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ABSTRACT 

 

APPLICATION OF SUBSPACE CLUSTERING 

TO SCALABLE MALWARE CLUSTERING 

 

 

 

Işıktaş, Fatih 

MSc., Department of Information Systems 

Supervisor: Assist. Prof. Dr. Aysu Betin Can 

 

January 2019, 71 pages 

 

In recent years, massive proliferation of malware variants has made it necessary 

to employ sophisticated clustering techniques in malware analysis. Choosing an 

appropriate clustering approach is very important especially for rapidly and accurately 

mining clustering information from a large malware set with high number of attributes. 

In this study, we propose a clustering method that is based on subspace clustering and 

graph matching techniques and presents an enhanced clustering ability and scalable 

runtime performance for the analysis of large malware sets. Unlike traditional signature-

based clustering techniques, we aimed to obtain more accurate malware clusters by 

comparing internal structures of malware binaries. We also integrated a subspace 

clustering technique in order to scale and speed up the clustering process. To be able to 

verify our method, we developed a system prototype that can perform the mentioned 

clustering processes. This prototype provides a graphical user interface which allows 

users to navigate over malware binaries and generated clusters for a detailed analysis. 

We performed clustering experiments on real malware sets by using our system 

prototype. The experiment results showed that using a clustering method based on 

comparison of internal structure of malware binaries reveals clustering outputs with a 

98% accuracy. Besides, the experiment results demonstrated that our method 

significantly improves the runtime performance of the clustering process without 

degrading clustering accuracy. 

Keywords: Malware Clustering, Subspace Clustering, Graph Similarity 
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ÖZ 

 

ALT UZAY GRUPLAMANIN ÖLÇEKLENEBİLİR 

KÖTÜCÜL YAZILIM GRUPLAMASINA UYGULANMASI 

 

 

Işıktaş, Fatih 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Aysu Betin Can 

 

Ocak 2019, 71 sayfa 

 

Son yıllarda, kötücül yazılım değişkenlerinin çok hızlı çoğalması, kötücül 

yazılım analizinde daha gelişmiş gruplama tekniklerinin kullanımını bir ihtiyaç haline 

getirmiştir. Özellikle, çok fazla niteliğe sahip olan büyük kötücül yazılım setlerinden 

gruplama bilgisini hızlı ve doğru bir şekilde elde edebilmek için uygun gruplama 

yaklaşımlarının tercih edilmesi çok önemlidir. Biz bu çalışmada, çok büyük kötücül 

yazılım setlerinin analizi için, altuzay gruplama ve grafik karşılaştırma tekniklerine 

dayanan ve gelişmiş gruplama yeteneği ve ölçeklenebilir çalışma süreleri sunan bir 

gruplama yöntemi öneriyoruz. Geleneksel imza tabanlı gruplama tekniklerinden farklı 

olarak, grafik karşılaştırma ile kötücül yazılımların iç yapılarını karşılaştırarak daha 

doğru kötücül yazılım grupları elde etmeye amaçladık. Bu gruplama işlemini 

hızlandırmak ve ölçekleyebilmek amacıyla da bir altuzay gruplama tekniğini 

yöntemimize entegre ettik. Yöntemimizi doğrulayabilmek için bahsettiğimiz gruplama 

işlemlerini gerçekleştirebilen bir prototip geliştirdik. Bu prototip, daha detaylı bir 

kötücül yazılım analizi için, kötücül yazılımlar ve üretilmiş gruplar üzerinde navigasyon 

imkanı sağlayan grafiksel bir kullanıcı arayüzü sunmaktadır. Geliştirdiğimiz prototipi 

kullanarak, gerçek kötücül yazılım setleri üzerinde gruplama deneyleri gerçekleştirdik. 

Deney sonuçları, kötücül yazılımların iç yapılarının karşılaştırılmasına dayanan bir 

gruplama yönteminin yüzde 98’lik bir doğruluk oranıyla gruplama çıktıları verdiğini 

gösterdi. Deney sonuçları ayrıca yöntemimizin, gruplama doğruluğunu bozmadan 

çalışma süresi performansını kayda değer bir şekilde geliştirdiğini gösterdi. 

Anahtar Sözcükler: Kötücül Yazılım Gruplama, Altuzay Gruplama, Grafik Benzerliği  
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1. INTRODUCTION 

Digital products and services which provide internet-based rich contents have 

become indispensable tools for both personal and professional lives. Individuals and 

organizations are getting involved in information technologies domain in many ways 

thanks to the faster internet connectivity, developments in mobile technology and digital 

social platforms. The exponential increase in usage of information technologies in many 

areas has significantly increased the economic importance of services presented over 

internet on global marketplace. Comprehensive investments on digital services 

obviously attracts the attention of malicious parties to the market as well. Annual 

security reports published by various security companies present figures indicating the 

increasing impact of cyber threats on many different sectors.  

There are several reasons that make these cyber threats successful. Firstly, 

product vendors and service providers are in a rush to create sophisticated products with 

new features to gain more competitive advantage. This race pushes producers to create 

more valuable products in a short number of periods that may results in deficient 

products which are unprotected to cyber-threats. Malicious parties target to security 

vulnerabilities of new products and to exploit them before the security gaps are unveiled 

and patched. Vendors then try to fix them by releasing updates and hotfixes. Even if the 

producers can take an immediate action to fix their products, it is not true for the end 

users to get the latest updates for their products in most cases. As a result, the success 

rate of cyber-attacks has been dramatically increased. 

The tools used in cyber-attacks is another important success factor for cyber 

threats. Various sophisticated malicious programs are written by cyber attackers who 

have different motivations. One of the motivations is financial gain which can be done 

by gathering personally identifiable information from compromised computers or setting 

up a botnet to ransom corporations by threating them with ddos attacks (Hu, Chiueh, & 

Shin, 2009). Another one is data exfiltration, which can be motivated either by economic 

or intelligence reasons. In either case, there are large incentives for malware authors to 

continue to develop new threats (Anderson, 2014). Cyber-criminals use these tools to 

attack unprotected information systems. Evolving forms of cyber-attacks cause serious 

damage to information systems leading significant financial loss. 

 Combatting malicious software is a challenging task because malware variants 

are continuously emerging and evolving. Simple and signature-based detection 

techniques are not successful enough to identify malware variants. To deal with, a 

couple of analysis techniques are employed. One of these techniques is clustering 

malware instances based on their features and behaviors. Clustering aims to summarize 

objects in a dataset in a manner which ensures that similar objects are grouped together 

while dissimilar ones are separated (Assent, Krieger, Müller, & Seidl, 2007). Various 

clustering approaches have been successfully implemented in different disciplines such 

as bioinformatics, astronomy, physics, business management and marketing. Recently, 



2 

 

advances in data collection and management have led to large amounts of data being 

collected, giving rise to datasets with a high number of attributes (Sim, Gopalkrishnan, 

Zimek, & Cong, 2013). Traditional clustering algorithms are not capable of analyzing of 

datasets with a high number of features. As a result, new clustering approaches such as 

subspace clustering have been offered to address high dimensional data. 

Clustering can be used for two cases in terms of malware analysis. First, given 

the increasing numbers and diversity of malware samples, clustering helps in creating 

malware classes which will be used for further malware analysis such as classification. 

Secondly, after a ground truth is created for the classification, clustering may also be 

used for emerging unknown samples. For example, Antivirus companies, IT security 

vendors or government agencies deal with numerous malware samples every day. They 

process the collected samples with classification methods to place them into right 

classes. However, they may need to create new classes for the new malware types or 

variants. In such cases, a clustering method can be utilized to create new classes for 

further classifications. 

It is important to determine a suitable clustering method in order to cluster a 

large malware set. First, the number of clusters generated by the clustering method must 

be reasonable. Depending on the selected clustering algorithm, too many or few clusters 

can be generated that may not give useful and meaningful results to investigators. 

Clustering approach should have the capability of adjusting clustering space so that it 

allows analysts to process and identify malware samples in a structured manner. For this 

reason, scalability is a key feature which should be provided by the clustering algorithm. 

Besides, clustering method should also be applicable in terms of runtime. Clustering too 

many samples based on the features retrieved by static or dynamic analysis obviously 

takes too much time. To reduce runtime, firstly, feature selection method for the 

clustering should be chosen carefully. For example, dynamic malware analysis might 

give more accurate information about a sample for feature creation used in clustering, 

however it requires too much time for feature extraction since the sample is needed to be 

executed. On the other hand, static malware analysis might give faster results, however 

various obfuscation techniques can defeat static analysis. Secondly, clustering methods 

presenting faster mining approaches should be preferred for better clustering accuracy 

and runtime. 

1.1 Research Goals 

 As mentioned earlier, analysis of large amounts of malicious software is a 

challenging task for information security professionals. Efficiently mining meaningful 

information about malware sets with high numbers of attributes requires using 

appropriate data mining methods such as clustering. Our main goal in this work is to 

develop a prototype system that will present an enhanced clustering ability and scalable 

runtime performance for the analysis of a large malware set. We aim to use a subspace 



3 

 

clustering method in malware clustering field in order to create a reference data for 

supervised learning techniques. This prototype will also have a graphical user interface 

which allows users to navigate over malware binaries and generated clusters for a 

detailed analysis. We propose that the subspace clustering based on internal function call 

graphs of malware binaries can be used to generate more accurate relational information 

to the security investigators and to improve the runtime of finding similar binaries 

relevant to an analysis within a large malware set. 

1.2 Methodology 

In this study, we designed and implemented a system by combining a group of 

methods and tools in order to improve clustering accuracy and runtime performance of 

malware clustering. We also developed a user interface which allows analysts to perform 

flexible and detailed malware clustering analysis. Our system uses call graph of local 

functions and dlls extracted from malware binary samples as the similarity metric in the 

clustering process. Hence, it provides a better clustering accuracy than signature-based 

clustering approaches.  

Our system transforms malware binaries into graphs which are composed of 

nodes and edges. Each function of a malware binary is translated into a node while the 

caller-callee relationships between the functions compose edges. Functions of a binary 

code can be categorized as dynamically linked functions, statically-linked library 

functions and local functions. The function call graphs in this study are composed of 

these three types of functions.  

Using internal structure of a malware as a comparison parameter provides more 

accurate clustering results; however, it significantly increases the clustering runtime. To 

overcome this runtime issue, we employ a subspace clustering method to improve 

runtime performance of the expensive graph matching algorithms. The subspace 

clustering generates clusters based on the static features extracted from malware binary 

codes such as local function count, local function call count, dll count and dll call count 

etc. Hence, the malware variants that have similar features can be grouped prior to the 

graph matching process. 

We run the system over a set of malware binaries that we collected from two 

different web resources to observe and verify the system performance in terms of 

clustering accuracy and runtime. The experiment results demonstrate that our method 

improves runtime of the clustering process without degrading clustering accuracy. In 

other words, pre-clustering process, subspace clustering, makes the targeted binary set 

ready for the graph matching process with preserving true clustering information. 
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1.3 Thesis Outline 

 The outline of this thesis is as follows. In Chapter 2, we explain the terms and 

concepts of malware analysis and present related works carried out in this field. In 

Chapter 3, we explain the underlying tools and algorithms that we used in our system.  

In Chapter 4, we describe how we designed the prototype system and we explain the 

technical details of the system components. We also introduce the system’s graphical 

user interface. In Chapter 5, we present and interpret the results of the experiments that 

we carried out for the validation of our proposal and the system implementation. In 

Chapter 6, we conclude and summarize our study and outline future directions.  
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2. BACKGROUND AND RELATED WORK 

Malware analysis is a challenging task that requires a deep knowledge in various 

research fields, especially in computer science. Many approaches have been proposed to 

make this task easier by addressing different aspects of this problem. Malware 

clustering, for example, is one of these research topics that is used to reveal similarity of 

samples in a malware set and to group them based on their similarity. Similarly, 

malware classification aims to group malware samples into their families. All these 

efforts show that a remarkable progress has been made in this field. Before we present 

our approach, we introduce the terms and the concepts related to malware analysis in 

this chapter. We also summarize the previous studies performed in malware clustering. 

2.1  What is Malware  

Malware refers to malicious software written for infiltrating computer systems. 

There are many different forms of malware that are used as main tools in most 

cybercrimes and cyber wars. This fact has significantly increased the importance of 

development of known malware binaries and has triggered the search for new ways to 

create more sophisticated ones. For this reason, each of these types of malware has been 

continuously evolving with various motivations. Gaining illegal profit, competition 

between companies, national security concerns are among these drivers which attract 

many attackers who have different level of computer skills and knowledge.  

When we look at the profiles of the malware writers, we could see this 

difference.   On one side, many advanced and complex malware samples are written by 

individual software experts or teams. They are leading the others by adding new features 

and functions on current malware samples and by creating new malware generations. To 

be able to prolong of lifespan of their software, they even use professional software 

development techniques as seen in legitimate software design (Cesare, 2010). On the 

other side, people who have very limited computer knowledge are capable of using and 

modifying these malware samples. Although the complexity of malware has 

dramatically increased as a result of constant development, the barrier of using and 

creating malware has decreased in recent years. The main reason of this is that malware 

toolkits which provide easy to use platforms allowing users to automate malware 

creation and modification.  

Thanks to these factors, malware writers can automatically and rapidly modify 

out-of-date malware, allowing them to gain advantageous against security authorities. 

They can create malware variants easily before new signatures are generated and 

distributed by antivirus vendors (Hu, 2011). Another facilitating factor affecting this 

barrier is that there are lots of free resources and tutorials explaining malware usage and 
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creation in detail on the internet. All these facilities result in a massive proliferation of 

malware. 

2.2 Malware Analysis  

Malware analysis refers to the techniques that help analysts to find out behaviors 

of malware instances and the risks that they may cause. Attributes extracted with 

malware analysis can be used to cluster unknown malwares into appropriate malware 

families (Gandotra, Bansal, & Sofat, 2014). Information gathered from well-structured 

malware analysis can also be used to learn tendency of malware development and to 

take measures to prevent future threats.  

Most companies and individual users have different types of antivirus and 

internet security programs to protect their computer systems. Almost all current antivirus 

vendors employ signature or hash-based detection methods to identify and classify 

malicious programs. Signature-based identification approaches are popular because 

malware signatures can easily be created and distributed to the end users without 

bringing computational burden to their systems. However, various code obfuscation 

methods can easily bypass these schemes (Anderson, 2014). In other words, these 

approaches are not effective against new malware variants until new signatures are 

generated.  

Malware authors try to develop different techniques to extend the life of their 

malware against currently updated antivirus detection systems. Polymorphic or 

metamorphic malware creation is one of those hiding techniques. Polymorphic malware 

changes its appearance by using encryption on each execution, but its main code 

structure does not change. Metamorphic malware, on the contrary, automatically 

changes its code by adding new instructions or changing registers every time it 

propagates. Malwares using these techniques can evade signature-based detection tools. 

Besides, some malware types can even sense dynamic analysis methods such as 

debugging and virtualization, and can hide its malicious execution paths. These 

obfuscation methods are making it hard to deal with constant threat of malwares.  

In addition to the evading techniques, the exponential increase in malware 

variants has become a challenging factor for the security analysts. As the number of 

newly released malware variants and the complexity of the obfuscation techniques that 

are applied to the original malware increase, the process of detecting new variants and 

creating mitigation techniques become more difficult and time consuming. Hence, more 

effort is needed to develop new technologies that automate and facilitate the analysis and 

classification of the thousands of new malware variants that are released on a daily basis 

(Rad, Masrom, & Ibrahim, 2012). While work has been done to help optimize the 

analysis of known malware and questionable files, there is much to be done in the field 

of speeding up detection and automating these processes (Dowd, 2014). As a result, 

high-quality signatures can be generated rapidly with automatic analysis methods unlike 
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the time-consuming manual analysis. Such techniques help security analysts for taking 

fast actions in the examination of security threats. 

Malware analysis is generally categorized as dynamic and static analysis. Dynamic 

analysis refers to the analysis performed during malware execution while static analysis 

is defined as the process of inspecting internals of a malware binary without execution 

(Egele, Scholte, Kirda, & Kruegel, 2012). 

2.3 Dynamic Analysis 

Dynamic analysis is done by running malware program and monitoring the 

program's behavior under different execution conditions (Awad, 2014). A sandbox 

environment is generally used to observe the behavior of a malware. Hence, the 

damaging risk of the malware against the host machine or other systems on the network 

can be eliminated. However, some malware types can detect the virtual environment on 

which they run and can change the execution path.  

To gather various information about a system with dynamic analysis, a security 

analyst, in general, records the initial system state first, then executes the program to be 

analyzed and examines the system state during and after execution and makes note of all 

changes (Böhne, 2008). Dynamic analysis can reveal different kinds of information such 

as file paths, registry changes, IP addresses, memory writes and so on. Additionally, it 

can monitor network interfaces of the infected host machine to identify an unusual 

traffic flow. For example, a communication between a trojan file infected on a host and 

its command and control server could be spotted with this way. By tracing system and 

library calls on a system, the effects of a program on that system can be captured.  

Dynamic analysis is strong against some obfuscation methods like binary 

packing and encryption or metamorphic and polymorphic malware creation, etc. 

However, it has some limitations. Dynamic analysis may not reveal all the execution 

paths since it observes the behavior of a program under some specific execution 

conditions, thus, complete behavior of the program may not be learned. Secondly, 

detection functions are used by malware creators in order to check for the presence of 

virtual environments. When such an environment is detected by the malware, the 

malware program behaves differently (non-maliciously) which leads to an incorrect 

analysis (Kang, Yin, Hanna, McCamant, & Song, 2009). Moreover, working on a high 

number of malware set may take too much time, which makes dynamic analysis not 

feasible for large-scale malware analysis. 

2.4 Static Analysis 

Unlike dynamic analysis, malware samples are not executed in static analysis. 

Binary code or source code of a malware instance form the basis of static analysis. But 
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mostly source code is not available for researchers to analyze; therefore, the binary form 

of a malware instance is usually used (Awad, 2014). Disassembler tools are used to 

examine internal functions, API calls and data segment of binary files. Static analysis 

can be used to gather a variety of information about a malware sample, e.g., high-level 

information such as its file size, a cryptographic hash, its file format, imported shared 

libraries, the compiler used to generate it, a list of human-readable strings that are 

contained in the file, or, low-level information gathered by disassembling or 

decompiling the sample (Böhne, 2008). All this information gives an idea about 

choosing proper disassembler and packer tools and classifying samples into their 

families. 

Static analysis approaches have some advantages over dynamic analysis 

methods. Static analysis allows analysts to scan all code parts of a sample, hence, all 

execution paths can be discovered. Secondly, the analysis system is more protected 

because the sample is not executed. Static analysis approaches may extract so many 

features in a short amount of process time from a malware sample set with the help of 

automation methods. Moreover, the operating system on which the analysis runs does 

not have to be same with the target operating system of a malware sample. This provides 

flexibility in choosing analysis environment for malware analysts. As mentioned 

previously, the main disadvantage of static analysis is that it is hard for analysts to 

address obfuscation techniques such as self-modifying code and packed binaries. 

2.5 Disassembly of Binaries 

Disassembly refers to the process of analyzing an executable in order to obtain 

its assembly code in a text format. Disassembly tools are used to understand a program’s 

binary structure when its source code is missing. Scanning and parsing instructions of a 

binary file is generally the first phase of static analysis. There are two main algorithms 

which are recursive-traversal and linear-sweep approaches in static disassembly. 

In the linear-sweep algorithm, disassembly begins with the first byte in a code 

section and moves, in a linear fashion, through the section, disassembling one instruction 

after another until the end of the section is reached, and no effort is made to understand 

the program’s control flow through recognition of nonlinear instructions such as 

branches (Eagle, 2011). Its main advantage is that it scans all code sections of a 

program, thus, it covers the whole binary code. However, meaningful data or junk bytes 

inserted into code sections is treated as instructions by the algorithm that might cause 

wrong interpretation of the binary code. 

The Recursive Traversal algorithm employs control flow analysis to disassemble 

programs. Control flow analysis tries to find out what code pieces would be executed 

and in what sequence. This method is used to identify the possible execution paths 

through the binary code. Connections between basic blocks compose the control flow. A 

basic block is an instruction sequence that does not contain any branch instructions in 
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the body of the block except at the beginning and at the end of the block (Böhne, 2008). 

It means that if the block is called, it executes all its instructions from beginning to end. 

The algorithm follows the control flow in order to decode instructions of the binary. One 

of the principle advantages of the recursive traversal algorithm is its superior ability to 

distinguish code from data (Eagle, 2011). 

The last method, speculative disassembly, runs recursive-traversal and linear-

sweep respectively to find and decode all non-scanned code pieces in the binary.  

2.6 Malware Clustering 

The increasing number of new malware samples and variants requires further 

automated approaches and efficient data mining techniques. Data mining is the process 

of analyzing data based on different criteria and turning it into meaningful information. 

The overall goal of the data mining process is to extract information from a data set and 

transform it into an understandable structure for further use. Automated data mining 

methods have been increasingly employed for data analysis in many application domains 

as datasets have expanded in complexity and size. One of the primary data mining tasks 

is clustering which is intended to help a user discover and understand the natural 

structure or grouping in a dataset (Kailing, Kriegel, & Kröger, 2007).  

Clustering aims at summarizing objects in a dataset in a manner which ensures 

grouping similar elements and distinguishing dissimilar ones (Assent, Krieger, Muller, 

& Seidl, 2007). Many clustering approaches have been implemented in different 

disciplines such as bioinformatics, astronomy, physics, business management and 

marketing. Recently, advances in data collection and management have led to large 

amounts of data being collected, giving rise to datasets with a high number of attributes 

(Sim, Gopalkrishnan, Zimek, & Cong, 2013). 

One of the important application domains that requires improved data mining 

techniques is malware analysis. Malware analysis aims to identify behavior of a malware 

by performing a structured and scalable procedures such as classification and clustering. 

Classification is known as supervised learning technique in terms of data mining. 

Classification tries to determine the class of an object by retrieving information from 

already labeled or classified objects. Clustering, on the other hand, is an unsupervised 

learning method which aims to find and group similar objects in a set of objects without 

a need of predefined classes. 

 In malware analysis, malware clustering refers to group malware samples by 

using the features extracted by static or dynamic analysis methods. Considering the 

rapidly increasing malware types and variants, clustering helps in creating malware 

classes which will be used as reference classes for the classification process. In other 

words, clustering malware samples gives a starting point or ground truth for supervised 

learning techniques in malware analysis. 
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2.7 Related Studies 

Many automation methods for clustering and classification of malware variants 

have been proposed to deal with the increasing number of malware threats. Some of 

them related to our study are summarized under this header. 

In the study conducted in 2008, the authors proposed a classification approach 

that is based on static analysis using Ida tool (Tian, Batten, & Versteeg, 2008). They 

aimed to use the functions as the basis of a classification system for malware. They used 

two aspects of these functions: one is the length of the function as measured by the 

number of bytes of code in it; the other is the frequency with which function lengths 

occur within any sample of malware. They showed that these two features are significant 

together to classify malware variants. Secondly, function length information is unlikely 

to be an effective input for classifying some other types of malware, such as viruses, 

where the malicious code is difficult to extract.  

A malware classification method based on string information of malware 

binaries was proposed in this article (Tian R. , Batten, Islam, & Versteeg, 2009). The 

first step is to unpack malware samples to deliver them to Ida tool for disassembling. 

Then the disassembly analysis is exported to a database for the next step which is 

classification. Information describing the printable strings contained in each sample 

becomes the input to various classification algorithms, including tree-based classifiers, a 

nearest neighbor algorithm, statistical algorithms and AdaBoost. The achieved 

classification results indicate a correct classification accuracy of 97% in the study. 

Han, et al proposed an approach to analyze and classify malware instances (Han, 

Kang, & Im, 2011). They designed a binary comparison method based on instruction 

frequencies of malware code. They rely on the assumption that malware variants share 

similar instruction sequences. They asserted that malware structures are different from 

normal programs and this decrease the false positives in detection rates. Their results 

showed the method can be effectively used to distinguish malware from benign program, 

but not to effectively classify malware variants into malware families. 

In his dissertation, Hu proposed a combination of four systems to deal with a 

large-scale malware analysis and clustering (Hu, 2011). The first system is called SMIT 

which is designed to check the similarity of malware instances based on the malware's 

function call graphs. SMIT uses static analysis to extract function call graphs from 

malwares. Secondly, the dissertation develops an automatic malware clustering system 

called MutantX. MutantX uses prototype-based standard agglomerative hierarchical 

clustering which allows malware analysts to focus on representative samples from each 

cluster and automatically generate labels for unknown samples based on their 

association with existing groups. Third, the author introduces a malware signature-

generation system, called Hancock, that automatically creates string signatures of 

malwares. Finally, the dissertation proposes a system called DUET, that optimally 

integrates malware clusterings based on both static features and dynamic behaviors.  
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Zhong et al, aimed to improve runtime performance of malware analysis in their 

study (Zhong, Yamaki, & Takakura, 2012). In their proposal, they compare and classify 

malware instances based on their static function features. They first analyzed known 

malware families and created a signature database. After building the database, unknown 

malware samples are analyzed with the static analysis method to extract their features 

and compare them with the samples in the database. Although the result of the study 

does not reflect high classification accuracy, it improves the similarity calculation 

runtime. 

Cesare et al, proposed a classification approach that is based on static analysis 

(Cesare, Xiang, & Zhou, 2013). Their method uses control flow graphs to identify 

malware instances. They first run their system on known malware families to build the 

malware control flow graph database. To classify new unknown malware samples, their 

control flow graphs are extracted and compared with the known graphs in the database. 

Edit distance method was used for the similarity comparison of control flow graphs. 

Their system showed a good accuracy but since the graph edit distance was used, the 

method would be so expensive in terms of runtime for large scale malware sets. 

In his thesis study, Awad proposed that the structured control flow can be used as 

the invariant feature to automatically cluster malware variants (Awad, 2014). He used 

several tools and algorithms to automatically cluster malware samples. In his method, 

the malware instances of the sample were first analyzed by the FX tool to generate the 

structured control flow regex strings of their individual local functions. Then these 

generated regex strings are sent to the clustering tool. After generating the initial 

clusters, the local functions of the malware instances were mapped back to the malware 

instance they belong to, and the number of shared functions that have similar structured 

control flows was calculated between all pairs of malware instances in the sample set. 

The percentage of the shared functions determines clusters of the actual malware 

samples.  

Arefkhani and Soryani introduce a pre-clustering method based on static analysis 

to categorize the huge number of malwares to an extremely smaller number of clusters 

in their paper (Arefkhani & Soryani, 2015). Their clustering method is based on image 

processing techniques. The idea is that the system converts the raw bytes of a Malware 

to a vector and then resize and reshape this vector to a two-dimensional vector that is 

considered as an image. Then image processing methods are applied to this image to 

extract textures. Visual similarities between malwares give an idea about their families. 

In the study, they used image processing Local Sensitive Hashing which does not need 

any comparison and hash values can be interpreted as cluster IDs. They tested their 

method with two data sets in order to show clustering accuracy and performance. 

Singh and Khurmi focused on clustering large number of malware samples in a 

fast way in their article (Singh & Khurmi, 2016). According to the study, a malware file 

is a binary file composed of different byte values ranging from 0-255. Reading a binary 

file, byte by byte, the count of each byte value can be calculated, and it gives byte 

frequency of a malware file. These byte frequency vectors, uniquely identify each 
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malware sample like MD5 and CRC32 checksum, are then used for clustering. They 

asserted that their system has three contributions. Firstly, it uses the important parts of 

binary files, i.e., it only uses data from code section of a binary instead of dealing with 

the whole content. Secondly, the proposed method uses entropy as index which makes it 

fast and scalable since it compares only those cluster strings which have same index. 

Lastly, they evaluated the proposed system on real world malware samples and achieved 

0.92 precision and 0.96 recall.  

Chanderan and Abdullah proposed a method for clustering malware behaviors 

with discovering unknown variants of malware in an efficient manner in their paper 

(Abdullah & Chanderan, 2017). They used the hierarchical density-based algorithm 

(HDBSCAN) which has several capabilities such as automatic calculation of cluster 

count, ability to handle clusters of different density and shapes, ability to handle noise 

and outliers. They used dynamic analysis to generate reports from malwares. The idea is 

that the features and values are selected and abstracted from the reports. The system 

creates fix-length tokens which refer to as w-shingling, an overlapping word-based n-

gram. The behavioral sequence pattern is designed in such a way that it will implicitly 

capture the program semantic. The report can then be embedded into a vector space. The 

Jaccard distance is used as distance metric to measure the similarities between reports, 

and to apply the metrics for clustering.  

In his thesis study, Spizler investigated the applicability of the Lempel-Ziv 

Jaccard Distance (LZJD), a recently introduced similarity metric on arbitrary binaries, 

for hierarchical clustering (Spizler, 2018). He performed experiments with three separate 

datasets and analyze cluster quality from a hierarchical density-based clustering 

algorithm. He found that LZJD does not perform well with hierarchical clustering and 

does not result in well separated clusters. He proposed a new method called Partitioned 

Lempel-Ziv Jaccard Distance, but it underperforms LZJD, with decreasing accuracy and 

higher uncertainty as the number of partitions increase. 

 Similar to these studies, we designed and implemented a system by combining a 

set of methods in order to contribute to the solution for malware clustering accuracy and 

runtime problem. We use function call graphs of malware samples as a similarity metric 

which is seen in the studies (Hu, 2011) and (Cesare, Xiang, & Zhou, 2013). Unlike 

previous studies, we employ a subspace clustering method to improve runtime 

performance of the expensive graph matching algorithms. Secondly, we develop a user 

interface which allows analysts to perform flexible and detailed malware clustering 

analysis and to navigate through inputs and outputs of the system. Lastly, we performed 

clustering tests on real malware sets to observe and verify the accuracy and runtime 

performance of our system. The experiment results show that our method improves the 

runtime of clustering process without degrading clustering accuracy. 
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3. THE UNDERLYING TOOLS AND ALGORITHMS 

 In this chapter, we explain the tools and the algorithms that we used as the 

building blocks of our system. The INSCY, DBSCAN and GED algorithms and the IDA 

Tool are explained in detailed in this chapter. We designed a malware clustering system 

prototype composed of three functions which are binary feature extraction, subspace 

clustering and graph matching.  

Our system uses the INSCY and DBSCAN algorithms together to identify and 

index supspace clusters in a malware set based on the static features obtained from each 

sample in the set. Secondly, the system runs a graph matching algorithm on the subspace 

clusters that are generated in the initial clustering process to create the final clustering. 

This second process uses the GED algorithm to measure the distance between malware 

pairs. The last piece is the Ida pro tool which is a disassembler used to extract the 

information from the malware set. 

3.1 The INSCY Algorithm 

 Subspace clustering aims to find all clusters in all subspace projections. One of 

the challenges of mining all subspaces is that the number of subspace projections 

increases exponentially as the dimensionality of the space increases. This "curse of 

dimensionality" crucially affects the efficiency of finding subspace clusters. Finding all 

possible clusters within a high dimensional space is an unfeasibly expensive task. The 

second problem in subspace clustering is that many redundant clusters may be generated 

in the high dimensional object space. Clusters which appears in different subspaces are 

often redundant, and may contain essentially the same information as the maximal high 

dimensional one (Müller, Assent, & Seidl, 2009). Figure 1 illustrates this problem. In 

this 2-dimensional space, C1 and C2 are one dimensional cluster whereas the C3 is a 2-

dimensional cluster. C3 contains the information that C1 and C2 provide. To increase 

the quality of the resulting clustering, excessive numbers of redundant clusters must be 

pruned. In addition, the higher dimensional projections should be given greater 

importance instead of less informative lower dimensional projections. 
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Figure 1: Projections in dimension 1 and 2 

 The INSCY (INdexing Subspace Clusters with in-process-removal of 

redundancY) algorithm uses a depth-first approach to address the previously described 

challenges. This strategy has two key advantages: First, because the maximal high 

dimensional projection is evaluated first, the algorithm is able to immediately prune all 

its redundant low dimensional projections and this leads to major efficiency gains 

(Assent et al, 2008). INSCY algorithm has an in-process redundancy pruning function 

which can prune lower redundant subspace projections immediately whenever higher 

dimensional subspace clusters are identified. Thus, costly density-based clustering 

computations are done only for the maximal high dimensional subspace projections. The 

breadth-first search algorithm, in contrast, starts mining from the lowest dimensional 

subspace projections. Since the higher dimensional subspace projections would be 

processed at the end of such an analysis, redundancy pruning could only be performed 

after all the subspace projections had been mined, but this would be too late in terms of 

computational time complexity. The breadth-first search approach would result in 

extremely large result sizes that would be filled with redundant clusters and that would 

have to be pruned and this would imply very high runtimes. 

 The second advantage of the INSCY algorithm is that potential subspace cluster 

regions can be indexed by using its index structure, namely the SCY-tree. The complete 

space can be turned into a SCY-tree data structure with only a single database scan. This 

provides an efficient way to perform clustering quickly. The SCY-Tree also supports 

top-down query of arbitrary subspaces without having to mine their lower dimensional 

projections. Indexing subspace clusters in a breadth-first manner, in contrast, would 

require building index structures for each of the exponentially many subspace 

combinations, which is clearly not feasible (Assent et al., 2008). 
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3.1.1.1 The SCY-Tree Structure 

 In the INSCY algorithm, all subspace regions are indexed by using the SCY-tree 

data structure, so that any subspace region can be queried without costly neighborhood 

computations. Figure 2 illustrates a SCY-tree which represents a 3-dimensional space. 

Each level represents a dimension and is divided into intervals to identify different 

segments of that dimension in the original space. In our example, there are three 

intervals in each of the three dimensions. Each sub region is described with at least one 

path which starts from the root node of the SCY-tree and ends at a leaf node. Leaf nodes 

of the paths store the count of objects which reside within the sub regions associated 

with the paths. Multiple paths can represent a sub region. In this case, the count of 

objects in the sub region is calculated by summing all leaf counts of associated paths. 

 Nodes are the building blocks of the SCY-tree, which is organized in a 

hierarchical manner. The main fields of each node in the SCY-tree are: a descriptor and 

a count value. A descriptor is composed of an integer dimension d and an interval 

number i within that dimension and expressed with the pair (d, i). The nodes of a SCY-

tree are ordered based on their descriptors. When a specific subspace region is to be 

found for analysis, the related SCY-tree is restricted by using the corresponding 

descriptors. Once the restriction process is done, density of the subspace is evaluated 

according to the count of objects within that specific region and the geometric value of 

the region. 
 

 

Figure 2: SCY-tree representing a three-dimensional space 

Definition 1: SCY-Tree Structure 

"A SCY-Tree TD represents a region D = {(d1,i1),...,(dk,ik)} in an arbitrary subspace. The 

SCY-tree consists of nodes, each of which stores: 

• a descriptor (d, i) for integer dimension d and interval number i of the region, 

and the count of c of objects within it  
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• a pointer to the parent node and a list of child pointers to child nodes 

• a pointer of a linked list of nodes with the same descriptor " (Assent I. , Krieger, 

Müller, & Seidl, 2008). 

 A two-dimensional projection of the three-dimensional space is seen in Figure 3-

a. The colored sub region in the two-dimensional projection is represented with the 

colored paths in the SCY-Tree. When a sub region is to be located for cluster analysis, 

the SCY-tree is restricted by using the corresponding descriptors. In Figure 3-b, the 

restricted tree which represents all objects residing in segment 2 in dimension 1 has been 

depicted. The restricted tree consists of three paths, because in this region, all objects are 

in the interval numbers 1,2 and 3 of dimension two and three. The general idea is that 

one can restrict a region to a subset of its dimensions by restricting the corresponding 

SCY-tree representing this region (Assent et al., 2008).  

 

Figure 3: Two-dimensional projection 

 Between each of the cells in the Figure 3-a, a special ε width region is included 

called S-connector to ensure that density-based clusters which span across multiple 

regions can be found. S-connectors are set up at the upper border of each region. If there 

is at least one point inside of an S-connector, the neighbor regions are merged. For 

example, in the colored part of Figure 4-a, the red point which resides in the S-connector 

of the interval 3 in dimension 1. The two neighboring regions (interval 1 and interval 2 

of dimension 1) are merged into a single region so that the density-based cluster 

spreading across the two regions can be found. S-connectors must act as sensors for 

detecting clusters that span across multiple regions. 
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 While a space is being converted into a SCY-tree, S-connectors are represented 

as nodes that are missing a count value. In Figure 4-b, we can see a S-connector node, 

the red round node. If a path contains an S-connector node, this fact indicates that the 

two neighboring S-connected regions should be merged to obtain an aggregated cluster 

as shown in Figure 4-a. For multiple regions, this merging operation on neighboring 

SCY-trees can be done iteratively until no further object is contained in any surrounding 

ε region (Assent et al., 2008). 

 

Figure 4: S-connected region in a two-dimensional projection 

 Using SCY-tree data structure when clustering objects has advantages over grid-

based clustering algorithms. Grid based algorithms may lose clusters due to grid 

resolution and offsets. Clusters spreading over multiple grids or regions are clusters that 

spread across multiple regions are cut apart artificially in grid-based algorithms. This 

adversely affects the cluster quality. In the INSCY algorithm, on the other hand, all 

border regions that house points are indexed by S-connectors in the SCY-tree. This 

indexing allows the INSCY algorithm to find clusters without loss of accuracy. 

Essentially, the SCY-tree approach exhibits better efficiency than grid-based algorithms 

while avoiding the loss of quality (Müller et al., 2009).  

3.1.1.2 The Algorithm 

 Once the SCY-tree has been constructed with a single database scan, the INSCY 

algorithm mines clusters by reading the SCY-tree to avoid additional expensive database 
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scans. By recursively restricting the subspaces in a depth-first fashion, maximal high 

dimensional subspace clusters can be quickly detected. Redundant clusters in the lower 

dimensional subspace projections can be pruned during the step back phase of recursive 

cluster mining. As seen in Algorithm 1, INSCY takes a SCY-tree and an empty list as 

initial inputs. It, then recursively calls restriction and pruning functions to mine the 

clusters. 

Algorithm 1: INSCY (SCY-tree, result) 

  

"foreach descriptor in scy-tree do 

 restricted-tree := restrict(scy-tree, descriptor); 

 restricted-tree := mergeWithNeighbors(restricted-tree); 

 pruneRecursion(restricted-tree); //prune sparse regions 

 INSCY(restricted-tree,result); //depth-first via recursion 

 pruneRedundancy(restricted-tree); //in-process-removal 

 result := DBClustering(restricted-tree) ∪   result; " (Assent I. , Krieger, Müller, 

& Seidl, 2008). 

3.1.1.2.1 Restricting SCY-trees; Searching different subspaces 

 In the previous section, we defined descriptors (d,i) which are used to specify a 

region of a space. Within each descriptor, 'd' represents the integer dimension, and 'i' 

represents an interval number. Any level of descriptors can be selected to be used in the 

restriction of the SCY-tree. Restriction means that only a specific sub region is evaluated 

for possible clusters. The INSCY algorithm restricts the SCY-tree by considering all 

descriptors in order and detecting subspace clusters in all possible combinations of 

dimensions. 

 In Figure 5-a we see the SCY-tree representation of a three-dimensional space. 

To obtain a one-dimensional projection of the space in the interval 3 of dimension 1, we 

need to add up object counts within the nodes which lie in the region whose descriptor is 

(1,3). These nodes are shown in blue circles in Figure 5-a. The restriction of the SCY-

tree results in the paths from the blue circled nodes to the root node which are copied 

into the restricted SCY-tree T{(1,3)} and labeled with the counts within those nodes. The 

result of this restriction process is the restricted SCY-tree shown in Figure 5-b. The 

paths that aren't related to the descriptor (1,3) are pruned.  

 This sort of restriction process can be performed recursively. When a second 

restriction is performed to the restricted SCY-tree T{(1,3)}, a two dimensional projection 

is obtained, as seen in Figure 5-c. In this example, the SCY-tree is restricted by 

descriptor (2,3) to get a sub region. The resulting SCY-tree T{(1,3)×(2,3)} has only one path 

and contains a single node. The output of the second restriction shows that there are 5 

objects within interval number 2 of dimension 3. 
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Figure 5: SCY-tree restriction process 

 We can also observe the restriction process on a three-dimensional space. Figure 

6-a depicts an example of a three-dimensional space. Each dimension is equally divided 

into 5 intervals as opposed to 3 intervals in the previous example. The colored 

rectangular columns specify two-dimensional sub regions which are obtained by two 

successive restrictions. For example, the blue column is defined in terms of descriptors 

(1,5) and (2,5). The yellow column is defined by descriptors (1,4) and (2,3). When all 

points in the space are projected to the sub region that is the intersection of dimension 1 

and 2, we obtain the two-dimensional projections shown in Figure 6-b. Then, density-

based clustering analysis can be performed on these projections of subspace regions. 

 
Figure 6: Two dimensional projections 

 If another second restriction is applied to the sub regions seen in Figure 6-a, 

maximal high dimensional subspaces are obtained for this space as shown in Figure 7. 

For example, the blue cube which represents a three dimensional projection that is in the 

5th interval in all dimensions, and can be expressed with SCY-tree T{(1,5)×(2,5)×(3,5)}. In 

other words, the blue region can be obtained by restricting the space using the 

descriptors (1,5), (2,5) and (3,5). If the threshold value for clustering is set to 5 for 

instance, then there will be four three dimensional regions which have enough points to 
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be classified as clusters. These four regions are colored red, yellow, green and blue in 

Figure 7. 

 
Figure 7: Three-dimensional projection 

 As recursive calls to INSCY consider successively high dimensional subspaces 

with recursive calls, the regions being considered become volumetrically smaller. Thus, 

if any projection does not have enough points in it, further restrictions could only result 

in low counts that would also not pass the threshold required to be classified as a cluster. 

Consequently, such spare regions can be safely pruned from the search tree when they 

are first discovered. The threshold value for a region to be classified as a cluster is 

denoted as minPoints parameter in the INSCY algorithm. 

3.1.1.2.2 Merging SCY-trees; Growing S-connected regions 

 As we mentioned in the previous section, merging sub regions allows the 

algorithm to find clusters that span multiple sub regions. Figure 10 depicts how this 

merging is performed using the SCY-tree by the INSCY algorithm. Merging of S-

connected restricted SCY-trees requires simply inserting all paths of one tree into the 

other and aggregating the count values which a lie along common paths, possibly 

inserting new nodes (Assent I. , Krieger, Müller, & Seidl, 2008). S-connected regions 

are coded as special paths in the SCY-tree. For example, in Figure 8, the path with blue 

node represents a S-connected region in dimension 2.  

 When the tree is restricted with descriptor (2,1), the restricted SCY-tree 

T{(1,3)×(2,1)} is obtained as shown in Figure 8-b1. Similarly, the restricted SCY-tree 

T{(1,3)×(2,2)} shown in Figure 8-b2 can be obtained by restricting the tree with descriptor 
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(2,2). The total count of objects in the SCY-trees are 5 and 6 respectively. The two SCY-

trees are merged into the SCY-tree T{(1,3)×(2,1−2)}  that represents both intervals in 

dimension 2. This is depicted in Figure 8-c. Note that the merged tree has enough 

objects to induce further restrictions. 

 

Figure 8: SCY-Tree merging process 

 We can also give an example of the merging using the three-dimensional S-

connected neighboring regions in Figure 7. The yellow and green cubes are the maximal 

neighboring projections. Even if there is only one point at the border surface of these 

two cubes, the INSCY algorithm merges them into a single subspace so that it can find 

the true cluster which spans the two cubes. Let’s assume the yellow sub region is not 

dense enough to have clusters in it. If the two sub regions were not merged, the system 

would have failed to detect the true cluster which spans both regions. Merging 

neighboring sub regions using S-connectors can provide better clustering quality. 

3.1.1.2.3 Clustering; Mining actual subspace clusters 

 In this phase, the density-based clustering is carried out on the restricted SCY-

tree. The actual data is accessed to identify neighborhoods and to check conditions 

necessary to determine that a cluster exists in this step (Assent I. , Krieger, Müller, & 

Seidl, 2008). For instance, if the SCY-tree in Figure 8-c is restricted, there is a merging 

of regions in dimension 3. The resulting SCY-tree is T{(1,3)×(2,1−2)×(3,2−3)} and has a count 

of 11. Since the region is a maximal subspace projection, no further restrictions can be 

applied to the SCY-tree. Therefore, we have reached the terminal restriction and density-

based clustering can be performed on the region (1,3)×(2,1−2)×(3,2−3).  
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3.1.1.2.4 Redundancy pruning; In-process removal 

 In-process-removal of redundant clusters is an important feature that makes the 

INSCY algorithm efficient in finding non-redundant maximal clusters. Due to the depth-

first mining approach of the INSCY algorithm, maximal high dimensional clusters are 

added to the result set first. Over time, lower dimensional projections are analyzed for 

possible clusters. The algorithm decides whether to add lower dimensional clusters in 

the result set or discard them based on a redundancy parameter R. In Figure 10, one of 

the maximal high dimensional projections of the SCY-tree is T{(1,3)x(2,1-2)x(3,2-3)}. This 

projection has 11 objects which exceed the value of the minPoint (the minPoint is set to 

6 in this example). The minPoint parameter is used by DBSCAN algorithm and specifies 

the minimum object count necessary to form a cluster. Let's assume that a cluster has 

been found in this projection after the density-based clustering algorithm runs. If this 

were so, the cluster would be added to the result set as a maximal high dimensional 

cluster. In the next step, INSCY steps back and analyzes the lower dimensional 

projection T{(1,3)x(2,1-2)}. This region has the same 11 objects in it, and for this reason will 

not be added to the result set because there is already a higher dimensional cluster that 

has been discovered, and accounts for the same set of objects. 

3.1.1.2.5 Arbitrary restrictions; Detecting all subspace clusters 

 All possible combinations of dimensions of a clustering space are mined by the 

INSCY algorithm. As the dimension count of a clustering space increases, the total 

number of possible projections in that space increases exponentially. Because the main 

purpose of the INSCY algorithm is to find clusters in all possible projections, in-

process-pruning has an important role. For example, in the previous example, a cluster 

found in a maximal high dimensional projection T{(1,3)x(2,1-2)x(3,2-3)} is added to the results 

set. When the algorithm steps back in the recursion, the lower dimensional projection 

T{(1,3)x(2,1-2)} which is described with just dimension 1 and 2 is processed. However, the 

lower dimensional cluster is unable to pass the redundancy check and is pruned. 

Similarly, all possible combinations of the lower dimensional projections are processed, 

and a redundancy check is performed for all lower dimensional projections. When a 

lower dimensional projection passes the redundancy check, the density-based clustering 

is performed for that projection. In this way, the result set contains clusters from the 

maximal high dimensional projections and non-redundant lower dimensional 

projections. 

3.1.2 The DBSCAN Algorithm 

 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 

clustering algorithm proposed by Ester et al (Ester, Kriegel, Sander, & Xu, 1996). By 
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using density distribution of objects in a database, DBSCAN can categorize these 

objects into separate clusters. DBSCAN takes only two parameters and finds arbitrarily 

shaped clusters as seen in Figure 9. Another advantage of the algorithm is that it uses the 

notion of 'noise' for the detecting of outlier objects. The algorithm is based on six 

definitions and two lemmas.  

 
Figure 9: Arbitrary shaped clusters 

3.1.2.1 Essential Definitions 

 The main idea of the algorithm is that for each point in a cluster, a neighborhood 

of given radius must contain at least a minimum number of points, that is, the density in 

a neighborhood must exceed some threshold. To calculate the distance between two 

points, any distance function can be used (e.g. Euclidian and Manhattan distance 

measures). The notion of the "Eps-neighborhood of a point" is described in definition 1. 

 

"Definition 1: (Eps-neighborhood of a point)  

The Eps-neighborhood of a point p, denoted by NEps(p), is defined by  

NEps(p) = {q ∈ D | dist(p,q) ≤ Eps}" (Ester, Kriegel, Sander, & Xu, 1996). 

 Clusters contain two types of points which are the core points and the border 

points as shown in Figure 10-a. In general, core points have more neighboring points 

within their Eps-neighborhood than do the border points. The algorithm requires that for 

every point p in a cluster C, there is a point q in C so that p is in the Eps-neighborhood 

of q and NEps(q) contains at least MinPts points. 
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"Definition 2: (directly density-reachable)  

A point p is directly density-reachable from a point q with respect to (Eps, MinPts) if 

1) p ∈ NEps(q) and 

2) |NEps(q)| ≥ MinPts (core point condition) " (Ester, Kriegel, Sander, & Xu, 1996). 

 

 

Figure 10: Density-reachable of points 

 For the core point pairs, directly density-reachable is a symmetric relation 

whereas it the relation is not symmetric for the pairs composed of one core point and one 

border point. For instance, point p is directly density-reachable from point q as depicted 

in Figure 10-a, but the reverse is not true, because point p doesn't meet the second 

condition of definition 2. Density-reachable (which is defined with Definition 3) is 

basically an extension of the directly density-reachable.  

"Definition 3: (density-reachable)  

 A point p is density-reachable from a point q with respect to (Eps, MinPts) if 

there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly density-

reachable from pi" (Ester, Kriegel, Sander, & Xu, 1996). 

 Figure 10-b depicts an example of density-reachability. Point p is density-

reachable from point q, but not vice versa. Two border points of a cluster may not be 

density-reachable from each other. The density-connectivity notion is introduced in 

Definition 4 to express the relation of density-reachable between border points.  

 

"Definition 4: (density-connected)  

 A point p is density-connected to a point q with respect to (Eps, MinPts) if there 

is a point ‘o’ such that both, p and q are density-reachable from o with respect to (Eps, 

MinPts) " (Ester, Kriegel, Sander, & Xu, 1996). 

 Density-connectivity is a symmetric relation. As seen in Figure 11, points p and 

q are density-connected to each other by point o.  
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Figure 11: Density-connectivity of points 

 A cluster can be defined based on the previous definitions. Condition 1 of 

definition 5 specifies that if a point p belongs to a cluster C and point q is density-

reachable from point p with respect to a given (Eps, MinPts), then q also belongs to 

cluster C. The second condition expresses that each pair of points within a cluster are 

density-connected to each other. 

"Definition 5: (cluster)  

 Let D be a database of points. A cluster C with respect to (Eps, MinPts) is a non-

empty subset of D satisfying the following conditions: 

1) ∀ p, q: if p ∈ C and q is density-reachable from p with respect to (Eps, MinPts), then 

 q ∈ C. (Maximality) 

2) ∀ p, q ∈ C: p is density-connected to q with respect to (Eps, MinPts). (Connectivity) " 

(Ester, Kriegel, Sander, & Xu, 1996). 

 The red point in Figure 11 is an example of a noise which is the group of points 

in database D which did not placed to any cluster.  

"Definition 6: (noise)  

 Let C1 ,. . ., Ck be the clusters of the database D with respect to parameters (Epsi 

, MinPtsi), i = 1, . . ., k. Then we define the noise as the set of points in the database D 

not belonging to any cluster Ci , i.e. noise = {p ∈ D | ∀  i: p ∉ Ci}"  (Ester, Kriegel, 

Sander, & Xu, 1996). 

 To validate the algorithm, the following two lemmas were presented by its 

developers. The first lemma specifies that an arbitrary point which meets the second 

condition of definition 2 with respect to a given (Eps, MinPts) should be found first. 

Then, the second lemma basically says that all points density-reachable from that seed 

can be retrieved.  

"Lemma 1:  

 Let p be a point in D and |NEps(p)| ≥ MinPts. Then the set O = {o | o ∈ D and o is 

density-reachable from p wrt. (Eps, MinPts) } is a cluster with respect to (Eps, MinPts) 
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Lemma 2:  

 Let C be a cluster wrt. (Eps, MinPts) and let p be any point in C with |NEps(p)| ≥ 

MinPts. Then C equals to the set O = {o | o is density-reachable from p with respect to 

(Eps, MinPts) }" (Ester, Kriegel, Sander, & Xu, 1996). 

3.1.2.2 The Algorithm 

 The DBSCAN algorithm takes two arguments, namely epsilon and minimum 

points. It begins with choosing an arbitrary point from the dataset to be clustered. The 

regionQuery function returns the eps-neighborhood of the selected point. If the point has 

enough neighboring points within its Eps-neighborhood, it creates a new cluster. If not, 

the point is marked as noise. However, this point might be placed in a cluster later on, if 

it is density-reachable from some other point in the dataset.  

 The expandCluster function finds all density-reachable points from the seed 

point which was chosen in the first step. Once the density-connected cluster has been 

enumerated fully, the algorithm chooses another point which is unvisited before to find 

next possible cluster. These steps are repeated until all density-based clusters have been 

found in the database.  

 

Algorithm 2: DBSCAN (D, eps, MinPts) 

 

" C = 0 

   for each unvisited point P in dataset D 

      mark P as visited 

      NeighborPts = regionQuery(P, Eps) 

      if sizeof(NeighborPts) < MinPts 

         mark P as NOISE 

      else 

         C = next cluster 

         expandCluster(P, NeighborPts, C, eps, MinPts) 

           

expandCluster(P, NeighborPts, C, eps, MinPts) 

   add P to cluster C 

   for each point P' in NeighborPts  

      if P' is not visited 

         mark P' as visited 

         NeighborPts' = regionQuery(P', eps) 

         if sizeof(NeighborPts') >= MinPts 

            NeighborPts = NeighborPts joined with NeighborPts' 

      if P' is not yet member of any cluster 

         add P' to cluster C 
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regionQuery(P, eps) 

   return all points within P's eps-neighborhood (including P)" (Ester, Kriegel, Sander, 

& Xu, 1996). 

 

 The complexity of DBSCAN depends on the point count of a dataset and region 

queries performed for each point. This results in an average complexity of O(n * log n). 

3.1.3 The Graph Matching  

In our study, the last piece of the Malware Analysis System is a graph matching 

module which is responsible for computing the graph similarity of malware samples. 

The subspace clustering part (second module) generates the subspace clusters using 

specific features extracted from malware samples. The graph matching process runs on 

each of the resulting subspace cluster to obtain the actual clusters. In the graph matching 

phase, malware samples will be compared and clustered based on their function call 

graphs. 

3.1.3.1 What is a Graph 

A graph is a structure composed of vertices and edges which connects the 

vertices. Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is 

the set of edges, formed by pairs of vertices (Ruohonen, 2013). For example, vertices set 

can be shown as V = {v1, ... , v5}, and edges set can be represented as E = {(v4, v3),(v1, 

v4),(v2, v4)}. If the elements in the edge set are ordered, then it gives a directed graph. If 

there is no order definition between vertices, then it gives an undirected graph as shown 

in Figure 12. 

 

 

Figure 12: Directed and undirected graphs 
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3.1.3.2 Graph Matching Problem 

Graph matching refers to the process of finding a structural similarity between 

two graphs. Graph matching can give accurate information about graph similarity; 

however, runtime complexity is a major problem seen in many graph matching methods. 

Various solutions have been proposed to obtain a linear runtime for the matching 

process. These methods can be classified under exact and inexact graph matching 

headers. 

Exact matching between graphs is characterized by the fact that the mapping 

between the vertices of the two graphs must be edge-preserving, that is, if two vertices in 

the first graph are adjacent, they are mapped to two vertices in the second graph that are 

adjacent as well (Livi & Rizzi, 2013). Graph isomorphism, which is an exact matching 

method, seeks to find a structure and semantic similarity between two graphs.  

Exact graph matching may not be applied, if two graphs have different number 

of vertices. It means that no isomorphism can be expected between both graphs, and the 

graph matching problem does not consist in searching for the exact way of matching 

vertices of a graph with vertices of the other, but in finding the best matching between 

them (Bengoetxea, 2002). Besides, exact matching problem is typically NP-complete. At 

this point, inexact graph matching methods are proposed to solve this problem. 

Two graphs may have a very similar structure except some missing nodes or 

edges. In this case, a different method can be used to find mappings between graphs 

instead of using exact matching. The most adopted solution is to make the matching 

process tolerant in respect to deformations by introducing the concept of matching cost 

to penalize structural differences (Carletti, 2016). As the structures of two graphs are 

getting dissimilar, the cost of matching increases. This matching cost can be used later 

as a similarity parameter for grouping graphs.  

3.1.3.3 Graph Edit Distance 

Graph edit distance is a flexible graph dissimilarity measure that belongs to the 

family of inexact graph matching methods. The graph edit distance (GED) between two 

graphs can be defined as the minimum cost required to transform one of the given 

graphs into the other (Yan, et al., 2016). In particular, it measures the deformation 

between two graphs by considering the cost assigned to the sequence of elementary 

graph edit operations needed to transform the first graph in the second one (Carletti, 

2016). A graph operation such as inserting or removing a node is the basic 

transformation unit performed on a graph, as defined in Definition 1. A transformation is 

composed of a set of edit operations sequentially applied to a graph, namely an edit path 

P. The cost of the edit path is defined as the sum of all its elementary operation's costs. 

An edit path from graph1 to graph2 with minimal cost is called an optimal path. 
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Definition 1. Graph edit operations: 

The elementary edit operations generally include the following operations. 

• Node/Edge insertion: Introducing a new node/edge to a graph. 

• Node/Edge substitution: Changing a label of a given node/edge in a graph. 

• Node/Edge deletion: Removing a node/edge from a graph 

 

Figure 13 depicts an example of graph edit operations. Three edit operations 

(node addition, edge addition and edge removal) are performed in order to transform the 

graph 1 into the graph 2.   

 

 
Figure 13: Graph transformation by edit operations 

 

Graph edit distance (GED) is the most employed inexact graph matching method 

to compute the pairwise similarity of graphs. However, computing the GED is known 

NP-complete and a classic method is by means of a tree search procedure that basically 

evaluates all possible node-to-node correspondences (Sanfeliu & Fu, 1983). Even 

though, the computation complexity of GED is unsuitable for large graphs, several 

methods have been offered to make the computation of graph edit distance feasible. One 

is called bipartite GED solved by linear assignment. Bipartite GED and its variants 

approximate the GED problem by a linear assignment problem, which can be solved 

efficiently via e.g. the Hungarian method (Munkres, 1957). These methods approximate 

graph structure by a node-to-node cost matrix that encodes local clique structure (Yan, et 

al., 2016). 

3.1.4 The Dissassembly Tool (IDA Pro) 

In a traditional software development model, compilers, assemblers, and linkers 

are used to create executable programs. To analyze the internal code structure of 

programs, various tools are used to undo the assembly and compilation processes. The 



30 

 

purpose of disassembly tools is often to facilitate understanding of internal structures of  

programs when source code is unavailable. 

 

Figure 14: Ida pro tool GUI 

 

We used the Ida pro tool (Hex-rays, 2018) to disassemble malware executables 

and extract the features necessary for the clustering phase. Since this study aims to deal 

with large number of malwares, our system needs to automate the disassembly process 

of malware samples. For this purpose, we use a plugin called IDAPython which allows 

scripts to run in Ida pro. In addition, Ida pro uses FLIRT signatures to quickly identify 

local and statically-linked library functions in executables. FLIRT signatures help Ida 

pro automatically rename functions extracted from malware binaries. A screenshot of 

the tool’s main page is seen in Figure 14. 
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4. SYSTEM DESIGN AND IMPLEMENTATION 

We designed and implemented a malware clustering system which generates 

clusters based on the internal structure similarity of malware binary codes. Using 

internal structure of a malware as a comparison parameter provides more accurate 

clustering results, however, it significantly increases the clustering runtime. To 

overcome this issue, feature extraction and clustering methods should be carefully 

chosen and implemented. In this study, we aimed to cover both accuracy and runtime 

aspects of malware clustering. In this chapter, we present the design of our system, and 

explain the functions running in the background. We also introduce the graphical user 

interface of the system. 

4.1 Design of The System  

We designed a malware clustering system prototype composed of three functions 

which are binary feature extraction, subspace clustering and graph matching. These 

functions are implemented based on the algorithms and tools mentioned in Chapter 3. 

The prototype system has a graphical user interface where an analyst can manage 

malware clustering process. Figure 15 depicts the system modules and malware 

clustering process flow through them. 

 

Figure 15: Malware clustering modules 
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In our study, each malware binary is transformed into a graph which is composed 

of nodes and edges. Each function of a malware binary is translated into a node while 

the caller-callee relationships between the functions are the edges. Since the relations 

between the binary functions have directions, the function call graphs are created as 

directed graphs in our implementation. Functions of a binary code can be categorized as 

dynamically linked library functions, statically-linked functions and local functions. 

Dynamically-linked functions are defined as DLL functions that are linked at runtime 

while statically-linked functions refer to the library functions that are statically linked 

into the binary code. Lastly, the local functions are specific functions written by 

programmers that gives an idea about binaries written with a similar intention. The 

nodes forming a graph for a malware are composed of these three types of functions.  

 To create function call graphs, we first need to extract all functions and the 

relations among them from a binary code by using a suitable disassembler. The 

disassembler that we use for this study must have some capabilities. First, it should 

allow us to call it programmatically since we intend to analyze a large malware database. 

Secondly, we should be able to create and use signatures to identify the functions 

extracted from binaries. Since we compare the graphs in the clustering process, we also 

need to determine a naming standard for all type of functions.  

 To meet these needs, we choose Ida pro (Hex-rays, 2018) disassembler tool 

which can classify, extract and label the three types of binary functions. There is an Ida 

pro plugin called IDAPython. Since this plugin allows scripts to run in Ida pro, we use it 

to automate our malware analysis. Moreover, Ida pro uses Fast Library Identification 

and Recognition Technology (FLIRT) signatures which provide rapid identification of 

local and statically linked functions in programs. FLIRT signatures help Ida pro 

automatically rename functions for the reverse engineering. These features of the Ida 

tool allow our system to automatize the function extraction process. For this purpose, we 

wrote a python script which calls the disassembler tool to extract necessary information 

from malware binaries. Hence, the first module of the system, feature extraction module, 

can read binary files from a folder, check and unpack packed binaries, extract function 

features and function calls, and write all the extracted information into a database. 

The second module of the system is a pre-clustering tool written to improve the 

runtime performance of the final grouping which contains expensive graph matching 

operations. With an efficient indexing method, we can group the malware variants that 

have similar features before the graph matching process is started. For this reason, a 

subspace clustering algorithm is employed in this study which can analyze data of high 

dimension and categorize it based on object relationships.  

In data with many attributes, clusters are often hidden in subspaces of the 

attributes and do not show up across a full attribute space (Assent, Krieger, Müller, & 

Seidl, 2007). Subspace clustering aims to automatically identify subspaces of the object 

space where clusters exist by mining all possible attribute combinations in a scalable 

way. In other words, main objective is to find high quality clusters in different subsets of 

a dataset in an efficient way. However, clustering a large binary set may generate 
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excessively large number of clusters that significantly increases the runtime of the 

analysis. Another issue is that many redundant clusters might be generated in a high 

dimensional space. To overcome these drawbacks, we use the INSCY (INdexing 

Subspace Clusters with in-process-removal of redundancY) algorithm, proposed in the 

article (Assent I. , Krieger, Müller, & Seidl, 2008), that mines subspaces in a depth-first 

search manner and employs a density-based clustering approach for the actual 

clustering.  

INSCY algorithm has two key advantages: First, it uses depth-first searching 

with a pruning mechanism for the task of mining sub-regions. In this manner, as the 

maximal high dimensional projection is evaluated first, immediate pruning of all its 

redundant low dimensional projections leads to major efficiency gains (Assent I. , 

Krieger, Müller, & Seidl, 2008). Secondly, potential subspace cluster regions can be 

indexed by using the algorithm's index structure which supports access to arbitrary 

subspaces without mining their lower dimensional projections. Thus, costly density-

based clustering computations are performed only for maximal high dimensional 

subspace projections. 

Our system extracts several binary code features such as file size, stack size, 

local function and dll counts, basic block counts and function call counts from binary 

files. We define these binary code features as dimensions in our approach so that we can 

create a malware binary code space on which the system can run the subspace clustering 

process. The subspace clustering algorithm that runs on these dimensions generates 

clustering results that helps in guiding malware analysis. This clustering approach can 

provide meaningful information relevant to an analysis, especially in cases where 

investigators are able to focus only on binaries within a small number of clusters that are 

based on binary code features.  

When the initial clustering is completed, the resulting set of clusters gives a 

general idea about different classes of binary codes based on binary code attributes. The 

last piece of our malware clustering system is a graph matching module which is 

responsible for computing the graph similarity of malware samples. The subspace 

clustering module generates clusters by comparing and evaluating the specific features 

of the malware binaries. The graph matching process runs on each of the resulting 

subspace cluster to obtain the actual clusters. In the graph matching phase, malware 

samples are compared and clustered based on their function call graphs.  

 Various algorithms and methods have been implemented for matching different 

graph types. The common problem of these methods is that the computational cost of 

matching graphs is very high. We implemented the generic graph edit distance algorithm 

to compare and verify runtime and grouping performance of the algorithms.  

 We run the system over a set of malware binaries that we collected from various 

web resources to verify the contributions of our system. In chapter 5, we present the 

experiment results including clustering accuracy and runtime performance values. 
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4.2 Implementation of The System 

The components of the system were designed and implemented to perform the 

processes explained in the system design section based on the algorithms introduced in 

Chapter 3. The system components and the functions of these components are presented 

in this section.  

4.2.1 The System Components 

 The system has three components, depicted in Figure 16, to be able to perform 

the tasks necessary for the clustering of a malware set. The Malware Clustering program 

is the first and the main component of the system since it provides a graphical user 

interface for managing the feature extraction and clustering processes. By using this user 

interface, an analyst can start the clustering on a malware set, and examine the generated 

cluster results. The INSCY, DBSCAN and GED algotihms, used for generating clusters, 

are also implemented as parts of this first component. After the clustering process is 

completed, the system displays the clusters on the graphical user interface to allow 

further examination of the clustering results. 

 
Figure 16: The system components 

As we mentioned in Section 4.1, a set of features which are used in the clustering 

phase should be extracted from malware binary samples prior to the clustering process 

initialization. The clustering space is formed based on these features. For this purpose, 

the Malware Clustering Program calls the Feature Extractor script which is the second 

component written in python. Malware binary paths and the list of features to be 

extracted from the selected malware set are sent as an argument to the script by the 
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program. The binary code features extracted by the script are stored in the database. The 

second task of the Feature Extractor script is to extract all static and dynamic functions 

and call relations among them. The system creates a function call graph for each 

malware binary based on its function call relations. The clustering module of the system 

uses these function call graphs, which are the representations of the malware binaries, to 

generate malware clusters.  

4.2.2 The System Functions 

 The system generate clusters from a malware set in three steps which are feature 

extraction, subspace clustering and graph matching.  

4.2.2.1 The Feature Extraction Function 

 To cluster malware samples using a subspace clustering method, we need to 

construct a clustering space where the malware samples reside. The first information we 

need to create the space is the dimensionality of the space. The dimensions and the 

intervals of the dimensions that will form a space should be determined according to the 

features of the malware binary codes to be clustered. In our system, malware samples 

are the objects that will be located in the space. Therefore, we use binary code features 

as the dimensions of the space. These features are binary size, local function count, local 

function calls count, dll count, dll calls count, basic block count and basic block edge 

count. In this study, we only deal with the continuous features of the malware binaries. 

 When we determine the dimensionality of the space, we need to obtain binary 

code features from the malware set. The features of a binary code gives us the 

coordinates of that binary in the clustering space. To do this, we use the Feature 

Extractor script that scrape malware binary codes for their features. The system reads the 

features of each binary code in the set and stores them into the database. The subspace 

clustering module of the system then cluster binaries according to their coordinates in 

the space. The second task of the Feature Extractor is to extract all call relations among 

local, static and dynamic functions from malware binaries and to turn these relations into 

graphs which will be used as malware signatures in the graph matching phase. 

We implemented the Feature Extraction script in python. As seen in the pseudo 

code 1 there are two main functions which are the extract_function_calls and the 

extract_dll_calls. These two funtions scan all the functions in the given binary code and 

find function references to build the call graphs. The other four routines were written as 

helper funtions.  
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Pseudo Code 1: Feature Extraction  

 

Main(Binary File) 

 call extract_function_calls(Binary File) function; 

 call extract_DLL_calls(Binary File) function; 

write_to_database(allLocalFunctions, functionCalls, functionFeatures, 

allDllFuctionIds, allDllFunctions, importXrefs); 

 

extract_function_calls(Binary File) 

 foreach of the function in the Binary file 

  foreach of the instruction in the function 

   add instruction to the instruction set 

  take_MD5_hash(instruction set) 

  take_MD5_hash(function) 

  get_basic_block_info (function) 

 return allLocalFunctions, functionCalls, functionFeatures; 

 

extract_DLL_calls(Binary File) 

 foreach of the dll in the imported dll set in the Binary file 

  get all functions that call the dll 

  add the functions and the dll into the importXrefs map 

return allDllFuctionIds, allDllFunctions, importXrefs; 

 

take_MD5_hash(string) 

 return hash value of the string; 

 

get_stack_size(function) 

 return stack size of the function; 

 

get_basic_block_info (function) 

 return total basic block number and basic block edge number; 

 

write_to_database(info) 

 write info to the database; 

4.2.2.2 The Subspace Clustering Function 

After the dimensions of the space is determined and the database is populated 

with the binary code coordinates, the Subspace Clustering module steps in and initializes 

the clustering process. The system employs two clustering techniques, INSCY and 

DBSCAN, to mine density-based clusters in the sub regions of a clustering space. The 
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mining process starts with two user inputs: the redundancy index and the epsilon value 

which are two crucial parameters for the clustering. The redundancy index is used by the 

INCSY algorithm as the rate of allowed lower dimensional clusters which are similar to 

higher level clusters. In other words, lower dimensional clusters appear on the result set 

depending on the redundancy index. With the smaller index values more redundant 

clusters are generated. The epsilon used by DBSCAN determines the distance between 

points (in our case between binaries) which form a cluster. So, with the smaller epsilon 

values, clusters are composed of points that are close to each other. As the epsilon value 

increases, more dissimilar points will be in the same cluster. 

The INSCY algorithm searches for the maximal high dimensional sub regions 

that contain a certain number of objects. Hence, it determines the sub regions that might 

include density-based clusters. This algorithm can scan all possible subregions in the 

space. However, mining a high dimensional space requires excessive effort. To improve 

the mining performance, the INSCY algorithm uses an in-process redundancy pruning 

approach that allows the algorithm to prune less informative lower dimensional subspace 

regions without performing cluster analysis. In this manner, it aims to reduce the runtime 

for mining clusters.  

 When the INSCY algorithm finds a subspace region that has an object count 

above a given threshold, the DBSCAN algorithm is called to find possible density-based 

clusters in that subregion. A list of clusters is the output of the DBSCAN algorithm. All 

clusters are written to the database and displayed via the graphical user interface.  

4.2.2.3 The Graph Matching Function 

The third function of the system is used to create clusters based on function call 

graphs of malware binary codes. Even though comparing graphs negatively affects the 

clustering runtime, using internal structures of malware binary codes as the similarity 

metric improves accuracy of the system’s clustering process. For this purpose, a graph 

similarity comparison mechanism was added to the system to be able to get a better 

clustering accuracy. The graph matching module of the system employs the graph edit 

distance method to compare all malware binary pairs reside in a cluster generated by the 

subspace clustering process.  

 A basic graph edit distance algorithm is implemented in this study. The pseudo-

code displaying the main functions of the algorithm can be seen in Pseudo Code 2. 

  

Pseudo Code 2: GraphEditDistance (Graph1, Graph2) 

 

Main() 

 call GetDistance() 

 

GetDistance() 
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call CreateCallMatrix function 

int[] indexList = HungarianAlgorithm(costMatrix, ‘min’) 

foreach index in indexList 

 editDistance = editDistance + costMatrix(index) 

return editDistance 

 

CreateCostMatrix() 

 n is the node count of G1 

 m is the node count of G2 

 initialize the costMatrix with a size of [(n+m)x(n+m)] 

 call GetInsertCost function 

  write results into costMatrix[n+n, m] (Lower-left of the matrix) 

 call GetDeleteCost function 

  write results into costMatrix[n, m+m] (Upper-right of the matrix) 

 call GetSubstituteCost function 

write results into costMatrix[n, m] (Upper-left of the matrix) 

 return costMatrix 

GetInsertCost() 

 Compare nodes and return results 

GetDeleteCost() 

 Compare nodes and return results 

GetSubstituteCost() 

 call GetEdgeDistance function  

return results 

 

GetEdgeDistance() 

call CreateEdgeCallMatrix function 

int[] indexList = HungarianAlgorithm(edgeCostMatrix, ‘min’) 

foreach index in indexList 

 edgeEditDistance = edgeEditDistance + edgeCostMatrix(index) 

return edgeEditDistance 

 

CreateEdgeCostMatrix() 

 n is the edge count of node1 

 m is the edge count of node2 

 initialize the edgeCostMatrix with a size of [(n+m)x(n+m)] 

 call GetEdgeInsertCost function 

  write results into edgeCostMatrix[n+n, m] (Lower-left of the matrix) 

 call GetEdgeDeleteCost function 

  write results into edgeCostMatrix[n, m+m] (Upper-right of the matrix) 

 call GetEdgeSubstituteCost function 

write results into edgeCostMatrix[n, m] (Upper-left of the matrix) 
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 return edgeCostMatrix  

 

GetEdgeInsertCost() 

 Compare edges and return results 

GetEdgeDeleteCost() 

 Compare edges and return results 

GetEdgeSubstituteCost() 

 Compare edges and return results 

4.2.3 The System GUI 

The system has a graphical user interface that allows analysts to manage 

malware clustering process. The GUI of the system was written in C# and has two main 

windows that provide the functions that we explain in this section. In the first user 

interface, malware feature extraction window, an analyst can select a folder where a 

malware set located or can select specific malware samples as seen in Figure 17.  

 
Figure 17: Selecting malware samples 

After selecting a malware set, the analyst starts the scraping process which calls 

the feature extraction script running for each of the malware binary in the selected set. 

Then, all the features extracted from malware samples are written into database and 

displayed on the GUI as seen in Figure 18.  
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Figure 18: Results of malware feature extraction process 

Figure 19 depicts the sample malware binaries and the Ida pro files created for 

each of these files. 

 
Figure 19: Ida pro files created for each malware 
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In the second window, malware clustering window, the first task is to select 

malware samples to be clustered as seen in Figure 20. Then, the input parameters to be 

given to subspace clustering process are entered to the related fields on the related 

windows such as dimensions, intervals, redundancy parameter and epsilon value as 

shown in Figure 21. 

 
Figure 20: Selecting malware samples for subspace clustering 

 
Figure 21: Selecting dimensions for subspace clustering 
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Generated subspace clusters are listed on the same window. Figure 22 depicts a 

sample output of resulting subspace clusters. In this example, there are 17 clusters. 

Contents of a specific cluster can also be examined in detailed by just clicking that 

cluster as seen in Figure 23. The content window for a cluster shows the malware 

samples that reside in that cluster. 

 

 
Figure 22: Subspace clustering results 
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Figure 23: Displaying the content of a cluster 

Finally, the graph matching process is run on the selected subspace clusters to 

generate and display final clustering. Figure 24 shows the screenshot of final clusters. 

The subspace clusters are turned into final clusters as shown in Figure 25. 

 
Figure 24: Running graph matching and generating final clustering 
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Figure 25: Displaying the content of a final cluster 
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5. CLUSTERING EXPERIMENT RESULTS 

We run our system on two malware sample sets to validate the system’s 

clustering functions, and to measure the clustering accuracy and runtime performance of 

the system. The first sample set is the APT set, downloaded from 

contagiodump.blogspot web site (Contagio, 2018), composed of 30 malware families 

and contains 170 malware samples in total. Mandiant, a cyber security company, 

grouped the APT malware samples by performing a guided analysis (Mandiant, 2019). 

Mandiant team carried out a manual analysis, however they utilized some automation 

tools such as Redline, which is the Mandiant’s free tool. The second sample set is the 

Zeus set, downloaded from virusshare.com web site (Virusshare, 2015), contains 1200 

malware samples in total which are manually analyzed and grouped. Table 1 shows the 

algorithm parameters given to the system as user input. We performed experiments by 

running the system under different conditions and observed the effects of these 

parameters on clustering. 

Table 1: System inputs 

Parameter Algorithm Function of the Parameter 

Epsilon DBSCAN The epsilon determines the distance between points (in our case 

between binaries) which form a cluster. So, with the smaller epsilon 

values, clusters are composed of points that are close to each other. 

As the epsilon value increases, more dissimilar points will be in the 

same cluster. 

Minimum 

Points 

DBSCAN Minimum Points is a metric used for finding core points. A point p is 

a core point if at least Minimum Points count points are within 

distance ε of it (including p). If p is a core point, then it forms a 

cluster together with all points (core or non-core) that are reachable 

from it. 

Clustering 

Space 

INSCY The clustering algorithm creates clusters based on the selected 

features of the binary codes. Each feature is considered as a 

dimension in the clustering space. Clusters are formed on the 

dimensions chosen by the user. 

Similarity 

Threshold 

Graph 

Matching 

The user determines the similarity threshold which is between 1-100. 

For each pair of the binaries in a dataset, the graph matching is run to 

learn if the two binaries are similar. If the similarity value of a binary 

pair is bigger than the similarity threshold, then it is said that they are 

similar. 
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5.1 Clustering Validation Methodology 

We calculated clustering performance measurement metrics such as Rand, 

Adjusted Rand, Mallow and Jaccard indices in order to evaluate clustering results of the 

system. These clustering performance evaluations metrics require a knowledge of 

ground truth. These metrics do not take absolute values of the cluster labels into account, 

but rather consider if the clustering separate data similar to that of ground truth clusters. 

As the ground truth, we used the clusters given by the Zeus and APT data set providers. 

The definition of these indices are based on number of pairs  that are grouped in 

the same way in both clusterings, i.e. pairs of binaries of a binary set that are in the same 

cluster under both clusterings (S & D, 2012). Table 2 shows all the types of set of binary 

pairs. The clustering metrics that we used in this study is calculated based on the pair 

counts given in Table 2 where C refers to the ground truth true clusterings given with the 

APT and Zeus malware sets and C’ refers to the predicted clusterings generated by our 

system.  

 
Table 2: Pair sets definitions 

Pair Set Pair Detail 
n11 "pairs that are in the same cluster under C and C'" 

n00 "pairs that are in different clusters under C and C'" 

n10 "pairs that are in the same cluster under C but in different ones under C'" 

n01 "pairs that are in different clusters under C but in the same under C'" 

C: True clustering, C': Predicted clustering 

 

We used the indices shown in the Table 3 to measure the clustering performance 

of the system modules. Particularly, Rand index, Adjusted Rand index and Mallow 

index are well known and generally used in clustering performance evaluation. 

 
Table 3: Clustering performance measurement metrics 

Parameter Explanation Formula 

Rand 

Index 

"It calculates the fraction of correctly clustered 

(respectively misclassified) elements to all 

elements" (Rand, 1971). 

R(C,C') = 2(n11 + n00) / n(n-1) 

 

Adjusted 

Rand 

Index 

"The adjusted Rand index is the corrected-for-

chance version of the Rand index." (Hubert & 

Arabie, 1985) 

ARI = (RI - Expected_RI) / 

(Max(RI) - Expected_RI) 

Jaccard 

Index 

"It is very similar to the Rand Index, however it 

disregards the pairs of elements that are in different 

clusters for both clusterings" (Jaccard, 1902). 

J(C,C') = n11 / (n11 + n10 + n01) 

Mallows 

Index 

"It is defined based on the number of points that are 

common or uncommon in two clusterings" 

(Fowlkes & Mallows, 1983). 

M(C,C') = n11 /  √(n11 + n10)(n11 

+ n01) 

 



47 

 

F-Measure "The F-Measure is used to evaluate the accuracy of 

a clustering solution" (Van Rijsbergen, 1979). 

 

F1(C,C') = 2.P.R / (P+R), 

where Precision P=n11/(n11+n01), 

Recall R=n11/(n11+n10) 

5.2 Clustering Experiment Results  

Two distinct malware sets were used to validate the system’s clustering operation. 

The results of the experiments are presented in this section.  

5.2.1 The APT Malware Sample Set :  

The APT malware binary set was used in the first experiment. This set is 

composed of 170 malware samples. The provider of the set, Mandiant, grouped the 

samples into 32 clusters by performing a guided analysis (Mandiant, 2019). Appendix A 

lists the APT malware families and related cluster identifiers. This grouping is used as 

ground truth in cluster performance evaluation in this experiment. 

Clustering and runtime performances of the system was evaluated by observing 

the effects of the pre-clustering and the graph matching parameters given in Chapter 5. 

Experiments were performed with the malware set and the server configuration listed in 

Table 4. Table 1 shows the algorithm parameters given to the system as user input.  

Table 4: Experiment setup configuration 

Malware Set Test Server Specifications 

APT Malware Set 

(True clustering) 

Malware sample count: 170 

Cluster count: 32 

Processor: Intel i7-4700HQ 2.4 GHz  

Memory: 16GB  

Operating system: 64-bit Windows 10 

 

5.2.1.1 Experiment 1: Graph Matching Similarity Performance 

 In experiment 1, the graph matching algorithm was run on the APT malware 

binary set without running pre-clustering to observe only the graph matching clustering 

performance. Figure 26 shows the effect of similarity threshold on clustering 

performance. Similarity threshold is the parameter used for measuring the similarity of 

binary pairs. When it is set to lower values such as 10 and 20, the system generates a 

clustering less similar to the true clustering. For example, the similarity threshold of 10 

results in lower rand, mallow and jaccard index values, 0.58, 0.3 and 0.09 respectively. 

The reason of this lower clustering performances is that dissimilar malware binaries are 

more likely to be grouped in the same cluster due to the small similarity threshold value. 
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Figure 26: Clustering accuracy 

 Similarly, high similarity threshold values (90-100) reduce the clustering 

performance. When it was set to 100, mallow and jaccard indices were calculated as 0.5 

and 0.3 respectively. The reason of this result is that the system clustered the binaries 

which have the exact same function call graph structure. As a result, some clustering 

information lost during the clustering process. Despite this missing information, if we 

look at the rand index curves, the true clustering information was correctly generated at 

high similarity threshold values, contrary to the rand index value obtained at similarity 

threshold 10. Lastly, if we look at the middle similarity threshold values, we can see that 

the system shows the best clustering performance (Mallow index: 0.96, Rand index: 

0.98) at these values. When we compare the rand index and mallow index, we can see 

that the rand index value is approaching the 100 percent as the similarity threshold goes 

high, however, mallow index goes down after a certain threshold value. The reason of 

this difference is that, rand index shows the only accurately clustered binary percentage, 

that is, it does not consider the missing information. In mallow index, since the missing 

information is considered, it gives lower values at the high similarity values.  
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Figure 27: Clustering results 

 Figure 27 displays the clustering accuracy in terms of cluster and binary counts. 

The upper half of the graph gives the cluster count generated by the system at various 

similarity threshold values. When similarity threshold was set to 10, 11 clusters 

containing 169 binaries in total were generated. But the generated clustering did not 

reflect the true clustering because the true clustering had 32 clusters. If we look at the 

similarity threshold 100, the count of the generated clusters is close to the true clustering 

cluster count. But the lower sub-graph shows that almost half of the clustering 

information lost at this similarity threshold value. Because in the true clustering, even if 

some binaries don’t have the exact function call structures, they might be grouped into 

the same cluster. At the middle (40 to 60) similarity threshold values, cluster and binary 

counts of the generated clustering are almost same with the true clustering values. 

 The accuracy values can also be observed by looking the confusion matrices 

displayed on Figure 28. The Figure shows the true clustering versus the generated 

clustering. Indices of the figure refer to the cluster identifiers on both axes. Malware 

family class names related to these cluster identifiers are given in the Appendix A. In 

lower similarity threshold values, the generated clusters by the prototype did not reflect 

the true clustering. Malware samples that are in the same cluster in the true clustering 

were placed in different clusters by the system. In middle similarity threshold values, the 

prototype generated clustering that is similar to the true clustering.  Lastly, in the higher 

similarity values, clustering accuracy went down as seen in the lower similarity values.   
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Figure 28: Confusion matrices for different similarity thresholds 
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Figure 29 shows the function call count distribution for each cluster in the 

clustering generated by the system against changing similarity threshold values.  At the 

similarity threshold values 10 and 40, some clusters have bigger standard deviations. It 

means that less similar binaries in terms of function call structure might be found in the 

same cluster. Clustering processes with the similarity thresholds 80 and 100, on the other 

hand, generated more flat clusters as expected. 

 

 
Figure 29: Function call count distributions vs. similarity threshold 

 

Consequently, the graph matching algorithm we used for final clustering in our 

system generates very good clustering results. Especially at the middle similarity 

thresholds, more realistic clustering can be obtained for any binary set. However, if 

exact matching between binaries is wanted in an analysis then higher similarity 

threshold values can be set.  

5.2.1.2 Experiment 2: Pre-clustering Clustering Similarity Performance 

 We used the INSCY and DBSCAN algorithms together for the pre-clustering 

process. By performing the pre-clustering, we aim to reduce the runtime of graph 

matching process without losing clustering information. We choose the DBSCAN 

algorithm because the clustering space contains distinct nodes in the concept of this 
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thesis. In other words, there are no hierarchy or such relations between malware 

binaries. Thus, a density-based clustering algorithm is more suitable for the pre-

clustering process. Besides, the INSCY algorithm provides an index structure and 

reduces runtime of DBSCAN algorithm especially in a high dimensional space. 

This experiment measures the effect of pre-clustering on the graph matching 

performance. Figure 30 shows the DBSCAN algorithm effect on clustering with various 

epsilon and similarity threshold values. The upper-left graph gives the mallow index 

values against epsilon value. As epsilon value increases, mallow index increases as well 

depending on the similarity threshold. Increase in the epsilon value causes higher 

changes in mallow index when lower similarity values are chosen, because larger 

epsilon values cause DBSCAN algorithm to cluster distant binaries. For example, the 

yellow and blue lines (similarity thresholds 10 and 20) show the difference in mallow 

index against the increasing epsilon value. The difference in mallow index , however, is 

low for the higher similarity thresholds such as 80 and 100 (green and purple lines). The 

reason of this is that graph matching running with higher similarity thresholds produce 

clusters containing binaries closer to each other. Similarly, using smaller epsilon values 

clusters closer binaries in the pre-clustering process. Since the graph matching runs on 

the clustering generated by pre-clustering process, the effect of epsilon value on the 

graph matching results is small. Besides, rand index curves are very satisfactory at any 

epsilon values as seen in the upper-right graph. The rand index value is also low when 

the system runs with the similarity threshold of 10 without pre-clustering. Lastly, as seen 

in the third graph, the F1 measures are satisfactory when the epsilon value is set above 

100 for the similarity thresholds above 50. 
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Figure 30: The effect of the epsilon on clustering accuracy 

 Dimension count is also an important factor in clustering malware binaries. High 

dimensional data sets require more clustering effort and time. In this experiment, binary 

sets have 6 features (dimensions) which are listed below. The number of dimensions can 

also be changed depending on the clustering case and the target set. 

Table 5: Features (Dimensions) of a malware binary 

Local function count 

Dll count 

Local function call count 

Dll function call count 

Basic block count 

Basic block edge count 

 Figure 31 shows the effect of changing dimension count and similarity threshold 

on clustering. Since each of the dimension which we choose for clustering stores a part 

of information about binary function call graph structure, we didn’t observe drastic 

changes in the performance values against increasing dimension count. Rand index 

values are quite good for all the similarity threshold except 10. When similarity 
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threshold is set above 50, we get satisfactory mallow index values with the increase of 

dimension count.  

 
Figure 31: The effect of the dimension on clustering accuracy 

5.2.1.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances 

In this experiment, we run the system with and without pre-clustering to observe 

the runtime remediation. Figure 32 displays the CPU and I/O runtime results of the 

clustering processes of the system. The upper left graph gives the runtime of graph 

matching process without pre-clustering. As binary count increases the graph matching 

runtime increases in exponential. Because, the count of binary pairs that will be 

compared by the system increases in exponential in parallel with the binary count 

increase. The complexity of the graph edit distance is O(n3). 

 The upper right graph shows the effect of pre-clustering on runtime. The total 

runtime notably decreased when the two clustering methods were performed 

sequentially. While the light blue curve represents the pre-clustering process runtime, 

the blue curve displays the graph matching runtime. The green curve gives the total 

runtime. With the pre-clustering, the system generated clusters almost four times faster. 

As seen in the same figure, the pre-clustering makes the runtime curve linear even for 

the large binary sets by feeding the graph matching process with small binary groups 

containing more similar binaries. The lower half of the Figure 32, superimposed of the 
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two upper graphs, displays the difference in runtimes. Lastly, since the system uses a 

database to store binary and clustering information, the I/O time is much higher than 

computation time of clustering algorithms.  

In this study, our purpose in using pre-clustering is to reduce runtime of graph 

matching without degrading clustering accuracy. The first two experiment results show 

that pre-clustering process makes the targeted binary set ready for the graph matching 

process with preserving true clustering information. The third experiment showed that 

our implementation of pre-clustering significantly improves the runtime performance of 

total clustering process. 

 
Figure 32: Clustering runtime performance 

5.2.2 The Zeus Malware Sample Set :  

The second clustering experiment was performed on the Zeus malware binary 

set. Similar to the previous experiment, three tests were performed with changing 

clustering parameters in order to measure the system clustering accuracy and runtime 

performance. The results of this experiment are consistent with the results of the tests 
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performed on the APT malware set. In other words, our system shows similar clustering 

behavior for different malware sets.  

The Zeus malware binary set contains 1200 sample. The provider, 

virusshare.com, manually analyzed and grouped this set into 170 clusters. Clustering 

accuracy and runtime performance of the system was evaluated by observing the effects 

of the pre-clustering and the graph matching parameters given in Chapter 5. Tests were 

performed with the following malware set and the server configuration. 

Table 6: Experiment setup configuration 

Malware Set Test Server Specifications 

Zeus Malware Set 

(True clustering) 

Malware count: 1200 

Cluster count: 170 

Processor: Intel i7-4700HQ 2.4 GHz  

Memory: 16GB  

Operating system: 64-bit Windows 10 

 

5.2.2.1 Experiment 1: Graph Matching Clustering Similarity Performance 

 In this experiment, graph matching algorithm was run on the binary set without 

pre-clustering to observe only the graph matching clustering performance. Figure 33 

shows the effect of similarity threshold on clustering performance. When the similarity 

threshold is set to lower values (i.e. 10 to 20), the system generates the predicted 

clustering less similar to the true clustering. The reason of this lower clustering 

performances is that dissimilar malware binaries are more likely to be grouped in the 

same cluster due to the small similarity threshold. In this experiment, when the similarity 

threshold is set to 10, the similarity values are higher according to the results of the APT 

malware set experiment. The reason is that in the true clustering of Zeus set, clusters are 

formed with malware binaries which have less similar function call graphs. 
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Figure 33: Clustering accuracy 

 The high similarity threshold values (i.e. 90-100) reduce the rand index values 

similar to the first experiment. When it was set to 100, mallow index was calculated as 

0.66. The reason of this result is that the system clustered the binaries which have the 

exact same call graph structures. As a result, some clustering information lost during the 

clustering process. Despite this missing information, if we look at the rand index curve, 

true clustering information can be obtained at the high similarity threshold values. 

Lastly, if we look at the middle similarity threshold values, we can see that the system 

shows the best clustering performance (i.e. mallow index: 0.95, rand index : 0.98) at 

these values. When we compare the rand index and mallow index, we can see that the 

rand index value is approaching the 100 percent as the similarity threshold goes high, 

however, mallow index goes down after a certain threshold value. The reason this 

difference is that, rand index shows the only accurately clustered binary percentage, that 

is, it does not consider the missing information. In mallow index, since the missing 

information is considered, it gives lower values at the high similarity values. 
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Figure 34: Clustering results 

 Figure 34 displays the clustering performance in terms of cluster and binary 

counts. The upper half of the graph gives the cluster count generated by the system at a 

range of similarity threshold values. When similarity threshold was set to 10, the 140 

clusters containing 1200 binaries in total were generated. But the generated clustering 

did not reflect the true clustering fully because the true clustering has 170 clusters. If we 

look at the similarity threshold 100, the count of the generated clusters is close to the 

true clustering cluster count. But the lower sub-graph shows that almost one quarter of 

the clustering information lost at this similarity threshold value. At the middle (i.e. 40 to 

60) similarity threshold values, cluster and binary counts of the generated clustering are 

almost same with the true clustering values. 

 Figure 35 shows the function call count distribution for each cluster in the 

clustering generated by the system against changing similarity threshold values. At the 

similarity threshold values 10 and 20, some clusters have bigger deviations on the 

function call counts of the samples in the cluster. It means that less similar binaries 

might be found in the same cluster. Clustering processes with the similarity thresholds 

80 and 100, on the other hand, generated more flat clusters as expected. 
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Figure 35: Function call count distributions vs. similarity threshold 

 Consequently, the graph matching algorithm we used for actual clustering in our 

system generates good clustering results and verifies the previous experiment. Especially 

at the middle similarity thresholds, more accurate clusterings are obtained. However, if 
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an exact match between binaries is wanted in an investigation, higher similarity 

threshold values can be chosen.  

5.2.2.2 Experiment 2: Pre-clustering Clustering Similarity Performance 

 This experiment measures the effect of pre-clustering on graph matching 

performance for the Zeus malware set. Figure 36 shows the pre-clustering effect on 

clustering with changing epsilon and similarity threshold values. The upper-left graph 

gives the mallow index curves. As epsilon value increases, mallow index increases as 

well depending on the similarity threshold. Increase in the epsilon value causes higher 

changes in mallow index when lower similarity values are chosen, because larger 

epsilon values cause pre-clustering to cluster distant binaries. As an example, the yellow 

and blue lines (similarity thresholds 10 and 20) show the difference in mallow index 

against the increasing epsilon value. The difference in mallow index, however, is very 

low for the higher similarity thresholds such as 80 and 100 (green and purple lines). 

Besides, rand index curves are very satisfactory at any epsilon values as seen in the 

upper-right graph. The rand index value was slightly low when the system run with the 

similarity threshold of 10 without pre-clustering. Lastly, as seen in the third graph, the 

F1 measure curves are satisfactory when the epsilon value is set above 50 for the 

similarity thresholds above 50. 

 
Figure 36: The effect of the epsilon on clustering accuracy 
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 Dimension count is also important factor in clustering the spatial data. High 

dimensional datasets require more clustering effort and time. In this test, binary sets 

have 6 features (dimensions) similar to the APT malware set experiment. Figure 37 

shows the effect of pre-clustering on total clustering at changing dimension counts and 

similarity threshold values. Since each of the dimension which we choose for clustering 

stores a part of information about binary call graph structure, we could not observe 

drastic changes in the performance values against increasing dimension count. Rand 

index values are quite good for all the similarity threshold except 10. When similarity 

threshold is set above 50, we get satisfactory mallow index values with the increase of 

dimension count. The experiment results prove that pre-clustering process makes the 

targeted binary set ready for the graph matching process with preserving true clustering 

information. 

 
Figure 37: The effect of the dimension on clustering accuracy 

5.2.2.3 Experiment 3: Pre-clustering and Graph Matching Runtime Performances 

In this experiment, we run the system with and without pre-clustering to observe 

the runtime remediation. Figure 38 displays the CPU and I/O runtime results of the 

clustering processes of the system. The upper left graph gives the runtime of graph 

matching process without pre-clustering. As binary count increases the graph matching 
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runtime increases in exponential. Because, the count of binary pairs to be compared by 

the system increases in exponential in parallel with the binary count increase.  

The upper right graph shows the effect of pre-clustering on runtime. The total 

runtime notably decreased when the two clustering methods were performed 

sequentially. While the light blue curve represents the pre-clustering process runtime, 

the blue curve displays the graph matching runtime. The green curve gives the total 

runtime. With the pre-clustering, the system generated clusters almost five times faster. 

As seen in the same figure, the pre-clustering makes the runtime curve linear even for 

the large binary sets by feeding the graph matching process with small binary groups 

containing more similar binaries. The lower half of the Figure 38, superimposed of the 

two upper graphs, displays the difference in runtimes. Lastly, since the system uses a 

database to store binary and clustering information, the I/O time is much higher than 

computation time of clustering algorithms. Consequently, this experiment, carried out on 

the Zeus malware set, also proves that our implementation of pre-clustering significantly 

improves the runtime performance of total clustering process.   

 
Figure 38: Clustering Runtime Performance 
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The experiments performed on the malware sets showed that using function call 

graphs of malware binaries in clustering reveals accurate clustering results. We also 

observed that our system improves the runtime performance of the time-consuming 

graph matching process which relies on pairwise function call graph comparisons.  
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6. CONCLUSION 

In recent years, sophisticated mining techniques have been employed in malware 

analysis in order to handle large amounts of malware variants. Malware clustering 

approaches are among these analysis techniques. The purpose of malware clustering is to 

group malware samples based on their features and behaviors. Numerous clustering 

algorithms have been proposed to improve clustering accuracy and performance in many 

application domains including malware analysis.  

Advances in data collection and sandbox tools have led to large amounts of 

malware samples being collected, giving rise to malware sets with a large number of 

attributes. Traditional signature-based clustering methods are not efficient in analyzing 

large malware sets with a high number of attributes. To deal with this type of datasets, 

appropriate clustering techniques compatible with the characteristics of malware binaries 

should be chosen. For this reason, many clustering approaches have been applied to 

malware clustering. In this study, we proposed a clustering approach based on subspace 

clustering and graph matching concepts in order to improve clustering accuracy and 

runtime performance. We designed and implemented a prototype system to observe the 

effects of our proposed method on malware clustering. Our system provides an interface 

for finding more specific clusters in large datasets in an efficient way.  

Our system uses call relations of local functions and dlls extracted from malware 

binary samples as the similarity metric in its graph matching process. Hence, it provides 

a better clustering accuracy than signature-based clustering approaches. Using internal 

structure of a malware as a comparison parameter provides more accurate clustering 

results; however, it significantly increases the clustering runtime. To overcome the 

runtime issue, we employed a subspace clustering method to improve runtime 

performance of the expensive graph matching algorithms. The subspace clustering 

module of the system generates clusters based on the static features extracted from 

malware binary codes such as local function count, local function call count, dll count 

and dll call count, etc. Hence, malware variants that have similar features can be 

grouped prior to the graph matching process. 

We run our system over a set of malware binaries that we obtained from two 

different web resources to observe and verify the accuracy and runtime performance of 

the system. The experiment results show that our method improves the runtime of the 

clustering process without degrading clustering accuracy. In other words, pre-clustering 

process, subspace clustering, makes the targeted binary set ready for the graph matching 

process with preserving true clustering information. We observed the effects of the 

algorithm parameters on clustering by running the system with different parameter 

values. Hence, we empirically observed the optimal parameter values which generate 

best clustering results. 
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6.1 Limitations 

Since we employed supervised clustering algorithms in pre-clustering process, 

analysts using the proposed system must have information about the input parameters of 

the algorithms because these parameters have direct effect on clustering accuracy and 

runtime performance. These parameters are the epsilon and minPoint parameters of the 

DBSCAN algorithm and the redundancy index, minSize and dimensions of object space 

parameters of INSCY algorithm.  

 The proposed clustering system was proposed to process a large number of 

malware variants. There are different malware types such as viruses, worms, trojans, 

rootkits, ransomware, etc. Millions of new malware variants have been detected every 

year. Their count distribution may be different according to their types. Besides, the 

count of new emerging clusters may also vary depending on the malware type. Despite 

the large number of malware variants, the number of exploits are limited. The proposed 

system does not consider the number and types of exploits.  

6.2 Future Work 

In this study, we focused on clustering of collected malware samples based on 

their static binary features and internal binary structures. Our system generates clusters 

based on the features of a malware set given as an input to the system. It does not have a 

function of comparing a malware sample with an already clustered malware set. A 

classification module might be added to the system in order to classify a malware 

sample without running the whole clustering process. 

We used the DBSCAN algorithm under the subspace clustering method. 

Different density-based clustering approaches such as k-means might be also 

implemented in order to compare clustering and runtime performances of density-based 

algorithms on malware clustering.  

In the current implementation, we use a graph edit distance method to measure 

file similarity in the graph matching process. However, high runtime complexity of 

exact graph matching makes it less practical for large datasets. We might integrate 

inexact graph matching approaches to the system in order to gain additional runtime 

improvement.  
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APPENDICES 

     APPENDIX A 

 

Family and Cluster Identifiers of APT Malware Samples 

CLUSTER 

IDENTIFIER 

FAMILY SAMPLE COUNT 

1 AURIGA 2 

2 BANGAT 5 

3 BISCUIT 5 

4 BOUNCER 3 

5 COOKIEBAG 7 

6 GETMAIL 3 

7 GOOGLES 5 

8 GREENCAT 19 

9 HACKFASE 3 

10 MINIASP 3 

11 NEWSREELS 7 

12 SEASALT 2 

13 STARSYPOUND 9 

14 TABMSGSQL 6 

15 TARSIP-ECLIPSE 7 

16 TARSIP-MOON 6 

17 AUSOV 2 

18 BOLID 4 

19 CLOVER 3 

20 CSON 9 

21 GREENCAT2 6 

22 WEBC2-NEWSREELS 4 

23 HEAD 10 

24 QBP 3 

25 RAVE 6 

26 UGX 5 

27 Y21K 3 

28 YAHOO 8 
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29 WEBC2-GREENCAT 6 

30 BANGAT2 3 

31 NEWSREELS2 3 

32 WEBC2-YAHOO 3 
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