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ABSTRACT

A UNIFIED APPROACH FOR CENTER-BASED CLUSTERING
PROBLEMS ON NETWORKS

Eroğlu, Derya İpek

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Cem İyigün

January 2019, 133 pages

In this thesis, Center-Based Clustering Problems on Networks are studied. Four dif-

ferent problems are considered differing in the assignment scheme of the data points

and the objective function. Two different assignment schemes are considered, hard

assignment and soft assignment. In hard assignment, data points (vertices) are strictly

assigned to one cluster, while in soft assignment, vertices are assigned to the multiple

clusters with a membership probability. Objective function of a clustering problem

could be categorized as minimizing sum of distances or sum of squared distances

between the vertices and the centers of clusters they are assigned to.

In this study, cluster centers are not restricted to vertices. They are allowed to be

located on vertices or anywhere on the edges. The problems that are studied are ana-

lyzed in terms of properties of the cluster centers, and theoretical results are derived.

Benefiting from these properties, a unified solution framework is developed which is

named Hybrid Genetic Algorithm (HGA), a genetic algorithm with a Local Search

operation which uses the theoretical results obtained about the cluster centers. Two

versions of HGA, namely Node Based HGA (HGA-N) and Edge Based HGA (HGA-

v



E) are developed by modifying HGA considering the derived properties. To test the

performance of the proposed algorithms, numerical experiments are conducted on

clustering of datasets from the literature and the simulated ones. Results are com-

pared with the optimal or best solutions reported in the literature (if available). The

proposed algorithms are also compared with the well-known heuristics used for the

planar clustering problems. These heuristics are modified for the network problems.

Computational results show that the proposed approach performs well in all clustering

problems studied.

Keywords: Clustering on Network, Genetic Algorithm, Hard Assignment, Soft As-

signment, Local Search
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ÖZ

AĞLARDA MERKEZE DAYALI KÜMELEME PROBLEMLERİ İÇİN
TÜMLEŞİK BİR YAKLAŞIM

Eroğlu, Derya İpek

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cem İyigün

Ocak 2019 , 133 sayfa

Bu çalışmada, Ağlarda Merkeze Dayalı Kümeleme Problemleri üzerine çalışılmıştır.

Noktaların küme merkezlerine atanma tipi ve ele alınan amaç fonksiyonu bakımından

değişiklik gösteren dört farklı probleme odaklanılmıştır. Atama tipleri, katı atama ve

yumuşak atama olarak iki sınıfa ayrılabilir. Katı atamada, veri noktaları (düğümler)

bir kümeye katı olarak atanırken, yumuşak atamada, düğümler birden fazla kümeye

üyelik fonksiyonu ile atanır. Çalışılan kümeleme problemlerinin amaç fonksiyonları,

düğümler ile atandıkları merkezler arasındaki uzaklıkların toplamını enazlayan veya

uzaklıkların karesel toplamını enazlayan fonksiyonlar olarak kategorize edilebilir.

Bu çalışmada, küme merkezleri düğümlerle kısıtlanmamış, küme merkezlerinin ağ

üzerinde herhangi bir yerde olmasına izin verilmiştir. Çalışılan problemler, küme

merkezlerinin davranışı ve amaç fonksiyonu bakımından incelenmiş ve birtakım te-

orik sonuçlar gösterilmiştir. Bu sonuçlardan faydalanılarak, Hibrit Genetik Algoritma

(HGA) adını verdiğimiz, içinde Yerel Arama operatörü bulunan bir genetik algoritma

olan, tümleşik bir çözüm yaklaşımı geliştirilmiştir. Elde edilen teorik sonuçlar kul-

lanılarak, HGA yaklaşımının Düğüme Dayalı (HGA-N) ve Kenara Dayalı (HGA-V)

vii



olmak üzere iki tipi geliştirilmiştir. Bu algoritmaların performansını test edebilmek

için, literatürden olan ve tarafımızca üretilen veri setleri kullanılmıştır. Sonuçlar, lite-

ratürde en iyi olarak verilmiş olan çözüm değerleri ile karşılaştırılmıştır (verildiği du-

rumlarda). Önerilen algoritmalar, literatürde düzlem problemleri için bilinirliği olan

sezgisel yaklaşımların ağ için modifiye edilmiş versiyonları ile karşılaştırılmıştır. Nü-

merik çalışmalar, önerilen yaklaşımın, çalışma kapsamında olan kümeleme problem-

leri için iyi bir performans sergilediğini göstermektedir.

Anahtar Kelimeler: Ağlarda Kümeleme Problemi, Genetik Algoritma, Katı Atama,

Yumuşak Atama, Yerel Arama
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CHAPTER 1

INTRODUCTION

Clustering is an unsupervised learning method that aims grouping data points that are

similar, and separating data points that are dissimilar according to defined distance

metric or similarity measure [2]. As stated in [3], clustering is useful for exploring

the internal data structure. Clustering is a widely studied problem in the literature. In

general, clustering approaches could be classified as

• Partitional (Center-based) clustering,

• Hierarchical clustering.

Partitional Clustering aims to form subsets of data points which are similar, while Hi-

erarchical Clustering focuses on forming clusters with a hierarchical cluster structure.

Most of the studies regarding clustering have been performed in continuous space. In

other words, data points with m attributes define an m-dimensional space, and cluster

centers could be located on anywhere in the defined space. Some of the studies have

been performed on a dataset which has network structure. Lately, graph clustering

has become a popular topic and various algorithms have been proposed [4]. How-

ever, compared to the studies performed in continuous space, there are fewer studies

performed on networks. Still, in the field of Location Theory, network location prob-

lems are widely studied in the literature. Spotting the similarities between particular

types of network location problems and clustering problems on networks, some of the

studies related to network location problems are utilized.

In this study, we examine Partitional Clustering Problems on Networks in which the

number of clusters are known a priori. We focus on clustering problems on net-

1



works called Euclidean Graph. In these networks, the weight of an edge is Euclidean

distance between the end vertices. These networks satisfy metric properties such as

symmetry and triangle inequality. We deal with 4 problems which are listed as fol-

lowing.

• P-Median Problem: Hard Clustering with the objective of minimizing the sum

of distances.

• Sum of Squares Clustering Problem: Hard Clustering with the objective of

minimizing the sum of squared distances.

• Probabilistic Distance Clustering (PD-Clustering) Problem: Soft Clustering

with the objective of minimizing the sum of distances.

• Fuzzy Clustering Problem: Soft Clustering with the objective of minimizing

the sum of squared distances.

An illustration for the assignment types in clustering problems on networks is given in

Figure 1.1. Here, two clusters are formed with a network of 30 vertices. In both cases,

cluster centers are located on vertices 13 and 26. On the left network, data points are

strictly assigned to their closest centers where it is called hard assignment. Each

vertex belongs to one center where it leads to partitioning the network and creates

two disjoint clusters. Clusters are shown with different shades of grey in the figure.

On the right network, each vertex is assigned to both centers with a membership

value where it is called soft assignment. Therefore, vertices are colored according to

assignment or membership values.

In this study, we work on two soft clustering problems on networks and propose an

approach for solving the problems. This approach can also be used for hard cluster-

ing that were already studied. With this way, we aim to bring a unified perspective

to the partitional clustering problems on networks. By using the developed approach,

we derive theoretical properties of the optimal solutions of the problems we focus.

In this thesis, different than the general implementation, cluster centers are not re-

stricted to the vertices on the network.They can also be located on the edges. We

prove that for PD-Clustering Problem on networks, even when the cluster centers are

allowed to be anywhere on the network, they will always be on vertices, while cluster

2



Figure 1.1: An illustration of hard clustering and soft clustering

centers could be anywhere in Fuzzy Clustering Problem. By analyzing properties of

the objective functions of the problems, we derived some properties. As a solution

approach, deriving these properties, we develop a Local Search (LS) procedure and

embed it in a Genetic Algorithm (GA). This proposed approach is called as Hybrid

Genetic Algorithm (HGA). HGA solves all the problems on hand. We developed two

HGA versions, namely HGA-N and HGA-E, to solve these problems. We analyzed

performances of the algorithms through computations on a data source from the lit-

erature and two different simulated datasets. Analysis show that both HGA-N and

HGA-E algorithms have promising performance as far as solution quality is consid-

ered.

The organization of this thesis is as follows. In Chapter 2, literature review will be

shared. In Chapter 3, notation that is used and definitions of some of the concepts

will be provided. In Chapter 4, the problems listed previously will be defined and

structural properties will be investigated. In Chapters 5 and 6, HGA approaches will

be described and computational results will be provided. Lastly, in Chapter 7, con-

clusions of the study and future research directions will be discussed.
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CHAPTER 2

BACKGROUND ON CLUSTERING AND LITERATURE REVIEW

Clustering problems are widely studied in the literature and state-of-art algorithms

have been developed for the different versions of the problem. Similarly, Facility

Location Problem, some variants of which could be treated as a clustering problem as

well, has also been widely studied. In this chapter, benchmark studies in the literature

regarding clustering problems are discussed. Although clustering on networks have

been studied less than that on plane, it is a fairly popular area of study by researchers

from various disciplines.

Partitional Clustering problems (regardless of their defined space) could be classified

according to the assignment type:

• Hard Assignment: Data points are strictly assigned to the closest cluster cen-

ter.

• Soft Assignment: Data points are assigned to centers with a membership value.

This problem stems from Fuzzy Set Theory, in which items in a set belongs to

the set with a probability.

Evaluation of the formed clusters is a requirement. In the studies where the number of

clusters is given, commonly used objective functions in order to perform evaluation

could be listed as following:

• Sum of Distances: Clustering problem is solved with the objective of mini-

mizing the sum of distances between vertices and their centers.

• Sum of Squared Distances: Clustering problem is solved with the objective

of minimizing the sum of squared distances between vertices and their centers.
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Since clustering is a widely studied problem, a massive number of studies could be

found in the literature, particularly for the studies performed on the plane. In this

chapter, only the most well-known studies and the studies relevant to the problem of

interest will be covered. In §2.1, clustering problems and its fundamental properties

will be introduced to reader referencing the relevant literature. In §2.2, clustering

problems defined on the plane will be discussed. Then, clustering on networks will be

covered. Lastly, metaheuristic solution approaches proposed for the related problems

in the literature will be discussed.

2.1 Clustering Problems

Data analysis techniques could be categorized as exploratory and confirmatory [5].

Exploratory data analysis aim to extract valuable information hidden in the data,

while confirmatory data analysis aim to find properties in the data that could sup-

port a hypothesis or theory that is previously built. Regardless of the type of data

analysis to be conducted, grouping similar objects or learning from labels of the data

is important. At these point, learning algorithms, which could be dichotomized as

supervised and unsupervised, take the stage. Supervised learning algorithms are ba-

sically classification algorithms that are trained to predict labels of the data based on

the features on hand. Unsupervised algorithms deal with features of data and tries to

find underlying structural properties in features that reveal similarities between data

points. Clustering is an unsupervised learning problem that aims to group similar data

points. With the help of Clustering, summarizing data that has high number of points

and high number of features become easier. Since only the important characteris-

tics could be observed with clustered data, summarizing the data becomes easier and

more meaningful. This problem has applications in a wide range of disciplines, such

as medicine, archaeology, biology, economy, market research, and linguistics [2].

Since clustering problems are studied by a wide range of disciplines, there are a wide

range of approaches. In the literature reviews [6], [7] and [5], clustering approaches

were classified. Despite not being exactly the same, these classifications are similar

to each other. The classification scheme could be summarized as following. In the

following subsections, these categories will be covered in further detail.
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• Hierarchical Clustering

• Partitional Clustering

– Clustering on Plane

– Clustering on Networks

2.1.1 Hierarchical Clustering

In this approach, clusters are formed in a way that they have a hierarchy. For example,

a data point is a member of a cluster, and that cluster is a member of another cluster

– there is a hierarchical structure. And there is one cluster on very top-level that con-

tains all the data points. Algorithms for hierarchical clustering could be categorized as

Agglomerative and Divisive. Agglomerative algorithms start with creating individual

clusters for each data point, and combine clusters in order to minimize a performance

measure called linkage. Two traditional algorithms are single linkage and complete

linkage algorithms. In single linkage, two clusters the closest members of which have

the smallest distance are combined to form a cluster. In complete linkage, two clus-

ters the farthest members of which have the smallest distance are combined to form

a cluster [8]. Unlike Agglomerative algorithms, Divisive algorithms start with one

cluster that contains all the data points, then split this cluster until obtaining individ-

ual clusters for each data point. Divisive algorithms are computationally expensive,

since they check all subset pairs for splitting. Therefore, Agglomerative clustering al-

gorithms are used more [7]. Hierarchical Clustering is advantageous in that it works

with various levels of granularity in the data [6]. One disadvantage of Hierarchi-

cal Clustering could be that it is computationally expensive compared to traditional

Partitional Clustering algorithms.

2.1.2 Partitional Clustering

This approach aims to partition the data into several subsets according to similarity.

Since it is impossible to check all the possible partitions, greedy approaches were

proposed such as K-means [9] and K-medoids [10] algorithms. These algorithms
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work in an iterative manner and try to minimize an objective function. This objective

function usually depends on the distance between data points and the closest cluster

center. Clusters are mutually exclusive since hard assignment is made, that is, each

data point is assigned to one cluster. Another approach could be soft assignment in

which data points are assigned to all clusters with a probability. Regardless of the as-

signment scheme, these algorithms obtain clusters that are convex in shape. To obtain

nonconvex clusters, approaches that consider cluster density could be implemented,

aka Density-Based Clustering [6]. An algorithm example could be DBSCAN. In this

approach, dense regions are found by scanning neighborhood of points, and these

dense regions are connected to each other according to their connectivity.

2.2 Background on Partitional Clustering Problems and Solution Approaches

In this section, partitional clustering solution approaches will be discussed. In sub-

section 2.2.1, solution approaches for clustering algorithms solution space of which

is defined on planes will be discussed. Then, clustering algorithms on networks will

be described in subsection 2.2.2. In 2.2.3, metaheuristic approaches proposed for

partitional clustering problems will be mentioned.

2.2.1 Clustering on Plane

There are four different clustering problems relevant to this study. These problems

differ in assignment types and objective functions, as represented in Figure 2.1. In

this subsection, these problems and their most known solution approaches will be

discussed in detail.

For the clustering problem with hard assignment and minimization of the sum of

squared distance between each point and center of its assigned cluster, the objective

function is given in (2.1), where I is the set of data points,K is the set of clusters, xi is

coordinates of a data point i, ck is coordinates of centroid of cluster k, and d(xi, ck) is

the distance between point i and cluster center k (The distance is typically Euclidean).

K-means algorithm was proposed by Hartigan in 1979 [9]. A brief pseudocode of the

algorithm has been given in Algorithm 1. The algorithm proceeds in an iterative way.
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Figure 2.1: A classification for partitioning-based clustering algorithms on plane

The procedure begins with generating initial centroid locations. This generation is

usually made randomly. Then, allocations of points to clusters are calculated. With

these allocations, new centroid coordinates are calculated. With the obtained new co-

ordinates, allocations are calculated, and these location-allocation steps are repeated

until allocations do not change, i.e., solution converges.

minimize
∑
i∈I

min
k∈K
{d(xi, ck)2} (2.1)

Algorithm 1 K-means Algorithm
Input: Dataset and k (the number of clusters)

Output: Centroid coordinates and Allocations

Generate initial coordinates for k centroids

Compute assignment of each data point to clusters

while Assignments of data points change do

Compute new centroid coordinates for each cluster

Compute new allocation of each data point to clusters

end while

minimize
∑
i∈I

min
k∈K
{d(xi, ck)} (2.2)

As an hard assignment problem that aims to minimize the sum of distances between

each point and center of its assigned cluster, K-medoids problem focuses on select-

ing centers of the clusters among data points. Since this problem employs the sum
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of distances as the objective, (see (2.2)), it is less sensitive to noise and outliers than

K-means algorithm [10]. One of the proposed algorithms is called PAM (Partitioning

Around Medoids) [10], pseudocode of which is given in Algorithm 2. This algo-

rithm consists of two steps: BUILD and SWAP. BUILD step is generating an initial

solution. After build step, for each non-medoid data point, change in the objective

function when selecting that point as medoid of its cluster and unselecting the current

medoid is calculated and the data point that decreases the objective function value

the most is selected as medoid. This procedure is called SWAP. This operation is

repeated until the objective function value does not improve. This algorithm could

be classified as a greedy algorithm. Still, it could be said that PAM is a benchmark

algorithm.

Algorithm 2 PAM Algorithm
Input: Dataset and k (the number of clusters)

Output: Medoid coordinates and Allocations

Select k initial medoids among the data points

Compute allocation of each data point to clusters

while The objective function improves do

Perform the swap that decreases objective function the most for each medoid

end while

Soft assignment concept was inspired from Fuzzy Set Theory. In Fuzzy Set Theory,

an object belongs to a set with a membership value, which is between [0, 1]. Divid-

ing the data into strict groups may not match real structure of the data [11]. The

first approach inspired from this idea was developed by Bezdek, which is the Fuzzy

C-Means (FCM) algorithm [12]. The objective function of this algorithm is given

in (2.3), where pik is the membership value of point xi to center ck, and m is the

fuzziness constant. As m increases, the sets get fuzzier (memberships converge to
1
|K| ). Given the center locations, membership values are calculated as in (2.4). Cen-

ters of the clusters are calculated as (2.5). Pseudocode is given in Algorithm 3. The

algorithm terminates when objective function value converges.

minimize
∑
i∈I

∑
k∈K

pmikd(xi, ck)2 (2.3)
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pik =
1∑

j∈K
d(xi,ck)
d(xi,cj)

2
m−1

(2.4)

ck =

∑
i∈I p

m
ikxi∑

i∈I pik
(2.5)

Algorithm 3 FCM and PD-Clustering Algorithms
Input: Dataset and k (the number of clusters)

Output: Centroid coordinates and Membership values

Generate initial coordinates for k centroids

Compute memberships of each data point to each cluster

while Stopping condition is not met do

Given the memberships, compute new centroid coordinates for each cluster

Given the centers, compute new memberships of each data point to each cluster

end while

The algorithm that performs soft assignment with the objective (2.6) has been devel-

oped by Iyigun and Ben-Israel in [13], named as Probabilistic Distance Clustering

(PD-Clustering). This algorithm proceeds in an iterative way as well, pseudocode is

given in Algorithm 3. Membership values are calculated as in (2.7), and center coor-

dinates are calculated as in (2.8) when distance is defined as Euclidean distance. The

algorithm terminates when the center locations do not change anymore.

minimize
∑
i∈I

∑
k∈K

p2ikd(xi, ck) (2.6)

pik =
1∑

j∈K
d(xi,ck)
d(xi,cj)

(2.7)

ck =

∑
i∈I uikxi∑
i∈I uik

, where uik =
p2ik

d(xi, ck)
(2.8)

Besides these algorithms, Genetic Algorithm (GA) based approaches have been pro-

posed for K-Means and K-Medoids problems. GAs are first proposed by Holland in

[14], stating that if nature is simulated by computer systems, even the complicated

problems could be solved.
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In [15], a hybrid GA was proposed for K-Means problem. As chromosome repre-

sentation, they store assignments of each data point. This algorithm does not have

a traditional crossover operator. Instead, it performs one iteration of K-Means algo-

rithm. The mutation operator changes assignment of a randomly selected data point

with to a cluster with a probability inversely related to its distance. It is reported

that Genetic K-means Algorithm outperforms K-Means algorithm in terms of solu-

tion quality since K-Means usually converges to local optimum –even when multistart

is made.

For K-Medoids problem, another hybrid GA was proposed in [16]. In the proposed

approach, number of clusters to be formed is assumed to be unknown. As chromo-

some representation, they store vertex objects that are medoids. This algorithm ran-

domly decides number of clusters each individual has. There is a crossover operator

that could be seen traditional, and a mutation operator changes a medoid randomly.

Furthermore, the algorithm has a heuristic operator that is basically a local search

procedure. It is reported that performance of the algorithm is promising when solu-

tion quality is compared to other well-known algorithms, such as CLARA, which was

proposed in [10].

2.2.2 Clustering on Networks

Clustering on networks could be defined as finding sets of similar vertices if vertices

are assumed to be data points. An extensive survey has been performed by Schaeffer

[4]. Another survey has been conducted by Aggarwal and Wang in [17]. Most of the

approaches covered in these surveys are not based on locating the center. They handle

the problem as a graph clustering or graph partitioning problem.

One of the problems defined is Minimum-Cut Clustering (MCC) [18]. This problem

is based on the Minimum Cut Problem in [19], which is a well-known one among

network flows problems. In the Minimum Cut Problem, the aim is to obtain two

clusters from the graph that minimizes distance within the partitions. In MCC, par-

titions found for k clusters while minimizing distance within the clusters. An exact

solution approach has been developed that defines the problem as a Mixed Integer

Programming model and solves it with decomposition and column generation.
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Another approach has been developed by Lin and Kerninghan in [20]. The aim is

to partition the vertices that minimizes the number of intercluster connections. In

the proposed algorithm, pairwise exchange between clusters that decreases the objec-

tive the most is performed. With this way, pairwise optimality is aimed, which is a

necessary condition for optimal partitions.

In [21], derivation of community structure of natural networks such as social net-

works and biological networks have been studied. The developed algorithm created

a partition of a network by removing edges from the original graph, and the removed

edges are the ones connecting different communities. In order to determine which

edge to remove, they used a measure called Edge Betweenness Centrality. This is a

measure for number of shortest paths passing through a certain edge. The edges that

have high Edge Betweenness Centrality value is considered as bridge, and removed

from the graph.

The approaches discussed so far in this subsection are three of the well-known algo-

rithms for graph clustering. Their common feature is that they are not center-based,

i.e., a cluster center concept is not utilized in these studies. There are two main prob-

lems that treat the clustering problem on networks in a center-based manner.

The first problem is known as P-Median Problem. This problem is widely studied,

and there is a massive number of publications. The initial studies about this problem

regarding the definition and theoretical studies are performed by Hakimi, see [22]

and [23]. Objective function of the problem is given in (2.9), where d(vi, xk) refers

to the length of the shortest path between vertex i and cluster center k. The objective

function is to minimize sum of distances of each vertex to their closest cluster center.

In [22], Hakimi proved that there is an optimal solution in which cluster centers are

located at vertices. This proof covers only the 1-Median case. Then, in [23], he

proved that the proof is generalizable for P-Median Problem. Levy proved that these

proofs are a consequence of concavity of the objective function in [24], which will be

covered in Chapter 4 in detail.

minimize
∑
i∈I

min
k∈K
{d(vi, xk)} (2.9)
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An extensive literature survey for P-Median Problem could be found in [25]. In 1986,

a GA has been proposed by Hosage and Goodchild [26]. After that, in [27], a more

efficient GA has been developed by Alp and Erkut. They reported that their solution

quality on ORlib instances is promising.

Another problem defined for network clustering that is center-based is made by Car-

rizosa et. al. in [1]. The problem is defined as Sum of Squares Clustering, objective

function of which is given in (2.10). The objective is to minimize sum of squared

distance between each vertex and center of its cluster center. They found that the ob-

jective function is convex. Therefore, they report that there could be centers on edges

of the graph which yield the optimal objective value.

minimize
∑
i∈I

min
k∈K
{d(vi, xk)}2 (2.10)

As a solution approach, they proposed an implementation of Variable Neighborhood

Search (VNS) heuristic. They perform search not only on vertices, but also on edges,

and they report objective function values for ORlib instances for two cases: heuristic

solution when centers are only located on vertices and heuristic solution when centers

are located on vertices and edges. It was reported that there are edge solutions that

have lower objective function value than vertex solutions.

2.2.3 Metaheuristic Solution Approaches

As discussed in previous sections, there are various solution approaches developed

for P-Median Problem. Among them, two of the studies propose a Genetic Algorithm

(GA) for the problem. The first one has been developed by Hosage and Goodoffspring

in [26]. This algorithm utilizes binary encoding as chromosome representation, that

is, they store a binary array representing whether a vertex has been selected as a

cluster center or not. Since this encoding scheme leads to encountering infeasible

solutions (solutions with number of clusters different than p), an operator that re-

pairs or eliminates infeasible solutions is required. This tends to make the algorithm

computationally inefficient.
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In [27], Alp et.al. developed another genetic algorithm with a more efficient rep-

resentation scheme. That is, for each cluster, index of the vertex that was selected

as cluster center has been stored. With this way, feasibility of the solution has been

guaranteed. They report that they outperform [26] with the new GA. However, this

algorithm has inefficient operations as well. First, the population is not generated

randomly. Therefore, they need to work with a large-size population to represent so-

lution space. Second, as crossover operator, they take the union of two solutions and

perform greedy deletion. For example, if there are p clusters and two completely dif-

ferent parents are taken, their union will give a solution with 2p clusters. By deleting

the cluster centers that causes the lowest increase in the fitness function, they obtain

a solution with p clusters. This procedure could become computationally expensive

especially when the population size gets larger.

For Sum of Squares Clustering Problem, Carrizosa et.al. developed a Variable Neigh-

borhood Search (VNS) based metaheuristic in [1]. In this metaheuristic, an initial

solution is generated randomly. Then, it is passed to a procedure named Net K-

Means that is basically a K-Means algorithm works on network. First, given the

assignments, optimal location for each cluster center is found. Then, given the cen-

ter locations, optimal assignments are found, and this procedure is repeated until the

solution converges. In the local search procedure, they perform search not only on

vertices, but also on edges. Fixing the assignments, the best location for each cluster

center on network is found. Then, fixing the locations, assignments of vertices to

clusters are changed. This procedure iterates until solution converges. After the so-

lution converges, an operation is performed to generate a new initial solution for the

Net K-means algorithm which is called Shaking. By means of Shaking procedure, the

problem of sticking into local optimal is alleviated. The generated solution is random

and it is selected within the defined neighborhood of that iteration. The algorithm

iterates until no improvement could be made on the solution. This algorithm has an

advantage that it performs search on the edges as well. However, this algorithm has

two main downsides. First, since it performs edge search on the network, finding

optimal location by searching all the edges may take a long time. Second, since Net

K-means has been applied, by its nature, the assignments are fixed during the edge

search. This may bring the user to a local optima or slow down the convergence.
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Krishna and Narasimha Murty developed a Hybrid GA for the K-Means Clustering

Problem in [15]. In this algorithm, string-of-group-numbers encoding was used as

chromosome representation. For each individual, a matrix with the size of number of

data points by number of clusters are stored. If an individual belongs to cluster k, kth

element of the array is 1 and others are 0. The initial population is randomly gener-

ated so that none of the clusters are empty. In generation replacement stage, Roulette

Wheel Selection is used based on the fitness function, which is Sum of Squared Er-

rors (here, error refers to distance between data point and centroid of its cluster). In

mutation operation, a point has been assigned to another cluster with a probability

increasing with distance to that cluster in a way that none of the clusters are empty.

The algorithm does not have a conventional crossover operator. Instead, there is a K-

Means operator which performs one iteration of K-Means algorithm to the individual.

Due to existence of the K-Means operator, the algorithm is called hybrid. With the

help of the K-Means operator, they report that the solution converges faster, and this

could be seen as an upside of the approach. The downside of the approach could be

the chromosome representation. Since chromosome representation is binary, empty

clusters could be encountered, and this must be checked for all individuals. Since

crossover does not exist, more than a GA, this algorithm could be seen as a random-

ized search algorithm.

In [16], a Hybrid GA has been proposed for K-Medoids Clustering. In this study,

number of clusters are not given a priori, and finding optimal number of clusters is

aimed as well. To do this, a suitable validity index is used as a fitness function. There-

fore, they proposed to use Davies-Bouldin index. The chromosome representation is

an array with the size of number of clusters for each individual. In the array, points

selected as medoids are stored. Since the number of clusters are unknown, chromo-

some size could differ among individuals. Therefore, the operators must be specially

designed regarding this condition. After selecting random parents, crossover opera-

tion is carried out. The crossover operation randomly produces two offsprings that is

not identical to each other or their parents. Number of clusters these offsprings have

could be different, but it should be in [2, kmax], where kmax is a predefined parameter.

Mutation operation is performed with a probability. In this operation, a medoid is

replaced with a random point that does not exist in the population. Furthermore, in
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order to boost the convergence, they used a heuristic operator that aims to minimize

sum of total distance between points and their assigned medoids. It is reported that

heuristic operator has a significant effect on the convergence. One advantage of this

approach is that number of clusters are optimized besides finding the medoids. Addi-

tionally, with heuristic operator, algorithm will definitely converge faster. However,

the heuristic operator should be chosen carefully because there is a trade-off between

solution quality and computational effort. Especially in large size populations, since

heuristic operator is needed to be run much more, computational effort could be sig-

nificantly high.

In the light of the discussions above, we can say that P-Median Problem is widely

studied. Sum of Squares Clustering Problem on networks is recently studied. Dif-

ferent from the literature, we defined two new problems on networks, which are PD-

Clustering and Fuzzy Clustering Problem. Inspiring from the Location Theory, we

analyzed all of these four problems with a framework, and with the derived properties,

we developed a solution approach that can solve all these four problems. In short, we

not only study two new problems, but also implement a framework to bring out the

similarities of the problems on hand.
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CHAPTER 3

NOTATION AND FUNDAMENTALS

In this chapter, notation used throughout this thesis is described in §3.1. Then, in §3.2,

definitions that have been made in the literature and used in this study are discussed.

Furthermore, Assignment Bottleneck Point which is newly introduced with this thesis

are discussed.

3.1 Notation and Fundamentals

The problems covered in this thesis have been defined on a graph G = (E,V)where

V refers to the set of vertices and E refers to the set of edges. G is an undirected

and connected graph, that is, all vertices are connected. Therefore, |E| ≥ |V| − 1. In

other words, for being connected, the number of edges must be at least the number

of vertices-1. On graph G, d(vi, xk) is defined as length of the shortest path dis-

tance between vertex i and cluster center k. Since G is an undirected graph, d(vi, xk)

=d(xk, vi). The distance on G has been defined as a metric distance such as Euclidean

Distance. In other words, the distance is assumed to satisfy the metric properties.

Different distance measures could be used in this framework. We assume Euclidean

Distance, and we work on Euclidean Graphs. The notation used in this chapter is

given in Table 3.1.

3.2 Definitions

In this section, Arc Bottleneck Point, Assignment Bottleneck Point and Finite Domi-

nating Set will be defined. These definitions will be needed later in deriving theoreti-
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Table 3.1: Table of Notations

V Set of vertices

X Set of cluster centers

n Number of vertices V

I Index set of vertices I = {1, 2, ..., n}
vi Vertex i, i ∈ I

hi Weight of vi (hi > 0 ∀i ∈ I )

bi Arc bottleneck point of vi on the edge (vp, vq)

ai Assignment bottleneck point of vi

p Number of clusters |X|
xk Location of cluster center k

d(vi, xk) Length of the shortest path from vi to xk

pik Probability of assignment of vi to cluster k

cal properties of the problems on hand.

3.2.1 Arc Bottleneck Point

Let vi be an arbitrary vertex on G, epq be an edge on G that connects vertices vp and

vq, and le be length of the edge. For any point x ∈ epq, d(vi, x), length of the shortest

path from vi to x is calculated as

d(vi, x) = min{d(vi, vp) + d(vp, x), d(vi, vq) + d(vq, x)}. (3.1)

This means the shortest path to x passes from either vp or vq. The distance function

from vi to x has been given in Figure 3.1. There exists a point, bi, on the edge epq at

which lengths of the shortest paths using vertices vp and vq are equal. It is the farthest

point to vertex vi on the edge epq. The point is calculated as

d(vi, vp) + d(vp, bi) = d(vi, vq) + d(vq, bi)

Let d(vq, bi) = le − d(vp, bi). Then,

d(vi, vp) + d(vp, bi) =d(vi, vq) + le − d(vp, bi)

d(vp, bi) =
1

2
(d(vi, vq) + le − d(vi, vp)), (3.2)
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Figure 3.1: Distance function d(vi, x) on the edge connecting vp and vq

where bi is called as arc bottleneck point [28]. Before the study in [28], Hakimi used

this concept in his proof in [22]. There are three cases regarding the value of d(vp, bi):

Case 1 . If d(vp, bi) ≤ 0, the shortest path from vi to x always passes from vq.

Case 2 . If d(vp, bi) ≥ le, the shortest path from vi to x always passes from vp.

Case 3 . If d(vp, bi) ∈ (0, le), the shortest path from vi to x passes from:

– vp if d(vp, x) <= d(vp, bi),

– vq if d(vp, x) > d(vp, bi).

This distance function is linear or piecewise concave on the edge epq, and arc bot-

tleneck point is the point where piecewise behavior occurs. In the case of more than

one vertices, this behavior is valid. For example, in Figure 3.2, distance function

as a summation of d(vi, x) and d(vj, x) is given. It could be observed that there

are two bottleneck points this time. Since we consider two vertices in the function

d(vi, x) + d(vj, x), each bottleneck point corresponds to one of the vertices. Since

end vertices of an edge will not make arc bottleneck points, number of arc bottleneck

points on an edge is at most n-2.
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Figure 3.2: Distance function d(vi, x) + d(vj, x) on the edge connecting vp and vq

3.2.2 Assignment Bottleneck Point

Arc bottleneck point does not consider assignment changes while changing the center

locations. We introduce a new concept of bottleneck point that also accounts for

assignment changes, and we call it as assignment bottleneck point.

Let vi be an arbitrary vertex on G, xk ∈ e, k = 1, ..., K be the closest center to vi, epq

be an edge on G that connects vertices vp and vq, and le be the length of the edge epq.

If xl ∈ G is the cluster center that is the second closest to vi and all center locations

except xk are fixed, as xk changes on epq and so d(vi, xk) changes, the closest center

to vi may change. The point at which the closest center to vi switches is called Assign-

ment Bottleneck Point. Figure 3.3 shows an illustration of the assignment bottleneck

point ai. For example, let d(vi, xk) =13, the shortest path to xk passes from vq, and

d(vi, xl) =15. If xk is moved towards vp, d(vi, xk) increases (It is assumed that there

is not an arc bottleneck point on epq.). When xk is moved more than 2 units towards

vp, the closest center to vi will be xl since d(vi, xk) ≥ d(vi, xl). Therefore, the closest

center to vi is no longer xk. Since the location of xl is fixed, the distance of vi to the

closest center, minj∈K{d(vi, xj)}, remains constant as xk continues moving towards

vp.
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Figure 3.3: Assignment Bottleneck Point

Figure 3.4 illustrates the case under existence of an arc bottleneck point. As xk is

moved towards vp and d(vi, xk) increases, after the point aqi , xl becomes the closest

center. The black dashed line illustrates change in d(vi, xk). When xk reaches bi,

which is the arc bottleneck point, d(vi, xk) takes its maximum value along epq. After

bi, value of d(vi, xk) decreases. When d(vi, xk) = d(vi, xl) (shown as api ), xk becomes

the closest center to vi again. As a result, we observe two assignment bottleneck

points api and aqi on edge epq. Above, we have covered two cases of assignment

bottleneck point. A variety of these situations could happen. Under the existence of

arc bottleneck point, it is possible to have only one assignment bottleneck point – or

no assignment bottleneck points. On a given edge, a vertex can create at most two

assignment bottleneck points. For a given vertex to have two assignment bottleneck

points on edge epq, it must have an arc bottleneck point as well. Hence, on each edge,

there could be at most 2(n− 2) + 2 assignment bottleneck points.

3.2.3 Finite Dominating Set (FDS)

Finite Dominating Set (FDS) was introduced by Hooker et. al. in [28]. Given a graph

G = (E,V), where E is set of edges and V is set of vertices, FDS is defined as a set of

points on G where optimal solution of a problem must belong. For different network
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Figure 3.4: Assignment Bottleneck Point with Arc Bottleneck Point

location problems, FDS is defined differently depending on structural properties of

the problem on hand. These properties mainly depend on convexity/concavity of

objective function. Finding an FDS for a problem is clearly beneficial because it

reduces the solution space and complexity. This study could be seen as a guideline

for the researchers who work on a various range of Network Location Problems. p-

median and SSC problems’ structural differences defines different FDSs.

In 1964 and 1965, Hakimi proved that FDS of P-Median Problem is V ([22], [23]).

In 1967, Levy proved that this is a consequence of objective function’s being concave

[24]. Based on this, in [28], it is suggested to check concavity of transportation cost

to find FDS of any network location problem as a strategy.

In [1], Sum of Squares Clustering on Networks has been studied. They found that the

objective function is a second-degree polynomial between consecutive arc bottleneck

points. Therefore, they reported FDS of this problem as set of local minimum points

on G. Therefore, cluster center could be located on edges as well as vertices.

FDS is a fundamental concept of this study since we studied on finding structural

properties like FDS of the problems on hand.
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CHAPTER 4

THEORETICAL RESULTS FOR CLUSTERING

As stated previously, there are four different clustering problems that are considered

in this study. These four problems differ in assignment schemes and objective func-

tions they use. Inspired by approach used to obtain results for different network

location problems in [28], we implemented a framework to these four problems. The

main aim behind analyzing these problems is to find properties of the optimal solution

of each problem.

This chapter is organized as follows. In §4.1, theoretical results for hard assignment

problems will be discussed. Soft assignment problems that are newly defined on

networks, and theoretical results derived for these problems will be discussed in §4.2.

4.1 Clustering Problems on Networks with Hard Assignment

In this section, two clustering problems that consider hard assignment will be dis-

cussed. In hard assignment case, each vertex is assigned to one cluster, center of

which is the closest. There are two hard clustering problems that will be covered.

First, P-Median Problem that has the objective function of minimizing the sum of

distances between vertices and their centers will be discussed. Then, sum-of-squares

clustering (SSC) problem that has the objective function of minimizing the sum of

squared distances between vertices and their centers will be defined and analyzed.
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4.1.1 P-Median Problem

The P-Median Problem is defined as

minimize f(X) =
n∑

i=1

hi min
k=1,...,p

{d(vi, xk)}

subject to

xk ∈ V ∀ k = 1, ..., p,

where X is the vector of center locations and xk is decision variable for location of

cluster center k, and hi is a nonnegative constant showing weight of vertex vi. Since

hard assignment is considered, each vertex is assigned to one of the centers. For

each vertex, only the distance between the vertex and its closest center (multiplied

by vertex weight) contributes to the objective function. In this subsection, first, P-

Median Problem with a single cluster (1-Median Problem) will be analyzed. Then,

P-Median Problem will be discussed.

1-Median Problem

Suppose we have only one cluster and one cluster center will be located on G. In that

case, the formulation is

minimize f(xc) =
n∑

i=1

hid(vi, xc) (4.1)

subject to

xc ∈ G. (4.2)

Let us first consider the line graph as in Figure 4.1 which has 4 vertices. Under

the assumption that cluster center could be located anywhere on the graph, there is a

center located between vertices 2 and 3. d(v1, v2) = a, d(v2, v3) = l and d(v3, v4) = b

are given. Let y denote the distance of the center from vertex 2. Assuming that all

vertex weights has the value of 1, the objective function to minimize total distance

between vertices and the center is

f = (a+ y) + y + (l − y) + (b+ l − y) = a+ 2l + b,
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which is constant. This implies that any location of the center on G will lead to the

same objective function value. So, the center could be located on vertices or edges.

Figure 4.1: A Line Graph with 4 vertices

Figure 4.2: An illustration of a part of a graph G

Figure 4.3: Objective function component for vi (denoted as fi) when xc is moved

along the edge (vp, vq)

A general network is illustrated in Figure 4.2 in which cluster center xc is on an edge

epq connecting (vp, vq). In the case of this network, we may observe three different

patterns of objective function component of a vertex vi to the (4.1) depending on

location of xc. The shortest path from vi to xc may pass from vp or vq regardless of

the location of xc, which also means that there is no arc bottleneck point. If there is an
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arc bottleneck point on epq, the shortest path to xc will pass from vp or vq depending

on the location of xc on epq. These patterns are shown in Figure 4.3. In the Figure, (a)

is the case when shortest path to xc passes from vp, and (c) is the case when shortest

path to xc passes from vq. In both cases, there is no arc bottleneck point. In (b), if xc is

in the interval [vp, bi], shortest path to xc passes from vp; otherwise, shortest path to xc

passes from vq. The reason of this behavior is the bottleneck point bi observed. In all

of these cases, it could be observed that the objective function is linear or piecewise

concave.

Based on these patterns discussed above, in [22], Hakimi proved that V contains

optimal solution. In [24], Levy proved that this proof is a result of concavity of

the objective function. Since summation of concave functions is also concave, the

objective function f is also concave along any edge on G.

P-Median Problem

In P-Median Problem, vertices are assigned to clusters with the closest cluster center

minimizing (2.9).

In 1965, Hakimi generalized his previous proof to P-Median Problem, and he proved

that V contains the optimal solution in P-Median Problem [23]. In his proof, he

separates vertices according to clusters they are assigned to. Then, he separates the

problem to p 1-Median Problems. As proof in [22] implies, in each separate prob-

lem, the optimal location is on vertices. When solution of each 1-Median Problem

is found, solutions are combined to form a solution to the P-Median Problem. Since

assignments of vertices to clusters may change, assignments are arranged again. With

this solution where centers are located on the vertices, the objective function value is

less than the solution where centers are located on edges.

Another approach to this problem could be made by analyzing behavior of the ob-

jective function along the edges. Suppose we have a network with p cluster centers

located. Let xc and xk be the closest and second closest cluster centers to vertex vi,

respectively. An illustration is given in Figure 4.4. If we keep locations of p-1 clus-

ter centers fixed and move one cluster center (let us say xc) along the edge (vp, vq),
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vertex vi that was assigned to cluster 1 may be assigned to cluster with the center xk.

If the assignment of vi changes, its objective function component also changes its be-

havior. In the case when vi is assigned to another cluster center xk, since location of

xk is fixed, the objective function remains constant. Therefore, the objective function

component of vi could be observed as in Figure 4.5. In the figure, (a) is the case that

shortest path to xc passes from vp in the interval [vp, ai], and vi has been assigned to

cluster with center xk in [ai, vq]. (a) is the case that vi is assigned to xk in [vp, ai], and

as xc is moved towards vq, vi has been assigned to cluster xc. In (c), arc bottleneck

point bi has been observed. As xc is moved from vp towards vq, before arriving bi, vi

is assigned to cluster with center xk at the assignment bottleneck point api . Therefore,

the objective function becomes a constant value. After passing the bottleneck point

bi, the shortest path to xc starts to pass from vq, d(vi, x1) starts to decrease and vi is

assigned back to xc at the assignment bottleneck point aqi . As a result, when there

Figure 4.4: A visualization of a part of graph G with 2 closest cluster centers

are multiple centers, additional to arc bottleneck point that has been observed in 1-

median case, assignment bottleneck point is observed. Even when this point has been

observed, piecewise concavity is valid for fi. Since summation of concave functions

are concave, the objective function f is concave, and as Levy found [24], xc will be

located on vertices.
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Figure 4.5: Objective function component for vi (denoted as fi) when xc is moved

along the edge (vp, vq) and xk is the second closest cluster center to vi

4.1.2 Sum of Squares Clustering (SSC) Problem on Networks

SSC problem differs from P-Median Problem in that it uses sum of squared distances

in objective function instead of sum of distances. SSC problem is defined as

minimize f(X) =
n∑

i=1

hi min
k=1,...,p

{d(vi, xk)2}

subject to

xk ∈ G ∀ k = 1, ..., p,

where xk is the decision variable for center location of cluster center k, and hi is a

nonnegative constant for weight of vi. As in P-Median Problem, because of the hard

assignment, each vertex will be assigned to one of the centers. For SSC problem,

Carrizosa et. al. observed that the optimal solution could be observed on not only V,

but also E. Therefore, different from P-Median Problem, location of cluster centers

are restricted to G. In this subsection, this property is analyzed in more detail.

SSC on Networks with a Single Cluster

In SSC problem, same as P-Median Problem, when there is one cluster, each vertex

will be assigned to that cluster. As in the example shown in Figure 4.1, we consider a

line graph with 4 vertices. Now in SSC case, the objective function for this example
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is

f = (a+ y)2 + y2 + (l − y)2 + (b+ l − y)2.

This function is continuous and twice differentiable. First and second order deriva-

tives with respect to y are

df

dy
=8y + 2a− 2l − 2b− 2l, (4.3)

d2f

dy2
=8. (4.4)

(4.4) is positive, which shows that f is a convex function of y. In order to find the

minimum value, we need to set value of (4.3) to 0 and solve it for y. Then,

y =
b+ 2l − a

4
,

which minimizes the objective function. Regarding the value of y, the following cases

could be seen.

• If y ∈ (0, l), the optimal center location is on the edge (v2, v3) but not on

vertices.

• If y = 0, the optimal center location is vertex v2.

• If y = l, the optimal center location is vertex v3.

• If y ∈ (0,−a), the optimal center location is on the edge (v1, v2) but not on

vertices.

• If y = −a, the optimal center location is vertex v1.

• If y ∈ (l, b + l), the optimal center location is on the edge (v3, v4) but not on

vertices.

• If y = b+ l, the optimal center location is vertex v4.

Assuming that the center will be located on the edge (v2, v3), these cases could be

interpreted as the following: if y ≤ 0, the best location is vertex v2. If y ≥ l, the best

location is vertex v3. In the other cases, the optimal center location could be a point

not on the vertices, but on the edge (v2, v3).
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In a more generalized version of the line graph in Figure 4.2 that contains n vertices

in which cluster center xc is to be located. Let xc be located on the edge (vp, vq). The

objective function will be

f =
n∑

i=1

hid(vi, xc)
2. (4.5)

We know that

d(vi, xc) = min {d(vi, vp) + d(vp, xc), d(vi, vq) + d(vq, xc)} .

Assume that set of vertices i = 1, ..., n have been arranged such that

d(vij , xc) = d(vij , vp) + d(vp, xc), for j = 1, ..., r,

d(vij , xc) = d(vij , vq) + d(vq, xc), for j = r + 1, ..., n.

Then, the objective function could be written as

f =
∑r

j=1 hij(d(vij , vp) + d(vp, xc))
2 +

∑n
j=r+1 hij(d(vij , vq) + d(vq, xc)). (4.6)

Substitute d(vq, xc) = d(vp, vq)− d(vp, xc) the objective function (4.6) is

f =
∑r

j=1 hij(d(vij , vp) + d(vp, xc))
2 +

∑n
j=r+1 hij(d(vij , vq) + d(vp, vq)− d(vp, xc))

2.

This function is continuous and twice differentiable. First and second order deriva-

tives are

∂f

∂xc
=

n∑
j=1

hij2d(vp, xc)

+
r∑

j=1

2hijd(vij , vp)−
n∑

j=r+1

2hij(d(vij , vq) + d(vp, vq)) (4.7)

∂2f

∂x2c
=

n∑
j=1

2hij . (4.8)

(4.8) is positive, which shows that z is a convex function of d(vp, xc). To find the

minimum value, we are zeroing (4.7) and solve it for d(vp, xc). Then,

d(vp, xc) =

∑n
i=r+1 hij(d(vij , vq) + d(vp, vq))−

∑r
i=1 hijd(vij , vp)∑n

i=1 hij
.

From this equation, given that the center is to be located on (vp, vq), the following

interpretations could be made. If d(vp, xc) ≤ 0, xc will be located on vertex vp. If
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d(vp, xc) ≥ d(vp, vq), xc will be located on vertex vq. For other values of d(vp, xc), xc

will be located on the edge (vp, vq). Hence, to find the optimal solution, one should

not restrict solution space to vertices since optimal solution could be on edges in SSC

problem on a line graph.

Now we can generalize our results for a network G with one cluster. Let us assume

that the cluster center is on edge (vp, vq) and fi denotes the objective function com-

ponent of vertex vi. There are three cases of fi as shown in Figure 4.6. In (a) and

(c), the shortest path to the center passes from vp and vq, respectively. In (b), when

xc ∈ [vp, bi] where bi is the arc bottleneck point, the shortest path passes from vp;

otherwise, the shortest path passes from vq. The function is piecewise and both the

function in (0, bi) and the function in (bi, l) are convex by second derivative test. Each

piece of fi is convex and increasing with the distance. Because of the convexity of

each fi, f is also convex, ehich implies that f may contain a local minimum along

the edge. Therefore, the optimal solution could be found on the edges.

Figure 4.6: Objective function component for vi (denoted as fi) in SSC problem with

single cluster when xc is moved along the edge (vp, vq)

Theorem 4.1.1. In the SSC Problem with single center, the optimal center could be

located to interior point of an edge.

Proof. In order to prove this theorem, we will take objective function value of a

vertex which has the best objective function value among vertex set V. Then, we

will show that under certain conditions, an interior point along the edge will have a
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lower objective value. Let objective function value at vertex vp be fp. Then,

fp =
n∑

i=1

hid(vi, vp)
2.

Assume that the set of points have been arranged such that for points j = 1, ..., r the

shortest path to vp does not contain the edge (vp, vq), and for points j = r+1, ..., n, the

shortest path to vp contains the edge (vp, vq), that is, d(vij , vp) = d(vij , vq)+d(vp, vq).

Then,

fp =
r∑

i=1

hijd(vij , vp)
2 +

n∑
i=r+1

hij(d(vij , vq) + d(vp, vq))
2.

There exists a point x on the edge (vp, vq) at which the same partitioning is valid.

Then, the objective function value at x is

fx =
r∑

i=1

hij(d(vij , vp) + d(vp, x))2 +
n∑

i=r+1

hij(d(vij , vq) + d(vp, vq)− d(vp, x))2.

Rearranging this expression, we have

fx = fp + d(vp, x)2
[∑n

i=1 hij
]

+ 2d(vp, x)
[∑r

i=1 hijd(vij , vp)−
∑n

i=r+1 hij(d(vij , vq) + d(vp, vq))
]
.

Let

a =
n∑

i=1

hij ,b =
r∑

i=1

hijd(vij , vp)−
n∑

i=r+1

hij(d(vij , vq) + d(vp, vq)).

Then, we have

fx = fp + ad(vp, x)2 + 2bd(vp, x). (4.9)

On the right-hand side, the expression after fp is a quadratic function of d(vp, x),

that is, f(x) = a2 + 2bx. From (4.9), we can say that if f(x) ≤ 0, zx <= fp. If

f(x) > 0, fx > f p. This is possible when d(vp, x) ∈ [0,−2b/a]. In order for x

to have a nonempty interval, −2b/a ≥ 0. Since a is nonnegative, this is possible if

b ≤ 0. Hence, the following condition must hold.

r∑
i=1

hijd(vij , vp) ≤
n∑

i=r+1

hij(d(vij , vq) + d(vp, vq))
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SSC on Networks with p Clusters

In SSC problem with p clusters, each vertex is assigned to the cluster whose center has

the minimum distance, and cluster centers are located such that the sum of squared

distances multiplied by a nonnegative weight is minimized.

If objective function is analyzed, it could be seen that the objective function is sum-

mation of second degree polynomials. Suppose we have p centers on G. If we fix

p-1 centers’ locations, take a cluster center xc and move this center along the edge

(vp, vq), as observed in P-Median Problem, assignments of the vertices to clusters

may change, i.e., vertices could be assigned to their second closest clusters. There-

fore, in an example given in Figure 4.4 and described above, fi, contribution of vi to

objective function f , could behave as in Figure 4.7. As explained in Subsection 4.1.1

for P-Median Problem, fi is piecewise at the arc bottleneck points and assignment

bottleneck points. If assignment does not change, behavior of fi changes at arc bot-

tleneck point. If assignment changes, behavior of fi changes at assignment bottleneck

point(s).

Figure 4.7: Objective function component for vi (denoted as fi) in SSC problem with

p clusters when xc is moved along the edge (vp, vq) and xk is the second closest cluster

center to vi

Theorem 4.1.2. Let V∗ be a set of p vertices
{
v∗1, v

∗
2, ..., v

∗
p

}
which is the optimal

solution among all possible V sets. There exists a subset X∗ ∈ G containing s (s ≤
p) centers located on edges and the remaining centers at vertices {xc, x2, ..., xs, }
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{
v∗s+1, v

∗
s+2, ..., v

∗
p

}
, such that

n∑
k=1

hid(vi,V
∗)2 ≥

n∑
k=1

hid(vi,X)2

Proof. Let
{
v∗1, v

∗
2, ..., v

∗
p

}
be set of points in V∗. If these points are rearranged such

that

d(vij ,V
∗) =d(vij , v

∗
1) ∀j = 1, ...n1,

d(vij ,V
∗) =d(vij , v

∗
2) ∀j = n1 + 1, ...n2,

...

d(vij ,V
∗) =d(vij , v

∗
p) ∀j = np−1 + 1, ...np = n,

the objective function could be written as

f =

n1∑
j=1

hijd(vij , v
∗
1)2 +

n2∑
j=n1+1

hijd(vij , v
∗
2)2 + ... +

np∑
j=np−1+1

hijd(vij , v
∗
p)2

Let

f1 =

n1∑
j=1

hijd(vij , v
∗
1)2

f2 =

n2∑
j=n1+1

hijd(vij , v
∗
2)2

...

fp =

np∑
j=np−1+1

hijd(vij , v
∗
p)2.

Define h′ij = h′ij for j = 1, ..., n1 and h′ij = 0 for j = n1 + 1, ..., np, we have

f1 =
n∑

j=1

hijd(vij , v
∗
1)2.

In previous theorem, we have shown that given a condition, there exists an interior

point xc on an edge adjacent to v∗1 such that

f1 ≥
n∑

j=1

h′ijd(vij , xc)
2
,
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which could be written as

f1 ≥
n1∑
j=1

hijd(vij , xc)
2.

Assume that for cluster centers 1,...,s, this condition is satisfied. Then,

f1 ≥
n1∑
j=1

hijd(vij , xc)
2,

f2 ≥
n2∑

j=n1+1

hijd(vij , x2)
2,

...

fs ≥
ns∑

j=ns−1+1

hijd(vij , xs)
2.

Adding both sides of the inequalities, we have

f ≥
n1∑
j=1

hijd(vij , xc)
2+

n2∑
j=n1+1

hijd(vij , x2)
2 + ...+

ns∑
j=ns−1+1

hijd(vij , xs)
2

+

ns+1∑
j=ns+1

hijd(vij , v
∗
s+1)

2 +

ns+2∑
j=ns+1+1

hijd(vij , v
∗
s+2)

2

+ ...+

np∑
j=np−1+1

hijd(vij , v
∗
p)2 (4.10)

Let the new set of centers X =
{
xc, x2, ..., xs, v

∗
s+1, v

∗
s+2, ..., v

∗
p

}
. After changing

locations of cluster centers, assignments of vertices to centers may change. Therefore,

we have

n1∑
j=1

hijd(vij , xc)
2+

n2∑
j=n1+1

hijd(vij , x2)
2 + ...+

ns∑
j=ns−1+1

hijd(vij , xs)
2

+

ns+1∑
j=ns+1

hijd(vij , v
∗
s+1)

2 +

ns+2∑
j=ns+1+1

hijd(vij , v
∗
s+2)

2

+ ...+

np∑
j=np−1+1

hijd(vij , v
∗
p)2 ≥

n∑
j=1

hid(vi,X)2. (4.11)
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Combining (4.10) and (4.11), we have∑
i∈V

hid(vi,V
∗)2 ≥

∑
i∈V

hid(vi,X)2.

As a result, contrary to P-Median Problem, in SSC problem, restricting the cluster

center locations as vertices could prevent one from finding the optimal solution on

the graph.

4.2 Clustering Problems on Networks with Soft Assignment

In this section, two clustering problems that perform soft assignment will be dis-

cussed. In soft assignment, each vertex is assigned to all clusters with a probability.

There are two soft clustering problems defined in the scope of this study. Both of

these problems have been studied on the plane in the literature, and to the best of

our knowledge, they have not been studied on networks before. These two problems

are called as Probabilistic Distance Clustering (PD-Clustering) and Fuzzy Cluster-

ing (FC). These problems differ in the objective functions and membership functions

they use. As a result of this difference, they have different properties, which will be

discussed in further detail.

4.2.1 Probabilistic Distance Clustering (PD-Clustering) Problem on Networks

On network, PD-Clustering Problem is defined as

minimize f(X) =
n∑

i=1

p∑
k=1

p2ikd(vi, xk) (4.12)

subject to
p∑

k=1

pik = 1 ∀ i = 1, ..., n,

pik ≥ 0 ∀ i = 1, ..., n, k = 1, ..., p,

xk ∈ V ∀ k = 1, ..., p,

(4.13)
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where xk is the location of cluster center k and pik is the membership value of vi to

cluster k. For each vertex, summation of memberships to all clusters must be equal to

1. As shown in [29] by Iyigun and Ben-Israel, by using Lagrangian Method, keeping

all xk fixed, membership function is

p∗ik =
1∑p

l=1
d(vi,xk)
d(vi,xl)

. (4.14)

When this problem is analyzed, it is observed that the optimal center locations are on

V, which will be proven in this subsection.

PD-Clustering on Networks with a Single Cluster

In PD-Clustering Problem, when there is one cluster, each vertex will be have a mem-

bership value of 1 to that cluster. As a result, the problem becomes similar to 1-

median problem. fi, the objective function component of vi, is as illustrated in Figure

4.3 in the example illustrated in Figure 4.2. It is linear and piecewise concave, and

its behavior changes at arc bottleneck point if xc is moved along an edge (vp, vq). If

there is an arc bottleneck point on an edge as in (b), fi is linear and piecewise concave

along the edge such that it has its maximum at the arc bottleneck point. If there are

no arc bottleneck points as in (a) and (c), the distance function is linear. Summation

of piecewise concave and linear functions is linear and piecewise concave as well,

which is the objective function (4.12). Therefore, locating the center to an interior

point of an edge will lead higher objective function values. The theorem and its proof

is given below.

Theorem 4.2.1. In single center PD-Clustering Problem, V contains the set of opti-

mal solutions.

Proof. To prove this theorem, it will be shown that an interior point x on an edge

(vp, vq) could not have a lower objective value than the vertex vp which has the best

objective value among vertex set V. Let objective function value at vertex vp be fp.
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Then,

fp =
N∑
i=1

p2i d(vi, vp).

Assume that the set of vertices arranged as the ones whose shortest path to vp contains

the edge (vp, vq) or not. Let vij , j = 1, ..., r show the vertices that does not contain

the edge (vp, vq), and j = r + 1, ..., n show the ones that contains the edge (vp, vq),

that is, d(vij , vp) = d(vij , vq) + d(vp, vq). Then,

fp =
r∑

j=1

p2ijd(vij , vp) +
N∑

j=r+1

p2ij(d(vij , vq) + d(vp, vq)).

There exists a center x on the edge (vp, vq) at which the same arrangement is valid.

Then, the objective function value at x is

fx =
r∑

j=1

p2ij(d(vij , vp) + d(vp, x)) +
N∑

j=r+1

p2ij((d(vij , vq) + d(vp, vq)− d(vp, x))).

Rearranging this expression, we have

fx = fp + d(vp, x)

[
r∑

j=1

p2ij −
n∑

j=r+1

p2ij

]
.

r∑
j=1

p2ij ≥
n∑

j=r+1

p2ij =⇒ fp ≤ fx. (4.15)

Suppose that
r∑

j=1

p2ij <
n∑

j=r+1

p2ij . (4.16)

Since d(vp, vq) is a positive constant, multiplying both sides with d(vp, vq), we have

d(vp, vq)
r∑

j=1

p2ij < d(vp, vq)
n∑

j=r+1

p2ij .

We may rewrite fp as

fp =
r∑

j=1

p2ijd(vij , vp) +
N∑

j=r+1

p2ijd(vij , vq) +
N∑

j=r+1

p2ijd(vp, vq).

By (4.16), we may write

fp >

r∑
j=1

p2ijd(vij , vp) +
N∑

j=r+1

p2ijd(vij , vq) +
r∑

j=1

p2ijd(vp, vq).
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Right-hand side of this inequality is an upper bound to the objective function value at

vq. Hence,

fp > f q,

which contradicts with vp’s having the minimum objective value among all vertices.

This implies that fx will always be greater than fp. Therefore, the optimal location

will always be on a vertex.

As stated previously, Hakimi generalized this case for P-Median Problem and proved

that the optimal center locations are always on vertices in [23]. However, P-Median

Problem is not similar to PD-Clustering since P-Median assigns each vertex to the

closest cluster while the PD-Clustering calculates membership value for each vertex-

cluster pair. In the following subsection, PD-Clustering Problem with p clusters will

be analyzed.

PD-Clustering on Networks with p Clusters

As stated previously, when there are p clusters, PD-Clustering works with member-

ship values which depend on location of centers. In this subsection, it will be proven

that in the optimal solution, centers of a PD-Clustering Problem with p clusters on a

network will be on vertices.

For the sake of simplicity, suppose we have two clusters. If (4.14) is evaluated for

this case, membership value of vertex i will be

pi1 =
d(vi, x2)

d(vi, xc) + d(vi, x2)
, pi2 =

d(vi, xc)

d(vi, xc) + d(vi, x2)
. (4.17)

For a graph G with two clusters as in Figure 4.2, keeping x2 fixed and moving xc

on the edge (vp, vq), change in the membership functions pi1 and pi2 has been visual-

ized in Figure 4.8. Although x2 has a fixed location, it is affected from the location

change of xc. In (a), (b) and (c), as xc moves towards arc bottleneck point bi, pi1

decreases since distance increases and reaches the maximum at bi. As pi1 decreases,

pi2 increases. In (a), even at the arc bottleneck point, d(vi, x1) is less than d(vi, x2);
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Figure 4.8: Membership function pik of PD-Clustering with 2 clusters

therefore, pi2 increases but it cannot be greater than pi1. In (c), the contrast occurs.

d(vi, x2) is less than d(vi, x1) even when xc is located on endpoints vp or vq. There-

fore, pi1 is always less than pi2. In (b), when xc ∈ [vp, a
p
i ], pi1 is greater than pi2.

When xc ∈ [api , a
q
i ], pi2 is greater than pi1 since d(vi, x2) is less than d(vi, x1). Lastly,

as xc ∈ [aqi , vq], again, d(vi, x1) decreases and becomes less than d(vi, x2). Therefore,

pi1 is greater than pi2. In (b), assignment bottleneck points could be observed as the

points where pi1 =pi2.

If (4.17) is substituted in (4.12), the objective function will be

f(X) =
n∑

i=1

d(vi, xc)d(vi, x2)

d(vi, xc) + d(vi, x2)
.

For three clusters, the resulting membership values will be

pi1 =
d(vi, x2)d(vi, x3)

d(vi, xc)d(vi, x2) + d(vi, x2)d(vi, x3) + d(vi, xc)d(vi, x3)
,

pi2 =
d(vi, xc)d(vi, x3)

d(vi, xc)d(vi, x2) + d(vi, x2)d(vi, x3) + d(vi, xc)d(vi, x3)
,

pi3 =
d(vi, xc)d(vi, x2)

d(vi, xc)d(vi, x2) + d(vi, x2)d(vi, x3) + d(vi, xc)d(vi, x3)
.

With the same manner, the objective function could be written as

f(X) =
n∑

i=1

d(vi, xc)d(vi, x2)d(vi, x3)

d(vi, xc)d(vi, x2) + d(vi, x2)d(vi, x3) + d(vi, xc)d(vi, x3)
.

For the problem with p clusters, the objective function is

f =
n∑

i=1

∏
k∈K d(vi, xk)∑

k∈K
∏

l 6=k d(vi, xl)
. (4.18)
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Since we assume that location of xk is fixed for k = 2, ..., P , we could separate

constant components of each vertex as Ki and write the objective function (4.18) as

in (4.19).

Ki =

∏p
k=2 d(vi, xk)∑p

k=2

∏
l 6=k d(vi, xl)

→ f(xc) =
n∑

i=1

d(vi, xc)Ki

d(vi, xc) +Ki

(4.19)

Let the memberships pi1 of each point considering the location of cluster center 1 be

pi1 =
Ki

d(vi, xc) +Ki

. (4.20)

Then, objective function (4.19) could be simplified as

f(xc) =
n∑

i=1

d(vi, xc)pi1.

fi, contribution of vertex vi to the function (4.19), is continuous and twice differen-

tiable. First and second order derivatives are

dfi
dxc

=
K2

i

(Ki + d(vi, xc))2

d2fi
dx2c

=
−2K2

i

(Ki + d(vi, xc))3
(4.21)

With the second derivative test, since (4.21) is always negative, we can conclude

that fi is concave. Let G be a graph with p clusters. Keeping p-1 clusters fixed

and moving one cluster center (let us say xc) along the edge (vp, v − q), fi function

could be observed as given in Figure 4.9. In (a) and (c), the shortest path from vi

to xc passes from vp and vq, respectively. In (b), when xc ∈ [vp, bi], fi increases.

When xc ∈ [bi, vq], fi decreases with the decreasing distance. In (b), fi is piecewise

concave. Different from hard assignment problems, piecewiseness occurs at only arc

bottleneck points. Since each fi is concave or piecewise concave, f , summation of

fi ∀ i = 1, ..., n, is also concave.

Theorem 4.2.2. In Probabilistic Distance Clustering Problem on Networks, a cluster

center is always at a vertex of a network G = (E,V).
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Figure 4.9: Objective function component for vi (denoted as fi) in PD-Clustering

Problem with p clusters when xc is moved along the edge (vp, vq) and xk is the second

closest cluster center to vi

Proof. To prove this theorem, it will be shown that keeping xk ∀ k = 1, ..., p − {c}
fixed, xc will always be located on a vertex. Let y0 be an arbitrary point on the edge

(vp, vq) ∈ E and y0 /∈ V . There exists a vertex vm such that

n∑
i=1

d(vi, y0)Ki

d(vi, y0) +Ki

≥
n∑

i=1

d(vi, vm)Ki

d(vi, vm) +Ki

.

We know that

d(vi, y0) = min {d(vi, vp) + d(vp, y0), d(vi, vq) + d(vq, y0)} .

Assume that the set of points have been arranged such that

d(vij , y0) = d(vij , vp) + d(vp, y0), for j = 1, ..., r,

d(vij , y0) = d(vij , vq) + d(vq, y0), for j = r + 1, ..., N.

Then, the objective function could be written as

n∑
j=1

d(vij , y0)Kij

d(vij , y0) +Kij

=
r∑

j=1

(d(vij , vp) + d(vp, y0))Kij

d(vij , vp) + d(vp, y0) +Kij

+
n∑

j=r+1

(d(vij , vq) + d(vq, y0))Kij

d(vij , vq) + d(vq, y0) +Kij

. (4.22)

Since we have two vertices vp and vq connected by the edge which contains y0, either

vp or vq is a better solution. We will consider two cases each implying that one of the

vertices is a better solution.
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Substitute d(vq, y0) = d(vp, vq)− d(vp, y0) the objective function in (4.22) is

f =
n∑

j=1

d(vij , y0)Kij

d(vij , y0) +Kij

=
r∑

j=1

(d(vij , vp) + d(vp, y0))Kij

d(vij , vp) + d(vp, y0) +Kij

+
n∑

j=r+1

(d(vij , vq) + d(vp, vq)− d(vp, y0))Kij

d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij

.

Let

f = f1 + f2,

where

f1 =
r∑

j=1

(d(vij , vp) + d(vp, y0))Kij

d(vij , vp) + d(vp, y0) +Kij

, (4.23)

f2 =
n∑

j=r+1

(d(vij , vq) + d(vp, vq)− d(vp, y0))Kij

d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij

. (4.24)

Multiply both the numerator and denominator of each term of the summation of f1 in

(4.23) by d(vij , vp) +Kij , then

f1 =
r∑

j=1

[
d(vij , vp)Kij

d(vij , vp) +Kij

+
d(vp, y0)K

2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) +Kij)

]
.

Similarly, multiply both the numerator and denominator of each term of the summa-

tion of f2 in (4.24) by (d(vij , vq) + d(vp, vq) +Kij), then

f2 =
n∑

j=r+1

[
(d(vij , vq) + d(vp, vq))Kij

d(vij , vq) + d(vp, vq) +Kij

−
d(vp, y0)K

2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) + d(vp, vq) +Kij)

]
. (4.25)

By triangle inequality, we have d(vij , vq) + d(vp, vq) ≥ d(vij , vp). Then

n∑
j=r+1

(d(vij , vq) + d(vp, vq))Kij

d(vij , vq) + d(vp, vq) +Kij

≥
n∑

j=r+1

d(vij , vp)Kij

d(vij , vp) +Kij

. (4.26)

Substitute right-hand side of (4.26) in (4.25), we have

f2 ≥ f ′2 =
n∑

j=r+1

[
d(vij , vp)Kij

d(vij , vp) +Kij

−
d(vp, y0)K

2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) + d(vp, vq) +Kij)

]
. (4.27)
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Since d(vij , vq) + d(vp, vq) ≥ d(vij , vq), replace d(vij , vq) + d(vp, vq) in (4.27) with

d(vij , vq), then

f ′2 ≥ f ′′2 =
n∑

j=r+1

[
d(vij , vp)Kij

d(vij , vp) +Kij

−
d(vp, y0)K

2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) +Kij)

]
.

Hence,

f ≥ f1 + f ′′2 (4.28)

If (4.28) is rearranged, then

f ≥
n∑

j=1

d(vij , vp)Kij

d(vij , vp) +Kij

(4.29)

+ d(vp, y0)

[
r∑

j=1

K2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) +Kij)
(4.30)

−
n∑

j=r+1

K2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) +Kij)

]
. (4.31)

Summations in (4.30) and (4.31) are equal to (4.32) and (4.33), respectively.
r∑

j=1

piy0pivp (4.32)

n∑
j=r+1

piy0pivq (4.33)

If (4.34) is satisfied, (4.35) will hold true. That is, vp is a better location than y0 for

xc.
r∑

j=1

piy0pivp ≥
n∑

j=r+1

piy0pivq (4.34)

n∑
j=1

d(vij , y0)Kij

d(vij , y0) +Kij

≥
n∑

j=1

d(vij , vp)Kij

d(vij , vp) +Kij

(4.35)

If (4.34) is not satisfied, then we have
r∑

j=1

piy0pivp <

n∑
j=r+1

piy0pivq (4.36)

Clearly, (4.35) is not guaranteed in this case.

Again, let

f = f1 + f2
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Add and subtract d(vp, vq) both numerators and denominators of each term of sum-

mation of f1 in (4.23), then

f1 =
r∑

j=1

(d(vij , vp) + d(vp, y0) + d(vp, vq)− d(vp, vq))Kij

d(vij , vp) + d(vp, y0) + d(vp, vq)− d(vp, vq) +Kij

, (4.37)

Multiply both the numerator and denominator of each term of the summation of f1 in

(4.37) by d(vij , vp) + d(vp, vq) +Kij , then

f1 =
r∑

j=1

[
(d(vij , vp) + d(vp, vq))Kij

d(vij , vp) + d(vp, vq) +Kij

−
(d(vp, vq)− d(vp, y0))K

2
ij

(d(vij , vp) + d(vp, vq)− d(vp, vq) + d(vp, y0) +Kij)(d(vij , vp) + d(vp, vq) +Kij)

]
.

Cancelling the d(vp, vq)− d(vp, vq) expression, we have

f1 =
r∑

j=1

[
(d(vij , vp) + d(vp, vq))Kij

d(vij , vp) + d(vp, vq) +Kij

(4.38)

−
(d(vp, vq)− d(vp, y0))K

2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) + d(vp, vq) +Kij)

]
. (4.39)

Similarly, multiply both the numerator and denominator of each term of the summa-

tion of f2 in (4.24) by (d(vij , vq) +Kij), then

f2 =
n∑

j=r+1

[
d(vij , vq)Kij

d(vij , vq) +Kij

+
((d(vp, vq)− d(vp, y0))K

2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) +Kij)

]
.

By triangle inequality, we have d(vij , vp) + d(vp, vq) ≥ d(vij , vq). Then

r∑
j=1

(d(vij , vp) + d(vp, vq))Kij

d(vij , vp) + d(vp, vq) +Kij

≥
r∑

j=1

d(vij , vq)Kij

d(vij , vq) +Kij

. (4.40)

Substitute right-hand side of (4.40) in (4.38), we have

f1 ≥ f ′1 =
r∑

j=1

[
d(vij , vq)Kij

d(vij , vq) +Kij

−
(d(vp, vq)− d(vp, y0))K

2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) + d(vp, vq) +Kij)

]
. (4.41)
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Since d(vij , vp) + d(vp, vq) ≥ d(vij , vp), replace d(vij , vp) + d(vp, vq) in (4.41) with

d(vij , vp), then

f ′1 ≥ f ′′1 =
r∑

j=1

[
d(vij , vq)Kij

d(vij , vq) +Kij

−
(d(vp, vq)− d(vp, y0))K

2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) +Kij)

]
.

Hence,

z ≥ f ′′1 + f2 (4.42)

If (4.42) is rearranged, then

z ≥
n∑

j=1

d(vij , vq)Kij

d(vij , vq) +Kij

+ (d(vp, vq)− d(vp, y0)) (4.43)

∗

[
n∑

j=r+1

K2
ij

(d(vij , vq) + d(vp, vq)− d(vp, y0) +Kij)(d(vij , vq) +Kij)
(4.44)

−
r∑

j=1

K2
ij

(d(vij , vp) + d(vp, y0) +Kij)(d(vij , vp) +Kij)

]
. (4.45)

Summations in (4.44) and (4.45) are equal to (4.32) and (4.33), respectively. If (4.36)

is satisfied, (4.46) will hold true. vq is a better location than y0 for xc.

n∑
i=1

d(vi, y0)Ki

d(vij , y0) +Ki

≥
n∑

i=1

d(vi, vq)Ki

d(vij , vq) +Ki

(4.46)

As shown above, when (4.34) is satisfied. vp is a better location than y0 for xc. Other-

wise, (when (4.36) is satisfied), vq is a better location than y0 for xc. As a result, the

center xc will always be located on a vertex.

This proof supports Levy’s proof that in the case of concavity, the center will be

located on V. This result could be generalized such that all the cluster centers are

located on vertices in optimal solution.

Theorem 4.2.3. For every cluster center {xc, x2, ..., xp} ∈ G, there exists

{vm1 , vm2 , ..., vmp} ∈ V such that

P∑
k=1

n∑
i=1

p2ikd(vi, xk) ≥
P∑

k=1

n∑
i=1

p2ikd(vi, vk)
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Proof. To prove this theorem, we will change location of a center i (xi) by fixing the

other centers (xk, k 6= i). In each location change, membership scores will change.

Initial membership score will be denoted as p(0)ik . Updated membership scores result-

ing from changing location of cluster center k will be denoted as p(k)ik .

Let xc be the cluster center to be changed, keeping the others fixed. In previous

theorem, we have shown that

P∑
k=1

n∑
i=1

p
(0)2

ik d(vi, xk) ≥
n∑

i=1

p
(1)2

ik d(vi, vm1) +
P∑

k=2

n∑
i=1

p
(1)2

ik d(vi, xk). (4.47)

Now, let x2 be the cluster center to be changed, keeping the others fixed in their last

locations. Again, we have

n∑
i=1

p
(1)2

ik d(vi, vm1) +
P∑

k=2

n∑
i=1

p
(1)2

ik d(vi, xk) ≥

2∑
k=1

n∑
i=1

p
(2)2

ik d(vi, vmk
) +

P∑
k=3

n∑
i=1

p
(2)2

ik d(vi, xk). (4.48)

Perform this process with each xk as the center location to be changed, as the last

expression, we have

p−1∑
k=1

n∑
i=1

p
(p−1)2
ik d(vi, vmk

) +
n∑

i=1

p
(p−1)2
ik d(vi, xp) ≥

p∑
k=1

n∑
i=1

p
(p)2

ik d(vi, vmk
). (4.49)

Combine (4.47), (4.48) and (4.49), we have

P∑
k=1

n∑
i=1

p
(0)2

ik d(vi, xk) ≥
P∑

k=1

n∑
i=1

p
(p)2

ik d(vi, vmk
),

which implies that as center locations, vm1 , ..., vmk
lead to a better solution than

xc, ..., xk.

As a result, it has been shown that in PD-Clustering Problem on Networks, the opti-

mal solution will always be located on vertices. Therefore, one would not lose from

objective function if they restrict center locations as V instead of G.

4.2.2 Fuzzy Clustering (FC) Problem on Networks

Fuzzy Clustering Problem on Networks is defined as
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minimize f(X) =
n∑

i=1

p∑
k=1

pmikd(vi, xk)2 (4.50)

subject to
p∑

k=1

pik = 1 ∀ i = 1, ..., n,

pik ≥ 0 ∀ i = 1, ..., n, k = 1, ..., p,

xk ∈ G ∀ k = 1, ..., p,

where xk is the location of cluster center k and pik is the membership value of vi to

cluster k. m is called fuzzifier, or fuzziness index. It determines the level of fuzziness

in memberships. If m = 1, the problem becomes a hard assignment problem - to

be more precise, SSC problem. As m gets larger, all membership values converge

to 1/p. For each vertex, summation of memberships to all clusters must be equal to

1. Derived by Bezdek et.al. in [12] with the use of Lagrangian, keeping all xk fixed,

membership function is

p∗ik =
1∑p

l=1

(
d(vi,xk)
d(vi,xl)

) 2
(m−1)

. (4.51)

When this problem has been investigated, it has been observed that the optimal center

locations are could be on anywhere on the G. In this subsection, this property will be

analyzed.

Fuzzy Clustering with a Single Cluster

As in PD-Clustering, if there is a single cluster, all vertices will have a membership

equal to 1. FC with 1 cluster differs from PD-Clustering in that (4.50), becomes sum

of squared distances. Therefore, the problem will demonstrate characteristics of SSC

problem with 1 cluster. In a G with one cluster xc moving along the edge (vp, vq),

fi, the objective function component of vi, will be as in Figure 4.6. fi is a second

degree polynomial function increasing with d(vi, xk). fi is convex or piecewise on an

edge. This piecewiseness occur at arc bottleneck points. Each piece of fi is convex
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and increasing with distance. Because of the convexity, f which is summation of

fi functions is also convex. But it is not monotone; therefore, it may contain a local

minimum along an edge. As a result, there could be an optimal center location located

on interior point of an edge. Based on this observation, we can conclude that the

following theorem holds.

Theorem 4.2.4. Let V∗ be a set of p vertices
{
v∗1, v

∗
2, ..., v

∗
p

}
which is the optimal

solution among all possible V sets. In Fuzzy Clustering Problem on networks with a

single cluster, there exists a subset X∗ ∈G containing centers located on edges such

that it has an objective function value lower than V∗.

Fuzzy Clustering with p Clusters

In this subsection, objective function of FC Problem with p clusters will be analyzed

and structural properties will be investigated.

For the sake of simplicity, suppose we have two clusters. If (4.51) is evaluated for

this case, membership value of vertex i will be

pi1 =
d(vi, x2)

2
(m−1)

d(vi, xc)
2

(m−1) + d(vi, x2)
2

(m−1)

, pi2 =
d(vi, xc)

2
(m−1)

d(vi, xc)
2

(m−1) + d(vi, x2)
2

(m−1)

.

(4.52)

For a graph G with two clusters as in Figure 4.2, keeping x2 fixed and moving xc on

the edge (vp, vq), change in the membership functions pi1 and pi2 has been visualized

in Figure 4.10 with fuzziness index m value of 2. As in PD-Clustering, both member-

ships are affected by the location change of xc. In (a), (b) and (c), as xc moves towards

arc bottleneck point bi, pi1 decreases due to the increase in distance. As pi1 decreases,

pi2 increases. (a) illustrates the case d(vi, x1) is less than d(vi, x2); therefore, pi2 is

less than pi1. (c) is the case d(vi, x1) is less than d(vi, x2); as a result, pi1 is less than

pi2. In (b), if xc ∈ [vp, a
p
i ], pi1 is greater than pi2. If xc ∈ [api , a

q
i ], pi2 is greater than

pi1. In the last interval which is xc ∈ [aqi , vq], d(vi, x1) is less than d(vi, x2). Hence,

pi1 is greater than pi2. In (b), assignment bottleneck points could be observed as the

points where pi1 =pi2. Figure 4.11 is drawn with fuzziness index m = 20 to illustrate
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effect of increase in m in membership function. As could be observed, it does not

change the behavior of the membership function. However, even at the points where

d(vi, x1) values have the maximum difference, memberships pi1 and pi2 are very close

to each other compared to the case of m=2. The effect of increase in m is increase in

the fuzziness of the memberships.

Figure 4.10: Membership function pik of FC with 2 clusters when m=2

Figure 4.11: Membership function pik of FC with 2 clusters when m=20

If (4.17) is substituted in (4.50), the objective function will be

f(X) =
n∑

i=1

d(vi, xc)
2d(vi, x2)

2(
d(vi, xc)

2
(m−1) + d(vi, x2)

2
(m−1)

)m−1 .
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For three clusters, the membership values are

pi1 =
(d(vi, x2)d(vi, x3))

2
(m−1)

(d(vi, xc)d(vi, x2))
2

(m−1) + (d(vi, x2)d(vi, x3))
2

(m−1) + (d(vi, xc)d(vi, x3))
2

(m−1)

,

pi2 =
(d(vi, xc)d(vi, x3))

2
(m−1)

(d(vi, xc)d(vi, x2))
2

(m−1) + (d(vi, x2)d(vi, x3))
2

(m−1) + (d(vi, xc)d(vi, x3))
2

(m−1)

,

pi3 =
(d(vi, xc)d(vi, x2))

2
(m−1)

(d(vi, xc)d(vi, x2))
2

(m−1) + (d(vi, x2)d(vi, x3))
2

(m−1) + (d(vi, xc)d(vi, x3))
2

(m−1)

.

With the same manner, the objective function could be written as

f(X) =
n∑

i=1

(d(vi, xc)d(vi, x2)d(vi, x3))
2(

(d(vi, xc)d(vi, x2))
2

(m−1) + (d(vi, x2)d(vi, x3))
2

(m−1) + (d(vi, xc)d(vi, x3))
2

(m−1)

)m−1 .
In the version of the problem with p clusters, the objective function is

f =
n∑

i=1

∏
k∈K d(vi, xk)2(∑

k∈K
∏

l 6=k d(vi, xl)
2

(m−1)

)m−1 (4.53)

For the sake of simplicity, we assume that m = 2. Since we assume that location of

xk is fixed for k = 1, ..., p − {c}, we could separate constant components of each

vertex as Ki and write the objective function (4.53) as in (4.54).

Ki =

∏p
k=2 d(vi, xk)2∑p

k=2

∏
l 6=k d(vi, xl)2

→ f(xc) =
n∑

i=1

d(vi, xc)
2Ki

d(vi, xc)2 +Ki

(4.54)

fi, contribution of vertex vi to the function (4.19), is continuous and twice differen-

tiable. First and second order derivatives are

dfi
dxc

=
2K2

i

(Ki + d(vi, xc)2)2

d2fi
dx2c

=
(2K2

i )(Ki − 3d(vi, xc)
2)

(Ki + d(vi, xc)2)3
. (4.55)

With the second derivative test, fi is

• Convex if d2fi
dx2

c
≥ 0, that is, d(vi, xc) ≤

√
Ki

3
,

53



• Concave if d2fi
dx2

c
≥ 0, that is, d(vi, xc) ≥

√
Ki

3
.

Theorem 4.2.5. In Fuzzy Clustering Problem with p clusters, given a solution X

= {x1, x2, ..., xp}, if xc ∈X is moved along a given edge keeping the centers X −xc
fixed, there could be a location on the given edge that minimizes the objective function

(4.53).

Proof. Let

ci =

p∏
k=2

d(vi, xk)

ti =

p∑
k=2

∏
j∈K,j 6=k

d(vi, xj)
2

m−1 .

If we fix locations of xk, k ∈ K − {1} and separate fixed components of fi from

variable components by using ci and ti, the objective function is (4.56).

fi =
c2i d(vi, xc)

2(
x

2
m−1 ti + c

2
m−1

i

)m−1 (4.56)

If we calculate first and second order derivatives for fi with any m > 1, we have

dfi
dxc

=
(2c2i d(vi, xc))

(ci + tid(vi, xc)
2

m−1 )m
(4.57)

d2fi
dx2c

=
(2c2i )

(
ci(m− 1)− ti(m+ 1)d(vi, xc)

2
m−1

)
((
ci + tid(vi, xc)

2
m−1

)
(m− 1)

)m+1 (4.58)

By the second derivative test, fi is

• Convex if d2fi
dx2

c
≥ 0, that is, d(vi, xc) ≥

2
m−1

√
ci(m−1)
ti(m+1)

,

• Concave if d2fi
dx2

c
≥ 0, that is, d(vi, xc) <

2
m−1

√
ci(m−1)
ti(m+1)

.

As a result, fi is a nonconvex function of d(vi, xk), and increasing with distance. The

objective function could be illustrated as in Figure 4.12. As in PD-Clustering, fi is
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piecewise at arc bottleneck points. And each piece of fi is nonconvex according to

the sign of second derivative (4.58). Since summation of nonconvex functions are

nonconvex, f , summation of fi ∀ i = 1, ..., n, is nonconvex. Since f is not monotone,

local minimum could be found at a point where second derivative is positive and first

derivative is zero.

Let G be a graph with p clusters. Keeping p-1 clusters fixed and moving one cluster

center (let us say xc) along the edge (vp, vq), fi function could be observed as given

in Figure 4.9. In (a) and (c), the shortest path from vi to xc passes from vp and vq,

respectively. In (b), when xc ∈ [vp, bi], fi increases. When xc ∈ [bi, vq], fi decreases

with the decreasing distance. In (b), fi is piecewise concave. Different from hard

assignment problems, piecewiseness occurs at only arc bottleneck points only. Since

each fi is concave or piecewise concave, f , summation of fi ∀ i = 1, ..., n, is also

concave.

Figure 4.12: Objective function component for vi (denoted as fi) in FC problem with

p clusters when xc is moved along the edge (vp, vq) and xk is the second closest cluster

center to vi

Hence, in Fuzzy Clustering Problem, one may find an optimal solution that contains

cluster centers located at edges.
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CHAPTER 5

SOLUTION APPROACHES

In this chapter, solution approaches for Hard Assignment Problems (P-Median and

SSC) and Soft Assignment Problems (PD-Clustering and Fuzzy Clustering (FC)) will

be discussed. Two Hybrid Genetic Algorithms have been developed to solve these

problems:

• Node Based Hybrid Genetic Algorithm (HGA-N),

• Edge Based Hybrid Genetic Algorithm (HGA-E).

These two solution approaches have been developed based on the same principles.

Main difference occurs in the local search procedure (explained in detail in §5.3) and

solution space. While the solution space that HGA-N searches for is restricted to V,

solution space in HGA-E is the entire network G = (E,V).

This chapter has been organized as follows. In §5.1, Genetic Algorithm and fun-

damentals of it will be discussed. In §5.2, general framework of the Local Search

procedure that is implemented will be provided. In §5.3, Hybrid Genetic Algorithm

structure will be presented. Then, two versions of HGA which are HGA-N and HGA-

E will be discussed in detail.

5.1 Genetic Algorithm

According to evolutionary theory in biology, at a time t, a population exists with

different individuals. As time passes, new individuals are born, and they take some

characteristics from their parents. Due to natural selection and survival of the fittest,
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better individuals survive. With this way, the population undergoes evolution, and

better individuals appear. As a metaheuristic approach inspired from biology, Genetic

Algorithm (GA) works in the same manner. GA was first proposed by Holland in

1975 [14]. Population corresponds to the set of solutions, which are expressed with

chromosomes. Parents are selected from the population and offsprings are generated

by crossover operation. Offsprings are mutated with a specified probability. Then,

by checking the quality of the offsprings (it is performed with fitness value, which

generally corresponds to the objective function), a new generation is created. This

procedure is repeated iteratively until a termination condition is satisfied. In GA (as

in any heuristic), as Lozano and Martinez [30] stated, both exploring solution space

and exploiting the regions that are likely to contain optimal solution is important, and

these two sometimes-conflicting goals must be balanced.

Typically, parent selection and generation replacement operators promote intensifi-

cation while crossover and mutation operators promote diversification. In order not

to get stuck at a local optimal solution, early convergence situation must be handled

with the help of operators and termination condition. Moreover, slow convergence

issue must be handled to reduce computational effort by fine-tuning the level of di-

versification in GA.

5.2 Local Search (LS) Procedure

In our approach, we use a Local Search (LS) procedure inside the GA. The problem

of getting stuck at local optima is eliminated with the help of GA, whereas LS aims to

help GA converge faster to good solutions. A sample trace for LS is given in Figure

5.1 (a)-(d). The procedure starts with a cluster center. In the figure, it is denoted

as xk. As could be seen in (a), xk is located on the edge between vertices 2 and 5.

The first step is to search for the best location of xk on the edge (2,5). Then, xk is

updated and edge (2,5) is added to the set of visited edges. Meanwhile, vertices 2

and 5 are added to a reference list since their adjacent edges will be visited in the

next iteration. As in (b), edges (2,6), (2,3), (2,7), (5,8) and (5,9) are found as the

edges to be visited. Locations with the minimum fitness function value on each edge

is found. If there is an improvement in the fitness function, xk is located to the best
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location, which is on edge (2,3) as in (c) in the figure. Then, set of visited edges are

updated again (the edges with the grey color are visited) and reference list is cleared

and populated with the end vertices 3 and 7, and end vertices of other visited edges

with a fitness function value equal to the current fitness function value (if any). Then,

edges (3,4), (3,1), (3,10) and (3,7) are selected as the edges to be visited next. If there

is an improvement, xk is updated again. In (d), since there is a better solution, xk is

moved to the edge (3,7). This procedure continues for a cluster center until there is

no improvement in the fitness function value. When there is no improvement, other

cluster centers undergo the same procedure.

In our LS algorithm, first, centers are shuffled so that the order in the chromosome

representation is not important. Then, the number of cluster centers to be improved

is calculated according to a parameter β, which is the portion of cluster centers to

be improved in a solution. For dβ ∗ pe centers, the following procedure is executed

iteratively. For a center xk, alternative locations that are adjacent (connected) to xk is

found and objective (fitness) function values are calculated. If there is a better alter-

native than the current location, xk is updated, and unvisited adjacent locations of the

new xk is searched in the next iteration. If there is not a better alternative than the cur-

rent location xk, adjacents of xk+1 are sought in the next iteration. Given a solution

with p centers, flowchart of LS Algorithm is presented in Figure 5.2. This procedure

continues until the number of cluster centers sought reached dβ ∗pe. In the algorithm,

we have the parameter β since we discovered that if we try to improve all cluster cen-

ters, the last iterations do not improve the fitness function value significantly, while

they consume time. An illustration for this concept is given in Figure 5.3, in which

x-axis refers to cluster centers and y-axis refers to fitness value as LS procedure con-

tinues. In this figure, a solution with 20 clusters is taken. The first center improved is

cluster center 8. Then, cluster center 5 is improved. If the improvement is done for

all cluster centers, the fitness value decreases to 3198, which is a 18% improvement

on the initial solution fitness of 3917. If the procedure is terminated at cluster center

12 which corresponds to β = 0.7, the objective function decreases to 3343, which

is a 14% improvement on the solution. So, the local search for remaining centers

do not improve the fitness value significantly. The vertical dashed line on the figure

illustrates the point for β = 0.7.
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(a)

(b)

(c)

(d)

Figure 5.1: A local search example for cluster center xk
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Figure 5.2: Flowchart of the LS algorithm
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Figure 5.3: Effect of the LS algorithm on a solution

In short, the LS procedure searches for a better solution on adjacent locations on the

graph G. With the parameter β, an early stopping is imposed in order to eliminate

insignificant moves and improve computational efficiency. This procedure has been

implemented in both HGA-N and HGA-E with differences stem from the solution

space difference, which will be discussed in Subsections 5.3.1 and 5.3.2 in further

detail.

5.3 Hybrid Genetic Algorithm (HGA)

GA is one of the most well-known metaheuristics that has been proven to find promis-

ing results to a wide range of problems. There are GA implementations in the liter-

ature that has good performance such as [27] for P-Median Problem. In this study,

we chose to apply a variant of GA to the problems on hand. In [31], it is stated that

LS procedures could enhance the performance of GAs. We developed an approach

by combining GA with our LS, which we named as HGA. HGA provides a unified

solution framework, and it can solve different problem types by modifying it for each

problem type.

In HGA, in each generation, the fittest offspring is selected and local search operation

has been carried out. Mutation operation is not designed because it has been observed

that it increases runtime while it does not improve performance significantly. The
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framework we used in our proposed GA has been given in Figure 5.4. In HGA, with

the help of crossover operation, diversification has been promoted, and intensification

is promoted by local search operation. Generation replacement has been designed

so that it balances diversification and intensification. Also, it is worth to note that

in HGA, objective function of the corresponding problem has been used as fitness

function. Using this general framework, HGA is modified for the problem types and

their properties. Further details will be discussed in Subsections 5.3.1 and 5.3.2.

5.3.1 Node Based Hybrid Genetic Algorithm (HGA-N)

This algorithm has been developed for P-Median Problem and PD-Clustering Prob-

lem. In these two problems, it is shown that the optimal cluster centers are always

located on vertices. Regarding this condition, a tailored version of our approach is

preferred by restricting the solution space to V for finding the solution more effi-

ciently. This version is named as HGA-N.

Chromosome Representation

In HGA-N, a node based approach is followed. Additionally, number of clusters p is a

predefined value. The chromosome is an array containing p values each representing

vertex index of each center, similar to the representation scheme which was used by

Alp et al. in [27]. Chromosome representation is visualized in Figure 5.5. With this

representation, it is guaranteed that number of clusters are exactly p. Since empty

clusters are not encountered at optimality, empty cluster situation is not checked.

Initial Population Generation

In this stage, we generate each individual randomly with randomly selected vertices.

During the initialization, it is guaranteed that no duplicate solutions are generated

until the population size exceeds the maximum number of different individuals that

exist in the solution space, umax =
(
n
k

)
, where n is the number of vertices and p is

the number of clusters. Pseudocode of the procedure has been provided below as
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Figure 5.4: Flowchart of the HGA

Figure 5.5: Chromosome representation in HGA-N algorithm
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Algorithm 4. If population size is determined with the function given, umax is not

exceeded. However, for problems with smaller size, if population size exceeds umax,

duplicate solutions could be added to population.

Algorithm 4 Population Generation in HGA-N
1: Output: Population

2: while PopulationSize is not reached do

3: Generate an individual randomly.

4: if The new individual is not a duplicate then

5: Add the new individual to Population.

6: else if Number of generated individuals are greater than or equal to umax then

7: Add the new individual to Population.

8: else

9: Continue

10: end if

11: end while

The population size used in HGA-N depends on the size of the problem instance.

Population size is calculated as

PopulationSize = max{10, d 3
√
n ∗ ln(umax)e}, (5.1)

where umax is the maximum number of unique solutions. So, in (5.1), population

size depends on the instance size (number of vertices) and size of the solution space

(maximum number of unique solutions). Change of population size with the instance

size is illustrated in Figure 5.6.

Crossover

Crossover starts with selecting two parents for reproduction. The selection procedure

could be completely random, or elitist, that is, individuals with better fitness function

values could be selected with a higher probability. After selection, offsprings are

generated. Depending on the design of GA, there could be a number of offsprings

(usually, two offsprings are generated from two parents).
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Figure 5.6: Population size with respect to problem instance size

In this algorithm, parent selection is completely random to promote diversity of the

population. From two parents, one offspring is generated. In order not to miss diver-

sity in early generations, number of offsprings have been set such that it is a small

portion of the pool, which is determined by crossover probability α. For example,

if α = 0.4, number of offsprings is equal to 20% of the population size. Therefore,

not all individuals have the chance to produce an offspring. Crossover logic is very

similar to Uniform Crossover. Genes that both of the parents have are passed to the

offspring. If a vertex exists twice in both parents (meaning that the vertex is the center

of two clusters), it exists twice in the offspring as well. For each gene of the rest of

the chromosome, a random number ∈ [0, 1] is generated. If the number is less than

0.5, gene of parent 1 is passed to offspring. Otherwise, gene of parent 2 is passed to

offspring. Pseudocode of the algorithm is given in Algorithm 5 for further details.

Local Search

In HGA-N, only vertices are searched. This Local Search operation has been de-

signed to improve population (promote intensification, or exploitation) by improving

fitter offsprings. The reason behind choosing fitter offsprings is to perform local

search with better initial solutions. In most of the heuristics, initial solution quality

affects both solution time and quality. Therefore, we select one best offspring in each
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Algorithm 5 Crossover in HGA-N
1: Input: Population

2: Output: Offsprings

3: Shuffle the chromosomes in Population and store them in

ShuffledParentList

4: NumberOfMatches = bα ∗ PopulationSize/2c, offsprings = ∅
5: for i = 1 to NumberOfMatches do

6: Parent1 = ith chromosome of ShuffledParentList

7: Parent2 = i+ 1th chromosome of ShuffledParentList

8: BothHave = Parent1 ∩ Parent2
9: NewOffspring = BothHave

10: Find number of genes to be added NumberToAdd

11: Remove genes in BothHave from Parent1 and Parent2

12: for genes j=1 to NumberToAdd do

13: Generate a random number r ∈ [0, 1]

14: if r ≤ 0.5 then

15: Add Parent1(j) to NewOffspring

16: else

17: Add Parent2(j) to NewOffspring

18: end if

19: end for

20: Sort genes of NewOffspring in ascending order

21: Add NewOffspring to Offsprings

22: i = i+ 2

23: end for
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generation. The logic behind choosing one offspring is to minimize the number of

local search operations to be performed. Moreover, with this way, we make sure that

the population is improving without harming the diversity.

The procedure starts with the fittest offspring. First, genes of the offspring are shuffled

since the cluster order is important in the improvement procedure. After shuffling,

first cluster center is selected for improvement. Adjacent vertices (vertices that are

connected to the current cluster center) are visited to find a better solution (a solution

with a lower fitness function value). If an improved solution is found, the cluster cen-

ter is updated, and unvisited adjacent vertices of the updated cluster center are visited.

This procedure continues until the current cluster center does not improve. Then, the

next cluster center is selected for improvement search. The procedure continues until

the number of selected cluster centers exceeds dβ ∗ pe, which is discussed earlier in

§5.2. The pseudocode is provided in Algorithm 6.

Generation Replacement

In the Generation Replacement step, population is created again from the pool of

individuals that contain the current population and the offsprings. In a generation

replacement stage, it is basically aimed to eliminate "not good" solutions which refers

to the ones that do not have a potential to generate good offsprings. Therefore, it is

desirable to remove weak solutions from the population. Meanwhile, we also want to

eliminate similar individual groups (that is, we do not want a family to dominate the

population), which have negative effects on diversity. The designed operation could

be described as "Kill the weakest family member". If an offspring is weaker (has

a higher objective function or lower fitness value than its parents), it does not enter

the population. Otherwise, the weakest parent is replaced with the offspring. This

operation is performed until each offspring is checked. Pseudocode of this step is

given in Algorithm 7.
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Algorithm 6 Local Search in HGA-N
1: Input: Offspring, β

2: Output: ImprovedOffspring

3: Shuffle genes of the Offspring

4: ImprovedOffspring = Offspring

5: Set i = 1

6: Set V isited = ∅
7: while do i ≤ dβ ∗ pe
8: Find nAdj, adjacent vertices to Offspringi

9: Find nToV isit = nAdj \ V isited
10: if nToV isit = ∅ then

11: i = i+ 1

12: Continue

13: end if

14: Find the best fitness value fbest from nToV isit and nbest

15: V isited = V isited ∪ nToV isit
16: if fbest < fcurrent − ε then

17: ImprovedOffspringi = nbest

18: fcurrent = fbest

19: else

20: i = i+ 1

21: end if

22: end while

23: ImprovedOffspring = Offspring

Algorithm 7 Generation Replacement
1: Input:Population,Offsprings, Parents

2: Output:NewPopulation

3: for each offspring do

4: if foffspring ≤ max{fparent1 , fparent2} then

5: Replace weaker parent with offspring

6: end if

7: end for
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Termination Condition

In this algorithm, a two-level termination condition is considered. The first condition

is the number of generations. If it is less than
√
n, the number of vertices, the algo-

rithm continues. Otherwise, population averages of the fitness values (denoted by f̄ )

in the consecutive generations are compared. If f̄ is changed less than δ%, the algo-

rithm terminates. Here, δ is a parameter defined by the user. The first condition is to

force the algorithm to iterate until sufficient number of new offsprings have been gen-

erated. If only the percentage improvement in f̄ is checked, a premature convergence

may occur. In the earlier iterations, because of the high variance in the population

fitness function values, it is possible that there is no high improvement. Therefore,

we need the algorithm to run for at least
√
n generations. After that, by checking

percentage improvement in f̄ , we try to measure population diversity. If the average

does not change, population does not change. This implies that there is no room for

further improvement, so the algorithm terminates.

5.3.2 Edge Based Hybrid Genetic Algorithm (HGA-E)

This approach differs from HGA-N in that the center locations could be anywhere

on the graph G. Therefore, this algorithm needs a more complex chromosome rep-

resentation, and operators need to be adjusted accordingly. Especially, LS procedure

is tailored accordingly. This algorithm has been designed especially for the problems

that have optimal solutions along the edges, such as Fuzzy Clustering and Sum of

Squares Clustering Problem.

It is worth noting that HGA-E uses the same Generation Replacement operation and

Termination Condition as HGA-N. Therefore, these will not be explained again in

this subsection to avoid repetition.

Chromosome Representation

In HGA-E, different from HGA-N, an edge based optimization is aimed. As in HGA-

N, number of clusters p is a predefined value. The following representation scheme
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is tailored. As in HGA-N, with this scheme, the condition that the number of clusters

is exactly p is guaranteed. Chromosome representation has been visualized in Figure

5.7 . The chromosome is composed of three arrays each containing p values repre-

senting vertex indices of an edge and position of each center. Two of them (referred as

vertex1 and vertex2) store vertices that define the edge, and the third array (referred

as position) stores position of center on the edge (normalized distance of the center

from the first vertex). For example, if r1 is equal to 0, x11 is the location of cluster

center 1. If r1 is equal to 1, x21 is the location of cluster center 1.

vertex1 x11 x12 ... x1p

vertex2 x21 x22 ... x2p

position r1 r2 ... rp

Figure 5.7: Chromosome Representation for HGA-E

Initial Population Generation

This procedure is very similar to that of HGA-N’s. The main difference is that we

generate random individuals by randomly generated edges instead of vertices. As in

HGA-N, we guarantee that no duplicate solutions are generated until the population

size exceeds umax =
(|E|

p

)
/2, where |E| is number of edges and p is number of

clusters. Initial position in the chromosome is not critical for the algorithm, since LS

procedure is designed to find the best position. Therefore, position chromosome is set

to 0.5 for all cluster centers. The population size used in the HGA-E depends on the

size of problem instance with the formulation of (5.1) given in HGA-N. As in HGA-

N, number of vertices is used to take the size of the problem instance into account.

Since we work on edges, using number of edges instead of number of vertices in (5.1)

could be another option. However, it is observed that the population size gets too

large without a significant improvement in solution quality, but a significant increase

in computation time. Therefore, in HGA-E, number of vertices is used to calculate

the population size.
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Crossover

Uniform crossover is performed in HGA-E similar to HGA-N. Parents are selected

randomly, and one offspring is created from two parents. After selecting the parents,

the edges that exist in both parents are found and passed to the offspring. Position

values on these edges are randomly determined by U [0, 1], which refer to the convex

combinations of positions in two parents. Then, a mapping procedure is called where

indices of cluster centers are changed in both parents so that adjacent edges are in the

same index in the chromosome and only one of them could be passed to the offspring.

After mapping, as in HGA-N, a random number ∈ [0, 1] is generated for each of the

rest of the genes. For each gene, being less than 0.5, the offspring takes gene of parent

1. Otherwise, it takes gene of parent 2. Pseudocode is given in Algorithm 8.

Local Search

Basic working principle of LS is as described in Section 5.2. Additional to this frame-

work, searching the best solutions on the edge is performed in this operation. There-

fore, in HGA-E, LS is essential to search the better solutions along the edges. Similar

to HGA-N, after crossover operation is finished, the offspring that has the lowest fit-

ness function value is selected. Then, LS procedure has been implemented. In this

LS, as an additional feature, an array ReferenceList is defined to store vertices.

This list is needed to store end vertices, adjacent edges of whom will be searched.

Adjacent edges of the vertices in the list will be visited as long as the cluster center is

improved. This is necessary because even if we find an interior point on an edge as

the best solution on that edge, we want to check other edges that are adjacent to end

vertices of the current edge. Even if an edge does not contain a good solution, an end

vertex contains a potentially good solution (a solution with fitness value equal to the

best fitness value found) is added to ReferenceList.

Algorithm 9 starts with shuffling the cluster centers in Offspring. The loop starts

with the first cluster center, and continues until dβ ∗ pe cluster centers are visited

for improvement. In the first iteration, the best location for the first cluster center is

found with Edge Search procedure. If the best fitness value is worse than the current
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Algorithm 8 Crossover in HGA-E
1: Input: Population

2: Output: Offsprings

3: Shuffle the chromosomes in Population and store them in

ShuffledParentList

4: NumberOfMatches = bα ∗ PopulationSize/2c
5: offsprings = ∅
6: for i = 1 to NumberOfMatches do

7: Parent1 = ith chromosome of ShuffledParentList

8: Parent2 = i+ 1th chromosome of ShuffledParentList

9: BothHave = Parent1 ∩ Parent2
10: Take convex combination of two positions in Parent1 and Parent2

11: NewOffspring = BothHave

12: Find number of genes to be added NumberToAdd

13: Remove genes in BothHave from Parent1 and Parent2

14: Map mutual edges of parents to same indices

15: for genes j=1 to NumberToAdd do

16: Generate a random number r ∈ [0, 1]

17: if r ≤ 0.5 then

18: Add Parent1(j) to NewOffspring

19: else

20: Add Parent2(j) to NewOffspring

21: end if

22: end for

23: Sort genes of NewOffspring in ascending order

24: Add NewOffspring to Offsprings

25: i = i+ 2

26: end for
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fitness value, the center location is not updated and cluster center 2 is checked for

improvement in the next iteration. Otherwise, location of the center 1 is updated and

checked for improvement. For further improvement, the next iteration continues with

cluster center 1. And the edges to be visited is calculated by using vertices in the

ReferenceList. The pseudocode is given in Algorithm 9.

Edge Search

The key operation inside Local Search is Edge Search. Edge Search subroutine is

designed to find the center location on an edge with minimum fitness value. The

method to find this location differ with respect to problems and their properties. We

have two main problems on hand to solve with HGA-E: Sum of Squares Clustering

(SSC) and Fuzzy Clustering (FC).

In SSC problem, the objective function is a piecewise function at the arc bottleneck

points and assignment bottleneck points. Given a solution, FDS is found by using

these bottleneck points. First, subintervals are found by taking union of the arc and

assignment bottleneck points on an edge and dividing the edge so that a subinterval

does not contain any bottleneck points. In each subinterval, the fitness function is

convex. Using the convexity structure, a local minimum point within each subinterval

is found. Otherwise, one of the endpoints of the subinterval has the minimum fitness

value. On an edge, for each subinterval, this calculation is made which forms the set

of candidate solutions, and the best location on the edge is found.

In Fuzzy Clustering, similar to SSC, the objective function is a piecewise function at

only the arc bottleneck points. First, subintervals on the edge is calculated by using

arc bottleneck points. Then, in each subinterval, the minimum point is found. Since

objective function of FC is nonconvex and a closed form formula for the derivative

is harder to find than that of SSC, a derivative-free search method has been imple-

mented. In this approach, we use Golden Section Search. After finding minimum

points in each subinterval, the best location on the edge is found.
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Algorithm 9 Local Search in HGA-E
1: Input: Offspring, β

2: Output: ImprovedOffspring

3: Shuffle genes of the Offspring

4: ImprovedOffspring = Offspring

5: Set i = 1, V isited = ∅
6: fcurrent = Fitness(Offspring)

7: Find eAdj, adjacent edges to Offspring1

8: Find eToV isit = eAdj − V isited
9: while i ≤ dβ ∗ pe do

10: if eToV isit = ∅ then

11: i = i+ 1

12: Find eAdj, adjacent edges to vertices in ImprovedOffspringi

13: V isited = ∅
14: ReferenceList = ∅
15: Find eAdj, adjacent edges to ImprovedOffspringi

16: eToV isit = eAdj

17: Continue

18: end if
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Algorithm 9 Local Search in HGA-E (continued)

19: Set FDS = ∅
20: for each edge in eToV isit do

21: Set vp=End Vertex 1

22: Set vq=End Vertex 2

23: FDS(vp, vq) = EdgeSearch(vp, vq)

24: V isited = V isited ∪ (vp, vq)

25: fit(p) = Fitness(vp)

26: fit(q) = Fitness(vq)

27: end for

28: Find xbest and fbest from FDS

29: for each positive index i in fit do

30: if thenfit(vi) ≤ fbest + 10−5

31: Add vi to ReferenceList

32: end if

33: end for

34: if fbest < fcurrent then

35: Update offspring ImprovedOffspringi = xbest

36: fcurrent = fbest

37: Find eAdj, adjacent edges to vertices in ReferenceList

38: eToV isit = eAdj − V isited
39: else

40: i = i+ 1

41: V isited = ∅
42: ReferenceList = ∅
43: Find eAdj, adjacent edges to ImprovedOffspringi

44: eToV isit = eAdj

45: end if

46: end while
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CHAPTER 6

COMPUTATIONAL RESULTS

In order to analyze performance of HGA-N and HGA-E algorithms, computational

studies are performed, outputs of which are discussed in this chapter. Four problems

on hand, which are P-Median Problem, Sum of Squares Clustering Problem, PD-

Clustering Problem and Fuzzy Clustering Problem are solved by using the proposed

solution approaches. Three data sources have been used in the analysis. The first data

set is from ORLib, problem instances for Uncapacitated P-Median Problem. ORLib

instances contain 40 problems varying in size and network structure. The other two

data sets are simulated using two different algorithms which will be described in §6.4.

Each data set contains 60 problems varying in size and network structure. Accord-

ing to theoretical results derived in Chapter 4, either HGA-N or HGA-E is proposed

as solution approach to each problem. Since it is shown that optimal solutions of

P-Median Problem and PD-Clustering Problem is on vertices, HGA-N algorithm is

proposed as solution approach. For P-Median Problem, optimal values of ORLib are

also reported in the literature. Therefore, HGA-N results are compared with optimal

values for P-Median Problem. PD-Clustering Problem is newly defined on networks;

as a result, no reported solutions are available in the literature. Therefore, based on

PD-Clustering, a heuristic which is named M-PD-Clustering is implemented to be

able to do comparison. Since this heuristic needs vertex coordinates, two data sets

which are mentioned have been simulated. For Sum of Squares Clustering Problem

and Fuzzy Clustering Problem, based on the theoretical results, HGA-E is proposed.

For Sum of Squares Clustering Problem with ORLib instances, optimal solutions are

not known, but previously reported solutions by [1] is available. Therefore, for Sum

of Squares Clustering Problem, these values have been used for comparison. Further-

more, to see the benefit of locating cluster centers on edges, HGA-N and HGA-E are
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Figure 6.1: Representation of the computational studies made for each problem

(green boxes indicate that there are solutions available in the literature)

also compared. Similar to PD-Clustering Problem, Fuzzy Clustering Problem also

does not have reported solutions in the literature. Therefore, simulated data sets and

a modified Fuzzy C-Means heuristic which is called M-Fuzzy C-Means (M-FCM)

is used for comparison with HGA-E. As in Sum of Squares Clustering Problem, to

see the benefit of locating centers on edges, HGA-N and HGA-E comparison is also

made. Computational studies could be summarized as in Figure 6.1.

This chapter is organized as follows. First, parameter settings and computation en-

vironment is provided in §6.1. Then, analysis for hard assignment problems will be

provided in §6.2. After discussing computational results for soft assignment problems

in §6.3 and §6.4, an interesting property discovered for soft assignment problems will

be discussed in §6.5.

6.1 Parameter Settings and Environment

Parameter settings for both HGA-N and HGA-E are given in Table 6.1 along with

their descriptions. For all problem instances and all four types of problems solved,
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same settings were used. These settings are determined with preliminary runs per-

formed on selected problem instances. All algorithms are coded in MATLAB R2017a.

Computational studies are conducted on a PC with a 3.6 GHz Intel Core i7-4790HQ

processor and 8 GB of RAM.

Table 6.1: Parameter settings for HGA-N and HGA-E

Parameter Description Value

α Crossover Probability 0.4

β
Portion determining the number of cluster centers that undergo

0.7
LS procedure ∈ [0, 1]

δ
Stopping condition for percentage improvement between mean

fitness values of
10−5

consecutive generations ∈ [0, 100]

6.2 Hard Assignment Problems

In this section, performance of HGA-N and HGA-E in hard assignment problems will

be analyzed. First, solutions obtained with our algorithm will be compared with the

solutions reported in the literature. Then, best solutions of both P-Median Problem

and Sum of Squares Clustering Problem will be analyzed using selected problem

instances.

6.2.1 Comparison with Literature using ORLib Instances

As discussed before, in the scope of this study, we considered two hard assignment

problems, P-Median Problem and Sum of Squares Clustering (SSC) Problem. In

this subsection, solutions obtained for these problems with ORLib instances will be

reported and compared with the solutions reported in the literature.
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P-Median Problem

For P-Median Problem, it was proven that the optimal cluster center locations will

always be on vertices. Therefore, only HGA-N algorithm is executed for this prob-

lem. Results are given in Table 6.2 along with the instance size (number of vertices,

clusters and edges of the network), optimal objective function values found by the

algorithm, and best, average and worst percentage deviations of HGA-N from the op-

timal objective function values reported in the literature. For each problem instance,

5 replications were made. Reported computational times are total times of these 5

replications. 0.00% deviations are shown as "-" in the tables.

Checking the results in the Table 6.2, runtime increases as instance size increases. It

increases especially with the number of clusters. In 39 instances out of 40, HGA-N

was able to find the optimal solution. In the largest instance which is ORLib 40, the

algorithm deviates from the best solution by 0.04 %, which could be considered as

insignificant. Average of the average and worst percentage deviations are 0.02 % and

0.04 %, respectively, which shows that the algorithm is stable. In other words, the

variance within replications is low. In short, we can say that HGA-N performs well

in ORLib problem instances when P-Median Problem is considered.

SSC Problem

Unlike P-Median Problem, SSC Problem can have cluster center locations on not only

the vertices, but also on the edges. Therefore, HGA-E algorithm is applied to solve

SSC Problem. Additionally, to see the amount of improvement in objective function

value, HGA-N is also executed, and HGA-N and HGA-E solutions are compared.

As stated previously, optimal solutions are not known for Sum of Squares Clustering

Problem. Therefore, the solutions obtained with HGA-N and HGA-E are compared

with the solutions reported by [1]. Results found with HGA-N and HGA-E are given

in Tables 6.3 and 6.4, respectively. In these tables, instance size (number of vertices,

clusters and edges), optimal objective function values, and best, average and worst

percentage deviations of the algorithm from the objective function values reported in

[1] are reported. As in P-Median Problem, 5 replications were made for each problem
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Table 6.2: Results of HGA-N for P-Median Problem and comparison with optimal

solutions

Instance Vertices-Clusters- Optimal Best Avg Worst Runtime
Edges Value % Dev % Dev % Dev (sec)

ORLib1 100-5-198 5819.00 - - - 0.52
ORLib2 100-10-193 4093.00 - - - 1.53
ORLib3 100-10-198 4250.00 - - - 1.31
ORLib4 100-20-196 3034.00 - - - 4.86
ORLib5 100-33-196 1355.00 - 0.07 0.22 10.60
ORLib6 200-5-786 7824.00 - - - 0.79
ORLib7 200-10-779 5631.00 - - - 2.59
ORLib8 200-20-792 4445.00 - - - 8.40
ORLib9 200-40-785 2734.00 - 0.18 0.48 35.38
ORLib10 200-67-786 1255.00 - 0.08 0.32 82.74
ORLib11 300-5-1772 7696.00 - - - 1.13
ORLib12 300-10-1758 6634.00 - - - 3.59
ORLib13 300-30-1760 4374.00 - - - 25.22
ORLib14 300-60-1771 2968.00 - - 0.03 99.54
ORLib15 300-100-1754 1729.00 - 0.06 0.06 366.52
ORLib16 400-5-3153 8162.00 - - - 1.59
ORLib17 400-10-3142 6999.00 - - - 4.95
ORLib18 400-40-3134 4809.00 - 0.02 0.04 81.69
ORLib19 400-80-3134 2845.00 - 0.04 0.07 370.61
ORLib20 400-133-3144 1789.00 - - - 939.49
ORLib21 500-5-4909 9138.00 - - - 1.69
ORLib22 500-10-4896 8579.00 - - - 6.76
ORLib23 500-50-4903 4619.00 - - - 180.00
ORLib24 500-100-4914 2961.00 - - - 662.24
ORLib25 500-167-4894 1828.00 - - - 2288.24
ORLib26 600-5-7069 9917.00 - 0.01 0.07 2.90
ORLib27 600-10-7072 8307.00 - - - 10.65
ORLib28 600-60-7054 4498.00 - - 0.02 332.01
ORLib29 600-120-7042 3033.00 - 0.03 0.03 1242.94
ORLib30 600-200-7042 1989.00 - 0.05 0.20 5364.87
ORLib31 700-5-9601 10086.00 - - - 3.07
ORLib32 700-10-9584 9297.00 - - - 11.08
ORLib33 700-70-9616 4700.00 - - 0.02 577.19
ORLib34 700-140-9585 3013.00 - - - 2148.77
ORLib35 800-5-12548 10400.00 - - - 3.76
ORLib36 800-10-12560 9934.00 - - - 15.44
ORLib37 800-80-12564 5057.00 - 0.02 0.04 844.96
ORLib38 900-5-15898 11060.00 - - - 6.49
ORLib39 900-10-15896 9423.00 - - - 15.68
ORLib40 900-90-15879 5128.00 0.04 0.06 0.08 1360.26

Average 0.00 0.02 0.04 428.05
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instance. In the Tables 6.3 and 6.4, negative deviations are shown in boldface showing

that HGA obtains better solutions than the reported ones.

When the HGA-N results in Table 6.3 is analyzed, it could be seen that the runtime

increases as number of vertices and number of clusters increases. In 4 instances,

HGA-N finds better solution than the ones in [1]. In ORLib 6, the highest percentage

deviation is observed which is 0.47 %. In 8 problem instances, HGA-N found solu-

tions with the objective function values higher than the reported values. On average,

HGA-N deviates 0.03%, which is considerably low. An interesting observation is that

as the number of clusters increases, HGA-N finds better solutions than those reported

in [1], which could be a sign of that the algorithm in [1] gets stuck at local solutions

as number of clusters increases.

Regarding HGA-E results in Table 6.4, as in HGA-N, it is observed that the runtime

increases as the size of the problem instance increases. As a matter of fact, the in-

crease in runtime as the number of clusters increase is more than that in HGA-N.

A possible reason could be that edge search operation is computationally expensive.

Regarding the solution quality, in 11 problem instances, HGA-E finds solutions with

objective function value lower than the values reported in [1]. In 18 instances, HGA-

E finds solutions that are worse than the reported solutions in terms of the objective

function value. Overall, in 22 instances, HGA-E finds solutions at least as good as

the solutions in [1]. Average best deviation over 40 instances is 0.45 %, average is

0.82 % and worst is 1.29 %. In one instance which is ORLib 5, the highest percentage

deviation in the best deviation is observed, which is 5.06 %. However, without loss

of generality, it could be said that HGA-E has a promising performance in ORLib

problem instances when SSC Problem is solved.

Solution Analysis of HGA-N and HGA-E in SSC

In Chapter 4, it has been shown that centers can be located on the edges in the optimal

solution of SSC Problem. Still, in order to observe the loss in the objective function

value when centers are only allowed to be located on vertices, HGA-N is also ex-

ecuted. In the Table 6.5, the best objective function values found with HGA-E and

HGA-N with 5 replications is reported. Additionally, percentage deviation of HGA-N
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Table 6.3: Results of HGA-N for SSC Problem and comparison with the reported

results in [1]

Instance Vertices-Clusters- Best Known Best Avg Worst Runtime
Edges Value % Dev % Dev % Dev (sec)

ORLib1 100-5-198 450233.00 - - - 0.47
ORLib2 100-10-193 256874.00 - - - 1.89
ORLib3 100-10-198 263385.00 - - - 1.41
ORLib4 100-20-196 153963.00 - 0.14 0.32 4.95
ORLib5 100-33-196 42671.00 0.47 0.67 1.04 10.71
ORLib6 200-5-786 406195.00 - - - 0.79
ORLib7 200-10-779 221631.00 - 0.05 0.24 2.64
ORLib8 200-20-792 151558.00 - 0.08 0.39 8.74
ORLib9 200-40-785 66525.00 - - - 37.85
ORLib10 200-67-786 15938.00 - - - 111.26
ORLib11 300-5-1772 256532.00 - - - 1.04
ORLib12 300-10-1758 197814.00 - - 0.01 3.88
ORLib13 300-30-1760 99210.00 - 0.06 0.13 32.65
ORLib14 300-60-1771 49977.00 - 0.33 0.76 141.25
ORLib15 300-100-1754 20213.00 - - - 409.63
ORLib16 400-5-3153 209886.00 - - - 1.36
ORLib17 400-10-3142 160401.00 - - - 5.08
ORLib18 400-40-3134 88234.00 - 0.19 0.43 131.96
ORLib19 400-80-3134 33782.00 - 0.07 0.37 449.14
ORLib20 400-133-3144 16032.00 -0.06 0.08 0.24 941.47
ORLib21 500-5-4909 203552.00 - - - 1.68
ORLib22 500-10-4896 188857.00 - 0.05 0.12 7.22
ORLib23 500-50-4903 66257.00 0.03 0.11 0.18 236.14
ORLib24 500-100-4914 29478.00 - - - 770.95
ORLib25 500-167-4894 13377.00 0.02 0.04 0.10 2523.86
ORLib26 600-5-7069 199503.00 - - - 2.74
ORLib27 600-10-7072 147096.00 - - - 10.21
ORLib28 600-60-7054 51239.00 0.05 0.09 0.13 303.33
ORLib29 600-120-7042 25848.00 0.07 0.14 0.22 1322.75
ORLib30 600-200-7042 12533.00 0.18 0.33 0.46 5830.65
ORLib31 700-5-9601 171963.00 - - - 3.53
ORLib32 700-10-9584 157177.00 - 0.01 0.07 10.78
ORLib33 700-70-9616 47255.00 -0.04 0.09 0.16 1086.41
ORLib34 700-140-9585 21981.00 -0.09 0.01 0.19 2806.83
ORLib35 800-5-12548 160564.00 - - - 3.74
ORLib36 800-10-12560 152914.00 - 0.02 0.08 15.64
ORLib37 800-80-12564 48246.00 0.24 0.28 0.35 1345.28
ORLib38 900-5-15898 161102.00 - 0.01 0.04 5.42
ORLib39 900-10-15896 125175.00 0.17 0.71 1.10 17.71
ORLib40 900-90-15879 43035.00 -0.02 0.03 0.19 1579.10

Average 0.03 0.09 0.18 504.55

83



Table 6.4: Results of HGA-E for SSC Problem and comparison with the reported

results in [1]

Instance Vertices-Clusters- Best Known Best Avg Worst Runtime
Edges Value % Dev % Dev % Dev (sec)

ORLib1 100-5-198 450043.94 - - - 6.50
ORLib2 100-10-193 253067.60 0.60 0.73 0.93 25.52
ORLib3 100-10-198 259643.17 - 0.19 0.95 21.98
ORLib4 100-20-196 147685.50 -0.34 0.01 0.67 83.19
ORLib5 100-33-196 40066.36 -2.22 -1.27 1.51 156.40
ORLib6 200-5-786 386642.24 5.06 5.06 5.06 16.52
ORLib7 200-10-779 221602.83 -0.13 -0.03 - 65.81
ORLib8 200-20-792 151094.71 -0.27 -0.24 -0.09 262.36
ORLib9 200-40-785 63126.34 -1.57 -1.48 -1.10 937.98
ORLib10 200-67-786 14917.01 -0.85 0.41 2.34 1302.60
ORLib11 300-5-1772 256512.74 - - 0.01 31.76
ORLib12 300-10-1758 197814.00 -0.01 -0.01 -0.01 104.55
ORLib13 300-30-1760 98471.40 -0.06 0.07 0.14 907.93
ORLib14 300-60-1771 49152.57 0.65 0.99 1.76 2671.20
ORLib15 300-100-1754 18653.68 -0.08 0.40 1.03 5896.32
ORLib16 400-5-3153 209886.00 - 0.08 0.27 40.28
ORLib17 400-10-3142 160401.00 - 0.11 0.55 127.40
ORLib18 400-40-3134 87499.01 -0.14 1.15 1.84 2578.46
ORLib19 400-80-3134 32292.46 0.84 1.42 1.78 7089.94
ORLib20 400-133-3144 14930.55 1.63 2.63 3.58 16030.88
ORLib21 500-5-4909 203552.00 - - - 57.77
ORLib22 500-10-4896 188857.00 - 0.08 0.12 206.61
ORLib23 500-50-4903 65834.72 0.76 0.99 1.29 4845.14
ORLib24 500-100-4914 28533.80 0.79 1.30 1.66 16319.26
ORLib25 500-167-4894 12502.12 -0.52 1.43 2.39 33039.35
ORLib26 600-5-7069 199503.00 - 0.19 0.93 76.22
ORLib27 600-10-7072 147096.00 - - - 240.18
ORLib28 600-60-7054 51030.45 0.95 1.40 1.92 8349.54
ORLib29 600-120-7042 25335.36 1.56 2.09 3.19 26971.91
ORLib30 600-200-7042 11671.78 3.85 4.67 5.42 61492.92
ORLib31 700-5-9601 171963.00 - 0.23 0.57 113.06
ORLib32 700-10-9584 157177.00 - 0.04 0.07 309.84
ORLib33 700-70-9616 47188.77 0.96 1.25 1.62 15883.95
ORLib34 700-140-9585 21461.21 2.77 3.41 3.85 47305.57
ORLib35 800-5-12548 160541.91 - 0.22 1.05 133.58
ORLib36 800-10-12560 152914.00 - 0.03 0.08 390.50
ORLib37 800-80-12564 48195.16 1.74 1.99 2.36 26577.95
ORLib38 900-5-15898 161102.00 - 0.05 0.11 195.14
ORLib39 900-10-15896 125175.00 0.17 0.91 1.10 464.11
ORLib40 900-90-15879 42877.82 1.93 2.30 2.64 37005.62

Average 0.45 0.82 1.29 7958.39
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from HGA-E is reported (the last column in Table 6.5). When this table is analysed in

detail, it could be seen that as number of clusters increases, locating centers to edges

makes more difference in the objective function value. Additionally, as instance size

increases, locating centers to Vertices does not cause large deviations in objective

function value. It could be noticed that in some of the instances, locating centers to

Vertices leads to a negative deviation, that is, a better solution. This is probably due to

the fact that HGA-E obtained a local optimal solution. In 12 instances, HGA-N and

HGA-E obtained the solutions with the same objective function value. The average

percentage deviation over 40 instances are 1.55.

6.2.2 Comparison of Center Locations

When the same problem instance is solved with two hard clustering problems which

have different objective functions, center locations may change. In order to see this

difference, center locations of ORLib instances with 5 and 10 clusters that are ob-

tained with HGA-N is analyzed. The center locations for both P-Median Problem

and SSC Problem are obtained with HGA-N algorithm. The results are presented in

Table 6.6.

Among 9 instances with 5 clusters, 6 of them have common cluster centers regardless

of the problem type. Out of 10 instances with 10 clusters, only one instance has

common cluster centers in solutions obtained for both problems. On average, in the

instances with 5 clusters, 4 cluster centers are common, and in the instances with 10

clusters, 7 cluster centers are common.

Observed difference between P-Median Problem and SSC Problem highly depends

on characteristics of instances. Since SSC uses squared distance, it penalizes vertices

that could be considered as outliers more than P-Median Problem. Also, it is observed

that as number of clusters increases, portion of common centers decreases. This is

expected because as the number of clusters increases and clusters get smaller, each

cluster center could be affected by outlier vertices more. Therefore, the observed

results seems reasonable and justifiable.

85



Table 6.5: Best objective function values found with HGA-E and HGA-N and per-

centage deviation of HGA-N from HGA-E

Instance Vertices-Clusters-Edges HGA-E HGA-N % Dev
ORLib1 100-5-198 450043.94 450233.00 0.04
ORLib2 100-10-193 254579.18 256874.00 0.90
ORLib3 100-10-198 259643.17 263385.00 1.44
ORLib4 100-20-196 147186.47 153963.00 4.60
ORLib5 100-33-196 39175.52 42870.00 9.43
ORLib6 200-5-786 406195 406195.00 -
ORLib7 200-10-779 221309.27 221631.00 0.15
ORLib8 200-20-792 150680.44 151558.00 0.58
ORLib9 200-40-785 62135.79 66525.00 7.06
ORLib10 200-67-786 14790.82 15938.00 7.76
ORLib11 300-5-1772 256512.74 256532.00 0.01
ORLib12 300-10-1758 197791.68 197814.00 0.01
ORLib13 300-30-1760 98414.21 99210.00 0.81
ORLib14 300-60-1771 49471.62 49977.00 1.02
ORLib15 300-100-1754 18639.4 20213.00 8.44
ORLib16 400-5-3153 209886 209886.00 -
ORLib17 400-10-3142 160401 160401.00 -
ORLib18 400-40-3134 87381.12 88234.00 0.98
ORLib19 400-80-3134 32562.53 33782.00 3.75
ORLib20 400-133-3144 15174.26 16023.00 5.59
ORLib21 500-5-4909 203552 203552.00 -
ORLib22 500-10-4896 188857 188857.00 -
ORLib23 500-50-4903 66335.9 66276.00 -0.09
ORLib24 500-100-4914 28759.3 29478.00 2.50
ORLib25 500-167-4894 12436.95 13380.00 7.58
ORLib26 600-5-7069 199503 199503.00 -
ORLib27 600-10-7072 147096 147096.00 -
ORLib28 600-60-7054 51515.92 51265.00 -0.49
ORLib29 600-120-7042 25731.59 25867.00 0.53
ORLib30 600-200-7042 12121.27 12556.00 3.59
ORLib31 700-5-9601 171963 171963.00 -
ORLib32 700-10-9584 157173.3 157177.00 -
ORLib33 700-70-9616 47642.67 47236.00 -0.85
ORLib34 700-140-9585 22055.7 21961.00 -0.43
ORLib35 800-5-12548 160543.07 160564.00 0.01
ORLib36 800-10-12560 152911.84 152914.00 -
ORLib37 800-80-12564 49034.58 48361.00 -1.37
ORLib38 900-5-15898 161102 161102.00 -
ORLib39 900-10-15896 125382 125382.00 -
ORLib40 900-90-15879 43703.95 43026.00 -1.55

Average 1.55
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Table 6.6: Comparison of center locations of P-Median Problem and SSC Problem

Instance Vertices-Clusters- Number of
Edges Common Centers

ORLib1 100-5-198 5
ORLib2 100-10-193 4
ORLib3 100-10-198 7
ORLib6 200-5-786 2
ORLib7 200-10-779 7
ORLib11 300-5-1772 5
ORLib12 300-10-1758 7
ORLib16 400-5-3153 1
ORLib17 400-10-3142 10
ORLib21 500-5-4909 5
ORLib22 500-10-4896 7
ORLib26 600-5-7069 5
ORLib27 600-10-7072 7
ORLib31 700-5-9601 3
ORLib32 700-10-9584 5
ORLib35 800-5-12548 5
ORLib36 800-10-12560 7
ORLib38 900-5-15898 5
ORLib39 900-10-15896 9

Average 5.58
5 Clusters 4.00

10 Clusters 7.00
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6.3 Soft Assignment Problems

In this section, analysis and interpretation of results of HGA-N and HGA-E regarding

soft clustering problems, namely PD-Clustering and Fuzzy Clustering Problem, will

be focused.

6.3.1 Solutions with ORLib Instances

In this subsection, solutions obtained by HGA-N and HGA-E algorithms for OR-

Lib problem instances will be reported and discussed. Since there are no previously

reported solutions in the literature, performance will be evaluated internally.

PD-Clustering Problem

For PD-Clustering Problem, it has been proven in Chapter 4 that the optimal cluster

centers will always be on vertices. Therefore, HGA-N algorithm is executed for this

problem. For each problem instance, 5 replications were made. The results are pre-

sented in Table 6.7 with best found objective function value, average and worst per-

centage deviations from the best found, and runtime values, which is the summation

of runtimes of 5 replications. To begin with, runtimes for PD-Clustering Problem is

relatively low. This is because of that there are many alternative solutions observed on

the network which decreases number of generations needed. In 21 problem instances

out of 40, the same objective function value has been obtained in all replications. For

the remaining, percentage deviations are relatively low. The average of average and

worst deviations over 40 instances are 0.00% and 0.02 %, respectively. This shows

us that HGA-N has a stable performance on ORLib instances when PD-Clustering

Problem is solved.

Fuzzy Clustering Problem

For Fuzzy Clustering Problem on networks, in Chapter 4, it has been discussed that

cluster centers could be located on the edges at optimal solutions. Therefore, HGA-E
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Table 6.7: Results of HGA-N for PD-Clustering Problem

Instance Vertices-Clusters- Best Found Avg Worst Runtime
Edges Value % Dev % Dev (sec)

ORLib1 100-5-198 1841.95 - - 0.40
ORLib2 100-10-193 844.32 - - 0.82
ORLib3 100-10-198 906.11 - - 0.82
ORLib4 100-20-196 456.00 - - 2.42
ORLib5 100-33-196 180.01 0.01 0.03 8.80
ORLib6 200-5-786 2219.57 - - 0.51
ORLib7 200-10-779 985.39 - - 1.38
ORLib8 200-20-792 536.14 - - 5.28
ORLib9 200-40-785 235.82 0.01 0.01 16.58
ORLib10 200-67-786 98.93 - - 46.53
ORLib11 300-5-1772 2022.65 - - 0.68
ORLib12 300-10-1758 1160.93 - - 2.17
ORLib13 300-30-1760 353.09 0.01 0.02 18.92
ORLib14 300-60-1771 180.80 - - 58.79
ORLib15 300-100-1754 88.35 0.01 0.01 166.43
ORLib16 400-5-3153 2222.81 - - 1.03
ORLib17 400-10-3142 1175.45 0.01 0.02 3.86
ORLib18 400-40-3134 317.64 - - 41.20
ORLib19 400-80-3134 141.01 - - 141.38
ORLib20 400-133-3144 78.38 - 0.01 467.18
ORLib21 500-5-4909 2502.80 0.05 0.24 1.23
ORLib22 500-10-4896 1381.59 - - 4.25
ORLib23 500-50-4903 259.73 0.01 0.01 90.30
ORLib24 500-100-4914 122.29 - 0.01 327.89
ORLib25 500-167-4894 62.89 - 0.01 860.06
ORLib26 600-5-7069 2625.66 - - 1.49
ORLib27 600-10-7072 1266.08 - - 5.21
ORLib28 600-60-7054 208.95 0.01 0.01 188.53
ORLib29 600-120-7042 104.25 - - 594.85
ORLib30 600-200-7042 59.65 - 0.01 1690.93
ORLib31 700-5-9601 2754.00 0.02 0.12 2.14
ORLib32 700-10-9584 1471.59 - - 6.35
ORLib33 700-70-9616 203.55 0.01 0.01 275.65
ORLib34 700-140-9585 93.44 - - 1085.95
ORLib35 800-5-12548 2764.37 - - 2.42
ORLib36 800-10-12560 1561.50 - - 8.16
ORLib37 800-80-12564 199.17 - 0.01 502.79
ORLib38 900-5-15898 2944.85 0.02 0.12 2.88
ORLib39 900-10-15896 1448.67 - - 8.82
ORLib40 900-90-15879 179.88 0.01 0.02 736.55

Average 0.00 0.02 184.54
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algorithm is executed for this problem. For the sake of comparison, HGA-N algo-

rithm is also executed. First, performance of HGA-N and HGA-E algorithms will be

discussed. Then, to see the difference between locating cluster centers to edges and

vertices, HGA-E and HGA-N comparison will be discussed.

It could be said that HGA-N has relatively low runtimes for ORLib problem instances

and Fuzzy Clustering Problem. In the Table 6.8, it could be observed that in 24 prob-

lem instances out of 40, same objective function value is obtained in all replications.

In other 16 instances, percentage deviations are considerably low. Percentage devia-

tions are observed as number of clusters and instance size increase.

When HGA-E solutions are considered, high computing times are observed, espe-

cially as the number of clusters increase. Results are presented in Table 6.9 along

with the objective function values found with HGA-N. In eight instances, HGA-E

found solutions with the same objective function value in 5 replications. In the re-

maining instances, percentage deviation increases as the number of clusters increases

with the number of vertices. An interesting result is that in three instances, HGA-N

obtained objective function values better than HGA-E with 0.01% deviation. These

instances have something in common – all have the highest number of clusters among

the instances with the same number of vertices. This interesting result could be a sign

of that HGA-E may have difficuly in finding good solutions as size of solution space

increases. These small deviations could also be a result of computation error. How-

ever, regarding drastic differences in runtimes, solving Fuzzy Clustering Problem for

ORLib instances with HGA-N seems more reasonable.

6.4 Comparison of HGA with the Soft Clustering Heuristics

In this section, for PD-Clustering Problem and Fuzzy Clustering Problem, HGA ap-

proaches will be compared with heuristic approaches from the literature; namely

Fuzzy C-Means and PD-Clustering. These heuristics solve corresponding problems

on plane. Therefore, we modified these heuristics so that the solution is on the net-

work. M-PD-Clustering, which is modified version of PD-Clustering, maps the so-

lution obtained by PD-Clustering to vertices, where M-Fuzzy C-Means, modified
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Table 6.8: Results of HGA-N for FC problem with m=3

Instance Vertices-Clusters- Best Found Avg Worst Runtime
- Edges Value % Dev % Dev (sec)
ORLib1 100-5-198 40814.86 - - 0.42
ORLib2 100-10-193 9110.85 - - 0.95
ORLib3 100-10-198 10549.46 - - 0.84
ORLib4 100-20-196 2841.03 - - 2.57
ORLib5 100-33-196 542.78 - - 7.92
ORLib6 200-5-786 29140.97 - - 0.50
ORLib7 200-10-779 5891.58 - - 1.52
ORLib8 200-20-792 1775.70 0.01 0.02 5.71
ORLib9 200-40-785 386.81 - - 18.07
ORLib10 200-67-786 78.45 0.01 0.02 39.94
ORLib11 300-5-1772 15919.02 - - 0.73
ORLib12 300-10-1758 5129.39 - - 2.23
ORLib13 300-30-1760 496.98 0.06 0.08 17.30
ORLib14 300-60-1771 149.06 0.02 0.03 63.48
ORLib15 300-100-1754 39.15 - - 186.83
ORLib16 400-5-3153 14093.02 - - 0.99
ORLib17 400-10-3142 3885.84 - - 3.68
ORLib18 400-40-3134 296.71 0.01 0.02 50.71
ORLib19 400-80-3134 65.31 - - 154.33
ORLib20 400-133-3144 24.00 - - 463.40
ORLib21 500-5-4909 13921.86 - - 1.32
ORLib22 500-10-4896 4258.49 - - 4.20
ORLib23 500-50-4903 156.78 0.03 0.05 102.46
ORLib24 500-100-4914 38.01 - 0.01 368.66
ORLib25 500-167-4894 11.24 0.03 0.04 1227.23
ORLib26 600-5-7069 12936.60 - - 1.52
ORLib27 600-10-7072 3043.99 - - 5.22
ORLib28 600-60-7054 83.48 0.01 0.02 219.48
ORLib29 600-120-7042 22.70 - - 769.72
ORLib30 600-200-7042 9.09 0.01 0.02 2139.90
ORLib31 700-5-9601 11836.62 0.07 0.35 2.21
ORLib32 700-10-9584 3454.42 - 0.01 6.58
ORLib33 700-70-9616 66.63 0.01 0.02 331.09
ORLib34 700-140-9585 15.57 0.01 0.01 1240.41
ORLib35 800-5-12548 10487.14 - - 2.30
ORLib36 800-10-12560 3339.31 - - 8.51
ORLib37 800-80-12564 55.87 - 0.01 533.32
ORLib38 900-5-15898 10648.72 - - 3.01
ORLib39 900-10-15896 2598.34 - - 9.27
ORLib40 900-90-15879 40.30 0.01 0.02 836.37

Average 0.01 0.02 0.02
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Table 6.9: Results of HGA-E for FC problem with m=3

Instance Vertices-Clusters- Value Avg % Worst % HGA-N Runtime
Edges (HGA-E) Dev Dev Dev (sec)

ORLib1 100-5-198 40814.86 0.24 0.68 - 13.98
ORLib2 100-10-193 9110.83 - - - 36.83
ORLib3 100-10-198 10549.46 - 0.01 - 34.80
ORLib4 100-20-196 2841.23 0.01 0.01 - 167.52
ORLib5 100-33-196 542.11 0.27 0.78 - 412.33
ORLib6 200-5-786 29140.97 - - - 42.78
ORLib7 200-10-779 5891.58 - 0.01 - 96.01
ORLib8 200-20-792 1775.83 0.02 0.07 - 548.24
ORLib9 200-40-785 386.84 0.02 0.04 - 2061.17
ORLib10 200-67-786 78.61 0.17 0.35 - 8012.85
ORLib11 300-5-1772 15919.02 - - - 70.29
ORLib12 300-10-1758 5129.39 - - - 247.05
ORLib13 300-30-1760 496.90 0.01 0.01 - 1666.82
ORLib14 300-60-1771 149.28 0.03 0.06 - 11817.41
ORLib15 300-100-1754 39.23 0.07 0.16 - 25602.77
ORLib16 400-5-3153 14093.02 - - - 97.62
ORLib17 400-10-3142 3885.85 - 0.01 - 406.79
ORLib18 400-40-3134 296.99 0.02 0.04 - 6850.09
ORLib19 400-80-3134 65.46 0.03 0.05 - 24470.98
ORLib20 400-133-3144 24.28 0.16 0.26 -0.01 95963.86
ORLib21 500-5-4909 13921.86 0.11 0.57 - 142.71
ORLib22 500-10-4896 4258.49 0.03 0.17 - 499.77
ORLib23 500-50-4903 156.77 0.02 0.03 - 9838.71
ORLib24 500-100-4914 38.08 0.03 0.06 - 50642.39
ORLib25 500-167-4894 11.31 0.26 0.53 -0.01 189599.91
ORLib26 600-5-7069 12936.60 - - - 196.64
ORLib27 600-10-7072 3043.99 - - - 657.80
ORLib28 600-60-7054 83.46 0.02 0.06 - 19519.96
ORLib29 600-120-7042 22.71 0.04 0.08 - 98824.86
ORLib30 600-200-7042 9.16 0.22 0.36 -0.01 400567.11
ORLib31 700-5-9601 11836.62 - - - 202.88
ORLib32 700-10-9584 3454.78 0.02 0.04 - 816.55
ORLib33 700-70-9616 66.70 0.01 0.03 - 32608.48
ORLib34 700-140-9585 15.58 0.13 0.49 - 134356.54
ORLib35 800-5-12548 10487.14 0.05 0.18 - 308.85
ORLib36 800-10-12560 3339.53 0.01 0.02 - 1062.60
ORLib37 800-80-12564 55.92 0.05 0.11 - 60750.38
ORLib38 900-5-15898 10653.85 0.07 0.14 - 356.56
ORLib39 900-10-15896 2598.53 - 0.01 - 889.59
ORLib40 900-90-15879 40.31 0.03 0.05 - 80025.64

Average 0.05 0.14 0.00 31512.20
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version of Fuzzy C-Means, maps the solution of Fuzzy C-Means to the closest point

on the network. To use these modified heuristics, coordinates of the vertices on plane

are needed. Since ORLib instances do not have vertex coordinates, those instances

cannot be used in these experiments. Therefore, new data sets have been simulated.

Two data sets, each has 60 instances, have been simulated by using two different

procedures.

In this section, data generation algorithms will be discussed first. Then, performance

of HGA-N will be compared with PD-Clustering heuristic and performance of HGA-

E will be compared with Fuzzy C-Means heuristic. Lastly, HGA-N and HGA-E solu-

tions for simulated data sets in Fuzzy Clustering Problem will be discussed.

6.4.1 Data Generation for Heuristics

In Data Generation, two different data sets have been generated, namely Uniform

and Random. In Figure 6.2, their structural difference could be observed visually.

In Uniform instances, vertices look like equidistant to each other, while in Random

instances, they are completely random. Connections are also more restricted in Uni-

form instances in a way that a vertex is mostly connected to its neighbors only. In the

Random instances, the connections are random and there are fewer restrictions.

Uniform data set contains 60 problem instances with different number of vertices and

edges. The generation procedure starts with generating random normal coordinates

for vertices. Then, to ensure connectivity of the network, a random spanning tree is

generated which also considers vertex proximity. After that, to satisfy the number of

edges requirement, random edges are added to the network according to an insertion

algorithm. Pseudocode is given in Appendix B.1.

Similarly, Random data set contains 60 problem instances with different number of

vertices and edges. First, vertex coordinates are generated randomly. Second, to

ensure connectivity, under the assumption that we have a complete graph, Prim’s

Algorithm is implemented to find a Minimum Spanning Tree [32]. Lastly, an edge

insertion procedure is executed to ensure that we have as many number of edges as

needed. Pseudocode is given in Appendix B.2.
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Figure 6.2: A visualization of a Uniform instance (left) and Random instance (right)

6.4.2 Applying Heuristics to Networks

To be able to compare HGA algorithms with other algorithms to gain an insight about

their performance, it is decided to modify two well-known heuristics to PD-Clustering

and Fuzzy Clustering. Both algorithms have been discussed in §2.2. These algorithms

have two main steps, which is called location and allocation. In location phase, given

the membership values, center locations are calculated. In allocation phase, given

the center locations, membership values are calculated. Location-allocation phases

are repeated until cluster center locations do not change through the iterations. As

mentioned before, both algorithms are designed for problems on plane. Therefore, we

modified the heuristics by adding an approximation step for center locations which

is called Mapping. There are two different types of mapping: Vertex Mapping and

Edge Mapping. In Vertex Mapping, centroid location is moved to the closest vertex

on the graph, while in Edge Mapping, centroid location is moved to the closest point

on the graph, which could be a vertex or edge. Mapping procedure is illustrated in

Figure 6.3. In the light of the theoretical results obtained, Vertex Mapping is used in

M-PD-Clustering while Edge Mapping is used in M-Fuzzy C-Means. Pseudocode of

the algorithm is provided as Algorithm 10. It is worth noting that in the computational

studies, 10 replications are made with the modified heuristics.
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Algorithm 10 Modified PD-Clustering and Modified Fuzzy C-Means Heuristic
1: Input: Graph, numClus

2: Output: Solution

3: Apply PD-Clustering or Fuzzy C-Means (FCM) given as Algorithm 3

4: if PD-Clustering Problem is solved then

5: Map centroid locations to nearest vertices on the graph

6: else

7: Map centroid locations to nearest point on the graph

8: end if

Figure 6.3: Vertex Mapping(left) and Edge Mapping(right)

6.4.3 Comparison of HGA-N with Modified PD-Clustering Heuristic

Before comparing two solution approaches, it would be helpful to evaluate perfor-

mances of each heuristic individually. Computational results of HGA-N and mod-

ified PD-Clustering Heuristic are given in Appendix C in Tables C.1-C.4, respec-

tively. It is seen that both HGA-N has a robust performance (that is, solution quality

is stable within replications) with these problem sets when PD-Clustering Problem

is regarded, while the heuristic has higher percentage deviations from the best found

solution, which implies that the heuristic is less robust than HGA-N.

To compare outputs of modified PD-Clustering Heuristic and HGA-N for both Uni-

form and Random problem sets easier, the Tables 6.10 and 6.11 are provided below.

For both Uniform and Random instances, it is observed that HGA-N performs bet-

ter than the modified heuristic. On average, solution of the heuristic deviates from

that of HGA-N by 2.55% and 4.85% for Uniform and Random instances, respec-

tively. In the worst case, the heuristic has a 5.68% deviation in Uniform instances,

and 9.91% in Random instances. The heuristic is outperformed by HGA-N more in

Random instances. In both problem sets, heuristic deviated more as the number of
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clusters increase. Regarding runtimes, we can say that modified heuristic performs

better in overall since the maximum duration for that is approximately 3 seconds.

For the smaller instances having up to 100 vertices, HGA-N has lower computing

times than M-PD-Clustering. For the larger instances, M-PD-Clustering has lower

runtimes. These observations indicate higher computational complexity, but better

solution quality in HGA-N.

6.4.4 Comparison of HGA-E with Modified Fuzzy C-Means Heuristic

Similar steps are followed in this part as well. Again, the modified heuristic and HGA

are evaluated individually first. In Appendix C, computational results of HGA-E and

modified Fuzzy C-Means Heuristic are given in Tables C.5, C.7 and C.6, C.8. It could

be observed that HGA-E has low deviation values, average of which is less than 1%,

while the heuristic has substantially high deviation values. For both problem sets, we

can say that HGA-E is more robust than the heuristic.

Tables 6.12 and 6.13 are given to be able to compare HGA-N and the heuristic con-

veniently. For both Uniform and Random instances, it is observed that HGA-E out-

performs the heuristic in terms of the solution quality. Average deviations from the

HGA-E solutions are 7.36% and 12.10% for Uniform and random problem sets, re-

spectively. The highest deviations are 37.02% and 47.16% for Uniform and Ran-

dom instances, respectively. When deviation values are investigated individually, it

could be seen that the values increase as number of clusters increase. However, when

runtimes are checked, it could be said that there are significant differences between

runtimes of the heuristic and HGA-E. HGA-E has higher runtimes than M-Fuzzy C-

Means. In short, HGA-E is better in solution quality, whereas the heuristic is better

in runtime.

6.5 Center Collision

Center collision is the case when more than one cluster centers are located on the

same location. In hard assignment problems, center collision is not observed. Cluster

centers cannot collide at optimality in hard assignment problems since network is
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Table 6.10: Comparison of HGA-N with M-PD-Clustering for PD-Clustering Prob-

lem in Uniform instances

Vertices-Clusters- Best Found Best Found % Dev from Runtime Runtime
Instance Edges Value (HGA-N) Value (M-PD) HGA-N HGA-N (sec) Heur (M-PD)
Unif1 10-3-20 213.26 213.26 - 0.03 2.17
Unif2 10-5-20 87.64 92.62 5.68 0.06 0.74
Unif3 30-2-60 2015.38 2015.82 - 0.05 1.14
Unif4 30-5-60 731.51 745.46 1.91 0.14 0.91
Unif5 30-10-60 284.49 295.89 4.01 0.31 1.28
Unif6 50-2-100 4563.88 4563.88 - 0.07 1.58
Unif7 50-5-100 1583.40 1610.42 1.71 0.26 0.99
Unif8 50-10-100 749.22 783.18 4.53 0.66 0.79
Unif9 100-5-200 4833.39 4921.43 1.82 0.43 0.95
Unif10 100-10-200 2332.16 2429.60 4.18 1.16 0.89
Unif11 100-10-200 2329.87 2425.52 4.11 1.24 0.90
Unif12 100-20-200 1005.43 1050.63 4.50 3.78 1.61
Unif13 100-34-200 480.87 502.69 4.54 9.89 1.07
Unif14 200-5-400 13649.64 13782.08 0.97 0.62 1.49
Unif15 200-10-400 6847.57 6970.27 1.79 2.40 1.13
Unif16 200-20-400 3271.08 3396.60 3.84 8.83 1.10
Unif17 200-40-400 1433.28 1506.83 5.13 23.40 1.43
Unif18 200-67-400 698.51 724.41 3.71 64.96 1.56
Unif19 200-5-800 12681.06 12714.64 - 0.65 1.64
Unif20 200-10-800 6060.36 6159.83 1.64 2.37 1.17
Unif21 200-20-800 2913.24 3020.56 3.68 8.85 1.92
Unif22 200-40-800 1290.65 1326.52 2.78 26.19 1.31
Unif23 200-67-800 653.25 676.47 3.55 52.07 1.65
Unif24 300-5-600 25856.59 26021.06 0.64 0.85 1.76
Unif25 300-10-600 12597.72 12855.36 2.05 3.28 1.38
Unif26 300-30-600 3805.94 3990.97 4.86 20.62 1.38
Unif27 300-60-600 1705.46 1794.60 5.23 67.59 1.89
Unif28 300-100-600 857.14 890.62 3.91 177.67 2.07
Unif29 300-5-1200 23440.09 23475.62 - 0.86 1.77
Unif30 300-10-1200 11066.61 11213.98 1.33 3.20 2.21
Unif31 300-30-1200 3520.18 3640.19 3.41 22.05 1.53
Unif32 300-60-1200 1550.89 1604.06 3.43 74.26 1.75
Unif33 300-100-1200 801.13 826.07 3.11 142.57 2.18
Unif34 300-5-1800 22761.22 22778.70 - 0.93 1.71
Unif35 300-10-1800 11020.74 11144.15 1.12 3.67 2.17
Unif36 300-30-1800 3441.03 3546.49 3.07 27.73 1.59
Unif37 300-60-1800 1562.45 1616.21 3.44 89.06 1.90
Unif38 300-100-1800 793.18 820.02 3.38 171.27 2.43
Unif39 400-5-800 39692.01 40212.43 1.31 1.19 2.45
Unif40 400-10-800 19528.20 19850.44 1.65 4.47 2.58
Unif41 400-40-800 4475.42 4690.10 4.80 46.78 1.93
Unif42 400-80-800 1964.99 2045.70 4.11 142.04 2.33
Unif43 400-134-800 1002.30 1030.18 2.78 344.83 2.77
Unif44 400-5-1600 35381.85 35427.14 - 1.11 2.40
Unif45 400-10-1600 17452.06 17685.34 1.34 4.29 1.97
Unif46 400-40-1600 4040.13 4222.24 4.51 49.79 1.93
Unif47 400-80-1600 1809.82 1877.56 3.74 158.22 2.29
Unif48 400-134-1600 904.75 930.77 2.88 342.23 3.58
Unif49 400-5-2400 35137.15 35164.04 - 1.30 2.37
Unif50 400-10-2400 17124.52 17281.96 0.92 4.80 2.02
Unif51 400-40-2400 3927.64 4057.30 3.30 58.96 2.14
Unif52 400-80-2400 1770.82 1843.66 4.11 172.13 2.50
Unif53 400-134-2400 889.26 909.78 2.31 432.86 3.19
Unif54 400-5-3200 34913.11 34949.88 - 1.30 2.51
Unif55 400-10-3200 17183.09 17332.06 0.87 5.52 2.12
Unif56 400-40-3200 3937.07 4073.71 3.47 62.04 2.16
Unif57 400-80-3200 1776.13 1837.27 3.44 201.35 2.58
Unif58 400-134-3200 887.91 914.74 3.02 436.90 3.20
Unif59 600-5-1200 71662.16 72079.02 0.58 1.70 3.26
Unif60 600-10-2400 31852.59 32020.83 0.53 7.43 2.49

Average 2.55 58.25 1.8697



Table 6.11: Comparison of HGA-N with M-PD-Clustering for PD-Clustering Prob-

lem in Random instances

Vertices-Clusters- Best Found Best Found % Dev from Runtime Runtime
Instance Edges Value (HGA-N) Value (Heur) HGA-N HGA-N (sec) M-PD (sec)
Rand1 10-3-20 171.79 171.79 - 0.04 0.86
Rand2 10-5-20 71.85 74.65 3.90 0.05 1.18
Rand3 30-2-60 1652.45 1683.36 1.87 0.05 0.74
Rand4 30-5-60 551.51 556.34 0.87 0.16 0.73
Rand5 30-10-60 245.42 266.17 8.45 0.37 0.85
Rand6 50-2-100 3958.35 3966.10 - 0.06 1.34
Rand7 50-5-100 1449.71 1529.81 5.53 0.28 0.97
Rand8 50-10-100 592.15 637.65 7.68 0.66 1.60
Rand9 100-5-200 3917.06 4008.95 2.35 0.36 1.42
Rand10 100-10-200 1789.41 1896.52 5.99 1.09 0.98
Rand11 100-10-200 1860.13 1967.49 5.77 1.18 0.97
Rand12 100-20-200 788.38 863.73 9.56 3.46 0.94
Rand13 100-34-200 393.33 424.05 7.81 12.41 1.00
Rand14 200-5-400 12054.54 12441.54 3.21 0.61 2.01
Rand15 200-10-400 5879.24 6287.66 6.95 1.98 1.37
Rand16 200-20-400 2645.00 2809.87 6.23 7.56 1.10
Rand17 200-40-400 1146.90 1231.55 7.38 26.04 1.22
Rand18 200-67-400 553.17 607.98 9.91 69.07 1.61
Rand19 200-5-800 10470.84 10639.96 1.62 0.66 2.22
Rand20 200-10-800 4865.25 4974.89 2.25 1.97 1.97
Rand21 200-20-800 2172.54 2289.88 5.40 8.63 1.58
Rand22 200-40-800 1003.63 1080.13 7.62 28.97 1.33
Rand23 200-67-800 508.63 549.46 8.03 77.85 2.03
Rand24 300-5-600 22797.94 23244.76 1.96 0.82 2.00
Rand25 300-10-600 10927.29 11467.04 4.94 2.92 2.09
Rand26 300-30-600 3253.58 3531.87 8.55 21.58 1.47
Rand27 300-60-600 1400.81 1520.18 8.52 85.72 2.16
Rand28 300-100-600 709.90 762.14 7.36 231.47 2.33
Rand29 300-5-1200 19002.21 19055.84 - 0.91 2.16
Rand30 300-10-1200 9021.96 9308.12 3.17 2.96 2.30
Rand31 300-30-1200 2772.83 3004.32 8.35 20.96 1.55
Rand32 300-60-1200 1242.36 1332.47 7.25 87.21 2.42
Rand33 300-100-1200 623.10 661.02 6.09 242.33 2.10
Rand34 300-5-1800 18587.80 18659.37 - 0.88 2.39
Rand35 300-10-1800 8744.83 9004.01 2.96 2.92 2.09
Rand36 300-30-1800 2657.48 2840.51 6.89 22.67 1.65
Rand37 300-60-1800 1179.35 1252.51 6.20 95.47 1.80
Rand38 300-100-1800 582.16 616.20 5.85 290.25 2.17
Rand39 400-5-800 35321.72 35810.02 1.38 1.00 3.01
Rand40 400-10-800 16440.96 17292.16 5.18 4.34 2.30
Rand41 400-40-800 3715.01 3962.43 6.66 47.61 1.99
Rand42 400-80-800 1696.47 1823.37 7.48 163.95 2.32
Rand43 400-134-800 844.87 901.66 6.72 518.92 2.84
Rand44 400-5-1600 29290.89 29548.37 0.88 1.14 3.23
Rand45 400-10-1600 13914.49 14349.68 3.13 3.75 2.43
Rand46 400-40-1600 3150.73 3356.87 6.54 49.97 2.17
Rand47 400-80-1600 1401.28 1497.81 6.89 187.00 2.32
Rand48 400-134-1600 708.22 752.78 6.29 551.02 2.94
Rand49 400-5-2400 29222.82 29359.89 - 1.13 3.23
Rand50 400-10-2400 13828.19 14080.58 1.83 4.91 2.58
Rand51 400-40-2400 3091.03 3283.23 6.22 53.21 2.24
Rand52 400-80-2400 1364.23 1453.68 6.56 209.39 3.32
Rand53 400-134-2400 689.15 727.97 5.63 662.51 2.99
Rand54 400-5-3200 28469.36 28506.42 - 1.33 3.14
Rand55 400-10-3200 13481.58 13842.32 2.68 4.62 3.26
Rand56 400-40-3200 3053.87 3228.46 5.72 62.89 2.25
Rand57 400-80-3200 1367.72 1453.16 6.25 221.90 2.73
Rand58 400-134-3200 669.21 697.31 4.20 788.17 3.25
Rand59 600-5-1200 64906.87 66522.30 2.49 1.73 4.54
Rand60 600-10-2400 26152.89 26638.87 1.86 7.36 4.27

Average 4.85 81.67 2.0798



Table 6.12: Comparison of HGA-E with the Heuristic for Fuzzy Clustering Problem

in Uniform instances

Vertices-Clusters- Best Found Best Found % Dev from Runtime Runtime
Instance Edges Value (HGA-E) Value (M-FCM) HGA-N HGA-E (sec) M-FCM (sec)
Unif1 10-3-20 6655.58 8859.17 33.11 1.24 1.05
Unif2 10-5-20 1556.71 1617.13 3.88 2.21 0.86
Unif3 30-2-60 160131.33 167675.92 4.71 1.16 1.80
Unif4 30-5-60 22152.84 24222.26 9.34 5.78 1.51
Unif5 30-10-60 4125.11 4533.42 9.90 15.53 1.11
Unif6 50-2-100 479214.10 527752.67 10.13 1.62 2.27
Unif7 50-5-100 59611.87 62723.42 5.22 6.89 2.85
Unif8 50-10-100 14451.55 14978.02 3.64 20.57 1.45
Unif9 100-5-200 265868.13 287149.10 8.00 11.72 3.09
Unif10 100-10-200 63812.88 66531.01 4.26 37.03 2.41
Unif11 100-10-200 63827.80 66860.66 4.75 35.67 2.02
Unif12 100-20-200 13116.98 13536.41 3.20 123.26 1.82
Unif13 100-34-200 3623.30 3889.82 7.36 297.78 2.25
Unif14 200-5-400 1047129.21 1151522.07 9.97 23.28 6.75
Unif15 200-10-400 262448.37 272463.37 3.82 77.73 5.69
Unif16 200-20-400 62079.05 65507.49 5.52 232.48 2.92
Unif17 200-40-400 13425.24 14286.28 6.41 719.78 4.01
Unif18 200-67-400 3818.47 4018.41 5.24 1695.89 5.46
Unif19 200-5-800 892697.57 1184062.22 32.64 64.03 4.81
Unif20 200-10-800 205094.98 212317.08 3.52 244.18 5.15
Unif21 200-20-800 50154.47 52140.66 3.96 895.96 4.07
Unif22 200-40-800 10919.94 11432.29 4.69 3021.46 5.85
Unif23 200-67-800 3318.67 3453.65 4.07 8135.81 8.69
Unif24 300-5-600 2474648.85 2647378.07 6.98 33.74 7.88
Unif25 300-10-600 586791.56 610258.39 4.00 124.30 7.94
Unif26 300-30-600 56589.18 59948.24 5.94 614.87 4.89
Unif27 300-60-600 12720.11 13567.98 6.67 2168.65 7.08
Unif28 300-100-600 3842.52 4096.60 6.61 6035.54 10.55
Unif29 300-5-1200 2039803.05 2160966.72 5.94 109.03 18.04
Unif30 300-10-1200 453307.97 468558.73 3.36 393.55 9.19
Unif31 300-30-1200 48435.21 50623.83 4.52 2692.02 7.03
Unif32 300-60-1200 10432.58 11056.87 5.98 9738.68 11.45
Unif33 300-100-1200 3314.90 3471.09 4.71 25134.16 18.05
Unif34 300-5-1800 1917230.46 2626982.41 37.02 192.72 8.53
Unif35 300-10-1800 448921.85 466590.34 3.94 836.54 11.79
Unif36 300-30-1800 46281.74 49218.22 6.34 5528.38 9.94
Unif37 300-60-1800 10577.11 11123.44 5.17 19125.57 16.14
Unif38 300-100-1800 3252.36 3480.85 7.03 52921.46 25.18
Unif39 400-5-800 4324419.85 4556817.00 5.37 42.30 8.37
Unif40 400-10-800 1057090.18 1096703.44 3.75 153.90 8.77
Unif41 400-40-800 58531.25 62438.41 6.68 1405.21 7.46
Unif42 400-80-800 12675.22 13586.69 7.19 4687.63 11.70
Unif43 400-134-800 3928.98 4119.31 4.84 13600.78 17.78
Unif44 400-5-1600 3475104.54 3724559.20 7.18 144.65 13.12
Unif45 400-10-1600 838938.46 867975.34 3.46 595.97 11.43
Unif46 400-40-1600 48077.07 50621.80 5.29 6141.21 11.49
Unif47 400-80-1600 10699.23 11243.61 5.09 20966.77 19.23
Unif48 400-134-1600 3178.91 3347.03 5.29 58307.18 30.43
Unif49 400-5-2400 3417234.38 4119848.02 20.56 269.76 11.23
Unif50 400-10-2400 806814.99 831725.77 3.09 1296.82 13.20
Unif51 400-40-2400 45121.41 47428.94 5.11 12575.83 15.64
Unif52 400-80-2400 10233.99 10843.78 5.96 44332.12 26.92
Unif53 400-134-2400 3065.18 3231.12 5.41 132329.73 42.98
Unif54 400-5-3200 3358594.45 3889626.56 15.81 453.56 10.35
Unif55 400-10-3200 812646.65 850686.80 4.68 1902.82 14.00
Unif56 400-40-3200 45363.98 47511.76 4.73 20757.00 19.46
Unif57 400-80-3200 10347.27 11039.63 6.69 72079.54 34.65
Unif58 400-134-3200 3054.60 3222.96 5.51 213070.67 56.58
Unif59 600-5-1200 9476422.09 9882690.88 4.29 68.11 23.20
Unif60 600-10-2400 1853226.67 1931256.14 4.21 1033.24 20.29

Average 7.36 12458.92 11.3399



Table 6.13: Comparison of HGA-E with the Heuristic for Fuzzy Clustering Problem

in Random instances

Vertices-Clusters- Best Found Best Found % Dev from Runtime Runtime
Instance Edges Value (HGA-E) Value (M-FCM) HGA-N HGA-E (sec) M-FCM (sec)
Rand1 10-3-20 4322.92 4883.51 12.97 0.81 1.03
Rand2 10-5-20 1047.41 1090.97 4.16 1.65 0.90
Rand3 30-2-60 114353.98 133065.31 16.36 1.14 1.49
Rand4 30-5-60 13461.07 14554.77 8.12 4.84 1.44
Rand5 30-10-60 3095.19 3246.72 4.90 16.66 1.21
Rand6 50-2-100 381819.64 401552.97 5.17 1.51 1.36
Rand7 50-5-100 49577.60 56225.44 13.41 7.13 1.80
Rand8 50-10-100 9118.79 10229.48 12.18 22.21 1.87
Rand9 100-5-200 184413.36 210621.58 14.21 9.67 2.36
Rand10 100-10-200 38521.14 41300.07 7.21 34.58 2.26
Rand11 100-10-200 41668.27 45885.99 10.12 34.34 2.80
Rand12 100-20-200 8154.10 9289.36 13.92 120.08 2.26
Rand13 100-34-200 2407.44 2847.95 18.30 323.36 2.39
Rand14 200-5-400 832510.89 874897.08 5.09 17.35 2.64
Rand15 200-10-400 196558.92 215569.60 9.67 58.09 3.18
Rand16 200-20-400 42076.19 46605.49 10.76 178.97 3.71
Rand17 200-40-400 8677.84 10260.89 18.24 759.00 5.21
Rand18 200-67-400 2421.18 2837.36 17.19 1759.47 5.59
Rand19 200-5-800 619974.72 681907.89 9.99 47.73 3.23
Rand20 200-10-800 137142.01 148680.84 8.41 168.38 4.01
Rand21 200-20-800 28233.05 31414.08 11.27 715.10 4.87
Rand22 200-40-800 6582.09 7302.13 10.94 2403.86 6.98
Rand23 200-67-800 2004.43 2296.36 14.56 6167.42 8.78
Rand24 300-5-600 1950729.78 2090362.18 7.16 26.13 8.57
Rand25 300-10-600 442659.30 476489.76 7.64 95.96 6.47
Rand26 300-30-600 41926.55 47529.67 13.36 581.83 6.87
Rand27 300-60-600 8574.09 9700.77 13.14 1927.61 7.79
Rand28 300-100-600 2658.14 2939.21 10.57 5060.00 10.96
Rand29 300-5-1200 1360727.48 1509220.88 10.91 76.33 4.93
Rand30 300-10-1200 306503.85 321648.47 4.94 273.04 6.65
Rand31 300-30-1200 30125.46 33756.87 12.05 1818.63 9.40
Rand32 300-60-1200 6738.31 7531.33 11.77 7005.78 12.78
Rand33 300-100-1200 2003.18 2236.38 11.64 18828.63 17.84
Rand34 300-5-1800 1288078.96 1419247.99 10.18 131.75 4.98
Rand35 300-10-1800 289619.10 322997.93 11.53 530.42 8.54
Rand36 300-30-1800 27731.79 31735.50 14.44 3583.54 10.95
Rand37 300-60-1800 6034.42 6813.22 12.91 13862.36 16.18
Rand38 300-100-1800 1748.24 1963.89 12.34 39138.58 24.89
Rand39 400-5-800 3463718.14 4541066.99 31.10 33.62 5.32
Rand40 400-10-800 760198.32 827039.69 8.79 108.11 8.23
Rand41 400-40-800 40799.08 45811.72 12.29 1181.04 10.27
Rand42 400-80-800 9434.29 10996.01 16.55 3998.40 12.56
Rand43 400-134-800 2801.27 3141.39 12.14 11214.83 18.35
Rand44 400-5-1600 2383757.76 2601985.64 9.15 83.24 5.38
Rand45 400-10-1600 548209.44 593105.39 8.19 377.79 6.89
Rand46 400-40-1600 29387.36 33513.46 14.04 4257.15 13.61
Rand47 400-80-1600 6381.86 7171.00 12.37 14259.10 19.86
Rand48 400-134-1600 1949.63 2175.27 11.57 42790.46 30.21
Rand49 400-5-2400 2375468.90 2679823.06 12.81 172.30 6.19
Rand50 400-10-2400 530390.82 568011.53 7.09 696.92 8.28
Rand51 400-40-2400 28059.38 32104.86 14.42 8072.04 16.97
Rand52 400-80-2400 6049.09 6726.87 11.20 28975.33 27.46
Rand53 400-134-2400 1837.80 2038.77 10.94 88997.17 42.71
Rand54 400-5-3200 2232532.18 3285406.89 47.16 274.18 7.34
Rand55 400-10-3200 513240.35 547134.08 6.60 1350.56 9.37
Rand56 400-40-3200 27280.05 30788.64 12.86 13002.71 22.63
Rand57 400-80-3200 6053.57 6867.96 13.45 49737.58 35.64
Rand58 400-134-3200 1730.19 1906.36 10.18 154880.69 55.71
Rand59 600-5-1200 7642367.47 8772882.86 14.79 62.36 6.73
Rand60 600-10-2400 1260072.74 1339688.91 6.32 706.25 12.45

Average 12.10 8850.43 10.19100



partitioned in the hard clustering problem. However, in soft assignment problems no

partitioning occurs (that is, every vertex is assigned to every cluster), center collision

could be observed. In this section, center collision in soft assignment problems will

be described using two example problems.

The first example is a network with the shape of polygon. Each corner and center of

the polygon corresponds to one vertex. The network with the shape of pentagon is

illustrated in Figure 6.4. We can have different examples with different number of

sides. As another example, we may take an octagon (which corresponds to a network

with 9 vertices) and solve all the four types of clustering problems with HGA-N.

Figure 6.5 presents the solutions for four types of problems for an octagon network

with 2 clusters. Cluster centers are shown in bold in the figure. The hard clustering

solutions are given in bottom cells. For P-Median Problem, cluster centers are found

as vertices 2 and 9. Vertices are colored according to their assignment to clusters. For

example, vertices 1, 2 and 3 are assigned to the cluster with center that is on vertex

2, and the rest is assigned to the other cluster. For SSC Problem, cluster centers are

found as vertices 1 and 9. In this example, solutions of P-Median Problem and Sum of

Squares Clustering Problem are symmetrical. In none of these two, center collision

is observed. However, if PD-Clustering Problem is solved with the same network,

both centers are located to vertex 9. For Fuzzy Clustering with fuzzifier constant

m=3, both centers are found as vertex 9 again. In short, in this example, in both soft

clustering problems, cluster centers collide.

The second example is a symmetrical network with two vertices in the middle that

are connected, and a number of vertices connected to the vertices in the middle. We

call this example an H-tree. An H-tree network example is given in the Figure 6.6. In

H-tree, there are 2n+2 vertices in total and n vertices are connected to each vertex in

the center. Each edge has a length of 1 unit. Both PD-Clustering Problem and Fuzzy

Clustering Problem with m=3 are solved for H-tree networks with different n values,

and with 3 clusters. The solutions of HGA-N are illustrated in Figure 6.7. The vertices

selected as cluster centers are shown with bold lines. When n=2, in PD-Clustering

Problem, cluster centers are vertices 1, 2 and 4, while these are vertices 3 and 4 for

Fuzzy Clustering Problem. So for n=2, centers collide in Fuzzy Clustering Problem.

When n=3, as in n=2, centers collide in Fuzzy Clustering Problem. When n=4, in
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Figure 6.4: A network example with the shape of pentagon

Figure 6.5: Solutions to a network with the shape of octagon when there are 2 clusters

both PD-Clustering and Fuzzy Clustering Problem, centers collide. With these three

n values, we observed that as n increases, centers start to collide. In Appendix A,

proof of this observation is provided.

In brief, in soft clustering problems, more than one center can be located on a vertex.

This phenomenon is also observed in different problem instances that are solved.
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Figure 6.6: An H-tree network with n vertices connected to both vertices in the middle

Figure 6.7: Solutions for H-tree with different n values
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6.5.1 Comparison of Center Locations

As four different clustering problems are solved and analyzed for the ORLib dataset,

analyzing differences in solutions is considered as important to gain insight about

these problems. The solutions for selected problem instances are compared, and num-

ber of common centers are counted. The results are given in Table 6.14 where each

column represents the results for every pair of clustering problems. Looking at the

first column p-med & PD in which P-Median and PD-Clustering solutions are com-

pared, we can see that there are similarities between their solutions, but the highest

similarity observed is 50% which is in ORLib 3, 12, 32 and 36 instances. As a com-

mon feature, all these instances have 10 clusters. In the instances with 5 clusters,

the highest similarity is 60% which is observed in ORLib 6, 21 and 35 instances. In

the second column, SSC and Fuzzy Clustering Problem are compared. The highest

similarity with 10 cluster instances and 5 cluster instances are 50% and 60%, respec-

tively. When PD-Clustering and fuzzy clustering solutions are compared (given in

the third column), it could be noted that both clustering algorithms find exactly the

same centers in 7 instances. Based on the average values, we can say that number

of common centers with 5 clusters are slightly higher than these with 10 clusters in

every pair of comparisons. Additionally, it could be seen that the highest similarity is

in the column PD & Fuzzy. To sum up, different clustering approaches may produce

common centers on the selected instances (up to a point). It is seen that similarity of

the solutions depends on the assignment type. That is, higher similarity in solutions

between the clustering approaches attained when their assignment types are the same.

6.5.2 Center Collision in ORLib Instances

As discussed in §6.5, center collision is observed in soft assignment problems, that

is, more than one cluster centers could be located to the same location. In Table 6.15,

number of centers collide in PD-Clustering and fuzzy clustering is reported. If there

is no collision, it is shown with "-" symbol. In the case of collisions, number of

centers collide on vertices are reported. For example, in a solution with centers on

vertices 4, 7, 7, 13, 13, 13, 92, there are collisions in two different places. Therefore,
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Table 6.14: Comparison of center locations for different problems

Vertices-Clusters- Number of Common Centers
Instance Edges (p-med & PD) (SSC & Fuzzy) (PD & Fuzzy)
ORLib1 100-5-198 - 2 2
ORLib2 100-10-193 2 1 7
ORLib3 100-10-198 5 5 8
ORLib6 200-5-786 3 1 5
ORLib7 200-10-779 2 3 9
ORLib11 300-5-1772 1 1 4
ORLib12 300-10-1758 5 5 9
ORLib16 400-5-3153 1 1 5
ORLib17 400-10-3142 2 3 5
ORLib21 500-5-4909 3 3 5
ORLib22 500-10-4896 4 4 10
ORLib26 600-5-7069 2 2 5
ORLib27 600-10-7072 1 2 9
ORLib31 700-5-9601 3 2 5
ORLib32 700-10-9584 5 5 8
ORLib35 800-5-12548 3 3 5
ORLib36 800-10-12560 5 5 9
ORLib38 900-5-15898 1 2 3
ORLib39 900-10-15896 2 4 8

Average 2.63 2.84 6.37
5 Clusters 1.89 1.89 4.33

10 Clusters 3.30 3.70 8.20

the reported result will be "2, 3", since we have two centers in vertex 7 and three

centers in vertex 13. Looking at the results, there is no collision in 2 instances and

1 instance in PD-Clustering and fuzzy clustering, respectively. The highest collision

occurred in ORLib7, in which 6 and 7 centers are located to the same vertex in PD-

Clustering and Fuzzy Clustering solutions. In overall, it is observed that the number

of centers collide in Fuzzy Clustering is more than that in PD-Clustering Problem.
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Table 6.15: Number of centers collide for selected ORLib instances

Vertices-Clusters- Number of Centers Collide
Instance Edges PD-Clustering Fuzzy Clustering
ORLib1 100-5-198 2 2,2
ORLib2 100-10-193 3 5
ORLib3 100-10-198 2 2
ORLib6 200-5-786
ORLib7 200-10-779 6 7
ORLib11 300-5-1772 2 2,2
ORLib12 300-10-1758 2 3
ORLib16 400-5-3153 2 2
ORLib17 400-10-3142 2,4 2,4
ORLib21 500-5-4909 2,2 2,2
ORLib22 500-10-4896 3 3
ORLib26 600-5-7069 2 2
ORLib27 600-10-7072 6,2 2,6,2
ORLib31 700-5-9601 2,2 2,2
ORLib32 700-10-9584 2
ORLib35 800-5-12548 2 2
ORLib36 800-10-12560 2 2,2
ORLib38 900-5-15898 2 2
ORLib39 900-10-15896 2,6 2,5
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CHAPTER 7

CONCLUSION

In this thesis, Center-Based Clustering Problems on Networks have been analyzed. In

the scope of this study, the following four problems have been investigated that differ

in assignment scheme and objective function used.

• P-Median Problem,

• Sum of Squares Clustering Problem,

• PD-Clustering Problem,

• Fuzzy Clustering Problem.

Among these problems, P-Median Problem is a well-known Facility Location Prob-

lem. Planar case of Sum of Squares Clustering Problem is also widely studied in

the literature, and network version of the problem is studied in [1]. Besides these

two hard assignment problems, two clustering problems on networks that use soft

assignment scheme are newly studied: PD-Clustering Problem and Fuzzy Clustering

Problem.

In order to analyze these problems on hand, a framework is used. This framework

is inspired by the studies [28], [22], [23] and [24] which mainly focus on finding

theoretical properties of optimal solutions of certain Facility Location Problems. In

our case, we analyzed these clustering problems in order to derive theoretical results.

We prove that the optimal cluster centers are always located on vertices V in PD-

Clustering Problem. For Fuzzy Clustering Problem, we found that the optimal centers

could be located anywhere on the network G = (E,V). Summarizing the results, it
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is found that cluster centers will be located on V in P-Median Problem and PD-

Clustering Problem while these could be located anywhere on the network in Sum of

Squares Clustering Problem and Fuzzy Clustering Problem.

With the derived results, a solution framework is developed which is a Genetic Algo-

rithm with Local Search embedded. This solution approach is called Hybrid Genetic

Algorithm (HGA). Benefiting the theoretical results obtained, two versions of HGA

are proposed: Node Based HGA (HGA-N) and Edge Based HGA (HGA-E). HGA-N

is proposed for P-Median Problem and PD-Clustering Problem, and HGA-E is de-

signed for Sum of Squares Clustering Problem and Fuzzy Clustering Problem. In

order to test performance of these algorithms, if available, benchmark instances are

solved, and the solutions available in the literature are used. For P-Median Prob-

lem, HGA-N is able to find solutions with insignificant percentage deviations from

the reported optimal objective function values. For Sum of Squares Clustering Prob-

lem, HGA-E is able to find solutions that have lower objective function values than

the ones reported in [1]. Since PD-Clustering Problem and Fuzzy Clustering Prob-

lem problems are newly studied on networks, we do not have previously reported

objective values for these. Therefore, heuristics that are well-known for the planar

versions of these problems are modified for the network case. Since these heuristics

require vertex coordinates, two data sets (Uniform and Random) are generated by two

different procedures. Compared to these heuristics, HGA-N and HGA-E find con-

siderably better solutions for PD-Clustering Problem and Fuzzy Clustering Problem,

respectively. It could be concluded that HGA has a promising performance for the

problems on hand.

This study has three main theoretical contributions. First, to the best of our knowl-

edge, soft clustering problems are newly studied by us. Second, Center-Based Clus-

tering Problems have been analyzed from a Location Theory perspective, and theoret-

ical results are obtained for all the problems studied. For PD-Clustering Problem, it

is found that the optimal solution is on vertices. In other words, regardless of the as-

signment scheme, in two clustering problems (P-Median Problem and PD-Clustering

Problem) that use sum of distance as objective function, cluster centers will be located

on vertices. Third, a solution framework has been developed for these problems that

is called HGA. HGA-N finds solutions objective function of which is very close to
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the ones reported, and HGA-E outperformed results reported in the literature.

This study could be utilized in developing approaches to problems from various disci-

plines, such as Sensor Networks, Emergency Medical Services (EMS) Location Prob-

lems, Protein-Protein Interaction (PPI) Problems and Humanitarian Logistics Prob-

lems.

A future research direction could be defining new problems with different objectives,

such as an objective function as a survival function that decreases with the distance.

A limitation of this study is that it is defined on Euclidean Graphs, that is, a net-

work satisfying metric properties. Other types of networks that do not satisfy metric

properties could be studied in the future, such as social networks. Furthermore, there

are studies in the literature to map networks that do not satisfy Euclidean properties

to Euclidean networks. With the help of these approaches, application areas of this

study could be extended further.
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Appendix A

CENTER COLLISION ON AN H-TREE GRAPH

In this chapter, center collision will be illustrated on an H-Tree graph example previ-

ously introduced in Chapter 6. In this particular example, for simplicity, we assume

that each edge has a length of 1. There are two central vertices connected to each

other. And each central vertex has n vertices connected, additional to other central

vertex. It will be shown that when we solve both PD-Clustering and Fuzzy Clustering

problems for 3 clusters on this graph, center collision will occur as n increases.

The H-Tree graph for this example is given in Figure A.1. For the sake of simplicity,

two vertex sets are created: Vleft and Vright, each of which contains n vertices. For

the case of 3 clusters, the following cases could be observed regarding the locations

of cluster centers (cases that are the same due to symmetry are listed together).

1. {v1, v1, v1} or {v2, v2, v2}

2. {v1, v1, v2} or {v1, v2, v2}

3. {vi, vj, vk, i 6= j 6= k ∈ Vleft} or {vi, vj, vk, i 6= j 6= k ∈ Vright}

Figure A.1: H-Tree Graph
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4. {{vi, i ∈ Vleft}, v1, v2} or {v1, v2, {vi, i ∈ Vright}}

5. {{vi, vj, i 6= j ∈ Vleft}, v1} or {v2, {vi, vj, i 6= j ∈ Vright}}

6. {{vi, vj, i 6= j ∈ Vleft}, v2} or {v1, {vi, vj, i 6= j ∈ Vright}}

Since the lengths of all edges are the same, contributions of vertices in Vleft to the

objective functions will be identical. Similarly, vertices in Vright will contribute to

the objective function equally. By using this property, and taking n as a variable,

objective function value could be calculated easily. With the 6 cases given, if we

calculate the objective function, we will obtain objective function values which are

given in Tables A.1 and A.2.

Table A.1: Objective function values of the given cases for PD-Clustering Problem

PD-Clustering
Case Vleft + Vright v1 + v2 Total
1 n/3 + 2n/3 1/3 n+ 1/3
2 2n/5 + n/2 0 9n/10
3 2(n− 3)/3 + n 1 (5n− 6)/3 + 1
4 (n− 1)/2 + 6n/11 0 (23n− 11)/22
5 (n− 2)/2 + 6n/7 1/2 (19n− 14)/14 + 1/2
6 2(n− 2)/3 + n/2 1/3 (7n− 8)/6 + 1/3

Table A.2: Objective function values of the given cases for Fuzzy Clustering Problem

Fuzzy Clustering (m=3)
Case Vleft + Vright v1 + v2 Total
1 n/9 + 4n/9 1/9 5n/9 + 1/9
2 4n/25 + n/4 0 41n/100
3 4(n− 3)/9 + n 5/9 (13n− 12)/9 + 5/9
4 (n− 1)/4 + 36n/121 0 (n− 1)/4 + 36n/121
5 (n− 2)/4 + 36n/49 1/4 (n− 2)/4 + 36n/49 + 1/4
6 4(n− 2)/9 + n/4 1/9 (25n− 32)/36 + 1/9

As a result, 6 different functions have been found for objective function values of

PD-Clustering and fuzzy clustering problems. These functions are nothing but linear

functions depending on n. If we plot these functions to see the minimum one, the plots

given in Figure A.2 are obtained. As could be seen in the figure, in both problems, as

n gets larger, objective function value of Case 2 becomes the minimum. To be more
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Figure A.2: Objective function change of each case depending on n

precise, Case 2 is minimum for n values greater than 4 for PD-Clustering, and for

n values greater than 3 for Fuzzy Clustering with m=3. Case 2 is one of the cases

that centers collide. Therefore, it is concluded that center collision is observed on the

H-Tree for both problems.
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Appendix B

PSEUDOCODES FOR DATA SIMULATION

B.1 Pseudocode for Uniform Graph Simulation

Algorithm 11 Uniform Graph Generation
1: Input: numberOfV ertices,NumberOfEdges

2: Output: Graph

3: verticesGenerated = 0, coordV ertices = ∅ . Vertex coordinate generation

4: scale =
√
numberOfV ertices

5: while verticesGenerated <= numberOfV ertices do

6: Generate normal random (x, y) coordinates with µ = scale/2 and σ =

scale/6

7: if verticesGenerated<1 then

8: Add new (x, y) to coordV ertices

9: verticesGenerated = verticesGenerated+ 1

10: else

11: Calculate Euclidean distance between new vertex and existing vertices

12: if Distance to any vertex is less than 2 ∗ scale/numberOfV ertices then

13: Continue

14: else

15: Add new (x, y) to coordV ertices

16: verticesGenerated = verticesGenerated+ 1

17: end if

18: end if

19: end while
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Algorithm 11 Uniform Graph Generation (continued)

20: Edges = ∅ . Find Random Spanning Tree

21: Connected = ∅, notConnected = V . V is set of vertices

22: Select a starting vertex stV randomly

23: Find set of vertices nearest whose Euclidean distance to stV is less than

(scale/
√
numberOfV ertices)

24: if nearest = ∅ then

25: Select the vertex that has the minimum Euclidean distance to stV and store it

as enV

26: else

27: Select a vertex enV ∈ nearest randomly

28: end if

29: edgesGenerated = 1, Connected = Connected ∪ {stV, enV }
30: notConnected = notConnected− {stV, enV }, Edges = Edges ∪ {stV, enV }
31: while notConnected 6= ∅ do

32: Find the vertex pairs (Connected, notConnected) the Euclidean distance

between which is less than sqrt(2) ∗ scale/sqrt(nV ertices) and store them as

(nearestS, nearestE)

33: if nearestS 6= ∅ then

34: Select a newEdge = (stV, enV ) randomly from (nearestS, nearestE)

35: else

36: Select the newEdge = (stV, enV ) with the minimum Euclidean distance

37: end if

38: Edges = Edges ∪ newEdge
39: edgesGenerated = edgesGenerated + 1, Connected = Connected ∪
{stV, enV }

40: notConnected = notConnected− {stV, enV }
41: end while

42: Graph = (Edges, V, coordV ertices)
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Algorithm 11 Uniform Graph Generation (continued)
43: Find degrees of each vertex and store these in Degree

44: Find shortest path distances on Graph

45: edgeCount = 1

46: while edgeCount ≤ NumberOfEdges− edgesGenerated do

47: Find the set of vertices with maximum degree maxDeg

48: canConnect = V −maxDeg . V is set of vertices

49: if edgeCount ≤ (NumberOfEdges− edgesGenerated)/2 then

50: if |canConnect| > 2 then . Find two end vertices stV, enV

51: Select a random stV ∈ canConnect
52: Select the vertex enV ∈ canConnect closest to stV on plane

53: else if |canConnect| ≥ 1 then

54: Select a random stV ∈ canConnect
55: Select the vertex enV ∈ maxDeg closest to stV on plane

56: else

57: Select a random stV ∈ maxDeg
58: Select the vertex enV ∈ maxDeg closest to stV on plane

59: end if

60: else

61: if |canConnect| > 2 then . ratio is the ratio of length of the shortest

path on the graph to Euclidean distance on the plane

62: Select stV ∈ canConnect and enV ∈ canConnect with max ratio

63: else if |canConnect| ≥ 1 then

64: Select stV ∈ canConnect and enV ∈ maxDeg with max ratio

65: else

66: Select stV ∈ maxDeg and enV ∈ maxDeg with max ratio

67: end if

68: end if
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Algorithm 11 Uniform Graph Generation (continued)

69: if newEdge is duplicate OR length(newEdge) ≥ 0.75 ∗ scale ∗
√

2 then

70: Do not add newEdge and Continue

71: else

72: Edge = Edge ∪ newEdge, update Degree

73: Update distance between stV, enV as∞
74: edgesGenerated = edgesGenerated+ 1

75: end if

76: end while

77: Graph = (Edges, V, coordV ertices)

B.2 Pseudocode for Random Graph Simulation

Algorithm 12 Random Graph Generation
1: Input: numberOfV ertices,NumberOfEdges

2: Output: Graph

3: verticesGenerated = 0, coordV ertices = ∅ . Vertex coordinate generation

4: scale =
√
numberOfV ertices

5: while verticesGenerated <= numberOfV ertices do

6: Generate uniform random (x, y) coordinates in [0,scale]

7: if verticesGenerated<1 then

8: Add new (x, y) to coordV ertices

9: verticesGenerated = verticesGenerated+ 1

10: else

11: Calculate distance between new vertex and existing vertices

12: if Distance to any vertex is less than 2 ∗ scale/numberOfV ertices then

13: Continue

14: else
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Algorithm 12 Random Graph Generation (continued)

15: Add new (x, y) to coordV ertices

16: verticesGenerated = verticesGenerated+ 1

17: end if

18: end if

19: end while

20: Find Minimum Spanning Tree by Prim’s Algorithm [32] and store edges in

Edge(startV ertex, endV ertex)

21: edgesGenerated = numberOfV ertices− 1 . Random edge generation

22: Find degrees of each vertex and store these in Degree

23: while edgesGenerated ≤ NumberOfEdges do

24: Find the set of vertices with maximum degree maxDeg

25: canConnect = V −maxDeg . V is set of vertices

26: if |canConnect| > 2 then . Find two end vertices stV, enV

27: Select a random stV ∈ canConnect
28: Select the vertex enV ∈ canConnect closest to stV on plane

29: else if |canConnect| ≥ 1 then

30: Select a random stV ∈ canConnect
31: Select the vertex enV ∈ maxDeg closest to stV on plane

32: else

33: Select a random stV ∈ maxDeg
34: Select the vertex enV ∈ maxDeg closest to stV on plane

35: end if

36: newEdge = (stV, enV )

37: if newEdge is duplicate OR length(newEdge) ≥ 0.75 ∗ scale ∗
√

2 then

38: Do not add newEdge and Continue

39: else

40: Edge = Edge ∪ newEdge, update Degree

41: Update distance between stV, enV as∞
42: edgesGenerated = edgesGenerated+ 1

43: end if

44: end while

45: Graph = (Edges, V, coordV ertices)
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Appendix C

COMPUTATIONAL RESULTS OF SIMULATED DATA

In this chapter, outputs of the computational studies conducted with simulated data

sets have been provided. Two types of problems (PD-Clustering and Fuzzy Cluster-

ing) have been solved with HGA and Heuristics modified for instances, and all output

is reported. In these computational experiments, 5 replications were performed for

each instance with HGA algorithms, and 10 replications were performed for each

instance with the modified heuristics.
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Table C.1: HGA-N results for PD-Clustering Problem for Uniform instances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Unif1 10-3-20 213.26 0.72 1.49 0.03
Unif2 10-5-20 87.64 - - 0.06
Unif3 30-2-60 2015.38 - - 0.05
Unif4 30-5-60 731.51 - - 0.14
Unif5 30-10-60 284.49 0.14 0.70 0.31
Unif6 50-2-100 4563.88 - - 0.07
Unif7 50-5-100 1583.40 - - 0.26
Unif8 50-10-100 749.22 0.02 0.05 0.66
Unif9 100-5-200 4833.39 0.01 0.03 0.43
Unif10 100-10-200 2332.16 - - 1.16
Unif11 100-10-200 2329.87 - - 1.24
Unif12 100-20-200 1005.43 0.01 0.03 3.78
Unif13 100-34-200 480.87 0.06 0.11 9.89
Unif14 200-5-400 13649.64 - - 0.62
Unif15 200-10-400 6847.57 0.01 0.04 2.40
Unif16 200-20-400 3271.08 - 0.02 8.83
Unif17 200-40-400 1433.28 0.02 0.04 23.40
Unif18 200-67-400 698.51 0.03 0.07 64.96
Unif19 200-5-800 12681.06 0.01 0.03 0.65
Unif20 200-10-800 6060.36 - 0.02 2.37
Unif21 200-20-800 2913.24 0.02 0.04 8.85
Unif22 200-40-800 1290.65 0.02 0.06 26.19
Unif23 200-67-800 653.25 0.03 0.05 52.07
Unif24 300-5-600 25856.59 0.05 0.24 0.85
Unif25 300-10-600 12597.72 - 0.02 3.28
Unif26 300-30-600 3805.94 0.02 0.03 20.62
Unif27 300-60-600 1705.46 0.03 0.05 67.59
Unif28 300-100-600 857.14 0.03 0.09 177.67
Unif29 300-5-1200 23440.09 - - 0.86
Unif30 300-10-1200 11066.61 - - 3.20
Unif31 300-30-1200 3520.18 0.02 0.06 22.05
Unif32 300-60-1200 1550.89 0.02 0.04 74.26
Unif33 300-100-1200 801.13 0.02 0.04 142.57
Unif34 300-5-1800 22761.22 0.01 0.03 0.93
Unif35 300-10-1800 11020.74 0.03 0.09 3.67
Unif36 300-30-1800 3441.03 0.01 0.02 27.73
Unif37 300-60-1800 1562.45 0.01 0.03 89.06
Unif38 300-100-1800 793.18 0.01 0.04 171.27
Unif39 400-5-800 39692.01 0.01 0.03 1.19
Unif40 400-10-800 19528.20 - - 4.47
Unif41 400-40-800 4475.42 0.04 0.07 46.78
Unif42 400-80-800 1964.99 0.01 0.03 142.04
Unif43 400-134-800 1002.30 0.03 0.06 344.83
Unif44 400-5-1600 35381.85 - 0.02 1.11
Unif45 400-10-1600 17452.06 0.01 0.02 4.29
Unif46 400-40-1600 4040.13 0.02 0.04 49.79
Unif47 400-80-1600 1809.82 0.03 0.05 158.22
Unif48 400-134-1600 904.75 0.01 0.02 342.23
Unif49 400-5-2400 35137.15 - - 1.30
Unif50 400-10-2400 17124.52 0.01 0.03 4.80
Unif51 400-40-2400 3927.64 0.01 0.02 58.96
Unif52 400-80-2400 1770.82 0.01 0.03 172.13
Unif53 400-134-2400 889.26 0.01 0.03 432.86
Unif54 400-5-3200 34913.11 0.02 0.04 1.30
Unif55 400-10-3200 17183.09 0.01 0.06 5.52
Unif56 400-40-3200 3937.07 0.01 0.03 62.04
Unif57 400-80-3200 1776.13 0.02 0.03 201.35
Unif58 400-134-3200 887.91 0.02 0.04 436.90
Unif59 600-5-1200 71662.16 0.08 0.20 1.70
Unif60 600-10-2400 31852.59 0.01 0.03 7.43

Average 0.03 0.07 58.25
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Table C.2: M-PD-Clustering results for PD-Clustering Problem for Uniform in-

stances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Unif1 10-3-20 213.26 4.17 7.66 2.17
Unif2 10-5-20 92.62 6.27 22.67 0.74
Unif3 30-2-60 2015.82 1.00 4.03 1.14
Unif4 30-5-60 745.46 3.50 12.68 0.91
Unif5 30-10-60 295.89 3.60 7.41 1.28
Unif6 50-2-100 4563.88 2.37 3.44 1.58
Unif7 50-5-100 1610.42 2.62 4.84 0.99
Unif8 50-10-100 783.18 2.11 5.37 0.79
Unif9 100-5-200 4921.43 1.03 2.22 0.95
Unif10 100-10-200 2429.60 1.43 3.44 0.89
Unif11 100-10-200 2425.52 2.05 5.09 0.90
Unif12 100-20-200 1050.63 2.26 4.87 1.61
Unif13 100-34-200 502.69 2.03 3.77 1.07
Unif14 200-5-400 13782.08 1.50 2.76 1.49
Unif15 200-10-400 6970.27 2.38 4.41 1.13
Unif16 200-20-400 3396.60 2.47 5.09 1.10
Unif17 200-40-400 1506.83 1.18 4.25 1.43
Unif18 200-67-400 724.41 0.92 2.67 1.56
Unif19 200-5-800 12714.64 0.44 1.08 1.64
Unif20 200-10-800 6159.83 0.98 1.64 1.17
Unif21 200-20-800 3020.56 1.64 5.86 1.92
Unif22 200-40-800 1326.52 2.39 4.31 1.31
Unif23 200-67-800 676.47 1.05 2.12 1.65
Unif24 300-5-600 26021.06 2.12 3.17 1.76
Unif25 300-10-600 12855.36 1.04 1.90 1.38
Unif26 300-30-600 3990.97 1.20 4.03 1.38
Unif27 300-60-600 1794.60 1.53 4.20 1.89
Unif28 300-100-600 890.62 0.87 2.27 2.07
Unif29 300-5-1200 23475.62 0.53 0.99 1.77
Unif30 300-10-1200 11213.98 0.74 1.46 2.21
Unif31 300-30-1200 3640.19 1.82 3.88 1.53
Unif32 300-60-1200 1604.06 1.14 2.61 1.75
Unif33 300-100-1200 826.07 0.61 1.22 2.18
Unif34 300-5-1800 22778.70 0.33 0.73 1.71
Unif35 300-10-1800 11144.15 0.85 2.22 2.17
Unif36 300-30-1800 3546.49 2.71 4.26 1.59
Unif37 300-60-1800 1616.21 1.12 2.50 1.90
Unif38 300-100-1800 820.02 1.08 1.64 2.43
Unif39 400-5-800 40212.43 0.33 0.71 2.45
Unif40 400-10-800 19850.44 1.36 3.04 2.58
Unif41 400-40-800 4690.10 1.73 5.50 1.93
Unif42 400-80-800 2045.70 1.12 2.61 2.33
Unif43 400-134-800 1030.18 1.29 2.15 2.77
Unif44 400-5-1600 35427.14 0.19 0.47 2.40
Unif45 400-10-1600 17685.34 0.38 1.20 1.97
Unif46 400-40-1600 4222.24 1.61 3.36 1.93
Unif47 400-80-1600 1877.56 1.03 1.68 2.29
Unif48 400-134-1600 930.77 1.19 2.27 3.58
Unif49 400-5-2400 35164.04 0.30 0.75 2.37
Unif50 400-10-2400 17281.96 0.52 1.31 2.02
Unif51 400-40-2400 4057.30 2.00 3.92 2.14
Unif52 400-80-2400 1843.66 1.33 3.59 2.50
Unif53 400-134-2400 909.78 1.40 2.53 3.19
Unif54 400-5-3200 34949.88 0.20 0.64 2.51
Unif55 400-10-3200 17332.06 0.32 1.20 2.12
Unif56 400-40-3200 4073.71 1.85 5.83 2.16
Unif57 400-80-3200 1837.27 1.70 3.11 2.58
Unif58 400-134-3200 914.74 0.81 2.09 3.20
Unif59 600-5-1200 72079.02 1.13 2.70 3.26
Unif60 600-10-2400 32020.83 0.45 0.86 2.49

Average 1.49 3.50 1.86127



Table C.3: HGA-N results for PD-Clustering Problem for Random instances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Rand1 10-3-20 171.79 - - 0.04
Rand2 10-5-20 71.85 0.07 0.34 0.05
Rand3 30-2-60 1652.45 - - 0.05
Rand4 30-5-60 551.51 0.06 0.30 0.16
Rand5 30-10-60 245.42 0.01 0.04 0.37
Rand6 50-2-100 3958.35 0.02 0.10 0.06
Rand7 50-5-100 1449.71 0.01 0.07 0.28
Rand8 50-10-100 592.15 - - 0.66
Rand9 100-5-200 3917.06 - - 0.36
Rand10 100-10-200 1789.41 - 0.01 1.09
Rand11 100-10-200 1860.13 - - 1.18
Rand12 100-20-200 788.38 - - 3.46
Rand13 100-34-200 393.33 - - 12.41
Rand14 200-5-400 12054.54 - - 0.61
Rand15 200-10-400 5879.24 0.01 0.01 1.98
Rand16 200-20-400 2645.00 0.01 0.02 7.56
Rand17 200-40-400 1146.90 - - 26.04
Rand18 200-67-400 553.17 0.03 0.08 69.07
Rand19 200-5-800 10470.84 - - 0.66
Rand20 200-10-800 4865.25 - - 1.97
Rand21 200-20-800 2172.54 - 0.01 8.63
Rand22 200-40-800 1003.63 0.01 0.03 28.97
Rand23 200-67-800 508.63 - - 77.85
Rand24 300-5-600 22797.94 0.03 0.13 0.82
Rand25 300-10-600 10927.29 - - 2.92
Rand26 300-30-600 3253.58 - 0.01 21.58
Rand27 300-60-600 1400.81 - 0.01 85.72
Rand28 300-100-600 709.90 0.04 0.09 231.47
Rand29 300-5-1200 19002.21 - - 0.91
Rand30 300-10-1200 9021.96 - - 2.96
Rand31 300-30-1200 2772.83 - 0.01 20.96
Rand32 300-60-1200 1242.36 - - 87.21
Rand33 300-100-1200 623.10 0.03 0.05 242.33
Rand34 300-5-1800 18587.80 - - 0.88
Rand35 300-10-1800 8744.83 - - 2.92
Rand36 300-30-1800 2657.48 - - 22.67
Rand37 300-60-1800 1179.35 0.01 0.01 95.47
Rand38 300-100-1800 582.16 0.02 0.04 290.25
Rand39 400-5-800 35321.72 0.01 0.05 1.00
Rand40 400-10-800 16440.96 0.04 0.11 4.34
Rand41 400-40-800 3715.01 0.01 0.02 47.61
Rand42 400-80-800 1696.47 - - 163.95
Rand43 400-134-800 844.87 0.06 0.10 518.92
Rand44 400-5-1600 29290.89 0.01 0.02 1.14
Rand45 400-10-1600 13914.49 - - 3.75
Rand46 400-40-1600 3150.73 - - 49.97
Rand47 400-80-1600 1401.28 - - 187.00
Rand48 400-134-1600 708.22 0.03 0.05 551.02
Rand49 400-5-2400 29222.82 - - 1.13
Rand50 400-10-2400 13828.19 - - 4.91
Rand51 400-40-2400 3091.03 0.01 0.01 53.21
Rand52 400-80-2400 1364.23 - 0.01 209.39
Rand53 400-134-2400 689.15 0.02 0.03 662.51
Rand54 400-5-3200 28469.36 - - 1.33
Rand55 400-10-3200 13481.58 - - 4.62
Rand56 400-40-3200 3053.87 - - 62.89
Rand57 400-80-3200 1367.72 - 0.01 221.90
Rand58 400-134-3200 669.21 0.01 0.02 788.17
Rand59 600-5-1200 64906.87 0.09 0.26 1.73
Rand60 600-10-2400 26152.89 0.01 0.05 7.36

Average 0.01 0.03 81.67
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Table C.4: M-PD-Clustering results for PD-Clustering Problem for Random in-

stances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Rand1 10-3-20 171.79 7.06 33.80 0.86
Rand2 10-5-20 74.65 8.57 25.78 1.18
Rand3 30-2-60 1683.36 - - 0.74
Rand4 30-5-60 556.34 7.39 17.72 0.73
Rand5 30-10-60 266.17 7.20 20.13 0.85
Rand6 50-2-100 3966.10 - - 1.34
Rand7 50-5-100 1529.81 2.10 5.36 0.97
Rand8 50-10-100 637.65 5.95 11.40 1.60
Rand9 100-5-200 4008.95 3.91 5.77 1.42

Rand10 100-10-200 1896.52 4.41 10.51 0.98
Rand11 100-10-200 1967.49 2.31 4.99 0.97
Rand12 100-20-200 863.73 3.17 6.25 0.94
Rand13 100-34-200 424.05 3.45 5.62 1.00
Rand14 200-5-400 12441.54 1.54 3.23 2.01
Rand15 200-10-400 6287.66 1.61 3.35 1.37
Rand16 200-20-400 2809.87 4.68 8.77 1.10
Rand17 200-40-400 1231.55 2.97 5.92 1.22
Rand18 200-67-400 607.98 0.97 2.95 1.61
Rand19 200-5-800 10639.96 1.20 3.48 2.22
Rand20 200-10-800 4974.89 4.77 9.40 1.97
Rand21 200-20-800 2289.88 2.43 4.94 1.58
Rand22 200-40-800 1080.13 2.08 4.81 1.33
Rand23 200-67-800 549.46 1.63 3.55 2.03
Rand24 300-5-600 23244.76 2.33 4.51 2.00
Rand25 300-10-600 11467.04 2.16 5.71 2.09
Rand26 300-30-600 3531.87 3.26 5.37 1.47
Rand27 300-60-600 1520.18 1.27 3.31 2.16
Rand28 300-100-600 762.14 1.14 2.94 2.33
Rand29 300-5-1200 19055.84 0.87 2.00 2.16
Rand30 300-10-1200 9308.12 1.72 2.75 2.30
Rand31 300-30-1200 3004.32 1.54 3.76 1.55
Rand32 300-60-1200 1332.47 1.25 3.16 2.42
Rand33 300-100-1200 661.02 1.13 2.49 2.10
Rand34 300-5-1800 18659.37 1.24 2.99 2.39
Rand35 300-10-1800 9004.01 1.72 3.41 2.09
Rand36 300-30-1800 2840.51 2.00 3.40 1.65
Rand37 300-60-1800 1252.51 1.27 2.82 1.80
Rand38 300-100-1800 616.20 1.40 3.68 2.17
Rand39 400-5-800 35810.02 1.26 2.16 3.01
Rand40 400-10-800 17292.16 1.23 2.75 2.30
Rand41 400-40-800 3962.43 2.18 4.99 1.99
Rand42 400-80-800 1823.37 1.58 2.43 2.32
Rand43 400-134-800 901.66 2.19 3.99 2.84
Rand44 400-5-1600 29548.37 0.80 1.66 3.23
Rand45 400-10-1600 14349.68 1.47 2.89 2.43
Rand46 400-40-1600 3356.87 1.38 2.68 2.17
Rand47 400-80-1600 1497.81 0.65 2.85 2.32
Rand48 400-134-1600 752.78 0.85 1.93 2.94
Rand49 400-5-2400 29359.89 0.79 2.43 3.23
Rand50 400-10-2400 14080.58 1.54 2.70 2.58
Rand51 400-40-2400 3283.23 1.71 4.14 2.24
Rand52 400-80-2400 1453.68 1.06 3.30 3.32
Rand53 400-134-2400 727.97 0.61 1.80 2.99
Rand54 400-5-3200 28506.42 0.87 2.08 3.14
Rand55 400-10-3200 13842.32 1.96 4.92 3.26
Rand56 400-40-3200 3228.46 1.83 4.50 2.25
Rand57 400-80-3200 1453.16 1.38 4.00 2.73
Rand58 400-134-3200 697.31 1.22 2.17 3.25
Rand59 600-5-1200 66522.30 1.52 3.78 4.54
Rand60 600-10-2400 26638.87 0.94 2.05 4.27

Average 2.21 5.27 2.07129



Table C.5: HGA-E results for Fuzzy Clustering Problem for Uniform instances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Unif1 10-3-20 6655.58 0.88 2.72 1.24
Unif2 10-5-20 1556.71 0.01 0.02 2.21
Unif3 30-2-60 160131.33 - - 1.16
Unif4 30-5-60 22152.84 - - 5.78
Unif5 30-10-60 4125.11 1.19 2.35 15.53
Unif6 50-2-100 479214.10 - - 1.62
Unif7 50-5-100 59611.87 0.07 0.36 6.89
Unif8 50-10-100 14451.55 0.33 0.59 20.57
Unif9 100-5-200 265868.13 0.40 1.23 11.72
Unif10 100-10-200 63812.88 0.16 0.65 37.03
Unif11 100-10-200 63827.80 0.34 0.74 35.67
Unif12 100-20-200 13116.98 0.25 0.39 123.26
Unif13 100-34-200 3623.30 0.54 0.79 297.78
Unif14 200-5-400 1047129.21 0.16 0.41 23.28
Unif15 200-10-400 262448.37 0.03 0.11 77.73
Unif16 200-20-400 62079.05 0.21 0.45 232.48
Unif17 200-40-400 13425.24 0.20 0.40 719.78
Unif18 200-67-400 3818.47 0.32 0.61 1695.89
Unif19 200-5-800 892697.57 0.07 0.18 64.03
Unif20 200-10-800 205094.98 0.23 0.51 244.18
Unif21 200-20-800 50154.47 0.04 0.08 895.96
Unif22 200-40-800 10919.94 0.13 0.29 3021.46
Unif23 200-67-800 3318.67 0.14 0.20 8135.81
Unif24 300-5-600 2474648.85 0.07 0.20 33.74
Unif25 300-10-600 586791.56 0.07 0.17 124.30
Unif26 300-30-600 56589.18 0.21 0.57 614.87
Unif27 300-60-600 12720.11 0.16 0.28 2168.65
Unif28 300-100-600 3842.52 0.28 0.45 6035.54
Unif29 300-5-1200 2039803.05 0.02 0.03 109.03
Unif30 300-10-1200 453307.97 0.13 0.29 393.55
Unif31 300-30-1200 48435.21 0.07 0.14 2692.02
Unif32 300-60-1200 10432.58 0.05 0.19 9738.68
Unif33 300-100-1200 3314.90 0.13 0.26 25134.16
Unif34 300-5-1800 1917230.46 0.32 0.87 192.72
Unif35 300-10-1800 448921.85 0.17 0.34 836.54
Unif36 300-30-1800 46281.74 0.03 0.10 5528.38
Unif37 300-60-1800 10577.11 0.06 0.19 19125.57
Unif38 300-100-1800 3252.36 0.09 0.16 52921.46
Unif39 400-5-800 4324419.85 0.70 1.02 42.30
Unif40 400-10-800 1057090.18 0.15 0.36 153.90
Unif41 400-40-800 58531.25 0.12 0.24 1405.21
Unif42 400-80-800 12675.22 0.16 0.36 4687.63
Unif43 400-134-800 3928.98 0.06 0.13 13600.78
Unif44 400-5-1600 3475104.54 0.09 0.24 144.65
Unif45 400-10-1600 838938.46 0.15 0.38 595.97
Unif46 400-40-1600 48077.07 0.05 0.10 6141.21
Unif47 400-80-1600 10699.23 0.11 0.26 20966.77
Unif48 400-134-1600 3178.91 0.11 0.20 58307.18
Unif49 400-5-2400 3417234.38 0.15 0.56 269.76
Unif50 400-10-2400 806814.99 0.12 0.25 1296.82
Unif51 400-40-2400 45121.41 0.06 0.16 12575.83
Unif52 400-80-2400 10233.99 0.06 0.14 44332.12
Unif53 400-134-2400 3065.18 0.09 0.17 132329.73
Unif54 400-5-3200 3358594.45 0.14 0.33 453.56
Unif55 400-10-3200 812646.65 0.11 0.32 1902.82
Unif56 400-40-3200 45363.98 0.07 0.17 20757.00
Unif57 400-80-3200 10347.27 0.03 0.06 72079.54
Unif58 400-134-3200 3054.60 0.07 0.12 213070.67
Unif59 600-5-1200 9476422.09 0.42 0.75 68.11
Unif60 600-10-2400 1853226.67 0.12 0.22 1033.24

Average 0.18 0.40 12458.92
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Table C.6: M-Fuzzy C-Means results for Fuzzy Clustering Problem for Uniform in-

stances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Unif1 10-3-20 8859.17 2.75 3.92 1.05
Unif2 10-5-20 1617.13 7.44 18.26 0.86
Unif3 30-2-60 167675.92 - - 1.80
Unif4 30-5-60 24222.26 2.35 4.34 1.51
Unif5 30-10-60 4533.42 3.96 8.91 1.11
Unif6 50-2-100 527752.67 - - 2.27
Unif7 50-5-100 62723.42 0.24 2.38 2.85
Unif8 50-10-100 14978.02 4.67 9.57 1.45
Unif9 100-5-200 287149.10 0.45 3.32 3.09
Unif10 100-10-200 66531.01 2.45 5.15 2.41
Unif11 100-10-200 66860.66 1.68 5.50 2.02
Unif12 100-20-200 13536.41 6.75 9.51 1.82
Unif13 100-34-200 3889.82 3.71 8.48 2.25
Unif14 200-5-400 1151522.07 0.01 0.01 6.75
Unif15 200-10-400 272463.37 2.15 4.72 5.69
Unif16 200-20-400 65507.49 2.13 8.20 2.92
Unif17 200-40-400 14286.28 2.65 6.31 4.01
Unif18 200-67-400 4018.41 2.89 5.68 5.46
Unif19 200-5-800 1184062.22 - - 4.81
Unif20 200-10-800 212317.08 6.39 18.46 5.15
Unif21 200-20-800 52140.66 2.32 10.10 4.07
Unif22 200-40-800 11432.29 4.00 8.58 5.85
Unif23 200-67-800 3453.65 3.71 10.33 8.69
Unif24 300-5-600 2647378.07 - 0.01 7.88
Unif25 300-10-600 610258.39 0.69 2.83 7.94
Unif26 300-30-600 59948.24 2.13 4.06 4.89
Unif27 300-60-600 13567.98 1.81 4.79 7.08
Unif28 300-100-600 4096.60 1.36 3.10 10.55
Unif29 300-5-1200 2160966.72 0.85 2.11 18.04
Unif30 300-10-1200 468558.73 7.83 30.27 9.19
Unif31 300-30-1200 50623.83 3.06 8.55 7.03
Unif32 300-60-1200 11056.87 2.10 4.88 11.45
Unif33 300-100-1200 3471.09 2.48 4.58 18.05
Unif34 300-5-1800 2626982.41 0.01 0.01 8.53
Unif35 300-10-1800 466590.34 6.14 14.13 11.79
Unif36 300-30-1800 49218.22 2.00 3.87 9.94
Unif37 300-60-1800 11123.44 2.11 3.85 16.14
Unif38 300-100-1800 3480.85 1.01 3.25 25.18
Unif39 400-5-800 4556817.00 0.89 3.98 8.37
Unif40 400-10-800 1096703.44 4.65 20.77 8.77
Unif41 400-40-800 62438.41 1.92 3.07 7.46
Unif42 400-80-800 13586.69 1.97 5.86 11.70
Unif43 400-134-800 4119.31 1.60 3.91 17.78
Unif44 400-5-1600 3724559.20 - 0.01 13.12
Unif45 400-10-1600 867975.34 7.06 15.82 11.43
Unif46 400-40-1600 50621.80 3.13 5.97 11.49
Unif47 400-80-1600 11243.61 2.50 4.26 19.23
Unif48 400-134-1600 3347.03 1.66 4.50 30.43
Unif49 400-5-2400 4119848.02 - - 11.23
Unif50 400-10-2400 831725.77 11.97 28.21 13.20
Unif51 400-40-2400 47428.94 3.72 8.04 15.64
Unif52 400-80-2400 10843.78 2.05 4.87 26.92
Unif53 400-134-2400 3231.12 1.62 5.45 42.98
Unif54 400-5-3200 3889626.56 0.01 0.01 10.35
Unif55 400-10-3200 850686.80 11.78 23.85 14.00
Unif56 400-40-3200 47511.76 4.32 6.41 19.46
Unif57 400-80-3200 11039.63 1.78 4.68 34.65
Unif58 400-134-3200 3222.96 1.25 2.16 56.58
Unif59 600-5-1200 9882690.88 0.25 0.42 23.20
Unif60 600-10-2400 1931256.14 0.72 2.52 20.29

Average 2.69 6.61 11.33131



Table C.7: HGA-E Results for Fuzzy Clustering Problem for Random instances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Rand1 10-3-20 4322.92 - - 0.81
Rand2 10-5-20 1047.41 0.01 0.03 1.65
Rand3 30-2-60 114353.98 - - 1.14
Rand4 30-5-60 13461.07 0.05 0.14 4.84
Rand5 30-10-60 3095.19 0.04 0.09 16.66
Rand6 50-2-100 381819.64 0.26 0.84 1.51
Rand7 50-5-100 49577.60 - - 7.13
Rand8 50-10-100 9118.79 0.07 0.14 22.21
Rand9 100-5-200 184413.36 - - 9.67
Rand10 100-10-200 38521.14 - 0.01 34.58
Rand11 100-10-200 41668.27 0.01 0.04 34.34
Rand12 100-20-200 8154.10 0.06 0.16 120.08
Rand13 100-34-200 2407.44 0.60 1.27 323.36
Rand14 200-5-400 832510.89 0.31 1.12 17.35
Rand15 200-10-400 196558.92 - - 58.09
Rand16 200-20-400 42076.19 0.11 0.27 178.97
Rand17 200-40-400 8677.84 0.12 0.27 759.00
Rand18 200-67-400 2421.18 0.23 0.49 1759.47
Rand19 200-5-800 619974.72 0.01 0.05 47.73
Rand20 200-10-800 137142.01 - - 168.38
Rand21 200-20-800 28233.05 0.04 0.06 715.10
Rand22 200-40-800 6582.09 0.14 0.29 2403.86
Rand23 200-67-800 2004.43 0.19 0.39 6167.42
Rand24 300-5-600 1950729.78 0.07 0.17 26.13
Rand25 300-10-600 442659.30 0.15 0.25 95.96
Rand26 300-30-600 41926.55 0.29 0.50 581.83
Rand27 300-60-600 8574.09 0.24 0.57 1927.61
Rand28 300-100-600 2658.14 0.24 0.70 5060.00
Rand29 300-5-1200 1360727.48 - - 76.33
Rand30 300-10-1200 306503.85 0.01 0.02 273.04
Rand31 300-30-1200 30125.46 0.09 0.14 1818.63
Rand32 300-60-1200 6738.31 0.23 0.48 7005.78
Rand33 300-100-1200 2003.18 0.34 0.71 18828.63
Rand34 300-5-1800 1288078.96 - 0.01 131.75
Rand35 300-10-1800 289619.10 0.02 0.09 530.42
Rand36 300-30-1800 27731.79 0.03 0.05 3583.54
Rand37 300-60-1800 6034.42 0.05 0.13 13862.36
Rand38 300-100-1800 1748.24 0.09 0.15 39138.58
Rand39 400-5-800 3463718.14 - - 33.62
Rand40 400-10-800 760198.32 0.05 0.10 108.11
Rand41 400-40-800 40799.08 0.13 0.39 1181.04
Rand42 400-80-800 9434.29 0.10 0.18 3998.40
Rand43 400-134-800 2801.27 0.30 0.69 11214.83
Rand44 400-5-1600 2383757.76 0.05 0.16 83.24
Rand45 400-10-1600 548209.44 0.08 0.10 377.79
Rand46 400-40-1600 29387.36 0.14 0.26 4257.15
Rand47 400-80-1600 6381.86 0.17 0.33 14259.10
Rand48 400-134-1600 1949.63 0.16 0.48 42790.46
Rand49 400-5-2400 2375468.90 0.10 0.29 172.30
Rand50 400-10-2400 530390.82 0.03 0.16 696.92
Rand51 400-40-2400 28059.38 0.08 0.22 8072.04
Rand52 400-80-2400 6049.09 0.07 0.22 28975.33
Rand53 400-134-2400 1837.80 0.26 0.39 88997.17
Rand54 400-5-3200 2232532.18 0.04 0.20 274.18
Rand55 400-10-3200 513240.35 0.04 0.20 1350.56
Rand56 400-40-3200 27280.05 0.09 0.19 13002.71
Rand57 400-80-3200 6053.57 0.12 0.26 49737.58
Rand58 400-134-3200 1730.19 0.16 0.33 154880.69
Rand59 600-5-1200 7642367.47 0.07 0.33 62.36
Rand60 600-10-2400 1260072.74 0.24 0.41 706.25

Average 0.11 0.26 8850.43
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Table C.8: M-Fuzzy C-Means Results for Fuzzy Clustering Problem for Random

instances

Vertices-Clusters- Best Found Avg Worst Runtime
Instance Edges Value % Dev % Dev (sec)
Rand1 10-3-20 4883.51 - 1.03
Rand2 10-5-20 1090.97 12.10 27.51 0.90
Rand3 30-2-60 133065.31 0.01 0.01 1.49
Rand4 30-5-60 14554.77 4.14 13.78 1.44
Rand5 30-10-60 3246.72 15.64 49.01 1.21
Rand6 50-2-100 401552.97 - - 1.36
Rand7 50-5-100 56225.44 7.35 10.10 1.80
Rand8 50-10-100 10229.48 8.98 23.10 1.87
Rand9 100-5-200 210621.58 - - 2.36
Rand10 100-10-200 41300.07 5.36 17.37 2.26
Rand11 100-10-200 45885.99 3.50 7.58 2.80
Rand12 100-20-200 9289.36 9.32 20.67 2.26
Rand13 100-34-200 2847.95 6.54 12.45 2.39
Rand14 200-5-400 874897.08 - - 2.64
Rand15 200-10-400 215569.60 4.53 10.48 3.18
Rand16 200-20-400 46605.49 3.23 9.54 3.71
Rand17 200-40-400 10260.89 2.27 4.55 5.21
Rand18 200-67-400 2837.36 4.75 12.67 5.59
Rand19 200-5-800 681907.89 2.44 4.88 3.23
Rand20 200-10-800 148680.84 2.12 6.77 4.01
Rand21 200-20-800 31414.08 8.06 18.70 4.87
Rand22 200-40-800 7302.13 7.56 14.96 6.98
Rand23 200-67-800 2296.36 2.79 11.21 8.78
Rand24 300-5-600 2090362.18 2.92 5.84 8.57
Rand25 300-10-600 476489.76 2.80 7.11 6.47
Rand26 300-30-600 47529.67 3.76 8.71 6.87
Rand27 300-60-600 9700.77 3.82 7.03 7.79
Rand28 300-100-600 2939.21 2.76 5.04 10.96
Rand29 300-5-1200 1509220.88 7.64 14.10 4.93
Rand30 300-10-1200 321648.47 5.96 21.61 6.65
Rand31 300-30-1200 33756.87 4.82 8.41 9.40
Rand32 300-60-1200 7531.33 3.01 4.96 12.78
Rand33 300-100-1200 2236.38 2.70 6.42 17.84
Rand34 300-5-1800 1419247.99 0.20 0.68 4.98
Rand35 300-10-1800 322997.93 1.77 5.11 8.54
Rand36 300-30-1800 31735.50 2.59 6.78 10.95
Rand37 300-60-1800 6813.22 2.66 5.70 16.18
Rand38 300-100-1800 1963.89 1.95 5.87 24.89
Rand39 400-5-800 4541066.99 - 5.32
Rand40 400-10-800 827039.69 3.40 5.13 8.23
Rand41 400-40-800 45811.72 4.33 9.76 10.27
Rand42 400-80-800 10996.01 2.26 5.28 12.56
Rand43 400-134-800 3141.39 2.51 4.58 18.35
Rand44 400-5-1600 2601985.64 - 5.38
Rand45 400-10-1600 593105.39 5.23 9.88 6.89
Rand46 400-40-1600 33513.46 1.35 3.33 13.61
Rand47 400-80-1600 7171.00 2.25 5.14 19.86
Rand48 400-134-1600 2175.27 2.25 9.54 30.21
Rand49 400-5-2400 2679823.06 6.71 25.30 6.19
Rand50 400-10-2400 568011.53 4.10 8.60 8.28
Rand51 400-40-2400 32104.86 2.85 10.59 16.97
Rand52 400-80-2400 6726.87 4.79 9.79 27.46
Rand53 400-134-2400 2038.77 1.60 4.28 42.71
Rand54 400-5-3200 3285406.89 - - 7.34
Rand55 400-10-3200 547134.08 4.08 9.12 9.37
Rand56 400-40-3200 30788.64 3.13 6.26 22.63
Rand57 400-80-3200 6867.96 2.67 5.35 35.64
Rand58 400-134-3200 1906.36 1.88 7.23 55.71
Rand59 600-5-1200 8772882.86 0.21 0.34 6.73
Rand60 600-10-2400 1339688.91 1.31 2.57 12.45

Average 3.61 8.85 10.19133
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