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ABSTRACT 

 

TWO STAGE BLIND DEREVERBERATION BASED ON STOCHASTIC 

MODELS OF SPEECH AND REVERBERATION 

 

Kavruk, Mehmet 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Tolga Çiloğlu 

 

January 2019, 128 pages 

 

Distant speech processing is popular nowadays due to wide use of the hands-free 

communication with smart devices. The quality of microphone signals in an enclosed 

area is degraded by environmental noise and reverberation in distant speech 

communication. Although there are powerful denoising algorithms in the literature, 

there is no robust dereverberation method which works independent of recording 

conditions. This work proposes a statistical model based blind dereverberation 

algorithm which suppresses reverberation part without causing serious degradation in 

the source signal in different speaker to microphone configurations. The proposed 

algorithm successively uses minimum variance distortionless response (MVDR) and 

linear prediction methods. The parameters of the MVDR algorithm are estimated 

using the statistical nature of reverberation. The linear prediction algorithm is applied 

to the output of MVDR in order to handle residual reverberation. The dereverberation 

filter in this stage is generated using the statistical models of speech and reverberation. 

None of the algorithms require any deterministic prior knowledge about the system 

due to the used statistical models. The experimental results demonstrate that the 

proposed algorithm suppresses reverberation in the distant recordings without 

degradation on the source signal with respect to the objective quality measures under 

different conditions. 
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ÖZ 

 

SES VE REVERBERASYONUN STOKASTIK MODELLERINE DAYALI 

ÇİFT KANALLI KÖR DEREVERBERASYON 

 

Kavruk, Mehmet 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Tolga Çiloğlu 

 

Ocak 2019, 128 sayfa 

 

Akıllı cihazlarda uzaktan komut teknolojisinin gelişimi sayesinde uzak ses işlemesi 

günümüzde popüler bir hale gelmiştir. Uzaktan komut sisteminde, bir odada 

kaydedilen sesin kalitesi çevresel gürültü ve reverberasyon yüzünden düşer. 

Literaturde çevresel gürültüleri bastırmak için belirli algoritmalar olmasına rağmen 

reverberasyonu bastırmak için kullanılan genel bir algoritma yoktur.  Bu çalışma 

istatistiksel modellere dayanarak değişik konfigürasyonlarda asıl konuşmada bir 

bozulma oluşturmayan ve aynı zamanda sesin reverberasyonunu bastırabilen bir 

yöntem sunmaktadır. Sunulan yöntem MVDR ve doğrusal tahmin algoritmalarını art 

arda kullanmaktadır. MVDR algoritmasının parametreleri reverberasyonun 

istatistiksel modeli göz önüne alınarak bulunmuştur. MVDR algorithmasının çıkışı 

doğrusal tahmin algorithmasını besler ve MVDR algoritmasında bastırılamayan 

reverberasyonlar burada bastırılmaya çalışılır. Doğrusal tahmin algoritmasında 

kullanılan filtre sesin ve reverberasyonun istatistiksel modellerine göre bulunur. Bu 

istatiksel modeller sayesinde sistemde hiçbir ön bilgiye gerek duyulmaz. Testlerin 

sonucunda objektif sonuçlara göre, sunulan sistem değişik konfigurasyonlarda asıl ses 

sinyaline önemli bir zarar vermeden reverberasyonu bastırabilmektedir 
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CHAPTER 1  

 

1. INTRODUCTION 

 

 

1.1. Motivation 

The substantial rise in the use of smart portable devices results in an improvement in 

hands-free speech communication interfaces. Hands-free communication with the 

device is used in various applications such as personal assistants, speech to text 

conversions and speaker identifications. In addition, spread of the internet develops 

multimedia applications. It is very common to hold conferences by sending videos and 

voice via internet. This thesis is motivated by a growing demand for hands-free speech 

interfaces with smart devices and other applications where quality of speech signals 

is important. 

Speech is acquired by microphones in the hands-free applications. Advent of bluetooth 

technology provides a low cost, high quality, wireless headset. In this way, the 

microphone can be held close to mouth during communication. Since these headsets 

bring some restrictions for the speaker and are not feasible for multiple speaker 

situations such as teleconferences, wireless headsets are not commonly preferred. The 

main purpose of hands-free speech interface is to provide a natural way of 

communication for users and comfort to user movements, so the microphones cannot 

always be located near a speaker. In fact, there is generally a distance between speaker 

and microphone in the applications. Therefore, a speech processing algorithm which 

works independent of speaker-microphone configuration is required.   

In hands-free applications, the distance between a speaker and microphone is 

generally between 0.5 m - 2 m. In this scenario, the recordings not only contain the 
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desired speech but also other interferences. The main detrimental interference is the 

background noise. If the sound is produced in an enclosed area, reverberation effect is 

also inevitable in distant recordings. These two distinct components jointly contribute 

to an overall degradation in speech signals, which reduces the quality of the perceived 

speech. The resulting lower quality of recordings reduces the performance of hands-

free speech interface. 

Reverberation originates when a sound is produced in an enclosed area. It is caused 

by reflection of sound waves from walls and surrounding objects, as it can be seen in 

Figure 1.1. In fact, carefully generated controlled reverberation strengthens the 

intelligibility of observed speech signal [1]. However, speaker localization and 

intelligibility of sound are seriously degraded in uncontrolled severe reverberant 

conditions because speech phonemes are blurred, and their characteristics change with 

reverberation [2]. The effect of reverberation is clearly seen in spectrograms. 

Although, the formants and phonemes of anechoic speech are well separated in time, 

reverberation causes a smearing effect, and the subsequent phonemes are overlapped. 

These effects are shown in Figure 1.2. In Figure 1.2.a, all characteristics of anechoic 

speech phonemes are easily seen; however, they are blurred in reverberant 

environments as in Figure 1.2.b.  
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Figure 1.1. Reverberation arises due to reflections of sound waves in an enclosed 

region. 

 

Background noise arises due to the environmental conditions such as traffic and other 

audible talkers. When the level of noise is comparable with the desired sound, the 

perceptual quality of the observed speech is reduced significantly. Noise in the 

observed speech directly affects the performance of automatic speech recognition, 

speaker localization and identification [3]. 

 

 

Figure 1.2. The spectrogram of (a) anechoic speech and (b) reverberant speech. 
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Reverberation and background noise both impair speech intelligibility, so they are the 

main problems of hands-free speech interfaces. Many signal processing techniques 

exist in order to fix the problems caused by background noise. Noise reduction 

methods have been extensively investigated, and lots of significant contributions and 

robust solutions have been already offered [4]. However, reverberation problem has 

drawn much less attention, and a robust solution to this problem has not been 

developed yet. In order to use hands-free speech interface effectively in daily life, the 

reverberation problem must be solved. This work offers to use an integrated algorithm 

which consists of minimum variance distortionless response (MVDR) and linear 

prediction to deal with reverberation problem. If the direction of the speaker is 

estimated, the directional filter of MVDR can strengthen the desired signal while it 

suppresses reverberation. However, reverberation reaches the microphone from all 

directions, and the reverberant parts which are at the direction of the speaker can not 

be handled in this way. Therefore, this work proposes to use a single channel algorithm 

at the output of the MVDR in order to handle residual reverberation. In addition, the 

parameters of the single channel algorithm are estimated more accurately than a single 

microphone case by the microphone array thanks to this integrated algorithm. As a 

result, the main objective of this thesis is to benefit from two-stage algorithm which 

consists of microphone array and linear prediction. Feasibility and advantages of the 

proposed solution are evaluated in this work. In addition, the weaknesses of the 

algorithm due to non-ideal models of speech and reverberation are explained, and 

possible solutions to these problems are explained. 

In reverberant environments, it is difficult to estimate the direction of the speaker, so 

the performance of MVDR reduces drastically. In this work, a method is developed to 

reduce reverberation effects and the speaker direction is estimated more accurately.  

The essential difference between background noise and reverberation is that 

reverberation depends on the desired signal; thus, its characteristics change depending 

on the speaker and environment, whereas background noise is independent of the 
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desired speech. In fact, reverberation is roughly nothing but a delayed copy of the 

desired speech signal due to reflections. Therefore, the contributions proposed to deal 

with background noise cannot produce a solution to reverberation problem [2].  

The algorithms in this work are adjusted to the nature of reverberation. 

1.2. Overview of Literature 

Signal processing methods which deal with the reverberation problem are called 

dereverberation. Although there is still no robust method for dereverberation, some 

contributions and solutions are proposed in the literature. A detailed overview of 

dereverberation approaches is given in Chapter 2. However, basics of the proposed 

dereverberation methods are given shortly in this section to identify the problem. 

Although there are different techniques for dereverberation, they can be divided into 

two main classes: reverberation cancellation and reverberation suppression [5]. 

Reverberation cancellation is based on estimating the inverse of acoustic impulse 

response. In order to remove the effects of reverberation, the inverse filter must be 

estimated precisely. By using the inverse of acoustic impulse response, 

dereverberation is easily achieved by convolving the filter and observed speech signal. 

However, this approach always introduces some artifacts in the process because 

acoustic impulse response is estimated blindly, and it changes dramatically with 

environmental effects. If the inverse of impulse response cannot be found exactly, 

significant degradations in the desired signal and additional noise are inevitable. 

Although reverberation cancellation can provide complete dereverberation 

potentially, reverberation suppression can obtain better results. There is no estimate 

of impulse response in this class. Instead of estimating acoustic impulse response of a 

room, reverberation part is isolated and treated as a noise when it is suppressed. 

Isolation of reverberant part is a difficult task due to the non-deterministic nature of 

reverberation. However, this is a more achievable option than estimating the exact 

impulse response. 
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Both of the classes require knowledge of lots of parameters; therefore, dereverberation 

is still an unsolved problem in the speech processing literature. Although the methods 

in the first class can provide dereverberation completely in theory, the work in this 

thesis belongs to the second class. The aim of this work is to propose a solution which 

can be used in practical applications independent of speaker to microphone 

configuration. 

In this work, the non-deterministic nature of reverberation is considered, and the 

algorithms are adjusted with respect to this nature. However, the nature of 

reverberation is simplified due to the complexity of required computations. The 

proposed system combines two different approaches in order to achieve better 

dereverberation. In the first stage, a microphone array structure is used to isolate the 

desired speech from reverberation, and the reverberant part is filtered. Microphone 

array can not suppress the reverberation signals that reach the microphone from the 

direction of the desired signal. Therefore, in the second stage, a single channel 

dereverberation method based on linear prediction is applied to the output of the 

microphone array in order to suppress the residual reverberation. This linear prediction 

algorithm is based on the parameters used in the first stage. In this way, a compact 

dereverberation solution is obtained. 

1.3. Thesis Contributions 

In this thesis, the contributions can be gathered as follows,  

 Beamformer and spectral subtraction method in denoising algorithms are used 

in dereverberation with the probabilistic models of speech and reverberation 

[6]. 

 Although there are multiple arrival directions to microphone in a reverberant 

environment, the arrival direction of the desired sound is estimated by a novel 

approach. First, the speech onsets without reverberation are detected by voice 

activity detection algorithm in the microphone array observations [7]. Since 
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there is no reverberation in these onsets, correlation between the onsets gives 

the phase differences of the direct parts in the recordings. Direction of arrival 

of the direct part is estimated by using these phase differences. 

 Weighted prediction error (WPE) in the second stage is originally based on 

iterations to find power spectral density of early speech components [8]. 

However, since the spectral density of reverberation is estimated by 

microphone array in the first stage the method reaches the solution in a single 

step. The advantages of two stage dereverberation algorithm are also explained 

in this work. 

 Reverberation suppression is achieved blindly without causing serious 

degradation in the desired speech with respect to the objective measures 

(‘PESQ’, ‘LLR’, ‘CD’) [9]. 

1.4. Thesis Organization 

This thesis focuses on dereverberation by the probabilistic models of speech and 

reverberation, and they are explained in the following chapters in detail. Also, a 

detailed literature survey and implementation details are included. The thesis is 

structured as follows, 

Chapter 2 explains physics of sound waves and causes of reverberation in enclosed 

areas. Non-deterministic nature of reverberation is illustrated. The probabilistic 

models of reverberation which are generated according to these explanations are 

shown. The theory of microphone array and a wide literature survey of dereverberation 

are also included in this chapter. 

Chapter 3 presents all the theory of the proposed methods successively. The chapter 

consists mainly of two different parts. Each stage of the algorithm is explained in these 

parts. The mathematical derivations of each stage are given. 
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Chapter 4 presents implementation details. The speech quality measures are 

explained. The results under different conditions are given in terms of these measures. 

Discussions of the results are also included in this chapter. 

Chapter 5 summarizes implementation and results of the algorithm, and presents the 

future work. 
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CHAPTER 2  

 

2. BACKGROUND 

 

 

2.1. Introduction 

In this chapter, mathematical modeling of dereverberation and existing solutions of 

dereverberation problem are reviewed. In addition, the fundamentals of statistical 

room modeling and statistical nature of sound waves are presented as a background of 

the proposed solution in this thesis. ‘Beamforming’ method is also included at the end 

of the chapter since it takes a significant role in the proposed dereverberation 

algorithm. 

2.2. Mathematical Modeling of Reverberation 

In order to deal with reverberation, reverberant sound must be analyzed 

mathematically according to its characteristics. For this purpose, it is necessary to 

study room impulse response (RIR) since it represents room acoustics. RIR is the filter 

between source and listener in a room. Finite impulse response or infinite impulse 

response structures are used to describe RIR.  Figure 2.1 shows the components of a 

typical RIR. 

The characteristics of a RIR can explain reverberation in an enclosed area. There are 

three different components of RIR that generate different parts of reverberant speech 

[10]. 
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Figure 2.1. The structure of a typical RIR in an enclosed area. 

 

Direct Path: The single non-zero amplitude shows only direct sound without 

reflections in this interval. The initial dead time in this component refers to 

propagation delay of direct sound between source and microphone. The magnitude of 

the direct part relative to other impulses is related to source-microphone distance and 

reflectivity of room. 

Early Reflections: The reflections arriving approximately within the first 30 msec are 

called early reflections. Number of the impulses in this interval is low, and their 

magnitudes are large relative to the subsequent impulses. In general, these closely 

spaced reflections cannot be distinguished from direct sounds by human ears. 

Therefore, they reinforce direct response and they are considered useful for speech 

intelligibility.  

Late Reflections: Late reflections follow early reflections. They generally reach the 

microphone after multiple reflections. They are randomly spaced, decaying impulses. 

This part is the major contribution to the notorious reverberation effects and 

destructive for speech intelligibility. Therefore, dereverberation methods aim at 
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suppressing late reflections in the observed sound since they are the main cause of 

degradation of speech intelligibility. 

During acoustic propagation in a room, each reflection absorbs some energy of sound 

waves. Therefore, the intensity of the reaching sound to microphones decreases with 

time. This situation can be observed from RIR pattern. Typical RIR has a tail structure 

which tends to zero by time; therefore, it is sufficient to take the first 𝐿 values of RIR 

into consideration. The value of 𝐿 depends on the acoustic features of room, and it is 

a significant parameter of a particular reverberation pattern.  

Reverberant signal can be considered as result of convolution of a source signal and a 

causal RIR. Observed speech signal at discrete time 𝑛 at 𝑚𝑡ℎ microphone can be 

written in time domain as: 

 𝑥𝑚[𝑛] = 𝒉𝑚
𝐻 [𝑛]𝒔[𝑛] + 𝑣𝑚[𝑛]    (2. 1) 

where 𝒉𝑚[𝑛] = [ℎm,1 ℎm,2 ℎm,3 . . . . .  ℎ𝑚,𝐿]
𝑇
 is the vector of RIR of length L,   

𝒔[𝑛] = [𝑠[𝑛] 𝑠[𝑛 − 1] 𝑠[𝑛 − 2] . . . . .  𝑠[𝑛 − 𝐿 + 1]]𝑇 is the vector of anechoic source 

signal, 𝑣𝑚[𝑛] is noise signal at 𝑚𝑡ℎ microphone. Mathematically, the aim of speech 

dereverberation is to find the best estimate of 𝑠[𝑛]. This is a very complicated problem 

since acoustics impulse response is not known.  

RIR structure heavily depends on room acoustics. Therefore, studying room acoustics 

gives a better understanding with regards to artificial RIR modeling and 

dereverberation approaches. 

2.3. Overview of Room Acoustics 

Main contributors of an RIR are the room acoustic properties and wave motion 

characteristics. Room acoustic properties affect propagation and interaction of sound 

waves. The geometry of sound propagation, the rules of reflection and absorption 

make it possible to predict each sound wave location in a room. In this way, RIR can 
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be found theoretically. However, it is evident that the procedure is very tedious and 

uncertain. Therefore, modeling room acoustics with the simplifying assumptions eases 

the situation. Before studying room acoustics, mathematical modeling of sound waves 

is helpful. 

2.3.1. Sound Wave Propagation 

Sound wave propagation through the air is described by Helmholtz equation [8]: 

 
∇2𝑝(𝒒, 𝑡) − 

1

𝑐2

𝜕2𝑝(𝒒, 𝑡)

𝜕𝑡2
= 0  (2. 2) 

 
∇2= 

𝜕2

𝜕𝑥2
+ 

𝜕2

𝜕𝑦2
+ 

𝜕2

𝜕𝑧2
  (2. 3) 

where 𝑝 is sound pressure level at related position in dB, 𝒒 is position vector, 𝑡 and 

𝑐 are time in sec and sound wave velocity in m/sec, respectively. The wave equation 

involves sound pressure level in acoustic field. By Eq. (2.2) the sound pressure level 

can be described as position and time dependent function. 

For simplicity, assume that sound waves propagate only along 𝑥 direction, and then 

general form of the solution is: 

 𝑝 = 𝑝0𝑒
(𝑗𝑤𝑡−𝑘𝑥). (2. 4) 

Eq. (2.4) shows that sound waves propagate along a direction with the same amplitude 

but changing phase with respect to position and time. 

Another simple wave model is the spherical wave whose curved wavefronts represent 

constant sound pressure levels. A spherical wave can be considered as emerging from 

a point source. The polar coordinate ‘𝑟’ is used to describe the source distance. 

Helmholtz equation in spherical coordinates [11]: 
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 𝜕2𝑝(𝑟, 𝑡)

𝜕𝑟2
+

2

𝑟

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
− 

1

𝑐2

𝜕2𝑝(𝑟, 𝑡)

𝜕𝑡2
= 0.   (2. 5) 

Now, sound pressure value is a function of the source distance and time. General form 

of the solution is: 

 
𝑝(𝑟, 𝑡) =

𝑃0

𝑟
𝑒(𝑗𝑤𝑡−𝑘𝑟)  . (2. 6) 

As a result, there are two basic models for sound wave propagation which are spherical 

and plane wave models as shown in Figure 2.2. In the plane wave model, sound 

pressure does not depend on source distance and the waves propagate in one direction 

with a flat shape wavefront. However, plane wave is an idealized wave model that 

does not exist in real life. Spherical waves are different than plane waves as they are 

propagating in all directions simultaneously. Pressure magnitude is proportional to 

inverse of the source distance.  

 Spherical waves can represent sound waves more ideally. However, when a listener 

is far enough, the curved wavefront structure and amplitude decay of the wave 

between two points can be neglected, and sounds waves converge to a plane wave 

[12]. This approximation is valid for the source distance greater than: 

 
𝑟 =  

𝑑2

𝜆
   (2. 7) 

where 𝑑 is the distance between microphones in an array, 𝜆 is the wavelength of 

related sound. The units of both variables are in meters. 

Speech signals are dominated by 600 Hz to 1000 Hz frequency content. This means 

that wavelengths of speech signals are mostly from 20 to 50 cm. Therefore, far field 

approximation generally becomes valid in distant speech processing applications (low 

frequency parts of speech may not support the model). 
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Near field and far field terms in speech processing are related to wave model 

approximation. Acoustic far field is defined as from the distance in Eq. (2.7) to 

infinity. In this region, sound waves can be modelled by plane waves. Near field is the 

interval where curved structure of sound waves cannot be neglected. In 

dereverberation, generally far field assumption is used since reflected sounds take a 

distance much more than Eq. (2.7). Although it is a very simple approximation, it 

reduces computational complexity of calculations. 

 

 

Figure 2.2. Representations of a spherical wave and a plane wave respectively. 

 

2.3.2. Room Acoustics for Reverberation 

In order to model entire room acoustics, one would study sound mapping at all 

different locations in a room.  Instead of this exhausting work, finding a characteristic 

property of room that describes whole room acoustics is very tempting. For the sake 

of this purpose American physicist, Clement Sabine, discovered that reverberation 

was well suited for describing important aspects of room acoustics [13]. Sabine made 
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lots of experiments with a sound source which was suddenly stopped. He found that 

there was persistence of the sound that could be heard after stopped and its intensity 

decayed with time. 

Sabine measured auditability of the sound after the source was stopped. He discovered 

that the duration of auditability was same for all locations in a room. This is one of the 

most fundamental properties of reverberation. However, he found that duration of 

auditability was not a characteristic property of reverberant room, alone. At the next 

experiment, strength of sound was studied, and he found that a pistol shot 

reverberation was longer than a snap of fingers. Therefore, auditability of sound 

depends on both initial energy and reverberation time of room. Also, it was discovered 

that sound energy was half in equal time, independent of the initial energy. Sound 

always lost the same percentage of its energy at the same time interval. All of these 

experiments constituted the theoretical fundamentals of reverberation equations. 

Mathematical representations of Sabine’s work can be described as exponential decay 

function of sound energy density: 

 
− 

𝑑𝐸

𝐸
 =  

𝑑𝑡

𝜏
   (2. 8) 

where 𝜏 is the characteristic time constant of room, 𝐸 is energy density. Then 

integration of the exponential function gives: 

 𝑙𝑛𝐸 =  𝑙𝑛𝐸0–  𝑡/𝜏 (2. 9) 

where 𝐸0 is initial energy. Function of energy with respect to time and initial value 

can be written explicitly: 

 
 𝐸 =  𝐸0𝑒

−
𝑡
𝜏 .  (2. 10) 

If the minimum energy value for auditability is determined, the time for auditability 

in a room can be found by Eq. (2.10). This equation is one of the characteristic acoustic 
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features of room. Characteristic time constant 𝜏 makes this process distinctive for each 

enclosed region. 

According to Sabine’s works, instead of working with place to place variation of 

sound signals, it is possible to form average aural characteristics of a room by 

reverberation. However, each reverberant sound wave at different locations in a room 

cannot be represented by just the same exponential energy equation. It would be too 

simplified representation of sound signals. Due to uncertainty of each sound wave in 

enclosed region, single sound wave has to be represented statistically. Therefore, 

theoretical basis of reverberant signals should be in statistical nature complemented 

with the reverberation equations. 

2.3.2.1. Frequency Domain Reverberation Model 

Room mode is collection of the resonance frequencies occurring when sound source 

is excited. Modal density of a room is related to the resonance numbers which are 

contained per frequency. Polack describes the modal density mathematically [14]  

 𝑑𝑁

𝑑𝑓
 ≈

4𝜋𝑉

𝑐3
𝑓2 (2. 11) 

where 𝑁 is the resonance number, 𝑉 is the volume of room in 𝑚3, 𝑓 is the frequency 

of sound in Hz, 𝑐 is sound velocity in m. 

As it can be seen in Eq. (2.11), modal density increases with square of frequency. It is 

expected due to shorter wavelength of sound because resonance occurs when sound 

propagation distance is multiple of half of sound wavelength. In Figure 2.3, resonance 

frequencies can be seen as the peaks in the frequency response plot. They are well 

separated at low frequencies; however, when frequency of the sound increases, they 

get closer and modal density increases. 
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Figure 2.3. Resonance frequencies are the distinct peaks in frequency response plot. 

 

Eq. (2.11) is the basis of room acoustical modeling of Schroeder [15]. Schroeder states 

that at high frequencies, resonance frequencies are too close to be distinct. Therefore, 

any resonance frequency affects several of neighbor frequencies. This means that, at 

high frequencies, single source signal excites several of room modes simultaneously.  

In a reverberant room, when a sine wave signal is excited, microphone captures sum 

of different phase and amplitude contributions of the room modes. Same phase and 

amplitude contributions never occur at different position and time in the room (assume 

that the room modes are independent). Contributions of the room modes can be 

explained statistically because of the uncertain nature of the process. In fact, since all 

room modes have equal probability to occur independently; according to central limit 

theory, summation of contributions converges to Gaussian shape. As a result, transfer 

function is described as position and frequency dependent Gaussian stochastic 

process. This statistical model is based on the assumption of Schroeder frequency that 

is defined as [15] : 
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𝑓𝑠𝑐ℎ𝑟𝑜𝑒𝑑𝑒𝑟  ≈ 2000√
𝑇𝑟

𝑉
 .  (2. 12) 

If excited frequency is higher than Schroeder, room modes start to overlap. Therefore, 

frequency response of a room should be described statistically. 

2.3.2.2. Time Domain Reverberation Model 

Polack developed time domain model of the Schroeder’s contributions [6]. In this 

model, RIR can be considered as a non-stationary stochastic process all over room. 

There are fast and slow variations in RIR. Fast variations are in a few msec time scales. 

These variations exist due to uncertain excitation nature of room modes, and they can 

be represented by Gaussian process if sufficient number of reflections occurs. Slow 

variations are in hundreds of msec scales. They exist due to sound energy absorption 

in room.  The situation can be described as exponential decays. Polack defined RIR 

of reverberant part as a result of these assumptions: 

 ℎ(𝑡) = 𝑏(𝑡)𝑒−𝛽𝑡 (2. 13) 

where 𝑏(𝑡) is Gaussian distribution stochastic process, while 𝛽 is the decay parameter 

related to reverberation characteristics of room. 

In time domain, there is a time interval for Polack model to become valid [16]. In 

order to define response as a stochastic process, a number of room mode overlapping 

must be existed across space and overlapped reflections must spread over room 

uniformly. The time interval for this process is named ‘mixing time’. It is defined as: 

 𝑡𝑚𝑖𝑥𝑖𝑛𝑔 = √𝑉 (𝑚𝑠𝑒𝑐) (2. 14) 

where 𝑉 is the volume of room in  𝑚3. Mixing time is the transition time from early 

reflections to late reflections in RIR. After several reflections, sound waves interact 

each other and spread all over room. RIR no longer corresponds to the arrivals of 

specific sound waves (It is named ‘diffuse sound field’). General response starts to be 
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described by a statistical process.  There are two main conditions for Polack time 

domain reverberation model: mixing time and Schroeder frequency. 

The main assumption of Polack reverberation model is diffuse sound field [17]. In the 

literature, diffuse field can be defined as uniform energy density across room and 

equal probability of energy flow in all directions with random phases. The proposed 

model accuracy depends on diffuseness of room. Structure of room and frequency 

content of sounds are main contributors of diffuseness. 

Perfect diffuse sound field does not exist in real life; however, it is an acceptable 

assumption. All irregularities of a room help sound waves to distribute its energy in 

all possible direction. Roughness of room walls with respect to wavelengths scatters 

incident waves in wide range of directions. The ‘diffusely reflecting’ term expresses 

this situation, and it can be shown as in Figure 2.4. Practically, incident wave does not 

reflect only one direction as an ideal case. Furthermore, furniture in a room and 

irregular decorations all help sound waves to reflect diffusely. Even in partially diffuse 

room, diffuse sound field is also acceptable since when single wave comes to the 

diffuse part they scatter to all directions. After several reflections, scattered waves 

again spread across room. Therefore, even small diffusely reflective area exists; 

diffuse field in a room can be possible. 

 

 

Figure 2.4. The roughness of the wall results in diffusely reflection. 

 

As a result, Polack models reverberation as a random process that is stationary with 

respect to position, while non-stationary with respect to time. Different realizations of 
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the same stochastic process are obtained at different positions at the same time. Time 

and initial energy change variance of the distributions. Temporal decay rate of the 

reverberation model depends on room acoustic characteristics. This decay rate is the 

significant contributor of RIR and it is used at dereverberation methods.  

2.4. Reverberation Fundamentals 

In the following chapters, a number of terms are used in reverberant signal processing. 

In order to grasp mathematical interpretations of the concepts, they are described in 

this section. 

2.4.1. Reverberation Time 

It is found that there is a persistence of sound after sound source is stopped suddenly. 

Auditability time of sound can represent room acoustic characteristics. However, 

initial level of sound source also affects time of auditability. This means auditability 

time cannot be characteristic property of a room, alone. It is necessary to form an 

objective rule related to the time in the literature in order to use it as an acoustic 

feature.  

Reverberation time (𝑅𝑇60) meets this claim. Reverberation time can be defined as the 

time that sound level decays to 1/1000000 (60 dB in logarithmic scale) of initial 

value. This time quantity can characterize room acoustics, and it can be shown as in 

Figure 2.5: 
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Figure 2.5. Reverberation time is the time that sound level decays 60 dB after source 

is stopped. 

 

Schroeder proposed energy decay curve (EDC) to measure reverberation time [18].  If 

source signal is assumed as a white noise, and the noise is switched off at time 𝑡, 

ensemble average of the observed sound level at time 𝑡1 > 𝑡 can be written as: 

 
𝐸𝐷𝐶𝑡1 = ∫ ℎ2(𝜏)𝑑𝜏

∞

𝑡1

 (2. 15) 

where ℎ(𝑡) is assumed IIR type RIR, so reverberation time 𝑅𝑇60 can be defined as: 

 
10 𝑙𝑜𝑔 (

𝐸𝐷𝐶𝑡

𝐸𝐷𝐶𝑅𝑇60
) = 60. (2. 16) 

In the previous sections, it is stated that Polack models impulse response of 

reverberant parts as: 

 ℎ(𝑡) = 𝑏(𝑡)𝑒−𝛽𝑡  (2. 17) 

where 𝛽 is the time constant related to reverberation time of a room. If reverberation 

time is known, corresponding RIR can be derived. Therefore, reverberation time is 

distinctive acoustic property of a room. 
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2.4.2. Sound Intensity 

An important quantity related to sound waves is sound intensity. It is the measure of 

energy transportation in one second.  Sound intensity is written as: 

 𝐼 = 𝑐. 𝑤 (2. 18) 

where 𝑐 is sound wave velocity in m/sec, 𝑤 is energy density of sound in J / m3. 

2.4.3. Critical Distance 

When source distance increases, strength of direct sound reduces while reverberant 

part is same due to uniform distribution of diffuse field. Critical distance is caused by 

this situation [17]. It is defined as the distance where energy density of direct part is 

equal to reverberant part of sound.  

In a diffuse sound field, each propagation direction of sound waves has same 

probability, so intensity of sound waves in each direction is same. In addition, it is 

assumed that sound waves spread over room homogeneously, so energy density of 

sound is equal everywhere in room. This can be described as: 

 𝑑𝑤  =  𝐼/𝑐 𝑑𝛺    (2. 19) 

where 𝛺 shows direction of the propagation in radian, 𝑤 shows energy density for 

infinitesimal area in that direction. In diffuse field, energy density at a position can be 

obtained by integrating of Eq. (2.19) on all spherical angles: 

 
𝑤𝑟 = 

4𝜋𝐼

𝑐𝐴
  (2. 20) 

where 𝐴 shows absorption coefficient related to exponential decay of sound. It can be 

written as: 

 
𝐴 = 0.161 

𝑉

𝑇
 (2. 21) 

where V is volume of enclosed space in 𝑚3, 𝑇 is reverberation time in sec. 
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If sound waves propagate spherically, direct sound energy density depends on the 

source distance and can be written as: 

 
𝑤𝑑 = 

𝐼

𝑐4𝜋𝑟2
. (2. 22) 

Critical distance is where 𝑤𝑟 = 𝑤𝑑, so it is found as: 

 
𝐷𝑐 = (

𝐴

16𝜋2
)
1/2

.   (2. 23) 

Critical distance is used in microphone placement in distant speech processing 

algorithms. If source distance is larger than critical distance, recorded speech quality 

will be very poor, and intelligibility of the sound will be heavily degraded. 

Furthermore, in order to measure reverberation time with EDC curve, source to 

speaker distance must be larger than critical distance because the effects of direct 

component reduced sufficiently with respect to reverberation in this configuration. 

2.5. Literature Survey on Dereverberation Methods 

Many dereverberation algorithms have been offered in speech enhancement literature 

since reverberation degrades quality of speech signal. Most of dereverberation 

algorithms combine different techniques to reduce reverberation effects. Therefore, it 

is not possible to classify clearly each dereverberation algorithm in the literature. 

However, each approach has been adapted mainly from a specific algorithm. In this 

section, dereverberation approaches can be classified according to the mainly used 

enhancement technique. 

This section presents overview of the approaches which explicitly aim to speech 

dereverberation. 

2.5.1. Beamforming Techniques 

Microphone array is one of the most established approaches in speech processing 

literature. Therefore, beamforming technique is among the first dereverberation 
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methods. The main concept of beamforming is simply aligning and adding the 

coherent parts of speech signals. In this way, the coherent part is amplified, whereas 

the incoherent part of speech is suppressed. In fact, beamformers have been used for 

capturing speech signals in noisy observations. However, they can be adapted to 

reverberant environments with some adjustments. 

One of the simple beamforming techniques is delay and sum beamformer (DSB). 

Allen used DSB method for dereverberation [19] . Speech signals can be divided into 

two parts as early and late reverberant parts. Early reverberation is useful for 

intelligibility of speech, while late reverberation decreases speech intelligibility. Also, 

late reverberant parts at each microphone are mostly incoherent with each other. In 

this beamforming method, speech signals are divided into subbands since 

beamformers work with narrow band signals. DSB beamformer aligns and adds the 

subbands at each microphone with respect to phase of the coherent parts, i.e. early 

reverberation. As a result, high correlated parts at each microphone are amplified 

whereas incoherent parts (i.e. the late reverberant parts) are suppressed due to random 

phase structure. At the end, the dereverberated subbands are used to resynthesize the 

enhanced speech signals. Simple figure of a DSB is shown in Figure 2.6: 
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Figure 2.6. DSB method aligns the observed signals with respect to the desired signal. 

 

DSB beamformers are proposed in several various ways in the literature. M.Kajala 

proposed to use constant FIR filters instead of simple delays at front end [20]. The 

filters are optimized in advance. This method is named ‘filter and sum’. Flanagan used 

two dimensional DSB to distinguish speech signals from reverberant signals [21]. 

Also, spherical array beamforming can be considered for dereverberation [22].  

DSB is basic approach in beamforming methods. It very easy to implement; however, 

its ability to adapt changing environments and suppress undesired signals is limited 

because of the fixed beampattern. Therefore, adaptive beamformers can be used to 

achieve higher suppression. Frost developed data dependent, adaptive beamformer 

named ‘linearly constrained minimum variance algorithm’ (LCMV) [23]. In this 

approach, noise power is minimized while signal in the looking direction is preserved. 

Weights of the array are adjusted iteratively to improve directivity and suppress noise.  

LCMV algorithm normally aims at denoising; however, it can also be used for 

dereverberation. Graffits and Jim developed two stages LCMV algorithm named 

‘generalized sidelobe canceller’ (GSC) [24]. Gannot used GSC algorithm for 
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dereverberation [25]. In GSC approach, the looking constraints and the minimization 

of reverberation power are separate stages. In the first stage, a fixed beamformer 

ensures distortionless response in the looking direction. The second stage blocks 

desired sound and provides reverberation reference signal. This reverberation 

reference is used to suppress reverberant part at the fixed beamformer output 

according to LMS. The basic GSC structure can be shown in Figure 2.7. Hoffman 

proposed GSC algorithm to cancel the desired speech in reverberant environments 

[26]. Dietzen combined whitening process with GSC algorithm due to estimate more 

reliable unbiased filter parameters [27]. Gannot estimate transfer function of input 

signals in standard GSC algorithm and developed TF-GSC algorithm [28]. Instead of 

using simple delays in the fixed beamformer stage, the transfer function ratios of the 

source signal at each microphone are estimated separately by single channel blind 

dereverberation. Then, fixed beamformer weights are replaced with respect to these 

transfer functions. 

 

 

Figure 2.7. GSC algorithm use a fixed beamformer and blocking matrix. 

 

Beamforming algorithms can be integrated with another methods in order to gain 

performance of systems. T. Dietzen combines GSC and spectral subtraction methods 
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to obtain dereverberation in noisy environments [29]. He uses GSC for spatial filtering 

to perform denoising while spectral subtraction method provides deconvolution for 

the purpose of dereverberation in parallel. As it can be seen in Figure 2.8, there are 

two different filters in the integrated algorithm. They are estimated jointly by means 

of a single Kalman filter in a recursion. This integrated algorithm is similar to the 

proposed dereverberation in this thesis with respect to the methods. However, these 

methods are used one after the other to achieve better dereverberation in this work, 

while they are used for denoising and dereverberation separately in Figure 2.8. 

 

 

Figure 2.8. GSC algorithm use a fixed beamformer and blocking matrix. 

 

2.5.2. Spectral Enhancement 

Various spectral enhancement techniques have been used at dereverberation in the 

literature. An early dereverberation algorithm with cepstral processing was proposed 

by Duncan [30]. The study states that complex cepstral deconvolution can suppress 

reverberation. The complex cepstrum of sound can be described as: 
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Figure 2.9. Complex cepstrum of a signal. 

 

Deconvolution operation can be considered as subtraction in cepstrum analysis. 

Cepstrum of sound is a measure of frequency of variation in the log spectrum. Speech 

segment has slowly varying smooth log cepstrum. The fast variations in cepstrum of 

observed speech represent the reverberant part. These distinct peaks can be suppressed 

by averaging, and then the processed cepstrum coefficients are used to resynthesize 

the enhanced speech signal. 

Flanagan proposed multi-microphone dereverberation approach [31]. In frequency 

bands, the microphone receiving the greatest average spectral power contributes 

output signal for related speech segment. In this way, output speech signal is generated 

by the most reliable received signals. 

Spectral subtraction is very common approach for denoising and dereverberation 

problems. Erkelens proposed a spectral subtraction method [32]. The algorithm 

estimates late reverberation spectral variance (LRSV) blindly by analysis of long-term 

correlation in speech signals since the long term correlation is result of reverberation. 

After estimation of LRSV, dereverberation can be applied by spectral subtraction. 

Another important method for spectral enhancement is linear prediction (LP) residual 

enhancement. Linear predictive coding (LPC) analysis is powerful tool for speech 

processing. The method considers speech as the output of an excitation signal and all 

pole filters. Excitation signal is quasi periodic pulses for voiced sound parts and 

random noise for unvoiced parts. If coefficients of the all pole filters are known, 

speech synthesis is possible. Main assumption for the LPC analysis is that the filter 

coefficients do not change with reverberation. Also, excitation signal of voiced speech 

contains extra peaks due to reverberation in addition to the original pulses. Therefore, 
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dereverberation approach is to suppress the peaks due to reflections and resynthesize 

speech from original pulses. The simple diagram of LPC based dereverberation: 

 

 

Figure 2.10. Dereverberation algorithm based on LPC analysis. 

 

Yegnanarayana proposed LPC based single channel blind dereverberation approach 

[33]. The effects of reverberation on LPC residuals are studied. This approach divides 

speech into small segments which is approximately 2 msec and classifies them in three 

classes: high SRR, low SRR, only reverberant parts. Each segment is enhanced in 

terms of the LPC residuals with respect to the effects of reverberation. In the end, the 

processed residuals are used to resynthesize speech signal.  

Bradford proposed a different approach with LPC analysis [34]. He combined the 

probabilistic distributions of LP residuals and adaptive filter for dereverberation. 

Amplitude distribution of LP residuals for clean speech is different from reverberant 

speech.  Clean speech residuals consist of strong distinct pulses whereas reverberant 

speech residuals spread over time more randomly. Therefore, kurtosis of LP residual 

amplitude distribution is low for reverberant speech. Bradford states that LP residual 

kurtosis is reasonable metric to measure reverberation, as a result; an adaptive filter 

tries to increase kurtosis of LP residuals can be used to achieve dereverberation. 

2.5.3. Inverse Filtering 

Dereverberation process can be seen as inverse filtering of RIR. If RIR is known 

priori, this technique can achieve high performance in speech dereverberation. 
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However, this is not a realistic assumption in the practical applications. Structure of a 

simple inverse filtering can be shown as: 

 

 

Figure 2.11. Inverse filtering of a system. 

 

Inverse filtering method in Figure 2.11 is similar to deconvolution process. Transfer 

function is generally known in deconvolution problems. In fact, the system is a blind 

deconvolution in dereverberation problems since impulse response is not known. As 

a result, acoustic impulse response must be estimated somehow (at least 

approximately) in the inverse filtering algorithms.  

Miyoshi considered the inverse of RIR as multiple of FIR filters instead of a single 

filter since inverse of RIR has sometimes unstable structure [35].  In this way, even if 

RIR has non-minimum phase, the inverse filter of the response can always be 

described exactly. According to this study, exact inverse response can be obtained by 

adding extra signal transmission channels (multi-microphone case) into the system.  

Eric proposed that the channel coefficients could be estimated by higher order 

statistics of the observations from several microphones [36]. He uses covariance 

matrix of the observed signals and assumes that direct signal transfer function is 

orthogonal to noise subspace.  The algorithm tries to find channel coefficients by 

eigenvectors of observed signal covariance matrix similar to MUSIC algorithm. This 
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study is an example of blind channel identification in noisy environments. Gannot 

adapted this subspace methods to reverberant conditions in multi microphone case 

[37]. 

Furuya proposed a similar algorithm as Miyoshi’s method [38]. However, the method 

estimates inverse filter blindly by observing correlation matrix in multi-microphone 

case. Early speech components are extracted by inverse filters and additional spectral 

subtraction algorithm for late reverberation suppression is used at the output of inverse 

filter.  

Another blind inverse filtering approach is a single channel dereverberation based on 

harmonic structure of speech signals proposed by Nakatani [39]. This blind 

dereverberation method initially estimates fundamental frequency and harmonic 

structure of speech. Then, desired sound can be obtained by sum of the corresponding 

sinusoidal signals. 

2.5.4. Statistical Model 

Reverberation can be described by statistical models. Therefore, probabilistic 

approaches have been developed for dereverberation. Attias proposed Bayes-optimal 

signal estimation for dereverberation [40]. The algorithm uses a speech model that is 

pre-trained on the large clean speech database. Bayes estimation reconstructs source 

signal from observed microphone signal with respect to pre-trained model in 

probabilistic manner. 

Different statistical approach is presented by Nakatani [41]. In this algorithm, 

harmonic structure components approach is reformulated as a maximum likelihood 

(ML) problem. Two types of pdf related to speech features and inverse filters are used 

in ML estimation. These pdfs are used to optimize inverse filters in the algorithm.  In 

this way, the optimized inverse filters are estimated by taking account of room 

acoustic conditions and source speech features. 
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Palomäki uses Bayesian approach to classify speech features [42]. Since reverberation 

effects of speech can be seen in long time interval, the longtime context representation 

of observed speech is estimated. The patterns are classified with Bayesian approach, 

this algorithm is used to map reverberant speech features to clean speech features. 

Nicolas proposed Lasso prediction algorithm to estimate late reverberant part of 

speech [43]. Late reverberant part is assumed as a linear combination of the previous 

frames in time-frequency domain. When Lasso algorithm is applied to predict late 

reverberation in frequency domain, residuals of the predictions are direct part of 

speech. Magnitude ratio of late reverberant to direct part is used to generate a filter for 

dereverberation. 

Reverberation is smearing of energy of the previous samples over time. Therefore, 

spectral subtraction would be very useful method if smeared energy was known 

exactly.  Based on this idea, a novel approach for dereverberation is presented by 

Lebart [44]. He proposed to combine Polack statistical model for reverberant room 

and spectral subtraction approaches. Simple structure of the approach can be shown 

in Figure 2.12: 

 

 

Figure 2.12. Dereverberation algorithm estimates the PSD of reverberation and 

generate a filter for reverberation. 
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Polack statistical model is used to estimate the PSD of the reverberant part. Then, 

these components are removed by spectral subtraction method. 

2.6. Beamforming Method 

Multi-microphone solutions have superiority over single microphone techniques in 

speech enhancement studies. Therefore, multi-microphones are used to obtain better 

performance in speech processing methods. In multi-microphone speech processing 

approaches, beamformers are frequently used. Beamformers can also be used in 

dereverberation algorithms. In this section, detailed background of beamformers is 

given.   

Beamformers can be formulated as spatial filters which operate on inputs of 

microphone array in order to generate directivity. The main feature of a beamformer 

is to provide directional signal transmission, and they are studied in different signal 

processing areas such as direction of arrival estimation and enhancing the signal from 

specific direction.  

Beamformers implement steering function by a weighted sum and this function 

provides the sensor array to rotate towards a specific direction algorithmically. In this 

way, sensors can pick up the desired signal more accurately, and the noise which 

comes from other directions can be suppressed. Steering function can be generated by 

shifting sensor signals appropriately in time domain. In frequency domain, it is 

implemented by applying exponential weights to STFT coefficients of the sensor 

signals. The weighted sum is controlled according to priori constraints to further 

improve the performance of beamformers [45]. Simplified diagram of a beamformer 

can be shown in Figure 2.13. 

General equation of a beamformer output is: 
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𝑧[𝑛] = ∑ 𝑤𝑚

𝑀

𝑚=1

[𝑛]𝑦𝑚[𝑛]                      
 

(2. 24) 

where 𝑀 is sensor numbers, 𝑦𝑚[𝑛] is the 𝑚𝑡ℎsensor signal, 𝑤𝑚[𝑛] is the weight of 

𝑚𝑡ℎsensor. 

 

 

Figure 2.13. The beamformer synchronizes the input signals. The weighted 

coefficients are adjusted with respect to a constraint. 

 

Beamformers work with narrow band signals because their transfer functions change 

with frequency of signal. Low-pass filters or subband decompositions can be used to 

process rich frequency content speech signals. The calculations can be made for 

broadband signals by processing its narrowband components separately. 

2.6.1. Signals in Beamforming 

Beamformers work with propagation path differences of received sound signals. 

Received signals at different microphones are out phase or in phase because of unequal 

sound wave paths. The spatial filters use these phase relations to amplify or attenuate 

the signals. The main object is to use these phase differences as constructive for the 

desired sounds, destructive for interferences. Therefore, it is important to describe the 
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phase relations between microphones mathematically in order to adjust filter 

coefficients. 

 Each propagation channel in microphone array can be described by attenuation and 

delay parameters. At discrete time instant 𝑛, the signal at 𝑚𝑡ℎ microphone is described 

as [45]: 

 𝑦𝑚[𝑛] =  𝛼𝑚𝑠[𝑛 − 𝑡 − 𝐹𝑚(𝑡)] + 𝑣𝑚[𝑛]  (2. 25) 

where 𝑠[𝑛] is the desired signal, 𝛼𝑚 is attenuation constant due to propagation, 𝐹𝑚(𝑡) 

is the relative time delay of the microphones with respect to reference, 𝑡 is the time 

delay due to propagation of sound wave between source and reference microphone, 

𝑣[𝑛] is noise parameter. (In the frequency domain, the delay parameters are written as 

exponential functions.)  

𝐹𝑚(𝑡) is significant time delay in beamforming method. It originates from microphone 

array structure. Sound waves reach the microphones at different time instants with 

respect to the direction of arrival (DOA). 𝐹𝑚(𝑡) is used to describe time difference 

between reference microphone and related microphone. As in Figure 2.14, first 

microphone can be accepted as reference microphone and relative delay depends on 

DOA as well as the microphone number. 
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Figure 2.14. Sound wave propagation difference. 

 

Especially in reverberation problems, sound waves are modeled by plane waves since 

they propagate along the distance larger than Eq. (2.7) for most of the frequencies due 

to reflections. This assumption is useful to specify the relative delay parameters. 

 As it can be seen in Figure 2.14, each relative time delay is described as:   

 
𝐹𝑚(𝜏) = (𝑚 − 1)𝜏 =

(𝑚 − 1)𝑑𝑐𝑜𝑠𝛳 

𝑐
    (2. 26) 

where 𝑑 is the distance between microphones, 𝛳 is the DOA, 𝑐 is propagation velocity. 

Note that Eq. (2.26) is continuous time domain representation and it must be converted 

to discrete time domain initially; however, this time relation is assumed to be in 

discrete time domain in the next equations. 

The aim of beamformer is reducing effect of 𝑣[𝑛] relative to the desired signal i.e. 

improving SNR in observed signal. In dereverberation case, 𝑣[𝑛] is replaced by 

reverberation, in this way the system can suppress reverberation. 
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2.6.2. Array Gain of Beamformer 

The main object of a beamformer is to improve SNR of input signal at each subband, 

and it is achieved by array geometry and sensor weights. These parameters must be 

adjusted with respect to specific metric which is named ‘array gain’. Array gain is 

obtained by ratio of beamformer output SNR to the reference microphone SNR. The 

performance of a beamformer is evaluated by this metric. Mathematical expression is 

shown as:  

 
𝐴𝑟𝑟𝑎𝑦 𝐺𝑎𝑖𝑛 =  𝐺𝑎 = 

𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡

𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡
 

=
𝒘𝐻𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡𝒘

𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡
               

 

(2. 27) 

where 𝒘 is vector of microphone weights. In order to maximize array gain of a 

beamformer, derivative of this expression for each subband is used. 

2.6.3. Beampattern of a Beamformer 

Response of a beamformer inherently depends on the direction of sound signals. This 

response can be shown by beampatterns. A beampattern is the graph of beamformer 

output which shows output response versus DOA. Besides, frequency affects 

beamformer response; therefore, beampatterns are evaluated for a specified frequency. 

Typical beampattern can be shown as in Figure 2.15: 
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Figure 2.15. Beampattern of DSB (2000 Hz signal in 4 microphone case). 

 

This graph shows magnitude of beamformer response for a specific frequency. As it 

can be seen in Figure 2.15, beamformers provide spatial selectivity, i.e. reinforce some 

signals from particular directions while attenuate other arrival directions. By setting 

the beamformer weights, strength and direction of attenuation can be adjusted. 

The output response at the desired angle in a beampattern is main lobe while the other 

attenuated responses are side lobe. The height of side lobes represents attenuation for 

the unwanted signals. For ideal beamformer, side lobes magnitude should be very 

small compared to that of main lobe. The width of main lobe should be as small as 

possible in order to provide resolution in directions. 

In Figure 2.15, the spatial selectivity does not work very well because there are three 

main lobes at different directions, so corresponding arrival directions are not 

distinguished from each other. In the beamforming literature, it is defined as spatial 

aliasing. It occurs when input signals are sampled too slowly at the sensors to observe 

different phases of sound waves. In order to prevent spatial aliasing, spatial sampling 

theorem must be satisfied [46]. According to this theorem, the distance between 
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sensors must be lower than half of the minimum wavelength in the input signal 

content: 

 
𝑑𝑠𝑒𝑛𝑠𝑜𝑟𝑠 <

𝜆

2
   .             (2. 28) 

In order to analyze beamformers and their beampatterns mathematically, it is useful 

to study a simple beamformer structure. 

2.6.4. Classical Beamformer 

The simplest form of beamformers is DSB. This beamformer just steers the main lobe 

of beampattern to specific direction by compensating path differences of sound waves 

[45]. This can be done by shifting each sensor signal with respect to the reference 

microphone signal. The phase relations are found by DOA of the desired signal. The 

first microphone is assumed as the reference microphone in the equations.  

Noise signal has not a deterministic structure like the desired signal, and their phases 

do not depend on the source direction. Therefore, there is no perfect matching of noise 

signals when the phases are shifted according to DOA. In this derivation, noise signals 

are assumed as stationary incoherent parts of the recorded signals.  

For DSB, the simplest form of beamformer, all weights can be taken as 
1

𝑀
 where 𝑀 is 

the microphone number. This procedure turns into just taking mean of the 

synchronized sensor outputs.  

 

𝑧𝐷𝑆𝐵[𝑛] = ∑ wm𝑦𝑚[𝑛 + 𝐹𝑛(𝜏)]   .      

𝑀

𝑛=1

 

 

(2. 29) 

Take all coefficients as 
1

𝑀
: 
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 𝑧𝐷𝑆𝐵[𝑛] =  
1

𝑀
∑ 𝑦𝑚[𝑛 + 𝐹𝑚(𝜏)]

𝑀

𝑚=1

=
1

𝑀
∑ 𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑

𝑚

𝑀

𝑚=1

[𝑛]

=  𝛼𝑠𝑠[𝑛] +  𝑣𝑠[𝑛]        

    

 

 

 

 

(2. 30) 

 

  𝛼𝑠 = 
1

𝑀
∑ 𝛼𝑚

𝑀

𝑚=1

 

    

(2. 31) 

 

𝑣𝑠[𝑛] =  
1

𝑀
∑ 𝑣𝑚[𝑛]

𝑀

𝑚=1

 

   

(2. 32) 

where 𝑠[𝑛] is the desired signal; 𝛼𝑠, 𝑣𝑠[𝑛] are the average of attenuation constants and 

noise signals respectively. Now, assume that noise signal is white noise for simplicity, 

analyze input SNR and output SNR: 

𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡 =
1

𝑀2
(∑ 𝛼𝑚

𝑀

𝑚=1

)

2

𝐸(𝑠2[𝑛])

𝐸(𝑣𝑠
2[𝑛])

 

 
=

(∑ 𝛼𝑚
𝑀
𝑚=1 )2

𝑀

𝜎𝑠
2

𝜎𝑣
2
        (2. 33) 

where  
𝜎𝑠

2

𝜎𝑣
2  is the input SNR. 𝛼 is the attenuation constant of the desired signal. In 

normal room conditions, the attenuation of a direct sound wave can be neglected. 

( 𝛼𝑚=1) Therefore,  𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀 . 𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡 and   𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡 > 𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡. 
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Another way of analyzing performance of a beamformer is frequency response of the 

spatial filter, i.e. beampattern. In order to obtain output response of a beamformer, its 

transfer function is investigated in frequency domain. Frequency response of the filter 

is generated by delay parameters, and they are described by exponential terms in 

frequency domain.  

 All conditions in time domain calculations are same for frequency domain analysis. 

The delay functions are written according to Figure 2.14. The frequency response of 

DSB beamformer: 

                                     HDS(𝜑, 𝜃) =
1

𝑀
∑[e

jωd(m−1)cos𝜃
𝑐

 ] [e
−jωd(m−1)cos𝜑

𝑐
 ]                

𝑀

𝑚=1

 

 

        =  
1

𝑀
 ∑[e

jωd(m−1)(cos𝜃−cos𝜑)
𝑐

 ]

𝑀

𝑚=1

  

 

(2. 34) 

where 𝜑 is steering direction angle, 𝜃 shows DOA with horizontal axis. By solving                         

the equation, frequency response of a beamformer is obtained as: 

                               𝐴𝐷𝑆   = |𝐻𝐷𝑆(𝜑, 𝜃)|                                  

 
𝐴𝐷𝑆  = |

sin(𝑁𝑤𝑑(𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜃)/2) /𝑐

𝑁𝑠𝑖𝑛(𝑤𝑑(𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜃)/2)/𝑐
|     (2. 35) 

 

In frequency response equation (2.35), the significant parameters of beamformers can 

be easily seen. Also, beampattern of microphone array can be drawn according to this 

equation. Typical frequency response of beamformer with 𝜃 = 90° (𝐷𝑂𝐴 =  90 ° ) 

with respect to steering angle can be shown as: 
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Figure 2.16. Frequency response of a beamformer in terms of steering angle when 

DOA =  90 °. 

 

As it is shown in Figure 2.16, the maximum response can be obtained when the desired 

signal is in looking direction of microphone array. Also, it can be concluded that the 

microphone number and the distance between microphones are the parameters of 

beamformer. Beamwidth decreases when the number of sensors, the interval between 

sensors and the frequency of signal increase. The height of sidelobes also can be 

adjusted by same parameters. 

In Figure 2.16, there are nulls in the transfer function of the beamformer. The purpose 

is to adjust these directions with respect to interference signals to obtain maximum 

attenuation. However, frequency response would be fixed unless physical changes are 

made in DSB beamformers. The problem is whether it is possible to adjust frequency 

response without physical changes. This procedure can be possible by varying 

weights. Therefore, more comprehensive beamformer structures are developed to 

adjust beampattern characteristics with respect to the desired and interference signals 

adaptively. 
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2.6.5. Adaptive Beamformers 

In DSB, array processing parameters do not change dynamically. Delay parameters 

change with varying DOA, however microphone coefficients do not change with 

respect to noise characteristics. Therefore, the main characteristics of beampattern 

such as nulls, beamwidth, and sidelobes are fixed. Frost proposed a beamformer 

algorithm based on LMS method [23]. In this method, the weights of array can be 

adjusted dynamically frame by frame with respect to observed signals. This is the basis 

of adaptive beamformers. 

The comparison of fixed and adaptive beamformer can be shown in Figure 2.17. Red 

and blue lines show beampattern of fixed and adaptive beamformers respectively. The 

null directions of fixed beamformer are independent of interference directions while 

adaptive beamformer adjusts null directions with respect to interference field 

dynamically. Therefore, adaptive beamformers can be considered as data dependent 

microphone array while fixed beamformers are data independent. 

 

 

Figure 2.17. Frequency response of a fixed beamformer (DSB) and an adaptive 

beamformer (MVDR) in an environment where DOA of interference is 60 °. 
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In this thesis, MVDR beamformer is used to deal with reverberant parts. Therefore, 

more detailed knowledge about how adaptive beamformers work is presented in 

Chapter 3. 

2.7. Statistical Model of Speech Signal 

Statistical model of speech signals plays important role in the speech processing 

techniques. Due to unknown source signal and channel responses, speech modeling is 

very common in dereverberation techniques. Especially, if there is no prior knowledge 

about the system in single channel dereverberation approach, modeling of speech is 

crucial. 

There is no deterministic structure to model speech signals due to various and non-

stationary characteristics of sound waves. Therefore, statistical modelling is popular 

for speech signals. This approach considers each speech sample as a realization of a 

stochastic process and relies on this process to describe entire speech. 

Accuracy of the statistical model is essential because the model directly affects 

performance of speech processing method. However, accuracy is not adequate to 

determine the appropriate model. The selected model must be also mathematically 

tractable to process speech signals in a reasonable time.  

Various stochastic models are proposed to model speech. First, Davenport studied 

distribution of speech samples in time domain and stated that the amplitude 

distribution varies exponentially around the mean [47]. Therefore, in many 

applications, speech signals have been assumed Gaussian process in order to simplify 

the calculations [48] . Besides, Laplace and Gamma distributions have been also 

suggested with respect to the length of speech segment [49].  

Distributions of DFT coefficients have been also considered since many speech 

processing algorithms are in frequency domain instead of time domain. Each DFT 

coefficient is weighted sum of the speech samples, indeed. If the speech samples are 

assumed as independent random variables, according to Central Limit Theorem DFT 
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coefficients have roughly Gaussian shape regardless of distribution of speech samples 

in time domain. However, there are also different proposed distributions, and 

Laplacian distribution is used in some contributions for DFT coefficients [50]. 

Hendriks made an objective comparison of accuracy of the distributions of clean-

anechoic speech signals in both time and frequency domain in different conditions 

[51]. He found that speech segment size had an effect on accuracy of the distributions. 

Therefore, it is necessary to investigate the distributions according to segment 

duration. It is found that the distribution of speech samples is Laplacian in 30 – 200 

msec segments while Gaussian distribution fits best for less than 20 msec. 

Furthermore, the distribution of DFT coefficients is also studied in similar way. It is 

found that the coefficients are classified as Gaussian for 30 msec speech segments. 

As a result, since speech depends on both speaker and environment, it is not an easy 

work to generate a model which always fits speech signals. However, an exponential 

distribution generally can be used to represent signals. According to mathematical 

tractability, accuracy and speech segment size in the algorithms; Gaussian distribution 

seems reasonable. 
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CHAPTER 3  

 

3. DEREVERBERATION METHOD 

 

 

3.1. Introduction 

Dereverberation is a blind deconvolution process, since there is no prior knowledge 

about room impulse response and source signal. It means that there are parameters to 

be estimated before processing; however, it is difficult to estimate all of these 

parameters accurately. This issue leads to use statistical models in dereverberation 

approaches since the probabilistic models can be used to derive parameters of the 

system. These models also reduce computation complexity significantly, so even real 

time dereverberation becomes possible. In Chapter 2, the statistical models of room 

acoustics and sound waves are explained. The dereverberation methods in this chapter 

are based on these statistical models.  

Dereverberation methods generally use well known speech processing algorithms. 

However, these algorithms have low performance in reverberant environments. 

Therefore, it is necessary to adapt these algorithms to the nature of reverberation. The 

statistical models of reverberation are used for this purpose. Besides, each algorithm 

suppresses reverberation in different approach. Therefore, combining various 

algorithms is popular in order to improve performance of dereverberation. 

In this work, two main aspects of reverberant signals are combined to improve the 

performance. First, the reverberant part can be seen as a replica of the direct speech 

due to reflections of sound waves, so it causes long time correlations in recorded 

speech. It is possible to use these correlations to suppress the replicas in recorded 

speech signals. The second point of the view is to treat reverberation as independent 
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components, so a directional microphone array algorithm can be applied to capture the 

desired speech signal while suppressing reverberation.  

In this chapter, two different methods corresponding to these two different aspects of 

reverberation are presented. Both of these methods rely on the statistical models of 

room impulse response and source signal. Therefore, there is no need of prior 

knowledge of the system. This makes both methods useful in practical applications. 

Furthermore, combining of the methods and advantages of the combined system are 

explained in this chapter. 

3.2. Problem Statement 

In time domain, recorded speech is convolution of anechoic source signal and RIR.  

Let 𝑠[𝑛] be the desired speech source, i.e. anechoic speech in a room and 𝑛 denote the 

discrete time index of the signal. The observed speech in a room can be modeled as: 

 𝑦𝑚[𝑛] = 𝑠[𝑛] ∗ ℎ𝑚[𝑛] + 𝑣𝑚[𝑛] (3. 1) 

                 𝑦𝑚[𝑛] = ∑ ℎ𝑚[𝑘] 𝑠[𝑛 − 𝑘] + 𝑣𝑚[𝑛]

𝐿−1

𝑘=0

 

where 𝑚 denotes microphone index, ℎ𝑚[𝑛] is impulse response between source and 

related microphone, 𝑣𝑚[𝑛] denotes microphone observation noise. In Chapter 2, it has 

been stated that reverberation can be divided into two components as ‘early 

reverberation’ and ‘late reverberation’. Therefore, the observed speech 𝑦[𝑛] at the  

𝑚𝑡ℎ microphone can be described as: 

 𝑦𝑚[𝑛] = 𝑑𝑚[𝑛] + 𝑟𝑚[𝑛] + 𝑣𝑚[𝑛]. (3. 2) 

where 𝑑𝑚, 𝑟𝑚 denotes early reverberation and late reverberation respectively.  

In this thesis, it is assumed that the room is a quiet environment in order to simplify 

dereverberation calculations. Therefore, 𝑣𝑚[𝑛] is neglected, and  𝑥𝑚[𝑛] is used to 

denote the observation signal without noise: 
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 𝑥𝑚[𝑛] = 𝑑𝑚[𝑛] + 𝑟𝑚[𝑛]. (3. 3) 

Human ears cannot distinguish the direct sound from early reverberation [10] . There 

is no need to evaluate the direct part and early reverberation separately, so 𝑑𝑚[𝑛] 

represents the sum of early reverberant and direct parts (in the rest of the document, 

early reverberation part contains the direct part of speech) while 𝑟𝑚[𝑛] represents late 

reverberation.  

 

𝑑𝑚[𝑛] = ∑ ℎ𝑚[𝑘] 𝑠[𝑛 − 𝑘]

𝑇

𝑘=0

 (3. 4) 

      𝑟𝑚[𝑛] = ∑ ℎ𝑚[𝑛] 𝑠[𝑛 − 𝑘].

𝐿−1

𝑘=𝑇+1

   

𝑇 is the time index of transition from early reverberant to late reverberant part in RIR. 

It is ‘mixing time’ that is the elapsed time for diffuse field to exist in a room [6]. The 

mixing time depends on the volume of enclosed space. However, various estimation 

methods of the time exist in the literature [52] . 

In frequency domain, speech signal can be processed frame by frame. Convolutive 

transfer function (CTF) model is used to describe STFT coefficients of the observed 

speech [53]. According to this model STFT coefficients of an observed speech frame 

can be written in terms of previous frames of source signal. By using this model, STFT 

coefficients of the observed speech, 𝑌𝑚(𝑙, 𝑘) can be described as: 

 

𝑌𝑚(𝑙, 𝑘) = ∑ 𝐻𝑚
∗ (𝑛, 𝑘) 𝑆(𝑙 − 𝑛, 𝑘) + 𝑉𝑚(𝑙, 𝑘) 

𝐿−1

𝑛=0

 (3. 5) 

where 𝑙 is the frame index, 𝑘 is the frequency bin number, 𝐿 is length of the transfer 

function. Also 𝑆(𝑙, 𝑘), 𝑉𝑚(𝑙, 𝑘) denote STFT coefficients of the anechoic source 

signal 𝑠[𝑛] and noise signal 𝑣𝑚[𝑛].  𝐻𝑚(𝑙, 𝑘) relates the observation to the past 

elements of 𝑆(𝑙, 𝑘).  
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CTF representation is a useful model in reverberant environments. The time domain 

convolution between source signal and RIR can be approximated as convolution 

between STFT coefficients of speech and convolutive transfer function of room for 

each frequency bin independently. In this way, reverberant signals can be described 

in terms of previous frames in the subbands.  Also, it can explain the effects of 

previous frames on the recent frame due to reverberation mathematically, so this 

representation is useful for dereverberation methods based on linear prediction. If the 

observation noise is neglected, STFT coefficients of observed speech frame have 

contributions from both early reverberation and late reverberation parts: 

 𝑋𝑚(𝑙, 𝑘) = 𝐷𝑚(𝑙, 𝑘) + 𝑅𝑚(𝑙, 𝑘)       (3. 6) 

where 𝐷𝑚(𝑙, 𝑘) and 𝑅𝑚(𝑙, 𝑘) show frequency domain representations of 𝑑𝑚[𝑛] and 

𝑟𝑚[𝑛] in Eq. (3.3). Early reverberant and late reverberant components are written in 

frequency domain by CTF model: 

 

𝐷𝑚(𝑙, 𝑘) = ∑ 𝐻𝑚
∗ (𝑛, 𝑘) 𝑆(𝑙 − 𝑛, 𝑘)   

𝐷−1

𝑛=0

 (3. 7) 

                𝑅𝑚(𝑙, 𝑘) = ∑ 𝐻𝑚
∗ (𝑛, 𝑘) 𝑆(𝑙 − 𝑛, 𝑘)

𝐿−1

𝑛=𝐷

                     

where 𝐷 is the frame number related to the mixing time. 

The matrix form of CTF model: 

 𝑋𝑚(𝑙, 𝑘) = 𝑯𝑚
𝐻 (𝑘) 𝑺(𝑙, 𝑘) (3. 8) 

 where 𝑯𝑚(𝑘)  =  [ 𝐻𝑚(0, 𝑘)𝐻𝑚(1, 𝑘) 𝐻𝑚(2, 𝑘)  … . .  𝐻𝑚(𝐿 − 1, 𝑘)]T is vector 

form of transfer function, 𝑺(𝑙, 𝑘) =  [𝑆(𝑙, 𝑘) 𝑆(𝑙 − 1, 𝑘)  𝑆(𝑙 − 2, 𝑘) . . . .  𝑆(𝑙 − 𝐿 +

1, 𝑘)]T  is the source vector. 
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3.3. Proposed Approach 

The proposed dereverberation algorithm consists of two different techniques, adaptive 

beamforming and linear prediction, one after the other. Both techniques are adapted 

to the nature of reverberation. At the first stage, adaptive beamforming is applied by 

a microphone array as a multi-microphone dereverberation then, linear prediction is 

applied to the output of the array as a single channel dereverberation. Estimate of late 

reverberation PSD (𝜙𝑟) in the microphone array stage is used in the second stage as 

well. The overview of the proposed dereverberation algorithm is shown in Figure 3.1.  

Initially, the methods will be presented individually and then the combined approach 

will be explained at the end of this chapter. 

 

 

Figure 3.1. After the observed reverberant signal is processed in the microphone 

array, single channel dereverberation algorithm is applied the output of microphone 

array. 

 

3.4. Microphone Array 

One approach for dereverberation is to treat reverberant part as an unwanted diffuse 

sound field which is independent of the direct components, so it is possible to design 

a beamformer which provides directivity towards the direct path of the incoming 

speech signal while nulling out the directions of reverberant components. Thus, the 

effect of unwanted components in observed speech signal can be reduced. In a 

reverberant environment, the direction and magnitude of the interferences are not 
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fixed. Therefore, a fixed beamformer structure would not give substantial 

improvements to dereverberation performance. Adaptive beamformers can be used to 

deal with the time-varying nature of reverberation directions and magnitudes. 

Adaptive beamformers adjust weights of the microphones to satisfy two criteria. First 

one is to maximize SNR at the output of beamformer for each subband. This can be 

achieved by maximum suppression to the interferences in microphone signal. Second 

one is to have no distortion of the source signal in the absence of interferences [23]. It 

is expected that the main lobe of a beampattern has a constant gain in the source 

signal’s direct path direction. 

3.4.1. Minimum Variance Distortionless Response (MVDR) Beamformer 

One of the most widely used adaptive beamformer technique is MVDR beamformer. 

MVDR formulation aims a constant gain at the looking direction and nulling the 

interference directions. In this work, MVDR is implemented to provide high 

performance at filtering late reverberation while obtain unity gain to the direction of 

speech. MVDR adjusts microphone coefficients to minimize output power and not to 

disturb the desired signal at the looking direction [45]. 

In frequency domain, received microphone signals can be written in vector form 

  𝒀(𝑙, 𝑘) = 𝑿(𝑙, 𝑘) + 𝑽(𝑙, 𝑘) (3. 9) 

                                                            =  𝑆(𝑙, 𝑘) 𝒈(𝑘) +  𝑽(𝑙, 𝑘) 

where 𝑿(𝑙, 𝑘) =  [𝑋1(𝑙, 𝑘) 𝑋2(𝑙, 𝑘) 𝑋3(𝑙, 𝑘) ….  𝑋𝑀(𝑙, 𝑘)]𝑇 

           𝒈(𝑘) =  [𝑔1(𝑘) 𝑔2(𝑘) 𝑔3(𝑘) ….  𝑔𝑀(𝑘)]𝑇 

         𝑽(𝑙, 𝑘) =  [𝑉1(𝑙, 𝑘) 𝑉2(𝑙, 𝑘) 𝑉3(𝑙, 𝑘) ….  𝑉𝑀(𝑙, 𝑘)]𝑇 are M dimensional vectors. 

Subscripts in these equations show the microphone number in the array.  

𝑆(𝑙, 𝑘), 𝑿(𝑙, 𝑘), 𝒈(𝑘), 𝑽(𝑙, 𝑘) denote STFT coefficients of the unknown source signal, 

the desired parts of observed signals, transfer functions between the source and related 
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microphones, and ambient noise, respectively. The following equations do not depend 

on the frame number. Therefore, frame number ′𝑙′ is not shown in the equations.  

Let 𝒘(𝑘) be the vector of beamformer coefficients, 

𝒘(𝑘) = [𝑤1(𝑘) 𝑤2(𝑘) 𝑤3(𝑘) … . . 𝑤𝑀(𝑘)]𝑇 

and 𝑧(𝑘) be the beamformer output: 

 𝑧(𝑘) = 𝒘𝐻(𝑘) 𝒀(𝑘) (3. 10) 

                                                                  = 𝒘H(𝑘) [𝒈(𝑘)𝑠(𝑘) +  𝑽(𝑘)] 

If noise signal is independent of the desired signal, the power spectral density of the 

beamformer output can be written as: 

 𝜙𝑧(𝑘) = 𝒘𝐻(𝑘)𝝓𝑥(𝑘)𝒘(𝑘) + 𝒘𝐻(𝑘)𝝓𝑣(𝑘)𝒘(𝑘) (3. 11) 

where 𝝓𝑥(𝑘),𝝓𝑣(𝑘) are the PSD of desired signal and noise at input respectively, 

𝒘𝐻(𝑘)𝝓𝑣(𝑘)𝒘(𝑘) is the PSD of noise at the output. One aim of MVDR is the 

minimization of the noise PSD at the output and the other is fixed gain in the desired 

signal direction [45]. In our case, the gain is accepted as 𝑔1(𝑘) that is the transfer 

function of the reference microphone. As a result, the MVDR problem is stated as: 

     𝒘𝑚𝑣𝑑𝑟 = argmin
𝒘

𝒘𝐻(𝑘)𝝓𝑣(𝑘)𝒘(𝑘)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒘𝐻(𝑘) 𝒈(𝑘)

= 𝑔1(𝑘).   

(3. 12) 

Lagrange multiplier is used to solve these constraints. The cost function with Lagrange 

multiplier can be defined as: 

 𝐿(𝑘) =  𝒘𝐻(𝑘)𝝓𝑣(𝑘)𝒘(𝑘) + [𝜆(𝒘𝐻(𝑘) ∗ 𝒈(𝑘) − 𝑔1(𝑘))]. (3. 13) 

The solution of MVDR algorithm is given as: 

 
  𝒘𝐻(𝑘) =

𝒈H(𝑘)𝝓𝑣(𝑘)−1𝑔1
∗(𝑘)

𝒈H(k)𝝓𝑣(𝑘)−1𝒈(𝑘)
. (3. 14) 
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3.4.2. MVDR in Reverberation 

Now, we will present the MVDR formulation for a particular model of reverberant 

speech in a room under reasonable assumptions. In a reverberant room, the observed 

signal at the 𝑚𝑡ℎ microphone can be written in frequency domain as: 

 𝑌𝑚(𝑙, 𝑘) = 𝐷𝑚(𝑙 , 𝑘) + 𝑅𝑚(𝑙, 𝑘) + 𝑉𝑚(𝑙, 𝑘) (3. 15) 

where 𝐷𝑚(𝑙, 𝑘), 𝑅𝑚(𝑙, 𝑘), 𝑉𝑚(𝑙, 𝑘) represent STFT coefficients of early reverberant 

part, late reverberant part and observation noise signals, respectively. Observation 

noise will be neglected due to simplicity of calculations.  

The purpose of MVDR is to suppress late reverberant part while maintaining 

directivity towards early reverberant part because early reflections cannot be 

distinguished by human ears while late reverberation is harmful for speech 

intelligibility [10]. 

Transfer function ratios of early reverberant part must be known in order to provide 

directivity. Since early reverberant part consists of direct part and multiple early 

reflections as in Figure 3.2, the exact transfer function of the microphone signals 

cannot be measured accurately. Therefore, dividing  𝐷𝑚(𝑙 , 𝑘) component into two 

smaller components is useful: 

     𝐷𝑚(𝑙, 𝑘) = 𝐺𝑑
𝑚(𝑘) 𝑆(𝑙, 𝑘) + 𝐷𝑙

𝑚(𝑙, 𝑘) (3. 16) 

where 𝑚 shows the microphone index, 𝐺𝑑
𝑚(𝑘) 𝑆(𝑙, 𝑘) represents the earliest 

components, i.e. direct part and the nearest early reflections generated by only current 

frame of the source signal in Eq.(3.7), 𝐺𝑑
𝑚(𝑘) shows transfer function of these 

components, 𝐷𝑙
𝑚(𝑙, 𝑘) shows the lagged early reflections generated by previous 

frames of the source signal. Direct part of speech is nearly instantaneous, and speech 

signals are processed frame by frame in frequency domain; therefore, the direct part 

of speech cannot be described individually in frequency domain. 𝐺𝑑
𝑚(𝑘) 𝑆(𝑙, 𝑘) 

represents the frame of direct part; however, it contains also a few following early 
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reflections due to non-zero frame length. (This part is named ‘the earliest components’ 

in this work) Steering direction of MVDR is adjusted with respect to the earliest 

components because this part contains fewer reverberation, and it is dominated by 

direct part. Since the reflection number is low, it is easier to find a deterministic 

transfer function for this part. However, steering towards just the earliest components 

causes some of the lagged early reverberant components not to be processed properly 

within the MVDR. In Chapter 2, it is stated that early reverberation is not distinguished 

from the direct part by human ears, so these unprocessed do not reduce speech quality. 

As a result, although lagged early reverberation is not taken in consideration in 

steering process properly; steering towards the earliest components strengthens direct 

components with respect to the late reverberation.  

Vector form of the observed reverberant signal can be written as 

 𝒙(𝑙, 𝑘) = 𝒈𝒅(𝑘)𝑆(𝑙, 𝑘) + 𝑫𝒍(𝑙, 𝑘) + 𝒓(𝑙, 𝑘) (3. 17) 

where 𝒈𝑑(𝑘) = [𝐺𝑑
1(𝑘)  𝐺𝑑

2(𝑘)… . . 𝐺𝑑
𝑀(𝑘)] is vector form of transfer functions of the 

earliest components. Thus, if the lagged early reverberation is ignored, the observed 

reverberant speech signals are formulated similarly to Eq. (3.9). The source signals in 

MVDR algorithm are replaced by 𝒈𝒅(𝑘) 𝑆(𝑙, 𝑘) while the noise is replaced by 𝒓(𝑙, 𝑘) 

in Eq. (3.11). In this way, standard MVDR solution in Eq. (3.14) provides 

dereverberation. In this situation, looking direction is adjusted with respect to 𝒈𝒅(𝑘), 

while array gain is optimized with respect to 𝒓(𝑙, 𝑘) vector. 𝑫𝒍(𝑙, 𝑘) is the residual 

unprocessed early reverberation component. 
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Figure 3.2. Early reverberation and the direct signal reach the microphone at the 

same time nearly. 

 

In an enclosed space, the elements of 𝒈𝑑(𝑘) show attenuation and phase shift between 

source and related microphone. It is obvious that 𝒈𝑑(𝑘) vector cannot be estimated 

exactly. However, the relative transfer functions are sufficient to extract coefficients 

of MVDR. In fact, relative transfer function vector 𝒈𝑑
′ (𝑘) is the normalized version 

of 𝒈𝒅(𝑘) by 𝐺𝑑
1(𝑘) which is the transfer function of the earliest speech components at 

the reference microphone. The earliest components vector can be written in terms 

of 𝒈𝑑
′ (𝑘): 

 𝒈𝑑(𝑘) 𝑆(𝑙, 𝑘) = 𝒈𝑑
′ (𝑘) 𝐺𝑑

1(𝑘) 𝑆(𝑙, 𝑘). (3. 18) 

Steering constraint of MVDR with respect to the earliest speech components is shown 

as: 

 𝒘(𝑘)𝐻𝒈𝑑(𝑘) 𝑆(𝑙, 𝑘) − 𝐺𝑑
1(𝑘) 𝑆(𝑙, 𝑘) = 0.         (3. 19) 

Substitute Eq. (3.18) in Eq. (3.19) gives: 



 

 

57 

 

 𝒘(𝑘)𝐻𝒈𝑑
′ (𝑘)𝐺𝑑

1(𝑘) 𝑆(𝑙, 𝑘) − 𝐺𝑑
1(𝑘) 𝑆(𝑙, 𝑘) = 0 (3. 20) 

𝒘(𝑘)𝐻𝒈𝑑
′ (𝑘) = 1. 

Therefore, instead of finding 𝒈𝑑(𝑘) vector exactly, 𝒈𝑑
′ (𝑘) vector showing relative 

transfer functions is used to obtain directivity in this study.  

The attenuations between source and each microphone can be accepted nearly equal 

for early reverberations. Therefore, the magnitudes of each transfer function are same. 

Relative phase differences are the results of path inequalities of the sound waves, and 

it depends on the direction of sound source. Therefore, the relative transfer function 

vector consists of only phase difference terms. 𝒈𝑑
′ (𝑘)  can be written as: 

 𝒈𝑑
′ (𝑘)

= [1  𝑒−𝑗(
2𝜋𝑓𝑠𝑘

𝐾
)𝜏1   𝑒−𝑗(

2𝜋𝑓𝑠𝑘
𝐾

)𝜏2  𝑒−𝑗(
2𝜋𝑓𝑠𝑘

𝐾
)𝜏3  … . .   𝑒−𝑗(

2𝜋𝑓𝑠𝑘
𝐾

)𝜏𝑚

 

]
𝑇

 

 

(3. 21) 

where 𝐾 is the FFT length and each exponential term represents phase difference of 

the corresponding microphone relative to the reference. When the filter is applied to 

the recorded input signals: 

 𝒘(𝑘)𝐻𝒙(𝑙, 𝑘) = {𝒘(𝑘)𝐻𝒈′
𝑑
(𝑘)𝐺𝑑

1(𝑘)𝑆(𝑙, 𝑘) + 𝑾(𝑘)𝐻𝒓(𝑙, 𝑘)}

+  𝑾(𝑘)𝐻𝑫𝒍(𝑙, 𝑘). 

(3. 22) 

The last term represents lagged early reverberations. It is assumed that it is not related 

to the solution, so optimization is studied in the parenthesis in Eq. (3.22) and the 

Lagrangian can be written as 

 𝐿(𝑙, 𝑘) =  𝒘𝐻(𝑙, 𝑘)𝝓𝑟(𝑙, 𝑘)𝒘(𝑙, 𝑘) + [𝜆(𝒘𝐻(𝑙, 𝑘) ∗ 𝒈𝑑
′ (𝑘) − 1)]          (3. 23) 

where 𝑘 is the frequency bin number. The late reverberant part of the signal is assumed 

as independent of the earliest components due to diffuse sound field, so the 

standardized solution of beamforming Eq. (3.14) becomes valid for the reverberant 

signals in the parenthesis Eq. (3.22) and Lagrangian in Eq. (3.23). However, late 
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reverberant correlation matrix (𝝓𝑟) and relative transfer functions (𝒈𝑑
′ ) of the earliest 

components must be estimated for each subband to find the filter coefficients. 

Relative transfer functions are derived from phase differences in this work. Thus, there 

is no need to estimate transfer functions and ratios of early reverberations blindly. 

However, the disturbances due to lagged early reverberations are neglected when the 

transfer functions are written in this way. Gannot used a single channel blind 

dereverberation method to generate 𝒈𝑑(𝑘) vector more appropriately at the expense 

of computational complexity [28]. 

3.4.3. Estimating Phase Difference of the Earliest Components 

In order to form the relative transfer function vector, 𝒈𝑑
′ (𝑘) the phase difference of 

the earliest components at each microphone relative to the reference microphone must 

be known. The phase difference in classical MVDR algorithm can be found by DOA 

estimation. 

However, in reverberant environments, there is no direct method to find DOA 

accurately because of the effects of multipath propagation. The sound waves arrive at 

the microphones from all the directions; therefore, estimating DOA is a very 

troublesome issue. At some instances, there can be strong reflections from a direction 

while at some other instances the reflection can be weak due to the statistical nature 

of reverberation. Because of this uncertain situation, DOA estimates in short frames 

change over time. High variability of estimates introduces a significant challenge. 

Besides, the reflected source signals may be added to the direct sound path with a 

delay. This situation makes the estimation of the source signal direction at each 

microphone much more difficult. As a result, reverberation has large destructive 

effects on DOA estimation [54]. 

The most commonly used method to find DOA is MUSIC algorithm [55]. This 

algorithm uses eigenvalues and eigenvectors of the correlation matrix of observed 

speech at microphone array. It generates the relation between eigenvectors and the 

desired signal or interference subspaces. However, the number of arrival directions of 
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sound waves is larger than microphone number in reverberant environments. 

Therefore, classical MUSIC algorithm fails at reverberant environments. In this thesis, 

phase difference estimation is based on correlation of the microphone signals.  In the 

estimation procedure, it is crucial to avoid the destructive effects of reverberation due 

to the reasons stated above.  

The cross-correlation of sound signals at different microphones is useful to estimate 

relative phase difference. In microphone arrays, there is a deterministic time delay 

between microphone signals for the direct sounds. In anechoic environments 

correlation of the recorded signals between microphones gives time delay directly 

because the signal at a microphone is the phase shifted version of that at another 

microphone. Example of two microphone signals in an anechoic room is shown as in 

Figure 3.3. The difference between two recorded signals results from propagation 

delay and this quantity is obtained easily from the correlation graph as in Figure 3.4.  

In reverberant environments, the cross-correlation graph is expanded across horizontal 

axis due to smearing effects. Additional correlations occur between the signals, so it 

is not possible to extract phase difference exactly by using the cross-correlation 

function. The cross-correlation function of reverberant speech signals is shown in 

Figure 3.5. 

 

 

Figure 3.3. Two anechoic speech in a microphone array. 
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Figure 3.4. Correlation graph of anechoic speech. 

 

 

Figure 3.5. Correlation graph of reverberant speech. 

 

The effects of late reverberation cannot be reduced without dereverberation of the 

observed speech. However, if the speech components which do not contain any late 
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reverberation can be detected, the cross-correlation function of these parts can be used 

to estimate the phase difference.  

In Chapter 2, it has been stated that late reverberation starts after a mixing time [6]. 

The average value of the mixing time is 10 – 15 msec in normal room conditions. 

Therefore, uncertain reverberant parts are added by a delay. If the speech onset is 

detected, the sound components without reverberation can be extracted and the phase 

difference can be estimated by using these frames properly. 

The voice activity detection (VAD) algorithm is used to detect the onset of speech [7]. 

Two features are used in VAD. The first one is short time energy in a speech frame. 

Using this feature, speech can be detected when the energy of a frame is larger than a 

threshold. The other feature is the dominant frequency of the sound. It uses the 

magnitude of the most dominant frequency coefficient. These features for a typical 

speech signal are shown in Figure 3.6. If the values of these features are larger than 

their thresholds at the same frame, it is assumed that the related frame corresponds to 

speech, otherwise it corresponds to silence. In order to increase robustness of the 

system, these conditions must be satisfied successively at least few frames before 

making a decision as silence or speech. 
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Figure 3.6. The algorithm decides whether the relative segment is silence or speech 

by magnitude of the dominant frequency and short time energy. 

 

Initially, the transitions from silence to speech are detected. Then, the frames which 

are recorded during beginning of the speech by two different microphones are chosen 

to compute the cross-correlation function. The length of chosen signals must be less 

than the mixing time to avoid the effects of late reverberation. The cross-correlation 

function of reverberant speech signals at a speech onset frame is shown in Figure 3.7. 

The correlation function in Figure 3.7 is calculated for the same speech recording in 

Figure 3.5; however, since effects of late reverberation are less at speech onsets denser 

correlation graph is obtained. The phase difference can be seen at this graph easily. 

Furthermore, the average of the phase differences for all speech onsets in a recording 

can be taken in order to achieve more accurate estimation. 
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Figure 3.7. Correlation graph of the reverberant signals in Figure 3.5. However, 

correlation is taken from the first 15 msec speech onset. 

 

3.4.4. Correlation Matrix of Reverberant Sound Field 

Beamforming method needs the correlation matrix of interference signals according 

to Eq. (3.14). Therefore, it is necessary to express correlations of late reverberant part 

of speech mathematically in order to adjust MVDR filter. 

Before considering reverberant conditions, it is useful to evaluate single sound wave 

situation for two microphones. This gives a better understanding about the correlation 

of reverberations in microphone arrays. Single plane wave propagation through the 

microphone array is shown as in Figure 3.8. 
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Figure 3.8. Plane wave propagation towards a microphone array. 

 

The relation between the microphone signals in time domain can be written as: 

 
𝑥2[𝑛] = 𝑥1 [𝑛 − 

∆

𝑐
]. (3. 24) 

∆ is path length difference in m, 𝑐 is sound wave propagation velocity in m/sec. In 

diffuse fields it is assumed that the PSD is distributed uniformly and independent of 

position. Therefore, PSDs of two microphone signals are assumed to be the same: 

 𝑆𝑥1(𝑘) = 𝑆𝑥2(𝑘) (3. 25) 

where 𝑘 is the frequency index. The cross-power density is defined as, 

 

𝑆𝑥1𝑥2(𝑘) = 𝑆𝑥1(𝑘)𝑒
−𝑗(

2𝜋𝑓𝑠𝑘
𝐾

)𝑑𝑐𝑜𝑠∅

𝑐  
(3. 26) 

where 𝐾 is the FFT length. The correlation coefficient for a single plane wave can be 

written as, 
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∝ =  
𝑆𝑥1𝑥2(𝑘)

√𝑆𝑥1(𝑘)𝑆𝑥2(𝑘)
= 𝑒

−𝑗(
2𝜋𝑓𝑠𝑘

𝐾
)𝑑𝑐𝑜𝑠∅

𝑐 . (3. 27) 

Late reverberation is assumed to start with approximately 15 msec delay after speech 

onsets. Therefore, late reverberant sound waves travel an additional distance of at least 

5 m compared to the waves following the direct path. This distance is enough for far 

field assumption in the majority of the speech frequency content. Therefore, sound 

waves can be considered as plane waves in late reverberation, and Eq. (3.27) is valid 

for the rest of the derivation. 

Since late reverberation can be modeled by a diffuse field, the characteristic properties 

of the field are useful for correlation derivations. In diffuse field assumption, it is 

equally probable for sound energy to flow in each direction. Also, the sound waves 

are distributed uniformly in the room, so energy density of the sound is equal at every 

position in the room [17]. As a result, infinite number of identical sound sources which 

are distributed homogenously on the surface of a sphere can represent diffuse sound 

field as in Figure 3.9 [56]. Cross correlation of the microphone signals can be 

described by integration of the contributions of the sound sources. 

 

 

Figure 3.9. In diffuse sound field, it is assumed that each infinitesimal area on the 

surface of sphere is an identical sound source. 
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Assume that the microphones are located on 𝑥 axis. Each infinitesimal area represents 

identical plane wave sound source. Cross-correlation of single plane wave was shown 

in Eq. (3.27). Integrating the cross-correlation over the surface, 

 

𝛾 =  
1

4𝜋𝑟2
∫ ∫ 𝑒−

𝑗(
2𝜋𝑓𝑠𝑘

𝐾
)𝑑𝑐𝑜𝑠ф

𝑐 𝑟2𝑠𝑖𝑛ф 𝑑ф 𝑑𝜃   
𝜋

0

2𝜋

0

 (3. 28) 

   =
1

4𝜋
∫ ∫ 𝑒−

𝑗(
2𝜋𝑓𝑠𝑘

𝐾
)𝑑𝑐𝑜𝑠ф

𝑐 𝑠𝑖𝑛ф 𝑑ф 𝑑𝜃
𝜋

0

2𝜋

0

,         𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑢 = 𝑐𝑜𝑠ф 

     =

sin(
(
2𝜋𝑓𝑠𝑘

𝐾 )𝑑

𝑐 )

(
2𝜋𝑓𝑠𝑘

𝐾 )𝑑

𝑐

 

where 𝑑 is the distance between related microphones in m, 𝐾 is the FFT length. The 

result is used to form the correlation matrix of late reverberation signals between two 

microphones. The correlation matrix of late reverberation for two microphones is 

written as: 

 

𝝓𝑟(𝑙, 𝑘) = 𝜙𝑟(𝑙, 𝑘)

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

sin(
(
2𝜋𝑓𝑠𝑘

𝐾 )𝑑2,1

𝑐 )

(
2𝜋𝑓𝑠𝑘

𝐾 ) 𝑑2,1

𝑐

sin(
(
2𝜋𝑓𝑠𝑘

𝐾 )𝑑2,1

𝑐 )

(
2𝜋𝑓𝑠𝑘

𝐾 )𝑑2,1

𝑐

1

]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(3. 29) 

where 𝜙𝑟(𝑙, 𝑘) is the PSD of late reverberation. The larger correlation matrices can be 

written in the same manner. 
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After cross-correlations of late reverberant signals are estimated, LRSV i.e. PSD of 

late reverberation, 𝜙𝑟(𝑙, 𝑘) must be estimated as well. 

3.4.5. Estimation of Late Reverberation PSD 

Reverberation depends on the acoustic characteristics of room. Therefore, reverberant 

part of speech can be modelled with respect to the room acoustics. In Chapter 2, the 

statistical time domain reverberation model is derived by taking room acoustics into 

account.  

The exponential decaying stochastic process is used to describe late reverberation [6]. 

However, this stochastic model becomes valid after a time interval. Therefore, the 

characteristics of the entire impulse response could be evaluated in two regions. The 

first part of the response corresponds to the direct sound signals and a few 

deterministic reflections. The second part of the impulse response involves the last 

part of the early reverberation and late reverberation. This part can be represented by 

a stochastic process complemented with exponential decay. 

The causal RIR can be described as: 

 

ℎ[𝑛] =  {
ℎ𝑒[𝑛]      𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤ 𝑇

ℎ𝑟[𝑛]              𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 𝑇
0                       𝑤ℎ𝑒𝑟𝑒 𝑛 < 0  

 (3. 30) 

where ℎ𝑒[𝑛] represents direct and early reverberant parts of RIR, ℎ𝑟[𝑛] represents the 

rest of the reverberant part, 𝑇 is related to mixing time. Time domain Polack model 

can represent the second part, so ℎ𝑟[𝑛] = 𝑎[𝑛]𝑒−𝛼𝑛 where 𝑎[𝑛] is zero mean Gaussian 

process, 𝛼 is a constant related to the room acoustics. 

In frequency domain, the second part of the transfer function can also be represented 

by a Gaussian process due to overlapping of the room modes, so transfer function is 

defined as: 
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𝐻(𝑘, 𝑙) =  {

𝐵𝑑(𝑘)                      𝑤ℎ𝑒𝑟𝑒 𝑙 = 0     

𝐵𝑟(𝑙, 𝑘) 𝑒−𝛼(𝑘)𝑙𝑅         𝑤ℎ𝑒𝑟𝑒 𝑙 ≥ 1
 

(3. 31) 

where 𝑅 is speech frame length, 𝐵𝑟(𝑙, 𝑘) is zero mean Gaussian process, 𝛼 is decaying 

constant [57]. Assume that there is no dependence between the coefficients of different 

frequency bands. STFT coefficients from different frames are also assumed to be 

independent. These assumptions are written as: 

 𝐸{𝐻(𝑙, 𝑘1)𝐻
∗(𝑙, 𝑘2)} = 0 for 𝑘1 ≠ 𝑘2, ∀𝑙 

𝐸{𝐻(𝑙1, 𝑘)𝐻∗(𝑙2, 𝑘)} = 0 for 𝑙1 ≠ 𝑙2, ∀𝑘. 

(3. 32) 

In addition, anechoic speech signal coefficients (zero mean, Gaussian) from different 

frames are independent. 

Observed reverberant signal can be written as: 

 𝑋(𝑙, 𝑘) =  𝐷(𝑙, 𝑘) +  𝑅(𝑙, 𝑘) (3. 33) 

where 𝐷(𝑙, 𝑘) denotes early reverberation components, 𝑅(𝑙, 𝑘) represents the 

following reverberant signals. They are independent of each other, so PSD of the 

observed speech is: 

 𝜙𝑋(𝑙, 𝑘) =  𝜙𝐷(𝑙, 𝑘) + 𝜙𝑅(𝑙, 𝑘) (3. 34) 

where 𝜙𝐷 , 𝜙𝑅 denotes PSDs of early components and the following reverberant 

components. From another perspective, observed speech can be expressed by the CTF 

model, so the PSD can also be obtained by the square of CTF model [57]:  

 
𝑋(𝑙, 𝑘) = ∑ 𝑆(𝑙 − 𝑛, 𝑘)𝐻(𝑛, 𝑘)       

∞

𝑛=0

 

𝜙𝑋(𝑙, 𝑘) = (∑ 𝑆(𝑙 − 𝑛, 𝑘)𝐻(𝑛, 𝑘)

∞

𝑛=0

)

2

. 

 

(3. 35) 
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Variance of the STFT coefficients of convolutive transfer function in Eq. (3.31) is 

used to express the observed speech’s PSD. It can be described as: 

 
𝜙𝐻(𝑙, 𝑘) =  {

𝛽𝐷(𝑙, 𝑘)                      𝑙 = 0

𝛽𝑅(𝑙, 𝑘)𝑒−2𝛼(𝑘)𝑅𝑙      𝑙 ≥ 1
 (3. 36) 

where 𝛽𝐷 and 𝛽𝑅 denote the variances of the early components and the following 

reverberant parts in the transfer function, respectively. PSD of the observed speech 

can be written in terms of CTF: 

 
𝜙X(𝑙, 𝑘) =  ∑ 𝜙𝑆(𝑙 − 𝑛, 𝑘)𝜙𝐻(𝑛, 𝑘)

∞

𝑛=0

 (3. 37) 

PSD of the observed speech can be divided into two terms due to the structure of RIR. 

By Eq. (3.36) and Eq. (3.37): 

 𝜙𝐷(𝑙, 𝑘) =  𝛽𝐷(𝑘)𝜙𝑠(𝑙, 𝑘) (3. 38) 

 
𝜙𝑅(𝑙, 𝑘) =  ∑ 𝛽𝑅(𝑘)𝑒−2𝛼(𝑘)𝑅𝑚𝜙𝑠(𝑙 − 𝑚, 𝑘)

∞

𝑚=1

 

 = 𝑒−2𝛼(𝑘)𝑅[𝜙𝑅(𝑙 − 1, 𝑘) + 𝛽𝑅(𝑘)𝜙𝑠(𝑙 − 1, 𝑘)] . 

(3. 39) 

PSD of reverberation is given by Eq. (3.39). This result corresponds to the sum of the 

late reverberation and lagged early reverberation PSDs. The first term in parenthesis 

can be expressed in terms of previous samples iteratively, so it can be considered as 

PSD of late reverberation: 

 𝜙𝑙(𝑙, 𝑘) =  𝑒−2𝛼(𝑘)𝑅 𝜙𝑅(𝑙 − 1, 𝑘).    (3. 40) 

If 𝛽𝑑(𝑘) =  𝛽𝑅(𝑘), Eq. (3.40) gives the PSD of late reverberant as: 

 𝜙𝑙(𝑙, 𝑘) =  𝑒−2𝛼(𝑘)𝑅𝑁 𝜙𝑋(𝑙 − 𝑁, 𝑘).    (3. 41) 

Spectral power of late reverberation is calculated for each microphone in the 

microphone array. Since each microphone can sample stochastic reverberation process 
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at different positions, the more robust result can be obtained by averaging the spectral 

powers [58]: 

 
𝜙𝑙(𝑙, 𝑘) =  

1

𝑀
∑𝜙𝑙

𝑚(𝑙, 𝑘).    

𝑚

 
(3. 42) 

As a result, PSD of late reverberant part can be estimated by the recorded speech 

signals and exponential decaying reverberation modeling. There is only one unknown 

in the equation; the exponential decaying term.  

Exponential decaying term is a time constant related to reverberation time of room. 

Mathematical expression of the relation between the time constant ‘𝛼(𝑘)′ and 

reverberation time is useful for calculations. Reverberation time is described as a time 

interval for the initial level of the sound signal to decay 60 dB. For a narrowband 

signal 𝛼(𝑘) = 𝛼, 𝑇𝑟 is reverberation time, the exponential decaying is defined as: 

 
𝑒−2𝛼𝑇𝑟𝑓𝑠 =

1

106
. (3. 43) 

Take the logarithm of each side and extract the time constant: 

 
𝛼 =  

3𝑙𝑛10

𝑇𝑟𝑓𝑠 
  . (3. 44) 

The relation of reverberation time and exponential time constant is described as in Eq. 

(3.44). If reverberation time is known, PSD of late reverberation part of the speech 

can be calculated. 

3.4.6. Reverberation Time Estimation 

Reverberation time estimation is very common in the literature since it is a significant 

property of the room acoustics. Normally, reverberation time is measured by tone 

burst response of room. Tone burst is a short time excited sound which generates a 

decay curve for the response. Typical tone burst response is shown in Figure 3.10: 
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Figure 3.10. Tone burst response of a sound. Reverberation time is estimated by the 

level of sound [18]. 

 

Decay curve of a room has a lot of fluctuations due to the statistical characteristics of 

reverberation. Therefore, reverberation time measurement by a single graph is not 

reliable due to non-deterministic behavior of the response.  In order to minimize the 

effects of randomness, the estimation experiment should be repeated as much as 

possible. 

In a practical dereverberation task, it is not possible to estimate the reverberation time 

with an excitation signal. Reverberation time must be estimated by the recorded 

speech signals blindly. Therefore, an appropriate approach should be developed for 

the estimation. 

The statistical model of reverberation can be used to estimate reverberation time 

blindly.  For this purpose, Polack time domain reverberation model is used [6]. Speech 

signals can be divided into two different components: 

 𝑥[𝑛] = 𝑑[𝑛] + 𝑟[𝑛].  (3. 45) 
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The decaying curve begins when the speech source signal 𝑑[𝑛] stop abruptly, and the 

decaying part of the speech signal equals late reverberant components. This part can 

be modeled as a stochastic process: 

 
𝑟[𝑛] = 𝐴𝑟𝑣[𝑛]𝑒

−𝛼𝑛
𝑓𝑠  

(3. 46) 

where 𝑣[𝑛] is normal random process, 𝐴𝑟
2 relates to the variance of the process. 

According to this model, probability distribution of the decaying signals can be written 

as: 

 

𝑝𝑟[𝑛](𝑥) =  
1

√2𝜋𝜎(𝑛)
exp(−

𝑥2

2𝜎2(𝑛)
)

1
2

 

𝜎(𝑛, 𝛼) = 𝐴𝑟𝑒
−𝛼𝑛
𝑓𝑠  

(3. 47) 

where 𝜎2(𝑛, 𝛼) is the time varying variance of late reverberation. If reverberation 

samples are represented by independent Gaussian process, joint probability of the 

decaying part can be found as the product of individual pdfs of the samples. Then, the 

reverberation time constant (𝛼) can be found by maximizing the likelihood function: 

 𝛼𝑀𝐿 = max
𝛼

(𝐿(𝛼))   (3. 48) 

where 𝐿(𝛼) is the likelihood function of the decaying part depending on the 

reverberation time constant. It is written as: 

 
𝐿(𝛼) =  ∏

1

√2𝜋𝜎(𝑛, 𝛼)
exp (−

𝑥2

2𝜎2(𝑛, 𝛼)
)

𝑛

 . (3. 49) 

Although, Eq. (3.49) is valid for the decaying part of observed speech, the algorithm 

cannot distinguish the decaying part of speech blindly. Therefore, E. Yılmaz proposed 

an approach to detect the decaying parts of recorded speech [59]. Before maximization 

of the likelihood function, E. Yılmaz proposes to divide recorded speech into 

segments, and then look for the decaying part in the segments. Some constraints are 
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proposed to detect these decays. If all the constraints are satisfied in a segment, the 

segment is declared to contain a decaying part. Then, the reverberation time constant 

is estimated by maximum likelihood estimation in that segment. If recorded speech 

has sufficient length, it is possible to observe a lot of decaying speech segments. Thus, 

the fluctuation effects of the probabilistic signals can be reduced by taking average of 

the estimations. 

The speech signals are divided into segments and then sub-segments. The segments 

can be written as,  

 𝑥𝑠[𝜆, 𝑚] = 𝑥[𝜆𝑀∆ + 𝑚]           (3. 50) 

where 𝑀∆ shows the segment length, 𝑚 denotes individual sample in the segments, 𝜆 

is the segment number. Then, these segments are divided into subsegments. The 

constraints are evaluated by these subsegments. They can be written as, 

 𝑥𝑠𝑠[𝜆, 𝑙, 𝑘] = 𝑥𝑆[𝜆, 𝑙𝑃 + 𝑘]  (3. 51) 

where 𝑘 is the sample index inside subsegments, 𝑃 is the length of the subsegments, 𝑙 

is subsegment number. 

There are three constraints to decide whether there is a decaying pattern in the related 

segment or not: 

 

∑ 𝑥𝑠𝑠
2 [𝜆, 𝑙, 𝑘] > ∑ 𝑥𝑠𝑠

2 [𝜆, 𝑙 + 1, 𝑘]

𝑃−1

𝑘=0

𝑃−1

𝑘=0

 

max
𝑘

(𝑥𝑠𝑠[(𝜆, 𝑙, 𝑘)]) > max
𝑘

(𝑥𝑠𝑠[𝜆, 𝑙 + 1, 𝑘]) 

min
𝑘

(𝑥𝑠𝑠[𝜆, 𝑙, 𝑘]) < min
𝑘

(𝑥𝑠𝑠[𝜆, 𝑙 + 1, 𝑘]). 

(3. 52) 

In fact, all of these constraints are based on the fact that the time varying variance of 

speech signal reduces at decaying parts. 
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As it can be seen in Figure 3.11, these constraints are satisfied at the decaying parts of 

the speech signal. Decaying parts lead variance of speech signals to reduce, so first 

constraint is satisfied. Also, drop in the variance means that magnitude of the samples 

tends to get closer to zero. The second and third constraint is also satisfied in this 

situation. 

 

 

Figure 3.11. The variance of decaying parts in a typical speech reduces to zero 

gradually. 

 

Reverberation time depends on frequency content of the signal [60].  It is longer at 

lower frequencies, and reverberation time should be estimated by narrow band signals 

for precise result. Therefore, bandpass filters can be used before the estimation 

procedure. However, this process brings a serious computational complexity. Since 

reverberation time is estimated by all decaying parts of speech in time domain, this 

estimation is acceptable for majority of the speech frequencies. Although 

reverberation time is not estimated in all subbands in this thesis, the effect of frequency 

is taken consideration roughly in the experiments part. 
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3.4.7. MVDR Solution for Dereverberation 

In Chapter 3, MVDR algorithm has been presented. Initially, standard MVDR 

equations have been derived in section (3.4.1). Later, MVDR method has been adapted 

to reverberant environment by statistical model of reverberation in section (3.4.2). For 

this purpose, the observations are divided into early reverberation and late 

reverberation. Late reverberation is assumed as independent interference signals, and 

the recorded reverberant signals are written similar to general noisy observations of 

MVDR. In this way, the solution of MVDR algorithm for reverberation is generated 

in similar way of the standard MVDR solution.  

In section (3.4.3) the transfer function of early reverberation is generated by estimating 

phase differences. Also, correlation matrix of late reverberation is required for solution 

of MVDR. The statistical room modeling is used to estimate correlation matrix and 

PSD of late reverberation in sections (3.4.4) & (3.4.5).  

In the dereverberation, late reverberation is treated as independent interferences. The 

early reverberation is considered as the desired signal and steering direction of the 

microphone array is adjusted to these components, thus MVDR algorithm passes the 

early speech components while suppressing late reverberation. 

The summary of the proposed MVDR algorithm is shown in Figure 3.12. 
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Figure 3.12. The graph of the first stage of the dereverberation algorithm. 

 

3.5. Single Channel Dereverberation 

In this thesis, a single channel blind dereverberation algorithm is used after MVDR 

processing to remove residual reverberant components. In this part, the single channel 

approach is studied separately. The combined system is presented at the end of the 

chapter. 

Single channel dereverberation is a blind deconvolution process. There is no 

deterministic prior knowledge about RIR and source signals. Therefore, either the 

convolution or source signal parameters have to be known. However, it is impossible 

to estimate these parameters exactly in real time processing by a single microphone, 

the statistical models of reverberation and anechoic speech signals are very useful in 

single channel approaches. Similar statistical models have been used at MVDR based 

dereverberation in the first stage. 

In this method, reverberation is considered as a temporal smearing of speech signals. 

Therefore, each sample affects the subsequent samples in reverberant environments.  
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The observed signal, 𝑥̅[𝑛] is modelled as: 

 𝑥̅[𝑛] = 𝑑̅[𝑛] + 𝑟̅[𝑛] (3. 53) 

where 𝑑̅[𝑛] is the early reverberation at the output of MVDR, 𝑟̅[𝑛] is the residual late 

reverberant part. Since late reverberant part can be considered as a replica of the 

previous samples in this algorithm, this part can be written as a function of the 

previous samples of observed speech signals: 

 𝑟̅[𝑛] = 𝑓(𝒙̅[𝑛 − 𝑇]) (3. 54) 

 where 𝒙̅[𝑛 − 𝑇] = [𝑥̅[𝑛 − 𝑇] 𝑥̅[𝑛 − 𝑇 − 1] 𝑥̅[𝑛 − 𝑇 − 2]. . . . .  𝑥̅[𝑛 − 𝑇 − 𝐿 + 1]]
𝑇
 

is the vector of past samples. 

 Eq. (3.54) can be verified by Polack time domain model. The delay constant,‘ 𝑇’ 

represents the discrete mixing time in Polack reverberation model. Late reverberant 

part of an observed signal 𝑟[𝑛]is described as: 

 

𝑟[𝑛] = ∑ ℎ[𝜏] 𝑠[𝑛 − 𝜏] 

𝐿

𝜏=𝑇

 (3. 55) 

A previous sample can be written corresponding to mixing time: 

 

𝑥[𝑛 − 𝑇] = ∑ℎ[𝜏] 𝑠[𝑛 − 𝑇 − 𝜏]

𝑇

𝜏=0

+ ∑ℎ[𝜏] 𝑠[𝑛 − 𝑇 − 𝜏] 

𝐿

𝜏=𝑇

 (3. 56) 

According to Eq. (3.55) and Eq. (3.56), there is an obvious relation between late 

reverberant part of the recorded speech and the previous samples. Therefore, it is 

possible to describe residual late reverberation by a weighted sum of the previous 

samples at the output of MVDR which are at least mixing time before the current 

sample: 
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𝑟̅[𝑛] = ∑ck
∗  𝑥̅[𝑛 − 𝜏].

𝐿

𝜏=𝑇

 (3. 57) 

In frequency domain, the similar relation in Eq. (3.55) and Eq. (3.56) can be generated 

by using CTF model. The STFT coefficients of recorded speech are written as: 

 
𝑋(𝑙, 𝑘) = ∑ 𝐻(𝑛, 𝑘) 𝑆(𝑙 − 𝑛, 𝑘).

∞

𝑛=0

 (3. 58) 

According to Eq. (3.7), Eq. (3.8) and Eq. (3.9), the coefficients of late reverberation 

in a frame can be explained by the coefficients of previous frames. 

Presented dereverberation approach can be implemented either in frequency domain 

or in time domain. In time domain since speech signal is processed sample by sample, 

there are much more parameters than that of frequency domain. Therefore, frequency 

domain is more reasonable due to less computational complexity. Also, it is easier to 

combine different dereverberation approaches in frequency domain. This is a very 

tempting feature because two different dereverberation approaches are combined in 

this study. Therefore, frequency domain analysis is preferred in the rest of the work. 

Late reverberation coefficients at MVDR output can be written as a function of the 

previous frames as in Eq. (3.57): 

 𝑅(𝑙, 𝑘) = 𝑓 (𝑿(𝑙 − 𝐷, 𝑘)). (3. 59) 

The function is written as: 

 

𝑅(l, k) = ∑ cr
∗ 𝑋(𝑙 − 𝑟, 𝑘)

𝐿

𝑟=𝐷

 (3. 60) 

where 𝑿(𝑙 − 𝐷, 𝑘) = [𝑋(𝑙 − 𝐷, 𝑘) 𝑋(𝑙 − 𝐷 − 1, 𝑘) … 𝑋(𝑙 − 𝐿, 𝑘) ], L is the filter 

length in terms of frame number, D is mixing time in the same manner. STFT 

coefficients of the early reverberation part can be written as, 
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𝐷(𝑙, 𝑘) = 𝑋(𝑙, 𝑘) − ∑ cr
∗𝑋(𝑙 − 𝑟, 𝑘)

𝐿

𝑟=𝐷

. (3. 61) 

In matrix form,  

 𝐷(𝑙, 𝑘) = 𝑋(𝑙, 𝑘) − 𝒄𝐻 𝑿(𝑙 − 𝐷, 𝑘) (3. 62) 

where 𝒄 = [𝑐1 𝑐2 … ..  𝑐𝐿−𝐷+1]
𝑇. 

As it can be seen in Eq. (3.62), the dereverberation method is simply to estimate of 

filter coefficients (𝑐𝑘
∗).  In order to estimate the filter coefficients, either prior 

knowledge about the coefficients or speech signal structure has to be known. 

Statistical modeling of speech is useful in this situation. Statistical distributions of 

coefficients can be used as a prior knowledge about the early reverberant part. 

3.5.1. Statistical Distribution of Speech Signals 

In Chapter 2, distributions of speech samples have been studied. Speech signal in a 

frame can be represented by an exponential distribution. Laplacian, Gamma or 

Gaussian distributions are used to represent STFT coefficients. Hendriks states that 

STFT coefficients can be represented by Gaussian distribution in approximately 30 

msec frames [51]. Apart from the accuracy, Gaussian distribution is very useful with 

respect to mathematical tractability. Therefore, in this work, Gaussian distribution is 

used to represent STFT coefficients of early reverberation.  

Speech is a nonstationary signal. Therefore, a single Gaussian distribution cannot 

represent frequency coefficients of different speech frames. Time varying Gaussian 

source model can be used to represent speech signals in frequency domain [8]. 

According to time varying Gaussian models, the STFT coefficient distributions in a 

frame is Gaussian; however, the variance varies through frames. The probability 

density function of the frequency coefficients of speech signal in the 𝑙𝑡ℎ frame for the 

𝑘𝑡ℎ frequency bin can be written as: 
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 𝑝(𝐷𝑙,𝑘) = 𝑁(𝐷𝑙,𝑘; 0, 𝜎𝑙,𝑘
2 ) (3. 63) 

where 𝑁(. )shows zero mean Gaussian distribution, 𝜎𝑙,𝑘
2  denotes the time varying PSD 

in 𝑙𝑡ℎ frame, 𝑘𝑡ℎ frequency bin. In this method, STFT coefficients of early 

reverberation are represented by zero mean Gaussian distributions. The variance 

changes in accordance with temporal variations. 

3.5.2. Estimation of Early Reverberant Part 

Dereverberation method is reduced to estimation of the filter coefficients in Eq. (3.62) 

by the probability distributions of early reverberation, i.e. Gaussian distributions in 

Eq. (3.63). The filter coefficients can be estimated by maximizing log likelihood 

function for each subband.  

 In this estimation procedure, subbands of the speech signals are assumed independent. 

For each subband, consecutive STFT coefficients are also assumed independent. As a 

result, log likelihood function of the dereverberation process can be described as: 

 𝐿(𝜃𝑘) =  ∑𝑙𝑜𝑔𝑝 (  𝐷(𝑙, 𝑘) = 𝑋(𝑙, 𝑘) − 𝒄𝐻(𝑘)𝑿(𝑙 − 𝐷, 𝑘))

𝑙

 (3. 64) 

= −∑
|𝑋(𝑙, 𝑘) − 𝒄𝐻𝑿(𝑙 − 𝐷, 𝑘)|

2

𝜎𝑙,𝑘
2 − ∑𝑙𝑜𝑔

𝑙𝑙

𝜎𝑙,𝑘       
2         

where  𝜃𝑘 = {𝒄𝑘
𝐻 , 𝜎𝑙,𝑘

2 }.  As in Eq. (3.64), the log likelihood function depends on the 

filter coefficients and spectral power of early speech components in related frame. In 

this chapter, PSD of late reverberant part has been estimated blindly in the microphone 

array. If late reverberant part is assumed independent of early speech components, 

spectral power of early reverberation can be found directly by subtraction.  

Spectral power of late reverberant part at the output of the MVDR is given: 

 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 = 𝜙𝑙,𝑘𝒘

𝐻(𝑙, 𝑘)Г(𝑙, 𝑘)𝒘(𝑙, 𝑘) (3. 65) 
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where 𝒘(𝑙 , 𝑘) is the MVDR filter, Г(𝑙, 𝑘) is the normalized correlation vector of late 

reverberant components (𝝓𝑟(𝑙, 𝑘)) in room. Spectral power of early speech 

components at the MVDR output is written as: 

 𝜎𝑙,𝑘
2 = 𝜎𝑙,𝑘

𝑋 − 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉. (3. 66) 

The second term in the log likelihood function is related to PSD of early reverberation, 

so this term can be accepted constant. In fact, maximization of the function depends 

on the filter coefficients, i.e. first term in the likelihood. The first term of the log 

likelihood function can be seen as mean square error function which is normalized by 

the variance in linear prediction method. Therefore, the filter coefficients can be found 

by adapting the linear prediction solution where the solution is multiplication of 

inverse of the correlation matrix and the correlation vector. Solution of the log 

likelihood can be found as: 

𝒄𝑘 = (∑
𝑿(𝑙 − 𝐷, 𝑘)𝑿(𝑙 − 𝐷, 𝑘)𝐻

𝜎𝑙,𝑘
2

𝑙

)

−1

(∑
𝑿(𝑙 − 𝐷, 𝑘)𝑋

∗
(𝑙, 𝑘)

𝜎𝑙,𝑘
2

𝑙

). (3. 67) 

In this method, subband decompositions are used in the processing. Likelihood 

estimation finds the filter coefficients for each frequency band. Similar method was 

proposed by Nakatani [8]. The approach is originally named ‘weighted prediction 

estimation’ (WPE) method. In WPE method, there is no estimate of the PSD of the 

desired speech. Instead, the method reaches solution iteratively. However, in the 

proposed approach the PSD of early reverberant is estimated by the statistical model 

of reverberation. In this way, there is no need of iterative calculations, so processing 

time of the method reduces drastically. 

3.6. Entire Dereverberation Algorithm 

In this chapter, MVDR algorithm for noisy environments has been derived and 

adapted to reverberant environments by using the statistical models of reverberation. 

The necessary parameters of reverberation signals have been estimated separately, 

then they have been used to generate appropriate MVDR algorithm in reverberant 
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environments. In this work, it is expected that generated MVDR algorithm suppresses 

late reverberation; however, when some of the late reverberation reaches microphones 

in the same direction of the direct sound, MVDR algorithm cannot deal with these 

components. Therefore, using a post filter to suppress residual reverberant signal is 

required. 

An appropriate single channel blind deconvolution algorithm is used as a post filter. 

In the first stage of the system, MVDR algorithm works as a spatial filter utilizing 

both room acoustics and the statistical models of reverberation. Therefore, there are 

some reverberation parameters which are already estimated in this stage. Choosing a 

single channel method which uses these parameters makes system more compact. In 

this way, computational complexity and processing time is reduced.  

At the second stage, linear prediction and statistical nature of direct speech is 

combined. In this algorithm, ML estimation is used to estimate early reverberation in 

the observed speech signal. Solution of the likelihood function requires PSD of the 

early reverberation; therefore, reverberation time and LRSV have to be estimated 

initially. However, since they have been already estimated at the first part, there is no 

need of these extra computations. Although the second stage is completely different 

approach from the first one, there are lots of common parameters between them. In 

this way, two different aspects of reverberation are combined to filter reverberant 

signals without extra computation complexity.  

Another advantage of the combined system is that LRSV estimation is made by multi 

microphones. According to the statistical properties of reverberation, energy density 

of sounds is same for every position in a room. However, since it can be represented 

by a random process, instant value of reverberation may not represent the process 

accurately. Therefore, estimation of LRSV at various positions gives different 

realizations of the same random process.  In this way, estimation of LRSV is 

improved. When microphone numbers of the array increases, more reliable estimation 

is also possible. LRSV estimation affects directly the success of the second 
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dereverberation method. Therefore, using MVDR before linear prediction algorithm 

improved its dereverberation performance. 

Entire dereverberation algorithm is shown in Figure 3.13: 

 

 

Figure 3.13. The graph of the entire dereverberation algorithm. 
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CHAPTER 4  

 

4. EXPERIMENTAL RESULTS 

 

 

4.1. Introduction 

The dereverberation approach through combined methods of microphone array and 

linear prediction has been proposed in the previous chapters. The theory of the system 

was given in Chapter 3 and it is applied to reverberant speech in this chapter. This 

chapter describes experimental study of the presented method. 

In order to analyze the system, artificially reverberated dataset has been produced. In 

this way, it is easy to generate speech signals in various conditions, and 

dereverberation method is evaluated under these conditions.  

Although there are lots of methods to evaluate general performance of speech 

processing algorithms, it is not a simple task to assess performance of dereverberation 

system. In this chapter, evaluation tools for reverberant environments will be 

explained. Then, the most accurate evaluation methods will be used to interpret the 

performance of the dereverberation. 

 Standard speech processing procedures such as segmentation and windowing are 

applied to recorded speech signal in the dereverberation. Therefore, these concepts are 

also explained in the experimental part. 

4.2. Speech Quality Measures 

There are two types of speech quality measures: subjective and objective methods. 

Subjective quality measure is a comparison of original and processed speech by 

listeners with respect to pre-determined scales. Listeners rank the quality of speech 
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subjectively. Differences due to subjective evaluations can be reduced by averaging 

results from multiple listeners. However, this procedure is time-consuming and 

expensive. Therefore, objective quality measures are more reasonable to assess speech 

quality.   

Objective quality measures are based on a particular feature of speech. They calculate 

‘distance’ between reference feature and the processed one. Objective measures are 

expected to have high correlation with subjective ones. However, there are many 

objective assessment methods which do not correlate with subjective methods. 

Therefore, it is important to use proper objective measures to evaluate speech 

processing performance with respect to application.  

When speech processing methods are applied, a wide variety of sources of speech 

distortions come up and their effects on speech signal are not similar. Therefore, 

measurement methods have to be chosen carefully. Early measurement methods were 

proposed to evaluate distortions due to codecs or network conditions [61]. However, 

it is not definite whether a measurement method which was developed to evaluate 

communication distortions can be successful at evaluating distortions due to 

reverberant conditions. 

In this thesis, it is considered that dereverberation algorithm has some distortion 

effects on speech signal. The proposed dereverberation method consists of multiple 

algorithms. Since different algorithms introduce various distortions in the original 

speech signal, a group of objective measures have to be used. Loizou made a 

comprehensive study to assess correlation of existing objective measurement methods 

with subjective evaluations and he specified the most accurate measures [9]. He used 

speech signals which contain spectral subtraction and statistical model processing 

distortions in the experiments and compared performance of different objective 

measures with large number speech samples. Since the proposed dereverberation is 

based on both spectral subtraction and statistical models, objective measures are 

chosen according to Loizou’s study in this work.  
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The objective quality measures which are ‘frequency-weighted segmental SNR’ 

(FWSegSNR), ‘cepstrum distance’ (CD), ‘log likelihood ratio’ (LLR) and ‘perceptual 

evaluation of speech quality’ (PESQ) are described before the experiments. 

4.2.1. Cepstrum Distance 

CD is a measure of the log spectrum distance between clean and distorted speech 

signals [9]. It is used to show discrepancy between dereverberated and reference 

signals. Cepstrum is calculated by taking IDFT of logarithm of the spectrum. CD can 

be calculated as: 

 

𝐶𝐷 = 10
𝑙𝑜𝑔10⁄ √2∑{𝑐𝑥(𝑖) − 𝑐𝑦(𝑖)}

2

𝑝

𝑖=1

       (4. 1) 

where 𝑐𝑥, 𝑐𝑦 denote cepstrum coefficients of clean and processed speech signals 

respectively. Cepstrum coefficients can be used in different processing algorithms, so 

it is very efficient to use this measure in order to evaluate performance. 

4.2.2. Log Likelihood Ratio 

LLR is an LPC based objective measurement method [62]. It describes discrepancy 

between processed and clean speech signals.  It is written as: 

 
𝐿𝐿𝑅 = 𝑙𝑜𝑔 (

𝒂𝑝𝑹𝑐𝒂𝑝
𝑇

𝒂𝑐𝑹𝑐𝒂𝑐
𝑇 

)       (4. 2) 

where 𝒂𝑝, 𝒂𝑐 is LPC vectors of processed speech and clean speech signals 

respectively. 𝑹𝑐 shows clean speech correlation matrix. Clean speech signals are used 

as reference signals, and this method measures how similar processed and reference 

signals are. 

4.2.3. Perceptual Evaluation Speech Quality 

PESQ is one of the most comprehensive objective measurement methods which 

represents human subjective test. PESQ measures distortions in a speech signal. It is 



 

 

88 

 

used to estimate degradation effects of different network conditions and 

communication systems. However, since it assesses general speech signal quality, it 

can be used for dereverberated speech signals. PESQ score of a system can be 

described as: 

 𝑃𝐸𝑆𝑄 = 𝑎0 + 𝑎1𝐷𝑖𝑛𝑑 + 𝑎2𝐴𝑖𝑛𝑑             (4. 3) 

𝑎0 = 4.5   𝑎1 = −0.1   𝑎2 = −0.0309 

where 𝐷𝑖𝑛𝑑 , 𝐴𝑖𝑛𝑑 represent average disturbances and asymmetrical disturbances 

respectively [9].  PESQ of a reference signal is 4.5. When distortions in speech signal 

increase, PESQ value reduces. 

4.2.4. Frequency – Weighted Segmental SNR 

SNR is the oldest and simplest speech assessment metric. SNR of speech recordings 

does not correlate very well with speech quality; however, it can provide benefits. 

After SNR of each speech segment is extracted, average of the results gives ‘segmental 

SNR’. Segmental SNR can be generated through frequency domain. FWsegSNR is 

average of the SNR through short time segments in frequency domains [62]: 

 

𝑓𝑤𝑆𝑁𝑅𝑆𝑒𝑔 =  
10

𝐾
∑

∑ 𝑤(𝑙, 𝑘) log10
𝑋(𝑙, 𝑘)2

{𝑋(𝑙, 𝑘) − X̅(𝑙, 𝑘)}2
𝐿−1
𝑙=0

∑ 𝑤(𝑙, 𝑘)𝐿−1
𝑙=0

𝐾−1

𝑘=0

            (4. 4) 

where 𝑋(𝑙, 𝑘), X̅(𝑙, 𝑘) show reference and processed STFT coefficients respectively. 

𝑤(𝑙, 𝑘) is weight coefficient of the frame in related subbands. 𝐾 represents total 

subband number and 𝐿 shows total frame number in recorded speech. 

These objective assessment methods are selected because they correlate very well with 

subjective test results for processed speech signal. These measures give overall quality 

of a speech signal. In this way, the undesirable effects of the dereverberation algorithm 

on a speech signal can be deduced. However, there is still no performance 

measurement method for the dereverberation algorithm. Speech to reverberation 

(SRMR) metric was proposed to concentrate on measuring performance of 
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dereverberation algorithms [63]. In this thesis, SRMR method will be used to measure 

reverberation level in speech signals. 

4.2.5. Speech to Reverberation Ratio 

SRMR metric is different from previous objective assessment methods. It does not 

need a reference signal to evaluate a processed speech. Speech signal can be 

represented by a carrier frequency and amplitude modulation. Information conveyed 

via speech signal can be identified by amplitude variation of the signal. Hilbert 

transform is used to generate an envelope of speech signal. The temporal envelope of 

a speech signal can be shown in Figure 4.1. It is proved that envelope spectral 

characteristics correlate with subjective evaluations of speech quality.  

Hilbert envelope of a clean speech signal contains frequencies of 2 Hz – 20 Hz [63]. 

In chapter 2, the uncertain nature of reverberation was explained. This means that 

reverberation causes fluctuations in the envelope, so high frequency content of the 

envelope increases. Therefore, spectral characteristic of the envelope signals can be 

useful cues in order to distinguish reverberant signals from clean speech signals. 
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Figure 4.1. Hilbert envelope a typical speech signal. 

 

Apart from distinguishing reverberant speech from clean speech, numeric SRMR 

score can be derived from Hilbert envelope spectral contents with respect to the 

density of reverberation. In this way, performance of a dereverberation method can be 

evaluated objectively.  

Hilbert envelope is divided into 𝐾 frequency bands, 𝑒1(𝑙)…  𝑒𝑘(𝑙). Spectral power of 

each frequency bin 𝑓 in this band is obtained by taking square of Fourier transform, 

 𝜀𝑘(𝑙, 𝑓) = |𝐹(𝑒𝑘(𝑙; 𝑓))|
2
      (4. 5) 

where 𝑙 denotes frame number in each band. Then, average spectral power of the 

frequency bin in 𝑘𝑡ℎ frequency band of modulation over the frames, 
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ε̅𝑓,𝑘 = 
1

𝐿
∑𝜀𝑘(𝑖, 𝑓)

𝐿

𝑖=1

      (4. 6) 

where 𝐿 is the frame number. Take summation of each frequency bin in related 

subband, 

 𝜀𝑘̅ = ∑ ε̅𝑓,𝑘

𝑓

.      (4. 7) 

𝐾 value can be optimized with respect to application. 𝐾 = 8 has superior performance 

to evaluate dereverberated speech, so SRMR is defined as: 

 
𝑆𝑅𝑀𝑅 = 

∑ 𝜀𝑘̅
4
𝑘=1  

∑ 𝜀𝑘̅
8
𝑘=5

  . 
     (4. 8) 

In conclusion, SRMR can be described as a ratio of spectral power of low frequencies 

to high frequencies in Hilbert envelope. Since reverberation has whitening effects on 

speech signals due to uncertainty, it causes envelopes of speech to fluctuate at higher 

modulation frequencies. Therefore, reverberation reduces SRMR value according to 

Eq. (4.8). 

4.3. Database 

A dataset should be provided to evaluate performance of the dereverberation method 

under different conditions. In this work, it is assumed that the utterances are spoken 

by a stationary speaker and they are captured by linear microphone array.   

In the beginning of this chapter, objective assessment methods were explained. Most 

of them require a reference signal to evaluate performance of the system. Therefore, 

in this work, reverberant utterances are generated artificially by convolving RIR and 

anechoic speech signals. In this way, success of the dereverberation method on 

reverberant signals can be measured with respect to the anechoic signal. 

BarIlan University (BIU) impulse response database is used to provide effects of a 

quiet reverberant room [64]. It contains transfer functions of the microphone arrays in 
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reverberant room for different setup configurations. The room dimensions are 6 m × 

6 m × 2.4 m. Impulse responses of the reverberant room were generated in different 

conditions. Detailed measurement conditions can be summarized as: 

 

Table 4.1. The recording conditions of BIU database 

 

 

As it can be seen in Table 4.1, there is a wide variety of conditions in the dataset. Each 

configuration of the impulse responses affects dereverberation algorithm from a 

different perspective: 

 Various reverberation times mean different room acoustic properties. The 

dereverberation method can be performed and evaluated for different room 

acoustic conditions by using utterances in various reverberation times.  

 Microphone array configuration and DOA affect MVDR algorithm drastically. 

They are the main parameters of beampattern function. Therefore, it is 

informative to observe the dereverberation method for different 

configurations. 

 Source distance affects the plane wave assumption. Plane wave assumption 

suffers in short distances. In this work, correlation of reverberation and MVDR 

algorithm are based on plane wave modeling, so performance of the algorithm 
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should be observed in different source distances. In addition, in short distances 

direct sounds dominate recorded signals, and diffuse field modeling may suffer 

in short distances. Since the proposed approach depends on diffuse modeling 

heavily, it must be performed in different source distances.  

The configuration of the setup is shown as: 

 

 

Figure 4.2. Setup of impulse response dataset. 

 

Knowledge about the system to generate impulse response is given as: 

 8 Omni directional microphones of AKG CK32 

 Fostex 6301 BX as loudspeakers 

 48 kHz sampling frequency 

 24 bit resolution. 

The impulse responses for different reverberation times can be seen in Figure 4.3. 
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Figure 4.3. The impulse responses of different reverberation times. 

 

By using this impulse response dataset, any reverberant utterance can be obtained 

artificially in MATLAB. Source-microphone distance, DOA effects on the 

dereverberation method can be analyzed in different reverberation times. 

4.4. Implementation Details and Parameter Settings 

In this section, experimental work of the dereverberation algorithm will be explained.  

The proposed algorithm consists of two stages. Each stage consists of smaller 

successive parts which work together, so experimental work will be analyzed part by 

part. 
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- Downsampling 

Sampling frequency of the generated speech is 48 kHz, which is beyond the required 

rate of speech processing. Large number of samples increases computational 

complexity of the system. Frequencies of a human speech signal can be shown in 

Figure 4.4: 

 

 

Figure 4.4. Frequency content of a speech signal. 

 

As it can be seen in Figure 4.4, the majority of speech frequencies are in 300 Hz –

2000 Hz.  If high frequencies of speech are taken in consideration, 𝑓𝑠 =  16000 Hz 

is sufficient for speech processing algorithms. Therefore, downsampling is performed 

initially in order to reduce computational complexity of the system.  

- Estimation of MVDR Parameters 

MVDR algorithm needs correlation of late reverberation. Necessary parameter for 

estimating LRSV is reverberation time of the room. Theoretical background of 

reverberation time estimation is given in Chapter 3. Reverberation time can be found 

by sound decays in reference microphone signal. The sound decays are searched in 



 

 

96 

 

segments by subsegment constraints. Speech signals are stationary in short time-

scales, so subsegment length is chosen 20 msec. There are 10 subframes in a single 

segment.  If the constraints are satisfied for at least 5 subsegments successively, ML 

estimation is applied to corresponding part to find decay constant. There must be an 

overlapping at least 5 subsegments between shifted segments in order not to miss any 

decaying part.  

In reference microphone signal, ML estimation is applied for each decaying part of 

speech. In order to obtain a more robust system, it should be paid attention to variance 

of the estimations. There can be a deceptive decay in speech signal due to its own 

characteristics. These parts may mislead the result. In order to reduce variance, all 

estimations should be taken in account by a forgetting factor: 

 𝑅𝑇60(𝜆) = (1 − 𝛼). RT60
∗ (𝜆)  + 𝛼. 𝑅𝑇60(𝜆 − 1)      (4. 9) 

where 𝜆 is segment number, RT60
∗ (𝜆) is current segment estimation, 𝛼 = 0.8 is 

forgetting factor. Various forgetting factors can be used according to the effect of new 

estimation. In addition, a compulsory interval for the estimation can be used: 

 |𝑅𝑇∗
60(𝜆) − 𝑅𝑇60(𝜆 − 1)| < 𝛽      (4. 10) 

where 𝛽 value is related to estimation variance. If the recent estimation is not inside a 

specified interval with respect to previous ones, it can be neglected. Thus, the result is 

constituted by just low variance estimates. 

Reverberation time constant can be found by Eq. (3.44), and it is used at calculating 

PSD of late reverberation as in Eq. (3.41). LRSV is used as coefficient of the 

correlation matrix, 𝝓. In addition, previous samples of speech are used for calculating 

LRSV.  Value of delay parameter (𝑁𝑒) should be specified with respect to the mixing 

time of the room. Mixing time in the experiment room is approximately 10 msec. In 

order to ensure existing diffuse field in the room, mixing time is considered between 

20 – 25 msec, so 𝑁𝑒 = 3. This additional margin reduces performance of late 
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reverberation suppression; however, distortions in early speech components are 

avoided.  

In order to reduce the effects of probabilistic nature of reverberant signals, LRSV 

should be estimated by multiple microphones. Average of the calculated PSDs is: 

 

𝜎𝐿𝑅𝑆𝑉 =
1

𝑀
∑ 𝜎𝐿𝑅𝑆𝑉

𝑚

𝑀

𝑚=1

       (4. 11) 

where 𝑚 is the microphone number. Averaged spectral power is used in the 

calculations to improve results. Correlation matrix of reverberant part can be written 

as in Eq. (3.29).  

After correlation of reverberation, DOA is required to describe the direct transfer 

function vector (𝒈′
𝑑
(𝑘)). In DOA estimation, speech signals are divided into 10 msec 

frames. Maximum dominant frequency and energy of the frames are estimated, and 

they are classified as ‘silence’ or ‘speech’ according to the measurements. If these 

values are higher than the threshold for 5 frames successively, the frames are classified 

as speech. Silence classification is made just in the opposite manner. The speech parts 

which come after silence parts are detected. Correlation of the microphone signals 

during these transition regions directly gives time delays. In order to reduce the effect 

of reverberation, initial 15 msec parts of the transitions are used for correlation 

calculation. This process continues all through the speech. The average of numerous 

time delay estimations gives more robust results. Finally, transfer function of direct 

part can be obtained by time delays of the microphones with respect to the reference 

microphone.  

By using these necessary parameters, reverberant signals can be processed.  Both 

MVDR and single channel algorithm operate in frequency bands. Therefore, it is 

necessary to write signals in frequency domain. Although speech signals are non-

stationary, they are stationary in short frames and the frequency content does not 

change in these short time scales [65]. Speech segmentation is applied with respect to 
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this feature of speech signals. Hamming window is chosen for segmentation to obtain 

satisfactory frequency resolution. The length of windows is 32 msec, and %75 

overlapping is used between speech segments, i.e., there are 8 msec frame shifts. STFT 

coefficients of each segment are extracted.  

MVDR filter coefficients can be calculated by direct speech transfer function vector 

and correlation of late reverberation as in Eq. (3.14). The filter coefficients are updated 

for each frame in the subbands. 

- Single Channel Algorithm 

In the single channel dereverberation stage, the most important term is PSD of early 

speech components, because it directly affects filter estimation in Eq. (3.67). Assume 

that late reverberation is independent of early speech components, so spectral power 

of early speech can be described by subtraction: 

 𝜎𝑙,𝑘
2 = 𝜎𝑙,𝑘

𝑋 − 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 (4. 12) 

where  𝜎𝑙,𝑘
𝑋  is spectral power of MVDR output signals, 𝜎𝑙,𝑘

𝐿𝑅𝑆𝑉 is spectral power of late 

reverberation at the output of MVDR, 𝜎𝑙,𝑘
2  is spectral power of early reverberation at 

the output of MVDR, 𝑘 is frequency bin, 𝑙 is frame number.  

Coefficients of the single channel algorithm are estimated by Eq. (3.67). Prediction 

delay is specified with respect to mixing time. 25 msec is reasonable delay according 

to mixing time. Since segments are shifted  %25 (8 msec) in the processing and 

 𝑁𝑒 =3: 

 𝐷̅𝑘
𝑙 = 𝑋̅𝑘

𝑙 − 𝒘𝑘
𝐻 𝑿̅𝑘

𝑙−3 (4. 13) 

where  𝑿̅𝑘
𝑙−3 = [ 𝑋̅𝑘

𝑙−3 𝑋̅𝑘
𝑙−4 𝑋̅𝑘

𝑙−5 … ..  𝑋̅𝑘
𝑙−𝐿+1]

𝑇
.  

Reverberation time changes with frequency, and it affects the length of 𝐗̅𝑘
𝑙− 𝑁𝑒  vector 

in Eq. (4.13). Reverberation time is not estimated for each frequency in this work for 

the sake of simplicity. However, 𝐿 can be adjusted roughly with respect to frequency. 
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In this situation, frequency content is divided into three regions. 𝐿1, 𝐿2, 𝐿3 show filter 

length of low, dominant and high frequency content, respectively. Assume that 

dominant frequency region is 600 Hz –1000 Hz interval and 𝐿2 is used to show this 

region. The relation between reverberation time and filter length is given as: 

 
𝐿2 =

𝑅𝑇60

𝑇𝑠ℎ𝑖𝑓𝑡
 

(4. 14) 

where 𝑅𝑇60is estimated reverberation time. 𝑇𝑠ℎ𝑖𝑓𝑡 = 8 msec is frame shifts. 

Reverberation time is higher at lower frequencies; therefore, it is assumed 

that (𝐿1, 𝐿2, 𝐿3) = (40, 35, 30) in   𝑅𝑇60 = 310 msec case. In this way, the effect of 

frequency on reverberation time is modeled roughly. 

The summary of the whole algorithm in this thesis can be given as: 

1. Downsample the speech signal to 𝑓𝑠 = 16 𝑘𝐻𝑧. 
2. Estimate DOA, (𝜃) and reverberation time, 𝑅𝑇60 blindly. 

3. Find STFT of each recorded signal 𝑋𝑘
𝑙,𝑚

. 

4. Estimate 𝜎𝐿𝑅𝑆𝑉,𝑘
𝑙,𝑚

 of each recording, take average 
1

𝑀
∑ 𝜎𝐿𝑅𝑆𝑉

𝑙,𝑚𝑀
𝑚=1 . 

5. Calculate 𝝓𝑟(𝑘, 𝑙) and 𝒈′(𝜃), then 𝒘𝑀𝑉𝐷𝑅(𝑘, 𝑙). 
6. for 𝑘 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑠 

7.   for 𝑙 =  1: 𝑓𝑟𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

8.      X̅𝑘
l (𝑘, 𝑙) = 𝒘𝑀𝑉𝐷𝑅

𝐻 (𝑘, 𝑙)𝑿(𝑘, 𝑙) 

9.    end 

10. end 

The output of the MVDR is fed to the single channel algorithm. 

11. 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 = 𝒘𝑀𝑉𝐷𝑅

𝐻 (𝑘, 𝑙)𝝓𝑟(𝑘, 𝑙)𝒘𝑀𝑉𝐷𝑅(𝑘, 𝑙)   and  𝜎𝑙,𝑘
2 = 𝜎𝑙,𝑘

𝑋 − 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 

12. Calculate the second stage filter, 𝒘𝑘 for each band by ML estimation. 

13. for 𝑘 = 1: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑠 

14.   D̅𝑙,𝑘 = X̅𝑙,𝑘 − 𝒘𝑘
𝐻 𝐗̅𝑙−𝑁𝑒,𝑘 

15.   𝑘 = 𝑘 + 1 

16. end 

 

 

Implementation sequence is given item by item: 
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1. 𝑅𝑇60 is estimated by recording at the reference microphone. In order to 

detect the decaying curves recording signal is divided into 200 msec 

segments, then segments are divided into 20 msec subsegments. The 

decaying curves are detected in the segments by subsegments constraints. If 

a segment contains a decaying curve MLE is applied to estimate 𝑅𝑇60. 

Segments are shifted with %50 in order not to miss any decaying curve. 

After estimating 𝑅𝑇60′s from all decaying curves average is taken to get 

more accurate result. 

2. All speech onsets are detected by VAD algorithm at all microphones. 15 

msec frames are taken from onsets and the correlation of the frames between 

microphones are calculated. The phase differences of the microphones with 

respect to the reference microphone are found by correlations. Relative early 

transfer function vector is generated by the phase differences. 

3. STFT of the recordings is taken. In this process %75 overlapping 32 msec 

Hamming window is used (Shifting = 8 msec). Since the mixing time is 

approximately 25 msec, 𝑁𝑒 = 3.  LRSV is found as: 

 𝜙𝑟(𝑙, 𝑘) =  𝑒−2𝛼𝑅𝑁𝑒  𝜙𝑋(𝑙 − 𝑁𝑒 , 𝑘)         (4. 15) 

            where 𝜙𝑋 , 𝜙𝑟 are spectral variance of observation and late reverberation. 

4. Correlation matrix of reverberation is calculated as: 

 
𝝓𝑟(𝑙, 𝑘) =  𝜙𝑟(𝑙, 𝑘) [

1 𝑠𝑖𝑛𝑐(𝛾)
𝑠𝑖𝑛𝑐(𝛾) 1

]    
     (4. 16) 

where 𝛾 =  
(
2𝜋𝑓𝑠𝑘

𝐾
)𝑑

𝑐
, k is frequency bin, K is FFT number, d is microphone 

distance in m, c is sound wave speed m/sec, 𝑓𝑠 is sampling frequency. 
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5. Apply MVDR to the recordings.  

 𝑋(𝑙, 𝑘) = 𝒘𝐻(𝑘) 𝑿(𝑙, 𝑘)      (4. 17) 

𝒘𝐻(𝑘) =  
𝒈′𝐻(𝑘)𝝓𝑟

−1(𝑙, 𝑘)

𝒈′𝐻(𝑘)𝝓𝑟
−1(𝑙, 𝑘)𝒈′(𝑘)

 

where 𝝓𝑟 , 𝒈′ are correlation matrix of late reverberation and relative early 

transfer function vector. 

6. Spectral power of early reverberation is calculated at the output of MVDR. 

 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 = 𝜙𝑙,𝑘𝒘

𝐻(𝑙, 𝑘)Г(𝑙, 𝑘)𝒘(𝑙, 𝑘)      (4. 18) 

                                                    𝜎𝑙,𝑘
2 = 𝜎𝑙,𝑘

𝑋 − 𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉 

where 𝜎𝑙,𝑘
2 , 𝜎𝑙,𝑘

𝑋 ,  𝜎𝑙,𝑘
𝐿𝑅𝑆𝑉are spectral power of early reverberation, observed 

speech and late reverberation at the output of MVDR algorithm. 

7. The filter vector of the single channel dereverberation is estimated by 

MLE. 

 
𝒄𝑘 = (∑

𝑿(𝑙 − 𝐷, 𝑘)𝑿(𝑙 − 𝐷, 𝑘)𝐻

𝜎𝑙,𝑘
2

𝑙

)

−1

(∑
𝑿(𝑙 − 𝐷, 𝑘)𝑋

∗
(𝑙, 𝑘)

𝜎𝑙,𝑘
2

𝑙

)   (4. 19) 

where 𝒄𝑘  is the dereverberation filter. Output of the single channel 

dereverberation is calculated: 

 𝐷(𝑙, 𝑘) = 𝑋(𝑙, 𝑘) − 𝒄𝐻(𝑘)𝑿(𝑙 − 𝑁𝑒 , 𝑘) (4. 20) 

where 𝑁𝑒 = 3, the length of 𝑿 vector is reverberation time in terms of 

frame lengths as Eq. (4.14). 

8. Take inverse Fourier transform to obtain dereverberated speech signal 

with 32 msec %75 overlapping Hamming window. 

 



 

 

102 

 

4.5. Results 

In this section, the proposed dereverberation algorithm is evaluated by objective 

quality measures which are explained in the beginning of this chapter. In order to 

evaluate the algorithm extensively, it is tested under various conditions. The results 

of the objective assessments are written before and after the dereverberation process 

to show relative improvements in reverberant speech signal for each different 

condition. The evaluations are also performed after the first stage to show effects of 

each stage in the dereverberation.  

Reverberation effects can be seen in spectrograms. Therefore, spectrogram of a 

processed signal is included to show dereverberation performance at the end of this 

section. 

4.5.1. Performance of the Dereverberation 

Initially, the proposed method is tested under different room acoustics. The 

utterances are conveyed to omni-directional microphone array as 𝐷𝑂𝐴 (𝜃) =  90 ̊ 

in Figure 4.2. There are two microphones in the array and the distance between 

microphones is 8 cm. Speaker position and configuration of the microphones are 

fixed during recordings. 

The measurements are taken under three different reverberation times. Also, two 

distinct source distances are used in the recordings. Table 4.2 shows the results 

obtained with objective assessment methods in the corresponding conditions. 

Measures with ‘Input’ subscript show evaluations of the observed speech. ‘MVDR’ 

and ‘Output’ subscripts mean that the measures are taken in output of the first and 

the second stages respectively. 

In order to interpret Table 4.2, it is necessary to give information about measure 

values. SRMR shows ratio of speech to reverberation shortly. Therefore, higher 

value means more successful dereverberation. CD and LLR illustrate discrepancy 

between anechoic and processed speech signals, so lower value means lower 
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discrepancy. PESQ is a common measure and the higher PESQ is, the better quality 

of speech becomes. Lastly, higher FwSNRSeg shows better SNR i.e. more 

successful dereverberation.  

The proposed model generally provides dereverberation without a significant 

distortion in anechoic speech. SRMR is directly related to reverberation level, while 

other measures are related to processing distortions in speech signal. The algorithm 

provides a gain in SRMR except in the room which has 160 msec reverberation 

time. Distance has a positive effect on the proposed method. It provides better 

dereverberation in larger distances. PESQ, CD, LLR results behave similar to 

SRMR. However, FwSNRSeg shows that the first stage always reduces segmental 

SNR. This can be related to estimation of late reverberation correlation matrix in 

MVDR stage. Estimation errors may cause SNR to decrease. However, the second 

stage recovers SNR of the whole algorithm. In short, the proposed algorithm 

suppresses reverberation without causing a significant distortion in the original 

speech with respect to the objective quality measures except for 𝑅𝑇60  = 160 msec. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

104 

 

Table 4.2. The results for different conditions at input, output of the first and the 

second stages. 

Results Simulated Data 

 𝑹𝑻𝟔𝟎 =  𝟏𝟔𝟎 𝒎𝒔 𝑹𝑻𝟔𝟎  =  𝟑𝟔𝟎 𝒎𝒔 𝑹𝑻𝟔𝟎  =  𝟔𝟏𝟎 𝒎𝒔 

 𝟏𝒎 𝟐𝒎 𝟏𝒎 𝟐𝒎 𝟏𝒎 𝟐𝒎 

SRMRINPUT 5.98 6.12 5.29 5.24 4.42 4.48 

SRMRMVDR 5.60 5.90 5.23 5.48 4.57 4.82 

SRMROUTPUT 5.78 6.08 5.58 6.24 5.44 6.03 

 

      

PESQINPUT 3.67 3.23 3.08 2.69 2.71 2.42 

PESQMVDR 3.70 3.51 3.29 2.84 2.90 2.48 

PESQRESULT 3.78 3.54 3.64 3.09 3.37 2.66 

       

CDINPUT 1.65 1.65 2.17 2.51 2.78 3.25 

CDMVDR 1.57 1.62 2.15 2.41 2.76 3.18 

CDOUTPUT 1.57 1.61 1.76 1.99 2.05 2.70 

       

LLRINPUT 0.39 0.46 0.47 0.63 0.65 0.83 

LLRMVDR 0.38 0.46 0.48 0.65 0.64 0.81 

LLROUTPUT 0.35 0.44 0.39 0.50 0.51 0.75 

       

FwSNRSegINPUT 15.38 12.73 13.98 10.79 11.77 9.63 

FwSNRSegMVDR 14.87 12.65 12.47 10.72 10.65 9.08 

FwSNRSegRESULT 15.63 12.90 14.19 11.57 12.12 9.98 
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The most comprehensive evaluation methods are ‘SRMR’ and ‘PESQ’. Therefore, 

these results are shown in the graphs individually. As it can be seen in the graphs, 

the proposed method improves quality of speech signal in most of the conditions 

apart from 𝑅𝑇60  = 160 msec. Performance of each algorithm is better in higher 

reverberation time environments. It is expected because early components can be 

dominant in lower reverberation time. Diffuse field assumption suffers in low 

reverberation time. Distance is also another significant parameter in the algorithm. 

In larger distance, reverberation becomes dominant and diffuse field conditions are 

satisfied, so the probabilistic models in the algorithm get more accurate. Also, plane 

wave model works in large distances more accurately. Therefore, it is expected that 

each stage of the algorithm works better in larger distances and reverberation time. 

 

 

Figure 4.5. Performance comparison of the algorithm for different conditions with 

respect to SRMR metric. 
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PESQ score also verifies SRMR results. Dereverberation algorithm does not have 

detrimental effect on the desired signal while suppressing the reverberation 

according to PESQ. 

 

 

Figure 4.6. Performance comparison of the algorithm for different conditions with 

respect to PESQ. 

 

One of the parameters which affects performance is the distance between 

microphones. The distance must be lower than that of half of speech signal 

wavelength. However, when the distance increases in this limit, beamwidth of 

MVDR filter reduces. This provides more precise filter for reverberation. The 

results are summarized in Table 4.3. 
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Table 4.3. The results of objective quality measures for different microphone 

distances. 

Results Simulated Data 

 𝑹𝑻𝟔𝟎 =  𝟑𝟔𝟎 𝒎𝒔 

 𝒅 = 𝟎. 𝟎𝟖 𝒎 𝒅 = 𝟎. 𝟏𝟔 𝒎 

SRMRINPUT 5.31 5.31 

SRMRMVDR 5.41 5.91 

SRMROUTPUT 6.49 7.06 

 

  

PESQINPUT 2.77 2.77 

PESQMVDR 2.81 2.83 

PESQRESULT 3.02 3.05 

   

CDINPUT 2.31 2.31 

CDMVDR 2.39 237 

CDOUTPUT 2.04 2.21 

   

LLRINPUT 0.62 0.62 

LLRMVDR 0.65 0.65 

LLROUTPUT 0.70 0.71 

   

FwSNRSegINPUT 9.16 9.16 

FwSNRSegMVDR 8.89 9.04 

FwSNRSegRESULT 9.72 9.92 

 

SRMR and PESQ results are given in the following graphs. It is seen that performance 

of the algorithm improves when the distance between microphones increases. 
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Figure 4.7. The performance of the algorithm is better at 0.16 m distance according 

to SRMR metric. 

 

 

Figure 4.8. PESQ of the algorithm enhances when the distance between the 

microphones increases. 
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Table 4.4. The results of objective quality measures for different DOAs. 

Results Simulated Data 

 𝑹𝑻𝟔𝟎 =  𝟔𝟏𝟎 𝒎𝒔 

 𝜭 = 𝟎° 𝜭 = 𝟒𝟓° 

SRMRINPUT 3.78 3.80 

SRMRMVDR 4.20 3.86 

SRMROUTPUT 5.57 4.56 

 

  

PESQINPUT 2.34 2.33 

PESQMVDR 2.41 2.48 

PESQRESULT 2.59 2.64 

   

CDINPUT 3.19 3.26 

CDMVDR 3.18 3.25 

CDOUTPUT 2.86 2.99 

   

LLRINPUT 0.82 0.79 

LLRMVDR 0.80 0.79 

LLROUTPUT 0.75 0.78 

   

FwSNRSegINPUT 8.91 9.57 

FwSNRSegMVDR 8.53 9.12 

FwSNRSegRESULT 9.20 10.41 

 

It is wise to analyze the results for different DOAs because it may change performance 

of MVDR filter. As it can be seen in Table 4.4, the whole algorithm provides similar 

performance at different DOA conditions. 
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The performance comparison between two algorithms may not be reliable when the 

datasets are different for each algorithm. However, in order to understand the 

performance of the proposed topology, the objective quality measures in Table 4.2 can 

be evaluated with respect to other proposed topologies. In this part, the results are 

compared with the proposed algorithms in ‘Reverb Challenge 2014’ [66]. In this 

workshop, the utterances are conveyed to a microphone array under various 

experimental conditions. The experiments are conducted in two different microphone 

to speaker distances (50 cm, 200 cm) and there are three 𝑅𝑇60 conditions (0.3 sec, 0.6 

sec, 0.7 sec). Although the dataset in this workshop is completely different from the 

utterances in this work, the results under 𝑅𝑇60 = 0.3 sec (Sim Room1) and 𝑅𝑇60 = 0.6 

sec (Sim Room2) conditions in far field (2 m) are compared with our results in Table 

4.2 roughly.  

In the workshop there are three different two-channel topologies [67, 68, 69]. The 

objective quality measures of the unprocessed and processed speech signals are given 

in Figure 4.9 – 11. 

 

 

Figure 4.9. SRMR results of the two microphone solutions in the workshop. 
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Figure 4.10. PESQ results of the two microphone solutions in the workshop. 

 

 

Figure 4.11. CD results of the two microphone solutions in the workshop. 
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Sim Room1 and Sim Room2 conditions are similar to 𝑅𝑇60= 360 msec and 𝑅𝑇60= 610 

msec conditions respectively. In terms of SRMR results in Table 4.2, the proposed 

solution provides %20 and %36 enhancement respectively. According to Figure 4.9, 

%20 enhancement in Sim Room1 is better than the algorithms in the workshop in 

terms of SRMR. In the Sim Room2, although %36 enhancement is above the average, 

Delcroix’s algorithm provides approximately %70 enhancement. 

In terms of PESQ, the proposed algorithm provides an enhancement about %14 and 

%12 in Table 4.2. According to Figure 4.10, these results are better than two of the 

proposed algorithms. However, Delcroix provides an enhancement about %20 and 

%30 in terms of PESQ in Sim Room1 and Sim Room2 respectively. 

Lastly, in terms of CD, the proposed solution provides an enhancement about 55 dB 

under similar conditions of both Sim Room1 and Sim Room2. In Sim Room1, the 

algorithms in the workshop apart from Delcroix’s algorithm do not provide an 

enhancement. However, the performance of the proposed dereverberation is worse 

than the algorithms in the workshop in Sim Room2. 

Another way to evaluate reverberation level in speech signal is spectrogram. 

Spectrogram of 10 sec reverberant speech (𝑅𝑇60 = 610 msec, 𝛳 = 45°) signal before 

and after the dereverberation process is shown in Figure 4.12. As it is seen, smearing 

effect that stems from reverberation is reduced and blurring of the speech phonemes 

decreases as a result of dereverberation. 
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Figure 4.12. Spectrograms of unprocessed and processed speech signals respectively. 

 

4.5.2. Discussions 

This study proposes an algorithm which consists of two different stages. These stages 

process reverberation from two distinct approaches. Although these stages are 

completely different from each other, they can be combined efficiently because of 

shared parameters. The whole algorithm suppresses reverberant part of observed 

speech, and it does not cause any serious distortions in the desired speech under most 

of the experimental conditions according to objective measures. However, there are 

some shortages of the proposed model. 

MVDR algorithm is not used in dereverberation normally; however, it can be used to 

filter late reverberation thanks to diffuse field assumption in this thesis. The 

assumption suffers in short distances and small reverberation time, because early 

components dominate observed signal. If late reverberation can be modeled in these 
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conditions more accurately (instead of diffuse field), MVDR performance improves 

further. In addition, DOA cannot be found accurately in reverberant environments. 

This problem is solved by detecting ‘silence’ to ‘speech’ transitions. Simple voice 

activity detection algorithm is used to find DOA in MVDR.  

Plane wave model of sounds suffers in short distances. This case causes performance 

of MVDR to decrease. If sound wave can be modelled more realistically in short 

distances, better results can be obtained. Since this brings a lot of computational 

complexity, plane wave model is preferred in this thesis. 

Using MVDR before single channel dereverberation algorithm enhances its 

performance. Original WPE method is based on an iteration to find spectral power of 

early reverberant part [70]. However, estimating spectral power of this part in the first 

stage makes this iteration unnecessary. In addition, spectral power of early reverberant 

is found by multiple microphones thanks to this combined algorithm. In this way, more 

accurate estimation can be obtained.   

The main shortage of the second part is mixing time. There are lots of studies about 

estimating mixing time. In this thesis, mixing time is found by volume of the room. 

Since the algorithm uses mixing time to obtain the result directly, more accurate 

mixing time provides better results. Also, frequency effect on reverberation time is 

taken consideration roughly. This reduces potential performance of the second part; 

however, this provides faster and more efficient algorithm. If frequency effect on 

reverberation time is modelled accurately without complexity, performance of the 

second stage improves. 

In conclusion, independent algorithms are combined efficiently, and overall 

performance of the combined algorithm is better than each one except for 𝑅𝑇60= 160 

msec. Although second algorithm provides dereverberation in this case, MVDR 

algorithm does not perform very well. Low reverberation time, short source distance 

lead worse results. Performance of the whole algorithm improves when late 
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reverberation starts to dominate observed signal (in long distance and high 

reverberation time).    

The samples of unprocessed and processed speech can be found at 

https://drive.google.com/drive/folders/1zFmjziuuP-aflWGBU5YymmYnUDv_hZKY for 

demonstration. 
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CHAPTER 5  

 

5. CONCLUSION 

 

 

5.1. Summary 

The noise reduction techniques have been widely used in communication systems for 

many years. In the literature, there are a lot of state-of-the-art noise reduction 

techniques. Dereverberation has not been common due to lack of practical usage until 

a couple of years ago. However, it has attracted attention with hands-free speech 

interfaces because the received microphone signals are inevitably corrupted by room 

reverberation. Therefore, dereverberation techniques are of great interest to the tech 

industry recently. This thesis has addressed this problem and introduced the method 

which can be used in practical applications to deal with reverberation. 

Deterministic prior knowledge about the system is used in most of dereverberation 

techniques. However, these techniques cannot be implemented in daily life 

applications appropriately. Therefore, the proposed method is based on suitable 

statistical assumptions instead of deterministic prior knowledge. Also, Gaussian 

distribution speech model significantly reduces computational complexity. Thus, 

processing time of the method is reduced. Thanks to short processing time, the 

proposed blind dereverberation technique can be implemented in practical 

applications. 

The proposed algorithm consists of well-known techniques which are beamforming 

and linear prediction. However, they are not used directly because reverberation 

cannot be seen as a simple incoherent signal. Reverberation signals have to be 

modeled according to their characteristics and room acoustic properties.  
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The beamforming in the proposed approach needs transfer function ratios of early 

reverberation and correlation matrix of late reverberation. However, there is no 

established method to find these parameters. Therefore, it is necessary to investigate 

the underlying reasons for reverberation process. In this way, it is possible to derive 

the required parameters of the MVDR algorithm. In Chapter 3, these parameters are 

derived according to the fundamentals of reverberation.  

The single channel approach is used as a post filter at the second stage of the proposed 

method. It suppresses the residual reverberation components at the output of MVDR 

algorithm. This approach is quite different from the first stage. However, the required 

parameters in this approach are already derived in the first stage.    

In order to measure performance of the proposed algorithm, it must be tested under 

various conditions. The objective measures show that the proposed method provides 

considerable enhancement for reverberant speech signals. Furthermore, it is revealed 

that the algorithm does not cause any serious degradation in the desired speech with 

respect to objective measures in Chapter 4. The results which are taken in different 

directions and distances also demonstrate that the performance of method does not 

depend on speaker-microphone configurations. 

5.2. Conclusion and Future Work 

The proposed dereverberation method relies on the statistical models of reverberation 

and speech signal. These models are used instead of deterministic prior knowledge 

and they reduce computational complexity; however, these models may oversimplify 

the nature of signals. 

STFT coefficients of the desired speech are modeled by independent Gaussian 

distributions. In an anechoic speech signal, there can be correlations between the 

frames. Therefore, a joint pdf which take account of inter-frame correlations can be 

more appropriate model for the STFT coefficients. 
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The statistical model of reverberation signals assumes late reverberation is completely 

independent of early reverberation. However, a statistical model which considers the 

correlation between these parts can be more accurate.  

There is no consensus about the transition time in the literature. Transition time is 

significant parameter especially for the second stage. Estimating transition time 

accurately improve performance of dereverberation. 

Although this thesis assumes that noise is ignored in the calculations, dereverberation 

algorithm should be robust in noisy environments. Noise may affect the estimations 

of reverberation parameters. Therefore, a significant effort can be devoted to 

dereverberation algorithms in noisy environments. 

Finally, it is concluded that instead of deterministic prior knowledge about the system, 

statistical models can be used to process reverberation and a blind dereverberation 

method independent of speaker-microphone configuration can be generated with 

denoising algorithms. The most important thing in this goal is to find efficient models 

of sound signals. It is seen that when the diffuse sound model becomes more accurate 

(in longer distance and larger reverberation time) the performance of the 

dereverberation improves. 
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