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ABSTRACT

AN ADVANCED EVOLUTIONARY PROGRAMMING METHOD FOR
MECHANICAL SYSTEM DESIGN: FEASIBILITY ENHANCED PARTICLE

SWARM OPTIMIZATION

Hasanoğlu, Mehmet Sinan

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Melik Dölen

January 2019, 205 pages

Constrained optimization problems constitute an important fraction of optimization

problems in mechanical engineering domain. It is not rare for these problems to

be highly-constrained where a specialized approach that aims to improve constraint

satisfaction level of the whole population as well as finding the optimum is deemed

useful especially when the objective functions are very costly.

This dissertation introduces a new algorithm titled Feasibility Enhanced Particle Swarm

Optimization (FEPSO) to handle highly-constrained optimization problems. FEPSO,

which is based on particle swarm optimization technique, treats feasible and infeasible

particles differently. Infeasible particles do not need to evaluate objective functions

and fly only based on social attraction depending on a single violated constraint, called

the activated constraint (AC), which is selected in each iteration based on constraint

priorities and flight occurs only along dimensions of the search space to which the AC

is sensitive. To ensure progressive improvement of constraint satisfaction, particles are

not allowed to violate a satisfied constraint in FEPSO. Unlike its counterparts, FEPSO
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does not require any feasible solutions in the initialized swarm.

A modified version of the new method called the multi-objective FEPSO (MOFEPSO)

is also introduced. MOFEPSO, which is capable of handling highly-constrained multi-

objective optimization problems, employs repositories of non-dominated and feasible

positions (or solutions) to guide feasible particle flight.

In this study, several constrained optimization problems are described. For the given

problems, the performance of FEPSO- and MOFEPSO are comparatively evaluated

against a number of popular optimization algorithms found in the literature. The results

suggest that FEPSO- and MOFEPSO are effective and consistent in obtaining feasible

points, finding good solutions, and improving the constraint satisfaction level of the

swarm as a whole.

Keywords: mechanical design, constrained problems, multi-objective optimization,

particle swarm optimization, evolutionary algorithms
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ÖZ

MEKANİK SİSTEM TASARIMI İÇİN GELİŞMİŞ EVRİMSEL
PROGRAMLAMA YÖNTEMİ: OLURLUĞU ARTTIRILMIŞ PARÇACIK

SÜRÜ OPTİMİZASYONU

Hasanoğlu, Mehmet Sinan

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Melik Dölen

Ocak 2019 , 205 sayfa

Kısıtlı eniyileme problemleri makine mühendisliği alanındaki eniyileme problemleri-

nin önemli bir kısmını oluşturur. Bu problemlerin aşırı kısıtlı olması da az rastlanır

bir durum değildir. Amaç fonksiyonunun zor hesaplandığı aşırı kısıtlı problemlerde

amaç fonksiyonunu eniyilemenin yanında popülasyonun kısıtları sağlama durumunu

bütüncül olarak iyileştirecek bir yaklaşımın önemli olduğu değerlendirilmektedir.

Bu çalışmada aşırı kısıtlı problemler için olurluğu geliştirilmiş parçacık sürüsü eniyile-

mesi (FEPSO) isimli yeni bir yöntem sunulmaktadır. Parçacık sürüsü optimizasyonu

tekniğine dayanan FEPSO, kısıtlara uyan ve uymayan parçacıkları farklı bir şekilde

ele alır. FEPSO’da kısıtlara uymayan parçacıklar sadece etkin kısıt adı verilen tek bir

kısıta dayalı sosyal çekim kuralları ile hareket ederler. Etkin kısıt her yinelemede kısıt

önceliklerine göre seçilir ve parçacık hareketi sadece etkin kısıtın duyarlı olduğu karar

değişkeni boyutlarında gerçekleşir. Olurluk seviyesinin sürekli iyileşmesi amacıyla

FEPSO, sağlanmış bir kısıtın tekrar ihlal edilmesine izin vermez. Benzerlerinden farklı

olarak FEPSO, ilklendirilmiş sürüde olurlu parçacıkların bulunmasını gerektirmez.
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Ayrıca bu yeni yaklaşımın çok amaçlı FEPSO (MOFEPSO) adı verilen bir tipi de

tanımlanmaktadır. Aşırı kısıtlı çok amaçlı problemlerin çözümünde kullanılabilen

MOFEPSO, olurlu parçacığa kılavuz olarak basılgın olmayan ve olurlu çözümlerden

oluşan veri havuzlarından faydalanır.

Bu çalışmada bazı kısıtlı eniyileme problemleri de tarif edilmiştir. Bu problemler

kullanılarak FEPSO ve MOFEPSO, literatürde bulunan bazı yaygın eniyileme algo-

ritmaları ile karşılaştırılmıştır. Elde edilen sonuçlar değerlendirildiğinde FEPSO ve

MOFEPSO’nun etkin ve istikrarlı olarak olurlu noktalar bulabildiği, iyi çözümler

elde edebildiği ve sürünün kısıtları sağlama durumunu bütüncül olarak geliştirebildiği

görülmektedir.

Anahtar Kelimeler: mekanik tasarım, kısıtlı problemler, çok amaçlı eniyileme, parçacık

sürü optimizasyonu, evrimsel algoritmalar
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Erhan İlhan Konukseven and Assistant Professor Can Ulaş Doğruer. Their wealth of
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CHAPTER 1

INTRODUCTION

With increasing complexity of engineering design problems, optimization has become

a necessity instead of an option in the workflow of the designer. The domain of

mechanical engineering is not an exception in this regard. It encompasses a wide

variety of design problems of differing complexity- and characteristics. While some of

these problems can easily be handled with widely used general purpose optimization

algorithms, some require special techniques.

In fact, mechanical design itself is an optimization process that deals with many

potentially conflicting objectives. Strength, fatigue, and weight are only several

of the parameters commonly treated as design goals. Any sufficiently complicated

mechanical system has numerous parts that need to be designed separately with

different objectives. On the other hand, some features of these parts need to be

specified through system level design work. By and large, these processes require

application of optimization techniques for the final product to be as functional and as

effective as possible. From this point of view, optimization is a decision making tool

which allows the designer to reach this ultimate goal. Moreover, there is an increasing

demand for optimal designs in every field of engineering due to the influence of more

challenging economic and environmental constraints [1]. Advances in computational

techniques and increasing computational power has led the transformation of computer

aided design tools from mere analysis tools into design optimization tools.

Although a plethora of analytical- and numerical methods that calculate extreme values

of a function have long been utilized in engineering design and analysis, classical

methods are rarely useful in design of mechanical systems which involve many design

variables as well as complex nonlinear outcomes. These classical methods generally
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yield local extrema whereas the designer is interested in the global optimum.

Unlike classical approaches, modern heuristic optimization techniques are generally

stochastic in nature and much more versatile in terms of complexity and diversity of

problems they can be applied to.

Vast majority of mechanical engineering design problems are constrained. In con-

strained problems, the values decision vectors can take are limited. Furthermore, there

is a great chance that the optimum values of objectives lie on the constraint boundary

in real-world engineering design optimization problems. This comes as no surprise

since the best design would require usage of all available factors (resources, energy

etc.) to their limits. Therefore, constraints carry utmost importance in all kinds of

design optimization.

Some problems are highly-constrained, wherein the process of finding a feasible

solution that satisfies all constraints becomes a major challenge of a similar scale for

finding the optimum. Moreover, not all problems consist of only real valued continuous

decision variables. There are many design variables that take integer- or predefined

discrete values due to physical- or practical reasons.

Design of a disc spring shown in Figure 1.1 can be given as an example to constrained

mechanical design optimization [2, 3]. The disc spring optimization problem involves

minimization of the mass (or volume) by determining appropriate values for the

design parameters while satisfying several constraints related with compressive stress,

deflection, and geometric consistency. Design variables of the problem are the internal

diameter (Di), the external diameter(De), the thickness (t), and the height (h) of the

spring. The problem can be defined as to minimize the volume approximated as

0.07076π(D2
e −D2

i )t (1.1)

subject to the following constraints:

4Eδmax
(1− µ2)αD2

e

[
β

(
h− δmax

2

)
+ γt

]
≤ S (1.2)

4Eδmax
(1− µ2)αD2

e

[(
h− δmax

2

)
(h− δmax)t+ t3

]
≥ 24 kN (1.3)

h+ t ≤ 5 cm (1.4)
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De ≥ Di (1.5)

where S = 1380 N/mm2 is the allowable stress, E = 207 kN/mm2 is the modulus of

elasticity, and δmax = 5 mm is the maximum deflection. Furthermore, α, β, and γ are

some coefficients that are functions of De/Di. The aim in this problem is to find the

combination of design variables that make the volume minimum.

De

D
i

AA

t 

h 

SECTION A-A

Figure 1.1: Disc spring drawing

The example given above is a simple problem with only a single objective. However,

many engineering optimization problems involve several objective functions which are

occasionally conflicting in nature. Such problems are called multi-objective problems

and oftentimes do tend to also have a multitude of constraints. For example, in a beam

design optimization, the designer might want to minimize the weight of the beam and

maximize the load capacity. These two objectives would have conflicting impacts on

the majority of design variables. Although a multi-objective problem can be converted

to a single-objective one, treating it with a specially designed multi-objective method

has certain advantages.

Another aspect of some design problems worth mentioning is the complexity of

constraint- and objective functions that constitute them. In many cases, objective

functions have a higher time complexity when compared with the constraint func-

tions. Therefore, specialized techniques for handling easily-evaluated constraints
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or constraints that prohibit other evaluations in constrained problems (especially in

highly-constrained ones) may alleviate the burden of the optimization algorithm in

finding feasible points and the optimum.

A thorough investigation of the current literature on constraint handling methods for

evolutionary algorithms indicates that there is a lack of an evolutionary program-

ming framework (especially on swarm-intelligence) that is specialized for use in

highly-constrained single- and multi-objective problems aiming to improve constraint

satisfaction level of whole population. Such an algorithm would not only allow finding

feasible design points in highly-constrained problems, but also constitute a prepro-

cessing methodology for initializing a population that has a better level of constraint

satisfaction for other optimization algorithms that could benefit from a population

with less constraint violations. This would also provide an alternative workflow for

cases where objective functions are too costly to evaluate in lieu of some constraint

violations.

The motivation of this study is to develop a heuristic optimization technique that is ca-

pable of handling highly-constrained single-objective- and multi-objective mechanical

design problems.

1.1 Outline of the dissertation

The dissertation is divided into 8 chapters including this introduction.

Chapter 2 includes a review of the basic theories and background of this study. Some

popular concepts and approaches for both classical- and modern optimization tech-

niques are reviewed. Additionally, some references on popular mechanical design

problems in the literature are discussed before presentation of a synthesis for research

opportunity.

Chapter 3 introduces a new method called the feasibility enhanced particle swarm

optimization (FEPSO) which constitutes the core of the study. After a detailed descrip-

tion of the FEPSO algorithm, results of some preliminary tests performed on several

widely used benchmark problems are given.
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Chapter 4 introduces a modification of FEPSO for multi-objective optimization prob-

lems: multi-objective FEPSO (MOFEPSO). This chapter focuses only on enhance-

ments made on top of FEPSO to allow handling multiple objectives.

Chapter 5 discusses the application of FEPSO to a highly-constrained problem (four-

stage gear train problem) and introduces two new variants of the problem. Both

single-objective- and multi-objective versions of the problem are discussed separately

in two main sections of this chapter. Results obtained by FEPSO, MOFEPSO and other

competing algorithms as well as data found in the literature are used to comparatively

assess the performance of both FEPSO and MOFEPSO. The exploratory capability

of the algorithm is also discussed with the aid of data obtained from solution of

multi-objective version of the four-stage gear train problem.

Chapter 6 presents an application of FEPSO to design of a mesh wick type heat pipe.

Once again, a comparative analysis is performed to investigate the algorithm behavior.

Aim of this chapter is to show FEPSO’s competence in a relatively less constrained

problem and examine how certain parameters such as the swarm size effect results.

In the second part of this chapter, a novel multi-objective version of the heat pipe

design problem is introduced. Solutions obtained for this problem by MOFEPSO are

presented and discussed.

Chapter 7 consists of three sections that describe different aspects of the algorithm.

First section presents a qualitative and empirical analysis related with the time complex-

ity of MOFEPSO. While comparing MOFEPSO and FEPSO in terms of practicality,

performance, and efficiency; the second section of this chapter includes a general

discussion- and comparison of single-objective- and multi-objective approaches. The

third and final section in this chapter scrutinizes the unique characteristics of particle

motion in FEPSO.

General conclusions are drawn in Chapter 8 and some direction for future studies are

discussed.

Some concepts and results included in this dissertation have been published in Pro-

ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science and Engineering Optimization with articles titled “Feasibility
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enhanced particle swarm optimization for constrained mechanical design problems

[4]” and “Multi-objective feasibility enhanced particle swarm optimization [5]” re-

spectively.
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CHAPTER 2

REVIEW OF THE STATE OF THE ART

2.1 Definition and types of optimization problems

Optimization is routinely used in all fields of science and engineering. The Oxford

Dictionary defines optimization as “the action of making the best or most effective

use of a situation or resource”. Theoretically, performing an optimization task in a

problem means finding the most or best suitable solution of the problem [6]. Not

unexpectedly, mathematical studies concentrate on properties of an ideal solution and

methods to reach such a solution whereas practical optimization studies often deal

with an approximate solution due to restrictions on computation power and time.

An optimization problem can either be stated as maximization or minimization of a

function. These two problems can easily be converted to the other form such that to

minimize

y = f(x) (2.1)

is equivalent to maximize

y = −f(x) (2.2)

where f(x) is the objective function and x =
[
x1 x2 · · · xN

]T
is the decision

vector. If all of the problem’s decision variables are real valued then x ∈ RN×1. N is

the number of decision variables which defines the dimension of the problem. Decision

variables are usually bounded such that

xLn ≤ xn ≤ xUn , n ∈ N≤N>0 (2.3)
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2.1.1 Multi-objective optimization problems

Many real-world optimization problems are interested in optimizing more than one

measure simultaneously. In that case the optimization problem can be stated as

minimize

y = f(x) ≡
[
f1(x) f2(x) · · · fK(x)

]T
(2.4)

where K is the number of objective functions. It would be very improbable for these

K functions to have minimums exactly at the same point. Therefore, in one way or

another, minimizing these functions is contradicting. Unless all the functions being

optimized in a multi-objective optimization problem have optimums at exactly the

same point, we can not speak of an optimum. Hence, the scalar concept of optimality

does not apply directly in the multi-objective setting [7].

Historically, multi-objective problems (MOPs) have been converted into single-objective

ones to allow application of conventional optimization methods. One of the most

common approaches is to utilize a fixed weight linear aggregation function as the

single objective such that

y = f(x) =
K∑

k=1

wkfk(x) (2.5)

where wk are the constant weights that define the importance of each objective function.

Note that this approach requires determination of the weights beforehand, hence it

carries the risk of introducing bias or scaling flaws if no prior knowledge related with

the problem exists. Instead, the concept of Pareto optimality can be employed to obtain

Pareto optimal solutions that represent the best trade-off solutions. Therefore, the

obtained solution set in a Pareto optimality based technique is truly multi-objective.

2.1.1.1 Pareto optimality

Before making a formal definition of Pareto optimality, the concept of domination must

be explained. Domination is a relation defined between two solutions (or objective

vectors of the solutions). Consider two decision vectors xa and xb of solutions a and
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b. The corresponding objective vectors of these solutions would be

ya = f(xa) =
[
ya1 ya2 · · · yaK

]T
(2.6)

yb = f(xb) =
[
yb1 yb2 · · · ybK

]T
(2.7)

In a minimization problem, the vector ya is said to dominate yb iff (if and only if)

(
∀k ∈ N≤K>0

) (
yak ≤ ybk

)
∧
(
ya 6= yb

)
(2.8)

Domination of ya over yb is denoted as

ya ≺ yb (2.9)

and implies that all components of vector ya are as good as yb and since ya 6= yb, at

least one component is better for sure1 [8].

Pareto optimality can only be defined in the existence of a solution set that contains

multiple solutions to a problem. Therefore, let the set of decision vectors of all

solutions found for a problem be

X =

{
xθ =

[
xθ,1 xθ,2 · · · xθ,N

]T
: θ ∈ N≤Θ

>0

}
(2.10)

where Θ is the number of solutions in the set. A solution x∗ ∈ X is Pareto optimal iff

(@θ ∈ N≤Θ
>0 ) (f(xθ) ≺ f(x∗)) (2.11)

In other words, if a solution is not dominated by any other solutions, it is a Pareto

optimal solution. The concept of a solution being not dominated by any other solutions

is also called non-domination. Hence, a Pareto optimal solution is non-dominated.

The set of all Pareto optimal solutions is called the Pareto set. The image of the Pareto

set in the objective space is the Pareto front [8]. Figure 2.1 illustrates Pareto front in a

two dimensional objective space (K = 2) where Pareto front is likely to form a curve.

2.1.1.2 ε-dominance

Pareto dominance provides a binary comparison of an individual with other individuals

it dominates. However, it doesn’t provide a measure of how much it dominates another
1 Note that ya ≺ yb is used to denote that ya dominates yb in a minimization problem. A maximization

problem would require the same domination rule to be shown as ya � yb.
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f 1(x)

f 2(x)

X

Pareto front

Figure 2.1: Illustration of Pareto front in two dimensional objective space.

individual or how close an individual is to dominate another individual. ε-dominance

tries to put a measure on domination.

An objective function vector f(x∗) is said to ε-dominate another objective function

vector f(x) if f(x∗) ≺ f(x) + ukε, where uk is a vector of ones of size K and ε ≥ 0.

ε-dominance is denoted as f(x∗)≺εf(x). Note that if ε = 0, ε-domination is equivalent

to Pareto domination. ε-domination is a weaker domination for ε > 0 such that:

[f(x∗)≺ f(x)]⇒ [(f(x∗)≺ε f(x)] for ε > 0 (2.12)

ε-domination can also be defined multiplicatively instead of additively. In that case,

f(x∗)≺εf(x) if f(x∗) ≺ (1 + ε)f(x) (2.13)

2.1.2 Constrained optimization problems

Some problems introduce limitations on the values decision vectors can take. In a

broader sense, decision vectors are to be chosen from a restricted set such as x ∈ F.

Here, F is the feasible portion of the decision hyper-space where allowable decision
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vectors lie. Although decision variable limits shown in Eq. 2.3 also impose restrictions

on the decision vector, they are usually taken as the definition of the decision space

(U) such that

U =
{
x :
(
xL

n ≤ xn ≤ xU
n ∧ n ∈ N≤N

>0

)}
(2.14)

Note that, U is an N -dimensional hyper-space. Further constraints are generally in the

form of inequalities and equalities in the following form:

F = Fi ∪ Fe (2.15)

Fi =
{
x ∈ U : gm(x) ≤ 0 ∧m ∈ N≤M

>0

}
(2.16)

Fe =
{
x ∈ U : hp(x) = 0 ∧ p ∈ N≤P

>0

}
(2.17)

where gm, M , hp, and P are inequality constraint functions, number of inequality

constraint functions, equality constraint functions, and number of inequality constraint

functions respectively. For practical reasons, equality constraints are usually trans-

formed into inequality constraints using |hp(x)| − ε ≤ 0 where ε is a non-negative

real number chosen by the user. Therewith, F = Fi and any solution x /∈ F is called

infeasible.

As a result, a constrained multi-objective optimization problem (CMOP) can be defined

in the general form as minimize

y = f(x) ≡
[
f1(x) f2(x) · · · fK(x)

]T
(2.18)

subject to

gm(x) ≤ 0, m ∈ N≤M>0 (2.19)

The amount of constraint violation is often described using the constraint vector (c)

such that

c = g(x) ≡
[
g1(x) g2(x) · · · gM(x)

]T
(2.20)

Note that, a solution is feasible iff
(
∀m ∈ N≤M>0

)
(cm ≤ 0) (2.21)

2.1.3 Multimodal optimization problems

A multimodal optimization problem is a problem that has more than one local mini-

mum. In a multimodal optimization problem it can be challenging to discover which
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minimum is the global minimum (i.e. if all possible minimums are found). Classical

gradient methods easily fail in multimodal problems if necessary measures are not

taken.

2.1.4 Combinatorial optimization

Not all optimization problems have continuous independent variables such that

(
∃n ∈ N≤N>0

)
(xn /∈ R) (2.22)

Many optimization problems deal with independent variables that are restricted to a

set of discrete values. These types of problems are called “combinatorial optimization”

problems.

The non-continuous nature of the independent variables render methods based on

derivatives useless. In many cases trying each and every combination is out of question

due to computational power or time limitations. Although it is impossible to be certain

that one has the best solution without trying all, there are optimization techniques that

provide a powerful way to find “good enough” solutions [9].

2.2 Classical optimization techniques

First optimization techniques depended on analytical methods provided by calculus.

The simplest approach to finding the extrema of a function is to take its gradient and

set it equal to zero such that

∇f(x) = 0 (2.23)

For example, let

f(x1, x2) = x1 sin(x1) + x2 sin(2x2) (2.24)

where x1, x2 ∈ R≤10
≥0 . Then,

∂f

∂x1

= sin(x1) + x1 cos(x1) = 0 (2.25)

and
∂f

∂x2

= sin(2x2) + 2x2 cos(2x2) = 0 (2.26)
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A set of lines are obtained from the solution of these equations for x1 and x2. Inter-

sections of these lines are the extrema of the function. Unfortunately, to be able to

determine if these extrema are minima, one has to also check if ∇2 > 0. However,

no information can be derived to indicate if any of these points is the global minima.

Hence, the list of all extrema must be traversed anyway. This approach has several

important limitations. Functions must be continuous and their analytical derivatives

must exist. Therefore, considering the complexity of present design problems, it is

highly impractical to employ such techniques.

2.2.1 Lagrange multipliers

The method introduced by Lagrange incorporates equality constraints to the analytical

solution of the optimization problem. Therefore, the method deals with minimization

of

y = f(x) (2.27)

subject to

hp(x) = 0 (2.28)

where p ∈ N≤P>0 . The method of Lagrange multipliers converts the problem into finding

the extrema of a new function defined as follows [10, 11].

F (x,λ) = f(x) +
P∑

p=1

λphp(x) (2.29)

The new variables λp ensure satisfaction of equality constraints. Once again, Lagrange

multipliers method is not widely used due to practical limitations. However, many

modern methods are based on this approach. It is also possible to solve problems with

inequality constraints (gm(x) ≤ 0) through conversion of these constraint to equalities

by adding nonnegative slack variables(δ2) such that [12]

hm = gm(x) + δ2 = 0 (2.30)

2.2.2 Convex programming problem

Consider an optimization problem stated as minimize

y = f(x) (2.31)
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subject to

gm(x) ≤ 0 (2.32)

This problem is called a convex programming problem if the objective function (f(x))

and the constraint functions (gm(x)) are convex. As discussed in the previous section,

the Lagrange function of this problem can be written as follows:

F (x,λ, δ) = f(x) +
P∑

m=1

λm(gm(x) + δ2
m) (2.33)

Note that if λm ≥ 0, then λmgm(x) is also convex. Under these conditions, F (x,λ, δ)

is also convex and its derivative becomes zero only at a single point which must be the

absolute minimum.

2.2.3 Linear programming

Linear programming is an optimization method used in problems consisting of a linear

objective function and linear constraint functions of many decision variables. The

method is originally formulated by Wood and Dantzig [13] and Dantzig [14]. Although

many algorithms emerged to solve LP problems, simplex algorithm of Dantzig remains

the most popular. Simplex method is a powerful technique for solving LP problems.

However, only a few engineering design problems involve a single linear objective

function and linear constraint functions.

2.2.4 Nonlinear programming

As mentioned in previous sections, if objective function and constraint functions of

the optimization problem are simple, some analytical techniques can be employed.

However if functions that define the problem are complex and hard to manipulate these

classical methods become obsolete.

Many numerical methods exist for dealing with optimization problems. Most of these

methods share some basic principles and follow the steps outlined below:

1. Start with a trial point x∗
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2. Determine a direction u which is supposed to improve the solution

3. Determine the step size κ

4. Update the trial point by x∗ := x∗ + κu

5. Check if the optimum is reached. If not, continue to update trial point.

Approaches such as the golden section method, Fibonacci method, secant method, and

the family of interpolation methods are some examples that deal with one-dimensional

problems (N = 1).

Some nonlinear programming methods such as the random search method or the uni-

variate method do not require derivatives. These approaches are commonly classified

as nongradient methods. However, methods like the steepest descent or Newton’s

method depend on derivatives of the objective function, and therefore are called

gradient methods.

The univariate method modifies the value of only one decision variable in each itera-

tion. Although it performs well in certain types of problems, its convergence is not

guaranteed and it might require many iterations.

2.2.4.1 Nelder-Mead simplex method

Most famous nongradient technique is probably the Nelder-Mead simplex method

[15]. A simplex is the most fundamental geometric shape that can be constructed in N

dimensions. When N = 1, a line is a simplex; when N = 2 a triangle is a simplex;

wheres when N = 3 tetrahedron is a simplex. Therefore a simplex has N + 1 edges-

and vertices. Nelder-Mead simplex method works in the following way:

1. Create an initial simplex using N + 1 vertices: x1,x2, . . . ,xN+1

2. Reflect the worst vertex through the centroid of the hyperplane formed by the

remaining vertices (Figure 2.2).

3. If the reflected point produces a new minimum, further expand the simplex in

the same direction.
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4. If the reflected point becomes the worst once again, the simplex is contracted

using a predefined coefficient.

x1

x2

x3

centroid

new x1

Figure 2.2: Illustration of reflection in Nelder-Mead simplex algorithm in two dimen-

sions (N = 2)

Box [16] improved the Nelder-Mead simplex algorithm and allowed inclusion of

inequality constraints. He called this modified approach the complex method.

2.2.4.2 Steepest descent method

Steepest descent method originated with Cauchy [17] and became a popular gradient

based technique. It simply uses the negative of the objective function’s gradient as the

search direction in each iteration such that

u = −∇f(x) (2.34)

Owing to the fact that gradient of the objective function is a local property, the

steepest descent method always converges to a local minima if no special technique is

employed. Steepest descent method is not widely used anymore due to emergence of

more efficient algorithms. Many of these algorithms are modifications of Newton’s

Method.
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2.2.4.3 Newton’s method

Newton’s method is based on the quadratic approximation of the objective function

using its Taylor’s series expansion

f(x) = f(x∗) + (x− x∗)T∇f(x∗) +
(x− x∗)T

2!
H(x∗)(x− x∗) (2.35)

where x∗ is the point about which Taylor series is expanded and H is the Hessian

matrix of second derivatives. By setting the gradient of Eq. 2.35 to zero for the

minimum of f(x) we obtain

∇f(x∗) + H(x∗)(x− x∗) = 0 (2.36)

which can be solved for a better approximation as follows:

x∗ := x∗ −H(x∗)−1∇f(x∗) (2.37)

Note that the Hessian of the objective function is rarely known. Therefore many

algorithms exist for numerically approximating the Hessian matrix including the ap-

proaches used by the Davidon-Fletcher-Powell (DFP) algorithm [18] and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [19–22].

Sequential quadratic programming (SQP) can considered to be a generalization of the

Newton’s method. It uses a quadratic approximation instead of the objective function

[23]. The technique iteratively constructs an approximation to solve a local quadratic

programming problem to form a starting point for the next iteration. There are many

recent variants of the SQP.

2.3 Evolutionary algorithms

Virtually all of the algorithms mentioned in Section 2.2 are based on the same idea.

They try to move an initial trial point downhill using different approaches in deciding

which way to move and how much. However, these approaches mostly depend on local

properties of the functions and are generally stuck at local extrema. Recent algorithms

that are inspired in different ways from nature have proven to be efficient in many

cases where limitations imposed by calculus render classical methods impractical.

Evolutionary algorithms are the most commonly used nature inspired algorithms.
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Evolutionary algorithms (EAs) can be defined as algorithms that evolve a problem

solution over many iterations. These iterations are generally called generations and the

way an EA evolves solutions is almost always inspired by nature. EAs that deal with

MOPs are called multi-objective evolutionary algorithms (MOEAs) since their first

use by Schaffer [24]. Amount of studies on EAs and MOEAs are tremendous. Along

with the classics such as the genetic algorithm [25], non-dominated sorting genetic

algorithm (NSGA) [26–28], simulated annealing [29], and differential evolution [30]

there never is a lack of new EAs.

There are many published surveys of the state of the art of MOEAs in general [8, 9,

31] and in some specific topics such as constraint handling [32, 33] and applications

to specific areas of interest like mechanical systems [34, 35] or aerospace engineering

[1, 36, 37].

Evolutionary algorithms have been applied to many different kinds of optimization

problems which were previously solved by relatively older types of optimization

algorithms such as hill climbing or simplex methods. Problems in the mechanical

engineering domain are no exceptions. As nature inspired algorithms, evolutionary

optimization algorithms are commonly used in a wide range of problems with different

characteristics. Although, most of these algorithms were initially developed for

unconstrained problems, constraint handling techniques evolved to allow their use in

constrained problems including CMOPs.

Many EAs share similar principles outlined in Figure 2.3. They use a set of individuals2

(i.e. points in the decision space) called the population3 to evolve new and assumedly

better solutions. Therefore, the first step is the initialization of the population which

generally involves randomly distributing individuals in the decision space. All other

operations are generally performed in a loop until a set of termination criteria is met.

In each iteration of the loop, constraints and objectives associated with each individual

are calculated. There are several different approaches for these calculations. Generally,

all objective- and constraint functions are simultaneously calculated for the whole

population. However, there are algorithms where objectives are only calculated if the

constraints are satisfied. This type of algorithms require specialized techniques since

2 Individuals of the population are called particles in swarm intelligence algorithms.
3 As the name implies, population is referred to as swarm in swarm intelligence algorithms.
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no associated objective vector exists for some individuals. The basic principle for

evolution of individuals is through selection of the best individuals in the population

(or sometimes sorting them from best to worst) and using their features to combine

with features of the other individuals. Real differences between particular EAs lie

in the mechanisms they implement for the selection and combination of different

individuals. These mechanisms almost always involve stochastic procedures. Some

EAs implement a mechanism to randomly generate new features to bring additional

exploratory potential to the algorithm. This type of behavior is commonly referred to

as mutation. Although, simplest mutation approach would be to randomly alter some

properties defining a randomly selected individual, many approaches with varying

complexities exist. Another technique that many EAs employ is to maintain a separate

archive of best individuals. Archiving is mainly used to have a record of the best

solutions attained in the previous iterations which might be lost since the population is

very dynamic. Individuals kept in the archives are also used in selection by some EAs.

Some major evolutionary algorithms are briefly described in the following sections.

Special emphasis is given to genetic algorithms due to their importance. Particle

swarm optimization is also depicted in more detail since the information presented is

relevant for the following chapters.

2.3.1 Global diversity evolutionary multi-objective optimizer - GDEMO

A very basic form of an evolutionary algorithm for MOP is given in Algorithm 1 [9].

Global diversity evolutionary multiobjective optimizer (GDEMO) [38] is built upon

this idea but uses ε-dominance instead of Pareto dominance. GDEMO includes an

individual only if it is ε-nondominated. This actually makes it harder for an individual

to be included.

2.3.2 ε based multiobjective evolutionary algorithm - ε-MOEA

ε based multiobjective evolutionary algorithm (ε-MOEA) maintains an archive be-

sides the population. One individual from the population and one from the archive

are crossed over to create a new individual. If the new individual dominates some
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Is termination
criteria met?

Update the population by creating new individuals or
alternatively revising the existing ones.

Initialize the population

Calculate the constraints

Calculate the objectives

Select best (i.e. non-dominated) individuals

Optionally: Mutate

Optionally: Archive the best of best

BEGIN

END

Y

N

Figure 2.3: A generalized evolutionary algorithm flowchart for constrained multi-

objective optimization problems
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Algorithm 1 Global simple evolutionary multi-objective optimizer (GSEMO)

Initialize population with random individuals. P := {x1,∗,x2,∗, . . . ,xI,∗}
Compute the objective function vectors (cost functions) F(xi)

repeat

y := randomly selected individual from P

z := randomly mutate y

if y is nondominated in P then

P := {P, y}
Remove individuals y dominates from P

end if

until Termination condition

individuals in the population, it replaces one of them randomly. The new individual

may be included in the archive and may remove some individuals from the archive

based on Pareto dominance and ε-dominance [9, 39].

2.3.3 Simulated annealing - SA

SA is a metallurgy inspired global optimization technique [29]. It has also been utilized

in MOPs with both Pareto based approaches [40] and non-Pareto based approaches

[8, 41]. As seen in Algorithm 2, simulated annealing is a simple but very effective

technique.

2.3.4 Genetic algorithms - GA

The term “genetic algorithm” has become to describe something very different from its

initial depiction by Holland [25]. Holland’s original goal was to study the phenomenon

of adaptation in nature and to develop ways to import mechanisms of natural adaptation

into computer systems [42].

The easiest way to define genetic algorithms would be to call them “simulations of

natural selection”. Although they weren’t originally developed for optimization, they

serve well in this kind of problems. The working principle of genetic algorithms is

21



Algorithm 2 Simulated annealing
Set the initial temperature T

Define a cooling function α(T )

Generate an initial solution x

repeat

Generate a candidate solution x∗

if f(x∗) < f(x) then

x := x∗

else

Generate a random number r ∈ R≤1
≥0

if r < exp [(f(x)− f(x∗)) /T ] then

x := x∗

end if

end if

T = α(T )

until Termination condition

best explained in its most basic form, namely the binary genetic algorithms.

2.3.4.1 Binary genetic algorithm

Binary genetic algorithms are the simplest form of genetic algorithms where properties

of the system are coded in binary. Many alternative methods for each step of the

binary genetic algorithm exists to support different applications. Fundamental steps of

a typical genetic algorithm is shown with the flowchart in Figure 2.4.

The decision vector x of a genetic algorithm can be represented as a vector of real

numbers, discrete numbers, a permutation of entities or a combination of these as

suitable to the underlying problem [6]. As the name implies, binary genetic algorithms

implement a string of binary digits. Sections of this string represent different traits of

an individual. The complete string is concatenation of these n traits and looks like:

01101︸ ︷︷ ︸
x1

01︸︷︷︸
x2

. . . 110︸︷︷︸
xn

.

For example, the section marked as x2 in this string might represent the individual
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Initialize population

Specify representation scheme

Selection

Crossover

Mutation

Condition?

Stop

Yes

No

Figure 2.4: Basic principle of a genetic algorithm [6]

solution’s type of material with the following coding:

00 = aluminum

01 = steel

10 = titanium

11 = copper

Each bit is called an allele. A sequence of bits in an individual that contains information

about some trait of that individual is called a gene. Specific genes are called genotypes,

and the problem-specific parameter that a genotype represents is called a phenotype

[9]. In our example two bits shown with x2 is a gene. The individual shown in the

example has the material genotype of 01, which corresponds to the material phenotype

of “steel”. The collection of all genes in an individual is called a chromosome.

Since genetic algorithms mimic biology, they need an initial population of solutions

from which they select individuals to breed and reproduce new individuals (solutions).

Usually, this initial population is created by a randomly generated set of solutions (size

N ). However, if previously known good solutions exist, they might be included in the

initial population. Additional individuals can be created around a good solution by

randomly perturbing it.

Selection is the operation that selects individual chromosomes in the current generation

of the population for reproduction. An individual might be selected more than once.

The fitter the chromosome, the more times it is likely to be selected to reproduce [42].
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Therefore, the algorithm needs to evaluate the fitness of each and every individual of

the generation. Needless to say this evaluation requires to first decipher the solution

vector according to the chosen representation scheme and then calculate the fitness of

each individual through a suitable fitness measure. In a single-objective minimization

problem the value of the objective function multiplied by -1 can be used as the fitness.

The algorithm has to decide which individuals mate to produce children. Several

different methods exist for this last step of the selection operation and one of the

most popular is the fitness-proportionate selection. This selection scheme ensures that

probability of selection of an individual is proportional to its fitness. In other words,

each individual has a probability of being selected that is proportional to its fitness.

For the first parent, the algorithm would select an individual as described above. For

the second parent, the algorithm must ignore the previously selected parent and select

from the remaining individuals in the same manner, i.e., with a probability proportional

to their fitness.

Reproduction occurs through crossover. Crossover operation is for creation of new

individuals for the next generation. When two parents are crossed over, two children

are created. For this purpose a random crossover point is selected and alleles of parents

after this point are swapped (see Figure 2.5).

parents︷ ︸︸ ︷
1 0 1 0 0 1
1 1 0 1 0 0

⇒

children︷ ︸︸ ︷
1 0 0 1 0 0
1 1 1 0 0 1

crossover point

Figure 2.5: Illustration of a crossover operation

Mutation is basically randomly flipping bits of a chromosome string. Mutations occur

rarely in living organisms and they should also occur rarely in genetic algorithms.

Mathematically, mutation in genetic algorithm is implemented such that each allele

of every individual chromosome string may flip with a predefined probability (such

as 1%). Mutation aims to provide genetic variability by allowing variations that may

not have been introduced with the initial population. Missing genetic information has

a chance of being injected through mutation(s). This is more important for genetic
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algorithms where population size is in the order of hundreds against the millions in

biology.

2.3.4.2 Real-coded genetic algorithm

Continuous decision variables can be discretized to be represented by binary genes.

However, they can also be represented as a single real valued allele:

3.14 2.718 0.577 4.6692 1.618

Flowchart given in Figure 2.4 is principally true for real-coded genetic algorithms too.

However, different crossover and mutation operators are applied due to real-coded

variables instead of binary.

Many different crossover and mutation operators exist for use in real-coded problems.

The simplest crossover operator to be used in a real-coded genetic algorithm would be

the one that we also used in the binary genetic algorithm:

parents︷ ︸︸ ︷
3.14 2.718 0.577 4.669 1.618

4.21 0.739 0.11 5.23 0.123
⇒

children︷ ︸︸ ︷
3.14 2.718 0.577 5.23 0.123

4.21 0.739 0.11 4.669 1.618

However, this simple crossover operator simply exchanges values of decision variables

between individuals and relies solely on mutation to create new values of decision

variables that don’t already exist in the initial population. In binary genetic algorithms

however, since a variable is coded as several binary alleles, new values may occur

based on the crossover operator or the crossover point.

2.3.5 Non-dominated sorting genetic algorithm - NSGA2

NSGA2 is one of the most popular and successful constrained multi-objective optimiza-

tion algorithms. The successor of NSGA2 (non-dominated sorting genetic algorithm

- II) was proposed by Srinivas and Deb [26]. The original algorithm, called NSGA,

involved assigning cost of individuals based on how dominant they are. NSGA finds all

non-dominated individuals, ranks them, and then removes them from fitness evaluation
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to find the next layer of non-dominated individuals. This procedure continues until all

individuals are assigned a cost.

NSGA2 [27, 28] computes cost of individuals by evaluating not only the individuals

that dominate them but also takes into account the individuals that they dominate.

NSGA2 also uses the concept of crowding distance based on the distance to nearest

individuals in the objective space to modify the fitness.

Many widely used algorithm frameworks including multi-objective genetic algorithm

(MOGA) [43] and niched Pareto genetic algorithm (NPGA) [44] are based on or

similar to NSGA2 [8].

2.3.6 Particle swarm optimization - PSO

Particle swarm optimization (PSO) is a swarm intelligence algorithm devised by

Kennedy and Eberhart [45, 46]. PSO has attracted a great attention in the last two

decades - especially for real-valued problems. The basic algorithm of canonical PSO

as standardized by Bratton and Kennedy [47] has been effectively used in a wide

range of problems both single- and multi-objective to produce satisfactory results

with relatively low computational cost [48–52]. The readers may refer to the surveys

presented by Banks, Vincent, and Anyakoha [53, 54] for history, classifications, and

applications of PSO.

In PSO, the swarm consists of a certain number of particles which fly through the

multidimensional search space. These particles change their position based on their

personal experiences (the best position they remember to have been in) and success

of other individuals in the swarm (i.e. their neighbours or all particles in the swarm).

The behavioral characteristic of the particle that is driven by its previous experiences

is called the cognitive influence. Each particle modifies its position at every iteration

based on: current position, current velocity, distance between current position and

its personal best (personal guide: pbest), and distance between current position and

position of the leader (global guide: gbest). The influence of the best particle in

the swarm or a group of particles within the swarm is called the social influence.

Which particle or position (i.e. solution) influences the particle is determined by the
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neighborhood topology. Although, majority of PSO applications implement a topology

called “all topology” where the social influence is driven by the best particle chosen

from the entire swarm, other alternatives exist [55]. In some topologies, the social

driver is chosen from a group of particles called the neighbors. All PSO topologies

used in this study are the all topology. A flowchart of basic PSO algorithm is shown in

Figure 2.6.

i = I ?
last particle ?

End of iterations?

BEGIN

END

Randomly initialize X and V

i := 1 (start with particle 1)

Calculate new velocity

Calculate new position

Y

i := i + 1

Y

N

N

Update pbest

Select gbest (xg)

Figure 2.6: Canonical PSO flowchart

Let the current positions and velocities of particles in the swarm be

X = [xi,n] ∈ RI×N (2.38)
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and

V = [vi,n] ∈ RI×N (2.39)

respectively4. Here, i ∈ N≤I>0 and n ∈ N≤N>0 ; I is the number of particles in the swarm;

N is the number of decision variables. Therefore, each row of X,

xi,∗ =
[
xi,1 xi,2 · · · xi,N

]
(2.40)

represents the transposed position vector of the corresponding particle5. These matrices

need to be randomly initialized at the beginning of the PSO routine. X is initialized

to comply decision variable limits (Eq. 2.3) whereas the velocity matrix is generally

initialized such that its elements are a fraction of their corresponding decision space

dimension size:

vi,n := av (2r − 1)
(
xUn − xLn

)
(2.41)

where r ∈ [0, 1] ⊂ R is a uniformly-distributed random number and av ∈ R is a factor

smaller than one. Since particles need to remember the best position they have been,

a matrix of personal best positions must also be defined. The best positions at the

beginning would be the initialized positions such that

Xp = X (2.42)

As seen in Figure 2.6, PSO involves selection of gbest (xg), velocity update, position

update, and pbest update for each particle in every iteration. gbest is selected as the

position of the particle that has the best objective value. Formally:

xg = (xϕ,∗)
T (2.43)

where ϕ is chosen such that

(
@i ∈ N≤I>0

) (
f
(

(xi,∗)
T
)
< f

(
(xϕ,∗)

T
))

(2.44)

The velocity is calculated using

vi,n := Wvi,n + C1r1,n

(
xGn − xi,n

)
+ C2r2,n

(
xPn − xi,n

)
(2.45)

4 Note that X is redefined here as the matrix of particle positions in the decision space instead of an arbitrary
solution set used in Eq. 2.10.

5 Note that xi,∗ represents the row vector that is the ith row of the X matrix. This convention is used throughout
this dissertation.
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where W is the inertia factor, C1 is the social acceleration coefficient, C2 is the cog-

nitive acceleration coefficient while r1,n, r2,n ∈ [0, 1] ⊂ R are uniformly-distributed

random numbers. The choice of W , C1, and C2 may effect the performance of the

algorithm. W is often reduced as the iterations commence (linearly reduced values

of W = 0.9 at the first iteration towards W = 0.4 at the last are commonly used)

to provide a more explorative behavior in the beginning. Although a fixed value of

C1 = C2 = 2 is widely used in the literature, no major performance change is observed

when C1 and C2 are set to values in the range [1.5, 2.5]. However, selection of these

parameters may become important in different types of problems such as ones that are

relatively less constrained when compared with problems employed in this study.

The updated velocity is used to calculate a new position such that

x∗i,n := xi,n + vi,n (2.46)

The new position is then used to check if the pbest of the particle of interest requires

updating. Therefore, if

f
(

(xpi,∗)
T
)
< f

(
(xi,∗)

T
)

(2.47)

then

xpi,n := xi,n (2.48)

2.3.6.1 A fundamental multi-objective PSO approach

Earliest published papers that use PSO in a multi-objective context are due to Coello

and Lechuga [56] and Ray, Tai, and Seow [57]. Practically, the simplest scheme to

convert PSO into a multi-objective algorithm only requires modification of approaches

related with storage and selection of gbest and pbest:

1. In multi-objective PSO a single gbest rarely exists. Instead, gbest is randomly

selected from non-dominated particles.

2. Similarly, pbest must also be selected from the positions that are non-dominated

among the positions that the particle has explored in the previous iterations.

3. An archive of non-dominated solutions must be created for each particle. The

archive needs to be updated with each particle movement.
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2.3.6.2 Constraint handling in PSO

PSO has also been applied to constrained optimization problems. Utilization of

feasibility rules referred to as Deb’s approach [58] has been the most popular choice

in PSO based optimization techniques. Various other constraint handling concepts

(such as the ε-constrained method [59], penalty functions [60, 61], the use of special

operators [62–64], and conversion to multi-objective optimization [65]) are available

in PSO literature. A very comprehensive survey on constraint handling methods used

in PSO has been published by Jordehi [66].

Deb’s approach6 only requires modification of the domination principle explained in

Section 2.1.1. Consider once again the two decision vectors xa and xb of solutions

a and b. The corresponding objective vectors were given by Eqs. 2.6 and 2.7. Now,

according to Eq. 2.20, constraint vectors of these two solutions can be defined such

that

ca = g(xa) =
[
ca1 ca2 · · · caM

]T
(2.49)

cb = g(xb) =
[
cb1 cb2 · · · cbM

]T
(2.50)

There may only be four cases:

1. If both solutions a and b are infeasible, the one with less constraint violation

dominates the other.

2. If a is feasible and b is infeasible, a dominates b.

3. If b is feasible and a is infeasible, b dominates a.

4. If both solutions a and b are feasible, domination is decided according to Eq. 2.8

The only ambiguity in this definition is how “less constraint violation” is interpreted

(when M > 1). While one can simply use

|ca| ?
< |cb| (2.51)

to determine if a dominates b, this may introduce scaling problems if elements of the

c vectors have different orders of magnitude. There is no widely used convention for

comparison of constraint violations.
6 Also called feasibility based domination or superiority of the feasible
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Due to its unique nature, some PSO approaches require particle level operations to

handle constraints. Alvarez-Benitez, Everson, and Fieldsend [67] investigated ways to

keep the particles within the feasible search space:

1. TRC: Truncate the location at the exceeded constraint boundary for this gener-

ation and reflect the velocity in the boundary so that the particle moves away

[68].

2. Resample the stochastic terms in the velocity update formula until a feasible

position is achieved [69].

3. Limit the velocity vector to stay in the feasible zone.

4. SHR: Like truncation but keeps the velocity direction the same to help the

particle stay near the boundary.

5. EXP: Sample from a truncated exponential distribution oriented so that there is

a high probability of samples close to the boundary and a lower probability of

samples at the current position to allow particles that would have exceeded the

boundaries to remain close to the boundaries.

2.3.6.3 PSO for discrete- or mixed variable optimization problems

PSO has also been utilized in discrete- or mixed variable optimization problems.

Several different approaches exist for handling discrete variables in PSO:

• Binary approaches: Particle trajectories become probabilities for binary geno-

types [70].

• Special discrete operators: A notion of movement in the search space is imposed

by defining operations (like addition or subtraction) on positions and velocities

[71–73].

• Corresponding continuous space: A continuous space, where the particles move

in addition to the actual discrete space, is defined. Methods for transforming the

positions in-between these spaces are also required [74].
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• Discrete velocity operators: Velocity operators are defined according to positions

that a particle is allowed to move [75, 76].

• Truncation & transformation: If the variable can only take pre-established real

or integer values, it is truncated [77] or transformed [78] to the nearest possible

value.

2.4 Design problems in the mechanical engineering domain

Almost all optimization problems involving mechanical system design are constrained.

As highlighted in Table 2.1, many of these problems have more than several constraints

and it is not uncommon for the feasible portion of the search space to be much

smaller than the infeasible one. In highly-constrained problems, the process of finding

a feasible solution becomes a major challenge of a similar scale for finding the

optimum. Therefore, specialized approaches are required especially when the objective

function is costly such as the problems involving mechanical system design. The

cost of evaluating objective and constraint functions might significantly be different

when constraint functions are generally easier to calculate. This is especially true

when computer-aided design tools such as finite element method (FEM) are utilized.

Furthermore, there may be cases where some constraints are very easy to evaluate

whereas the rest could be as hard to evaluate as objective functions themselves. Note

that there may be some extreme cases where it may be impossible to evaluate objective

function(s) when some constraints are violated.

Although some simple benchmark problems may have functions of convex nature, suf-

ficiently complicated mechanical design problems usually have non-convex objective-

and constraint functions [79–82]. Besides, when computational techniques are used in

solution of sophisticated problems such as large structural design problems, the de-

signer usually does not have the necessary information to assess the characteristics (i.e.

convexity) of the functions. Therefore, classical methods are generally not applicable

to these problems.
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Table 2.1: Some popular mechanical design problems

No. Problem Objectives Constraints (other

than variable

bounds)

Design variables

1 Gear train [83–87] 1 nonlinear 6 nonlinear, 2 linear 5 continuous, 1 dis-

crete

2 Radial ball bearing [88–90] 3 nonlinear 7 nonlinear, 2 linear 10 continuous

3 Multiple disc clutch brake [86,

91]

1 nonlinear 7 nonlinear, 1 linear 4 continuous(1), 1 dis-

crete

4 Robot gripper [86, 92] 1 nonlinear 5 nonlinear, 1 linear 7 continuous

5 Four-stage gear train [86, 93–98] 1 nonlinear(2) 86 nonlinear 22 discrete(2)

6 Mixed-valued four-stage gear

train (Originates from our study)

1 nonlinear 86 nonlinear 10 continuous, 12

discrete

7 Pressure vessel [2, 34, 60, 86, 99–

107]

1 nonlinear 1 nonlinear, 3 linear 2 continuous, 2 dis-

crete

8 Welded beam [2, 86, 100–104,

106, 108]

1 nonlinear 5 nonlinear, 2 linear 4 continuous

9 Tension/compression spring [2,

86, 100–104, 106, 109]

1 nonlinear 3 nonlinear, 1 linear 2 continuous, 1 dis-

crete

10 Multispeed planetary transmis-

sion [86, 90, 110]

1 nonlinear 10 nonlinear, 5 linear,

1 condition, 1 equality

9 discrete

11 Leg mechanism [111, 112] 3 nonlinear 8 nonlinear 6 continuous

12 Speed reducer [113–115] 2 nonlinear 11 nonlinear 7 continuous

13 Disk brake [116, 117] 2 nonlinear 3 nonlinear, 2 linear 3 continuous, 1 dis-

crete

14 Automobile mass optimization

[118]

1 nonlinear 12 nonlinear 49

15 Ball bearing pivot link [34, 119] 1 nonlinear 3 nonlinear, 7 linear 2 continuous, 2 inte-

ger

16 Coupling with a bolted rim [34,

120]

1 nonlinear 3 nonlinear 2 continuous, 1 inte-

ger, 1 discrete

17 Structure/topology/truss(4) [35,

121–124]

1 to 4 nonlinear 0 to many(5) of all

types

1 to many(5) of all

types
(1)Although the problem is formulated with discrete variables they can actually be treated as continuous.
(2)Although the problem is originally treated as single objective, it can easily be treated as multi-objective as

proposed by Dolen, Kaplan, and Seireg [98].
(3)14 of these variables can actually be treated as continuous which is the how continuous version of this problem is

proposed in this study.
(4) Many problems fall into this category.
(5) Many is used to imply hundreds (generally > 300).
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2.5 Research opportunity

Vast majority of mechanical engineering design problems are constrained. As a matter

of fact, even widely used benchmark problems of mechanical engineering domain

have at least several constraints (as seen in Table 2.1). As discussed above, many of

these problems involve hard-to-satisfy constraints where only a small feasible region

exists. One of the first studies discussing approaches for handling highly constrained

problems in the context of mechanical design optimization is by Silva [125].

Highly constrained optimization problems can be defined as problems where a mini-

mal change to a feasible solution is very likely to generate an unfeasible one [126].

Outside the optimal control literature first papers discussing methods for solving highly

constrained problems are due to Berna, Locke, and Westerberg [127] and Mistree,

Hughes, and Phuoc [128].

Moreover, unlike their counterparts, many design problems of the mechanical engi-

neering domain have constraints that involve physical limits. These physical limits

often render other functions such as the objective function incalculable. This condition

is especially relevant in the case of complicated numerical approaches such as the

FEM or CFD. For instance, violation of a geometric constraint may result in a model

that is impossible to mesh and hence constitute a point in the decision space where

the objective function cannot be calculated. Therefore, an optimization approach that

doesn’t require further calculations at such points is not only useful but also necessary

in some cases. This is especially true for automated multi-disciplinary optimization

scenarios where requiring further calculations for infeasible points would also mean

waste of computational resources as well as errors arising from violation of physical

limits. Most algorithms implemented in multi-disciplinary optimization tools [129]

mark these points as erroneous and loose information that would otherwise be useful.

As design requirements and systems are evolving in complexity, design process is

becoming more dependent on computer tools. One aspect of the computer aided design

process is design optimization. While such processes are becoming more dependent

on optimization tools, increasing complexity of designs, growing interdependencies,

and advancements in technologies set more demanding requirements to optimization
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algorithms. Moreover, different types of algorithms may be required for different

applications depending on the problem characterization. Even with the advancements

in computer technology and parallelization, ever-increasing computation needs lead

to long computational times for complicated analysis [130]. Consequently, suitable

choice of algorithm(s) is crucial to avoid waste of computational resources. In some

cases the algorithm choice may even require reformulation of the problem [131].

Availability of several techniques with different capabilities also allows hybridization

or serialization of different optimization algorithms to deal with varying complications

of advanced problems.

Many prominent evolutionary algorithms require calculation of all functions (including

objective functions) at all positions. For instance algorithms that depend on penalty

functions for constraint handling require calculation of objective functions at infeasible

points. Likewise, many approaches that handle constraints as new objectives of a multi-

objective technique behave the same way. There are methods such as Deb’s approach

[58] that can be utilized to overcome this obstacle. However, special techniques to

support these methods are still required to handle highly constrained problems.

Both analytical and numerical methods have widely been applied to engineering

design problems. Most optimization problems of engineering and scientific fields are

nonlinear and constrained. Increasing complexity of design problems have also given

a rise to studies that treat them as multi-objective optimization problems. Functions

(objective- and constraint functions) constituting these problems are rarely smooth.

In addition, these functions are many times discrete. Although classical optimization

methods perform well in specific types of problems, they are generally ineffective

when apllied to these intricate problems. There is a vast amout of research on meta-

heuristic algorithms, especially evolutionary algorithms, to deal with such problems.

An overwhelming majority of these algorithms are inspired from physical or natural

phenomena. A brief review of some notable examples of such algorithms can be

found in Section 2.3. Among these nature inspired algorithms, PSO has attracted

wide interest due to its effectiveness in solving complicated optimization problems,

versatility, and ease of implementation.

Adaptability and performance of PSO have led to development of many variants to
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satisfy different needs related with complicated scientific and engineering optimization

problems. Many of these variants introduce modification of acceleration coefficients,

addition of new operators, or hybridization to enhance diversity, prohibit early con-

verance, and increase convergence performance [132]. Although some generalized

approaches for highly constrained problems in the field of evolutionary algorithms

exist [32, 133], there are not many studies related with specialized techniques for

particle swarm optimization [60, 134–138].

A careful examination of the literature reveals that there is a lack of a general approach,

especially in the field of swarm intelligence, that specializes in highly constrained

problems where feasible region of the search space is very small. In fact, in highly con-

strained problems, the process of finding a feasible solution may become a challenge

of a similar magnitude as finding the optimum solution itself. Especially, methods that

require the initial swarm to be fully- or partially feasible are rendered useless when

dealing with highly constrained problems, mainly because it is very hard to find a

single feasible point, let alone initialize the whole population in the feasible region.

Continuous research is being conducted in the field of nature-inspired heuristic opti-

mization algorithms and particle swarm optimization. As stated by Rao, Savsani, and

Vakharia [139], “Behavior of nature is always optimum in its performance”.

2.6 Closure

Theoretical background of the study is laid out in this chapter. Definition of optimiza-

tion and relevant types of problems are described. Classical- and modern optimization

methods are described. Some popular techniques that fall into these categories are

briefly explained. Evolutionary algorithms, especially the particle swarm optimization

is explained with basic algorithm descriptions. Additionally, a brief summary of widely

used problems of mechanical engineering domain is also given. Some characteristics

of mechanical design problems are discussed.

Finally, a discussion of research opportunity is given with a summary of the field’s

current state of the art, shortcomings, and needs.
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CHAPTER 3

FEASIBILITY ENHANCED PARTICLE SWARM OPTIMIZATION

As mentioned previously, almost all optimization problems involving mechanical

system design are constrained and it is not uncommon for the feasible portion of the

search space to be much smaller. This type of problems are often categorized as highly

constrained problems.

A thorough investigation of the current literature on constraint handling methods for

evolutionary algorithms and PSO indicates that there is a lack of an evolutionary

programming framework (especially on swarm-intelligence) that are specialized for

use in highly-constrained problems aiming to improve constraint satisfaction level of

whole population. Such an algorithm would not only allow finding feasible design

points in highly-constrained problems, but also constitute a preprocessing methodology

for initializing a population that has a better level of constraint satisfaction for other

optimization algorithms that could benefit from a population with less constraint

violations. This would also provide an alternative workflow for cases where objective

functions are too costly to evaluate in lieu of some constraint violations.

The motivation of developing feasibility enhanced particle swarm optimization

(FEPSO) technique was to develop a general methodology for highly-constrained

optimization problems where all or some of the constraints are relatively easier to

evaluate. Furthermore, another goal for the methodology was it to be able to improve

constraint satisfaction level of the population as a whole, which actually can be consid-

ered as the progressive improvement of constraint satisfaction and requires utilization

of constraint handling techniques in both individual (e.g. particle) and population

levels. FEPSO was initially developed as a constrained single-objective optimization

algorithm.
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3.1 General description of FEPSO

FEPSO is an evolutionary optimization algorithm designed to handle highly con-

strained problems. FEPSO is based on the particle swarm optimization [45–47] but it

employs special constraint handling techniques. Infeasible particles in FEPSO do not

need to evaluate objective functions and fly only based on social attraction depending

on a single violated constraint, called the activated constraint, which is selected at

each iteration based on constraint priorities and flight occurs only along dimensions of

the search space to which the activated constraint is sensitive. To ensure progressive

improvement of constraint satisfaction, particles are not allowed to violate a satisfied

constraint via the utilization of a special approach called the virtual boundary search.

FEPSO deals with constrained single-objective optimization problems that can be

defined as to minimize

y = f(x) (3.1)

subject to

gm(x) ≤ 0, m ∈ N≤M>0 (3.2)

As seen in the schematic representation of the algorithm given in Figure 3.1, the

behavior of the algorithm can be revealed by explaining five separate aspects:

1. Initialization

2. Velocity update rules for infeasible particles (infeasible particle behavior)

3. Velocity update rules for feasible particles (feasible particle behavior)

4. Particle flight

(a) Enforcing decision variable limits

(b) Virtual boundary search

5. Post-flight operations

Remaining sections of this chapter discuss each of these aspects separately.
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End of iterations?

BEGIN

END

i := 1 (start with particle 1)

Y

i := i + 1

Y

N

N

Initialization routine

Is the current particle
position feasible?

Update velocity
(for feasible particles)

Update velocity
(for infeasible particles)

Particle flight routine Particle flight routine

Update constraint priorities

Check pbest and update if necessary

Check gbest and update if necessary

Is the new particle
position feasible?

i ?
= I

Last particle?
N

Y

N

Y
Calculate objective (y)

Figure 3.1: Flowchart of the main FEPSO algorithm
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3.2 Initialization

The operations required to be performed before main MOFEPSO iterations start are

labeled as the “Initialization routine” in Figure 3.1. Steps of the initialization routine

are summarized in the flowchart shown in Figure 3.2.

Initialization of FEPSO starts with random initialization of the position matrix

X = [xi,n] ∈ RI×N (3.3)

where i ∈ N≤I>0 and n ∈ N≤N>0 ; I is the number of particles in the swarm; N is

the number of decision variables. Several different approaches exist for random

initialization of positions. The simplest would be to randomly position each particle

by using a uniformly-distributed random number r ∈ [0, 1] ⊂ R such that

xi,n = xLn + r
(
xUn − xLn

)
(3.4)

However, in the implementation of FEPSO, Latin Hypercube Sampling Method is

utilized to take advantage of its simultaneous stratification property on all input

dimensions [140]. Therefore, the technique ensures that the initial population is well

spread throughout all dimensions.

Other than the position matrix; the velocity matrix

V = [vi,n] ∈ RI×N (3.5)

and the constraint matrix

C = [ci,m] ∈ RI×M (3.6)

must also be initialized. Here, M is the number of constraints. As shown in Figure

3.2, initialization of particle’s velocity, the constraints, pbest, and gbest are performed

within a loop for each particle. The velocity of each particle is initialized with

vi,n := av (2r − 1)
(
xUn − xLn

)
(3.7)

where r is once again a uniformly-distributed random number and av is the velocity

initialization factor1. Constraint values for a particle is calculated and recorded in the
1 The velocity initialization factor ensures that the velocity vectors’ components never exceed a fraction of the

corresponding search space dimension’s size. av = 0.3 is used in all implementations of FEPSO.
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BEGIN

END

i := 1 (start with particle 1)

Y

i := i + 1

N

Is particle
position
feasible?

Y

N i ?
= I

Last particle?

Randomly initialize the position matrix (X)

Randomly initialize particle’s velocity (vi,∗)

Evaluate constraints (ci,∗)

Set current position as pbest

Check gbest and update if necessary

Evaluate the sensitivity matrix (S)

Initialize the AC selection count matrix (T)

Initialize the constraint priority vector (p)

Calculate objective (y)

Figure 3.2: Flowchart of the FEPSO initialization routine
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corresponding row of the constraint matrix C such that2

ci,∗ :=
[
g1(xTi,∗) g2(xTi,∗) · · · gM(xTi,∗)

]
(3.8)

FEPSO keeps track of the gbest as a tuple of the best position and its corresponding

objective value:

b = (bx, by) (3.9)

Initially, it is assumed that by = ∞ which is the worst possible objective value.

Similarly, each particle has its own tuple of pbest:

di = (dxi , d
y
i ) (3.10)

During the initialization of a particle3, after the constraints are calculated, if the particle

position is found to be feasible, the objective function is evaluated and pbest is set to

the current position. That is if

(
∀m ∈ N<M

>0

)
(ci,m ≤ 0) (3.11)

then

dxi = xTi,∗ (3.12)

dyi = f(xTi,∗) (3.13)

Furthermore, if the recently calculated objective is better than gbest; that is if

dyi < by (3.14)

then gbest is replaced with the new solution such that

bx = dxi (3.15)

by = dyi (3.16)

Note that objective function is only evaluated if the particle position is feasible. FEPSO

does not calculate the objective functions of infeasible positions by design. PSO imple-

mentations [65, 141] and other evolutionary algorithms utilizing feasibility-based rules
2 Note that xi,∗ is the row vector representing the position of the particle and xT

i,∗ is its transpose. Therefore
g1(x

T
i,∗) is the value of first constraint function calculated at the ith particle’s position.

3 The particle of interest is assumed to be the ith particle.
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such as Deb’s approach [58] commonly refrain from calculating objective functions in

infeasible regions of the design space. However, FEPSO behaves somewhat differently.

Although the details of how particle flight occurs in FEPSO will be explained in

Section 3.5, it is worth mentioning here that FEPSO does not allow particles to fly into

infeasible regions if they are already feasible. It also has a multidimensional feasibility

approach, such that even if the particle was in an infeasible region it is not allowed

to fly into a region where its already-satisfied constraints become violated. Infeasible

particles in FEPSO do not try to optimize their objectives. Instead, they try to become

feasible. This approach, in turn, leads to a minimum number of objective function

evaluations. However, if objective evaluations are not too costly, this behaviour can be

modified accordingly.

FEPSO does not expect the initial population to contain feasible particles but requires

the population to have at least one non-violating particle for each constraint.

Remaining steps of initialization are not particle level operations. Therefore, they are

not performed within the particle loop (see Figure 3.2). These steps involve assignment

of initial values to some swarm level variables required by the FEPSO algorithm.

Flight of infeasible particles in FEPSO are influenced by an activated constraint (AC)

selected at each iteration for every particle. Selection of the AC is discussed in section

3.3.1. Infeasible particles in FEPSO only fly along dimensions to which the AC is

sensitive. Therefore, the matrix

S = [sm,n] ∈ BM×N (3.17)

is initialized such that

sm,n =





1, constraint m is sensitive to variable n

0, otherwise
(3.18)

Note that B is the Boolean set.

Constraint sensitivity calculation is similar to OCCURM (occurrence matrix calculator)

in constraint decomposition technique of Khorshid and Seireg [96]. However, instead

of performing only one evaluation for each- and every direction in the search space,

FEPSO temporarily moves the initialized particles in one principal direction at a time

for a predefined amount (i.e. some percentage of the design variable range xUn − xLn)
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so as to be able to catch sensitivities that only exist in certain regions of the search

domain. Once the sensitivities are acquired in the initialization phase, the S matrix is

fixed.

Selection of AC depends on the constraint priorities and the number of selection

recurrences for each constraint. Although these values are updated after each particle

flight, they have to be initialized properly. Therefore, the AC selection count matrix

T = [ti,m] ∈ NI×M (3.19)

is initialized as a zero matrix (since no constraint has been yet selected as the AC for

any particle) and the constraint priority vector

p = [p1, p2, . . . , pM ]T ∈ NM×1 (3.20)

is calculated simply by counting the number of particles that violate each constraint.

The constraint violated by the maximum number of particles gets the highest priority.

pm =
I∑

i=1

zi,m, zi,m =





1, ci,m > 0

0, otherwise
(3.21)

where pm is the priority of themth constraint. Note that ci,m > 0 implies that particular

constraint has been violated.

3.3 Velocity update rules for infeasible particles

Feasible- and infeasible particles behave differently in FEPSO. This difference in

behaviors is due to dissimilar velocity update rules. This section describes operations

performed for infeasible particle velocity updating and the next section (Section 3.4)

focuses on feasible particles.

3.3.1 Selection of the AC and the global guide

The flight of infeasible particles is based on the AC selected for each particle at the

beginning of each iteration. The AC chosen depends on the current constraint priorities

and the number of selection recurrences of the constraints as AC for each- and every
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particle. The particle chooses the highest priority constraint among the constraints that

have been least chosen as the AC. Therefore, AC (as denoted as a) is selected for the

ith particle such that

a ∈ R ∧ pa = max
m∈R

(pm) (3.22)

where

R =

{
m ∈ N : ti,m = min

r∈R∗
(ti,r)

}
(3.23)

R∗ =
{
r ∈ N≤M>0 : ci,r > 0

}
(3.24)

Here, R∗ is the set of constraints that the ith particle violates; R denotes the set of

constraints that are visited the least among R∗. After the selection of the AC, T is

updated as

ti,a := ti,a + 1 (3.25)

This selection scheme ensures that no high priority constraint is overemphasized and

that the diversity of the swarm is preserved.

After selection of the AC, a global guide can be chosen for the infeasible particle

to lead its flight. Notice that infeasible particles in FEPSO only serve for social

stimulation (i.e. they have no cognitive impulse). The guide is randomly selected from

the set of particles that do not violate the AC as

J = {j ∈ N>0 : cj,a ≤ 0} (3.26)

Therefore, the guide position xG can be selected randomly from the set of current

positions of particles in J:

xG = xj,∗ (3.27)

where j is an arbitrarily selected element in J.

3.3.1.1 The velocity update equation for infeasible particles

Presuming that the ith particle offers an infeasible solution, its velocity can be updated

by

vi,n := sa,n
[
Wvi,n + C1r1,n

(
xGn − xi,n

)]
(3.28)

45



whereW is the inertia factor; C1 is the social acceleration coefficient; r1,n ∈ [0, 1] ⊂ R

are uniformly-distributed random numbers. The Boolean sensitivity term sa,n sets

the velocity term vi,n to zero if the AC (a) is not sensitive to the decision variable n,

hence blocking motion along dimensions in which the AC is insensitive. After the

velocity is updated, particle flight occurs as elaborated in Section 3.5. Particle flight

routine is common for feasible- and infeasible particles. After infeasible particle flight,

constraint priorities are updated using Eqn. 3.21.

3.4 Velocity update rules for feasible particles

Feasible particles in FEPSO are socially attracted to gbest (b) and cognitively attracted

to their own pbest (di). To be specific, a feasible particle’s velocity is updated by

vi,n := Wvi,n + C1r1,n (bxn − xi,n) + C2r2,n

(
dxi,n − xi,n

)
(3.29)

where C2 is the cognitive acceleration coefficient while r1,n, r2,n ∈ [0, 1] ⊂ R are

uniformly-distributed random numbers.

3.5 Particle flight

Particle flight in FEPSO occurs in such a way that if a particle does not violate a

constraint at the beginning of its flight, it cannot violate it at the end of its flight.

The flight of particles are truncated at the virtual boundary defined in search space

where any one of the constraints previously satisfied become violated. This approach

is similar to TRC [67] except for the final velocities of the particles colliding with

a virtual boundary. FEPSO utilizes an approach called “stick”, where velocities of

particles vanish at the virtual boundary. A similar approach called the “absorbing

walls” exists for particles violating the solution space boundaries [142]. However,

TRC, “stick”, and “absorbing walls” are defined for decision variable limits (i.e. linear

constraints that depend on a single decision variable) whereas FEPSO can apply

these principles to any kind of constraint with differing complexities through virtual

boundary search explained in Section 3.5.2.
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Particle flight shown in Figure 3.3 starts with creation of a candidate position x∗ ∈
RN×1. The elements of x∗ are calculated as follows:

x∗n := xi,n + vi,n (3.30)

Note that x∗ is only a candidate position since it has to satisfy two criteria before it

can become the new particle position of interest:

1. x∗ should not violate any decision variable limits:

(@n)
(
x∗n < xLn ∨ x∗n > xUn

)
(3.31)

2. x∗ should not violate constraints that the current position of the particle of

interest4 satisfied previously:

(@m) (ci,m ≤ 0 ∧ c∗m > 0) (3.32)

where c∗ is the constraint vector corresponding to x∗ such that

c∗ :=
[
g1(x∗) g2(x∗) · · · gM(x∗)

]T
(3.33)

FEPSO checks the first criterion above. If satisfied, Eqn. 3.33 is evaluated to check the

second criterion. However, in case the first criterion is not satisfied, the decision vari-

able limits are enforced (as explained in Section 3.5.1) before Eqn. 3.33 is evaluated.

Similarly, if the second criterion is not satisfied, the candidate position is modified

until it satisfies the conditions described in Section 3.5.2. Note that the second criterion

ensures that x∗ does not violate any previously satisfied constraints. Therefore, if a

particle is in a feasible position, it cannot move to an infeasible position during its

flight. After both criteria are satisfied by x∗, it is assigned as the new position of the

particle and post-flight operations (explained in Section 3.6) are performed.

3.5.1 Enforcing decision variable limits

If the candidate position x∗ violates any variable limits, a limit violation rate (w) is

computed as shown in Figure 3.4 to constrain the particle within the decision space
4 Note that particle of interest is denoted as ith particle
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END
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Figure 3.3: Flowchart of the FEPSO particle flight routine
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bounds.

wL = max
n

(
xLn − x∗n
xi,n − xLn

)
(3.34)

wU = max
n

(
x∗n − xUn
xUn − xi,n

)
(3.35)

w = max
(
wL, wU

)
(3.36)

The candidate position is updated using the limit violation rate such that

x∗n := xi,n +
x∗n − xi,n

1 + w
(3.37)

Likewise, the velocity of the particle is set to zero: vi,n := 0.

xL
1

xU2

Current particle position (xi,∗)

Candidate position violating variable limits (x∗)

δ1

δ2

w = δ2
δ1

Figure 3.4: Illustration of limit violation rate in two dimensional decision space

3.5.2 Virtual boundary search

Virtual boundary search (VBS), as described in Figure 3.5, seeks the virtual bound-

ary where any one of the previously satisfied constraints become violated. VBS is

performed for every particle flight that occurs towards a region where any of the

previously satisfied constraints become violated. VBS pulls the particle back to the

boundary where such a violation occurs.

First step of the VBS is the assignment of the virtually feasible- (x+) and the virtually
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infeasible (x−) edges.

x+ := xi c+ := ci (3.38)

x− := x∗ c− := c∗ (3.39)

Then, the infeasibility rate is calculated as follows:

q = max
m∈Y

(
c−m
−c+

m

)
(3.40)

where Y is the set of constraints that are satisfied by the current position of the particle

as

Y =
{
m ∈ N≤M>0 : ci,m ≤ 0

}
(3.41)

Infeasibility rate is used to create a new trial position:

xτ := x+ +
x− − x+

1 + q
(3.42)

The corresponding constraint vector cτ is also calculated with

cτ :=
[
g1(xτ ) g2(xτ ) · · · gM(xτ )

]T
(3.43)

If the trial position does not violate the constraints satisfied by the current position

of the particle, it said to be virtually feasible as defined in Eqn. 3.32. The virtual

feasibility proposition can be rewritten for xτ as follows:

(@m) (ci,m ≤ 0 ∧ cτm > 0) (3.44)

Therefore, if the proposition in Eqn. 3.44 is true, xτ becomes virtually feasible and it

replaces x+:

x+ := xτ c+ := cτ (3.45)

Otherwise, it replaces x−:

x− := xτ c− := cτ (3.46)

Iterations continue by recalculating the infeasibility rate in Eqn. 3.40 until the follow-

ing VBS termination criterion is attained:

(∀n)

( |xτn − xen|
xUn − xLn

≤ xtol
)

(3.47)
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where xtol is the tolerance; xe denotes the edge closer to xτ such that

xe :=





x+, q ≥ 1

x−, q < 1
(3.48)

Finally, the candidate position is updated as the virtually feasible edge of the VBS

such that

x∗ := x+ c∗ := c+ (3.49)

3.6 Post-flight operations

The updated candidate position that satisfies both criteria given by Eqns. 3.31 and 3.32

is assigned as the new position of the particle such that

xi := x∗ ci := x∗ (3.50)

Some post-flight operations are conducted depending on pre-flight- and post-flight

feasibilities of the particle. If the particle’s previous position was infeasible, constraint

priorities are updated using Eqn. 3.21. Furthermore, if the new position is found to be

feasible, the objective (y∗ := f(x∗)) is calculated. If y∗ < dyi then pbest is updated

such that

dxi := x∗ dyi := y∗ (3.51)

Similarly, if y∗ < by then

bx := x∗ by := y∗ (3.52)

3.7 Handling discrete decision variables

FEPSO treats all decision variables as real variables. However, if any of these variables

can only take some discrete values then they can be transformed into the nearest

allowable discrete value (see the transformation approach explained in Section 2.3.6.3)

before they are used in constraint- and objective functions. Hence, for this type of

decision variables, FEPSO only requires a valid decision variable range for the real

valued image of the discrete variable and a one-way transformation function to convert

the real value to the corresponding discrete value.
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3.8 Preliminary tests on benchmark problems

FEPSO was applied to several benchmark problems involving mechanical design

optimization. Although problem definitions are presented by Rao and Savsani [86],

they are repeated here for the sake of completeness. A compilation of solutions to

these problems found by different methods are given by Sadollah et al. [143]. These

results are also shown in comparison with results found with FEPSO.

In all FEPSO runs performed, swarm size was set to 50. The inertia factor W was

linearly varied from 0.9 to 0.4. The social- and cognitive acceleration factors were

taken as 2 (C1 = C2 = 2). Simulations were repeated 25 times.

3.8.1 Pressure vessel design problem

The pressure vessel design problem’s goal is to minimize the cost of a cylindrical

pressure vessel with hemispherical heads illustrated in Figure 3.6. The decision vector

is expressed as

x = [Ts Th R L]T (3.53)

where Ts, Th, R, and L are shell thickness, head thickness, inner radius, and cylindrical

section length of the pressure vessel respectively. Although the original definition of the

problem limits values of Ts and Th to integer multiples of 0.0625, many studies dealing

with the pressure vessel design problem ignore this limitation [143, 144]. Therefore,

to be able to produce results comparable with the existing results in the literature,

both cases are included. For the unlimited case it is assumed that Ts, Th ∈ R≤99
≥0.1

whereas for the limited case Ts, Th ∈
{
T = 0.0625t : t ∈ N≤1584

≥2

}
. For both cases

R,L ∈ R≤100
≥10 . The problem can be defined as to minimize

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (3.54)

subject to

g1(x) = −x1 + 0.0193x3 ≤ 0 (3.55)

g2(x) = −x2 + 0.00954x3 ≤ 0 (3.56)

g3(x) = −πx2
3x4 −

4

3
πx3

3 + 1 296 000 ≤ 0 (3.57)

g4(x) = x4 − 240 ≤ 0 (3.58)
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Table 3.1: Summary of results for the pressure vessel design problem

Algorithm CFE OFE Best Mean Worst

GA3 900 000 900 000 6288.7445 6293.843 6308.497

GA4 80 000 80 000 6059.9463 6177.253 6469.322

CPSO 240 000 240 000 6061.0777 6147.133 6363.8041

HPSO 81 000 81 000 6059.7143 6099.932 6288.677

NM-PSO 80 000 80 000 5930.3137 5946.790 5960.0557

G-QPSO 8000 8000 6059.7208 6440.379 7544.4925

QPSO 8000 8000 6059.7209 6440.379 8017.2816

PSO 8000 8000 6693.7212 8756.680 14 076.324

CDE 204 800 204 800 6059.734 6085.230 6371.0455

UPSO 100 000 100 000 6544.270 9032.550 -

PSO-DE 42 100 42 100 6059.714 6059.714 -

ABC 30 000 30 000 6059.714 6245.308 -

(µ+ λ)-ES 30 000 30 000 6059.7016 6379.938 -

TLBO 10 000 10 000 6059.7143 6059.714 -

MBA 70 650 70 650 5889.3216 6200.648 6392.5062

MOGA2 25 000 25 000 6059.723 6127.401 6502.751

NSGA2 25 000 25 000 6059.734 6201.523 6718.511

FEPSO (limited) 9834 5171 6059.714 6457.607 7544.493

FEPSO 29 652 25 036 5885.3328 6242.807 6719.8258
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3.8.2 Tension/compression spring design problem

The tension/compression spring design problem aims to minimize the weight of a

spring while satisfying constraints imposed on minimum deflection, shear stress, and

outside diameter (see Figure 3.7). The problem can be defined as to minimize

f(x) = (N + 2)Dd2 (3.59)

subject to

g1(x) = 1− D3N

71 785d4
≤ 0 (3.60)

g2(x) =
4D2 − dD

12 566(Dd3 − d4)
+

1

5108d2
− 1 ≤ 0 (3.61)

g3(x) = 1− 140.45d

D2N
≤ 0 (3.62)

g4(x) =
D + d

1.5
− 1 ≤ 0 (3.63)

where

x = [d D N ]T (3.64)

while d ∈ R≤2
≥0.05, D ∈ R≤1.3

≥0.25, and N ∈ N≤15
≥2 are the wire diameter, the mean coil

diameter, and the number of active coils respectively.

3.8.3 Welded beam design problem

Objective of the welded beam design optimization problem (see Figure 3.8) is to

minimize the cost. Height of weld (h), length of weld (L), height of beam (t), and

width of beam (b) are the design variables; hence the decision vector is written as

follows:

x = [h L t b]
T (3.65)

where h, b ∈ R≤2
≥0.1 and L, t ∈ R≤10

≥0.1. Problem constraints involve shear stress (τ ),

bending stress (σ), buckling load (Pc), and deflection of the beam (δ). Formally, the

problem is stated as to minimize

f(x) = 1.104 71x2
1x2 + 0.048 11x3x4(14 + x2) (3.66)

subject to

g1(x) = τ(x)− τmax ≤ 0 (3.67)
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Table 3.2: Summary of results for the tension/compression spring design problem

Algorithm CFE OFE Best Mean Worst

QPSO 2000 2000 0.012 669 0.013 854 0.018 127

PSO 2000 2000 0.012 857 0.019 555 0.071 802

DE 204 800 204 800 0.012 670 0.012 703 0.012 790

DELC 20 000 20 000 0.012 665 0.012 665 0.012 666

DEDS 24 000 24 000 0.012 665 0.012 669 0.012 738

HEAA 24 000 24 000 0.012 665 0.012 665 0.012 665

PSO-DE 24 950 24 950 0.012 665 0.012 665 0.012 665

SC 25 167 25 167 0.012 669 0.012 923 0.016 717

UPSO 100 000 100 000 0.013 120 0.022 940 -

CDE 240 000 240 000 0.012 670 0.012 703 -

(µ+ λ)-ES 30 000 30 000 0.012 689 0.013 165 -

ABC 30 000 30 000 0.012 665 0.012 709 -

TLBO 10 000 10 000 0.012 665 0.012 666 -

MBA 7650 7650 0.012 665 0.012 713 0.012 900

MOGA2 25 000 25 000 0.012 665 0.012 799 0.128 54

NSGA2 25 000 25 000 0.012 666 0.012 794 0.128 06

FEPSO 41 381 24 942 0.012 666 0.013 107 0.015 327
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g2(x) = σ(x)− σmax ≤ 0 (3.68)

g3(x) = x1 − x4 ≤ 0 (3.69)

g4(x) = 0.104 71x2
1 + 0.048 11x3x4(14 + x2)− 5 ≤ 0 (3.70)

g5(x) = 0.125− x1 ≤ 0 (3.71)

g6(x) = δ(x)− δmax ≤ 0 (3.72)

g7(x) = P − Pc(x) ≤ 0 (3.73)

where

τ(x) =

√
(τ ′)2 + 2τ ′τ ′′

x2

2R
+ (τ ′′)2 (3.74)

τ ′ =
P√

2x1x2

(3.75)

τ ′′ =
MR

J
(3.76)

M = P
(
L+

x2

2

)
(3.77)

R =

√
x2

2

4
+

(
x1 + x3

2

)2

(3.78)

J = 2

[
√

2x1x2

(
x2

2

12
+

(
x1 + x3

2

)2
)]

(3.79)

σ(x) =
6PL

x4x2
3

(3.80)

δ(x) =
4PL3

Ex3
3x4

(3.81)

δ(x) =
4PL3

Ex3
3x4

(3.82)

Pc(x) =
4.013E

√
x23x

6
4

36

L2

(
1− x3

2L

√
E

4G

)
(3.83)

The constant values used in these calculations are as follows: P = 6000 lb, L = 14 in,

E = 30× 106 psi, G = 12× 106 psi, τmax = 13 600 psi, σmax = 30 000 psi, δmax =

0.25 in.
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Table 3.3: Summary of results for the welded beam design problem

Algorithm CFE OFE Best Mean Worst

GA3 900 000 900 000 1.748 309 1.771 973 1.785 835

GA4 80 000 80 000 1.728 226 1.792 654 1.993 408

CAEP 50 020 50 020 1.724 852 1.971 809 3.179 709

CPSO 240 000 240 000 1.728 024 1.748 831 1.782 143

HPSO 81 000 81 000 1.724 852 1.749 040 1.814 295

PSO-DE 66 600 66 600 1.724 852 1.724 852 1.724 852

NM-PSO 80 000 80 000 1.724 717 1.726 373 1.733 393

MGA - - 1.824 500 1.919 000 1.995 000

SC 33 095 33 095 2.385 435 3.002 588 6.399 679

DE 204 800 204 800 1.733 461 1.768 158 1.824 105

UPSO 100 000 100 000 1.921 990 2.837 210 -

CDE 240 000 240 000 1.733 460 1.768 150 -

(µ+ λ)-ES 30 000 30 000 1.724 852 1.777 692 -

ABC 30 000 30 000 1.724 852 1.741 913 -

TLBO 10 000 10 000 1.724 852 1.728 447 -

MBA 47 340 47 340 1.724 853 1.724 853 1.724 853

MOGA2 25 000 25 000 1.724 852 1.728 460 1.882 873

NSGA2 25 000 25 000 1.724 852 1.756 723 1.918 285

FEPSO 30 459 22 549 1.724 852 1.724 852 1.724 852
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3.8.4 Discussion of benchmark results

Results of FEPSO runs for each problem are separately given in Tables 3.1, 3.2, and

3.3. Solutions found in the literature are also included in these tables. FEPSO was able

to find solutions that are either equivalent to or better than the best solutions found

in previous studies. FEPSO achieved to obtain results within reasonable number of

constraint function evaluations when compared with other methods. In some cases

such as the unlimited version of the tension/compression spring design problem,

FEPSO attained the best result found in the surveyed literature with remarkably low

number of constraint- and objective function evaluations. These benchmark results

show that FEPSO is a competent algorithm for constrained design optimization. Usage

of FEPSO in some large scale problems are addressed in the following chapters.

Note that MOGA2 [145] and NSGA2 [58] are actually multi-objective algorithms.

However, they can also handle constrained single-objective problems. It can be

observed in Tables 3.1, 3.2, and 3.3 that both MOGA2 and NSGA2 are very competitive

algorithms. Their good performance and ability to handle both single-objective and

multi-objective problems make them good candidates for benchmarking. Both NSGA2

[146–149] and MOGA2 [150–153] are widely used in benchmark comparisons by

many studies including ones dealing with single-objective approaches [146, 154].

3.9 Closure

This chapter introduces FEPSO method to solve constrained optimization problems in

engineering design. This new approach does not require objective function evaluation

at infeasible points. Moreover, it does not require the swarm to have feasible particles

when initialized. It is designed to perform satisfactorily when the problem is highly-

constrained. FEPSO progressively improves the level of constraint satisfaction in the

swarm at each iteration. Apart from classical PSO parameters (W , C1, C2), it only

requires one additional tolerance parameter (xtol)5. Several differences of FEPSO

when compared to other techniques are listed below:

5 Since the velocity initialization factor (av) is just used to limit values of the velocity matrix elements during
initialization, it is not taken as a parameter and rarely needs to be changed.
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• During the flight of a particle, if a previously satisfied constraint becomes

violated, FEPSO seeks the point where the violation occurs (virtual boundary)

along the path and stops the particle at that point. Therefore, FEPSO never

allows a satisfied constraint to become violated. This provides a progressive

improvement in terms of constraint satisfaction level of the swarm.

• Particles that are feasible fly similar to how particles fly in the canonical PSO

except for how constraints are handled (as described in the previous item).

However, infeasible particles fly in a novel way:

– Infeasible particles activate a constraint that will drive the social attraction.

The AC will be selected based on constraint priorities (purely based on

number of particles that violate the constraint). However, activation of

constraints are done in a cyclic fashion where in the following iteration

the particle selects next highest priority constraint. This prohibits over-

emphasizing certain constraints and helps maintaining diversity. Although

prioritizing constraints based on number of violations is not a new concept,

the rest of the procedure is novel.

– Infeasible particles fly based on only social attraction driven by the AC by

simply being attracted to a particle which does not violate the AC.

– Flight of infeasible particles do not occur in all dimensions in FEPSO.

FEPSO identifies which constraints are sensitive to which decision vari-

ables and only allows flight through dimensions to which the AC is sensi-

tive. This feature is designed to achieve a faster convergence to feasible

regions while keeping already satisfied constraints intact.

• FEPSO does not require objective function evaluation of infeasible points. There-

fore, it can be used in problems where violation of some constraints prohibit

calculation of objective functions.
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BEGIN

END

Initialize virtuually feasible and virtually infeasible edges (x+, c+, x−, c−)

Calculate infeasibility rate (q)

Recreate a candidate position (x∗)

Evaluate constraints at x∗ (c∗)

Does candidate
position violate any previously

satisfied constraints?

Replace virtually feasible edge
with the candidate (x+:=x∗)

Replace virtually infeasible edge
with the candidate (x−:=x∗)

Has termination
criterion been met?

Figure 3.5: Flowchart of the FEPSO virtual boundary search routine
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Figure 3.7: Illustration of tension/compression spring design problem
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Figure 3.8: Illustration of welded beam design problem
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CHAPTER 4

MULTI-OBJECTIVE FEASIBILITY ENHANCED PARTICLE SWARM

OPTIMIZATION

Most engineering optimization problems involve several objective functions which are

occasionally conflicting in nature. Hence, the goal of this chapter is to introduce a new

method for dealing with highly constrained multi-objective problems. The presented

method is based on FEPSO (see Chapter 3) that exclusively handles single objective

optimization problems. Multi-objective FEPSO (MOFEPSO) is an enhanced approach

utilizing a Pareto dominance technique to deal with multi-objective problems.

Mathematically, the main difference of type of problems MOFEPSO deals with is that

there are multitude of objective functions and therefore for every position (i.e. point)

in the decision space instead of a single objective value there is an objective vector.

Therefore, as discussed in Section 2.1.1, a single solution does not exist.

4.1 General description of MOFEPSO

MOFEPSO is designed to handle highly-constrained multi-objective optimization

problems. MOFEPSO employs repositories of non-dominated and feasible positions

(or solutions) to guide feasible particle flight. Other than the mechanisms required

for handling multiple objectives, MOFEPSO approach is identical to FEPSO. Hence,

MOFEPSO shares the following five aspects with several modifications:

1. Initialization

2. Velocity update rules for infeasible particles (infeasible particle behavior)

3. Velocity update rules for feasible particles (feasible particle behavior)
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4. Particle flight

(a) Enforcing decision variable limits

(b) Virtual boundary search

5. Post-flight operations

Differences come into play in initialization, velocity update rules for feasible particles,

and post-flight operations. Remaining sections of this chapter focus on these differ-

ences and identical features of the algorithm will not be repeated. These identical

features, namely the velocity update rules for infeasible particles and particle flight are

explained in detail in sections 3.3 and 3.5 respectively.

MOFEPSO deals with constrained multi-objective optimization problems that can be

defined as to minimize1

y = f(x) ≡
[
f1(x) f2(x) · · · fK(x)

]T
(4.1)

subject to

gm(x) ≤ 0, m ∈ N≤M>0 (4.2)

A schematic representation of the algorithm is given in Figure 4.1. Actions shown

in blue in this figure are unique to MOFEPSO and therefore will be detailed in the

following sections.

4.2 Sets of global- and personal non-dominated solutions: gbest and pbest

Before going into details of initialization and feasible particle velocity update rules, the

concept of global- and personal non-dominated sets must be explained since it is used

both when initializing the particles and after a particle moves into a feasible position.

Due to the fact that MOFEPSO deals with multi-objective problems it requires a

mechanism for keeping a repository of best solutions at swarm level and separate

repositories of best solutions for every particle.

MOFEPSO employs a Pareto based approach where gbest becomes a set of non-

dominated solutions among all feasible solutions found by all particles of the swarm.
1 Note that the function f : RN → RK is a vector function and therefore it is written in boldface.
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End of iterations?

BEGIN

END

i := 1 (start with particle 1)

Y

i := i + 1

Y

N

N

Is the current particle
position feasible?

Update velocity
(for feasible particles)

Update velocity
(for infeasible particles)

Particle flight routine Particle flight routine

Update constraint priorities

Is the new particle
position feasible?

i ?
= I

Last particle?
N

Y

N

Y

Initialization routine

Calculate objective vector (y)

Update gbest if y is not dominated by any element of gbest

Add current solution to pbest

* Actions shown in blue indicate variations from FEPSO.

Figure 4.1: Flowchart of main MOFEPSO algorithm
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On the other hand, the pbest set associated with each particle behaves in a similar way

except that it keeps track of feasible positions attained by the particles themselves.

The members of these sets are actually the ordered pairs of decision- and objective

function vectors for non-dominated positions. The non-dominated set gbest can be

written as

B =
{
bφ =

(
bxφ,b

y
φ

)
: φ ∈ N≤Φ

>0

}
(4.3)

where Φ denotes the number of non-dominated positions. Similarly, each particle has

its own non-dominated set (pbest) as

Di =
{
di,ω =

(
dxi,ω,d

y
i,ω

)
: ω ∈ N≤Ωi

>0

}
(4.4)

where Ωi is the number of non-dominated positions associated with the ith particle.

If the ith particle is not feasible, Di = ∅ while B = ∅ if there are no feasible particles

in the swarm. In MOFEPSO, positions can only be in the pbest or gbest sets if they

are feasible. Note that MOFEPSO does not calculate objective functions for infeasible

positions. As will be discussed in more detail in the following sections, for every new

particle position that is found to be feasible, the objective function is evaluated and

the solution is checked against both the particle’s pbest and gbest. For each set, if

the new solution is not dominated by any member of the set, it is added to the set.

Consequently, any existing member that is dominated by the new solution is removed.

4.3 Initialization

When compared with FEPSO, only difference in the initialization routine of MOFEPSO

is related with how gbest set and individual pbest sets are initialized (see Figure 4.2).

All other variables including the position matrix (X), the velocity matrix (V), the

sensitivity matrix (S), the AC selection count matrix (T), and the constraint priority

vector (p) are initialized identically.

Before the particle initialization loop begins, gbest must be initialized such that

B := {} (4.5)
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BEGIN

END

i := 1 (start with particle 1)

Y

i := i + 1

N

Is particle
position
feasible?

Y

N i ?
= I

Last particle?

Randomly initialize the position matrix (X)

Randomly initialize particle’s velocity (vi,∗)

Evaluate constraints (ci,∗)

Evaluate the sensitivity matrix (S)

Initialize the AC selection count matrix (T)

Initialize the constraint priority vector (p)

Initialize gbest as an empty set (B := {})

Update gbest if y is not dominated by any element of gbest

Update pbest if y is not dominated by any element of pbest

Initialize pbest as an empty set (Di := {})

Calculate objective vector (y)

Figure 4.2: Flowchart of MOFEPSO initialization routine

67



Within the particle loop2, particle’s pbest is also initialized as

Di := {} (4.6)

After the constraints are calculated, if the particle position is found to be feasible, the

objective function is evaluated and added to pbest. That is if
(
∀m ∈ N<M

>0

)
(ci,m ≤ 0) (4.7)

then

y∗ := f
(
xTi,∗
)

(4.8)

Di := Di ∪
{(

xTi,∗,y
∗)} (4.9)

Furthermore, if the recently calculated objective is non-dominated among gbest; that

is if
(
@φ ∈ N≤Φ

>0

) (
byφ ≺ y∗

)
(4.10)

then all elements of gbest that are dominated by y∗ are removed such that

B− =
{
bφ : y∗ ≺ byφ ∧ φ ∈ N≤Φ

>0

}
(4.11)

B :=B \B− (4.12)

and the solution is added to gbest

B := B ∪
{(

xTi,∗,y
∗)} (4.13)

4.4 Velocity update rules for feasible particles

Feasible particles in MOFEPSO are socially attracted to positions in the gbest set

(B) and cognitively attracted to particles in their own pbest set (Di). Therefore, a

couple of positions randomly selected from gbest and pbest are used as global- (xG)

and personal (xP ) guide positions. To be specific, let ith particle be a feasible particle.

After xG and xP are randomly selected from B and Di respectively, its velocity is

updated by

vi,n := Wvi,n + C1r1,n

(
xGn − xi,n

)
+ C2r2,n

(
xPn − xi,n

)
(4.14)

where C1 and C2 are the social and cognitive acceleration coefficients respectively

while r1,n, r2,n ∈ [0, 1] ⊂ R are uniformly-distributed random numbers.
2 The particle of interest in the loop is taken as the ith particle. All following equations are written accordingly.
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4.5 Post-flight operations

As in FEPSO, the updated candidate position that satisfies both the decision variable

limits and virtual feasibility rule, given by Eqns. 3.31 and 3.32 respectively, is assigned

as the new position of the particle such that

xi := x∗ ci := x∗ (4.15)

Some post-flight operations are conducted depending on pre-flight- and post-flight

feasibilities of the particle. If the particle’s previous position was infeasible, constraint

priorities are updated using Eqn. 3.21.

If the new position is found to be feasible3, the objective vector (y∗ := f(x∗)) is

calculated. If
(
@ω ∈ N≤Ωi

>0

) (
dyi,ω ≺ y∗

)
(4.16)

then pbest is updated such that

D− =
{
di,ω : y∗ ≺ dyi,ω ∧ ω ∈ N≤Ωi

>0

}
(4.17)

Di :=Di \D− (4.18)

and the solution is added to pbest

Di := Di ∪
{(

xTi,∗,y
∗)} (4.19)

Similarly, y∗ is checked against gbest using Eqn. 4.10 and if it is found to be non-

dominated, gbest is updated using Eqns. 4.11, 4.12, and 4.13.

4.6 Closure

This chapter introduces the multi-objective version of the FEPSO. As a consequence

of differing characteristics of type of problems MOFEPSO deals with, additional

techniques particularly with regard to handling of multiple objectives are necessary.

Pareto based approaches for handling such objectives are implemented in MOFEPSO.

Hence, non-dominated repositories are maintained at both swarm- and particle level.
3
(
∀m ∈ N<M

>0

)
(ci,m ≤ 0)
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Social- and cognitive guides are randomly selected from these repositories to govern

particle flight. Other aspects of MOFEPSO such as the infeasible particle behavior,

particle flight routine, and virtual boundary search are identical with FEPSO.

Since MOFEPSO shares the same roots with FEPSO, it retains main characteristics and

advantages. Satisfied constraint are never allowed to become violated in MOFEPSO

too. This provides a progressive improvement in terms of constraint satisfaction level

of the swarm. Besides, objective function is not calculated at infeasible points explored

in the decision space. This feature saves computational resources especially when

complicated objective functions are involved.
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CHAPTER 5

FOUR-STAGE GEAR TRAIN PROBLEM

5.1 Single-objective four-stage gear train problem

The original four-stage gear train problem (GTP) proposed by Pomrehn and Papalam-

bros [93] is a highly-constrained single objective problem that many algorithms have

difficulty in finding feasible solutions without exercising special techniques. In fact,

many research efforts employ GTP as a benchmark test. The optimization approaches

to this problem involve reformulations, modifications, reductions, heuristic injec-

tions, or designer interaction due to its highly-constrained nature in its original form.

Pomrehn and Papalambros [94] apply special solution space reduction techniques;

Khorshid and Seireg [96] utilize designer interaction; Dolen, Kaplan, and Seireg [98]

develop a genetic algorithm incorporating a heuristic search on the most-violated

constraints (which in turn leads to the reduction of the search domain); Wang and Yin

[95] use ranking selection-based particle swarm optimization (RSPSO); Savsani, Rao,

and Vakharia [97] apply biogeography based optimization (BBO); Rao and Savsani

[86] use multiple optimization algorithms including BBO, PSO, artificial bee colony

(ABC), differential evolution (DE), and artificial immune algorithm (AIA); Savsani

[155] makes good use of a hybrid optimization algorithm fusing BBO and ABC;

Savsani and Savsani [156] utilize passing vehicle search (PVS) to solve GTP.

Without modifying the problem, finding a feasible solution requires tens to hundreds

of thousands of constraint function evaluations [86, 95]. Note that a Monte Carlo

Simulation with uniform random sampling of 108 samples failed to find a feasible

solution for this problem in this study. This problem is very suitable as a benchmark for

optimization algorithms dealing with highly-constrained problems. Problem definition
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is repeated in this chapter for the sake of self-containment while two new variants of

the problem are introduced.

5.1.1 Original four-stage gear train problem

The problem1 consists of the design of a four-stage gear train. Its objective is to

minimize the weight (which is directly proportional to total of volumes of all pinions

and gears) while conforming to a total of 86 constraints involving tooth bending fatigue

strength, tooth contact strength, contact ratio, gear pitch, output speed, and geometric

constraints. The aim is to place pinion and gears of each stage at discrete positions

within a box of 127 mm × 127 mm and to determine their sizes. Figure 5.1 shows

a stage of the gear train and discrete shaft locations. Design variables include the

positions of the gears in each stage, pinion position in the first stage (other stages have

their pinions positioned at the position of the previous stage’s gear), number of teeth

for gears and pinions, and gear thickness for each stage.

GTP is formulated as a single-objective optimization problem which can be defined as

to minimize

y = f(x) = π
4∑

s=1

bs(Cs)
2 (Np

s )2 + (N g
s )2

(Np
s +N g

s )2 (5.1)

subject to

gm(x) ≤ 0, m = 1, . . . ,M (5.2)

where M = 86,

x =[x1 · · · x22]T

=[X0 Y0 · · · X4 Y4 b1 · · · b4 NP
1 · · · NP

4 NG
1 · · · NG

4
]T (5.3)

and Cs is the distance between pinion and gear centers such that

Cs =

√
(Xs −Xs−1)2 + (Ys − Ys−1)2 (5.4)

Therefore, N = 22 and the decision variables converted to problem domain are

summarized in Table 5.1. Note that the four stages of the gear train are represented by

s ∈ {1, 2, 3, 4} (5.5)
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Figure 5.1: Representative pitch circles associated with discrete shaft locations of the

pinion and gear at stage s
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Table 5.1: Decision variables of GTP

Variable Description Allowed values

(X0, Y0) First pinion position

(mm)

Xs, Ys ∈ 12.7× {1, 2, · · · , 9}

(X1, Y1),

(X2, Y2),

(X3, Y3),

(X4, Y4)

Gear positions of stages 1,

2, 3, and 4 (mm)

s ∈ {0, 1, 2, 3, 4}

b1, b2, b3, b4 Gear and pinion thickness

(mm)

bs ∈ {3.175, 5.715, 8.255, 12.7}
s ∈ {1, 2, 3, 4}

Np
1 , Np

2 , Np
3 , Np

4 Pinion tooth numbers Np
s , N

g
s ∈ {7, 8, 9, ..., 60}

N g
1 , N g

2 , N g
3 , N g

4 Gear tooth numbers s ∈ {1, 2, 3, 4}

Definitions of constraint functions g1, . . . , g86 are given in Table 5.2. Calculation of

parameters used in constraint function definitions are explained below. Some constants

and pre-calculated limits required for these parameter calculations are tabulated in

Table 5.3. Gear tooth bending fatigue stress (kgf/cm2), gear tooth contact fatigue

stress (kgf/cm2), and gear tooth contact ratio take the following form

σGTBs =

(
366000

πωs−1

+ 2
CsN

p
s

Np
s +N g

s

)
(Np

s +N g
s )2

4bsC2
sN

p
s

(5.6)

σGTCs =

(
366000

πωs−1

+ 2
CsN

p
s

Np
s +N g

s

)(
(Np

s +N g
s )3

4bsC2
s (Np

s )2N g
s

)
(5.7)

CRs =
1

π cosφ

[
Np
s

√
sin2φ

4
+

1

Np
s

+
1

(Np
s )2

+N g
s

√
sin2φ

4
+

1

N g
s

+
1

(N g
s )2 − (Np

s +N g
s )

sinφ

2

]
(5.8)

and they must satisfy

σGTBs ≤ SGTB (5.9)

σGTCs ≤ SGTC (5.10)

CRs ≥ CRmin (5.11)

1 The original four-stage gear train problem is abbreviated as GTP throughout this dissertation.
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As shown in definitions of constraint functions g1, . . . , g12 in Table 5.2. There are also

constraints on diameters of pinions and gears (g13, . . . , g20):

Dp
s = 2Cs

Np
s

Np
s +N g

s
≥ Dmin (5.12)

Dg
s = 2Cs

N g
s

Np
s +N g

s
≥ Dmin (5.13)

Table 5.2: Constraint functions for GTP

m gm

Gear stage scope 1-4 σGTBs − SGTB

s ∈ {1, 2, 3, 4} 5-8 σGTCs − SGTC

9-12 CRmin − CRs

13-16 Dmin −Dp
s

17-20 Dmin −Dg
s

21-24 − (Xs−1 − rpos )

25-28 Xs−1 + rpos − Lmax

29-32 − (Ys−1 − rpos )

33-36 Ys−1 + rpos − Lmax

37-40 − (Xs − rgos )

41-44 Xs + rgos − Lmax

45-48 − (Ys − rgos )

49-52 Ys + rgos − Lmax

53-68 Pmin1
s , Pmin2

s , Pmin3
s , Pmin4

s

69-84 Pmax1
s , Pmax2

s , Pmax3
s , Pmax4

s

Gear train scope 85 ωmin − ω4

86 ω4 − ωmax

The parameters needed for geometric constraints are outer radii of the pinions and

gears for each stage s:

rpos =
Dp
s

2
+

2Cs
Np
s +N g

s
(5.14)

rgos =
Dg
s

2
+

2Cs
Np
s +N g

s
(5.15)
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Table 5.3: Constants for GTP

Constant Description

CRmin = 1.4 Allowable contact ratio

Cp = 464.0 Elastic coefficient

φ = 20° Pressure angle

W = 55.9 W Input power

JR = 0.2 Geometry factor

KM = 1.6 Mounting factor

KO = 1.5 Overload factor

σH = 3290 kgf/cm2 Allowable fatigue stress

σN = 2090 kgf/cm2 Allowable bending stress

ω0 = 5000 rpm Input speed

ωmin = 245 rpm Minimum output speed

ωmax = 255 rpm Maximum output speed

Dmin = 25.4 mm Minimum pinion/gear diameter

Lmax = 127 mm Maximum housing dimension
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The geometric constraints are to confine pinions and gears in the box with dimensions

127 mm× 127 mm (g21, . . . , g52):

Xs−1 − rpos ≥ 0 (5.16)

Xs−1 + rpos ≤ Lmax (5.17)

Ys−1 − rpos ≥ 0 (5.18)

Ys−1 + rpos ≤ Lmax (5.19)

Xs − rgos ≥ 0 (5.20)

Xs + rgos ≤ Lmax (5.21)

Ys − rgos ≥ 0 (5.22)

Ys + rgos ≤ Lmax (5.23)

Gear pitch must also satisfy these constraints:

Pmin
s ≤ Ps ≤ Pmax

s (5.24)

where Ps, Pmin
s , and Pmax

s are gear pitch, minimum gear pitch, and maximum gear

pitch values for sth gear stage respectively. These values are calculated as follows:

Ps =
Np
s +N g

s

2Cs
, (5.25)

Pmin
s =





0.472, bs = 3.175

0.323, bs = 5.715

0.252, bs = 8.255

0, bs = 12.7

(5.26)

Pmax
s =





0.906, bs = 3.175

0.472, bs = 5.715

0.323, bs = 8.255

0.252, bs = 12.7

(5.27)

As seen in constraints g53, . . . , g84 in Table 5.2 separate criteria can be constructed

for each gear thickness alternative. Derived gear pitch constraints used in GTP are as
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follows:

Pmin1
s = − (0.472− Ps) (bs − 5.715) (bs − 8.255) (bs − 12.7) ≤ 0 (5.28)

Pmin2
s = + (0.323− Ps) (bs − 3.175) (bs − 8.255) (bs − 12.7) ≤ 0 (5.29)

Pmin3
s = − (0.252− Ps) (bs − 3.175) (bs − 5.715) (bs − 12.7) ≤ 0 (5.30)

Pmin4
s = + (0− Ps) (bs − 3.175) (bs − 5.715) (bs − 8.255) ≤ 0 (5.31)

Pmax1
s = − (Ps − 0.906) (bs − 5.715) (bs − 8.255) (bs − 12.7) ≤ 0 (5.32)

Pmax2
s = + (Ps − 0.472) (bs − 3.175) (bs − 8.255) (bs − 12.7) ≤ 0 (5.33)

Pmax3
s = − (Ps − 0.323) (bs − 3.175) (bs − 5.715) (bs − 12.7) ≤ 0 (5.34)

Pmax4
s = + (Ps − 0.252) (bs − 3.175) (bs − 5.715) (bs − 8.255) ≤ 0 (5.35)

Finally, the output speed of each stage is computed as

ωs = ωs−1
Np
s

N g
s
. (5.36)

Other than the stage scope constraints, two more constraints related with the output

speed exist (g85, g86):

ωmin ≤ ω4 ≤ ωmax (5.37)

5.1.2 Reduced constraints four-stage gear train problem

Reduced-constraint problem (RC-GTP) is actually same as the original problem. The

only difference is the treatment of the gear pitch constraints. Reduced-constraint

problem uses Eqn. 5.24 instead of Eqns. 5.28-5.35. Therefore, as seen in in Table 5.4

reduced-constraint problem has only 62 constraints (M = 62) whereas the original

problem has 86.

Although the number of constraints decreases in this case, the problem actually

becomes more implicit. The underlying reason is that the newly introduced constraints

are actually harder to satisfy because they become coupled to gear thickness as

indicated by Eqns. 5.26 and 5.27.
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Table 5.4: Constraint functions for RC-GTP

m gm

Gear stage scope 1-4 σGTBs − SGTB

s ∈ {1, 2, 3, 4} 5-8 σGTCs − SGTC

9-12 CRmin − CRs

13-16 Dmin −Dp
s

17-20 Dmin −Dg
s

21-24 − (Xs−1 − rpos )

25-28 Xs−1 + rpos − Lmax

29-32 − (Ys−1 − rpos )

33-36 Ys−1 + rpos − Lmax

37-40 − (Xs − rgos )

41-44 Xs + rgos − Lmax

45-48 − (Ys − rgos )

49-52 Ys + rgos − Lmax

53-56 pmins − ps
57-60 ps − pmaxs

Gear train scope 61 ωmin − ω4

62 ω4 − ωmax
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5.1.3 Mixed-valued four-stage gear train problem

Mixed-valued problem (MV-GTP) is similar to RC-GTP, only difference being that

the gears are allowed to be located anywhere within the box of dimensions 127 mm×
127 mm instead of the discrete shaft locations shown in Figure 5.1. This implies that

Xs, Ys ∈ {x ∈ R : 12.7 ≤ x ≤ 114.3} (5.38)

All other decision variable definitions remain the same (Table 5.5). On the other hand,

the constraint functions of the MV-GTP are same as RC-GTP (Table 5.4).

Table 5.5: Decision variables of MV-GTP

Variable Description Allowed values

(X0, Y0) First pinion position

(mm)

Xs, Ys ∈
{x ∈ R : 12.7 ≤ x ≤ 114.3}

(X1, Y1),

(X2, Y2),

(X3, Y3),

(X4, Y4)

Gear positions of stages

1, 2, 3, and 4 (mm)

s ∈ {0, 1, 2, 3, 4}

b1, b2, b3, b4 Gear and pinion thick-

ness (mm)

bs ∈ {3.175, 5.715, 8.255, 12.7}
s ∈ {1, 2, 3, 4}

Np
1 , Np

2 , Np
3 , Np

4 Pinion tooth numbers Np
s , N

g
s ∈ {7, 8, 9, ..., 60}

N g
1 , N g

2 , N g
3 , N g

4 Gear tooth numbers s ∈ {1, 2, 3, 4}

5.1.4 Results and discussion

FEPSO was run 50 times for each variant of four-stage gear train optimization problem:

GTP, RC-GTP, and MV-GTP. The parameter configuration used in runs is summarized

in Table 5.6. Except for a single unsuccessful run in the RC-GTP all FEPSO runs

were able to find feasible solutions. A summary of simulation results is given in Table

5.7. In this table, number of constraint function evaluations (CFEs) when first feasible

point is found, as well as the number of CFEs and objective function evaluations

(OFEs) when the best value was found are presented. Design variable values of the
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best solutions found by FEPSO for each problem variant are given in Table 5.8 and

are illustrated in Figure 5.2.

Table 5.6: FEPSO algorithm parameters used in simulations

Swarm Size Max. Num. of Iterations W C1 C2 xtol

200 500 0.9 - 0.4(a) 2 2 0.01

(a) The inertia factor (W ) is linearly varied throughout the iterations.

Single objective algorithms DOPSO [65], HPSO [141], and GA (MI-LXPM) [157];

multi-objective algorithms MOGA2 and NSGA2 are used in all three problems for

comparison purposes (see Tables 5.9, 5.10, and 5.11). Although it is unnecessary to

utilize a multi-objective algorithm here, MOGA2 and NSGA2 are well known for

their good performances and constraint handling capabilities. Since both algorithms

can easily be employed in a single objective problem, they have been utilized for

benchmarking FEPSO.

A comparison of solutions found in the literature for the GTP is also summarized

in Table 5.9. In DOPSO inertia factor was taken ω = 1, the objective optimization

threshold was taken δ = 0, and the swarm size was chosen as 200. The HPSO

parameters were selected as follows: M = 250, c1 = 2.0, c2 = 2.0, w = 0.9 →
0.4, L = 20, λ = 0.94, η = 0.001. Note that the standard mixed integer GA

implementation of MATLAB® was used for MI-LXPM with a population size of 500

and a maximum number of generations of 200. MOGA2 and NSGA2 simulations

were carried out in modeFRONTIER®. The selected MOGA2 and NSGA2 options

are summarized in Tables 5.12 and 5.13 respectively.

As can be seen in Table 5.9, the best FEPSO solution for the original problem is among

the best three found in the literature including the papers where special solution space

reduction [98] or designer interaction [96] methods are applied. Furthermore, it is one

of the two techniques with 100% success rate. FEPSO has the best mean-objective-

value among the studies that report a mean value. Although only one other paper [95]

reports the worst objective value obtained in the simulations, the worst value obtained

by FEPSO is considerably better (41.11 vs. 68.50).
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Table 5.7: FEPSO simulation results summary of all three four-stage gear train prob-

lems

Results GTP RC-GTP MV-GTP

# of variables 22 22
10: real

12: discrete

# of constraints 86 62 62

Runs 50 50 50

Successful Runs 50 49 50

# of CFEs when

first feasible is found

Best 13 279 19 174 18 498

Worst 69 275 49 254 93 327

Mean 37 077 33 607 34 752

Std. Dev. 11 007 7170 11 486

Objective value of

first feasible (cm3)

Best 39.199 38.340 38.910

Worst 94.721 85.458 106.135

Mean 52.830 55.779 61.060

Std. Dev. 10.257 11.756 15.220

# of CFEs when

best is found

Best 49 843 42 394 35 765

Worst 203 455 226 532 215 409

Mean 141 617 136 369 199 256

Std. Dev. 43 479 49 139 31 929

# of OFEs when

best is found

Best 2 2 2

Worst 451 440 1841

Mean 77 66 937

Std. Dev. 77 76 455

Best value

found (cm3)

Best 36.250 36.254 35.226

Worst 41.108 47.310 51.500

Mean 38.056 38.611 37.947

Std. Dev. 1.251 1.948 3.358
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Table 5.8: Best solutions found during FEPSO simulations for all three problems

GTP RC-GTP MV-GTP

X0 88.9 38.1 83.395

Y0 63.5 25.4 60.469

X1 50.8 76.2 46.087

Y1 50.8 38.1 63.507

X2 88.9 88.9 76.903

Y2 63.5 76.2 36.581

X3 50.8 50.8 43.812

Y3 50.8 88.9 61.731

X4 38.1 63.5 81.800

Y4 88.9 50.8 64.651

b1 3.175 3.175 3.175

b2 3.175 3.175 3.175

b3 3.175 3.175 3.175

b4 3.175 3.175 3.175

N g
1 32 28 37

N g
2 40 39 40

N g
3 34 46 50

N g
4 37 34 36

Np
1 15 13 19

Np
2 19 19 18

Np
3 16 22 22

Np
4 18 16 18

y 36.250 36.254 35.226
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(a) GTP solution by FEPSO (b) GTP solution by FEPSO

(c) GTP solution by FEPSO

Figure 5.2: Best GTP, RC-GTP, and MV-GTP solutions found by FEPSO
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Table 5.9: Comparison of results for GTP

Max Max Succ. Std.

Algorithm OFE CFE Runs runs Best Mean Worst Dev.

Pomrehn (1995) [93] N/A N/A N/A N/A 91.87 N/A N/A N/A

Pomrehn(1) (1995) [94] N/A N/A N/A N/A 83.92 N/A N/A N/A

Khorsid(2) (1999) [96] N/A N/A N/A N/A 38.13 N/A N/A N/A

Dolen(1) (2005) [98] 10 000 10 000 100 60 35.40 39.78 N/A N/A

(without reduction) 10 000 10 000 100 0 - - - -

Wang - RSPSO 10 000 10 000 30 3 44.58 55.37 68.50 12.13

(2008) [95] 80 000 80 000 30 29 38.11 51.84 76.08 10.42

Savsani BBO 100 000 100 000 100 36 37.28 N/A N/A N/A

(2009) [97] PSO 100 000 100 000 100 0 - - - -

DE 100 000 100 000 100 0 - - - -

Rao BBO 100 000 100 000 N/A N/A 36.57 N/A N/A N/A

(2012) [86] PSO 100 000 100 000 N/A 0 - - - -

ABC 100 000 100 000 N/A 0 - - - -

DE 100 000 100 000 N/A 0 - - - -

AIA 100 000 100 000 N/A 0 - - - -

Savsani HBBABC 5000 5000 100 8 46.20 N/A N/A N/A

(2012) [155] 10 000 10 000 100 100 35.36 52.49 N/A N/A

BBO 5000 5000 100 0 - - - -

10 000 10 000 100 24 43.64 N/A N/A N/A

ABC 5000 5000 100 0 - - - -

10 000 10 000 100 36 40.41 N/A N/A N/A

Savsani (2016) - PVS [156] 25 000 25 000 50 44 37.27 N/A N/A N/A

DOPSO [65] 5000 400 000 20 2 97.93 99.21 100.49 1.81

HPSO [141] 2500 400 000 20 1 99.18 99.18 99.18 -

GA (MI-LXPM) [157] 100 000 100 000 20 0 - - - -

MOGA2 [145] 100 000 100 000 5 0 - - - -

NSGA2 [28] 100 000 100 000 5 0 - - - -

FEPSO 460 205 000 50 50 36.25 38.06 41.11 1.25
(1) Applies special techniques for solution space reduction.
(2) Involves designer interaction.
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Table 5.10: Comparison of results for RC-GTP

Max Max Succ. Std.

Algorithm OFE CFE Runs runs Best Mean Worst Dev.

DOPSO 5000 400 000 20 1 74.96 74.96 74.96 -

HPSO 2500 400 000 20 0 - - - -

MOGA2 75 000 75 000 5 5 36.51 39.76 43.58 2.89

NSGA2 100 000 100 000 5 3 49.09 60.98 80.52 17.05

FEPSO 440 230 000 50 49 36.25 38.61 47.31 1.95

Table 5.11: Comparison of results for MV-GTP

Max Max Succ. Std.

Algorithm OFE CFE Runs runs Best Mean Worst Dev.

DOPSO 5000 400 000 20 2 68.13 97.64 127.15 41.73

HPSO 2500 400 000 20 0 - - - -

GA (MI-LXPM) 100 000 100 000 20 15 43.24 52.23 62.69 6.37

MOGA2 100 000 100 000 5 5 36.35 39.63 44.41 3.84

NSGA2 100 000 100 000 5 4 51.28 54.07 56.87 3.95

FEPSO 1900 220 000 50 50 35.23 37.95 51.50 3.36

Table 5.12: Algorithm parameters used for MOGA2 in benchmark simulations

Number of Individuals 500 (200(1))

Number of Generations 200 (500(1))

Probability of Directional

Cross-Over
0.5

Probability of Selection 0.05

Probability of Mutation 0.1

DNA String Mutation Ratio 0.05

Elitism Enabled

Constraint Handling Penalize Objectives

(1) Population size of 200 individuals with 500 generations is also tried but a population size of

500 with 200 generations is found to produce better results.
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Table 5.13: Algorithm parameters used for NSGA2 in benchmark simulations

Number of Individuals 500 (200(1))

Number of Generations 200 (500(1))

Crossover Probability 0.9

Mutation Probability (Real-valued Vectors) 1

Mutation Probability (Binary Strings) 1

(1) Population size of 200 individuals with 500 generations has also been evaluated but a population

size of 500 with 200 generations is found to produce better results.

If more CFEs are allowed, FEPSO is capable of finding a good solution for the original

problem most of the times with less than 100 OFEs and every time when it is allowed

to make 500 OFEs according to the simulations conducted. FEPSO manages to obtain

a candidate optimum in approximately 140 000 CFEs on average. When allowed to

make approximately 200 000 CFEs and 500 OFEs, FEPSO consistently achieves to

attain good solutions. Standard deviation of the best solutions found is only 1.25,

which signifies the consistency of FEPSO.

Only disadvantage of FEPSO seems to be the relatively high number of CFEs required.

Although the GTP and its variants considered in this benchmark has constraints and

objective functions with similar complexity; as argued in Section 2.4, many problems

of the mechanical engineering domain have relatively easy-to-calculate constraints if

compared to objective functions involving complex computations such as the FEM or

computational fluid dynamics. Moreover, there may be cases where violation of some

constraints render calculation of objective- or other constraint functions impossible.

It might be necessary to handle these constraints separately. Therefore, the FEPSO

approach is useful and is even necessary in some cases. Corriveau, Guilbault, and

Tahan [158] reported that FEM corresponded approximately to 95 % of total time

elapsed during the processing of an individual in their study where they coupled GA

and FEM. Muc and Gurba [159] use a function representing a failure criterion which

is calculated by FEM as the objective function and constraints consisting of geometric

parameters in optimization of composite structures. On the other hand, Parasiliti et al.

[160] define a highly-constrained problem that has different kinds of constraints:
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• Constraints that are easier to calculate

• Constraints that make calculation of some other constraint- and objective func-

tions impossible when violated

FEPSO not only finds some feasible particles, but also improves the constraint sat-

isfaction level of the whole swarm. Mean number of constraint violations (MNCV)

(number of constraints that a particle violates) can be used as an indication of the level

of constraint violation (or satisfaction) in the swarm. In essence, MNCV can be em-

ployed as a measure to gauge the swarm’s feasibility level. MNCV of 50 simulations

executed for the RC-GTP is plotted as a function of iteration number in Figure 5.3. As

can be seen from the figure, FEPSO progressively improves the constraint satisfaction

level of the swarm. This suggests that FEPSO might be successfully employed to

preprocess a population for another algorithm which requires a better population in

terms of constraint satisfaction.

Figure 5.3: Mean number of constraint violations in the population during the RC-GTP

runs.
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5.2 Multi-objective four-stage gear train problem

The original GTP problem and its two variants were introduced in Section 5.1. The

two variants are devised via combining several constraints (RC-GTP) and allowing

several discrete decision variables to take real values (MV-GTP). In fact, the GTP can

easily be handled as a multi-objective problem with some additional objectives. Dolen,

Kaplan, and Seireg [98] introduced a multi-objective version of the GTP by adding

another volume parameter as the second objective. Following this multi-objective

approach and two new variants of the GTP, three multi-objective versions of the GTP

are also introduced in this chapter:

• Multi-objective four-stage gear train problem (MOG)

• Reduced constraints multi-objective four-stage gear train problem (RC-MOG)

• Mixed valued multi-objective four-stage gear train problem (MV-MOG)

All three variants of the problem consist of the design of a four-stage gear train with

two objectives:

• Minimize the weight (which is directly proportional to the total volume of all

pinions and gears)

• Minimize the gearbox volume that encompasses all gears and pinions

Design variables of the problems are same as the single objective versions of the

problems (see Section 5.1) and include the following items: the positions of the

gears at each stage; pinion position in the first stage (other stages have their pinions

positioned at the position of the previous stage’s gear); the number of teeth of gears

and pinion; gear thickness for each stage.

5.2.1 Problem definition for MOG, RC-MOG, and MV-MOG

All three variants of the problem can be defined as to minimize

y = f(x) ≡
[
f1(x) f2(x)

]T
(5.39)
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subject to

gm(x) ≤ 0, m ∈ N≤M>0 (5.40)

where M = 86 for MOG whereas M = 62 for RC-MOG and MV-MOG. Decision

vector2 can be defined as

x =[x1 · · · x22]T

=[X0 Y0 · · · X4 Y4 b1 · · · b4 NP
1 · · · NP

4 NG
1 · · · NG

4
]T (5.41)

Similarly, objective functions can be written as follows:

y1 = f1(x) = π
4∑

s=1

bs(Cs)
2 (Np

s )2 + (N g
s )2

(Np
s +N g

s )2 (5.42)

y2 = f2(x) = LxLy

4∑

s=1

bs (5.43)

Decision variable properties of MOG and RC-MOG are same with GTP and RC-GTP

whereas MV-MOG is similar to MV-GTP. While constraint functions of MOG are

identical with GTP, RC-MOG as well as MV-MOG constraint functions are same

as RC-GTP and MV-GTP. Decision variable- and constraint function similarities are

summarized in Table 5.14.

Table 5.14: Similarities between decision variables- and constraint functions of single-

objective and multi-objective variants of the GTP

Multi-objective

Problem

Decision variable

properties

Constraint functions

MOG Same as GTP and

RC-GTP (Table 5.1)

Same as GTP (Table

5.2)

RC-MOG Same as GTP and

RC-GTP (Table 5.1)

Same as RC-GTP and

MV-GTP (Table 5.4)

MV-MOG Same as MV-GTP

(Table 5.5)

Same as RC-GTP and

MV-GTP (Table 5.4)

All calculations explained for GTP in Section 5.1.1 are also valid for the multi-objective

variants of the problem. Additionally, bounding box dimensions (Lx and Ly) used for
2 Note that decision vector definition is similar to GTP (Eqn. 5.3).
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the second objective function are defined as follows:

Lx = Xmax −Xmin, Ly = Y max − Y min (5.44)

Xmin = min
(

min
s

(Xs−1 − rpos ),min
s

(Xs − rgos )
)

(5.45)

Xmax = max
(

max
s

(Xs−1 + rpos ),max
s

(Xs + rgos )
)

(5.46)

Y min = min
(

min
s

(Ys−1 − rpos ),min
s

(Ys − rgos )
)

(5.47)

Y max = max
(

max
s

(Ys−1 + rpos ),max
s

(Ys + rgos )
)

(5.48)

where s ∈ {1, 2, 3, 4} as before.

5.2.2 Results and discussion

To evaluate the performance of MOFEPSO, the method was run 50 times for each

variant of MOG. Algorithm parameters were kept same with previous FEPSO runs

(see Table 5.6). Briefly, the swarm size (I) was set to 200 while the maximum number

of iterations was limited to 500. Note that the inertia factor W has been varied from

0.9 (in the beginning) to 0.4 (at the end) throughout the execution. Acceleration

coefficients and the tolerance parameter were selected as C1 = C2 = 2, xtol = 0.01.

Since MOFEPSO may perform many constraint function evaluations (CFE) during

virtual boundary search, actual number of CFEs needed to be recorded. Similarly,

objective function evaluations (OFE) that are only performed at feasible positions

were also saved to analyze the performance of the proposed method.

Popular multi-objective algorithms MOGA2 [145], NSGA2 [58], and MOPSO [68]

were also employed to solve all three problems so as to make a quantitative comparison

for MOFEPSO. NSGA2 is one of the most popular algorithms used to compare PSO

based multi-objective algorithms [161–163]. MOGA2 and NSGA2 simulations were

carried out in modeFRONTIER® software package with options summarized in Tables

5.12 and 5.13 respectively. Note that MOPSO simulations were run in MATLAB®

with the options given in Table 5.15. Other than these simulations, the results presented

by Dolen, Kaplan, and Seireg [98] were also used for comparison of MOG solutions

found by MOFEPSO.
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Table 5.15: Algorithm parameters used for MOPSO

W 0.4

C1 2

C2 2

Swarm Size (I) 250

Mutation Rate 0.5

Number of Grids (Ngrid) 20

Max. Number of Iterations 1000

Summary of MOFEPSO runs for MOG, RC-MOG, and MV-MOG along with bench-

mark simulations are tabulated in Tables 5.16, 5.17, and 5.18. Note that all MOFEPSO

runs performed on each problem variant were successful in finding feasible solutions3.

Considering the mean values (µ) of objective functions, MOFEPSO apparently yields

the best mean for both objectives in all problem variants. When objectives are examined

separately, it can be seen that MOFEPSO has obtained the overall minimum for both

objectives except that the result presented by Dolen, Kaplan, and Seireg [98] for the

first objective (i.e. y1) is slightly better. Moreover, the number of OFEs in MOFEPSO

is significantly lower than all other approaches.

Since Pareto optimality based multi-objective algorithms provide multiple Pareto

solutions at each run, many solution points could be generated by MOFEPSO and

its contenders. Some selected Pareto solutions are presented in Table 5.19. Decision

vectors for Pareto solutions (labeled in Table 5.19 as best MOFEPSO solutions) for

each of the three problem variants are also given in Table 5.20. Figure 5.4 illustrates the

results side by side along with their single-objective counterparts. In the illustrations

the single objective versions of MOG, RC-MOG, and MV-MOG are labeled as GTP,

RC-GTP, and MV-GTP respectively. Detailed results of single-objective versions are

presented in Section 5.1. However, it is worth mentioning here that y1 = 36.25 cm3

for GTP and RC-GTP; y1 = 35.23 cm3 for MV-GTP.

It can be observed from Figure 5.4 that the second objective (y2) ensures compactness

3 This indicates a success rate of 100%
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of the gear train as intended. In the absence of y2, the gears are free to assume any

position without affecting the value of y1. Notice that the presence of y2 encourages

repetitive use of same positions in successive gear train stages.

Progression of Pareto fronts throughout MOFEPSO runs are plotted in Figure 5.5.

More solutions are obtained in MV-MOG due to the relaxation provided by unrestricted

real-valued variables.

5.2.2.1 Statistical evaluation of simulation results

Pareto solutions found by all algorithms were used to statistically compare the

MOFEPSO results with those of the others (see Figure 5.64). Note that each ob-

jective was treated separately and that nonparametric comparisons were performed

with Wilcoxon method [164] (Table 5.21). As can be seen from the Table 5.21,

MOFEPSO yields significantly better results for both objectives if compared to other

algorithms with only one exception (i.e. y2 of MOGA2).

As in FEPSO, the only disadvantage of MOFEPSO seems to be the high number

of CFEs due to its unique constraint handling mechanism. However, MOFEPSO

only performs OFEs at feasible points. Therefore, high number of CFEs limit OFEs

in highly constrained problems. This issue might be especially advantageous when

objective functions are computationally more expensive.

5.2.2.2 Exploration capability

Rate of congruence for pinions and gears at each stage can be calculated to illustrate

the distribution of Pareto solutions on the design space. It is critical to note that the rate

of congruence is a function defining the rate for a position at any stage to be occupied

by a specific type of gear among all Pareto solutions of MOFEPSO during simulations

(50 runs). Rate of congruence of an arbitrary position for pinions and gears at stage s

4 Note that since the MOG and its variants are minimization problems, lower values for both y1 and y2 are
better.
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Table 5.19: Some selected Pareto solutions

MOG RC-MOG MV-MOG

Algorithm y1 y2 y1 y2 y1 y2

MOGA2 37.36 123.34 45.22 109.02 35.46 81.88

39.10 110.75 40.86 111.07 35.47 81.87

39.12 110.42

NSGA2 52.56 113.12 39.86 131.82 35.96 105.80

45.57 161.85 40.69 119.93 36.59 105.31

MOPSO 43.54 132.82 53.40 172.41 35.64 97.49

52.62 112.18 53.70 149.78 36.29 95.80

MOFEPSO(1) 36.26 85.16 36.25 131.14 35.13 79.50

36.26 99.85 36.26 85.16 35.14 79.48

36.26 84.60 36.26 115.76 35.15 75.41

36.27 101.00 36.27 115.53 35.38 74.83

36.28 84.53 39.03 94.13 35.38 74.84

36.26 85.16 37.41 95.14 35.33 74.87

36.29 85.16 38.18 95.34 35.27 74.89

38.96 93.45 37.44 95.66

(1)Marked solutions are given in Table 5.20 and illustrated in Figure 5.4
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Table 5.20: Decision vectors and objective values for some selected Pareto solutions

found by MOFEPSO

MOG RC-MOG MV-MOG

X0 63.5 63.5 50.3283

Y0 76.2 38.1 47.9472

X1 76.2 76.2 60.8033

Y1 38.1 76.2 84.5796

X2 63.5 63.5 61.1880

Y2 76.2 38.1 44.6666

X3 76.2 76.2 62.1840

Y3 38.1 76.2 85.4760

X4 63.5 63.5 61.1601

Y4 76.2 38.1 46.2847

b1 3.175 3.175 3.175

b2 3.175 3.175 3.175

b3 3.175 3.175 3.175

b4 3.175 3.175 3.175

N g
1 36 41 38

N g
2 45 41 45

N g
3 45 38 31

N g
4 45 40 48

Np
1 18 20 19

Np
2 21 19 21

Np
3 21 18 14

Np
4 21 19 23

y1 36.26 36.26 35.15

y2 84.60 85.16 75.41
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(a) MOG solution by MOFEPSO (b) GTP solution by FEPSO

(c) RC-MOG solution by MOFEPSO (d) RC-GTP solution by FEPSO

(e) MV-MOG solution by MOFEPSO (f) MV-GTP solution by FEPSO

Figure 5.4: Illustrations of some selected Pareto solutions found by MOFEPSO and

their comparison to single-objective solutions found by FEPSO
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(a) MOG (b) RC-MOG

(c) MV-MOG

Figure 5.5: Progression of Pareto solutions along iterations of selected MOFEPSO

runs

Table 5.21: Statistical results (p) for nonparametric comparisons of MOGA2, MOPSO,

and NSGA2 Pareto solutions with MOFEPSO Pareto solutions using Wilcoxon method

MOG RC-MOG MV-MOG

Algorithm y1 y2 y1 y2 y1 y2

MOGA2 < 0.0001 < 0.0001 < 0.0001 0.0837 < 0.0001 0.035

MOPSO < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

NSGA2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

H0: No difference between MOFEPSO and the listed algorithm. p < 0.05 rejects H0
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(a) y1, MOG (b) y2, MOG

(c) y1, RC-MOG (d) y2, RC-MOG

(e) y1, MV-MOG (f) y2, MV-MOG

Figure 5.6: Graphical comparison of Pareto solutions obtained by different algorithms

for MOG, RC-MOG, and MV-MOG

100



can be defined as follows:

ρ?(x, y, s) ,

|Υ|∑
φ=1

ξ?φ(x, y, s)

|Υ| (5.49)

where ? is a placeholder for the letters p (pinion) and g (gear); Υ denotes the union of

all final non-dominated sets (i.e. Pareto solutions, Bi) found throughout simulation

runs:

Υ =
50⋃

i=1

Bi ,
{
υφ =

(
υxφ,υ

y
φ

)
: φ ∈ N≤|Υ|>0

}
(5.50)

Congruence functions in Eqn. (5.49) can be defined as follows:

ξ?φ(x, y, s) ,





1,
√

(x− X̄s−σ)2 + (y − Ȳs−σ)2 ≤ D̄?
s

2
0, otherwise

(5.51)

where σ = 1 for pinions (? = p) while σ = 0 for gears (? = g). Similarly,

υxφ = [X̄0 Ȳ0 · · · X̄4 Ȳ4 b̄1 · · · b̄4 N̄P
1 · · · N̄P

4 N̄G
1 · · · N̄G

4
]T

(5.52)

υyφ = f(υxφ) (5.53)

Definitions for D̄p
s and D̄g

s can be found in Eqns. 5.12 and 5.13.

Congruence rates of first two stages for MOG Pareto solutions are shown in Figure

5.7. As seen in the figure, gear positions in different Pareto solutions are distributed

among available locations. Hence, MOFEPSO can be said to have explored a wide

portion of the search space.

5.3 Closure

A very highly constrained mechanical design problem (GTP) is addressed in this

chapter. Two distinct versions of the problem which introduce different features are

defined (RC-GTP and MV-GTP). FEPSO was applied to all three versions (including

the original GTP) of the problem to assess its performance. Other algorithms (DOPSO,

HPSO, GA, MOGA2, and NSGA2) were also employed where applicable for bench-

marking purposes. Additionally, results for the GTP available in the literature [86,

93–98, 155, 156] were also compared with results obtained by FEPSO simulations.
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(a) pinion, s = 1 (b) gear, s = 1

(c) pinion, s = 2 (d) gear, s = 2

Figure 5.7: Rates of congruence at first two stages for MOG Pareto solutions found by

MOFEPSO
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Based on the simulations and comparisons, following points related with FEPSO were

observed:

• FEPSO is well suited for highly-constrained problems where feasible region of

the search space is relatively small. FESPO was able to perform with a high

success rate where other algorithms failed to consistently provide a solution.

• Due to the fact that FEPSO requires relatively less OFEs, it could serve well

when the problem has constraints that are relatively easier to evaluate in compar-

ison to objective functions (or other constraints5).

• FEPSO was observed to continuously improve the feasibility of the swarm.

Therefore, FEPSO can also be utilized to improve solely the constraint satisfac-

tion level of the swarm (i.e. to reduce the mean number of violated constraints).

This feature might be useful to preprocess the population for another algorithm

that needs a better population in terms of constraint satisfaction.

In the second part of this chapter, the multi-objective forms of the four-stage gear

train problems are introduced: MOG, RC-MOG, and MV-MOG. These problems

share common properties with their single-objective counterparts with addition of an

objective function that addresses the total size of the gearbox encompassing all pinions

and gears of all stages.

MOFEPSO, MOGA2 [145], NSGA2 [58], and MOPSO [68] were utilized to solve

all three multi-objective problems for benchmarking purposes. In addition to remarks

related with FEPSO’s ability in constraint handling, Following results regarding

MOFEPSO were observed:

• MOFEPSO was found to perform better than the approaches it was benchmarked

with both in terms of objective values of the solutions and success rate.

• Techniques developed for handling highly constrained problems were found to

be relevant and effective also in the multi-objective context.

5 A case where separate sets of constraints with differing complexities exist has not been demonstrated in
this study. However, FEPSO could easily be modified to handle such problems. It would only require additional
internal Virtual Boundary Search routines to be implemented.
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• Design space exploration capability of the algorithm was found to be sufficient

even in the existence of discrete decision variables.
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CHAPTER 6

HEAT PIPE DESIGN PROBLEM

This chapter presents an application of FEPSO to design of a mesh wick type heat pipe.

The design problem consists of minimization of heat pipe mass with respect to eight

decision variables including geometric properties, mesh wick attributes, and working

fluid type along with constraints ensuring heat pipe performance at multiple operating

conditions. Performance of FEPSO in this problem is comparatively evaluated against

NSGA2. Random design space exploration for this problem may reveal some feasible

solutions. Hence, this design problem can not be categorized as a highly constrained

problem. The aim of this application is to investigate FEPSO behavior in a less

constrained problem of the mechanical engineering domain.

Heat pipes are thermal devices that transfer heat at a high transfer rate over long

distances with low temperature gradient. A heat pipe is basically a hermetically sealed

tube with a porous structure (called wick) placed on its inner walls (perimeter). It is

filled with a working fluid which is evaporated at the evaporator side and flows through

the center of the tube towards the condenser side when the heat pipe is operated.

Simultaneously, the condensed liquid moves through the wick from the condenser

side towards the evaporator side due to capillary forces. Even with a low temperature

gradient between the evaporator and the condenser sides, heat pipes can transfer great

amount of heat.

Some researchers have worked on optimization of heat pipes in earlier papers. One of

the first efforts for design optimization of heat pipes was due to Buksa and Williams

[165]. They developed an integrated analytical tool for use in designing optimized

space-based heat pipe radiator systems.
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Wu et al. [166] optimized L-ratio (i.e. ratio of the evaporator section length to the

condenser section length) of a micro heat pipe heat sink. Liang and Hung [167] also

optimized the L-ratio of the U-shape heat pipe using thermal resistance function as

the objective function. Kim, Seo, and Do [168] performed thermal optimization of a

miniature heat pipe through a mathematical model they derived. Vlassov, Sousa, and

Takahashi [169] and Sousa, Vlassov, and Ramos [170, 171] optimized the heat pipe

mass for space applications considering several different working fluids. They repeated

the optimization procedure at several different operating conditions characterized by

temperature and heat transfer rates.

Jeong, Kobayashi, and Yoshimura [172] carried out multi-objective optimization of

mass and thermal conductance of a satellite heat pipe. Zhang et al. [173] utilized

genetic algorithm to optimize the total thermal resistance of a heat pipe using geometric

parameters as decision variables. Kiseev, Vlassov, and Muraoka [174, 175] used

extensive experimental data to analyze and optimize capillary heat pipe structures.

Rao, Savsani, and Vakharia [139] maximized heat transfer rate while minimizing

resistance of a heat pipe using a novel optimization algorithm. Maheshkumar and

Muraleedharan [176] minimized entropy generation in a flat heat pipe. Roper [177]

modeled and optimized a sandwich panel heat pipe for density, compressive modulus,

compressive strength, and maximum heat flux. Wan, Wang, and Tang [178] employed

finite element method for the condenser section optimization of a loop heat pipe.

Similar to several other multi-objective approaches in the literature, Rao and More

[179] also used two objectives (mass and thermal resistance) but employed a weighted

aggregation function instead of directly applying a multi-objective algorithm. Jokar et

al. [180] employed a surrogate assisted approach through artificial neural networks and

used genetic algorithm to optimize the operating point of a pulsating heat pipe. Song

et al. [181] optimized the exergy efficiency of a heat pipe used in solar dynamic space

power system. Patel [182] investigated a satellite heat pipe operated with ammonia and

methanol for the multi-objective optimization of weight and thermal resistance. Lurie,

Rabinskiy, and Solyaev [183] presented a topology optimization approach proposed to

determine an optimal geometry of a wick sintered inside a flat plate heat pipe.

There are not many studies incorporating advanced optimization techniques. Only a
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few papers related with truly multi-objective optimization of heat pipes exist. These

multi-objective approaches generally use the mass and the thermal resistance (or

thermal conductivity) of the heat pipe as objective functions. For this study, design of

a heat pipe with a wick formed by wire screen meshes for satellite thermal control is

considered. Both single-objective and multi-objective approaches are investigated. The

heat pipe mass is minimized in both approaches. Unlike other studies in the literature,

the operating range (in terms of maximum heat transfer rate that can be achieved) is

used as the second objective to be optimized (i.e. maximized). It is critical to note that

the design- and optimization methodology presented here can easily be adapted for

other types of heat pipes.

Figure 6.1: Heat pipe

6.1 Single-objective heat pipe design problem

6.1.1 Problem definition

This section describes a methodology for heat pipe design for a given operating

condition defined by the heat transfer rate (Q) and heat sink temperature (Tsi). The

approach originates from Rajesh and Ravindran [184]. It is adapted as a heat pipe

design problem for satellite thermal management by Sousa, Vlassov, and Ramos

[170, 171]. It is also revisited by several recent optimization studies [185, 186]. The

objective of the design problem is to minimize total mass of the heat pipe (mtot) while

satisfying the constraints. Therefore, the problem can be formulated as to minimize

y = f(x) = mtot (6.1)
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subject to

gm(x) ≤ 0, m ∈ N≤M>0 (6.2)

where M = 14 for the operating condition of interest and

x =
[
x1 x2 · · · x8

]T
(6.3)

=
[
N ε dv tw Le Lc tt Mf

]T
(6.4)

The elements of the decision vector x are defined in Table 6.1.

Table 6.1: Decision variables

Variable Description Values

N Wick mesh number 314 ≤ N ∈ N ≤ 15 000

ε Porosity 0.0001 ≤ ε ∈ R ≤ 0.9999

dv Vapor core diameter [m] 5× 10−3 ≤ dv ∈ R ≤ 80× 10−3

tw Wick thickness [m] 0.05× 10−3 ≤ tw ∈ R ≤ 10× 10−3

Le Evaporator length [m] 50× 10−3 ≤ Le ∈ R ≤ 400× 10−3

Lc Condenser length [m] 50× 10−3 ≤ Lc ∈ R ≤ 400× 10−3

tt Container wall thickness [m] 0.3× 10−3 ≤ tt ∈ R ≤ 3× 10−3

Mf Working fluid Mf ∈ {ethanol,methanol, ammonia}

Many of the calculations required to obtain objective functions and constraints are

dependent on the vapor temperature (Tv). Therefore, before elaborating the procedure,

calculation of Tv will be explained. When thermal resistances associated with various

elements of the heat pipe are considered, all “axial” resistances except for that of

(axially flowing) vapor can be presumed to be high so that the resulting thermal circuit

could be idealized as an open one [187]. Furthermore, axial resistance of the vapor and

liquid-vapor interface resistances can be neglected since they are relatively low [187].

Hence, a simplified model of thermal resistances between the evaporator and condenser

sections will only include thermal resistance of the heat pipe wall at evaporator and

condenser sections (Rte and Rtc respectively) as well as thermal resistance of the

wick (including that of the liquid) at evaporator and condenser sections (Rwe and Rwc

respectively) as shown in Figure 6.2. That is,
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Figure 6.2: Thermal resistance model

Rte =
ln(do/di)

2πLekt
(6.5)

Rtc =
ln(do/di)

2πLckt
(6.6)

where di = dv + 2tw is the inner diameter, do = di + 2tt is the outer diameter of

the heat pipe, and kt is the thermal conductivity of the heat pipe tube material. Note

that tube and wick materials are assumed to be made from SAE 304 stainless steel.

Similarly,

Rwe =
ln(di/dv)

2πLekeq
(6.7)

Rwc =
ln(di/dv)

2πLckeq
(6.8)

The equivalent thermal conductivity (keq) in Eqn. 6.7 and 6.8 is defined as

keq =
kl [(kl + kw)− (1− ε) (kl − kw)]

(kl + kw) + (1− ε) (kl − kw)
(6.9)

Here, kl and kw denote the thermal conductivities of the liquid and wick material

respectively. Note that all fluid properties (for both liquid and vapor) depend on Tv

itself. Therefore, despite its apparent simplicity, the calculation of Eqn. 6.10

Tv = Tsi + (Rtc +Rwc)Q (6.10)

embodies an iterative procedure as follows:

1. Make an initial guess: T ∗v := Tsi
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2. Obtain fluid properties kl and kw at T ∗v to calculate keq, Rwe, and Rwc using

Eqns. 6.7, 6.8, and 6.9.

3. Calculate Tv = Tsi + (Rtc + Rwc)Q. Note that the condenser temperature is

assumed to be equal to Tsi.

4. If |Tv − T ∗v | ≥ T tol then set T ∗v := Tv and return to step 2.

T tol = 0.01 K is the convergence tolerance. Following fluid properties are also

calculated at Tv: latent heat of vaporization (λ), liquid density (ρl), vapor density

(ρv), liquid thermal conductivity (kl), liquid viscosity (µl), vapor viscosity (µv), vapor

pressure (Pv), and liquid surface tension (σ). Note that all material- and fluid properties

are tabulated in Appendix A1.

The objective function, total mass of the heat pipe, can be expressed as

f(x) = mtot = mt +mwd +ml +mv (6.11)

where mt, mwd, ml, and mv are the masses of the tube, dry wick, the liquid in the

wick, and the vapor in the core respectively. In Eqn. 6.11,

mt = πtt (di + tt)Ltotρt (6.12)

mwd = πtw (dv + tw) (1− ε)Ltotρw (6.13)

where Ltot = La + Le + Lc is the total length of the heat pipe, ρt is the tube material

density, ρw is the wick material density, and La = 0.5 m is the length of the adiabatic

section. Note that when a specific requirement related with the total length of the heat

pipe exists, it is also possible to take La as a decision variable and define a constraint

function for Ltot. However, if the distance between evaporator- and condenser sections

is fixed by design [170, 171, 186], adiabatic section length is constant as explained

above.

ml = πtw (dv + tw) εLtotρl (6.14)

mv =
πd2

vρvLtot
4

(6.15)

Due to the capillary limit

g1(x) = Q−Qc ≤ 0 (6.16)
1 Note that working fluid properties are obtained by interpolating values given in property tables with vapor

temperature (Tv).
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The capillary heat transfer rate limit Qc is defined as

Qc =
Pc + Pg

(Fl + Fv)Leff
(6.17)

where Pc is the capillary pressure drop, Pg is the gravitational pressure difference, Fl

and Fv are the liquid and vapor friction coefficients respectively. Leff = Le+Lc

2
+ La

is the effective length.

Pc =
2σ

rc
(6.18)

where capillary radius rc = 1/2N . Similarly,

Pg = ρlg (Ltot sinα− dv cosα) (6.19)

where α is the angle of inclination. Note that for satellite applications Pg = 0.

Fl =
µl

K
(
π
d2i−d2v

4

)
ρlλ

(6.20)

where K is permeability which is defined as follows:

K =
d2ε3

122(1− ε)2 (6.21)

Fv =
128µv
πd4

vρvλ
(6.22)

Due to the operational temperature range of electronic equipment, limits on the source

temperature (Tso) exist, such that

Tmin
so ≤ Tso ≤ Tmaxso (6.23)

g2(x) = Tminso − Tso ≤ 0 (6.24)

g3(x) = Tso − Tmax
so ≤ 0 (6.25)

where

Tso = (Rte +Rtc +Rwe +Rwc)Q+ Tsi (6.26)

The working fluid shall not reach the boiling point such that

g4(x) = Q−Qb ≤ 0 (6.27)

Qb =
2πLekeqTv

λρv ln
(
di
dv

)
(

2σ

rn
− Pc

)
(6.28)

where rn = 2.5× 10−7 m is the nucleation radius.
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High vapor velocities may entrain the liquid returning to the evaporator. Entrainment

limit may especially become significant at low mesh numbers [184]. Therefore,

g5(x) = Q−Qe ≤ 0 (6.29)

Qe =
πd2

v

4
λ

√
σρv
2rhs

(6.30)

where hydraulic radius (rhs) can be defined as

rhs =
1

2N
− d

2
(6.31)

For Eqn. 6.30 to be valid,

g6(x) = d− 1

N
≤ 0 (6.32)

must be satisfied. The wick wire diameter (d) can be calculated using mesh number

and porosity such that

d = 4
1− ε

1.05πN
(6.33)

At lower than optimal operating temperatures, saturation vapor pressure in the heat

pipe may become comparable to the pressure drop required for the vapor to flow

towards the condenser. As a consequence, the following constraint called the viscous

limit shall be satisfied:

g7(x) = Q−Qv ≤ 0 (6.34)

Qv =
πd4

vρvλPv
256µvLeff

(6.35)

Furthermore, Since Eqns. 6.20 and 6.22 are only valid for laminar and incompressible

flow, limits on Mach number and Reynolds number must be imposed:

g8(x) = Mv − 0.2 ≤ 0 (6.36)

g9(x) = Rev − 2300 ≤ 0 (6.37)

Mv =
4Q

πρvd2
vλ
√
γRvTv

(6.38)

Rev =
4Q

πdvµvλ
(6.39)

where γ is the specific heat ratio of the working fluid and Rv is the specific gas

constant2.
2 Note that Rv = R/M where R = 8.314 459 8 J/molK is the gas constant and M is the molar mass.
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Wick wire diameter shall also be constrained such that

0.025× 10−3 m ≤ d ≤ 1× 10−3 m (6.40)

g10(x) = 0.025× 10−3 − d (6.41)

g11(x) = d− 1× 10−3 (6.42)

A limit for the wick thickness should also be defined as

g12(x) = 2d(1 + β)− tw ≤ 0 (6.43)

where β = 0.2 is the technology parameter [170]. This parameter ensures that very

low values of wire diameter that violate technological feasibility for mesh type wicks

[171] are not attained.

Finally, the following constraints are defined to ensure that heat pipe tube wall and

end caps withstand the working fluid pressure.

g13(x) = 4
∆P (d2

o + d2
i )

d2
o − d2

i

− σy ≤ 0 (6.44)

g14(x) = 4
∆P (d3

o + 2d3
i )

2 (d3
o − d3

i )
− σy ≤ 0 (6.45)

where σy is the yield strength of the tube material and ∆P = Pv − Pamb. Note that

Pamb = 0 for heat pipes used in space applications.

6.1.2 Results and discussion

The operating condition of the heat pipe can be parametrized by the heat transfer rate

(Q) and the heat sink temperature (Tsi). The heat pipe would often be expected to

function in different operating conditions. For instance, in a satellite application the

heat transfer rate would depend on the duty cycle and loading regime of the equipment

being cooled. Likewise, the heat sink temperature would vary based on the position

of the satellite and total heat generated by its components. Five different operating

conditions summarized in Table 6.2 were chosen for the heat pipe design problem

and all constraints explained in the previous section were imposed for every operating

condition on designs obtained in the optimization. Therefore, the obtained designs are

expected to function in a range of operating conditions.
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Table 6.2: Selected operating conditions

# Tsi (◦C) Q (W)

1 0 25

2 0 100

3 15 62.5

4 30 25

5 30 100

FEPSO was employed for 50 separate design optimization runs to minimize the total

mass of the heat pipe while satisfying all constraints (g1 - g14) for all selected operating

conditions. Furthermore, 5 different population size (i.e. swarm size) and number of

maximum iterations combinations were selected to repeat the runs. For a comparative

analysis of the results the constrained evolutionary optimizer called NSGA2 [28] was

also utilized to obtain results. A statistical summary of all results obtained by both

algorithms can be seen in Table 6.3. Statistical data on number of constraint- and

objective function evaluations (CFE and OFE respectively) performed when the best

value of mtot is found are also presented in this table. A selected result found by

FEPSO is given in Table 6.4.

Results obtained by FEPSO are found to be better in both average and minimum

when compared with NSGA2 results obtained with same population size and iteration

number. The difference between solutions of the two algorithms were statistically

significant (p < 0.0001 for each of the 5 combinations) according to nonparametric

Wilcoxon method [164]3. The difference between results found by the two algorithms

for each case are illustrated in Figure 6.3.

Note that FEPSO solutions required more CFEs but less OFEs when population

size and termination criterion was kept same. On the other hand, selecting different

termination criteria for the two algorithms resulted in similar number of CFEs. For

instance, at popSize = 150, selecting maxIter = 50 for FEPSO and maxIter =

150 for NSGA2 resulted in similar amount of CFEs. Likewise, at popSize = 250,

3 Wilcoxon method was used due to non-normally distributed FEPSO results. Normality was tested with
Shapiro-Wilk test [188].
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(a) popSize = 150, maxIter = 50 (b) popSize = 150, maxIter = 150

(c) popSize = 200, maxIter = 100

(d) popSize = 250, maxIter = 50 (e) popSize = 250, maxIter = 150

Figure 6.3: Graphical comparison of results obtained by NSGA2 and FEPSO for the

heat pipe problem using different maximum iterations (maxIter) and population sizes

(popSize)
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Table 6.4: A selected design obtained by FEPSO

Variable Value

N 439

ε 0.9909

dv 36.69 mm

tw 0.12 mm

Le 50.00 mm

Lc 50.00 mm

tt 0.30 mm

Mf ammonia

Tube/wick material SAE 304 stainless steel

mtot 0.1808 kg

maxIter = 50 for FEPSO andmaxIter = 150 for NSGA2 has the same effect. When

results obtained for these cases were compared, FEPSO was found to have yielded in

significantly better results ((p < 0.0001 for both cases using Wilcoxon method). The

difference between the results is illustrated in Figure 6.4. As a result, one can assume

that FEPSO obtains better solutions when both algorithms are restricted to only make

a certain number of CFEs.

6.2 Multi-objective heat pipe design problem

In the previous section the heat pipe design problem is handled as a single-objective

problem with the objective being to minimize the weight. Design of the heat pipe can

also be approached in a multi-objective manner. While minimizing the weight of the

heat pipe, the amount of heat it can dissipate can also be maximized.
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(a) popSize = 150; maxIter = 50 for FEPSO, maxIter = 150 for

NSGA2

(b) popSize = 250; maxIter = 50 for FEPSO, maxIter = 150 for

NSGA2

Figure 6.4: Graphical comparison of results obtained by NSGA2 and FEPSO which

have similar number of CFEs
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6.2.1 Problem definition

The multi-objective heat pipe design problem can formally be stated as to minimize

y = f(x) =
[
mtot −Qmax

]
(6.46)

subject to

gm(x) ≤ 0, m ∈ N≤M>0 (6.47)

where M = 28 and Qmax represents the maximum amount of heat that the heat pipe

can transfer. The decision vector of the problem is as shown in Eqn. 6.4. In the

multi-objective context, the aim is to satisfy all constraints described by Eqns. 6.16

to 6.45 at two operating conditions that represent the minimum heat transfer rate and

both ends of the heat sink temperature range. These two operating conditions can be

denoted as (Qmin, T
min
si ) and (Qmin, T

max
si ). Where Qmin = 25 W is the minimum

heat transfer rate the heat pipe is expected to operate. Half of the constraints (g1-g14)

are to ensure the heat pipe operates in one of these conditions while the rest (g14-g28) is

for the other condition. The second objective (y2 = −Qmax = f2(x)) is the negative4

of the maximum heat transfer rate the heat pipe can operate. In other words, Qmax is

the maximum Q where all working conditions defined by Eqns. 6.16-6.45 are met.

This requires the satisfaction of all conditions at both ends of the heat sink temperature

range [Tminsi , Tmaxsi ]. Maximization of the operating range of the heat pipe is shown in

Figure 6.5.

The maximum allowable heat transfer rate (Qmax) is found numerically using the

bisection method. The technique involves gradually increasing Q starting from Qmin

to find a Q that violates working conditions. Then, bisection method is applied to

find Qmax with a certain accuracy (Qtol = 0.1 W). Note that this approach assumes

working conditions are met at (Qmin, T
min
si ) and (Qmin, T

max
si ) since this objective is

only relevant when the constraints of the problem are satisfied. In the meantime, the

step size with which Q is increased has been taken as ∆Q = 10 W. Likewise, the heat

sink temperature range is defined with Tminsi = 0 ◦C and Tmaxsi = 30 ◦C. A flowchart

summarizing the procedure is given in Figure 6.6

4 The maximum heat transfer rate is negated because it is to be maximized.
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Tso

QQmin

Tmin
so

Tmax
so

maximize Qmax

Figure 6.5: Maximization of the heat pipe operating condition range

6.2.2 Results and discussion

The multi-objective heat pipe design problem was solved by MOFEPSO, NSGA2, and

MOGA2 with different combinations of population size and number of generations.

Statistical summary of the results obtained during these runs are given in Table 6.5.

However, since the problem is multi-objective, separate statistical properties evaluated

for each objective are not completely meaningful. Graphical comparison of Pareto

fronts is an alternative approach for examining results obtained in multi-objective

problems. This technique is efficient when there are only two objectives. When

there are more than three objectives, graphical comparison of Pareto fronts becomes

practically impossible due to the fact that Pareto fronts being hyper-surfaces of a degree

higher than three which are very complicated to visualize. This is one of the reasons

why multi-objective techniques are not recommended for problems with more than

three objectives. This type of problems are generally categorized as many-objective

problems and require some handling techniques. Since the multi-objective heat pipe

problem has only two objectives, it makes sense to make an evaluation based on
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Start from Qmin

Q− := Qmin

BEGIN

END

Qmax := Q−

Q− := Qt Q+ := Qt

Does Qt violate
working conditions?

Create a trial point
Q+ := Q− + ∆Q

Create trial point using bisection
Qt := Q−+Q+

2

Q− := Q+
Does Q+ violate

working conditions?

Has the stopping
criterion been reached?

Q+ − Q−
?
≤ Qtol

Figure 6.6: Flowchart of the numerical approach to evaluate Qmax of a heat pipe

design
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images of the Pareto fronts obtained by different algorithms. Nevertheless, the solution

procedure was repeated several times for each algorithm (10 times for MOFEPSO and

NSGA2, while 5 times for MOGA2 at each population size and maximum iterations

combination) and it is very difficult to compare every solution combination. Therefore,

four randomly selected solution combinations for each population size and maximum

iterations configuration containing a solution from each algorithm was plotted in

Figures 6.7 thru 6.10.

MOFEPSO is found to produce the best Pareto front among the algorithms especially

at lower numbers of maximum iterations. When the algorithms are allowed to produce

more generations, the resulting Pareto fronts become similar. However, MOFEPSO

tends to find better results at the upper left corner of the Pareto front even at higher

number of generations. This advantage is not observed at the lower right corner of the

Pareto front and there are some cases where MOGA2 or NSGA2 perform better than

MOFEPSO in this region. When compared with MOGA2 and NSGA2, MOFEPSO

seems to produce less number of solutions in the Pareto front for the multi-objective

heat pipe design problem. Another disadvantage of MOFEPSO seems to be the higher

number of constraint function evaluations it requires. Although, MOFEPSO makes less

number of objective function evaluations, the difference is not significant. MOFEPSO

is known to perform with significantly low number of objective function evaluations

in highly-constrained problems (see Chapter 5). However, when the problem has

relatively easier constraints as in the heat pipe problem, the difference in the number of

objective function evaluations is not as dramatic. Broadly speaking, MOFEPSO was

found to be able to perform satisfactorily in a multi-objective problem that is somewhat

less constrained than problems that it is designed to deal with. In fact, MOFEPSO was

better in some aspects from widely accepted algorithms.

Solutions for the multi-objective heat pipe problem present a large number of al-

ternatives to the designer. These not only include solutions that can substitute the

solutions found for the single-objective version but also provide valuable insight about

available design options and the aspects of performance that these designs achieve in

the objective space. For instance from this data, the maximum rate of heat transfer that

can be achieved for a given heat pipe mass can be extracted. Furthermore, the designer

can judge how much gain they would have in terms of maximum heat transfer rate
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Figure 6.7: Selected Pareto fronts for the multi-objective heat pipe problem obtained

by MOFEPSO, MOGA2, and NSGA2 (population size: 100, number of iterations: 50)
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Figure 6.8: Selected Pareto fronts for the multi-objective heat pipe problem obtained

by MOFEPSO, MOGA2, and NSGA2 (population size: 100, number of iterations:

100)
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Figure 6.9: Selected Pareto fronts for the multi-objective heat pipe problem obtained

by MOFEPSO, MOGA2, and NSGA2 (population size: 200, number of iterations: 50)
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Figure 6.10: Selected Pareto fronts for the multi-objective heat pipe problem obtained

by MOFEPSO, MOGA2, and NSGA2 (population size: 200, number of iterations:

100)
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in the case of allowing a higher heat pipe mass. Therefore, a design can be chosen

by making a trade-off between these two objectives and their relation given by the

solutions obtained through the multi-objective optimization [189]. A third objective,

such as the cost, may provide additional leverage.

6.3 Closure

In the first part of this chapter, the single-objective heat pipe design problem and

the solution procedure was described. Multiple operating conditions were taken into

consideration. FEPSO and NSGA2 were used to minimize the heat pipe mass while

satisfying all constraints for all operating conditions. Feasible solutions were found by

both evolutionary algorithms. However, results obtained by FEPSO were significantly

better in both of the following cases:

• When population size and maximum number of iterations are same for both

algorithms

• When CFEs and OFEs are limited to the same number for both algorithms

In the second part, the multi-objective heat pipe design problem was introduced. A

new objective (Qmax) was defined to maximize the operating range of the heat pipe.

problem was solved by MOFEPSO, NSGA2, and MOGA2 with different combinations

of population size and number of generations. MOFEPSO was found to produce the

best Pareto front among the algorithms especially at lower numbers of maximum

iterations. When the algorithms are allowed to produce more generations, the resulting

Pareto fronts become similar. Results presented a plethora of solutions to chose from

through a trade-off between the two objectives and their relation given by the solutions

obtained through the multi-objective optimization.

The results presented in this chapter show that FEPSO and MOFEPSO not only

perform well in highly constrained problems that they are designed for but also have

promising effectiveness in relatively less constrained problems.

128



CHAPTER 7

ALGORITHM CHARACTERISTICS

7.1 Qualitative and empirical analysis of complexity

Time complexity is a type of computational complexity that characterizes the amount of

time the algorithm needs to run. Therefore, time complexity is an important parameter

in the selection and assessment of an algorithm.

Time complexity of MOFEPSO has been investigated as well1. Since MOFEPSO is

an enhanced version of the original PSO, the time complexity of the algorithm has a

close resemblance to that of the basic PSO algorithm. However, since the original PSO

algorithm is not multi-objective and cannot handle constraints, MOFEPSO is compared

to a generic multi-objective PSO constituting a constraint handling mechanism that is

compatible with Deb’s approach [58].

Initialization steps and computations performed in the main loop are taken into consid-

eration in the complexity analysis presented in Table 7.1. Operations (such as empty

array initializations or simple operations performed on variables/arrays) which are

computationally insignificant if compared to the others, are disregarded.

At the initialization phase, the only operation which introduces significant compu-

tational burden to MOFEPSO is the constraint sensitivity calculation. This step

requires each particle be temporarily moved along each fundamental direction to detect

constraint sensitivities. Naturally, the procedure involves CFEs. That is, additional

computational cost is directly related to the computational complexity of constraint

1 In the complexity analysis MOFEPSO was chosen over FEPSO due to the fact that MOFEPSO is more
complex. Additional complexity is a consequence of mechanisms implemented in MOFEPSO for handling multiple
objectives.
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Table 7.1: Complexity comparison of MOFEPSO with generic multi-objective PSO

with a constraint handling mechanism

MOFEPSO Generic multi-objective PSO

Initialization Random postion and velocity

initialization

Random postion and velocity

initialization

Evaluation of constraint functions Evaluation of constraint functions

Initialization of PBEST and GBEST(1) Initialization of PBEST and GBEST(1)

Constraint sensitivities calculation(2) -

Every iteration Activated constraint selection(3) -

for each particle Leader (guide) selection Leader (guide) selection

Calculate velocity and candidate

position

Calculate velocity and new position

Virtual Boundary Search(4,5) -

Update particle position Update particle position

Update constraint priorities(3) -

Calculate objective function(6) Calculate objective function(6)

Update PBEST and GBEST Update PBEST and GBEST

(1)Includes calculation of objective functions for feasible points
(2)Involves I ×N temporary particle movements and constraint function evaluations
(3)Only for infeasible particles
(4)Only for virtually infeasible particles
(5)Involves consecutive constraint function evaluations until virtual boundary is found
(6) Only for feasible particles and particles which became feasible within the current iteration
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functions. For complex constraint functions, a simpler approach could be facilitated

like OCCURM (i.e. occurrence matrix) procedure of Khorshid and Seireg [96]. Note

that if constraint sensitivities are known beforehand, this initialization step could be

avoided altogether.

Complex operations are more critical within the main function of the algorithm.

Additional computational load in the main loop of MOFEPSO is attributed to the

constraint selection-, VBS, and constraint priority updating procedures (see Table

7.1). Activated constraint selection and constraint priority selection are performed

on infeasible particles only. These procedures involve the update of several elements

in initialized arrays. Therefore, the corresponding computational complexity may

be neglected for all practical purposes. However, VBS requires consecutive CFEs

until it finds a legitimate virtual boundary. As expected, this is the major source of

computational load especially when the constraint functions are costly. For instance, it

has been observed in this study that VBS for the MOG2 problem requires, on average,

2 extra constraint evaluations (within the range of 1 to 27). Consequently, the time

complexity of MOFEPSO may be assessed by the number of CFEs performed since

most operations involve constraints.

After this qualitative analysis, a numerical evaluation of the time complexity associated

with the proposed method is in order. The benchmark problem titled C14 of Mallipeddi

and Suganthan [190] is utilized for this purpose. Figure 7.1 illustrates average number

of CFE values at sampled data points and the surface fitted on the data. Swarm

size and number of decision variables were changed using uniform random sampling

with a sample size of 100. Consistent with the qualitative analysis above, the total

computation time at each run is found to be correlated with number of CFEs (p <

0.0001). Therefore, the average number of CFEs per iteration can be used as a measure

for time complexity.

As seen in Figure 7.1, a high order increase in time complexity with neither of the

parameters (N : number of decision variables and I: swarm size) have been observed.

Therefore, increase in time complexity of MOFEPSO with respect to these parameters

can be said to be benign.

2 The MOG problem is described in Section 5.2.
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(a) Response surface

(b) Factor effects

Figure 7.1: Mean number of CFEs versus number of decision variables (N ) and swarm

size (I)
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7.2 Comparison of multi-objective and single-objective approaches

MOFEPSO is a Pareto based multi-objective optimization approach while FEPSO is

a single-objective technique. Single-objective algorithms can also be used in multi-

objective problems via special methods. Most commonly used method is utilization of

fixed weight linear aggregation functions to convert the problem into a single-objective

one. In this chapter, several multi-objective problems are solved by both MOFEPSO

and FEPSO (with different aggregation functions) to compare these approaches.

When multi-objective problems are converted into single-objective problems via aggre-

gation, objective functions need to be prioritized- and weighted before the optimization

algorithm is employed. This carries the risk of introducing bias, especially when insuf-

ficient information related with the problem exists. On the contrary, in multi-objective

approaches all objectives can be optimized simultaneously. However, in this case

unless all objective functions have their optimums at the exact same point, a single

optimum can not exist. Hence, the scalar concept of optimality in single-objective

problems doesn’t apply to multi-objective context. Instead, multi-objective optimiza-

tion results in a set of Pareto optimal3 solutions from which a solution can be selected

by the designer through a trade-off of objectives.

There are some other studies comparing Pareto based approaches with others. Zitzler

and Thiele [191] compare Pareto based NSGA [26] with a fixed weight aggregation

approach and show superiority of NSGA in several problems. Coello [192] states that

the major shortcoming of single-objective methods using fixed weight aggregation

functions is that the weights are determined before sufficient information is available

for the problem and the solutions become dependent to these predetermined weights.

Meanwhile, Ishibuchi, Nojima, and Doi [193] discuss methods for comparing multi-

objective and single-objective optimization algorithms and report some results of

computational experiments where better results are obtained with multi-objective

approaches.

3 Please see Section 2.1.1 for a more extensive review of Pareto optimality and Pareto sets.

133



7.2.1 Comparison method

SRN [28], RC-MOG, and MV-MOG4 problems were used for comparing single- and

multi-objective approaches. SRN can be defined as to minimize

y = f(x) ≡
[
f1(x) f2(x)

]T
(7.1)

subject to

gm(x) ≤ 0, m ∈ N≤2
>0 (7.2)

where

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2 (7.3)

f2(x) = 9x1 − (x2 − 1)2 (7.4)

g1(x) = x2
1 + x2

2 − 225 (7.5)

g2(x) = x1 − 2x2 + 10 (7.6)

Figure 7.2 illustrate constraint- and objective functions of the SRN problem.

MOFEPSO was run 50 times for each of the problems to obtain Pareto solution

sets. Additionally, following aggregation functions were utilized to convert all three

problems into separate single-objective problems (3× 3 = 9 problems in total):

y1 = 0.5y1 + 0.5y2 (7.7)

y2 = 0.6y1 + 0.4y2 (7.8)

y3 = 0.7y1 + 0.3y2 (7.9)

Therefore, single objective approach (i.e. FEPSO) has been applied 50 times for each

aggregation function of each problem (3× 3× 50).

Note that while single-objective runs yield a single best solution, multi-objective

runs produce a set of non-dominated solutions. Multi-objective approaches don’t

require predetermined objective weights and the trade-off between objectives can be

performed after the optimization. To be able to compare resulting multi-objective

Pareto solution sets with single objective best solutions, each of the three aggregation

functions (Eqns. 7.7, 7.8, and 7.9) were evaluated for every element of the Pareto
4 See Section 5.2 for detailed description of RC-MOG and MV-MOG problems.
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(a) Constraint functions

(b) Objective functions

Figure 7.2: Constraint- and objective functions of the SRN problem

135



set. When a multi-objective result set is compared with a single-objective result, The

solution that has the best corresponding aggregation function (i.e. the function used

in single-objective run) value among the Pareto set is used. Furthermore, instead of

directly comparing objective values, values of aggregation functions are compared.

This approach ensures an objective comparison.

7.2.2 Results and discussion

Algorithm parameters given in Table 5.6 were used in FEPSO and MOFEPSO runs.

Likewise, both population size and maximum number of generations were chosen as

100 for SRN.

When RC-MOG and MV-MOG results are examined with respect to single-objective

criteria y1 and y2, they were found to be normally distributed whereas y3 criterion

did not fit to normal distribution5. Accordingly, analysis involving y1 and y2 criteria

were performed via Student’s t-test while Wilcoxon signed rank test [164] was used

for analysis related with y3. On the other hand, none of the results obtained by SRN

were distributed normally. Hence, Wilcoxon signed rank test was used in all SRN

comparisons.

Upon comparison of results obtained for RC-MOG, neither the multi-objective ap-

proach nor the single-objective approach was found to be better than the other (Figure

7.3). On the other hand, results of multi-objective approach for MV-MOG were signifi-

cantly better than the single-objective results in terms of y2 and y3 criteria (p = 0.0434

and p = 0.0196 respectively). Graphical comparisons of MV-MOG results with

respect to each of the three criteria are given in Figure 7.4. Likewise, SRN results

obtained with MOFEPSO were found to be at least as good as results obtained by

FEPSO runs performed separately for each of the criteria (y1, y2, and y3).

In the light of these facts, it is safe to say MOFEPSO, with no preset weights on

the objectives, have yielded results that are at least as good as the results obtained

with separate FEPSO runs for each of the three criteria. Hence, a single MOFEPSO

run is worth three FEPSO runs for the problems considered. Like other Pareto based

5 Shapiro-Wilk test [188] was used to test for normality.
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(a) Criterion y1 (b) Criterion y2

(c) Criterion y3

Figure 7.3: Comparison of multi-objective results obtained for RC-MOG with results

obtained by single-objective approaches using y1, y2, and y3 criteria

.
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(a) Criterion y1 (b) Criterion y2

(c) Criterion y3

Figure 7.4: Comparison of multi-objective results obtained for MV-MOG with results

obtained by single-objective approaches using y1, y2, and y3 criteria

.
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Figure 7.5: All Pareto solutions obtained for the SRN problem in a single selected

multi-objective optimization run (Pareto front - 1879 points) and solutions that are the

best (have the lowest value) in terms of y1, y2, and y3 criteria

algorithms, MOFEPSO produces a Pareto set at the en of an optimization run. Designer

can select a solution considering all solutions available in the set. With this approach,

weights can be assigned to objectives after the optimization run and these weights

can be change without requiring a rerun of the algorithm. For instance Figure 7.5

illustrates all non-dominated solutions obtained in a multi-objective MOFEPSO run

and solutions among these that are determined to have the best (lowest) values of y1, y2,

and y3 criteria. As seen here, each solution in the Pareto set obtained by a single multi-

objective optimization run actually corresponds to a single-objective run performed for

a fixed weight aggregation function. Therefore, although multi-objective algorithms

contain steps that introduce additional complexity such as special selection techniques,

due to the fact that a single multi-objective optimization run yields solutions that

would otherwise require multiple runs of single-objective algorithms, they provide a

substantial advantage in terms of computational complexity. The size of the Pareto

set obtained by a multi-objective optimization run largely depends on the problem. In

Figure 7.6, number of solutions in the Pareto set is plotted against number of iterations

and population size for the SRN problem.
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Figure 7.6: Number of solutions obtained in the Pareto set with varying number of

iterations- and swarm size

7.3 Particle flight characteristics

Most unique aspect of the FEPSO particle movement is the Virtual Boundary Search.

It entails limiting the particle movement to an implied boundary. If this boundary is

passed, the particle moves into a less feasible position (i.e. some of its previously

satisfied constraints become violated). FEPSO prohibits such a position change to

allow progressive improvement of constraint satisfaction. Therefore, particles can only

move towards a region where all of their already satisfied constraints remain intact and

favorably some others become satisfied too. For feasible particles (i.e. particles that

already satisfy all constraints), this implies that returning to an infeasible region is not

possible.

Another distinct feature of FEPSO is that infeasible particles only move along decision

space dimensions that a selected constraint (i.e. activated constraint) is sensitive to.

This ensures a fast convergence to regions where high priority constraints become

feasible while maintaining the diversity of the swarm.

Some aspects of these unique properties can be visualized and examined with an
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artificial scalable optimization problem. Suppose that a small feasible region in

the shape of a hypercube exists in the center of the N-dimensional decision space.

This can be achieved through a couple of linear constraints for every decision space

dimension. Since each of these constraints only depend on a single decision vector,

infeasible FEPSO particles shall only move along a single dimension. For the sake of

convenience, optimum is also assumed to be at the center. The problem can be defined

as to minimize

f(x) =
N∑

n=1

|xn| (7.10)

subject to

gn(x) = −δ − xn ≤ 0 (7.11)

g2n(x) = xn − δ ≤ 0 (7.12)

where δ = 0.1 and M = 2N . In two dimensions the constraint functions and the

feasible region can be visualized as shown in Figure 7.7. Note that the problem is

scalable in terms of number of decision variables. Definition of the problem is valid

for any number of variables.

Initially, the problem was employed in two dimensions. FEPSO was used with a

swarm size of five and particle movements in the first several iterations were examined.

Traces of particle movements in the first six iterations are plotted in Figure 7.8. As seen

in this figure, the particles are initialized at infeasible locations. They quickly move

towards feasible regions. This particular example is designed for ease of visualization

and particles move along a single dimension due to the fact that each constraint

depends only on a single decision variable. Notice that the particles stick to constraint

boundaries if any of their already satisfied constraints are to become violated. Another

point worth mentioning is the importance of activating different constraints at each

iteration. Overemphasizing highest priority constraints might cause a more stagnant

swarm since many particles quickly move towards and stick to boundaries related with

those constraints. It can be observed in Figure 7.8 that within the first six iterations, all

five particles converge to the feasible region.

Further particle movements within the feasible region are also plotted in Figures 7.9

and 7.10 for iterations 2 through 13. Once the particles move into the feasible region
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Figure 7.7: Constraint functions and the feasible regions of the hypercube problem in

two dimensions

they converge to the center. Note that the particles are never allowed to leave this

region and they bounce from the constraint boundaries.

The three dimensional version of the problem was also examined. Once again, FEPSO

was employed with only five particles for ease of visualization. As seen in Figure 7.11

all particles enter the feasible region within 6 iterations. Similar to the two dimensional

case, once in the feasible region, particles begin moving towards the center bouncing

off from the boundary walls. Figures 7.12 and 7.13 depict the behavior in the feasible

region for the first several iterations after particles begin entering the feasible region.

Note that, although the constraint boundaries are not explicitly shown in these figures,

axis limits of the plots constitute the boundaries of the feasible region.

As discussed in the previous chapters, FEPSO uses the information produced by the

constraint functions to search for the virtual boundary. Therefore, constraint functions

providing a clear measure of how much they are violated and a margin of satisfaction
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Figure 7.8: Progression of particles in the 2D design space (iterations 1 to 6)
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Figure 7.9: Progression of particles in the 2D feasible region (iterations 2 to 7)
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Figure 7.10: Progression of particles in the 2D feasible region (iterations 8 to 13)
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Figure 7.11: Progression of particles in the 3d design space (iterations 1 to 6)
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Figure 7.12: Progression of particles in the 3D feasible region (iterations 5 to 10)
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Figure 7.13: Progression of particles in the 3D feasible region (iterations 11 to 16)

148



when they are not violated are handled more efficiently by FEPSO. To illustrate

the effects of this information on the optimization process the RC-MOG problem

introduced in Section 5.2 was used. A boolean constraint version of the problem was

defined where each constraint function was converted such that

g∗n(x) =





1, gn(x) > 0

0, gn(x) ≤ 0
(7.13)

This modification essentially removes the information related with how far a point

may be from each constraint boundary. When the boolean constrained RC-MOG

was solved with MOFEPSO with a swarm size of 200 and maximum iterations of

200, no feasible solutions were found. Whereas, MOFEPSO with the same algorithm

parameters is able to find good solutions to the original RC-MOG problem. Both the

original- and boolean constrained versions of the problem were solved with FEPSO

five times after setting the maximum iterations to 400. While FEPSO found feasible

solutions for the original RC-MOG problem in all five of the runs, it was able to find

feasible solutions in only three of the boolean constrained runs. A comparison of

non-dominated solutions found in these runs are given in Figure 7.14. As seen in this

figure, results found for the original RC-MOG problem are significantly better when

compared to the boolean constrained version. All these results point to the fact that

more iterations are required when there is less information related with constraints or

in the case of implicit constraint functions.

The importance of constraint function characteristics were further examined using

the artificial hypercube problem. Since the hypercube problem is a single-objective

problem, it is easier to statistically compare results obtained by different approaches.

Once again a boolean constrained version of the problem was defined by Eqn. 7.13.

Number of decision variables was taken as 10 (N = 10 and M = 2N ) while swarm

size and maximum iterations were both set to 100. When results of 20 runs for the each

problem variant were examined, solutions found for the boolean constrained version

were found to be significantly worse than the solutions of the original hypercube

problem (p < 0.0001)6. This result also indicates to the fact that more iterations

are required as less information is provided by the constraint functions. Another

conclusion is that if decomposition of some complex constraints are possible, FEPSO
6 Nonparametric comparisons were performed with Wilcoxon method [164].
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Figure 7.14: Comparison of boolean or real valued constraint functions for the RC-

MOG problem (swarm size: 200, maximum iterations: 400, n = 5)

performance can be improved.

The hypercube problem was also utilized to observe the variation of number of con-

straint violations in the swarm as iterations progress. Three different number of

variables (N = 20, 25, 30) were used in FEPSO runs with swarm sizes of 50 and 100.

As seen in Figure 7.15, number of constraint violations rapidly reduce down to a fully

satisfying swarm.

7.4 Closure

First section of this chapter describes the analysis performed in order to reveal the time

complexity characteristics of MOFEPSO. Important differences that cause additional

computational burden when compared with canonical PSO are explained. Main source

of additional complexity introduced by MOFEPSO arises from the CFEs required by

the VBS algorithm. However, when the relation of time complexity with swarm size

and number of decision variables is examined a high order increase in complexity is

not observed.
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Second part of the chapter puts forward an extensive comparison of single-objective

and multi-objective approaches. Each of the multi-objective problems RC-MOG,

MV-MOG, and SRN were solved 50 times with the MOFEPSO algorithm. To be

able to compare with the results obtained, these problems were converted to single

objective problems using three different fixed weight aggregation functions (y1, y2,

and y3) and solved with FEPSO. When results obtained by single- and multi objective

algorithms were compared with respect to y1, y2, and y3 criteria, single-objective

solutions were not superior. Therefore, solutions obtained with MOFEPSO in a single

run were found to be either equivalent to or better than the results obtained by separate

FEPSO runs performed for different aggregation functions. Moreover, results obtained

by MOFEPSO (i.e. the Pareto set) were observed to contain solutions that correspond

to optimum values of different weight combinations of objectives. Therefore:

• Multi-objective optimization runs performed without assigning fixed weights

to objective functions reveal solutions that virtually correspond to any weight

combination.

• If sufficient information related with the problem does not exist, one should

refrain from assigning fixed weights to objectives in order to employ a single-

objective optimization algorithm.

• Due to the fact that the results of a single multi-objective optimization run

can correspond to multiple single-objective runs, multi-objective approach is

found to be more efficient. In other words, multi-objective algorithms can offer

considerable advantage in terms of computational cost. This advantage may

especially become important in the case of complex objective functions such as

the finite element method.

In the final section the particle motion characteristics of FEPSO (and MOFEPSO) were

examined. The mechanisms contributing fast convergence to feasible regions were

discussed. The importance of cyclic constraint activation for infeasible particles was

emphasized. Finally, the effects of the nature of constraint functions were addressed

and decomposition of implicit constraint functions was pointed out as a potential

approach for improving algorithm performance.
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CHAPTER 8

CONCLUSION

This study presents the FEPSO method and its multi-objective counterpart MOFEPSO

to solve constrained optimization problems in engineering design. This new approach

treats objective functions and constraint functions separately. The proposed method

does not require objective function evaluation at infeasible points. Moreover, it

does not require the swarm to have feasible particles when initialized. It performs

satisfactorily when the problem is highly-constrained and progressively improves the

level of constraint satisfaction in the swarm at each iteration. Some key attributes of

(MO)FEPSO can be summarized as follows:

• (MO)FEPSO does not require any feasible positions to exist in the initialized

swarm. It only requires the presence of at least one non-violating particle for

each constraint.

• Infeasible particles fly to become feasible. Therefore, they activate a violated

constraint and become socially attracted to a particle that satisfies the activated

constraint (AC). AC is selected based on constraint priorities and number of

times constraints have been selected as the AC.

• If a particle is in a feasible position, it is not allowed to fly into an infeasible

position.

• An infeasible particle is not allowed to fly into a position that violates one of its

previously satisfied constraints.

• Flight of infeasible particles only occur along dimensions to which AC is sensi-

tive to.
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• Objective functions are only evaluated for feasible positions.

All of these features help (MO)FEPSO to gradually increase overall feasibility of the

swarm and finally attain feasible solutions.

Rigorous simulations have been performed to compare FEPSO and MOFEPSO with

other popular algorithms. Additionally, certain characteristics of the algorithms such as

the design space exploration capability and the time complexity were also investigated.

Simulation results suggest that FEPSO and MOFEPSO are efficiently able to solve

single and multi-objective constrained optimization problems even if the feasible

portion of the design space is extremely small. Furthermore, in comparisons performed,

FEPSO and MOFEPSO were found to perform better than the competing algorithms.

All problems1 used in comparative studies in this dissertation are listed in Table 8.1

together with the algorithms that have been applied.

Table 8.1: All problems and algorithms used in the dissertation

FEPSO DOPSO HPSO GA MOFEPSO MOGA2 NSGA2 MOPSO

GTP × × × × × ×

RC-GTP × × × × ×

MV-GTP × × × × × ×

Heat Pipe × × × ×

C14 ×

MOG × × × ×

RC-MOG × × × ×

MV-MOG × × × ×

SRN × ×

Following points stand out as the main contributions of this work.

• A new evolutionary optimization algorithm and its multi-objective version have

been developed.

– The algorithms are capable of solving highly-constrained problems with a

high success rate and consistency.

1 Benchmark problems used for initial assessments in Section 3.8 are not included.
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– The algorithms were shown to progressively enhance a population’s feasi-

bility as a whole.

– When applied to less constrained problems, the developed method was

found to perform satisfactorily. Hence, usage is not limited to highly-

constrained problems and utilization as a general purpose constrained

optimizer is practical.

– Solutions found by the algorithms were statistically better than its counter-

parts in the performed simulations. The time complexity of the algorithm

was also found to be reasonable during these simulations.

• The virtual boundary search (VBS) and the concept of virtual boundaries in

constraint handling were devised as a part of FEPSO development work. This

innovative approach provides an efficient way to handle constraints especially

for hard-to-satisfy constraint functions.

• A methodology for comparison of multi-objective- and single-objective ap-

proaches is formed. Results support the usage of multi-objective algorithms

(such as MOFEPSO) in the presence of multiple objective functions.

• Several mechanical design problems have been formed. These problems can be

utilized as test problems for constrained optimizers.

– Four-stage gear train problem and its variants are especially suitable as

highly-constrained optimizer testbeds.

– The multi-objective version of the heat pipe design problem (see Section

6.2) is proposed within this study. This approach has certain advantages

considering its ability to provide a multitude of non-dominated solutions.

8.1 Future work

The following points may provide insight to some future studies.

• VBS can be employed in many evolutionary algorithms that have a notion

of movement in the decision hyper-space (such as the artificial bee colony or
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gravitational search algorithm). More importantly, special swarm intelligence

algorithms could be developed to exploit capabilities of VBS.

• Prioritization of constraints play a critical role in FEPSO. Categorization of

constraints with respect to their difficulties can also be useful. In that case, some

trivial constraints can be left out of mechanisms driving infeasible particle flight

and be included in the objective optimization flights. This modification can offer

a substantial advantage in terms of computational burden. Moreover, automation

of the prioritization and priority-aware categorization of constraints may bring

significant benefits, and hence, are worth studying.

• The techniques developed in this study could find applications in many areas

including new topics such as topology optimization and target shape design

optimization.

• Hybridization is becoming more widely spread in the optimization literature.

Hybridization of FEPSO (or MOFEPSO) with other compatible algorithms may

provide formidable strengths.

• Although FEPSO and MOFEPSO do not introduce many algorithm parameters,

they inherit parameters from the canonical PSO. These parameters influence

particle behavior, and therefore, are factors of the algorithm performance. PSO

is inspired from behavioral patterns and social interactions observed in animal

swarms of nature. In reality, these patterns both influence and are influenced by

the underlying evolutionary process. Therefore, evolving particles that adapt

to their environment (the problem of interest in the context of evolutionary

optimization) and adjust their behaviors may offer an interesting research topic.
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APPENDIX A

MATERIAL PROPERTIES USED FOR HEAT PIPE DESIGN PROBLEM

A.1 Container and wick material properties

Stainless steel - SS304 is taken as container and wick material.

ρ = 8000 kg/m3 k = 17.3 W/mK uts = 515× 106 Pa

A.2 Working fluid properties

Nomenclature- and units used for fluid properties are summarized below. Data is

adapted from McGlen, Kew, and Reay [194].

Symbol Name Unit

Tv vapor temperature K

λ latent heat of vaporization J/kg

ρl liquid density kg/m3

ρv vapor density kg/m3

kl liquid thermal conductivity W/mK

µl liquid viscosity kg/ms

µv vapor viscosity kg/ms

Pv vapor pressure N2/m

M molar mass kg/mol

γ Specific heat ratio -
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A.2.1 Methanol

γ = 1.203, M = 0.032 042

Tv λ ρl ρv kl µl µv Pv σ

223.15 1 194 000 843.5 0.01 0.21 0.0017 0.072 1000 0.0326

243.15 1 187 000 833.5 0.01 0.208 0.0013 0.078 2000 0.0295

263.15 1 182 000 818.7 0.04 0.206 0.000 945 0.085 4000 0.0263

283.15 1 175 000 800.5 0.12 0.204 0.000 701 0.091 10 000 0.0236

303.15 1 155 000 782 0.31 0.203 0.000 521 0.098 25 000 0.0218

323.15 1 125 000 764.1 0.77 0.202 0.000 399 0.104 55 000 0.0201

343.15 1 085 000 746.2 1.47 0.201 0.000 314 0.111 131 000 0.0185

363.15 1 035 000 724.4 3.01 0.199 0.000 259 0.119 269 000 0.0166

383.15 980 000 703.6 5.64 0.197 0.000 211 0.126 498 000 0.0146

403.15 920 000 685.2 9.81 0.195 0.000 166 0.131 786 000 0.0125

423.15 850 000 653.2 15.9 0.193 0.000 138 0.138 894 000 0.0104

A.2.2 Ethanol

γ = 1.13, M = 0.046 07

Tv λ ρl ρv kl µl µv Pv σ

243.15 939 400 825 0.02 0.177 0.0034 0.075 1000 0.0276

263.15 928 700 813 0.03 0.173 0.0022 0.08 2000 0.0266

283.15 904 800 798 0.05 0.17 0.0015 0.085 3000 0.0257

303.15 888 600 781 0.38 0.168 0.001 02 0.091 10 000 0.0244

323.15 872 300 762.2 0.72 0.166 0.000 72 0.097 29 000 0.0231

343.15 858 300 743.1 1.32 0.165 0.000 51 0.102 76 000 0.0217

363.15 832 100 725.3 2.59 0.163 0.000 37 0.107 143 000 0.0204

383.15 786 600 704.1 5.17 0.16 0.000 28 0.113 266 000 0.0189

403.15 734 400 678.7 9.25 0.159 0.000 21 0.118 430 000 0.0175
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A.2.3 Ammonia

γ = 1.32, M = 0.017 031

Tv λ ρl ρv kl µl µv Pv σ

213.15 1 343 000 714.4 0.03 0.294 0.000 36 0.072 27 000 0.040 62

233.15 1 384 000 690.4 0.05 0.303 0.000 29 0.079 76 000 0.035 74

253.15 1 338 000 665.5 1.62 0.304 0.000 26 0.085 193 000 0.0309

273.15 1 263 000 638.6 3.48 0.298 0.000 25 0.092 424 000 0.0248

293.15 1 187 000 610.3 6.69 0.286 0.000 22 0.101 846 000 0.021 33

313.15 1 101 000 579.5 12 0.272 0.0002 0.116 1 534 000 0.018 33

333.15 1 026 000 545.2 20.49 0.255 0.000 17 0.127 2 980 000 0.013 67

353.15 891 000 505.7 34.13 0.235 0.000 15 0.14 4 090 000 0.007 67

373.15 699 000 455.1 54.92 0.212 0.000 11 0.16 6 312 000 0.005

393.15 428 000 374.4 113.16 0.184 0.000 07 0.189 9 044 000 0.0015
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APPENDIX B

USAGE NOTES FOR MATLAB IMPLEMENTATION

The MATLAB implementation of MOFEPSO consists of two functions named mofepso

and mofepsooptions1. While the former is the function that allows running the

main algorithm, the second is a helper function to construct the necessary input to the

main function.

B.1 The mofepso function

Runs the main algorithm of MOFEPSO.

B.1.1 Syntax

result = mofepso(options)

This function runs the MOFEPSO algorithm with the options given. The options

structure defines all inputs required by the algorithm including constraint(s) function,

objective(s) function, and algorithm parameters.

B.1.2 Input argument

The only input required by the mofepso function is a structure that includes all infor-

mation required by the algorithm as well as some additional convenience features. The

options structure has the fields described in Table B.1. The mofepsooptions

1 The MATLAB implementation of MOFEPSO can be found at MATLAB central:
https://www.mathworks.com/matlabcentral/fileexchange/68990-mofepso-multi-objective-feasibility-enhanced-
particle-swarm.
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function described in Section B.2 can be utilized to construct a valid options struc-

ture. The mofepsooptions function can create default values for all optional

parameters. If the options structure is to be created manually (i.e. without using

mofepsooptions), it must include fields for all options including the optional ones.

Note that, mandatory options have no default values in Table B.1.

Table B.1: Fields of the options structure

Field Description

consFun Constraint(s) function. This function shall

take the 1-by-N decoded decision variable

array (if input decoding is used) and return

a M -by-1 array of constraint values2. A con-

straint is assumed to be satisfied only when

it is equal to or less than zero (g ≤ 0). See

Section B.1.2.1 for additional details.

Values: Function handle

Default value: None

objFun Objective(s) function. This function shall

take the 1-by-N decoded decision variable ar-

ray (if input decoding is used) and return aK-

by-1 array of objective values3. MOFEPSO

minimizes the objectives. See Section B.1.2.1

for additional details.

Values: Function handle

Default value: None

nCons Number of constraints. If the problem

does not have constraints (nCons=0), the

consFun parameter can also be set to zero

(consFun=0).

Values: 0 or positive integer

Default value: None

2 M is the number of constraints
3 K is the number of objectives.
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Table B.1: Fields of the options structure (continued)

Field Description

lBound Lower bounds of decision variables.

Values: 1-by-N row vector of real numbers4

Default value: None

uBound Upper bounds of decision variables.

Values: 1-by-N row vector of real numbers.

Default value: None

swarmSize Number of particles in swarm.

Values: Positive integer

Default value: 200

maxIter Maximum number of iterations before algo-

rithm stops.

Values: Positive integer

Default value: 200

useInputDecoder Boolean flag to enable the usage of the input

decoder function.

Values: true false

Default value: false

4 N denotes the number of decision variables.
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Table B.1: Fields of the options structure (continued)

Field Description

inputDecoder A function that decodes the real valued raw

decision variables into decision variable val-

ues that meet the problem definition. The

input decoder function shall accept a 1-by-

N row vector of raw variable values and re-

turn a 1-by-N row vector of values abiding

decision variable definitions of the problem.

For example, if a decision variable can only

take integer values, the input decoder func-

tion shall convert the real raw value in the

corresponding cell of the decision variable

array to an integer value using an appropriate

mapping. This function is only used when

useInputDecoder == true.

Values: Function handle

Default value: @(x) x

transferVars Boolean flag to enable transfer of data from

constraint function to objective function. In

some problems, certain parameters calculated

by the constraint function might be useful for

the objective function. When transfer of data

is enabled, a mechanism is provided for this

purpose. See Section B.1.2.1 for details.

Values: true false

Default value: false
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Table B.1: Fields of the options structure (continued)

Field Description

incrementFactor Increment factor determines the ratio of

search space dimension the constraint sensi-

tivity calculation algorithm will displace par-

ticles5.

Values: Real number between 0 and 1

Default value: 0.3

velocityInitializationFactor Velocity initialization factor determines the

maximum magnitude of the velocity vectors

of the initial swarm relative to search space

size6.

Values: Real number between 0 and 1

Default value: 0.3

boundaryTolerance Virtual boundary search tolerance7.

Values: Positive real number

Default value: 0.01

initialC0 Value of the inertia factor at the beginning

of iterations. Inertia factor is varied linearly

through iterations.

Values: Positive real number

Default value: 0.9

finalC0 Value of the inertia factor at the end of itera-

tions.

Values: Positive real number

Default value: 0.4

C1 Social acceleration factor.

Values: Positive real number

Default value: 2

5 Constraint sensitivity calculation approach is explained in Section 3.2.
6 Velocity initialization factor is denoted as av in Section 3.2.
7 Virtual boundary search tolerance is denoted as xtol in Section 3.5.2.
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Table B.1: Fields of the options structure (continued)

Field Description

C2 Cognitive acceleration factor.

Values: Positive real number

Default value: 2

verbose Level of information printed to the stan-

dard output. When verbose=0, mofepso

doesn’t produce anything. Only itera-

tion number and durations are printed

if verbose=1. All information de-

scribed in Section B.1.4 is printed if

verbose=2. Although verbose=3 is

same as verbose=2 in terms of what is

printed to the standard output, position and

velocity histories of particles are added to the

returned result.

Values: 012

Default value: 2

fastVBS Boolean flag to enable or disable fast virtual

boundary search. When enabled slowly con-

verging VBS loops are halted. May decrease

the number of constraint function evaluations

but also prohibits convergence to the virtual

boundary for some particles.

Values: true false

Default value: true

B.1.2.1 Constraint- and objective function definitions

Constraint- and objective functions are defined such that they take a 1-by-N array of

decision variable values and return column vectors representing constraint function
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values or objective values. Following example shows function definitions for the

benchmark problem called the pressure vessel design problem (see Section 3.8.1). The

constraint function of the problem can be defined as follows.

function g = pv_constraint(x)

g = [-x(1) + 0.0193*x(3);

-x(2) + 0.00954*x(3);

-pi*(x(3)^2)*x(4) - (4/3)*pi*x(3)^3 + 1296000;

x(4) - 240];

end

Similarly, the objective function can be defined the following way.

function y = pv_objective(x)

y = 0.6224*x(1)*x(3)*x(4) + 1.7781*x(2)*x(3)^2 ...

+ 3.1661*x(1)^2*x(4) + 19.84*x(1)^2*x(3);

end

Note that the pressure vessel problem is a single-objective problem. Therefore, the

pvobjective function returns a scalar value instead of an array.

In some cases the problem might involve decision variables that are not real valued.

MOFEPSO is able to handle these kind of problems as long as a mapping from a real

valued range exists. For instance, the pressure vessel design problem involves two

decision variables that can only take exact multiples of 0.0625. This can be achieved

with an input decoder function that resembles the following:

function x_decoded = pv_inputDecoder(x)

x_decoded = [0.0625*round(x(1)) 0.0625*round(x(2)) ...

x(3) x(4)];

end

Note that, for input decoding to work properly, the useInputDecoder option must

be set to true and a function handle must be assigned to the inputDecoder option.
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MOFEPSO evaluates the objective function only in certain cases. Therefore, it does

not make sense to combine calculation of constraints and objectives in a single process.

However, some parameters computed within the context of the constraint function

might be used in objective evaluation. If the transferVars option is enabled,

MOFEPSO provides a mechanism to pass these parameters to the objective function.

In this case, the constraint functions is defined as follows.

function [g, transfer] = constraint_function(x)

% ...

% calculate a and b which are required for both

% constraint and objective functions

% ...

trasfer = {a b};

end

Similarly, the objective function is defined to take advantage of the transfered variables.

function y = objective_function(x, transfer)

a = transfer{1};

b = transfer{2};

% ...

end

B.1.3 Output argument

The mofepso function returns a structure containing all non-dominated solutions

found by the algorithm and other details related with the optimization run. Fields of

the output structure is described in Table B.2.
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Table B.2: Fields of the output structure

Field Description

particle A 1-by-I structure array describing current properties

of particles in the swarm8. See Section B.1.3.1 for

details of the particle structure.

nonDom A cell array containing all non-dominated solutions as

individual position structures.

consSens The M -by-N logical matrix of constraint sensitivities.

If consSens(m,n)==true, the mth constraint is

sensitive to changes in the nth decision variable.

violated The I-by-M logical matrix of constraint vio-

lations of current positions of particles. If

violated(i,m)==true, the ith particle’s current

position violates mth constraint.

options The options structure used.

nObjEvals The integer value of total number of objective function

evaluations performed by the algorithm.

nConsEvals The integer value of total number of constraint func-

tion evaluations performed by the algorithm.

B.1.3.1 The particle structure

The particle structure defines the representation of information related with each

particle. The fields of this structure is explained in Table B.3.

8 I denotes the number of particles in the swarm (i.e. swarmSize).
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Table B.3: Fields of the particle structure

Field Description

nonDom A cell array containing all personal non-dominated

solutions as individual position structures. These posi-

tions are non-dominated among all positions attained

by the particle of interest.

pos The position structure that represents current position

of the particle.

v The 1-by-N array of real values that represent the

current velocity of the particle.

poshist The (I + 1) sized array of position structure that rep-

resent the particle’s position history. Only available

when verbose=3

vhist The (I + 1)-by-N array of velocity history matrix.

Only available when verbose=3

B.1.3.2 The position structure

All positions output by mofepso are in the form described in this section. The

position structure contains information related with the constraint function values and

objective values alongside the spatial information related with the position (See Table

B.4).

Table B.4: Fields of the position structure

Field Description

x The 1-by-N sized real valued array of un-decoded

decision variable values (i.e. position in the decision

space).

cons The M -by-1 array of constraint function values at the

position.
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Table B.4: Fields of the position structure (continued)

Field Description

isFeasible The logical value (true false) representing the

feasibility of the position

obj The K-by-1 array of objective function values at the

position.

objIsEvaluated The logical value that becomes true if the objective

function has been evaluated for the position.

nConsEvals The integer value representing the total number of

constraint function evaluations performed by the algo-

rithm right after the constraint function was evaluated

for the position.

nObjEvals The integer value representing the total number of

objective function evaluations performed by the algo-

rithm right after the objective function was evaluated

for the position.

B.1.4 Standard output

The mofepso function outputs some information related with its current status as the
optimization is running. An example of the information printed to the standard output
is shown below.

Initializing particles

Calculating constraint sensitivities

Iteration 1 started

Iteration 1 finished in 0.0 seconds

Number of times each constraint is violated

1 2 3 4

1 0 1 0

Number of particles in number of violation bins

0 1

48 2
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Number of CFE: 423

Number of OFE: 87

Nondominated set (1 points):

51559.3940 | 3.454039 0.798188 83.667524 100.257993 | 423 87

Iteration 2 started

Iteration 2 finished in 0.0 seconds

Number of times each constraint is violated

1 2 3 4

0 0 0 0

Number of particles in number of violation bins

Number of CFE: 517

Number of OFE: 137

Nondominated set (1 points):

51559.3940 | 3.454039 0.798188 83.667524 100.257993 | 423 87

As seen above, mofepso prints information related with the progression of the run,

duration of iterations, violation numbers of each constraint, constraint satisfaction level

of the swarm, number of constraint/objective function evaluations, and solutions in the

current non-dominated set. The array of number of particles in number of violation

bins is the main metric for the swarm’s feasibility. The meaning of having 48 particles

in the 0 violation bin is that there are 48 particles that do not violate any constraints.

Note that although mofepso does not require to have any feasible particles in the

initial swarm, it requires at least one satisfying particle for each constraint. Therefore,

if a constraint is not satisfied by any of the particles, mofepso re-initializes the

particles.

B.2 The mofepsooptions function

Creates an options structure to be used as the input argument of the mofepso function.
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B.2.1 Syntax

options = mofepsooptions(consFun, objFun, nCons, ...

lBound, ubound)

options = mofepsooptions(consFun, objFun, nCons, ...

lBound, ubound, field1, value1,...,fieldN, valueN)

This function creates a valid options structure when all mandatory options listed in

Table B.1 are provided as input arguments. Note that mandatory input argument names

are same as the names of options they set. Therefore, Table B.1 can be referred for

the properties of these arguments. Values for non-mandatory options can be given

to mofepsooptions function as name-value pairs. If no value is provided for an

option, mofepsooptions sets the value of the option to the default value given in

Table B.1.

B.2.2 Output argument

The mofepsooptions function returns a structure that can directly be used as the

input argument for the mofepso function.

B.3 Example

In this section, solution of the multi-objective four-stage gear train problem [98] with

MOFEPSO in MATLAB is presented as an example. MATLAB source code files

needed for the example problem have the structure shown in Figure B.1 relative to the

main algorithm files. All code given assumes that the active directory is “/” in this

figure.

The constraint function of the problem is given in MATLAB code 1. Note that this

function is arranged to transfer some variables to the objective function.

Matlab code 1: mog_constraint.m

function [ constraintVec, transfer ] = mog_constraint( x )

%mog_constraint calculates the constraints of the four-stage gear train
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/

+example

mog_constraint.m

mog_objective.m

mog_inputDecoder.m

main.m

mofepso.m

mofepsooptions.m

Figure B.1: Directory structure of the MATLAB source code files for the example

problem

%problem

%Constants required are defined here:

%Gearbox scope:

omega_1 = 5000; %Input speed [rpm]

omega_min = 245; %Minimum output speed [rpm]

omega_max = 255; %Maximum output speed [rpm]

%Gear stage scope:

C_p = 464.0; %Elastic coefficient

CR_min = 1.4; %Allowable contact ratio

d_min = 25.4; %Minimum pinion or gear diameter [mm]

phi = 20; %Pressure angle [deg]

W = 55.9; %Input power[W]

J_R = 0.2; %Geometry factor

K_M = 1.6; %Mounting factor

K_O = 1.5; %Overload factor

L_max = 127; %Maximum housing dimension[mm]

sigma_H = 3290; %Allowable fatigue stress [kgf/cm2]

sigma_N = 2090; %Allowable bending stress [kgf/cm2]

%**************************************************************************

%Precalculated limits

gearToothBendingFatigueStrength = sigma_N*J_R / (0.0167*W*K_O*K_M);

gearToothContactStrength = ((sigma_H/C_p)^2) * ...

( (sin(2*degtorad(phi))) / (0.0668*W*K_O*K_M) );
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%Minimum value for gearToothContactRatio

gearToothContactRatioMin = CR_min*pi*cos(degtorad(phi));

%**************************************************************************

%Inputs

firstPinionPos = [x(1) x(2)];

allGearPos = [ x(3) x(4);

x(5) x(6);

x(7) x(8);

x(9) x(10)];

all_b = [x(11); x(12); x(13); x(14)];

all_N_g = [x(15); x(16); x(17); x(18)];

all_N_p = [x(19); x(20); x(21); x(22)];

%**************************************************************************

%Allowed values of b

pB = [3.175 5.715 8.255 12.7];

%Calculations

stageConstraints = zeros(15,4);

omega = omega_1;

pinionPos = firstPinionPos;

%Initialize volume for the objective function

V = 0;

for i=1:4

gearPos = allGearPos(i,:);

b = all_b(i);

%Double versions of the int parameters for double precission calc.

dN_p = double(all_N_p(i));

dN_g = double(all_N_g(i));

c = sqrt((gearPos(1)-pinionPos(1))^2+(gearPos(2)-pinionPos(2))^2);

if ~(c > 0)

c = 0.0001;

end

%stress and contact ratio calculations
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gearToothBendingFatigue = ( ( (366000)/(pi*omega) ) + ...

( ( 2*c*dN_p ) / (dN_p+dN_g) ) ) * ...

( (dN_p+dN_g)^2 / (4*b*c^2*dN_p) );

gearToothContactStress = ( ( (366000)/(pi*omega) ) + ...

( ( 2*c*dN_p ) / (dN_p+dN_g) ) ) * ...

( (dN_p+dN_g)^3 / (4*b*c^2*dN_p^2*dN_g) );

A = dN_p*sqrt((sin(degtorad(phi))^2)/4 + 1/dN_p + 1/(dN_p^2));

B = dN_g*sqrt((sin(degtorad(phi))^2)/4 + 1/dN_g + 1/(dN_g^2));

C = (dN_p + dN_g)*sin(degtorad(phi))/2;

gearToothContactRatio = A + B - C;

%Geometric calculations

r_p = c * (dN_p/(dN_p+dN_g)); r_g = c * (dN_g/(dN_p+dN_g));

d_p = 2 * r_p; d_g = 2 * r_g;

addendum = 2*c/(dN_p+dN_g);

or_p = r_p + addendum; or_g = r_g + addendum;

P = (dN_p+dN_g)/(2*c);

%calculation of the bounds

pinionBoundMin = pinionPos - [or_p or_p];

pinionBoundMax = pinionPos + [or_p or_p];

gearBoundMin = gearPos - [or_g or_g];

gearBoundMax = gearPos + [or_g or_g];

%speed

omega_out = omega*dN_p / dN_g;

%constraints

stageConstraints(1,i) = gearToothBendingFatigue - ...

gearToothBendingFatigueStrength;

stageConstraints(2,i) = gearToothContactStress - ...

gearToothContactStrength;

stageConstraints(3,i) = gearToothContactRatioMin - ...

gearToothContactRatio;

stageConstraints(4,i) = d_min - d_g;

stageConstraints(5,i) = d_min - d_p;

stageConstraints(6,i) = -pinionBoundMin(1,1);
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stageConstraints(7,i) = -pinionBoundMin(1,2);

stageConstraints(8,i) = pinionBoundMax(1,1) - L_max;

stageConstraints(9,i) = pinionBoundMax(1,2) - L_max;

stageConstraints(10,i) = -gearBoundMin(1,1);

stageConstraints(11,i) = -gearBoundMin(1,2);

stageConstraints(12,i) = gearBoundMax(1,1) - L_max;

stageConstraints(13,i) = gearBoundMax(1,2) - L_max;

%Min & Max Pitch calculations

P_min_array = [0.472 0.323 0.252 0];

P_max_array = [0.906 0.472 0.323 0.252];

stageConstraints(14,i) = (P_min_array(1) - P) * (b - pB(2)) * ...

(b - pB(3)) * (b - pB(4)) * (-1);

stageConstraints(15,i) = (P_min_array(2) - P) * (b - pB(1)) * ...

(b - pB(3)) * (b - pB(4)) * (1);

stageConstraints(16,i) = (P_min_array(3) - P) * (b - pB(1)) * ...

(b - pB(2)) * (b - pB(4)) * (-1);

stageConstraints(17,i) = (P_min_array(4) - P) * (b - pB(1)) * ...

(b - pB(2)) * (b - pB(3)) * (1);

stageConstraints(18,i) = (P - P_max_array(1)) * (b - pB(2)) * ...

(b - pB(3)) * (b - pB(4)) * (-1);

stageConstraints(19,i) = (P - P_max_array(2)) * (b - pB(1)) * ...

(b - pB(3)) * (b - pB(4)) * (1);

stageConstraints(20,i) = (P - P_max_array(3)) * (b - pB(1)) * ...

(b - pB(2)) * (b - pB(4)) * (-1);

stageConstraints(21,i) = (P - P_max_array(4)) * (b - pB(1)) * ...

(b - pB(2)) * (b - pB(3)) * (1);

% Calculate variables for the objective function

% Volume

volume = pi*b*c^2*(dN_p^2+dN_g^2)/(dN_p+dN_g)^2;

V = V + volume;

%Bound Calculations

boundMin = min( [pinionBoundMin; gearBoundMin] );

boundMax = max( [pinionBoundMax; gearBoundMax] );

if i==1

boxBoundMin = boundMin;

boxBoundMax = boundMax;
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else

boxBoundMin = min([ boxBoundMin ; boundMin ]);

boxBoundMax = max([ boxBoundMax ; boundMax ]);

end

%prepare for the next stage

pinionPos = gearPos;

omega = omega_out;

end

%constraint vector

constraintVec = [stageConstraints(:,1);

stageConstraints(:,2);

stageConstraints(:,3);

stageConstraints(:,4);

omega_min - omega_out;

omega_out - omega_max];

%variables to be transferred to objective function

transfer = {V, boxBoundMin, boxBoundMax};

end

The objective function receives several parameters transferred from the constraint

function and calculates the objectives. Objectives are then returned as a column vector.

The source code for the objective function is given in MATLAB code 2

Matlab code 2: mog_objective.m

function objectiveVec = mog_objective( x, transfer )

%mog_constraint calculates the objectives of the four-stage gear train

%problem

%**************************************************************************

%Inputs

all_b = [x(11); x(12); x(13); x(14)];

%**************************************************************************

%Get transferred variables

V = transfer{1};

boxBoundMin = transfer{2};

boxBoundMax = transfer{3};

%output vector
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boundDif = boxBoundMax - boxBoundMin;

V_box = sum(all_b) * boundDif(1,1) * boundDif (1,2);

objectiveVec = [V; V_box];

end

All decision variables of the four-stage gear train problem have discrete allowed values.

The algorithm’s un-decoded real valued positions need to be converted to decision

vectors valid in the problem’s discrete decision space. For this purpose, an input

decoder (see MATLAB code 3) is required. Note that, for this input decoder to work,

the useInputDecoder option must also be enabled.

Matlab code 3: mog_inputDecoder.m

function decoded_x = mog_inputDecoder(x)

%mog_inputDecoder decodes the real valued decision vector and decodes to

%discrete values

%Possible values

pPositions = 12.7 * (1:9);

pB = [3.175 5.715 8.255 12.7];

%round the variables

for i=1:10

x(i) = rounder(x(i),pPositions);

end

for i=11:14

x(i) = rounder(x(i),pB);

end

for i=15:22

x(i) = round(x(i));

end

decoded_x = x;

end

function val = rounder(inVal,pValues)

[~,ind] = min(abs(inVal - pValues));

val = pValues(ind);
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end

Finally, main.m sets the necessary options of the algorithm and runs the optimization.

Results are returned by the function mofepso as a structure of the form specified in

B.1.3.

Matlab code 4: main.m

lBound = [12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 ...

3.175 3.175 3.175 3.175 7 7 7 7 7 7 7 7];

uBound = [114.3 114.3 114.3 114.3 114.3 114.3 114.3 114.3 114.3 114.3 ...

12.7 12.7 12.7 12.7 60 60 60 60 60 60 60 60];

options = mofepsooptions(@example.mog_constraint, ...

@example.mog_objective, 86, lBound, uBound, ...

'useInputDecoder', true, 'inputDecoder', @example.mog_inputDecoder, ...

'transferVariables', true, 'maxIter', 500, 'swarmSize', 200);

result = mofepso(options);
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