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ABSTRACT 

 

INVESTIGATION OF ADDED UTILITY OF NONLINEAR TECHNIQUES 

IN RESCALING SOIL MOISTURE DATASETS 

 

Hesami Afshar, Mahdi 

Doctor of Philosophy, Civil Engineering 

Supervisor: Assoc. Prof. Dr. M. Tuğrul Yılmaz 

 

January 2019, 156 pages 

 

Soil moisture plays a key role in weather forecasting, hydrologic modeling, climate 

change studies and water resource management. There are multiple ways to estimate 

this essential variable (i.e., remote sensing, modeling, station-based observations) and 

clear benefits associated with merging independent estimates. However, the time 

series of these products generally contain systematic differences that must be removed 

through rescaling before the application of data merging approaches (e.g., data 

assimilation and data fusion). In this study, the added utility of nonlinear rescaling 

methods relative to linear methods in the framework of creating a homogenous soil 

moisture time series has been explored. The performances of 18 linear and nonlinear 

rescaling methods are evaluated in two different case studies of: 1) rescaling the 

AMSR-E LPRM soil moisture dataset to station-based watershed average soil 

moisture (WASM), and 2) fusing of four different soil moisture products (ASCAT, 

AMSR-E LPRM, API, and NOAH) via a naive data fusion scheme and multiple 

rescaling approaches. Accordingly, experiments are performed using various rescaling 

methods, where the rescaled and fused datastes are validated using observations 

obtained over four United States Department of Agriculture (USDA) Agricultural 

Research Service (ARS) watersheds, which are frequently used in the validation 

efforts of the soil moisture satellite missions. The results of a total of 18 different 
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methods show that the nonlinear methods improve the correlation and error statistics 

of the rescaled product compared to the linear methods. In general, the method that 

yielded the best results using training data (ELMAN ANN) improved the validation 

correlations, on average, by 0.052, whereas JORDAN ANN and MARS, yielded 

correlation improvements of 0.038 and 0.01, respectively. On the other hand, results 

related to the validation of fusion of products obtained via a smooth-deviance 

decomposition rescaling technique, show, on average, a correlation improvement of 

0.03, compared to the other widely implemented simple linear rescaling approaches. 

The overall results show that a large majority of the similarities between soil moisture 

datasets are due to linear relations; however, nonlinear relations clearly exist, and the 

use of nonlinear rescaling methods or implementation of linear methods with a proper 

rescaling approach clearly improves the accuracy of the rescaled product. 

Additionally, the selection of the reference dataset from higher quality datasets in the 

rescaling steps results in considerably increased fused product accuracy. 

 

 

Keywords: Soil moisture, Rescaling, Data fusion, Remote sensing  
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ÖZ 

 

LİNEAR OLMAYAN METODLARIN TOPRAK NEMİ VERİSETLERİNİN 

ÖLÇEKLENDİRMENE YAPTIPI KATKININ ARAŞTIRILMASI 

 

Hesami Afshar, Mahdi 

Doktora, İnşaat Mühendisliği 

Tez Danışmanı: Doç. Dr. M. Tuğrul Yılmaz 

 

Ocak 2019, 156 sayfa 

 

Toprak nemi; hava tahmini, hidrolojik modellemede, iklim değişikliği çalışmalarında 

ve su kaynakları yönetiminde kilit bir rol oynar. Bu temel değişkeni elde etmenin 

birçok yolu vardır (örneğin, uzaktan algılama, modelleme, istasyon temelli gözlem 

yöntemleri). Bu ürünlerin zaman serileri genellikle veri birleştirme yaklaşımlarının 

(örneğin, veri özümseme ve veri birleştirme) uygulanmasından önce yeniden 

ölçeklendirme yoluyla çıkarılması gereken sistematik farklılıkları içerir. Bu 

çalışmada, homojen bir toprak nemi zaman serisi oluşturma işleminde doğrusal 

olmayan yeniden ölçeklendirme yöntemlerinin doğrusal yöntemlere göre ilave faydası 

araştırılmıştır. Doğrusal ve doğrusal olmayan toplam 18 adet yeniden ölçeklendirme 

yönteminin performansı, iki farklı durum çalışmasında değerlendirilmiştir: 1) AMSR-

E LPRM toprak nemi veri setini istasyon bazlı su havzası ortalama toprak nemini 

(WASM) referans alarak yeniden ölçeklendirme ve 2) dört farklı toprak nemi 

ürününün eşit ağırlıklı ve çoklu yeniden ölçeklendirme yaklaşımlarıyla birleştirilmesi 

(ASCAT, AMSR-E LPRM, API ve NOAH). Deneyler çeşitli ölçeklendirme 

yöntemleri kullanılarak gerçekleştirilmiştir ve sonuçta elde edilen birleştirilmiş veri 

setleri birçok uydu toprak nemi miyonunun doğrulaması çalışmalarında yaygınlıkla 

kullanılan Amerika Birleşik Devletleri Tarım Bakanlığı (USDA) Tarımsal Araştırma 

Servisi’nin (ARS) dört havzasında elde edilen veri setleri kullanılarak doğrulanmıştır. 
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Toplam 18 farklı yöntem ile yeniden ölçeklendirilmiş ürünün korelasyon ve hata 

istatistikleri doğrusal olmayan yöntemlerin doğrusal yöntemlere kıyasla daha iyi 

sonuçlar verdiğini göstermektedir. Genel olarak, kalibrasyon verilerini kullanarak en 

iyi sonuçları veren yöntem (ELMAN ANN), doğrulama korelasyonlarını ortalama 

0.052 artırırken, JORDAN ANN ve MARS, sırasıyla 0.038 ve 0.01 korelasyon artışı 

sağlamıştır. Öte yandan, pürüzsüz-sapma ayrıştırma yeniden ölçeklendirme tekniği ile 

elde edilen ürünlerin birleştirilmesi, yaygın olarak uygulanan diğer basit doğrusal 

yeniden ölçeklendirme yaklaşımlarına kıyasla, ortalama olarak 0.03 bir korelasyon 

gelişimi göstermektedir. Genel sonuçlar, toprak nemi veri setleri arasındaki 

benzerliklerin büyük çoğunluğunun doğrusal ilişkilerden kaynaklandığını ve bununla 

birlikte doğrusal olmayan ilişkilerin varlığı da açıkça görülmektedir. Doğrusal 

olmayan yeniden ölçeklendirme yöntemlerinin kullanılması veya doğrusal 

yöntemlerin uygun bir yeniden ölçeklendirme yaklaşımı ile kullanılması, yeniden 

ölçeklendirilen ürünün doğruluğunu açık bir şekilde arttırmaktadır. Öte yandan 

verilerin yeniden ölçeklendirilmesi esnasında seçilen referans veri setinin daha doğru 

veri setlerinin arasından seçimi birleştirilen ürünün doğruluğunu önemli bir şekilde 

arttırmaktadır. 

Anahtar Kelimeler: Toprak nemi, Yeniden ölçeklendirme, Veri birleştirme, Uzaktan 

algilama 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Importance of Soil Moisture and Its Applications 

Soil moisture (both surface- and root zone- soil moisture) is one of the key 

variables in the heat and mass exchanges between surface and atmosphere (Koster et 

al., 2004) as well as in plant growth (Lawrence & Hornberger, 2007). 

Among different drought types (e.g., meteorological-, hydrological-, agricultural-

, and socio-economic- droughts), the agricultural drought is almost under direct impact 

of the soil moisture (Mishra & Singh, 2010). The amount of soil moisture content 

during growing period of plants adversely affects the crop yield, and consequently, 

the agricultural production (Panu & Sharma, 2002). Recently, the agricultural drought 

has been considered as one of the important factors of social conflicts in developing 

countries (Kelley, Mohtadi, Cane, Seager, & Kushnir, 2015). 

Moreover, soil moisture, due to its retention (Han, Crow, Holmes, & Bolten, 

2014), impacts the rainfall-runoff process, erosion, forecast skill, and many other 

aspects of life (Figure 1.1). The spatiotemporal dynamics of the soil moisture are 

commonly used to qualify the vulnerability of the catchment in runoff generation 

(Bronstert et al., 2012). In fact, the spatial patterns of soil moisture is particularly 

valuable for calibration and validation of hydrological models (Parajka et al., 2006; 

Rinderer, Kollegger, Fischer, Stähli, & Seibert, 2012) and the assimilation of observed 

soil moisture data in rainfall-runoff models significantly improves the accuracy of 

flood forecasting (Aubert, Loumagne, & Oudin, 2003; Bronstert et al., 2012). Hence, 

describing the spatial distribution and temporal changes of soil moisture contributes 

significantly to the development of accurate climate, ecological and hydrological 

models at global, regional and local levels scales (W. Dorigo et al., 2012). 
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Figure 1.1. The water cycle surrounding soil water content (Explorations, 2011) 

1.2. Soil Moisture Retrieval 

Soil moisture can be retrieved through different methods (i.e., in-situ 

measurements, numerical modeling, and remote sensing). Direct monitoring methods, 

such as weighting method and electromagnetic methods, provide soil moisture 

information for specific fine spatial resolutions with high temporal resolution (e.g., 30 

minutes or one hour; Figure 1.2).  However, the use of these datasets are impractical 

for studies focusing on large areas. Instead, hydrological model- or satellite remote 

sensing-based soil moisture datasets are used for large scale applications related with 

drought monitoring (Afshar, Sorman, & Yilmaz, 2016), crop yield monitoring 

(Anderson et al., 2015, 2016), improvement of hydrological models via assimilation 

of observations (Wade T Crow & Wood, 2003; Houser et al., 1998; Lievens et al., 

2015; Yilmaz, DelSole, & Houser, 2011). 
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Figure 1.2. Differences among spatial resolution of different soil moisture sensors (from top to 

bottom: Satellite, Airborne, Drone, and Ground based sensors) 

Owing to the high number of studies using these datasets in large scale 

applications, many soil moisture products have been produced using hydrological 

model- and remote sensing-based methods. Complex land surface models [e.g., Global 

Land Data Assimilation System (GLDAS), Modern-Era Retrospective Analysis for 

Research and Applications (MERRA), etc.] and much simpler hydrological models 

(e.g., Antecedent Precipitation Index, API) offer spatiotemporally continuous soil 

moisture datasets. However, these land surface models heavily rely on parameters that 

often have variability in time and space, while their actual measurements are often 

impractical (Figure 1.3). 
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Figure 1.3. Schematic representation of NOAH LSM and forcing variables in it (Ek et al., 2003) 

Remote sensing based approaches also provide spatially continuous soil 

moisture datasets (Figure 1.4) like Advanced Scatter meter [ASCAT; (Wolfgang 

Wagner, Lemoine, & Rott, 1999)], Soil Moisture and Ocean Salinity [SMOS; (Kerr et 

al., 2001)], and Soil Moisture Active Passive (SMAP; (Entekhabi, Njoku, et al., 

2010)]. However, these datasets only reflect conditions related to the top of the soil 

surface (~ 3-5 cm), and their temporal and spatial resolutions are different from each 

other and mostly are lower than models, while the retrieval algorithms depend on 

many parameters (e.g., land cover, topography, and radiative activities). 
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Figure 1.4. Availability of sensors used in soil moisture retrievals (both active and passive) 

1.3. Literature Review 

Given these approaches can provide different soil moisture datasets for the same 

location and same time period (they all contain random errors with different 

characteristics), it is often desirable to merge these different time series so that more 

accurate estimates could be obtained. 

Liu, et al. (2011) merged the information derived from satellite based passive and 

active microwave sensors (AMSR-E and ASCAT). For this purpose, they initially 

rescaled parent product using CDF matching methodology (Reichle & Koster, 2004) 

to the space of land surface model data set and fused them in that space. Their results 

showed that, although the fusion framework increases the number of observations, it 

can minimally change the accuracy of soil moisture retrievals. 

Yilmaz, et al. (2012) through merging of model-, thermal infrared remote sensing-

, and microwave remote sensing-based soil moisture estimates, obtained a new 

product within a least squares framework. They validated their merged anomaly 

product against in-situ measurements and found their merged product to be more 

accurate than individual input products. 
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Schalie, et al. (2017) evaluated three different fusion approaches including neural 

networks, regressions, and the Land Parameter Retrieval Model (LPRM) and found 

out that the neural networks approach gives the highest correlation coefficient among 

different fusion approaches while the regression and LPRM approach can closely 

follow up the neural networks approach. 

Beside of all above mentioned studies, the ESA Climate Change Initiative (CCI) 

team initiated a project with the goal of developing a complete and consistent global 

soil moisture dataset in year 2010 and released its first product in year 2012. The ESA-

CCI soil moisture product (W. Dorigo et al., 2017; Gruber, Dorigo, Crow, & Wagner, 

2017; Liu et al., 2012, 2011; W. Wagner et al., 2012) merges wide range of the active 

and passive soil moisture retrievals, with a methodology very similar to that of Liu, et 

al. (2011). 

A review of the studies mentioned above indicates that fused soil moisture 

anomalies are more correlated with ground measurements and/or modeled soil 

moisture datasets rather than the individual products that have been merged. 

Moreover, all the mentioned studies confirm that the fundamental need of any data 

fusion study, is to have soil moisture products at the same temporal scale. However, 

before such merging methodologies can be implemented, the various systematic 

differences that exist between soil moisture estimates obtained from different 

platforms and/or sensors should be alleviated (Dirmeyer et al., 2004; Reichle, Crow, 

Koster, Sharif, & Mahanama, 2008; C.-H. Su & Ryu, 2015; Yilmaz & Crow, 2013; 

Yin et al., 2014). An example of such systematic differences (e.g., differences in their 

ranges, fluctuations, and availability over the same location (Little River watershed in 

Tifton, GA) at the same time period; September 19th to November 18th of year 2010) 

is presented in Figure 1.5, where three platforms of soil moisture retrieval (i.e., remote 

sensing, model based, and in-situ measurements) are arranged to three panels from top 

to bottom respectively. 
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Figure 1.5. Systematic differences in remotely sensed- model based-, and in-situ based- soil moisture 

products over the same location (longitude:-98.10, latitude: 34.95) in time period of September 19th 

to November 18th of year 2010 

Many different methods are proposed to handle these systematic differences 

between soil moisture products, where an unscaled original product Y is rescaled to 

the space of a reference product X. The goals of such methodologies include 

minimizing the variability of the difference between the rescaled product and the 

reference product, maximizing the correlation between them, or matching the total 
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variability of an unscaled product to an arbitrary reference dataset (Hain, Crow, 

Mecikalski, Anderson, & Holmes, 2011; Miralles, De Jeu, Gash, Holmes, & Dolman, 

2011; Parinussa et al., 2015; Scipal, Holmes, de Jeu, Naeimi, & Wagner, 2008; 

Stoffelen, 1998; Zwieback et al., 2016). 

Based on above mentioned goals, the rescaling method can vary from linear ones 

[e.g., first order linear regression (REG), variance matching (VAR), Triple collocation 

analysis (TCA), etc.] to CDF matching (CDFM) and nonlinear techniques [e.g., multi 

adaptive regression splines (MAR), support vector machines (SVM), artificial neural 

networks (ANN), etc.]. 

Once a particular “rescaling method” (e.g., VAR, REG, CDFM, MAR, SVM, 

ANN, etc.) is selected for a specific application, this method can be implemented using 

different approaches that consider different time scales (Yilmaz et al., 2016). The 

rescaling approaches affect the accuracy statistics of the rescaled product, even 

though, by definition, a particular rescaling method is selected to be the optimum 

method (i.e., yield least errors) for a particular application. For example, a rescaling 

method can be tuned for the entire time series or for each month separately (rescaling 

coefficients or product dependencies are assumed to be constant or time-varying). If 

the reference product, that any given product is rescaled to, is more accurate than the 

rescaled product, then implementation of rescaling methods strongly using time-

varying coefficients (e.g., using monthly rescaling coefficients rather than using a 

single coefficient for the entire time series, or rescaling seasonality and anomaly 

components separately rather than rescaling them using the same rescaling 

coefficients) yield higher accuracy rescaled product than weakly rescaled products. 

The reverse is also true that in the presence of relatively less accurate reference 

product, weakly rescaling products yield higher accuracy rescaling products (Yilmaz 

et al., 2016). 

Both the rescaling method and its implementation approach can impact the 

optimality of the rescaled product’s statistics (Yilmaz & Crow, 2013; Yilmaz et al., 

2016). The optimality of a rescaling methods largely depend on the goal of the 
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rescaling methodology (Yilmaz & Crow, 2013); yet performances of such rescaling 

methods are also affected by degree to which the underlying assumptions of the 

rescaling methods are met (Yilmaz & Crow, 2013) and by their implementation 

approach (Yilmaz et al., 2016). 

Satellite-based soil moisture data are often validated with using in-situ 

measurements (Jackson et al., 2012, 2010), which exhibit significantly higher local 

non-linearity due to soil moisture dynamics (Wade T Crow & Wood, 2003). The 

spatial resolution difference between in-situ measurements and remotely sensed soil 

moisture products (i.e. point versus areal average) is another source that introduces 

nonlinearity into the system. Recently, Zwieback et al. (2016) introduced a non-

parametric CDFM method to address the impact of non-linear relationships on the 

error statistics identified using TCA. The study of Zwieback et al. (2016) emphasizes 

the existing quadratic relationships between the actual signal components of different 

Soil moisture products, which can lead to non-linear relationships. Therefore, it is 

conventional that such nonlinear relationships existing between soil moisture data sets 

may not be captured by using linear methods and use of use of non-linear methods 

may be necessary. 

1.4. Goal of the Study 

Among commonly linear and nonlinear rescaling methods that are applied in 

studies focusing on removing systematic differences between soil moisture products, 

the CDFM (Reichle & Koster, 2004) is arguably the mostly commonly used. In 

addition, linear regression- (Wade T. Crow & Zhan, 2007), variance matching- 

(Draper, Walker, Steinle, de Jeu, & Holmes, 2009), triple collocation- (Yilmaz & 

Crow, 2013), copula- (Leroux et al., 2014), wavelet- (C.-H. Su & Ryu, 2015), 

quadratic polynomial- (Zwieback, et al., 2016) based methods have been also utilized 

for this purpose. However, the inter-comparison of the performance of 

abovementioned methods has not been explored in the soil moisture rescaling studies. 

REG, VAR, TCA, and CDFM have unique results and are implemented widely 

in rescaling studies. Yilmaz and Crow (2014) have been investigated the optimality of 
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linear methods in the context of data assimilation. However, because the limited usage 

of nonlinear methods in the soil moisture rescaling framework, the performance of 

them in comparison to the linear methods has been remained unexplored. Therefore 

there is still room to investigate and inter-compare the relative performance of linear 

and nonlinear methods in order to better understand the degree of nonlinearities 

existing in the soil moisture products. 

Moreover, based on this fact that the rescaling methods are eventually used as the 

cornerstone of the soil moisture merging methodologies, the investigation of the 

impact of their selection over the performance of the final fused soil moisture 

estimates is also necessary. Earlier studies have investigated the performance of 

different rescaling methodologies (Yilmaz & Crow, 2013; Yilmaz et al., 2016), 

However, so far no study have specifically investigated the impact of the most of 

nonlinear methods (e.g., SVM, and MAR) in a data merging methodology.  

This study is the first to use and compare different rescaling methods (including 

linear and nonlinear ones) in the context of rescaling soil moisture datasets. 

Meanwhile, beside of these inter-comparisons, this study is the first to investigate the 

impact of different linear and nonlinear rescaling methods and their way of 

implementation approach over the accuracy of the data fusion process. Hence the goal 

of this study in addition to the comparison of the rescaling methods in rescaling of soil 

moisture time series, is to investigate all of the aspects of data fusion (including the 

impact of the parent soil moisture product selection, the impact of rescaling methods, 

rescaling techniques, application style of rescaling methods, and the reference of data 

fusion frame work). The methodologies and the datasets used in this study are given 

in the Chapter 2; the results and their discussions are given in the Chapter 3, and 

concluding remarks are given in the last Chapter 4. 
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CHAPTER 2  

 

2. MATERIALS AND METHODS 

 

2.1. Rescaling Methods 

2.1.1. Linear Regression 

 Linear rescaling methods have been widely used to rescale soil moisture time 

series to reduce their inconsistency (Brocca et al., 2011; W. T. Crow, Su, Ryu, & 

Yilmaz, 2015; Wade T. Crow & Zhan, 2007). Overall, linear rescaling methods are 

implemented by considering the most general linear relation between a reference 

dataset (X) and an original unscaled dataset (Y) in the form of: 

 Y∗ = μX + (Y − μY)cY (1) 

where Y∗ is the rescaled version of Y; μX and μY are time averages of X and Y, 

respectively; and cY is a scalar rescaling factor (Figure 2.1). Here, cY is found using 

REG, VAR, and TCA-based linear methods (Yilmaz & Crow, 2013): 

 cY
R = ρXY σX/σY (2) 

 cY
V = σX/σY   (3) 

 cY
T = Σxz/Σyz (4) 

where Z is a third product that is similar to products X and Y; Σxz and Σyz are 

covariances between X-Z and Y-Z, respectively; cY
R, cY

V, and cY
T are the linear rescaling 

factors for the REG-, VAR-, and TCA-based methods, respectively; σX and σY are the 

standard deviations of X and Y, respectively; and ρXY is the correlation coefficient 

between X and Y. Accordingly, the rescaled products are estimated as 

 YREG
∗ = μX + (Y − μY)cY

R (5) 

  YVAR
∗ = μX + (Y − μY)cY

V (6) 

  YTCA
∗ = μX + (Y − μY)cY

T (7) 



 

 

 

12 

 

where YREG
∗ , YVAR

∗ , and YTCA
∗  are the rescaled products using REG, VAR, and TCA 

methods, respectively. The schematic representation of linear regression lines for three 

linear methods of REG, VAR, and TCA and the differences in their slopes and 

intercept values is shown in Figure 2.1. 

 

Figure 2.1. Comparison of REG, VAR, and TCA rescaling methods 

2.1.2. CDF Matching 

 The CDFM (Reichle & Koster, 2004) is one of the earliest and arguably the most 

commonly used method in soil moisture rescaling studies. This method has been 

widely used in many applications, particularly in studies that focus on data 
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assimilation (Drusch, 2007; Li et al., 2010). The aim of this method is to eliminate the 

differences between the statistical moments of two soil moisture datasets. The 

schematic representation of the CDFM used in this study is given in Figure 2.2 (i.e., 

the path shown with red color). 

 

Figure 2.2. Schematic representations of the CDFM rescaling method 

 The CDFM rescaling method can be applied through two general approaches to 

the soil moisture products based on their cumulative distribution functions. The first 

approach tries to match the lower order moments of time series (e.g., the first and 

second) to the reference one (Variance matching). While the second approach (called 

here as CDFM) matches the empirical cumulative distribution functions of the 

unscaled product directly to the reference product ones. The difference between the 

two methods are represented in Figure 2.3. For more details, readers are referred to 

the study of Reichle and Koster (2004).   
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Figure 2.3. Comparison of VAR and CDFM rescaling methods 

2.1.3. Copula 

 Copula functions are widely used to describe the multivariate dependence between 

random variables by using their univariate distributions. More specifically, this 

method enables the estimation of a multivariate CDF of random variables by using 

copula functions that utilize the univariate CDF of random variables, assuming the 

marginal probability distributions follow a uniform distribution. The general equation 

for the estimation of the multivariate distribution in the copula approach is described 

by Sklar (1959) as follows: 

 C(CDFu1 , CDFu2 , … , CDFuN) = Pr(U1 ≤ u1, U2 ≤ u2, … , UN ≤ uN) (8) 
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where C is a unique multivariate copula function that contains all of the dependence 

information among the datasets through a single parameter (e.g., P or θ). Here, Sklar’s 

theorem implies that for any group of random variables U1, U2, … , UN−1, there exists 

a copula function C(CDFu1 , CDFu2 , … , CDFuN) that links these variables through an 

estimation of the multivariate probability distribution of these random variables.  

The copula approach explicitly requires a conditional multivariate CDF to find 

the solution to a rescaling problem, which can be found via the partial derivative of 

the copula functions in the following form:  

 
CUN|U1,U2,…,UN−1 =

∂C(CDFu1 , CDFu2 , … , CDFuN)

∂C(CDFu1 , CDFu2 , … , CDFuN−1)
 

(9) 

Here, the goal is to first estimate CDFuN and to then retrieve the value of UN by 

utilizing the CDF of the observed variables (U1, U2, … , UN−1). Here, these observed 

variables could be selected as observations from different platforms as well as lagged 

values of the same variable to be predicted. However, the solution of equation 14 

requires knowledge of the conditional CDF of the observed variables 

(CDFUN|U1,U2,…,UN−1), which can be found through an iterative procedure (for details 

on this optimal solution, see the study of Leroux et al., 2014).  

1- Estimation of CDFu1 , CDFu2 , … , and CDFuN , 

2- Fitting of copulas to  CDFu1 , CDFu2 , … , and CDFuN (i.e., estimation of P and θ 

parameters), 

3- Calculation of errors and correlations between true dataset and predicted UN 

separately for CUN|U1,U2,…,UN−1 = 0.01 to 0.99. 

4- Selection of the best CUN|U1,U2,…,UN−1 value which minimizes the standard 

deviation of the difference between UN and UN
∗ and maximizes ρ between UN and 

UN
∗ simultaneously, 

5- Estimation of CDFuN using C(CDFu1 , CDFu2 , … , CDFuN), 

C(CDFu1 , CDFu2 , … , CDFuN−1), obtained P and θ parameters (step 2), and selected 

CUN|U1,U2,…,UN−1 (step 4), 

6- Estimation of UN using inverse relation of UN and CDFuN. 
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The summary of copula method procedures and differences between copula 

and CDFM methods is presented in the Figure 2.4 where copula projection plane 

(panel C in Figure 2.4) has curved shape compared to projection line of CDFM (i.e., 

straight line in panel A). The optimal shape and location of this projection line 

curvature in panel C can be found by altering the parameters P, θ, and/or 

CUN|U1,U2,…,UN−1 respectively, while the optimality depends on the goal of the 

application. 

 

Figure 2.4. Schematic representations of the CDFM and Copula based rescaling methods. The paths 

in the BADE and BCFE panels represent the CDFM and Copula methods for rescaling of unscaled 

product Y to the space of reference product X, respectively. C(X|Y)=0.47 is plotted with darker color 

in panel C to represent the best performing projection line of the Copulated with darker color in panel 

C to represent the best performing projection line of the Copula 

 The list of copula functions used in this study [five total: NORMAL (Frahm, 

Junker, & Szimayer, 2003), CLAYTON (CLAYTON, 1978), GUMBEL (Gumbel, 

1960), FRANK (Genest, 1987), and JOE (Joe, 1997)] and their properties are given in 
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Table 2.1. Moreover, the differences between the conditional CDF line of them 

(different copula flavors) and their impact over rescaling of soil moisture products is 

shown in in Figure 2.5. In this study, all of the steps, including the calculation of the 

CDFs and the fitting of different copulas, are performed using the R programming 

language package “Copula”, which was written by Hofert et al. (2012). For more 

information about the mathematical properties of the copula function and families, 

fitting procedures, and simulation issues, see the studies by Genest and Favre (2007) 

and Nelsen (1999).  

Table 2.1. Copula functions (in two dimension space), parameters (P and θ), and characteristics used 

in this study. 

Copula CYX(FY, FX) Family 

Normal ∫ ∫
exp [−

FY
2 − 2PFYFX + FX

2

2(1 − P2)
]

2π(1 − P2)
1
2⁄

∅−1(FX)

−∞

∅−1(FY)

−∞

dFYdFX Elliptical 

Clayton (FY
−θ + FX

−θ − 1)−1/θ Archimedean 

Gumbel exp{[(− 𝑙𝑛 𝐹𝑌)
θ + (− 𝑙𝑛 𝐹𝑋)

θ]
1
θ} Archimedean 

Frank 
−1

θ
ln[1 +

(e−θFY − 1)(e−θFX − 1)

e−θ − 1
] Archimedean 

Joe 
1 − [(1 − FY)

θ + (1 − FX)
θ

− (1 − FY)
θ(1 − FX)

θ]
1
θ 

Archimedean 
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Figure 2.5. Differences among copula flavors used in this study for rescaling of soil moisture 

2.1.4. Multi Adaptive Regression Splines 

MAR (Friedman, 1991) is an advanced form of stepwise regression, that uses 

a series of local so-called basis functions to model the nonlinearities between 

independent and dependent variables (here unscaled and reference products). The 
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principle of MAR is to split the unscaled product’s space to distinct intervals and fit 

an individual spline (basis function) to each interval separately (Hastie et al., 2009). 

The final model is built up by connecting of these basis functions at the knot points 

(the end point of intervals). The general MARS model of reference (X) product with 

M basis functions can be written as: 

 𝑌∗ = 𝑎0  + ∑ 𝑎𝑚𝐵𝑚(𝑌)
𝑀
𝑚=1   (10) 

where 𝑎0 is a constant coefficient, 𝑎𝑚 is the coefficient of the 𝑚𝑡ℎ basis function, 

𝐵𝑚(𝑌) is the 𝑚𝑡ℎ basis function in the form of max (0, 𝑌 − 𝑡) or max (0, 𝑡 − 𝑌) with 

a knot occurring at value 𝑡, and 𝑀 is the number of basis functions built in the model. 

Figure 2.6 represents the differences between REG and MAR methods in rescaling of 

unscaled soil moisture product to the space of reference product. 

 

Figure 2.6. Comparison of REG and MAR rescaling methods. 
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The MAR consists of separate forward and backward stepwise procedures. In 

the forward phase, the model adds basis functions and tries to find potential knots to 

reduce errors between rescaled and reference products in terms of mean square error 

(MSE), resulting in a very complicated and over fitted model (Andrés Suárez, Lorca 

Fernández, Cos Juez, & Sánchez Lasheras, 2011). In the backward phase, the MAR 

model prunes the least effective terms among the previously added basis functions 

based on a generalized cross-validation (GCV) measure of MSE. The GCV procedure 

determines which basis function to keep in the model and which one to eliminate by 

introducing a penalty to the system based on the number of terms (including intercept) 

more than maximum number of terms allowed to be remained in pruned model (this 

threshold is semi automatically calculated based on the number of variables). 

In this study, the fitting phase of MAR to the unscaled and reference products 

is conducted in R programming environment by using earth package (Milborrow, 

2016). For more information about the MAR and technical details about it please see 

studies of Hastie, et al. (2009) and Sharda, et al. (2008). 

2.1.5. Genetic Programming 

GP (Koza, 1994; Vladislavleva, Smits, & den Hertog, 2009) is an automatic 

programming technique that is based on Darwin's theory of population evolution 

(abandoning poor members of society and creating modified children selectively). GP 

uses the Genetic Algorithm (GA) to create tree-structured computer programs as a 

solution for defined problems (e.g., rescaling unscaled variables to the reference 

space). 

Given the availability of relevant datasets, GP discovers their relationship 

through randomly created computer programs that are composed of mathematical 

functions and arithmetic operators without having a priori information about the 

datasets or their structures. GP utilizes these functions and picks the best-fitted ones 

(i.e., refines these functions) in a statistical sense by exchanging information through 

so-called crossover and mutation operators. Here, the crossover operator combines 
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randomly selected parts of two programs and creates a new program for the new 

population, while the mutation operator creates a new program by randomly selecting 

one part of a program and randomly mutating it. This refining process evolves over a 

series of generations until reaching the termination criteria (e.g., evolving time, 

maximum generations, error threshold, etc.). The schematic representation of GP 

method in the scatterplot of unscaled and reference soil moisture products and its 

difference with linear regression is available in Figure 2.7. 

 

Figure 2.7. Comparison of REG and GP rescaling methods 

All of the steps of GP in this study are performed by using the RGP package 

(Flasch, Mersmann, Bartz-Beielstein, Stork, & Zaefferer, 2015) in the R language 
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programming environment. The preliminary required parameters of GP (e.g., the 

causality relationship between unscaled and reference soil moisture products, 

termination criteria, etc.) are presented in Table 2.2. The remaining required 

parameters (e.g., GA operator’s probabilities and performing procedure of them) are 

defined as per their default values following the guidelines of the RGP package 

(Flasch et al., 2015). 

Table 2.2. Defined sets of GP 

Parameter Defined set 

Causality relationship 𝑋 = 𝑓(𝑌) 

Function set 
"Sine", "Cosine", "Tangent", "Square root", 

"Exponential", "Logarithm", "+", "-", "*", "/", "^" 

Fitness function 
(𝑌∗ − 𝑋)2

𝑁
 

Population size 100 

Stop condition Time (40 minutes) 

where 𝑋, 𝑌, and 𝑌∗ are the reference, unscaled, and rescaled soil moisture products 

respectively and 𝑁 is the number of observations. 

2.1.6. Support Vector Machine 

The SVM (V. N Vapnik & Chervonenkis, 1974; Vladimir Naumovich. Vapnik, 

1998) is a novel technique based on statistical learning theory that uses the principle 

of structural risk minimization (Hernández, Kiralj, Ferreira, & Talavera, 2009) In the 

regression model of SVM, a function associated with the dependent variable (here 𝑋), 

which itself is a function of independent variable (here 𝑌), is estimated (Olson & 

Delen, 2008). Similar to other rescaling methods, it is assumed that the relationship 

between 𝑋 and 𝑌 is characterized by an algebraic function as following: 

 𝑓(𝑦) =  𝑊𝑇𝜑(𝑦) + 𝑏 (11) 

 𝑌∗ = 𝑓(𝑦) + 𝑛𝑜𝑖𝑠𝑒 (12) 
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where 𝑌∗ is the rescaled product, φ(y) is a nonlinear mapping of the unscaled soil 

moisture products, and W and b are respectively the weights and the bias values of 

regression function, which are determined by minimizing the objective function of: 

 𝑚𝑖𝑛𝑤,𝑒,𝑏𝑗(𝑤, 𝑒) =
1

2
𝑊𝑇𝑤 +

𝛾

2
∑ 𝑒𝑖

2𝑁
𝑖=1   (13) 

subjected to: 

 𝑒𝑖 = 𝑋𝑖 − 𝑌𝑖
∗, 𝑖 = 1,2, … ,𝑁 (14) 

where γ is the real positive number that is used for penalizing an occurred error during 

calibration, 𝑒𝑖 is the amount of error at time step i, 𝑋𝑖 is the reference product at time 

step 𝑖, and 𝑁 is the number of observations. The SVM solves this minimization 

problem with using of Lagrange multipliers method and ultimately turns it to the form 

of: 

 𝑓(𝑦) = ∑ 𝑎𝑖𝐾(𝑦, 𝑦𝑖)
𝑁
𝑖=1 + 𝑏  (15) 

where 𝑎𝑖 is average of the Lagrange multipliers, and 𝐾(𝑦, 𝑦𝑖) is the kernel function 

that can be written as an inner product in a feature space by following Mercer’s 

theorem. There are different types of kernel functions available (e.g., linear, 

polynomial, radial basis, and sigmoid) that the SVM method can be applied through 

them, while in this study the radial basis kernel function type has been chosen by 

following studies of (Afshar & Yilmaz, 2017; Pasolli, Notarnicola, & Bruzzone, 

2011). The optimization of above mentioned problems are performed with e1071 

package (Meyer et al., 2015) in the R programming environment and the parameters 

of the kernel functions are found based on cross validation (the optimized values are 

not shown). Figure 2.8 shows the differences between simple linear regression and 

SVM method in rescaling of arbitrary unscaled soil moisture product to the space of 

reference product. For more information about the SVM and its technical details, 

readers are referred to the studies of Vapnik (1998) and Smola & Schölkopf (2004). 
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Figure 2.8. Comparison of REG and SVM rescaling methods 

2.1.7. Artificial Neural Networks 

ANNs, which are originally modeled from existing information processing 

paradigm of biological neural networks of human brain (S. Chen & Billings, 1992), 

provide methods for data set fitting, time series prediction, and dynamic system 

modeling (Principe, Rathie, & Kuo, 1992). ANNs are simply data processing systems 

that establish relations between input and output (i.e., Y and X) through networks of 

neurons (nodes) in the hidden layers. These neurons perform the information 
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processing by weighting and exchanging them through activation functions to prepare 

the input value of the neurons in the next layer and consequently calculate the output 

values of the network. Every ANN can be determined with respect to its structure (the 

numbers of hidden layers and the way which the neurons are connected together), 

training method (the method which assigns the weights), and its activation function 

(the function which defines the input of the next layer from the outputs of pervious 

layer).  

Strictly linear systems do not require any hidden layer at all, while a linear 

activation function suffices to relate the input dataset to output. On the other hand, the 

use of one or two hidden layers is sufficient to solve most (if not all) complex nonlinear 

problems, while the use of more hidden layers unnecessarily increase the complexity 

and the training time of the system (Karsoliya, 2012). On the other hand, the optimality 

of number of neurons has been an ongoing debate for almost two decades (Guang-Bin 

Huang & Babri, 1998; Murata, Yoshizawa, & Amari, 1994; Sheela, Deepa, Sheela, & 

Deepa, 2013; Xu & Chen, 2008), hence optimality of neuron number selection is not 

as clear as optimality of hidden layer number. In additional to the hidden layer and 

neuron number, ANN simulations often require selection of the maximum numbers of 

iterations allowed. Similar to selection of unnecessarily high numbers of hidden layers 

and neurons, selection of very high maximum iteration numbers also yields 

overtraining (Kentel, 2009) and results in loss of accuracy when validated using 

independent datasets. 

In this study, four ANN functions: Multi-layer perceptron [MLP; (Rosenblatt, 

1958)], Radial basis function [RBF; (Poggio & Girosi, 1990)], ELMAN (Elman, 

1990), and JORDAN (Jordan, 1997) with different structures belonging to feed-

forward, radial basis function, and recurrent networks are used to rescale Y to X. These 

four ANN functions have their own characteristics: for instance, the MLP network, 

probably the most common network in use (Mutlu, Chaubey, Hexmoor, & Bajwa, 

2008), and RBF network have multiple layers (input, hidden, and output) that are fully 

connected in a feed-forward network shape (the information is carried forward: from 

input to nodes and to output, no cycles or loops in the network). However, the 
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activation function of an RBF network is radially symmetric. Thus, data sets in the 

RBF networks are represented locally instead of globally (in MLP networks).  

 Another difference of RBF networks relative to MLP networks is that they are 

more robust against noise. Elman network, from recurrent networks, can also be 

considered as a basic modification of feed-forward networks with additional context 

units that take input (feedback) from the hidden units. These feedbacks allow Elman 

networks to identify and produce temporal patterns. Jordan network is also from 

recurrent typed networks. However, Jordan network have extra direct feedback 

through their context units, which actually get input from their output units. Thus, the 

number of context units in Jordan ANN is a function of the output unit’s dimension. 

This may be counted as a disadvantage of Jordan ANNs with respect to the Elman 

ANNs, as the number of hidden units in contrast to the number of output units is 

flexible in the Elman network and can be easily increased or decreased (Bergmeir & 

Benítez Sánchez, 2012). 

 In addition to the length of the datasets, user defined number of maximum 

iterations allowed, hidden layer, and neuron primarily govern the computational 

burden of ANN implementations. Selection of very high maximum iteration numbers 

yield over fitting of training datasets, hence in this study maximum iteration number 

is selected as 1000 following Kentel (2009). Different networks can evolve their 

topology automatically (e.g., evolutionary ANN), while the ANNs used in this study 

require explicit training (i.e., identification of the number of hidden layers and their 

neurons). In this study these number of hidden layers and neurons are optimized by a 

grid search within a domain of (1-2) and (1-40) for the number of hidden layers and 

their neurons, respectively. Given the range of neuron number is much higher than the 

range of hidden layer number, the most time consuming components of optimization 

efforts are the neuron number selections in ANN training. The properties of ANN 

functions used in this study are given in Table 2.3. Moreover, for better understanding 

of the difference among ANN flavors used in this study, the schematic representation 

of their procedure is showed in Figure 2.9. 
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Table 2.3. Parameters of ANNs used in this study. (Id is identity) 

ANN 
Learning 

function 

Update 

function 

Output 

function 

Activation 

function 

Number of 

context layers 

MLP 
Back-

propagation 

Topological 

order 
Id. 

Input Id. 

--- 
Hidden Id. 

Context --- 

Output Id. 

RBF 
Back-

propagation 

Topological 

order 
Id. 

Input Id. 

--- 
Hidden Gaussian 

Context --- 

Output Id.+bias 

ELMAN 
Back-

propagation 
JE Order Id. 

Input Id. 

≥ 1 
Hidden Id. 

Context Id. 

Output Id. 

JORDAN 
Back-

propagation 
JE Order Id. 

Input Id. 

1 
Hidden Id. 

Context Id. 

Output Id. 
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Figure 2.9. The differences among ANN flavors in rescaling of unscaled soil moisture product to the 

scale of the reference product 

All ANN simulations presented in this study are implemented in R 

environment (R Core Team, 2015). Among various software packages (i.e., toolboxes) 

available for implementation of ANNs in R, the RSNNS package written by Bergmeir 

and Benitez (2012) is selected in this study. For more details about the networks and 

their parameters please see the user manual of RSNNS package (Bergmeir & Benítez 

Sánchez, 2012). 

2.1.8. Comparison of Linear and Nonlinear Rescaling Methods 

In this study, the rescaling methods are compared for their ability to minimize 

the error variance of rescaled product (𝜎𝜖𝑌∗
2 ), minimize the error absolute mean bias 

(AMB), and maximize the correlation between reference and rescaled products. The 
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details of these statistics are given below in case studies part. Here, the correlation 

between unscaled and reference product (ρ𝑋𝑌), and rescaled and reference prudcts 

(ρXY∗), are the same for all linear rescaling methods. Among the linear methods, by 

definition, REG minimizes the 𝜎𝜖𝑌∗
2  of the training data; hence, REG is preferable over 

other linear methods (VAR, and TCA) if 𝜎𝜖𝑌∗
2  is the selection criterion when the 

training and validation datasets are the same. Accordingly, the comparison of linear 

methods may not be meaningful given that REG yields the minimum 𝜎𝜖𝑌∗
2 , whereas 

all of the methods have an identical ρXY∗ (if multiple linear regression method was 

used, it would have further reduced the training 𝜎𝜖𝑌∗
2 ). By contrast, the optimality of 

multiple linear regression is not guaranteed when the parameters obtained using the 

training datasets are applied to independent validation datasets. This implies that the 

inter-comparison of linear methods for the validation of Y∗ is still necessary before 

confidently making conclusions about their performances.  

Linear and nonlinear methods have particular advantages and disadvantages, 

which impact their optimality for different applications and goals. Among the linear 

methods, REG minimizes the mean square difference between X and Y∗, VAR matches 

the total variability components of X and Y, and TCA matches the signal variability 

components of Y and X so that the error variance of the analysis in data assimilation 

framework is minimized (Yilmaz & Crow, 2013). Accordingly, the applications that 

aim to linearly create a homogenous dataset for which Y∗ is closest to X (i.e., those 

that seek to minimize mean square errors) may prefer REG (assuming that REG does 

not severely overfit the datasets). MAR is expected to yield better results than the other 

linear methods (due to their advantage of the use of splines at different knot points). 

Given that merging-type studies (e.g., data assimilation) explicitly require the 

signal variability components of Y∗ and X to be the same, TCA is a better candidate 

for such studies (Yilmaz & Crow, 2013). Among the nonlinear rescaling methods, 

copula links the CDFX and CDFY multivariate functions instead of matching them, 

similar to CDF. By contrast, ANN, GP, and SVM machine-learning methods establish 

the relationships between datasets and act like a system in which the input-output 
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relations may be too complex to be shown explicitly with equations or perhaps cannot 

be shown at all.  

When ANN and GP are compared, GP has an advantage: first, the assembly of 

blocks (i.e., the input variables, target, and mathematical functions) is defined, and 

then, the optimized structure of the model and its coefficients are determined during 

the training process. By contrast, in ANNs, the structure of the network is specified 

first and the coefficients are then obtained during the training process. Conversely, the 

main drawback of GP is its high computational cost due to the infinite search space of 

symbolic expressions.  

Overall, the relative performances of methods over independent datasets that 

are not used in their parameter estimation are analytically not predictable (it may not 

be possible to analytically prove that any particular rescaling method will result in a 

superior accuracy over independent validation data sets that are not used during 

parameter estimation of them). Accordingly, a comparison of the performances of 

linear and nonlinear methods is still needed to attain a greater understanding of their 

relative added utility. 

 Many of the methods discussed here (ANN, GP, SVM, and copula) have 

different structures and therefore different complexities. However, currently, these 

methods can be easily implemented in various applications using data analysis 

programming languages, such as R, Matlab, and Python. For example, training the 

networks of ANN rescaling method with available packages or toolboxes in these 

programming languages (e.g., optimize the weights of connections among the neurons 

of layers of the network) only require users to define certain parameters (e.g., the 

number of hidden layers and neurons and type of functions that ANNs have to 

implement, such as learning, update, activation, and output functions).  

 Despite the fact that these methods have greater computational complexity 

(i.e., much longer codes running in the background) than other simpler rescaling 

methods (e.g., linear methods and CDFM), these complex methods can be 

implemented using a couple of lines of codes that run for a very short time, similar to 

less-complex methods, once the optimized parameter sets are obtained (this 
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optimization phase of these complex methods could require relatively longer 

computational times). Hence, there is relatively very little difference between the 

simpler methods (e.g., linear methods) and the more complex methods (e.g., machine 

learning methods), especially in terms of the computational ease of implementing 

these rescaling methods, except for the optimization of components. 

2.2. Rescaling Approaches 

Once the “rescaling method” (VAR, REG, CDFM, MAR, SVM, ANN, etc.) is 

selected for implementation in a specific application, this method can be implemented 

using different approaches (Yilmaz et al., 2016). The rescaling approaches affect the 

accuracy statistics of rescaled product, even though, by definition, a particular 

rescaling method is selected to be the optimum method (i.e., yield least errors) for a 

particular application. The approaches used in this study are grouped in to two 

different parts. The first part focuses on using constant and time-varying rescaling 

factors (Style) and second part focuses on decomposition of time series in to its 

components (Technique). Below the definitions and the differences among different 

approaches used in this study (totally six; Figure 2.10) are illustrated. 

 

Figure 2.10. Rescaling approaches used for application of rescaling methods 

2.2.1. Rescaling Style – Use of Time-varying Coefficients 

The use of time-varying rescaling coefficients may also improve the accuracy 

of the rescaled time series (Yilmaz et al., 2016) owing to the time-varying relations 

that may exist between the products. Accordingly, rescaling of soil moisture time 
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series can be implemented using constant or time-varying rescaling coefficients. Most 

studies use the constant coefficient selection (i.e., entire time series rescaled at once), 

which is considered a less-aggressive rescaling style than use of time-varying 

rescaling coefficients (Yilmaz et al., 2016). Such more-aggressive rescaling 

methodologies involve using varying rescaling coefficients in time (i.e., 12 different 

rescaling coefficients).  

Accordingly, here in this study two different rescaling techniques are used for 

the stationarity assumption of the rescaling coefficients: single rescaling coefficient or 

monthly coefficients. Here, for the time-varying monthly rescaling case, all the soil 

moisture values obtained for a particular month is rescaled against the soil moisture 

values of the reference dataset for the same month; then this process is repeated for all 

months separately to form the continuous time series again. Here, the use of monthly 

rescaling coefficients is expected to create temporal discontinuities in the rescaled soil 

moisture time series, while the degree of these discontinuities are expected to increase 

with the increased rescaling coefficient differences between months. Figure 2.11 

represents the overall procedure of time-varying application of REG method for 

rescaling of arbitrary unscaled product to the space of reference product. 
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Figure 2.11. Time-varying application of REG method for rescaling of unscaled product to the 

reference space 

2.2.2. Rescaling Techniques – Seasonality Anomaly vs. Smooth Deviance 

Decomposition 

Rescaling methodologies are mostly implemented for the entire soil moisture 

time series (i.e., assumption that low and high frequency components of different 

products are related similarly). They are rarely implemented separately for the 

different decomposed components of the time series (e.g., low and high frequency 

components). Accordingly, once the rescaling methodology (VAR, REG, CDFM, 

MAR, SVM, ANN, etc.) is decided, then decisions should be given about the rescaling 
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technique, which involve decisions about the decomposition of the time-series to its 

different components.  

Given the low and high frequency signals of the time series may have different 

accuracies, they might as well be treated separately to further improve the rescaled 

product (Yilmaz et al., 2016). Such high and low frequency decomposition can be 

done in several different ways.  

In many studies the low frequency component is assumed to be periodic and it 

does not vary from year to year (i.e., calculated as daily climatology using a moving-

window average approach), or alternatively the low frequency component can be 

calculated as non-periodic (presented for the first time in this study). Once the low 

frequency component is acquired, the high frequency component is obtained using the 

remaining component from the native complete time series: 

 
𝑋𝑖,𝑗
𝐿𝑜𝑤−𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 =

∑ ∑ 𝑋𝑖,𝑗
𝑗+14
𝑗−14

𝑛
𝑖=1

29𝑛
  

(16) 

 𝑋𝑖,𝑗
𝐿𝑜𝑤−𝑁𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = ∑ 𝑋𝑖,𝑗 ×𝑊𝑗

𝑗+14
𝑗−14   (17) 

  𝑋𝑖,𝑗
𝐻𝑖𝑔ℎ

= 𝑋𝑖,𝑗 − 𝑋𝑖,𝑗
𝐿𝑜𝑤  (18) 

where 𝑖 refers to year (total 𝑛 years), 𝑗 refers to the day of the year (DOY), 

𝑋𝑖,𝑗
𝐿𝑜𝑤−𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 and 𝑋𝑖,𝑗

𝐿𝑜𝑤−𝑁𝑜𝑛𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 refer to the periodic and non-periodic low 

frequency components (hereinafter called “seasonality” and “smooth” for periodic and 

non-periodic cases, respectively), 𝑋𝑖,𝑗
𝐿𝑜𝑤 refers to either “seasonality” or “smooth” of 

soil moisture product 𝑋, 𝑋𝑖,𝑗
𝐻𝑖𝑔ℎ

 refers to the high frequency component (hereinafter 

called “anomaly” and “deviance” for periodic and non-periodic cases, respectively), 

and 𝑊𝑗 refers to the weights to be used for window-averaging for the DOY 𝑗. Equation 

(16) indicates the seasonality of the dataset (𝑋) for any DOY is found as the average 

of a 29-day moving average window centered on a specific DOY utilizing the 

available data using all available years of the dataset (Yilmaz et al., 2016). Equation 

(17) also passes a smooth filter over the time series using a weighted moving average 

window centered on a particular DOY, however, this filter yields a non-periodic low 
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frequency product while equation (16) yields a periodic low frequency product (i.e., 

seasonality component has only 365 unique entries while smooth component has 

unique values for all different time steps).  

Weights of the days for the calculation of the average value for any particular 

window differs for equations (16) and (17). Unlike the seasonality/anomaly 

decomposition assumes equal weighting for the available days in any given window 

for any given DOY, the smooth/deviance decomposition assumes varying weights for 

any given DOY. Days closer to the center of the 29-day window are assigned heavier 

weights than the weights assigned for the days further away from the center: 

 

{
 
 

 
 𝐶𝑗 = |

1

𝑗
|         − 14 < 𝑗 < 0

𝐶𝑗 = 1                      𝑗 = 0     

𝐶𝑗 =
1

𝑗
                0 < 𝑗 < 14

 

(19) 

 
𝑊𝑗 =

𝐶𝑗

∑ 𝐶𝑗
𝑗+14
𝑗−14

 
(20) 

where j refers to the day in the 29-day window, 𝐶𝑗 is a coefficient which relates the 

day j to its weight (𝑊𝑗), and the domain is between [-14 to +14] days. Here an inverse 

relation is assumed for the weights of the days based on their distances from the center 

point of the window.  

As a result, three rescaling techniques (represented in Figure 2.12 and Figure 

2.13) are used about the temporal decomposition selections in this study (i.e., no 

decomposition, seasonality-anomaly decomposition, or smooth-deviance 

decomposition). 
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Figure 2.12. Decomposition of time series in to its seasonality and anomaly components 
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Figure 2.13. Decomposition of time series in to its smooth and deviance components 

2.3. Data Sets 

In this study, various remote sensing- and hydrological model-based soil moisture 

datasets are utilized to develop different experiments for evaluation of different 

rescaling methods/approaches. Moreover, for the validation of any experiment, the in-

situ measurements are used over four different watersheds. Below the description of 

soil moisture products used in this study beside of the characteristics of the validation 

sites are provided.  
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2.3.1. ASCAT 

The soil moisture product derived from the Advanced Scatterometer sensor 

onboard of the Metop satellite (C. Albergel et al., 2009; Bartalis et al., 2007; Wolfgang 

Wagner et al., 2007) retrieves soil moisture estimates from C-band backscatter 

observations. This real-aperture radar sensor scans the globe by six antennas under 

different azimuth and viewing angles (three antennas at both sides of the platform with 

45°, 90°, and 135°) and retrieves observations with approximately 550 km swath 

width and 14 orbit revolutions per day resulting in ~ 1.5-day revisit time globally and 

twice a day over Western Europe. The basic sampling distance of this radar is 12.5 

km; however, the operational and the research soil moisture products derived from 

these radar observations retrievals are available at 0.5° and 0.25° resolutions, 

respectively.  

The ASCAT soil moisture dataset used in this study (i.e., the research product) 

are acquired for time period of January 2007 and May 2012 from the Technical 

University of Vienna using the algorithm described in  (Wolfgang Wagner et al., 1999) 

and (Naeimi, Scipal, Bartalis, Hasenauer, & Wagner, 2009) which is based on the 

normalization of backscattering observations with respect to the incidence angle, dry 

and wet surface soil conditions, and vegetation conditions. Figure 2.14 and Figure 

2.15 show some general information about spatio-temporal variability of ASCAT soil 

moisture product. For more information about the soil moisture retrieval algorithm 

and technical details see the studies of Wagner et al., (1999 and 2007).  
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Figure 2.14. Average soil moisture between 2007 and 2011 measured with ASCAT 

 

Figure 2.15. ASCAT soil moisture product's time series over little river watershed with longitude of -

83.61, and latitude of 31.65 between 2007 and 2011 
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2.3.2. AMSR-E LPRM 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on-board 

of Aqua satellite is a passive microwave radiometer that has provided near-daily 

observations at six different frequencies (between 6.9 and 89.0 GHz) in both 

horizontal and vertical polarizations. The AMSR-E measured brightness temperature 

with daily ascending and descending overpasses, with a swath width of 1445 km. 

These measurements are converted to soil moisture contents through different 

algorithms [e.g., REG (Al-Yaari et al., 2016), ANN (Rodríguez-Fernández et al., 

2016), and etc.] resulting in different soil moisture datasets (Mladenova et al., 2014). 

 Among different soil moisture datasets derived from AMSR-E observations, 

The Land Parameter Retrieval Method [LPRM; (M. Owe, de Jeu, & Walker, 2001; 

Manfred Owe, de Jeu, & Holmes, 2008)]- based AMSR-E dataset is used in this study. 

LPRM utilizes three parameters (soil moisture, vegetation water content, and soil or 

canopy temperature) as well as passive microwave based X-band and C-band 

observations from AMSR-E for the retrieval of the surface soil moisture content. The 

LPRM-based soil moisture datasets used in this study are acquired from Vrije 

Universiteit Amsterdam (personal communication with Robert Parinussa, 2013) and 

are available online in a gridded format and spatial resolution of 0.25° between June 

2002 and October 2011 in the url of “https://disc.gsfc.nasa.gov”. 

Figure 2.16 and Figure 2.17 show some general information about spatio-

temporal variability of AMSR-E soil moisture product. For more details on the LPRM 

retrieval method, please see the studies by Owe, et al., (2001, 2008). 
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Figure 2.16. Average soil moisture between 2007 and 2011 measured with AMSR-E 

 

 

Figure 2.17. AMSR-E soil moisture product's time series over little river watershed with longitude of 

-83.61, and latitude of 31.65 between 2007 and 2011 
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2.3.3. NOAH GLDAS 

NOAH land surface model [NOAH; (F. Chen et al., 1996; Ek et al., 2003; 

Koren et al., 1999)] is a 1-D column model, which can be executed in both offline and 

coupled modes. NOAH uses atmospheric data (longwave and shortwave radiations, 

precipitation, temperature, pressure, wind, and humidity) as well as soil and vegetation 

related parameters to solve for the energy and the water balance equations for different 

layers of soil profile. Even though different configurations can be implemented, the 

four soil profile layers having 10cm, 30cm, 60cm, 100cm depths respectively are 

frequently used in NOAH simulations. For more additional information about NOAH 

LSM and its interior equations, readers are referred to (Ek et al., 2003; Zheng et al., 

2015). 

 NOAH soil moisture datasets used in this study are simulated by Global Land 

Data Assimilation System [GLDAS Version 2; Rodell et al., (2004)] using NOAH 

v2.7 at spatial resolution of 0.25°. The GLDAS NOAH soil moisture datasets 

representing the top 10cm soil layer used in this study are provided at three-hourly 

time steps. These soil moisture values are later averaged to daily values. The GLDAS 

NOAH soil moisture datasets used in this study are publicity available from January 

2000 till present within the URL of "http://disc.sci.gsfc.nasa.gov". 

Figure 2.18 and Figure 2.19 show some general information about spatio-

temporal variability of NOAH soil moisture product. For more details about NOAH 

and GLDAS simulations please see study of Rodell, et al. (2004). 
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Figure 2.18. Average soil moisture between 2007 and 2011 measured with NOAH 

 

Figure 2.19. NOAH soil moisture product's time series over little river watershed with longitude of -

83.61, and latitude of 31.65 between 2007 and 2011 
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2.3.4. API 

 The antecedent precipitation index [API; (Blanchard, McFarland, Schmugge, & 

Rhoades, 1981; McFarland & Blanchard, 1977)] is a proxy that estimates surface soil 

moisture based on either rainfall or rainfall and runoff (Blanchard et al., 1981). The 

simple and practical form of the API enables the users to track the internal processes 

more efficiently, which has turned API to a very common model among data 

assimilation processes (W. T. Crow & Ryu, 2009). The API soil moisture retrieval 

method basically relies on the fact that soil moisture depletion can be stated with an 

exponential function of the input moisture to the soil profile (Chow, 1964; Lindsey, 

Kohler, Jr., & Paulhus, 1949). This exponential relation can also be presented in a 

linear form of :  

 𝐴𝑃𝐼𝑖 = 𝛾𝑖 × 𝐴𝑃𝐼𝑖−1 + 𝑃𝑖 (21) 

where 𝐴𝑃𝐼 is the antecedent precipitation which will be considered as soil moisture; 

𝑃 is the daily precipitation or infiltration amount; 𝛾 is the depletion rate, and 𝑖 is day 

of estimate. Based on the study of Yilmaz and Crow (2013), the value of 𝛾 in this 

study is taken as 0.85. As precipitation input, daily Tropical Rainfall Measuring 

Mission (TRMM) 3B42 version 7 product has been used (Huffman et al., 2007). This 

product has spatial resolution of 0.25° and are available online from January 1998 

until present within URL of “https://disc.gsfc.nasa.gov”. 

Figure 2.20 and Figure 2.21 show some general information about spatio-

temporal variability of API soil moisture product. For more details about API model 

and its alternative types, please see the study by Blanchard et al., (1981). 
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Figure 2.20. Average soil moisture between 2007 and 2011 measured with API 

 

Figure 2.21. API soil moisture product's time series over little river watershed with longitude of -

83.61, and latitude of 31.65 between 2007 and 2011 
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2.3.5. USDA-ARS Watershed Average Soil Moisture 

Watershed average soil moisture (WASM) measurements used in this study 

are located at the experimental sites of U.S. Department of Agriculture (USDA) 

Agricultural Research Service (ARS). These experimental watersheds, Little River 

[LR; (Bosch, Sheridan, & Marshall, 2007)], Little Washita [LW; (Cosh, Jackson, 

Starks, & Heathman, 2006)], Walnut Gulch [WG; (Renard, Nichols, Woolhiser, & 

Osborn, 2008)], and Reynolds Creek [RC; (Slaughter, Marks, Flerchinger, Van 

Vactor, & Burgess, 2001)], contain dense soil moisture sensors that measure soil 

moisture since the year 2002 on hourly basis at a depth of 5 cm over different 

topographies and climatic regions. These sites have been verified via comparisons 

against gravimetric soil moisture observations (Cosh et al., 2006) and have been 

widely used in the validation of existing remotely sensed soil moisture products 

(Colliander et al., 2017; Jackson et al., 2010; Leroux et al., 2014). Table 2.4 

summarizes the characteristics and dominant features of each watershed. For further 

details about USDA ARS watersheds and the sensor networks available in them please 

see the study of Jackson et al. (2010). The general view of these four watersheds are 

presented in Figure 2.22 to Figure 2.26. 

Table 2.4. Description of USDA ARS Experimental Watershed Soil Moisture Networks 

Watershed 
Little 

River 

Little 

Washita 

Walnut 

Gulch 
Reynolds Creek 

Area (km2) 334 610 148 238 

Number of Sensor 29 16 21 19 

Climate Humid Sub humid Semiarid Semiarid 

Annual Rainfall (mm) 1200 750 320 500 

Topography Flat Rolling Rolling Mountainous 

Land Use Forest Wheat Rangeland Rangeland & forest 

Watershed Centroid longitude -83.61 -98.1 -110.0184 -116.775 

Watershed Centroid latitude 31.65 34.9502 31.7216 43.1501 
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Figure 2.22. Location of the studied watersheds with their in-situ soil moisture networks 

 

Figure 2.23. General view of Little River watershed 
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Figure 2.24. General view of Little Washita watershed 

 

Figure 2.25. General view of Walnut Gulch watershed 
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Figure 2.26. General view of Reynolds Creek watershed 

2.4. Case Studies 

In this study, for investigation of rescaling methods, two different case studies 

are considered to evaluate firstly, the added utility of rescaling methods in removing 

systematic difference between unscaled and reference products, and secondly, 

evaluate them in the data fusion framework. Below the description of these case 

studies and the evaluation processes are provided. 

2.4.1. Case Study 1 (Added Utility of Rescaling Methods) 

In this case study, the AMSR-E LPRM (called LPRM in first case study) soil 

moisture values are rescaled to WASM using REG, VAR, TCA, CDFM, COPULA, 

MAR, GP, SVM, and ANN methods. Where ANN has four (MLP, RBF, ELMAN, 

and JORDAN) and copula has five types (NORMAL, CLAYTON, GUMBEL, 

FRANK, and JOE). Overall, 18 different methods are considered in this case study (3 

linear, and 15 nonlinear methods).  
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The calibration of rescaling methods in this case study are done by using 

training part of datasets. Later using calibrated rescaling methods, the validation part 

of datasets are rescaled to the reference products and the accuracy of rescaled datasets 

(LPRM∗) are assessed using independent WASM validation datasets using statistics 

below: 

 εi = Stai − LPRMi
∗ (22) 

 AMBi = |μεi| (23) 

 
σεi = √∑(εi − μεi)

2
/(n − 1) 

(24) 

 
ρi =

ΣStaiLPRMi
∗

σStaiσLPRMi
∗
 

(25) 

where subscript 𝑖 indicate each watershed (total four), Sta is station-based WASM 

dataset, ε is error of LPRM∗, με and σε indicate temporal mean and standard deviation 

of the errors respectively, AMB indicate the absolute mean bias which is calculated 

based on the absolute value of the mean value of the errors of LPRM∗, n is number of 

available observations, and ∑( ) is summation operator. Statistics ρ, σε, and AMB are 

calculated over four watersheds separately.  

Given that WASM datasets are available only between June 2002 and July 

2009 from the International Soil Moisture Network [ISMN (W. A. Dorigo et al., 

2011)] database, this case study is limited between these dates, even though the LPRM 

dataset is available beyond 2009. Among the available data between these dates, soil 

moisture values for 131, 2, and 52 days, for LW, WG, and RC, are zero (0) 

respectively; these values are assumed to be missing and are not used in the analyses. 

Only mutually available LPRM and WASM datasets are used to calculate all statistics 

mentioned above in this study. The datasets are divided into training and validation 

periods. Given some rescaling methods explicitly use the autocorrelation information 

to rescale datasets, training and validation datasets cannot be selected via random 

sampling; accordingly temporally continuous data are selected for training and 

validation. To reduce the impact of sampling errors on the results two separate 

experiments are implemented: first experiment use the first (time-wise) 25% of the 

data for validation and the remaining 75% as training, while the second experiment 
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use the first 75% as training and the remaining 25% as validation. Later, statistics for 

these two experiments are averaged while these averages are presented in this study.  

The added utility (U) of rescaling methods is calculated with respect to the 

performance of REG method as 

 Um,s,l = Mm,s,l − REGs,l (26) 

where m represents 8 methods (listed below), s represents 4 locations (LR, LW, WG, 

and RC), and l represents 3 statistics (ρ, σε, and AMB obtained as the average of above 

defined two experiments); M represents the method of interest, and U is the added 

utility with respect to REG. To ensure U is always positive for improvements and 

negative for degraded results, the bias and the standard deviation statistics are 

multiplied by -1 as their improvement is linked with their reduction. U is calculated 

only for selected methods: i) MAR, ii) CDFM, iii) GP, iv) SVM, v) ELMAN ANN, 

vi) best performing type of copula, vii) the method (among 18 methods) that gives the 

best statistic training  part (“Tr_best”), viii) the method gives the best statistics when 

validation data is used (“Best”). For example, if MAR gives the best ρ over LR using 

training data, then MAR is selected as “Tr_best” method for ρ over LR while another 

method may perform better using the validation data (“Best”). Comparisons of U are 

performed separately over four watersheds. Similarly these comparisons are repeated 

for each performance statistic (ρ, σε, and AMB; total 3). 

2.4.2. Case Study 2 (Impact of Rescaling Approaches on Accuracy of Fused 

Products) 

The second case study that has been conducted in this research focuses on the 

performance of different rescaling methods and their implementation approaches 

(rescaling techniques and style) over data fusion framework.  

The fusion process can be implemented in different ways depending on the 

assumptions about the error characteristics of the datasets to be fused. Data 

assimilation techniques assume the error characteristics of the products are not 

stationary, while these techniques require more effort for their implementation. On the 
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other hand, simple merging methodologies may yield similar accuracies for the fused 

product with much less effort (Yilmaz et al., 2012). The data fusion framework used 

in this study can be expressed in its form as: 

 𝐹 = 𝑊Y∗1Y
∗
1 +𝑊Y∗2Y

∗
2 (27) 

where 𝑊Y∗1 and 𝑊Y∗2 are the weights for two rescaled product of Y∗1 and Y∗2. Here, 

different weights (e.g., time dependent, constant, etc.) can be used for 𝑊Y1 and 𝑊Y2. 

In this study, for simplicity, these weights are simply selected as 0.5 (i.e., naive 

merging) following Yilmaz et al., (2012). 

 Fusion experiments merge a satellite- and a model-based estimate using an equal 

weighting (i.e., naïve merging). In this study, by using simple merging technique and 

fusion of six pairs for the four soil moisture products (ASCAT, AMSR-E, API, 

NOAH): ASCAT - AMSR-E; ASCAT - API; ASCAT - NOAH; AMSR-E - API; 

AMSR-E - NOAH; and API - NOAH] is investigated. While the fused product is 

obtained for these six pairs for all reference dataset selections.  

The evaluation part of this case study uses correlation coefficient to validate the 

analysis and assess fused products:  

 
𝜌𝑖 =

𝑐𝑜𝑣(𝑆𝑡𝑎𝑖, 𝐹𝑢𝑠𝑒𝑑𝑖)

𝜎𝑆𝑡𝑎𝑖𝜎𝐹𝑢𝑠𝑒𝑑𝑖
 

(27) 

where the 𝜌𝑖 is the amount of correlation between fused product (𝐹𝑢𝑠𝑒𝑑) and WASM 

(𝑆𝑡𝑎) over the 𝑖𝑡ℎ watershed (totally four). The various remote sensing- and 

hydrological model-based soil moisture datasets utilized in this study, are obtained 

and inserted to the analysis for the common observation period of them (between 

January 2007 and October 2011) while the validation efforts are performed using 

WASM for the same period (Figure 1.4). The summary of fusion process and the 

evaluation of fused products is represented in Figure 2.27. 
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Figure 2.27. The rescaling and fusion procedure 
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CHAPTER 3  

 

3. RESULTS AND DISCUSSION 

 

3.1. Added Utility of Rescaling Methods 

The statistics of the LPRM and WASM datasets are analyzed (Table 3.1) prior 

to evaluating the results of the two different rescaling experiment. On average, there 

are 1600 days where the LPRM and WASM data are mutually available between June 

2002 and July 2009.  

Table 3.1. Statistics of the training and validation datasets used in two experiments prior to rescaling 

E
xp

er
im

en
ts

 

L
o
ca

ti
o
n

 

Mean 
Standard 

Deviation 

Lag1 

Autocorrelation 

LPRM WASM LPRM WASM LPRM WASM 

1 

Training 

dataset 

(last 75%) 

LR 0.311 0.105 0.099 0.046 0.784 0.819 

LW 0.282 0.125 0.104 0.057 0.728 0.863 

WG 0.18 0.046 0.074 0.022 0.801 0.889 

RC 0.227 0.118 0.121 0.075 0.831 0.969 

Validation 

dataset 

(first 25%) 

LR 0.331 0.109 0.098 0.044 0.757 0.805 

LW 0.286 0.118 0.099 0.052 0.686 0.751 

WG 0.176 0.045 0.083 0.021 0.785 0.849 

RC 0.232 0.107 0.104 0.072 0.778 0.974 

2 

Training 

dataset 

(first 75%) 

LR 0.316 0.106 0.1 0.046 0.757 0.826 

LW 0.285 0.122 0.109 0.058 0.733 0.841 

WG 0.18 0.044 0.077 0.022 0.789 0.879 

RC 0.234 0.117 0.113 0.077 0.796 0.972 

Validation 

dataset 

(last 25%) 

LR 0.314 0.105 0.095 0.043 0.855 0.784 

LW 0.276 0.127 0.077 0.049 0.628 0.828 

WG 0.175 0.048 0.076 0.02 0.814 0.881 

RC 0.21 0.109 0.129 0.067 0.866 0.963 
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On average, 1200 of the available data points are used for training, for both 

experiments, whereas the remaining (~400) unused data points are left for independent 

validation. Overall, the statistics (μ, σ) of the datasets are very similar for the training 

and validation periods for both experiments (statistical significance tests are not 

performed). Unscaled original LPRM time series have 2-4 times larger μ and σ than 

the WASM. This clearly shows that these datasets should be reconciled in some 

statistical sense before they can be meaningfully compared or used to create a 

homogenous and consistent time series. 

The WASM time series has 3.4%, 4.5%, 0.1%, and 5.5% missing data (results 

not shown) for the LR, LW, WG, and RC watersheds, respectively. The time series 

obtained over LR and RC have more missing data than those obtained over LW and 

WG, yet the autocorrelation values over RC are statistically significantly higher than 

the values over LW, WG, and WG (for both the LPRM and WASM datasets). Higher 

autocorrelation values, despite more missing data, over RC imply calculations over 

this site may not be considerably impacted by the missing data, even though the LPRM 

autocorrelations are, on average, 0.10 lower than the WASM values. 

The correlation statistics related to the performance of different rescaling 

methods for both training and validation periods are presented in Table 3.2. Overall, 

the relative performances of these 18 methods are very consistent for the training and 

validation datasets (i.e., better performing methods using training datasets also 

performed better when using validation datasets). Among nonlinear methods, the 

SVM has performed better than other methods over LR and LW watersheds during 

training period while the ELM. method performed the best over WG and RC over 

training and almost over all watersheds during validation period. Here in the Table 

3.2, the terms Tr_best and BEST refer to the best methodology (performing the best) 

over training and over the selected periods (either training or validation) respectively. 

Comparing the correlation values of Tr_best and linear methods unravel the impact of 

nonlinear methods in increasing the consistency of rescaled product with WASM.  
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Table 3.2. Detailed performance (correlation) of rescaling methods during training and validation 

periods. The best performing method for training (Tr_best) and overall (BEST) are shown. The ones 

listed below are obtained by averaging over two different experiments 

Method 
Training Validation 

LR LW WG RC LR LW WG RC 

ORG 0.567 0.514 0.696 0.698 0.53 0.495 0.684 0.666 

REG 0.567 0.514 0.696 0.698 0.53 0.495 0.684 0.666 

VAR 0.567 0.514 0.696 0.698 0.53 0.495 0.684 0.666 

TCA 0.567 0.514 0.696 0.698 0.53 0.495 0.684 0.666 

MAR 0.6 0.602 0.734 0.727 0.547 0.509 0.686 0.674 

CDFM 0.577 0.566 0.721 0.687 0.54 0.504 0.667 0.653 

GP 0.595 0.57 0.73 0.727 0.527 0.501 0.68 0.67 

SVM 0.602 0.604 0.73 0.727 0.539 0.503 0.67 0.672 

MLP 0.579 0.552 0.709 0.721 0.534 0.502 0.682 0.676 

RBF 0.58 0.536 0.708 0.709 0.536 0.492 0.683 0.669 

ELM. 0.595 0.583 0.747 0.85 0.535 0.535 0.713 0.801 

JOR. 0.591 0.556 0.726 0.829 0.535 0.514 0.7 0.779 

NOR. 0.585 0.561 0.722 0.708 0.536 0.502 0.678 0.666 

CLA. 0.581 0.56 0.631 0.725 0.532 0.493 0.638 0.673 

GUM. 0.566 0.55 0.721 0.697 0.524 0.499 0.671 0.659 

FRA. 0.594 0.581 0.725 0.709 0.536 0.511 0.684 0.661 

JOE 0.517 0.52 0.72 0.673 0.484 0.475 0.662 0.641 

Tr_best 0.602 0.604 0.747 0.85 0.539 0.503 0.713 0.801 

BEST 0.602 0.604 0.747 0.85 0.547 0.535 0.713 0.801 

Table 3.3 on the other hand represents the error standard deviation of unscaled 

and rescaled LPRM soil moisture products when they are compared to WASM. In 

general the performance of linear and nonlinear methods in decreasing the error 

standard deviation of rescaled products are close to each other while the nonlinear 

methods slightly perform better than linear ones during training period. Among 

nonlinear methods the MAR, SVM, and ELM. methods performed better than other 

nonlinear methods in removing error standard deviation while among linear methods 

the simple linear regression performed better than others (as expected).  
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Table 3.3. Detailed performance (error std) of rescaling methods during training and validation 

periods. The best performing method for training (Tr_best) and overall (best) are shown. The ones 

listed below are obtained by averaging over two different experiments 

Method 
Training Validation 

LR LW WG RC LR LW WG RC 

ORG 0.083 0.091 0.062 0.084 0.082 0.077 0.067 0.088 

REG 0.038 0.049 0.016 0.054 0.037 0.043 0.015 0.053 

VAR 0.042 0.056 0.017 0.059 0.043 0.049 0.018 0.061 

TCA 0.061 0.071 0.019 0.079 0.061 0.06 0.02 0.084 

MAR 0.036 0.046 0.015 0.052 0.037 0.044 0.015 0.052 

CDFM 0.042 0.053 0.017 0.06 0.043 0.054 0.017 0.061 

GP 0.037 0.047 0.015 0.052 0.038 0.044 0.015 0.053 

SVM 0.036 0.046 0.015 0.052 0.037 0.045 0.016 0.053 

MLP 0.037 0.048 0.016 0.053 0.037 0.043 0.015 0.052 

RBF 0.041 0.055 0.019 0.059 0.041 0.048 0.018 0.054 

ELM. 0.037 0.046 0.015 0.04 0.038 0.043 0.015 0.043 

JOR. 0.037 0.048 0.016 0.043 0.037 0.043 0.015 0.044 

NOR. 0.037 0.047 0.015 0.054 0.037 0.044 0.015 0.054 

CLA. 0.037 0.047 0.017 0.052 0.037 0.044 0.016 0.053 

GUM. 0.038 0.048 0.016 0.055 0.038 0.044 0.016 0.055 

FRA. 0.037 0.047 0.015 0.055 0.037 0.045 0.015 0.056 

JOE 0.039 0.049 0.016 0.056 0.039 0.044 0.016 0.054 

Tr_best 0.036 0.046 0.015 0.04 0.037 0.043 0.015 0.043 

BEST 0.036 0.046 0.015 0.04 0.037 0.043 0.015 0.043 

The linear regression method based on its formulation has always a smaller 

standard deviation and consequently lower error standard deviation with respect to the 

variance matching and other linear rescaling methods. The superiority of linear 

methods can also be seen in AMB statistic, where they perform the best among all 

rescaling methods with zero AMB (Table 3.4) in training part. Among nonlinear 

methods, conversely, a high variation can be seen in different sites. However it should 

be noticed as well that the superiority of a method to another in validation part is not 

that significant and in general all of rescaling methods perform well in removing the 

bias from unscaled soil moisture product. 
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Table 3.4. Detailed performance (AMB) of rescaling methods during training and validation periods. 

The best performing method for training (Tr_best) and overall (BEST) are shown. The ones listed 

below are obtained by averaging over two different experiment 

Method 
Training Validation 

LR LW WG RC LR LW WG RC 

ORG 0.208 0.16 0.135 0.113 0.216 0.159 0.129 0.113 

REG 0 0 0 0 0.003 0.007 0.003 0.01 

VAR 0 0 0 0 0.003 0.007 0.003 0.01 

TCA 0 0 0 0 0.003 0.007 0.003 0.01 

MAR 0 0 0 0 0.002 0.007 0.003 0.007 

CDFM 0 0 0 0 0.003 0.006 0.003 0.009 

GP 0 0.001 0 0.001 0.002 0.008 0.003 0.009 

SVM 0.003 0.006 0.002 0.003 0.002 0.007 0.003 0.007 

MLP 0.001 0.001 0 0 0.002 0.007 0.003 0.01 

RBF 0.031 0.018 0.006 0.018 0.032 0.019 0.008 0.024 

ELM. 0.003 0.008 0.002 0.004 0.004 0.016 0.004 0.005 

JOR. 0.006 0.006 0.004 0.003 0.004 0.007 0.004 0.007 

NOR. 0 0 0 0.001 0.002 0.008 0.003 0.008 

CLA. 0.017 0.025 0 0 0.016 0.022 0.002 0.009 

GUM. 0.001 0 0 0.007 0.001 0.009 0.003 0.012 

FRA. 0.001 0 0 0.001 0.002 0.007 0.002 0.007 

JOE 0 0.001 0 0.017 0.001 0.01 0.003 0.022 

Tr_best 0 0 0 0 0.003 0.007 0.003 0.01 

BEST 0 0 0 0 0.001 0.006 0.002 0.005 

The added utility of nonlinear rescaling methods with respect to WASM are 

listed in Table 3.5 (only the best performing ones are presented) whereas the U values 

are calculated with respect to the REG values using equation (26). In general, a higher 

ρ is almost always associated with a lower σε for both validation and training 

datasets (Table 3.3 and Table 3.4), implying that these statistics are consistent when 

representing the accuracy of the analyzed dataset. On average, using of nonlinear 

methods lead in gaining 0.08, and 0.05 correlation improvement in training and 

validation periods respectively. The improvement of rescaled products against WASM 

relative to the unscaled products are presented over the scatterplots of the datasets 

(Figure 3.1 through Figure 3.4) which impressively show the utility of nonlinear 
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methods in rescaling of unscaled soil moisture products. On the other hand, when the 

AMB is considered as the tool of comparison of the added utility of nonlinear methods, 

it can be seen that the nonlinear methods perform better than linear methods over three 

sites (e.g., 0.005 improvement over Reynolds Creek watershed by using ELMAN 

ANN method for rescaling) and perform almost the same over other sites, implying 

that using nonlinear methods increase the accuracy of rescaled products beside of 

keeping it precise against WASM. 

Table 3.5. Added utility of the selected methods compared to the REG validation statistics (Table 3.2, 

Table 3.3, and Table 3.4) over four watersheds. Positive values indicate improvements, and negative 

values indicate degradation. 

S
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ADDED UTILITY OF METHODS AGAINST REG STATISTICS 

MAR CDFM GP SVM ELMAN NOMRAL Tr_Best Best 

𝜌
 

LR 0.017 0.01 -0.003 0.009 0.005 0.006 0.035 0.017 

LW 0.014 0.009 0.006 0.008 0.04 0.007 0.09 0.04 

WG 0.002 -0.017 -0.004 -0.014 0.029 -0.006 0.051 0.029 

RC 0.008 -0.013 0.004 0.006 0.135 0 0.152 0.135 

σ
ε
 

LR 0 -0.006 -0.001 0 -0.001 0 0.002 0 

LW -0.001 -0.011 -0.001 -0.002 0 -0.001 0.003 0 

WG 0 -0.002 0 -0.001 0 0 0.001 0 

RC 0.001 -0.008 0 0 0.01 -0.001 0.014 0.01 

𝐴
𝑀
𝐵

 

LR 0.001 0 0.001 0.001 -0.001 0.001 0 0.001 

LW 0 0.001 -0.001 0 -0.009 -0.001 0 0.001 

WG 0 0 0 0 -0.001 0 0 0 

RC 0.003 0.001 0.001 0.003 0.005 0.002 0 0.005 
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Figure 3.1. Scatter plot of the WASM and LPRM soil moisture data over Little River watershed 

 

Figure 3.2. Scatter plot of the WASM and LPRM soil moisture data over Little Washita watershed 
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Figure 3.3. Scatter plot of the WASM and LPRM soil moisture data over Walnut Gulch watershed 

 

Figure 3.4. Scatter plot of the WASM and LPRM soil moisture data over Reynolds Creek watershed 
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Figure 3.5 and Figure 3.6 show the average values obtained by averaging the 

results of two experiments by using different training and validation periods and by 

averaging the results for four watersheds using the data presented in Table 3.3 and 

Table 3.4. When the results are averaged over all of the watersheds, all of the nonlinear 

methods (except for JOE copula) demonstrated improved correlations compared to the 

REG correlations using the training datasets (Figure 3.5). When validation datasets 

are used, MAR, GP, SVM, all four ANNs, and NORMAL copula still have superior 

correlations compared to REG (Table 3.2 and Figure 3.6). In particular, the 

improvements over LW, WG, and RC using ELMAN ANN (0.04, 0.03, and 0.135), 

respectively, are much higher than the improvements over other locations via various 

methods (Table 3.5). 

Compared to the best performing linear method using the validation data 

(MAR), on average, the GP, SVM, ELMAN ANN, JORDAN ANN, and FRANK 

copula nonlinear methods yielded better results (Figure 3.6). These outcomes stressed 

the results of the first-order linear regression, which can be improved via higher order 

or more complex linear methods, and there is still added utility that can be gained via 

nonlinear methods compared to linear methods. Thus, nonlinear methods have a 

higher potential to give more accurate results compared to linear methods, and as a 

result, the existing nonlinear relations cannot be captured through linear methods. 
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Figure 3.5. Performances of different rescaling methods during the training period 
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Figure 3.6. Performances of different rescaling methods during the validation period 

Figure 3.7 represents the average values obtained for the four watersheds 

presented in Table 3.5. Overall, the relative performances of these 18 methods are very 

consistent for the training and validation datasets (i.e., better performing methods 
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using training datasets also performed better when using validation datasets). This 

consistency can also be seen in the U values (Table 3.5 and Figure 3.7). This provides 

inferences about the relative performances of these rescaling methods when using 

training datasets, which could provide very meaningful information about independent 

data scenarios. The consistency between the training and validation results also 

supports the selection of training and validation periods; these two periods may not 

have a considerable difference in terms of the relation between the LPRM and WASM 

data, as well as in terms of the relative performances of the rescaling methods. 

 

Figure 3.7. Added utility of the rescaling methods 
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On average, the ELMAN ANN methods yield a ρ improvement of ~0.05 using 

independent validation datasets. This improvement is lower (0.02 - 0.04 ρ 

improvement) for the GP, SVM, MAR, and NORMAL copula methods (Table 3.5 and 

Figure 3.7). In contrast to its wide use, the CDFM method has no added skill (Figure 

3.7); in fact, on average, it yields degraded correlations compared to REG when 

validated using independent data (Table 3.5). When the method selection is consistent 

with the training results, these Tr_best methods yield better U values than any method 

alone, with U values that are similar to the best validation results (“Best”) 

approximately 75% of the time (Figure 3.7). These results further support the above 

discussion that it is better to make a rescaling method selection that is consistent with 

the training data statistics, when this selection can yield better validation results than 

the selection of any other method alone. 

When the parameters obtained using the training datasets are implemented 

over the validation datasets, some skill loss (i.e., artificial skill) is often observed 

because all of the methods overfit their datasets to some extent. Loosely speaking, an 

increase of 0.06 or 0.10 in ρ constitutes a statistically significant increase, especially 

when 1200 or 400 samples are used for training or validation experiments, respectively 

(e.g., an increase from 0.60 to 0.66 or from 0.60 to 0.70). Accordingly, MAR, SVM, 

and ELMAN ANN yield significant ρ improvements (with respect to REG ρ) over 

half of the training cases, whereas GP, FRANK copula, and JORDAN ANN also yield 

significant improvements over some locations (Table 3.2; most of the training 

improvements are over LW and RC, and only a few are over WG). By contrast, for 

validation experiments, only ELMAN and JORDAN ANNs resulted in significant ρ 

improvements (both over RC), showing that most of these improvements are artificial 

skills. Here, the degree to which the methods overfit the datasets is evaluated through 

the comparisons of ρ for the validation datasets (Figure 3.6) versus the training 

datasets (Figure 3.5), where higher differences indicate a higher degree of artificial 

skill. These results stress the use of independent validation data to avoid artificial skill. 
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The skills of nonlinear methods are heavily impacted by the number of 

iterations performed to optimally obtain certain parameters. By contrast, increasing 

the degree of these iterations eventually results in overtraining and hence overfitting. 

For example, in this study, the maximum number of iterations for ANN simulations is 

set at 1000. When this number is increased to 100,000, training correlations can be 

obtained between the reference and rescaled products (as high as 0.90 for certain 

cases). However, this gained training skill is quickly lost when the obtained ANN 

configurations and parameters are utilized on independent validation data. Such 

dramatic differences are more common for ANN than other methods (GP, SVM, and 

copula), whereas the degree of overfitting using other methods does not depend as 

much on user specifications as ANN (results not shown). 

Among the copula methods, CLAYTON, GUMBEL, and JOE have 

asymmetric tail dependence properties (strong in one tail and weak in the other) and 

do not perform as well as NORMAL or FRANK, which have symmetric tail 

dependence for both training and validation experiments (Table 3.2 to Table 3.4). Both 

the copula and CDFM methods use CDFX and CDFY to rescale observations. However, 

it is stressed that the performances of copula methods are very sensitive to the 

CUN|U1,U2,…,UN−1 values (equation (9), which are selected during training. The 

optimality of these CUN|U1,U2,…,UN−1 values depends on the objective of the training 

process (e.g., the minimization of AMB only, the maximization of ρ only, the 

minimization AMB and σϵ simultaneously, or the minimization of AMB and σϵ, and 

the maximization of ρ simultaneously).  In this study, the penalty function is formed 

and CUN|U1,U2,…,UN−1 values are obtained in a way that training is penalized for 

increased AMB and σϵ and decreased ρ. Investigations for the added utility of lagged 

observations show only Normal Copula (Elliptical family) utilizing this information, 

whereas the remaining copula types (Archimedean family) result in degraded rescaled 

products (Figure 3.6). This result is consistent with the study of Hesami Afshar et al., 

(2016), who found the Elliptical family to be better at capturing the dependency 

among variables than the copula functions of the Archimedean family. 
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3.2. Impact of Rescaling Approaches on Accuracy of Fused Products 

In second case study different soil moisture products are rescaled using 

different methods, styles, and techniques for the purpose of the systematic differences 

between them to be alleviated. Later these rescaled products are fused for the accuracy 

assessment using correlation statistic over different locations. Overall experiments are 

performed using six different parent couples, five different rescaling methods, three 

different rescaling techniques, two different rescaling styles, and four different 

reference datasets selection over four different locations (total 6*5*3*2*4*4=2880 

experiments; the detail results of all 2880 experiments are available in appendix 1 and 

2). 

Before rescaling methods, styles, and techniques are implemented, the 

variability and the accuracy differences between products are investigated. Here 

higher accuracy for any product is defined as higher correlation against similar 

component of WASM. The accuracy and the variability assessments performed over 

each of the four watersheds (Figure 3.8 to Figure 3.11) and then averaged (Table 3.6 

and Figure 3.12). Overall, NOAH and AMSR-E soil moisture time series have higher 

accuracy than ASCAT and API owing to the accuracy of their low frequency (i.e., 

seasonality and smooth) components; while ASCAT and API accuracies stem from 

their high frequency (i.e., anomaly and deviance) components. On the other hand, even 

though overall accuracy of API is relatively lower than the accuracies of AMSR-E and 

NOAH products, API high frequency component has the highest accuracy (Figure 

3.12). The different temporal decomposition techniques (i.e., seasonality/anomaly vs 

smooth/deviance) result in varying low/high frequency variability contributions to 

overall variability. Results show smooth component carry higher percentage of the 

low frequency variability than climatology component; in fact, climatology low 

frequency variability is lower than the anomaly high frequency variability while for 

the smooth/deviance decomposition smooth low frequency variability has higher 

variability weight when compared to the total variability (Table 3.6). 
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Figure 3.8. Scatterplot of different soil moisture products against WASM over Little River watershed 

 

Figure 3.9. Scatterplot of different soil moisture products against WASM over Little Washita 

watershed 
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Figure 3.10. Scatterplot of different soil moisture products against WASM over Walnut Gulch 

watershed 

 

Figure 3.11. Scatterplot of different soil moisture products against WASM over Reynolds Creek 

watershed 
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Table 3.6. The average ratio of low and high frequency soil moisture variance to total time series 

Dataset 
Time series component 

Seasonality Anomaly Smooth Deviance 

ASCAT 0.31 0.65 0.59 0.27 

AMSR-E 0.48 0.48 0.72 0.17 

API 0.26 0.7 0.64 0.16 

NOAH 0.36 0.62 0.83 0.08 

WASM 0.37 0.6 0.74 0.12 

 

Figure 3.12. The average correlation between WASM and different soil moisture time series 

components 

Here a total of 2880 experiments are performed forming a 6-dimensional 

resulting matrix. Below results given show only 2-dimensional results obtained by 

averaging out the remaining four dimensions. For the sake of consistency, one of these 

two dimensions in these figures are selected as the reference dataset selection (i.e., x-

axis) while the other dimension (i.e., y-axis) varied for the remaining 4 dimensions. 

 The accuracy assessments reflecting the impact of rescaling style selection in a 

data fusion framework is presented in Figure 3.13. Overall, selection of NOAH as the 
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reference dataset resulted in a more accurate fused product, while this performance 

was not impacted by the rescaling style (i.e., single/monthly coefficient) selection. The 

use of more aggressive rescaling style result in degraded fused product accuracy when 

less accurate reference datasets are selected. In general, higher correlations are 

associated with the constant rescaling style, while time-varying (i.e., more aggressive) 

rescaling style selection could not improve the correlation of the final fused product 

as much particularly when the overall accuracy of the reference product is lower (e.g., 

ASCAT and API).  

 

Figure 3.13. Impact of the aggressiveness of rescaling methods and the reference dataset selection on 

the accuracy of the fused products 

On average, the simple fusion of two random noise time series with no error 

cross-correlation will yield lower variability product (i.e., noise is damped more) than 

fusion of two random noise products with error cross-correlation (i.e., noise is damped 

less). Accordingly, in fusion methodologies, it is preferable that the fused products 

have “real signal” components as similar as possible to each other in some statistical 

sense, while “real noise” components should get as close as possible to be random and 

not correlated (i.e., the “real noise” mean and standard deviation to get closer to zero; 

Figure 3.14).  
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Figure 3.14. Fusion of the deviance component of ASCAT and AMSR-E in NOAH space 

The time series can be shown to be a function of the true signal and the noise time 

series, it is expected that use of different rescaling factors for these components might 

better reduce the differences between the products. Given the true signal and the real 

noise components of soil moisture time series cannot be retrieved in practice (i.e., the 
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true signal component may not be retrieved explicitly in many applications), this 

implementation is not possible. On the other hand, a similar approach can be taken via 

using different rescaling coefficients for the different time scale components of 

products (i.e., in this study low/high frequency components, namely 

seasonality/anomaly & smooth/deviance). It is stressed that the low frequency 

component does not entirely reflect the truth and the high frequency component does 

not entirely reflect the noise; instead both the low and the high components carry 

elements of the truth and the noise. Here, it is important to stress that there is no 

quarantine that the use of separate rescaling coefficients will yield an improved 

rescaled product. This usage is beneficial only if different time scale components of 

products relate to each other differently; if relate similarly, then this usage is not 

beneficial. However, when the two high/low frequency decomposition methods used 

in this study (i.e., seasonality/anomaly & smooth/deviance) are compared, the method 

that obtain low frequency component closer to truth and high frequency component 

closer to noise might possibly yield better results as we may have more faith in the 

difference between the rescaling coefficient difference between the truth and the noise 

than other time scale rescaling coefficient differences.  

Given the expectation that independently retrieved products should have quasi-

independent errors, having reduced cross-correlation in the high frequency 

components imply it is closer in nature to noise than the truth and it contains more 

elements from the real noise than the real true signal. This implies deviance 

component contains more noise and less truth than anomaly component (Table 3.7). 

At this point, it is plausible that the use of two different rescaling coefficients for two 

different frequency components of time series that are closer to the truth and the real 

noise components (respectively) might yield a better fit than use of two different 

rescaling coefficient for two different components of time series that are mixture of 

both the truth and the real noise components. Hence, the goal of decomposition efforts 

should be acquisition of low and high frequency components closer in nature to the 

truth and the noise, respectively. 



 

 

 

76 

 

Table 3.7. The average autocorrelation of soil moisture time series and their components 

Dataset 
Time series component 

Seasonality Anomaly Smooth Deviance 

ASCAT 0.72 1 0.57 0.99 

AMSR-E 0.81 1 0.59 0.99 

API 0.91 1 0.87 0.99 

NOAH 0.96 1 0.94 1 

WASM 0.93 1 0.89 0.99 

 Overall, the deviance components have less cross-correlation (Table 3.8) and 

lower variability (Table 3.7) than the anomaly components, while smooth components 

have higher cross-correlation and variability than seasonality. Accordingly, smooth-

deviance decomposition is expected to be more beneficial than seasonality-anomaly 

decomposition. Accordingly, when the variability of decomposition techniques are 

compared in Table 3, smooth-deviance technique-based low frequency product has 

lower variability and look more like a random noise than seasonality-anomaly based 

product (i.e., deviance component is closer to a random noise than anomaly 

component for the same product). Expectedly, once these components are rescaled 

and then fused, smooth-deviance decomposition based fused product result in higher 

accuracy than seasonality-anomaly decomposition based fused product (Figure 3.15). 

Table 3.8. The average cross-correlation between products for different decomposed parts 

Dataset 
Time series component 

Entire Series Seasonality Anomaly Smooth Deviance 

ASCAT - AMSR-E 0.41 0.092 0.565 0.338 0.43 

ASCAT - API 0.514 0.523 0.511 0.561 0.38 

ASCAT - NOAH 0.484 0.257 0.51 0.491 0.4 

AMSR-E - API 0.312 0.076 0.405 0.29 0.26 

AMSR-E - NOAH 0.581 0.737 0.487 0.647 0.33 

API - NOAH 0.452 0.324 0.494 0.485 0.35 
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Figure 3.15. Impact of rescaling approach and reference dataset selection on performance of fused 

products against WASM dataset 

Impact of rescaling methods over the accuracy of the fused product is given in 

Figure 3.16. Overall, the impact of rescaling method selection is more pronounced 

when the reference dataset is less accurate than more accurate (i.e., difference between 

the obtained accuracy estimates via various rescaling methods is less for NOAH than 

ASCAT or AMSR-E). The reference dataset selection also impacts the rescaling 

method performance: nonlinear MAR and SVM methods yield higher accuracy fused 

product when NOAH (i.e., higher accuracy product) is used as reference; on the other 

hand, linear REG and VAR methods yield higher accuracy fused product when less 

accurate products are used as reference. 
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Figure 3.16. Impact of rescaling method and reference dataset selection on performance of fused 

products against WASM dataset 

Investigation of the impact of the parent product selection over the accuracy 

of the fused product (Figure 3.17) show AMSR-E - API parent couples consistently 

yield higher accuracy fused estimate than other parent couples regardless of the 

reference dataset selection. This is perhaps because the mutual information between 

the products AMSR-E and API is less than the mutual information between other 

products (i.e., here the mutual linear information is measured using correlation 

coefficient in Table 3.8). Even though AMSR-E and API products are fused together, 

results show it is better to rescale both products to the space of NOAH (i.e., third 

product) first before the fusion to obtain higher accuracy fused estimate (Figure 3.16). 

Reason for rescaling to a third reference product is because before the fusion of the 

products their accuracies are low hence rescaling step involve higher sampling errors, 

which later further propagate to AMSR-E - API fused product. On the other hand, 

when products are rescaled to the space of a higher quality product first (i.e., to 

alleviate the differences between the products), then the fusion process becomes more 

effective via lowered sampling errors added to the fused product. 
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Figure 3.17. Impact of the parent and the reference product selection on fused product accuracy 

Given NOAH dataset is globally available, the fused products have better 

performance when NOAH is selected as the reference dataset, Table 3.9 and Table 

3.10 summarizes the correlation statistics of fused products against WASM with 

considering different parent couples and rescaling methods (i.e., results are related 

with fusion of ASCAT/AMSR-E/API/NOAH products using NOAH as reference) 

with using of constant and time-varying application styles. Among the rescaling 

methods, despite its simplicity REG performs well when it is implemented with 

smooth-deviance decomposition technique, while VAR and MAR performances are 

marginally better than other rescaling methods over time-varying application. When 

the reference dataset selection is changed from NOAH to WASM, it is expected to 

obtain additional benefit via using of nonlinear methods [i.e., as the reference dataset 

accuracy increases (Afshar & Yilmaz, 2017)]. 
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Table 3.9. Impact of rescaling methods and their implementation approaches (with constant 

application) on performance of fused products (over NOAH reference) using WASM as validation 

dataset (statistics are averaged over four watersheds) 

Approach Fused Product 
Rescaling Methods 

REG VAR CDFM MAR SVM 

S
m

o
o
th

-d
ev

ia
n
ce

 ASCAT AMSR-E 0.78 0.76 0.75 0.77 0.76 

ASCAT API 0.69 0.66 0.66 0.71 0.7 

ASCAT NOAH 0.75 0.73 0.73 0.74 0.74 

AMSR-E API 0.82 0.81 0.8 0.8 0.8 

AMSR-E NOAH 0.76 0.76 0.77 0.76 0.76 

API NOAH 0.76 0.75 0.75 0.76 0.75 

S
ea

so
n
al

it
y
 A

n
o
m

al
y

 

ASCAT AMSR-E 0.72 0.71 0.71 0.75 0.74 

ASCAT API 0.71 0.67 0.64 0.76 0.76 

ASCAT NOAH 0.74 0.73 0.71 0.75 0.75 

AMSR-E API 0.77 0.77 0.78 0.77 0.77 

AMSR-E NOAH 0.75 0.75 0.76 0.75 0.76 

API NOAH 0.76 0.76 0.75 0.77 0.78 

E
n
ti

re
 s

er
ie

s 

ASCAT AMSR-E 0.74 0.72 0.71 0.75 0.74 

ASCAT API 0.67 0.65 0.64 0.7 0.69 

ASCAT NOAH 0.74 0.72 0.72 0.74 0.74 

AMSR-E API 0.79 0.79 0.78 0.8 0.79 

AMSR-E NOAH 0.76 0.76 0.76 0.76 0.76 

API NOAH 0.76 0.75 0.75 0.76 0.76 
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Table 3.10. Impact of rescaling methods and their implementation approaches (with time-varying 

application) on performance of fused products (over NOAH reference) using WASM as validation 

dataset (statistics are averaged over four watersheds) 

Approach Fused Product 
Rescaling Methods 

REG VAR CDFM MAR SVM 

S
m

o
o
th

-d
ev

ia
n
ce

 ASCAT AMSR-E 0.76 0.76 0.76 0.75 0.76 

ASCAT API 0.76 0.77 0.76 0.76 0.75 

ASCAT NOAH 0.75 0.75 0.74 0.74 0.74 

AMSR-E API 0.78 0.79 0.79 0.77 0.77 

AMSR-E NOAH 0.75 0.76 0.76 0.74 0.75 

API NOAH 0.76 0.77 0.77 0.75 0.75 

S
ea

so
n
al

it
y
 A

n
o
m

al
y

 

ASCAT AMSR-E 0.75 0.74 0.74 0.76 0.74 

ASCAT API 0.76 0.76 0.76 0.77 0.75 

ASCAT NOAH 0.75 0.75 0.74 0.75 0.74 

AMSR-E API 0.77 0.78 0.78 0.77 0.76 

AMSR-E NOAH 0.75 0.75 0.75 0.75 0.75 

API NOAH 0.76 0.77 0.77 0.75 0.75 

E
n
ti

re
 s

er
ie

s 

ASCAT AMSR-E 0.75 0.74 0.74 0.75 0.74 

ASCAT API 0.75 0.76 0.76 0.76 0.75 

ASCAT NOAH 0.75 0.75 0.74 0.74 0.74 

AMSR-E API 0.77 0.78 0.78 0.78 0.77 

AMSR-E NOAH 0.75 0.75 0.75 0.75 0.75 

API NOAH 0.76 0.77 0.78 0.76 0.75 

Among different parent couples, the AMSR-E – API parent couple perform 

better than others over different rescaling methods and approaches (i.e., both in terms 

of application style and technique). After AMSR-E – API fusion product, the fusion 

of ASCAT and AMSR-E gives the highest accuracy among different parent couples. 

Considering the CDFM method and the REG one with smooth-deviance 

decomposition application, it can be seen that there is 0.08 correlation improvement 

with changing the application style and rescaling method from CDFM to REG which 

implies the utility of smooth-deviance decomposition technique. 
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The performance of AMSR-E - API parent couple is further investigated over the 

four WASM datasets separately via comparison of cross-correlations of rescaled 

products and fused products against WASM over different watersheds using different 

reference dataset selection (Figure 3.18 to Figure 3.20). Here the fused products are 

the results of merging AMSR-E and API soil moisture products which are rescaled to 

different references trough constant application of smooth-deviance decomposition 

method with considering linear regression as the rescaling method (based on the 

results of Table 3.9).  

On average, the fused product has higher accuracy than all the parent products 

individually (on average the correlation difference between the fused product and the 

product having the second highest correlation is 0.12). This result is true for different 

reference dataset selections that the fusion algorithm shows persistent improvement 

compared against parent products (e.g., NOAH, AMSR-E, and API). However, there 

is an exception for this general trend over Reynolds Creek that NOAH has higher 

correlation than AMSR-E and API fusion; probably because of the poor performance 

of API due to the mountainous topography of this site (Blanchard et al., 1981), 

illustrating the neglected importance of API model (particularly over flat areas) and 

the added utility of proposed smooth-deviance decomposition implementation 

approach.  

On the other hand, when the reference is considered as AMSR-E (Figure 3.19), it 

can be seen that the usage is of API model for enhancing AMSR-E through data fusion 

framework while the original correlation of AMSR-E product over Walnut Gulch has 

been increased more than 0.10 and on average there is an improvement of 0.05 over 

correlation of AMSR-E soil moisture product over four watersheds. Moreover when 

the reference is changed from AMSR-E reference to API, and considering this 

scenario as a very simple assimilation framework, it can be seen that the accuracy of 

API model by adding AMSR-E information to it can be increased efficiently (~0.12 

on average). While this improvement is regardless of the accuracy of rescaled product 
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(e.g., the AMSR-E accuracy has been decreased over Little River and Little Washita 

watersheds after rescaling).  

Overall, it seems that the accuracy of the reference product over data assimilation 

studies is very important as well. For example, over Walnut Gulch watershed, when 

the accuracy of API model is slightly higher than other watersheds, the result of data 

fusion also show higher accuracy and in the case when the reference has less accuracy 

(Reynolds Creek) the accuracy of final fused product diminishes in comparison to the 

other fusion scenarios. This once again implies the importance of having a reference 

product with high accuracy in fusion of soil moisture products. 

 

Figure 3.18. Comparison of the accuracy of the unscaled native, the rescaled and the fused products 

evaluated against WASM datasets over NOAH space 
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Figure 3.19. Comparison of the accuracy of the unscaled native, the rescaled and the fused products 

evaluated against WASM datasets over AMSR-E space 

 

Figure 3.20. Comparison of the accuracy of the unscaled native, the rescaled and the fused products 

evaluated against WASM datasets over API space 

The simple fusion of two products on average improves the correlation of the 

products by 0.055 (ASCAT 0.115, AMSR-E 0.037, API 0.098, NOAH -0.029) 

without selecting any particular reference (results are available in appendix 2); but 
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when NOAH is selected as the reference dataset the improvement increases to 0.13 

(ASCAT 0.19, AMSR-E 0.11, API 0.18, NOAH 0.05). Comparison of the added value 

for each individual dataset when NOAH is selected as reference shows ASCAT and 

API has higher gains (0.19 and 0.18 respectively) while AMSRE and NOAH has 

relatively lower gains (0.11 and 0.05 respectively). This implies ASCAT and API are 

less skillful products than AMSR-E and NOAH.  

 Overall, time-varying rescaling styles assumption (e.g., monthly rescaling 

styles) clearly results in discontinuities in the soil moisture time series, while constant 

coefficient assumption does not have such an adverse impact (Figure 3.21 to Figure 

3.23). Even though the time-varying rescaling approach results in improved fused 

products when the reference product is more accurate (Yilmaz et al., 2016), the 

discontinuities make the time series unrealistic. Briefly, there is a trade-off between 

the improved accuracy of the fused product and the realism of the time series when 

the reference dataset accuracy is high. When a relatively less skillful reference dataset 

is selected, then aggressive implementation of the most nonlinear methods (including 

the time-varying assumptions) result in reduced fused product skill stemmed from the 

over-fitting of the unscaled product to the reference product. For such cases, the linear 

methods are able to remove the systematic differences in the unscaled dataset without 

compromising the skill of the fused product. 
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Figure 3.21. Comparison of different rescaling methods and their application style (technique: No-

Decomposition), in rescaling of API and AMSR-E soil moisture product to NOAH space over Little 

Washita watershed between Sept 10 and Nov 20 of year 2010 
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Figure 3.22. Comparison of different rescaling methods and their application style (technique: 

Seasonality-Anomaly Decomposition), in rescaling of API and AMSR-E soil moisture product to 

NOAH space over Little Washita watershed between Sept 10 and Nov 20 of year 2010 
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Figure 3.23. Comparison of different rescaling methods and their application style (technique: 

Smooth-Deviance Decomposition), in rescaling of API and AMSR-E soil moisture product to NOAH 

space over Little Washita watershed between Sept 10 and Nov 20 of year 2010 

The time series of fused products derived from merging of above presented time 

series (Figure 3.21 to Figure 3.23) are shown in Figure 3.24 to Figure 3.26. Here 

Figure 3.24 to Figure 3.26 show the performance of fused products over space of 

WASM (fused products are rescaled to space of WASM using variance-matching 

method). While the rescaling techniques (i.e., No decomposition, Seasonality-

Anomaly decomposition, and Smooth-Deviance decomposition) are separately shown 

in different figures and each figure is separated to two panels in order to show the 

impact of different application styles more clear. Overall the discontinuity of rescaled 

time series that are rescaled by time-varying application style, are also visible in the 

fused products. Although this discontinuity resulted in low accuracy fused products, 
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but such results, at the same time, show the impact of time-varying approaches in 

getting close to the reference product more visible. This impact can be very useful if 

an access to the in-situ measurements is available over regions or at least the reference 

product is close enough to the real observations. 

 

Figure 3.24. Comparison of different rescaling methods and their application style (technique: No 

Decomposition), in fusion of API and AMSR-E soil moisture product in NOAH space over Little 

Washita watershed between Sept 10 and Nov 20 of year 2010 
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Figure 3.25. Comparison of different rescaling methods and their application style (technique: 

Seasonality-Anomaly Decomposition), in fusion of API and AMSR-E soil moisture product in 

NOAH space over Little Washita watershed between Sept 10 and Nov 20 of year 2010 
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Figure 3.26. Comparison of different rescaling methods and their application style (technique: 

Smooth-Deviance Decomposition), in fusion of API and AMSR-E soil moisture product in NOAH 

space over Little Washita watershed between Sept 10 and Nov 20 of year 2010 

On the other hand, by concentrating on the lower panel of Figure 3.26, where the 

rescaling methods are applied to the API and AMSR-E soil moisture products with 

the smooth-deviance decomposition technique, it can be seen that the usage of smooth-

deviance decomposition technique slightly degraded the intensity of this discontinuity. 

However, this time the constant application of nonlinear methods (MAR) a little bit 

got away from the main target of data fusion (WASM; shown with black line in both 

panels) 

Moreover, by paying attention to the difference of methods in upper panel of each 

rescaling technique, it can be seen that over very simple rescaling technique (Figure 
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3.24; considering no decomposition), the final fused products are very close to each 

other. However, by applying decomposition methods, the impact of rescaling methods 

also change. For example, over Seasonality-Anomaly decomposition (Figure 3.25), 

the nonlinear rescaling method produces a drier soil moisture product in comparison 

to the CDFM and REG methods (within the presented time interval). While this 

pattern is not happening over the Smooth-Deviance decomposition method. This 

difference in accuracy and the shape of rescaled products when they are rescaled by 

using the same methodology and different techniques or applying different styles 

implies the importance of rescaling techniques and also their application style one 

more time, beside the importance of rescaling methods. 
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CHAPTER 4  

 

4. CONCLUSIONS 

 

While some soil moisture applications require a soil moisture product with low 

bias, majority of the applications are in need of a soil moisture product with a good 

accuracy [i.e., high correlation with ground measurements; (Entekhabi, Reichle, et al., 

2010; Koster et al., 2009)]. For such studies, an improved soil moisture datasets can 

be obtained via handling the systematic differences between the products and merging 

them with a proper methodology (i.e., simple fusion, data assimilation). However, the 

approach taken during the removal of systematic differences (i.e., rescaling) affect the 

final fused product skill. In this study, two different case studies are evaluated. The 

first case study has focused on the reducing of the systematic differences among 

datasets with rescaling of AMSR-E to the WASM datasets over four USDA ARS 

watersheds. While the second case study has focused on impact of rescaling methods 

in the frame work of data fusion. Both case studies are the first to perform a 

comprehensive comparison of the performances of various linear (REG, VAR, TCA) 

and nonlinear (CDFM, MAR, GP, SVM, ANN, and copula) methods (total 18 

methods); the first to use the MAR, GP, SVM, and ANN methods to explicitly rescale 

the soil moisture datasets in the framework of soil moisture rescaling; and the first to 

comprehensively investigate the added utility of rescaling methods and their 

implementation approaches in the fusion of rescaled soil moisture products.  

The relative performances of methods using training and validation datasets 

are consistent; the rescaling method that results in a more accurate rescaled product 

using training data also results in a more accurate rescaled product using validation 

data, and the best performing method using the training datasets yields better results 

than any other individual method that uses the validation datasets. Although the actual 

performances of the rescaling methods might change for different datasets, it is viable 
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that a similar consistency would also exist for other datasets that are not used in this 

study. Such a consistency between the training and validation results gives confidence 

to the user in their selection of the rescaling method, particularly in the operational 

implementation of rescaling methods. 

A large majority of the related variability between products are due to first-

order linear relations. Although multiple linear regression-based rescaling methods 

slightly improve the rescaled product statistics, the training and the validation statistics 

consistently show that nonlinear methods resulted in a more accurate rescaled product 

than linear methods. Overall, GP and ELMAN ANN improved independent validation 

dataset correlations the best (on average 0.05), whereas improvements reached as high 

as 0.14 at individual locations (ELMAN ANN over RC).  

Among nonlinear methods, ELMAN ANN exhibits superior performance, 

particularly when the datasets are highly autocorrelated (over RC), whereas the GP 

and SVM methods exhibit superior performance when the lagged observations are 

also used as predictors (over LR and LW). Although lagged observations improve the 

rescaled product statistics when datasets are rescaled linearly, nonlinear methods yield 

better statistics than linear methods. This highlights that lagged observations, which 

contain valuable information in the soil moisture rescaling framework as in the TCA 

framework (W. T. Crow et al., 2015; Chun-Hsu Su, Ryu, Crow, & Western, 2014; 

Zwieback, Dorigo, & Wagner, 2013). Nonlinear methods have higher added utility 

potential than linear methods in using lagged observations, in addition to their overall 

higher rescaling potential compared to the linear methods.  

The higher rescaling potential of nonlinear methods compared to linear 

methods clearly show that the soil moisture datasets used in this study have nonlinear 

relations that cannot be modeled using linear methods. It is also viable that such 

nonlinear relationships may exist between other soil moisture datasets that are not used 

in this study. These results imply that the soil moisture inter-comparison studies 

(Clement Albergel et al., 2012; Brocca et al., 2011; Hain et al., 2011; Mladenova et 

al., 2014; Parinussa et al., 2015) and non-data assimilation type blending studies 

(Leroux et al., 2014) may benefit from these nonlinear rescaling methods, given the 
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key results in this study. The performance metrics (ρ, σε, and AMB) can be 

considerably (in some cases statistically significantly) improved via such nonlinear 

methods, whereas their degree of improvements may be dataset specific. 

Overall, it is likely that more accurate nonlinearly rescaled products will improve 

applications that are better related to studies using linearly rescaled products. For 

example, assimilation experiments require observations to be rescaled into model 

space before they can be merged. By definition, an assimilation of more accurate 

observations (e.g., obtained via nonlinearly rescaling methods) in models always 

results in a more accurate analysis than the assimilation of less accurate observations 

(unless the underlying assumptions are not met). On the one hand, Yilmaz and Crow 

(2013) show an assimilation analysis accuracy that depends on the degree to which 

the smooth component of observations should be rescaled to the smooth component 

of the model, rather than the overall product differences that are alleviated directly, as 

done in this study. Similarly, Su et al. (2014) and Zwieback et al. (2016) show that 

matching this smooth component is also very important for error characterization. 

Consistently, Yilmaz and Crow (2013) demonstrate TCA matching of the smooth 

components of the datasets and a better rescaling method than REG in the assimilation 

framework.  

Moreover the results based on the second case study as well show that linear 

rescaling methods could only improve the bias, while nonlinear methods increase the 

correlation of the rescaled product with the reference product in addition to the bias 

removal. However, this advantage of nonlinear approaches is effective when the 

reference product has high accuracy; else, in the presence of a degraded reference 

product, the nonlinear rescaling approaches will lead in loss of rescaled product skill. 

Among rescaling approaches, the implementation of linear regression method 

with smooth-deviance decomposition approach resulted in the best fused product, 

while time-varying application of the rescaling methods could not improve the 

performance of final fused product and sometimes degraded the performance of them 
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by leading the rescaled products to over fit to the reference product and to lose its 

continuity during rescaling procedure.  

Overall, the variability due to reference dataset selection (under the same other 

rescaling related conditions) result in the highest variability in the fused product 

accuracy (i.e., reference dataset selection matters the most). After the reference dataset 

selection, the parent dataset selection matters the most. Once the reference and the 

parent dataset selections are made, then rescaling method, style, and technique 

selection matters with decreasing impact over the accuracy of the fused product. In 

the absence of appropriate reference dataset selection, better rescaling methodology 

selection does not yield fused product with the highest accuracy. 

On the other hand, based on the results of parent couples analysis during data 

fusion and also studies that highlight the utility of simple API models compared to 

more complex models (W. T. Crow, Kumar, & Bolten, 2012; Han et al., 2014), it can 

be concluded that the simple API models, particularly over flat areas where such 

models perform good enough and provide worthy information about soil moisture, can 

be added to the parent products of data fusion in fusing of soil moisture products. 

Recent studies also highlight the utility of simple API models compared to more 

complex models, particularly in studies aiming to methodologically improve current 

techniques (W. T. Crow & Yilmaz, 2014; Yilmaz & Crow, 2013). Given that such 

simple models have better skills in drought studies (W. T. Crow et al., 2012), such 

models can be used to create long and homogenous time series, expanding to historical 

dates, where precipitation observations are available. To ensure the consistency of the 

units of the model values with traditional ground observations, this model time series 

could be rescaled to available ground observations, relying on the consistency found 

between the training and the validation datasets, where mutually available datasets can 

be used to retrieve the necessary parameters. 

Overall, it is likely that each soil moisture application requires its own rescaling 

strategy. For example removing systematic differences among soil moisture time 

series require a nonlinear method rather than a linear method (Afshar & Yilmaz, 
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2017), or the assimilation techniques based on their nature require TCA types of 

rescaling [e.g., linear variance matching, CDFM, polynomial CDFM (Yilmaz et al., 

2016)]. But so far, based on the results of this study, it can be concluded that among 

rescaling approaches, the implementation of REG does not yield the highest accuracy 

fused product; however, it gives close enough skill that justifies the use of this method 

(with smooth-deviance decomposition approach) given its ease of implementation. 

Additionally, the results of present study verify that the reference dataset selection 

matters almost as much as the dataset selection. Hence, it is better to rescale the parent 

products to a more accurate product (e.g., NOAH) to reduce the sampling errors, even 

if this reference product is not one of the merged products.. 

 There are many ground station-based soil moisture observations that are used 

for validation of satellite- and model-based soil moisture estimates or the products 

obtained after merging of these estimates. The error statistics (error standard deviation, 

bias, etc.) of the soil moisture estimates, however, are impacted from the rescaling 

methodologies, styles, techniques as well as reference product selection used to 

alleviate the differences between products. On the other hand, many studies chose a 

simple rescaling approach and do not consider the alternatives that might yield better 

accuracy product. Compared to limited number of rescaling approach options that are 

widely used in the literature, this study lays out the relative skills of variety of 

rescaling approaches for estimation of superior fused products. Here, the validation of 

such fused products are performed using various ground station-based observations 

(e.g., ISMN, Western Mesonet Soil Moisture Network in Turkey, etc.), hence the 

rescaling approaches introduced in this study also contributes to the efforts to better 

utilize these observations. For example, soil moisture conditions describe part of the 

boundary conditions that Global Circulation Models use in weather predictions that 

accurate prediction of feedback mechanisms between the land and the atmosphere 

impact the accuracy of the predictions; the studies focusing on soil moisture data 

assimilation/insertion into such models may benefit from the methodologies 

introduced in this study.. 
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APPENDICES 

 

A. Comparison of the impact of rescaling approaches over the accuracy of 

rescaled products (results are averages over four watersheds) 

ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

1 ASCAT REG ND Constant ASCAT 1 0.54 

2 ASCAT REG ND Constant AMSR-E 0.41 0.54 

3 ASCAT REG ND Constant API 0.51 0.54 

4 ASCAT REG ND Constant NOAH 0.48 0.54 

5 ASCAT REG ND Constant WASM 0.54 0.54 

6 ASCAT REG ND TV ASCAT 1 0.54 

7 ASCAT REG ND TV AMSR-E 0.83 0.61 

8 ASCAT REG ND TV API 0.72 0.54 

9 ASCAT REG ND TV NOAH 0.76 0.71 

10 ASCAT REG ND TV WASM 0.78 0.78 

11 ASCAT REG SA Constant ASCAT 1 0.54 

12 ASCAT REG SA Constant AMSR-E 0.52 0.5 

13 ASCAT REG SA Constant API 0.56 0.54 

14 ASCAT REG SA Constant NOAH 0.56 0.57 

15 ASCAT REG SA Constant WASM 0.6 0.6 

16 ASCAT REG SA TV ASCAT 1 0.54 

17 ASCAT REG SA TV AMSR-E 0.84 0.62 

18 ASCAT REG SA TV API 0.73 0.55 

19 ASCAT REG SA TV NOAH 0.78 0.71 

20 ASCAT REG SA TV WASM 0.79 0.79 

21 ASCAT REG SD Constant ASCAT 1 0.54 

22 ASCAT REG SD Constant AMSR-E 0.44 0.48 

23 ASCAT REG SD Constant API 0.55 0.56 

24 ASCAT REG SD Constant NOAH 0.52 0.57 

25 ASCAT REG SD Constant WASM 0.57 0.57 

26 ASCAT REG SD TV ASCAT 1 0.54 

27 ASCAT REG SD TV AMSR-E 0.85 0.63 

28 ASCAT REG SD TV API 0.74 0.57 

29 ASCAT REG SD TV NOAH 0.81 0.72 

30 ASCAT REG SD TV WASM 0.81 0.81 

31 ASCAT VAR ND Constant ASCAT 1 0.54 

32 ASCAT VAR ND Constant AMSR-E 0.41 0.54 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

33 ASCAT VAR ND Constant API 0.51 0.54 

34 ASCAT VAR ND Constant NOAH 0.48 0.54 

35 ASCAT VAR ND Constant WASM 0.54 0.54 

36 ASCAT VAR ND TV ASCAT 1 0.54 

37 ASCAT VAR ND TV AMSR-E 0.78 0.62 

38 ASCAT VAR ND TV API 0.67 0.54 

39 ASCAT VAR ND TV NOAH 0.72 0.68 

40 ASCAT VAR ND TV WASM 0.73 0.73 

41 ASCAT VAR SA Constant ASCAT 1 0.54 

42 ASCAT VAR SA Constant AMSR-E 0.33 0.48 

43 ASCAT VAR SA Constant API 0.56 0.53 

44 ASCAT VAR SA Constant NOAH 0.5 0.56 

45 ASCAT VAR SA Constant WASM 0.54 0.54 

46 ASCAT VAR SA TV ASCAT 1 0.54 

47 ASCAT VAR SA TV AMSR-E 0.79 0.63 

48 ASCAT VAR SA TV API 0.68 0.55 

49 ASCAT VAR SA TV NOAH 0.72 0.69 

50 ASCAT VAR SA TV WASM 0.74 0.74 

51 ASCAT VAR SD Constant ASCAT 1 0.54 

52 ASCAT VAR SD Constant AMSR-E 0.39 0.54 

53 ASCAT VAR SD Constant API 0.54 0.54 

54 ASCAT VAR SD Constant NOAH 0.51 0.56 

55 ASCAT VAR SD Constant WASM 0.55 0.55 

56 ASCAT VAR SD TV ASCAT 1 0.54 

57 ASCAT VAR SD TV AMSR-E 0.79 0.63 

58 ASCAT VAR SD TV API 0.7 0.56 

59 ASCAT VAR SD TV NOAH 0.77 0.71 

60 ASCAT VAR SD TV WASM 0.76 0.76 

61 ASCAT CDFM ND Constant ASCAT 1 0.54 

62 ASCAT CDFM ND Constant AMSR-E 0.2 0.3 

63 ASCAT CDFM ND Constant API 0.5 0.53 

64 ASCAT CDFM ND Constant NOAH 0.45 0.5 

65 ASCAT CDFM ND Constant WASM 0.51 0.51 

66 ASCAT CDFM ND TV ASCAT 1 0.54 

67 ASCAT CDFM ND TV AMSR-E 0.71 0.55 

68 ASCAT CDFM ND TV API 0.66 0.48 

69 ASCAT CDFM ND TV NOAH 0.72 0.66 

70 ASCAT CDFM ND TV WASM 0.73 0.73 

71 ASCAT CDFM SA Constant ASCAT 1 0.54 



 

113 

 

ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

72 ASCAT CDFM SA Constant AMSR-E 0.14 0.29 

73 ASCAT CDFM SA Constant API 0.5 0.53 

74 ASCAT CDFM SA Constant NOAH 0.45 0.48 

75 ASCAT CDFM SA Constant WASM 0.49 0.49 

76 ASCAT CDFM SA TV ASCAT 1 0.54 

77 ASCAT CDFM SA TV AMSR-E 0.74 0.56 

78 ASCAT CDFM SA TV API 0.66 0.5 

79 ASCAT CDFM SA TV NOAH 0.73 0.67 

80 ASCAT CDFM SA TV WASM 0.74 0.74 

81 ASCAT CDFM SD Constant ASCAT 1 0.54 

82 ASCAT CDFM SD Constant AMSR-E 0.18 0.34 

83 ASCAT CDFM SD Constant API 0.52 0.51 

84 ASCAT CDFM SD Constant NOAH 0.5 0.54 

85 ASCAT CDFM SD Constant WASM 0.54 0.54 

86 ASCAT CDFM SD TV ASCAT 1 0.54 

87 ASCAT CDFM SD TV AMSR-E 0.75 0.56 

88 ASCAT CDFM SD TV API 0.72 0.55 

89 ASCAT CDFM SD TV NOAH 0.77 0.68 

90 ASCAT CDFM SD TV WASM 0.77 0.77 

91 ASCAT MAR ND Constant ASCAT 1 0.54 

92 ASCAT MAR ND Constant AMSR-E 0.51 0.53 

93 ASCAT MAR ND Constant API 0.55 0.56 

94 ASCAT MAR ND Constant NOAH 0.56 0.58 

95 ASCAT MAR ND Constant WASM 0.59 0.59 

96 ASCAT MAR ND TV ASCAT 1 0.54 

97 ASCAT MAR ND TV AMSR-E 0.86 0.62 

98 ASCAT MAR ND TV API 0.74 0.55 

99 ASCAT MAR ND TV NOAH 0.79 0.71 

100 ASCAT MAR ND TV WASM 0.8 0.8 

101 ASCAT MAR SA Constant ASCAT 1 0.54 

102 ASCAT MAR SA Constant AMSR-E 0.69 0.61 

103 ASCAT MAR SA Constant API 0.66 0.56 

104 ASCAT MAR SA Constant NOAH 0.66 0.66 

105 ASCAT MAR SA Constant WASM 0.7 0.7 

106 ASCAT MAR SA TV ASCAT 1 0.54 

107 ASCAT MAR SA TV AMSR-E 0.86 0.62 

108 ASCAT MAR SA TV API 0.76 0.56 

109 ASCAT MAR SA TV NOAH 0.8 0.72 

110 ASCAT MAR SA TV WASM 0.81 0.81 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

111 ASCAT MAR SD Constant ASCAT 1 0.54 

112 ASCAT MAR SD Constant AMSR-E 0.61 0.54 

113 ASCAT MAR SD Constant API 0.62 0.58 

114 ASCAT MAR SD Constant NOAH 0.63 0.63 

115 ASCAT MAR SD Constant WASM 0.65 0.65 

116 ASCAT MAR SD TV ASCAT 1 0.54 

117 ASCAT MAR SD TV AMSR-E 0.87 0.64 

118 ASCAT MAR SD TV API 0.81 0.58 

119 ASCAT MAR SD TV NOAH 0.84 0.72 

120 ASCAT MAR SD TV WASM 0.84 0.84 

121 ASCAT SVM ND Constant ASCAT 1 0.54 

122 ASCAT SVM ND Constant AMSR-E 0.51 0.52 

123 ASCAT SVM ND Constant API 0.55 0.56 

124 ASCAT SVM ND Constant NOAH 0.56 0.57 

125 ASCAT SVM ND Constant WASM 0.58 0.58 

126 ASCAT SVM ND TV ASCAT 1 0.54 

127 ASCAT SVM ND TV AMSR-E 0.86 0.63 

128 ASCAT SVM ND TV API 0.73 0.51 

129 ASCAT SVM ND TV NOAH 0.78 0.7 

130 ASCAT SVM ND TV WASM 0.8 0.8 

131 ASCAT SVM SA Constant ASCAT 1 0.54 

132 ASCAT SVM SA Constant AMSR-E 0.67 0.6 

133 ASCAT SVM SA Constant API 0.64 0.55 

134 ASCAT SVM SA Constant NOAH 0.66 0.65 

135 ASCAT SVM SA Constant WASM 0.7 0.7 

136 ASCAT SVM SA TV ASCAT 1 0.53 

137 ASCAT SVM SA TV AMSR-E 0.86 0.63 

138 ASCAT SVM SA TV API 0.75 0.52 

139 ASCAT SVM SA TV NOAH 0.8 0.7 

140 ASCAT SVM SA TV WASM 0.81 0.81 

141 ASCAT SVM SD Constant ASCAT 1 0.54 

142 ASCAT SVM SD Constant AMSR-E 0.59 0.51 

143 ASCAT SVM SD Constant API 0.6 0.58 

144 ASCAT SVM SD Constant NOAH 0.62 0.61 

145 ASCAT SVM SD Constant WASM 0.64 0.64 

146 ASCAT SVM SD TV ASCAT 1 0.54 

147 ASCAT SVM SD TV AMSR-E 0.87 0.64 

148 ASCAT SVM SD TV API 0.78 0.56 

149 ASCAT SVM SD TV NOAH 0.84 0.71 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

150 ASCAT SVM SD TV WASM 0.84 0.84 

151 AMSR-E REG ND Constant ASCAT 0.41 0.65 

152 AMSR-E REG ND Constant AMSR-E 1 0.65 

153 AMSR-E REG ND Constant API 0.32 0.65 

154 AMSR-E REG ND Constant NOAH 0.58 0.65 

155 AMSR-E REG ND Constant WASM 0.65 0.65 

156 AMSR-E REG ND TV ASCAT 0.77 0.55 

157 AMSR-E REG ND TV AMSR-E 1 0.65 

158 AMSR-E REG ND TV API 0.64 0.56 

159 AMSR-E REG ND TV NOAH 0.76 0.71 

160 AMSR-E REG ND TV WASM 0.78 0.78 

161 AMSR-E REG SA Constant ASCAT 0.56 0.46 

162 AMSR-E REG SA Constant AMSR-E 1 0.65 

163 AMSR-E REG SA Constant API 0.42 0.52 

164 AMSR-E REG SA Constant NOAH 0.62 0.65 

165 AMSR-E REG SA Constant WASM 0.66 0.66 

166 AMSR-E REG SA TV ASCAT 0.78 0.54 

167 AMSR-E REG SA TV AMSR-E 1 0.65 

168 AMSR-E REG SA TV API 0.66 0.57 

169 AMSR-E REG SA TV NOAH 0.76 0.71 

170 AMSR-E REG SA TV WASM 0.8 0.8 

171 AMSR-E REG SD Constant ASCAT 0.48 0.42 

172 AMSR-E REG SD Constant AMSR-E 1 0.65 

173 AMSR-E REG SD Constant API 0.33 0.61 

174 AMSR-E REG SD Constant NOAH 0.61 0.67 

175 AMSR-E REG SD Constant WASM 0.67 0.67 

176 AMSR-E REG SD TV ASCAT 0.79 0.55 

177 AMSR-E REG SD TV AMSR-E 1 0.65 

178 AMSR-E REG SD TV API 0.68 0.59 

179 AMSR-E REG SD TV NOAH 0.82 0.74 

180 AMSR-E REG SD TV WASM 0.81 0.81 

181 AMSR-E VAR ND Constant ASCAT 0.41 0.65 

182 AMSR-E VAR ND Constant AMSR-E 1 0.65 

183 AMSR-E VAR ND Constant API 0.32 0.65 

184 AMSR-E VAR ND Constant NOAH 0.58 0.65 

185 AMSR-E VAR ND Constant WASM 0.65 0.65 

186 AMSR-E VAR ND TV ASCAT 0.73 0.57 

187 AMSR-E VAR ND TV AMSR-E 1 0.65 

188 AMSR-E VAR ND TV API 0.59 0.57 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

189 AMSR-E VAR ND TV NOAH 0.72 0.69 

190 AMSR-E VAR ND TV WASM 0.75 0.75 

191 AMSR-E VAR SA Constant ASCAT 0.48 0.65 

192 AMSR-E VAR SA Constant AMSR-E 1 0.65 

193 AMSR-E VAR SA Constant API 0.36 0.6 

194 AMSR-E VAR SA Constant NOAH 0.6 0.64 

195 AMSR-E VAR SA Constant WASM 0.65 0.65 

196 AMSR-E VAR SA TV ASCAT 0.73 0.57 

197 AMSR-E VAR SA TV AMSR-E 1 0.65 

198 AMSR-E VAR SA TV API 0.6 0.57 

199 AMSR-E VAR SA TV NOAH 0.72 0.69 

200 AMSR-E VAR SA TV WASM 0.75 0.75 

201 AMSR-E VAR SD Constant ASCAT 0.44 0.63 

202 AMSR-E VAR SD Constant AMSR-E 1 0.65 

203 AMSR-E VAR SD Constant API 0.32 0.64 

204 AMSR-E VAR SD Constant NOAH 0.61 0.67 

205 AMSR-E VAR SD Constant WASM 0.66 0.66 

206 AMSR-E VAR SD TV ASCAT 0.74 0.56 

207 AMSR-E VAR SD TV AMSR-E 1 0.65 

208 AMSR-E VAR SD TV API 0.62 0.59 

209 AMSR-E VAR SD TV NOAH 0.77 0.72 

210 AMSR-E VAR SD TV WASM 0.78 0.78 

211 AMSR-E CDFM ND Constant ASCAT 0.42 0.65 

212 AMSR-E CDFM ND Constant AMSR-E 1 0.65 

213 AMSR-E CDFM ND Constant API 0.32 0.66 

214 AMSR-E CDFM ND Constant NOAH 0.59 0.66 

215 AMSR-E CDFM ND Constant WASM 0.66 0.66 

216 AMSR-E CDFM ND TV ASCAT 0.7 0.48 

217 AMSR-E CDFM ND TV AMSR-E 1 0.65 

218 AMSR-E CDFM ND TV API 0.6 0.48 

219 AMSR-E CDFM ND TV NOAH 0.73 0.68 

220 AMSR-E CDFM ND TV WASM 0.74 0.74 

221 AMSR-E CDFM SA Constant ASCAT 0.42 0.65 

222 AMSR-E CDFM SA Constant AMSR-E 1 0.65 

223 AMSR-E CDFM SA Constant API 0.17 0.5 

224 AMSR-E CDFM SA Constant NOAH 0.6 0.62 

225 AMSR-E CDFM SA Constant WASM 0.61 0.61 

226 AMSR-E CDFM SA TV ASCAT 0.7 0.49 

227 AMSR-E CDFM SA TV AMSR-E 1 0.65 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

228 AMSR-E CDFM SA TV API 0.61 0.49 

229 AMSR-E CDFM SA TV NOAH 0.73 0.7 

230 AMSR-E CDFM SA TV WASM 0.75 0.75 

231 AMSR-E CDFM SD Constant ASCAT 0.41 0.66 

232 AMSR-E CDFM SD Constant AMSR-E 1 0.65 

233 AMSR-E CDFM SD Constant API 0.26 0.6 

234 AMSR-E CDFM SD Constant NOAH 0.6 0.66 

235 AMSR-E CDFM SD Constant WASM 0.67 0.67 

236 AMSR-E CDFM SD TV ASCAT 0.74 0.55 

237 AMSR-E CDFM SD TV AMSR-E 1 0.65 

238 AMSR-E CDFM SD TV API 0.61 0.54 

239 AMSR-E CDFM SD TV NOAH 0.79 0.72 

240 AMSR-E CDFM SD TV WASM 0.8 0.8 

241 AMSR-E MAR ND Constant ASCAT 0.56 0.46 

242 AMSR-E MAR ND Constant AMSR-E 1 0.65 

243 AMSR-E MAR ND Constant API 0.35 0.61 

244 AMSR-E MAR ND Constant NOAH 0.62 0.66 

245 AMSR-E MAR ND Constant WASM 0.68 0.68 

246 AMSR-E MAR ND TV ASCAT 0.83 0.54 

247 AMSR-E MAR ND TV AMSR-E 1 0.65 

248 AMSR-E MAR ND TV API 0.68 0.58 

249 AMSR-E MAR ND TV NOAH 0.78 0.72 

250 AMSR-E MAR ND TV WASM 0.82 0.82 

251 AMSR-E MAR SA Constant ASCAT 0.71 0.52 

252 AMSR-E MAR SA Constant AMSR-E 1 0.65 

253 AMSR-E MAR SA Constant API 0.57 0.57 

254 AMSR-E MAR SA Constant NOAH 0.68 0.68 

255 AMSR-E MAR SA Constant WASM 0.73 0.73 

256 AMSR-E MAR SA TV ASCAT 0.83 0.53 

257 AMSR-E MAR SA TV AMSR-E 1 0.65 

258 AMSR-E MAR SA TV API 0.69 0.57 

259 AMSR-E MAR SA TV NOAH 0.78 0.72 

260 AMSR-E MAR SA TV WASM 0.83 0.83 

261 AMSR-E MAR SD Constant ASCAT 0.64 0.5 

262 AMSR-E MAR SD Constant AMSR-E 1 0.65 

263 AMSR-E MAR SD Constant API 0.46 0.58 

264 AMSR-E MAR SD Constant NOAH 0.66 0.68 

265 AMSR-E MAR SD Constant WASM 0.71 0.71 

266 AMSR-E MAR SD TV ASCAT 0.84 0.58 
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267 AMSR-E MAR SD TV AMSR-E 1 0.65 

268 AMSR-E MAR SD TV API 0.74 0.6 

269 AMSR-E MAR SD TV NOAH 0.84 0.74 

270 AMSR-E MAR SD TV WASM 0.87 0.87 

271 AMSR-E SVM ND Constant ASCAT 0.57 0.4 

272 AMSR-E SVM ND Constant AMSR-E 1 0.65 

273 AMSR-E SVM ND Constant API 0.33 0.54 

274 AMSR-E SVM ND Constant NOAH 0.62 0.66 

275 AMSR-E SVM ND Constant WASM 0.68 0.68 

276 AMSR-E SVM ND TV ASCAT 0.82 0.52 

277 AMSR-E SVM ND TV AMSR-E 0.99 0.65 

278 AMSR-E SVM ND TV API 0.7 0.56 

279 AMSR-E SVM ND TV NOAH 0.78 0.71 

280 AMSR-E SVM ND TV WASM 0.82 0.82 

281 AMSR-E SVM SA Constant ASCAT 0.69 0.49 

282 AMSR-E SVM SA Constant AMSR-E 0.99 0.65 

283 AMSR-E SVM SA Constant API 0.55 0.53 

284 AMSR-E SVM SA Constant NOAH 0.68 0.68 

285 AMSR-E SVM SA Constant WASM 0.72 0.72 

286 AMSR-E SVM SA TV ASCAT 0.82 0.52 

287 AMSR-E SVM SA TV AMSR-E 0.99 0.66 

288 AMSR-E SVM SA TV API 0.7 0.56 

289 AMSR-E SVM SA TV NOAH 0.79 0.72 

290 AMSR-E SVM SA TV WASM 0.83 0.83 

291 AMSR-E SVM SD Constant ASCAT 0.62 0.42 

292 AMSR-E SVM SD Constant AMSR-E 1 0.65 

293 AMSR-E SVM SD Constant API 0.4 0.51 

294 AMSR-E SVM SD Constant NOAH 0.66 0.68 

295 AMSR-E SVM SD Constant WASM 0.7 0.7 

296 AMSR-E SVM SD TV ASCAT 0.84 0.55 

297 AMSR-E SVM SD TV AMSR-E 0.99 0.66 

298 AMSR-E SVM SD TV API 0.73 0.6 

299 AMSR-E SVM SD TV NOAH 0.84 0.73 

300 AMSR-E SVM SD TV WASM 0.85 0.85 

301 API REG ND Constant ASCAT 0.51 0.57 

302 API REG ND Constant AMSR-E 0.32 0.57 

303 API REG ND Constant API 1 0.57 

304 API REG ND Constant NOAH 0.45 0.57 

305 API REG ND Constant WASM 0.57 0.57 
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306 API REG ND TV ASCAT 0.75 0.55 

307 API REG ND TV AMSR-E 0.8 0.62 

308 API REG ND TV API 1 0.57 

309 API REG ND TV NOAH 0.75 0.73 

310 API REG ND TV WASM 0.82 0.82 

311 API REG SA Constant ASCAT 0.52 0.6 

312 API REG SA Constant AMSR-E 0.44 0.52 

313 API REG SA Constant API 1 0.57 

314 API REG SA Constant NOAH 0.5 0.61 

315 API REG SA Constant WASM 0.61 0.61 

316 API REG SA TV ASCAT 0.75 0.55 

317 API REG SA TV AMSR-E 0.81 0.62 

318 API REG SA TV API 1 0.57 

319 API REG SA TV NOAH 0.76 0.74 

320 API REG SA TV WASM 0.82 0.82 

321 API REG SD Constant ASCAT 0.52 0.58 

322 API REG SD Constant AMSR-E 0.33 0.56 

323 API REG SD Constant API 1 0.57 

324 API REG SD Constant NOAH 0.48 0.59 

325 API REG SD Constant WASM 0.59 0.59 

326 API REG SD TV ASCAT 0.76 0.55 

327 API REG SD TV AMSR-E 0.81 0.62 

328 API REG SD TV API 1 0.57 

329 API REG SD TV NOAH 0.78 0.74 

330 API REG SD TV WASM 0.82 0.82 

331 API VAR ND Constant ASCAT 0.51 0.57 

332 API VAR ND Constant AMSR-E 0.32 0.57 

333 API VAR ND Constant API 1 0.57 

334 API VAR ND Constant NOAH 0.45 0.57 

335 API VAR ND Constant WASM 0.57 0.57 

336 API VAR ND TV ASCAT 0.7 0.58 

337 API VAR ND TV AMSR-E 0.74 0.66 

338 API VAR ND TV API 1 0.57 

339 API VAR ND TV NOAH 0.7 0.72 

340 API VAR ND TV WASM 0.78 0.78 

341 API VAR SA Constant ASCAT 0.52 0.59 

342 API VAR SA Constant AMSR-E 0.28 0.53 

343 API VAR SA Constant API 1 0.57 

344 API VAR SA Constant NOAH 0.49 0.6 
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345 API VAR SA Constant WASM 0.58 0.58 

346 API VAR SA TV ASCAT 0.7 0.58 

347 API VAR SA TV AMSR-E 0.74 0.65 

348 API VAR SA TV API 1 0.57 

349 API VAR SA TV NOAH 0.7 0.72 

350 API VAR SA TV WASM 0.78 0.78 

351 API VAR SD Constant ASCAT 0.51 0.56 

352 API VAR SD Constant AMSR-E 0.32 0.57 

353 API VAR SD Constant API 1 0.57 

354 API VAR SD Constant NOAH 0.48 0.58 

355 API VAR SD Constant WASM 0.58 0.58 

356 API VAR SD TV ASCAT 0.7 0.56 

357 API VAR SD TV AMSR-E 0.73 0.65 

358 API VAR SD TV API 1 0.57 

359 API VAR SD TV NOAH 0.72 0.73 

360 API VAR SD TV WASM 0.79 0.79 

361 API CDFM ND Constant ASCAT 0.32 0.41 

362 API CDFM ND Constant AMSR-E 0.19 0.32 

363 API CDFM ND Constant API 1 0.57 

364 API CDFM ND Constant NOAH 0.48 0.58 

365 API CDFM ND Constant WASM 0.56 0.56 

366 API CDFM ND TV ASCAT 0.6 0.52 

367 API CDFM ND TV AMSR-E 0.7 0.61 

368 API CDFM ND TV API 1 0.57 

369 API CDFM ND TV NOAH 0.73 0.74 

370 API CDFM ND TV WASM 0.81 0.81 

371 API CDFM SA Constant ASCAT 0.37 0.42 

372 API CDFM SA Constant AMSR-E 0.19 0.32 

373 API CDFM SA Constant API 1 0.57 

374 API CDFM SA Constant NOAH 0.5 0.6 

375 API CDFM SA Constant WASM 0.58 0.58 

376 API CDFM SA TV ASCAT 0.61 0.5 

377 API CDFM SA TV AMSR-E 0.72 0.59 

378 API CDFM SA TV API 1 0.57 

379 API CDFM SA TV NOAH 0.72 0.73 

380 API CDFM SA TV WASM 0.8 0.8 

381 API CDFM SD Constant ASCAT 0.36 0.44 

382 API CDFM SD Constant AMSR-E 0.21 0.4 

383 API CDFM SD Constant API 1 0.57 
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384 API CDFM SD Constant NOAH 0.5 0.6 

385 API CDFM SD Constant WASM 0.58 0.58 

386 API CDFM SD TV ASCAT 0.64 0.5 

387 API CDFM SD TV AMSR-E 0.78 0.62 

388 API CDFM SD TV API 1 0.57 

389 API CDFM SD TV NOAH 0.73 0.74 

390 API CDFM SD TV WASM 0.82 0.82 

391 API MAR ND Constant ASCAT 0.56 0.58 

392 API MAR ND Constant AMSR-E 0.38 0.54 

393 API MAR ND Constant API 1 0.57 

394 API MAR ND Constant NOAH 0.49 0.6 

395 API MAR ND Constant WASM 0.62 0.62 

396 API MAR ND TV ASCAT 0.78 0.55 

397 API MAR ND TV AMSR-E 0.83 0.64 

398 API MAR ND TV API 1 0.57 

399 API MAR ND TV NOAH 0.8 0.74 

400 API MAR ND TV WASM 0.86 0.86 

401 API MAR SA Constant ASCAT 0.66 0.59 

402 API MAR SA Constant AMSR-E 0.64 0.55 

403 API MAR SA Constant API 1 0.57 

404 API MAR SA Constant NOAH 0.6 0.69 

405 API MAR SA Constant WASM 0.72 0.72 

406 API MAR SA TV ASCAT 0.78 0.54 

407 API MAR SA TV AMSR-E 0.84 0.63 

408 API MAR SA TV API 1 0.57 

409 API MAR SA TV NOAH 0.8 0.74 

410 API MAR SA TV WASM 0.86 0.86 

411 API MAR SD Constant ASCAT 0.58 0.59 

412 API MAR SD Constant AMSR-E 0.42 0.53 

413 API MAR SD Constant API 1 0.57 

414 API MAR SD Constant NOAH 0.52 0.6 

415 API MAR SD Constant WASM 0.64 0.64 

416 API MAR SD TV ASCAT 0.79 0.56 

417 API MAR SD TV AMSR-E 0.84 0.64 

418 API MAR SD TV API 1 0.57 

419 API MAR SD TV NOAH 0.82 0.74 

420 API MAR SD TV WASM 0.87 0.87 

421 API SVM ND Constant ASCAT 0.56 0.57 

422 API SVM ND Constant AMSR-E 0.38 0.54 
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423 API SVM ND Constant API 1 0.58 

424 API SVM ND Constant NOAH 0.49 0.6 

425 API SVM ND Constant WASM 0.62 0.62 

426 API SVM ND TV ASCAT 0.78 0.51 

427 API SVM ND TV AMSR-E 0.83 0.64 

428 API SVM ND TV API 1 0.57 

429 API SVM ND TV NOAH 0.79 0.73 

430 API SVM ND TV WASM 0.84 0.84 

431 API SVM SA Constant ASCAT 0.64 0.58 

432 API SVM SA Constant AMSR-E 0.63 0.53 

433 API SVM SA Constant API 1 0.58 

434 API SVM SA Constant NOAH 0.59 0.69 

435 API SVM SA Constant WASM 0.72 0.72 

436 API SVM SA TV ASCAT 0.78 0.5 

437 API SVM SA TV AMSR-E 0.83 0.64 

438 API SVM SA TV API 1 0.57 

439 API SVM SA TV NOAH 0.8 0.72 

440 API SVM SA TV WASM 0.85 0.85 

441 API SVM SD Constant ASCAT 0.58 0.58 

442 API SVM SD Constant AMSR-E 0.4 0.48 

443 API SVM SD Constant API 1 0.58 

444 API SVM SD Constant NOAH 0.52 0.6 

445 API SVM SD Constant WASM 0.63 0.63 

446 API SVM SD TV ASCAT 0.78 0.53 

447 API SVM SD TV AMSR-E 0.84 0.64 

448 API SVM SD TV API 0.99 0.58 

449 API SVM SD TV NOAH 0.81 0.73 

450 API SVM SD TV WASM 0.86 0.86 

451 NOAH REG ND Constant ASCAT 0.48 0.7 

452 NOAH REG ND Constant AMSR-E 0.58 0.7 

453 NOAH REG ND Constant API 0.45 0.7 

454 NOAH REG ND Constant NOAH 1 0.7 

455 NOAH REG ND Constant WASM 0.7 0.7 

456 NOAH REG ND TV ASCAT 0.75 0.53 

457 NOAH REG ND TV AMSR-E 0.82 0.64 

458 NOAH REG ND TV API 0.72 0.55 

459 NOAH REG ND TV NOAH 1 0.7 

460 NOAH REG ND TV WASM 0.8 0.8 

461 NOAH REG SA Constant ASCAT 0.54 0.55 
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462 NOAH REG SA Constant AMSR-E 0.65 0.69 

463 NOAH REG SA Constant API 0.47 0.62 

464 NOAH REG SA Constant NOAH 1 0.7 

465 NOAH REG SA Constant WASM 0.72 0.72 

466 NOAH REG SA TV ASCAT 0.76 0.52 

467 NOAH REG SA TV AMSR-E 0.82 0.64 

468 NOAH REG SA TV API 0.73 0.55 

469 NOAH REG SA TV NOAH 1 0.7 

470 NOAH REG SA TV WASM 0.81 0.81 

471 NOAH REG SD Constant ASCAT 0.53 0.66 

472 NOAH REG SD Constant AMSR-E 0.58 0.7 

473 NOAH REG SD Constant API 0.46 0.7 

474 NOAH REG SD Constant NOAH 1 0.7 

475 NOAH REG SD Constant WASM 0.7 0.7 

476 NOAH REG SD TV ASCAT 0.76 0.52 

477 NOAH REG SD TV AMSR-E 0.82 0.64 

478 NOAH REG SD TV API 0.73 0.56 

479 NOAH REG SD TV NOAH 1 0.7 

480 NOAH REG SD TV WASM 0.81 0.81 

481 NOAH VAR ND Constant ASCAT 0.48 0.7 

482 NOAH VAR ND Constant AMSR-E 0.58 0.7 

483 NOAH VAR ND Constant API 0.45 0.7 

484 NOAH VAR ND Constant NOAH 1 0.7 

485 NOAH VAR ND Constant WASM 0.7 0.7 

486 NOAH VAR ND TV ASCAT 0.7 0.57 

487 NOAH VAR ND TV AMSR-E 0.77 0.66 

488 NOAH VAR ND TV API 0.67 0.56 

489 NOAH VAR ND TV NOAH 1 0.7 

490 NOAH VAR ND TV WASM 0.77 0.77 

491 NOAH VAR SA Constant ASCAT 0.48 0.7 

492 NOAH VAR SA Constant AMSR-E 0.63 0.69 

493 NOAH VAR SA Constant API 0.46 0.64 

494 NOAH VAR SA Constant NOAH 1 0.7 

495 NOAH VAR SA Constant WASM 0.7 0.7 

496 NOAH VAR SA TV ASCAT 0.7 0.56 

497 NOAH VAR SA TV AMSR-E 0.77 0.66 

498 NOAH VAR SA TV API 0.68 0.56 

499 NOAH VAR SA TV NOAH 1 0.7 

500 NOAH VAR SA TV WASM 0.78 0.78 
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501 NOAH VAR SD Constant ASCAT 0.51 0.67 

502 NOAH VAR SD Constant AMSR-E 0.57 0.68 

503 NOAH VAR SD Constant API 0.46 0.68 

504 NOAH VAR SD Constant NOAH 1 0.7 

505 NOAH VAR SD Constant WASM 0.7 0.7 

506 NOAH VAR SD TV ASCAT 0.71 0.55 

507 NOAH VAR SD TV AMSR-E 0.76 0.65 

508 NOAH VAR SD TV API 0.68 0.56 

509 NOAH VAR SD TV NOAH 1 0.7 

510 NOAH VAR SD TV WASM 0.78 0.78 

511 NOAH CDFM ND Constant ASCAT 0.32 0.58 

512 NOAH CDFM ND Constant AMSR-E 0.56 0.51 

513 NOAH CDFM ND Constant API 0.46 0.64 

514 NOAH CDFM ND Constant NOAH 1 0.7 

515 NOAH CDFM ND Constant WASM 0.7 0.7 

516 NOAH CDFM ND TV ASCAT 0.61 0.48 

517 NOAH CDFM ND TV AMSR-E 0.72 0.57 

518 NOAH CDFM ND TV API 0.69 0.54 

519 NOAH CDFM ND TV NOAH 1 0.7 

520 NOAH CDFM ND TV WASM 0.78 0.78 

521 NOAH CDFM SA Constant ASCAT 0.34 0.6 

522 NOAH CDFM SA Constant AMSR-E 0.6 0.53 

523 NOAH CDFM SA Constant API 0.47 0.59 

524 NOAH CDFM SA Constant NOAH 1 0.7 

525 NOAH CDFM SA Constant WASM 0.7 0.7 

526 NOAH CDFM SA TV ASCAT 0.61 0.49 

527 NOAH CDFM SA TV AMSR-E 0.72 0.57 

528 NOAH CDFM SA TV API 0.69 0.54 

529 NOAH CDFM SA TV NOAH 1 0.7 

530 NOAH CDFM SA TV WASM 0.79 0.79 

531 NOAH CDFM SD Constant ASCAT 0.35 0.64 

532 NOAH CDFM SD Constant AMSR-E 0.6 0.6 

533 NOAH CDFM SD Constant API 0.47 0.64 

534 NOAH CDFM SD Constant NOAH 1 0.7 

535 NOAH CDFM SD Constant WASM 0.71 0.71 

536 NOAH CDFM SD TV ASCAT 0.66 0.51 

537 NOAH CDFM SD TV AMSR-E 0.76 0.62 

538 NOAH CDFM SD TV API 0.7 0.56 

539 NOAH CDFM SD TV NOAH 1 0.7 
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540 NOAH CDFM SD TV WASM 0.8 0.8 

541 NOAH MAR ND Constant ASCAT 0.58 0.62 

542 NOAH MAR ND Constant AMSR-E 0.65 0.66 

543 NOAH MAR ND Constant API 0.55 0.66 

544 NOAH MAR ND Constant NOAH 1 0.7 

545 NOAH MAR ND Constant WASM 0.73 0.73 

546 NOAH MAR ND TV ASCAT 0.79 0.53 

547 NOAH MAR ND TV AMSR-E 0.83 0.64 

548 NOAH MAR ND TV API 0.77 0.56 

549 NOAH MAR ND TV NOAH 1 0.7 

550 NOAH MAR ND TV WASM 0.84 0.84 

551 NOAH MAR SA Constant ASCAT 0.63 0.48 

552 NOAH MAR SA Constant AMSR-E 0.72 0.65 

553 NOAH MAR SA Constant API 0.58 0.56 

554 NOAH MAR SA Constant NOAH 1 0.7 

555 NOAH MAR SA Constant WASM 0.74 0.74 

556 NOAH MAR SA TV ASCAT 0.79 0.52 

557 NOAH MAR SA TV AMSR-E 0.84 0.62 

558 NOAH MAR SA TV API 0.77 0.56 

559 NOAH MAR SA TV NOAH 1 0.7 

560 NOAH MAR SA TV WASM 0.84 0.84 

561 NOAH MAR SD Constant ASCAT 0.6 0.6 

562 NOAH MAR SD Constant AMSR-E 0.66 0.66 

563 NOAH MAR SD Constant API 0.57 0.68 

564 NOAH MAR SD Constant NOAH 1 0.7 

565 NOAH MAR SD Constant WASM 0.74 0.74 

566 NOAH MAR SD TV ASCAT 0.81 0.54 

567 NOAH MAR SD TV AMSR-E 0.86 0.64 

568 NOAH MAR SD TV API 0.81 0.58 

569 NOAH MAR SD TV NOAH 1 0.7 

570 NOAH MAR SD TV WASM 0.87 0.87 

571 NOAH SVM ND Constant ASCAT 0.58 0.58 

572 NOAH SVM ND Constant AMSR-E 0.64 0.66 

573 NOAH SVM ND Constant API 0.52 0.65 

574 NOAH SVM ND Constant NOAH 1 0.7 

575 NOAH SVM ND Constant WASM 0.73 0.73 

576 NOAH SVM ND TV ASCAT 0.78 0.5 

577 NOAH SVM ND TV AMSR-E 0.83 0.65 

578 NOAH SVM ND TV API 0.74 0.53 
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579 NOAH SVM ND TV NOAH 1 0.7 

580 NOAH SVM ND TV WASM 0.83 0.83 

581 NOAH SVM SA Constant ASCAT 0.62 0.4 

582 NOAH SVM SA Constant AMSR-E 0.71 0.63 

583 NOAH SVM SA Constant API 0.55 0.53 

584 NOAH SVM SA Constant NOAH 1 0.7 

585 NOAH SVM SA Constant WASM 0.74 0.74 

586 NOAH SVM SA TV ASCAT 0.79 0.5 

587 NOAH SVM SA TV AMSR-E 0.84 0.64 

588 NOAH SVM SA TV API 0.76 0.52 

589 NOAH SVM SA TV NOAH 1 0.7 

590 NOAH SVM SA TV WASM 0.84 0.84 

591 NOAH SVM SD Constant ASCAT 0.58 0.56 

592 NOAH SVM SD Constant AMSR-E 0.66 0.66 

593 NOAH SVM SD Constant API 0.54 0.68 

594 NOAH SVM SD Constant NOAH 1 0.7 

595 NOAH SVM SD Constant WASM 0.73 0.73 

596 NOAH SVM SD TV ASCAT 0.8 0.51 

597 NOAH SVM SD TV AMSR-E 0.85 0.64 

598 NOAH SVM SD TV API 0.78 0.56 

599 NOAH SVM SD TV NOAH 1 0.7 

600 NOAH SVM SD TV WASM 0.85 0.85 

601 WASM REG ND Constant ASCAT 0.54 1 

602 WASM REG ND Constant AMSR-E 0.65 1 

603 WASM REG ND Constant API 0.57 1 

604 WASM REG ND Constant NOAH 0.7 1 

605 WASM REG ND Constant WASM 1 1 

606 WASM REG ND TV ASCAT 0.77 0.71 

607 WASM REG ND TV AMSR-E 0.84 0.77 

608 WASM REG ND TV API 0.77 0.74 

609 WASM REG ND TV NOAH 0.79 0.89 

610 WASM REG ND TV WASM 1 1 

611 WASM REG SA Constant ASCAT 0.6 0.9 

612 WASM REG SA Constant AMSR-E 0.7 0.94 

613 WASM REG SA Constant API 0.63 0.93 

614 WASM REG SA Constant NOAH 0.73 0.97 

615 WASM REG SA Constant WASM 1 1 

616 WASM REG SA TV ASCAT 0.78 0.7 

617 WASM REG SA TV AMSR-E 0.84 0.77 
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618 WASM REG SA TV API 0.78 0.74 

619 WASM REG SA TV NOAH 0.8 0.88 

620 WASM REG SA TV WASM 1 1 

621 WASM REG SD Constant ASCAT 0.57 0.96 

622 WASM REG SD Constant AMSR-E 0.66 0.99 

623 WASM REG SD Constant API 0.58 1 

624 WASM REG SD Constant NOAH 0.72 0.99 

625 WASM REG SD Constant WASM 1 1 

626 WASM REG SD TV ASCAT 0.78 0.7 

627 WASM REG SD TV AMSR-E 0.84 0.76 

628 WASM REG SD TV API 0.78 0.74 

629 WASM REG SD TV NOAH 0.81 0.88 

630 WASM REG SD TV WASM 1 1 

631 WASM VAR ND Constant ASCAT 0.54 1 

632 WASM VAR ND Constant AMSR-E 0.65 1 

633 WASM VAR ND Constant API 0.57 1 

634 WASM VAR ND Constant NOAH 0.7 1 

635 WASM VAR ND Constant WASM 1 1 

636 WASM VAR ND TV ASCAT 0.72 0.81 

637 WASM VAR ND TV AMSR-E 0.8 0.85 

638 WASM VAR ND TV API 0.73 0.81 

639 WASM VAR ND TV NOAH 0.76 0.93 

640 WASM VAR ND TV WASM 1 1 

641 WASM VAR SA Constant ASCAT 0.54 1 

642 WASM VAR SA Constant AMSR-E 0.68 0.97 

643 WASM VAR SA Constant API 0.61 0.96 

644 WASM VAR SA Constant NOAH 0.71 0.99 

645 WASM VAR SA Constant WASM 1 1 

646 WASM VAR SA TV ASCAT 0.72 0.8 

647 WASM VAR SA TV AMSR-E 0.8 0.85 

648 WASM VAR SA TV API 0.73 0.8 

649 WASM VAR SA TV NOAH 0.76 0.92 

650 WASM VAR SA TV WASM 1 1 

651 WASM VAR SD Constant ASCAT 0.55 0.98 

652 WASM VAR SD Constant AMSR-E 0.64 1 

653 WASM VAR SD Constant API 0.58 1 

654 WASM VAR SD Constant NOAH 0.71 1 

655 WASM VAR SD Constant WASM 1 1 

656 WASM VAR SD TV ASCAT 0.73 0.79 
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657 WASM VAR SD TV AMSR-E 0.8 0.85 

658 WASM VAR SD TV API 0.73 0.8 

659 WASM VAR SD TV NOAH 0.76 0.92 

660 WASM VAR SD TV WASM 1 1 

661 WASM CDFM ND Constant ASCAT 0.34 0.97 

662 WASM CDFM ND Constant AMSR-E 0.61 0.96 

663 WASM CDFM ND Constant API 0.57 0.94 

664 WASM CDFM ND Constant NOAH 0.71 0.98 

665 WASM CDFM ND Constant WASM 1 1 

666 WASM CDFM ND TV ASCAT 0.61 0.7 

667 WASM CDFM ND TV AMSR-E 0.74 0.8 

668 WASM CDFM ND TV API 0.76 0.72 

669 WASM CDFM ND TV NOAH 0.76 0.89 

670 WASM CDFM ND TV WASM 1 1 

671 WASM CDFM SA Constant ASCAT 0.42 0.92 

672 WASM CDFM SA Constant AMSR-E 0.59 0.87 

673 WASM CDFM SA Constant API 0.64 0.94 

674 WASM CDFM SA Constant NOAH 0.73 0.97 

675 WASM CDFM SA Constant WASM 1 1 

676 WASM CDFM SA TV ASCAT 0.63 0.7 

677 WASM CDFM SA TV AMSR-E 0.72 0.78 

678 WASM CDFM SA TV API 0.76 0.72 

679 WASM CDFM SA TV NOAH 0.76 0.89 

680 WASM CDFM SA TV WASM 1 1 

681 WASM CDFM SD Constant ASCAT 0.37 0.91 

682 WASM CDFM SD Constant AMSR-E 0.64 0.92 

683 WASM CDFM SD Constant API 0.56 0.96 

684 WASM CDFM SD Constant NOAH 0.71 0.98 

685 WASM CDFM SD Constant WASM 1 1 

686 WASM CDFM SD TV ASCAT 0.65 0.67 

687 WASM CDFM SD TV AMSR-E 0.76 0.78 

688 WASM CDFM SD TV API 0.75 0.74 

689 WASM CDFM SD TV NOAH 0.76 0.89 

690 WASM CDFM SD TV WASM 1 1 

691 WASM MAR ND Constant ASCAT 0.6 0.89 

692 WASM MAR ND Constant AMSR-E 0.72 0.9 

693 WASM MAR ND Constant API 0.66 0.87 

694 WASM MAR ND Constant NOAH 0.73 0.97 

695 WASM MAR ND Constant WASM 1 1 
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696 WASM MAR ND TV ASCAT 0.8 0.66 

697 WASM MAR ND TV AMSR-E 0.86 0.74 

698 WASM MAR ND TV API 0.82 0.69 

699 WASM MAR ND TV NOAH 0.82 0.86 

700 WASM MAR ND TV WASM 1 1 

701 WASM MAR SA Constant ASCAT 0.68 0.8 

702 WASM MAR SA Constant AMSR-E 0.78 0.84 

703 WASM MAR SA Constant API 0.73 0.8 

704 WASM MAR SA Constant NOAH 0.76 0.94 

705 WASM MAR SA Constant WASM 1 1 

706 WASM MAR SA TV ASCAT 0.8 0.66 

707 WASM MAR SA TV AMSR-E 0.86 0.75 

708 WASM MAR SA TV API 0.82 0.69 

709 WASM MAR SA TV NOAH 0.82 0.85 

710 WASM MAR SA TV WASM 1 1 

711 WASM MAR SD Constant ASCAT 0.64 0.87 

712 WASM MAR SD Constant AMSR-E 0.73 0.9 

713 WASM MAR SD Constant API 0.68 0.86 

714 WASM MAR SD Constant NOAH 0.74 0.96 

715 WASM MAR SD Constant WASM 1 1 

716 WASM MAR SD TV ASCAT 0.82 0.68 

717 WASM MAR SD TV AMSR-E 0.87 0.74 

718 WASM MAR SD TV API 0.84 0.7 

719 WASM MAR SD TV NOAH 0.85 0.84 

720 WASM MAR SD TV WASM 1 1 

721 WASM SVM ND Constant ASCAT 0.6 0.84 

722 WASM SVM ND Constant AMSR-E 0.71 0.9 

723 WASM SVM ND Constant API 0.65 0.85 

724 WASM SVM ND Constant NOAH 0.73 0.96 

725 WASM SVM ND Constant WASM 1 1 

726 WASM SVM ND TV ASCAT 0.8 0.63 

727 WASM SVM ND TV AMSR-E 0.86 0.74 

728 WASM SVM ND TV API 0.8 0.67 

729 WASM SVM ND TV NOAH 0.82 0.84 

730 WASM SVM ND TV WASM 1 1 

731 WASM SVM SA Constant ASCAT 0.66 0.77 

732 WASM SVM SA Constant AMSR-E 0.78 0.82 

733 WASM SVM SA Constant API 0.71 0.8 

734 WASM SVM SA Constant NOAH 0.75 0.94 
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ID 
Unscaled 

Product 

Rescalin

g Method 

Rescaling 

Technique 

Application 

Style 
Ref 

Cor 
(Ref) 

Cor 
(WASM) 

735 WASM SVM SA Constant WASM 1 1 

736 WASM SVM SA TV ASCAT 0.81 0.64 

737 WASM SVM SA TV AMSR-E 0.86 0.75 

738 WASM SVM SA TV API 0.81 0.68 

739 WASM SVM SA TV NOAH 0.82 0.84 

740 WASM SVM SA TV WASM 1 1 

741 WASM SVM SD Constant ASCAT 0.62 0.83 

742 WASM SVM SD Constant AMSR-E 0.73 0.9 

743 WASM SVM SD Constant API 0.66 0.86 

744 WASM SVM SD Constant NOAH 0.74 0.96 

745 WASM SVM SD Constant WASM 1 1 

746 WASM SVM SD TV ASCAT 0.8 0.64 

747 WASM SVM SD TV AMSR-E 0.86 0.74 

748 WASM SVM SD TV API 0.82 0.68 

749 WASM SVM SD TV NOAH 0.84 0.83 

750 WASM SVM SD TV WASM 1 1 
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B. Comparison of the impact of rescaling approaches over the accuracy of fused 

products (results are averages over four watersheds) 

ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

1 ASCAT AMSR-E REG ND Constant ASCAT 0.62 

2 ASCAT AMSR-E REG ND Constant AMSR-E 0.71 

3 ASCAT AMSR-E REG ND Constant API 0.69 

4 ASCAT AMSR-E REG ND Constant NOAH 0.74 

5 ASCAT AMSR-E REG ND Constant WASM 0.74 

6 ASCAT AMSR-E REG ND TV ASCAT 0.59 

7 ASCAT AMSR-E REG ND TV AMSR-E 0.66 

8 ASCAT AMSR-E REG ND TV API 0.61 

9 ASCAT AMSR-E REG ND TV NOAH 0.75 

10 ASCAT AMSR-E REG ND TV WASM 0.81 

11 ASCAT AMSR-E REG SA Constant ASCAT 0.58 

12 ASCAT AMSR-E REG SA Constant AMSR-E 0.69 

13 ASCAT AMSR-E REG SA Constant API 0.65 

14 ASCAT AMSR-E REG SA Constant NOAH 0.72 

15 ASCAT AMSR-E REG SA Constant WASM 0.75 

16 ASCAT AMSR-E REG SA TV ASCAT 0.58 

17 ASCAT AMSR-E REG SA TV AMSR-E 0.66 

18 ASCAT AMSR-E REG SA TV API 0.62 

19 ASCAT AMSR-E REG SA TV NOAH 0.75 

20 ASCAT AMSR-E REG SA TV WASM 0.83 

21 ASCAT AMSR-E REG SD Constant ASCAT 0.59 

22 ASCAT AMSR-E REG SD Constant AMSR-E 0.7 

23 ASCAT AMSR-E REG SD Constant API 0.7 

24 ASCAT AMSR-E REG SD Constant NOAH 0.78 

25 ASCAT AMSR-E REG SD Constant WASM 0.78 

26 ASCAT AMSR-E REG SD TV ASCAT 0.59 

27 ASCAT AMSR-E REG SD TV AMSR-E 0.66 

28 ASCAT AMSR-E REG SD TV API 0.63 

29 ASCAT AMSR-E REG SD TV NOAH 0.76 

30 ASCAT AMSR-E REG SD TV WASM 0.84 

31 ASCAT AMSR-E VAR ND Constant ASCAT 0.72 

32 ASCAT AMSR-E VAR ND Constant AMSR-E 0.72 

33 ASCAT AMSR-E VAR ND Constant API 0.72 

34 ASCAT AMSR-E VAR ND Constant NOAH 0.72 

35 ASCAT AMSR-E VAR ND Constant WASM 0.72 

36 ASCAT AMSR-E VAR ND TV ASCAT 0.61 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

37 ASCAT AMSR-E VAR ND TV AMSR-E 0.67 

38 ASCAT AMSR-E VAR ND TV API 0.63 

39 ASCAT AMSR-E VAR ND TV NOAH 0.74 

40 ASCAT AMSR-E VAR ND TV WASM 0.79 

41 ASCAT AMSR-E VAR SA Constant ASCAT 0.7 

42 ASCAT AMSR-E VAR SA Constant AMSR-E 0.71 

43 ASCAT AMSR-E VAR SA Constant API 0.69 

44 ASCAT AMSR-E VAR SA Constant NOAH 0.71 

45 ASCAT AMSR-E VAR SA Constant WASM 0.72 

46 ASCAT AMSR-E VAR SA TV ASCAT 0.6 

47 ASCAT AMSR-E VAR SA TV AMSR-E 0.68 

48 ASCAT AMSR-E VAR SA TV API 0.64 

49 ASCAT AMSR-E VAR SA TV NOAH 0.74 

50 ASCAT AMSR-E VAR SA TV WASM 0.8 

51 ASCAT AMSR-E VAR SD Constant ASCAT 0.7 

52 ASCAT AMSR-E VAR SD Constant AMSR-E 0.73 

53 ASCAT AMSR-E VAR SD Constant API 0.73 

54 ASCAT AMSR-E VAR SD Constant NOAH 0.76 

55 ASCAT AMSR-E VAR SD Constant WASM 0.75 

56 ASCAT AMSR-E VAR SD TV ASCAT 0.6 

57 ASCAT AMSR-E VAR SD TV AMSR-E 0.68 

58 ASCAT AMSR-E VAR SD TV API 0.65 

59 ASCAT AMSR-E VAR SD TV NOAH 0.76 

60 ASCAT AMSR-E VAR SD TV WASM 0.82 

61 ASCAT AMSR-E CDFM ND Constant ASCAT 0.7 

62 ASCAT AMSR-E CDFM ND Constant AMSR-E 0.59 

63 ASCAT AMSR-E CDFM ND Constant API 0.68 

64 ASCAT AMSR-E CDFM ND Constant NOAH 0.7 

65 ASCAT AMSR-E CDFM ND Constant WASM 0.69 

66 ASCAT AMSR-E CDFM ND TV ASCAT 0.56 

67 ASCAT AMSR-E CDFM ND TV AMSR-E 0.64 

68 ASCAT AMSR-E CDFM ND TV API 0.54 

69 ASCAT AMSR-E CDFM ND TV NOAH 0.72 

70 ASCAT AMSR-E CDFM ND TV WASM 0.77 

71 ASCAT AMSR-E CDFM SA Constant ASCAT 0.71 

72 ASCAT AMSR-E CDFM SA Constant AMSR-E 0.63 

73 ASCAT AMSR-E CDFM SA Constant API 0.66 

74 ASCAT AMSR-E CDFM SA Constant NOAH 0.69 

75 ASCAT AMSR-E CDFM SA Constant WASM 0.7 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

76 ASCAT AMSR-E CDFM SA TV ASCAT 0.57 

77 ASCAT AMSR-E CDFM SA TV AMSR-E 0.65 

78 ASCAT AMSR-E CDFM SA TV API 0.56 

79 ASCAT AMSR-E CDFM SA TV NOAH 0.73 

80 ASCAT AMSR-E CDFM SA TV WASM 0.79 

81 ASCAT AMSR-E CDFM SD Constant ASCAT 0.72 

82 ASCAT AMSR-E CDFM SD Constant AMSR-E 0.67 

83 ASCAT AMSR-E CDFM SD Constant API 0.69 

84 ASCAT AMSR-E CDFM SD Constant NOAH 0.74 

85 ASCAT AMSR-E CDFM SD Constant WASM 0.74 

86 ASCAT AMSR-E CDFM SD TV ASCAT 0.59 

87 ASCAT AMSR-E CDFM SD TV AMSR-E 0.65 

88 ASCAT AMSR-E CDFM SD TV API 0.62 

89 ASCAT AMSR-E CDFM SD TV NOAH 0.75 

90 ASCAT AMSR-E CDFM SD TV WASM 0.83 

91 ASCAT AMSR-E MAR ND Constant ASCAT 0.59 

92 ASCAT AMSR-E MAR ND Constant AMSR-E 0.7 

93 ASCAT AMSR-E MAR ND Constant API 0.68 

94 ASCAT AMSR-E MAR ND Constant NOAH 0.75 

95 ASCAT AMSR-E MAR ND Constant WASM 0.76 

96 ASCAT AMSR-E MAR ND TV ASCAT 0.58 

97 ASCAT AMSR-E MAR ND TV AMSR-E 0.66 

98 ASCAT AMSR-E MAR ND TV API 0.61 

99 ASCAT AMSR-E MAR ND TV NOAH 0.75 

100 ASCAT AMSR-E MAR ND TV WASM 0.84 

101 ASCAT AMSR-E MAR SA Constant ASCAT 0.59 

102 ASCAT AMSR-E MAR SA Constant AMSR-E 0.69 

103 ASCAT AMSR-E MAR SA Constant API 0.65 

104 ASCAT AMSR-E MAR SA Constant NOAH 0.75 

105 ASCAT AMSR-E MAR SA Constant WASM 0.79 

106 ASCAT AMSR-E MAR SA TV ASCAT 0.58 

107 ASCAT AMSR-E MAR SA TV AMSR-E 0.66 

108 ASCAT AMSR-E MAR SA TV API 0.61 

109 ASCAT AMSR-E MAR SA TV NOAH 0.76 

110 ASCAT AMSR-E MAR SA TV WASM 0.86 

111 ASCAT AMSR-E MAR SD Constant ASCAT 0.59 

112 ASCAT AMSR-E MAR SD Constant AMSR-E 0.68 

113 ASCAT AMSR-E MAR SD Constant API 0.69 

114 ASCAT AMSR-E MAR SD Constant NOAH 0.77 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

115 ASCAT AMSR-E MAR SD Constant WASM 0.79 

116 ASCAT AMSR-E MAR SD TV ASCAT 0.6 

117 ASCAT AMSR-E MAR SD TV AMSR-E 0.67 

118 ASCAT AMSR-E MAR SD TV API 0.62 

119 ASCAT AMSR-E MAR SD TV NOAH 0.75 

120 ASCAT AMSR-E MAR SD TV WASM 0.89 

121 ASCAT AMSR-E SVM ND Constant ASCAT 0.56 

122 ASCAT AMSR-E SVM ND Constant AMSR-E 0.7 

123 ASCAT AMSR-E SVM ND Constant API 0.64 

124 ASCAT AMSR-E SVM ND Constant NOAH 0.74 

125 ASCAT AMSR-E SVM ND Constant WASM 0.75 

126 ASCAT AMSR-E SVM ND TV ASCAT 0.57 

127 ASCAT AMSR-E SVM ND TV AMSR-E 0.66 

128 ASCAT AMSR-E SVM ND TV API 0.59 

129 ASCAT AMSR-E SVM ND TV NOAH 0.74 

130 ASCAT AMSR-E SVM ND TV WASM 0.84 

131 ASCAT AMSR-E SVM SA Constant ASCAT 0.58 

132 ASCAT AMSR-E SVM SA Constant AMSR-E 0.69 

133 ASCAT AMSR-E SVM SA Constant API 0.64 

134 ASCAT AMSR-E SVM SA Constant NOAH 0.74 

135 ASCAT AMSR-E SVM SA Constant WASM 0.78 

136 ASCAT AMSR-E SVM SA TV ASCAT 0.56 

137 ASCAT AMSR-E SVM SA TV AMSR-E 0.66 

138 ASCAT AMSR-E SVM SA TV API 0.6 

139 ASCAT AMSR-E SVM SA TV NOAH 0.74 

140 ASCAT AMSR-E SVM SA TV WASM 0.85 

141 ASCAT AMSR-E SVM SD Constant ASCAT 0.57 

142 ASCAT AMSR-E SVM SD Constant AMSR-E 0.67 

143 ASCAT AMSR-E SVM SD Constant API 0.65 

144 ASCAT AMSR-E SVM SD Constant NOAH 0.76 

145 ASCAT AMSR-E SVM SD Constant WASM 0.78 

146 ASCAT AMSR-E SVM SD TV ASCAT 0.58 

147 ASCAT AMSR-E SVM SD TV AMSR-E 0.67 

148 ASCAT AMSR-E SVM SD TV API 0.64 

149 ASCAT AMSR-E SVM SD TV NOAH 0.76 

150 ASCAT AMSR-E SVM SD TV WASM 0.87 

151 ASCAT API REG ND Constant ASCAT 0.63 

152 ASCAT API REG ND Constant AMSR-E 0.67 

153 ASCAT API REG ND Constant API 0.64 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

154 ASCAT API REG ND Constant NOAH 0.67 

155 ASCAT API REG ND Constant WASM 0.67 

156 ASCAT API REG ND TV ASCAT 0.58 

157 ASCAT API REG ND TV AMSR-E 0.64 

158 ASCAT API REG ND TV API 0.61 

159 ASCAT API REG ND TV NOAH 0.75 

160 ASCAT API REG ND TV WASM 0.83 

161 ASCAT API REG SA Constant ASCAT 0.64 

162 ASCAT API REG SA Constant AMSR-E 0.63 

163 ASCAT API REG SA Constant API 0.63 

164 ASCAT API REG SA Constant NOAH 0.71 

165 ASCAT API REG SA Constant WASM 0.71 

166 ASCAT API REG SA TV ASCAT 0.58 

167 ASCAT API REG SA TV AMSR-E 0.64 

168 ASCAT API REG SA TV API 0.61 

169 ASCAT API REG SA TV NOAH 0.76 

170 ASCAT API REG SA TV WASM 0.84 

171 ASCAT API REG SD Constant ASCAT 0.63 

172 ASCAT API REG SD Constant AMSR-E 0.68 

173 ASCAT API REG SD Constant API 0.64 

174 ASCAT API REG SD Constant NOAH 0.69 

175 ASCAT API REG SD Constant WASM 0.69 

176 ASCAT API REG SD TV ASCAT 0.58 

177 ASCAT API REG SD TV AMSR-E 0.65 

178 ASCAT API REG SD TV API 0.61 

179 ASCAT API REG SD TV NOAH 0.76 

180 ASCAT API REG SD TV WASM 0.85 

181 ASCAT API VAR ND Constant ASCAT 0.65 

182 ASCAT API VAR ND Constant AMSR-E 0.65 

183 ASCAT API VAR ND Constant API 0.65 

184 ASCAT API VAR ND Constant NOAH 0.65 

185 ASCAT API VAR ND Constant WASM 0.65 

186 ASCAT API VAR ND TV ASCAT 0.61 

187 ASCAT API VAR ND TV AMSR-E 0.68 

188 ASCAT API VAR ND TV API 0.61 

189 ASCAT API VAR ND TV NOAH 0.76 

190 ASCAT API VAR ND TV WASM 0.82 

191 ASCAT API VAR SA Constant ASCAT 0.65 

192 ASCAT API VAR SA Constant AMSR-E 0.58 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

193 ASCAT API VAR SA Constant API 0.63 

194 ASCAT API VAR SA Constant NOAH 0.67 

195 ASCAT API VAR SA Constant WASM 0.65 

196 ASCAT API VAR SA TV ASCAT 0.61 

197 ASCAT API VAR SA TV AMSR-E 0.68 

198 ASCAT API VAR SA TV API 0.61 

199 ASCAT API VAR SA TV NOAH 0.76 

200 ASCAT API VAR SA TV WASM 0.82 

201 ASCAT API VAR SD Constant ASCAT 0.64 

202 ASCAT API VAR SD Constant AMSR-E 0.64 

203 ASCAT API VAR SD Constant API 0.64 

204 ASCAT API VAR SD Constant NOAH 0.66 

205 ASCAT API VAR SD Constant WASM 0.66 

206 ASCAT API VAR SD TV ASCAT 0.6 

207 ASCAT API VAR SD TV AMSR-E 0.68 

208 ASCAT API VAR SD TV API 0.62 

209 ASCAT API VAR SD TV NOAH 0.77 

210 ASCAT API VAR SD TV WASM 0.83 

211 ASCAT API CDFM ND Constant ASCAT 0.51 

212 ASCAT API CDFM ND Constant AMSR-E 0.32 

213 ASCAT API CDFM ND Constant API 0.63 

214 ASCAT API CDFM ND Constant NOAH 0.64 

215 ASCAT API CDFM ND Constant WASM 0.63 

216 ASCAT API CDFM ND TV ASCAT 0.55 

217 ASCAT API CDFM ND TV AMSR-E 0.64 

218 ASCAT API CDFM ND TV API 0.6 

219 ASCAT API CDFM ND TV NOAH 0.76 

220 ASCAT API CDFM ND TV WASM 0.83 

221 ASCAT API CDFM SA Constant ASCAT 0.51 

222 ASCAT API CDFM SA Constant AMSR-E 0.33 

223 ASCAT API CDFM SA Constant API 0.64 

224 ASCAT API CDFM SA Constant NOAH 0.65 

225 ASCAT API CDFM SA Constant WASM 0.63 

226 ASCAT API CDFM SA TV ASCAT 0.55 

227 ASCAT API CDFM SA TV AMSR-E 0.61 

228 ASCAT API CDFM SA TV API 0.6 

229 ASCAT API CDFM SA TV NOAH 0.76 

230 ASCAT API CDFM SA TV WASM 0.84 

231 ASCAT API CDFM SD Constant ASCAT 0.55 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

232 ASCAT API CDFM SD Constant AMSR-E 0.39 

233 ASCAT API CDFM SD Constant API 0.63 

234 ASCAT API CDFM SD Constant NOAH 0.65 

235 ASCAT API CDFM SD Constant WASM 0.64 

236 ASCAT API CDFM SD TV ASCAT 0.55 

237 ASCAT API CDFM SD TV AMSR-E 0.64 

238 ASCAT API CDFM SD TV API 0.61 

239 ASCAT API CDFM SD TV NOAH 0.76 

240 ASCAT API CDFM SD TV WASM 0.85 

241 ASCAT API MAR ND Constant ASCAT 0.63 

242 ASCAT API MAR ND Constant AMSR-E 0.66 

243 ASCAT API MAR ND Constant API 0.64 

244 ASCAT API MAR ND Constant NOAH 0.7 

245 ASCAT API MAR ND Constant WASM 0.71 

246 ASCAT API MAR ND TV ASCAT 0.58 

247 ASCAT API MAR ND TV AMSR-E 0.65 

248 ASCAT API MAR ND TV API 0.61 

249 ASCAT API MAR ND TV NOAH 0.76 

250 ASCAT API MAR ND TV WASM 0.86 

251 ASCAT API MAR SA Constant ASCAT 0.61 

252 ASCAT API MAR SA Constant AMSR-E 0.65 

253 ASCAT API MAR SA Constant API 0.63 

254 ASCAT API MAR SA Constant NOAH 0.76 

255 ASCAT API MAR SA Constant WASM 0.78 

256 ASCAT API MAR SA TV ASCAT 0.58 

257 ASCAT API MAR SA TV AMSR-E 0.65 

258 ASCAT API MAR SA TV API 0.61 

259 ASCAT API MAR SA TV NOAH 0.77 

260 ASCAT API MAR SA TV WASM 0.87 

261 ASCAT API MAR SD Constant ASCAT 0.63 

262 ASCAT API MAR SD Constant AMSR-E 0.65 

263 ASCAT API MAR SD Constant API 0.64 

264 ASCAT API MAR SD Constant NOAH 0.71 

265 ASCAT API MAR SD Constant WASM 0.74 

266 ASCAT API MAR SD TV ASCAT 0.58 

267 ASCAT API MAR SD TV AMSR-E 0.66 

268 ASCAT API MAR SD TV API 0.61 

269 ASCAT API MAR SD TV NOAH 0.76 

270 ASCAT API MAR SD TV WASM 0.89 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

271 ASCAT API SVM ND Constant ASCAT 0.62 

272 ASCAT API SVM ND Constant AMSR-E 0.64 

273 ASCAT API SVM ND Constant API 0.64 

274 ASCAT API SVM ND Constant NOAH 0.69 

275 ASCAT API SVM ND Constant WASM 0.71 

276 ASCAT API SVM ND TV ASCAT 0.56 

277 ASCAT API SVM ND TV AMSR-E 0.65 

278 ASCAT API SVM ND TV API 0.59 

279 ASCAT API SVM ND TV NOAH 0.75 

280 ASCAT API SVM ND TV WASM 0.86 

281 ASCAT API SVM SA Constant ASCAT 0.61 

282 ASCAT API SVM SA Constant AMSR-E 0.64 

283 ASCAT API SVM SA Constant API 0.63 

284 ASCAT API SVM SA Constant NOAH 0.76 

285 ASCAT API SVM SA Constant WASM 0.78 

286 ASCAT API SVM SA TV ASCAT 0.55 

287 ASCAT API SVM SA TV AMSR-E 0.65 

288 ASCAT API SVM SA TV API 0.6 

289 ASCAT API SVM SA TV NOAH 0.75 

290 ASCAT API SVM SA TV WASM 0.87 

291 ASCAT API SVM SD Constant ASCAT 0.62 

292 ASCAT API SVM SD Constant AMSR-E 0.62 

293 ASCAT API SVM SD Constant API 0.64 

294 ASCAT API SVM SD Constant NOAH 0.7 

295 ASCAT API SVM SD Constant WASM 0.74 

296 ASCAT API SVM SD TV ASCAT 0.57 

297 ASCAT API SVM SD TV AMSR-E 0.66 

298 ASCAT API SVM SD TV API 0.61 

299 ASCAT API SVM SD TV NOAH 0.75 

300 ASCAT API SVM SD TV WASM 0.88 

301 ASCAT NOAH REG ND Constant ASCAT 0.64 

302 ASCAT NOAH REG ND Constant AMSR-E 0.74 

303 ASCAT NOAH REG ND Constant API 0.72 

304 ASCAT NOAH REG ND Constant NOAH 0.74 

305 ASCAT NOAH REG ND Constant WASM 0.74 

306 ASCAT NOAH REG ND TV ASCAT 0.57 

307 ASCAT NOAH REG ND TV AMSR-E 0.65 

308 ASCAT NOAH REG ND TV API 0.58 

309 ASCAT NOAH REG ND TV NOAH 0.75 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

310 ASCAT NOAH REG ND TV WASM 0.83 

311 ASCAT NOAH REG SA Constant ASCAT 0.6 

312 ASCAT NOAH REG SA Constant AMSR-E 0.73 

313 ASCAT NOAH REG SA Constant API 0.68 

314 ASCAT NOAH REG SA Constant NOAH 0.74 

315 ASCAT NOAH REG SA Constant WASM 0.77 

316 ASCAT NOAH REG SA TV ASCAT 0.57 

317 ASCAT NOAH REG SA TV AMSR-E 0.65 

318 ASCAT NOAH REG SA TV API 0.58 

319 ASCAT NOAH REG SA TV NOAH 0.75 

320 ASCAT NOAH REG SA TV WASM 0.84 

321 ASCAT NOAH REG SD Constant ASCAT 0.63 

322 ASCAT NOAH REG SD Constant AMSR-E 0.73 

323 ASCAT NOAH REG SD Constant API 0.72 

324 ASCAT NOAH REG SD Constant NOAH 0.75 

325 ASCAT NOAH REG SD Constant WASM 0.75 

326 ASCAT NOAH REG SD TV ASCAT 0.57 

327 ASCAT NOAH REG SD TV AMSR-E 0.65 

328 ASCAT NOAH REG SD TV API 0.59 

329 ASCAT NOAH REG SD TV NOAH 0.75 

330 ASCAT NOAH REG SD TV WASM 0.84 

331 ASCAT NOAH VAR ND Constant ASCAT 0.72 

332 ASCAT NOAH VAR ND Constant AMSR-E 0.72 

333 ASCAT NOAH VAR ND Constant API 0.72 

334 ASCAT NOAH VAR ND Constant NOAH 0.72 

335 ASCAT NOAH VAR ND Constant WASM 0.72 

336 ASCAT NOAH VAR ND TV ASCAT 0.6 

337 ASCAT NOAH VAR ND TV AMSR-E 0.68 

338 ASCAT NOAH VAR ND TV API 0.6 

339 ASCAT NOAH VAR ND TV NOAH 0.75 

340 ASCAT NOAH VAR ND TV WASM 0.81 

341 ASCAT NOAH VAR SA Constant ASCAT 0.72 

342 ASCAT NOAH VAR SA Constant AMSR-E 0.71 

343 ASCAT NOAH VAR SA Constant API 0.69 

344 ASCAT NOAH VAR SA Constant NOAH 0.73 

345 ASCAT NOAH VAR SA Constant WASM 0.73 

346 ASCAT NOAH VAR SA TV ASCAT 0.6 

347 ASCAT NOAH VAR SA TV AMSR-E 0.69 

348 ASCAT NOAH VAR SA TV API 0.6 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

349 ASCAT NOAH VAR SA TV NOAH 0.75 

350 ASCAT NOAH VAR SA TV WASM 0.82 

351 ASCAT NOAH VAR SD Constant ASCAT 0.7 

352 ASCAT NOAH VAR SD Constant AMSR-E 0.71 

353 ASCAT NOAH VAR SD Constant API 0.71 

354 ASCAT NOAH VAR SD Constant NOAH 0.73 

355 ASCAT NOAH VAR SD Constant WASM 0.72 

356 ASCAT NOAH VAR SD TV ASCAT 0.59 

357 ASCAT NOAH VAR SD TV AMSR-E 0.68 

358 ASCAT NOAH VAR SD TV API 0.6 

359 ASCAT NOAH VAR SD TV NOAH 0.75 

360 ASCAT NOAH VAR SD TV WASM 0.83 

361 ASCAT NOAH CDFM ND Constant ASCAT 0.62 

362 ASCAT NOAH CDFM ND Constant AMSR-E 0.46 

363 ASCAT NOAH CDFM ND Constant API 0.69 

364 ASCAT NOAH CDFM ND Constant NOAH 0.72 

365 ASCAT NOAH CDFM ND Constant WASM 0.72 

366 ASCAT NOAH CDFM ND TV ASCAT 0.53 

367 ASCAT NOAH CDFM ND TV AMSR-E 0.6 

368 ASCAT NOAH CDFM ND TV API 0.56 

369 ASCAT NOAH CDFM ND TV NOAH 0.73 

370 ASCAT NOAH CDFM ND TV WASM 0.82 

371 ASCAT NOAH CDFM SA Constant ASCAT 0.64 

372 ASCAT NOAH CDFM SA Constant AMSR-E 0.51 

373 ASCAT NOAH CDFM SA Constant API 0.65 

374 ASCAT NOAH CDFM SA Constant NOAH 0.71 

375 ASCAT NOAH CDFM SA Constant WASM 0.71 

376 ASCAT NOAH CDFM SA TV ASCAT 0.53 

377 ASCAT NOAH CDFM SA TV AMSR-E 0.61 

378 ASCAT NOAH CDFM SA TV API 0.57 

379 ASCAT NOAH CDFM SA TV NOAH 0.74 

380 ASCAT NOAH CDFM SA TV WASM 0.82 

381 ASCAT NOAH CDFM SD Constant ASCAT 0.66 

382 ASCAT NOAH CDFM SD Constant AMSR-E 0.56 

383 ASCAT NOAH CDFM SD Constant API 0.68 

384 ASCAT NOAH CDFM SD Constant NOAH 0.72 

385 ASCAT NOAH CDFM SD Constant WASM 0.72 

386 ASCAT NOAH CDFM SD TV ASCAT 0.55 

387 ASCAT NOAH CDFM SD TV AMSR-E 0.65 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

388 ASCAT NOAH CDFM SD TV API 0.6 

389 ASCAT NOAH CDFM SD TV NOAH 0.74 

390 ASCAT NOAH CDFM SD TV WASM 0.84 

391 ASCAT NOAH MAR ND Constant ASCAT 0.62 

392 ASCAT NOAH MAR ND Constant AMSR-E 0.71 

393 ASCAT NOAH MAR ND Constant API 0.7 

394 ASCAT NOAH MAR ND Constant NOAH 0.74 

395 ASCAT NOAH MAR ND Constant WASM 0.76 

396 ASCAT NOAH MAR ND TV ASCAT 0.57 

397 ASCAT NOAH MAR ND TV AMSR-E 0.65 

398 ASCAT NOAH MAR ND TV API 0.59 

399 ASCAT NOAH MAR ND TV NOAH 0.74 

400 ASCAT NOAH MAR ND TV WASM 0.86 

401 ASCAT NOAH MAR SA Constant ASCAT 0.57 

402 ASCAT NOAH MAR SA Constant AMSR-E 0.7 

403 ASCAT NOAH MAR SA Constant API 0.63 

404 ASCAT NOAH MAR SA Constant NOAH 0.75 

405 ASCAT NOAH MAR SA Constant WASM 0.8 

406 ASCAT NOAH MAR SA TV ASCAT 0.56 

407 ASCAT NOAH MAR SA TV AMSR-E 0.65 

408 ASCAT NOAH MAR SA TV API 0.59 

409 ASCAT NOAH MAR SA TV NOAH 0.75 

410 ASCAT NOAH MAR SA TV WASM 0.87 

411 ASCAT NOAH MAR SD Constant ASCAT 0.62 

412 ASCAT NOAH MAR SD Constant AMSR-E 0.69 

413 ASCAT NOAH MAR SD Constant API 0.71 

414 ASCAT NOAH MAR SD Constant NOAH 0.74 

415 ASCAT NOAH MAR SD Constant WASM 0.78 

416 ASCAT NOAH MAR SD TV ASCAT 0.57 

417 ASCAT NOAH MAR SD TV AMSR-E 0.66 

418 ASCAT NOAH MAR SD TV API 0.61 

419 ASCAT NOAH MAR SD TV NOAH 0.74 

420 ASCAT NOAH MAR SD TV WASM 0.89 

421 ASCAT NOAH SVM ND Constant ASCAT 0.62 

422 ASCAT NOAH SVM ND Constant AMSR-E 0.71 

423 ASCAT NOAH SVM ND Constant API 0.7 

424 ASCAT NOAH SVM ND Constant NOAH 0.74 

425 ASCAT NOAH SVM ND Constant WASM 0.75 

426 ASCAT NOAH SVM ND TV ASCAT 0.55 
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427 ASCAT NOAH SVM ND TV AMSR-E 0.66 

428 ASCAT NOAH SVM ND TV API 0.55 

429 ASCAT NOAH SVM ND TV NOAH 0.74 

430 ASCAT NOAH SVM ND TV WASM 0.85 

431 ASCAT NOAH SVM SA Constant ASCAT 0.54 

432 ASCAT NOAH SVM SA Constant AMSR-E 0.68 

433 ASCAT NOAH SVM SA Constant API 0.62 

434 ASCAT NOAH SVM SA Constant NOAH 0.75 

435 ASCAT NOAH SVM SA Constant WASM 0.79 

436 ASCAT NOAH SVM SA TV ASCAT 0.55 

437 ASCAT NOAH SVM SA TV AMSR-E 0.65 

438 ASCAT NOAH SVM SA TV API 0.55 

439 ASCAT NOAH SVM SA TV NOAH 0.74 

440 ASCAT NOAH SVM SA TV WASM 0.86 

441 ASCAT NOAH SVM SD Constant ASCAT 0.61 

442 ASCAT NOAH SVM SD Constant AMSR-E 0.67 

443 ASCAT NOAH SVM SD Constant API 0.7 

444 ASCAT NOAH SVM SD Constant NOAH 0.74 

445 ASCAT NOAH SVM SD Constant WASM 0.77 

446 ASCAT NOAH SVM SD TV ASCAT 0.56 

447 ASCAT NOAH SVM SD TV AMSR-E 0.66 

448 ASCAT NOAH SVM SD TV API 0.58 

449 ASCAT NOAH SVM SD TV NOAH 0.74 

450 ASCAT NOAH SVM SD TV WASM 0.88 

451 AMSR-E API REG ND Constant ASCAT 0.75 

452 AMSR-E API REG ND Constant AMSR-E 0.72 

453 AMSR-E API REG ND Constant API 0.71 

454 AMSR-E API REG ND Constant NOAH 0.79 

455 AMSR-E API REG ND Constant WASM 0.79 

456 AMSR-E API REG ND TV ASCAT 0.6 

457 AMSR-E API REG ND TV AMSR-E 0.67 

458 AMSR-E API REG ND TV API 0.66 

459 AMSR-E API REG ND TV NOAH 0.77 

460 AMSR-E API REG ND TV WASM 0.85 

461 AMSR-E API REG SA Constant ASCAT 0.68 

462 AMSR-E API REG SA Constant AMSR-E 0.7 

463 AMSR-E API REG SA Constant API 0.68 

464 AMSR-E API REG SA Constant NOAH 0.77 

465 AMSR-E API REG SA Constant WASM 0.79 
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(WASM) 

466 AMSR-E API REG SA TV ASCAT 0.59 

467 AMSR-E API REG SA TV AMSR-E 0.67 

468 AMSR-E API REG SA TV API 0.66 

469 AMSR-E API REG SA TV NOAH 0.77 

470 AMSR-E API REG SA TV WASM 0.86 

471 AMSR-E API REG SD Constant ASCAT 0.71 

472 AMSR-E API REG SD Constant AMSR-E 0.72 

473 AMSR-E API REG SD Constant API 0.7 

474 AMSR-E API REG SD Constant NOAH 0.82 

475 AMSR-E API REG SD Constant WASM 0.82 

476 AMSR-E API REG SD TV ASCAT 0.6 

477 AMSR-E API REG SD TV AMSR-E 0.67 

478 AMSR-E API REG SD TV API 0.66 

479 AMSR-E API REG SD TV NOAH 0.78 

480 AMSR-E API REG SD TV WASM 0.86 

481 AMSR-E API VAR ND Constant ASCAT 0.79 

482 AMSR-E API VAR ND Constant AMSR-E 0.79 

483 AMSR-E API VAR ND Constant API 0.79 

484 AMSR-E API VAR ND Constant NOAH 0.79 

485 AMSR-E API VAR ND Constant WASM 0.79 

486 AMSR-E API VAR ND TV ASCAT 0.65 

487 AMSR-E API VAR ND TV AMSR-E 0.71 

488 AMSR-E API VAR ND TV API 0.67 

489 AMSR-E API VAR ND TV NOAH 0.78 

490 AMSR-E API VAR ND TV WASM 0.84 

491 AMSR-E API VAR SA Constant ASCAT 0.77 

492 AMSR-E API VAR SA Constant AMSR-E 0.77 

493 AMSR-E API VAR SA Constant API 0.74 

494 AMSR-E API VAR SA Constant NOAH 0.77 

495 AMSR-E API VAR SA Constant WASM 0.77 

496 AMSR-E API VAR SA TV ASCAT 0.64 

497 AMSR-E API VAR SA TV AMSR-E 0.7 

498 AMSR-E API VAR SA TV API 0.67 

499 AMSR-E API VAR SA TV NOAH 0.78 

500 AMSR-E API VAR SA TV WASM 0.84 

501 AMSR-E API VAR SD Constant ASCAT 0.77 

502 AMSR-E API VAR SD Constant AMSR-E 0.79 

503 AMSR-E API VAR SD Constant API 0.78 

504 AMSR-E API VAR SD Constant NOAH 0.81 
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505 AMSR-E API VAR SD Constant WASM 0.8 

506 AMSR-E API VAR SD TV ASCAT 0.63 

507 AMSR-E API VAR SD TV AMSR-E 0.7 

508 AMSR-E API VAR SD TV API 0.68 

509 AMSR-E API VAR SD TV NOAH 0.79 

510 AMSR-E API VAR SD TV WASM 0.85 

511 AMSR-E API CDFM ND Constant ASCAT 0.67 

512 AMSR-E API CDFM ND Constant AMSR-E 0.68 

513 AMSR-E API CDFM ND Constant API 0.7 

514 AMSR-E API CDFM ND Constant NOAH 0.77 

515 AMSR-E API CDFM ND Constant WASM 0.76 

516 AMSR-E API CDFM ND TV ASCAT 0.55 

517 AMSR-E API CDFM ND TV AMSR-E 0.69 

518 AMSR-E API CDFM ND TV API 0.63 

519 AMSR-E API CDFM ND TV NOAH 0.78 

520 AMSR-E API CDFM ND TV WASM 0.85 

521 AMSR-E API CDFM SA Constant ASCAT 0.67 

522 AMSR-E API CDFM SA Constant AMSR-E 0.67 

523 AMSR-E API CDFM SA Constant API 0.73 

524 AMSR-E API CDFM SA Constant NOAH 0.75 

525 AMSR-E API CDFM SA Constant WASM 0.76 

526 AMSR-E API CDFM SA TV ASCAT 0.56 

527 AMSR-E API CDFM SA TV AMSR-E 0.68 

528 AMSR-E API CDFM SA TV API 0.64 

529 AMSR-E API CDFM SA TV NOAH 0.78 

530 AMSR-E API CDFM SA TV WASM 0.85 

531 AMSR-E API CDFM SD Constant ASCAT 0.74 

532 AMSR-E API CDFM SD Constant AMSR-E 0.75 

533 AMSR-E API CDFM SD Constant API 0.77 

534 AMSR-E API CDFM SD Constant NOAH 0.8 

535 AMSR-E API CDFM SD Constant WASM 0.8 

536 AMSR-E API CDFM SD TV ASCAT 0.58 

537 AMSR-E API CDFM SD TV AMSR-E 0.71 

538 AMSR-E API CDFM SD TV API 0.65 

539 AMSR-E API CDFM SD TV NOAH 0.78 

540 AMSR-E API CDFM SD TV WASM 0.87 

541 AMSR-E API MAR ND Constant ASCAT 0.69 

542 AMSR-E API MAR ND Constant AMSR-E 0.72 

543 AMSR-E API MAR ND Constant API 0.71 
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544 AMSR-E API MAR ND Constant NOAH 0.8 

545 AMSR-E API MAR ND Constant WASM 0.82 

546 AMSR-E API MAR ND TV ASCAT 0.6 

547 AMSR-E API MAR ND TV AMSR-E 0.67 

548 AMSR-E API MAR ND TV API 0.63 

549 AMSR-E API MAR ND TV NOAH 0.78 

550 AMSR-E API MAR ND TV WASM 0.88 

551 AMSR-E API MAR SA Constant ASCAT 0.63 

552 AMSR-E API MAR SA Constant AMSR-E 0.67 

553 AMSR-E API MAR SA Constant API 0.68 

554 AMSR-E API MAR SA Constant NOAH 0.77 

555 AMSR-E API MAR SA Constant WASM 0.81 

556 AMSR-E API MAR SA TV ASCAT 0.59 

557 AMSR-E API MAR SA TV AMSR-E 0.67 

558 AMSR-E API MAR SA TV API 0.62 

559 AMSR-E API MAR SA TV NOAH 0.77 

560 AMSR-E API MAR SA TV WASM 0.89 

561 AMSR-E API MAR SD Constant ASCAT 0.69 

562 AMSR-E API MAR SD Constant AMSR-E 0.71 

563 AMSR-E API MAR SD Constant API 0.69 

564 AMSR-E API MAR SD Constant NOAH 0.8 

565 AMSR-E API MAR SD Constant WASM 0.83 

566 AMSR-E API MAR SD TV ASCAT 0.62 

567 AMSR-E API MAR SD TV AMSR-E 0.68 

568 AMSR-E API MAR SD TV API 0.62 

569 AMSR-E API MAR SD TV NOAH 0.77 

570 AMSR-E API MAR SD TV WASM 0.9 

571 AMSR-E API SVM ND Constant ASCAT 0.65 

572 AMSR-E API SVM ND Constant AMSR-E 0.72 

573 AMSR-E API SVM ND Constant API 0.69 

574 AMSR-E API SVM ND Constant NOAH 0.79 

575 AMSR-E API SVM ND Constant WASM 0.82 

576 AMSR-E API SVM ND TV ASCAT 0.57 

577 AMSR-E API SVM ND TV AMSR-E 0.68 

578 AMSR-E API SVM ND TV API 0.65 

579 AMSR-E API SVM ND TV NOAH 0.77 

580 AMSR-E API SVM ND TV WASM 0.88 

581 AMSR-E API SVM SA Constant ASCAT 0.61 

582 AMSR-E API SVM SA Constant AMSR-E 0.66 
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583 AMSR-E API SVM SA Constant API 0.67 

584 AMSR-E API SVM SA Constant NOAH 0.77 

585 AMSR-E API SVM SA Constant WASM 0.8 

586 AMSR-E API SVM SA TV ASCAT 0.56 

587 AMSR-E API SVM SA TV AMSR-E 0.68 

588 AMSR-E API SVM SA TV API 0.65 

589 AMSR-E API SVM SA TV NOAH 0.76 

590 AMSR-E API SVM SA TV WASM 0.88 

591 AMSR-E API SVM SD Constant ASCAT 0.65 

592 AMSR-E API SVM SD Constant AMSR-E 0.7 

593 AMSR-E API SVM SD Constant API 0.68 

594 AMSR-E API SVM SD Constant NOAH 0.8 

595 AMSR-E API SVM SD Constant WASM 0.83 

596 AMSR-E API SVM SD TV ASCAT 0.58 

597 AMSR-E API SVM SD TV AMSR-E 0.68 

598 AMSR-E API SVM SD TV API 0.66 

599 AMSR-E API SVM SD TV NOAH 0.77 

600 AMSR-E API SVM SD TV WASM 0.89 

601 AMSR-E NOAH REG ND Constant ASCAT 0.75 

602 AMSR-E NOAH REG ND Constant AMSR-E 0.74 

603 AMSR-E NOAH REG ND Constant API 0.75 

604 AMSR-E NOAH REG ND Constant NOAH 0.76 

605 AMSR-E NOAH REG ND Constant WASM 0.76 

606 AMSR-E NOAH REG ND TV ASCAT 0.58 

607 AMSR-E NOAH REG ND TV AMSR-E 0.68 

608 AMSR-E NOAH REG ND TV API 0.61 

609 AMSR-E NOAH REG ND TV NOAH 0.75 

610 AMSR-E NOAH REG ND TV WASM 0.83 

611 AMSR-E NOAH REG SA Constant ASCAT 0.57 

612 AMSR-E NOAH REG SA Constant AMSR-E 0.72 

613 AMSR-E NOAH REG SA Constant API 0.66 

614 AMSR-E NOAH REG SA Constant NOAH 0.75 

615 AMSR-E NOAH REG SA Constant WASM 0.76 

616 AMSR-E NOAH REG SA TV ASCAT 0.57 

617 AMSR-E NOAH REG SA TV AMSR-E 0.68 

618 AMSR-E NOAH REG SA TV API 0.62 

619 AMSR-E NOAH REG SA TV NOAH 0.75 

620 AMSR-E NOAH REG SA TV WASM 0.84 

621 AMSR-E NOAH REG SD Constant ASCAT 0.65 
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622 AMSR-E NOAH REG SD Constant AMSR-E 0.74 

623 AMSR-E NOAH REG SD Constant API 0.75 

624 AMSR-E NOAH REG SD Constant NOAH 0.76 

625 AMSR-E NOAH REG SD Constant WASM 0.77 

626 AMSR-E NOAH REG SD TV ASCAT 0.58 

627 AMSR-E NOAH REG SD TV AMSR-E 0.67 

628 AMSR-E NOAH REG SD TV API 0.62 

629 AMSR-E NOAH REG SD TV NOAH 0.75 

630 AMSR-E NOAH REG SD TV WASM 0.84 

631 AMSR-E NOAH VAR ND Constant ASCAT 0.76 

632 AMSR-E NOAH VAR ND Constant AMSR-E 0.76 

633 AMSR-E NOAH VAR ND Constant API 0.76 

634 AMSR-E NOAH VAR ND Constant NOAH 0.76 

635 AMSR-E NOAH VAR ND Constant WASM 0.76 

636 AMSR-E NOAH VAR ND TV ASCAT 0.63 

637 AMSR-E NOAH VAR ND TV AMSR-E 0.7 

638 AMSR-E NOAH VAR ND TV API 0.64 

639 AMSR-E NOAH VAR ND TV NOAH 0.75 

640 AMSR-E NOAH VAR ND TV WASM 0.82 

641 AMSR-E NOAH VAR SA Constant ASCAT 0.75 

642 AMSR-E NOAH VAR SA Constant AMSR-E 0.74 

643 AMSR-E NOAH VAR SA Constant API 0.7 

644 AMSR-E NOAH VAR SA Constant NOAH 0.75 

645 AMSR-E NOAH VAR SA Constant WASM 0.76 

646 AMSR-E NOAH VAR SA TV ASCAT 0.62 

647 AMSR-E NOAH VAR SA TV AMSR-E 0.69 

648 AMSR-E NOAH VAR SA TV API 0.64 

649 AMSR-E NOAH VAR SA TV NOAH 0.75 

650 AMSR-E NOAH VAR SA TV WASM 0.82 

651 AMSR-E NOAH VAR SD Constant ASCAT 0.74 

652 AMSR-E NOAH VAR SD Constant AMSR-E 0.75 

653 AMSR-E NOAH VAR SD Constant API 0.75 

654 AMSR-E NOAH VAR SD Constant NOAH 0.76 

655 AMSR-E NOAH VAR SD Constant WASM 0.76 

656 AMSR-E NOAH VAR SD TV ASCAT 0.61 

657 AMSR-E NOAH VAR SD TV AMSR-E 0.69 

658 AMSR-E NOAH VAR SD TV API 0.65 

659 AMSR-E NOAH VAR SD TV NOAH 0.76 

660 AMSR-E NOAH VAR SD TV WASM 0.83 
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661 AMSR-E NOAH CDFM ND Constant ASCAT 0.66 

662 AMSR-E NOAH CDFM ND Constant AMSR-E 0.65 

663 AMSR-E NOAH CDFM ND Constant API 0.72 

664 AMSR-E NOAH CDFM ND Constant NOAH 0.76 

665 AMSR-E NOAH CDFM ND Constant WASM 0.76 

666 AMSR-E NOAH CDFM ND TV ASCAT 0.52 

667 AMSR-E NOAH CDFM ND TV AMSR-E 0.65 

668 AMSR-E NOAH CDFM ND TV API 0.6 

669 AMSR-E NOAH CDFM ND TV NOAH 0.75 

670 AMSR-E NOAH CDFM ND TV WASM 0.82 

671 AMSR-E NOAH CDFM SA Constant ASCAT 0.69 

672 AMSR-E NOAH CDFM SA Constant AMSR-E 0.66 

673 AMSR-E NOAH CDFM SA Constant API 0.66 

674 AMSR-E NOAH CDFM SA Constant NOAH 0.74 

675 AMSR-E NOAH CDFM SA Constant WASM 0.75 

676 AMSR-E NOAH CDFM SA TV ASCAT 0.54 

677 AMSR-E NOAH CDFM SA TV AMSR-E 0.65 

678 AMSR-E NOAH CDFM SA TV API 0.6 

679 AMSR-E NOAH CDFM SA TV NOAH 0.75 

680 AMSR-E NOAH CDFM SA TV WASM 0.82 

681 AMSR-E NOAH CDFM SD Constant ASCAT 0.72 

682 AMSR-E NOAH CDFM SD Constant AMSR-E 0.72 

683 AMSR-E NOAH CDFM SD Constant API 0.73 

684 AMSR-E NOAH CDFM SD Constant NOAH 0.76 

685 AMSR-E NOAH CDFM SD Constant WASM 0.77 

686 AMSR-E NOAH CDFM SD TV ASCAT 0.58 

687 AMSR-E NOAH CDFM SD TV AMSR-E 0.7 

688 AMSR-E NOAH CDFM SD TV API 0.63 

689 AMSR-E NOAH CDFM SD TV NOAH 0.75 

690 AMSR-E NOAH CDFM SD TV WASM 0.85 

691 AMSR-E NOAH MAR ND Constant ASCAT 0.64 

692 AMSR-E NOAH MAR ND Constant AMSR-E 0.71 

693 AMSR-E NOAH MAR ND Constant API 0.74 

694 AMSR-E NOAH MAR ND Constant NOAH 0.76 

695 AMSR-E NOAH MAR ND Constant WASM 0.78 

696 AMSR-E NOAH MAR ND TV ASCAT 0.58 

697 AMSR-E NOAH MAR ND TV AMSR-E 0.67 

698 AMSR-E NOAH MAR ND TV API 0.62 

699 AMSR-E NOAH MAR ND TV NOAH 0.75 
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700 AMSR-E NOAH MAR ND TV WASM 0.87 

701 AMSR-E NOAH MAR SA Constant ASCAT 0.57 

702 AMSR-E NOAH MAR SA Constant AMSR-E 0.7 

703 AMSR-E NOAH MAR SA Constant API 0.65 

704 AMSR-E NOAH MAR SA Constant NOAH 0.75 

705 AMSR-E NOAH MAR SA Constant WASM 0.8 

706 AMSR-E NOAH MAR SA TV ASCAT 0.57 

707 AMSR-E NOAH MAR SA TV AMSR-E 0.67 

708 AMSR-E NOAH MAR SA TV API 0.6 

709 AMSR-E NOAH MAR SA TV NOAH 0.75 

710 AMSR-E NOAH MAR SA TV WASM 0.88 

711 AMSR-E NOAH MAR SD Constant ASCAT 0.62 

712 AMSR-E NOAH MAR SD Constant AMSR-E 0.71 

713 AMSR-E NOAH MAR SD Constant API 0.73 

714 AMSR-E NOAH MAR SD Constant NOAH 0.76 

715 AMSR-E NOAH MAR SD Constant WASM 0.79 

716 AMSR-E NOAH MAR SD TV ASCAT 0.6 

717 AMSR-E NOAH MAR SD TV AMSR-E 0.67 

718 AMSR-E NOAH MAR SD TV API 0.62 

719 AMSR-E NOAH MAR SD TV NOAH 0.74 

720 AMSR-E NOAH MAR SD TV WASM 0.9 

721 AMSR-E NOAH SVM ND Constant ASCAT 0.58 

722 AMSR-E NOAH SVM ND Constant AMSR-E 0.71 

723 AMSR-E NOAH SVM ND Constant API 0.71 

724 AMSR-E NOAH SVM ND Constant NOAH 0.76 

725 AMSR-E NOAH SVM ND Constant WASM 0.78 

726 AMSR-E NOAH SVM ND TV ASCAT 0.56 

727 AMSR-E NOAH SVM ND TV AMSR-E 0.68 

728 AMSR-E NOAH SVM ND TV API 0.61 

729 AMSR-E NOAH SVM ND TV NOAH 0.75 

730 AMSR-E NOAH SVM ND TV WASM 0.86 

731 AMSR-E NOAH SVM SA Constant ASCAT 0.51 

732 AMSR-E NOAH SVM SA Constant AMSR-E 0.7 

733 AMSR-E NOAH SVM SA Constant API 0.63 

734 AMSR-E NOAH SVM SA Constant NOAH 0.76 

735 AMSR-E NOAH SVM SA Constant WASM 0.79 

736 AMSR-E NOAH SVM SA TV ASCAT 0.55 

737 AMSR-E NOAH SVM SA TV AMSR-E 0.68 

738 AMSR-E NOAH SVM SA TV API 0.61 
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739 AMSR-E NOAH SVM SA TV NOAH 0.75 

740 AMSR-E NOAH SVM SA TV WASM 0.87 

741 AMSR-E NOAH SVM SD Constant ASCAT 0.56 

742 AMSR-E NOAH SVM SD Constant AMSR-E 0.71 

743 AMSR-E NOAH SVM SD Constant API 0.71 

744 AMSR-E NOAH SVM SD Constant NOAH 0.76 

745 AMSR-E NOAH SVM SD Constant WASM 0.78 

746 AMSR-E NOAH SVM SD TV ASCAT 0.57 

747 AMSR-E NOAH SVM SD TV AMSR-E 0.68 

748 AMSR-E NOAH SVM SD TV API 0.64 

749 AMSR-E NOAH SVM SD TV NOAH 0.75 

750 AMSR-E NOAH SVM SD TV WASM 0.88 

751 API NOAH REG ND Constant ASCAT 0.75 

752 API NOAH REG ND Constant AMSR-E 0.74 

753 API NOAH REG ND Constant API 0.7 

754 API NOAH REG ND Constant NOAH 0.76 

755 API NOAH REG ND Constant WASM 0.77 

756 API NOAH REG ND TV ASCAT 0.57 

757 API NOAH REG ND TV AMSR-E 0.65 

758 API NOAH REG ND TV API 0.61 

759 API NOAH REG ND TV NOAH 0.76 

760 API NOAH REG ND TV WASM 0.85 

761 API NOAH REG SA Constant ASCAT 0.7 

762 API NOAH REG SA Constant AMSR-E 0.73 

763 API NOAH REG SA Constant API 0.67 

764 API NOAH REG SA Constant NOAH 0.76 

765 API NOAH REG SA Constant WASM 0.79 

766 API NOAH REG SA TV ASCAT 0.56 

767 API NOAH REG SA TV AMSR-E 0.65 

768 API NOAH REG SA TV API 0.61 

769 API NOAH REG SA TV NOAH 0.76 

770 API NOAH REG SA TV WASM 0.86 

771 API NOAH REG SD Constant ASCAT 0.74 

772 API NOAH REG SD Constant AMSR-E 0.74 

773 API NOAH REG SD Constant API 0.69 

774 API NOAH REG SD Constant NOAH 0.76 

775 API NOAH REG SD Constant WASM 0.77 

776 API NOAH REG SD TV ASCAT 0.56 

777 API NOAH REG SD TV AMSR-E 0.65 
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778 API NOAH REG SD TV API 0.61 

779 API NOAH REG SD TV NOAH 0.76 

780 API NOAH REG SD TV WASM 0.86 

781 API NOAH VAR ND Constant ASCAT 0.75 

782 API NOAH VAR ND Constant AMSR-E 0.75 

783 API NOAH VAR ND Constant API 0.75 

784 API NOAH VAR ND Constant NOAH 0.75 

785 API NOAH VAR ND Constant WASM 0.75 

786 API NOAH VAR ND TV ASCAT 0.63 

787 API NOAH VAR ND TV AMSR-E 0.7 

788 API NOAH VAR ND TV API 0.62 

789 API NOAH VAR ND TV NOAH 0.77 

790 API NOAH VAR ND TV WASM 0.84 

791 API NOAH VAR SA Constant ASCAT 0.75 

792 API NOAH VAR SA Constant AMSR-E 0.73 

793 API NOAH VAR SA Constant API 0.71 

794 API NOAH VAR SA Constant NOAH 0.76 

795 API NOAH VAR SA Constant WASM 0.75 

796 API NOAH VAR SA TV ASCAT 0.62 

797 API NOAH VAR SA TV AMSR-E 0.7 

798 API NOAH VAR SA TV API 0.62 

799 API NOAH VAR SA TV NOAH 0.77 

800 API NOAH VAR SA TV WASM 0.84 

801 API NOAH VAR SD Constant ASCAT 0.73 

802 API NOAH VAR SD Constant AMSR-E 0.74 

803 API NOAH VAR SD Constant API 0.74 

804 API NOAH VAR SD Constant NOAH 0.75 

805 API NOAH VAR SD Constant WASM 0.75 

806 API NOAH VAR SD TV ASCAT 0.61 

807 API NOAH VAR SD TV AMSR-E 0.7 

808 API NOAH VAR SD TV API 0.62 

809 API NOAH VAR SD TV NOAH 0.77 

810 API NOAH VAR SD TV WASM 0.85 

811 API NOAH CDFM ND Constant ASCAT 0.6 

812 API NOAH CDFM ND Constant AMSR-E 0.57 

813 API NOAH CDFM ND Constant API 0.71 

814 API NOAH CDFM ND Constant NOAH 0.75 

815 API NOAH CDFM ND Constant WASM 0.73 

816 API NOAH CDFM ND TV ASCAT 0.53 
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817 API NOAH CDFM ND TV AMSR-E 0.65 

818 API NOAH CDFM ND TV API 0.6 

819 API NOAH CDFM ND TV NOAH 0.78 

820 API NOAH CDFM ND TV WASM 0.85 

821 API NOAH CDFM SA Constant ASCAT 0.62 

822 API NOAH CDFM SA Constant AMSR-E 0.55 

823 API NOAH CDFM SA Constant API 0.68 

824 API NOAH CDFM SA Constant NOAH 0.75 

825 API NOAH CDFM SA Constant WASM 0.74 

826 API NOAH CDFM SA TV ASCAT 0.54 

827 API NOAH CDFM SA TV AMSR-E 0.63 

828 API NOAH CDFM SA TV API 0.6 

829 API NOAH CDFM SA TV NOAH 0.77 

830 API NOAH CDFM SA TV WASM 0.85 

831 API NOAH CDFM SD Constant ASCAT 0.67 

832 API NOAH CDFM SD Constant AMSR-E 0.65 

833 API NOAH CDFM SD Constant API 0.71 

834 API NOAH CDFM SD Constant NOAH 0.75 

835 API NOAH CDFM SD Constant WASM 0.74 

836 API NOAH CDFM SD TV ASCAT 0.55 

837 API NOAH CDFM SD TV AMSR-E 0.69 

838 API NOAH CDFM SD TV API 0.61 

839 API NOAH CDFM SD TV NOAH 0.77 

840 API NOAH CDFM SD TV WASM 0.86 

841 API NOAH MAR ND Constant ASCAT 0.71 

842 API NOAH MAR ND Constant AMSR-E 0.71 

843 API NOAH MAR ND Constant API 0.68 

844 API NOAH MAR ND Constant NOAH 0.76 

845 API NOAH MAR ND Constant WASM 0.79 

846 API NOAH MAR ND TV ASCAT 0.57 

847 API NOAH MAR ND TV AMSR-E 0.66 

848 API NOAH MAR ND TV API 0.6 

849 API NOAH MAR ND TV NOAH 0.76 

850 API NOAH MAR ND TV WASM 0.89 

851 API NOAH MAR SA Constant ASCAT 0.61 

852 API NOAH MAR SA Constant AMSR-E 0.67 

853 API NOAH MAR SA Constant API 0.63 

854 API NOAH MAR SA Constant NOAH 0.77 

855 API NOAH MAR SA Constant WASM 0.82 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

856 API NOAH MAR SA TV ASCAT 0.56 

857 API NOAH MAR SA TV AMSR-E 0.65 

858 API NOAH MAR SA TV API 0.6 

859 API NOAH MAR SA TV NOAH 0.75 

860 API NOAH MAR SA TV WASM 0.89 

861 API NOAH MAR SD Constant ASCAT 0.7 

862 API NOAH MAR SD Constant AMSR-E 0.71 

863 API NOAH MAR SD Constant API 0.68 

864 API NOAH MAR SD Constant NOAH 0.76 

865 API NOAH MAR SD Constant WASM 0.79 

866 API NOAH MAR SD TV ASCAT 0.58 

867 API NOAH MAR SD TV AMSR-E 0.66 

868 API NOAH MAR SD TV API 0.6 

869 API NOAH MAR SD TV NOAH 0.75 

870 API NOAH MAR SD TV WASM 0.9 

871 API NOAH SVM ND Constant ASCAT 0.68 

872 API NOAH SVM ND Constant AMSR-E 0.71 

873 API NOAH SVM ND Constant API 0.67 

874 API NOAH SVM ND Constant NOAH 0.76 

875 API NOAH SVM ND Constant WASM 0.78 

876 API NOAH SVM ND TV ASCAT 0.53 

877 API NOAH SVM ND TV AMSR-E 0.66 

878 API NOAH SVM ND TV API 0.59 

879 API NOAH SVM ND TV NOAH 0.75 

880 API NOAH SVM ND TV WASM 0.88 

881 API NOAH SVM SA Constant ASCAT 0.56 

882 API NOAH SVM SA Constant AMSR-E 0.66 

883 API NOAH SVM SA Constant API 0.63 

884 API NOAH SVM SA Constant NOAH 0.78 

885 API NOAH SVM SA Constant WASM 0.81 

886 API NOAH SVM SA TV ASCAT 0.53 

887 API NOAH SVM SA TV AMSR-E 0.66 

888 API NOAH SVM SA TV API 0.59 

889 API NOAH SVM SA TV NOAH 0.75 

890 API NOAH SVM SA TV WASM 0.88 

891 API NOAH SVM SD Constant ASCAT 0.68 

892 API NOAH SVM SD Constant AMSR-E 0.69 

893 API NOAH SVM SD Constant API 0.68 

894 API NOAH SVM SD Constant NOAH 0.75 
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ID Parent Couples 
Rescaling 

Method 

Rescaling 

Technique 

Application 

Style 
Reference 

Cor 
(WASM) 

895 API NOAH SVM SD Constant WASM 0.79 

896 API NOAH SVM SD TV ASCAT 0.54 

897 API NOAH SVM SD TV AMSR-E 0.66 

898 API NOAH SVM SD TV API 0.6 

899 API NOAH SVM SD TV NOAH 0.75 

900 API NOAH SVM SD TV WASM 0.89 
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