfect gas. The ideal gas law is given by
p = pRT, (317)

where R is a gas constant which differs for different gases and 7' is temperature.

Moreover, the caloric equation of state is
e =c,1T, (318)

where ¢, is specific heat at a constant volume. We define the specific heat at a constant
pressure as
Cp = —. (319)
Peor
Now we introduce the state variable enthalpy which is defined by

h=e+§ (320)

and for a perfect gas we have

h=e+ RT. (321)
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If we substitute e and A in (321])), then we obtain;
R=c¢,—cv. (322)

The equation of the state of perfect gas ends up to depend on the ratio of specific heats
and it is called adiabatic exponent, that is,

5= (323)

Cy

We stated that the internal energy arises from rotational, translational and vibrational
energy of motion of the molecules.These terminologies are called as degrees of free-
dom. Generally « states degrees of freedom. It follows that, the internal energy is
given by
o)
e = §nkT , (324)
where n is the number of molecules per unit mass, & is the Boltzmann’s constant.

Actually the product nk = R is the gas constant. If we compare the equations (318])
and (319) with the equation (324), it follows that

¢, = SR (325)
2
and we can rewrite ¢, as
¢, = (1+ %)R. (326)

As a result, by (325)) and (326) we get

2
P (327)

Co o'

From the ideal gas law, we know that 7" = Ri Finally using this term in (318)) we
0

can state the internal energy by

Cy
e=c,1 = b_ P

TRy G-y (328)

Concluding, the equation of state for perfect gas commonly uses the following form;

P 1,
E = —— + Z o’ 329
6—1 2u ( )
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3.1.2.3 Entropy

The first law of thermodynamics states that the total energy in the isolated system re-
mains constant. This is the idea we have used to obtain the equation of conservation of
energy. Any physical system is obliged to satisfy the second law of thermodynamics.
It can be expressed as follows: The total entropy of system never decreases. Indeed,
entropy 1s the measure of disorder or loss information and randomness in the system.
More specifically, zero entropy states excellent knowledge of the microscopic states
particles of the gas particles. The more entropy increases, the more uncertainty about
the microscopic states of the gas particles increases. Entropy per unit mass for perfect
gas is given by

s = ¢, log(p/p°) + constant. (330)

Solving equality (330) for pressure gives
p = kel p, (331)

where k is constant. Entropy maintains constant on each particle path for smooth flow.
However, entropy may jump to a higher value if a particle goes through or crosses a
shock. This situation is important because if we try to obtain conservation law for

entropy, then entropy will not be conserved through shocks.

3.1.2.4 Rankine-Hugoniot Conditions

The following equations are known as Rankine-Hugoniot conditions for the Euler
system:
s(p1 — p2) = mg —my,
ms mi

s(mg—my) = —=+py— — —py, (332)
P2 P1

s(paFy — p1Ey) = moHy — Hymy.
Here by sub-indexes we denote left and right of shock. We give some of useful
relations that can be derived from the relations in (332]). We consider stationary shock
that is s = 0. We have m; = my from first equation of (332) and H,; = H, from third
equation of (332). Using definition p = mu and simplify second equation of (332))
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by m; = my we obtain

2 2
=2 4
“ 2 (5’&2 (5u1 ’
2
By the definition of enthalpy h = @C\J—l) we can write [, = H, as
L, ci L, c
2T oy T2 T oo

The condition v = c is called the sonic condition and it is denoted by u = c,. Now

we can rewrite last equation as

1 c? 1 c2 0+1
516% + 1 = —u% + 2 = 2

-1 @G-1n™

3.1.3 Conservative Formulation

The formulation that we have obtained from the conservation laws is called conser-
vative formulation. For one dimensional Euler equations differential form is of the

form

Uy + F(U), =0, (333)

where U and F'(U) are given by

P U1 pu fi
U= |pu| = |uy and F=|pui>+p | =|f
E u3 (E + plu [

The unknowns p, p, u, and £ are density, pressure, velocity, and total energy, respec-

tively, where

1
E = §pu2 + pe.

Here e is the specific internal energy. For perfect gases we showed that

p
(0 —1)p’

where 6 = ¢,/c, which is the ratio of specific heats. The conservative formulation

e =

(333)) can be rewritten in quasilinear form

22



U, + A(U)U, =0, (334)

where the coefficient matrix
ofi ofi o1

Our  Ouz  Ous
Ay = o o o
oU T e

Ofs  Ofs  0fs
ouq ous  Ous

is the Jacobian matrix. We need to express all components of F' which is flux vector
in terms of the components of U. First we can easily notice that f| = us = pu.
Because both f5 and f5 contain pressure we need to express p in terms of components
of the vector U. Using the total energy and the internal energy formulations for ideal
gas, it follows that

p=e(d—1)p (335)

and

Now we can write flux vector
pU fi U
P I e e R
(E+pul| | f 2 luy + (6 - 1) (us — 12|
It follows that
0 1 0
AU) = | =36 =3)(32) (3-0)(32) (0-1)
—fme 4+ (0 -1)(2)° -0 -1 o)

In order to find eigenvalues of A(U), we substitute the sound speed a given by
a’p = op
into matrix A(U). Thus the Jacobian matrix A(U) in terms of the sound speed a and
the velocity v reads as
0 1 0
AU) =] 1032 B=0u (§—1)

1 3 a’u  3-26,2 a?
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Now we consider eigenvalues of the Jacobian matrix A(U). Characteristic polyno-
mial of A satisfies
|A—\I| =0,

that is,
(A —u)[(6u—N)(2u—6u— )+ (—a® — (§ — Du? + (6§ — 1)ou?) + (su(§ —1))] = 0.

Since (A — u) is a common factor, we have A\; = wu as an eigenvalue of A. To
obtain other eigenvalues we simplify, characteristic polynomial by cancelling the term
(A — u). It follows that

N —2uN+u?—a®=0.

The real roots

)\QZU—CL, )\3=u+a,

are remaining eigenvalues. Thus corresponding eigenvectors are

1 1 1
EW=|u |, E@9=|u—0a|, E¥=| u+a
L2 H —ua H + ua

2

We can show that all eigenvalues are real and eigenvectors linearly independent. In
other words, one dimensional Euler equations for perfect gases are hyperbolic. In

addition if the sound speed remains positive equations will be strictly hyperbolic.

3.1.4 Non-Conservative Formulation

Instead of using conserved variables, we can obtain the Euler equations in terms of
non-conservative forms. For smooth solutions, both formulations are the same. How-
ever for solutions that come across with shocks, non-conservative formulation gives
incorrect solutions. Main advantage of non-conservative formulation is that its easier

to work and analyze equations.

3.14.1 The Euler Equations in Primitive Variables

Instead of conserved variable, we try to obtain the system containing variables p, u,

and p. For obtaining the system we expand derivatives in equations that we obtain
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from conservation laws, it follows that
pt + upy + puy =0,

from conservation of mass. Similarly we expand derivatives in momentum equation

and use equation

1
Up + Uty + —py = 0.
p

From energy equation

pr + pa’uy, + up, = 0.

By these three equations we can write the system in quasi-linear form
W, + AW)W, =0,

where

i
SO Y
S D= O

Eigenvalues of this system can be computed easily which are
MY =4y —a, XD =u, X&) =y+a,

and corresponding eigenvalues

_er 1 L
EO=1| 1], E@=|o|, EO=|1
—pa 0 pa,

where a is the speed sound of perfect gas we have defined earlier. Now we consider
characteristics fields that are obtained by eigenvalues whether linearly degenerate or

genuinely nonlinear.

Genuinely Nonlinear and Linearly Degenerate Fields

Consider hyperbolic system

U+ WU, =0.
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The k-th characteristic field of this system is defined by the corresponding A(*)-th
eigenvalue or E¥)-th eigenvector. A k-th characteristic field is said to be linearly

degenerate if
AR ()
— _—E®MWU)=0
oU () ’

for all U. This is important because discontinuity in linearly degenerate fields is called

contact discontinuity. A k-th characteristic field is said to be genuinely nonlinear if

U (U) #0,

for all U. For one dimensional Euler equation in primitive variables we obtain eigen-
values and corresponding eigenvectors. Moreover we can find characteristic fields of

those three different eigenvalues. By the following calculations;

[ 6(u—a) [ —p
op a 2p a

2N 16 ) I d(u—a
SrEY = | 4ER ] 1 1
du=a) [ | _ —a || _pa
op P 2p P

ou
n 1 0

1
DEE® = || ]o|=]1]]0]|=0 (337)
0

ou
| 5 0] | 0

_w e —a P
P a a
AAB) —~3) o(uta _ _ 8+1

WE'() - (6:) 1 - 1 1 _%?50’

o(uta a
| 252 ] Lea] 5] Lpa

it follows that A(") and A®) characteristic fields are genuinely nonlinear while A is

linearly degenerate.

Contact Discontinuity

In gas dynamics we have three different kind of nonlinear waves; shocks, rarefaction,
and contact discontinues. In the first section we examined shocks and rarefaction
waves. Contact discontinuity occurs when characteristic field is linearly degenerate

like in the Euler equations. In this case, fluid has the same characteristic speed and

26



pressure on both sides of contact discontinuities while density varies. Therefore con-
tact discontinuities move with fluid while shock passes the discontinuities. Variation

in the density can happen at two different temperatures.

Riemann problem for the one dimensional compressible Euler equations

In the first Chapter, we introduce the form of Riemann problem which is an initial
value problem with equation obtained from conservation laws. Riemann problem for

one dimensional Euler equations is

U+FU),=0, zeR, t>0,

0 ou (338)
U = puU and F = qu —|—p s
E (E+p)u

with initial conditions

Uy if x <0,
U(0,) = Up(z) = (339)
In this notation the vector U contains conserved variables; however, while solving
Riemann problem, mostly we use the vector W = (p,u,p)” of primitive vari-

ables. Therefore when we use primitive variables form, initial data consists of Wt =

(pr,ur,pr)” and Wg" = (pr,ur, pr)".

Rarefaction wave Contact Shock

(PR, ', )"

(PL,UL,PL)T (PR,’MRWR)T

Figure 3.1: General form of solution to the Riemann problem

27



Riemann problem for two dimensional compressible Euler equations

Riemann problem for two dimensional Euler equations is of the form

U+ FU),+GU),=0, zeR, yeR, t>0,

u v
p f P (340)
U u” + UV
v=|"" =" TP | adc=] "
pU puv pv* +p
| B | (B +p)u | (B +p)v |

with initial conditions

U(0,2) = Up(x) = (341)
Ur if z > 0.

In two dimension pressure is defined by p = (y — 1) (E — $p(u* + v?)).

Shock Tube Problem

Shock tube problem is a special case of Riemann problem since initial velocity is
taken as zero everywhere. Consider a one dimensional long tube that is divided into
two regions by a diagram. Tube can be filled with the same gas, but at different
pressure or with two different gases. Along tube we are ignoring viscous and diffusive

effects. In Figure [3.2] an illustration of shock tube is given.

Diaphragm

Figure 3.2: Shock tube at the initial statement
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CHAPTER 4

FINITE DIFFERENCE AND FINITE VOLUME FOR CONSERVATION
LAWS

In this chapter we deal with numerical methods and appropriate numerical schemes

for conservation law of the form
ol + 8, (F(U)) = 0, 41)

where U is the conserved quantity, F' the conserved flux function, and x a vector
of spatial coordinates. Governing equations of hyperbolic systems are expressing
of conservation laws. In physically relevant problems like Euler equations, the flux

function £ does not depend only x and t, it depends the conserved quantity U that is

F = F(U(x,1)).

In non-linear hyperbolic conservation laws, we deal with discontinuous solutions such
as shock or rarefaction waves. At that point, conservation form of the equations
are extremely important. Lax Wendroff Theorem states that, conservative numerical
method converges to the weak solution of the problem, if method is convergent.|15]On
the contrary, a non-conservative method does not converge to correct solution and

fails at shock waves.

4.0.1 Finite Difference Methods

When finite difference methods are used to solve (41)), it leads to new problems. A
finite difference procedure contains replacing derivatives with finite differences by
using Taylor expansion. Because of this, solution is excepted to be smooth, however,
in scalar conservation laws we use weak solutions which are not smooth. Near dis-

continuities, standard finite difference methods are expected to give poor results. In
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addition, since the weak solutions are not unique, method might converge to wrong
solution. By wrong solution we mean the weak solution which does not satisfy en-
tropy conditions. Difficulties that we have mentioned above can be solved by using

conservative numerical methods.

Definition 7. A conservative scheme for the scalar conservation law (1)) is a numer-

ical method of the form

Ui’“rl =U"+ %(Fi_l/Q — Fiiap),

i
where

Fij10 = F}+1/2(UﬁlL, e ﬁHR)a
with Iy, I are two non-negative integers, Fi, 1y is the numerical flux which is an

approximation to the physical flux F(U) in the equation (41).

General Formulation
First we define a mesh in the (z,¢) plane with mesh width Az and At which is the

step length in time variable. The points (z;, t,,) are defined by the following

ri=a+1Ax, i=0,...,N,

t,=nAt, n=0,1,..,

Tip1e = (14 1/2)Aw,
where w1/, represent intermediate points. In the first Chapter, we introduced the
integral form of conservation law that describes the rate of change in time of integrals.

Here we have

_ 1 Ti+1/2
ur

P A
A'x Ti—1/2

Ulty,,x)dx Ulty,,x)dz,

= A .
which defines approximation of the average of U(t,,,) on [2;_1/2, ¥;11/2). Generally
in the finite difference method we focus on producing approximations to the true solu-
tion U (t,, z;); however, when we deal with conservation laws we consider producing

approximations to the average values.

4.0.2 Finite Volume Methods

Different from the finite difference method, in finite volume method we divide the

geometric domain into finite volumes or cells. Finite volume method is used to solve
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computational fluid dynamics. And one of the most important properties of the fi-
nite volume method is to derive the boundary conditions. The unknown variables are

evaluated at the cells not at the boundary faces.

General Formulation
First we define a grid in the (z,t) plane with discrete points (z;,t,) defined by the

following

vy =z, + (i +1/2)Ar, i=0,..,N, where Azr= ==L
t, =nAt, n=0,1,..,

xi_1/2:$L+iA.fC, ZZO,,N+1

in the domain [z, x1]. We denote the grid cells or control volumes by

C; = [%’4/2, $i+1/2)7

which is also illustrated in the following Figure

+1
tn+1 Uzn

n n
Zz‘—1/2 i+1/2
—t> —1 >

tn

n n n
Uity U i+1

11— 1

Figure 4.1: Illustration of finite volume methods

Idea Behind the Conservative Methods

The finite volume method is suitable for different types of conservation laws; ellip-
tic, parabolic, hyperbolic. Like we have emphasized in the finite difference method,
working with cell averages while driving numerical methods provides us that the nu-
merical method is conservative. The solution that we have obtained from numerical
solution behaves like true solution. In the following, we briefly examine numerical

methods of the conservative forms. We consider the integral form of the conservation
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law

atf Ut,2)de = F(U(t,2io1)0)) — FU(t, 2ierys)). 42)
C;

The approximation of the cell averages is defined by U over the i*" interval and at
time level ¢,. Setting U as the next time level, in order to approximate it, we

integrate the expression (42)) from ¢, to ¢,,, ;. It follows that

tn+1 tn+1
f U(tnﬂ,x)dx—J Uty )dz — J FUt, 2-170))di— J FU(t, 2101))dt.
C; C; tn

tn

Dividing both sides with Az and rearranging the terms, we get

1 1
M jCi U(tn+1, I’)dl‘ = E JCi U(tn, l‘)dl‘ (43)

1 tn+1 tn+1
tn

t‘ll

At this stage, we have a problem since F'(t, 2,41 /2) varies with time along C; and we
do not have exact solution to calculate the right hand side time integrals. But we can

define approximation to the average flux which is denoted by F[}H j20 that is,

_ 1 tn+1

Fiiip = At J, F(U(t, zit12))dt.

The only thing that we need to do here is to approximate the above flux based on the
values U". Since we work with hyperbolic problems, we have finite speed. Thus, we

set F™

i11/2 which can be obtained by

Flypg = F(U7 U, (44)

7

where .# is some numerical flux function. Using the equation (#3) with the form of

F' 5 given in (@#4), it follows that

1
A_{E JCi U(tn+1, il?)dil?

1 tn+1 tn+1
AZIJ C’L tn tn
(45)
Therefore, as a result of (43)), we can write our numerical method of the form
rrn+1 rrn Az g (TTh TN a (TTn rrn
Ui = Ui - E [/ (Ui 7Ui+1) - J(Ui_p Ui )] ) (46)
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which is an explicit method. This is the numerical form that we have already derived

by conservative method. The method given by (#6)) can be written as

grt g Fly - F

i i Citl/2 2 _ 0, (47)

Az At

which is a finite difference approximation to the conservation law
oU + 0,(F(u)) = 0.

Similarly many numerical methods can be equivalently written as finite difference

approximations to this equation or as finite volume methods.

The CFL Condition

When we solve a problem by using the numerical methods, we have to provide nu-
merical approximations to be convergent and stable. In 1928, Richard Courant, Kurt
Friedrichs, and Hans Lewy described the condition in their paper.[21] After then, the

condition is called the C'F'L condition, which is given in the following definition.

Definition 8 ([13]]). A numerical method can be convergent only if its numerical do-
main of dependence contains the true domain of the partial differential equation, at

least in the limit as At and Ax go to zero.

A simple example is given for physical interpretation of the CFL condition.

Example

Consider the linear advection equation that we have already examined in the first
chapter. The exact solution of the advection is u(t,z) = wug(z — at). That means
characteristics travel along the solution. Characteristics are straight lines which are
parallel to each other. Suppose that we use the explicit method which is given by
the equation (46) to the advection equation with positive wave speed b > 0. In the
explicit method we express approximation value U*"! by the values of U ;, U, and
In Figure [4.2, we have two different cases; one of them satisfies CFL condition and
the other one does not. In Figure (a), aAt < Ax. Defining the flux at z;_;/, in
terms of the values U |, U makes sense. On the other hand, in Figure (b) we

have larger time step such that Az < aAt. The flux at x;_,» depends on the value
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tnt1 /
ot %

= T = ) = - T -
UTLl V2 Uin z'n72 U,le 2 U7n
(a) (0)

Figure 4.2: Characteristics for the advection equation

U!' 5; however, in explicit method this term does not exist. That means we need a new
well average for the approximation value U™, If we used the explicit method that

given by (46)) for large time, then our method would be unstable.

4.0.3 First Order Numerical Methods for One Dimension
4.0.3.1 The Lax Friedrich’s Method

In order to analyze the Euler system, we firstly examine the Lax Friedrich’s method.
The Lax Friedrich’s scheme is an explicit scheme obtained using forward difference
in time and central difference in space. The scheme is amplified by taking average of

u} over the neighborhood cells

Ut = S(UR 4 UR) PR = F(UL)

At 2Ax

1
2

After leaving the U }L“ alone at the left hand side, we have the following scheme

1 At
n+1 n n n n
Ut = 5(Uj_1 +UN) — AT x(F(UjH) — F(UMy)), (48)

which is called the Lax Friedrich’s scheme. The illustration of the first order scheme

in time and central in space given in Figure[4.3]
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Figure 4.3: Lax Friedrich’s Diagram

Von Nuemann Stability Analysis of the Lax Friedrich’s Method

In order to solve any problem numerically, we must investigate the stability of the
schemes for the solution of the problem. Instead of investigating stability, we consider

the following linearized form
QU + A, (U) = 0, (49)

where A is constant. If the stability of the scheme applied to is provided with Von
Neumann method then the scheme is called linearly Von Neumann stable. We analyze
the linear Von Neumann stability of the Lax Friedrich’s scheme. Lax Friedrich’s
scheme for the linear equation becomes

U = (U + Uf) — A (E(Uj+1 - Uj_1)> . (410)

The Von Neumann stability is based on the Fourier series while defining approximate

solution. We suppose that our solution is of the form

Unr = gnellih), 411)

J

Substituting (411)) into (410), we obtain

§n+1 :gnlieinh + einh B Au(einh o einh):l
2 2

=¢"[cosh(inh) — Apsinh(inh)]

(412)
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where ;1 = At/Az = n/h and i*> = —1. Recall that
cosh(ix) = cos(x), and sinh(iz) = isin(x) (413)
Thus the equation given by the (412) is equal to
¢ = ¢"[cos(nh) — iAusin(nh)]. (414)

The amplification factor G = £""1/£" must satisfy the stability condition which is
|G| < 1. This condition ensures error remaining bounded, that means our scheme is
stable. Returning to our amplification factor G = cos(nh) — iApsin(nh), we will

check whether |G| < 1 or not. It follows that

G = [cos(nh) — iApsin(nh)],
|G)? = cos* nh + A%p?sin® nh, (415)
|G]* =1 —sin®nh(1 — A%4?) <1,

for h = 0 if and only if |A|p < 1, that is |A|At < Ax. This inequality is the CFL

condition that we have mentioned in section [4.0.2l As a result, the Lax-Friedrich’s

scheme is conditionally stable.

4.0.4 Second Order Numerical Methods for One Dimension
4.0.4.1 Two Step Lax-Wendroff Method

Two step Lax-Wendroff method is the second method that will be investigated. In
this method, firstly half steps are calculated for time steps and space variables. The
approximate value at next time step is defined by using the values at previous and
half-steps. The method has second order accuracy in time and space. The two steps

of the Lax-Wendroff scheme is introduced by the following equations:

First step:
UL =5 (U7 + Ul) = 5xm [FU2) = FUP)]
: 5
n+1/2 n n n n
Uiy = B (U +ur,) - AT |F(UT) — F(U))]
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Second step :

n . At n+1/2 n+1/2
Ut = U = o [P = PO | (417)

Von Neumann Stability Analysis of the Lax Wendroff Method

Stability of the scheme that applied to solution of the linear form will be studied by
Von Neumann analysis. Therefore defining two steps for linear flux provides us to

reduce the number of the step size. The only thing we need to do is substituting the

equations into (417). We obtain

At
Uttt = Ut - AL U, — U]+

(At)?
2(Ax)?

which is the one step Lax Wendroff method for linear flux. Suppose solution of the
. . y h . . . . . . .
linear form is U} = {"e"™", after substituting solution into scheme (#18) and dividing

both sides with e"" it follows that

il em AL At)?
el =¢ [1 — ZAA_l’ sin(nh) + 2((A32)2

A?(cos(nh) — 1)] : (419)
The amplification factor for the Lax-Wendroff becomes
G = |1 —iApsin(nh) + p>A*(cos(nh) — 1)|
IG|* = [1+ p?A*(cos(nh) — 1)]2 + A%p? sin?(nh) (420)
=1— A%u*(1 — A*u?)(1 — cos(nh))?,
where p = ﬁ—;. The norm of the amplification factor is less than one if and only

if 1 — p2A? is greater or equal than zero. Furthermore the Lax-Wendroff method is

conditionally |A|u < 1 stable.

4.0.4.2 The MacCormack’s Method

Another method that we will analyze is the MacCormack’s method. It is a two step

(predictor-corrector type) method.
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Predictor step :

Corrector step :
1 At
ntl _ (n L UE) - = *\ _ (U
Ui - 2 (Uz + Uz ) 2A3§ [F(Uz ) F(Uz—l)] .

Von Neumann Stability Analysis of the MacCormack’s Method

We apply linear Von Neumann stability analysis for all the schemes that we used in
this work. We write our scheme for a linear advection flux. The MacCormack scheme
for linear flux is identical to the Lax Wendroff scheme so that the stability of these
two schemes has the same feature. Since we studied the Von Neumann stability of the
Lax-Wendroff scheme and showed that it conditionally stable, so does MacCormack

scheme.

4.0.5 First Order Numerical Methods for Two Dimension

4.0.5.1 The Lax Friedrich’s Method

In the previous chapter, two dimensional form of the Euler’s equation is given by

U + F(U), + G(U), = 0. @21

The Lax Friedrich’s scheme for two dimensional Euler’s equation is also first order

scheme like one dimensional case. The scheme is given by

n 1 n n n n
Uiy =7 WUitsy + Ul + Ulyos + Ul
At At
~ oy vy = Fimig) = 37y (Gijtr — Gij-1) (422)

i=1,2,...,N,—-1, 7=12,...,N,—1,
where N, and N, are the number of grid cells in x and y directions, respectively.
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Von Neumann Stability Analysis of the Lax Friedrich’s Method

The stability analysis for two dimension case has the same process with one dimen-
sion case. First, we linearize the system given in (421)) then investigate stability of

the numerical scheme for linear system. The linearized system is
U+ AU, + AU, = 0, (423)

where A; and As are constants. Secondly, we assume the solution can be written as
a Fourier series in two space variables. In x direction we choose ¢ as a discretization
index. However, here we use £ instead of ¢ to prevent possible confusion. It follows

that

Up; = grellmbAatujty) (424)

where ¢ = 4/—1, p; and uo are wave numbers in X and y directions. The Lax

Friedrich’s scheme becomes

n 1 n n n n
Uiyt =7 Uiy + Uiy + Uiyoa + Ui ) .
At At
~ oag A Uksrg = Uirg) = EAQ (Urj+1 = Urj1)

for the linearized system that is given by (423)). Inserting the solution (424)) into (423))
and dividing both sides by e¥(#1kA2+12iAY) e obtain

£n+1 :én ll (efi/qu + ei,ulA:v + efi,ugAy + ei,uQAy):|
4

. é-n [22_7; (ei,ulAm . e—i,ulAm) +

ﬁ (426)

27y (eiusz _ e—iusz)] ]

Using the hyperbolic functions properties given in , equality becomes

gl =¢n [% (cos(p Azx) + COS(ILLQA[E)]
(427)

At At
— &M [A_x sin(u Ax) + Ay sin(usz] :
Thus the amplification factor is

1 | At . At
G = 5 (cos(u1Azx) + cos(usAx) —i [A_x sin(u Ax) + y sm(,ugAy)] . (428)
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The norm of the amplification factor is

IG|* = E (cos(pAz) + cos(usAz)) 2 + At sin(pu Ax) + At sin(p2Ay) 2
2 Ax Ay

= [i (cos*(u1Az) + 2 cos(p A) cos(paAz) + COS2(M2A$)):|

9 I 2 : 1o
+ [(At) (—(Aas)z sin®(pu Ax) + AeAy sin(p Ax) sin(pua Ay) + Ay sin®(p2 Ay)

Using the inequality 22y < 2 + 32, we obtain that

|GF<%[2—gﬁ0“Am(1—iz§§)—$ﬂWwAw<1—%%%§)]

is less than one if and only if 1 — 2 A? is greater or equal than zero. Furthermore the

Lax Friedrich’s method is conditionally |A|x < 1 stable.

4.1 Numerical Solutions of the Compressible Euler Equations

In this section we study shock tube problem in one dimension and two dimension,
separately, by using finite difference methods. We compare numerical solutions for
the Sod shock tube problem with the analytic solution obtained by Sod [21]]. Lax-
Friedrich’s, Lax-Wendroff, and MacCormack methods with the initial values which

are defined by Sod are studied.

4.1.0.1 One Dimensional Case

In one dimensional case we discuss the solution of the Sod shock tube problem by
using finite difference methods. The Sod shock tube problem is a Riemann problem
and used as a test problem for computational fluid. The initial values taken as defined

by Sod in [21]]. We take the initial data as

(1.0,0.0,1.0) if 0<z <05,
(pv U»Z?)t:o = (429)
(0.125,0.0,0.1) if 0.5 <z <1.
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The Dirichlet type boundary conditions are taken for the conserved quantities. It is

specified by the initial values

(1.0,0.0,1.0) at x =0,
(psu,p) = (430)
(0.125,0.0,0.1) at r=1,
with the ratio of the specific heat was v = 1.4. In all of the calculations boundary
is discretized by 755 grid points for the one dimensional case. The CFL condition is
taken 0.5 for Lax-Friedrich’s and two step Lax-Wendroff methods; however, for the
MacCormack’s method CFL is taken 0.66 because it breaks down for the CFL values
less than 0.652.

The results of the numerical tests are illustrated in Figure (4.4), Figure (4.3), and
Figure (4.6) for density, velocity, pressure, and energy for one dimensional Sod shock
tube problem. It can be observed by figures that Lax-Friedrich’s and two step Lax-
Wendroff methods behave in the same manner; besides Lax-Friedrich’s method shock

wave, contact discontinuity and rarefaction wave rarely exist.
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Numerical Results for First Order Schemes

Density Velocity
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Figure 4.4: Lax-Friedrich’s method solutions for Sod shock tube
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Numerical Results for Second Order Schemes

Density Velocity
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Figure 4.5: Two step Lax-Wendroff method solutions for Sod shock tube
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Figure 4.6: MacCormack’s method solutions for Sod shock tube

44



4.1.0.2 Two Dimensional Case

In two dimensional case we discuss the solution of Riemann problem by using first
order finite difference method. We solve two dimensional Riemann problem over the

computational domain. The following initial values

P
(0.138,1.206,1.206,0.029) if <05 and y<0.5,
(0.5323,0.0,1.206,0.3) if r =05 and y <0.5,

(p7u7vvp)t=0 = 4
(0.5323,1.206,0.0,0.3)  if £<05 and y= 0.5

| (1.5,0.0,0.0,1.5) if £>05 and y =05,
(431)

were studied. Dirichlet type boundary conditions are taken for the conserved quanti-

ties. It is specified by the initial values

r(0.138, 1.206,1.206,0.029) at  z =0,
(0.5323,0.0,1.206,0.3) at z =1,

(p,u,p) = < (432)
(0.5323,1.206,0.0,0.3) at y =0,
[ (1.5,0.0,0.0,1.5) at y=1,

with the ratio of the specific heat is v = 1.4. The boundary is discretized by 2002200
grid points for two dimensional case. The CFL condition is taken 0.75 for Lax-

Friedrich’s method. Numerical results are given for the time 0.3.
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Figure 4.7: Lax Friedrich’s solution for two dimensional Riemann problem
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CHAPTER 5

CONCLUSION

This thesis is mainly focused on the derivation of conservative equations of the com-
pressible Euler system and provides a numerical study by means of finite difference
and finite volume approximations in one and two dimensional cases. The compress-
ible Euler system is a system of non-linear hyperbolic conservation laws consisting
of second law of thermodynamics. In gas dynamics, the effect of body forces and
viscous stress can be neglected; that is, dropping these terms from the Navier-Stokes
equations gives a hyperbolic system of conservation laws. Analogously, by imposing
zero pressure to the compressible Euler equations, a particular form of this system so
called the inviscid Burgers equation, known as one of the simplest non-linear partial
differential equation, can be derived. In the first part, we examine the inviscid Burg-
ers equation to understand the idea behind discontinuous solutions such as shock and
rarefaction waves. Beside, we analyze smooth and weak solutions with necessary
conditions for choosing physically meaningful solutions among the others, entropy

conditions and Rankine-Hugonoit jump relation in the first part of this work.

In the second part, we extended our analysis in the first part to the compressible Euler
system. Mainly, the derivation of the compressible Euler equations is firstly presented
in one dimensional form where the thermodynamic aspects are given to understand
the nature of the Euler system. In addition to shock and rarefaction waves, while
dealing with the Euler system, there exists one more important phenomena which
is called contact discontinuity. We provide the Riemann problem and consider a
well-known test problem used for compressible fluid flows, so called Sod shock tube
problem in one dimensional case. Moreover, for numerical part, we start by analyzing

the stability of the Lax Friedrich, two step Lax Wendroff and two step MacCormack
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methods in one dimensional form. Finally, we illustrate some numerical results of the

model in two dimensional case by applying the Lax Friedrich’s method.

e The Lax Friedrich’s scheme is the most diffusive method as expected.

e The solution obtained by two step Lax-Wendroff and MacCormack scheme

oscillate at the contact discontinuity.

e The rarefaction results of two step Lax-Wendroff and MacCormack scheme are

similar and more accurate than Lax-Friedrich’s scheme.
e Two steps MacCormack scheme breaks down for CFL< 0.6518.

o As we excepted, the solutions of second order methods more accurate than Lax

Friedrich’s method.

e In two dimension, although the accuracy of Lax-Friedrich’s scheme is first or-

der we obtain good results.

The three schemes for the Euler equations were compared for Sod shock tube prob-
lem. From this study, the following conclusions may be drawn:

Lax-Friedrich’s and two steps Lax-Wendroff methods behave in the same manner; be-
sides Lax-Friedrich’s method shock wave, contact discontinuity and rarefaction wave

rarely exists.
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