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ABSTRACT

SURROGATE MODEL BASED SYSTEM IDENTIFICATION AND
CONTROL OF GAS TURBINE ENGINES

Ekinci, Sinan
Ph.D., Department of Aerospace Engineering

Supervisor : Assoc. Prof. Dr. İlkay Yavrucuk

January 2019, 98 pages

The focus of this thesis is on small low-cost turbojet engines where the fuel flow is

provided by a gear-type fuel pump rather than a more traditional fuel metering unit.

The incorporation of such type of fuel flow actuation devices introduces additional

nonlinearities into the modeling and control of the small turbojet engines. As an al-

ternative solution, this thesis presents and applies online/offline parameter estimation

and adaptive control methods to such sub-class turbojet engines. For the simulation

and analysis, a high-fidelity turbojet engine model including the fuel system is de-

veloped. On the other hand, a nonlinear fast engine model is proposed to capture

the shaft dynamics of a small turbojet engine equipped with a gear-type fuel pump.

The parameters of the fast engine model are estimated using the regression analysis.

The same identification procedure is also applied to real engine test data to verify the

proposed approach. Next, an online parameter estimation method using the same fast

engine model structure is applied to the aero-thermal turbojet engine model. Then,

the outputs of the offline and online parameter estimation approaches are compared

with each other. Later, the online parameter estimation algorithm is converted to an
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adaptive controller known as indirect-model reference adaptive control. Last, several

control and failure scenarios are applied to the aero-thermal engine model to show its

main advantages over the traditional control approaches and also to reveal its further

application areas.

Keywords: Turbojet Engine Simulation, Fast Engine Model, Online System Identifi-

cation, Model Reference Adaptive Control
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ÖZ

GAZ TÜRBİN MOTORLARIN VEKİL MODEL TABANLI SİSTEM
TANIMLAMASI VE KONTROLÜ

Ekinci, Sinan
Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Yavrucuk

Ocak 2019 , 98 sayfa

Bu tezin odak noktası, yakıt akışının daha geleneksel bir yakıt dozajlama ünitesin-

den ziyade dişli tip bir yakıt pompası tarafından sağlandığı küçük, düşük maliyetli

turbojet motorlardır. Bu tip yakıt akışı eyleyicilerinin sisteme dahil edilmesi, küçük

turbojet motorların modellenmesi ve kontrolüne ek doğrusal olmayan özellikler ge-

tirmektedir. Alternatif bir çözüm olarak, bu tezde, bu tür alt sınıf turbojet motorlara

çevrimiçi / çevrimdışı parametre tahmini ve adaptif kontrol yöntemleri önerilmekte

ve uygulanmaktadır. Benzetim ve analiz için yakıt sistemini de içeren yüksek doğ-

rulukta bir turbojet motor modeli geliştirilmiştir. Öte yandan, doğrusal olmayan hızlı

bir motor modeli, dişli tip bir yakıt pompasıyla donatılmış küçük bir turbojet moto-

runun şaft dinamiklerini yakalamak için önerilmiştir. Bu hızlı motor modelinin para-

metreleri, regresyon analizi yöntemi kullanılarak tahmin edilmiştir. Aynı tanımlama

prosedürü, önerilen yaklaşımı doğrulamak için gerçek motor test verilerine de uy-

gulanmıştır. Daha sonra, önerilen hızlı motor modeli yapısını kullanan bir çevrimiçi

parametre tahmin yöntemi, aero-termal turbojet motor modeline uygulanmıştır. Ar-

dından, çevrimdışı ve çevrimiçi parametre tahmin yaklaşımlarının çıktıları birbiriyle
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karşılaştırılmıştır. Daha sonra, çevrimiçi parametre tahmin algoritması, dolaylı model

referans uyarlamalı kontrol olarak bilinen bir adaptif kontrolcüye dönüştürülmüştür.

Son olarak, geliştirilen kontrolcünün geleneksel kontrol yaklaşımlarına karşı getir-

diği ana avantajlarını göstermek ve diğer uygulama alanlarını ortaya çıkarmak için

aero-termal motor modeline çeşitli kontrol ve arıza senaryoları uygulanmıştır.

Anahtar Kelimeler: Turbojet Motor Simulasyonu, Hızlı Motor Modeli, Çevirimiçi

Sistem Tanımlama, Model Referans Adaptif Kontrol
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CHAPTER 1

INTRODUCTION

Today, gas turbine engines are the primary source of propulsive power for aircraft due

to their high efficiency and reliability. Gas turbine control and diagnostic technolo-

gies are among the most important factors in achieving these levels of efficiency and

reliability.

The first turbojet engines were designed around eighty years ago by Hans von Ohain

from Germany and Sir Frank Whittle from the UK, independently from each other.

The control systems of these first engines were mostly mechanical. Simple link-

ages, gear trains, and cams were used to adjust and limit the fuel flow. After the

1950s, hydromechanical controls (HMCs), also known as governors, were introduced.

These control systems consisted of a metering valve to adjust the fuel flow propor-

tional to the difference between the desired speed and the actual speed of the engine.

There were also some mechanical limitations on the fuel system to prevent the engine

form the flame-out and over-temperature. In the late 1950s, the engine performances

were increased enormously with the engine design technology advancements includ-

ing high-compression ratio compressors and high-bypass-flow turbofans. The related

control technology also became more complex with the variable geometry controls,

such as inlet guide vane (IGV), variable stator vane (VSV), and nozzle geometry

control. And in late 1960, the HMCs and its subsystems reached their practical lim-

itations due to the cost and weight constraints. Thus, in the early 1970s, with the

development in the digital electronic technologies, analog and digital electronic con-

trol units (ECU) were introduced to provide high-level supervisory or trim control.

The main functions of these ECUs were to calculate speed or temperature set points

throughout the engine operation envelope [1].
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In 1972, The first full-authority ECU was introduced into service on TFE731 engine.

Briefly, an ECU is called "full-authority" if it controls all the engine operations from

start-up to shut-down according to the power request without giving a manual override

permission to the pilot. The first full-authority ECU had a single channel analog

control, which includes main functions such as fail-safe operation, unrestricted power

lever movement, no-throttle dead-band and automatic flat rating for the thrust. Then,

the analog full-authority ECUs were evolved into FADECs (Full Authority Digital

Engine Control) due to the apparent advantages of digital electronics such as ability to

do complex calculations, easy update with the embedded software, and more accurate

control adjustment. In 1981, the DEEC (Digital electronic engine control) of Pratt-

Whitney F100 engine became the first FADEC to be flight tested. For the past 40

years, FADECs have been the standard engine control system for the jet-propelled

aircraft. Today’s FADECs, when compared with the first developed FADECs, they

do not only control the engine throughout its operational range but also perform much

more complex operations to improve engine performance and diagnostics [1].

1.1 Small Turbojet Engines and the Fuel Systems

The sub-class small turbojet engines (STEs) are becoming popular among the hobby-

ist day by day. Besides to power model airplanes; it is used to sustain sailplanes and

to power jetpacks, wingsuits, and hoverboards [2]. These engines have a very simple

structure with an ECU and a fuel system to reduce the complexity, weight, and cost.

The main components of these type engines are a single stage centrifugal compres-

sor, an annular combustor, a single stage axial turbine, and a convergent nozzle. Only

shaft speed and Exhaust Gas Temperature (EGT) values are measured by the ECU

to govern the shaft speed and to limit the EGT. Despite the maturity and reliability

of Fuel Metering Units (FMU), simple gear-type fuel pumps are preferred in such

sub-class STEs.

The main function of a fuel system is to adjust the fuel flow rate required to start,

accelerate and stabilize the engine under all operating conditions. High precision

is necessary not only to maintain the shaft speed under varying load and ambient

conditions but also to protect the engine from the excessive exhaust gas temperatures
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Figure 1.1: J402-CA-400 Fuel Metering Unit [3]

and compressor surge. To achieve this, mostly FMUs are used.

An FMU is generally based on three components: a gear pump, a metering valve,

and a bypass valve or a differential pressure valve. Briefly, the gear pump pressurizes

the fuel, the differential pressure valve keeps the fuel pressure difference between

the FMU inlet and outlet constant, and the metering valve controls the fuel flow by

adjusting the fuel flow area. These main components are fixed for almost all FMU

designs, but their architectures may vary [4, 5].

As an example of FMU usage on small gas turbine engines, the FMU of the J402-

CA-400 turbojet engine is illustrated in Fig. 1.1. The J402-CA-400 engine is a sim-

ple small-scale turbojet engine designed for the Harpoon missile. This engine was

derived from the J69-T-406 turbojet engine and it is aerodynamically a 32% scale of

the J69 parent engine [3].

As another example, the cutaway view of the Teledyne CAE 373-8 engine control unit

is shown in Fig. 1.2. This engine is designed specially for target drones [6]. As seen

in the figure, it has a very compact design that includes an alternator, a fuel metering

unit and a digital electronic control unit. To clarify the working principle, its block

diagram is illustrated in Fig. 1.3.

In Fig. 1.3, the pump, also referred as high-pressure (HP) pump, is a gear-type fuel

pump. It is mounted on the same shaft with the alternator and driven by the engine
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Figure 1.2: Cutaway View of Teledyne CAE 373-8 RPV Engine Control System [6]

shaft. The HP pump pressurizes the fuel supplied from the low-pressure (LP) pump

and feeds it to the metering valve. Here, the metering valve is directly driven by a

stepper motor, and it adjusts the fuel flow rate by changing the fuel flow area. The

differential pressure valve, which is the sub-part of the FMU, keeps the differential

pressure constant on the FMU by spilling the excessive flow back to the HP inlet.

This constant pressure difference ensures the metering valve to adjust the fuel flow

rate proportionally (linearly) respect to the fuel flow cross-section area and also inde-

pendently from the nozzle pressure.

Figure 1.3: Block Diagram of Teledyne CAE 373-8 RPV Engine Control System [6]
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However, in low-cost STEs, only a simple gear-type fuel pump is used rather than an

FMU. Fig. 1.4a shows the prototype of a gear-type fuel pump designed for small gas

turbine control applications. This prototype was previously used in our test beds for

gas turbine control studies [7, 8].

The cross-sectional view of the fuel pump is illustrated in [Fig. 1.4b]. As seen in the

figure, two meshed gears turn inside a metal housing. One of the meshed gears is

driven by a DC motor. Here, the rotation of the gears creates a positive displacement

and the fuel fills the space between the housing and outer circumference of the gears.

Then, the fuel travels towards the pump’s outlet by the gear rotation. However, the

leakage between the meshed gears and the housing is unavoidable because of the

manufacturing tolerances and wear on the parts, so the fuel leaks inherently from the

high-pressurized section (pump outlet) to the low-pressurized section (pump-inlet)

depending on the outlet pressure. This causes the gear-type fuel pump to behave

nonlinearly under the varying outlet pressure conditions. Also, this shows us the

importance of the differential pressure valve used in FMUs.

(a) Gear-Type Fuel Pump

(b) Cutaway View

Figure 1.4: Gear-Type Fuel Pump Prototype for STEs
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1.2 Definition of the Problem

The performances of two similar engines are not the same, due to the manufacturing

tolerances and material properties. In addition, the engine components deteriorate

by time due to the harsh operating conditions. Erosion, wear and tear on the engine

components degrade the engine performance slowly. Moreover, replacement of the

engine component after the overhaul or repairing process or failure of a component

during the engine operation causes a sudden change in the engine performance. All

these possible scenarios are the major challenges that must be taken into consideration

in an engine control and diagnostic system design.

For advanced engine control and diagnostic applications, fast/online engine models

that are able to embed into FADECs are used [1]. These online models adapt itself to

the actual engine condition even with deterioration. By this way, they provide very

useful data for advanced engine control and diagnostic applications, such as limit de-

tection and protection, Failure Detection and Isolation (FDI), and model-based engine

controllers.

In literature, mostly, linear or piecewise-linear techniques are used to obtain fast/on-

line engine models [1, 9, 10]. However, these methods are not directly applicable to

the low-cost STEs because of their nonlinear fuel actuation systems. The incorpora-

tion of such type of fuel flow actuation devices introduces additional nonlinearities

into the modeling and control of the STEs and this makes the traditional methods

inappropriate.

1.3 Contributions of This Thesis

The focus of this thesis is on small low-cost turbojet engines where the fuel flow

is provided by a gear-type fuel pump rather than a more traditional fuel metering

unit. This thesis presents and applies online/offline parameter estimation and adaptive

control methods to this type sub-class turbojet engines. The contributions of this

thesis study may be summarized as follows:
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• The online/fast engine models should be simple in structure and consistent with

the engine dynamics. In this study, these models are kept simple to be able to

run on even microcontroller based ECUs and are kept complex enough to able

to capture the additional nonlinear dynamics caused by the gear type-fuel pump.

• Due to the manufacturing tolerances, the performances of the similar type of

engines and gear pumps are not the same. Even, the fuel pump replacement

causes a sudden change in the engine performance. The proposed fast engine

model can adapt itself to the actual engine and fuel pump combination in a short

time. This can eliminate the necessary controller calibration tests.

• Wearing on the fuel pump gears or erosion on the compressor/turbine blades

cause the engine performance to degrade slowly. This engine model can update

itself with the actual engine condition during the flight and still can be used for

the limit detection and protection. The updated engine parameters can also be

used for health monitoring and diagnostics purposes.

• This sub-class turbojet engines are instrumented mostly with inductive type

proximity sensors for the shaft speed measurement without a redundancy op-

tion. The performance of these type sensor heavily depends on the clearance

between the compressor blades. Also, they are inherently susceptible to mag-

netic field interferences. The proposed fast engine model can provide software

redundancy and can be used for failure detection and isolation (FDI) purposes.

• Also, any degradation on the turbojet engine or on the fuel pump directly affects

the controller performance. The proposed adaptive control method using the

fast engine model can update itself to actual engine dynamics and recovers the

desired turbojet response.

1.4 Outline

Chapter 2 is where a high-fidelity aero-thermal turbojet engine model is developed.

In order to achieve a high-fidelity level, the inter-component volumes method was

used. Next, a nonlinear gear-type fuel pump model was created by using test data and
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integrated with the aero-thermal model. Last, the developed aero-thermal model was

verified with experimental data found in the literature.

Chapter 3 proposes a nonlinear approximate model (or a fast engine model) for the

shaft dynamics simulation. The least squares method was used for the parameter

estimation of the approximate model. The obtained model was then tested under

different fuel pump command scenarios. Last, the same identification procedure was

repeated with real engine data to verify the proposed model structure and the derived

identification method.

Chapter 4 derives an online estimation algorithm which uses the same approximate

model structure. The convergence and boundedness of the parameter update laws

were proved by using Lyapunov stability theory. The algorithm was first applied to

the approximate model and then verified on the aero-thermal turbojet model.

Chapter 5 introduces an indirect-model reference adaptive control (indirect-MRAC)

for the shaft speed control of STEs. The adaptive controller again uses the same

approximate model structure and the derived online parameter estimation algorithm.

Firstly, the controller gain update laws was derived. Then, the algorithm was applied

to both approximate and aero-thermal models.

Chapter 6 compares the developed indirect-MRAC with a classical controller under

various test conditions. Last, both controllers were tested under a failure scenario to

reveal the main advantages of the indirect-MRAC.
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CHAPTER 2

TURBOJET ENGINE MODEL

In this study, the AMT Olympus turbojet engine was chosen as the test case [11]. This

engine is designed for model aircraft, high-speed aerial target drones, and heat/power

generators. It is a very basic type of a turbojet engine comprising a standard inlet,

a single stage centrifugal compressor with vaned diffusers, an annular combustor, a

single stage axial turbine, and a convergent nozzle. The cutaway view and technical

specifications of the engine are given in Appendix A.

The control system of the engine is also very simple. A microcontroller based ECU

is used to control the shaft speed and to limit the EGT. To manipulate the fuel flow

rate, only the gear type fuel pump is used instead of a more traditional FMU.

The shaft speed control structure of the AMT turbojet engine is illustrated in Fig. 2.1.

Here, the ECU receives the shaft speed command and engine’s actual shaft speed

measurement (feedback) and then, generates the actuation voltage required for the

gear-type fuel pump. The fuel flow rate of the pump depends on the actuation voltage

and the compressor outlet pressure. Last, the supplied fuel is burned in the combus-

tion chamber and the generated energy transformed into the thrust.

However, the generated thrust of a turbojet engine is not a measurable quantity. It is

a function of the shaft speed, compressor inlet conditions, and aircraft speed. But, as

seen in Fig. 2.1, the shaft speed is the only parameter that can be controlled within

these parameters to achieve the desired thrust. For this reason, the fuel pump supply

voltage and shaft speed are defined as the input and output of the system, respectively.

In Fig. 2.1, the red dashed line defines the propulsion system in which this study is

interested. To simulate this system, a generic aero-thermal turbojet engine model with
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Figure 2.1: Turbojet Engine with ECU

a gear-type fuel pump is developed in the following sections.

2.1 Aero-Thermal Turbojet Engine Model

A turbojet engine is a complex and inherently nonlinear machine. A good high-

fidelity aero-thermal model, which can simulate the transient response as well as the

steady-state condition of the target engine, is important for the system identification

and controller development processes. In this study, the inter-component volumes

method is preferred to achieve this high-fidelity level [12–21]. In this method, the

major components of a gas turbine are modeled separately as a one-dimensional flow

device by using the laws of conservation of mass and energy. Each component is also

assumed to be in quasi-steady state condition. By this way, it is possible to use quasi-

steady state performance maps in compressor and turbine models. For the sake of

simplicity, the compressor and turbine are also considered as a volumeless component

so, a plenum is placed to their behind to maintain the unsteady mass balance within

the engine. In addition, the lumped-parameter approach is preferred for the physical

properties of the air. Which means, any variations of the specific heat of the air are

either represented in the definition of isentropic efficiency or neglected. Lastly, the

specific heat value at constant pressure (Cp) is obtained from a 4th-order polynomial

of the temperature. The temperature value required for this polynomial is obtained

from the previous time step.
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Figure 2.2: Block Diagram of the Aero-Thermal Turbojet Engine Model

The paper published by Rahman [14] was used as the reference for the compressor/-

turbine maps and the other parameters of the AMT Olympus turbojet engine. The

experimental data published in this reference was also used for the validation of the

developed simulation model.

Figure 2.2 depicts the block diagram of the turbojet engine’s simulation model. In

this figure, the major engine components are illustrated by the blocks. Here, the red

dashed lines denote the control volumes and stations where the thermodynamic state

of the air must be considered and, the arrows represent the data flow between the

control volumes. The parameters of the state vector and input required to define the

engine dynamics are chosen as

x = [ P3, P5, T4, N ]T (2.1)

where P3 and P5 is the air pressure at the compressor and the turbine outlet, respec-

tively, T4 is the air temperature at the turbine inlet, and N is the rotational speed of

the engine shaft, and

u = gf (2.2)

defines the input of the engine dynamics, which is the mass flow rate of the fuel (gf ).
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2.1.1 Intake

The pressure and temperature at the intake entrance (P1, T1) are considered equal to

the ambient conditions (P0, T0):

P1 = P0 (2.3)

T1 = T0 (2.4)

The intake is assumed to be an ideal component so, the energy and pressure losses

along the intake are ignored. The stagnation quantities (P2, T2) at the intake outlet

can be obtained from the following equations [22–24]:

P2 = P1

((
T2

T1

) γ
γ−1

)
(2.5)

T2 = T1

(
1 +

γ − 1

2
M2

0

)
(2.6)

2.1.2 Compressor

To use the steady-state compressor maps during transient conditions, the compres-

sor is considered as a volumeless and quasi-steady state component. In Fig. 2.3 and

Fig. 2.4, the compressor steady-state pressure ratio (βc = P2p/P2) and isentropic ef-

ficiency (ηis,c) maps as a function of the corrected mass flow rate (g2p,cor = g2p

√
θ/δ)

and corrected shaft speed (Ncor = N/
√
θ) are presented, respectively. These maps

are digitized and converted to the 2D lookup tables as functions of the pressure ra-

tio and corrected shaft speed in order to calculate the corrected mass flow rate and

isentropic efficiency at the compressor outlet. For simplicity, the linear interpolation

method is used to evaluate these functions given below:

g2p,cor = f1(βc, N/
√
θ) (2.7)

ηis,c = f2(g2p,cor, N/
√
θ) (2.8)

where δ, θ are defined as:

δ =
P2

Pstd

, θ =
T2

Tstd
(2.9)
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Also, the total temperature at the compressor outlet is [22]:

T2p = T2

(
1 +

1

ηis,c

((
P2p

P2

) γ−1
γ

− 1

))
(2.10)

where the specific heat ratio (γ) is evaluated from the arithmetic average of the inlet

(T2) and the outlet (T2p) temperatures. Last, the power consumption of the compressor

is [22]:

Pwrc = g2p(Cp2T2 − Cp2pT2p) (2.11)

2.1.3 Compressor Plenum

To provide the unsteady mass balance between the compressor and burner, a plenum

is placed after the compressor outlet. The rate of change of the pressure in the plenum

is derived from the ideal gas law. The simplified version of this equation is given as

follows [1, 25]:
dP2p

dt
=
RT2p

Vp,c
(g2p − g3) (2.12)

In addition, the energy and pressure losses are also neglected so, the air pressure and

temperature are assumed to be constant along the plenum:

P3 = P2p (2.13)

T3 = T2p (2.14)

2.1.4 Burner

The burner is considered to be a pure energy accumulator. The pressure loss (ηloss)

and burning efficiency (ηb) are taken into account during the calculations. The tem-

perature rate derived from the unsteady energy conservation law is [13]:

τb
dT4

dt
=
g3Cp3T3 + gf (Cp,bT0 + ηbLHV )− g4Cp4T4

g4Cp4

(2.15)

where τb is the time constant and Cp,b is the specific heat value of the fuel. In addition,

it is assumed that the fuel delivered to the burner is at ambient temperature (T0). Last,

the mass flow rate at the burner input (g3) is:

g3 = g4 − gf (2.16)
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and the burner outlet pressure (P4) is:

P4 = ηlossP3 (2.17)

2.1.5 Turbine

The assumptions made in the compressor model are also valid for the turbine model.

The turbine performance maps (Fig. 2.5, 2.6) obtained from Ref. [14], converted

into functions of the turbine expansion ratio (βt = P4/P5) and non-dimensional shaft

speed (N/
√
T4) to get the non-dimensional mass flow (g4,non = g4

√
T4/P4) and tur-

bine isentropic efficiency (ηis,t):

g4,non = f1(βt, N/
√
T4) (2.18)

ηis,t = f2(βt, N/
√
T4) (2.19)

Furthermore, the turbine outlet temperature can be calculated from the equations

given in [22, 23]:

T5 = T4

(
1 + ηt

((
P5

P4

) γ−1
γ

− 1

))
(2.20)

where γ is evaluated from the arithmetic average of the inlet (T4) and outlet (T5)

temperature. Last, the power (Pwrt) produced by the turbine is calculated from the

equation below [22, 23]:

Pwrt = g4(Cp5T5 − Cp4T4) (2.21)
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2.1.6 Jet Pipe Plenum

Similar to the compressor plenum, this component maintains the unsteady mass bal-

ance between the turbine and nozzle. The equations defined in the plenum section

can be rearranged as:
dP5

dt
=
RT5

Vp,n
(g5 − g6) (2.22)

and, the pressure and temperature at the plenum outlet (P6, T6) are:

P6 = P5 (2.23)

T6 = T5 (2.24)

2.1.7 Nozzle

The nozzle is considered as a simple convergent type nozzle. The nozzle pressure

ratio (βn) is defined as:

βn =
P6

P0

(2.25)

If the air speed through a nozzle reaches the speed of sound, the nozzle chokes. The

pressure ratio at this moment is called the critical pressure ratio ((βn)cri). This ratio

defines the upper saturation limit of the nozzle. The critical pressure ratio can be

expressed as a function of the specific heat ratio:

(βn)cri =

(
2

γ + 1

) γ
γ−1

(2.26)

The air velocity at a nozzle outlet (U7) as a function of the nozzle pressure ratio and

nozzle temperature is [22, 23]

U7 =

√
2Cp6T6ηn

(
1− β

γ−1
γ

n

)
(2.27)

where ηn represents the nozzle efficiency. The mass flow rate through a nozzle (g6 or

g7) can be derived from the continuity equation [22, 23]:

g7 = g6 =
AP6√
T6

√
γ

R
M7

(
1 +

γ − 1

2
M2

7

) 1−γ
2γ−2

(2.28)

where M7 is the Mach number of the air jet and can be calculated as:

M7 =
U7√
γRT6

(2.29)
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Finally, the net thrust (F7) generated by a turbojet engine can be obtained from the

velocity and pressure differences at the nozzle outlet:

F7 = g7(U7 − U0) + An(P7 − P0) (2.30)

where U0 is the aircraft speed.

2.1.8 Shaft Dynamics

The equation of the rotational acceleration (Ṅrad/s) derived from the angular momen-

tum equilibrium is:

Ṅrad/s =
ηmPwrt − Pwrc

JNrad/s

(2.31)

where J denotes the total inertia of the rotating assembly of the compressor, turbine,

and shaft. The bearing friction and other mechanical losses are implemented as the

mechanical loss (ηm).

2.2 Gear-Type Fuel Pump Model

A gear-type fuel pump which was developed in-house for small gas turbines is shown

in Fig. 2.7. To get performance values of the designed gear pump, it was tested

under the varying outlet pressure with 3V, 6V, and 8V supply voltages at standard

day conditions. The JP8 fuel was used during the tests. In each test session, the

pump outlet pressure was increased with the help of a valve on the fuel line, and the

fuel flow rate and the pump’s current were recorded with respect to the pump’s outlet

gauge pressure.

In Fig 2.8, the fuel pump test results for each of the three supply voltages are given.

This contains fuel flow rate versus pump outlet pressure (solid lines) and consumed

current versus pump outlet pressure (dashed lines). In addition, a possible fuel pump

running line is denoted by the magenta dotted line. As seen in the figure, the fuel

pump at a constant supply voltage shows almost a linear behavior with increasing

outlet pressure. However, the slope of each test results flattens with increasing supply

voltage. Besides, a turbojet engine’s fuel demand increases exponentially with respect

to the compressor outlet pressure. Therefore, for a ramp up in engine power (or a shaft
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speed acceleration), the fuel pump supply voltage needs to be increased against the

increasing compressor outlet pressure. This is illustrated in the possible fuel pump

running line shown in Figure 2.8, which unveils nonlinear behavior in the fuel pump’s

operation.

Figure 2.7: Gear-Type Fuel Pump
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In this application, a small direct-current (DC) electrical motor is used to drive the

gears of the fuel pump, so its dynamical response can be represented with a first-

order transfer function [26]. However, the mechanical time constant of DC motors

is around milliseconds ( [27]) and for small turbojet engines, it is around seconds

( [7, 8, 28]). Therefore, the transient (dynamic) response of the gear pump can be

neglected for sake of simplicity and it can be modeled using a 3D look-up table as a

function of the pump outlet pressure and pump supply voltage. The 3D look-up table

of the gear-type fuel pump is depicted in Fig. 2.9.
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2.3 Aero-Thermal Turbojet Engine Model Validation

The aero-thermal turbojet model was developed in the MATLAB/Simulink environ-

ment and the simulation results were compared with the experimental data published

in Ref. [14]. The simulation settings are ODE4 (Runge-Kutta) for the solver method

and dt = 0.001 s for the time step. The engine is considered to run on a test bench

(U0 = 0 m/s) at sea level. The ambient conditions (P0, T0) are 288.15 K for the

temperature and 101325 Pa for the pressure. The plenum volumes are 0.002 m3 for

Vp,c and 0.001 m3 for Vp,jp. The inertia of the rotor assembly (J) is 0.0002 kgm2.

The properties of the jet fuel (JP8) are set to 2010 J/kgK for Cp and 42.5x106 J/kg

for LHV . For the burner, the pressure loss (ηloss) and time constant (τb) are set to

0.98 and 0.01 s, respectively. The efficiencies are 0.80 for the burner (ηb), 0.98 for the

nozzle (ηn), and 0.90 for the mechanical transmission (ηm). The initial state vector is:

x = [ 294845Pa, 162676Pa, 1159K, 89.68 %Nmax ]T (2.32)

where the states are obtained from the trim condition for the fuel flow rate input of:

u = 8x10−3 kg/s (2.33)

2.3.1 Steady-State Results

The steady-state comparison results for the compressor outlet pressures, EGTs (T6),

thrusts, and fuel flow rates versus the shaft speed are depicted in Figs. 2.10, 2.11,

2.12, 2.13. As seen in the figures, the simulation results show similar trends with

the experimental data. The main differences between the results, especially in the

fuel flow rate result, are caused by the different control input implementation. For

the experimental results, the AMT turbojet engine is controlled in the closed-loop

control as shown in Fig. 2.1. Therefore, the shaft speed command is the control

input of the turbojet engine and is denoted by the x-axis in the figures. However,

the aero-thermal model results are of the open-loop control so that the fuel flow rate

shown in Fig. 2.12 is the control input of the engine. Nevertheless, by adjusting the

efficiencies, the differences between the simulation result and the experimental data

can be compensated and a higher convergence may be obtained. However, an accurate

engine performance model is beyond the scope of this study.
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Figure 2.10: Compressor Outlet Pressure Comparison with Ref. [14]
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2.3.2 Transient Results

The transient response of the aero-thermal model states (P3, P5, T4, N ) for an applied

staircase input of the fuel flow rate (gb) is shown in Figs 2.14 2.15 2.16 2.17.
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Figure 2.14: Compressor Outlet Pressure (P3) Response of the Aero-Thermal Model
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Figure 2.16: Burner Temperature Response (T4) of the Aero-Thermal Model
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Figure 2.17: Shaft Speed Response (N ) of the Aero-Thermal Model

In refs. [1, 9, 29], and our previous works [7, 8, 28], a first or second order transfer

function can be fitted on each step response of a gas turbine engine. As seen in the

figures, the transient responses of the aero-thermal model are consistent with a first

or second order transfer function output.
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CHAPTER 3

OFFLINE SYSTEM IDENTIFICATION

System identification defines a methodology to construct mathematical models of

dynamical systems based on the observed data. Data set, model structure, and identi-

fication method are the basic elements of this methodology. An appropriate structure

which defines the interaction between the regressors and unknown system parameters

is the most important step of this methodology [30].

The dynamical behavior of a system can be approximated by linear models around

its equilibrium points. This approach is called the black-box method in the litera-

ture [30]. This method is also used to model the dynamical response of gas turbines.

In ref. [9], Rowen uses a first-order transfer function to simulate the shaft dynamics

of a heavy-duty gas turbine. In ref. [1, 10], further details can be found.

In this study, the target STE is just actuated with a simple gear-type fuel pump rather

than an FMU. So, the overall system is inherently non-linear due to the internal dy-

namics of the turbojet engine and its interaction with the fuel pump. Hence, the

classical approaches given in refs. [1, 9, 10, 30] cannot be directly used to get a fast

engine model which can simulate all the shaft dynamics along the operational range.

In this chapter, a fast engine model structure and its offline parameter estimation

algorithm are proposed for the shaft dynamics of a turbojet engine. To estimate the

fast engine model parameters, the least squares method is used. Then, the obtained

model is tested under different fuel command scenarios. Last, the same identification

procedure is applied to the dataset of a real turbojet engine.
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3.1 Fast Engine Model Structure

The target propulsion system consisting of a turbojet engine and a gear-type fuel

pump is illustrated in Fig. 3.1. Here, the red dashed line defines the system boundaries

to be represented by a fast engine model structure and to be identified later. The

actuation voltage of the fuel pump is the input, and the rotational speed of the engine

shaft is the output of the system, respectively.

Figure 3.1: Turbojet Engine with a Gear-Type Fuel Pump

To see the shaft dynamics response of the aero-thermal model, a staircase fuel pump

voltage input is applied to the propulsion system. Figure 3.2 shows the applied fuel

pump voltage input and the resulting aero-thermal model response. Also shown is the

output of a second-order transfer function defined as:

N(s)

V (s)
=

Kωn
2

s2 + 2ζωns+ ω2
n

(3.1)

where the parameters of the second-order transfer function are ωn = 1.4, ζ = 0.85

and K = 2.2. The response of this transfer function is denoted by the dashed blue

line. As seen in the figure, the proposed linear model fits on the aero-thermal model

response between the shaft speeds of 90 %Nmax and 94 %Nmax. However, the output

of this linear model becomes inaccurate at higher and lower shaft speeds. As it is

known, the parameters ωn and ζ only affect the transient behavior of the linear model.

So here, the inaccurate gain K is the major source of the error. Therefore, the gain K

can be modified as a polynomial function of the shaft speed:

K = α2∆N(s)2 + α1∆N(s) + α0 (3.2)

where the α’s denote the coefficients of the second-order polynomial.
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Figure 3.2: Aero-Thermal Model Response to Voltage Inputs

Thus, Eqn. 3.1 becomes:

∆N(s)

∆V (s)
=

(α2∆N(s)2 + α1∆N(s) + α0)ωn
2

s2 + 2ζωns+ ω2
n

(3.3)

If Eqn. 3.3 is converted to the time-domain and rearranged, the following is obtained:

∆N̈ = −2ζωn∆Ṅ − ω2
n∆N + α2ω

2
n∆N2∆V+

α1ω
2
n∆N∆V + α0ω

2
n∆V

(3.4)

The state-space representation of Eqn. 3.4 is∆Ṅ

∆N̈

 =

 0 1

−ω2
n −2ζωn

∆N

∆Ṅ

+

 0

α0ω
2
n

∆V+

 0 0

α1ω
2
n α2ω

2
n

∆N∆V

∆N2∆V

 (3.5)

where N and Ṅ form the state vector of the fast engine model structure. The linear
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part of this fast engine model structure is still a second-order transfer function:

LP =

 0 1

−ω2
n −2ζωn

N
Ṅ

+

 0

α0ω
2
n

V (3.6)

and the nonlinear part of the model is:

NLP =

 0 0

α1ω
2
n α2ω

2
n

NV
N2V

 (3.7)

3.2 Derivation of the Offline Estimation Algorithm

The method of least squares is applied for the parameter estimation of the proposed

fast engine model structure given in Eqn. 3.5. In this method, the main idea is to mini-

mize the sum of the squares of residuals between the system output and the regression

model. The main advantages of this technique are the mathematical simplicity of the

algorithm which is based on simple matrix algebraic operations, and the parameter es-

timates are obtained by a single-step calculation cycle. In addition, the least squares

method can be applied to non-linear models similar to linear models [31].

Equation 3.4 can be rewritten as a regression model in discerete time domain:

∆N̈(k) = −2ζωn∆Ṅ(k)− ω2
n∆N(k) + α2ω

2
n∆N2(k)∆V (k)+

α1ω
2
n∆N(k)∆V (k) + α0ω

2
n∆V (k)

(3.8)

where N̈(k) is the measured system response (or dependent variable) at kth data point

and can be symbolized by:

y(k) = N̈(k) (3.9)

Additionally, N , Ṅ and, V are the independent variables of the equation. These

variables are alternatively called "regressors", "predictor variables", or "explanatory

variables" [31] and can be rewritten in a vector form represented by x as follows:

x(k) = [∆N(k) ∆Ṅ(k) ∆V (k) ∆N2(k)∆V (k) ∆N(k)∆V (k)] (3.10)

Last, ωn, ζ and αi are the unknown parameters to be estimated. Also, these parameters

are considered as constant and uncorrelated with the independent variables, and they

can be symbolized by the vector θ:

θ = [−ω2
n − 2ζωn α0ω

2
n α1ω

2
n α2ω

2
n]T (3.11)
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Finally, Equation 3.8 can be rewritten as:

y(k) = x(k)θ + ε(k) (3.12)

where ε is the error in the measurement. Although the parameters multiply both linear

and nonlinear functions of the independent variables, the equation is still linear in the

parameters. Thus, for discrete time point k, Eqn. 3.12 can be written as:

y(1) = x(1)θ + ε(1);

y(2) = x(2)θ + ε(2);

...
...

...

y(k) = x(k)θ + ε(k);

(3.13)

The matrix form of this regression model becomes:

X =


∆N(1) ∆Ṅ(1) ∆V (1) ∆N2(1)∆V (1) ∆N(1)∆V (1)

∆N(2) ∆Ṅ(2) ∆V (1) ∆N2(2)∆V (2) ∆N(2)∆V (2)
...

...
...

...
...

∆N(k) ∆Ṅ(k) ∆V (k) ∆N2(k)∆V (k) ∆N(k)∆V (k)

 (3.14)

Y = [N̈(1) N̈(2) ... N̈(k)]T (3.15)

ε = [ε(1) ε(2) ... ε(k)]T (3.16)

It is assumed that the error is uncorrelated with the independent variables and has

zero mean (E(ε) = 0) and variance (E(εεT ) = σ2I = 0) [31]. So, Equation 3.13 can

be rewritten in a matrix form:

Y = Xθ + ε (3.17)

and, the equation error becomes:

ε = Y −Xθ; (3.18)

The best estimator of θ in a least-squares sense obtained by minimizing the sum of

squared differences between the measurement and the model, and this defines the cost

function [31, 32]:

J(θ) =
1

2
(Y −Xθ)T (Y −Xθ) (3.19)

The gradient of the cost function with respect to θ gives the estimated parameter

values θ̂ minimizing the cost function:

∂J

∂θ
= −Y TX + θT (XTX) = 0 (3.20)
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Here, θ can be replaced with θ̂ which is the estimation of the true parameter values

and then, the equation becomes:

(XTX)θ̂ = XTY (3.21)

Finally, assuming XTX to be invertible, we get:

θ̂ = (XTX)−1XTY (3.22)

which is the least squares estimate of θ.

3.3 Offline Parameter Estimation of an Aero-Thermal Model

The system identification method derived above is first tested on the developed aero-

thermal turbojet engine model with a gear-type fuel pump described in Sec. 2. The

initial conditions defined in Sec. 2.10 are used for the simulation. Figure 3.3 shows

the shaft speed response of the aero-thermal model to the staircase fuel flow rate input.

Here, the engine first decelerates to the shaft speed of 83 %Nmax and then accelerates

to 90 %Nmax, 94 %Nmax and 97 %Nmax, respectively. Then, the engine decelerates

back through to the same fuel pump command inputs. To obtain X of Eqn. 3.2,

the trim values are subtracted from the actual values. By applying Eqn. 3.22, the

parameter estimation vector θ̂ is found as:

θ̂ = [−1.8054 − 2.3360 4.8220 − 0.1835 − 0.0001] (3.23)

and the fast engine model given in Eqn. 3.5 becomes:

∆Ṅ

∆N̈

 =

 0 1

−1.8054 −2.3360

∆N

∆Ṅ

+

 0

4.8220

∆V+

 0 0

−0.1835 −0.0001

∆N∆V

∆N2∆V

 (3.24)
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Figure 3.3: Aero-Thermal Model Response to the Stairs Level of Fuel Flow Rate

Input

Therefore, the estimated system parameters are found as follows:

ωn =1.3437

ζ =0.8692

α0 =2.6709

α1 =− 0.1016

α2 =− 0.00006

The roots of the linear part of the fast engine model are found as λ1,2 = −1.1680 ±
0.6642i, and it is stable as expected. Figure 3.4 compares the obtained fast engine

model outputs (∆N, ∆Ṅ ) with the data set gathered from the aero-thermal model.

The estimated values for the proposed fast engine model structure provide the ex-

pected convergence with the aero-thermal model.
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Figure 3.4: State Comparison of the Models

To test the fast engine model under different fuel command scenarios, first, a peri-

odical square input command is applied. The comparison of the fast engine model

response with the aero-thermal model response is shown in Fig. 3.5. As seen in the

figure, the fast engine model show a good consistency with the aero-thermal model

response and the differences seem negligible.

As the second scenario, a sinusoidal fuel pump command with ∆ = 1V amplitude

and 0.05 Hz frequency is applied on both the aero-thermal model and fast engine

model. As it is shown in Fig. 3.6, the shaft speed response of the aero-thermal model

oscillates between 87 %Nmax and 92 %Nmax and the fast engine model closely fol-

lows it.
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Figure 3.5: Comparison of the Test Results for an Applied Square Wave Command
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Figure 3.6: Comparison of the Test Results for an Applied Sinusoidal Command
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3.4 Offline Parameter Estimation of a Test Engine

The method is then tested on a real turbojet engine in ground testing. The test setup

consisting of an experimental STE actuated with a gear-type fuel pump is shown in

Fig 3.7. The engine produces 400 N of thrust at 100,000 RPM. For the safety, the

engine’s shaft speed is limited to 85,000 RPM using the ECU software during the

experiments. Here, the ECU is in an aluminum box containing an electronic card, a

gear-type fuel pump, and two fuel-line valves. The electronic card accommodates a

16-bit microprocessor, data acquisition circuits for the EGT and shaft speed measure-

ments, drivers for the fuel pump and fuel valves, and flash memory for the logging.

Further details about the test setup and ECU are given in Refs. [7, 8].

Figure 3.7: Test-Bed with a Turbojet Engine and ECU [8]

The test data gathered from the turbojet engine for the applied staircase fuel pump

input command is depicted in Fig. 3.8. However, the data is not sufficient to evaluate

the derived least squares algorithm because of the missing shaft speed acceleration,

but here, normal derivation techniques become inappropriate because the sample rate

of these noisy data is only 10Hz. For the solution, the local smoothing method ex-

plained in [32] is used. This method again uses a least squares method to fit a second-

order polynomial on the gathered data points in the time-domain. After applying this

method, the obtained smoothed shaft speed and derived shaft speed acceleration re-

sults are depicted in Fig. 3.9. As it is shown in Fig. 3.9, the shaft acceleration data

has less noise and it is now suitable to be used in the estimation algorithm.
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Figure 3.8: Turbojet Engine Response to the Stairs Level Fuel Flow Rate Input
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After applying the derived least-squares algorithm to the smoothed test data, the fast

engine model is estimated as:∆Ṅ

∆N̈

 =

 0 1

−15.9153 −7.5902

∆N

∆Ṅ

+

 0

573.2520

∆V+

 0 0

−8.7614 −0.0334

∆N∆V

∆N2∆V

 (3.25)

and the parameters of the model are found as:

ωn = 3.9894

ζ = 0.9513

α0 = 36.0189

α1 = −0.5505

α2 = −0.0021
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Figure 3.10: Comparison of the Fast Engine Model Output with the Turbojet Engine

Data
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The linear part of the system is stable as expected with the roots of λ1,2 = −3.7951±
1.2298. Figure 3.10 compares the obtained fast engine model response with the real

engine test data. Even the acceleration and deceleration responses of the engine are

not symmetrical, the fast engine model follows the test engine response with accept-

able accuracy.

As it is shown in the test result, the proposed fast engine model structure and the de-

rived parameter estimation algorithm based on the least squares method are applicable

to similar turbojet engines, especially those actuated with a gear-type fuel pump.

Finally, this offline identification method can also be applied to any nonlinear system

that is especially actuated by a nonlinear actuator. The generalized version of this

method is given in Appendix A.
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CHAPTER 4

ONLINE SYSTEM IDENTIFICATION

In this chapter, an online parameter estimation algorithm based on Lyapunov stability

theorem is derived for the target STEs. The algorithm uses the fast engine model

structure proposed in Sec: 3.1. By using the regressors defined in this model structure,

the parameter update laws are derived and then, their boundedness and convergence

are proved. Last, the derived algorithm is tested on both the fast and aero-thermal

turbojet engine model, respectively.

4.1 Derivation of the Online Estimation Algorithm

The general structure of the online system identification algorithm is depicted in

Fig. 4.1. Here, the block "Plant" represents a nonlinear time-invariant system with an

input (u(t)) and output (yp(t)) signals. Its state dynamics (ẋp(t)) and output (yp(t))

are defined with fp(xp, u,Θ∗
p) and hp(xp). Here, the final plant parameters are de-

noted by Θ∗
p. The identification model is expressed with ˙̂xI = f̂(x̂I , yp, u, Θ̂p) and

ŷI = ĥ(x̂I) in the identification block. This block calculates the identified plant

output (yI) by receiving the input and output signals from the plant and the estimated

plant parameters (Θ̂p) from the adaptation block. The adaptation block uses Lyapunov

stability theory based parameter update laws which are the functions of the plant in-

put/output and the error (eI) between the plant and the identification model [33].
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Figure 4.1: Online Parameter Estimation Structure [33]

In this study, the plant block is the shaft dynamics of an STE equipped with a gear-

type fuel pump. If the fast engine model structure given in Eqn: 3.5 is recalled:

∆Ṅ

∆N̈

 =

 0 1

−ω2
n −2ζωn

∆N

∆Ṅ

+

 0

α0ω
2
n

∆V +

 0 0

α1ω
2
n α2ω

2
n

∆N∆V

∆N2∆V


(4.1)

The linear part of this nonlinear model can be denoted as:

Apxp +Bpu =

 0 1

−ω2
n −2ζωn

∆N

∆Ṅ

+

 0

α0ω
2
n

∆V (4.2)

where the shaft speed (∆N ) and shaft acceleration (∆Ṅ ) are the states of the fast

engine model and can be represented with a system state vector xp ∈ <2x1. ∆V is

the input of the system and can be represented with a control input u ∈ <. Ap ∈ <2x2

is the state matrix which is constant and unknown. In addition, the input matrix

[ 0 α0ω
2
n ]T can be represented with a constant and known input vector Bp ∈ <2x1
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and with a constant, positive and unknown control effectiveness gain Λ ∈ <:

BpΛ =

0

1

α0ω
2
n =

 0

α0ω
2
n

 (4.3)

where Λ gain is the fuel pump performance factor which converts the fuel pump

supply voltage into the fuel flow rate. Hereby, the representation of the linear part of

the system becomes:

ẋp = Apxp +BpΛu (4.4)

The nonlinear part of the fast engine model can be expressed by an unknown constant

parameter matrix Θ∗
f ∈ <2x2, and a known 2D regressor vector f(xp, u) ∈ <2, whose

components are continuously differentiable functions of xp and u:

Θ∗
ff(xp, u) =

 0 0

α1ω
2
n α2ω

2
n

∆N∆V

∆N2∆V

 (4.5)

Finally, by using Eq. 4.4 and Eq. 4.5, the general form of the fast engine model

becomes:

ẋp = Apxp +BpΛu+ Θ∗
ff(xp, u) (4.6)

In Fig. 4.2, the details of the system identification structure are given. Here, the

proposed identification model is:

˙̂xp = Amx̂p + [Âp − Am]xp +BpΛ̂u+ Θ̂ff(xp, u) (4.7)

where Am matrix defines the identification model dynamics. Without Am matrix, the

error dynamics required to derive the parameter update laws depends on Ap, which is

unknown and may be unstable. Here, Am ∈ <2x2 is a Hurwitz matrix (Re[λi] < 0).

Therefore, the error dynamics of the identification process will be:

ėI = ˙̂xp − ẋp (4.8)

Using the identification model dynamics defined in Eq. 4.7 and the plant dynamics

given in Eq. 4.6, Eq. 4.8 can be rewritten as:

ėI = Amx̂p + [Âp − Am]xp +BpΛ̂pu+ Θ̂ff(xp, u)−

Apxp +BpΛu+ Θ∗
ff(xp, u)

(4.9)

43



Figure 4.2: Detailed View of the Parameter Estimation Structure

and then:

ėI = Am[x̂p − xp] + [Âp − Ap]xp +Bp[Λ̂− Λ]u+ [Θ̂f −Θ∗
f ]f(xp, u) (4.10)

Finally, we get the error dynamics:

ėI = AmeI + Ãpxp +BpΛ̃u+ Θ̃ff(xp, u) (4.11)

where:
Ãp = Âp − Ap

Λ̃ = Λ̂− Λ

Θ̃f = Θ̂f −Θ∗
f

(4.12)

To prove the stability and parameter convergence of the error dynamics, Lyapunov

stability theory needs to be applied. For this, the Lyapunov function candidate can be
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chosen as follows:

V =
1

2
eTI PeI +

1

2
Tr[ÃpΓ

−1
A ÃT

p ] +
1

2
Tr[Λ̃Γ−1

Λ Λ̃T ] +
1

2
Tr[Θ̃fΓ−1

Θ Θ̃T
f ] (4.13)

where P ∈ <2x2 is a symmetric positive definite matrix, ΓA ∈ <2x2 and Γf ∈ <2x2

are diagonal positive definite matrices, and ΓΛ ∈ < is a scaler.

For the stability proof, the time derivative of the Lyapunov function should satisfy the

condition of V̇ ≤ 0 [34, 35], so the trace parts of Eqn. (4.13) can be rearranged as:

1

2

dTr[ÃpΓ
−1
A ÃT

p ]

dt
=

1

2
Tr[ ˙̃ApΓ

−1
A ÃT

p ] +
1

2
Tr[ÃpΓ

−1
A

˙̃AT
p ] = Tr[ÃpΓ

−1
A

˙̃AT
p ]

1

2

dTr[Λ̃Γ−1
Λ Λ̃T ]

dt
=

1

2
Tr[ ˙̃ΛΓ−1

Λ Λ̃T ] +
1

2
Tr[Λ̃Γ−1

Λ
˙̃ΛT ] = Tr[Λ̃Γ−1

Λ
˙̃ΛT ]

1

2

dTr[Θ̃fΓ−1
Θ Θ̃T

f ]

dt
=

1

2
Tr[ ˙̃ΘfΓ−1

Θ Θ̃T
f ] +

1

2
Tr[Θ̃fΓ−1

Θ
˙̃ΘT
f ] = Tr[Θ̃fΓ−1

Θ
˙̃ΘT
f ]

(4.14)

Remark1: The trace of a matrix is:

Tr[A] =
n∑

j=1

ajj = a11 + a22 + · · ·+ ann (4.15)

Remark2: The time derivative of a trace matrix is:

dTr[A]

dt
= Tr

[
dA

dt

]
(4.16)

And, the time derivative of the Lyapunov function given in (4.13) is found as:

V̇ = eTI P ėI + Tr[ÃpΓ
−1
A

˙̃AT
p ] + Tr[Λ̃Γ−1

Λ
˙̃ΛT ] + Tr[Θ̃fΓ−1

Θ
˙̃ΘT
f ] (4.17)

Again, by adding the error dynamic given in Eq. 4.11, this equation becomes:

V̇ = eTI P [AmeI + Ãpxp +BpΛ̃u+ Θ̃ff(xp, u)]+

Tr[ÃpΓ
−1
A

˙̃AT
p ]+

Tr[Λ̃Γ−1
Λ

˙̃ΛT ]+

Tr[Θ̃fΓ−1
Θ

˙̃ΘT
f ]

(4.18)

where eTI PAmeI is a scaler and it can be rearranged as:

eTI PAmeI =
1

2
(eTI PAmeI)

T +
1

2
eTI PAmeI =

1

2
eTI (AT

mP + PAm)eI (4.19)
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Then, the Lyapunov function derivative becomes:

V̇ =
1

2
eTI (AT

mP + PAm)eI + eTI PÃp.xp + Tr[ÃpΓ
−1
A

˙̃AT
p ]+

eTI PBpΛ̃u+ Tr[Λ̃Γ−1
Λ

˙̃ΛT ]+

eTI P Θ̃ff(xp, u) + Tr[Θ̃fΓ−1
Θ

˙̃ΘT
f ]

(4.20)

By definition, the reference model is stable in the sense of Lyapunov and it can be

defined as:

AT
mP + PAm = −Q0 (4.21)

Finally, the Lyapunov function derivative is obtained as below:

V̇ = −1

2
eTI Q0eI + Tr[Ãp(xpe

T
I P + Γ−1

A
˙̃AT
p )]+

Tr[Λ̃(ueTI PBp + Γ−1
Λ

˙̃ΛT )]+

Tr[Θ̃f (f(xp, u)eTI P + Γ−1
Θ

˙̃ΘT
f )]

(4.22)

Remark3: The trace identity given for two vectors a and b is:

aT b = Tr[b.aT ] (4.23)

To satisfy V̇ ≤ 0 condition, the elements of V̇ should satisfy the following conditions:

Ãp(xpe
T
I P + Γ−1

A
˙̃AT
p ) = 0 (4.24)

˙̃AT
p = −ΓAxpe

T
I P (4.25)

and similar to this equation, the other elements of V̇ becomes:

Λ̃(ueTI PBp + Γ−1
Λ

˙̃ΛT ) = 0 (4.26)

˙̃ΛT = −ΓΛue
T
I PBp (4.27)

and:

Θ̃f (f(xp, u)eTI P + Γ−1
Θ

˙̃ΘT
f ) = 0 (4.28)

˙̃ΘT
f = −Γff(xp, u)eTI P (4.29)

Here theQ0 matrix is a symmetric positive definite matrix defined as (AT
mP+PAm =

−Q0 Q0 = QT
0 > 0). To satisfy (V̇ ≤ 0) condition, the elements of the Lyapunov
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function derivative should satisfy the following conditions:

˙̃Ap =
˙̂
A− Ȧ and Ȧp = 0

˙̃Λ =
˙̂
Λ− Λ̇ and Λ̇ = 0

˙̃Θ =
˙̂
Θ− Θ̇ and Θ̇ = 0

(4.30)

and finally, the related parameter update laws are obtained as:

˙̂
AT

p = −ΓAxpe
T
I P

˙̂
ΛT = −ΓΛue

T
I PBp

˙̂
ΘT

f = −Γff(xp, u)eTI P

(4.31)

Here the design parameters ΓA, ΓΛ, and Γf are the learning rate gains, and they are

used to determine the adaptation speed.Finally, the remaining element in Lyapunov

function derivative inherently satisfies the given condition below:

V̇ = −1

2
eTI Q0eI ≤ 0 (4.32)

This condition assures the global stability and boundedness of the Lyapunov function,

but it does not guarantee the asymptotic stability as the time derivative of the Lya-

punov function is only negative semi-definite. However, Barbalat’s Lemma proves

the convergence of the error (eI) to zero [33, 35].

4.2 Verification of the Online Estimation Algorithm

The simulation structure required to verify the derived online system identification

algorithm is depicted in Fig. 4.3. Here, the block "Plant" is the fast engine model of

the shaft dynamics of a STE given in Eqn: 3.24:∆Ṅ

∆N̈

 =

 0 1

−1.8054 −2.3360

∆N

∆Ṅ

+

 0

4.8220

∆V+

 0 0

−0.1835 −0.0001

∆N∆V

∆N2∆V

 (4.33)
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Figure 4.3: Online Parameter Estimation Structure for the Fast Engine Model

The second block in Fig. 4.3 represents the identification model defined in Eq. 4.7.

This model was selected as a second order linear model with the parameters of ωn =

0.6rad/s for the natural frequency and ζ = 1 for the damping ratio. The system

matrix (Am) of the identification model becomes:

Am =

 0 1

−ω2
n −2ζωn

 =

 0 1

−0.36 −1.2

 (4.34)

The initial estimation values for the plant parameters are:

Âp =

 0 1

−1 −2

 (4.35)

Λ̂ = 0.5 (4.36)

Θ̂f =

0 0

0 0

 (4.37)

The third block in Fig. 4.3 is the adaptation block and it comprises the parameter

update laws given in Eq. 4.31. The learning gains defined in these update law formu-
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lations are:

ΓA =

20 0

0 20

 (4.38)

ΓΛ = 3 (4.39)

ΓΘ =

0.01 0

0 100

 (4.40)

As seen in the fast engine model given in Eq. 4.33, the first rows of the matrices are

known and constant because the first state (N ) of the model is the integration of the

second state (Ṅ ). Therefore, the first diagonal element of P matrix needs to be kept

as small as possible. P matrix is chosen as:

P =

1e−5 0

0 1

 (4.41)
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Figure 4.4: Shaft Speed Estimation Result of the Fast Engine Model
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Figure 4.5: Shaft Acceleration Estimation Result of the Fast Engine Model

To converge the parameters to be identified to their ideal values and the error dynam-

ics to zero, the input command (u) must be persistently exciting [36, 37]. Here, the

idea is to manipulate the error dynamics by using the periodic input signals. The

square-shaped periodic signals because of having higher frequency component are

much more suitable to excite the error dynamics. However, it is important to note that

the periodic signal shape, amplitude, and frequency must be applicable for the system.

Further details regarding the persistency of excitation can be found in Refs. [36–39].

For this system, the periodic square signal with ∆V = 1V amplitude and 0.05 Hz

frequency was selected for the persistence of excitation. The shaft speed and accel-

eration results for the defined input signal are shown in Fig. 4.4 and Fig.4.5. Here,

the blue line denotes the response of the fast engine model. As seen in Fig. 4.4, the

shaft speed oscillates between around 87%Nmax and 92 %Nmax during the simula-

tion because of the persistence of excitation. Likewise, the red dashed line shows the

identification model output (estimation). As seen in the results, the estimated shaft
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speed and acceleration converge to the fast engine model states with time as expected.
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Figure 4.6: Parameter Estimation Results of the Fast Engine Model

The general trend of the estimated parameters is plotted in Fig. 4.6. The final values

of the estimated parameters are found as below:

Âp =

 0 1

−1.805 −2.336

 (4.42)

Λ̂ = 4.821 (4.43)

Θ̂f =

 0 0

−0.1834 9.767e−5

 (4.44)

The results clearly show that the parameter convergences are succeeded and their final

values are very close to the fast engine model parameters in Eq. 4.33. The obtained

results have verified the correctness of the derived parameter update laws and the
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online parameter estimation structure. After this point, the next step is to test this

algorithm on the aero-thermal model.

4.3 Online Parameter Estimation of an Aero-Thermal Model

To test the algorithm, the fast engine model given in Fig 4.3 was replaced with the

aero-thermal model as depicted in Fig 4.7. The engine is assumed as running on a test

bench (U0 = 0 m/s) at sea level. The ambient conditions (P0, T0) are set 288.15 K

and 101325 Pa, respectively. The same control input and initial parameters defined

in the previous section (Sec. 4.2) were applied to the system.

The engine shaft speed and acceleration responses are plotted in Fig. 4.8 and Fig. 4.9,

respectively. As seen in the results, the estimated states slowly converge to the aero-

thermal model states over time. As seen from the general trend of the estimated

parameters in Fig. 4.10, the parameter convergences occurred and the parameter esti-

mations are:

Âp =

 0 1

−1.901 −2.458

 (4.45)

Λ̂ = 4.979 (4.46)

Θ̂f =

 0 0

−0.1851 1.212e−6

 (4.47)

The estimated parameters are very close to fast engine parameters given in Eq. 4.33. It

was not expected to get the same estimation values because of the differences between

the identification methods. The obtained results prove that the proposed structure for

the online system identification of the shaft dynamics of a turbojet engine is true

and the derived Lyapunov based parameter update laws are applicable to the similar

turbojet engines.
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Figure 4.7: Online Parameter Estimation Structure for the Aero-Thermal Model
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Figure 4.8: Shaft Speed Estimation Result of the Aero-Thermal Model
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Figure 4.9: Shaft Acceleration Estimation Result of the Aero-Thermal Model
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Figure 4.10: Parameter Estimation Results of the Aero-Thermal Model
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CHAPTER 5

ADAPTIVE CONTROL OF SMALL TURBOJET ENGINES

The gas turbine engine parts, including feedback sensors, operate in harsh conditions

such as high temperature, pressure, and vibration etc. These conditions can cause ero-

sion, wear or tear on the engine parts. Any degradation on one of these engine parts or

in the fuel system may change the engine dynamics or even cause the engine to mal-

function. In such cases, advanced diagnostic and control techniques known as Failure

Detection and Isolation (FDI), limit detection and protection, health monitoring, and

adaptive control are used [1, 40, 41]. These techniques usually contain onboard/fast

engine models compatible with the engine dynamics [1, 10, 42, 43]. Also, these mod-

els must be simple enough to be able to embed into onboard (built-in) computers such

as ECUs or FADECs. The fast engine model proposed in Sec: 3.1 is compatible with

these requirements and can be used as a fast engine model for small turbojet engines.

In this chapter, the online parameter estimation algorithm derived in Chp: 4 is inte-

grated with an adaptive control. By this way, the ideal controller gains for the desired

engine response can be achieved, and any deterioration on the controller performance

can be compensated simultaneously. This approach is known as Self-Tuning Con-

troller (STC) or Indirect Model Reference Adaptive Control (Indirect MRAC) in the

literature [35, 44, 45]

The general structure of an indirect-MRAC is illustrated in Fig. 5.1. Here, the plant

parameters are estimated simultaneously by using the error (eI) between the plant

dynamics and identification model dynamics and then, these parameters are used to

either compute controller gains or update controller gains.
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Figure 5.1: General Structure of an Indirect-MRAC

5.1 Indirect Model Reference Adaptive Control

The details of the indirect-MRAC structure are depicted in Fig. 5.2. As seen in the

figure, the adaptive control structure is just added on the online system identification

structure explained in Sec. 4.2. Similarly, the plant is the fast engine model for the

shaft dynamics of an STE expressed with:

ẋp = Apxp +BpΛu+ Θ∗
ff(xp, u) (5.1)

and the identification model is:

˙̂xp = Amx̂p + [Âp − Am]xp +BpΛ̂u+ Θ̂ff(xp, u) (5.2)

Here, the control input (u(t)) and states (xp(t)) are received from the plant, and the

plant parameter estimations (Âp, Λ̂, Θ̂f ) are received from the adaptation block. Then,

the plant state estimations (x̂p) are evaluated. By using the identification error (eI),

control input, and states; the adaptation block executes the parameter update laws

derived in the previous chapter as:

˙̂
AT

p = −ΓAxpe
T
I P

˙̂
ΛT = −ΓΛue

T
I PBp

˙̂
ΘT

f = −ΓΘf(xp, u)eTI P

(5.3)

The obtained plant parameter estimations (Âp, Λ̂, Θ̂f ) from the integration of the

equations above are then used to calculate the controller gains (Kc). The control law

is:

u = Kxxp +Krr +Kff(xp, u) (5.4)
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and substituting this into Eqn: 5.1, the closed-loop system dynamics becomes:

ẋp = Apxp +BpΛ(Kxxp +Krr +Kff(xp, u)) + Θ∗
ff(xp, u) (5.5)

then if this equation is rearranged, the following is achieved:

ẋp = (Ap +BpΛKx)xp +BpΛKrr + (BpΛKf + Θ∗
f )f(xp, u) (5.6)

Last, the reference model representing the desired system response is defined as be-

low:

ẋM = Amxm +Bmr (5.7)

From here, the controller gains can be found from the matching condition between

the closed loop dynamics (Eqn: 5.6) and reference model (Eqn: 5.7):

Am = Ap +BpΛKx

Bm = BpΛKr

0 = BpΛKf + Θ∗
f

(5.8)

Figure 5.2: Detailed Structure of the Indirect-MRAC
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Thus, the equations that give the ideal controller parameters are found as:

Kx = −[BpΛ]−1[Ap − Am]

Kr = [BpΛ]−1Bm

Kf = −[BpΛ]−1Θ∗
f

(5.9)

Here, if the actual plant parameters are replaced with the estimated plant parameters,

the controller calculation laws become:

Kx = −[BpΛ̂]−1[Âp − Am]

Kr = [BpΛ̂]−1Bm

Kf = −[BpΛ̂]−1Θ̂f

(5.10)

These equations give the ideal controller gains for the desired system output. Thus,

the adaptive control structure given in Fig. 5.2 can be updated as in Fig. 5.3. For the

proof, these equations can be substituted into the control law given in Eqn: 5.4

u = −[BpΛ̂]−1[Âp − Am]xp + [BpΛ̂]−1Bmr − [BpΛ̂]−1Θ̂ff(xp, u) (5.11)

and if this equation is applied to the identification model given in Eqn. 5.2:

˙̂xp = Amx̂p + [Âp − Am]xp +BpΛ̂(−[BpΛ̂]−1[Âp − Am]xp + [BpΛ̂]−1Bmr

−[BpΛ̂]−1Θ̂ff(xp, u)) + Θ̂ff(xp, u)
(5.12)

and rearranged, the following is achieved:

˙̂xp = Amx̂p +Bmr (5.13)

which means that the dynamics of the identification model is the same as the desired

reference model dynamics specified in Eqn. 5.7. As seen in Fig. 5.1 or Fig. 5.2, there

is no reference model directly implemented in the structural layout of the system.

Instead, the identification model behaves like the desired reference model and the

control error converges to zero simultaneously with the identification error in the

same manner. However, in this control approach, the inverse of [BpΛ̂] has to exist.

Also, if Λ̂ approaches to zero, the term [BpΛ̂]−1 in the controller calculation laws

(Eqn:5.10) goes to the infinity and causes the controller gain calculation process to

fail. To avoid this, a lower saturation limit must be set for the term Λ̂. However, in

this application, the term [BpΛ̂] is defined as a vector with two elements, so its inverse

is not available.
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Figure 5.3: Detailed Structure of the Indirect-MRAC with Controller Calculation

As a solution, new adaptation laws can be defined for the controller gains. If the

controller parameter calculation laws given in Eqn: 5.10 are rearranged:

0 = Âp − Am +BpΛ̂Kx

0 = −Bm +BpΛ̂Kr

0 = Θ̂f +BpΛ̂Kf

(5.14)

The following additional errors can be defined [46]:

εx = Âp − Am +BpΛ̂Kx

εr = −Bm +BpΛ̂Kr

εf = Θ̂f +BpΛ̂Kf

(5.15)

By using the adaptation laws given in refs [46–48], new controller gain update laws
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become:
K̇T

x = −Γxε
T
xBp

K̇T
r = −Γrε

T
r Bp

K̇T
f = −Γfε

T
r Bp

(5.16)

The main advantage of this approach is that there is no need to define a saturation

limit for Λ̂.

5.2 Verification of the Indirect-MRAC Algorithm

The indirect-MRAC structure given in Fig. 5.3 is modified as shown in Fig. 5.4 by

replacing the controller gain laws (Eqn. 5.16) for the simulation. Here, the plant is

the fast engine model of the turbojet shaft dynamics given in Eqn. 3.24:

∆Ṅ

∆N̈

 =

 0 1

−1.8054 −2.3360

∆N

∆Ṅ

+

0

1

 4.8220∆V+

 0 0

−0.1835 −0.0001

∆N∆V

∆N2∆V

 (5.17)

The identification block in Fig. 5.4 also defines the reference model giving the desired

response. For this model, a second-order linear model with parameters of ωn =

5.0rad/s and ζ = 1 is selected. The system matrix (Am) and input vector (Bm) of

the identification/reference model become:

Am =

 0 1

−ω2
n −2ζωn

 =

 0 1

−25 −10

 (5.18)

and:

Bm =

 0

Kω2
n

 =

 0

25

 (5.19)
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Figure 5.4: Detailed Structure of the Indirect-MRAC for Verification

The initial estimations of the plant parameters are:

Âp =

 0 1

−0.5 −1

 (5.20)

Λ̂ = 4.3 (5.21)

Θ̂f =

0 0

0 0

 (5.22)

P matrix is chosen as:

P =

1e−5 0

0 1

 (5.23)

The learning gains defined in the adaptation block are:

ΓA =

3 0

0 3

 (5.24)

ΓΛ = 0.017 (5.25)
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ΓΘ =

0.004 0

0 8

 (5.26)

The initial values of the controller parameters are:

Kx =
[
0 0

]
(5.27)

Kr = 0 (5.28)

Kf =
[
0 0

]
(5.29)

The learning gains of the controller gain update laws are:

Γx =

0.1 0

0 0.1

 (5.30)

Γr = 0.1 (5.31)

Γf =

0.1 0

0 0.1

 (5.32)
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Figure 5.5: Indirect-MRAC Verification Result
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Figure 5.6: Indirect-MRAC Verification Result, Close View (first 20 s.)
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Figure 5.7: Indirect-MRAC Verification Result, Close View (first 70 s.)
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For the simulation scenario, a square input signal with ∆V = 1V amplitude and

0.05Hz frequency is applied. The results obtained for 300 seconds of simulation

time are shown in Fig. 5.5. Here, the blue dashed line is the shaft speed reference (or

command). The red line denotes the reference model output representing the desired

system response. The yellow line is the fast engine model or actual plant response,

and the purple line is the identification model response. To distinguish the behaviours

of the models clearly, the simulation results given in Fig. 5.6 are zoomed as it is

shown in Fig. 5.6. As seen in the figure, the identification model follows the reference

model. This means that the controller update algorithm finds the controller gains

required to converge the identification model response to the reference model. The

fast engine model response slowly approaches to the reference model response while

the identification model parameters converge to the fast engine model parameters.

Because at that time, the exact controller gains obtained from the identification model

parameters also be ideal for the fast engine model. The general trend of the fast engine

model can be seen better in Fig. 5.7.

The parameter estimations of the fast engine model are plotted in Fig. 5.8 and the

final values of the parameter estimations are:

Âp =

 0 1

−1.806 −2.336

 (5.33)

Λ̂ = 4.819 (5.34)

Θ̂f =

 0 0

−0.1846 0.0040

 (5.35)

Here it is seen that the obtained values are very close to the exact parameters of the

fast engine model given in Eqn. 5.17. Also, the general trend of the controller gains

can be seen in Fig. 5.9. As it is highlighted in the figure, the final values of the

controller gains are:

Kx =
[
−4.813 −1.59

]
(5.36)

Kr = −5.188 (5.37)

Kf =
[
−0.0008 0.03831

]
(5.38)
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Figure 5.8: Indirect-MRAC Fast Engine Model Parameter Estimations
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Figure 5.9: Indirect-MRAC Fast Engine Model Controller Gains

65



5.3 Testing of the Derived Indirect-MRAC

After verification of the indirect-MRAC algorithm, it is tested by using the aero-

thermal engine model. For the simulation, the fast engine model plant given in Fig 5.3

was replaced with the aero-thermal turbojet model as depicted in Fig 5.10. The rest

of the simulation structure is kept the same. The initial conditions of the aero-thermal

turbojet model are 101325 Pa and 288.15 K for the ambient air, and U0 = 0 m/s

for the airspeed at the inlet. The same operational conditions and shaft speed com-

mand defined in Sec:5.2 are applied. The other initial values of the indirect-MRAC

algorithm are given as follows.

The reference model:

Am =

 0 1

−25 −10

 (5.39)

Bm =

 0

25

 (5.40)

The initial parameter estimations of the plant:

Âp =

 0 1

−0.5 −1

 (5.41)

Λ̂ = 4.3 (5.42)

Θ̂f =

0 0

0 0

 (5.43)

The P matrix:

P =

1e−5 0

0 1

 (5.44)
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Figure 5.10: Detailed Structure of the Indirect-MRAC for Test

The learning gains of the adaptation block:

ΓA =

3 0

0 3

 (5.45)

ΓΛ = 0.015 (5.46)

ΓΘ =

0.02 0

0 0.1

 (5.47)

The initial values of the controller parameters:

Kx =
[
0 0

]
(5.48)

Kr = 0 (5.49)

Kf =
[
0 0

]
(5.50)
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The learning gains of the controller gain update laws:

Γx =

0.1 0

0 0.1

 (5.51)

Γr = 0.1 (5.52)

Γf =

0.1 0

0 0.1

 (5.53)

The shaft speed responses of the reference model, identification model, and aero-

thermal model are compared in Fig. 5.11. To reveal the model response differences

better, the simulation results of the first 20 seconds of simulation time are depicted in

Fig. 5.12. Here, the shaft speed command and reference model output are denoted by

the blue dashed line and red line, respectively. As seen in the figure, the identification

model (purple line) approaches the reference model over time and the aero-thermal

model (yellow line) follows the identification model with a delay. The convergence

of the aero-thermal model is plotted in Fig. 5.13. The last 50 seconds of simulation

time are shown in Fig. 5.14. As seen in the figure, the aero-thermal model gives the

desired response.
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Figure 5.11: Indirect-MRAC Test Result
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Figure 5.12: Indirect-MRAC Test Result (first 20 s.)
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Figure 5.13: Indirect-MRAC Test Result (first 70 s.)
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Figure 5.14: Indirect-MRAC Test Result (last 50 s.)
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Figure 5.15: Indirect-MRAC Aero-Thermal Model Parameter Estimations
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Figure 5.16: Indirect-MRAC Aero-Thermal Model Controller Gains

The parameter estimations of the aero-thermal model are depicted in Fig. 5.15. The

followings are the final values of the estimated parameters:

Âp =

 0 1

−1.903 −2.301

 (5.54)

Λ̂ = 4.93 (5.55)

Θ̂f =

 0 0

−0.2477 −0.2164

 (5.56)

Here, the obtained values are close to given values in Eqn. 5.17. Therefore, as high-

lighted in Fig. 5.16, the final controller parameters are also close to the obtained

results in Eqn:5.2. The final controller values are:

Kx =
[
−4.687 −1.557

]
(5.57)

Kr = −5.071 (5.58)

Kf =
[
2.269e−5 0.0372

]
(5.59)
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5.4 Testing of the Obtained Nonlinear Controller

To reveal the performance of the nonlinear controller using the ideal controller gains

obtained in the previous section, it is tested under different shaft speed scenarios.

Figure 5.17 shows the response of the aero-thermal model to a staircase shaft speed

command between 70%Nmax and 100%Nmax. As seen in the figure, the engine re-

sponse follows the reference model and gives the same transient behavior for each

step command. In Fig. 5.18, the engine response to the sinusoidal shaft speed com-

mand with 10%∆N amplitude and 0.05Hz frequency is plotted. In the last scenario,

to see the controller performance to the high-frequency commands at different opera-

tional levels, a sinusoidal signal with 1%∆N amplitude and 1Hz frequency is added

on the same staircase command in the first test. As seen in Figs. 5.18 and 5.19, the

engine shows the desired response for both high-frequency and low-frequency shaft

speed commands at different operational levels.
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Figure 5.17: Nonlinear Controller Performance Test-1
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Figure 5.18: Nonlinear Controller Performance Test-2

0 10 20 30 40 50 60 70

time [s]

65

70

75

80

85

90

95

100

105

S
ha

ft 
S

pe
ed

 [%
 o

f M
ax

 R
P

M
]

Command
Reference Model
Aerothermal Model

Figure 5.19: Nonlinear Controller Performance Test-3
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CHAPTER 6

ADVANTAGES AND DISCUSSIONS

As shown in the first chapter, the gas turbines are inherently nonlinear machines.

In addition, driving a gas turbine with a gear-type fuel pump rather than an FMU

brings an additional nonlinearity to the overall system. This new concept makes the

conventional gas turbine control methods based on the classical control approaches

inconvenient. In this chapter, to demonstrate the main advantages of the derived

indirect-MRAC method, it is compared with a classical controller in several condi-

tions including a fault scenario.

Because of being the most preferred and known method, PID control is selected as

the linear control method to compare with the derived indirect-MRAC [1]. The con-

troller gains are adjusted as P = 2, I = 1, D = 0.5 for the equilibrium point of the

aero-thermal model at 89.68 %Nmax. The same reference command is connected to

both the aero-thermal model with PID controller and the aero-thermal model with

indirect-MRAC for the simulation. Figure 6.1 shows the comparison results with the

applied shaft speed command and the desired response. As seen in the figure, the

performance of the PID controller is favorable for the rising edge of the reference

command. However, that is not the same for the falling edge. Because, as mentioned

before, the system to be controlled have nonlinear behavior and controlling this kind

of a system with a linear method such as a PID controller is not adequate. To demon-

strate the performance of the PID controller better, a staircase shaft speed command

between 70 %Nmax and 100 %Nmax is applied to both systems.

As shown in Fig. 6.2, the PID controller exhibits poor performance outside its design

region. To overcome this problem, the gain scheduling technique is mostly used [10,

28]. In this technique, the controller gains are determined separately for each specific
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Figure 6.1: Comparison Scenario-1
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Figure 6.2: Comparison Scenario-2
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operational region and condition of the engine including acceleration/deceleration

cases. And then, the ideal controller gains are interpolated regarding the shaft speed

and operating condition of the engine. However, these design procedures require

detailed test campaigns that may be time-consuming. In addition, the manufacturing

tolerances or modifications on the turbojet engine parts and fuel pump may cause

repetition of these design procedures from the beginning.

On the other hand, the indirect-MRAC has a nonlinear controller structure. As seen in

Fig. 6.2, it shows the same performance for the entire operational shaft speed range of

the engine. Also with the help of the online parameter estimation part, the controller

can adapt itself to the actual engine condition. This advantage eliminates the need for

the time-consuming test campaigns.
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Figure 6.3: Failure Scenario, Shaft Speed Results
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Figure 6.4: Failure Scenario, Controller Gains

To demonstrate the other advantages of the derived indirect-MRAC, both controllers

are tested under a possible malfunction scenario. In the scenario, it is assumed that the

efficiency of the fuel pump (fuel flow rate/supply voltage) decreases by half at 30th

second. This efficiency (or effectiveness) was symbolized by Λ in the approximate

model.

Figure 6.3 shows the simulation results for the reference command used at the pre-

vious test. As labeled in the figure, the failure occurs at 30th second and then, the

PID controller shows a loose performance. However, the indirect-MRAC controller

adapts itself to the actual engine condition and maintains the desired engine response.

This behavior can also be seen in the controller gain results given in Fig. 6.4. Last,

the controller effectiveness gain is plotted in Fig. 6.5. As it is shown in the figure,

the gain Λ converges to half of its initial value. It is obvious that this gain provides

very useful information about the health status of the fuel pump (or fuel system). For

instance, the wear on the fuel pump gears decreases its effectiveness during the op-

eration. The maintenance or replacement period of the fuel pump can be determined
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by monitoring this effectiveness gain. This may be another application area of the

indirect-MRAC structure for the further studies. Consequently, the indirect-MRAC

does not only adapt itself to the actual operating condition but also gives very useful

information about the engine parameters and health status.
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CHAPTER 7

CONCLUSION

In this study, both offline and online system identification methods were applied to a

small gas turbine engine (STE) equipped with a gear-type fuel pump to obtain its fast

engine model. Then, the derived online parameter estimation method was converted

to an indirect model reference adaptive control (Indirect-MRAC). In case of a failure,

it was proved that the indirect-MRAC can adapt itself and, keeps the desired controller

performance and also, the included online parameter estimation part provides very

useful information about the health status of the engine.

First, a high fidelity aero-thermal turbojet model was developed in MATLAB-Simulink

to generate the required realistic engine data. The developed aero-thermal model was

then validated with the experimental results found in the literature.

Second, a fast model was proposed to simulate the shaft dynamics of a turbojet. The

structure of the fast engine model was kept simple to be able to embed even on on-

board computers that have low computational power. Then, the least squares method

was used for the parameter estimation of this model. Next, the obtained model was

tested under different fuel pump command scenarios. For the verification, the same

identification procedure was repeated with real engine data. The obtained results

show that the proposed fast engine model structure is capable of simulating the shaft

dynamics of a turbojet engine over its operational range.

Third, an online estimation algorithm using the same fast engine model structure was

derived. The convergence and boundedness of the parameter update laws were proved

by using Lyapunov stability theory. The algorithm was first applied to the fast model

and then verified on the aero-thermal turbojet model. The simulation results depict
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that the parameter convergences occurred and the estimated parameter values were

quite close to the parameters obtained from the least squares algorithm.

Fourth, for the shaft speed control of a small turbojet engine, an indirect-model refer-

ence adaptive control (indirect-MRAC) based on the derived online parameter estima-

tion algorithm was applied. Firstly, the controller gain update laws were derived. It

was also shown that the identification model acts as a reference model that inherently

provides the desired response. Then, the algorithm was applied to both approximate

and aero-thermal models. The simulation results prove that the indirect-MRAC finds

the ideal controller gains providing the desired system output while estimating the

parameters of the controlled system simultaneously.

Last, the derived indirect-MRAC algorithm was compared with a PID controller un-

der various test conditions, including a failure scenario. Due to its non-linear control

structure, indirect-MRAC followed the desired control response more closely than the

PID controller. It was also shown that indirect-MRAC can adapt itself and maintain

the desired control performance under fault conditions. Moreover, it can provide very

useful data about the health status of the engine using the online parameter estimation

algorithm.

Consequently, the parameter estimation and control methods expressed in this study

are not limited to a gas turbine application field, but also can be applied to any control

system especially actuated with a nonlinear actuator for the advanced control and

diagnostic purposes such as adaptive control, limit detection and protection, failure

detection and isolation (FDI) etc.
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Appendix A

AMT OLYMPUS TURBOJET ENGINE SPECIFICATIONS

Figure A.1: Cutaway View of the AMT Olympus Turbojet Engine [15]

Table A.1: Technical Specifications of the AMT Olympus Turbojet Engine [14]

Engine Parameter Value Unit

Diameter 130 mm

Length 270 mm

Maximum Thrust 190 N

Pressure Ratio 4:1

Mass Flow Rate 0.4 kg/s

Maximum Rotational Speed 112500 RPM

Nominal EGT 923 K

Maximum EGT 973 K

Maximum Fuel Consumption 0.4 kg/min
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Appendix B

GENERAL PROCEDURE FOR FINDING AN APPROPRIATE NONLINEAR

MODEL STRUCTURE

The data set, model structure, and identification method can be defined as the basic

steps of the system identification procedure. For the success of the identification

process, a suitable model structure that defines the relationship between the regressors

and unknown system parameters is very important.

As the common approach, any system can be approximated by linear models around

its equilibrium points. These piecewise-linear models can then be combined into a

single model by using look-up tables. As an alternative way, a single nonlinear model

structure can also be defined. This section provides a general procedure for finding

an appropriate nonlinear model structure that can simulate target system dynamics.

First, a base model needs to be selected. As a rule of thumb, it is better to start with

simple linear models. For this, a first-order transfer function can be chosen as the

base model candidate:
∆N(s)

∆V (s)
=

K

τs+ 1
(B.1)

where τ is the time constant, and K is the gain of the function.

Second, the appropriate parameter values for this function are found around the se-

lected equilibrium point. The obtained transfer function is then tested in the oper-

ational envelope of the system. As an example, for our case, a first-order transfer

function with K = 1.85 and τ = 0.8 values fits on the aero-thermal engine model

response between the shaft speeds of 90 %Nmax and 94 %Nmax. The response of the

linear model for the out of this region can be seen in Fig. B.1
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Figure B.1: First-Order Linear Model Output Comparison with Aero-Thermal Model

Data

As shown in the figure, the output of this linear model, indicated by a dashed line, is

incorrect at higher and lower shaft speeds. As it is known, the time constant τ only

affects the transient behavior of the linear model. So here, the major source of the

error is the inaccurate K value. For this example, it is obvious that the K gain value

varies with the shaft speed. As a general procedure, the linear function parameters

must be represented as a function of the system states. For instance, here, the gain K

can be modified as a function of the shaft speed. As a good starting point, a linear

function can be selected as:

K = α1∆N(s) + α0 (B.2)

where the α’s are the coefficients of the linear function. Therefore, the first-order

transfer function defined in Eqn. B.1 becomes:

∆N(s)

∆V (s)
=
α1∆N(s) + α0

τs+ 1
(B.3)
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If this equation is converted to the time-domain and rearranged, the following is ob-

tained:

∆Ṅ =
−1

τ
∆N +

α0

τ
∆V +

α1

τ
∆N∆V (B.4)

The linear part of this nonlinear system model:

LP =
−1

τ
∆N +

α0

τ
∆V (B.5)

is still a first-order system, and the rest of the equation is the nonlinear part of the

model:

NLP =
α1

τ
∆N∆V (B.6)

Here; the regressor vector becomes:

x = [∆N ∆V ∆N∆V ] (B.7)

and, the unknown parameter vector θ is:

θ = [−1

τ

α0

τ

α1

τ
]T (B.8)

By applying Eqn. 3.22 on the shaft speed data given in Fig. B.1, the parameter esti-

mates θ̂ are obtained as:

θ̂ = [−0.5662 1.5632 − 0.0628] (B.9)

and the nonlinear system model given in Eqn. B.4 becomes:

∆Ṅ = −0.5662∆N + 1.5632∆V − 0.0628∆N∆V (B.10)

Finally, the estimated system parameters are found as follows:

τ =1.766

α0 =2.7607

α1 =− 0.11087

The model response comparison with the aero-thermal turbojet engine data is shown

in Fig B.2
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Figure B.2: First-Order Non-Linear Model Output Comparison with Aero-Thermal

Model Data (with a linear K gain function)

Third, the order of K gain function can be increased for a better convergence. For

our case, if the gain K is modified as a second-order polynomial of the shaft speed

and applied to Eqn. B.1, the following is obtained:

∆N(s)

∆V (s)
=
α2∆N(s)2 + α1∆N(s) + α0

τs+ 1
(B.11)

In the time-domain, this equation becomes:

∆Ṅ =
−1

τ
∆N +

α0

τ
∆V +

α1

τ
∆N∆V +

α2

τ
∆N2∆V (B.12)

Again, the linear part of the model structure:

LP =
−1

τ
∆N +

α0

τ
∆V (B.13)

is still a first-order system, and the nonlinear part of the model becomes:

NLP =
α1

τ
∆N∆V +

α2

τ
∆N2∆V (B.14)
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Figure B.3: First-Order Non-Linear Model Output Comparison with Aero-Thermal

Model Data (with a second-order K gain polynomial)

So, the regressor vector can be modified as:

x = [∆N ∆V ∆N∆V ∆N2∆V ] (B.15)

and, the unknown parameter vector θ is:

θ = [−1

τ

α0

τ

α1

τ

α2

τ
]T (B.16)

If the least-square estimation equation given in 3.22 is applied to this first-order non-

linear model structure, the parameter estimation vector θ̂ is found as:

θ̂ = [−0.5665 1.5629 − 0.0628 2.59e−5] (B.17)
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Finally, the estimated system parameters are found as follows:

τ =1.7652

α0 =2.7589

α1 =− 0.11091

α2 =− 4.5865e−5

The comparison of this model with aero-thermal turbojet engine data is shown in

Fig B.3. In this case, the parameter estimations (τ, α0, α1) are very close to the pre-

vious estimations. The last parameter value (α2) is too small, so it doesn’t make a

big difference in the results. The important thing here is that the order of the K gain

function can be increased until the satisfactory condition is reached.

Fourth, the other model parameters can also be represented as a function of the system

state. For the first-order base model case, the time constant τ can be modified as a

function of shaft speed to increase the convergence around the transient regions. In

this case, the resulting regressor model cannot be separated as a linear and nonlinear

part. However, the obtained model still can be used as an approximate model and its

parameters can be estimated with the least squares method.

As the last step, the order of the linear base model can be increased. For instance, in

Chp: 3, a second-order transfer function was selected as the base model and then the

K gain is defined as a second-order polynomial of the shaft speed. The complexity

of the base model and its parameter functions can be increased similarly until the sat-

isfactory condition is reached. Consequently, the described procedure can be applied

easily to any nonlinear system to obtain the nonlinear approximate model structure.
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Ekinci, S.; Arslantas, Y. E.; Yavrucuk, I.; "İnsansız Helikopterin Uçus Kontrol Algo-
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