

THE ROLE OF EXPERTISE ON CODE REVIEW FOR SECURITY: AN EYE

TRACKING STUDY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

UTKU KAPLAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF

CYBER SECURITY

FEBRUARY 2019

Approval of the thesis:

THE ROLE OF EXPERTISE ON CODE REVIEW FOR SECURITY: AN EYE

TRACKING STUDY

Submitted by UTKU KAPLAN in partial fulfillment of the requirements for the degree of

Master of Science in Cyber Security Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Assoc. Prof. Dr. Cengiz Acartürk

Head of Department, Cyber Security

Assoc. Prof. Dr. Cengiz Acartürk

Supervisor, Cognitive Science Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Aysu Betin Can

Information Systems Dept., METU

Assoc. Prof. Dr. Cengiz Acartürk

Cognitive Science Dept., METU

Asst. Prof. Dr. Murat Perit Çakır

Cognitive Science Dept., METU

Assoc. Prof. Dr. Banu Günel Kılıç

Information Systems Dept, METU

Asst. Prof. Dr. Özkan Kılıç

Dept. of Computer Engineering, YBU

 Date: 12.02.2019

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name: UTKU KAPLAN

Signature :

iv

v

ABSTRACT

THE ROLE OF EXPERTISE ON CODE REVIEW FOR SECURITY: AN EYE

TRACKING STUDY

Kaplan, Utku

MSc. Department of Cyber Security

Supervisor: Asst. Prof. Dr. Cengiz Acartürk

February 2019, 82 Pages

To improve the quality of the software and find security vulnerabilities, code review is

usually performed during software development activities. The experience of software

developers reviewing the code may affect the quality of the code review. This study

investigates whether differences between novices and experts in the detection of

vulnerabilities in the code can be identified by eye tracking. Participants’ eye movements

were recorded by an eye tracker while they investigated program codes for security

review. The experiment was carried out with 20 programmer participants. The results

showed that eye tracking can be used to identify the differences between the code review

of novices and experts.

Keywords: software security vulnerabilities, eye tracking, source code review

vi

ÖZ

GÜVENLİ PROGRAMLAMADA UZMANLIĞIN KOD GÖZDEN GEÇİRME

ÜZERİNDEKİ ROLÜ: GÖZ TAKİBİ ÇALIŞMASI

KAPLAN, UTKU

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Doç. Dr. Cengiz ACARTÜRK

Şubat 2019, 82 Sayfa

Yazılımın kalitesini artırmak ve güvenlik açıklarını bulmak için yazılım geliştirme

aktivitileri sırasında genellikle kod gözden geçirme yapılır. Kodu gözden geçiren

yazılımcıların tecrübeleri kod gözden geçirmenin kalitesini etkileyebilir. Bu çalışma,

koddaki güvenlik açıklarının tespiti konusunda uzmanlar ve acemiler arasındaki farkların

göz takibi ile tanımlanıp tanımlanamayacağını araştırmaktadır. Güvenlik açıklıkları

gözden geçirmesi için program kodlarının incelenmesi sırasında katılımcıların göz

hareketleri göz takip cihazı ile kaydedilmiştir. Deney toplam yirmi programlama

katılımcısı ile gerçekleştirilmiştir. Sonuçlar, acemilerin ve uzmanların kod incelemesi

arasındaki farkları belirlemek için göz takibinin kullanılabileceğini göstermiştir.

Anahtar Sözcükler: yazılım güvenlik zafiyetleri, göz izleme tekniği, kod gözden geçirme

vii

To my dear family

viii

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor Asst. Prof. Dr. Cengiz ACARTÜRK

for his guidance and support during my study.

I would like to thank to Sibel Sel for their support during my thesis.

I would like to thank to my mother ŞAZİYE KAPLAN, my father ZAFER

KAPLAN and my sister ÇAĞLA KAPLAN for their support during every moment

of my life.

I would also like to thank to my friends UMUT DOĞAN and DORUK UZ for their

support, review and comments for my thesis.

Finally, I am very grateful to participants of my study for their contribution to

science.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xv

CHAPTER 1 .. 1

1. INTRODUCTION .. 1

1.1. The Purpose of the Study ... 2

1.2. Research Questions .. 3

1.3. The Outline of the Thesis... 3

CHAPTER 2 .. 5

2. LITERATURE REVIEW .. 5

2.1. Eye tracking technology .. 5

2.2. Use of eye-tracking technology in coding assessment 12

2.3. Security vulnerabilities in coding .. 17

CHAPTER 3 .. 27

3. METHODOLOGY ... 27

3.1. Research Design .. 27

3.2. Hypotheses ... 28

3.3. The procedure .. 28

3.4. Data Collection .. 30

3.5. Participants... 31

CHAPTER 4 .. 33

 4. RESULTS ... 33

x

4.1. Summary of the Results ... 40

CHAPTER 5 ... 41

 5. DISCUSSION & CONCLUSIONS ... 41

5.1. Discussion .. 41

5.2. Contribution to Research Literature ... 43

5.3 Limitations and Future Research .. 43

REFERENCES ... 45

APPENDICES .. 51

APPENDIX A .. 51

APPENDIX B .. 57

APPENDIX C .. 60

xi

LIST OF TABLES

Table 1. Program parts information. .. 29

Table 2. T-test result for information test accuracy between novices and experts (number

of correct answers out of 20) .. 34

Table 3. T-test result for defect reporting time between novices and experts (in seconds)

 .. 35

Table 4. T-test result for scan time between novices and experts (in seconds) 35

Table 5. T-test result for accuracy between novices and experts (number of correct

answers out of 10) .. 36

Table 6. T-test result for fixation count between novices and experts (number of fixation)

 .. 36

Table 7. T-test result for total fixation duration between novices and experts (in seconds)

 .. 37

Table 8. T-test result for fixation duration between novices and experts (in seconds) 37

Table 9. T-test result for visit count between novices and experts (number of visits) 38

Table 10. Total Number of Correct Answers in Eye Tracking Tests 38

xii

LIST OF FIGURES

Figure 1. A participant using a desktop eye tracker that is built into the monitor (Bergstrom

& Schall, 2014) .. 6

Figure 2. A participant using a mobile eye tracker mounted on a laptop. (Bergstrom &

Schall, 2014) ... 7

Figure 3. Two different scan-paths (red and blue lines) on the same stimulus by Sharafi et

al. (2015) .. 9

Figure 4. Heat-map by Ali et al. (2012) .. 10

Figure 5. Gaze opacity map (left) and heat map (right) showing that the majority of

fixations were on the log-in section and the example Household ID, not on the instruction

text by Bergstrom & Andrew (2014) ... 11

Figure 6. Example of a gaze plot diagram representing fixations from one individual

participant by Bergstrom & Andrew (2014) .. 12

Figure 7. Software security best practices for various software structures by Gary McGraw

(2006) ... 17

Figure 8. Example of SQL Injection by CWE & SANS Institute (2011) 19

Figure 9. Example of statement condition by CWE & SANS Institute (2011) 19

Figure 10. Example of SQL query by CWE & SANS Institute (2011) 19

Figure 11. Example of SQL query by CWE & SANS Institute (2011) 20

Figure 12. Example of code including cross-site scripting ... 20

Figure 13. Example of the script by CWE & SANS Institute (2011) 20

Figure 14. Example of critical function by CWE & SANS Institute (2011) 21

Figure 15. Example of database connection code with hard-coded credentials by CWE &

SANS Institute (2011) .. 22

xiii

Figure 16. Example of a method that checks a given password by CWE & SANS Institute

(2011) ... 22

Figure 17. Example of authentication code by CWE & SANS Institute (2011)............. 23

Figure 18. Example of missing encryption of valuable data by CWE & SANS Institute

(2011) ... 23

Figure 19. Example of reliance on untrusted inputs in a security decision by CWE &

SANS Institute (2011) .. 24

Figure 20. Example of improper authorization by CWE & SANS Institute (2011) 24

Figure 21. Sample stimulus that contains a security vulnerability, which allows SQL

injection technique. .. 31

Figure 22. Heat map of the second question for novices. .. 39

Figure 23. Heat map of the second question for experts .. 40

xiv

xv

LIST OF ABBREVIATIONS

METU Middle East Technical University

px pixel

ms milliseconds

AOI Area of Interest

xvi

1

CHAPTER 1

INTRODUCTION

Various code review techniques are available to detect code errors and security

vulnerabilities. These techniques have been used to improve the quality of program codes

by detecting the errors in the code. Code review techniques are usually classified into

three main categories: formal code review, lightweight code review and pair programming

(Kolawa & Huizinga, 2007, p.260). Formal code review includes a detailed review with

multiple participants and multiple stages. On the other hand, lightweight code review

needs less effort than formal code reviews, as the name suggests (Kolawa & Huizinga,

2007, p.260). Despite the availability of the existing code review techniques, there is no

consensus on which code review technique is more effective and successful in detecting

security errors in code.

A likely source of security errors in coding is programming skills and experience of

coders. In particular, the experience of the coders and their performance may have a major

impact on incorrectly designed software programs. Uwano, Nakamura, Monden &

Matsumoto (2006) reviewed differences in individual performance and experience by

investigating the eye movements of coders as a complementary means of employing the

code review techniques. They presented code fragments with logical errors to five

participants, and they asked the participants to detect the errors. As a result, they reported

specific patterns in eye movement data, in particular, scanpath (i.e., the initial examination

topology from the beginning to the end). They also found that the participants, who

inspected the program code for a longer time during the initial examination, found the

2

errors in a shorter time. The focus of Uwano, et al. (2006) was logical errors in the

program code. In our study, we focus on security vulnerabilities. For this, in the present

study, we used predefined program codes with vulnerabilities and we asked the

participants to detect them. We report an experimental study that was carried out with 20

participants. We employed eye tracking to record the eye movements of the participants

during review of code fragments.

1.1. The Purpose of the Study

Eye tracking has been used in various fields of research to reveal insights into human

information processing. These fields involve marketing and education among many others

(Horsley, Eliot, Knight, & Reilly, 2014). For example, in marketing, eye-tracking

technologies have been used to understand consumer responses to advertising

communications, product preferences, billboards, product labeling, TV commercials, and

supermarket shelving. The use of eye tracking can also provide valuable information about

the learning process of students. Since eye tracking can reveal information about visual

attention, it is well suited to examine differences in attention processes of students.

On the other hand, the use of eye tracking in software development has found limited

applications to date. The focus of the present study is to investigate whether differences

between novices and experts in the detection of vulnerabilities in the code can be identified

by eye tracking. The participants’ software experience was taken as an independent

variable, whereas scan time, defect reporting time, accuracy, fixation count, average

fixation duration, total fixation duration and gaze shift were defined as the dependent

variables. Some eye movement measurements (dependent variables) may be appropriate

for the purpose of this study, while others may not be appropriate. We expect that the

result of the current research may contribute methodologically to the field of computer

science and engineering education, as well as the companies working on code reviews.

3

1.2. Research Questions

The research questions were formulated based on participants’ potential physiological

response (eye movements in this study) and performance as a function of the relationship

between their software experience and the efficiency to detect security vulnerabilities in

software codes. Both accuracy and response times (to detect security vulnerabilities) were

considered. In particular, we address the following research questions in this study:

Q1: Can eye tracking be used to identify differences in a code review of novices and

experts?

1.3. The Outline of the Thesis

The rest of the thesis is arranged as follows. In Chapter 2, a literature review was presented

on two topics related to the research questions: eye tracking technology and security

vulnerabilities in coding. In Chapter 3, the design of the experiment is reported. Results

and analyzes are reported in Chapter 4. Finally, Chapter 5 discussed the results and the

results were evaluated in terms of research questions. The limitations of this study are also

mentioned. In addition, opinions were presented for further studies.

4

5

CHAPTER 2

LITERATURE REVIEW

The following sections provide information on eye tracking technology, the use of eye

tracking technology in coding and security vulnerabilities in program codes.

2.1. Eye tracking technology

Eye tracking devices are used to measure the gaze location of a participant by collecting

eye movement data (Holmqvist & Andersson, 2017). It is usually accepted as an indicator

of visual attention. Eye movements have an important role in the detection of stimuli

processed by the brain. The stimuli may be any object needed to perform a given task.

Eye movement data are analyzed according to regions of stimuli. These regions are called

Areas of Interest (AOI). This region may or may not be able to attract the attention of the

participant while performing a task. For example, when invetigating a program code,

participants focus on the areas interested in, whereas they do not focus on the other

sections.

Recent desktop eye tracking technologies have been simplified and integrated into

computer monitors or as standalone devices that are no longer physically connected to the

participant. Figure 1 shows a participant using desktop eye tracker that is built into the

monitor. Eye tracking devices mounted on laptops are used. Figure 2 shows a participant

using a mobile eye tracker mounted on a laptop. Desktop eye tracker devices can also be

placed next to the screen, which is useful not to distract the participant attention.

6

The data of eye movement may reveal information about the participant’s attentional

processes. In addition to its capabilities, most eye-tracking devices allow voice recording,

which can provide additional data as a complementary feature. Tobii X2-60 eye-tracking

device was used in the present study. That device is a video-based tool to track eye

movements with two cameras. The eye-tracker can sample 60 frames per second.

Figure 1. A participant using a desktop eye tracker that is built into the monitor (Bergstrom &

Schall, 2014)

7

Figure 2. A participant using a mobile eye tracker mounted on a laptop. (Bergstrom & Schall,

2014)

Eye tracking is a method that can provide robust information compared to classical

methods, such as recording the person's responses and the time it takes to get that response

(Rayner, 1998). For instance, subjects may be asked to find mistakes after understanding

and reviewing a program code in a laboratory setting. Eye tracking has several advantages

over classical experimental methods, such as verbal protocols. For instance, by using the

classical methods, the results are usually obtained after the end of an experimental task. It

is difficult to observe how a participant investigates the program code and how and when

he/she finds the correct answer. The participants may also forget to tell what they have

experienced at the end of a long experiment. Eye tracking may help to overcome some of

these difficulties by introducing real-time recording of gaze data.

8

Eye movement data are basically classified based on oculomotor events such as fixation,

saccade, and scanpath (Holmqvist & Andersson, 2017). These eye movement events

(oculomotor events) are used as eye movement measures. By using eye movement

measures, statistical analysis can be performed, and these measures allow us to understand

what our data means in relation to our experimental design. In the following paragraphs,

some of those eye movement measures are introduced.

Fixation means looking at a certain location for a certain period of time (Duchowski, 2017,

p.44). The following are the three major measures related to fixation (Holmqvist &

Andersson, 2017). The first measure is the fixation position measure, which holds the

information that where a participant looks. Position measure is usually recorded in

Cartesian (x, y)-coordinates by eye tracking devices. The second measure is the fixation

duration, which addresses the question of how long the participant’s gaze stays on a

specific fixation position. The third is the number of fixations. It addresses the question of

how many fixations are in the entire test or an area of interest during a test. By using

multiple fixation points, it is possible to find out how much visual effort participants spend

in a specific experimental setting, such as examining program codes. Fixation measures

are important since it has been reported that the acquisition of information takes place

during the fixations.

Saccade, another important eye movement event, defines the sudden action from one

fixation to another (Gilchrist, 2011, p. 85). It occurs very quickly; at about 40-50 ms.

Rayner (1998) reported that the processing of information is minimal during a saccade.

Saccade also has measures such as direction, amplitude, velocity, and duration. The

saccade direction is the direction of any saccadic movement. The saccade amplitude refers

to the length of the path taken from the starting point to the end of a saccadic movement.

The saccade duration is defined as the time when taking the path between fixations. It is

easy to calculate the start point of a saccade, but the calculation of endpoint may be

complicated due to reasons such as blinking. The last measure is the saccade velocity,

9

which can be found by dividing the path to the duration. Since the velocity levels changes

during the movement, the average speed is calculated.

Another eye movement measure is scanpath, which is the set of fixations in a sequence

(Bylinskii, Borkin, Kim, Pfister, Oliva, 2017). Scanpath describes the task that

participants perform. Figure 3 shows two stimuli with four areas of interest. The red and

blue lines represent the scanpath in the stimuli. Scanpath also has measures such as

direction, length, and duration. The scanpath direction is a measure of the general direction

of fixations and saccades while investigating a stimulus. The scanpath length can be

defined as the sum of all saccade length in a scanpath. Scanpath duration defines the time

from the start point to the end of the scanpath. The main challenge in this measurement is

to calculate the start and end points of the scanpath correctly.

Figure 3. Two different scan-paths (red and blue lines) on the same stimulus by Sharafi et al.

(2015)

In the present study, we focus on fixation measures by leaving the saccade and scanpath

measures to future work. Another known event is a gaze shift. This event identifies

movement from one area of interest to another (Holmqvist & Andersson, 2017). We can

define this movement as, for instance, the number of eye movements between text and

graphics in a textbook reading. Another major domain of analysis in eye tracking research

is a visualization of gaze data. Eye trackers usually come with software packages that can

instantly produce visualizations (Bergstrom & Schall, 2014, p. 15) although that is not a

10

must. The output from these software packages help to indicate where the participants

focus, the length of gaze and its pattern their eyes follow. Otherwise, third-party software

may be used for visualization. Some of the most commonly used visualization techniques

are heat map, gaze opacity and gaze plot.

Figure 4. Heat-map by Ali et al. (2012)

The heat map is a collection of different colors representing the density of fixations. The

green, blue and red colors describe the intensity of fixations. It shows areas where the

participants gazed at by using a heat map on stimuli. A non-colored area in the heat map

indicates that the participants did not gaze at the area. Heat map is presented for the task

of comprehending the program code in Figure 4. Heat maps show that there are many

fixations in comments, method names, and class names according to the density of

fixations.

11

Similar to heat maps, the gaze-opacity technique shows the areas where the participants

generally look at or do not look at (Bergstrom & Schall, 2014, p. 61). This technique

shows which areas participants overlook and which areas they look at more carefully. The

map visualizations are usually easier to understand than numbers, ratios, and graphics. In

Figure 5, the maps show that the participants concentrated on the identification number

and password fields instead of the instructions on the login screen.

Figure 5. Gaze opacity map (left) and heat map (right) showing that the majority of fixations

were on the log-in section and the example Household ID, not on the instruction text by

Bergstrom & Andrew (2014)

Another visualization technique is a gaze plot that shows the gaze location of participants

(Bergstrom & Schall, 2014, p. 64). A gaze plot visualizes the path that the participants

follow (Figure 6). By using the gaze plot technique, the points that the subjects visually

inspect can be shown as ordered and concatenated components. In most eye-tracking

applications, fixations are represented by circles and saccades are represented by lines that

link dots. Fixations are usually numbered to indicate the fixation sequence. The radius of

the points shown in the gaze plot varies as a function of how long people look at these

points. A point with a larger radius may mean that the participant looks at this point for a

longer time.

12

Figure 6. Example of a gaze plot diagram representing fixations from one individual participant

by Bergstrom & Andrew (2014)

2.2. Use of eye-tracking technology in coding assessment

A review of the literature shows that researchers have employed the eye-tracking

methodology to analyze how people investigate and comprehend program codes. Using

the eye tracking techniques researchers can collect more data than using standard methods

(Busjahn et al., 2014, p. 2). For example, by using classical techniques, the participants

may be asked to report their experience during the experiment. However, this is

challenging because participants may have to interrupt their ongoing work to report what

they experience. A similar situation applies to think aloud protocols: the attention of the

participants may be disrupted, which may, in turn, result in unintended mistakes during

13

their ongoing experimental tasks. The participants also usually forget to think aloud during

the experiment because they are not accustomed to doing it during daily work. Therefore,

the researcher has to track the experiment and warn the participant in cases as such. In this

situation, the participants’ attention may distract, and as a result, the task may fail

unintendedly. Eye tracking helps to overcome some of these challenges that classical

experiment methodologies face by reducing introducing less disruptive data recording

techniques.

In 2017, Peachock and Sharif investigated the differences between how programmers read

normal text and source code. They also observed how the experience of developers has an

impact on reading patterns. In the experiment, thirty-three students were asked to perform

ten assignments consisting of three normal texts and seven programs. While the type of

stimulus is defined as an independent variable, linearity measures such as vertical later

text, horizontal later text, vertical next text, regression rate, and line regression rate are

defined as dependent variables. As a result, they reported that both experienced and

inexperienced software developers read the normal language text more linearly compared

to the source code.

Hofmeister, Bauer, Siegmund, and Apel (2017) investigated whether novices use a

different strategy from the experts while reading the source code. They wanted to find an

answer to whether these differences are due to participants’ strategies or the characteristics

of the code. To understand the effects caused by the characteristics of the code, linearity,

which is a static code measure, is proposed. Linearity was described as a relation between

the number of functions and the total jump length. They intended to observe the

participants’ programming strategies using the eye-tracking device during their

programming course. To this end, they prepared code snippets that differ in linearity. After

that, differences in the examination of these codes by novices and experts were

investigated. The results are pending.

14

Hofmeister, Bauer, Siegmund (2017) studied the relationship between indentation and

code comprehension by using the eye-tracking. In an experiment, they used the Java

programming language, which is one of the most used programming languages. They

aimed at finding the most appropriate level of indentation for code comprehension.

Novices and experts were expected to differ in comprehending the codes. The authors

expected that the indentations in the program code would have an impact on saccades and

their length. The small indentations would make it difficult to understand the code

structure and the large indentations would cause more jumping between lines. The

indentation defined as an independent variable was inserted into the code snippets at

different levels, and the relationship between the indentation level and comprehension was

investigated. The results are pending.

Begel (2015) conducted a study about code review by using Tobii EyeX eye tracker. Begel

investigated eye movement measures in order to see if the eye tracking technique would

provide useful information about how software engineers perform code reviews. The

measures included coverage, reading speed and structural scanpath. The results show that

the time spent per word, the number of words read per minute (reading speed), and the

reading order of the methods (structural scanpath) can be used to determine the quality of

feedback from reviewer. Also, it is necessary to understand the whole program while

trying to find the bugs in the software. However, the reviewer’s programming experience

influences the level of comprehension. Thus, the reviewer’s knowledge and experience

can affect the quality of finding bugs in the software.

Tvarozek, Konopka, Navkat and Bielikova (2015) investigated the students’ approach to

different programming tasks. They report that comprehending source code requires more

effort than comprehending normal text because the structure of the program code is more

complicated than the normal text. The purpose of the study was to investigate how

students learn programming and how to improve learning process accordingly. The

experiment was conducted using a Tobii X2-60 device with undergraduate students in

15

programming courses. They divided the programming tasks into four sub-types: static

code reading, programming tasks, a combination of development with static code reading

and code reading for debugging. As a result, they proposed three research questions

according to task types to investigate code comprehension strategies for different tasks.

There are also studies where the researchers investigated participants’ eye movements in

the domain of software programming. For instance, in Crosby and Stelovsky’s 1990 study

(as cited in Sharafi et al., 2015, p. 20), inexperienced participants investigated comments

in the program code for a longer time than experienced participants did. In Bednarik et

al. study 2006 (as cited in Sharafi et al., 2015, p. 20), inexperienced participants first

looked at the visual graphics instead of reading the code. In Binkley’s 2013 study (as

cited in Sharafi et al., 2015, p. 20) inexperienced participants paid more attention to the

camel case style in the program code than experienced participants did.1 Besides,

experienced participants were not affected by identifier style differences. In Turner’s 2014

study (as cited in Sharafi et al., 2015, p. 20) investigated how language selection would

affect participants’ code reading. Turner's work shows that programming languages

influence inexperienced participants more than experienced participants when

investigating program codes.

From the perspective of code review methods, various results were reported in the

literature. In Bednarik and Tukiainen’s 2006 study (as cited in Sharafi et al., 2015, p. 20)

code review techniques are valid at the start of the code review process, but is less

significant towards the end of the code review process. In Duru et al 2013 study (as cited

in Sharafi et al., 2015, p. 20) reported that visualization techniques increased participants'

performance and helped participants to develop various strategies during the review of the

code. In Sharafi et al. 2012 study (as cited in Sharafi et al., 2015, p. 20) male and female

participants used distinct methods to answer the questions.

1 Camel case style tells how to write compound words or phrases, that is, every word or abbreviation in the middle of

the word must begin with an uppercase letter with no spaces.

16

Moreover, researchers investigated the differences between how participants read the

regular text and the program code. Busjahn’s 2011 study (as cited in Sharafi et al., 2015,

p. 20) demonstrates that participants have longer fixation times and regression rates when

reviewing the code than during normal text reading. In Binkley’s 2013 study (as cited in

Sharafi et al., 2015, p. 20), on the other hand, reading and comprehending the program

code is essentially distinct from reading the normal text.

Besides, researchers have investigated the effects of identifier styles. In Binkley’s 2013

study (as cited in Sharafi et al., 2015, p. 20) the experience of the participants has an

impact on reading the identifiers in the program code. In Sharafi’s 2012 study (as cited in

Sharafi et al., 2015, p. 20), on the other hand, demonstrates that camel case and underscore

identifier styles do not differ in the understanding of the program code when considering

accuracy, time and effort.2 In another study, Sharafi (2012) analyzed the differences

between women and men in examining the camel case and underscore identifier styles.

He found that there were no differences in considering time, accuracy and effort measures.

In previous studies, source code reviews were conducted using eye tracking to understand

how participants investigated the code. Some of these studies focused on how software

developers investigate logical or syntactically incorrect codes, while some focus on how

software developers examine comments in the code. Instead of investigating logic or

syntax errors, as in previous studies, the security vulnerabilities in the code were

investigated in the present study. Code reviews were performed with few participants and

a small number of stimuli in most previous studies. In the present study, ten different

stimuli were used and twenty participants participated in the experiment to obtain results

that are more general, as reported in Chapter 3. In addition, in previous studies, the

participants were categorized as experts and novices according to their software

experience. Similarly, in the present study, it was determined whether the participants

were experienced in programming by using questionnaires.

2 Underscore identifier style is a practice that use to create visual spacing within a sequence of characters, where a

whitespace character is not permitted.

17

2.3. Security vulnerabilities in coding

The software is used with many devices such as mobile devices and household appliances

in daily life. The fact that the software has such a wide range of use reveals its importance

for human life. Accordingly, the software should be developed in accurate ways and also

in a way that does not allow security vulnerabilities. McGraw (2006) proposed that

“Software security is the idea of engineering software so that it continues to function

correctly under malicious attack.” (p. 24) In other words, software security can be defined

as designing, building and testing software securely.

Figure 7. Software security best practices for various software structures by Gary McGraw

(2006)

There are three pillars of software security, which are applied to risk management,

software security touchpoints, and knowledge (Gary McGraw, 2006, p. 46). Since security

risks in software can show up throughout the software lifecycle, risk management must

be addressed throughout this process. Also, developers need to apply touchpoints (best

18

practices) to solve the problems during software development. Touchpoints (best

practices) are specified in Figure 7. Moreover, software security knowledge can be applied

through the software development lifecycle using touchpoints.

Software security vulnerability is one of the subcategories of software security knowledge.

A security vulnerability is a programming error or weakness that attackers can use to

compromise the integrity of the code. A weakness in the program code is all an attacker

needs to make a security attack. These attacks usually target confidentiality, integrity, or

availability of information that a program's creators and users possess. Attackers often use

certain tools or methods to find vulnerabilities and attack the program.

The most common security flaws in the code are presented below (CWE and SANS

Institute, 2011).

1) SQL Injection

CWE and SANS Institute (2011) defined that “Without sufficient removal or

quoting of SQL syntax in user-controllable inputs, the generated SQL query can

cause those inputs to be interpreted as SQL instead of ordinary user data. This can

be used to alter query logic to bypass security checks, or to insert additional

statements that modify the back-end database, possibly including execution of

system commands. SQL injection has become a common issue with database-

driven websites. The flaw is easily detected, and easily exploited, and as such, any

site or software package with even a minimal user base is likely to be subject to an

attempted attack of this kind. This flaw depends on the fact that SQL makes no

real distinction between the control and data planes”. For example, the following

code executes a SQL query that searches for items according to the currently-

authenticated username.

19

Figure 8. Example of SQL Injection by CWE & SANS Institute (2011)

If an attacker enters the below string for “itemName”:

Figure 9. Example of statement condition by CWE & SANS Institute (2011)

the query result is always true. Actually, the query becomes logically equivalent

to the query specified below:

Figure 10. Example of SQL query by CWE & SANS Institute (2011)

The query in figure 10 allows an attacker to bypass the requirement and see the

items that all users have.

2) Unlimited File Upload

CWE and SANS Institute (2011) defined that “The software allows the attacker to

upload or transfer files of dangerous types that can be automatically processed

within the product's environment.” In Figure 11, there is no check on the type of

file being uploaded. Assuming that images are available at the root of the web

document, an attacker could upload a malicious file.

20

Figure 11. Example of SQL query by CWE & SANS Institute (2011)

3) Cross-site Scripting

CWE and SANS Institute (2011) defined that “The software does not neutralize or

incorrectly neutralizes user-controllable input before it is placed in output that is

used as a web page that is served to other users.” For instance, the code in Figure

12 displays a welcome message on a web page.

Figure 12. Example of code including cross-site scripting

The attacker can modify the URL of the page and put malicious code in $username

parameter.

Figure 13. Example of the script by CWE & SANS Institute (2011)

21

4) Missing Authentication for an Important Method

CWE and SANS Institute (2011) state that “The software does not perform any

authentication for functionality that requires a provable user identity or consumes

a significant amount of resources.” In Figure 14, the method is used to create a

new bank account. However, there is no authentication to check that the user has

the authority to produce new bank accounts.

Figure 14. Example of critical function by CWE & SANS Institute (2011)

5) Hard-coded Credentials

CWE and SANS Institute (2011) defined that “The software contains hard-coded

credentials, such as a password or cryptographic key, which it uses for its inbound

authentication, outbound communication to external components, or encryption of

internal data.”

Figure 15 shows that a piece of code uses a hard-coded username and password to

connect to a database. Anyone who has access to code can use a password to

connect to the database.

22

Figure 15. Example of database connection code with hard-coded credentials by CWE & SANS

Institute (2011)

6) Misuse of Hash and Salt

CWE and SANS Institute (2011) defined that “The software uses a one-way

cryptographic hash against an input that should not be reversible, such as a

password, but the software does not also use salt as part of the input.” In figure 16,

if given password matches a stored password, the user can log in. This code does

not use salt for hashing function; thus attacker is able to reverse the hash and find

the original password.

Figure 16. Example of a method that checks a given password by CWE & SANS Institute

(2011)

7) Unrestricted Authentication Attempts

CWE and SANS Institute (2011) defined that “The software does not implement

sufficient measures to prevent multiple failed authentication attempts within in a

short time frame, making it more susceptible to brute force attacks.” In figure 17,

the method performs authentication when the application is invoked. Nevertheless,

the software does not attempt to restrict excessive authentication attempts.

23

Figure 17. Example of authentication code by CWE & SANS Institute (2011)

8) Encryption of Valuable Data

CWE and SANS Institute (2011) defined that “The lack of proper data encryption

passes up the guarantees of confidentiality, integrity, and accountability that

properly implemented encryption conveys.” In figure 18, function stores the user

credentials in a cookie on the user's machine. If an attacker compromises a user’s

machine, the user's information can be exposed.

Figure 18. Example of missing encryption of valuable data by CWE & SANS Institute (2011)

9) Trusting Unsafe Data Entiries

CWE and SANS Institute (2011) defined that “Developers may assume that inputs

such as cookies, environment variables, and hidden form fields cannot be

modified. However, an attacker could change these inputs using customized clients

or other attacks. This change might not be detected. When security decisions such

as authentication and authorization are made based on the values of these inputs,

attackers can bypass the security of the software. Without sufficient encryption,

integrity checking, or another mechanism, any input that originates from an

outsider cannot be trusted.”

24

Figure 19. Example of reliance on untrusted inputs in a security decision by CWE & SANS

Institute (2011)

10) Improper Authorization

CWE and SANS Institute (2011) defined that “Assuming a user with a given

identity, authorization is the process of determining whether that user can access a

given resource, based on the user's privileges and any permissions or other access-

control specifications that apply to the resource. When access control checks are

incorrectly applied, users are able to access data or perform actions that they should

not be allowed to perform. This can lead to a wide range of problems, including

information exposures, denial of service, and arbitrary code execution.”

Figure 20. Example of improper authorization by CWE & SANS Institute (2011)

Figure 20 shows a data to authenticated users by confirming the user's

authorization using a cookie.

25

Detection of the security vulnerabilities mentioned in the literature review may be

important for program users or those who own the program. These vulnerabilities were

experimentally investigated to support our hypothesis that differences in code review of

novices and experts can be identified by eye tracking methodology. The eye tracking

method can be employed to provide information about the code review process. In the

next section, the methodology of this review will be presented.

26

27

CHAPTER 3

METHODOLOGY

The research design of the study, variables and hypotheses, brief description about

participants, stimuli used in experiment and participants’ task description are reported in

this chapter.

3.1. Research Design

The focus of this study is to determine whether the differences in code review of novices

and experts can be identified by eye tracking methodology. First of all, the literature

review was conducted for the eye-tracking technology and software security

vulnerabilities. Since there are few studies related to the effect of software experience on

finding vulnerabilities in source code, the research was decided to focus on investigating

this topic by using eye-tracking technology principally. After the literature review, the

hypotheses of the research were constructed. After that, the stimuli of the study were

prepared based on the most dangerous software errors. The development process of the

stimuli was explained in the following sections. After the preparation of stimuli, the data

collection process started by applying the stimuli to software developers. After data

collection, all data were recorded and made ready for statistical analysis. The answers to

the demographic data and the information test were examined and compared between the

experts and the novices. In the following sections, the results and comparisons of the

stimuli will be reported.

28

3.2. Hypotheses

 A hypothesis have been formulated from the research question defined in the study. We

expected that the differences in code review of novices and experts can be identified by

eye tracking methodology (H1). The hypothesis is presented below:

H1: Eye tracking can be used to identify differences in a code review of novices

and experts.

3.3. The procedure

The data collection procedure of the present study consisted of three sessions, namely

demographics, information test, and stimuli session. In the first session, that was

demographics, the participants were asked about their software experience, education

status, age, gender and occupation. The second session consisted of an information test

consisting of questions designed to test participants’ basic domain knowledge of software

and cybersecurity. In this test, which consisted of 20 questions, there were five answer

options for each question, and only one of these options was true. The correct response

rate of the participants to this information test and the correct response rate of the

participants to the stimuli were two necessary and complementary criteria to determine

the participant’s software experience.

The third session presented the stimuli shown to the participant in an eye tracking setting.

The stimuli consisted of a total of 10 code snippets and four different clusters. The

sequence of the code fragments that made up the clusters was different to provide variance

within the stimuli. The task in the experiment was to investigate the code fragments that

contained security vulnerabilities. Since the task of the participants in this study is visual

search, all of the predefined source codes used in the study are vulnerable. In this way,

participants were able to perform self-reading tasks.

29

There were no typographical or logical errors in program codes. The security

vulnerabilities in the program codes were selected from among the top twenty-five

security vulnerabilities identified by the SANS Institute. The CWE / SANS Top 25 list

includes the most common and critical software errors. These errors can lead to serious

security vulnerabilities in source code. These software errors could be detected by hackers

thoroughly and could be used to put the system at risk. Moreover, these errors may allow

attackers to capture the software, steal data, or prevent software from functioning

properly, as presented in the previous chapter. The relevant characteristics were presented

in Table 1.

Table 1. Program parts information.

Program

Language

Vulnerability Description Total Line

Number

Vulnerability

Line

Numbers.

C# SQL Injection

9 5-6

C# Unlimited File Upload 10 6

JSP Cross-site Scripting

10 4

Java Missing Authentication for an Important

Method

11 3-5

Java Hard-coded Credentials 9 3

Python Misuse of Hash and Salt 9 6

C Unrestiricted Authentication Attempts 14 6-7

PHP Reliance on Untrusted Inputs in a Security

Decision

11 3-5

PHP Use of a Broken or Risky Cryptographic

Algorithm

11 3-4

Python Execution with Unnecessary Privileges 12 6-8

30

After the instrument was prepared in the Tobii Studio (the manufacturer software), version

3.4.5, which worked with the eye tracking device, a pilot study was conducted with two

participants to inspect whether the code fragments could be understood as intended by the

participants. Based on the interpretations of the pilot participants and the data obtained

from the eye tracking device, the code fragments were rearranged. The code fragments

have been made ready for experimentation after correcting the logic and syntax errors.

The code fragments investigated by the participants in the present study were given in

Appendix A.

3.4. Data Collection

At the beginning of the experiment, the participants were presented with the instructions.

They were also presented a sample question to make them more comfortable and adapted

to the experiment. On the left side of the page layout, there was a piece of source code

that contained security vulnerabilities, and on the right side of the page layout, there were

three security vulnerability options. One of these options was the answer to security

weakness in the source code. Figure 21 shows one of the stimuli. The source code in this

figure contained a security vulnerability that may allow the use of SQL injection

technique. The bottom of the options was the answer to the security vulnerability in the

source code.

The eye tracker was calibrated by using the device before the experiment started. While

the code reviewer was allowed to ask questions until the instructions and sample question

parts, no questions were allowed until the the experiment is over. During the experiment,

the participants were asked to say the correct answer with a loud voice while receiving

their answer. If they were sure which option was right, they were asked to choose the

option that was the most likely.

31

Figure 21. Sample stimulus that contains a security vulnerability, which allows SQL injection

technique.

Tobii X2-60 eye-tracking device was used in the present study. No external hardware was

used; therefore, the test environment was very similar to the real working environment.

Conducting the experiment as close as possible to the actual working environment was

important for the accuracy of the result obtained from the experiment. The cameras are on

a portable device that connected to the processor box via USB. Since the eye-tracking

device was portable, the tests were performed at different locations. Quiet and tranquil

places were preferred when conducting experiments to ensure that the participants were

not distracted. As the necessary information was given at the beginning of the experiment,

participants were not allowed to ask questions during the experiment.

3.5. Participants

Twenty participants with previous programming experience had voluntarily participated

in our study. The information test was applied to all participants. In addition, participants

filled demographic information forms. The gender of all participants is male and the mean

32

age of the participants was 31 (SD = 4.14). Participants do not have any vision problem.

They used ad-hoc (lightweight) code review technique to investigate program codes.

Participants were not informed about the possible outcomes of the experiment.

33

CHAPTER 4

RESULTS

In this chapter, the results of the statistical analyses were reported. Firstly, the results of

the information test were presented and use to categorize participants as novices and

experts. Secondly, the records in which the participants investigated the stimuli were

examined. Tobii Studio eye tracking software showed participants’ eye movements as

interconnected points in figure 22. These points were depicted as circles.

Figure 22. Participant investigates the program

34

Variables defined in the previous section; scan time, defect reporting time, fixation count

and total fixation duration were calculated and analyzed by using Tobii Studio. For

novices and experts, these variables were compared with an independent samples t-test.

Gaze samples and weighted gaze samples measurements were used to assess the amount

of valid gaze samples. Since the sample percentages were high, data cleansing was not

performed in the record set.

Multiple-choice information test was conducted to measure participants’ expertise in the

programming. The information test consisted of 20 questions which are compiled from

multiple sources designed to test participants’ basic domain knowledge of software and

cybersecurity. In this test, there were five answer options for each question, and only one

of these options was true. The goal of the test was to divide the participants into two groups

as experts and novices. According to the results, the independent sample t-test was made

to compare the knowledge level of novices and experts. The results suggest that there was

a significant difference between novices (M = 12.90, SD = 0.99) and experts (M =18.10,

SD = 1.19) in terms of their accuracy (t(18)=3.198, p=0.005). These results are presented

in Table 2.

Table 2. T-test result for information test accuracy between novices and experts (number of

correct answers out of 20)

Mean T-test

 Novices Experts Sig. df t

12.90 (0.99) 18.10 (1.19) 0.000 18 3.198

The participants were instructed to report the answer verbally if they found a vulnerability

in the stimulus. Accordingly, their answers were used for the calculation of defect

reporting time3. Defect reporting time was compared with an independent samples t-test.

3 The time elapsed between the time the participant started to review the code and the time the participant found the

vulnerability in the code.

35

Levene's test showed that the variances for the defect reporting time of the novices and

the experts were equal, p = 0.359. The t-test results demonstrated that there was a

significant difference between novices (M = 63.70, SD = 15.81) and experts (M = 47.20,

SD = 11.32) in terms of their defect reporting time (t(18)=2.680, p=0,015), as shown in

Table 3.

Table 3. T-test result for defect reporting time between novices and experts (in seconds)

Mean T-test

Novices Experts Sig. df t

63.70 (18.81) 47.20 (11.32) 0.015 18 2.680

Scan time was calculated by examining the participants' records. The scan time was

measured as the time elapsed between the time the participant started to review the code

and the time focusing on a smaller subset of lines. Scan time of participants was compared

with the independent sample t-test. Levene's test showed that the variances for the scan

time of the novices and the experts were equal, p = 0.861. The t-test results demonstrated

that there was a significant difference between the mean scan time of the novices (M =

18.10, SD = 5.79) and experts (M = 12.40, SD = 5.41) in terms of their scan time

(t(18)=2.248, p=0.037), as shown in Table 4.

Table 4. T-test result for scan time between novices and experts (in seconds)

Mean T-test

Novices Experts Sig. df t

18.10 (5.79) 12.40 (5.41) 0.037 18 2.248

At the end of each trial, the participants verbally reported the answer they thought to be

true. Answers were collected by reviewing the records afterward. According to these

answers, another independent sample t-test was conducted to compare the accuracy of

36

finding the security vulnerabilities of the novices and the experts. Levene's test showed

that the variances for the accuracy of finding the security vulnerabilities of the novices

and the experts were equal, p = 0.184. The t-test results showed that there was a significant

difference in accuracy between novices (M = 6.30, SD = 1.88) and experts (M = 8.50, SD

= 1.08) in terms of their answers (t(18)=3.198, p=0.005). These results are presented in

Table 5.

Table 5. T-test result for accuracy between novices and experts (number of correct answers out

of 10)

Mean T-test

Novices Experts Sig. df t

6.30 (1.88) 8.50 (1.08) 0.005 18 3.198

We also had four eye movement measurements. The visit count, fixation count, fixation

duration and total fixation duration measurements described in the literature review

chapter may give us information about the participants’ expertise. Firstly, fixation count

measurements were compared with an independent samples t-test. Levene's test showed

that the variances for the fixation count of the novices and the experts were equal, p =

0.843. The t-test results demonstrated that there was a significant difference between the

fixation count of the novices (M = 160, SD = 37.84) and experts (M = 115, SD = 38.11)

in terms of their fixation counts (t(18)=2.651, p=0.016), as shown in Table 6.

Table 6. T-test result for fixation count between novices and experts (number of fixation)

Mean T-test

Novices Experts Sig. df t

160 (37.84) 115 (38.11) 0.016 18 2.651

37

Secondly, total fixation duration measurements were analyzed using an independent

samples t-test. Levene's test showed that the variances for the total fixation duration of the

novices and the experts were equal, p = 0.978. The t-test results demonstrated that there

was a significant difference between the total fixation duration of the novices (M = 33,

SD = 8.94) and experts (M = 24, SD = 9.13) in terms of their total fixation duration

(t(18)=2.308, p=0.033), as shown in Table 7.

Table 7. T-test result for total fixation duration between novices and experts (in seconds)

Mean T-test

Novices Experts Sig. df t

33 (8.94) 24 (9.13) 0.033 18 2.308

Thirdly, fixation duration measurements were analyzed using an independent samples t-

test. Levene's test showed that the variances for the fixation duration of the novices and

the experts were equal, p = 0.743. The t-test results demonstrated that there was no

significant difference between the fixation duration of the novices (M = 205.70, SD =

22.73) and experts (M = 219.20, SD = 30.32) in terms of their fixation duration

(t(18)=1.126, p=0.275), as shown in Table 8.

Table 8. T-test result for fixation duration between novices and experts (in seconds)

Mean T-test

Novices Experts Sig. df t

205.70 (22.73) 219.20 (30.32) 0.275 18 1.126

38

Finally, visit count measurements were analyzed using an independent samples t-test.

Levene's test showed that the variances for the visit count of the novices and the experts

were equal, p = 0.138. The t-test results demonstrated that there was a significant

difference between the visit count of the novices (M = 6.55.70, SD = 2.25) and experts

(M = 4.79, SD = 1.09) in terms of their visit count (t(18)=2.224, p=0.039), as shown in

Table 9.

Table 9. T-test result for visit count between novices and experts (number of visits)

Mean T-test

Novices Experts Sig. df t

6.55 (2.25) 4.79 (1.09) 0.039 18 2.224

The total number of correct answers given by the novices and experts to the eye tracking

tests is shown in Table 10 below. These results showed the differences between novices

and experts in finding the security vulnerabilities in the source code. A chi-square test of

independence was performed to examine the relation between expertise and accuracy

scores. The relation between these variables was significant, X2 (1, N = 200) = 11.60, p

<.05.

 Table 10. Total Number of Correct Answers in Eye Tracking Tests

Total Number of Correct Answers

Code Fragments Novices Experts

1 - Sql Injection 6 10

2 - Upload Of File 8 8

3 - Cross Site Scripting 4 8

4 - Missing Auth Critical Function 8 6

5 - Hard Coded Credential 4 8

6 - One Way Hash Without Salt 5 8

7- Improper Restr Excess Auth Attpt 8 9

8 - Missing Encryption Data 7 9

9 - Untrust Inputs Security Decision 6 9

10 - Incorrect Authorization 8 10

39

As mentioned in the literature review section, the heat map was a visualization method

that uses different colors to show how many fixations participants made or how long they

were fixated. For example, the red color was used to indicate a higher number of fixations

or duration. We used the heat map technique to investigate the differences in the code

review of novices and experts. The heat map in figure 22 shows the result of code analysis

of the novices. Figure 23 also shows the result of the code analysis of the experts. As can

be seen, there was a relatively intense red color in the heat map of the novices. Moreover,

colors on the novices’ heat map cover a larger area. This result supports the hypothesis

that eye tracking can be used to identify differences in a code review of novices and

experts.

Figure 22. Heat map of the second question for novices.

40

Figure 23. Heat map of the second question for experts

4.1. Summary of the Results

In summary, the results showed that scan time, defect reporting time and accuracy rates

of novices and experts were statistically different from each other. The scan time and

defect reporting time of the experts were higher than the scan time and defect reporting

time of the novices. Also, the accuracy of detecting the security vulnerabilities of the

experts was higher than the accuracy of detecting the security vulnerabilities of the

novices. Moreover, eye movement measures can be used to investigate the effect of the

programming experience on finding security vulnerabilities in the code. Eye movement

measurement results showed that the average fixation counts of novices, the average of

total fixation duration of novices and the average visit counts of novices are higher than

the average of experts. To support our hypotheses, a heat map which is a visualization

technique was also used. The colors of the novices’ heat map results were relatively more

intense and covered a larger area. It indicated that eye tracking can be used to identify

differences in a code review of novices and experts

41

CHAPTER 5

DISCUSSION & CONCLUSIONS

Many organizations are dependent on software to carry out their daily activities. Even if

the latest security technologies are used in software systems, most of these systems can

still face a large number of security breaches. The main reason for it is software developers

making mistakes, mostly due to low skill, personal differences and lack of security

knowledge. (Islam & Dong, 2008). Secure programming depends on personal knowledge

and experience of software developers involved in software development stages.

Therefore, eye tracking systems that can help us better understand individual differences

and human factors can be used in software programming.

The focus of this study is to determine whether the differences in code review of novices

and experts can be identified by eye tracking methodology. To this end, the effect of the

developer’s experience on the detection of security vulnerabilities was investigated by

using the eye tracking methodology. In this section, the results were evaluated and

discussed within the scope of previous studies. Then, the outcomes of this research were

interpreted according to the results of the experiment. The results of the eye tracking

experiment and information test were evaluated by considering the accuracy results.

Finally, the limitations and shortcomings of this study were presented, and

recommendations for future works are given.

5.1. Discussion

The results of accuracy analysis comparing the novices and experts were presented in

Chapter 4. Accuracy, which was calculated in the present study, was the number of correct

42

answers in the Information Test and the eye tracking experiments. Both the Information

Test and the experiment results showed that the accuracy scores of the experts were higher

than the accuracy scores of the novices. A code review task using eye tracking

methodology was conducted in order to evaluate the performance of the participants

comparatively. The result supports the hypothesis that eye tracking can be used to identify

differences in a code review of novices and experts.

The results of scan time analysis comparing the novices and experts were presented in

Chapter 4. Scan time was measured as the time elapsed between the time the participant

started to review the code and the time focusing on a smaller subset of lines. The scan

time of the experts was shorter than the scan time of the novices. The result supports the

hypothesis that eye tracking can be used to identify differences in a code review of novices

and experts.

The results of defect reporting time analysis comparing the novices and experts were

presented in Chapter 4. Defect reporting time was measured as the time elapsed between

the time the participant started to review the code and the time the participant found the

vulnerability in the code. The defect reporting time of the experts was shorter than the

defect reporting time of the novices. The result supports the hypothesis that eye tracking

can be used to identify differences in a code review of novices and experts.

The fixation count, total fixation duration and gaze shift eye movement measurements’

analyzes were also reported. Fixation count measures the number of gaze fixations on an

area of interest and total fixation duration measures the sum of the duration for all fixations

within an area of interest (Liversedge, Gilchrist, & Everling, 2011). Gaze shift measures

the movement from one area of interest to another (Holmqvist & Andersson, 2017). In the

present study, the area of interest was assumed to be the part of the display where the

question stimuli were presented to the participants. According to findings, the fixation

count, total fixation duration and gaze shifts of the experts were lower than the fixation

43

count, total fixation duration and gaze shift of the novices. The result supports the

hypothesis that eye tracking can be used to identify differences in a code review of novices

and experts.

Some eye movement measurements, such as fixation duration, could be used for the

purpose of this study, but some eye movement measurements, such as the fixation count,

could not be used to achieve the expected results. In addition to the dependent variables

and eye movement measurements, the differences between the code review of the novices

and the experts can be determined by investigating the source code analysis records of the

participants. While novices tended to review the source code from beginning to end,

experts tended to focus on a smaller subset of lines that could contain the vulnerability. In

addition, after reviewing the source code and options, novices tend to review the source

code again and again. However, after examining the source code, experts usually tend to

choose one of the options without having to return to the code again.

5.2. Contribution to Research Literature

The experiment was conducted with 20 participants with different programming

experience. The participants are university graduates, and almost all of them are employed

in ICT companies. Most of the previous studies, however, were carried out with five or

fewer people with 3 or 4 years of programming experience. In addition, an average of five

program code fragments written in the same programming language was used in most of

the previous studies. In this study, ten different program code fragments written in Python,

Javascript, C #, Java and C programming languages were used. Thus, the effect of

different programming languages on finding the vulnerabilities in the code was

investigated.

5.3 Limitations and Future Research

One of the limitations of this study was that participants could investigate predefined code

fragments of the programs that include security vulnerabilities, which limits the

44

generalizability of the findings. Instead of code fragments known to contain

vulnerabilities, a more general result can be obtained in future studies using a larger code

fragment of software in use. The size of the program codes was also limited since the area

displayed to the user was limited to the screen size of the computer and the program of

eye tracker used for the experiment did not allow the participant to scroll down the page.

Furthermore, the fact that all of the participants were male was a limitation for this study.

In order to find bugs and vulnerabilities in the program code, many developers use

programs that perform code analysis. Thanks to these programs, code analysis can be done

much faster than software developers can do. Code analysis programs can save time, but

not all bugs and security vulnerabilities may be detected. With the findings obtained from

the studies such as present study, it is possible to improve these code analysis programs

by adding human factors to the algorithms of code analysis programs.

In the eye tracking analysis, the area of interest was determined as the whole piece of

code. In future studies, the area of interest may be narrowed down as a sub-section leading

to the vulnerability. For this sub-section, differences between novices and experts can be

investigated. The review time of these sub-sections can be examined comparatively

between novices and experts.

45

REFERENCES

Begel, A. (2015). Eye Movements During Code Review. In Proceedings of the Third

International Workshop on Eye Movements in Programming, Joensuu, Finland, pp. 3-4.

Bergstrom, J. R., & Schall, A. J. (2014). Eye Tracking in User Experience Design. Lund,

Sweden: Lund Eye- Tracking Research Institute.

Busjahn, T., Schulte, C., Sharif, B., Simon, Begel, A., Hansen, M., Bednarik, R., Orlov,

P., Ihantola, P., Shchekotova, G. & Antropova, M. (2014). Eye Tracking in Computing

Education. In Proceedings of the Tenth Annual Conference on International Computing

Education Research, United Kingdom, pp. 3-10.

Bylinskii, Z., Borkin, M.A., Kim, N.W., Pfister, H., Oliva, A. (2017). Eye Fixation

Metrics for Large Scale Evaluation and Comparison of Information Visualizations. In:

Burch M., Chuang L., Fisher B., Schmidt A., Weiskopf D (Eds.), Eye Tracking and

Visualization. ETVIS 2015 (pp. 85). Mathematics and Visualization. Springer, Cham.

Common Weakness Enumeration. (2018, March 29). Retrieved Jan 16, 2018, from

https://cwe.mitre.org/data/slices/2000.html

Duchowski, A.T. (2017). Eye Tracking Methodology. Cham, Switzerland: Springer

International Publishing AG.

ECDL. (2013, December). ECDL Module 1 Sample Test. Retrieved Feb 07, 2018, from

https://www.slideshare.net/stacio/modul-1sampletest

https://cwe.mitre.org/data/slices/2000.html
https://www.slideshare.net/stacio/modul-1sampletest

46

EnSurePass. (n. d.). CompTIA Security+ JK0-018 Exam. Retrieved Feb 05, 2018, from

http://www.dumps4shared.com/wp-content/uploads/2014/07/Latest-CompTIA-

EnsurePass-JK0-018-Dumps-PDF.pdf. (2002, February).

Hofmeister, J., Bauer. J., Siegmund, J., Apel, s. (2017). Comparing Novice and Expert

Eye Movements during Program Comprehension. In Proceedings of the Fourth

International Workshop on Eye Movements in Programming, Magdeburg, Germany, pp.

17-18.

Holmqvist, K., & Andersson, R. (2017). Eye tracking: A comprehensive guide to methods,

paradigms and measures. Waltham, USA: Elsevier Inc.

Horsley, M., & Eliot, M., Knight, B., Reilly, R. (2014). Current Trends in Eye Tracking

Research. Cham, Switzerland: Springer.

Huizinga, D., & Kolawa, A. (2007). Automated defect prevention: best practices in

software management. Hoboken, New Jersey: John Wiley & Sons, Inc.

Islam, S. & Dong, W. (2008). Human Factors in Software Security Risk Management. In

Proceedings of the first international workshop on Leadership and management in

software architecture, Leipzig, Germany, pp. 13-16.

Liversedge, S.P., Gilchrist, I.D., Everling, S. (2011). The Oxford Handbook of Eye

Movements. Great Clarendon Street, Oxford: Oxford University Press.

OWASP, (2011, August). OWASP Top 10 Threats and Mitigations Exam – Single Select.

Retrieved Jan 10, 2018, from

https://www.owasp.org/index.php/OWASP_Top_10_Threats_and_Mitigations_Exam_-

_Single_Select

https://www.owasp.org/index.php/OWASP_Top_10_Threats_and_Mitigations_Exam_-_Single_Select
https://www.owasp.org/index.php/OWASP_Top_10_Threats_and_Mitigations_Exam_-_Single_Select

47

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of

research. Psychological bulletin, 124 3, pp. 372-422.

Peachock, P. & Sharif, B. (2017). Investing Eye Movements in Natural Language and

C++ Source Code – A Replication Experiment. In Proceedings of the Fourth International

Workshop on Eye Movements in Programming, Yougstown, Ohio, pp. 4-5.

ProProfs. (2012, October). Basic Computer Questions. Retrieved Feb 16, 2018, from

https://www.proprofs.com/quiz-school/story.php?title=basic-computer-questions

ProProfs. (2017, August). IT Security Quiz. Retrieved Feb 16, 2018, from

https://www.proprofs.com/quiz-school/story.php?title=it-security-quiz

Ann, K. (n. d.). Internet Ethics. Retrived Jan 16, 2018, from

https://quizlet.com/1086399/internet-ethics-flash-cards/

SANS Institute. (2011). CWE/SANS Top 25 Most Dangerous Software Errors. Insecure

Interaction Between Components. Retrieved from https://www.sans.org/top25-software-

errors/

SANS Institute. (2011). CWE/SANS Top 25 Most Dangerous Software Errors. Risky

Resource Management. Retrieved from https://www.sans.org/top25-software-errors/

SANS Institute. (2011). CWE/SANS Top 25 Most Dangerous Software Errors. Porous

Defenses. Retrieved from https://www.sans.org/top25-software-errors/

Sharafi, Z., Soh, Z., Gueheneuc, Y. & Antoniol, G. (2012). Women and Men – Different

but Equal: On the Impact of Identifier Style on Source Code Reading. In Proceedings of

20th IEEE Intl. Conf. on Program Comprehension, Germany, pp. 27-36.

https://www.proprofs.com/quiz-school/story.php?title=basic-computer-questions
https://www.proprofs.com/quiz-school/story.php?title=it-security-quiz
https://quizlet.com/1086399/internet-ethics-flash-cards/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/

48

Sharafi, Z., Zephyrin, S. & Gueheneuc, Y. (2015). A Systematic Literature Review on the

Usage of Eye-tracking in Software Engineering. In Information and Software technology,

67, 79-107.

Sharif, B., Falcone, M. & Maletic, J. I. (2012). An Eye-tracking Study on the Role of Scan

Time in Finding Source Code Defects. In Proceedings of the Symposium on Eye Tracking

Research and Applicaitons, California, pp. 381-384.

TechTarget. (n. d.). Quiz #1: Help Desk Basics. Retrieved Feb 05, 2018, from

https://searchmicroservices.techtarget.com/news/763878/Quiz-1-Help-Desk-Basics

TechTarget. (n. d.). Quiz #20: Cryptography. Retrieved Feb 05, 2018, from

https://searchmicroservices.techtarget.com/quiz/Quiz-20-Cryptography ECDL. (2002,

February).

TechTarget. (n. d.). Quiz #20: Cryptography. Retrieved Feb 05, 2018, from

https://searchsecurity.techtarget.com/definition/Quiz-Cryptography. (200, April).

Tvarozek, J., Konopka. M., Navrat, P., Bielikova, M. (2015). Studying Various Source

Code Comprehension Strategies in Programming Education. In Proceedings of the Third

International Workshop on Eye Movements in Programming, Bratislava, Slovakia, pp. 25-

26.

Turner, R., Falcone, M., Sharif, B. & Lazar, A. (2014). An eye-tracking study assessing

the comprehension of c++ and Python source code. In Proceedings of the Symposium on

Eye Tracking Research and Applicaitons, Florida, pp. 231-234.

https://searchmicroservices.techtarget.com/news/763878/Quiz-1-Help-Desk-Basics

49

Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. (2006). Analyzing individual

performance of source code review using reviewers' eye movement. In Proc.of Symp. On

Eye tracking research&applications, San Diego, pp.133-140

Uwano, H., Monden, A., & Matsumoto, K. (2008). DRESREM 2: An Analysis System

for Multi-document Software Review Using Reviewers' Eye Movements. In Proc. of Intl.

Conf. on Software Engineering Advances, Malta, pp. 177 – 183

50

51

APPENDICES

APPENDIX A

52

53

54

55

56

57

APPENDIX B

Information Test

58

59

60

60

APPENDIX C

Demografik Bilgi Formu

61

62

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ..

Adı / Name : ...

Bölümü/Department : ...

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) :

..

..

TEZİN TÜRÜ Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work

immediately for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent

and/or proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period

of six months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim

edilecektir. A copy of the Decision of the Institute Administrative Committee will be

delivered to the library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date

.....................

