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ABSTRACT

THE COMPRESSIBLE EULER SYSTEM AND ITS NUMERICAL
ANALYSIS

Yılmaz, Eda
M.S., Department of Mathematics

Supervisor: Assist. Prof. Dr. Baver Okutmuştur

January 2019, 50 pages

In this thesis we analyze the compressible Euler equations in one and two dimen-

sions. For this purpose, we firstly consider a particular form of this system, namely

the inviscid Burgers equation, which can be derived by imposing vanishing pressure

to the Euler system. The inviscid Burgers equation leads us to understand the idea

behind discontinuous solutions such as shock and rarefaction waves. A brief analy-

sis of smooth and weak solutions with necessary conditions for choosing physically

meaningful solutions among the others, entropy and Rankine-Hugonoit conditions

are studied in the first part of this work.

In the second part, the derivation of the compressible Euler equations is demonstrated

in one dimension where the thermodynamic aspects are given to understand the na-

ture of the Euler system. Furthermore, in order to illustrate the model numerically,

the stability analysis of three different methods, namely Lax Friedrich, two step Lax

Wendroff, and two step MacCormack methods, are examined in one dimensional

case. We use Sod shock tube problem to test numerical methods since analytic so-

lution of this problem exists. We finalize this work by a particular illustration of the

v



Euler model in two dimensional case by applying the Lax Friedrich’s method with a

short concluding remark.

Keywords: Compressible Euler equations, Finite difference method, Shock tube
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ÖZ

SIKIŞTIRILABİLİR EULER SİSTEMİ VE SAYISAL ANALİZİ

Yılmaz, Eda
Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Baver Okutmuştur

Ocak 2019 , 50 sayfa

Bu tezde, sıkıştırılabilir Euler denklemlerini bir ve iki boyutta analiz ettik. Bu amaç

doğrultusunda, öncelikle bu sistemin özel bir formu olan, Euler sisteminde basınç

kaldırılarak elde edilebilen vizkositesiz Burgers denklemini inceledik. Vizkozitesiz

Burger denklemi şok ve seyrelti dalgaları gibi süreksiz çözümlerin arkasındaki ana

fikri anlamamıza yol açar. Bu çalışmanın ilk kısmında, düzgün ve zayıf çözümler

ve fiziksel olarak anlamlı çözümleri seçmek için gerekli olan entropi ve Rankine-

Hugonoit koşullarının kısa analizi çalışıldı.

İkinci kısımda, Euler sisteminin yapısını anlamak için termodinamik kabullerin veril-

diği, bir boyutta sıkıştırabilir Euler denklemlerinin çıkarılışı yapıldı. Ayrıca, sayısal

olarak açıklamak için, bir boyutta üç farklı sayısal yöntemin kararlılığı çalışıldı. Sayı-

sal yöntemleri denemek için analitik çözümü olan Sod şok tüp problemini kullandık.

Bu çalışmayı, Lax Friedrich’s yöntemini iki boyutta Euler modeline uygulayarak nok-

taladık.
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CHAPTER 1

INTRODUCTION

Hyperbolic systems of conservation laws are non-linear systems of partial differential

equations. These systems naturally arise in science and engineering problems that

contain compressible flows and conserved quantities. The compressible Euler equa-

tions are a particular example of time-dependent non-linear hyperbolic conservation

laws. The Euler equations identify laws of compressible, inviscid, perfect gases in

stationary coordinates. In 1757, the form of compressible Euler equations consisted

of momentum and continuity equations are published by Euler in [21]. Pierre-Simon

Laplace added an adiabatic condition in a letter in 1816.[6] Finally, the necessity of

conservation of energy was introduced in the second half of the 19th century. The

general form of the Euler equations can be written in the form

BtU � BxpF pUqq � 0, (11)

where U and F pUq are the vectors of conserved quantities and fluxes with

U �

�
���
ρ

ρu

E

�
��� and F �

�
���

ρu

ρu2 � p

pE � pqu

�
��� , (12)

where ρ, p, u, and E are density, pressure, velocity, and total energy, respectively.

The Euler equations have become widely used as a test problem in the interest of

testing accuracy of numerical schemes while deriving the new numerical schemes.

The numerical solutions have been studied in various papers of Yee [25], Roe [20],

and Jiang and Shu [15].
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The structure of the thesis is as follows:

In Chapter 2, we start by introducing hyperbolic systems and conservation laws. Since

inviscid Burgers equation is a particular example of the Euler equations, we attempt

to construct solution of it. Then, we introduce the concept of strong solutions, weak

solutions with necessary conditions entropy, and Rankine-Hugonoit jump relations to

obtain physically meaningful solutions.

In Chapter 3, we give the derivation of the compressible Euler equations. Then,

the thermodynamics considerations, entropy and Rangine-Hugoniot conditions are

introduced. Conservative and non-conservative formulations are studied for one di-

mensional Euler equations. In addition to discontinuous solution such as shock and

rarefaction waves, in compressible Euler equations there is one more discontinuity

which is called contact discontinuity is studied. The Riemann problem and shock

tube problem is defined for the Euler equations.

In Chapter 4, analysis of three numerical schemes that we apply to approximate the

solution of Sod shock tube problem in one dimension are performed. In two dimen-

sional case the Riemann problem is solved by first order Lax Friedrich’s method.
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CHAPTER 2

HYPERBOLIC CONSERVATION LAWS

2.1 Hyperbolic Systems

Many of partial differential equations arise from science and engineering problems.

These problems contain conserved quantities such as mass, momentum, energy. As a

result of the nature of these problems we have nonlinear or linear systems of partial

differential equation. To obtain these systems we use physical laws like conservation

laws and thermodynamics laws. In this study, we are interested in the structure of

solutions of hyperbolic conservation laws with initial data. The following formula is

a general form of a systems of conservation law;

Btu�
ņ

j�1

Bxjfjpuq � 0, t ¡ 0, (21)

where x � px1, ..., xnq P Rn and u � pu1, ..., upqT is a vector valued function, and

fj � fpf1j, ..., fnjqT are called flux functions of system. When we say u is conserved

that means it should be a constant with respect to time.

We define hyperbolic systems of conservation law as follows. Let

Ajpuq �
�Bfij
Buk puq



1¤i,k¤n

(22)

be the Jacobian matrix of fjpuq. The system which is given by equation (21) is called

hyperbolic if matrix

Apu, aq �
ņ

j�1

ajAjpuq (23)

diagonalizable that is there is a complete set of n linearly independent corresponding

eigenvectors for any u and any a � pa1, ..., anq P Rn and has n real eigenvalues. In

3



addition if all eigenvalues are distinct, system (21) is said to be strictly hyperbolic.

2.1.1 Conservation Laws

2.1.1.1 Integral and Differential Forms

Derivation of Euler equations by conservation laws is the issue of the next chapter.

Here we only introduce the basic idea behind how conservation laws arise in gas

dynamics. We start with the equation of conservation of mass in one dimensional

case.

Denoting the gas density by ρpt, xq, we assume that the density and the velocity are

constant in the tube. The cross sectional area in one dimensional case is of the form

rx1, x2s and the density is per unit mass in per unit volume. It follows that, we inte-

grate density in any section, the total mass in this section is
» x2
x1

ρpt, xqdx. (24)

Denoting the velocity by upt, xq, the mass flux at time t and point x is

ρpt, xqupt, xq (25)

cause fluid must has the velocity to flow. The rate of change of the mass in rx1, x2s is

given by
d

dt

» x2
x1

ρpt, xqdx � ρpt, x1qupt, x1q � ρpt, x2qupt, x2q (26)

which we call integral form of the conservation law. The only thing we need for

obtaining differential form is to integrate equation (26) in time from t1 to t2, that is,
» x2
x1

ρpt2, xqdx�
» x2
x1

ρpt1, xqdx �
» t2
t1

ρpt, x1qupt, x1q �
» t2
t1

ρpt, x2qupt, x2q. (27)

Assume that ρpt, xq and upt, xq are differentiable. By the fundamental theorem of

calculus

ρpt2, xq � ρpt1, xq �
» t2
t1

Btρpt, xqdx (28)

and

ρpt, x2qupt, x2q � ρpt, x1qupt, x1q �
» x2
x1

Bxpρpt, xqupt, xqqdx. (29)
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After substitution (28) and (29) into (27) it follows that
» t2
t1

» x2
x1

tBtρpt, xq � Bxρpt, xqupt, xqu dx dt � 0. (210)

Since limits of the integrations are arbitrary, the inequality has to be satisfied for any

rx1, x2s and rt1, t2s, thus integrand must be zero. As a result conservation of mass

yields

Btρ� Bxpuρq � 0, (211)

which is differential form of the conservation law.

2.1.2 Scalar Conservation Laws

We study preliminaries of Euler equations in this subsection. First we study the scalar

case, that is n � 1. The most common notation for the scalar conservation law is

Btu� Bxpfpuqq � 0, (212)

where u represents the conserved quantity and f is the flux function of fluid flow.

2.1.2.1 Strong Solutions

We take into account the following initial value problem,

Btu� Bxpfpuqq � 0, t ¡ 0, x P R

up0, xq � u0pxq, x P R
(213)

and let f : R Ñ R be a differentiable function. It follows that Bxpfpuqq � BufpuqBxu
by the chain rule. Now equation (213) becomes

Btu� BufpuqBxu � 0, t ¡ 0, x P R

up0, xq � u0pxq, x P R.
(214)

The solution (214) is called a strong solution if it is differentiable and it satisfies initial

value problem given in (213). We can write equation (214) in the quasilinear form

Btu� bpuqBxu � 0, (215)
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where bpuq � Bufpuq. Let u be a strong solution of (214) and initial data u0 is a

differentiable. We use the method of characteristics for reducing partial differential

equation to a systems of ordinary differential equations. A solution of system,

Btx � bpupt, xptqqq,
xp0q � x0,

(216)

gives us equation of the characteristic curve through the point p0, x0q. Along this

curve it can be easily shown that u is constant because

Btupt, xptqq � Btupt, xptqq � BtxBxupt, xptqq,
� Btu� bpuqBxu � 0.

(217)

As a result we can say that the characteristic curves are straight lines defined by

equation

x � x0 � bpu0px0qqt � 0, (218)

and this provides us to define smooth solutions by initial data.

Now we examine two different cases that depend on bpu0pxqq. Let us define the form

of slope of the characteristics by

mi � 1

bpu0pxiqq . (219)

Case 1: xÑ bpu0pxqq is increasing

In this case slopes of the characteristics are decreasing. Furthermore, the characteris-

tics cannot intersect. The solution can be defined for all t which is greater than zero.

Case 2: xÑ bpu0pxqq is decreasing

In this case slopes of characteristics are increasing which means characteristics inter-

sect at some point. However at the intersection point characteristics solution cannot

take both values u0px1q and u0px2q. Furthermore we cannot define the strong solution

for all the time t ¡ 0. That is the reason we need to define weak solutions to extend

the concept of solution.

2.1.2.2 The Linear Advection Equation

The fundamental example of scalar conservation law is the advection equation. If

fpuq � bu where b is a constant then we call the following equation

Btu� bBxu � 0,

6



as a linear advection equation. It is a quasilinear partial differential equation. Linear

advection equation with initial data having proper domain has a simple solution. We

consider initial value problem or Cauchy problem of linear advection equation

Btu� Bxfpuq � 0, �8   x   8, t ¥ 0,

up0, xq � u0pxq � 8   x   8.
(220)

The solution by characteristics take the form

upt, xq � u0px� btq, t ¥ 0.

This solution is the simplest example of a wave solution. Here b is called wave speed,

upt, xq is called wave and characteristics lines x�bt � constant are called wavefronts.

2.1.2.3 Burgers Equation

Scalar equation

Btu� Bxpfpuqq � 0,

is nonlinear whenever fpuq is a non-linear function of u. Burgers equation is the

simplest nonlinear equation and the most common problem used for numerical im-

plementations in scalar conservation laws. Original equation studied by Burgers is

Btu� uBxu � εBxxu

where the right hand side of the equation is a viscous term and ε ¡ 0 is the constant

of viscosity. Inviscid Burgers equation is

Btu� uBxu � 0,

where fpuq � 1
2
u2, and the viscous term is zero.

2.1.2.4 Shock Information

For a simple explanation of shock waves, we consider characteristics of Burgers equa-

tions defined by
dx

dt
� upt, xq.

7



The solution is constant along characteristics for Burgers equation. As a result we

can write characteristic

xptq � u0px0qt� x0

where u0pxq � up0, xq and x0 � xp0q. It means that characteristics are straight lines

and they can intersect or may not cover the entire pt, xqspace. When characteristics

intersect our solution has an infinite slope, waves break and we get a shock form. In

Riemann problem, if the relation between particle speeds is uL ¡ uR we end up with

shock waves and it’s characteristics illustrated in Figure 2.1(b).

uL

uR

x x

t

dataInitiala) b) Characteristics

Figure 2.1: Characteristics for the initial data uL ¡ uR

2.1.3 Rarefaction Waves

In Riemann problem, other possibility for the relation between particle speeds is uL  
uR. In this case, characteristics may not intersect; however, they may not cover the

whole space. Furthermore, characteristics separate regions of uniform flow which is

illustrated in Figure 2.2(a). Rarefaction fan ensures that separated region can be filled

and it is in Figure 2.2(b).

Definition 1 (Rarefaction fan). A rarefaction wave in which all characteristics arise

from a single point in the xt plane is called rarefaction fan.

Definition 2. Solution of the initial value problem for convex flux with initial condi-

tions

u0pxq � uL for x   0, u0pxq � uR for x ¡ 0, (221)

will be in the following form:

If uL   uR, then solution is a rarefaction wave and has the form

8



 If x{t ¤ f 1puLq, then upt, xq � uL.

 If x{t ¥ f 1puRq, then upt, xq � uR.

 If f 1puLq ¤ x{t ¤ f 1puRq, then f 1pupt, xqq � x{t.

x

t

x

t

a) Characteristic for uL < uR b) The Rarefaction solution

Figure 2.2: The rarefaction waves

2.1.3.1 Weak Solutions

We are looking for a way to give a meaning to discontinuous solution of following

initial value problem

Btu� Bxpfpuqq � 0, t ¡ 0, x P R,

up0, xq � u0pxq, x P R.
(222)

Idea behind the weak solution is to arrange partial differential equation by using

smooth test function. Sobolov spaces necessary to introduce weak formulation of

differential equations.[7] We set this smooth function as φpt, xq, which is differen-

tiable and has a compact support. Having a compact support means φpt, xq is zero

for some certain space variables such that |x| ¡ H . We start to rearrange equation

by multiplying partial differential equation by test function φpt, xq, take integration

as needed and use integration by parts to get

»
�H x H

» 8
0

uBtφ� fpuqBxφdt dx�
»

�H x H

up0, xqφpxqdx � 0.

As a result we do not have derivatives of u and f anymore which yields less smooth-

ness. This way we reduce the smoothness requirement to find a solution.

9



Definition 3. The function upt, xq is called a weak solution of conservation law if the

following
» 8

0

» 8
�8

uBtφ� fpuqBxφdx dt�
» 8
�8

up0, xqφpxqdx � 0,

holds for all smooth functions φ with compact support.

Proposition 1. Strong solutions are also weak solutions. A weak solution which is

continuous and piecewise differentiable is also a strong solution.

The advantage of the weak solution is that it contains discontinuities. However the

weak solutions may not unique which can be considered as disadvantage of them.

Since we deal with physical problems we want our solution to be physically mean-

ingful. In the following, we provide some conditions to obtain more accurate solution.

2.1.3.2 Riemann Problem

An initial value problem that is composed of a conservation law together with a piece-

wise constant data having a single discontinuity is called Riemann problem. The

following initial value problem

Btu� uBxu � 0, x P R, t P R�,

up0, xq �

$'&
'%
uL if x   0,

uR if x ¡ 0,

(223)

is a Riemann problem for classical (inviscid) Burgers equation. The relation between

uL and uR identifies form of solution.

Case 1: (uL ¡ uR)

In this case solution is given by

upt, xq �

$'&
'%
uL if x� st   0,

uR if x� st ¡ 0,

where

s � puL � uRq{2

10



represents characteristic (shock) speed. The left hand side waves move faster than the

right hand sides and this is the reason that we end up with a shock. To verify that

taller waves move faster than shorter waves, we consider general scalar conservation

law

Btupx, tq � Bufpupx, tqq � Btupx, tq � BxfBxu � 0.

From characteristic equations the relation between speed of the solution and flux func-

tion
dx

dt
� f 1puq

can be obtained. If we apply for Burgers equation, it follows that

dx

dt
� u,

which illustrates that taller waves move faster.

Case 2: (uL   uR)

The solution given in the first case is also a solution for this case but we get an area

without characteristic; see Figure 2.2(a). This is physically not possible. Our aim is

to obtain physically meaningful solution. Because of that we need rarefaction waves.

Defining solution by the following form

upt, xq �

$''''&
''''%

uL if x   uLt,

x{t if uLt   x   uRt,

uR if uRt   x,

(224)

we cover the area with characteristics and complete solution form.

2.1.3.3 Rankine-Hugoniot Jump Condition

Rankine Hugoniot jump condition provides us to control the discontinuity along char-

acteristics and work at any jump since at a different shock speed we cannot obtain the

weak solution.

Definition 4. Rankine-Hugoniot jump condition is defined by

s � fpuLq � fpuRq
uL � uR

� rf s
rus ,

11



where s is the shock speed (the speed at discontinuity travel); uL, uR are initial values

given in problem, and fpuq is the arbitrary flux. The notation r.s represents jump

across the discontinuity.

2.1.3.4 Entropy Conditions

Entropy is a measure of disorder i.e, how much energy is not available to do work.

That unavailable energy is of interest in thermodynamics. We examined that the

weak solution may not need to be unique. Besides Rankine-Hugoniot condition an

additional condition is required.

Definition 5. A discontinuity propagating with the speed s given by Rankine-Hugoniot

jump condition satisfies the entropy condition if

f 1puLq ¡ s ¡ f 1puRq (225)

holds.

Entropy condition (225) reduces to the form uL ¡ uR for the convex functions.

Definition 6. The function f is convex in the domain I if and only if

fpuq � fpaq
u� a

¤ fpbq � fpaq
b� a

¤ fpbq � fpuq
b� u

for all a   u   b P I .

In limit sense, if we set u Ñ a in the first inequality and u Ñ b on the second

inequality then we obtain

f 1paq ¤ fpbq � fpaq
b� a

¤ f 1pbq

for all a   b. Basically, we observe that convexity implies that f 1 is a strictly increas-

ing function. That means solution u satisfies entropy condition f 1puLq ¡ s ¡ f 1puRq
if and only if uL ¡ uR for the convex functions. The geometric explanation of this

condition is illustrated in Figure 2.3.

12



u

f(u)

(uR, f(uR))

(uL, f(uL))

Figure 2.3: Physically acceptable shock under entropy condition
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CHAPTER 3

COMPRESSIBLE EULER EQUATIONS

3.1 Compressibility

The compressibility of a fluid is the measure of the change in density that is produced

in fluid by a specified change in pressure. In general, gases are highly compressible

while most liquids have a very low compressibility. Although there is no incompress-

ible fluids in real life, we use this term with such flows that the change in density with

pressure is so small as to be negligible. This case usually happens with liquids. There

are some factors which make change in pressure like changes in velocity in the flow.

Changes in pressure affect the fluid’s density, thus influencing fluid compressibility.

Applications of compressible fluid theory are used in the design problems of high

speed aerodynamics, rocket and missile propulsion, steam and gas turbines.

3.1.1 Derivation of Conservation Laws for the Euler Equations

Basic equations of fluid dynamics that govern fluid motion are derived from con-

servation of mass, conservation of momentum, and conservation of energy. In the

following section, we make derivation these conservation laws.

3.1.1.1 Conservation of Mass

Basic idea of conservation of mass can be formulated by the following relation :

Rate of change of mass of fluid in control volume with respect to time :

Rate mass flow enters control volume - Rate mass flow leaves control volume
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In the following, we use divergence theorem to investigate integral approach of mass

conservation. Suppose upt, xq be the velocity of fluid particles passing through the

point p in the control volume V . We denote fluid density and mass of fluid by ρpt, xq
and mptq, respectively. To express whole mass we take volume integral of density,

that is per unit mass per unit volume, i.e,

mptq �
½

ρpt, xqdV. (31)

The rate of change of mass in control volume with respect to time is given by

Bm
Bt �

½ Bρ
Bt dV. (32)

The flow fluid must have a velocity to be able to flow. Since we consider velocity

component passing through the surface, we need to take projection of velocity into

the normal of surface. Let S represent surface area. Mass flow per unit time is denoted

by ρpt, xq Ñu.Ñn. To express the whole mass flow we need to take surface integral. The

rate of mass flow is of the form ¼
ρ
Ñ
u.
Ñ
n dS. (33)

Next, we apply divergence theorem to the surface integral (33), to get

�
½

∇pρ Ñ
uqdV �

½ Bρ
Bt dV (34)

As a result of equation (34), if we assume that ρ and
Ñ
u are continuous, we can write

the following equation

∇pρ Ñ
uq � Bρ

Bt � 0 (35)

which is called the continuity equation.

3.1.1.2 Conservation of Momentum

When we compress the gas by applying a force in the region where the density is

higher than neighbourhood, then it spreads out and pushes the gas particular to neigh-

bourhood. As a result we lower the density in this region and raise the density in

neighbourhood. This variation in density causes changes in the velocity.

From Newton’s law of motion we know that momentum is a conserved quantity while

the velocity is not. Factors that affect momentum are pressure and momentum flux.
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Depending on problem, in addition to these terms, we may have gravitational force,

too. Like we did in conservation of mass, we suppose that upt, xq and ρpt, xq represent

velocity and density, respectively. Moreover V denotes control volume and S denotes

surface area. Density of momentum is product of the density and the velocity. To find

total momentum in control volume, we take volume integral of density of momentum,

that is ρpt, xqupt, xq and momentum flux is pρpt, xqupt, xqqupt, xq. Since pressure also

affects momentum, total momentum in control volume is
¼
S

pρu2 � pqdS. (36)

Moreover, the rate of change of momentum with respect to time is
½ Bpρuq

Bt dV. (37)

The rate of change of momentum with respect to time in control volume is equal to

the total force applying on the surface area. We apply divergence theorem and we

substitute what we find in (37), that is,
½ � Bpρpt, xqupt, xqq

Bt �∇pρu2 � pq
�
dV � 0. (38)

Following (38), if we suppose ρ, u, and p are all smooth then we can express

Bpρpt, xqupt, xqq
Bt �∇pρu2 � pq � 0, (39)

which is differential form of momentum equation.

3.1.1.3 Conservation of Energy

To complete derivation of Euler equations, we consider finally the conserved quantity,

energy. The total energy of the fluid is the sum of internal energy and kinetic energy.

For total energy we use the notation E. Kinetic energy is associated with the motion

of the fluid particles with the velocity upt, xq, and mass of the fluid. The internal

energy arises from translational, rotational, and vibrational energy of motion of the

individual molecules. Indeed we have

E � 1

2
ρu2 � ρe. (310)
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The first term in (310) is the kinetic energy, while ρe is the internal energy. We call

e as specific internal energy that is internal energy per unit mass and it is a function

of density and pressure. As done for the laws of conservation we show that, the time

rate of change of energy in control volume is equal to sum of the flux of energy that

acrosses surface and the net rate of work that is done by the pressure. The law of

conservation of energy is

B
Bt
½ �

1

2
ρu2 � ρe



dV � �

¼
EundS �

¼
pundS. (311)

We apply the Green’s theorem and the expression (311) becomes

B
Bt
½ �

1

2
ρu2 � ρe



dV �

½
∇ppE � pquqdV � 0. (312)

If we suppose ρ, u, and p are all smooth, then we can express the equation (312) by

B
Bt
�

1

2
ρu2 � ρe



�∇ppE � pquq � 0, (313)

which is the last equation of the Euler system.

3.1.1.4 The One Dimensional Compressible Euler Equations

In the previous part, we obtained three equations. Putting them together gives the

system of the Euler equations
�
���
ρ

ρu

E

�
���
t

�

�
���

ρu

ρu2 � p

pE � pqu

�
���
x

� 0. (314)

Or equivalently,

Ut � F pUqx � 0, (315)

where

U �

�
���
ρ

ρu

E

�
��� and F �

�
���

ρu

ρu2 � p

pE � pqu

�
��� . (316)

We use second notation when we specify conservative formulation of the Euler equa-

tions.
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3.1.2 Thermodynamic Aspects

3.1.2.1 Equation of State

We derived three equations for four unknowns in the previous section. To obtain a

unique solution of this system of equations, we need additional information. These

equations of states contain two more equations with one more unknown. The equa-

tions of state determines type of fluid like distinguishing air from engine oil.

3.1.2.2 Perfect Gas

For compressible flows there is an interaction between microscopic and macroscopic

levels. Velocity and kinetic energy are macroscopic properties of a system, while in-

ternal energy is average microscopic property of the system. Mechanical properties

describe macroscopic properties and thermodynamic properties describe microscopic

properties. Density and pressure can be considered either mechanical or thermody-

namic. The fluid that satisfies thermal equation of state (ideal gas law) and caloric

equation of state is called a perfect gas. The ideal gas law is given by

p � ρRT, (317)

where R is a gas constant which differs for different gases and T is temperature.

Moreover, the caloric equation of state is

e � cvT, (318)

where cv is specific heat at a constant volume. We define the specific heat at a constant

pressure as

cp � h

T
. (319)

Now we introduce the state variable enthalpy which is defined by

h � e� p

ρ
(320)

and for a perfect gas we have

h � e�RT. (321)
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If we substitute e and h in (321), then we obtain;

R � cp � cv. (322)

The equation of the state of perfect gas ends up to depend on the ratio of specific heats

and it is called adiabatic exponent, that is,

δ � cp
cv
. (323)

We stated that the internal energy arises from rotational, translational and vibrational

energy of motion of the molecules.These terminologies are called as degrees of free-

dom. Generally α states degrees of freedom. It follows that, the internal energy is

given by

e � α

2
nkT, (324)

where n is the number of molecules per unit mass, k is the Boltzmann’s constant.

Actually the product nk � R is the gas constant. If we compare the equations (318)

and (319) with the equation (324), it follows that

cv � α

2
R (325)

and we can rewrite cp as

cp � p1 � α

2
qR. (326)

As a result, by (325) and (326) we get

δ � cp
cv
� α � 2

α
. (327)

From the ideal gas law, we know that T � p

Rρ
. Finally using this term in (318) we

can state the internal energy by

e � cvT � cv
R

p

ρ
� p

pδ � 1qρ. (328)

Concluding, the equation of state for perfect gas commonly uses the following form;

E � p

δ � 1
� 1

2
ρu2. (329)
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3.1.2.3 Entropy

The first law of thermodynamics states that the total energy in the isolated system re-

mains constant. This is the idea we have used to obtain the equation of conservation of

energy. Any physical system is obliged to satisfy the second law of thermodynamics.

It can be expressed as follows: The total entropy of system never decreases. Indeed,

entropy is the measure of disorder or loss information and randomness in the system.

More specifically, zero entropy states excellent knowledge of the microscopic states

particles of the gas particles. The more entropy increases, the more uncertainty about

the microscopic states of the gas particles increases. Entropy per unit mass for perfect

gas is given by

s � cv logpp{ρδq � constant. (330)

Solving equality (330) for pressure gives

p � kes{cvρδ, (331)

where k is constant. Entropy maintains constant on each particle path for smooth flow.

However, entropy may jump to a higher value if a particle goes through or crosses a

shock. This situation is important because if we try to obtain conservation law for

entropy, then entropy will not be conserved through shocks.

3.1.2.4 Rankine-Hugoniot Conditions

The following equations are known as Rankine-Hugoniot conditions for the Euler

system:

spρ1 � ρ2q � m2 �m1,

spm2 �m1q � m2
2

ρ2

� p2 � m2
1

ρ1

� p1,

spρ2E2 � ρ1E1q � m2H2 �H1m1.

(332)

Here by sub-indexes we denote left and right of shock. We give some of useful

relations that can be derived from the relations in (332). We consider stationary shock

that is s � 0. We have m1 � m2 from first equation of (332) and H1 � H2 from third

equation of (332). Using definition ρ � mu and simplify second equation of (332)
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by m1 � m2 we obtain

u1 � u2 � c2
2

δu2

� c2
1

δu1

.

By the definition of enthalpy h � c2

pδ˘1q we can write H1 � H2 as

1

2
u2

1 �
c2

1

pδ � 1q �
1

2
u2

2 �
c2

2

pδ � 1q .

The condition u � c is called the sonic condition and it is denoted by u � c�. Now

we can rewrite last equation as

1

2
u2

1 �
c2

1

pδ � 1q �
1

2
u2

2 �
c2

2

pδ � 1q �
δ � 1

pδ � 1qc
2
�.

3.1.3 Conservative Formulation

The formulation that we have obtained from the conservation laws is called conser-

vative formulation. For one dimensional Euler equations differential form is of the

form

Ut � F pUqx � 0, (333)

where U and F pUq are given by

U �

�
���
ρ

ρu

E

�
��� �

�
���
u1

u2

u3

�
��� and F �

�
���

ρu

ρu2 � p

pE � pqu

�
��� �

�
���
f1

f2

f3

�
��� .

The unknowns ρ, p, u, and E are density, pressure, velocity, and total energy, respec-

tively, where

E � 1

2
ρu2 � ρe.

Here e is the specific internal energy. For perfect gases we showed that

e � p

pδ � 1qρ,

where δ � cp{cv which is the ratio of specific heats. The conservative formulation

(333) can be rewritten in quasilinear form
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Ut � ApUqUx � 0, (334)

where the coefficient matrix

ApUq � BF
BU �

�
���
Bf1
Bu1

Bf1
Bu2

Bf1
Bu3

Bf2
Bu1

Bf2
Bu2

Bf2
Bu3

Bf3
Bu1

Bf3
Bu2

Bf3
Bu3

�
��� ,

is the Jacobian matrix. We need to express all components of F which is flux vector

in terms of the components of U . First we can easily notice that f1 � u2 � ρu.

Because both f2 and f3 contain pressure we need to express p in terms of components

of the vector U . Using the total energy and the internal energy formulations for ideal

gas, it follows that

p � epδ � 1qρ (335)

and

e � 1

ρ

�
E � 1

2

u2

ρ



.

Substituting e into first equation (335), we obtain pressure in the following form

p � pδ � 1q
�
u3 � 1

2

u2
2

u1



.

Now we can write flux vector

F �

�
���

ρu

ρu2 � p

pE � pqu

�
��� �

�
���
f1

f2

f3

�
��� �

�
����

u2

u22
u1
� pδ � 1q

�
u3 � 1

2

u22
u1

	
u2
u1

�
u3 � pδ � 1q

�
u3 � 1

2

u22
u1

	�

�
���� . (336)

It follows that

ApUq �

�
���

0 1 0

�1
2
pδ � 3qpu2

u1
q2 p3 � δqpu2

u1
q pδ � 1q

� δu2u3
u21

� pδ � 1qpu2
u1
q3 δu3

u1
� 3

2
pδ � 1qpu2

u1
q2 δpu2

u1
q

�
��� .

In order to find eigenvalues of ApUq, we substitute the sound speed a given by

a2ρ � δp

into matrix ApUq. Thus the Jacobian matrix ApUq in terms of the sound speed a and

the velocity u reads as

ApUq �

�
���

0 1 0

1
2
pδ � 3qu2 p3 � δqu pδ � 1q

1
2
pδ � 2qu3 � a2u

δ�1
3�2δ

2
u2 � a2

δ�1
δu

�
��� .
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Now we consider eigenvalues of the Jacobian matrix ApUq. Characteristic polyno-

mial of A satisfies

|A� λI| � 0,

that is,

pλ�uqrpδu�λqp2u� δu�λq�p�a2�pδ�1qu2�pδ�1qδu2q�pδu2pδ�1qqs � 0.

Since pλ � uq is a common factor, we have λ1 � u as an eigenvalue of A. To

obtain other eigenvalues we simplify, characteristic polynomial by cancelling the term

pλ� uq. It follows that

λ2 � 2uλ� u2 � a2 � 0.

The real roots

λ2 � u� a, λ3 � u� a,

are remaining eigenvalues. Thus corresponding eigenvectors are

Ep1q �

�
���

1

u

1
2
u2

�
��� , Ep2q �

�
���

1

u� a

H � ua

�
��� , Ep3q �

�
���

1

u� a

H � ua

�
��� .

We can show that all eigenvalues are real and eigenvectors linearly independent. In

other words, one dimensional Euler equations for perfect gases are hyperbolic. In

addition if the sound speed remains positive equations will be strictly hyperbolic.

3.1.4 Non-Conservative Formulation

Instead of using conserved variables, we can obtain the Euler equations in terms of

non-conservative forms. For smooth solutions, both formulations are the same. How-

ever for solutions that come across with shocks, non-conservative formulation gives

incorrect solutions. Main advantage of non-conservative formulation is that its easier

to work and analyze equations.

3.1.4.1 The Euler Equations in Primitive Variables

Instead of conserved variable, we try to obtain the system containing variables ρ, u,

and p. For obtaining the system we expand derivatives in equations that we obtain
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from conservation laws, it follows that

ρt � uρx � ρux � 0,

from conservation of mass. Similarly we expand derivatives in momentum equation

and use equation

ut � uux � 1

ρ
px � 0.

From energy equation

pt � ρa2ux � upx � 0.

By these three equations we can write the system in quasi-linear form

Wt � ApW qWx � 0,

where

W �

�
���
ρ

u

p

�
��� , ApW q �

�
���
u ρ 0

0 u 1
ρ

0 ρa2 u

�
��� .

Eigenvalues of this system can be computed easily which are

λp1q � u� a, λp2q � u, λp3q � u� a,

and corresponding eigenvalues

Ep1q �

�
���
�ρ
a

1

�ρa

�
��� , Ep2q �

�
���

1

0

0

�
��� , Ep3q �

�
���

ρ
a

1

ρa,

�
���

where a is the speed sound of perfect gas we have defined earlier. Now we consider

characteristics fields that are obtained by eigenvalues whether linearly degenerate or

genuinely nonlinear.

Genuinely Nonlinear and Linearly Degenerate Fields

Consider hyperbolic system

Ut �WUx � 0.
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The k-th characteristic field of this system is defined by the corresponding λpkq-th

eigenvalue or Epkq-th eigenvector. A k-th characteristic field is said to be linearly

degenerate if
BλpkqpUq
BU EpkqpUq � 0,

for all U. This is important because discontinuity in linearly degenerate fields is called

contact discontinuity. A k-th characteristic field is said to be genuinely nonlinear if

BλpkqpUq
BU EpkqpUq � 0,

for all U . For one dimensional Euler equation in primitive variables we obtain eigen-

values and corresponding eigenvectors. Moreover we can find characteristic fields of

those three different eigenvalues. By the following calculations;

Bλp1q

BU
Ep1q �

�
���
Bpu�aq
Bρ

Bpu�aq
Bu

Bpu�aq
Bp

�
���
�
���

�ρ
a

1

�ρa

�
��� �

�
���

a
2ρ

1

� a
2p

�
���
�
���

�ρ
a

1

�ρa

�
��� � δ�1

2
� 0,

Bλp2q

BU
Ep2q �

�
���
Bu
Bρ

Bu
Bu

Bu
Bp

�
���
�
���

1

0

0

�
��� �

�
���

0

1

0

�
���
�
���

1

0

0

�
��� � 0,

Bλp3q

BU
Ep3q �

�
���
Bpu�aq
Bρ

Bpu�aq
Bu

Bpu�aq
Bp

�
���
�
���

ρ
a

1

ρa

�
��� �

�
���
�a
2ρ

1

a
2p

�
���
�
���

ρ
a

1

ρa

�
��� � δ�1

2
� 0,

(337)

it follows that λp1q and λp3q characteristic fields are genuinely nonlinear while λp2q is

linearly degenerate.

Contact Discontinuity

In gas dynamics we have three different kind of nonlinear waves; shocks, rarefaction,

and contact discontinues. In the first section we examined shocks and rarefaction

waves. Contact discontinuity occurs when characteristic field is linearly degenerate

like in the Euler equations. In this case, fluid has the same characteristic speed and
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pressure on both sides of contact discontinuities while density varies. Therefore con-

tact discontinuities move with fluid while shock passes the discontinuities. Variation

in the density can happen at two different temperatures.

Riemann problem for the one dimensional compressible Euler equations

In the first Chapter, we introduce the form of Riemann problem which is an initial

value problem with equation obtained from conservation laws. Riemann problem for

one dimensional Euler equations is

Ut � F pUqx � 0, x P R, t ¡ 0,

U �

�
���
ρ

ρu

E

�
��� and F �

�
���

ρu

ρu2 � p

pE � pqu

�
��� ,

(338)

with initial conditions

Up0, xq � U0pxq �

$'&
'%
UL if x   0,

UR if x ¡ 0.
(339)

In this notation the vector U contains conserved variables; however, while solving

Riemann problem, mostly we use the vector W T � pρ, u, pqT of primitive vari-

ables. Therefore when we use primitive variables form, initial data consists ofWL
T �

pρL, uL, pLqT and WR
T � pρR, uR, pRqT .

Rarefaction wave Contact Shock

(ρL, uL, pL)
T (ρR, uR, pR)

T

(ρ∗R, u
∗, p∗)T(ρ∗L, u

∗, p∗)T

Figure 3.1: General form of solution to the Riemann problem
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Riemann problem for two dimensional compressible Euler equations

Riemann problem for two dimensional Euler equations is of the form

Ut � F pUqx �GpUqy � 0, x P R, y P R, t ¡ 0,

U �

�
������

ρ

ρu

ρv

E

�
������
, F �

�
������

ρu

ρu2 � p

ρuv

pE � pqu

�
������
, and G �

�
������

ρv

ρuv

ρv2 � p

pE � pqv

�
������

(340)

with initial conditions

Up0, xq � U0pxq �

$'&
'%
UL if x   0,

UR if x ¡ 0.
(341)

In two dimension pressure is defined by p � pγ � 1q �E � 1
2
ρpu2 � v2q�.

Shock Tube Problem

Shock tube problem is a special case of Riemann problem since initial velocity is

taken as zero everywhere. Consider a one dimensional long tube that is divided into

two regions by a diagram. Tube can be filled with the same gas, but at different

pressure or with two different gases. Along tube we are ignoring viscous and diffusive

effects. In Figure 3.2, an illustration of shock tube is given.

Diaphragm

WL WR

Figure 3.2: Shock tube at the initial statement
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CHAPTER 4

FINITE DIFFERENCE AND FINITE VOLUME FOR CONSERVATION

LAWS

In this chapter we deal with numerical methods and appropriate numerical schemes

for conservation law of the form

BtU � BxpF pUqq � 0, (41)

where U is the conserved quantity, F the conserved flux function, and x a vector

of spatial coordinates. Governing equations of hyperbolic systems are expressing

of conservation laws. In physically relevant problems like Euler equations, the flux

function F does not depend only x and t, it depends the conserved quantity U that is

F � F pUpx, tqq.

In non-linear hyperbolic conservation laws, we deal with discontinuous solutions such

as shock or rarefaction waves. At that point, conservation form of the equations

are extremely important. Lax Wendroff Theorem states that, conservative numerical

method converges to the weak solution of the problem, if method is convergent.r15sOn

the contrary, a non-conservative method does not converge to correct solution and

fails at shock waves.

4.0.1 Finite Difference Methods

When finite difference methods are used to solve (41), it leads to new problems. A

finite difference procedure contains replacing derivatives with finite differences by

using Taylor expansion. Because of this, solution is excepted to be smooth, however,

in scalar conservation laws we use weak solutions which are not smooth. Near dis-

continuities, standard finite difference methods are expected to give poor results. In
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addition, since the weak solutions are not unique, method might converge to wrong

solution. By wrong solution we mean the weak solution which does not satisfy en-

tropy conditions. Difficulties that we have mentioned above can be solved by using

conservative numerical methods.

Definition 7. A conservative scheme for the scalar conservation law (41) is a numer-

ical method of the form

Un�1
i � Un

i � ∆t
∆x
pFi�1{2 � Fi�1{2q,

where

Fi�1{2 � Fi�1{2pUn
i�lL

, ..., Un
i�lR

q,
with lL, lR are two non-negative integers, Fi�1{2 is the numerical flux which is an

approximation to the physical flux F pUq in the equation (41).

General Formulation

First we define a mesh in the px, tq plane with mesh width ∆x and ∆t which is the

step length in time variable. The points pxi, tnq are defined by the following

xi � a� i∆x, i � 0, ..., N,

tn � n∆t, n � 0, 1, ...,

xi�1{2 � pi� 1{2q∆x,
where xi�1{2 represent intermediate points. In the first Chapter, we introduced the

integral form of conservation law that describes the rate of change in time of integrals.

Here we have

Ūn
i �

1

∆x

» xi�1{2

xi�1{2

Uptn, xqdx � 1

∆x

»
Ci

Uptn, xqdx,

which defines approximation of the average of Uptn, q on rxi�1{2, xi�1{2q. Generally

in the finite difference method we focus on producing approximations to the true solu-

tion Uptn, xiq; however, when we deal with conservation laws we consider producing

approximations to the average values.

4.0.2 Finite Volume Methods

Different from the finite difference method, in finite volume method we divide the

geometric domain into finite volumes or cells. Finite volume method is used to solve
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computational fluid dynamics. And one of the most important properties of the fi-

nite volume method is to derive the boundary conditions. The unknown variables are

evaluated at the cells not at the boundary faces.

General Formulation

First we define a grid in the px, tq plane with discrete points pxi, tnq defined by the

following

xi � xL � pi� 1{2q∆x, i � 0, ..., N, where ∆x � xR�xL
N�1

,

tn � n∆t, n � 0, 1, ...,

xi�1{2 � xL � i∆x, i � 0, ..., N � 1

in the domain rxR, xLs. We denote the grid cells or control volumes by

Ci � rxi�1{2, xi�1{2q,

which is also illustrated in the following Figure 4.1.

tn

tn+1

Un
i−1 Un

i Un
i+1

Un+1
i

F n
i−1/2 F n

i+1/2

Figure 4.1: Illustration of finite volume methods

Idea Behind the Conservative Methods

The finite volume method is suitable for different types of conservation laws; ellip-

tic, parabolic, hyperbolic. Like we have emphasized in the finite difference method,

working with cell averages while driving numerical methods provides us that the nu-

merical method is conservative. The solution that we have obtained from numerical

solution behaves like true solution. In the following, we briefly examine numerical

methods of the conservative forms. We consider the integral form of the conservation
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law

Bt
»
Ci

Upt, xqdx � F pUpt, xi�1{2qq � F pUpt, xi�1{2qq. (42)

The approximation of the cell averages is defined by Ūn
i over the ith interval and at

time level tn. Setting Ūn�1
i as the next time level, in order to approximate it, we

integrate the expression (42) from tn to tn�1. It follows that
»
Ci

Uptn�1, xqdx�
»
Ci

Uptn, xqdx �
» tn�1

tn

F pUpt, xi�1{2qqdt�
» tn�1

tn

F pUpt, xi�1{2qqdt.

Dividing both sides with ∆x and rearranging the terms, we get

1

∆x

»
Ci

Uptn�1, xqdx � 1

∆x

»
Ci

Uptn, xqdx (43)

� 1

∆x

�» tn�1

tn

F pUpt, xi�1{2qqdt�
» tn�1

tn

F pUpt, xi�1{2qqdt
�
.

At this stage, we have a problem since F pt, xi�1{2q varies with time along Ci and we

do not have exact solution to calculate the right hand side time integrals. But we can

define approximation to the average flux which is denoted by F̄ n
i�1{2, that is,

F̄ n
i�1{2 �

1

∆t

» tn�1

tn

F pUpt, xi�1{2qqdt.

The only thing that we need to do here is to approximate the above flux based on the

values Ūn
i . Since we work with hyperbolic problems, we have finite speed. Thus, we

set F̄ n
i�1{2 which can be obtained by

F̄ n
i�1{2 � F pŪn

i , Ū
n
i�1q, (44)

where F is some numerical flux function. Using the equation (43) with the form of

F̄ n
i�1{2 given in (44), it follows that

1

∆x

»
Ci

Uptn�1, xqdx

� 1

∆x

�»
Ci

Uptn, xqdx�
» tn�1

tn

F pUpt, xi�1{2qqdt�
» tn�1

tn

F pUpt, xi�1{2qqdt
�
.

(45)

Therefore, as a result of (45), we can write our numerical method of the form

Ūn�1
i � Ūn

i �
∆x

∆t

�
F pŪn

i , Ū
n
i�1q �F pŪn

i�1, Ū
n
i q
�
, (46)
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which is an explicit method. This is the numerical form that we have already derived

by conservative method. The method given by (46) can be written as

Ūn�1
i � Ūn

i

∆x
� F n

i�1{2 � F n
i�1{2

∆t
� 0, (47)

which is a finite difference approximation to the conservation law

BtU � BxpF puqq � 0.

Similarly many numerical methods can be equivalently written as finite difference

approximations to this equation or as finite volume methods.

The CFL Condition

When we solve a problem by using the numerical methods, we have to provide nu-

merical approximations to be convergent and stable. In 1928, Richard Courant, Kurt

Friedrichs, and Hans Lewy described the condition in their paper.[21] After then, the

condition is called the CFL condition, which is given in the following definition.

Definition 8 ([13]). A numerical method can be convergent only if its numerical do-

main of dependence contains the true domain of the partial differential equation, at

least in the limit as ∆t and ∆x go to zero.

A simple example is given for physical interpretation of the CFL condition.

Example

Consider the linear advection equation that we have already examined in the first

chapter. The exact solution of the advection is upt, xq � u0px � atq. That means

characteristics travel along the solution. Characteristics are straight lines which are

parallel to each other. Suppose that we use the explicit method which is given by

the equation (46) to the advection equation with positive wave speed b ¡ 0. In the

explicit method we express approximation value Ūn�1
i by the values of Ūn

i�1, Ūn
i , and

Ūn
i�1.

In Figure 4.2, we have two different cases; one of them satisfies CFL condition and

the other one does not. In Figure 4.2 paq, a∆t   ∆x. Defining the flux at xi�1{2 in

terms of the values Ūn
i�1, Ūn

i makes sense. On the other hand, in Figure 4.2pbq we

have larger time step such that ∆x   a∆t. The flux at xi�1{2 depends on the value
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Figure 4.2: Characteristics for the advection equation

Ūn
i�2; however, in explicit method this term does not exist. That means we need a new

well average for the approximation value Ūn�1
i . If we used the explicit method that

given by (46) for large time, then our method would be unstable.

4.0.3 First Order Numerical Methods for One Dimension

4.0.3.1 The Lax Friedrich’s Method

In order to analyze the Euler system, we firstly examine the Lax Friedrich’s method.

The Lax Friedrich’s scheme is an explicit scheme obtained using forward difference

in time and central difference in space. The scheme is amplified by taking average of

unj over the neighborhood cells

Un�1
j � 1

2
pUn

j�1 � Un
j�1q

∆t
� �F pU

n
j�1q � F pUn

j�1q
2∆x

.

After leaving the Un�1
j alone at the left hand side, we have the following scheme

Un�1
j � 1

2
pUn

j�1 � Un
j�1q �

∆t

2∆x
pF pUn

j�1q � F pUn
j�1qq, (48)

which is called the Lax Friedrich’s scheme. The illustration of the first order scheme

in time and central in space given in Figure 4.3.
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j+1

Figure 4.3: Lax Friedrich’s Diagram

Von Nuemann Stability Analysis of the Lax Friedrich’s Method

In order to solve any problem numerically, we must investigate the stability of the

schemes for the solution of the problem. Instead of investigating stability, we consider

the following linearized form

BtU � ABxpUq � 0, (49)

whereA is constant. If the stability of the scheme applied to (49) is provided with Von

Neumann method then the scheme is called linearly Von Neumann stable. We analyze

the linear Von Neumann stability of the Lax Friedrich’s scheme. Lax Friedrich’s

scheme for the linear equation (49) becomes

Un�1
j � 1

2
pUn

j�1 � Un
j�1q � A

�
∆t

2∆x
pUn

j�1 � Un
j�1q



. (410)

The Von Neumann stability is based on the Fourier series while defining approximate

solution. We suppose that our solution is of the form

Un
j � ξneipj∆xq. (411)

Substituting (411) into (410), we obtain

ξn�1 �ξn
�einh � einh

2
� Aµpeinh � einhq

2

�

�ξnrcoshpinhq � Aµ sinhpinhqs
(412)
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where µ � ∆t{∆x � η{h and i2 � �1. Recall that

coshpixq � cospxq, and sinhpixq � i sinpxq (413)

Thus the equation given by the (412) is equal to

ξn�1 � ξnrcospnhq � iAµ sinpnhqs. (414)

The amplification factor G � ξn�1{ξn must satisfy the stability condition which is

|G| ¤ 1. This condition ensures error remaining bounded, that means our scheme is

stable. Returning to our amplification factor G � cospnhq � iAµ sinpnhq, we will

check whether |G| ¤ 1 or not. It follows that

G � rcospnhq � iAµ sinpnhqs,
|G|2 � cos2 nh� A2µ2 sin2 nh,

|G|2 � 1 � sin2 nhp1 � A2µ2q ¤ 1,

(415)

for h ¥ 0 if and only if |A|µ ¤ 1, that is |A|∆t ¤ ∆x. This inequality is the CFL

condition that we have mentioned in section 4.0.2. As a result, the Lax-Friedrich’s

scheme is conditionally stable.

4.0.4 Second Order Numerical Methods for One Dimension

4.0.4.1 Two Step Lax-Wendroff Method

Two step Lax-Wendroff method is the second method that will be investigated. In

this method, firstly half steps are calculated for time steps and space variables. The

approximate value at next time step is defined by using the values at previous and

half-steps. The method has second order accuracy in time and space. The two steps

of the Lax-Wendroff scheme is introduced by the following equations:

First step:

U
n�1{2
i�1{2 � 1

2

�
Un
i � Un

i�1

�� ∆t

2∆x

�
F pUn

i�1q � F pUn
i q
�

U
n�1{2
i�1{2 � 1

2

�
Un
i � Un

i�1

�� ∆t

2∆x

�
F pUn

i q � F pUn
i�1q

� (416)

36



Second step :

Un�1
i � Un

i �
∆t

∆x

�
F pUn�1{2

i�1{2 q � F pUn�1{2
i�1{2 q

�
. (417)

Von Neumann Stability Analysis of the Lax Wendroff Method

Stability of the scheme that applied to solution of the linear form will be studied by

Von Neumann analysis. Therefore defining two steps for linear flux provides us to

reduce the number of the step size. The only thing we need to do is substituting the

equations (416) into (417). We obtain

Un�1
i � Un

i �
∆t

2∆x

�
Un
i�1 � Un

i�1

�� p∆tq2
2p∆xq2

�
Un
i�1 � 2Un

i � Un
i�1

�
, (418)

which is the one step Lax Wendroff method for linear flux. Suppose solution of the

linear form isUn
j � ξneinjh, after substituting solution into scheme (418) and dividing

both sides with einjh, it follows that

ξn�1 � ξn
�

1 � iA
∆t

∆x
sinpnhq � p∆tq2

2p∆xq2A
2pcospnhq � 1q

�
. (419)

The amplification factor for the Lax-Wendroff becomes

G � �1 � iAµ sinpnhq � µ2A2pcospnhq � 1q�
|G|2 � �1 � µ2A2pcospnhq � 1q�2 � A2µ2 sin2pnhq

� 1 � A2µ2p1 � A2µ2qp1 � cospnhqq2,
(420)

where µ � ∆t
∆x

. The norm of the amplification factor is less than one if and only

if 1 � µ2A2 is greater or equal than zero. Furthermore the Lax-Wendroff method is

conditionally |A|µ ¤ 1 stable.

4.0.4.2 The MacCormack’s Method

Another method that we will analyze is the MacCormack’s method. It is a two step

(predictor-corrector type) method.
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Predictor step :

U�
i � Un

i �
∆t

∆x

�
F pUn

i�1q � F pUn
i q
�
,

Corrector step :

Un�1
i � 1

2
pUn

i � U�
i q �

∆t

2∆x

�
F pU�

i q � F pU�
i�1q

�
.

Von Neumann Stability Analysis of the MacCormack’s Method

We apply linear Von Neumann stability analysis for all the schemes that we used in

this work. We write our scheme for a linear advection flux. The MacCormack scheme

for linear flux is identical to the Lax Wendroff scheme so that the stability of these

two schemes has the same feature. Since we studied the Von Neumann stability of the

Lax-Wendroff scheme and showed that it conditionally stable, so does MacCormack

scheme.

4.0.5 First Order Numerical Methods for Two Dimension

4.0.5.1 The Lax Friedrich’s Method

In the previous chapter, two dimensional form of the Euler’s equation is given by

Ut � F pUqx �GpUqy � 0. (421)

The Lax Friedrich’s scheme for two dimensional Euler’s equation is also first order

scheme like one dimensional case. The scheme is given by

Un�1
i,j �1

4

�
Un
i�1,j � Un

i�1,j � Un
i,j�1 � Un

i,j�1

�

� ∆t

2∆x
pFi�1,j � Fi�1,jq � ∆t

2∆y
pGi,j�1 �Gi,j�1q

i � 1, 2, . . . , Nx � 1, j � 1, 2, . . . , Ny � 1,

(422)

where Nx and Ny are the number of grid cells in x and y directions, respectively.
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Von Neumann Stability Analysis of the Lax Friedrich’s Method

The stability analysis for two dimension case has the same process with one dimen-

sion case. First, we linearize the system given in p421q then investigate stability of

the numerical scheme for linear system. The linearized system is

Ut � A1Ux � A2Uy � 0, (423)

where A1 and A2 are constants. Secondly, we assume the solution can be written as

a Fourier series in two space variables. In x direction we choose i as a discretization

index. However, here we use k instead of i to prevent possible confusion. It follows

that

Un
k,j � ξneipµ1k∆x�µ2j∆yq, (424)

where i � ?�1, µ1 and µ2 are wave numbers in x and y directions. The Lax

Friedrich’s scheme becomes

Un�1
k,j �1

4

�
Un
k�1,j � Un

k�1,j � Un
k,j�1 � Un

k,j�1

�

� ∆t

2∆x
A1 pUk�1,j � Uk�1,jq � ∆t

2∆y
A2 pUk,j�1 � Uk,j�1q

(425)

for the linearized system that is given by p423q. Inserting the solution p424q into p423q
and dividing both sides by eipµ1k∆x�µ2j∆yq, we obtain

ξn�1 �ξn
�

1

4

�
e�iµ1∆x � eiµ1∆x � e�iµ2∆y � eiµ2∆y

��

� ξn
�

∆t

2∆x

�
eiµ1∆x � e�iµ1∆x

�� ∆t

2∆y

�
eiµ2∆y � e�iµ2∆y

��
.

(426)

Using the hyperbolic functions properties given in p49q, equality (426) becomes

ξn�1 �ξn
�

1

2
pcospµ1∆xq � cospµ2∆xq

�

� ξni

�
∆t

∆x
sinpµ1∆xq � ∆t

∆y
sinpµ2∆y

�
.

(427)

Thus the amplification factor is

G � 1

2
pcospµ1∆xq � cospµ2∆xq � i

�
∆t

∆x
sinpµ1∆xq � ∆t

∆y
sinpµ2∆yq

�
. (428)

39



The norm of the amplification factor is

|G|2 �
�

1

2
pcospµ1∆xq � cospµ2∆xqq

�2

�
�

∆t

∆x
sinpµ1∆xq � ∆t

∆y
sinpµ2∆yq

�2

�
�

1

4

�
cos2pµ1∆xq � 2 cospµ1∆xq cospµ2∆xq � cos2pµ2∆xq�

�

�
�
p∆tq2

�
1

p∆xq2 sin2pµ1∆xq � 2

∆x∆y
sinpµ1∆xq sinpµ2∆yq � 1

∆y
sin2pµ2∆yq


�

Using the inequality 2xy ¤ x2 � y2, we obtain that

|G|2 ¤ 1

2

�
2 � sin2pµ1∆xq

�
1 � 2p∆tq2

p∆xq2


� sin2pµ2∆yq

�
1 � 2p∆tq2

p∆yq2

�

is less than one if and only if 1� µ2A2 is greater or equal than zero. Furthermore the

Lax Friedrich’s method is conditionally |A|µ ¤ 1 stable.

4.1 Numerical Solutions of the Compressible Euler Equations

In this section we study shock tube problem in one dimension and two dimension,

separately, by using finite difference methods. We compare numerical solutions for

the Sod shock tube problem with the analytic solution obtained by Sod r21s. Lax-

Friedrich’s, Lax-Wendroff, and MacCormack methods with the initial values which

are defined by Sod are studied.

4.1.0.1 One Dimensional Case

In one dimensional case we discuss the solution of the Sod shock tube problem by

using finite difference methods. The Sod shock tube problem is a Riemann problem

and used as a test problem for computational fluid. The initial values taken as defined

by Sod in [21]. We take the initial data as

pρ, u, pqt�0 �

$'&
'%
p1.0, 0.0, 1.0q if 0 ¤ x ¤ 0.5,

p0.125, 0.0, 0.1q if 0.5   x ¤ 1.
(429)
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The Dirichlet type boundary conditions are taken for the conserved quantities. It is

specified by the initial values

pρ, u, pq �

$'&
'%
p1.0, 0.0, 1.0q at x � 0,

p0.125, 0.0, 0.1q at x � 1,
(430)

with the ratio of the specific heat was γ � 1.4. In all of the calculations boundary

is discretized by 755 grid points for the one dimensional case. The CFL condition is

taken 0.5 for Lax-Friedrich’s and two step Lax-Wendroff methods; however, for the

MacCormack’s method CFL is taken 0.66 because it breaks down for the CFL values

less than 0.652.

The results of the numerical tests are illustrated in Figure (4.4), Figure (4.5), and

Figure (4.6) for density, velocity, pressure, and energy for one dimensional Sod shock

tube problem. It can be observed by figures that Lax-Friedrich’s and two step Lax-

Wendroff methods behave in the same manner; besides Lax-Friedrich’s method shock

wave, contact discontinuity and rarefaction wave rarely exist.
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Numerical Results for First Order Schemes
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Figure 4.4: Lax-Friedrich’s method solutions for Sod shock tube
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Numerical Results for Second Order Schemes
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Figure 4.5: Two step Lax-Wendroff method solutions for Sod shock tube
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Figure 4.6: MacCormack’s method solutions for Sod shock tube
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4.1.0.2 Two Dimensional Case

In two dimensional case we discuss the solution of Riemann problem by using first

order finite difference method. We solve two dimensional Riemann problem over the

computational domain. The following initial values

pρ, u, v, pqt�0 �

$'''''''&
'''''''%

p0.138, 1.206, 1.206, 0.029q if x ¤ 0.5 and y ¤ 0.5,

p0.5323, 0.0, 1.206, 0.3q if x ¥ 0.5 and y ¤ 0.5,

p0.5323, 1.206, 0.0, 0.3q if x ¤ 0.5 and y ¥ 0.5,

p1.5, 0.0, 0.0, 1.5q if x ¥ 0.5 and y ¥ 0.5,

(431)

were studied. Dirichlet type boundary conditions are taken for the conserved quanti-

ties. It is specified by the initial values

pρ, u, pq �

$'''''''&
'''''''%

p0.138, 1.206, 1.206, 0.029q at x � 0,

p0.5323, 0.0, 1.206, 0.3q at x � 1,

p0.5323, 1.206, 0.0, 0.3q at y � 0,

p1.5, 0.0, 0.0, 1.5q at y � 1,

(432)

with the ratio of the specific heat is γ � 1.4. The boundary is discretized by 200x200

grid points for two dimensional case. The CFL condition is taken 0.75 for Lax-

Friedrich’s method. Numerical results are given for the time 0.3.
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Figure 4.7: Lax Friedrich’s solution for two dimensional Riemann problem
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CHAPTER 5

CONCLUSION

This thesis is mainly focused on the derivation of conservative equations of the com-

pressible Euler system and provides a numerical study by means of finite difference

and finite volume approximations in one and two dimensional cases. The compress-

ible Euler system is a system of non-linear hyperbolic conservation laws consisting

of second law of thermodynamics. In gas dynamics, the effect of body forces and

viscous stress can be neglected; that is, dropping these terms from the Navier-Stokes

equations gives a hyperbolic system of conservation laws. Analogously, by imposing

zero pressure to the compressible Euler equations, a particular form of this system so

called the inviscid Burgers equation, known as one of the simplest non-linear partial

differential equation, can be derived. In the first part, we examine the inviscid Burg-

ers equation to understand the idea behind discontinuous solutions such as shock and

rarefaction waves. Beside, we analyze smooth and weak solutions with necessary

conditions for choosing physically meaningful solutions among the others, entropy

conditions and Rankine-Hugonoit jump relation in the first part of this work.

In the second part, we extended our analysis in the first part to the compressible Euler

system. Mainly, the derivation of the compressible Euler equations is firstly presented

in one dimensional form where the thermodynamic aspects are given to understand

the nature of the Euler system. In addition to shock and rarefaction waves, while

dealing with the Euler system, there exists one more important phenomena which

is called contact discontinuity. We provide the Riemann problem and consider a

well-known test problem used for compressible fluid flows, so called Sod shock tube

problem in one dimensional case. Moreover, for numerical part, we start by analyzing

the stability of the Lax Friedrich, two step Lax Wendroff and two step MacCormack
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methods in one dimensional form. Finally, we illustrate some numerical results of the

model in two dimensional case by applying the Lax Friedrich’s method.

 The Lax Friedrich’s scheme is the most diffusive method as expected.

 The solution obtained by two step Lax-Wendroff and MacCormack scheme

oscillate at the contact discontinuity.

 The rarefaction results of two step Lax-Wendroff and MacCormack scheme are

similar and more accurate than Lax-Friedrich’s scheme.

 Two steps MacCormack scheme breaks down for CFL  0.6518.

 As we excepted, the solutions of second order methods more accurate than Lax

Friedrich’s method.

 In two dimension, although the accuracy of Lax-Friedrich’s scheme is first or-

der we obtain good results.

The three schemes for the Euler equations were compared for Sod shock tube prob-

lem. From this study, the following conclusions may be drawn:

Lax-Friedrich’s and two steps Lax-Wendroff methods behave in the same manner; be-

sides Lax-Friedrich’s method shock wave, contact discontinuity and rarefaction wave

rarely exists.
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