

APPLICATION OF SUBSPACE CLUSTERING

TO SCALABLE MALWARE CLUSTERING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH IŞIKTAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

DEPARTMENT OF INFORMATION SYSTEMS

January 2019

Approval of the thesis:

APPLICATION OF SUBSPACE CLUSTERING

TO SCALABLE MALWARE CLUSTERING

Submitted by FATİH IŞIKTAŞ in partial fulfillment of the requirements for the degree of Master

of Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Deniz ZEYREK BOZŞAHİN

Dean, Graduate School of Informatics

Prof. Dr. Yasemin YARDIMCI ÇETİN

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu BETİN CAN

Supervisor, Information Systems Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Altan KOÇYİĞİT

Information Systems Dept., METU

Assoc. Prof. Dr. Aysu BETİN CAN

Information Systems Dept., METU

Assoc. Prof. Dr. Cengiz ACARTÜRK

Cognitive Science Dept., METU

Assoc. Prof. Dr. Banu GÜNEL KILIÇ

Information Systems Dept., METU

Assoc. Prof. Dr. Sevil ŞEN

Computer Engineering Dept., Hacettepe University

 Date: 14.01.2019

v

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Fatih IŞIKTAŞ

Signature :

vi

ABSTRACT

APPLICATION OF SUBSPACE CLUSTERING

TO SCALABLE MALWARE CLUSTERING

Işıktaş, Fatih

MSc., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu Betin Can

January 2019, 71 pages

In recent years, massive proliferation of malware variants has made it necessary

to employ sophisticated clustering techniques in malware analysis. Choosing an

appropriate clustering approach is very important especially for rapidly and accurately

mining clustering information from a large malware set with high number of attributes.

In this study, we propose a clustering method that is based on subspace clustering and

graph matching techniques and presents an enhanced clustering ability and scalable

runtime performance for the analysis of large malware sets. Unlike traditional signature-

based clustering techniques, we aimed to obtain more accurate malware clusters by

comparing internal structures of malware binaries. We also integrated a subspace

clustering technique in order to scale and speed up the clustering process. To be able to

verify our method, we developed a system prototype that can perform the mentioned

clustering processes. This prototype provides a graphical user interface which allows

users to navigate over malware binaries and generated clusters for a detailed analysis.

We performed clustering experiments on real malware sets by using our system

prototype. The experiment results showed that using a clustering method based on

comparison of internal structure of malware binaries reveals clustering outputs with a

98% accuracy. Besides, the experiment results demonstrated that our method

significantly improves the runtime performance of the clustering process without

degrading clustering accuracy.

Keywords: Malware Clustering, Subspace Clustering, Graph Similarity

vii

ÖZ

ALT UZAY GRUPLAMANIN ÖLÇEKLENEBİLİR

KÖTÜCÜL YAZILIM GRUPLAMASINA UYGULANMASI

Işıktaş, Fatih

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Ocak 2019, 71 sayfa

Son yıllarda, kötücül yazılım değişkenlerinin çok hızlı çoğalması, kötücül

yazılım analizinde daha gelişmiş gruplama tekniklerinin kullanımını bir ihtiyaç haline

getirmiştir. Özellikle, çok fazla niteliğe sahip olan büyük kötücül yazılım setlerinden

gruplama bilgisini hızlı ve doğru bir şekilde elde edebilmek için uygun gruplama

yaklaşımlarının tercih edilmesi çok önemlidir. Biz bu çalışmada, çok büyük kötücül

yazılım setlerinin analizi için, altuzay gruplama ve grafik karşılaştırma tekniklerine

dayanan ve gelişmiş gruplama yeteneği ve ölçeklenebilir çalışma süreleri sunan bir

gruplama yöntemi öneriyoruz. Geleneksel imza tabanlı gruplama tekniklerinden farklı

olarak, grafik karşılaştırma ile kötücül yazılımların iç yapılarını karşılaştırarak daha

doğru kötücül yazılım grupları elde etmeye amaçladık. Bu gruplama işlemini

hızlandırmak ve ölçekleyebilmek amacıyla da bir altuzay gruplama tekniğini

yöntemimize entegre ettik. Yöntemimizi doğrulayabilmek için bahsettiğimiz gruplama

işlemlerini gerçekleştirebilen bir prototip geliştirdik. Bu prototip, daha detaylı bir

kötücül yazılım analizi için, kötücül yazılımlar ve üretilmiş gruplar üzerinde navigasyon

imkanı sağlayan grafiksel bir kullanıcı arayüzü sunmaktadır. Geliştirdiğimiz prototipi

kullanarak, gerçek kötücül yazılım setleri üzerinde gruplama deneyleri gerçekleştirdik.

Deney sonuçları, kötücül yazılımların iç yapılarının karşılaştırılmasına dayanan bir

gruplama yönteminin yüzde 98’lik bir doğruluk oranıyla gruplama çıktıları verdiğini

gösterdi. Deney sonuçları ayrıca yöntemimizin, gruplama doğruluğunu bozmadan

çalışma süresi performansını kayda değer bir şekilde geliştirdiğini gösterdi.

Anahtar Sözcükler: Kötücül Yazılım Gruplama, Altuzay Gruplama, Grafik Benzerliği

viii

DEDICATION

To My Family

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Assoc. Prof. Dr. Aysu

Betin Can, for her guidance, encouragement and patience through this study. Her

constructive feedbacks and invaluable suggestions enriched this work. Next, I would like

to express my gratitude to Dr. Ali Arifoğlu and Dr. Atilla Özgit for their mentoring

throughout my graduate studies. I would also like to thank all my professors at METU

for teaching me valuable information.

I would like to express my love and gratitude to my beloved wife Süheyla for her

understanding, support and endless love. I would also like to express my sincere

gratitude to my family for their endless love and support through my life.

x

TABLE OF CONTENTS

ABSTRACT ... vi

ÖZ .. vii

DEDICATION ... viii

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS .. xvi

1. INTRODUCTION ... 1

1.1 Research Goals ... 2

1.2 Methodology ... 3

1.3 Thesis Outline ... 4

2. BACKGROUND AND RELATED WORK ... 5

2.1 What is Malware ... 5

2.2 Malware Analysis ... 6

2.3 Dynamic Analysis ... 7

2.4 Static Analysis .. 7

2.5 Disassembly of Binaries ... 8

2.6 Malware Clustering .. 9

2.7 Related Studies ... 10

3. THE UNDERLYING TOOLS AND ALGORITHMS ... 13

3.1 The INSCY Algorithm ... 13

3.1.1.1 The SCY-Tree Structure .. 15

3.1.1.2 The Algorithm .. 17

3.1.1.2.1 Restricting SCY-trees; Searching different subspaces 18

3.1.1.2.2 Merging SCY-trees; Growing S-connected regions 20

3.1.1.2.3 Clustering; Mining actual subspace clusters .. 21

xi

3.1.1.2.4 Redundancy pruning; In-process removal .. 22

3.1.1.2.5 Arbitrary restrictions; Detecting all subspace clusters 22

3.1.2 The DBSCAN Algorithm .. 22

3.1.2.1 Essential Definitions ... 23

3.1.2.2 The Algorithm .. 26

3.1.3 The Graph Matching ... 27

3.1.3.1 What is a Graph .. 27

3.1.3.2 Graph Matching Problem ... 28

3.1.3.3 Graph Edit Distance ... 28

3.1.4 The Dissassembly Tool (IDA Pro) .. 29

4. SYSTEM DESIGN AND IMPLEMENTATION .. 31

4.1 Design of The System ... 31

4.2 Implementation of The System ... 34

4.2.1 The System Components ... 34

4.2.2 The System Functions ... 35

4.2.2.1 The Feature Extraction Function .. 35

4.2.2.2 The Subspace Clustering Function ... 36

4.2.2.3 The Graph Matching Function ... 37

4.2.3 The System GUI .. 39

5. CLUSTERING EXPERIMENT RESULTS .. 45

5.1 Clustering Validation Methodology .. 46

5.2 Clustering Experiment Results .. 47

5.2.1 The APT Malware Sample Set : .. 47

5.2.1.1 Experiment 1: Graph Matching Similarity Performance.............................. 47

5.2.1.2 Experiment 2: Pre-clustering Clustering Similarity Performance 51

5.2.1.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances 54

5.2.2 The Zeus Malware Sample Set : ... 55

5.2.2.1 Experiment 1: Graph Matching Clustering Similarity Performance 56

5.2.2.2 Experiment 2: Pre-clustering Clustering Similarity Performance 60

5.2.2.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances 61

6. CONCLUSION .. 64

xii

6.1 Limitations .. 65

6.2 Future Work .. 65

REFERENCES .. 66

APPENDICES ... 70

APPENDIX A ... 70

xiii

LIST OF TABLES

Table 1: System inputs ... 45

Table 2: Pair sets definitions .. 46
Table 3: Clustering performance measurement metrics .. 46

Table 4: Experiment setup configuration ... 47
Table 5: Features (Dimensions) of a malware binary .. 53
Table 6: Experiment setup configuration ... 56

xiv

LIST OF FIGURES

Figure 1: Projections in dimension 1 and 2 ... 14

Figure 2: SCY-tree representing a three-dimensional space ... 15
Figure 3: Two-dimensional projection .. 16

Figure 4: S-connected region in a two-dimensional projection 17
Figure 5: SCY-tree restriction process .. 19
Figure 6: Two dimensional projections ... 19
Figure 7: Three-dimensional projection .. 20

Figure 8: SCY-Tree merging process .. 21
Figure 9: Arbitrary shaped clusters ... 23

Figure 10: Density-reachable of points ... 24
Figure 11: Density-connectivity of points ... 25

Figure 12: Directed and undirected graphs ... 27
Figure 13: Graph transformation by edit operations ... 29

Figure 14: Ida pro tool GUI ... 30
Figure 15: Malware clustering modules .. 31
Figure 16: The system components ... 34

Figure 17: Selecting malware samples .. 39
Figure 18: Results of malware feature extraction process .. 40

Figure 19: Ida pro files created for each malware ... 40
Figure 20: Selecting malware samples for subspace clustering 41
Figure 21: Selecting dimensions for subspace clustering ... 41

Figure 22: Subspace clustering results .. 42

Figure 23: Displaying the content of a cluster .. 43
Figure 24: Running graph matching and generating final clustering 43
Figure 25: Displaying the content of a final cluster .. 44
Figure 26: Clustering accuracy .. 48
Figure 27: Clustering results ... 49

Figure 28: Confusion matrices for different similarity thresholds 50
Figure 29: Function call count distributions vs. similarity threshold 51
Figure 30: The effect of the epsilon on clustering accuracy ... 53
Figure 31: The effect of the dimension on clustering accuracy 54
Figure 32: Clustering runtime performance .. 55

Figure 33: Clustering accuracy .. 57
Figure 34: Clustering results ... 58

Figure 35: Function call count distributions vs. similarity threshold 59
Figure 36: The effect of the epsilon on clustering accuracy ... 60
Figure 37: The effect of the dimension on clustering accuracy 61

xv

Figure 38: Clustering Runtime Performance ... 62

xvi

LIST OF ABBREVIATIONS

DBSCAN Density-based spatial clustering of applications with noise

GED Graph Edit Distance

Ida Interactive Disassembler

INSCY Indexing Subspace Clusters with In-Process-Removal of Redundancy

1

1. INTRODUCTION

Digital products and services which provide internet-based rich contents have

become indispensable tools for both personal and professional lives. Individuals and

organizations are getting involved in information technologies domain in many ways

thanks to the faster internet connectivity, developments in mobile technology and digital

social platforms. The exponential increase in usage of information technologies in many

areas has significantly increased the economic importance of services presented over

internet on global marketplace. Comprehensive investments on digital services

obviously attracts the attention of malicious parties to the market as well. Annual

security reports published by various security companies present figures indicating the

increasing impact of cyber threats on many different sectors.

There are several reasons that make these cyber threats successful. Firstly,

product vendors and service providers are in a rush to create sophisticated products with

new features to gain more competitive advantage. This race pushes producers to create

more valuable products in a short number of periods that may results in deficient

products which are unprotected to cyber-threats. Malicious parties target to security

vulnerabilities of new products and to exploit them before the security gaps are unveiled

and patched. Vendors then try to fix them by releasing updates and hotfixes. Even if the

producers can take an immediate action to fix their products, it is not true for the end

users to get the latest updates for their products in most cases. As a result, the success

rate of cyber-attacks has been dramatically increased.

The tools used in cyber-attacks is another important success factor for cyber

threats. Various sophisticated malicious programs are written by cyber attackers who

have different motivations. One of the motivations is financial gain which can be done

by gathering personally identifiable information from compromised computers or setting

up a botnet to ransom corporations by threating them with ddos attacks (Hu, Chiueh, &

Shin, 2009). Another one is data exfiltration, which can be motivated either by economic

or intelligence reasons. In either case, there are large incentives for malware authors to

continue to develop new threats (Anderson, 2014). Cyber-criminals use these tools to

attack unprotected information systems. Evolving forms of cyber-attacks cause serious

damage to information systems leading significant financial loss.

 Combatting malicious software is a challenging task because malware variants

are continuously emerging and evolving. Simple and signature-based detection

techniques are not successful enough to identify malware variants. To deal with, a

couple of analysis techniques are employed. One of these techniques is clustering

malware instances based on their features and behaviors. Clustering aims to summarize

objects in a dataset in a manner which ensures that similar objects are grouped together

while dissimilar ones are separated (Assent, Krieger, Müller, & Seidl, 2007). Various

clustering approaches have been successfully implemented in different disciplines such

as bioinformatics, astronomy, physics, business management and marketing. Recently,

2

advances in data collection and management have led to large amounts of data being

collected, giving rise to datasets with a high number of attributes (Sim, Gopalkrishnan,

Zimek, & Cong, 2013). Traditional clustering algorithms are not capable of analyzing of

datasets with a high number of features. As a result, new clustering approaches such as

subspace clustering have been offered to address high dimensional data.

Clustering can be used for two cases in terms of malware analysis. First, given

the increasing numbers and diversity of malware samples, clustering helps in creating

malware classes which will be used for further malware analysis such as classification.

Secondly, after a ground truth is created for the classification, clustering may also be

used for emerging unknown samples. For example, Antivirus companies, IT security

vendors or government agencies deal with numerous malware samples every day. They

process the collected samples with classification methods to place them into right

classes. However, they may need to create new classes for the new malware types or

variants. In such cases, a clustering method can be utilized to create new classes for

further classifications.

It is important to determine a suitable clustering method in order to cluster a

large malware set. First, the number of clusters generated by the clustering method must

be reasonable. Depending on the selected clustering algorithm, too many or few clusters

can be generated that may not give useful and meaningful results to investigators.

Clustering approach should have the capability of adjusting clustering space so that it

allows analysts to process and identify malware samples in a structured manner. For this

reason, scalability is a key feature which should be provided by the clustering algorithm.

Besides, clustering method should also be applicable in terms of runtime. Clustering too

many samples based on the features retrieved by static or dynamic analysis obviously

takes too much time. To reduce runtime, firstly, feature selection method for the

clustering should be chosen carefully. For example, dynamic malware analysis might

give more accurate information about a sample for feature creation used in clustering,

however it requires too much time for feature extraction since the sample is needed to be

executed. On the other hand, static malware analysis might give faster results, however

various obfuscation techniques can defeat static analysis. Secondly, clustering methods

presenting faster mining approaches should be preferred for better clustering accuracy

and runtime.

1.1 Research Goals

 As mentioned earlier, analysis of large amounts of malicious software is a

challenging task for information security professionals. Efficiently mining meaningful

information about malware sets with high numbers of attributes requires using

appropriate data mining methods such as clustering. Our main goal in this work is to

develop a prototype system that will present an enhanced clustering ability and scalable

runtime performance for the analysis of a large malware set. We aim to use a subspace

3

clustering method in malware clustering field in order to create a reference data for

supervised learning techniques. This prototype will also have a graphical user interface

which allows users to navigate over malware binaries and generated clusters for a

detailed analysis. We propose that the subspace clustering based on internal function call

graphs of malware binaries can be used to generate more accurate relational information

to the security investigators and to improve the runtime of finding similar binaries

relevant to an analysis within a large malware set.

1.2 Methodology

In this study, we designed and implemented a system by combining a group of

methods and tools in order to improve clustering accuracy and runtime performance of

malware clustering. We also developed a user interface which allows analysts to perform

flexible and detailed malware clustering analysis. Our system uses call graph of local

functions and dlls extracted from malware binary samples as the similarity metric in the

clustering process. Hence, it provides a better clustering accuracy than signature-based

clustering approaches.

Our system transforms malware binaries into graphs which are composed of

nodes and edges. Each function of a malware binary is translated into a node while the

caller-callee relationships between the functions compose edges. Functions of a binary

code can be categorized as dynamically linked functions, statically-linked library

functions and local functions. The function call graphs in this study are composed of

these three types of functions.

Using internal structure of a malware as a comparison parameter provides more

accurate clustering results; however, it significantly increases the clustering runtime. To

overcome this runtime issue, we employ a subspace clustering method to improve

runtime performance of the expensive graph matching algorithms. The subspace

clustering generates clusters based on the static features extracted from malware binary

codes such as local function count, local function call count, dll count and dll call count

etc. Hence, the malware variants that have similar features can be grouped prior to the

graph matching process.

We run the system over a set of malware binaries that we collected from two

different web resources to observe and verify the system performance in terms of

clustering accuracy and runtime. The experiment results demonstrate that our method

improves runtime of the clustering process without degrading clustering accuracy. In

other words, pre-clustering process, subspace clustering, makes the targeted binary set

ready for the graph matching process with preserving true clustering information.

4

1.3 Thesis Outline

 The outline of this thesis is as follows. In Chapter 2, we explain the terms and

concepts of malware analysis and present related works carried out in this field. In

Chapter 3, we explain the underlying tools and algorithms that we used in our system.

In Chapter 4, we describe how we designed the prototype system and we explain the

technical details of the system components. We also introduce the system’s graphical

user interface. In Chapter 5, we present and interpret the results of the experiments that

we carried out for the validation of our proposal and the system implementation. In

Chapter 6, we conclude and summarize our study and outline future directions.

5

2. BACKGROUND AND RELATED WORK

Malware analysis is a challenging task that requires a deep knowledge in various

research fields, especially in computer science. Many approaches have been proposed to

make this task easier by addressing different aspects of this problem. Malware

clustering, for example, is one of these research topics that is used to reveal similarity of

samples in a malware set and to group them based on their similarity. Similarly,

malware classification aims to group malware samples into their families. All these

efforts show that a remarkable progress has been made in this field. Before we present

our approach, we introduce the terms and the concepts related to malware analysis in

this chapter. We also summarize the previous studies performed in malware clustering.

2.1 What is Malware

Malware refers to malicious software written for infiltrating computer systems.

There are many different forms of malware that are used as main tools in most

cybercrimes and cyber wars. This fact has significantly increased the importance of

development of known malware binaries and has triggered the search for new ways to

create more sophisticated ones. For this reason, each of these types of malware has been

continuously evolving with various motivations. Gaining illegal profit, competition

between companies, national security concerns are among these drivers which attract

many attackers who have different level of computer skills and knowledge.

When we look at the profiles of the malware writers, we could see this

difference. On one side, many advanced and complex malware samples are written by

individual software experts or teams. They are leading the others by adding new features

and functions on current malware samples and by creating new malware generations. To

be able to prolong of lifespan of their software, they even use professional software

development techniques as seen in legitimate software design (Cesare, 2010). On the

other side, people who have very limited computer knowledge are capable of using and

modifying these malware samples. Although the complexity of malware has

dramatically increased as a result of constant development, the barrier of using and

creating malware has decreased in recent years. The main reason of this is that malware

toolkits which provide easy to use platforms allowing users to automate malware

creation and modification.

Thanks to these factors, malware writers can automatically and rapidly modify

out-of-date malware, allowing them to gain advantageous against security authorities.

They can create malware variants easily before new signatures are generated and

distributed by antivirus vendors (Hu, 2011). Another facilitating factor affecting this

barrier is that there are lots of free resources and tutorials explaining malware usage and

6

creation in detail on the internet. All these facilities result in a massive proliferation of

malware.

2.2 Malware Analysis

Malware analysis refers to the techniques that help analysts to find out behaviors

of malware instances and the risks that they may cause. Attributes extracted with

malware analysis can be used to cluster unknown malwares into appropriate malware

families (Gandotra, Bansal, & Sofat, 2014). Information gathered from well-structured

malware analysis can also be used to learn tendency of malware development and to

take measures to prevent future threats.

Most companies and individual users have different types of antivirus and

internet security programs to protect their computer systems. Almost all current antivirus

vendors employ signature or hash-based detection methods to identify and classify

malicious programs. Signature-based identification approaches are popular because

malware signatures can easily be created and distributed to the end users without

bringing computational burden to their systems. However, various code obfuscation

methods can easily bypass these schemes (Anderson, 2014). In other words, these

approaches are not effective against new malware variants until new signatures are

generated.

Malware authors try to develop different techniques to extend the life of their

malware against currently updated antivirus detection systems. Polymorphic or

metamorphic malware creation is one of those hiding techniques. Polymorphic malware

changes its appearance by using encryption on each execution, but its main code

structure does not change. Metamorphic malware, on the contrary, automatically

changes its code by adding new instructions or changing registers every time it

propagates. Malwares using these techniques can evade signature-based detection tools.

Besides, some malware types can even sense dynamic analysis methods such as

debugging and virtualization, and can hide its malicious execution paths. These

obfuscation methods are making it hard to deal with constant threat of malwares.

In addition to the evading techniques, the exponential increase in malware

variants has become a challenging factor for the security analysts. As the number of

newly released malware variants and the complexity of the obfuscation techniques that

are applied to the original malware increase, the process of detecting new variants and

creating mitigation techniques become more difficult and time consuming. Hence, more

effort is needed to develop new technologies that automate and facilitate the analysis and

classification of the thousands of new malware variants that are released on a daily basis

(Rad, Masrom, & Ibrahim, 2012). While work has been done to help optimize the

analysis of known malware and questionable files, there is much to be done in the field

of speeding up detection and automating these processes (Dowd, 2014). As a result,

high-quality signatures can be generated rapidly with automatic analysis methods unlike

7

the time-consuming manual analysis. Such techniques help security analysts for taking

fast actions in the examination of security threats.

Malware analysis is generally categorized as dynamic and static analysis. Dynamic

analysis refers to the analysis performed during malware execution while static analysis

is defined as the process of inspecting internals of a malware binary without execution

(Egele, Scholte, Kirda, & Kruegel, 2012).

2.3 Dynamic Analysis

Dynamic analysis is done by running malware program and monitoring the

program's behavior under different execution conditions (Awad, 2014). A sandbox

environment is generally used to observe the behavior of a malware. Hence, the

damaging risk of the malware against the host machine or other systems on the network

can be eliminated. However, some malware types can detect the virtual environment on

which they run and can change the execution path.

To gather various information about a system with dynamic analysis, a security

analyst, in general, records the initial system state first, then executes the program to be

analyzed and examines the system state during and after execution and makes note of all

changes (Böhne, 2008). Dynamic analysis can reveal different kinds of information such

as file paths, registry changes, IP addresses, memory writes and so on. Additionally, it

can monitor network interfaces of the infected host machine to identify an unusual

traffic flow. For example, a communication between a trojan file infected on a host and

its command and control server could be spotted with this way. By tracing system and

library calls on a system, the effects of a program on that system can be captured.

Dynamic analysis is strong against some obfuscation methods like binary

packing and encryption or metamorphic and polymorphic malware creation, etc.

However, it has some limitations. Dynamic analysis may not reveal all the execution

paths since it observes the behavior of a program under some specific execution

conditions, thus, complete behavior of the program may not be learned. Secondly,

detection functions are used by malware creators in order to check for the presence of

virtual environments. When such an environment is detected by the malware, the

malware program behaves differently (non-maliciously) which leads to an incorrect

analysis (Kang, Yin, Hanna, McCamant, & Song, 2009). Moreover, working on a high

number of malware set may take too much time, which makes dynamic analysis not

feasible for large-scale malware analysis.

2.4 Static Analysis

Unlike dynamic analysis, malware samples are not executed in static analysis.

Binary code or source code of a malware instance form the basis of static analysis. But

8

mostly source code is not available for researchers to analyze; therefore, the binary form

of a malware instance is usually used (Awad, 2014). Disassembler tools are used to

examine internal functions, API calls and data segment of binary files. Static analysis

can be used to gather a variety of information about a malware sample, e.g., high-level

information such as its file size, a cryptographic hash, its file format, imported shared

libraries, the compiler used to generate it, a list of human-readable strings that are

contained in the file, or, low-level information gathered by disassembling or

decompiling the sample (Böhne, 2008). All this information gives an idea about

choosing proper disassembler and packer tools and classifying samples into their

families.

Static analysis approaches have some advantages over dynamic analysis

methods. Static analysis allows analysts to scan all code parts of a sample, hence, all

execution paths can be discovered. Secondly, the analysis system is more protected

because the sample is not executed. Static analysis approaches may extract so many

features in a short amount of process time from a malware sample set with the help of

automation methods. Moreover, the operating system on which the analysis runs does

not have to be same with the target operating system of a malware sample. This provides

flexibility in choosing analysis environment for malware analysts. As mentioned

previously, the main disadvantage of static analysis is that it is hard for analysts to

address obfuscation techniques such as self-modifying code and packed binaries.

2.5 Disassembly of Binaries

Disassembly refers to the process of analyzing an executable in order to obtain

its assembly code in a text format. Disassembly tools are used to understand a program’s

binary structure when its source code is missing. Scanning and parsing instructions of a

binary file is generally the first phase of static analysis. There are two main algorithms

which are recursive-traversal and linear-sweep approaches in static disassembly.

In the linear-sweep algorithm, disassembly begins with the first byte in a code

section and moves, in a linear fashion, through the section, disassembling one instruction

after another until the end of the section is reached, and no effort is made to understand

the program’s control flow through recognition of nonlinear instructions such as

branches (Eagle, 2011). Its main advantage is that it scans all code sections of a

program, thus, it covers the whole binary code. However, meaningful data or junk bytes

inserted into code sections is treated as instructions by the algorithm that might cause

wrong interpretation of the binary code.

The Recursive Traversal algorithm employs control flow analysis to disassemble

programs. Control flow analysis tries to find out what code pieces would be executed

and in what sequence. This method is used to identify the possible execution paths

through the binary code. Connections between basic blocks compose the control flow. A

basic block is an instruction sequence that does not contain any branch instructions in

9

the body of the block except at the beginning and at the end of the block (Böhne, 2008).

It means that if the block is called, it executes all its instructions from beginning to end.

The algorithm follows the control flow in order to decode instructions of the binary. One

of the principle advantages of the recursive traversal algorithm is its superior ability to

distinguish code from data (Eagle, 2011).

The last method, speculative disassembly, runs recursive-traversal and linear-

sweep respectively to find and decode all non-scanned code pieces in the binary.

2.6 Malware Clustering

The increasing number of new malware samples and variants requires further

automated approaches and efficient data mining techniques. Data mining is the process

of analyzing data based on different criteria and turning it into meaningful information.

The overall goal of the data mining process is to extract information from a data set and

transform it into an understandable structure for further use. Automated data mining

methods have been increasingly employed for data analysis in many application domains

as datasets have expanded in complexity and size. One of the primary data mining tasks

is clustering which is intended to help a user discover and understand the natural

structure or grouping in a dataset (Kailing, Kriegel, & Kröger, 2007).

Clustering aims at summarizing objects in a dataset in a manner which ensures

grouping similar elements and distinguishing dissimilar ones (Assent, Krieger, Muller,

& Seidl, 2007). Many clustering approaches have been implemented in different

disciplines such as bioinformatics, astronomy, physics, business management and

marketing. Recently, advances in data collection and management have led to large

amounts of data being collected, giving rise to datasets with a high number of attributes

(Sim, Gopalkrishnan, Zimek, & Cong, 2013).

One of the important application domains that requires improved data mining

techniques is malware analysis. Malware analysis aims to identify behavior of a malware

by performing a structured and scalable procedures such as classification and clustering.

Classification is known as supervised learning technique in terms of data mining.

Classification tries to determine the class of an object by retrieving information from

already labeled or classified objects. Clustering, on the other hand, is an unsupervised

learning method which aims to find and group similar objects in a set of objects without

a need of predefined classes.

 In malware analysis, malware clustering refers to group malware samples by

using the features extracted by static or dynamic analysis methods. Considering the

rapidly increasing malware types and variants, clustering helps in creating malware

classes which will be used as reference classes for the classification process. In other

words, clustering malware samples gives a starting point or ground truth for supervised

learning techniques in malware analysis.

10

2.7 Related Studies

Many automation methods for clustering and classification of malware variants

have been proposed to deal with the increasing number of malware threats. Some of

them related to our study are summarized under this header.

In the study conducted in 2008, the authors proposed a classification approach

that is based on static analysis using Ida tool (Tian, Batten, & Versteeg, 2008). They

aimed to use the functions as the basis of a classification system for malware. They used

two aspects of these functions: one is the length of the function as measured by the

number of bytes of code in it; the other is the frequency with which function lengths

occur within any sample of malware. They showed that these two features are significant

together to classify malware variants. Secondly, function length information is unlikely

to be an effective input for classifying some other types of malware, such as viruses,

where the malicious code is difficult to extract.

A malware classification method based on string information of malware

binaries was proposed in this article (Tian R. , Batten, Islam, & Versteeg, 2009). The

first step is to unpack malware samples to deliver them to Ida tool for disassembling.

Then the disassembly analysis is exported to a database for the next step which is

classification. Information describing the printable strings contained in each sample

becomes the input to various classification algorithms, including tree-based classifiers, a

nearest neighbor algorithm, statistical algorithms and AdaBoost. The achieved

classification results indicate a correct classification accuracy of 97% in the study.

Han, et al proposed an approach to analyze and classify malware instances (Han,

Kang, & Im, 2011). They designed a binary comparison method based on instruction

frequencies of malware code. They rely on the assumption that malware variants share

similar instruction sequences. They asserted that malware structures are different from

normal programs and this decrease the false positives in detection rates. Their results

showed the method can be effectively used to distinguish malware from benign program,

but not to effectively classify malware variants into malware families.

In his dissertation, Hu proposed a combination of four systems to deal with a

large-scale malware analysis and clustering (Hu, 2011). The first system is called SMIT

which is designed to check the similarity of malware instances based on the malware's

function call graphs. SMIT uses static analysis to extract function call graphs from

malwares. Secondly, the dissertation develops an automatic malware clustering system

called MutantX. MutantX uses prototype-based standard agglomerative hierarchical

clustering which allows malware analysts to focus on representative samples from each

cluster and automatically generate labels for unknown samples based on their

association with existing groups. Third, the author introduces a malware signature-

generation system, called Hancock, that automatically creates string signatures of

malwares. Finally, the dissertation proposes a system called DUET, that optimally

integrates malware clusterings based on both static features and dynamic behaviors.

11

Zhong et al, aimed to improve runtime performance of malware analysis in their

study (Zhong, Yamaki, & Takakura, 2012). In their proposal, they compare and classify

malware instances based on their static function features. They first analyzed known

malware families and created a signature database. After building the database, unknown

malware samples are analyzed with the static analysis method to extract their features

and compare them with the samples in the database. Although the result of the study

does not reflect high classification accuracy, it improves the similarity calculation

runtime.

Cesare et al, proposed a classification approach that is based on static analysis

(Cesare, Xiang, & Zhou, 2013). Their method uses control flow graphs to identify

malware instances. They first run their system on known malware families to build the

malware control flow graph database. To classify new unknown malware samples, their

control flow graphs are extracted and compared with the known graphs in the database.

Edit distance method was used for the similarity comparison of control flow graphs.

Their system showed a good accuracy but since the graph edit distance was used, the

method would be so expensive in terms of runtime for large scale malware sets.

In his thesis study, Awad proposed that the structured control flow can be used as

the invariant feature to automatically cluster malware variants (Awad, 2014). He used

several tools and algorithms to automatically cluster malware samples. In his method,

the malware instances of the sample were first analyzed by the FX tool to generate the

structured control flow regex strings of their individual local functions. Then these

generated regex strings are sent to the clustering tool. After generating the initial

clusters, the local functions of the malware instances were mapped back to the malware

instance they belong to, and the number of shared functions that have similar structured

control flows was calculated between all pairs of malware instances in the sample set.

The percentage of the shared functions determines clusters of the actual malware

samples.

Arefkhani and Soryani introduce a pre-clustering method based on static analysis

to categorize the huge number of malwares to an extremely smaller number of clusters

in their paper (Arefkhani & Soryani, 2015). Their clustering method is based on image

processing techniques. The idea is that the system converts the raw bytes of a Malware

to a vector and then resize and reshape this vector to a two-dimensional vector that is

considered as an image. Then image processing methods are applied to this image to

extract textures. Visual similarities between malwares give an idea about their families.

In the study, they used image processing Local Sensitive Hashing which does not need

any comparison and hash values can be interpreted as cluster IDs. They tested their

method with two data sets in order to show clustering accuracy and performance.

Singh and Khurmi focused on clustering large number of malware samples in a

fast way in their article (Singh & Khurmi, 2016). According to the study, a malware file

is a binary file composed of different byte values ranging from 0-255. Reading a binary

file, byte by byte, the count of each byte value can be calculated, and it gives byte

frequency of a malware file. These byte frequency vectors, uniquely identify each

12

malware sample like MD5 and CRC32 checksum, are then used for clustering. They

asserted that their system has three contributions. Firstly, it uses the important parts of

binary files, i.e., it only uses data from code section of a binary instead of dealing with

the whole content. Secondly, the proposed method uses entropy as index which makes it

fast and scalable since it compares only those cluster strings which have same index.

Lastly, they evaluated the proposed system on real world malware samples and achieved

0.92 precision and 0.96 recall.

Chanderan and Abdullah proposed a method for clustering malware behaviors

with discovering unknown variants of malware in an efficient manner in their paper

(Abdullah & Chanderan, 2017). They used the hierarchical density-based algorithm

(HDBSCAN) which has several capabilities such as automatic calculation of cluster

count, ability to handle clusters of different density and shapes, ability to handle noise

and outliers. They used dynamic analysis to generate reports from malwares. The idea is

that the features and values are selected and abstracted from the reports. The system

creates fix-length tokens which refer to as w-shingling, an overlapping word-based n-

gram. The behavioral sequence pattern is designed in such a way that it will implicitly

capture the program semantic. The report can then be embedded into a vector space. The

Jaccard distance is used as distance metric to measure the similarities between reports,

and to apply the metrics for clustering.

In his thesis study, Spizler investigated the applicability of the Lempel-Ziv

Jaccard Distance (LZJD), a recently introduced similarity metric on arbitrary binaries,

for hierarchical clustering (Spizler, 2018). He performed experiments with three separate

datasets and analyze cluster quality from a hierarchical density-based clustering

algorithm. He found that LZJD does not perform well with hierarchical clustering and

does not result in well separated clusters. He proposed a new method called Partitioned

Lempel-Ziv Jaccard Distance, but it underperforms LZJD, with decreasing accuracy and

higher uncertainty as the number of partitions increase.

 Similar to these studies, we designed and implemented a system by combining a

set of methods in order to contribute to the solution for malware clustering accuracy and

runtime problem. We use function call graphs of malware samples as a similarity metric

which is seen in the studies (Hu, 2011) and (Cesare, Xiang, & Zhou, 2013). Unlike

previous studies, we employ a subspace clustering method to improve runtime

performance of the expensive graph matching algorithms. Secondly, we develop a user

interface which allows analysts to perform flexible and detailed malware clustering

analysis and to navigate through inputs and outputs of the system. Lastly, we performed

clustering tests on real malware sets to observe and verify the accuracy and runtime

performance of our system. The experiment results show that our method improves the

runtime of clustering process without degrading clustering accuracy.

13

3. THE UNDERLYING TOOLS AND ALGORITHMS

 In this chapter, we explain the tools and the algorithms that we used as the

building blocks of our system. The INSCY, DBSCAN and GED algorithms and the IDA

Tool are explained in detailed in this chapter. We designed a malware clustering system

prototype composed of three functions which are binary feature extraction, subspace

clustering and graph matching.

Our system uses the INSCY and DBSCAN algorithms together to identify and

index supspace clusters in a malware set based on the static features obtained from each

sample in the set. Secondly, the system runs a graph matching algorithm on the subspace

clusters that are generated in the initial clustering process to create the final clustering.

This second process uses the GED algorithm to measure the distance between malware

pairs. The last piece is the Ida pro tool which is a disassembler used to extract the

information from the malware set.

3.1 The INSCY Algorithm

 Subspace clustering aims to find all clusters in all subspace projections. One of

the challenges of mining all subspaces is that the number of subspace projections

increases exponentially as the dimensionality of the space increases. This "curse of

dimensionality" crucially affects the efficiency of finding subspace clusters. Finding all

possible clusters within a high dimensional space is an unfeasibly expensive task. The

second problem in subspace clustering is that many redundant clusters may be generated

in the high dimensional object space. Clusters which appears in different subspaces are

often redundant, and may contain essentially the same information as the maximal high

dimensional one (Müller, Assent, & Seidl, 2009). Figure 1 illustrates this problem. In

this 2-dimensional space, C1 and C2 are one dimensional cluster whereas the C3 is a 2-

dimensional cluster. C3 contains the information that C1 and C2 provide. To increase

the quality of the resulting clustering, excessive numbers of redundant clusters must be

pruned. In addition, the higher dimensional projections should be given greater

importance instead of less informative lower dimensional projections.

14

Figure 1: Projections in dimension 1 and 2

 The INSCY (INdexing Subspace Clusters with in-process-removal of

redundancY) algorithm uses a depth-first approach to address the previously described

challenges. This strategy has two key advantages: First, because the maximal high

dimensional projection is evaluated first, the algorithm is able to immediately prune all

its redundant low dimensional projections and this leads to major efficiency gains

(Assent et al, 2008). INSCY algorithm has an in-process redundancy pruning function

which can prune lower redundant subspace projections immediately whenever higher

dimensional subspace clusters are identified. Thus, costly density-based clustering

computations are done only for the maximal high dimensional subspace projections. The

breadth-first search algorithm, in contrast, starts mining from the lowest dimensional

subspace projections. Since the higher dimensional subspace projections would be

processed at the end of such an analysis, redundancy pruning could only be performed

after all the subspace projections had been mined, but this would be too late in terms of

computational time complexity. The breadth-first search approach would result in

extremely large result sizes that would be filled with redundant clusters and that would

have to be pruned and this would imply very high runtimes.

 The second advantage of the INSCY algorithm is that potential subspace cluster

regions can be indexed by using its index structure, namely the SCY-tree. The complete

space can be turned into a SCY-tree data structure with only a single database scan. This

provides an efficient way to perform clustering quickly. The SCY-Tree also supports

top-down query of arbitrary subspaces without having to mine their lower dimensional

projections. Indexing subspace clusters in a breadth-first manner, in contrast, would

require building index structures for each of the exponentially many subspace

combinations, which is clearly not feasible (Assent et al., 2008).

15

3.1.1.1 The SCY-Tree Structure

 In the INSCY algorithm, all subspace regions are indexed by using the SCY-tree

data structure, so that any subspace region can be queried without costly neighborhood

computations. Figure 2 illustrates a SCY-tree which represents a 3-dimensional space.

Each level represents a dimension and is divided into intervals to identify different

segments of that dimension in the original space. In our example, there are three

intervals in each of the three dimensions. Each sub region is described with at least one

path which starts from the root node of the SCY-tree and ends at a leaf node. Leaf nodes

of the paths store the count of objects which reside within the sub regions associated

with the paths. Multiple paths can represent a sub region. In this case, the count of

objects in the sub region is calculated by summing all leaf counts of associated paths.

 Nodes are the building blocks of the SCY-tree, which is organized in a

hierarchical manner. The main fields of each node in the SCY-tree are: a descriptor and

a count value. A descriptor is composed of an integer dimension d and an interval

number i within that dimension and expressed with the pair (d, i). The nodes of a SCY-

tree are ordered based on their descriptors. When a specific subspace region is to be

found for analysis, the related SCY-tree is restricted by using the corresponding

descriptors. Once the restriction process is done, density of the subspace is evaluated

according to the count of objects within that specific region and the geometric value of

the region.

Figure 2: SCY-tree representing a three-dimensional space

Definition 1: SCY-Tree Structure

"A SCY-Tree TD represents a region D = {(d1,i1),...,(dk,ik)} in an arbitrary subspace. The

SCY-tree consists of nodes, each of which stores:

• a descriptor (d, i) for integer dimension d and interval number i of the region,

and the count of c of objects within it

16

• a pointer to the parent node and a list of child pointers to child nodes

• a pointer of a linked list of nodes with the same descriptor " (Assent I. , Krieger,

Müller, & Seidl, 2008).

 A two-dimensional projection of the three-dimensional space is seen in Figure 3-

a. The colored sub region in the two-dimensional projection is represented with the

colored paths in the SCY-Tree. When a sub region is to be located for cluster analysis,

the SCY-tree is restricted by using the corresponding descriptors. In Figure 3-b, the

restricted tree which represents all objects residing in segment 2 in dimension 1 has been

depicted. The restricted tree consists of three paths, because in this region, all objects are

in the interval numbers 1,2 and 3 of dimension two and three. The general idea is that

one can restrict a region to a subset of its dimensions by restricting the corresponding

SCY-tree representing this region (Assent et al., 2008).

Figure 3: Two-dimensional projection

 Between each of the cells in the Figure 3-a, a special ε width region is included

called S-connector to ensure that density-based clusters which span across multiple

regions can be found. S-connectors are set up at the upper border of each region. If there

is at least one point inside of an S-connector, the neighbor regions are merged. For

example, in the colored part of Figure 4-a, the red point which resides in the S-connector

of the interval 3 in dimension 1. The two neighboring regions (interval 1 and interval 2

of dimension 1) are merged into a single region so that the density-based cluster

spreading across the two regions can be found. S-connectors must act as sensors for

detecting clusters that span across multiple regions.

17

 While a space is being converted into a SCY-tree, S-connectors are represented

as nodes that are missing a count value. In Figure 4-b, we can see a S-connector node,

the red round node. If a path contains an S-connector node, this fact indicates that the

two neighboring S-connected regions should be merged to obtain an aggregated cluster

as shown in Figure 4-a. For multiple regions, this merging operation on neighboring

SCY-trees can be done iteratively until no further object is contained in any surrounding

ε region (Assent et al., 2008).

Figure 4: S-connected region in a two-dimensional projection

 Using SCY-tree data structure when clustering objects has advantages over grid-

based clustering algorithms. Grid based algorithms may lose clusters due to grid

resolution and offsets. Clusters spreading over multiple grids or regions are clusters that

spread across multiple regions are cut apart artificially in grid-based algorithms. This

adversely affects the cluster quality. In the INSCY algorithm, on the other hand, all

border regions that house points are indexed by S-connectors in the SCY-tree. This

indexing allows the INSCY algorithm to find clusters without loss of accuracy.

Essentially, the SCY-tree approach exhibits better efficiency than grid-based algorithms

while avoiding the loss of quality (Müller et al., 2009).

3.1.1.2 The Algorithm

 Once the SCY-tree has been constructed with a single database scan, the INSCY

algorithm mines clusters by reading the SCY-tree to avoid additional expensive database

18

scans. By recursively restricting the subspaces in a depth-first fashion, maximal high

dimensional subspace clusters can be quickly detected. Redundant clusters in the lower

dimensional subspace projections can be pruned during the step back phase of recursive

cluster mining. As seen in Algorithm 1, INSCY takes a SCY-tree and an empty list as

initial inputs. It, then recursively calls restriction and pruning functions to mine the

clusters.

Algorithm 1: INSCY (SCY-tree, result)

"foreach descriptor in scy-tree do

 restricted-tree := restrict(scy-tree, descriptor);

 restricted-tree := mergeWithNeighbors(restricted-tree);

 pruneRecursion(restricted-tree); //prune sparse regions

 INSCY(restricted-tree,result); //depth-first via recursion

 pruneRedundancy(restricted-tree); //in-process-removal

 result := DBClustering(restricted-tree) ∪ result; " (Assent I. , Krieger, Müller,

& Seidl, 2008).

3.1.1.2.1 Restricting SCY-trees; Searching different subspaces

 In the previous section, we defined descriptors (d,i) which are used to specify a

region of a space. Within each descriptor, 'd' represents the integer dimension, and 'i'

represents an interval number. Any level of descriptors can be selected to be used in the

restriction of the SCY-tree. Restriction means that only a specific sub region is evaluated

for possible clusters. The INSCY algorithm restricts the SCY-tree by considering all

descriptors in order and detecting subspace clusters in all possible combinations of

dimensions.

 In Figure 5-a we see the SCY-tree representation of a three-dimensional space.

To obtain a one-dimensional projection of the space in the interval 3 of dimension 1, we

need to add up object counts within the nodes which lie in the region whose descriptor is

(1,3). These nodes are shown in blue circles in Figure 5-a. The restriction of the SCY-

tree results in the paths from the blue circled nodes to the root node which are copied

into the restricted SCY-tree T{(1,3)} and labeled with the counts within those nodes. The

result of this restriction process is the restricted SCY-tree shown in Figure 5-b. The

paths that aren't related to the descriptor (1,3) are pruned.

 This sort of restriction process can be performed recursively. When a second

restriction is performed to the restricted SCY-tree T{(1,3)}, a two dimensional projection

is obtained, as seen in Figure 5-c. In this example, the SCY-tree is restricted by

descriptor (2,3) to get a sub region. The resulting SCY-tree T{(1,3)×(2,3)} has only one path

and contains a single node. The output of the second restriction shows that there are 5

objects within interval number 2 of dimension 3.

19

Figure 5: SCY-tree restriction process

 We can also observe the restriction process on a three-dimensional space. Figure

6-a depicts an example of a three-dimensional space. Each dimension is equally divided

into 5 intervals as opposed to 3 intervals in the previous example. The colored

rectangular columns specify two-dimensional sub regions which are obtained by two

successive restrictions. For example, the blue column is defined in terms of descriptors

(1,5) and (2,5). The yellow column is defined by descriptors (1,4) and (2,3). When all

points in the space are projected to the sub region that is the intersection of dimension 1

and 2, we obtain the two-dimensional projections shown in Figure 6-b. Then, density-

based clustering analysis can be performed on these projections of subspace regions.

Figure 6: Two dimensional projections

 If another second restriction is applied to the sub regions seen in Figure 6-a,

maximal high dimensional subspaces are obtained for this space as shown in Figure 7.

For example, the blue cube which represents a three dimensional projection that is in the

5th interval in all dimensions, and can be expressed with SCY-tree T{(1,5)×(2,5)×(3,5)}. In

other words, the blue region can be obtained by restricting the space using the

descriptors (1,5), (2,5) and (3,5). If the threshold value for clustering is set to 5 for

instance, then there will be four three dimensional regions which have enough points to

20

be classified as clusters. These four regions are colored red, yellow, green and blue in

Figure 7.

Figure 7: Three-dimensional projection

 As recursive calls to INSCY consider successively high dimensional subspaces

with recursive calls, the regions being considered become volumetrically smaller. Thus,

if any projection does not have enough points in it, further restrictions could only result

in low counts that would also not pass the threshold required to be classified as a cluster.

Consequently, such spare regions can be safely pruned from the search tree when they

are first discovered. The threshold value for a region to be classified as a cluster is

denoted as minPoints parameter in the INSCY algorithm.

3.1.1.2.2 Merging SCY-trees; Growing S-connected regions

 As we mentioned in the previous section, merging sub regions allows the

algorithm to find clusters that span multiple sub regions. Figure 10 depicts how this

merging is performed using the SCY-tree by the INSCY algorithm. Merging of S-

connected restricted SCY-trees requires simply inserting all paths of one tree into the

other and aggregating the count values which a lie along common paths, possibly

inserting new nodes (Assent I. , Krieger, Müller, & Seidl, 2008). S-connected regions

are coded as special paths in the SCY-tree. For example, in Figure 8, the path with blue

node represents a S-connected region in dimension 2.

 When the tree is restricted with descriptor (2,1), the restricted SCY-tree

T{(1,3)×(2,1)} is obtained as shown in Figure 8-b1. Similarly, the restricted SCY-tree

T{(1,3)×(2,2)} shown in Figure 8-b2 can be obtained by restricting the tree with descriptor

21

(2,2). The total count of objects in the SCY-trees are 5 and 6 respectively. The two SCY-

trees are merged into the SCY-tree T{(1,3)×(2,1−2)} that represents both intervals in

dimension 2. This is depicted in Figure 8-c. Note that the merged tree has enough

objects to induce further restrictions.

Figure 8: SCY-Tree merging process

 We can also give an example of the merging using the three-dimensional S-

connected neighboring regions in Figure 7. The yellow and green cubes are the maximal

neighboring projections. Even if there is only one point at the border surface of these

two cubes, the INSCY algorithm merges them into a single subspace so that it can find

the true cluster which spans the two cubes. Let’s assume the yellow sub region is not

dense enough to have clusters in it. If the two sub regions were not merged, the system

would have failed to detect the true cluster which spans both regions. Merging

neighboring sub regions using S-connectors can provide better clustering quality.

3.1.1.2.3 Clustering; Mining actual subspace clusters

 In this phase, the density-based clustering is carried out on the restricted SCY-

tree. The actual data is accessed to identify neighborhoods and to check conditions

necessary to determine that a cluster exists in this step (Assent I. , Krieger, Müller, &

Seidl, 2008). For instance, if the SCY-tree in Figure 8-c is restricted, there is a merging

of regions in dimension 3. The resulting SCY-tree is T{(1,3)×(2,1−2)×(3,2−3)} and has a count

of 11. Since the region is a maximal subspace projection, no further restrictions can be

applied to the SCY-tree. Therefore, we have reached the terminal restriction and density-

based clustering can be performed on the region (1,3)×(2,1−2)×(3,2−3).

22

3.1.1.2.4 Redundancy pruning; In-process removal

 In-process-removal of redundant clusters is an important feature that makes the

INSCY algorithm efficient in finding non-redundant maximal clusters. Due to the depth-

first mining approach of the INSCY algorithm, maximal high dimensional clusters are

added to the result set first. Over time, lower dimensional projections are analyzed for

possible clusters. The algorithm decides whether to add lower dimensional clusters in

the result set or discard them based on a redundancy parameter R. In Figure 10, one of

the maximal high dimensional projections of the SCY-tree is T{(1,3)x(2,1-2)x(3,2-3)}. This

projection has 11 objects which exceed the value of the minPoint (the minPoint is set to

6 in this example). The minPoint parameter is used by DBSCAN algorithm and specifies

the minimum object count necessary to form a cluster. Let's assume that a cluster has

been found in this projection after the density-based clustering algorithm runs. If this

were so, the cluster would be added to the result set as a maximal high dimensional

cluster. In the next step, INSCY steps back and analyzes the lower dimensional

projection T{(1,3)x(2,1-2)}. This region has the same 11 objects in it, and for this reason will

not be added to the result set because there is already a higher dimensional cluster that

has been discovered, and accounts for the same set of objects.

3.1.1.2.5 Arbitrary restrictions; Detecting all subspace clusters

 All possible combinations of dimensions of a clustering space are mined by the

INSCY algorithm. As the dimension count of a clustering space increases, the total

number of possible projections in that space increases exponentially. Because the main

purpose of the INSCY algorithm is to find clusters in all possible projections, in-

process-pruning has an important role. For example, in the previous example, a cluster

found in a maximal high dimensional projection T{(1,3)x(2,1-2)x(3,2-3)} is added to the results

set. When the algorithm steps back in the recursion, the lower dimensional projection

T{(1,3)x(2,1-2)} which is described with just dimension 1 and 2 is processed. However, the

lower dimensional cluster is unable to pass the redundancy check and is pruned.

Similarly, all possible combinations of the lower dimensional projections are processed,

and a redundancy check is performed for all lower dimensional projections. When a

lower dimensional projection passes the redundancy check, the density-based clustering

is performed for that projection. In this way, the result set contains clusters from the

maximal high dimensional projections and non-redundant lower dimensional

projections.

3.1.2 The DBSCAN Algorithm

 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a

clustering algorithm proposed by Ester et al (Ester, Kriegel, Sander, & Xu, 1996). By

23

using density distribution of objects in a database, DBSCAN can categorize these

objects into separate clusters. DBSCAN takes only two parameters and finds arbitrarily

shaped clusters as seen in Figure 9. Another advantage of the algorithm is that it uses the

notion of 'noise' for the detecting of outlier objects. The algorithm is based on six

definitions and two lemmas.

Figure 9: Arbitrary shaped clusters

3.1.2.1 Essential Definitions

 The main idea of the algorithm is that for each point in a cluster, a neighborhood

of given radius must contain at least a minimum number of points, that is, the density in

a neighborhood must exceed some threshold. To calculate the distance between two

points, any distance function can be used (e.g. Euclidian and Manhattan distance

measures). The notion of the "Eps-neighborhood of a point" is described in definition 1.

"Definition 1: (Eps-neighborhood of a point)

The Eps-neighborhood of a point p, denoted by NEps(p), is defined by

NEps(p) = {q ∈ D | dist(p,q) ≤ Eps}" (Ester, Kriegel, Sander, & Xu, 1996).

 Clusters contain two types of points which are the core points and the border

points as shown in Figure 10-a. In general, core points have more neighboring points

within their Eps-neighborhood than do the border points. The algorithm requires that for

every point p in a cluster C, there is a point q in C so that p is in the Eps-neighborhood

of q and NEps(q) contains at least MinPts points.

24

"Definition 2: (directly density-reachable)

A point p is directly density-reachable from a point q with respect to (Eps, MinPts) if

1) p ∈ NEps(q) and

2) |NEps(q)| ≥ MinPts (core point condition) " (Ester, Kriegel, Sander, & Xu, 1996).

Figure 10: Density-reachable of points

 For the core point pairs, directly density-reachable is a symmetric relation

whereas it the relation is not symmetric for the pairs composed of one core point and one

border point. For instance, point p is directly density-reachable from point q as depicted

in Figure 10-a, but the reverse is not true, because point p doesn't meet the second

condition of definition 2. Density-reachable (which is defined with Definition 3) is

basically an extension of the directly density-reachable.

"Definition 3: (density-reachable)

 A point p is density-reachable from a point q with respect to (Eps, MinPts) if

there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly density-

reachable from pi" (Ester, Kriegel, Sander, & Xu, 1996).

 Figure 10-b depicts an example of density-reachability. Point p is density-

reachable from point q, but not vice versa. Two border points of a cluster may not be

density-reachable from each other. The density-connectivity notion is introduced in

Definition 4 to express the relation of density-reachable between border points.

"Definition 4: (density-connected)

 A point p is density-connected to a point q with respect to (Eps, MinPts) if there

is a point ‘o’ such that both, p and q are density-reachable from o with respect to (Eps,

MinPts) " (Ester, Kriegel, Sander, & Xu, 1996).

 Density-connectivity is a symmetric relation. As seen in Figure 11, points p and

q are density-connected to each other by point o.

25

Figure 11: Density-connectivity of points

 A cluster can be defined based on the previous definitions. Condition 1 of

definition 5 specifies that if a point p belongs to a cluster C and point q is density-

reachable from point p with respect to a given (Eps, MinPts), then q also belongs to

cluster C. The second condition expresses that each pair of points within a cluster are

density-connected to each other.

"Definition 5: (cluster)

 Let D be a database of points. A cluster C with respect to (Eps, MinPts) is a non-

empty subset of D satisfying the following conditions:

1) ∀ p, q: if p ∈ C and q is density-reachable from p with respect to (Eps, MinPts), then

 q ∈ C. (Maximality)

2) ∀ p, q ∈ C: p is density-connected to q with respect to (Eps, MinPts). (Connectivity) "

(Ester, Kriegel, Sander, & Xu, 1996).

 The red point in Figure 11 is an example of a noise which is the group of points

in database D which did not placed to any cluster.

"Definition 6: (noise)

 Let C1 ,. . ., Ck be the clusters of the database D with respect to parameters (Epsi

, MinPtsi), i = 1, . . ., k. Then we define the noise as the set of points in the database D

not belonging to any cluster Ci , i.e. noise = {p ∈ D | ∀ i: p ∉ Ci}" (Ester, Kriegel,

Sander, & Xu, 1996).

 To validate the algorithm, the following two lemmas were presented by its

developers. The first lemma specifies that an arbitrary point which meets the second

condition of definition 2 with respect to a given (Eps, MinPts) should be found first.

Then, the second lemma basically says that all points density-reachable from that seed

can be retrieved.

"Lemma 1:

 Let p be a point in D and |NEps(p)| ≥ MinPts. Then the set O = {o | o ∈ D and o is

density-reachable from p wrt. (Eps, MinPts) } is a cluster with respect to (Eps, MinPts)

26

Lemma 2:

 Let C be a cluster wrt. (Eps, MinPts) and let p be any point in C with |NEps(p)| ≥

MinPts. Then C equals to the set O = {o | o is density-reachable from p with respect to

(Eps, MinPts) }" (Ester, Kriegel, Sander, & Xu, 1996).

3.1.2.2 The Algorithm

 The DBSCAN algorithm takes two arguments, namely epsilon and minimum

points. It begins with choosing an arbitrary point from the dataset to be clustered. The

regionQuery function returns the eps-neighborhood of the selected point. If the point has

enough neighboring points within its Eps-neighborhood, it creates a new cluster. If not,

the point is marked as noise. However, this point might be placed in a cluster later on, if

it is density-reachable from some other point in the dataset.

 The expandCluster function finds all density-reachable points from the seed

point which was chosen in the first step. Once the density-connected cluster has been

enumerated fully, the algorithm chooses another point which is unvisited before to find

next possible cluster. These steps are repeated until all density-based clusters have been

found in the database.

Algorithm 2: DBSCAN (D, eps, MinPts)

" C = 0

 for each unvisited point P in dataset D

 mark P as visited

 NeighborPts = regionQuery(P, Eps)

 if sizeof(NeighborPts) < MinPts

 mark P as NOISE

 else

 C = next cluster

 expandCluster(P, NeighborPts, C, eps, MinPts)

expandCluster(P, NeighborPts, C, eps, MinPts)

 add P to cluster C

 for each point P' in NeighborPts

 if P' is not visited

 mark P' as visited

 NeighborPts' = regionQuery(P', eps)

 if sizeof(NeighborPts') >= MinPts

 NeighborPts = NeighborPts joined with NeighborPts'

 if P' is not yet member of any cluster

 add P' to cluster C

27

regionQuery(P, eps)

 return all points within P's eps-neighborhood (including P)" (Ester, Kriegel, Sander,

& Xu, 1996).

 The complexity of DBSCAN depends on the point count of a dataset and region

queries performed for each point. This results in an average complexity of O(n * log n).

3.1.3 The Graph Matching

In our study, the last piece of the Malware Analysis System is a graph matching

module which is responsible for computing the graph similarity of malware samples.

The subspace clustering part (second module) generates the subspace clusters using

specific features extracted from malware samples. The graph matching process runs on

each of the resulting subspace cluster to obtain the actual clusters. In the graph matching

phase, malware samples will be compared and clustered based on their function call

graphs.

3.1.3.1 What is a Graph

A graph is a structure composed of vertices and edges which connects the

vertices. Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is

the set of edges, formed by pairs of vertices (Ruohonen, 2013). For example, vertices set

can be shown as V = {v1, ... , v5}, and edges set can be represented as E = {(v4, v3),(v1,

v4),(v2, v4)}. If the elements in the edge set are ordered, then it gives a directed graph. If

there is no order definition between vertices, then it gives an undirected graph as shown

in Figure 12.

Figure 12: Directed and undirected graphs

28

3.1.3.2 Graph Matching Problem

Graph matching refers to the process of finding a structural similarity between

two graphs. Graph matching can give accurate information about graph similarity;

however, runtime complexity is a major problem seen in many graph matching methods.

Various solutions have been proposed to obtain a linear runtime for the matching

process. These methods can be classified under exact and inexact graph matching

headers.

Exact matching between graphs is characterized by the fact that the mapping

between the vertices of the two graphs must be edge-preserving, that is, if two vertices in

the first graph are adjacent, they are mapped to two vertices in the second graph that are

adjacent as well (Livi & Rizzi, 2013). Graph isomorphism, which is an exact matching

method, seeks to find a structure and semantic similarity between two graphs.

Exact graph matching may not be applied, if two graphs have different number

of vertices. It means that no isomorphism can be expected between both graphs, and the

graph matching problem does not consist in searching for the exact way of matching

vertices of a graph with vertices of the other, but in finding the best matching between

them (Bengoetxea, 2002). Besides, exact matching problem is typically NP-complete. At

this point, inexact graph matching methods are proposed to solve this problem.

Two graphs may have a very similar structure except some missing nodes or

edges. In this case, a different method can be used to find mappings between graphs

instead of using exact matching. The most adopted solution is to make the matching

process tolerant in respect to deformations by introducing the concept of matching cost

to penalize structural differences (Carletti, 2016). As the structures of two graphs are

getting dissimilar, the cost of matching increases. This matching cost can be used later

as a similarity parameter for grouping graphs.

3.1.3.3 Graph Edit Distance

Graph edit distance is a flexible graph dissimilarity measure that belongs to the

family of inexact graph matching methods. The graph edit distance (GED) between two

graphs can be defined as the minimum cost required to transform one of the given

graphs into the other (Yan, et al., 2016). In particular, it measures the deformation

between two graphs by considering the cost assigned to the sequence of elementary

graph edit operations needed to transform the first graph in the second one (Carletti,

2016). A graph operation such as inserting or removing a node is the basic

transformation unit performed on a graph, as defined in Definition 1. A transformation is

composed of a set of edit operations sequentially applied to a graph, namely an edit path

P. The cost of the edit path is defined as the sum of all its elementary operation's costs.

An edit path from graph1 to graph2 with minimal cost is called an optimal path.

29

Definition 1. Graph edit operations:

The elementary edit operations generally include the following operations.

• Node/Edge insertion: Introducing a new node/edge to a graph.

• Node/Edge substitution: Changing a label of a given node/edge in a graph.

• Node/Edge deletion: Removing a node/edge from a graph

Figure 13 depicts an example of graph edit operations. Three edit operations

(node addition, edge addition and edge removal) are performed in order to transform the

graph 1 into the graph 2.

Figure 13: Graph transformation by edit operations

Graph edit distance (GED) is the most employed inexact graph matching method

to compute the pairwise similarity of graphs. However, computing the GED is known

NP-complete and a classic method is by means of a tree search procedure that basically

evaluates all possible node-to-node correspondences (Sanfeliu & Fu, 1983). Even

though, the computation complexity of GED is unsuitable for large graphs, several

methods have been offered to make the computation of graph edit distance feasible. One

is called bipartite GED solved by linear assignment. Bipartite GED and its variants

approximate the GED problem by a linear assignment problem, which can be solved

efficiently via e.g. the Hungarian method (Munkres, 1957). These methods approximate

graph structure by a node-to-node cost matrix that encodes local clique structure (Yan, et

al., 2016).

3.1.4 The Dissassembly Tool (IDA Pro)

In a traditional software development model, compilers, assemblers, and linkers

are used to create executable programs. To analyze the internal code structure of

programs, various tools are used to undo the assembly and compilation processes. The

30

purpose of disassembly tools is often to facilitate understanding of internal structures of

programs when source code is unavailable.

Figure 14: Ida pro tool GUI

We used the Ida pro tool (Hex-rays, 2018) to disassemble malware executables

and extract the features necessary for the clustering phase. Since this study aims to deal

with large number of malwares, our system needs to automate the disassembly process

of malware samples. For this purpose, we use a plugin called IDAPython which allows

scripts to run in Ida pro. In addition, Ida pro uses FLIRT signatures to quickly identify

local and statically-linked library functions in executables. FLIRT signatures help Ida

pro automatically rename functions extracted from malware binaries. A screenshot of

the tool’s main page is seen in Figure 14.

31

4. SYSTEM DESIGN AND IMPLEMENTATION

We designed and implemented a malware clustering system which generates

clusters based on the internal structure similarity of malware binary codes. Using

internal structure of a malware as a comparison parameter provides more accurate

clustering results, however, it significantly increases the clustering runtime. To

overcome this issue, feature extraction and clustering methods should be carefully

chosen and implemented. In this study, we aimed to cover both accuracy and runtime

aspects of malware clustering. In this chapter, we present the design of our system, and

explain the functions running in the background. We also introduce the graphical user

interface of the system.

4.1 Design of The System

We designed a malware clustering system prototype composed of three functions

which are binary feature extraction, subspace clustering and graph matching. These

functions are implemented based on the algorithms and tools mentioned in Chapter 3.

The prototype system has a graphical user interface where an analyst can manage

malware clustering process. Figure 15 depicts the system modules and malware

clustering process flow through them.

Figure 15: Malware clustering modules

32

In our study, each malware binary is transformed into a graph which is composed

of nodes and edges. Each function of a malware binary is translated into a node while

the caller-callee relationships between the functions are the edges. Since the relations

between the binary functions have directions, the function call graphs are created as

directed graphs in our implementation. Functions of a binary code can be categorized as

dynamically linked library functions, statically-linked functions and local functions.

Dynamically-linked functions are defined as DLL functions that are linked at runtime

while statically-linked functions refer to the library functions that are statically linked

into the binary code. Lastly, the local functions are specific functions written by

programmers that gives an idea about binaries written with a similar intention. The

nodes forming a graph for a malware are composed of these three types of functions.

 To create function call graphs, we first need to extract all functions and the

relations among them from a binary code by using a suitable disassembler. The

disassembler that we use for this study must have some capabilities. First, it should

allow us to call it programmatically since we intend to analyze a large malware database.

Secondly, we should be able to create and use signatures to identify the functions

extracted from binaries. Since we compare the graphs in the clustering process, we also

need to determine a naming standard for all type of functions.

 To meet these needs, we choose Ida pro (Hex-rays, 2018) disassembler tool

which can classify, extract and label the three types of binary functions. There is an Ida

pro plugin called IDAPython. Since this plugin allows scripts to run in Ida pro, we use it

to automate our malware analysis. Moreover, Ida pro uses Fast Library Identification

and Recognition Technology (FLIRT) signatures which provide rapid identification of

local and statically linked functions in programs. FLIRT signatures help Ida pro

automatically rename functions for the reverse engineering. These features of the Ida

tool allow our system to automatize the function extraction process. For this purpose, we

wrote a python script which calls the disassembler tool to extract necessary information

from malware binaries. Hence, the first module of the system, feature extraction module,

can read binary files from a folder, check and unpack packed binaries, extract function

features and function calls, and write all the extracted information into a database.

The second module of the system is a pre-clustering tool written to improve the

runtime performance of the final grouping which contains expensive graph matching

operations. With an efficient indexing method, we can group the malware variants that

have similar features before the graph matching process is started. For this reason, a

subspace clustering algorithm is employed in this study which can analyze data of high

dimension and categorize it based on object relationships.

In data with many attributes, clusters are often hidden in subspaces of the

attributes and do not show up across a full attribute space (Assent, Krieger, Müller, &

Seidl, 2007). Subspace clustering aims to automatically identify subspaces of the object

space where clusters exist by mining all possible attribute combinations in a scalable

way. In other words, main objective is to find high quality clusters in different subsets of

a dataset in an efficient way. However, clustering a large binary set may generate

33

excessively large number of clusters that significantly increases the runtime of the

analysis. Another issue is that many redundant clusters might be generated in a high

dimensional space. To overcome these drawbacks, we use the INSCY (INdexing

Subspace Clusters with in-process-removal of redundancY) algorithm, proposed in the

article (Assent I. , Krieger, Müller, & Seidl, 2008), that mines subspaces in a depth-first

search manner and employs a density-based clustering approach for the actual

clustering.

INSCY algorithm has two key advantages: First, it uses depth-first searching

with a pruning mechanism for the task of mining sub-regions. In this manner, as the

maximal high dimensional projection is evaluated first, immediate pruning of all its

redundant low dimensional projections leads to major efficiency gains (Assent I. ,

Krieger, Müller, & Seidl, 2008). Secondly, potential subspace cluster regions can be

indexed by using the algorithm's index structure which supports access to arbitrary

subspaces without mining their lower dimensional projections. Thus, costly density-

based clustering computations are performed only for maximal high dimensional

subspace projections.

Our system extracts several binary code features such as file size, stack size,

local function and dll counts, basic block counts and function call counts from binary

files. We define these binary code features as dimensions in our approach so that we can

create a malware binary code space on which the system can run the subspace clustering

process. The subspace clustering algorithm that runs on these dimensions generates

clustering results that helps in guiding malware analysis. This clustering approach can

provide meaningful information relevant to an analysis, especially in cases where

investigators are able to focus only on binaries within a small number of clusters that are

based on binary code features.

When the initial clustering is completed, the resulting set of clusters gives a

general idea about different classes of binary codes based on binary code attributes. The

last piece of our malware clustering system is a graph matching module which is

responsible for computing the graph similarity of malware samples. The subspace

clustering module generates clusters by comparing and evaluating the specific features

of the malware binaries. The graph matching process runs on each of the resulting

subspace cluster to obtain the actual clusters. In the graph matching phase, malware

samples are compared and clustered based on their function call graphs.

 Various algorithms and methods have been implemented for matching different

graph types. The common problem of these methods is that the computational cost of

matching graphs is very high. We implemented the generic graph edit distance algorithm

to compare and verify runtime and grouping performance of the algorithms.

 We run the system over a set of malware binaries that we collected from various

web resources to verify the contributions of our system. In chapter 5, we present the

experiment results including clustering accuracy and runtime performance values.

34

4.2 Implementation of The System

The components of the system were designed and implemented to perform the

processes explained in the system design section based on the algorithms introduced in

Chapter 3. The system components and the functions of these components are presented

in this section.

4.2.1 The System Components

 The system has three components, depicted in Figure 16, to be able to perform

the tasks necessary for the clustering of a malware set. The Malware Clustering program

is the first and the main component of the system since it provides a graphical user

interface for managing the feature extraction and clustering processes. By using this user

interface, an analyst can start the clustering on a malware set, and examine the generated

cluster results. The INSCY, DBSCAN and GED algotihms, used for generating clusters,

are also implemented as parts of this first component. After the clustering process is

completed, the system displays the clusters on the graphical user interface to allow

further examination of the clustering results.

Figure 16: The system components

As we mentioned in Section 4.1, a set of features which are used in the clustering

phase should be extracted from malware binary samples prior to the clustering process

initialization. The clustering space is formed based on these features. For this purpose,

the Malware Clustering Program calls the Feature Extractor script which is the second

component written in python. Malware binary paths and the list of features to be

extracted from the selected malware set are sent as an argument to the script by the

35

program. The binary code features extracted by the script are stored in the database. The

second task of the Feature Extractor script is to extract all static and dynamic functions

and call relations among them. The system creates a function call graph for each

malware binary based on its function call relations. The clustering module of the system

uses these function call graphs, which are the representations of the malware binaries, to

generate malware clusters.

4.2.2 The System Functions

 The system generate clusters from a malware set in three steps which are feature

extraction, subspace clustering and graph matching.

4.2.2.1 The Feature Extraction Function

 To cluster malware samples using a subspace clustering method, we need to

construct a clustering space where the malware samples reside. The first information we

need to create the space is the dimensionality of the space. The dimensions and the

intervals of the dimensions that will form a space should be determined according to the

features of the malware binary codes to be clustered. In our system, malware samples

are the objects that will be located in the space. Therefore, we use binary code features

as the dimensions of the space. These features are binary size, local function count, local

function calls count, dll count, dll calls count, basic block count and basic block edge

count. In this study, we only deal with the continuous features of the malware binaries.

 When we determine the dimensionality of the space, we need to obtain binary

code features from the malware set. The features of a binary code gives us the

coordinates of that binary in the clustering space. To do this, we use the Feature

Extractor script that scrape malware binary codes for their features. The system reads the

features of each binary code in the set and stores them into the database. The subspace

clustering module of the system then cluster binaries according to their coordinates in

the space. The second task of the Feature Extractor is to extract all call relations among

local, static and dynamic functions from malware binaries and to turn these relations into

graphs which will be used as malware signatures in the graph matching phase.

We implemented the Feature Extraction script in python. As seen in the pseudo

code 1 there are two main functions which are the extract_function_calls and the

extract_dll_calls. These two funtions scan all the functions in the given binary code and

find function references to build the call graphs. The other four routines were written as

helper funtions.

36

Pseudo Code 1: Feature Extraction

Main(Binary File)

 call extract_function_calls(Binary File) function;

 call extract_DLL_calls(Binary File) function;

write_to_database(allLocalFunctions, functionCalls, functionFeatures,

allDllFuctionIds, allDllFunctions, importXrefs);

extract_function_calls(Binary File)

 foreach of the function in the Binary file

 foreach of the instruction in the function

 add instruction to the instruction set

 take_MD5_hash(instruction set)

 take_MD5_hash(function)

 get_basic_block_info (function)

 return allLocalFunctions, functionCalls, functionFeatures;

extract_DLL_calls(Binary File)

 foreach of the dll in the imported dll set in the Binary file

 get all functions that call the dll

 add the functions and the dll into the importXrefs map

return allDllFuctionIds, allDllFunctions, importXrefs;

take_MD5_hash(string)

 return hash value of the string;

get_stack_size(function)

 return stack size of the function;

get_basic_block_info (function)

 return total basic block number and basic block edge number;

write_to_database(info)

 write info to the database;

4.2.2.2 The Subspace Clustering Function

After the dimensions of the space is determined and the database is populated

with the binary code coordinates, the Subspace Clustering module steps in and initializes

the clustering process. The system employs two clustering techniques, INSCY and

DBSCAN, to mine density-based clusters in the sub regions of a clustering space. The

37

mining process starts with two user inputs: the redundancy index and the epsilon value

which are two crucial parameters for the clustering. The redundancy index is used by the

INCSY algorithm as the rate of allowed lower dimensional clusters which are similar to

higher level clusters. In other words, lower dimensional clusters appear on the result set

depending on the redundancy index. With the smaller index values more redundant

clusters are generated. The epsilon used by DBSCAN determines the distance between

points (in our case between binaries) which form a cluster. So, with the smaller epsilon

values, clusters are composed of points that are close to each other. As the epsilon value

increases, more dissimilar points will be in the same cluster.

The INSCY algorithm searches for the maximal high dimensional sub regions

that contain a certain number of objects. Hence, it determines the sub regions that might

include density-based clusters. This algorithm can scan all possible subregions in the

space. However, mining a high dimensional space requires excessive effort. To improve

the mining performance, the INSCY algorithm uses an in-process redundancy pruning

approach that allows the algorithm to prune less informative lower dimensional subspace

regions without performing cluster analysis. In this manner, it aims to reduce the runtime

for mining clusters.

 When the INSCY algorithm finds a subspace region that has an object count

above a given threshold, the DBSCAN algorithm is called to find possible density-based

clusters in that subregion. A list of clusters is the output of the DBSCAN algorithm. All

clusters are written to the database and displayed via the graphical user interface.

4.2.2.3 The Graph Matching Function

The third function of the system is used to create clusters based on function call

graphs of malware binary codes. Even though comparing graphs negatively affects the

clustering runtime, using internal structures of malware binary codes as the similarity

metric improves accuracy of the system’s clustering process. For this purpose, a graph

similarity comparison mechanism was added to the system to be able to get a better

clustering accuracy. The graph matching module of the system employs the graph edit

distance method to compare all malware binary pairs reside in a cluster generated by the

subspace clustering process.

 A basic graph edit distance algorithm is implemented in this study. The pseudo-

code displaying the main functions of the algorithm can be seen in Pseudo Code 2.

Pseudo Code 2: GraphEditDistance (Graph1, Graph2)

Main()

 call GetDistance()

GetDistance()

38

call CreateCallMatrix function

int[] indexList = HungarianAlgorithm(costMatrix, ‘min’)

foreach index in indexList

 editDistance = editDistance + costMatrix(index)

return editDistance

CreateCostMatrix()

 n is the node count of G1

 m is the node count of G2

 initialize the costMatrix with a size of [(n+m)x(n+m)]

 call GetInsertCost function

 write results into costMatrix[n+n, m] (Lower-left of the matrix)

 call GetDeleteCost function

 write results into costMatrix[n, m+m] (Upper-right of the matrix)

 call GetSubstituteCost function

write results into costMatrix[n, m] (Upper-left of the matrix)

 return costMatrix

GetInsertCost()

 Compare nodes and return results

GetDeleteCost()

 Compare nodes and return results

GetSubstituteCost()

 call GetEdgeDistance function

return results

GetEdgeDistance()

call CreateEdgeCallMatrix function

int[] indexList = HungarianAlgorithm(edgeCostMatrix, ‘min’)

foreach index in indexList

 edgeEditDistance = edgeEditDistance + edgeCostMatrix(index)

return edgeEditDistance

CreateEdgeCostMatrix()

 n is the edge count of node1

 m is the edge count of node2

 initialize the edgeCostMatrix with a size of [(n+m)x(n+m)]

 call GetEdgeInsertCost function

 write results into edgeCostMatrix[n+n, m] (Lower-left of the matrix)

 call GetEdgeDeleteCost function

 write results into edgeCostMatrix[n, m+m] (Upper-right of the matrix)

 call GetEdgeSubstituteCost function

write results into edgeCostMatrix[n, m] (Upper-left of the matrix)

39

 return edgeCostMatrix

GetEdgeInsertCost()

 Compare edges and return results

GetEdgeDeleteCost()

 Compare edges and return results

GetEdgeSubstituteCost()

 Compare edges and return results

4.2.3 The System GUI

The system has a graphical user interface that allows analysts to manage

malware clustering process. The GUI of the system was written in C# and has two main

windows that provide the functions that we explain in this section. In the first user

interface, malware feature extraction window, an analyst can select a folder where a

malware set located or can select specific malware samples as seen in Figure 17.

Figure 17: Selecting malware samples

After selecting a malware set, the analyst starts the scraping process which calls

the feature extraction script running for each of the malware binary in the selected set.

Then, all the features extracted from malware samples are written into database and

displayed on the GUI as seen in Figure 18.

40

Figure 18: Results of malware feature extraction process

Figure 19 depicts the sample malware binaries and the Ida pro files created for

each of these files.

Figure 19: Ida pro files created for each malware

41

In the second window, malware clustering window, the first task is to select

malware samples to be clustered as seen in Figure 20. Then, the input parameters to be

given to subspace clustering process are entered to the related fields on the related

windows such as dimensions, intervals, redundancy parameter and epsilon value as

shown in Figure 21.

Figure 20: Selecting malware samples for subspace clustering

Figure 21: Selecting dimensions for subspace clustering

42

Generated subspace clusters are listed on the same window. Figure 22 depicts a

sample output of resulting subspace clusters. In this example, there are 17 clusters.

Contents of a specific cluster can also be examined in detailed by just clicking that

cluster as seen in Figure 23. The content window for a cluster shows the malware

samples that reside in that cluster.

Figure 22: Subspace clustering results

43

Figure 23: Displaying the content of a cluster

Finally, the graph matching process is run on the selected subspace clusters to

generate and display final clustering. Figure 24 shows the screenshot of final clusters.

The subspace clusters are turned into final clusters as shown in Figure 25.

Figure 24: Running graph matching and generating final clustering

44

Figure 25: Displaying the content of a final cluster

45

5. CLUSTERING EXPERIMENT RESULTS

We run our system on two malware sample sets to validate the system’s

clustering functions, and to measure the clustering accuracy and runtime performance of

the system. The first sample set is the APT set, downloaded from

contagiodump.blogspot web site (Contagio, 2018), composed of 30 malware families

and contains 170 malware samples in total. Mandiant, a cyber security company,

grouped the APT malware samples by performing a guided analysis (Mandiant, 2019).

Mandiant team carried out a manual analysis, however they utilized some automation

tools such as Redline, which is the Mandiant’s free tool. The second sample set is the

Zeus set, downloaded from virusshare.com web site (Virusshare, 2015), contains 1200

malware samples in total which are manually analyzed and grouped. Table 1 shows the

algorithm parameters given to the system as user input. We performed experiments by

running the system under different conditions and observed the effects of these

parameters on clustering.

Table 1: System inputs

Parameter Algorithm Function of the Parameter

Epsilon DBSCAN The epsilon determines the distance between points (in our case

between binaries) which form a cluster. So, with the smaller epsilon

values, clusters are composed of points that are close to each other.

As the epsilon value increases, more dissimilar points will be in the

same cluster.

Minimum

Points

DBSCAN Minimum Points is a metric used for finding core points. A point p is

a core point if at least Minimum Points count points are within

distance ε of it (including p). If p is a core point, then it forms a

cluster together with all points (core or non-core) that are reachable

from it.

Clustering

Space

INSCY The clustering algorithm creates clusters based on the selected

features of the binary codes. Each feature is considered as a

dimension in the clustering space. Clusters are formed on the

dimensions chosen by the user.

Similarity

Threshold

Graph

Matching

The user determines the similarity threshold which is between 1-100.

For each pair of the binaries in a dataset, the graph matching is run to

learn if the two binaries are similar. If the similarity value of a binary

pair is bigger than the similarity threshold, then it is said that they are

similar.

46

5.1 Clustering Validation Methodology

We calculated clustering performance measurement metrics such as Rand,

Adjusted Rand, Mallow and Jaccard indices in order to evaluate clustering results of the

system. These clustering performance evaluations metrics require a knowledge of

ground truth. These metrics do not take absolute values of the cluster labels into account,

but rather consider if the clustering separate data similar to that of ground truth clusters.

As the ground truth, we used the clusters given by the Zeus and APT data set providers.

The definition of these indices are based on number of pairs that are grouped in

the same way in both clusterings, i.e. pairs of binaries of a binary set that are in the same

cluster under both clusterings (S & D, 2012). Table 2 shows all the types of set of binary

pairs. The clustering metrics that we used in this study is calculated based on the pair

counts given in Table 2 where C refers to the ground truth true clusterings given with the

APT and Zeus malware sets and C’ refers to the predicted clusterings generated by our

system.

Table 2: Pair sets definitions

Pair Set Pair Detail
n11 "pairs that are in the same cluster under C and C'"

n00 "pairs that are in different clusters under C and C'"

n10 "pairs that are in the same cluster under C but in different ones under C'"

n01 "pairs that are in different clusters under C but in the same under C'"

C: True clustering, C': Predicted clustering

We used the indices shown in the Table 3 to measure the clustering performance

of the system modules. Particularly, Rand index, Adjusted Rand index and Mallow

index are well known and generally used in clustering performance evaluation.

Table 3: Clustering performance measurement metrics

Parameter Explanation Formula

Rand

Index

"It calculates the fraction of correctly clustered

(respectively misclassified) elements to all

elements" (Rand, 1971).

R(C,C') = 2(n11 + n00) / n(n-1)

Adjusted

Rand

Index

"The adjusted Rand index is the corrected-for-

chance version of the Rand index." (Hubert &

Arabie, 1985)

ARI = (RI - Expected_RI) /

(Max(RI) - Expected_RI)

Jaccard

Index

"It is very similar to the Rand Index, however it

disregards the pairs of elements that are in different

clusters for both clusterings" (Jaccard, 1902).

J(C,C') = n11 / (n11 + n10 + n01)

Mallows

Index

"It is defined based on the number of points that are

common or uncommon in two clusterings"

(Fowlkes & Mallows, 1983).

M(C,C') = n11 / √(n11 + n10)(n11

+ n01)

47

F-Measure "The F-Measure is used to evaluate the accuracy of

a clustering solution" (Van Rijsbergen, 1979).

F1(C,C') = 2.P.R / (P+R),

where Precision P=n11/(n11+n01),

Recall R=n11/(n11+n10)

5.2 Clustering Experiment Results

Two distinct malware sets were used to validate the system’s clustering operation.

The results of the experiments are presented in this section.

5.2.1 The APT Malware Sample Set :

The APT malware binary set was used in the first experiment. This set is

composed of 170 malware samples. The provider of the set, Mandiant, grouped the

samples into 32 clusters by performing a guided analysis (Mandiant, 2019). Appendix A

lists the APT malware families and related cluster identifiers. This grouping is used as

ground truth in cluster performance evaluation in this experiment.

Clustering and runtime performances of the system was evaluated by observing

the effects of the pre-clustering and the graph matching parameters given in Chapter 5.

Experiments were performed with the malware set and the server configuration listed in

Table 4. Table 1 shows the algorithm parameters given to the system as user input.

Table 4: Experiment setup configuration

Malware Set Test Server Specifications

APT Malware Set

(True clustering)

Malware sample count: 170

Cluster count: 32

Processor: Intel i7-4700HQ 2.4 GHz

Memory: 16GB

Operating system: 64-bit Windows 10

5.2.1.1 Experiment 1: Graph Matching Similarity Performance

 In experiment 1, the graph matching algorithm was run on the APT malware

binary set without running pre-clustering to observe only the graph matching clustering

performance. Figure 26 shows the effect of similarity threshold on clustering

performance. Similarity threshold is the parameter used for measuring the similarity of

binary pairs. When it is set to lower values such as 10 and 20, the system generates a

clustering less similar to the true clustering. For example, the similarity threshold of 10

results in lower rand, mallow and jaccard index values, 0.58, 0.3 and 0.09 respectively.

The reason of this lower clustering performances is that dissimilar malware binaries are

more likely to be grouped in the same cluster due to the small similarity threshold value.

48

Figure 26: Clustering accuracy

 Similarly, high similarity threshold values (90-100) reduce the clustering

performance. When it was set to 100, mallow and jaccard indices were calculated as 0.5

and 0.3 respectively. The reason of this result is that the system clustered the binaries

which have the exact same function call graph structure. As a result, some clustering

information lost during the clustering process. Despite this missing information, if we

look at the rand index curves, the true clustering information was correctly generated at

high similarity threshold values, contrary to the rand index value obtained at similarity

threshold 10. Lastly, if we look at the middle similarity threshold values, we can see that

the system shows the best clustering performance (Mallow index: 0.96, Rand index:

0.98) at these values. When we compare the rand index and mallow index, we can see

that the rand index value is approaching the 100 percent as the similarity threshold goes

high, however, mallow index goes down after a certain threshold value. The reason of

this difference is that, rand index shows the only accurately clustered binary percentage,

that is, it does not consider the missing information. In mallow index, since the missing

information is considered, it gives lower values at the high similarity values.

49

Figure 27: Clustering results

 Figure 27 displays the clustering accuracy in terms of cluster and binary counts.

The upper half of the graph gives the cluster count generated by the system at various

similarity threshold values. When similarity threshold was set to 10, 11 clusters

containing 169 binaries in total were generated. But the generated clustering did not

reflect the true clustering because the true clustering had 32 clusters. If we look at the

similarity threshold 100, the count of the generated clusters is close to the true clustering

cluster count. But the lower sub-graph shows that almost half of the clustering

information lost at this similarity threshold value. Because in the true clustering, even if

some binaries don’t have the exact function call structures, they might be grouped into

the same cluster. At the middle (40 to 60) similarity threshold values, cluster and binary

counts of the generated clustering are almost same with the true clustering values.

 The accuracy values can also be observed by looking the confusion matrices

displayed on Figure 28. The Figure shows the true clustering versus the generated

clustering. Indices of the figure refer to the cluster identifiers on both axes. Malware

family class names related to these cluster identifiers are given in the Appendix A. In

lower similarity threshold values, the generated clusters by the prototype did not reflect

the true clustering. Malware samples that are in the same cluster in the true clustering

were placed in different clusters by the system. In middle similarity threshold values, the

prototype generated clustering that is similar to the true clustering. Lastly, in the higher

similarity values, clustering accuracy went down as seen in the lower similarity values.

50

Figure 28: Confusion matrices for different similarity thresholds

51

Figure 29 shows the function call count distribution for each cluster in the

clustering generated by the system against changing similarity threshold values. At the

similarity threshold values 10 and 40, some clusters have bigger standard deviations. It

means that less similar binaries in terms of function call structure might be found in the

same cluster. Clustering processes with the similarity thresholds 80 and 100, on the other

hand, generated more flat clusters as expected.

Figure 29: Function call count distributions vs. similarity threshold

Consequently, the graph matching algorithm we used for final clustering in our

system generates very good clustering results. Especially at the middle similarity

thresholds, more realistic clustering can be obtained for any binary set. However, if

exact matching between binaries is wanted in an analysis then higher similarity

threshold values can be set.

5.2.1.2 Experiment 2: Pre-clustering Clustering Similarity Performance

 We used the INSCY and DBSCAN algorithms together for the pre-clustering

process. By performing the pre-clustering, we aim to reduce the runtime of graph

matching process without losing clustering information. We choose the DBSCAN

algorithm because the clustering space contains distinct nodes in the concept of this

52

thesis. In other words, there are no hierarchy or such relations between malware

binaries. Thus, a density-based clustering algorithm is more suitable for the pre-

clustering process. Besides, the INSCY algorithm provides an index structure and

reduces runtime of DBSCAN algorithm especially in a high dimensional space.

This experiment measures the effect of pre-clustering on the graph matching

performance. Figure 30 shows the DBSCAN algorithm effect on clustering with various

epsilon and similarity threshold values. The upper-left graph gives the mallow index

values against epsilon value. As epsilon value increases, mallow index increases as well

depending on the similarity threshold. Increase in the epsilon value causes higher

changes in mallow index when lower similarity values are chosen, because larger

epsilon values cause DBSCAN algorithm to cluster distant binaries. For example, the

yellow and blue lines (similarity thresholds 10 and 20) show the difference in mallow

index against the increasing epsilon value. The difference in mallow index , however, is

low for the higher similarity thresholds such as 80 and 100 (green and purple lines). The

reason of this is that graph matching running with higher similarity thresholds produce

clusters containing binaries closer to each other. Similarly, using smaller epsilon values

clusters closer binaries in the pre-clustering process. Since the graph matching runs on

the clustering generated by pre-clustering process, the effect of epsilon value on the

graph matching results is small. Besides, rand index curves are very satisfactory at any

epsilon values as seen in the upper-right graph. The rand index value is also low when

the system runs with the similarity threshold of 10 without pre-clustering. Lastly, as seen

in the third graph, the F1 measures are satisfactory when the epsilon value is set above

100 for the similarity thresholds above 50.

53

Figure 30: The effect of the epsilon on clustering accuracy

 Dimension count is also an important factor in clustering malware binaries. High

dimensional data sets require more clustering effort and time. In this experiment, binary

sets have 6 features (dimensions) which are listed below. The number of dimensions can

also be changed depending on the clustering case and the target set.

Table 5: Features (Dimensions) of a malware binary

Local function count

Dll count

Local function call count

Dll function call count

Basic block count

Basic block edge count

 Figure 31 shows the effect of changing dimension count and similarity threshold

on clustering. Since each of the dimension which we choose for clustering stores a part

of information about binary function call graph structure, we didn’t observe drastic

changes in the performance values against increasing dimension count. Rand index

values are quite good for all the similarity threshold except 10. When similarity

54

threshold is set above 50, we get satisfactory mallow index values with the increase of

dimension count.

Figure 31: The effect of the dimension on clustering accuracy

5.2.1.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances

In this experiment, we run the system with and without pre-clustering to observe

the runtime remediation. Figure 32 displays the CPU and I/O runtime results of the

clustering processes of the system. The upper left graph gives the runtime of graph

matching process without pre-clustering. As binary count increases the graph matching

runtime increases in exponential. Because, the count of binary pairs that will be

compared by the system increases in exponential in parallel with the binary count

increase. The complexity of the graph edit distance is O(n3).

 The upper right graph shows the effect of pre-clustering on runtime. The total

runtime notably decreased when the two clustering methods were performed

sequentially. While the light blue curve represents the pre-clustering process runtime,

the blue curve displays the graph matching runtime. The green curve gives the total

runtime. With the pre-clustering, the system generated clusters almost four times faster.

As seen in the same figure, the pre-clustering makes the runtime curve linear even for

the large binary sets by feeding the graph matching process with small binary groups

containing more similar binaries. The lower half of the Figure 32, superimposed of the

55

two upper graphs, displays the difference in runtimes. Lastly, since the system uses a

database to store binary and clustering information, the I/O time is much higher than

computation time of clustering algorithms.

In this study, our purpose in using pre-clustering is to reduce runtime of graph

matching without degrading clustering accuracy. The first two experiment results show

that pre-clustering process makes the targeted binary set ready for the graph matching

process with preserving true clustering information. The third experiment showed that

our implementation of pre-clustering significantly improves the runtime performance of

total clustering process.

Figure 32: Clustering runtime performance

5.2.2 The Zeus Malware Sample Set :

The second clustering experiment was performed on the Zeus malware binary

set. Similar to the previous experiment, three tests were performed with changing

clustering parameters in order to measure the system clustering accuracy and runtime

performance. The results of this experiment are consistent with the results of the tests

56

performed on the APT malware set. In other words, our system shows similar clustering

behavior for different malware sets.

The Zeus malware binary set contains 1200 sample. The provider,

virusshare.com, manually analyzed and grouped this set into 170 clusters. Clustering

accuracy and runtime performance of the system was evaluated by observing the effects

of the pre-clustering and the graph matching parameters given in Chapter 5. Tests were

performed with the following malware set and the server configuration.

Table 6: Experiment setup configuration

Malware Set Test Server Specifications

Zeus Malware Set

(True clustering)

Malware count: 1200

Cluster count: 170

Processor: Intel i7-4700HQ 2.4 GHz

Memory: 16GB

Operating system: 64-bit Windows 10

5.2.2.1 Experiment 1: Graph Matching Clustering Similarity Performance

 In this experiment, graph matching algorithm was run on the binary set without

pre-clustering to observe only the graph matching clustering performance. Figure 33

shows the effect of similarity threshold on clustering performance. When the similarity

threshold is set to lower values (i.e. 10 to 20), the system generates the predicted

clustering less similar to the true clustering. The reason of this lower clustering

performances is that dissimilar malware binaries are more likely to be grouped in the

same cluster due to the small similarity threshold. In this experiment, when the similarity

threshold is set to 10, the similarity values are higher according to the results of the APT

malware set experiment. The reason is that in the true clustering of Zeus set, clusters are

formed with malware binaries which have less similar function call graphs.

57

Figure 33: Clustering accuracy

 The high similarity threshold values (i.e. 90-100) reduce the rand index values

similar to the first experiment. When it was set to 100, mallow index was calculated as

0.66. The reason of this result is that the system clustered the binaries which have the

exact same call graph structures. As a result, some clustering information lost during the

clustering process. Despite this missing information, if we look at the rand index curve,

true clustering information can be obtained at the high similarity threshold values.

Lastly, if we look at the middle similarity threshold values, we can see that the system

shows the best clustering performance (i.e. mallow index: 0.95, rand index : 0.98) at

these values. When we compare the rand index and mallow index, we can see that the

rand index value is approaching the 100 percent as the similarity threshold goes high,

however, mallow index goes down after a certain threshold value. The reason this

difference is that, rand index shows the only accurately clustered binary percentage, that

is, it does not consider the missing information. In mallow index, since the missing

information is considered, it gives lower values at the high similarity values.

58

Figure 34: Clustering results

 Figure 34 displays the clustering performance in terms of cluster and binary

counts. The upper half of the graph gives the cluster count generated by the system at a

range of similarity threshold values. When similarity threshold was set to 10, the 140

clusters containing 1200 binaries in total were generated. But the generated clustering

did not reflect the true clustering fully because the true clustering has 170 clusters. If we

look at the similarity threshold 100, the count of the generated clusters is close to the

true clustering cluster count. But the lower sub-graph shows that almost one quarter of

the clustering information lost at this similarity threshold value. At the middle (i.e. 40 to

60) similarity threshold values, cluster and binary counts of the generated clustering are

almost same with the true clustering values.

 Figure 35 shows the function call count distribution for each cluster in the

clustering generated by the system against changing similarity threshold values. At the

similarity threshold values 10 and 20, some clusters have bigger deviations on the

function call counts of the samples in the cluster. It means that less similar binaries

might be found in the same cluster. Clustering processes with the similarity thresholds

80 and 100, on the other hand, generated more flat clusters as expected.

59

Figure 35: Function call count distributions vs. similarity threshold

 Consequently, the graph matching algorithm we used for actual clustering in our

system generates good clustering results and verifies the previous experiment. Especially

at the middle similarity thresholds, more accurate clusterings are obtained. However, if

60

an exact match between binaries is wanted in an investigation, higher similarity

threshold values can be chosen.

5.2.2.2 Experiment 2: Pre-clustering Clustering Similarity Performance

 This experiment measures the effect of pre-clustering on graph matching

performance for the Zeus malware set. Figure 36 shows the pre-clustering effect on

clustering with changing epsilon and similarity threshold values. The upper-left graph

gives the mallow index curves. As epsilon value increases, mallow index increases as

well depending on the similarity threshold. Increase in the epsilon value causes higher

changes in mallow index when lower similarity values are chosen, because larger

epsilon values cause pre-clustering to cluster distant binaries. As an example, the yellow

and blue lines (similarity thresholds 10 and 20) show the difference in mallow index

against the increasing epsilon value. The difference in mallow index, however, is very

low for the higher similarity thresholds such as 80 and 100 (green and purple lines).

Besides, rand index curves are very satisfactory at any epsilon values as seen in the

upper-right graph. The rand index value was slightly low when the system run with the

similarity threshold of 10 without pre-clustering. Lastly, as seen in the third graph, the

F1 measure curves are satisfactory when the epsilon value is set above 50 for the

similarity thresholds above 50.

Figure 36: The effect of the epsilon on clustering accuracy

61

 Dimension count is also important factor in clustering the spatial data. High

dimensional datasets require more clustering effort and time. In this test, binary sets

have 6 features (dimensions) similar to the APT malware set experiment. Figure 37

shows the effect of pre-clustering on total clustering at changing dimension counts and

similarity threshold values. Since each of the dimension which we choose for clustering

stores a part of information about binary call graph structure, we could not observe

drastic changes in the performance values against increasing dimension count. Rand

index values are quite good for all the similarity threshold except 10. When similarity

threshold is set above 50, we get satisfactory mallow index values with the increase of

dimension count. The experiment results prove that pre-clustering process makes the

targeted binary set ready for the graph matching process with preserving true clustering

information.

Figure 37: The effect of the dimension on clustering accuracy

5.2.2.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances

In this experiment, we run the system with and without pre-clustering to observe

the runtime remediation. Figure 38 displays the CPU and I/O runtime results of the

clustering processes of the system. The upper left graph gives the runtime of graph

matching process without pre-clustering. As binary count increases the graph matching

62

runtime increases in exponential. Because, the count of binary pairs to be compared by

the system increases in exponential in parallel with the binary count increase.

The upper right graph shows the effect of pre-clustering on runtime. The total

runtime notably decreased when the two clustering methods were performed

sequentially. While the light blue curve represents the pre-clustering process runtime,

the blue curve displays the graph matching runtime. The green curve gives the total

runtime. With the pre-clustering, the system generated clusters almost five times faster.

As seen in the same figure, the pre-clustering makes the runtime curve linear even for

the large binary sets by feeding the graph matching process with small binary groups

containing more similar binaries. The lower half of the Figure 38, superimposed of the

two upper graphs, displays the difference in runtimes. Lastly, since the system uses a

database to store binary and clustering information, the I/O time is much higher than

computation time of clustering algorithms. Consequently, this experiment, carried out on

the Zeus malware set, also proves that our implementation of pre-clustering significantly

improves the runtime performance of total clustering process.

Figure 38: Clustering Runtime Performance

63

The experiments performed on the malware sets showed that using function call

graphs of malware binaries in clustering reveals accurate clustering results. We also

observed that our system improves the runtime performance of the time-consuming

graph matching process which relies on pairwise function call graph comparisons.

64

6. CONCLUSION

In recent years, sophisticated mining techniques have been employed in malware

analysis in order to handle large amounts of malware variants. Malware clustering

approaches are among these analysis techniques. The purpose of malware clustering is to

group malware samples based on their features and behaviors. Numerous clustering

algorithms have been proposed to improve clustering accuracy and performance in many

application domains including malware analysis.

Advances in data collection and sandbox tools have led to large amounts of

malware samples being collected, giving rise to malware sets with a large number of

attributes. Traditional signature-based clustering methods are not efficient in analyzing

large malware sets with a high number of attributes. To deal with this type of datasets,

appropriate clustering techniques compatible with the characteristics of malware binaries

should be chosen. For this reason, many clustering approaches have been applied to

malware clustering. In this study, we proposed a clustering approach based on subspace

clustering and graph matching concepts in order to improve clustering accuracy and

runtime performance. We designed and implemented a prototype system to observe the

effects of our proposed method on malware clustering. Our system provides an interface

for finding more specific clusters in large datasets in an efficient way.

Our system uses call relations of local functions and dlls extracted from malware

binary samples as the similarity metric in its graph matching process. Hence, it provides

a better clustering accuracy than signature-based clustering approaches. Using internal

structure of a malware as a comparison parameter provides more accurate clustering

results; however, it significantly increases the clustering runtime. To overcome the

runtime issue, we employed a subspace clustering method to improve runtime

performance of the expensive graph matching algorithms. The subspace clustering

module of the system generates clusters based on the static features extracted from

malware binary codes such as local function count, local function call count, dll count

and dll call count, etc. Hence, malware variants that have similar features can be

grouped prior to the graph matching process.

We run our system over a set of malware binaries that we obtained from two

different web resources to observe and verify the accuracy and runtime performance of

the system. The experiment results show that our method improves the runtime of the

clustering process without degrading clustering accuracy. In other words, pre-clustering

process, subspace clustering, makes the targeted binary set ready for the graph matching

process with preserving true clustering information. We observed the effects of the

algorithm parameters on clustering by running the system with different parameter

values. Hence, we empirically observed the optimal parameter values which generate

best clustering results.

65

6.1 Limitations

Since we employed supervised clustering algorithms in pre-clustering process,

analysts using the proposed system must have information about the input parameters of

the algorithms because these parameters have direct effect on clustering accuracy and

runtime performance. These parameters are the epsilon and minPoint parameters of the

DBSCAN algorithm and the redundancy index, minSize and dimensions of object space

parameters of INSCY algorithm.

 The proposed clustering system was proposed to process a large number of

malware variants. There are different malware types such as viruses, worms, trojans,

rootkits, ransomware, etc. Millions of new malware variants have been detected every

year. Their count distribution may be different according to their types. Besides, the

count of new emerging clusters may also vary depending on the malware type. Despite

the large number of malware variants, the number of exploits are limited. The proposed

system does not consider the number and types of exploits.

6.2 Future Work

In this study, we focused on clustering of collected malware samples based on

their static binary features and internal binary structures. Our system generates clusters

based on the features of a malware set given as an input to the system. It does not have a

function of comparing a malware sample with an already clustered malware set. A

classification module might be added to the system in order to classify a malware

sample without running the whole clustering process.

We used the DBSCAN algorithm under the subspace clustering method.

Different density-based clustering approaches such as k-means might be also

implemented in order to compare clustering and runtime performances of density-based

algorithms on malware clustering.

In the current implementation, we use a graph edit distance method to measure

file similarity in the graph matching process. However, high runtime complexity of

exact graph matching makes it less practical for large datasets. We might integrate

inexact graph matching approaches to the system in order to gain additional runtime

improvement.

66

REFERENCES

Abdullah, J., & Chanderan, N. (2017). Hierarchical Density-based Clustering of

Malware Behaviour. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 9(2-10), 159-164.

Anderson, B. (2014). Integrating Multiple Data Views for Improved Malware Analysis.

(Doctoral dissertation, The University of New Mexico Albuquerque).

Arefkhani, M., & Soryani, M. (2015). Malware clustering using image processing

hashes. In Machine Vision and Image Processing (MVIP), 2015 9th Iranian

Conference (pp. pp. 214-218). IEEE.

Assent, I., Krieger, R., Müller, E., & Seidl, T. (2007). DUSC: Dimensionality unbiased

subspace clustering. In Data Mining, 2007. ICDM 2007. Seventh IEEE

International Conference (pp. pp. 409-414). IEEE.

Assent, I., Krieger, R., Müller, E., & Seidl, T. (2008). INSCY: Indexing subspace

clusters with in-process-removal of redundancy. In Data Mining, 2008.

ICDM'08. Eighth IEEE International Conference (pp. pp. 719-724). IEEE.

Awad, R. A. (2014). Automated clustering of malware variants based on structured

control flow. (Doctoral dissertation, Universidad Politecnica Puerto Rico (Puerto

Rico)).

Bengoetxea, E. (2002). The graph matching problem. Doctoral Dissertation.

Böhne, L. (2008). Pandora’s bochs: Automatic unpacking of malware. University of

Mannheim, 6.

Carletti, V. (2016). Exact and Inexact Methods for Graph Similarity in Structural Pattern

Recognition. PhD thesis.

Cesare, S. (2010). Fast automated unpacking and classification of malware. (Doctoral

dissertation, Faculty of Arts, Business, Informatics and Education, Central

Queensland University).

Cesare, S., Xiang, Y., & Zhou, W. (2013). Malwise—an effective and efficient

classification system for packed and polymorphic malware. EEE Transactions on

Computers, p. 62(6).

67

Contagio. (2018, May 05). Contagio Malware Dump. Retrieved from Contagio Malware

Dump: http://contagiodump.blogspot.com/

Dowd, C. (2014). Identifying Malware Using N-gram Clustering Metrics. (Doctoral

dissertation, University of Maryland, Baltimore County).

Eagle, C. (2011). The IDA Pro Book. No Starch Press.

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated dynamic

malware-analysis techniques and tools. ACM computing surveys (CSUR), 44(2),

6.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. Kdd, Vol. 96, No. 34,

pp. 226-231.

Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical

clusterings. Journal of the American statistical association, 78(383), 553-569.

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A

survey. Journal of Information Security, 5(02), 56.

Han, K. S., Kang, B., & Im, E. G. (2011). Malware classification using instruction

frequencies. In Proceedings of the 2011 ACM Symposium on Research in

Applied Computation (pp. pp. 298-300). ACM.

Hex-rays. (2018). Hex-rays. Retrieved from Hex-rays: https://www.hex-

rays.com/products/ida/

Hu, X. (2011). Large Scale Malware Analysis, Detection and Signature Generation.

(Doctoral dissertation, Computer Science and Engineering in The University of

Michigan).

Hu, X., Chiueh, T. C., & Shin, K. G. (2009). Large-scale malware indexing using

function-call graphs. In Proceedings of the 16th ACM conference on Computer

and communications security (pp. pp. 611-620). ACM.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1),

193-218.

Jaccard, P. (1902). Distribution comparée de la flore alpine dans quelques régions des

Alpes occidentales et orientales. Bulletin de la Murithienne, (31), 81-92.

68

Kailing, K., Kriegel, H. P., & Kröger, P. (2007). DUSC: Dimensionality unbiased

subspace clustering. Seventh IEEE International Conference (pp. pp. 409-414).

IEEE.

Kang, M. G., Yin, H., Hanna, S., McCamant, S., & Song, D. (2009). Emulating

emulation-resistant malware. In Proceedings of the 1st ACM workshop on

Virtual machine security (pp. (pp. 11-22)). ACM.

Livi, L., & Rizzi, A. (2013). The graph matching problem. Pattern Analysis and

Applications, 16(3), 253-283.

Mandiant. (2019, January 1). Fireeye. Retrieved from Mandiant Apt Report:

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-

report.pdf

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal

of the society for industrial and applied mathematics, 5(1), 32-38.

Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in malware: from

encryption to metamorphism. International Journal of Computer Science and

Network Security, 12(8), 74-83.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical association, 66(336), 846-850.

Ruohonen, K. (2013). Graph theory.

S, W., & D, W. (2012). Comparing Clusterings - An Overview . Karlsruhe: Universität

Karlsruhe, Fakultät für Informatik., 19.

Sanfeliu, A., & Fu, K. S. (1983). A distance measure between attributed relational

graphs for pattern recognition. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-13, 353-362.

Sim, K., Gopalkrishnan, V., Zimek, A., & Cong, G. (2013). A survey on enhanced

subspace clustering. Data mining and knowledge discovery, 26(2), 332-397.

Singh, N., & Khurmi, S. S. (2016). ByteFreq: Malware clustering using byte frequency.

Infocom Technologies and Optimization (Trends and Future Directions)

(ICRITO), 2016 5th International Conference (pp. pp. 333-337). IEEE.

69

Spizler, A. (2018). Clustering Analysis of Malware Binaries Using The Lempel-Ziv

Jaccard Distance. (Master Thesis, Faculty of the Graduate School of the

University of Maryland).

Tian, R., Batten, L. M., & Versteeg, S. C. (2008). Function length as a tool for malware

classification. In Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd

International Conference (pp. pp. 69-76). IEEE.

Tian, R., Batten, L., Islam, R., & Versteeg, S. (2009). An automated classification

system based on the strings of trojan and virus families. In Malicious and

Unwanted Software (MALWARE), 2009 4th International Conference (pp. pp.

23-30). IEEE.

Van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth-Heinemann.

Virusshare. (2015, May 10). Virus Share. Retrieved from Virus Share:

https://virusshare.com/

Yan, J., Yin, X. C., Lin, W., Deng, C., Zha, H., & Yang, X. (2016). A Short Survey of

Recent Advances in Graph Matching. 167-174. 10.1145/2911996.2912035.

Zhong, Y., Yamaki, H., & Takakura, H. (2012). A malware classification method based

on similarity of function structure. In Applications and the Internet (SAINT),

2012 IEEE/IPSJ 12th International Symposium (pp. pp. 256-261). IEEE.

70

APPENDICES

 APPENDIX A

Family and Cluster Identifiers of APT Malware Samples

CLUSTER

IDENTIFIER

FAMILY SAMPLE COUNT

1 AURIGA 2

2 BANGAT 5

3 BISCUIT 5

4 BOUNCER 3

5 COOKIEBAG 7

6 GETMAIL 3

7 GOOGLES 5

8 GREENCAT 19

9 HACKFASE 3

10 MINIASP 3

11 NEWSREELS 7

12 SEASALT 2

13 STARSYPOUND 9

14 TABMSGSQL 6

15 TARSIP-ECLIPSE 7

16 TARSIP-MOON 6

17 AUSOV 2

18 BOLID 4

19 CLOVER 3

20 CSON 9

21 GREENCAT2 6

22 WEBC2-NEWSREELS 4

23 HEAD 10

24 QBP 3

25 RAVE 6

26 UGX 5

27 Y21K 3

28 YAHOO 8

71

29 WEBC2-GREENCAT 6

30 BANGAT2 3

31 NEWSREELS2 3

32 WEBC2-YAHOO 3

SKB-SA02/F01 Rev:03 06.08.2018

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ..
Adı / Name : ..
Bölümü / Department : ...

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : ..
..
..
..
..

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately for
access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or

proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six

months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir.
 A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date

