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ABSTRACT

ON THE ISOMORPHIC CLASSIFICATION OF THE CARTESIAN
PRODUCTS OF KOTHE SPACES

Tastiiner, Emre
M.S., Department of Mathematics
Supervisor : Prof. Dr. Murat Hayrettin Yurdakul

January 2019, 26| pages

In 1973, V. P. Zahariuta formed a method to classify the Cartesian products of locally
convex spaces by using the theory of Fredholm operators. In this thesis, we gave
modifications done in the method of Zahariuta. Then by using them, we studied the
isomorphic classifications of Cartesian products of ¢ and ¢? type Kothe sequence

spaces.

Keywords: Bounded Operators, Riesz-Type Operators, Kothe Spaces, Modifications

of Zahariuta’s Method, Isomoprhism of Cartesian Products of Kothe Spaces



0z

KOTHE UZAYLARININ KARTEZYEN CARPIMLARININ iZOMORFIiK
SINIFLANDIRILMASI

Tastiiner, Emre
Yiiksek Lisans, Matematik Boliimii

Tez Yoneticisi : Prof. Dr. Murat Hayrettin Yurdakul

Ocak 2019 ,[26| sayfa

1973’te V. P. Zahariuta, Fredholm operatorlerin teorisini kullanarak, yerel konveks
uzaylarin Kartezyen ¢arpimlarini siniflandirmak icin bir yontem olusturdu. Bu tezde,
Zahariuta’nin yonteminde yapilan degisiklikleri verdik. Daha sonra onlar1 kullanarak,
(P and /7 tiirii Kothe dizi uzaylarinin Kartezyen ¢arpimlarinin izomorfik siniflandiril-

masini ¢alistik.

Anahtar Kelimeler: Sinirli Operatorler, Riesz-Tiirli Operatorler, Kéthe Uzaylari, Za-
hariuta’nin Yonteminin Degisiklikleri, Kothe Uzaylarinin Kartezyen Carpimlarinin

Izomorfizmasi
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CHAPTER 1

INTRODUCTION

Kothe spaces are considerable in mathematical analysis since there are impor-
tant spaces isomorphic to some kind of Kothe spaces. The space of all holomorphic
functions on the unit disk is an example of such a space. Another example is the
space of rapidly decreasing sequences. Moreover, Kothe spaces are parts of Fréchet
spaces, which makes them are worth review because the structure of Fréchet spaces

are known in detail.

Zahariuta developed a method by using Fredholm operators to study the isomor-
phic classification of Cartesian products of locally convex spaces. Then his method
was modificated to study some kind of Fréchet spaces (see [2] and see [3]). In this
study, we aimed to collect these two studies ([2], [3]) together based on the Kothe

spaces.






CHAPTER 2

PRELIMINARIES

The following definitions are mainly taken from [2] and [13].

Definiton 2.1 Let E be a vector space over the field K of real or complex numbers
and let 7 be a topology on E. Then we call E as a topological vector space (linear
topological space) if 7 is a linear topology on E; that is, if (x,y) — x+y and (\,x) —

Ax are continuous for all x, yeE and for all A\eK.

Definiton 2.2 Let (E, 7) be a linear topological space. Then we call it as a locally
convex space if 7 is a Hausdorff topology and if there is a neighborhood basis of zero

which consists of convex sets in E.

Definiton 2.3 Let (E, 7) be a locally convex space. We call E as a metrizable space
if we have a metric d on E which gives the topology 7 with

O,, = {x€E : d(z,0) < +} (neN) form a neighborhood basis of zero.

Definiton 2.4 Let E be a topological vector space and F be a subspace of E. Then we
call F as complemented if there is a subspace G so that £ = F' @ G (topologically)
and F'( G = {0}. In this case, the projection of E onto G is continuous.

Definiton 2.5 We call a locally convex space as a Fréchet space if it is complete and

metrizable.

Proposition 2.1 [9]] If E is a Fréchet space and if we take any closed subspace F of it,
then both F and & / F" are Fréchet spaces.

Definiton 2.6 Let E be a locally convex space. We call a subset ACE as bounded if

for every absolutely convex zero neigborhood O, there is a p > 0 such that A C pO.



Definiton 2.7 Let T : E — F be a linear continous operator between locally convex
spaces E and F. Then T is called bounded (resp. compact) if we have a zero neigh-
borhood O in E with the property that T(O) is bounded (resp. relatively compact)
in F. T is called strictly singular if we restrict T on any arbitrary infinite dimen-
sional closed subspace of E, the restriction is not an isomorphism. T is called strictly
cosingular if for any infinite dimensional locally convex space G there does not exist

continuous surjective operators f: E — Gand g: F — G such that go T =1.
Note that if E or F is a normed space, then T is bounded.

Notation 2.1 Let E and F be locally convex spaces. We denote

(E.F)eB,(E,F) €K, (E,F)eSS, (E,F) € SC, (E,F) € BSS, (E,F) € BSC

if each continous linear operator T : E — F is bounded, compact, strictly singular,
strictly cosingular, bounded and strictly singular, bounded and strictly cosingular,

respectively.

Note that (as stated in [2]) (E, F) € K gives (E, F) € BSS because if we have
a precompact operator, then it is also a strictly singular, bounded operator. But the
converse statement, in general, may not be true. As an illustration of this, consider p,
q€[l, 00), p<q, then the identity mapping from the ¢? space to (¢ space is bounded

and strictly singular but it is not compact ([8]).

Definition 2.8 Let E and F be locally convex spaces. Then if each linear continuous
operator T : E — E which factors over F ( thatis, if T= A; o A; where A; : F — E and
As : E — F are linear continous operators) is bounded (respectively, compact) then
we say that (E, F) has the bounded (respectively, compact) factorization property
and we write (E, F) € BF (respectively, (E, F) € KF).

Definiton 2.9 Let T: E — F be an operator between linear topological spaces E and F.
Then T is called a Fredholm operator (near-isomorphism) if it is an open map with
the property that its kernel 7'1(0) is of finite dimension and its range T(E) is closed
and is of finite codimension. In this case, E and F are called nearly isomorphic. The

index indT of T is the number given by indT = dim(7'~1(0)) - codim(T(E)).

Definiton 2.10 Let T: E — E be an operator on a linear topological space E. Then we

call T as a Riesz-type operator if [y - T is Fredholm, where /5 denotes the identity



operator of E.

Definition 2.11 We call a Fréchet space as a Montel space if every bounded subset

of it is relatively compact.

Theorem 2.1 (See [12], pp. 50-54) If E is any locally convex space, then
(1) E has a bounded neighborhood if and only if it is normable
(2) if E has a precompact neighborhood (in particular, relatively compact neighbor-

hood), it is of finite dimension.

Definition 2.12 [11] Let E and F be normed spaces with closed unit balls O and U,
respectively. Let T: E — F be continuous and linear. Then T is said to be a nuclear
operator if there exist continuous linear forms «; in the dual £’ of E and elements y;
in F such that i Poo(a;)Py(y;) < oo such that T is given by T(x) = i a;(x)y; for
allxin E (hereiTDlA denote the Minkowski functional of the set A). =

Definition 2.13 Let E be any locally convex space, O be a zero neighborhood in E and
Py be the Minkowski functional of O. Then the quotient map 7y : E — E/Ker P is
given by Tp(x) :=[z]p ={y € E: x -y € Ker [ }.

Let A > 0 and Let O and U be zero neighborhoods in E with U C AO. Then the

linking map is the continuous map 7o 1y : E/KerPy — E/Ker Py :: [z]y — [y]o.

Definition 2.14 Let E be a locally convex space. If we have that for every zero neigh-
borhood O in E there is a zero neighborhood U in E and A > 0 with
U C XO such that the linking map 7o ;s : E/KerP; — E/KerFy is nuclear (respec-

tively, compact), then E is called a nuclear space (respectively, Schwartz space).

Note that each nuclear space is a Schwartz space because each nuclear operator
between Banach spaces is also a compact operator between them (see [11], pp. 52
and S]], pp. 479), and note that if E is Schwartz, each bounded set in E is precompact
(see [, pp. 202).

As stated in [13], the fact that any set in a locally conves space is a compact set
if and only if it is precompact and complete implies that if a space is Fréchet and
Schwartz, then it is also a Montel space. But Fréchet Montel spaces which are not

Schwartz spaces exist (see also [3], pp. 223).



Note also that for locally convex spaces E and F, we have already that (E, F) € K
implies (E, F) € B. However, as given in [[13]], the converse is true if E is a Schwartz

space or if F is a Montel space.

Definition 2.15 Let E be a locally convex space. A system 3 consisting of bounded
subsets in E is called a fundamental system or a basis of bounded subsets of E if

each bounded subset in E is in some element of /3.

Proposition 2.2 ([6], pp. 63-64) A metrizable locally convex space is a normable

space if it admits a countable fundamental system of bounded sets.

Definition 2.16 ([14], pp. 270-271) Let E be any Fréchet space such that it has an
arbirtary increasing fundamental systems of seminorms (||.||x).

We say that E has the property (DN) if 3k V n d Ny, L > 0V x € E such that

llz][7 < Lllwllelll] v

We say that E has the property () if Vp3dqVkdIM >0V y € E’ such that
(Iyl15)* < Mllyllillyll; where [[yl[} == supjy), <, |y(2)]-

Definition 2.17 A matrix (a;;); keny of nonnegative real numbers such that for each i

there is k with a;;, > 0 and for all i, k a;;,<a; j4 is called a Kothe matrix.

Definition 2.18 Let (a;x); xen be a Kothe matrix and let x=(z;) denote a sequence of
real numbers.

Then the Kothe sequence space of order p with 1 < p < oo is defined as

KP(ay) = {x=(z;) € KN: |z|), := (i(|$z|azk)p)% < oo forall k € N}

It is also called the /P-Kothe spacelgilven with the matrix (@ ); ken-

The Kothe sequence space of order oo is defined as

K> (a;,) = {x=(x;) € KN : |z|3° := sup;(|z;|aix) < oo forall k € N}.

and the Kothe sequence space of order zero is defined as

Co(aik) = Ko(aik) = {X:(ﬁi) € Koo(aik): hmz_mo |xz|a,k =0forall k € N}

Note that, as stated in [2], pp. 57, KP(ay) is a Fréchet space with the topology
produced by the system of seminorms { |.|; : £ € N }, and K*°(a;) is also Fréchet.

Being a closed subspace of K*°(a;), K°(ay,) is also a Fréchet space.



The dual of K?(a;) is given by
(KP(ax)) :={y=(y;) : there exists k such that |y|} := (Z(M)q)i < 0o } where p

ik
=1.

~
[y

and q are conjugate, i.e. © +
Also note that every Kothe space has a natural basis (e;), where e; = d;; (which is

equal to 1 if 1 =], and equal to O otherwise).

Theorem 2.2 ([9], [15]) A Kothe space K(a;) is a nuclear space (respectively, Schwartz
space) if and only if for all p € N there is q € N such that (32) € (' (respectively,
(£2) € ¢p).

a;

The Kothe space K”(a;;) is a nuclear space if and only if there exists r for all k there

o0
is m with the property that the sum ) (2%)" is finite.
Z:l m

Definition 2.19 A subspace is called a basic subspace if it is generated by a subse-

quence of the natural basis.

Definition 2.20 For 1 < p < oo, consider the /7-Kothe space KP(a;). If (j(i)) is a
strictly increasing subsequence of (i), then we say that the Kothe subspace K7 (a;)
is a basic subspace of K7 (a;;). Note that each basic subspace of a Kothe space is a

complemented space ([l13]]).

We know that (see [9], pp. 329) K”(a;) is not a Montel space if and only if there
is an integer kq and a subsequence (i,) of the sequence (i) with for all k there exists

C =C(k) > O such that for all n a; k < Ca;,x,. So we have that:

Proposition 2.3 An (P-Kothe space is not Montel if and only if it contains a basic

subspace which is isomorphic to the space /7.

Proposition 2.4 ([2], [13]) For 1 < p < q < oo, consider two Kothe sequence spaces
KP(a;) and K9(by). If KP(a;,) ~ K%(by), then KP(a;) and so K9(b;;) are nuclear

spaces.

Proof: K”(a;) is a Schwartz space because each linear continuous operator from ¢4
to /7 is compact. Since KP(a;) ~ K9(b;), then we have an isomorphism
T: KP(ay) — K9(bi). So, for each k find r, m = m(r), A, B such that |z|, < A|Tz|,

< B|z|,, for all x € KP(a;;). Since KP(ay) is a Schwartz space, we can pick m

sufficiently big in order for 2 to converge zero. By reordering the terms of (&),

im Aim



we suppose that it is a decreasing sequence.
Firstly, consider the case p < 2. By [8]], Vol. 2, pp. 72, we know that ¢¢ space has type

s =min(2, q). Then for any n, there is 7; = 1 or -1 (1<i< n) and there is a constant M

with
j::lnp < (;(alm) )p = | Z%am < Al Z%ff,i . gMB(;(%)S)i < MBns.

Then, 22k < Man v = = MBn'= . Thus, for any 3 > }%, the sequence (C%’;) € (P,
Hence, Theorem 2.2 implies that KP(a;) is a nuclear space in the case p < 2.

Now, suppose p > 2. Then ¢? has cotype max(2, p) =p. So, K%(a;) is a nuclear space.
Consider the isomorphism T: K?(a;;) — K9(by,). Then T~ ! is also an isomorphism.
So, for each k, there are r, m, A, B with |z|, < A|T 'z|, < Bl|z|,. Again, by

reordering the terms of ( é’k ), we suppose that it is a decreasing sequence. For any n,

there is v; =1or-1 (1<i< n) and there is a constant M with
n n le. 1 n —1e.
bt < (S () = (S )P < AGE 15 >pSMA\z%%\T

=1 =1

< MB| Z Vige|m = MBn. Then, Do k< MBn+ > = MBn '@ . Thus, for any
l:l m
8 > %, the sequence (ﬁ) € EB. Hence, Theorem 2.2 implies that K?(a;) is a

nuclear space in the case p > 2.

Definiton 2.21 (See [3]) Let (a;x); ken be a Kéthe matrix.

Then it is called (d;)-kind Kothe matrix if IngVkIm, A : a3, < Aa;n,ai, (Vi € N),
and is called (d»)-kind Kothe matrix if Vk3dn,vmdB : Bamo > aipim (V2 € N).
In this case, the corresponding spaces are called (d;) and (d2) type Kothe spaces,

respectively.

Proposition 2.5 (See [20], [3]). If KP(a;) is a (d2)-type Kothe space and K9(b;) is
a (dp)-type Kothe space, then we have that (K?(a;,), K9(bix)) € B.

Proof: In general, by depending on Vogt’s results (in [17]], Satz 6.2 and Prop. 5.3),
since KP?(a;;) and K9(b,) are Fréchet spaces having the conditions () and (DN),
respectively, then (K7 (a;x), K%(bi)) € B because the previous definition gives that
(dy) = () and (d;) = (DN).

As a special case, let T: K'(a;,) — K'(by,) be a linear continuous operator which is
given by the matrix (¢;z). So, for all p there is ¢ and C'(p) > 0 with

|(tix)]p = |Tex], < C(p)|ex|q, which means that i |tk

i=1

T2 <C(p)< +oc.



In order to show that T is bounded, we will find some ¢ such that | Tex|, < M (p)|ex|q

holds for all p for some M (p), that is, D \tikuzp < M(p) < +oc for all p for some
i=1 a0

M (p). Since K (b;;) is a (dy)-type Kothe space, then Ip; Vp Ipa = pa(p) IB(p) > 0

such that b, < B(p)bip, bip, for i > ig(p) for some ig(p). Since K'(ax) is a (da)-

Kothe space, for ¢ = q(p1) 3q0 Vg2 = qa(p2) 3A(p2)>0 such that A(py)aj,, >

gy kg, TOr k > ko(p) for some ko(p). Therefore, by using Holder’s inequality,
2 [t )2
i=1

(OO |t 2:’2 )2 < B(p)2 A(ps)2C(p1)2C(p2)2 < oo for all p for some C(py), C(p)>0
i=1 2

by continuity. Take M (p) = B(p)%A(m)éC(m)%C(pQ)%. So, we get
o0 bip o 1n
i; |tik =< M (p) < oo for all p. Hence, (K*(a;), K'(bix)) € B.

i 1 1 & bip, \ L
: < B(p)2 Ap2)2 2 ([tirl 5o ) 2 ([t

ag :
20 i=1

bipy \ 1 1 1,& b
22)2 < B(p)2 Alp2)* (X [tul;
=1

ipy
kqq

a °qQ

Definition 2.22 A locally convex space E is said to be a Mackey-complete space if
for each absolutely convex, closed and bounded subset F of it, the linear span sp(F)
of F is Banach with the unit ball F.

Note that a locally convex space which is sequentially complete is also Mackey-

complete. Also, a Fréchet space is Mackey-complete [2].

The next proposition comes from [18]] [19]:
Proposition 2.6 The set of strictly singular and bounded operators between Mackey-

complete spaces generates an ideal of Riesz type operators.

Definition 2.23 [5] Suppose that £; is a topological vector space for eachi € I, where
I is a directed set by an order relation <. Suppose that, for every 1, k € I with 1 <Kk,
there is a linear continuous operator 7j;, : ), — E; with the properties that T;; = I,
identity map on £, for each i, and T;;, = T;; o T, for i, j, k € I with1 <j,j <k. Then
we call the system (E;, Tj)(1,<) as a projective system of topological vector spaces
and we call the subspace E C [],.; £; such that

E={(zy) € [[,c; Ei : Tir (x1) = x; for all i, k € I withi <k } as the projective
limit of the system (FE;, Tik)( 1,<) and we denote it by E = proj; F;. We say that the
projective limit E = proyj; E; is reduced if the operator 7}, : E — Ej has a dense range

foreach k € 1.

Note that any locally convex space E is a dense subspace of a projective limit

of Banach spaces. If the space E is also complete, then E is equal to the reduced



projective limit since the set of seminorms { |.|, : ¥ € N } on E can be seen as

directed by taking max{ |.|¢,, |.|x, } as a seminorm on E [7] .

Remark 2.1 [7] We can see a Kothe space K”(a;) as a reduced projective limit.
Consider the case 1 < p < co. Define [}, :={ i€ N: a;; # 0 } for each k € N. Since
(@i ); ken is a Kothe matrix, then a;, < a; 41 for all i, k € N. So, we have that

I;; C Ijqy forallk € N. Thus, N =, o Ii

Now consider that Ker |.|, = { x = (z;) € KP(a;) : x; =0 foralli € I }.

Also, we have that P (a;;) = { x = (z;) € RN : |zay|, = (Z(azk|xz|)P)% < oo}
={x=(x;) € R™ : |zayl|, = (Z(alk|x1])p)% < 00 }. Tilen for each k € N, R’ is
dense in ¢*(a;;,) because P (a;) is a subspace of R, So, RY € K?(ay,), since

RN € KP(ay,) / Ker |.|p ~ { x = (z;) € KP(ay,) : z;=0foralli € I, } C (P(ay).
This shows that E}, := (KP(a;,)/Ker|.|x)¢ =~ 7(ay,) for each k € N.

Then by completeness, K”(a;;) = projiEy. Since Ej ~ (?(a;,) for each k € N, we
have that K?(a;x,) = projplP (ai).

By using a similar argument, we can see also that K°(a;,) = projrco(a:).

Lemma 2.1 [3] Consider the Kothe space K(a;;). If A is a bounded subset of K(a;),
then for any ko and € > 0 there is a Banach basic subspace B of K(a;;) such that A
lies in B + €Uy, where Uy, is given by Uy, = {x € K(a;x) : |z|g, < 1}.

Proof: We prove the theorem for the Kothe space of order 1.
A is given bounded. So suppose A = {x €K(a;) : |z|r = Y, air|z;| < Jj for all k}

for some sequence (J;) of nonnegative numbers. Then pick 6 " co. Thus, %k’“ —0

for all i.
Choose «; = Z ory- for all i.
k=
Then for all x € A, Z a;|z;| = Z(Z s )il = 30 x> G |z]) < 1.
=1 k=1 k=1

Now fix ¢ > 0 and deﬁne B = [el c ey < ai] and D = [e; ey > agx,] where [.]
denote the closed linear span of the corresponding vectors. Then B is a Banach space.
Then for any XEA ﬂ D,

2|k, = Z ik | 1] < Z caglzi| < e Z a;|z;| < e. Hence, A € B + €Uy,.

For p > 1 the proof can be done in a snnllar way.

10



Remark 2.2 Assume that A is a compact subset of the Kothe space K(a;x).So, for all
ko and € > 0, a basic subspace B of finite dimension exists with the property that A

lies in B + €Uy,

Theorem 2.3 [3] Suppose that E is a K&the space and that T: E — E is a bounded
(respectively, compact) operator. Then there exist complementary basic subspaces X
and Y in E such that

(1) X is a Banach (respectively, finite dimensional) space, and

(2) if 7y 1is the canonical projection onto Y and 7y is an embedding into E, then the

operator 1y - my Ty is an automorphism of Y.

Proof Let we have a fundamental system of norms in E, denoted by |.|,, where p is
in N. T is given a bounded operator. So, there is a k such that T(Uy,) is bounded
in E, where Uy, = {x € E : |z|;, < 1}. Therefore, we have that for all k there is J;,
such that |Tz|, < dx|z|k,.- Then with the help of Lemma 2.1 (respectively, Remark
2.2), there is a Banach (respectively, a finite dimensional) basic subspace X with the
property that T(Uj,) lies in X + %Uko. Now let Y be the basic subspace such that Y
is complementary to X. Take P = 7y T'ty. Then P is from Y to Y. Thus, for all xeY,

o0

we have that |Pz|, < 3|2|i,. Now for any x€Y take the series Sx = > Piz. Itisa
convergent series since, for each keN, |Piz|, < 6| Pty < 5k(%);i?\x|ko for all
1ieN. Thus Sx defines a linear continuous operator from Y to Y, by Banach-Steinhaus
Theorem.

Also, (1y - P)Sx = S(1y - P)x = x. Thus, S is the inverse of 1y - P. This shows that

ly - P =1y - my Ty is an automorphism.

11
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CHAPTER 3

MODIFICATIONS OF THE METHOD OF ZAHARIUTA

Notation 3.1 ([2], [13]]) Let E be a locally convex space and let s be any integer. Then
if >0, £ denotes a subspace of E with codimension s, and if s<0, it denotes a

product of the kind E x F, where the dimension of F is -s.

In [20], by using the Fredholm operator theory, Zahariuta developed a way to
classify isomorphically Cartesian products of locally convex spaces. His result is

given by:

Theorem 3.1[20] Let E, Es, Fy, F5 be locally conves spaces with the properties that
(Ey, F5) € K and (F}, Ey) € K. Then Fy x By ~ I} X I3 if and only if there is an
integer s such that F; ~ E\¥) and F, ~ E{ ™).

We give the mofidications of Zahariuta’s method as in [2] and in [3]].

Denote an operator T = (7},,,,) : F/4 X Fy — F7 x F5 with its corresponding
2 X 2 matrix, whose entries are

Tll . El — Fl, T12 : E2 — Fl, T21 : El — FQ, T22 . E2 — FQ.

Lemma 3.1 (See [2]) Let Ey, 5, Fy, F; be topological vector spaces.
IfE1 X E2 ~ F1 X F2 and E1 ~ Fl, then E2 ~ FQ.

Proof: Let T = (1},,) : Fh X Ey — F} X F; be an isomorphism.
Denote the inverse of T by 771 =M = (M,,,,).

Then consider Moy : 5 — F5 and Toy — TQITHITH By — Fs.
Denote H = Ty — 15,17, Tho.
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Then consider T o M =1, that is,

Ty The| | My Mo B Ty My +ThoMay Ty Mg + TiaMa B Ir, O

T Too My May Toy My +TooMay Tor Mig + Toa Moo 0 Ip
and consider M o T =1, that is,

My, M| [T Tio B MiThyy + MioTo My The + MioTh - Ig, O

Moy Moo | [Tor Tao Mo Ty + MagTs Moy Tho + MaoTh 0 Ig,

T11 Mo + Tio Moy = 0 implies that

H Moy = TyoMay — Ton Ty Tha Moy = Too May + Toy My = I,
Similarly, MoT11 + My T5; = 0 implies that

MosH = MoyThy — Mo Ton Tty Tio = Moy Thy + My Ths = I,
Thus, Ey ~ F5.

In [2]], a modification of the Zahariuta’s method (see [17]) is derived by using
Riesz type operators instead of compact operators, which is given in the next theorem

and we call it the 15 Modification Theorem.

Theorem 3.2 (See [2]) Suppose that F, Es, Fy, F5 are linear topological spaces with
the property that £y x Fy ~ [ x F3 and suppose that each operator acting in £; and
factoring over Fj is a Riesz type operator. In this case, we have a finite dimensional
subspace L; in E; and complemented subspaces X; in E; and Y; in F} such that

ElzXlXLI,FI:Xlelanlengle><E2.

Proof: Since Fy x Fy ~ F| x F;, then there is an isomophism
T=Tmw): Ei x By — Fy x F,. Denote the inverse of T by 77! =M = (M,,,,).
Then T and M are 2 x 2 matrices with entries 7,,,,, and M,,,, (m, n = 1, 2) such that

each of which is an operator acting between factors of the cartesian product, that is

T T My, M
T — 11 12 ’ M= 11 12 ’
Tgl T22 M21 M22

where 1, : £, — F,, and M,,,,, : F,, — E,, formn=1, 2.
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Now look at the following schema:

E1 X E2
Tllj T21
F1 X F2
Mllj M2
E1 X E2
Then we get M o T =1, that is
M Ty + MipTo MuTio + MioToe | [1g, O
Moy Thy + MogToy Moy Tho + MagTh 0 Ig,

So we get M11T11 + MioTo = Ig, and Mo Tho + MaoT5 = Ip,.

Consider M11T11 + Mi9T5 = Ig,. My1111 = Ig, — My2T5 1s a Fredholm operator
because Mi575; 1s a Riesz type operator factoring over F,. So if we choose L; =
kerMi,T11, then L is a finite dimensional subspace of £y, and if H = M;,T1,(E),
then H is a closed and finite codimensional subspace of E;. Thus, L; and H are com-
plemented in ;. Take X as a complementary subspace of L in the space F/; and
7y as the continuous projection onto H. The operator M11711|x, : X1 — H is an
isomorphism. So, T}; maps X7 into 711 (X;) C Fj isomorphically.

Consider the operator A =Ty, (M, T11|x,) ‘mg My, - Fy — FI.

A? =Ty (M Tulx,) ' ma M T (M T x, )~ g My

=Ty (MuThn|x,) ' mg (M Ty (M T | x, )~ re) M

=T (MuTulx,) ' ma My

= A because (M Ty (M1 T11|x, ) tmy) is the identity operator.

So, A =T\ (M Thi|x,) 'mg My, : Fy — F; is the continuous projection onto
T11(X1). Thus, T1;(X) is a complemented subspace of F.

Take Y; = A~1(0) = kerA as the corresponding complemented subspace. So, we get
By~ Xy x L, Xi Ti(Xq), i =Tu(X1) QY1 2 X1 PYi ~ Xy x Y.

Then By x Ey ~ Fy x Fyimplies that Xy x L; x Ey ~ T11(X;) X Y1 X F.

By using Lemma 3.1 to X7 X (L; x Ey) ~ T1;(X7) x (Y7 x Fy) we reach the fact
that L1 x Fy ~ Y] x F5.
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Corollary 3.1 (See [2]) Suppose that Ey, E5, Fy, F5 are linear topological spaces
with the property that £’y x Fy ~ F| x F,, suppose every operator acting in £ and
factoring over F5 is a Riesz type operator, and suppose also every operator acting
in F7 and factoring over s is a Riesz type operator. In this case, we have a finite
dimensional subspace Y; in F} and a complemented subspace L; in E; such that

F ~ E and Fy ~ E{°), where s = dimL; - dimY;.

Proof: By Theorem 3.2, there exist a finite dimensional subspace L; in F; and com-
plemented subspaces X; in E; and Y in Fj such that By ~ Xy X Ly, F; ~ X7 X Y)
and Y7 x F, ~ L4 X Fj,. Since every operator acting in F factoring over s is Riesz
type and since Y is a subspace of F7, then every operator acting in Y; factoring over
L5 is Riesz type.

So, we can apply Theorem 3.2 to Y7 x F, ~ L1 X Es.

}GCFl X F2
L cEl\x*E2
YiCFl X F2

Then we find a finite dimensional subspace Y3 in Y} and complemented subspaces Y5
inY; and Lin L; suchthat Y] ~ Y5 x Y3, Ly ~ Y, x Land Y3 x Fy, ~ L X E,. Since
Y, is a subspace of L, and L, is finite dimensional, then Y5 is also finite dimensional.
Since Y; ~ Y5 x Y3 and since Y5 and Y; are finite dimensional, then Y] is also finite
dimensional.

Since Fy ~ X, x Ly, F'i ~ X x Y] and since L, and Y] are finite dimensional, we
have that f} ~ Efs). Also, Y] X Fy ~ L1 X F5 and again L, Y] are finite dimensional
implies that F5 ~ Eéfs), where s = dim/L; - dimY;.

In [3]], another modificated case of Zahariuta’s method (see [20]) is obtained with
the help of boundedness property instead of compactness property. This is given in

the next theorem and we call it the 2"¢ Modification Theorem.

Theorem 3.3 (see [3]) Suppose that F; is a Kothe space and Es, Fi, F5 are any linear
topological spaces. If £y x Ey ~ F| x F; and if (B, Fy) € BF, then there exist
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complementary basic subspaces X; and Y] in E; and complementary subspaces Xy
and Y5 in F} such that Y] is a Banach space and Xo ~ X1, Y] X Fy >~ Yy X F5 .
Furthermore, if (F3, E5) € BF, then Y5 is also a Banach space.

Proof: Since E; x Ey ~ F} x F3, then there is an isomophism
T=(Tmw): E1 x By — Fy x F,. Denote the inverse of T by 771 = M = (M,,,,).
Then T and M are 2 x 2 matrices with entries 7,,,,, and M,,,, (m, n = 1, 2) such that
each of which is an operator acting between factors of the cartesian product, that is

Ty T My M

po |t M= 11 12

T21 T22 M21 M22

where 1,,, : £,, — F,, and M,,,,, : F,, — FE,, form,n=1, 2.

Now look at the following schema:

El X E2
Tlll Ty
F1 X F2
M11l Mo
El X F2
Then we get M o T =1, that is
M Ty + MioTo My Tho + MioTh _ Ig, O
Moy Tiy + MogThy Moy Tho + MogTh 0 Ig,

So we get M1 T11 + MyoT5 = Ig,, where My5T5; is bounded. Then Theorem 2.3
implies that there are complementary basic subspaces X; and Y; in £ with the prop-
erty that Y; is a Banach space and 7wx, M117117x, 1s an automorphism of X;. Then
we have a projection P = Ty (7x, M1 Th1ix, ) ' mx, My on Fy. Now take X, = P(F})
and Y5 = Ker P = P71(0). So, X, = T1;(X}) and the restriction T} |x, of T1; on X
is an isomoprhism of the spaces X; and X,. Then by the Lemma 3.1 we obtain that
Y X By >~ Y5 X Fs.

Now suppose also that (F}, E5) € BF. Then since Y5 C Fj, we have directly that
(Ys, E5) € BF. Since Y] x Ey; ~ Y5 x F,, then we have an isomorphism

V=", :Ys x F, =Y, x E,. Denote the inverse of V by V=1 =W = (W,,,,).
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Then

Vii 'V, Wi W
oo | Ve W= 11 12
Va1 Va War W

Similarly, look at the following schema:

}/2 - F1 X F2
Vlll Va1
Yi C E1 X EQ
W11l

Wi2
}/2 C F1 X F2

where Vi, : Yo — Y1, Vig : Fo — Y1, Voy 1 Yo — B, Voo 1 Iy — Ey
and Wiy 1 Yy — Yo, Win 0 By — Yo, Wo 1 Y] — [y, Wyt By — F)
Then we get W o V =1, that is

WiVin + WigVar Wi Vig + WiaVas Iy, O

WorVin + WaaVor - Wa Vig + WaaVag 0 Ip

So, we get Wy Vi1 + WiaVoy = Iy,. Since the operator Wi,V factors through the
Banach space Y7, it is bounded; and since the operator IW5V5; factors through FEj, it

is also bounded. So, Iy, is bounded. This means that Y5 is a Banach space.

Remark 3.1 By the proof of Theorem 3.3 and Theorem 2.3, it follows that
(1) if (E4, F3) € KF, then we can choose Y; finite dimensional, and
(2) moreover, if (F}, E5) € KF, then we can also choose Y5 finite dimensional.

Then we get a known result (see [20], [2]]). we gave it as Theorem 3.1.
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CHAPTER 4

ISOMORPHISM OF CARTESIAN PRODUCTS OF KOTHE SPACES

4.1 Applications of the 1°* Modification Theorem

To apply Corollary 3.1, we must have the following lemma:

Lemma 4.1 [2] Let E = proji Ey and F = proj,, F,, be projective limits of normed
spaces with for all k, m (E}, F,) € SS. If T : E — F is bounded, then it is a strictly

singular operator.

Proof: Suppose that the result does not hold; that is, suppose that T : E — F is
bounded but not strictly singular. So there is an infinite dimensional closed subspace
M of E such that the restriction T'|5; of T onto M is an isomorphism. Since 7|3/ is
continuous, V k 3 m(k), Ay, such that |z|;, < Ap|Tx|,,x) for all x € M. Also since T
is bounded, 3 ko V m 3 B,, such that |T'z|,, < B,|x|x, for all x € E. So we have that
%1y < Ako| T2 ko) < Ako Brmio)| |k, for all x € M. So, we can consider

T: Ey, — Fink,) Whose restriction to M is an isomorphism. However, we have

(Egs Finro)) € SS, which is a contradiction. Hence, T : E — F is strictly singular.
The next theorem is a generalization of Theorem 2 in [2].

Theorem 4.1 [16] Letp # ¢, q # p, 1 <p,q, p, § < 00, let (a;), (@) be (d2)-type

Kothe matrices and let (b;x), (bi) be (dy)-type Kothe matrices. Then the following

conditions are equivalent:

(1) Kp(&ik) X Kq<blk) ~ Kﬁ(&lk) X Kq(blk)
(2) there is an integer s such that K?(a;;,) ~ (K?(ay))® and K9(by,) ~ (K9(bg)) ).
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Proof: Suppose that K?(a;;,) x K9(by,) ~ KP(a;) x K9(bg).

Proposition 2.5 gives that (K?(a;,), K9(by,)) € B, (K?(ay,), K9(b,)) € B because
(i), (@) are (dy)-type Kothe matrices and (by,), (bi) are (dy)-type Kothe matri-
ces.

Consider K?(a;,) = projpl?(ag), KP(am) = projulP(aw), K9(by) = projpl?(bi),
K(bi) = projieli(bi).

For p < ¢ we have that (¢, () € SS and for p > ¢ we have that (¢7, ¢9) € K [8]]. Also
(¢P, (%) € K implies (¢7, ¢7) € SS. So for p # ¢ we have that (¢?, (9) € SS. Thus, by
Lemma 4.1, (K”(a;;,), K9(by)) € SS. Hence, we get (K”(ay), K(by,)) € BSS. In
a similar way, we have (K?(a;,), K9(b;s)) € BSS. Since a Fréchet space is Mackey-
complete (see [2]) and since Kothe spaces are Fréchet spaces, then Kothe spaces are
Mackey-complete. Thus, by Proposition 2.6 and by Corollary 3.1, there is an integer
s such that K?(a;) ~ (K?(ag))® and K(by,) ~ (K(by,)) ).

Conversely, suppose that there is an integer s such that K? () ~ (KP(a))® and
K(by) = (K(bix)) .

Because K?(a;,) ~ (KP(ay))® we have KP(d;) ~ M where M is a subspace
of K?(ay) with the codimension s, and because K 7(by) ~ (K9(b;,))") we have
Ki(by,) ~ (K%(by;)) x L where the dimension of L is s. Then there is an s-dimensional
subspace L such that L ~ L and K?(ay) ~ M @ L. Thus, K?(ay,) x K9(by) ~M
X (K%(biy,)) x LM x L x (K9(big)) >~ KP(ai) x K (by).

Note that this result does not hold if p = g or q = p.
Similar to Theorem 4.1, we have the next theorem.

Theorem 4.2 [16] Let 1 < p, p < oo and (a;;), (@) be (dz2)-type Kéthe matrices and

(bir), (bir) be (dy)-type Kothe matrices. Then the following conditions are equivalent:

(1) K0<aik) X Kp(blk) ~ KO(&M) X Kf)(blk)
(2) there is an integer s such that K°(a;;,) =~ (K°(a;,))® and K?(b;,) ~ (K? (b))%,

Proof: Suppose that K% (a;;,) x KP(by,) ~ K°(a,) x KP(by,)

Proposition 2.5 gives that (K(ay), K?(bi)) € B, (K°(ag), K?(by)) € B because
(i), (@) are (dy)-type Kothe matrices and (by,), (bi,) are (dy)-type Kothe matri-
ces.

Consider K°(a;,) = projrco(ai), K°(aix) = projeco(air), KP(by,) = projilP(bi),
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KP(biy,) = projil? (b ).

For 1 < p, p < oo we have that (¢, £°) € SS and (cg, ¢?) € SS [8]. Thus, by Lemma
4.1, (K%a), K?(bg)) € SS. Hence, we get (K°(aj;,), K? (b)) € BSS. In a similar
way, we have (K°(a;), KP(bix)) € BSS. Since a Fréchet space is Mackey-complete
(see [2]]) and since Kothe spaces are Fréchet spaces, then Kéthe spaces are Mackey-
complete. Thus, by Proposition 2.6 and by Corollary 3.1, there is an integer s such
that K°(ag) ~ (K°(ay))® and K?(by,) ~ (KP(by,)) ).

Conversely, suppose that there is an integer s such that K°(&;.) ~ (K°(as))® and
KP(bi) = (K7 (bix)) .

Because K°(a;,) ~ (K°(ai))® we have K°(a;) ~ M where M is a subspace
of K°a;;,) with the codimension s, and because K?(by,) ~ (K?(by))"*) we have
K?(bs) ~ (K?(by)) x L where the dimension of L is s. Then there is an s-dimensional
subspace L such that L ~ L and K°(a;,) M @ L. Thus, K°(d;;,) x K?(by) ~M
X (KP(by,)) x LM x L x (KP(b;,)) ~ K°a,) x KP(big).

4.2 Applications of the 2" Modification Theorem

Proposition 4.1 [3] Consider an ¢P-K&the space E and consider two complementary
subspaces X and Y in E. If Y is a Banach space of infinite dimension, then we have

Y ~ (P, and furthermore, X and Y are isomorphic to some basic subspaces of E.

Proof: Consider that E ~ E x {0} ~ X x Y. By Theorem 3.3, there are complemen-
tary basic subspaces A and B in E and complementary subspaces X; and Y7 in X with
the properties that B is Banach, X; ~ A and B ~ Y; x Y. We know that any basic
Banach subspace with infinite dimension of an /? Kothe space is isomorphic to /7.
Then we have that B ~ ¢?. Also, any complemented subspace with infinite dimension
of /P (with p€[1, c0) ) is isomorphic to /7 (by [8], [10]). Thus, Y ~ ¢?. Then, since

B ~ (P, the complemented subspace Y; of it is isomorphic to some basic subspace of

B and hence X ~ A P Y; is isomorphic to some basic subspace of E.

This proposition says that if we take any complemented Banach subspace with

infinite dimension in an (?-Kothe space, then it is isomorphic to the ¢? space.
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As stated in [3]], We may take this result as a partial answer to the Pelczynski
problem: "Does a complemented subspace of a space with basis have a basis?" Also,
we verify the hypothesis of Bessega [1]] which is the fact that every complemented

subspace of a Kothe space is isomorphic to a basic subspace.
The next theorem includes the case p=q=p =g.

Theorem 4.3 [3] Suppose that Fy, x Fy ~ Fy x F; where all of F,, Es, Fi, F;
are non-Montel (P-Kothe spaces. If Ey, F} are (ds) type and if Fs, F5 are (dy) type
spaces, then we have that £} ~ F} and Fy ~ F5.

Proof: Proposition 2.5 implies that every linear continuous operator acting in £; and
factoring over F5 and every linear continuous operator acting in £} and factoring over
E)5 are bounded. Then, Theorem 3.3 implies that there exist complementary basic
subspaces A and X in £} and complementary subspaces B and Y in £} such that
B~A XX Ey;~Y x Fj,and X and Y are Banach spaces. So, either X is of finite
dimension, or it is isomorphic to the space ¢” by the Proposition 4.1. Similarly, either
Y is of finite dimension, or it is isomorphic to the space /. Then we have that

X x (P ~ (P and that Y x (P ~ (P because (¥ x (P ~ (P, Then by Proposition 2.3, we
have that

BB XxP2AXXXP~BXxYXx/P~F xP~F,and

By~ Fy x P Fy X XX Py XY X P FyxP~F,.

As stated in [3]], this theorem gives an answer to the Question 2 in [4], which is
given as "Is it possible to consider stronger linear topological invariants and obtain

the condition s; + s, = 0 without using Riesz theory?"

The following theorem is a generalization of Theorem 4 in [3]]. It includes the

casep#q,p=¢andq=0p.

Theorem 4.4 [3]] Let p # q. Suppose that K (a;x), K9(a;) are (do) type non-Montel
Kothe spaces and that K%(b;,), K- p(gik) are (dy) type non-Montel Kéthe spaces. Then
the following statements are equivalent:

(1) KP(ag) x K9(by) ~ Kag) x K?(by,)

(2) there are complementary submatrices (a/,), (a), (0), (0%, (@), @), (B,

(B;’k) of (ai), (bix), (@ir)s (Z;ik), respectively, such that
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KP(aly) o 07, K(ily) 2 00, K(b) == 69, K2 () = 07
KP(al,), KU(b,), K9(al,), KP(b,) are nuclear spaces and
KP(ajy) =~ K9(a}y) and K9(bly) = KP(B).

Proof:

(2) = (1): Suppose (2) holds. Since (a},), (af). (V). (). (@), @), By, B
are complementary submatrices of (a;z), (bi), (@), (bix), respectively, we have that
KP(ay) ~ KP(al,,) x KP(a}),) and K9 (b;,) ~ K(b},) x KI(b},),

(i) = K9(al) x K9(al) and K?(by) = KP(IL,) x K ()

Then by (2) we have that

KP(ai) x K (bi) 2= KP(az,) x KP(ag) x K9(bj) x K9(b)

~ K9(al,) x 7 x KP(bl,) x (9

~ K9(ay,) x KP(O) x KP(b,) x K*(aj)

~ K9(a),) x K9(al) x KP(6) x KP (D)

~ K9(az) x KP(by,)

!/
(]
/
’L
!/
Z

(1) = (2): Suppose (1) holds. Then Proposition 2.5 and Theorem 3.3 both imply
that there are complementary submatrices (a;,) and (a;) of (a;) and there are com-
plementary subspaces X and Y in K9(a;;) with the propery that K?(a,) and Y are
Banach spaces, and K?(al,) ~ X and K”(a/,) x K9(by) ~Y x KP(by,).

Then Proposition 4.1 gives that there are complementary submatrices (a;,) and (a;
of (a;,) with X ~ K%(at, ), Y ~ K%(al, ), and K?(al,) is either of finite dimension or
isomorphic to the space ¢7, and K%(al,) is either of finite dimension or isomorphic
to the space ¢?. Then we have that K”(a},) ~ K9(a;,). Thus, Proposition 2.4 im-
plies that K”?(a}, ) and K?(a}, ) are nuclear spaces. Now suppose that either K7 (a;).)
or K4(a},) has finite dimension. Then either K?(a;x) or K%(a;;) is nuclear, and so,
a Montel space. This is a contradiction to the assumption of the theorem. Thus,
K?(a.) and K%(a" ) has infinite dimension. We get K(b;,) x €7 o~ KP(by,) x (1.
In a similar way, there are complementary submatrices (b},), (b};,) of (b;) and (b’ i)
(0,) of (by) with K9(b,) ~ K?(b,), and K9(b%) ~ (9, and K?(b)}) ~ (7, where

K4(b,) and KP(b,) are nuclear spaces.

23



24



REFERENCES

[1] C. Bessaga, Some remarks on Dragilev’s theorem, Studia Mathematica, vol. 31,

no. 4, 1968, pp. 307-318.

[2] P.Djakov, S. Onal, T. Terzioglu and M. Yurdakul, Strictly singular operators and
isomorphisms of Cartesian products of power series spaces, Archiv der Mathe-

matik, vol. 70, no. 1, 1998, pp. 57-65.

[3] P. Djakov, T. Terzioglu, M. Yurdakul and V. Zahariuta, Bounded operators and
1somorphisms of Cartesian products of Fréchet spaces., The Michigan Mathe-

matical Journal, vol. 45, no. 3, 1998, pp. 599-610.

[4] P. Djakov, M. Yurdakul and V. Zahariuta, Isomorphic classification of Cartesian
products of power series spaces., The Michigan Mathematical Journal, vol. 43,

no. 2, 1996, pp. 221-229.

[5] H. Jarchow, Locally Convex Spaces. Stuttgart: Teubner, 1981, pp. 37-38, 202,
479.

[6] H. Junek, Locally convex spaces and operator ideals. Leipzig: Teubner, 1983,

pp. 63-64.

[7] A.Kriegl, Mat.univie.ac.at, 2016. [Online]. Avaliable:
https://www.mat.univie.ac.at/~kriegl/Skripten/2016SS.pdf. [Accessed: 10-
Jan-2019].

[8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces 1 and II. Berlin:

Springer-Verlag, 1996.

[9] R. Meise and D. Vogt, Introduction to Functional Analysis. Oxford Graduate
Texts in Mathematics. Oxford University Press, 1997.

[10] A. Pefczynski, Projections in certain Banach spaces, Studia Mathematica, vol.

19, no. 2, 1960, pp. 209-228.

25



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Pietsch, Nuclear Locally Convex Spaces. Berlin: Springer, 1972.

A. Robertson and W. Robertson, Topological Vector Spaces, 2nd ed. Cambridge:
Cambridge University Press, 1973, pp. 50-54.

A. Simsek, On Isomorphic classification of cartesian products of ¢P-Finite and

¢4-Infinite power series spaces. Ankara, 1999.

T. Terziogglu, Advances in the theory of Fréchet spaces. Dordrecht: Kluwer,

1989, pp. 270-271.

T. Terzioglu, Die diametrale Dimension von lokalkonvexen Ridumen, Col-

lectanea Mathematica, vol. 20, 1969, pp. 49-99.

E. Uyanik and M. Yurdakul, On Isomorphisms of Cartesian Products of Kothe
Spaces. unpublished paper.

D. Vogt, Fréchetriume, zwischen denen jede stetige lineare Abbildung
beschrinkt ist., Journal fiir die reine und angewandte Mathematik (Crelles Jour-

nal), vol. 1983, no. 345, 1983, pp. 182-200.

V. Wrobel, Streng singulidre Operatoren in lokalkonvexen Rdumen, Mathema-

tische Nachrichten, vol. 83, no. 1, 1978, pp. 127-142.

V. Wrobel, Strikt singuldre Operatoren in lokalkonvexen Ré&dumen II.
Beschrinkte Operatoren, Mathematische Nachrichten, vol. 110, no. 1, 1983,
pp- 205-213.

V. Zahariuta, On the isomorphism of cartesian products of locally convex

spaces, Studia Mathematica, vol. 46, no. 3, 1973, pp. 201-221.

26



	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	INTRODUCTION
	PRELIMINARIES
	MODIFICATIONS OF THE METHOD OF ZAHARIUTA
	ISOMORPHISM OF CARTESIAN PRODUCTS OF KÖTHE SPACES
	Applications of the 1st Modification Theorem
	Applications of the 2nd Modification Theorem

	REFERENCES

