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ABSTRACT

ON THE ISOMORPHIC CLASSIFICATION OF THE CARTESIAN
PRODUCTS OF KÖTHE SPACES

Taştüner, Emre

M.S., Department of Mathematics

Supervisor : Prof. Dr. Murat Hayrettin Yurdakul

January 2019, 26 pages

In 1973, V. P. Zahariuta formed a method to classify the Cartesian products of locally

convex spaces by using the theory of Fredholm operators. In this thesis, we gave

modifications done in the method of Zahariuta. Then by using them, we studied the

isomorphic classifications of Cartesian products of `p and `q type Köthe sequence

spaces.

Keywords: Bounded Operators, Riesz-Type Operators, Köthe Spaces, Modifications

of Zahariuta’s Method, Isomoprhism of Cartesian Products of Köthe Spaces
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ÖZ

KÖTHE UZAYLARININ KARTEZYEN ÇARPIMLARININ İZOMORFİK
SINIFLANDIRILMASI

Taştüner, Emre

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Murat Hayrettin Yurdakul

Ocak 2019 , 26 sayfa

1973’te V. P. Zahariuta, Fredholm operatörlerin teorisini kullanarak, yerel konveks

uzayların Kartezyen çarpımlarını sınıflandırmak için bir yöntem oluşturdu. Bu tezde,

Zahariuta’nın yönteminde yapılan değişiklikleri verdik. Daha sonra onları kullanarak,

`p and `q türü Köthe dizi uzaylarının Kartezyen çarpımlarının izomorfik sınıflandırıl-

masını çalıştık.

Anahtar Kelimeler: Sınırlı Operatörler, Riesz-Türü Operatörler, Köthe Uzayları, Za-

hariuta’nın Yönteminin Değişiklikleri, Köthe Uzaylarının Kartezyen Çarpımlarının

İzomorfizması
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CHAPTER 1

INTRODUCTION

Köthe spaces are considerable in mathematical analysis since there are impor-

tant spaces isomorphic to some kind of Köthe spaces. The space of all holomorphic

functions on the unit disk is an example of such a space. Another example is the

space of rapidly decreasing sequences. Moreover, Köthe spaces are parts of Fréchet

spaces, which makes them are worth review because the structure of Fréchet spaces

are known in detail.

Zahariuta developed a method by using Fredholm operators to study the isomor-

phic classification of Cartesian products of locally convex spaces. Then his method

was modificated to study some kind of Fréchet spaces (see [2] and see [3]). In this

study, we aimed to collect these two studies ([2], [3]) together based on the Köthe

spaces.
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CHAPTER 2

PRELIMINARIES

The following definitions are mainly taken from [2] and [13].

Definiton 2.1 Let E be a vector space over the field K of real or complex numbers

and let τ be a topology on E. Then we call E as a topological vector space (linear

topological space) if τ is a linear topology on E; that is, if (x,y)→ x+y and (λ,x)→
λx are continuous for all x, y∈E and for all λ∈K.

Definiton 2.2 Let (E, τ ) be a linear topological space. Then we call it as a locally

convex space if τ is a Hausdorff topology and if there is a neighborhood basis of zero

which consists of convex sets in E.

Definiton 2.3 Let (E, τ ) be a locally convex space. We call E as a metrizable space

if we have a metric d on E which gives the topology τ with

On = {x∈E : d(x, 0) < 1
n
} (n∈N) form a neighborhood basis of zero.

Definiton 2.4 Let E be a topological vector space and F be a subspace of E. Then we

call F as complemented if there is a subspace G so that E = F
⊕

G (topologically)

and F
⋂
G = {0}. In this case, the projection of E onto G is continuous.

Definiton 2.5 We call a locally convex space as a Fréchet space if it is complete and

metrizable.

Proposition 2.1 [9] If E is a Fréchet space and if we take any closed subspace F of it,

then both F and E
/
F are Fréchet spaces.

Definiton 2.6 Let E be a locally convex space. We call a subset A⊂E as bounded if

for every absolutely convex zero neigborhood O, there is a ρ > 0 such that A ⊂ ρO.
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Definiton 2.7 Let T : E → F be a linear continous operator between locally convex

spaces E and F. Then T is called bounded (resp. compact) if we have a zero neigh-

borhood O in E with the property that T(O) is bounded (resp. relatively compact)

in F. T is called strictly singular if we restrict T on any arbitrary infinite dimen-

sional closed subspace of E, the restriction is not an isomorphism. T is called strictly

cosingular if for any infinite dimensional locally convex space G there does not exist

continuous surjective operators f: E→ G and g: F→ G such that g ◦ T = f.

Note that if E or F is a normed space, then T is bounded.

Notation 2.1 Let E and F be locally convex spaces. We denote

(E, F) ∈ B, (E, F) ∈ K, (E, F) ∈ SS, (E, F) ∈ SC, (E, F) ∈ BSS, (E, F) ∈ BSC

if each continous linear operator T : E → F is bounded, compact, strictly singular,

strictly cosingular, bounded and strictly singular, bounded and strictly cosingular,

respectively.

Note that (as stated in [2]) (E, F) ∈ K gives (E, F) ∈ BSS because if we have

a precompact operator, then it is also a strictly singular, bounded operator. But the

converse statement, in general, may not be true. As an illustration of this, consider p,

q∈[1,∞), p<q, then the identity mapping from the `p space to `q space is bounded

and strictly singular but it is not compact ([8]).

Definition 2.8 Let E and F be locally convex spaces. Then if each linear continuous

operator T : E→ E which factors over F ( that is, if T =A1 ◦A2 whereA1 : F→ E and

A2 : E→ F are linear continous operators) is bounded (respectively, compact) then

we say that (E, F) has the bounded (respectively, compact) factorization property

and we write (E, F) ∈ BF (respectively, (E, F) ∈ KF).

Definiton 2.9 Let T: E→ F be an operator between linear topological spaces E and F.

Then T is called a Fredholm operator (near-isomorphism) if it is an open map with

the property that its kernel T−1(0) is of finite dimension and its range T(E) is closed

and is of finite codimension. In this case, E and F are called nearly isomorphic. The

index indT of T is the number given by indT = dim(T−1(0)) - codim(T(E)).

Definiton 2.10 Let T: E→ E be an operator on a linear topological space E. Then we

call T as a Riesz-type operator if IE - T is Fredholm, where IE denotes the identity
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operator of E.

Definition 2.11 We call a Fréchet space as a Montel space if every bounded subset

of it is relatively compact.

Theorem 2.1 (See [12], pp. 50-54) If E is any locally convex space, then

(1) E has a bounded neighborhood if and only if it is normable

(2) if E has a precompact neighborhood (in particular, relatively compact neighbor-

hood), it is of finite dimension.

Definition 2.12 [11] Let E and F be normed spaces with closed unit balls O and U,

respectively. Let T: E→ F be continuous and linear. Then T is said to be a nuclear

operator if there exist continuous linear forms ai in the dual E ′ of E and elements yi

in F such that
∞∑
i=1

PO◦(ai)PU(yi) <∞ such that T is given by T(x) =
∞∑
i=1

ai(x)yi for

all x in E (here PA denote the Minkowski functional of the set A).

Definition 2.13 Let E be any locally convex space, O be a zero neighborhood in E and

PO be the Minkowski functional of O. Then the quotient map TO : E→ E/KerPO is

given by TO(x) := [x]O := { y ∈ E: x - y ∈ KerPO }.
Let λ > 0 and Let O and U be zero neighborhoods in E with U ⊂ λO. Then the

linking map is the continuous map TO,U : E/KerPU → E/KerPO :: [x]U → [y]O.

Definition 2.14 Let E be a locally convex space. If we have that for every zero neigh-

borhood O in E there is a zero neighborhood U in E and λ > 0 with

U ⊂ λO such that the linking map TO,U : E/KerPU → E/KerPO is nuclear (respec-

tively, compact), then E is called a nuclear space (respectively, Schwartz space).

Note that each nuclear space is a Schwartz space because each nuclear operator

between Banach spaces is also a compact operator between them (see [11], pp. 52

and [5], pp. 479), and note that if E is Schwartz, each bounded set in E is precompact

(see [5], pp. 202).

As stated in [13], the fact that any set in a locally conves space is a compact set

if and only if it is precompact and complete implies that if a space is Fréchet and

Schwartz, then it is also a Montel space. But Fréchet Montel spaces which are not

Schwartz spaces exist (see also [5], pp. 223).
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Note also that for locally convex spaces E and F, we have already that (E, F) ∈ K

implies (E, F) ∈ B. However, as given in [13], the converse is true if E is a Schwartz

space or if F is a Montel space.

Definition 2.15 Let E be a locally convex space. A system β consisting of bounded

subsets in E is called a fundamental system or a basis of bounded subsets of E if

each bounded subset in E is in some element of β.

Proposition 2.2 ([6], pp. 63-64) A metrizable locally convex space is a normable

space if it admits a countable fundamental system of bounded sets.

Definition 2.16 ([14], pp. 270-271) Let E be any Fréchet space such that it has an

arbirtary increasing fundamental systems of seminorms (||.||k).

We say that E has the property (DN) if ∃ k ∀ n ∃ N0, L > 0 ∀ x ∈ E such that

||x||2n ≤ L||x||k||x||N0 .

We say that E has the property (Ω̄) if ∀ p ∃ q ∀ k ∃M > 0 ∀ y ∈ E ′ such that

(||y||∗q)2 ≤M ||y||∗k||y||∗p where ||y||∗p := sup|x|p≤1 |y(x)|.

Definition 2.17 A matrix (aik)i,k∈N of nonnegative real numbers such that for each i

there is k with aik > 0 and for all i, k aik≤ai,k+1 is called a Köthe matrix.

Definition 2.18 Let (aik)i,k∈N be a Köthe matrix and let x=(xi) denote a sequence of

real numbers.

Then the Köthe sequence space of order p with 1 ≤ p <∞ is defined as

Kp(aik) := {x=(xi) ∈ KN: |x|k := (
∞∑
i=1

(|xi|aik)p)
1
p <∞ for all k ∈ N}

It is also called the `p-Köthe space given with the matrix (aik)i,k∈N.

The Köthe sequence space of order∞ is defined as

K∞(aik) := {x=(xi) ∈ KN : |x|∞k := supi(|xi|aik) <∞ for all k ∈ N}.
and the Köthe sequence space of order zero is defined as

c0(aik) = K0(aik) := {x=(xi) ∈ K∞(aik): limi→∞ |xi|aik = 0 for all k ∈ N}.

Note that, as stated in [2], pp. 57, Kp(aik) is a Fréchet space with the topology

produced by the system of seminorms { |.|k : k ∈ N }, and K∞(aik) is also Fréchet.

Being a closed subspace of K∞(aik), K0(aik) is also a Fréchet space.
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The dual of Kp(aik) is given by

(Kp(aik))
′ := { y = (yi) : there exists k such that |y|∗k := (

∞∑
i=1

( |yi|
aik

)q)
1
q <∞ } where p

and q are conjugate, i.e. 1
p

+ 1
q

= 1.

Also note that every Köthe space has a natural basis (ej), where ej = δji (which is

equal to 1 if i =j, and equal to 0 otherwise).

Theorem 2.2 ([9], [15]) A Köthe space K(aik) is a nuclear space (respectively, Schwartz

space) if and only if for all p ∈ N there is q ∈ N such that (aip
aiq

) ∈ `1 (respectively,

(aip
aiq

) ∈ c0).
The Köthe space Kp(aik) is a nuclear space if and only if there exists r for all k there

is m with the property that the sum
∞∑
i=1

( aik
aim

)r is finite.

Definition 2.19 A subspace is called a basic subspace if it is generated by a subse-

quence of the natural basis.

Definition 2.20 For 1 ≤ p < ∞, consider the `p-Köthe space Kp(aik). If (j(i)) is a

strictly increasing subsequence of (i), then we say that the Köthe subspace Kp(aj(i)k)

is a basic subspace of Kp(aik). Note that each basic subspace of a Köthe space is a

complemented space ([13]).

We know that (see [9], pp. 329) Kp(aik) is not a Montel space if and only if there

is an integer k0 and a subsequence (in) of the sequence (i) with for all k there exists

C = C(k) > 0 such that for all n aink ≤ Caink0 . So we have that:

Proposition 2.3 An `p-Köthe space is not Montel if and only if it contains a basic

subspace which is isomorphic to the space `p.

Proposition 2.4 ([2], [13]) For 1 ≤ p < q <∞, consider two Köthe sequence spaces

Kp(aik) and Kq(bik). If Kp(aik) 'Kq(bik), then Kp(aik) and so Kq(bik) are nuclear

spaces.

Proof: Kp(aik) is a Schwartz space because each linear continuous operator from `q

to `p is compact. Since Kp(aik) ' Kq(bik), then we have an isomorphism

T: Kp(aik)→ Kq(bik). So, for each k find r, m = m(r), A, B such that |x|k ≤ A|Tx|r
≤ B|x|m for all x ∈ Kp(aik). Since Kp(aik) is a Schwartz space, we can pick m

sufficiently big in order for aik
aim

to converge zero. By reordering the terms of ( aik
aim

),
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we suppose that it is a decreasing sequence.

Firstly, consider the case p< 2. By [8], Vol. 2, pp. 72, we know that `q space has type

s = min(2, q). Then for any n, there is γi = 1 or -1 (1≤i≤ n) and there is a constant M

with
ank

anm
n

1
p ≤ (

n∑
i=1

( aik
aim

)p)
1
p = |

n∑
i=1

γi
ei
aim
|k ≤ A|

n∑
i=1

γi
T ei
aim
|r ≤MB(

n∑
i=1

( |Tei|r
aim

)s)
1
s ≤MBn

1
s .

Then, ank

anm
≤ MBn

1
s
− 1

p = MBn
p−s
sp . Thus, for any β > sp

p−s , the sequence ( aik
aim

) ∈ `β .

Hence, Theorem 2.2 implies that Kp(aik) is a nuclear space in the case p < 2.

Now, suppose p≥ 2. Then `p has cotype max(2, p) = p. So,Kq(aik) is a nuclear space.

Consider the isomorphism T: Kp(aik)→Kq(bik). Then T−1 is also an isomorphism.

So, for each k, there are r, m, A, B with |x|k ≤ A|T−1x|r ≤ B|x|m. Again, by

reordering the terms of ( bik
bim

), we suppose that it is a decreasing sequence. For any n,

there is γi = 1 or -1 (1≤i≤ n) and there is a constant M with
bnk

bnm
n

1
p ≤ (

n∑
i=1

( bik
bim

)p)
1
p = (

n∑
i=1

| ei
bim
|pk)

1
p ≤ A(

n∑
i=1

|T−1ei
bim
|pr)

1
p ≤MA|

n∑
i=1

γi
T−1ei
bim
|r

≤MB|
n∑
i=1

γi
ei
bim
|m = MBn

1
q . Then, bnk

bnm
≤MBn

1
q
− 1

p = MBn
p−q
qp . Thus, for any

β > qp
p−q , the sequence ( bik

bim
) ∈ `β . Hence, Theorem 2.2 implies that Kp(aik) is a

nuclear space in the case p ≥ 2.

Definiton 2.21 (See [3]) Let (aik)i,k∈N be a Köthe matrix.

Then it is called (d1)-kind Köthe matrix if ∃n0∀k∃m,A : a2ik ≤ Aain0aim (∀i ∈ N ),

and is called (d2)-kind Köthe matrix if ∀k∃n0∀m∃B : Ba2in0
≥ aikaim (∀i ∈ N ).

In this case, the corresponding spaces are called (d1) and (d2) type Köthe spaces,

respectively.

Proposition 2.5 (See [20], [3]). If Kp(aik) is a (d2)-type Köthe space and Kq(bik) is

a (d1)-type Köthe space, then we have that (Kp(aik), K
q(bik)) ∈ B.

Proof: In general, by depending on Vogt’s results (in [17], Satz 6.2 and Prop. 5.3),

since Kp(aik) and Kq(bik) are Fréchet spaces having the conditions (Ω̄) and (DN),

respectively, then (Kp(aik), Kq(bik)) ∈ B because the previous definition gives that

(d2)⇒ (Ω̄) and (d1)⇒ (DN).

As a special case, let T: K1(aik)→ K1(bik) be a linear continuous operator which is

given by the matrix (tik). So, for all p there is q and C(p) > 0 with

|(tik)|p = |Tek|p ≤ C(p)|ek|q, which means that
∞∑
i=1

|tik| bipakq <C(p)< +∞.
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In order to show that T is bounded, we will find some q0 such that |Tek|p ≤M(p)|ek|q0
holds for all p for some M(p), that is,

∞∑
i=1

|tik| bipakq0
< M(p) < +∞ for all p for some

M(p). Since K1(bik) is a (d1)-type Köthe space, then ∃p1 ∀p ∃p2 = p2(p) ∃B(p) > 0

such that b2ip ≤ B(p)bip1bip2 for i ≥ i0(p) for some i0(p). Since K1(aik) is a (d2)-

Köthe space, for q = q(p1) ∃q0 ∀q2 = q2(p2) ∃A(p2)>0 such that A(p2)a
2
kq0
≥

akq1akq2 for k ≥ k0(p) for some k0(p). Therefore, by using Hölder’s inequality,
∞∑
i=1

|tik| bipakq0
≤B(p)

1
2A(p2)

1
2

∞∑
i=1

(|tik|
bip1
akq1

)
1
2 (|tik|

bip2
akq2

)
1
2 ≤B(p)

1
2A(p2)

1
2 (
∞∑
i=1

|tik|
bip1
akq1

)
1
2

(
∞∑
i=1

|tik|
bip2
akq2

)
1
2 ≤B(p)

1
2A(p2)

1
2C(p1)

1
2C(p2)

1
2 <∞ for all p for someC(p1),C(p2)>0

by continuity. Take M(p) = B(p)
1
2A(p2)

1
2C(p1)

1
2C(p2)

1
2 . So, we get

∞∑
i=1

|tik| bipakq0
<M(p) <∞ for all p. Hence, (K1(aik), K

1(bik)) ∈ B.

Definition 2.22 A locally convex space E is said to be a Mackey-complete space if

for each absolutely convex, closed and bounded subset F of it, the linear span sp(F)

of F is Banach with the unit ball F.

Note that a locally convex space which is sequentially complete is also Mackey-

complete. Also, a Fréchet space is Mackey-complete [2].

The next proposition comes from [18] [19]:

Proposition 2.6 The set of strictly singular and bounded operators between Mackey-

complete spaces generates an ideal of Riesz type operators.

Definition 2.23 [5] Suppose that Ei is a topological vector space for each i ∈ I, where

I is a directed set by an order relation ≤. Suppose that, for every i, k ∈ I with i ≤ k,

there is a linear continuous operator Tik : Ek → Ei with the properties that Tii = IEi
,

identity map on Ei, for each i, and Tik = Tij ◦ Tjk for i, j, k ∈ I with i≤ j, j≤ k. Then

we call the system (Ei, Tik)(I,≤) as a projective system of topological vector spaces

and we call the subspace E ⊂
∏

i∈I Ei such that

E = { (xi) ∈
∏

i∈I Ei : Tik (xk) = xi for all i, k ∈ I with i ≤ k } as the projective

limit of the system (Ei, Tik)(I,≤) and we denote it by E = projiEi. We say that the

projective limit E = projiEi is reduced if the operator Tk : E→ Ek has a dense range

for each k ∈ I.

Note that any locally convex space E is a dense subspace of a projective limit

of Banach spaces. If the space E is also complete, then E is equal to the reduced
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projective limit since the set of seminorms { |.|k : k ∈ N } on E can be seen as

directed by taking max{ |.|k1 , |.|k2 } as a seminorm on E [7] .

Remark 2.1 [7] We can see a Köthe space Kp(aik) as a reduced projective limit.

Consider the case 1 ≤ p <∞. Define Ik := { i ∈ N : aik 6= 0 } for each k ∈ N. Since

(aik)i,k∈N is a Köthe matrix, then aik ≤ ai,k+1 for all i, k ∈ N. So, we have that

Ik ⊂ Ik+1 for all k ∈ N. Thus, N =
⋃
k∈N Ik.

Now consider that Ker |.|k = { x = (xi) ∈ Kp(aik) : xi = 0 for all i ∈ Ik }.
Also, we have that `p(aik) = { x = (xi) ∈ RN : |xaik|p = (

∑
i

(aik|xi|)p)
1
p <∞ }

= { x = (xi) ∈ RIk : |xaik|p = (
∑
i

(aik|xi|)p)
1
p < ∞ }. Then for each k ∈ N, RIk is

dense in `p(aik) because `p(aik) is a subspace of RIk . So, RN ⊂ Kp(aik), since

RN ⊂ Kp(aik) / Ker |.|k ' { x = (xi) ∈ Kp(aik) : xi = 0 for all i ∈ Ik } ⊂ `p(aik).

This shows that Ek := (Kp(aik)/Ker|.|k)C ' `p(aik) for each k ∈ N.

Then by completeness, Kp(aik) = projkEk. Since Ek ' `p(aik) for each k ∈ N, we

have that Kp(aik) = projk`p(aik).

By using a similar argument, we can see also that K0(aik) = projkc0(aik).

Lemma 2.1 [3] Consider the Köthe space K(aik). If A is a bounded subset of K(aik),

then for any k0 and ε > 0 there is a Banach basic subspace B of K(aik) such that A

lies in B + εUk0 , where Uk0 is given by Uk0 = {x ∈ K(aik) : |x|k0 ≤ 1}.

Proof: We prove the theorem for the Köthe space of order 1.

A is given bounded. So suppose A = {x ∈K(aik) : |x|k =
∑

i aik|xi| ≤ δk for all k}
for some sequence (δk) of nonnegative numbers. Then pick δk ↗∞. Thus, aik

δk
→ 0

for all i.

Choose αi =
∞∑
k=1

aik
2kδk

for all i.

Then for all x ∈ A,
∞∑
i=1

αi|xi| =
∞∑
i=1

(
∞∑
k=1

aik
2kδk

)|xi| =
∞∑
k=1

1
2k

(
∑

i
aik
δk
|xi|) ≤ 1.

Now fix ε > 0 and define B = [ei : εαi ≤ aik0] and D = [ei : εαi > aik0] where [.]

denote the closed linear span of the corresponding vectors. Then B is a Banach space.

Then for any x ∈ A ∩ D,

|x|k0 =
∞∑
i=1

aik0|xi| <
∞∑
i=1

εαi|xi| < ε
∞∑
i=1

αi|xi| < ε. Hence, A ∈ B + εUk0 .

For p > 1 the proof can be done in a similar way.
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Remark 2.2 Assume that A is a compact subset of the Köthe space K(aik).So, for all

k0 and ε > 0, a basic subspace B of finite dimension exists with the property that A

lies in B + εUk0 .

Theorem 2.3 [3] Suppose that E is a Köthe space and that T: E → E is a bounded

(respectively, compact) operator. Then there exist complementary basic subspaces X

and Y in E such that

(1) X is a Banach (respectively, finite dimensional) space, and

(2) if πY is the canonical projection onto Y and iY is an embedding into E, then the

operator 1Y - πY TiY is an automorphism of Y.

Proof Let we have a fundamental system of norms in E, denoted by |.|p, where p is

in N. T is given a bounded operator. So, there is a k0 such that T(Uk0) is bounded

in E, where Uk0 = {x ∈ E : |x|k0 ≤ 1}. Therefore, we have that for all k there is δk

such that |Tx|k ≤ δk|x|k0 . Then with the help of Lemma 2.1 (respectively, Remark

2.2), there is a Banach (respectively, a finite dimensional) basic subspace X with the

property that T(Uk0) lies in X + 1
2
Uk0 . Now let Y be the basic subspace such that Y

is complementary to X. Take P = πY TiY . Then P is from Y to Y. Thus, for all x∈Y,

we have that |Px|k0 ≤ 1
2
|x|k0 . Now for any x∈Y take the series Sx =

∞∑
i=0

P ix. It is a

convergent series since, for each k∈N, |P ix|k ≤ δk|P i−1x|k0 ≤ δk(
1
2
)i−1|x|k0 for all

i∈N. Thus Sx defines a linear continuous operator from Y to Y, by Banach-Steinhaus

Theorem.

Also, (1Y - P)Sx = S(1Y - P)x = x. Thus, S is the inverse of 1Y - P. This shows that

1Y - P = 1Y - πY TiY is an automorphism.

11
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CHAPTER 3

MODIFICATIONS OF THE METHOD OF ZAHARIUTA

Notation 3.1 ([2], [13]) Let E be a locally convex space and let s be any integer. Then

if s≥0, E(s) denotes a subspace of E with codimension s, and if s<0, it denotes a

product of the kind E x F, where the dimension of F is -s.

In [20], by using the Fredholm operator theory, Zahariuta developed a way to

classify isomorphically Cartesian products of locally convex spaces. His result is

given by:

Theorem 3.1[20] Let E1, E2, F1, F2 be locally conves spaces with the properties that

(E1, F2) ∈ K and (F1, E2) ∈ K. Then E1 x E2 ' F1 x F2 if and only if there is an

integer s such that F1 ' E(s)
1 and F2 ' E(−s)

2 .

We give the mofidications of Zahariuta’s method as in [2] and in [3].

Denote an operator T = (Tmn) : E1 × E2→ F1 × F2 with its corresponding

2 × 2 matrix, whose entries are

T11 : E1→ F1, T12 : E2→ F1, T21 : E1→ F2, T22 : E2→ F2.

Lemma 3.1 (See [2]) Let E1, E2, F1, F2 be topological vector spaces.

If E1 × E2 ' F1 × F2 and E1 ' F1, then E2 ' F2.

Proof: Let T = (Tmn) : E1 × E2→ F1 × F2 be an isomorphism.

Denote the inverse of T by T−1 = M = (Mmn).

Then consider M22 : F2 → E2 and T22 − T21T−111 T12 : E2 → F2.

Denote H = T22 − T21T−111 T12.

13



Then consider T ◦M = I, that is,

T11 T12

T21 T22

M11 M12

M21 M22

 =

T11M11 + T12M21 T11M12 + T12M22

T21M11 + T22M21 T21M12 + T22M22

 =

IF1 0

0 IF2


and consider M ◦ T = I, that is,

M11 M12

M21 M22

T11 T12

T21 T22

 =

M11T11 +M12T21 M11T12 +M12T22

M21T11 +M22T21 M21T12 +M22T22

 =

IE1 0

0 IE2


T11M12 + T12M22 = 0 implies that

HM22 = T22M22 − T21T−111 T12M22 = T22M22 + T21M12 = IF2

Similarly, M21T11 +M22T21 = 0 implies that

M22H = M22T22 −M22T21T
−1
11 T12 = M22T22 +M21T12 = IE2

Thus, E2 ' F2.

In [2], a modification of the Zahariuta’s method (see [17]) is derived by using

Riesz type operators instead of compact operators, which is given in the next theorem

and we call it the 1st Modification Theorem.

Theorem 3.2 (See [2]) Suppose that E1, E2, F1, F2 are linear topological spaces with

the property that E1×E2 ' F1×F2 and suppose that each operator acting in E1 and

factoring over F2 is a Riesz type operator. In this case, we have a finite dimensional

subspace L1 in E1 and complemented subspaces X1 in E1 and Y1 in F1 such that

E1 ' X1 × L1, F1 ' X1 × Y1 and Y1 × F2 ' L1 × E2.

Proof: Since E1 × E2 ' F1 × F2, then there is an isomophism

T = (Tmn) : E1 × E2 → F1 × F2. Denote the inverse of T by T−1 = M = (Mmn).

Then T and M are 2 × 2 matrices with entries Tmn and Mmn (m, n = 1, 2) such that

each of which is an operator acting between factors of the cartesian product, that is

T =

T11 T12

T21 T22

 , M =

M11 M12

M21 M22

 ,
where Tmn : En −→ Fm and Mmn : Fn −→ Em for m,n = 1, 2.

14



Now look at the following schema:

E1

T11
��

T21

''

× E2

F1

M11

��

× F2

M12
ww

E1 × E2

Then we get M ◦ T = I, that isM11T11 +M12T21 M11T12 +M12T22

M21T11 +M22T21 M21T12 +M22T22

 =

IE1 0

0 IE2


So we get M11T11 +M12T21 = IE1 and M21T12 +M22T22 = IE2 .

Consider M11T11 + M12T21 = IE1 . M11T11 = IE1 −M12T21 is a Fredholm operator

because M12T21 is a Riesz type operator factoring over F2. So if we choose L1 =

kerM11T11, then L1 is a finite dimensional subspace of E1, and if H = M11T11(E1),

then H is a closed and finite codimensional subspace of E1. Thus, L1 and H are com-

plemented in E1. Take X1 as a complementary subspace of L1 in the space E1 and

πH as the continuous projection onto H. The operator M11T11|X1 : X1 −→ H is an

isomorphism. So, T11 maps X1 into T11(X1) ⊂ F1 isomorphically.

Consider the operator A = T11(M11T11|X1)
−1πHM11 : F1 −→ F1.

A2 = T11(M11T11|X1)
−1πHM11T11(M11T11|X1)

−1πHM11

= T11(M11T11|X1)
−1πH(M11T11(M11T11|X1)

−1πH)M11

= T11(M11T11|X1)
−1πHM11

= A because (M11T11(M11T11|X1)
−1πH) is the identity operator.

So, A = T11(M11T11|X1)
−1πHM11 : F1 −→ F1 is the continuous projection onto

T11(X1). Thus, T11(X1) is a complemented subspace of F1.

Take Y1 = A−1(0) = kerA as the corresponding complemented subspace. So, we get

E1 ' X1 × L1, X1 ' T11(X1), F1 = T11(X1)
⊕

Y1 ' X1

⊕
Y1 ' X1 × Y1.

Then E1 × E2 ' F1 × F2 implies that X1 × L1 × E2 ' T11(X1) × Y1 × F2.

By using Lemma 3.1 to X1 × (L1 × E2) ' T11(X1) × (Y1 × F2) we reach the fact

that L1 × E2 ' Y1 × F2.
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Corollary 3.1 (See [2]) Suppose that E1, E2, F1, F2 are linear topological spaces

with the property that E1 × E2 ' F1 × F2, suppose every operator acting in E1 and

factoring over F2 is a Riesz type operator, and suppose also every operator acting

in F1 and factoring over E2 is a Riesz type operator. In this case, we have a finite

dimensional subspace Y1 in F1 and a complemented subspace L1 in E1 such that

F1 ' E
(s)
1 and F2 ' E

(−s)
2 , where s = dimL1 - dimY1.

Proof: By Theorem 3.2, there exist a finite dimensional subspace L1 in E1 and com-

plemented subspaces X1 in E1 and Y1 in F1 such that E1 ' X1 × L1, F1 ' X1 × Y1
and Y1 × F2 ' L1 ×E2. Since every operator acting in F1 factoring over E2 is Riesz

type and since Y1 is a subspace of F1, then every operator acting in Y1 factoring over

E2 is Riesz type.

So, we can apply Theorem 3.2 to Y1 × F2 ' L1 × E2.

Y1 ⊂ F1

�� ((

× F2

L1 ⊂ E1

��

× E2

vv
Y1 ⊂ F1 × F2

Then we find a finite dimensional subspace Y3 in Y1 and complemented subspaces Y2

in Y1 and L in L1 such that Y1 ' Y2× Y3, L1 ' Y2×L and Y3×F2 ' L×E2. Since

Y2 is a subspace of L1 and L1 is finite dimensional, then Y2 is also finite dimensional.

Since Y1 ' Y2 × Y3 and since Y2 and Y3 are finite dimensional, then Y1 is also finite

dimensional.

Since E1 ' X1 × L1, F1 ' X1 × Y1 and since L1 and Y1 are finite dimensional, we

have that F1 ' E
(s)
1 . Also, Y1×F2 ' L1×E2 and again L1, Y1 are finite dimensional

implies that F2 ' E
(−s)
2 , where s = dimL1 - dimY1.

In [3], another modificated case of Zahariuta’s method (see [20]) is obtained with

the help of boundedness property instead of compactness property. This is given in

the next theorem and we call it the 2nd Modification Theorem.

Theorem 3.3 (see [3]) Suppose that E1 is a Köthe space and E2, F1, F2 are any linear

topological spaces. If E1 × E2 ' F1 × F2 and if (E1, F2) ∈ BF, then there exist
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complementary basic subspaces X1 and Y1 in E1 and complementary subspaces X2

and Y2 in F1 such that Y1 is a Banach space and X2 ' X1, Y1 × E2 ' Y2 × F2 .

Furthermore, if (F1, E2) ∈ BF, then Y2 is also a Banach space.

Proof: Since E1 × E2 ' F1 × F2, then there is an isomophism

T = (Tmn) : E1 × E2 → F1 × F2. Denote the inverse of T by T−1 = M = (Mmn).

Then T and M are 2 × 2 matrices with entries Tmn and Mmn (m, n = 1, 2) such that

each of which is an operator acting between factors of the cartesian product, that is

T =

T11 T12

T21 T22

 , M =

M11 M12

M21 M22


where Tmn : En −→ Fm and Mmn : Fn −→ Em for m,n = 1, 2.

Now look at the following schema:

E1

T11
��

T21

''

× E2

F1

M11

��

× F2

M12
ww

E1 × F2

Then we get M ◦ T = I, that isM11T11 +M12T21 M11T12 +M12T22

M21T11 +M22T21 M21T12 +M22T22

 =

IE1 0

0 IE2


So we get M11T11 + M12T21 = IE1 , where M12T21 is bounded. Then Theorem 2.3

implies that there are complementary basic subspaces X1 and Y1 in E1 with the prop-

erty that Y1 is a Banach space and πX1M11T11iX1 is an automorphism of X1. Then

we have a projection P = T11(πX1M11T11iX1)
−1πX1M11 on F1. Now take X2 = P(F1)

and Y2 = Ker P = P−1(0). So, X2 = T11(X1) and the restriction T11|X1 of T11 on X1

is an isomoprhism of the spaces X1 and X2. Then by the Lemma 3.1 we obtain that

Y1 × E2 ' Y2 × F2.

Now suppose also that (F1, E2) ∈ BF. Then since Y2 ⊂ F1, we have directly that

(Y2, E2) ∈ BF. Since Y1 × E2 ' Y2 × F2, then we have an isomorphism

V = (Vmn) : Y2 × F2 → Y1 × E2. Denote the inverse of V by V −1 = W = (Wmn).
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Then

V =

V11 V12

V21 V22

 , W =

W11 W12

W21 W22


Similarly, look at the following schema:

Y2 ⊂ F1

V11
��

V21

((

× F2

Y1 ⊂ E1

W11

��

× E2

W12vv
Y2 ⊂ F1 × F2

where V11 : Y2 −→ Y1, V12 : F2 −→ Y1, V21 : Y2 −→ E2, V22 : F2 −→ E2

and W11 : Y1 −→ Y2, W12 : E2 −→ Y2, W21 : Y1 −→ F2, W22 : E2 −→ F2

Then we get W ◦ V = I, that isW11V11 +W12V21 W11V12 +W12V22

W21V11 +W22V21 W21V12 +W22V22

 =

IY2 0

0 IF2


So, we get W11V11 + W12V21 = IY2 . Since the operator W11V11 factors through the

Banach space Y1, it is bounded; and since the operator W12V21 factors through E2, it

is also bounded. So, IY2 is bounded. This means that Y2 is a Banach space.

Remark 3.1 By the proof of Theorem 3.3 and Theorem 2.3, it follows that

(1) if (E1, F2) ∈ KF, then we can choose Y1 finite dimensional, and

(2) moreover, if (F1, E2) ∈ KF, then we can also choose Y2 finite dimensional.

Then we get a known result (see [20], [2]). we gave it as Theorem 3.1.
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CHAPTER 4

ISOMORPHISM OF CARTESIAN PRODUCTS OF KÖTHE SPACES

4.1 Applications of the 1st Modification Theorem

To apply Corollary 3.1, we must have the following lemma:

Lemma 4.1 [2] Let E = projkEk and F = projmFm be projective limits of normed

spaces with for all k, m (Ek, Fm) ∈ SS. If T : E→ F is bounded, then it is a strictly

singular operator.

Proof: Suppose that the result does not hold; that is, suppose that T : E → F is

bounded but not strictly singular. So there is an infinite dimensional closed subspace

M of E such that the restriction T |M of T onto M is an isomorphism. Since T |−1M is

continuous, ∀ k ∃ m(k), Ak such that |x|k ≤ Ak|Tx|m(k) for all x ∈ M. Also since T

is bounded, ∃ k0 ∀ m ∃ Bm such that |Tx|m ≤ Bm|x|k0 for all x ∈ E. So we have that

|x|k0 ≤ Ak0 |Tx|m(k0) ≤ Ak0Bm(k0)|x|k0 for all x ∈M. So, we can consider

T : Ek0 → Fm(k0) whose restriction to M is an isomorphism. However, we have

(Ek0 , Fm(k0)) ∈ SS, which is a contradiction. Hence, T : E→ F is strictly singular.

The next theorem is a generalization of Theorem 2 in [2].

Theorem 4.1 [16] Let p 6= q̃, q 6= p̃, 1 ≤ p, q, p̃, q̃ <∞, let (aik), (ãik) be (d2)-type

Köthe matrices and let (bik), (b̃ik) be (d1)-type Köthe matrices. Then the following

conditions are equivalent:

(1) Kp(aik) × Kq(bik) ' K p̃(ãik) × K q̃(b̃ik)

(2) there is an integer s such thatK p̃(ãik)' (Kp(aik))
(s) andK q̃(b̃ik)' (Kq(bik))

(−s).
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Proof: Suppose that Kp(aik) × Kq(bik) ' K p̃(ãik) × K q̃(b̃ik).

Proposition 2.5 gives that (Kp(aik), K q̃(b̃ik)) ∈ B, (K p̃(ãik), Kq(bik)) ∈ B because

(aik), (ãik) are (d2)-type Köthe matrices and (bik), (b̃ik) are (d1)-type Köthe matri-

ces.

Consider Kp(aik) = projk`
p(aik), K p̃(ãik) = projk`

p̃(ãik), Kq(bik) = projk`
q(bik),

K q̃(b̃ik) = projk`q̃(b̃ik).

For p < q̃ we have that (`p, `q̃) ∈ SS and for p > q̃ we have that (`p, `q̃) ∈ K [8]. Also

(`p, `q̃) ∈ K implies (`p, `q̃) ∈ SS. So for p 6= q̃ we have that (`p, `q̃) ∈ SS. Thus, by

Lemma 4.1, (Kp(aik), K q̃(b̃ik)) ∈ SS. Hence, we get (Kp(aik), K q̃(b̃ik)) ∈ BSS. In

a similar way, we have (K p̃(ãik), Kq(bik)) ∈ BSS. Since a Fréchet space is Mackey-

complete (see [2]) and since Köthe spaces are Fréchet spaces, then Köthe spaces are

Mackey-complete. Thus, by Proposition 2.6 and by Corollary 3.1, there is an integer

s such that K p̃(ãik) ' (Kp(aik))
(s) and K q̃(b̃ik) ' (Kq(bik))

(−s).

Conversely, suppose that there is an integer s such that K p̃(ãik) ' (Kp(aik))
(s) and

K q̃(b̃ik) ' (Kq(bik))
(−s).

Because K p̃(ãik) ' (Kp(aik))
(s) we have K p̃(ãik) ' M where M is a subspace

of Kp(aik) with the codimension s, and because K q̃(b̃ik) ' (Kq(bik))
(−s) we have

K q̃(b̃ik)' (Kq(bik))× L where the dimension of L is s. Then there is an s-dimensional

subspace L̃ such that L̃ ' L and Kp(aik) 'M
⊕

L̃. Thus, K p̃(ãik) × K q̃(b̃ik) 'M

× (Kq(bik)) × L 'M × L × (Kq(bik)) ' Kp(aik) × Kq(bik).

Note that this result does not hold if p = q̃ or q = p̃.

Similar to Theorem 4.1, we have the next theorem.

Theorem 4.2 [16] Let 1 ≤ p, p̃ <∞ and (aik), (ãik) be (d2)-type Köthe matrices and

(bik), (b̃ik) be (d1)-type Köthe matrices. Then the following conditions are equivalent:

(1) K0(aik) × Kp(bik) ' K0(ãik) × K p̃(b̃ik)

(2) there is an integer s such thatK0(ãik)' (K0(aik))
(s) andK p̃(b̃ik)' (Kp(bik))

(−s).

Proof: Suppose that K0(aik) × Kp(bik) ' K0(ãik) × K p̃(b̃ik)

Proposition 2.5 gives that (K0(aik), K p̃(b̃ik)) ∈ B, (K0(ãik), Kp(bik)) ∈ B because

(aik), (ãik) are (d2)-type Köthe matrices and (bik), (b̃ik) are (d1)-type Köthe matri-

ces.

Consider K0(aik) = projkc0(aik), K0(ãik) = projkc0(ãik), Kp(bik) = projk`
p(bik),
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K p̃(b̃ik) = projk`p̃(b̃ik).

For 1 ≤ p, p̃ <∞ we have that (c0, `p̃) ∈ SS and (c0, `p) ∈ SS [8]. Thus, by Lemma

4.1, (K0(aik), K p̃(b̃ik)) ∈ SS. Hence, we get (K0(aik), K p̃(b̃ik)) ∈ BSS. In a similar

way, we have (K0(ãik), Kp(bik)) ∈ BSS. Since a Fréchet space is Mackey-complete

(see [2]) and since Köthe spaces are Fréchet spaces, then Köthe spaces are Mackey-

complete. Thus, by Proposition 2.6 and by Corollary 3.1, there is an integer s such

that K0(ãik) ' (K0(aik))
(s) and K p̃(b̃ik) ' (Kp(bik))

(−s).

Conversely, suppose that there is an integer s such that K0(ãik) ' (K0(aik))
(s) and

K p̃(b̃ik) ' (Kp(bik))
(−s).

Because K0(ãik) ' (K0(aik))
(s) we have K0(ãik) ' M where M is a subspace

of K0(aik) with the codimension s, and because K p̃(b̃ik) ' (Kp(bik))
(−s) we have

K p̃(b̃ik)' (Kp(bik))× L where the dimension of L is s. Then there is an s-dimensional

subspace L̃ such that L̃ ' L and K0(aik) 'M
⊕

L̃. Thus, K0(ãik) × K p̃(b̃ik) 'M

× (Kp(bik)) × L 'M × L × (Kp(bik)) ' K0(aik) × Kp(bik).

4.2 Applications of the 2nd Modification Theorem

Proposition 4.1 [3] Consider an `p-Köthe space E and consider two complementary

subspaces X and Y in E. If Y is a Banach space of infinite dimension, then we have

Y ' `p, and furthermore, X and Y are isomorphic to some basic subspaces of E.

Proof: Consider that E ' E × {0} ' X × Y. By Theorem 3.3, there are complemen-

tary basic subspaces A and B in E and complementary subspacesX1 and Y1 in X with

the properties that B is Banach, X1 ' A and B ' Y1 × Y. We know that any basic

Banach subspace with infinite dimension of an `p Köthe space is isomorphic to `p.

Then we have that B' `p. Also, any complemented subspace with infinite dimension

of `p (with p∈[1,∞) ) is isomorphic to `p (by [8], [10]). Thus, Y ' `p. Then, since

B ' `p, the complemented subspace Y1 of it is isomorphic to some basic subspace of

B and hence X ' A
⊕

Y1 is isomorphic to some basic subspace of E.

This proposition says that if we take any complemented Banach subspace with

infinite dimension in an `p-Köthe space, then it is isomorphic to the `p space.
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As stated in [3], We may take this result as a partial answer to the Pelczynski

problem: "Does a complemented subspace of a space with basis have a basis?" Also,

we verify the hypothesis of Bessega [1] which is the fact that every complemented

subspace of a Köthe space is isomorphic to a basic subspace.

The next theorem includes the case p = q = p̃ = q̃.

Theorem 4.3 [3] Suppose that E1 × E2 ' F1 × F2 where all of E1, E2, F1, F2

are non-Montel `p-Köthe spaces. If E1, F1 are (d2) type and if E2, F2 are (d1) type

spaces, then we have that E1 ' F1 and E2 ' F2.

Proof: Proposition 2.5 implies that every linear continuous operator acting in E1 and

factoring over F2 and every linear continuous operator acting in F1 and factoring over

E2 are bounded. Then, Theorem 3.3 implies that there exist complementary basic

subspaces A and X in E1 and complementary subspaces B and Y in F1 such that

B ' A, X × E2 ' Y × F2, and X and Y are Banach spaces. So, either X is of finite

dimension, or it is isomorphic to the space `p by the Proposition 4.1. Similarly, either

Y is of finite dimension, or it is isomorphic to the space `p. Then we have that

X × `p ' `p and that Y × `p ' `p because `p × `p ' `p. Then by Proposition 2.3, we

have that

E1 ' E1 × `p ' A × X × `p ' B × Y × `p ' F1 × `p ' F1, and

E2 ' E2 × `p ' E2 × X × `p ' F2 × Y × `p ' F2 × `p ' F2.

As stated in [3], this theorem gives an answer to the Question 2 in [4], which is

given as "Is it possible to consider stronger linear topological invariants and obtain

the condition s1 + s2 = 0 without using Riesz theory?"

The following theorem is a generalization of Theorem 4 in [3]. It includes the

case p 6= q, p = q̃ and q = p̃.

Theorem 4.4 [3] Let p 6= q. Suppose that Kp(aik), Kq(ãik) are (d2) type non-Montel

Köthe spaces and that Kq(bik), Kp(b̃ik) are (d1) type non-Montel Köthe spaces. Then

the following statements are equivalent:

(1) Kp(aik) × Kq(bik) ' Kq(ãik) × Kp(b̃ik)

(2) there are complementary submatrices (a′ik), (a′′ik), (b′ik), (b′′ik), (ã′ik), (ã′′ik), (b̃′ik),

(b̃′′ik) of (aik), (bik), (ãik), (b̃ik), respectively, such that
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Kp(a′′ik) ' `p, Kq(ã′′ik) ' `q, Kq(b′′ik) ' `q, Kp(b̃′′ik) ' `p;
Kp(a′ik), Kq(b′ik), Kq(ã′ik), Kp(b̃′ik) are nuclear spaces and

Kp(a′ik) ' Kq(ã′ik) and Kq(b′ik) ' Kp(b̃′ik).

Proof:

(2) ⇒ (1): Suppose (2) holds. Since (a′ik), (a′′ik), (b′ik), (b′′ik), (ã′ik), (ã′′ik), (b̃′ik), (b̃′′ik)

are complementary submatrices of (aik), (bik), (ãik), (b̃ik), respectively, we have that

Kp(aik) ' Kp(a′ik) × Kp(a′′ik) and Kq(bik) ' Kq(b′ik) × Kq(b′′ik),

Kq(ãik) ' Kq(ã′ik) × Kq(ã′′ik) and Kp(b̃ik) ' Kp(b̃′ik) × Kp(b̃′′ik).

Then by (2) we have that

Kp(aik) x Kq(bik) ' Kp(a′ik) × Kp(a′′ik) × Kq(b′ik) × Kq(b′′ik)

' Kq(ã′ik) × `p × Kp(b̃′ik) × `q

' Kq(ã′ik) × Kp(b̃′′ik) × Kp(b̃′ik) × Kq(ã′′ik)

' Kq(ã′ik) × Kq(ã′′ik) × Kp(b̃′ik) × Kp(b̃′′ik)

' Kq(ãik) × Kp(b̃ik)

(1) ⇒ (2): Suppose (1) holds. Then Proposition 2.5 and Theorem 3.3 both imply

that there are complementary submatrices (a′ik) and (a′′ik) of (aik) and there are com-

plementary subspaces X and Y in Kq(ãik) with the propery that Kp(a′′ik) and Y are

Banach spaces, and Kp(a′ik) ' X and Kp(a′′ik) × Kq(bik) ' Y × Kp(b̃ik).

Then Proposition 4.1 gives that there are complementary submatrices (ã′ik) and (ã′′ik)

of (ãik) with X 'Kq(ã′ik), Y 'Kq(ã′′ik), and Kp(a′′ik) is either of finite dimension or

isomorphic to the space `p, and Kq(ã′′ik) is either of finite dimension or isomorphic

to the space `q. Then we have that Kp(a′ik) ' Kq(ã′ik). Thus, Proposition 2.4 im-

plies that Kp(a′ik) and Kq(ã′ik) are nuclear spaces. Now suppose that either Kp(a′′ik)

or Kq(ã′′ik) has finite dimension. Then either Kp(aik) or Kq(ãik) is nuclear, and so,

a Montel space. This is a contradiction to the assumption of the theorem. Thus,

Kp(a′′ik) and Kq(ã′′ik) has infinite dimension. We get Kq(bik) × `p ' Kp(b̃ik) × `q.
In a similar way, there are complementary submatrices (b′ik), (b′′ik) of (bik) and (b̃′ik),

(b̃′′ik) of (b̃ik) with Kq(b′ik) ' Kp(b̃′ik), and Kq(b′′ik) ' `q, and Kp(b̃′′ik) ' `p, where

Kq(b′ik) and Kp(b̃′ik) are nuclear spaces.
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