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One of the most significant difficulties in daily life or business decision problems is 

that they often involve multiple criteria, alternatives and/or stakeholders. Analytic 

Hierarchy Process (AHP) is one of the most widely used multi-criteria decision making 

tools in such problems. Despite its wide acceptance due to its systematic and simple 

procedure, AHP has limitations especially in terms of the numerical comparison scale 

used in one of its core steps: Pairwise comparisons. AHP is based on verbal 

comparison of alternatives, which are then converted to numerical scores with a one-

to-one mapping between the verbal comparisons and and a numerical scale. The choice 

of numerical scale affects one of the most important characteristics of pairwise 

comparisons, which is named as “consistency”. This study includes the comparison of 

the most widely used numerical pairwise comparison scale (Fundamental Scale) with 

other main numerical scales that have been suggested since the first foundation of AHP 

(Saaty, 1980). In the comparison procedure, the limitations of Fundamental Scale are 

identified, a new scale is proposed considering these limitations, and characteristics of 
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all numerical pairwise comparison scales are analyzed. These analyses are tested with 

extensive simulations. All numerical scales are evaluated on an example decision 

making problem. Lastly, the advantages and disadvantages of the numerical scales are 

presented. 

 

Keywords: Analytic Hierarchy Process (AHP), Pairwise comparison scale, 

Consistency, Simulation  
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ANALİTİK HİYERARŞİ SÜRECİ İÇİN 

YENİ İKİLİ KARŞILAŞTIRMA ÖLÇEĞİ 
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Yüksek Lisans, İşletme Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Gülşah Karakaya 

Ortak Tez Yöneticisi: Dr. M. Sinan Gönül 

 

 

Ocak 2019, 114 sayfa 

 

 

Günlük hayatta ya da çalışma ortamında karşılaşılan karar verme problemlerinde 

yaşanan en önemli zorluklardan biri, birden fazla ölçüt, seçenek ve/veya paydaşı 

içermeleridir. Bu tarz karar verme problemlerinde sıklıkla kullanılan çok kriterli karar 

verme yöntemlerinden biri olan Analitik Hiyerarşi Süreci (AHS), karar vericiler 

tarafından tercih edilmesini sağlayan sistematik ve anlaşılır yapısına karşın, yöntemin 

ana uygulamalarından biri olan ikili karşılaştırmalarda en sık kullanılan sayısal ölçek 

açılarından yetersizlikler de içermektedir. AHS, alternatiflerin sözel olarak 

karşılaştırılması ve bu sözel karşılaştırmaların bir sayısal ölçeğe göre sayısal puanlara 

çevrilmesi prensibiyle uygulanır. AHS’de kullanılan sayısal ölçek aynı zamanda 

yöntemin “tutarlılık” adı verilen en önemli karakterinden biri üzerinde etkilidir.Bu 

çalışma, AHS’de en sık kullanılan sayısal ikili karşılaştırma ölçeği olan Temel Ölçek 

ile AHS’nin öne sürülüşünden beri (Saaty, 1980) önerilmiş olan diğer ana sayısal ikili 

karşılaştırma ölçeklerinin karşılaştırmasını içermektedir. Bu karşılaştırmalar sırasında 

öncelikle Temel Ölçek’in yetersizlikleri belirtilmiş; bu yetersizlikleri gidereceği 
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düşünülen yeni bir ölçek önerilmiş; sonrasında ise bütün ölçeklerin genel özellikleri 

analiz edilmiştir. Bu analizler yapılan geniş kapsamlı simülasyonlarla test edilmiş ve 

daha sonra bütün ölçekler bir örnek karar verme uygulaması üzerinde değerlendirilerek 

AHS için fayda ve sakıncaları yorumlanmıştır. 

 

Anahtar Kelimeler: Analitik Hiyerarşi Süreci (AHS), İkili karşılaştırma ölçeği, 

Tutarlılık, Benzetim  
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CHAPTER 1 

 

1. INTRODUCTION 

 

A world with decisions only based on a single criterion would be an easy environment 

to overcome decision problems. It would simply be the choice of the alternative, which 

provides the best performance on the single decision criterion. For instance, if a 

decision maker (DM) were to buy a car considering only its engine capacity, indeed, 

he/she would be overlooking many other features of the car, such as its passenger 

capacity, comfort, and safety. Conversely, in real life, the decision problems which 

require a single decision criterion are very rare compared to those which require 

multiple decision criteria. DMs often confront with situations where they need to make 

trade-offs, i.e., to stretch some criteria or even waive some of them in order to have 

better performance on others. In this regard, humans need to evaluate each decision 

criterion considering the other decision criteria in order to decide which alternative fits 

best to their expectations, even if an alternative performs the worst with respect to one 

(or multiple) criterion.  

Management decisions are often complex as they involve multiple objectives (such as 

profit maximization, cost minimization) and many decision criteria. In many cases, 

there are more than one stakeholder, which makes the decision problems even more 

complex as the DM may have to ensure some certain requirements are fulfilled (i.e. 

safety requirements by laws, public satisfaction etc.). While “fast and frugal heuristics” 

(Gigerenzer, Gerd; Todd, P. M.; The ABC Research Group, 1999) work very well in 

some situations, solid analyses based on systematic approaches are more preferable in 

managerial decision making. 

Having grown as a part of the Operational Research, Multi-Criteria Decision Making 

(MCDM) is concerned with providing verbal and/or computational tools to support a 

DM while he/she evaluates two or more alternatives with respect to two or more 
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related/unrelated decision criteria. MCDM idea aims to propose an “optimal” or “good 

enough” solution to decision problems, as it is nearly impossible to have the best 

results in every criteria of the DM. 

Numerous MCDM techniques have been proposed by many researchers as systematic 

approaches to multi-criteria decision problems. Some of the most well-known 

teqhniques can be listed as: 

 Analytic Hierarchy Process (AHP) (Saaty, 1980) 

 The Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) (Hwang and Yoon, 1981) 

 Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE) (Brans, 1982) 

 Simple Multi Attribute Rating Technique (SMART) (von Winterfeldt and 

Edwards, 1986) 

 ELimination Et Choix Traduisant la Realité (ELECTRE) (Roy and Bouyssou, 

1993) 

 Measuring Attractiveness Through a Categorical-Based Evaluation Technique 

(MACBETH) (Bana e Costa et al., 2012) 

Although there are many other techniques, none of them can be regarded as the “best” 

MCDM technique that is superior to the others in every aspect. Indeed, several studies 

(Badri, 2001; Macharis et al., 2004; Pirdashti et al., 2009; Amiri et al., 2009) employ 

hybrid use of techniques to provide improved suggestions to DMs. 

Among these techniques, AHP attracts attention as it is the first one to systematically 

use the concept of “pairwise comparisons”, which was suggested by Fechner (1860), 

and developed by Thurstone (1927). According to the concept of pairwise 

comparisons, elements constituting the complex decision problem should be compared 

in pairs in order not to exceed the cognitive capacity of human mind and obtain invalid 

results. Another strength of AHP is that it enables the DM to model complex decision 

problems by dividing them in simpler portions, and then, summarizing the results of 
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these portions to come up with the best alternative based on his/her preferences. 

Moreover, AHP does not necessarily require a sophisticated software. 

Its strengths led to its widespread use in many real life decision making applications. 

Being a widely used method also attracted the attention of the academy and made AHP 

one of the most studied MCDM techniques. These studies criticize AHP in various 

aspects. Some of them focus on the scale used in pairwise comparisons (Dong et al., 

2008; Franek and Kresta, 2014), while some other studies elaborate on the weight 

extraction (Saaty and Hu, 1998; Dijkstra, 2013) and inconsistency measurement (Dodd 

et al., 1992; Davoodi, 2009). While some of these studies suggest novel ideas to 

improve AHP (Lin et al., 2013), some other studies simply compared and contrasted 

what have already been proposed or is being widely used (Ishizaka and Lusti, 2006; 

Franek and Kresta, 2014). 

This study also reviews the literature, criticizes some parts of AHP, proposes a novel 

pairwise comparison scale with better consistency characteristics and introduces new 

performance measures, which have not yet been used in any previous research in AHP 

literature. 

The rest of this study is organized as follows: Chapter 2 provides an overview of the 

Analytic Hierarchy Process and its application areas, defines its application procedure, 

and explains the fundamental axioms that constitute the basis of AHP methodology. 

In the rest of the Chapter 2, the procedure of AHP is elaborated on by detailed 

explanation of its main steps, namely “Definition and Hierarchical Representation of 

Decision Problem”, “Pairwise Comparisons”, “Weight Derivation”, “Consistency 

Measurement”, and “Aggregation of the Local Priorities”. Chapter 3 discusses the 

“Limitations of Existing Scales”. In Chapter 4, a new pairwise comparison scale is 

proposed in order to overcome the limitations analyzed in Chapter 3. Then, Chapter 5 

presents the numerical analyses and simulation results comparing the proposed 

pairwise comparison scale and the existing ones with respect to related performance 

measures. Chapter 6 compares the scales through a sample decision problem. Finally, 
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in Chapter 7, the findings of the analyses are discussed details and possible future study 

areas with conclusive remarks are presented.  
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

In this chapter, an overview of the Analytic Hierarchy Process (AHP) will be provided 

by introducing its application areas, defining its procedure and explaining the main 

axioms underlying the whole methodology. 

2.1. Overview of Analytic Hierarchy Process and its Application Areas 

Analytic Hierarchy Process (AHP) is a multi-criteria decision making (MCDM) 

method, originally developed by Thomas L. Saaty (1980). It was developed as a 

reaction to the finding that there is a miserable lack of common, easily understood and 

easy-to-implement methodology to enable the taking of the complex decisions. Since 

then, the simplicity and power of AHP has led to its widespread use across multiple 

domains in every part of the world (El Hefnawy and Mohammed, 2014). AHP has 

been used in business, government, social studies, R&D, defense and other domains 

involving decisions in which choice, prioritization or forecasting are needed (Bhushan 

and Rai, 2004). As indicated in the original study (Saaty, 1980), AHP is a theory of 

measurement through pairwise comparisons and relies on the judgements of experts to 

derive priority scales. 

The importance of AHP comes from its wide applicability to real life problems without 

many assumptions and adjustments. Although there are various softwares to apply 

AHP, the entire process basically requires only one critical asset: a DM who is 

knowledgeable enough in the decision topic so that he/she can accurately compare the 

items involved in the decision making problem. Based on several studies (Vaidya and 

Kumar, 2006; El Hefnawy and Mohammed, 2014; Russo and Camanho, 2015; 

Schmidt et al., 2015) application types of AHP in real-life decision problems include, 

but are not limited to: 
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 Selection of an alternative from a given set of alternatives 

 Evaluation and performance measurement of multiple alternatives 

 Benefit-cost analysis 

 Resource allocation 

 Planning and development 

 Priority determination and ranking of alternatives from the most to the least 

desirable  

 Forecasting and outcome prediction 

 

Based on the same studies and literature review, some application areas of AHP in 

real-life decision problems include, but are not limited to: 

 Project management (Al-Harbi, 2001) 

 Defense (Cheng, 1997)  

 Mining (Ehie and Benjamin, 1993) 

 Aerospace (Tavana, 2003) 

 Healthcare (Schmidt et al., 2015) 

 Environment management (Stirn and Grošelj, 2010) 

 Property (Safian and Nawawi , 2011) 

 Forecasting (Blaira et al., 2002) 

 Engineering (Chen and Lin, 2003) 

 Location selection (Takamura and Tone, 2003) 

 Manufacturing (Abdi and Labib, 2003) 

 

Another advantage of AHP is that it enables post-process evaluation of the DM’s 

judgements through numerical analysis. This way, the method checks whether or not 

the DM is consistent in his/her pairwise comparisons. 
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2.2. Axioms of Analytic Hierarchy Process 

Harker and Vargas (1987) note that Saaty (1986) has defined four axioms that 

constitute the base of AHP. These axioms are necessary to have a complete 

understanding of AHP, with the reasons of its simplicity and related drawbacks:  

 

 Axiom 1 – Reciprocal Condition: Although pairwise comparison questions are 

asked verbally, AHP is a numerical tool. According to the first axiom, for any 

pair of compared elements, the intensity of preference of Element1 over 

Element2 is inversely related to the intensity of preference of Element2 over 

Element1. To simply restate, if Element1 is 5 times more preferable than 

Element2, then Element2 is 1/5 as desirable as Element1. 

 

 Axiom 2 – Homogeneity: Saaty (1986) states that individuals are only capable 

of expressing meaningful intensities of preference if the elements are 

comparable. According to Saaty (1987), homogeneity is essential as the mind 

cannot compare widely disparate elements. Sagir Ozdemir (2005) notes that 

pairwise comparisons can be applied successfully to stimuli that are not too 

disparate in their magnitudes with respect to the possession of a certain 

attribute. The difficulty of comparison increases as the disparity between the 

compared elements increase. Saaty and Vargas (2012) exemplify this with the 

comparison of an unripe cherry tomato with an oblong water melon in terms of 

their volumes. Instead, a clustering of comparable-sized (homogenous) objects 

is proposed in order to create conceivable steps of comparisons. Then, these 

comparisons are used to obtain an approximation of the comparison by 

multiplication. The example is illustrated by Saaty and Vargas (2012) as shown 

in Figure 1. 
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Figure 1 The example used by Saaty and Vargas (2012) 

 

 Axiom 3 – Dependence: All sets of elements in the hierarchy should be 

compared in terms of the element on their immediately upper hierarchy. 

Consider the hierarchy given in Figure 2. For instance, if three different 

automobiles are to be compared in terms of trunk size (a sub-criteria under the 

“Physical Properties” main criteria), all of them should be compared with each 

other in terms of the trunk size, not in terms of another sub-criteria under 

“Physical Properties” or the “Physical Properties” itself, which is two levels 

above the compared elements (cars) in the hierarchy. 

 

Figure 2 Exemplary hierarchy for an automobile selection problem 
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 Axiom 4 – Expectations: If an exact replica of an alternative is added to the 

comparison, the DM should either adjust the criteria by adding another 

criterion such as “the number of elements of certain type” or simply do not add 

that replica as the preference of A over B is the same for the preference of A’s 

replica (A’) over B. 

 

2.3. The Procedure of Analytic Hierarchy Process 

AHP procedure consists of five main steps: 

 Definition and hierarchical representation of the decision problem: This step is 

basically the determination of the main aim of AHP application and division 

of a complex problem into smaller manageable parts, in which, elements 

involved in the problem can be compared in pairs. 

 Pairwise comparisons: Each element involved in the problem are verbally 

compared with the other elements in its respective hierarchy level, and these 

comparisons are transcribed to numerical values using a one-to-one mapping 

between the verbal comparison scale and corresponding numerical scores. 

These numerical scores represent the “intensity of preference” of each element 

over others. 

 Weight derivation: Based on the numerical scores obtained in the previous 

steps, a special matrix called “Pairwise Comparison Matrix” (PCM) is formed 

for all compared elements. Then, these numerical PCMs are evaluated using 

specific methods to extract the respective weights of each element within each 

PCM. 

 Consistency measurement: The DM has already responded the verbal pairwise 

comparison questions. However, their internal validity (consistency) is not yet 

checked. Therefore, in this step, the DM’s consistency in answering the verbal 

pairwise comparison questions are checked using the numerical PCMs. If any 
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inconsistency is detected, then, the DM is asked to revise his/her pairwise 

comparisons as he/she might have made a mistake in judgements. 

 Aggregation (synthesis) of the local priorities (weights): Weights calculated 

using PCMs are only the priorities (local priorities) based on those specific 

PCMs. Their contributions to the main aim of AHP application (overall goal), 

however, still need to be determined. Here, in this step, previously calculated 

local priorities are synthesized to the top level of the hierarchy. 

The abovementioned steps will be discussed in details in the upcoming chapters of this 

study. 

2.3.1. Definition and Hierarchical Representation of a Decision Problem 

In multi-criteria decision problems, it is very unlikely, and mostly impossible, to select 

an alternative by evaluating all decision criteria and alternatives at once. In line with 

Simon (1955), Sagir Ozdemir (2005) notes that there is a limit in our ability to process 

information in making comparisons on a large set of elements. Therefore, a systematic 

division of the complex decision problem is necessary for a human to properly 

understand and process it. In parallel to this point of wiev, the first step in AHP is to 

divide a complex problem into manageable portions in order to properly deal with 

complexity. This division is made through the hierarchical representation of the 

complex decision problem. 

According to El Hefnawy and Mohammed (2014), hierarchical representation of a 

decision problem has two basic advantages: 

 It provides an overall view of the complex system of the situation, and  

 It helps the DM assess the homogeneity of the issues in each level, so he/she 

can compare the items accurately. 

Saaty (1994) suggests four main steps do build a proper hierarchical structure for AHP 

applications: 
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 Identify the overall goal 

 Identify main criteria that must be satisfied to fulfill the overall goal 

 If necessary, identify sub-criteria under each criterion 

 Add alternatives under the lowest level criteria (the bottom of the hierarchical 

structure) 

To illustrate the main steps of AHP, the hierarchy in a sample decision problem given 

in Işıklar and Büyüközkan (2007) will be used. Suppose a person wants to purchase a 

new mobile phone and she needs to make her decision between three different 

alternatives: Phone1, Phone2, and Phone3. 

Based on Saaty’s suggestion, the first step is to determine the overall goal of the 

decision problem. Generally, the problem definition involves its own overall goal. In 

our example, the overall goal is “Mobile Phone Selection”, as shown in Figure 3. 

 

 

Figure 3 Overall goal of the decision problem 

The second step is to define the main criteria. According to Işıklar and Büyüközkan 

(2007), “Mobile Phone Selection” problem can be divided to two main criteria, namely 

“Product Related” and “User Related”, as shown in Figure 4. 

 

 

Figure 4 Main criteria of the decision problem 
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At this step, it is necessary to ask whether the main criteria are clear and detailed 

enough to make pairwise comparisons. Obviously, there may be many different 

product and user related decision criteria, and main criteria definitions are too general 

to be properly compared. Thus, it appears that the problem requires further division. 

The next step, then, is to determine the sub-criteria related to the product and the user, 

respectively. The study divides each main criterion to three sub-criteria, as shown in 

Figure 5. 

 

 

Figure 5 Sub-criteria of the decision problem 

While dividing the problem into smaller parts, it is important not to divide the problem 

too much. When people compare items, they focus on the common attributes of those 

items and judge based on their differences in common attributes. If the problem is 

divided too much that the items do not have common attributes anymore, it becomes 

more difficult to compare the items in the same level of hierarchy. Considering our 

example, a three-level hierarchy for the overall goal and decision criteria are enough 

to represent the problem as detailed and comparable as possible. Thus, the next level 

in the hierarchy will be the alternatives, which will be compared during the application 

phases of our example. Complete hierarchy is shown in Figure 6. For the sake of 

illustrative simplicity, alternatives are shown only under “Basic Requirements” sub-

criteria. However, it should be noted that all three alternatives are under each lowest-

level criterion in AHP decision problems, as they share the lowest-level criteria as a 

common attribute. 
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Figure 6 Complete decision hierarchy the “Mobile Phone Selection” problem 

2.3.2. Pairwise Comparisons 

The second step in AHP is the comparison of the criteria and alternatives within their 

hierarchy group at the same level of the hierarchy. Several studies (Alonso and 

Lamata, 2006; Dong et al., 2008) indicate that the concept of pairwise comparison 

originates from psychological study conducted by Fechner (1860), and developed by 

Thurstone (1927). According to a recent study (Fashoto et al., 2016), the pairwise 

comparison technique is commonly used to handle subjective and objective 

judgements in multi-criteria decision making. Sagir Ozdemir (2005) argues that 

humans are not sufficiently sensitive to make accurate changes in judgements on 

several elements simultaneously. Another study (El Hefnawy and Mohammed, 2014) 

suggests that the pairwise comparison process is strongly recommended by 

psychologists, as it is easier and more accurate to express opinion on only two 

alternatives than to do it simultaneously on all the alternatives.  

Since the first invention of AHP by Saaty (1980), pairwise comparison scale has been 

one of the most widely discussed topics. AHP method suggests that DM verbally 

compares two elements at once, which share a common parent in the hierarchy. These 

verbal comparisons are converted to numerical values based on a one-to-one mapping 

between the set of discrete linguistic choices available to the DM and a discrete set of 

numbers, which represent the importance, or weight, of the previous linguistic choices 

(Triantaphyllou and Mann, 1995). The most commonly used one-to-one mapping is 
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Fundamental Scale (or as known as 1-9 Linear Scale) of Saaty (Franek and Kresta, 

2014), which is given in Table 1. 

Table 1 Pairwise comparison scale based on Saaty's Fundamental Scale 

Intensity of 

Importance 
Definition Explanation 

1 Equal importance 
Two activities contribute 

equally to the objective 

2 Weak or slight   

3 Moderate importance 

Experience and judgement 

slightly favor one activity 

over another 

4 Moderate plus   

5 Strong importance 

Experience and judgement 

strongly favor one activity 

over another 

6 Strong plus   

7 
Very strong or demonstrated 

importance 

An activity is favored very 

strongly over another; its 

dominance demonstrated in 

practice 

8 Very, very strong   

9 Extreme importance 

The evidence favoring one 

activity over another is of 

the highest possible order 

of affirmation 

Reciprocals of 

above 

If activity i has one of the above non-

zero numbers assigned to it when 

compared with activity j, then j has 

the reciprocal value when compared 

with i 

A reasonable assumption 

Sources: Triantaphyllou and Mann (1995), Goepel (2018) 

 

The mapping between the verbal and numerical scales is used for the purpose of 

recording each pairwise comparison between the elements. Once two elements are 

compared using the verbal scale, the verbal comparison is translated using the 

abovementioned one-to-one mapping to obtain a numerical score. The score for each 
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comparison is noted on a special matrix called “Pairwise Comparison Matrix” or 

“Positive Reciprocal Matrix” as in Saaty (1980). 

Recall the example given in “Definition and Hierarchical Representation of Decision 

Problem” section of this study. The DM’s evaluation criteria at level 2 are divided into 

two main groups: “Product Related” and “User Related”. These main groups are 

further divided into sub-criteria at level 3 of the decision hierarchy. At the last level, 

level 4, alternatives are listed for each sub-criterion. In our example in this section, 

only “Product Related” criterion is used. Based on these criteria, unevaluated pairwise 

comparison matrix is formed as in Table 2. 

Table 2 Empty pairwise comparison matrix for the sample decision problem 

Product Related 

Criteria 

Basic 

Requirements 

Physical 

Characteristics 

Technical 

Features 

Basic Requirements    

Physical 

Characteristics 
   

Technical Features    

 

The DM compares the row elements (i) with column elements (j), assesses verbally 

the importance of the row element (i) with respect to the column element (j). Then, 

these verbal comparisons are translated to numerical scores, using a pairwise 

comparison scale. Saaty’s Fundamental Scale is used in this illustrative example. 

Once comparison step is carried out, pairwise comparison matrix is filled with the 

respective numerical scores (𝑎𝑖𝑗). As all elements are equally important compared to 

themselves, it becomes 𝑎𝑖𝑗 = 1 for all “i=j”, which means all numerical elements on 

the main diagonal of the pairwise comparison matrix is “1” (see Table 3). The DM 

does not need to make comparisons for these elements. 
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Table 3 Main diagonal elements of the pairwise comparison matrix 

Product Related 

Criteria 

Basic 

Requirements 

Physical 

Characteristics 

Technical 

Features 

Basic Requirements 1   

Physical 

Characteristics 
 1  

Technical Features   1 

 

Remaining elements, where i≠j, are compared by the DM. Suppose the DM compares 

cost and quality, resulting in a verbal statement of “Cost has very strong importance 

compared to comfort.”. From the mapping in Table 1, it is retrieved that the 

corresponding score is “7” for 𝑎12. The reciprocity axiom of AHP dictates “𝑎𝑖𝑗 =

1
𝑎𝑗𝑖

⁄ ” for all i, j. Therefore, it is obvious that “𝑎21 = 1/7”. Necessary entries yield the 

comparison matrix in Table 4.  

Table 4 Reciprocal scores of compared elements 

Product Related 

Criteria 

Basic 

Requirements 

Physical 

Characteristics 

Technical 

Features 

Basic Requirements 1 7  

Physical 

Characteristics 

1

7
 1  

Technical Features   1 

 

Similarly, suppose the DM evaluated that “basic requirements are more important than 

technical features” and “technical features are more important than physical 

characteristics”. Converting the verbal judgements to numerical scores yields the 

complete pairwise comparison matrix as in Table 5. It should be noted that it is enough 
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for the DM to make the comparisons required to fill the upper triangle of the pairwise 

comparison matrix, as the other scores can be determined using the reciprocity axiom. 

Another point to note is that the upper triangle does not necessarily have to involve 

elements greater than or equal to “1”. Recall that the DM judged that “safety is more 

important than comfort”. Again, the reciprocity axiom dictates that if safety is more 

important than comfort, that is “𝑎32 =
𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠
= 3”, then “𝑎23 =

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
=

1

3
”. 

Table 5 Complete pairwise comparison matrix 

Product Related 

Criteria 

Basic 

Requirements 

Physical 

Characteristics 

Technical 

Features 

Basic Requirements 1 7 3 

Physical 

Characteristics 

1

7
 1 

1

3
 

Technical Features 
1

3
 3 1 

 

Fundamental Scale was founded based on the psychophysical law of Weber-Fechner, 

and Saaty indicates that it was derived mathematically from stimulus response theory 

(Saaty, 1996). Saaty (1980; 1996) tested the 1-9 scale, and about twenty other scales 

to choose a suitable ratio scale for the pairwise comparisons in AHP. Based on their 

testing results, the 1-9 scale was accepted by AHP. Since then the 1-9 scale has become 

the most widely used ratio scale in AHP (Zhang et al., 2009).  

However, the ratio scale used for pairwise comparisons is one of the most controversial 

areas in AHP literature. The values defined on a numerical scale are used to represent 

the relative importance between two compared objects in terms of a ratio (Ji and Jiang, 

2003). Considering the fact that the scale used in AHP has a significant effect on the 

outcome of the process, the issue on numerical comparison scales has drawn the 

attention of the researchers. Despite being the most widely used ratio scale for quite a 



18 

 

long time, Saaty’s Fundamental Scale has been criticized by researchers in many 

studies (see Table 6). Dodd et al. (1992) point out that the simplicity of the scoring 

method and the coarseness of the scale are inseparable in Saaty's method. Although 

the verbal comparison scale has not been a concern of the literature, several numerical 

scales have been proposed as an alternative for Saaty’s Fundamental Scale (Table 6). 

Table 6 Pairwise comparison scales 

Scale Mathematical Description Parameters (x) Approximate Scale Values 

Linear (Saaty, 

1977) 
𝑥 {1,2, … ,9} 

1; 2; 3; 4; 
5; 6; 7; 8; 9 

Power (Harker 

and Vargas, 

1987) 
𝑥2 {1,2, … ,9} 

1; 4; 9; 16; 25; 
36; 49; 64; 81 

Root Square 

(Harker and 

Vargas, 1987) 
√𝑥 {1,2, … ,9} 

1; √2;√3; 2; 

√5; √6;√7; √8; 3 

Geometric 

(Lootsma, 

1989) 
2𝑥−1 {1,2, … ,9} 

1; 2; 4; 8; 16; 
32; 64; 128; 256 

Inverse Linear 

(Ma and 

Zheng, 1991) 

9

(10 − 𝑥)
 {1,2, … ,9} 

1; 1.13; 1.29; 1.5; 
1.8; 2.25; 3; 4.5; 9 

Asymptotical 

(Dodd and 

Donegan, 

1994) 

𝑡𝑎𝑛ℎ−1 (
√3(𝑥 − 1)

14
) {1,2, … ,9} 

0; 0.12; 0.24; 0.36; 
0.46; 0.55; 0.63; 0.7; 0.76 

Balanced 

(Salo and 

Hämäläinen, 

1997) 

𝑥

(1 − 𝑥)
 {0.5, 0.55, … ,0.9} 

1; 1.22; 1.5; 1.86; 
2.33; 4; 5.67; 9 

Logarithmic 

(Ishizaka et 

al., 2010) 
𝑙𝑜𝑔2(𝑥 + 1) {1,2, … ,9} 

1; 1.58; 2; 2.2; 2.58; 
2.81; 3; 3.17; 3.32 

Source: Franek and Kresta (2014) 

 

According to Franek and Kresta (Franek and Kresta, 2014), AHP needs ratio scales 

due to its pairwise comparison characteristics. It is claimed in several studies (Stevens, 

1957; Stevens and Galanter, 1964) that ratio scales are appropriate means to elicit 

response stimuli. Harker and Vargas (1987) note that any ratio scale could be used in 
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AHP and the choice of a scale such as Saaty’s Fundamental Scale is a result of 

experimental evidence. 

The main motivation behind Saaty’s Fundamental Scale is the aim to ensure that the 

scale does not exceed the capacity of the short- term memory and uses simple integer 

values (Ji and Jiang, 2003). Mazurek and Perzina (2017) emphasize that according to 

Miller (1956), a human brain is capable of processing only up to 7 pieces (chunks) of 

information at the same time. Therefore, they conclude that inconsistency increases 

with the increasing number of judgements. According to Saaty and Sagir Ozdemir 

(2003) the number of compared elements should not be more than 7, for the 

consideration of consistency of the information derived from the pairwise comparison 

matrix. Saaty (2001), on the other hand, states that the upper limit of the scale should 

not be greater than 9, for homogeneity axiom and consistency. Therefore, Saaty 

preferred a 9-point scale that has an upper limit of 9. For the sake of simplicity of 

understanding and application, in fact, there is no reason not to accept a linear 9-point 

numerical scale from 1 to 9. 

The study conducted by Harker and Vargas (1987) has investigated a quadratic and a 

root square scale using a simple AHP example, and supported Saaty’s Fundamental 

Scale. Yet, it has been criticized by Franek and Kresta (2014) that only one example 

is not enough to claim the superiority of Fundamental Scale. Another important critic 

on Fundamental Scale is that the scale has been supported by Saaty’s empirical 

evidence, but it is not a transitive scale (Dong et al., 2008).  

Lootsma (1989) argued that it is more convenient to use a geometric scale instead of 

Fundamental Scale. Lootsma’s Geometric Scale rooted from psychological 

observations about stimulus perception and his conclusion from related studies 

(Lootsma, 1993; 1999) that “human beings follow exponential scales when they 

categorize an interval such as ranges of time, sound, and light intensities”. That is to 

say, Lootsma’s Geometric scale is founded based on assumptions or external 

observations.  
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Ma and Zheng (1991) criticized the linear characteristic of Fundamental Scale for 

numerical values between 1 and 9. They suggested a scale called “Inverse Linear 

Scale”, where the reciprocal elements (elements less than 1) of the scale are linear 

instead of the elements greater than “1” in Fundamental Scale. The basic consideration 

is to make the numerical values matched with the corresponding verbal expressions. 

This leads to the fact that the relation between 1/𝑎𝑖𝑗 is linear rather than 𝑎𝑖𝑗 in 

Fundamental Scale.  

Dodd et al. (1992) criticized Saaty’s Fundamental Scale remarking that the scale 

suffers from vagueness of definition and it is not closed under multiplication (boundary 

problem).  Dodd and Donegan (1994) have proposed an asymptotic scale with the main 

motivation to avoid the boundary problem of Fundamental Scale. Asymptotic scale 

can approximately linearize Fundamental Scale in the neighborhood of 1, while further 

exponential mapping ensures that positive reciprocity holds for each value on the scale. 

Reciprocals (1/𝑎𝑖𝑗) of the scale members (𝑎𝑖𝑗) are greater than 1 for Asymptotic Scale, 

which implies a reversed comparison score characteristic (i.e., a verbally better 

alternative gets a lower score). This scale has not been included in our simulations as 

the reverse comparison score characteristic tends to amplify the inconsistency 

measured by the simulations. 

According to Salo and Hämäläinen (1997), discretized ratio scales such as the 1-9 scale 

of AHP can be very helpful in preference elicitation; yet, they are problematic as they 

severely restrict the range and distribution of possible priority vectors. They point out 

that the integers on Fundamental Scale yield local weights, which are unequally 

dispersed. Therefore, they claim that elements preferentially close to each other lack 

sensitivity in pairwise comparison. Based on this approach, they proposed a “Balanced 

Scale” where the local weights are “evenly dispersed” over the weight range of 0.1-

0.9, with an increment of 0.05 for each incremental step.  

Ishizaka, Balkenborg and Kaplan (2010) emphasized that decision making scales in 

AHP should not tend to recommend extremes which are good in only one dimension. 

According to them, decision making is almost always making compromises. 
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Therefore, they suggested another pairwise comparison scale, Logarithmic Scale, 

which they claim offers more possibilities for the compromise alternative to be 

selected. 

For all abovementioned scales, the linguistic expression of pairwise comparison 

judgements is kept as in Saaty’s original setup (Saaty, 1977). 

2.3.3. Weight Derivation 

Once all required pairwise comparisons are made and pairwise comparison matrices 

with numerical ratio scores are generated, the respective importance of all compared 

elements need to be extracted. Just as pairwise comparison scales, weight (priority, 

importance) derivation methods have been one of the main discussion topics in AHP 

literature (Triantaphyllou and Mann, 1995).  

Although numerous different methods have been suggested by researchers, according 

to Mazurek and Perzina (2017), weights of all elements (criteria and alternatives) are 

usually determined by Saaty’s eigenvalue method (EVM) as the principal right 

eigenvector of the respective pairwise comparison matrix. Similarly, another study (El 

Hefnawy and Mohammed, 2014) strongly notes that the EVM is the most used method 

to derive weights in the vast majority of the applications of AHP. Another method, 

“Mean of Normalized Values” (or Rule of Thumb), is frequently used to approximate 

the EVM in many practical applications, as it is more practical than EVM and 

approximates well the overall weights in low inconsistency pairwise comparison 

matrices (Mu and Pereyra-Rojas, 2017). Therefore, for the sake of simplicity, Mean of 

Normalized Values (MNV) is used to illustrate how weights are derived in AHP in our 

example. The concept of “Consistency” will be discussed in details in “Consistency 

Measurement” section of this study. 

Recall the “Mobile Phone Selection” example. The DM has a 4-level hierarchy. In 

AHP, each element is compared with the other elements that share the same immediate 

upper hierarchy element. That is, for our example, “Basic Requirements”, “Physical 

Characteristics”, and “Technical Features” are compared with each other as they all 
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are immediately under “Product Related” criteria. Similarly, for the “User Related” 

criteria, “Functionality”, “Brand Choice”, and “Customer Excitement” are compared 

with each other. Once all elements at the same hierarchy level are grouped based on 

their upper hierarchy and compared as exemplified in “Pairwise Comparisons” section, 

elements on another level of hierarchy are compared with the same process.  

Although there is no strict rule to compare hierarchy levels from top to bottom or from 

bottom to top, such a systematic approach may be cognitively easier for the DM for 

comparisons. In parallel to this, we start with comparing the topmost elements and go 

down in the hierarchy. 

The topmost comparable elements in the hierarchy are “Product Related” and “User 

Related” criteria. Suppose the DM has provided the decision analyst with the pairwise 

comparison matrix in Table 7. 

Table 7 Level-2 Pairwise comparison matrix 

Mobile Phone Selection Product Related Criteria User Related Criteria 

Product Related Criteria 1 
1

2
 

User Related Criteria 2 1 

 

MNV method starts with summing the numerical scores in each column of the pairwise 

comparison matrix. Respective column sums are noted under each row, as shown in 

Table 8. 

Table 8 Level-2 Pairwise comparison matrix - Column summation 

Mobile Phone Selection Product Related Criteria User Related Criteria 

Product Related Criteria 1 
1

2
 

User Related Criteria 2 1 

Column Sums 𝟑 
𝟑

𝟐
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Then, each column is normalized to sum up to “1” by dividing each element by the 

respective column sum, calculated in Table 8. Normalized pairwise comparison matrix 

is generated as shown in Table 9. 

Table 9 Level-2 Pairwise comparison matrix - Column normalization 

Mobile Phone 

Selection 

Product Related 

Criteria 

User Related 

Criteria 

Product Related 

Criteria 

1

3
 

1

3
 

User Related Criteria 
2

3
 

2

3
 

Column Sums 1 1 

 

The last step to calculate weights is to average the numerical scores in each row. This 

step is simply carried out by summing all normalized numerical scores for each row 

and dividing the sum by the number of columns, as shown in Table 10. 

Table 10 Level-2 Pairwise comparison matrix - Row averaging 

Mobile Phone 

Selection 

Product Related 

Criteria 

User Related 

Criteria 
Row Means 

Product Related 

Criteria 

1

3
 

1

3
 

(
𝟏
𝟑 +

𝟏
𝟑)

𝟐
=

𝟏

𝟑
 

User Related Criteria 
2

3
 

2

3
 

(
𝟐
𝟑 +

𝟐
𝟑)

𝟐
=

𝟐

𝟑
 

 

Based on the calculations in Table 10, it can be concluded that “Product Related 

Criteria” and “User Related Criteria” have weights of approximately 0.333 and 0.666, 
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respectively. This concludes the weight calculation step for the level-2 elements in the 

hierarchy. The next step is to calculate the weights in the remaining hierarchies. For 

the sake of simplicity, weights are calculated for the remaining pairwise comparisons 

and only the final weights are shown in Table 11. 

Table 11 Calculated weights for level-3 of the hierarchy 

Product Related Criteria Weights User Related Criteria Weights 

Basic Requirements 0.669 Functionality 0.633 

Physical Characteristics 0.088 Brand Choice 0.260 

Technical Features 0.243 Customer Excitement 0.106 

 

So far, comparative weights of elements at each hierarchy level are calculated based 

on the criteria in their immediately upper hierarchy, named as the “parent criterion” 

(Schmidt et al., 2015). Yet, these weights are calculated only locally, as they represent 

how much they affect their parent criterion. Therefore, these weights are named as 

“local weights”. Contribution of each criterion to the main goal of “Mobile Phone 

Selection” is still unknown.  

As described by Saaty (1987), weights (priorities) are synthesized from level-2 down 

by multiplying local priorities by the priority of their corresponding parent criterion, 

for each element in a level according to the criteria it affects. This multiplication yields 

the overall contribution (global weight) of that criterion. Recall Figure 5. Previously 

calculated local weights of each criterion are shown in Figure 7. Note that the local 

weight of “Mobile Phone Selection” is “1.000” as it is the main goal itself. 
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Figure 7 Local weights of each criterion in the hierarchy 

Based on Figure 7, the global weight of “Basic Requirements” is calculated as follows: 

𝑤𝐵𝑎𝑠𝑖𝑐 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 0.669 ∗  0.333 = 0.223   

Carrying out the same operation for all lowest level criteria yields the global criteria 

weights in Table 12. 

 

Table 12 Global criteria weights 

Product Related Criteria Weights User Related Criteria Weights 

Basic Requirements 0.223 Functionality 0.422 

Physical Characteristics 0.029 Brand Choice 0.173 

Technical Features 0.081 Customer Excitement 0.072 

 

As the lowest-level criteria’s contribution to the main goal (global weights) are 

calculated, the only remaining operation for the decision is obtaining the overall score 

of each alternative. Similar to the previous application, all alternatives are compared 

in pairs with respect to each lowest-level sub-criteria. That is, Phone1, Phone2, and 

Phone3 are compared on their performances in “Basic Requirements”, “Physical 

Characteristics”, “Technical Features”, “Functionality”, “Brand Choice”, and 

“Customer Excitement”. These comparisons generate 6 more pairwise comparison 
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matrices, and thus, 6 sets of local weights (scores) for 3 alternatives. Then, the local 

weights (scores) of each alternative is multiplied with its respective global weight and 

summed up to obtain the final score of the alternative. Suppose 6 pairwise comparisons 

resulted in the respective performances of the alternatives in each criterion as shown 

in Table 13. 

Table 13 Local weights of alternatives in each lowest-level sub-criterion 

Mobile Phone Selection 
Criterion 

Weight 

Phone1 

Score 

Phone2 

Score 

Phone3 

Score 

Basic Requirements 0.223 0.581 0.309 0.110 

Physical Characteristics 0.029 0.315 0.602 0.082 

Technical Features 0.081 0.089 0.324 0.587 

Functionality 0.422 0.557 0.123 0.320 

Brand Choice 0.173 0.416 0.126 0.458 

Customer Excitement 0.072 0.174 0.723 0.103 

Total 1.000 0.465 0.238 0.296 

 

These results show that Phone1 is better than Phone2 and Phone3, considering the 

given pairwise comparisons. Although AHP suggests the best alternative based on the 

calculations, it is still up to the DM to make the decision. 

As previously mentioned, EVM is the most widely used local weight determination 

method. Yet, the choice of weight determination method has been the topic of many 

debates, which contributed various approaches from different researchers. A study 

notes that (Srdjevic, 2005) EVM is the most common means of calculating the weights 

from PCMs, while some other methods (additive normalization, weighted least-

squares, logarithmic least-squares, logarithmic goal programming, and fuzzy 

preference programming methods) also yield comparable results. 

El Hafnawy and Mohammed (2014) classify weight derivation methods, mainly in two 

categories as shown in Figure 8. The study of El Hafnawy and Mohammed (2014) 

investigates the weight derivation methods, which are used at least in one AHP 

application. 
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Figure 8 General classification of weight derivation methods 

Taking a closer look in the wide AHP literature, on the other hand, it is observed that 

majority of the studies involve the derivation methods grouped under “Eigenvalue 

Methods” and “Methods of Least Squares”. Based on the study of Ishizaka and Lusti 

(2006), these two groups of methods are further divided as shown in Figure 9. 

 

Figure 9 Classification of the frequently used weight derivation methods 

Among these methods, it is noted that many studies focus on comparing EVM and 

LLSM. In a comparative study (Dong et al., 2008), it is stated that EVM and LLSM 
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are the most commonly used weight derivation method. EVM is supported by several 

studies (Saaty, 1990, 2003, 2005; Kumar and Ganesh, 1996; Saaty and Hu, 1998), 

while LLSM is regarded as a better method by several other studies (Crawford and 

Williams, 1985; Takeda et al., 1987; Zahedi, 1986; Barzilai and Golany, 1997). 

Additionally, Herman and Koczkodaj (1995) emphasize that there is only a small 

difference between EVM and LLSM. 

EVM and LLSM are described in the following sections. 

 Eigenvalue Method (EVM) 

The Eigenvalue Method (EVM) is proposed by Saaty (1977; 1980) to derive local 

weights in AHP. Based on the EVM, weights are derived from pairwise comparison 

matrices based on the maximum principal (right) eigenvalue of a pairwise comparison 

matrix. Suppose matrix 𝐴 is an (𝑛 𝑥 𝑛) pairwise comparison matrix, and �⃗� is its 

(𝑛 𝑥 1) eigenvector corresponding to the maximum right eigenvalue of matrix 𝐴. 

Matrix algebra dictates that the following equation is valid, where “𝑚” is a real 

number: 

 

𝐴 ∗  �⃗� = 𝑚 ∗ �⃗� 

 

After the weight vector �⃗� is calculated, the elements are normalized by dividing each 

element by the sum of all elements of vector �⃗�. This operation makes sure that the 

weights sum up to 1. Saaty claims that the corresponding weights are the normalized 

elements in the vector �⃗�. He justifies the method based on the perturbation theory, 

according to which, slight changes in pairwise comparison matrices result in slight 

changes in the eigenvalues and corresponding eigenvectors. 

Two years after the publication of Saaty’s study (1977), Johnson, Beine and Wang 

(Johnson et al., 1979) criticized the EVM method as the right and left eigenvectors do 
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not necessarily give the same result. This criticism lead to the suggestion of numerous 

weight derivation methods as an alternative to the EVM. 

Despite its widespread use in real-life applications, Saaty’s original approach of 

Eigenvalue Method (EVM) has some drawbacks and these drawbacks have been 

discussed by many authors in numerous studies. Some of these studies suggest partial 

solutions to what they criticized. Still, it is strongly noted by El Hefnawy and 

Mohammed (2014) that the EVM is the most used method by majority of applications. 

 Logarithmic Least Squares Method (LLSM) 

The Logarithmic Least Squares Method (LLSM) is also known as Row Geometric 

Mean Method (RGMM). This approach is relatively simpler than the EVM. Vector of 

weights �⃗⃗⃗� is derived by obtaining row or column geometric means of the elements, 

where 𝑎𝑖𝑗 is the element on the ith row and jth column of the (𝑛 𝑥 𝑛) pairwise 

comparison matrix 𝐴. Weight derivation using the LLSM is as follows: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮

𝑎𝑛1 … 𝑎𝑛𝑛]
 
 
 
 
 
 
 
 

→  �⃗⃗⃗� =

[
 
 
 
 
 
 
 
 
√∏𝑎1𝑗

𝑛

𝑗=1

𝑛

⋮

√∏𝑎𝑛𝑗

𝑛

𝑗=1

𝑛

]
 
 
 
 
 
 
 
 

 

 

After the weight vector �⃗⃗⃗� is calculated, the elements are normalized by dividing each 

element by the sum of all elements of vector �⃗⃗⃗�.. This operation makes sure that the 

weights sum up to 1, as in the EVM. Although the method takes the row geometric 

means, column geometric means give the same result. Therefore, LLSM is regarded 

“insensitive” to the inversion of scale (Ishizaka and Lusti, 2006). 
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It is noted in several studies (Aguaron and Moreno-Jiménez, 2003; Alonso and 

Lamata, 2006) that there has been a significant increase in the use of LLSM as a weight 

derivation method in AHP. This increase can be attributed to its psychological and 

mathematical attributes (Aguaron and Moreno-Jiménez, 2003) as well as being more 

easily applicable compared to the other methods (Ishizaka and Lusti, 2006). An 

interesting fact is that the maximum left eigenvector of matrix 𝐴 is approximated by 

taking the geometric mean of each row (Triantaphyllou and Mann, 1995).  

Despite the heated debate on which method is better, there is still no agreement on a 

single weight derivation method for pairwise comparison matrices. According to 

researchers, each method has its advantages and disadvantages (El Hefnawy and 

Mohammed, 2014), and there is no superior method to another (Ishizaka and Lusti, 

2006). Therefore, it is suggested that the weight derivation method should be chosen 

based on the application and other criteria like “easiness of use” should be considered 

during the method selection process. 

2.3.4. Consistency Measurement 

A consistent matrix is defined as a matrix, for which, each numerical pairwise 

comparison score between i and j is equal to the ratio of the final weights of the 

corresponding two elements, i and j. That is, for each numerical pairwise comparison 

score 𝑎𝑖𝑗 in the pairwise comparison matrix equals to 

 

𝑎𝑖𝑗 =
𝑤𝑖

𝑤𝑗
 

 

where 𝑤𝑖 and  𝑤𝑗 are the final weights of the elements denoted on the ith and the jth 

rows of the pairwise comparison matrix, respectively. 

By its nature, AHP is a human centered decision analysis tool. AHP requires subjective 

judgements, which takes into account the personal tastes, needs, experience, 



31 

 

perception, specific knowledge and even the temporary mood of the DM. Considering 

the fact that the human mind is not a flawless measurement device and the 

abovementioned subjective items may vary with time, checking consistency is very 

important for the validity of the judgements. (El Hefnawy and Mohammed, 2014). As 

emphasized in Sagir Ozdemir’s study (2005), although consistency of judgements may 

not be sufficient alone for the validity, a valid set of judgements must be consistent. 

For a consistent matrix, it is obvious that only a complete row (or column) of pairwise 

comparisons is enough, since the other scores can be simply deduced from the ratios 

of available numerical comparison scores. Making all possible pairwise comparisons, 

on the other hand, brings redundancy in the information provided. Still, redundancy is 

regarded as a necessity to improve the validity of the outcome, particularly in the cases, 

which involve intangibles (Sagir Ozdemir, 2005).  

By its definition, consistency in AHP requires complete transitivity in the pairwise 

comparison matrix. Saaty and Hu (1998) mention two kinds of transitivity: 

 Ordinal Transitivity: If A is preferred to B and B to C, then A must be preferred 

to C. 

 Cardinal Transitivity: If A is preferred to B three times and B to C twice, then 

A must be preferred to C six times. 

Based on the consistency definition of AHP, a pairwise comparison matrix must be 

cardinally transitive, and therefore ordinally transitive, to be consistent. According to 

Saaty (2003), people are more likely to be cardinally inconsistent than cardinally 

consistent, as they cannot estimate precisely measurement values even from a known 

scale and worse when they deal with intangibles. As DMs are rarely fully consistent 

in their judgements, Saaty (1980) proposed the consistency index (CI) and the 

consistency ratio (CR) as a measure of the consistency of judgements. CI is defined by 

Saaty as: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
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where 𝑛 is the dimension of (𝑛 𝑥 𝑛) pairwise comparison matrix and 𝜆𝑚𝑎𝑥 is the 

largest eigenvalue of this particular pairwise comparison matrix. Saaty and Vargas 

(2012) note that “𝜆𝑚𝑎𝑥 = 𝑛” when the pairwise comparison matrix is consistent, i.e. 

all elements in the matrix are cardinally transitive. Under “𝜆𝑚𝑎𝑥 = 𝑛” condition, the 

numerator of the CI equation becomes 0, which means perfect consistency. It is stated 

in the study of Alonso and Lamata (2006) that small changes in a numerical pairwise 

comparison judgement 𝑎𝑖𝑗 imply small changes in 𝜆𝑚𝑎𝑥, which makes the difference 

between 𝜆𝑚𝑎𝑥 and 𝑛 a good measure of consistency. 

In addition to CI, Saaty suggested a normalization to the consistency measurement 

process, as the difference between 𝜆𝑚𝑎𝑥 and 𝑛 tends to increase with the increasing 

matrix dimension. In order to normalize CI, Saaty suggested the CR, which measures 

the uniformity of a DM’s answers as follows: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

where RI is the random index, i.e. the average CI of the randomly filled PCMs. The 

main idea is that the CR is a normalized value since it is divided by an arithmetic mean 

of random matrix CIs (Alonso and Lamata, 2006). This way, Saaty enabled the 

normalization of the inconsistency of a pairwise comparison matrix with respect to an 

average inconsistency obtained from the random matrices of the same dimension.  

Alonso and Lamata (2006) studied random index topic in detail and prepared a table 

of the RI values obtained in various main studies. The procedure is quite simple and 

consists of the following three steps: 

 Random matrix generation (Saaty’s Fundamental Scale, uniform distribution) 

 Calculation of corresponding CI for each matrix 

 Calculation of the mean of CI values for each matrix size 

The number of randomly generated matrices and the RI values obtained for each 

matrix dimension are shown in Table 14. 
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Based on the RI values calculated by various authors, it can be concluded that the 

values vary between different experiments. However, at higher numbers of randomly 

generated matrices, it is observed that RI values converge to some certain values. 

Additionally, it should be noted that these values are only valid for Saaty’s 

Fundamental Scale. Therefore, if any other scale is to be used, RI values should be 

calculated in the same way. Salo and Hämäläinen (1997) emphasize that the CR is a 

meaningful measure only if the same scale has been employed both in the assessment 

of the actual comparison matrix and in the generation of the random matrices to 

calculate RI.  

In Saaty’s consistency measure based on the eigenvalue approach, the closer CR to 0 

the more consistent the judgements of the DM. However, as people are seldom fully 

consistent in their judgements, a cut-off point is required to separate consistent and 

inconsistent pairwise comparison matrices, such that beyond this particular cut-off 

point the pairwise comparison matrix is regarded as inconsistent. The most commonly 

used cut-off point is the one proposed by Saaty (1980). According to Saaty, small 

values of inconsistency may be tolerated. Particularly, if CR is less than 10% (0.1), 

inconsistencies are tolerable. If the CR exceeds this threshold, then the matrix is 

deemed unacceptably inconsistent. As consistency is necessary for a pairwise 

comparison matrix to be valid, in case of an unacceptable inconsistency, the DM is 

advised to revise the pairwise comparison matrix. This step is repeated until the DM 

provides an acceptably consistent matrix or is certain that no more revisions can be 

made. Later in another study, Saaty (1996) proposed 5% and 8% as thresholds for 3x3 

and 4x4 matrices respectively, while keeping it 10% for larger matrices. 

According to Dodd et al. (1992), this 10% threshold was clearly intended to be only a 

tentative measure. Yet, it is surprising that this tentative measure has been widely 

accepted without much questioning. In the following years, several other methods have 

been proposed for consistency measurement. One of the most well-known approaches 

is the geometric consistency index (GCI) proposed by Crawford and Williams (1985), 

who preferred to sum the difference between the ratio of calculated weights and the 
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pairwise comparison matrix provided by the DM.  GCI proposed by Crawford and 

Williams (1985) is formulated as: 

𝐺𝐶𝐼 =

2∑ (𝑙𝑜𝑔 𝑎𝑖𝑗 − 𝑙𝑜𝑔
𝑤𝑖

𝑤𝑗
)
2

𝑖<𝑗

(𝑛 − 1)(𝑛 − 2)
 

Based on this formulation of GCI, Aguarón and Moreno-Jiménez (2003) calculated 

geometric thresholds which are analogous to CR=10%. They calculated GCI values 

as: 

 GCI=0.3147 for n=3 

 GCI=0.3526 for n=4 

 GCI=0.3700 for n>4 

Another formulation of GCI has been proposed by other studies (Salo and Hämäläinen, 

1997; Ji and Jiang, 2003), which is moderately different than the previous GCI 

formula: 

𝐺𝐶𝐼 = √
∑ ∑ (𝑎𝑖𝑗 − 𝑙𝑜𝑔

𝑝𝑖

𝑝𝑗
)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

𝑛(𝑛 − 1)
2

 

In another study (Dodd et al., 1992), a statistical approach to consistency has been 

suggested as an alternative to this tentative threshold. This statistical approach employs 

confidence intervals to determine if a matrix is consistent, based on normal distribution 

of the CI values of randomly generated pairwise comparison matrices. The CI values 

of the pairwise comparison matrix is compared to the tolerance threshold (95%, 99% 

or 99.9%) selected by the DM.  Then the pairwise comparison matrix is accepted if it 

has a lower CI than required, and rejected otherwise. 

An important and influential question is raised by the literature: Why tolerate 10% 

inconsistency? Can there be another cut-off point based on the accuracy need of the 

problem at hand? This question is partially answered by a different approach (Alonso 
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and Lamata, 2006), which proposed a formulation for 𝜆𝑚𝑎𝑥 with an adaptive 

consistency coefficient 𝛼 that is determined by the DM based on the level of 

consistency needed. According to this formulation, matrices ensuring the following 

condition are acceptably consistent: 

𝜆𝑚𝑎𝑥 ≤ 𝑛 + α(1.7699𝑛 − 4.3513) 

Other methods can be listed as: 

 Consistency check based on the determinant of the pairwise comparison matrix 

(Peláez and Lamata, 2003) 

 Accepting/rejecting the pairwise comparison matrix based on the average 

principal eigenvalues (Alonso and Lamata, 2006) 

 Harmonic consistency index (HCI) based on additive normalization method 

(Stein and Mizzi, 2007) 

It can be deduced from the literature review that the consistency and 

accepting/rejecting matrices topics are highly debated in AHP literature. Lane and 

Verdini (1989) state that Saaty’s 10% threshold is too restrictive as the standard 

deviation of the CI values of randomly generated matrices are small. Another study 

(Murphy, 1993) shows that Saaty’s Fundamental Scale gives results which are beyond 

the CR acceptance threshold as matrix dimension “n” increases. Salo and Hämäläinen 

(1997), on the other hand, draw attention to the fact that the CR acceptance threshold 

depends on the granularity of the scale used for pairwise comparisons. Another 

surprising result obtained in a recent study (Mazurek and Perzina, 2017) is that DMs 

are mostly inconsistent (93%) even when they are only asked to make three pairwise 

comparisons. As such, the authors conclude with a remark implying that cardinal 

transitivity may be too strong for practical use, and it might need to be substituted by 

ordinal transitivity. 

Still, Saaty (2003) emphasizes that “if one insists on consistency, people would be 

required to be like robots unable to change their minds with new evidence and unable 

to look within for judgements that represent their thoughts, feelings and preferences”. 
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Therefore, a slight amount of inconsistency may be considered a good thing and forced 

consistency may be an undesirable compulsion for the validity of a pairwise 

comparison matrix. 

2.3.5. Aggregation of the Local Priorities 

The last step in AHP is to aggregate (synthesize) the local priorities (weights) across 

all criteria to calculate the overall scores of alternatives with respect to the goal of the 

decision making process. Similar to the weight derivation methods, how to aggregate 

the overall score of an alternative has been widely discussed in the literature. Basically, 

there are two main approaches to obtain the overall scores of alternatives from pairwise 

comparison matrices, which can be named as “Additive Aggregation” and 

“Multiplicative Aggregation” (Choo and Wedley, 2008). 

 Additive Aggregation 

Additive aggregation is the method that was brought to the literature by the original 

AHP approach. Additive aggregation employs a weighted additive method to 

aggregate the overall scores. Recall Table 13, where the global weights of all sub-

criteria and the respective local weights of Phone1 in each sub-criterion are shown as 

in Table 15. 

Table 15 Global sub-criteria weights and Phone1’s respective performances on each 

sub-criterion 

Sub-Criterion Criterion Weight Phone1 Score 

Basic Requirements 0.223 0.581 

Physical Characteristics 0.029 0.315 

Technical Features 0.081 0.089 

Functionality 0.422 0.557 

Brand Choice 0.173 0.416 

Customer Excitement 0.072 0.174 
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Based on additive aggregation approach, the overall score of Phone1 is calculated by 

multiplying its score in each sub-criterion with the global weight of the respective sub-

criterion. That yields the overall score of Phone1 as follows: 

(0.223 ∗  0.581) + (0.029 ∗  0.315) + (0.081 ∗  0.089) + (0.422 ∗  0.557)

+ (0.173 ∗  0.416) + (0.072 ∗  0.174) = 0.465 

Additive aggregation approach has been widely criticized for its famous “rank reversal 

phenomenon”. It is stated in the study of Ishizaka et al. (2010) that the rank reversal 

problem in AHP is argued as it is due to incorrect usage of the additive aggregation 

method. According to Tomashevskii (2015) all EVM rank reversal phenomena have 

the same cause. Another study (Tomashevskii, 2014) further divides the rank reversal 

problem into three different categories as follows: 

 Rank reversal for scale inversion or the right-left eigenvector asymmetry 

(Johnson et al., 1979) 

 Rank reversal caused by the addition or deletion of an element under 

consideration (Hochbaum and Levin, 2006; Raharjo and Endah, 2005) 

 Rank reversal of “order of intensity of preference” (Bana e Costa and 

Vansnick, 2008) 

 Multiplicative Aggregation 

Multiplicative aggregation has been proposed as an alternative to additive aggregation, 

with the main motivation of preventing the rank reversal. According to Ishizaka and 

Labib (2011), multiplicative aggregation approach has non-linearity properties, which 

allow a superior compromise to be selected. 

Multiplicative aggregation approach calculates the overall score of Phone1 by 

multiplying its score in each sub-criterion using the global weight of the respective 

sub-criterion as its exponent. Using the same example given in Table 15, the overall 

score of Phone1 is calculated by multiplicative aggregation approach as follows: 



39 

 

(0.581)0.223 ∗  (0.315)0.029 ∗  (0.089)0.081 ∗  (0.557)0.422 ∗  (0.416)0.173

∗  (0.174)0.072 = 0.417 

Similarly, scores of Phone2 and Phone3 are calculated as 0.195 and 0.250, 

respectively. Dividing each final score to the sum of the scores of all three alternatives, 

normalized scores appear as shown in Table 16. 

Table 16 Aggregated scores of all alternatives by additive and multiplicative 

aggregation approaches 

Aggregation Method Phone1 Score Phone2 Score Phone3 Score 

Additive Aggregation 0.465 0.238 0.296 

Multiplicative Aggregation 0.484 0.226 0.250 

 

Apparently, for our example, aggregation method does not change the rank of any 

alternatives. Yet, it should be noted that the differences between the weights of 

alternatives are less when additive aggregation is employed as the aggregation method. 

  



40 

 

CHAPTER 3 

 

3. LIMITATIONS OF EXISTING SCALES 

 

According to Stevens (1957) and Stevens and Galanther (1964), a ratio scale is an 

appropriate means that can be used to elicit response stimuli. The pairwise comparison 

scale in AHP is defined as a ratio scale, and it is assumed that one can express the 

cardinal intensity of preference between two compared elements by using this ratio 

scale. Similarly, Ji and Jiang (2003) emphasize that the values defined on a pairwise 

comparison scale are used to represent the relative importance between two objects in 

terms of a ratio. In parallel to this statement, Franek and Kresta (2014) note that AHP 

requires a ratio scale due to its pairwise comparison characteristic.  

The reason why a 1-9 scale (Fundamental Scale) is chosen has been explained in the 

study of Harker and Vargas (1987). They point out that although Saaty chose 

Fundamental Scale based on experimental evidence, any ratio scale can be used in 

AHP. Another point they emphasized is that any bounded ratio scale would be in 

accordance with the axioms of AHP. 

Saaty supports his Fundamental Scale with famous Weber-Fechner Psychophysical 

Law. According to Weber’s approach, an observer’s ability to detect a difference 

between two different stimuli is a function of an observer-specific constant “k” and the 

value of the standard stimulus “S”. Mathematically, Weber defines the “just noticeable 

difference” (JND) as: 

𝐽𝑁𝐷 = 𝑘 ∗  𝑆 

According to Weber’s formula, if the difference between 100 and 105 grams is just 

noticeable by an observer, the same observer can notice the difference between 1000 

and 1050 grams. In this example, if the difference between two stimuli is less than 5% 



41 

 

of the value of standard stimulus, then the observer would not be able to notice the 

difference. 

Later, Fechner (1860) derived a relationship between the intensity of a stimulus and 

its perceived magnitude by assuming that Weber’s Law holds and the JND is the basic 

unit of perceived magnitude so that one JND is perceptually equal to another JND. 

Fechner defines the mathematical relationship between the perceived magnitude of a 

stimuli “P” and the stimulus intensity “I” as: 

𝑃 = 𝑘 ∗  log (𝐼) 

Based on Fechner’s formulation, the perceived magnitude and the stimulus intensity 

have a diminishing relationship. For instance, if the intensity of light is doubled in an 

environment, let’s say from 15 to 30, the perceived magnitude of this increase would 

not be directly proportional. As such, the effect would be: 

𝑃2

𝑃1
=

𝑘 ∗ log(30)

𝑘 ∗ log(15)
= 1.256 

According to Saaty’s approach based on Stevens (1957) and Fechner (1860), if a 

stimulus is increased successively from one point to the next “detectable difference” 

point, then the points on the stimulus scale are geometrically related and the points on 

the response scale are linear. In AHP methodology, “P” is analogous to the answers of 

the DM to pairwise comparison questions, and “I” is analogous to the real value of the 

stimulus. Saaty’s approach would be possible only if the “I” values of two different 

stimuli are on the same geometric function, such as 10𝑥 for our example. Then, what 

the DM perceives from the difference between two different stimuli and what answer 

he/she gives would obey an arithmetic progression. 

Although it is easy to understand and use in practical situations, Fundamental Scale 

has another major flaw. Dodd et al. (1992) criticize Saaty for his overestimation of the 

validity of normal arithmetic on his set. As emphasized, the scale used in AHP 

methodology is a ratio scale. However, ratios between the successive elements of 

Fundamental Scale are not the same. Ji and Jiang (2003) draws attention to the fact 
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that the difference of the importance (or preference) intensities of any two adjacent 

major gradations in Fundamental Scale (1, 3, 5, 7, 9) in the verbal part form an 

arithmetic progression. They call this “the arithmetic progression rule of the verbal 

part”. It is indeed the case in the numerical part as well. From 1 to 9, the numerical 

responses form an arithmetic progression as well. However, considering the fact that 

AHP methodology employs reciprocals of the numerical scores to complete the 

pairwise comparison matrix, the numerical part below 1 (i.e. 1/2, 1/3, … , 1/9) does 

not form the same arithmetic progression. Dodd et al. (1992) criticize Fundamental 

Scale as it is partially linear and partially harmonic, which in turn, already disturbs the 

“ratio” nature of pairwise comparisons in AHP. This characteristic will be referred in 

this study as “the partial characteristic of Fundamental Scale”. 

Another point that has been criticized by several authors (French, 1988; Dodd et al., 

1992; Ji and Jiang, 2003) is that Fundamental Scale is not closed under multiplication. 

This problem is also named as “the boundary problem”. That is, Fundamental Scale 

has an inherent tendency to inconsistency as the scale has upper and lower limits. For 

instance, considering the cardinal transitivity requirement for consistency, if “𝑎𝑖𝑗 =

4” and “𝑎𝑗𝑘 = 5”, then “𝑎𝑖𝑘 = 20” must hold to enable consistency. However, Ji and 

Jiang (2003) state that all of the existing scales suffer from this type of inconsistency. 

Sagir Ozdemir (2005), on the other hand, notes that people are unable to directly 

compare widely disperate objects. In order to do that, she claims AHP needs a range 

greater than 1-9 scale (Fundamental Scale). 

Table A3 in Appendix A section includes the possible combinations of (𝑎𝑖𝑗, 𝑎𝑗𝑘) and 

the resultant 𝑎𝑖𝑘 values. Based on our analysis, it can be concluded that only 173 of 

possible 289 combinations are within the limits of Fundamental Scale. A significant 

portion (126 combinations), however, is beyond upper or lower limits, that result in a 

huge possibility of inherent inconsistency. 

Another cause of inconsistency is due to the discreteness of the scale. That is, even if 

“𝑎𝑖𝑘 = 𝑎𝑖𝑗 ∗  𝑎𝑗𝑘” is within the upper and lower limits of the scale, “𝑎𝑖𝑘” may not be 

one of the numerical scores defined by the scale itself. They show that 44 of 81 possible 
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multiplication results are not defined by Fundamental Scale, as shown in Table 17. 

They add that a geometric scale would not have such inconsistencies. That is to say, if 

a multiplication is within the limits of the scale, there is no chance that the 

multiplication is not defined by the scale as a numerical pairwise comparison ratio. 

Table 17 Values of (aij * ajk) in Fundamental Scale 

𝒂𝒊𝒌 1 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1 

1 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 

2 2 1 2/3 2/4 2/5 2/6 2/7 2/8 2/9 

3 3 3/2 1 3/4 3/5 3/6 3/7 3/8 3/9 

4 4 2 4/3 1 4/5 4/6 4/7 4/8 4/9 

5 5 5/2 5/3 5/4 1 5/6 5/7 5/8 5/9 

6 6 3 2 6/4 6/5 1 6/7 6/8 6/9 

7 7 7/2 7/3 7/4 7/5 7/6 1 7/8 7/9 

8 8 4 8/3 2 8/5 8/6 8/7 1 8/9 

9 9 9/2 3 9/4 9/5 9/6 9/7 9/8 1 

Source: Ji and Jiang (2003) 

According to Budescu et al. (1986) and Crawford (1987), the scale has an inherent 

exponential quality. What they mean by the “exponential quality” is that a consensus 

in a group decision making can be found by geometrically averaging the experts’ 

judgements, and thus, the scale should be compatible with multiplicative/divisive 

operations.  

Exponential pairwise comparison scale idea first appears in Lootsma (1989). The 

formulation he discusses is: 

𝑟𝑖𝑗 = 𝑒𝜆𝛿𝑖𝑗  

 

where 𝛿𝑖𝑗 is an integer designating the gradation chosen by the DM to estimate the 

ratio difference between items 𝑖 – 𝑗, λ is a scale constant, and 𝑟𝑖𝑗 is the numerical score 
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of the ith row jth column element of the pairwise comparison matrix. According to 

Lootsma, if a trade-off estimate between two items is carried out by employing an 

exponential scale, the additive degree of freedom can clearly be ignored, and thus, the 

true ratio difference between these items can be estimated. That is: 

𝑡𝑖𝑗−𝑘𝑚 =
𝑒𝜆𝛿𝑖𝑗

𝑒𝜆𝛿𝑘𝑚
= 𝑒𝜆(𝛿𝑖𝑗−𝛿𝑘𝑚) 

where 𝑡𝑖𝑗−𝑘𝑚 is the ratio between the values of elements 𝑖𝑗 and 𝑘𝑚. Note that the 

numerical scores of elements 𝑖𝑗, 𝑘𝑚 and the ratio of their numerical scores 𝑡𝑖𝑗−𝑘𝑚 are 

all on an exponential function. This kind of a function eliminates the previously 

mentioned reservations about the partial characteristic of Fundamental Scale. 

Although Lootsma (1989) notes that there is no unique value of the scale constant “λ”, 

and expresses his feeling about λ=1 or λ=2 would be appropriate choices, this selection 

of the scale constant appear too “intuitive” as it finally affects the numerical score of 

the comparison in the pairwise comparison matrix. Therefore, there is room for an 

improvement for a method to determine the scale constant “λ”. 

Ji and Jiang (2003), on the other hand, note that an AHP scale can hold the transitivity 

if: 

 Its verbal part satisfies the arithmetic progression rule, and 

 Its numerical part satisfies the geometric progression rule. 

Therefore, a geometric/exponential progression is desirable for the numerical part of a 

pairwise comparison scale. 

For the Geometric Scale of Lootsma (1989), the most important problem is that the 

upper limit of 64 or 256 severely violates the homogeneity axiom of AHP (Ji and Jiang, 

2003). Another criticism about the Geometric Scale is that it is obtained from 

assumptions and external observations, thus, making its theoretical foundations rather 

weak. 
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CHAPTER 4 

 

4. A NEW PAIRWISE COMPARISON SCALE BASED ON FIBONACCI 

SEQUENCE 

 

The famous Fibonacci sequence consists of integers where a number in the series is 

equal to the sum of the previous two numbers. This rule is mathematically formulated 

as: 

 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

 

where the first two numbers in the series are initially defined as 𝐹1 = 1 and 𝐹2 = 1. 

This makes the series appear as follows: 

 

1    1    2    3    5    8    13    21    34    55    89 … 

 

By nature, Fibonacci sequence has an exponential characteristic. In order to show this 

with a smooth exponential equation, we adjust the one-to-one mapping between the 

verbal pairwise comparison scales and numerical grades. We use a similar approach 

adopted as in Ji and Jiang (2003), that is to “digitize” the verbal scale by using a range 

of [-4, 4] with increments of 0.5. However, in our study, we use a range of [-8, 8] with 

increments of 1 in the digitized part. Table 18 shows the original and adjusted one-to-

one mapping between the verbal scale and its digitized counterpart. 
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Table 18 Adjusted one-to-one mapping between the verbal scale and numerical 

grades 

Verbal Scale 

Numerical 

Grades 

(Original) 

Digitized Verbal 

Part (Ji and Jiang, 

2003) 

Numerical 

Grades 

(Adjusted) 

Equally important 1 0 0 

Slightly more 

(less) important 
3 1 (-1) 2 (-2) 

Strongly more 

(less) important 
5 2 (-2) 4 (-4) 

Very strongly more 

(less) important 
7 3 (-3) 6 (-6) 

Absolutely more 

(less) important 
9 4 (-4) 8 (-8) 

Compromises 2, 4, 6, 8 ±0.5 , ±1.5, ±2.5, ±3.5 ±1 , ±3, ±5, ±7 

 

Using the adjusted numerical grades shown in Table 18, a curve is fit to the first nine 

Fibonacci numbers (excluding the first “1”) and their multiplicative inverses 

(reciprocals). Curve fitting operation is carried out by using MATLAB® software for 

the sake of accuracy. Figures 10 and 11 show the exponential curve fit to the Fibonacci 

numbers based on the adjusted numerical grades and the equation/goodness of fit data 

retrieved from MATLAB® Curve Fitting Tool screen. 

 

Figure 10 Exponential fit to the Fibonacci numbers based on the adjusted numerical 

grades 
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Figure 11 Equation and goodness of exponential fit 

As seen in Figure 10, all of the numerical values are on the same function, unlike 

Fundamental Scale. Thus, we have already overcome the partial characteristic issue 

criticized by Dodd et al. (1992).  

Evaluating the exponential curve fit to the Fibonacci numbers using the adjusted 

numerical value grades, the initial approximate numerical values to be used in pairwise 

comparisons (𝑎𝑖𝑗) are obtained as shown in Table 19. 

Table 19 Approximate numerical pairwise comparison values (Initial) 

Verbal Scale 
Adjusted Numerical 

Grade 

Approximate Numerical 

Value (𝒂𝒊𝒋) 

Absolutely less important -8 0.025 

 -7 0.040 

Very strongly less important -6 0.065 

 -5 0.105 

Strongly less important -4 0.170 

 -3 0.275 

Slightly less important -2 0.445 

 -1 0.720 

Equally important 0 1.166 

 1 1.888 

Slightly more important 2 3.056 

 3 4.948 

Strongly more important 4 8.011 

 5 12.969 

Very strongly more important 6 20.997 

 7 33.994 

Absolutely more important 8 55.036 
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Due to the coefficient “1.166” in the exponential equation, it is seen that the 

approximate numerical value of 𝑎𝑖𝑗 for equally important alternatives is “1.166” 

instead of “1.000”. Similarly, for all other possible 𝑎𝑖𝑗, values are multiplied with 

“1.166”. Therefore, an additional adjustment is necessary. As such, dividing the fit 

exponential curve by the coefficient “1.166”, and thus dividing all elements on the 

curve, we obtain the following equation: 

 

𝑎𝑖𝑗 =
1.166𝑒0.4818𝛿𝑖𝑗

1.166
= 𝑒0.4818𝛿𝑖𝑗  

 

where 𝑎𝑖𝑗 for the equally important situation, naturally, becomes equal to “1.000”.  

With this final adjustment, the equation becomes principally the same with what was 

discussed by Lootsma (1989): 

 

𝑟𝑖𝑗 = 𝑒𝜆𝛿𝑖𝑗    𝑎𝑖𝑗 = 𝑒0.4818𝛿𝑖𝑗  

 

where 𝛿𝑖𝑗 is the adjusted numerical grade value that is mapped to the verbal answer of 

the DM. Therefore, as mentioned previously, instead of selecting 𝜆 = 1 or 𝜆 = 2 

intuitively, we have now determined the scale constant 𝜆 based on the Fibonacci 

sequence. Thus, the final approximate numerical values to be used in pairwise 

comparisons (𝑎𝑖𝑗) become as shown in Table 20. This exponential scale based on the 

numbers of Fibonacci sequence is referred to as “Exponential Scale” in the rest of this 

study. 
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Table 20 Approximate numerical pairwise comparison values (Final) 

Verbal Scale 
Adjusted Numerical 

Grade 

Approximate 

Numerical Value (𝒂𝒊𝒋) 

Absolutely less important -8 0.021 

 -7 0.034 

Very strongly less important -6 0.056 

 -5 0.090 

Strongly less important -4 0.146 

 -3 0.236 

Slightly less important -2 0.382 

 -1 0.618 

Equally important 0 1.000 

 1 1.619 

Slightly more important 2 2.621 

 3 4.244 

Strongly more important 4 6.870 

 5 11.123 

Very strongly more important 6 18.008 

 7 29.154 

Absolutely more important 8 47.200 

 

4.1. Scale-Based Inconsistency in the Existing Scales and Exponential Scale 

In our previous discussion, the inconsistency characteristic due to the boundary 

problem of the existing scales were discussed. Recall it was mentioned that all of the 

existing scales suffer from this type of inconsistency (Ji and Jiang, 2003). Therefore, 

the main aim at this point should be to reduce, if elimination is not possible, the 

inconsistency based on the boundary issue. In order to show how much the existing 

scales and the Exponential Scale are affected by this issue, an analysis is made on all 

numerical AHP scales.  

All scales are evaluated on boundary issue by checking how many of all paired-

combination multiplications of scale values remain within the scale boundaries. That 

is, for each possible (𝑎𝑖𝑗, 𝑎𝑗𝑘) paired-combination, it is checked whether their 
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multiplication “𝑎𝑖𝑘 = 𝑎𝑖𝑗  𝑥 𝑎𝑗𝑘” remains within the upper and lower boundaries of the 

same scale. For instance, 𝑎𝑖𝑘 = 8 where 𝑎𝑖𝑗 = 4 and 𝑎𝑗𝑘 = 2 is regarded as “within 

the limits” while 𝑎𝑖𝑘 = 15 where 𝑎𝑖𝑗 = 3 and 𝑎𝑗𝑘 = 5 is regarded as “outside the 

limits”. Based on the analysis, the results in Table 21 are obtained: 

Table 21 Possible paired-combination multiplication results within limits of the scale 

Scale 

Number of 

possible 

combinations 

Number of 

multiplications 

within limits 

Percent 

multiplications 

within limits 

Analysis 

Results 

Balanced 289 231 79.93% Table A 1 

Exponential 289 217 75.09% Table A 2 

Fundamental 289 173 59.86% Table A 3 

Geometric 289 217 75.09% Table A 4 

Inverse Linear 289 249 86.16% Table A 5 

Logarithmic 289 167 57.79% Table A 6 

Power 289 173 59.86% Table A 7 

Root Square 289 173 59.86% Table A 8 

 

Results clearly indicate that Fundamental, Logarithmic, Power and Root Square scales 

are very susceptible to inconsistency due to the boundary problem. Inverse Linear 

Scale, on the other hand, has a surprisingly high percentage of paired-combination 

multiplication results within limits, making it superior to the other scales for this 

measure. Exponential and Geometric scales are very similar to each other in this 

characteristic, while Balanced Scale is slightly better than these scales. The analysis 

results can be seen from the respective tables in the Appendices section. 

Another inconsistency reason is the discreteness of the scale, as named by Ji and Jiang 

(2003). According to them, even if the result of a multiplication “𝑎𝑖𝑘 = 𝑎𝑖𝑗 𝑥 𝑎𝑗𝑘” is 

within the limits of the scale, the result not being one of the values defined by the scale 

causes an inherent inconsistency. For instance, if 𝑎𝑖𝑗 = 4 and 𝑎𝑗𝑘 = 1/3, then their 

multiplication “𝑎𝑖𝑘 = 𝑎𝑖𝑗  𝑥 𝑎𝑗𝑘 = 1.333”. It is clear that the result is not a member of 
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Fundamental Scale values. Thus, the closest value of 𝑎𝑖𝑘 is either “1” or “2”, which is 

already inconsistent for both values. 

Recall the analysis of Ji and Jiang (2003) in Table 17, where they argued that 44 of 81 

possible multiplication results are not defined by Fundamental Scale. In our study, we 

further elaborated on their analysis and checked the percentage of paired-combination 

multiplication results, which are within the limits of a scale and defined by the scale 

as a numerical comparison value. The analysis yield the results shown in Table 22: 

Table 22 Possible paired-combination multiplication results defined by the scale 

Scale 

Number of 

possible 

combinations 

Number of 

multiplications 

defined by the 

scale 

Percent 

multiplications 

defined by the 

scale 

Analysis 

Results 

Balanced 289 55 19.03% Table A 1 

Exponential 289 217 75.09% Table A 2 

Fundamental 289 85 29.41% Table A 3 

Geometric 289 217 75.09% Table A 4 

Inverse Linear 289 73 25.26% Table A 5 

Logarithmic 289 61 21.11% Table A 6 

Power 289 85 29.41% Table A 7 

Root Square 289 85 29.41% Table A 8 

 

These results show that for all scales except the Exponential and Geometric scales are 

badly affected by inherent inconsistency due to the multiplication values not defined 

on the scale values. The Exponential and Geometric scales, on the other hand, are 

stable in scale-based inconsistency issues with all multiplication values within the 

scale being defined by the scale itself. Based on the results, it can be said that even 

Inverse Linear and Balanced Scales have inherent inconsistency characteristics. The 

analysis results can be seen from the respective tables in the Appendices section. 
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CHAPTER 5 

 

5. SIMULATION RESULTS 

 

In this chapter, the results of simulations regarding the consistency characteristics of 

different pairwise comparison scales are presented. Firstly, previous results for RI 

values and the RI values generated during this study are compared in order to make 

sure that numerically the same or similar RI values are used in further calculations. 

Then, performance measures are explained and simulation steps are clarified. All 

scales are evaluated based on the performance measures. Lastly, these evaluations are 

shown visually in graphs and the performance characteristics are elaborated on. 

5.1. Comparison of All Scales with Fundamental Scale 

Consistency is an important issue, however, it is not alone enough to claim that one 

scale is superior to another. Although Fundamental Scale has consistency issues, it is 

still the most preferred scale in AHP applications. Therefore, a complete comparison 

is necessary to support the idea that a scale is better than Fundamental Scale. Thus, in 

the following part of this study, Fundamental Scale is used as a benchmark to compare 

all scales. 

In order to compare the scales with Fundamental Scales, a detailed simulation is 

carried out using MATLAB® software. The detailed results of these simulations can 

be seen in Appendix B. 

The first task was to generate each scale using the respective formula given in Table 6 

and the corresponding numerical values are provided in Table 23. Note that these 

values not only cover the “more important” cases but also the “less important” cases. 
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Table 23 Numerical values for each scale, generated by the simulation 
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Absolutely less 

important 
0.111 0.021 0.111 0.004 0.111 0.301 0.012 0.333 

 0.176 0.034 0.125 0.008 0.222 0.315 0.016 0.354 

Very strongly 

less important 
0.250 0.056 0.143 0.016 0.333 0.333 0.020 0.378 

 0.333 0.090 0.167 0.031 0.444 0.356 0.028 0.408 

Strongly less 

important 
0.429 0.146 0.200 0.063 0.556 0.387 0.040 0.447 

 0.538 0.236 0.250 0.125 0.667 0.431 0.063 0.500 

Slightly less 

important 
0.667 0.382 0.333 0.250 0.778 0.500 0.111 0.577 

 0.818 0.618 0.500 0.500 0.889 0.631 0.250 0.707 

Equally 

important 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 1.222 1.619 2.000 2.000 1.125 1.585 4.000 1.414 

Slightly more 

important 
1.500 2.621 3.000 4.000 1.286 2.000 9.000 1.732 

 1.857 4.244 4.000 8.000 1.500 2.322 16.000 2.000 

Strongly more 

important 
2.333 6.870 5.000 16.000 1.800 2.585 25.000 2.236 

 3.000 11.123 6.000 32.000 2.250 2.807 36.000 2.449 

Very strongly 

more important 
4.000 18.008 7.000 64.000 3.000 3.000 49.000 2.646 

 5.667 29.154 8.000 128.000 4.500 3.170 64.000 2.828 

Absolutely 

more important 
9.000 47.200 9.000 256.000 9.000 3.322 81.000 3.000 
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The second step is the calculation of RI values for each scale. As stated before, RI 

calculation consists of three steps: 

• Random matrix generation (Saaty’s Fundamental Scale, uniform distribution) 

• Calculation of corresponding CI for each matrix 

• Calculation of the mean of CI values for each matrix size 

Franek and Kresta (2014) estimated the RI values for all scales (except for the new 

proposed Exponential Scale) with their simulation as shown in Table 24. 

Table 24 Previously calculated RI values for each scale 
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3 0.267 0.525 4.592 0.203 0.153 3.609 0.114 

4 0.440 0.881 9.299 0.333 0.241 6.987 0.179 

5 0.550 1.110 13.322 0.417 0.295 9.464 0.218 

6 0.625 1.250 16.500 0.475 0.328 11.049 0.243 

7 0.676 1.341 18.897 0.517 0.351 12.071 0.260 

8 0.715 1.404 20.714 0.547 0.368 12.748 0.273 

9 0.743 1.451 22.089 0.572 0.380 13.221 0.282 

10 0.765 1.486 23.152 0.590 0.390 13.567 0.290 

11 0.783 1.514 23.958 0.605 0.398 13.833 0.296 

12 0.797 1.536 24.607 0.617 0.405 14.039 0.301 

13 0.810 1.555 25.117 0.627 0.410 14.211 0.305 

14 0.820 1.570 25.539 0.636 0.415 14.346 0.309 

15 0.829 1.584 25.871 0.643 0.419 14.461 0.312 

Source: Franek and Kresta (2014) 

 

In order to make sure that our RI calculation for the Exponential Scale, as well as the 

others, are in parallel to what was found by Franek and Kresta (2014), we ran a 

simulation including all scales, for which, RI values were previously calculated. The 
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values in Table 25 show our results. The percentages in Table 25 indicate the percent 

deviation between the values found by Franek and Kresta (2014) and the values 

calculated in this study. These deviations are calculated in two steps: 

• Dividing the values in Table 24 by the values in Table 25 and  

• Taking the absolute value of the difference between unity and ratios 

Table 25 RI values calculated based on our simulation 
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3 
0.268 

0.38% 

1.399 

 
0.524 
0.28% 

4.565 
0.59% 

0.206 
1.32% 

0.153 
0.09% 

3.614 
0.13% 

0.115 
0.45% 

4 
0.440 
0.00% 

2.572 

 
0.885 
0.47% 

9.295 
0.04% 

0.333 
0.08% 

0.242 
0.33% 

6.996 
0.13% 

0.179 
0.27% 

5 
0.550 
0.04% 

3.431 

 
1.109 
0.13% 

13.323 
0.01% 

0.418 
0.15% 

0.295 
0.14% 

9.449 
0.16% 

0.218 
0.11% 

6 
0.624 
0.08% 

4.042 

 
1.249 
0.11% 

16.536 
0.22% 

0.475 
0.03% 

0.328 
0.08% 

11.050 
0.01% 

0.243 
0.07% 

7 
0.676 

0.07% 

4.470 

 
1.341 
0.03% 

18.918 
0.11% 

0.516 
0.17% 

0.351 
0.04% 

12.076 
0.04% 

0.260 
0.08% 

8 
0.714 
0.11% 

4.777 

 
1.404 
0.02% 

20.688 
0.12% 

0.547 
0.07% 

0.368 
0.06% 

12.752 
0.03% 

0.273 
0.13% 

9 
0.743 
0.01% 

5.008 

 
1.451 
0.03% 

22.107 
0.08% 

0.571 
0.13% 

0.381 
0.15% 

13.220 
0.01% 

0.282 
0.04% 

10 
0.765 
0.01% 

5.174 

 
1.486 
0.02% 

23.158 
0.03% 

0.590 
0.04% 

0.390 
0.08% 

13.569 
0.01% 

0.290 
0.09% 

11 
0.783 
0.01% 

5.313 

 
1.514 
0.01% 

23.964 
0.02% 

0.605 
0.03% 

0.398 
0.05% 

13.831 
0.01% 

0.296 
0.06% 

12 
0.798 
0.09% 

5.416 

 
1.536 

0.03% 

24.594 
0.05% 

0.617 
0.06% 

0.405 
0.05% 

14.039 
0.00% 

0.301 
0.04% 

13 
0.810 
0.03% 

5.502 

 
1.555 
0.02% 

25.106 
0.04% 

0.627 
0.06% 

0.410 
0.07% 

14.206 
0.03% 

0.305 
0.01% 

14 
0.820 
0.04% 

5.571 

 
1.570 
0.03% 

25.534 
0.02% 

0.636 
0.04% 

0.415 
0.00% 

14.345 
0.01% 

0.309 
0.12% 

15 
0.829 
0.06% 

5.631 

 
1.584 
0.03% 

25.867 
0.01% 

0.643 
0.04% 

0.419 
0.01% 

14.463 
0.01% 

0.312 
0.09% 
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5.2. Performance Measures Used in Simulations 

The first step is to compare Fundamental Scale with all other scales. Basically, a 

random PCM is generated using Fundamental Scale and the same PCM is also 

generated by using the corresponding numerical values in the measured scale. For 

instance, if Balanced Scale is measured, a score of “5” assigned by Fundamental Scale 

is converted to its correspondent “2.333” in Balanced Scale. A high number of PCM 

pairs are generated, and for each of them, several characteristics are measured. Then, 

a set of performance measures are calculated using all of the acceptably consistent 

PCMs, referred to as “trials”. These performance measures are explained below: 

 Measured Scale Lower CR: This performance measure represents the 

percentage of trials, which have lower CR values when generated by measured 

scale rather than Fundamental Scale. 

 Fundamental Scale Lower CR: This performance measure represents the 

percentage of trials, which have lower CR values when generated by 

Fundamental Scale rather than measured scale. 

 Equal CR: This performance measure represents the percentage of trials, which 

have the same CR values when generated by measured scale and Fundamental 

Scale. 

 Fundamental Scale Inconsistent: This measure represents the percentage of 

trials, which are inconsistent when generated by Fundamental Scale but 

consistent when generated by measured scale. 

 Measured Scale Inconsistent: This measure represents the percentage of trials, 

which are inconsistent when generated by measured scale but consistent when 

generated by Fundamental Scale. 

 Both Scales Consistent: This measure represents the percentage of trials, which 

are consistent for both Fundamental Scale and measured scale. 

 Same Best Chosen: This measure represents the percentage of trials, for which, 

the PCM generated by measured scale suggests the same element as the most 

important one. 
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 Same Worst Chosen: This measure represents the percentage of trials, for 

which, the PCM generated by measured scale suggests the same element as the 

least important one. 

 Kendall’s Tau Mean: This measure represents the rank correlation of weight 

vectors for each PCM pair generated by Fundamental Scale and measured 

scale, in terms of Kendall’s Tau correlation coefficient for all trials. 

 Tau Standard Deviation: This measure represents the standard deviation of 

Kendall’s Tau correlation coefficients for all pair of PCMs generated by 

Fundamental Scale and measured scale. 

 Number of Deviations (Different Best): This measure represents the number of 

trials, for which, the PCM generated by measured scale and the PCM generated 

by Fundamental Scale suggest different elements as the most important one. 

5.3. Simulation Steps and Results 

The algorithm used to measure these metrics is basically as follows: 

 Generate a random matrix using Fundamental Scale 

 Generate the same matrix using the corresponding numerical values on the 

measured scale (see Table 23 for corresponding values in different scales) 

 Check if CR of either matrix is below the CR limit given (step is repeated for 

CR_Limit=0.15, CR_Limit=0.10, and CR_Limit=0.05 for each scale) 

 If either of the matrices (or both) is (are) below the given CR limit: 

o Calculate final weights of both matrices 

o Check similarity of final weight vectors using Kendall’s Tau 

o Check whether both matrices select the same best/worst alternatives, 

using Fundamental Scale as a benchmark 

 Repeat the previous steps until the simulation finds 1000 consistent matrices 

(either one or both consistent): 

o For each measured scale 

 For each matrix size (from 3x3 to 7x7) 
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 For each CR limit (0.15, 0.10, 0.05) (For 7x7 matrices, 

CR limit of 0.05 have not been simulated as it is 

estimated that simulations would take very long time.) 

 For each CR limit and matrix size of the measured scale, calculate the 

percentage of the matrices: 

o Which have a lower CR than Fundamental Scale matrix 

o Which have a higher CR than Fundamental Scale matrix 

o Which have the same CR with Fundamental Scale matrix 

At the end, for each row that will be presented in the following parts, we have obtained 

a pair (one formed by Fundamental Scale and one formed by the measured scale) of 

1000 matrices, with at least one of the matrices is consistent for each pair. 

Table 26 shows the results of different scales for 3x3 matrices at CR limit of 0.10. The 

first three rows sum up to 100% for each scale. They show the percentages of matrices 

based on their CR comparison. For Balanced Scale, for instance, 62.40% of the 1000 

matrices would have lower CR values when these matrices are formed by using the 

Balanced Scale instead of Fundamental Scale. 37.60% of the matrices formed by using 

Fundamental Scale, on the other hand, would have lower CR values than those formed 

by using the Balanced Scale. The remaining, if existed, would be the ones that have 

the same CR with both scales. 

Based on the first row, the results indicate that all measured scales, except for 

Logarithmic and Root Square scales, have better consistency characteristics compared 

to Fundamental Scale. While Power Scale seems superior to the others, Balanced, 

Exponential, Geometric and Inverse Linear scales seem somewhat similar in their 

consistency characteristics when compared with Fundamental Scale. 

The 4th, 5th and 6th rows also sum up to 100% and they represent the percentages of the 

cases where either of the scales are both generated consistent matrices based on the 

given CR limit. When Balanced Scale is compared with Fundamental Scale, it 

generated consistent pairwise comparison matrices in 34.10% of the cases while 

Fundamental Scale generated inconsistent pairwise comparison matrices. On the other 
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hand, for the 21.20% of the cases, Fundamental Scale generated consistent pairwise 

comparison matrices while Balanced Scale generated inconsistent pairwise 

comparison matrices. In the remaining 44.70% of the cases, both scales generated 

consistent pairwise comparison matrices. 

Table 26 Performance Measurement of Different Scales 

Performance 

Measures 

(3x3 Matrices,  

CR Limit=0.10) 
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Measured Scale 

Lower CR 
62.40% 68.90% 72.60% 63.50% 34.50% 98.30% 1.00% 

Fundamental 

Scale Lower CR 
37.60% 31.10% 27.40% 36.50% 65.50% 1.70% 98.70% 

Equal CR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 

Fundamental 

Scale 

Inconsistent 

34.10% 41.00% 36.00% 41.60% 6.50% 27.30% 2.90% 

Measured Scale 

Inconsistent 
21.20% 11.90% 19.50% 22.20% 20.90% 0.40% 8.60% 

Both Scales 

Consistent 
44.70% 47.10% 44.50% 36.20% 72.60% 72.30% 88.50% 

Same Best 

Chosen 
96.70% 97.40% 99.20% 95.90% 99.60% 99.60% 99.50% 

Same Worst 

Chosen 
97.20% 97.00% 98.50% 96.30% 100.00% 99.90% 99.30% 

Kendall’s Tau 

Mean 
0.9576 0.9608 0.9821 0.9457 0.9953 0.9963 0.9902 

Tau Standard 

Deviation 
0.1653 0.1540 0.1019 0.1857 0.0461 0.0477 0.0747 

Number of 

Deviations 

(Different Best) 

33 26 8 41 4 4 5 
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The 7th and 8th rows indicate the percentage of matrices, for which, both Fundamental 

Scale and measured scale selected the same comparison elements as the best and worst 

alternatives, respectively. The results show that all scales suggested similar best and 

worst alternatives, though Inverse Linear Scale showed poor performance in this 

measure, when compared to the other scales.  

In parallel to the same best and worst measures, weight vectors of all scales were 

evaluated and compared with those of Fundamental Scale. Vector comparison is 

carried out by Kendall’s Tau (Kendall, 1938) approach. The 9th and 10th rows show 

that all scales seem to have suggested mostly the same rankings for compared elements 

as Fundamental Scale does. Inverse Linear Scale, however, is below the average with 

its 𝜏 = 0.9457 and the largest standard deviation of 0.1857. 

Lastly, the 11th row shows the number of matrices (out of 1000 matrices), for which, 

the best alternative suggested by the measured scale is different than the best 

alternative suggested by Fundamental Scale. Inverse Linear and Balanced scales seem 

to be the ones that deviate the most from Fundamental Scale in this respect. While 

Exponential Scale shows moderate deviations, Geometric, Logarithmic, Power, and 

Root Square scales seem to be mostly parallel to Fundamental Scale. 

Individual performances of each scale in each matrix dimension and CR limit can be 

seen in Appendix B. Figure 12 illustrates the scale performances for “CR limit=0.1” 

(Saaty’s CR limit), based on the data given in Appendix B. Apparently, Power Scale 

dominates all other scales with respect to the percentage of generated matrices which 

have lower CR compared to Fundamental Scale. Geometric and Exponential scales 

follow Power Scale and converge to its performance at large scale matrices. While 

Inverse Linear and Balanced scales also seem to have an increasing performance with 

the matrix size, Logarithmic and Root Square scales have very poor performance, 

especially in larger matrices. 
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Figure 12 Comparison of scales based on the CR of generated matrices 

Figures 13 and 14, show the performances of scales based on “same best” and “same 

worst”, when compared with Fundamental Scale. Logarithmic, Power and Root Square 

scales appear to have the best performance in terms of “same best” and “same worst” 

while Balanced, Exponential and Geometric scales have lower performances. Inverse 

Linear Scale, on the other hand, seems to have the worst performance although its 

worst performances in “same best” and “same worst” are approximately 82% and 84%, 

respectively. 

 

Figure 13 Comparison of scales based on same best selection 
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Figure 14 Comparison of scales based on same worst selection 

Another important performance measure is the Kendall’s Tau values of the generated 

weight vectors compared to those generated by using Fundamental Scale. Figure 15 

shows that Kendall’s Tau performances are somewhat parallel to the “same best” and 

“same worst” performances, given in Figures 13 and 14. That is Logarithmic, Power 

and Root Square scales have the best performance in terms of Kendall’s Tau criteria. 

While Balanced, Exponential and Geometric scales have lower performance, Inverse 

Linear Scale again has the worst performance in a weight-vector-generation-related 

criterion.

 

Figure 15 Comparison of scales based on Kendall’s Tau performance 
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As all scales have different strengths and weaknesses in each comparison criterion, an 

overall comparison of them may be beneficial to clarify the advantages and 

disadvantages of scales in different criterion, and even draw more general conclusions 

based on the nature of the numbers in scales by clustering them in groups.  

Table 27 shows the average performances of scales in terms of performance masures 

(the average of all matrix sizes at CR limit=0.10). Some of the performance measures 

reported Table 26 were aggregated to indicate more accurate results. “Measured Scale 

Lower CR” is taken alone as it can show the performance of the measured scale in 

terms of CR. Additionally, the cases where the measured scale generated consistent 

results (CR<0.10) are aggregated by extracting the inconsistent cases (Measured Scale 

Inconsistent) from 100%. The remaining measures (Same Best Chosen, Same Worst 

Chosen, Kendall’s Tau Mean, Tau Standard Deviation, and Number of Deviations 

(Different Best) are directly averaged as they show significant performance 

indications. 

Table 27 Average performances of scales in terms of performance measures (all 

matrix sizes, CR limit=0.10) 

SCALE 
Measured 

Scale 
Lower CR 

Measured 
Scale 

Consistent 

Same 
Best 

Chosen 

Same 
Worst 

Chosen 

Kendall's 
Tau 

Mean 

Tau 
Standard 
Deviation 

Number of 
Deviations 
(Different 

Best) 

Percent 
Deviation 

for 
Different 

Best 

Balanced 73.48% 79.93% 94.38% 94.95% 95.61% 90.97% 94.38% 96.40% 

Exponential 85.43% 92.75% 94.60% 95.13% 95.62% 91.31% 94.60% 96.38% 

Geometric 90.85% 93.70% 93.13% 93.70% 94.51% 90.35% 93.13% 96.25% 

Inverse 
Linear 

78.40% 83.13% 91.03% 91.73% 92.76% 86.77% 91.03% 94.49% 

Logarithmic 14.35% 45.60% 99.00% 99.08% 99.19% 95.41% 99.00% 99.56% 

Power 99.20% 99.78% 98.60% 98.53% 98.90% 94.55% 98.60% 99.44% 

Root Square 0.28% 61.90% 99.35% 99.35% 99.27% 95.62% 99.35% 99.87% 

 



64 

 

Some of the measures (Measured Scale Lower CR, Masured Scale Consistent, Same 

Best Chosen, Same Worst Chosen, Kendall's Tau Mean) can be used directly to show 

the scales’ performances, as the higher they are, the better the scale. However, for other 

measures (Tau Standard Deviation and Number of Deviations -Different Best, the 

lower the value in Table 27, the better the scale.  

The map chart in Figure 16 illustrates the performance scores of different scales based 

on the directly usable data shown in Table 27. For all scales, the closer the point of the 

scale to the outer edge, the better the scale in terms of the corresponding performance 

measures. Apparently, Power Scale is very close to the outer edge in all of the 

measures, thus, seems to be the best scale in terms of our performance measures. 

Geometric, Exponential, Inverse Linear, and Balanced Scales follow the Power Scale, 

respectively. Although Logarithmic and Root Square scales show comparable 

performances in other performance measures, their performances in “Measured Scale 

Lower CR” and “Measured Scale Consistent” are considerably lower compared to 

those of other scales. Therefore, in terms of these performance measures, Logarithmic 

and Root Square scales are very weak when compared with Fundamental Scale. An 

important point to mention here is that the scales can be divided to three main groups, 

based on the performances in consistency-related measures (Measured Scale Lower 

CR and Measured Scale Consistent). The first group consists of Exponential, 

Geometric, and Power scales that come to the forefront with their scores. A common 

point of these three scales is that all of them have an upper limit greater than 9.000, 

which was originally proposed by Saaty (1980). The second group consists of 

Balanced and Inverse Linear scales with the upper limit of 9.000 for both scales. The 

third group consists of Logarithmic and Root Square scales with the upper limits of 

3.322 and 3.000, respectively. From this point of view, it appears that the upper-bound-

related inconsistency issue is supported by the upper limit of the scale, and becomes 

more critical to the scales which have upper limits less than 9.000. Conversely, for 

those scales with upper limits greater than 9.000, it can be said that the inconsistency 

issue is far less. 
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Figure 16 Comparison of scales based on estimated performance scores (CR=0.10) 

So far, we were only concerned with the performances and average scores when CR 

limit is taken as “0.10”. Our simulations, however, included the cases where CR limit 

is changed to “0.05” and “0.15” in order to analyze the sensitivity of results based on 

CR limit. Figure 17 and 18 show that there is no significant change in the performance 

of scales when CR limit is changed. Therefore, we may contently say that the 

previously stated comments hold even when CR limit is different than “0.10”. 

 

Figure 17 Comparison of scales based on estimated performance scores (CR=0.15) 
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Figure 18 Comparison of scales based on estimated performance scores (CR=0.05) 
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CHAPTER 6 

 

6. COMPARISON OF PAIRWISE COMPARISON SCALES ON A SAMPLE 

DECISION PROBLEM 

 

Until now, we have only discussed the theoretical side of the pairwise comparison 

scales, including the Exponential Scale proposed by this study. At this point, an 

illustrative example would be beneficial to show where Exponential Scale is 

positioned among the existing pairwise comparison scales. Franek and Kresta (2014) 

studied this topic on an example based on Saaty’s study (2003), where an example 

involving the prioritization of criteria used to buy a house for a family. The initial PCM 

provided by the family members, which is known to be currently inconsistent, is shown 

in Table 28. 

Table 28 Inconsistent PCM (S) for the decision of buying a house for a family 

Matrix S 
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Size 1 5 3 7 6 6 1/3 1/4 

Transportation 1/5 1 1/3 5 3 3 1/5 1/7 

Neighborhood 1/3 3 1 6 3 4 6 1/5 

Age 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 

Yard 1/6 1/3 1/6 3 1 1/2 1/5 1/6 

Modern 1/6 1/3 1/4 4 2 1 1/5 1/6 

Condition 4 5 1/6 7 5 5 1 1/2 

Finance 4 7 5 8 6 6 2 1 

Source: Saaty (2003) 

As the first PCM, S, is known to be inconsistent, Saaty (2003) suggests a solution to 

improve the consistency by locating the most inconsistent pairwise comparison 

judgement and ask the DM to revise this judgement. This step can be carried out for 
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other highly inconsistent pairwise comparison judgements, until the DM provides a 

PCM that has an acceptable CR (CR ≤ 0.1 in our example). For this example, Saaty 

locates the most inconsistent pairwise comparison judgement and changes it to a scale-

defined score that is closest to this judgement’s most consistent state. He calculates 

that 𝑎37=6 shoud be as close to “1/2.18” as possible. Therefore, he hypothetically 

changes 𝑎37 to “1/2”. From the reciprocity property, 𝑎73 is automatically changed to 

“2”. This way, Saaty forms the consistent PCM for this problem, denoted as S'. The 

consistent matrix S’ is shown in Table 29. 

Table 29 Consistent PCM (S') for the decision of buying a house for a family 

Matrix S' 
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Size 1 5 3 7 6 6 1/3 1/4 

Transportation 1/5 1 1/3 5 3 3 1/5 1/7 

Neighborhood 1/3 3 1 6 3 4 1/2 1/5 

Age 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 

Yard 1/6 1/3 1/6 3 1 1/2 1/5 1/6 

Modern 1/6 1/3 1/4 4 2 1 1/5 1/6 

Condition 4 5 2 7 5 5 1 1/2 

Finance 4 7 5 8 6 6 2 1 

 

Franek and Kresta (2014) note that although Saaty (2003) used the EVM in his study, 

they utilized the most frequent type of Row Geometric Mean Method (RGMM, 

previously described as LLSM), formulized as follows: 

𝑤𝑖 =

(∏ 𝑎𝑖𝑗

𝑖

𝑗=1
)

1/𝑖

∑ (∏ 𝑎𝑖𝑗

𝑖

𝑗 = 1
)

1/𝑖
𝑗

𝑖 = 1
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CI and CR values are also calculated based on the previously introduced formulae, 

where RI values are used as the values previously given in Table 25. 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
                                 𝐶𝑅 =

𝐶𝐼

𝑅𝐼
 

Franek and Kresta (2014) used Microsoft Excel® to estimate weights, CI, and CR 

values. In this study, however, MATLAB® software is used to generate the scales and 

respective matrices to calculate weights, CI, and CR values. Therefore, obtained 

results are different than those of Franek and Kresta (2014). Table 30 and Table 31 

show the results obtained for all scales, and tabulated similar to how Franek and Kresta 

(2014) did in their study. 

Table 30 Weights and consistency measures for different pairwise comparison scales 

on inconsistent matrix S 

Criteria Used 

in Matrix S 

B
al

an
ce

d
 

E
x
p
o
n
en

ti
al

 

F
u
n
d
am

en
ta

l 

G
eo

m
et

ri
c 

In
v
er

se
 L

in
ea

r 

L
o
g
ar

it
h
m

ic
 

P
o
w

er
 

R
o
o
t 

S
q
u
ar

e 
Size 0.174 0.186 0.175 0.168 0.166 0.164 0.146 0.162 

Transportation 0.086 0.041 0.063 0.019 0.096 0.092 0.019 0.097 

Neighborhood 0.146 0.130 0.149 0.100 0.142 0.152 0.105 0.150 

Age 0.042 0.009 0.019 0.002 0.056 0.046 0.002 0.054 

Yard 0.063 0.020 0.033 0.007 0.078 0.062 0.005 0.070 

Modern 0.072 0.027 0.042 0.010 0.086 0.073 0.009 0.080 

Condition 0.158 0.155 0.168 0.129 0.151 0.162 0.133 0.158 

Finance 0.259 0.432 0.351 0.564 0.224 0.248 0.582 0.229 

𝝀𝒎𝒂𝒙 8.250 10.037 9.505 14.388 8.107 8.507 17.826 8.316 

CI 0.036 0.291 0.215 0.913 0.015 0.072 1.404 0.045 

CR 0.050 0.061 0.175 0.044 0.028 0.197 0.110 0.165 
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Table 31 Weights and consistency measures for different pairwise comparison scales 

on consistent matrix S' 

Criteria Used 

in Matrix S' 

B
al

an
ce

d
 

E
x
p
o
n
en

ti
al

 

F
u
n
d
am

en
ta

l 

G
eo

m
et

ri
c
 

In
v
er

se
 L

in
ea

r 

L
o
g
ar

it
h
m

ic
 

P
o
w

er
 

R
o
o
t 

S
q
u
ar

e 

Size 0.173 0.181 0.172 0.160 0.165 0.163 0.137 0.161 

Transportation 0.086 0.040 0.062 0.018 0.096 0.092 0.018 0.097 

Neighborhood 0.123 0.088 0.107 0.057 0.126 0.125 0.053 0.127 

Age 0.042 0.009 0.019 0.002 0.056 0.046 0.002 0.054 

Yard 0.062 0.019 0.032 0.006 0.078 0.062 0.005 0.070 

Modern 0.072 0.026 0.042 0.010 0.086 0.072 0.008 0.079 

Condition 0.185 0.217 0.224 0.208 0.170 0.194 0.232 0.184 

Finance 0.257 0.420 0.343 0.539 0.224 0.246 0.546 0.228 

𝝀𝒎𝒂𝒙 8.017 8.407 8.745 8.976 7.988 8.296 11.475 8.160 

CI 0.002 0.058 0.106 0.139 -0.002 0.042 0.496 0.023 

CR 0.003 0.012 0.076 0.007 -0.003 0.115 0.039 0.084 

 

The difference between the results of Franek and Kresta (2014) can be mainly 

attributed to the difference between RI values used in calculations. The results shown 

in Table 30 and Table 31 are calculated using our RI values previously given in Table 

25. 

CI and CR values are calculated both by using MATLAB® and Excel®. Excel® 

estimation of CI values is carried out by using methodology defined by Mu and 

Pereyra-Rojas (2017): 

 Calculate weights of criteria (by LLSM in our case) 

 Add transpose of the weight vector as the top row of the original PCM 
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 Multiply each element on the first column of the original PCM with the first 

element of the transpose weight vector. Then repeat this step for all remaining 

columns. 

 Sum up all the rows and write the results to the right of the multiplied PCM, so 

that results form a column vector with the size of (8x1). 

 Put the (8x1) column vector to the left of the original weight vector. Then 

divide the first-row element of the (8x1) column vector by the first-row element 

of the original weight vector. Repeat the same step for all remaining rows to 

obtain a (8x1) division vector. 

 Take the average of the elements of (8x1) division vector as an estimate of CI. 

As MATLAB® and Excel® results for CI values are very close to each other, we used 

Excel® results so that the reader can easily check the values without any sophisticated 

software. 

As Franek and Kresta (2014) mentioned, Geometric and Power scales yield a higher 

score for the most important criterion. Similarly, as expected, Exponential Scale shows 

the same characteristic to emphasize the value of the most important criterion. In the 

former case (inconsistent matrix S), Balanced, Exponential, Geometric, and Inverse 

Linear scales seem to be consistent while the Fundamental, Logarithmic, Power, and 

Root Square scales are inconsistent. In the latter case (consistent matrix S'), however, 

all scales except for Inverse Linear and Logarithmic scales seem to be consistent. 

Surprisingly, in both MATLAB® and Excel® calculations, the 𝝀𝒎𝒂𝒙 value for the 

matrix generated using the Inverse Linear Scale was calculated as “7.988”, which is 

lower than the matrix dimension “8”. Therefore, considering the CI definition, the 

numerator of the fraction becomes negative and it results in a negative CR value. This 

brings the question to the mind whether CI and CR are proper means of checking the 

inconsistency of a PCM. 

In this particular case, it is seen that Exponential and Geometric scales are consistent 

in both cases, where the Fundamental and Power scales are consistent in only one.  



72 

 

Table 32 Percent changes between S and S' cases 

Percent (%) 

Changes 

Between 

Cases 
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Size 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

Transportation 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

Neighborhood 15.50 32.24 28.22 43.25 11.23 17.63 49.58 14.82 

Age 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

Yard 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

Modern 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

Condition 16.93 39.58 33.59 60.51 11.97 19.64 74.65 16.21 

Finance 0.60 2.75 2.08 4.56 0.30 0.73 6.16 0.51 

𝝀𝒎𝒂𝒙 2.83 16.24 7.99 37.61 1.48 2.48 35.63 1.87 

CI 93.10 80.00 50.47 84.72 111.58 41.59 64.64 49.22 

CR 93.10 80.00 50.47 84.72 111.58 41.59 64.64 49.22 

 

Table 32 shows the percent changes in the weights, 𝝀𝒎𝒂𝒙, CI and CR values for each 

scale. Bold black values show there was a decrease when S is changed to S', and others 

show that there was an increase. All percent changes are calculated by the following 

rule: 

 The former case numerical value is subtracted from the latter case numerical 

value 

 Result is divided by the former case numerical value 

From this analysis, it can be concluded that the greatest change in CR was observed 

for Inverse Linear Scale. The negative value calculated previously also has a 

supplementary effect to this significant change. Balanced, Exponential and Geometric 

scales also showed a significant increase in CR values. The Fundamental, Logarithmic, 
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Power, and Root Square scales, on the other hand, remained below the others in terms 

of percent CR change. 

Apparently, percent deviations tend to increase when Power and Geometric scales are 

used. These deviations are moderate in Exponential and Fundamental Scale cases, 

unlike comparatively low deviations in Balanced, Inverse Linear, Logarithmic, and 

Root Square scale cases. Although these deviations can be observed from all criteria, 

they are particularly more significant in “Condition” and “Neighborhood” as these 

criteria are evaluated with changed numerical scores. 

We believe consistency sensitivity is not directly related to the CR value, but the 

percent deviation between the cases. Variance of weights is already based on change. 

Based on these results, the conclusion of Franek and Kresta (2014) may be revised as 

shown in Table 33. 

Table 33 Classification of judgement scales based on consistency and allocation of 

weights 

 Consistency Sensitivity Variance of Weights 

High Inverse Linear 
Geometric 

Power 

Moderate 

Balanced 

Exponential 

Geometric 

Exponential 

Fundamental 

Low 

Fundamental 

Logarithmic 

Power 

Root Square 

Balanced 

Logarithmic 

Power 

Root Square 
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CHAPTER 7 

 

7. CONCLUSIONS AND FINAL REMARKS 

 

Real life decision problems rarely depend on a single parameter. On the contrary, they 

are often complex problems, which involve multiple alternatives, criteria, and 

stakeholders. AHP is a very common and powerful multi-criteria decision making tool 

used in numerous business sectors by managerial decision makers (DM). The method 

is applied by verbally comparing alternatives and converting these verbal comparisons 

to numerical scores. The power of AHP is based on three main sources: 

 Its systematic process of dividing complex decision problems into smaller 

manageable parts, 

 Using pairwise comparison of elements rather than considering all at once, and 

 Providing means to systematically check DMs consistency in pairwise 

comparisons. 

Consistency concept is critical for managerial DMs in complex decision problems, as 

better consistency means more structured and well-made pairwise comparisons. On 

the other hand, if DM is not adequately consistent, then pairwise comparisons should 

be revised in order to make sure all of them reflect the correct evaluations of the DM. 

This revision becomes more time consuming and costly for managerial DMs as the 

complexity level of the decision problems increases.  

Consistency in AHP is mainly attributed to the transitivity axiom. Transitivity can be 

divided into two: 

 Ordinal Transitivity: If A is preferred to B and B to C, then A must be preferred 

to C. 

 Cardinal Transitivity: If A is preferred to B three times and B to C twice, then 

A must be preferred to C six times. 
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According to the transitivity axiom of AHP,  a set of pairwise comparisons are fully 

consistent if and only if all of them are cardinally transitive. However, the scales 

suggested for and used in AHP tend to be cardinally intransitive. 

If we approach inconsistency issue from the perspective of numerical pairwise 

comparison scales, two kinds of inconsistency can be defined. The first one is due to 

the fact that a numerical pairwise comparison scale has upper and lower limits, which 

make some combination (multiplication) of numerical scores cardinally intransitive. 

In this study, it is shown that most of the existing scales are significantly affected by 

this type of inconsistency characteristic. However, it is noted that any type of scale 

with an upper and lower bound would suffer from such inconsistency. More 

importantly, these scales (except for Geometric Scale) are significantly affected by the 

second type of inconsistency, which is due to the discreteness of the scale.  

In order to reduce inconsistencies based on cardinal intransitivity and scale 

discreteness, a new scale based on Fibonacci Series is proposed in this study, which is 

called “Exponential Scale”. Unlike most of the other scales, Exponential Scale is a 

continuous function, considering that reciprocals of all members of the scale are still a 

member of the same scale. As expected, Exponential Scale appeared more 

advantageous when the two types of scale-based inconsistency are concerned. 

By detailed simulations, previously proposed scales (except for Fundamental Scale) 

and Exponential Scale have been compared in this study with Fundamental Scale using 

some performance measures. In these simulations, especially when consistency-

related performance measures are taken into account, Power Scale appeared better than 

the other scales. While Exponential and Geometric scales followed Power Scale 

closely, Inverse Linear and Balanced scales showed only moderate performance. 

Logarithmic and Root Square scales, on the other hand, showed very poor performance 

with respect to consistency-related performance measures, when compared to the most 

widely used Fundamental Scale. It is notable that scales with a limit greater than 9 

(Exponential, Geometric, and Power scales) have better performances compared to the 

scales with an upper limit of 9 (Inverse Linear and Balanced scales). Scales having 
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upper limits less than 9 (Logarithmic and Root Square scales) have the lowest 

performances. Therefore, we can conclude that the upper limit of a numerical pairwise 

comparison scale is actually a significant parameter of consistency, and in general, 

scales with greater limits than 9 appear to be more consistent in numerical analysis of 

the same verbal judgement sets. Moreover, this is an indication of the suggestion that 

AHP favors wider scales in terms of consistency. 

At the last step, all scales are applied on the same sample decision problem in 

inconsistent and consistent cases (based on Fundamental Scale), and their 

characteristics were evaluated. Although, we believe, a single example is not adequate 

to draw general conclusions, the scales with higher upper bounds (Exponential, 

Geometric, and Power) yielded a higher weight for the most important criterion, as 

expected. Furthermore, Exponential and Geometric scales generated consistent PCMs 

for both cases while the Fundamental and Power scales generated a consistent matrix 

in only one of the cases. 

Although Geometric Scale has a similar performance to the proposed Exponential 

Scale, we agree with the idea of Ji and Jiang (2003) that the use of a scale with an 

upper limit of 256 severely violates the homogeneity axiom of AHP. Therefore, we 

believe that the use of Exponential Scale would be much more appropriate than 

Geometric Scale. Power Scale violates the same axiom more than Exponential Scale. 

Therefore, in this regard, Exponential Scale appears to be superior to the other scales. 

Another important finding is related to the performances of Exponential Scale and 

Power Scale’s for larger PCMs. Although this study did not include sizes larger than 

7x7 PCMs, the trends of performances indicate that both scales would have very 

similar performances for larger PCMs. This finding further supports Exponential 

Scale, especially for larger scale matrices, considering that Power Scale violates the 

homogeneity axiom more than Exponential Scale. 

Power Scale was proposed by Harker and Vargas (1987), and was criticized in the 

same study by using a single example application of AHP. Harker and Vargas (1987) 

used the same verbal comparison scale with different numerical pairwise comparison 
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scales and generated the final weights to compare them with the actual normalized 

distances between Philadelphia and the other cities. They concluded that the weight 

vector generated by using Fundamental Scale yielded the highest correlation with the 

actual normalized distances. However, we believe that they missed an important point. 

A rational DM, who knows what numerical value corresponds to his/her verbal 

judgements, may not use the same verbal evaluations for the Fundamental and Power 

scales. Indeed, provided the numerical scale is known, a DM may adjust 

himself/herself so that the numerical judgements represent his/her actual idea of the 

ratio weights (distances in the sample problem). If DMs are asked questions about 

measurable elements, about which they at least have some preliminary information, 

they may assess numerical ratios more accurately. Thus, we believe that the 

assumption of the same verbal scale used should be approached carefully in AHP 

studies. In this regard, we believe that Power Scale may not be as disadvantageous as 

Harker and Vargas (1987) claimed to be, and it may bring the advantage of more 

consistent PCMs which decreases the burden of revising inconsistencies. 

The same limitation applies to our study as well. In our simulations, we generated 

PCMs first based on Fundamental Scale, then directly converted the numbers to 

respective numbers in other scales. That is, we used the same verbal scale for both the 

Fundamental and the measured scale. A further study may be to assess real DMs’ 

perception of the verbal scale when different numerical scales are used. That is, the 

following question should be investigated: Does a DM change the verbal judgement if 

the numerical scale is changed? 

Another limitation of our study is that we only used EVM to generate weight vectors. 

In our preliminary simulations, we confirmed that the Approximate Method (a.k.a. the 

Rule of Thumb) yielded very close results to those of EVM, and as result, we decided 

to continue only with EVM for the sake of computational limitations. However, LLSM 

(RGMM) has been attracting more and more attention for the past two decades, and 

the simulations could have also been run for LLSM as the weight derivation method.  
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Another limitation of our study is that we only used EVM to assess the consistencies 

of matrices. It has been mentioned that GCI can also be an alternative way for 

consistency measurement. Further studies may evaluate the combinations of weight 

derivation methods (EVM and LLSM) with consistency measurement methods (EVM 

and GCI). 

Although we simulated a general comparison of numerical pairwise comparison 

scales, we are aware that we only represented the results of the PCMs, which have 

lower CR values than the CR limit than we designated. A complete mapping of 

numerical pairwise comparison scale behavior throughout all CR range may broaden 

the knowledge of the literature, and thus, may be considered as a possible future study 

topic. 

We believe our study is different than the others, since it does not simply compare 

numerical pairwise comparison scales on only single decision problem, but it analyzes 

the simulation of many cases and compares the other scales with the most widely used 

Fundamental Scale. We also believe that the inconsistency characteristics expressed 

by Ji and Jiang (2003) should have been elaborated on, as their preliminary analysis 

was not very detailed. In our study, we believe that we showed these characteristics 

better with our detailed analysis of every single possible numerical pairs in all scales. 

Moreover, our study brings a different approach to consistency sensitivity concept, 

which was suggested by Franek and Kresta (2014). We believe that consistency 

sensitivity should be measured by the deviation between the consistent and 

inconsistent cases of the given sample problem. That is, consistency sensitivity should 

be regarded as the percent change in the CR when an element (or a set of elements) 

are changed in a PCM. 

Finally, we would like to emphasize that general conclusions should not be drawn 

based only on a single application of AHP. As our simulations showed, although they 

do not represent the majority, there are significantly many cases where Fundamental 

Scale yields more consistent results than Exponential, Geometric or Power scales. In 

fact, a single example may well be one of these cases, where Fundamental Scale seems 
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superior to all others. Therefore, we believe that simulations involving many possible 

cases would provide more reliable results. 
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C. TURKISH SUMMARY/TÜRKÇE ÖZET 

  

  
Günlük hayatta karşılaşılan sorunlar nadiren sadece bir değişkene bağlıdır. Aksine, bu 

sorunlar genelde birden çok seçenek, değerlendirme ölçütü ve paydaş içeren karmaşık 

sorunlardır. Yönetsel kararlar için ise bu karmaşıklık çok daha fazladır. Yönetsel karar 

vericilerin, karar verme sürecinde bütün (ya da en önemli) seçenekleri, değerlendirme 

ölçütlerini ve paydaşları aynı anda göz önünde bulundurmaları gerekir. Bu karmaşıklık 

ise iyi yapılandırılmış bir çok-kriterli karar verme yöntemine olan kaçınılmaz ihtiyacı 

ortaya serer. 

Thomas L. Saaty (1980) tarafından ortaya atılmış olan Analitik Hiyerarşi Süreci (AHS) 

özel sektör, kamu ve savunma sanayiinde karşılaşılan önemli karar verme 

sorunlarında, çeşitli seviyelerde yöneticiler tarafından sıklıkla kullanılan bir çok-

kriterli karar verme yöntemidir. Bu yöntem proje yönetimi, çevre yönetimi ve hatta 

kişisel kararlar için bile kullanılmaktadır. AHS ile bir grup seçenek arasından en iyisi 

seçilebilir; çeşitli seçenekler değerlendirilebilir ve performansları ölçülebilir; kaynak 

paylaştırma çalışmaları ve ileriye dönük tahmin gibi birçok önemli çalışmaya temel 

oluşturulabilir. 

Yönetsel karar vericiler sıklıkla nesnel/sayısal veriyle birlikte bir paydaşın bir 

seçeneğe olan muhtemel tepkisi gibi öznel/sayısal olmayan verileri de kararlarında 

gözetmek zorunda kalırlar. AHS, karar vericilere doğrudan ölçülebilir nesnel veri ile 

doğrudan ölçülemez öznel veriyi sistematik olarak birleştirerek karar verme sürecinde 

birlikte değerlendirme şansı sunar. 

AHS’nin yaygın kullanımının ve gücünün altındaki temel sebep, karmaşık olan geniş 

kapsamlı bir sorunu sistematik olarak daha küçük ve yönetilebilir parçalara bölmesi; 

daha sonrasında ise bütün sorunla aynı anda uğraşmak yerine daha küçük sorunlarla 

tek tek ilgilenilmesini sağlamasıdır. Yöntemin bir başka faydası ise değerlendirilen 

elemanların hepsini aynı anda düşünmek yerine bütün elemanları ikili kombinasyonlar 

halinde karşılaştırmaya olanak sağlamasıdır. İkili karşılaştırma yöntemi, aynı anda 
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yalnızca iki elemanı karşılaştırmanın daha kolay olması ve daha isabetli sonuçlar 

vermesi sebebiyle psikologlar tarafından sıklıkla önerilmektedir. AHS’nin bir diğer 

güçlü yanı da karar verme süreci sonrasında karar vericinin değerlendirmelerindeki 

tutarlılığının sistematik şekilde değerlendirilmesine olanak vermesidir. AHS yöntemi, 

karar verme uygulamalarında sıklıkla tercih edilmesine katkıda bulunan iyi 

tanımlanmış bir tutarlılık kontrol sürecine sahiptir. 

AHS yöntemi genel anlamda beş ana adımdan oluşmaktadır: 

 Karar verme sorununun tanımlanması ve hiyerarşik olarak gösterilmesi 

 İkili karşılaştırmalar 

 Ağırlık belirleme 

 Tutarlılık değerlendirmesi 

 Ağırlıkların bütünleştirilmesi 

AHS’nin uygulanabilmesi için karar verme sorununun net bir şekilde tanımlanmış ve 

süreç sonucunda neye ulaşılmak istendiğinin belirlenmiş olması gerekmektedir. 

Ulaşılmak istenen nokta “ana hedef” olarak tanımlanır. Daha sonrasında karmaşık 

karar verme sorunu, ana hedefe ulaşmak için en genel anlamda sağlanması gereken 

ana ölçütleri belirtecek şekilde bölümlere ayrılır ve bir hiyerarşi oluşturulur. Bu 

hiyerarşinin en üst noktasında ise ana hedef bulunur. Eğer belirlenen ana ölçütler ikili 

karşılaştırma yapmak için fazlasıyla genel kalıyorsa, bu ana ölçütler tekrar alt ölçütlere 

bölünebilir. Bu bölme işlemi ihtiyaç duyulduğu kadar tekrar edilebilir. Fakat, bölme 

işlemini yaparken göz önünde bulundurulması gereken en önemli nokta, oluşturulan 

alt ölçütlerin birbiriyle karşılaştırılabilecek ortak noktalarının kaybedilmemesidir. 

Eğer bir karar verme sorunu en alt seviyede bulunan ve aynı üst ölçüte bağlı olan alt 

ölçütlerin birbirleriyle karşılaştırılacak ortak noktası bulunmayacak kadar 

detaylandırıldıysa, bu detaylandırma sorunu basit bölümlere ayırmaktan ziyade daha 

karmaşık hale getirecektir. Ana hedefin altında bulunan bütün ölçüt seviyeleri ve 

hiyerarşisi belirlendikten sonra, elde bulunan seçenekler en alt seviyede bulunan her 

ölçütün altına yerleştirilir. 
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Sorunun hiyerarşik olarak ayrılması ve düzenlenmesinden sonra ikili karşılaştırma 

adımına geçilir. İkili karşılaştırmalarda sıklıkla kullanılan bir yönteme göre, en alt 

seviyede bulunan bütün ölçütler bir üst seviyede bağlı bulundukları ölçütlere göre ikili 

olarak karşılaştırılırlar. En alt seviyedeki bütün ölçütler tamamlandıktan sonra aynı 

işlem bir üst seviyedeki ölçütler için tekrarlanır. Bu adım ana hedefin hemen altında 

bulunan ana ölçütler de ikili karşılaştırılıncaya kadar tekrar edilir. Daha sonra bütün 

seçenekler, hiyerarşinin en alt seviyesinde bulunan bütün ölçütlerdeki 

performanslarına göre ikili olarak karşılaştırılır. Bu ikili karşılaştırmalar sözlü bir 

ölçek kullanılarak yapılır. Sonrasında ise bu sözel karşılaştırmalar, sayısal bir ölçekle 

birebir eşleştirme yöntemiyle oransal değerlendirmelere dönüştürülür. AHS 

yönteminin önerildiği tarihten bugüne birçok sayısal ikili karşılaştırma ölçeği 

(Dengeli, Temel, Geometrik, Ters Lineer, Logaritmik, Kare ve Karekök) önerilmiş 

olup hangi ölçeğin daha iyi olduğu tartışması günümüzde bile devam etmektedir. Yine 

de, öne sürüldüğü günden bu yana, basitliği ve anlaşılırlığı sebebiyle en çok kullanılan 

ölçek, yine Saaty (1980) tarafından önerilmiş olan ve “Temel Ölçek” adıyla da bilinen 

1-9 lineer ölçeğidir. 

İkili karşılaştırmalar sonucu elde edilen sayısal değerler, “İkili Karşılaştırma Matrisi” 

(İKM) adı verilen kare matrislerde tutulur. İKM’lerde tutulan bu sayısal değerler, 

karşılaştırılan bütün elemanların kendi grupları içindeki yerel önemlerini 

(ağırlıklarını) hesaplamak için kullanılır. Yerel ağırlıkları hesaplamak için kullanılan 

en yaygın yöntemler Özdeğer (Eigenvalue) Yöntemi ve Logaritmik En Küçük Kareler 

(ya da başka bir adıyla Satır Geometrik Ortalama) Yöntemi’dir. 

Yerel ağırlıklar belirlendikten sonra karar vericinin değerlendirmelerinin tutarlılığı 

bütün (ya da en azından tutarlılığı şüpheli olan) İKM’ler için değerlendirilir. En yaygın 

bilinen değerlendirme yöntemi Özdeğer Yöntemi; ikinci en bilinen yöntem ise 

Geometrik Tutarlılık Endeksi’dir. Doğası gereği AHS belirli derecede tutarsızlık 

barındırır. Fakat bu tutarsızlık belirli sınırlar içinde kaldığı sürece kabul edilebilir 

olarak değerlendirilir. Eğer bir İKM’nin tutarsız olduğu (tutarsızlık değerinin sınırlar 

dışında olması) tespit edilirse, karar vericinin İKM’yi –tutarsızlık Kabul edilebilir 

seviyeye inene ya da karar verici daha fazla değişikliğin kendi fikirlerini 
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yansıtmayacağını belirtene kadar- tekrar değerlendirmesi istenir. Yakın tarihli bir 

çalışmada (Mazurek ve Perzina, 2017) sunulan, insanların az sayıda elemanı 

değerlendirirken bile büyük oranda tutarsız gösterdiği sonucu göz önünde 

bulundurulduğunda, tekrar değerlendirme işleminin ciddi oranda zaman alıcı bir işlem 

haline geldiği görülmektedir. 

Tutarlılık değerlendirmesinden sonra en son adım olan ağırlıkların bütünleştirilmesi 

işlemi yapılır. Bu adımda en alt seviyede bulunan her bir ölçütün ana hedefe ulaşmak 

için ne kadar önemli olduğu tespit edilir. Bütünleştirme işlemi sıklıkla Toplamsal 

Bütünleştirme Yöntemi ile yapıldığı gibi Çarpımsal Bütünleştirme Yöntemi de 

kullanılmaktadır. 

Bir İKM’deki tutarlılık genel anlamda AHS’nin “geçişlilik” önermesine bağlanabilir. 

Geçişlilik kavramı ikiye ayrılır: 

 Nitel Geçişlilik: Eğer A B’ye tercih ediliyor ve B de C’ye tercih ediliyorsa 

A’nın C’ye tercih edilmesi gerekir. 

 Nicel Geçişlilik: Eğer A B’ye göre 3 kat tercih ediliyor ve B de C’ye göre 2 

kat tercih ediliyorsa A’nın C’ye göre 6 kat tercih edilmesi gerekir. 

 Geçişlilik önermesine göre bir İKM’nin tam olarak tutarlı olabilmesi için bu 

İKM’nin nicel geçişlilik kuralına uyması gerekir. Diğer yandan, eğer bu İKM 

nicel olarak geçişliyse, aynı zamanda nitel olarak da geçişlidir. 

İKM’lerin tutarsız olması istenmeyen bir durum olduğu gibi karmaşık bir karar verme 

sorununda çok sayıda tutarsızlığın düzeltilmeye çalışılması külfetli bir iştir. Tutarsızlık 

sorununa sayısal ikili karşılaştırma ölçeklerini göz önünde bulundurarak 

yaklaşıldığında iki tip tutarsızlık görülmektedir. Birinci tip tutarsızlık, ölçeğin bir üst 

ve alt limite sahip olmasından kaynaklanmaktadır. Örneğin; i-j elemanları arasındaki 

sayısal karşılaştırma değeri “𝑎𝑖𝑗 = 4” ve j-k elemanları arasındaki sayısal 

karşılaştırma değeri “𝑎𝑗𝑘 = 5” olduğunda, i-k elemanları arasındaki sayısal 

karşılaştırma değerinin nicel geçişlilik önermesine göre “𝑎𝑖𝑘 = 20” olması beklenir. 

Bu durumda, üst sınırı 20’den küçük olan bir ölçeğin tutarsızlık göstermesi 
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kaçınılmazdır. Araştırmamızda, AHS için önerilmiş olan sayısal ölçeklerin 

çoğunluğunun bu durumdan ciddi derecede olumsuz etkilendiği tespit edilmiştir. 

Fakat, üst limiti olan herhangi bir sayısal ölçeğin bu tip bir tutarsızlıktan zorunlu olarak 

etkileneceği de belirtilmiştir. 

İlkinden daha etkili olduğunu düşündüğümüz bir diğer sayısal ölçek kaynaklı 

tutarsızlık sebebi ise ölçek tarafından tanımlanmış olan sayısal değerlerin çarpımsal 

kombinasyonlarının ölçek sınırları içinde kalmasına rağmen, ölçek tarafından 

tanımlanmamış bir sayısal değere eşit olmasıdır. Başka bir deyişle, “𝑎𝑖𝑘 = 𝑎𝑖𝑗 ∗  𝑎𝑗𝑘” 

eşitliğinin sayısal değeri ölçek sınırları içinde olsa bile “𝑎𝑖𝑘” değeri kullanılan ölçek 

tarafından tanımlanmamış olabilir. Örneğin, 𝑎𝑖𝑗 = 1/3 ve 𝑎𝑗𝑘 = 4 durumunda 𝑎𝑖𝑘 

değerinin 4/3 olması beklenmektedir. AHS için önerilmiş olan sayısal ölçeklerin 

(Geometrik hariç) bu tip bir tutarsızlıktan büyük oranda etkilendikleri tespit edilmiştir. 

Araştırmamızda, sayısal ölçek kaynaklı tutarsızlıkları azaltacağı düşünülen ve “Üstel 

Ölçek” olarak adlandırılan yeni bir ölçek önerisi getirilmiştir. Üstel ölçek kavramı ilk 

olarak Lootsma (1989) tarafından ortaya atılmış olup, ilgili araştırmada sunulan genel 

formüldeki katsayılar bir temele bağlı olarak belirlenmemiş ve bu nedenle önerilen 

formül bir sayısal ölçeğe dönüştürülmemiştir. Bu araştırmada ise katsayıların 

belirlenmesi aşamasında yaygın olarak bilinen “Fibonacci Dizisi” kullanılmış ve bu 

diziyi temel alan bir sayısal ölçek önerilmiştir. Beklendiği gibi, Üstel Ölçek’in ölçek 

kaynaklı tutarsızlıklar konusunda yüksek bir performans sergilediği tespit edilmiştir. 

Daha sonra, detaylı simülasyonlarla, daha önce önerilmiş olan ölçekler ve 

araştırmamızda önerilen Üstel Ölçek, Saaty tarafından önerilen Temel Ölçek ile 

karşılaştırılmıştır. Karşılaştırılan ölçekler belirli performans ölçütlerine göre 

değerlendirilmiş ve özellikle tutarlılık ile ilgili ölçütler göz önünde bulundurulduğunda 

Kare Ölçek’in diğerlerinden daha üstün olduğu tespit edilmiştir. Üstel ve Geometrik 

ölçekler Kare Ölçek’i yakından takip ederken Ters Lineer ve Dengeli ölçeklerin 

ortalama bir performans gösterdiği gözlemlenmiştir. Logaritmik ve Karekök 

ölçeklerin ise, Temel Ölçek’le kıyaslandığında, tutarlılık ile ilgili ölçütlerde diğer 

ölçeklere göre ciddi derecede düşük performans gösterdikleri tespit edilmiştir. Elde 
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edilen sonuçlarda dikkat çeken bir nokta ise yüksek performans gösteren Üstel, 

Geometrik ve Kare ölçeklerinin hepsinin üst sınırlarının Temel Ölçek’te kullanılan 

9’dan daha büyük olmasıdır. Benzer şekilde orta derecede performans gösteren Ters 

Lineer ve Dengeli ölçeklerin üst sınırlarının 9’a eşit; düşük performansa sahip 

Logaritmik ve Karekök ölçeklerin üst sınırlarının ise 9’dan küçük olduğu 

gözlemlenmiştir. Bu bağlamda, bir ölçeğin alt ve üst sunurlarının, o ölçekle 

oluşturulam İKM’lerin tutarlılığı üzerinde ciddi derecede etkili olduğu ve genel 

anlamda sınırı 9’dan büyük olan ölçeklerin –aynı sözel değerlendirme seti baz 

alındığında– daha yüksek performans gösterdiği sonucuna varılmıştır. 

Araştırmanın son bölümünde ise bütün ölçekler aynı örnek karar verme uygulaması 

üzerinde iki farklı senaryoda (Temel Ölçek’e göre tutarsız ve tutarlı İKM senaryoları) 

değerlendirilmiştir. Tek bir örnek üzerinden çok genel bir çıkarım yapılmasının 

sağlıklı olmadığına inanmakla birlikte, üst sınırları 9’dan büyük olan ölçeklerin (Üstel, 

Geometrik ve Kare) beklendiği şekilde en önemli alternatif ağırlıklarını diğer ölçeklere 

göre daha yüksek belirledikleri görülmüştür. Ek olarak Üstel ve Geometrik ölçeklerle 

oluşturulan İKM’lerin her iki senaryoda da tutarlı olmasına karşın Temel ve Kare 

ölçeklerle oluşturuan İKM’lerin sadece ikinci senaryoda tutarlı oldukları 

gözlemlenmiştir. 

Geometrik Ölçek ile Üstel Ölçeğin değerlendirme ölçütlerimize göre performansları 

birbirine yakın olmakla birlikte, Ji ve Jiang (2003) tarafından belirtildiği gibi üst sınırı 

256 olan bir ölçeğin kullanımının AHS’nin homojenlik önermesini ciddi şekilde ihlal 

ettiğini düşünüyoruz. Bu bağlamda, Geometrik Ölçek yerine Üstel Ölçek’in 

kullanılmasının daha uygun olduğuna inanıyoruz. 

Kare Ölçek Harker ve Vargas (1987) tarafından önerilmiş olup yine aynı araştırmada 

tek bir örnek üzerinden eleştirilmiş ve Temel Ölçek’in daha uygun olduğu çıkarımı 

yapılmıştır. Bu araştırmada uygulanan örnek, Saaty (1980) tarafından yapılan 

araştırmada Philadelphia ile altı farklı şehir (Kahire, Tokyo, Şikago, San Fransisko, 

Londra ve Montreal) arasındaki normalize gerçek uzaklıkları tahmin etmek için 

kullanılmıştır. Harker ve Vargas (1987) tarafından yapılan araştırmada karşılaştırılan 
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bütün sayısal ölçekler için aynı sözel ölçek kullanılmış ve bunun sonucunda 

oluşturulan İKM’ler ile belirlenen ağırlıklar, Philadelphia ile bahse konu şehirler 

arasındaki normalize gerçek mesafelerle karşılaştırılmıştır. Araştırmanın sonucu 

olarak Temel Ölçek’le oluşturulan ağırlıkların normalize gerçek mesafelerle yüksek 

korelasyona sahip olduğu ve bu nedenle Temel Ölçek’in diğerlerinden daha iyi olduğu 

öne sürülmüştür. Fakat araştırmacılar bu çalışmada önemli bir noktayı atlamış; hangi 

sözel değerlendirmenin hangi sayısal puana karşılık geldiğini bilen mantıklı bir karar 

vericinin hem Temel hem de Kare ölçekler için aynı sözel değerlendirme ölçeğini 

kullanacağı varsayımında bulunmuşlardır. Bizim öngörümüze göre ise, sayısal 

ölçekleri bilen ve karşılaştırdığı elemanlar hakkında fikir sahibi olan mantıklı bir karar 

vericinin, sayısal ölçek değiştiğinde kendi değerlendirmelerini yeni ölçeğe göre 

ayarlayacağı yönündedir. Dolayısıyla bütün sayısal ölçekler için aynı sözel 

değerlendirmeler kullanılarak değerlendirme yapılmasına dikkatli bir şekilde 

yaklaşılması gerektiğine inanıyoruz. Bu bağlamda Harker ve Vargas (1987) tarafından 

önerilmiş ve eleştirilmiş olan Kare Ölçek’in belirtildiği kadar elverişsiz 

olmayabileceğine; hatta daha tutarlı İKM’lerin oluşturulması sayesinde karar 

vericilerin İKM’leri tekrar tekrar değerlendirmesinin önüne geçilerek süreç için daha 

çok fayda sağlanabileceğine inanıyoruz. 

Bu sınırlama aynı zamanda bizim araştırmamızda da önümüze çıkıyor. Yapılan 

simülasyonlarda bir İKM öncelikle Temel Ölçek’e göre rasgele belirlenip daha sonra 

bu İKM’deki sayılar karşılaştırılan ölçekteki karşılıklarıyla ikinci bir İKM olarak 

oluşturulmuştur. Başka bir deyişle, simülasyonlarda Temel Ölçek ve karşılaştırılan 

ölçekle oluşturulan İKM’ler için aynı sözel değerlendirmeler kullanılmıştır. Bu 

bağlamda, farklı sayısal ölçekler kullanıldığı durumlarda karar vericilerin sözel 

ölçekleri nasıl algıladığı konusunda bir araştırma yapılabilir. Yani, “Bir karar verici, 

sayısal ölçek değiştiği zaman sözel değerlendirmelerini değiştirir mi?” sorusuna 

deneysel olarak cevap aranabilir. 

Araştırmamızın bir başka kısıtı ise ağırlıkların belirlenmesinde sadece Özdeğer 

Yöntemi’nin kullanılmasıdır. Öncül simülasyonlarımızda tespit ettiğimiz üzere, 

çalışma içinde açıklanan Yaklaşık Değer Yöntemi kullanılarak belirlenen ağırlıklar 
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Özdeğer Yöntemi’yle belirlenen ağırlıklarla yüksek oranda benzerlik göstermiştir. Bu 

nedenle belirtilen iki yöntemden sadece Özdeğer Yöntemi kullanılmıştır. Ek bir 

araştırma olarak ikinci en çok kullanılan ağırlık belirleme yöntemi olan Logaritmik En 

Küçük Kareler (Satır Geometrik Ortalama) Yöntemi kullanılabilir. 

Bir başka kısıt ise tutarlılık değerlendirmesinde, bilgisayımsal kapasite ve hız göz 

önünde bulundurularak, yalnızca Özdeğer Yöntemi’nin kullanılmış olmasıdır. Buna 

ek olarak yapılabilecek yeni bir araştırmada tutarlılık değerlendirmesi için Geometrik 

Tutarlılık Endeksi kullanılabilir. Aynı zamanda ağırlık belirleme yöntemleri (Özdeğer 

ve Logaritmik En Küçük Kareler) ile tutarlılık değerlendirme yöntemlerinin (Özdeğer 

ve Geometrik Tutarlılık Endeksi) bu araştırmada uygulanmamış olan eşleştirmeleri 

uygulanabilir. 

Simülasyonlarımızda tamamen rasgele İKM’ler oluşturmuş olmamıza rağmen 

yalnızca tutarlılık değerleri belirli sınırların altında kalan İKM’ler değerlendirmeye 

alınmıştır. Daha geniş bir tutarlılık değeri aralığını kapsayacak şekilde yapılabilecek 

bir araştırma, kullanılan ölçeklerin İKM’lerin tutarlılığı üzerinde etkisi konusunda 

daha detaylı bilgi verebileceğini düşünüyoruz. 

Geçmişte yapılan çalışmalarda tek örnek üzerinden ölçek değerlendirmesi yerine geniş 

çaplı simülasyonlarla sayısal ikili karşılaştırma ölçeklerinin genel özelliklerini ortaya 

çıkarma amacı güdülmesinin, bizim araştırmamızı geçmişte yapılan araştırmalardan 

farklı kıldığına inanıyoruz. Ek olarak, Ji ve Jiang (2003) tarafından yapılmış olan ve 

ölçek kaynaklı tutarsızlık özelliğini ipuçlarının, muhtemel bütün kombinasyonları 

içeren çalışmamızda daha geniş kapsamlı ve yol gösterici şekilde incelendiğini 

düşünüyoruz. 

Son olarak, AHS yöntemi kullanılarak yapılan tekil uygulamalar üzerinden genel 

sonuçlara varılmasının uygun olmadığı görüşümüzü belirtmek istiyoruz. 

Simülasyonlarımızın da gösterdiği üzere Üstel, Geometrik ve Kare ölçeklerin Temel 

Ölçek’ten daha tutarlı sonuçlar verdiği durumlar çoğunlukta olmakla birlikte, geri 

kalan yadsınamayacak sayıdaki durumlarda ise Temel Ölçek’in daha tutarlı sonuçlar 

verdiği gözlemlenmiştir. Bu açıdan bakıldığında, tekil bir uygulamanın okuyucuyu 
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Üstel Ölçek’in daha iyi olduğu bir duruma yönlendirebileceği gibi, Temel Ölçek’in 

daha iyi sonuçlar verdiği bir duruma da yönlendirebilir. Bu bağlamda, yüksek sayıda 

durum içeren simülasyonlar üzerinden yapılacak değerlendirmelerin daha güvenilir 

sonuçlar vereceğine inanıyoruz. 
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