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ABSTRACT 

 

 

A MULTIOBJECTIVE APPROACH TO ASSEMBLY LINE PART 

FEEDING PROBLEM 

 

Kızılyıldırım, Ramazan  

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Esra Karasakal 

 

December 2018, 67 pages 

 

 

The change in product diversity and sense of quality to increase customer 

satisfaction has also affected the design and management of assembly lines. 

Keeping the amount of stock at desired levels to provide parts to the assembly line 

and prevent the accumulation of stocks at assembly line has become an 

increasingly challenging problem for manufacturing companies that have high 

product diversity and high model variability. Increasing the number of vehicles 

might be a solution to control stock level but this leads to in-plant traffic problem. 

Therefore, a balance should be maintained between stock and traffic level to 

overcome this challenge. Although there is a comprehensive literature on 

assembly line optimization, assembly line part feeding problem has been 

addressed by relatively few studies. 

 

In this thesis, we aim to minimize the number of tours needed to feed the 

assembly line and the line side stock of a company which has many production 

lines and produces a wide variety of products. A bi-objective mathematical model 

is developed to produce a transportation schedule for each vehicle driver. Since, 

the mathematical model is solved optimally for only small-size problems, a 

problem-specific heuristic algorithm is developed to solve large-size problems. 

The heuristic algorithm generates solutions within a very short time period for 
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large-size problems. The heuristic algorithm is capable to produce almost all 

nondominated solutions.  

 

Keywords: Assembly Line Part Feeding, Multiobjective Optimization 
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ÖZ 

 

 

MONTAJ HATTI PARÇA BESLEME PROBLEMİ İÇİN ÇOK AMAÇLI 

BİR YAKLAŞIM 

 

Kızılyıldırım, Ramazan  

Yüksek Lisans Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Esra Karasakal 

 

Aralık 2018, 67 sayfa 

 

 

Müşteri memnuniyetini arttırmak için ürün çeşitliliği ve kalite anlayışında 

yaşanan değişim, üretim süreçlerini de etkilemiştir. Yüksek ürün çeşitliliğine ve 

üretim hattında yüksek model değişkenliğine sahip üretim firmaları için hat yanı 

stok miktarını arzu edilen seviyelerde tutarak hattı beslemek ve ara madde 

yığılmalarını önlemek giderek zorlaşan bir problem halini almıştır. Bu sorunu 

çözmek için araç sayısını arttırmak firma içi trafik problemine neden olduğu için 

iki amaç arasında bir denge kurulması gerekliliği ortaya çıkmaktadır. Üretim 

süreçlerine ilişkin kapsamlı bir literatür olmasına rağmen montaj hattı parça 

besleme problemi az sayıda çalışma tarafından ele alınmıştır.  

 

Bu tezde çok sayıda üretim hattına sahip ve çok çeşitli ürün üreten bir firma için 

hat yanı stok miktarının ve hattı beslemek için gerekli araç tur sayısının en 

azlanması amaçlanmıştır. Her bir araç sürücüsü için taşıma çizelgesi oluşturmayı 

hedefleyen iki amaçlı bir matematiksel model geliştirilmiştir. Matematiksel model 

sadece çok küçük ölçekli problemleri çözebilmektedir. Bu nedenle, problem 

spesifik bir sezgisel algoritma geliştirilmiştir. Sezgisel algoritma büyük 

problemler için dahi çok kısa sürede domine edilmemiş çözümlerin tamamına 

yakınını üretmiştir. 

 

Anahtar Kelimeler: Montaj Hattı Parça Besleme, Çok Amaçlı Optimizasyon 
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            CHAPTER 1 
 

 

1. INTRODUCTION 

 

 

 

With increasing product variety, the complexity of the preventive maintenance 

problem of assembly line has increased. Contemporary part assembly plants use 

high variant mixed model assembly lines for manufacturing to respond to the 

increasing variety. On the other hand, this complicates the part feeding policy and 

requires a relatively large storage space at the assembly line or an increase in the 

frequency of in-plant traffic. In order to address these problems, different line 

feeding policies such as “kitting”, “Kanban-based” and “hybrid” have been 

developed besides the conventional “line siding” policy (Kilic and Durmusoglu 

2015).  

 

In line siding policy, parts are being delivered from a central warehouse to line in 

baskets at predefined time slots. This strategy is easy to execute and does not need 

any extra material handling before the delivery. On the other hand, a significant 

amount of parts is carried in the same basket to avoid any shortage. When variety 

is high, the total amount of the stock at the assembly line is also relatively high 

(Bozer and McGinnis 1992). 

 

In part feeding system, bringing a group of parts together in predetermined 

quantities and then delivering them to the line is called kitting (Carlsson and 

Hensvold 2008). In kitting, only specific parts, which are needed for future time 

slots, are handled and delivered to the stations (Sali et al. 2015). 
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In Kanban based part feeding system, every basket is associated with a kanban 

card which contains all related information about parts (Sendil Kumar and 

Panneerselvam 2007). Stations are refilled, according to consumption, by parts 

that are pulled via Kanban cards (Facio et al.2013). 

 

These three policies aim to deliver required parts to the assembly line with 

minimum associated cost. For some production systems, the hybrid combination 

of these three approaches could suit best for the production system. Besides 

decreasing related costs, creating a conducive working environment is also one of 

the objectives of these feeding systems. Previous studies mostly focus on the 

macro level comparison of different feeding policies. These macro level studies 

mostly try to find the best hybrid solution based on long run calculations. At the 

micro level, there is a need to further enlighten different aspects of each policy 

separately. In this study, we develop an approach to improve the line siding 

feeding policy.  

 

As stated in many other studies, the assembly line part feeding problem is NP-

hard (Fathi et al. 2014). Decreasing the stock to its minimum level requires high 

in-plant traffic or decreasing the traffic ends up with a high level of side stock.  

Both objectives are conflicting, and a tradeoff exists between them. In order to 

optimize these two objectives, transfer vehicles’ loading problem and delivery 

schedule problem should be solved, simultaneously.  

 

We develop a multi-objective mathematical model that minimizes total stock at 

the assembly line and the total number of tours required to feed the assembly line. 

We use epsilon constrained method to generate all nondominated solutions of the 

exact method. We observe that the exact method can be only used for small-size 

problems. In this thesis, we also develop a problem specific heuristic algorithm to 

solve large-size problems efficiently. Computational experiments show that 

heuristic algorithm generate almost all nondominated solutions. Solution time of 
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the heuristic algorithm is less than ten seconds for tested data sets. We create a 

very large random dataset to challenge the solution time of the heuristic algorithm 

and results validate the time efficiency of the algorithm.  

 

In the next section we want to give some important definitions related to multi-

objective optimization problems.  

1.1. Definitions and Some Theory for Multiobjective Optimization 

 

Efficient, nondominated, weakly efficient and weakly nondominated points 

 

Let x be the decision vector, X be the feasible decision region of a multi-objective 

problem.   Let also the point f=(f1(x), f2(x),..., fp(x))  be the corresponding point in 

objective space F (image of X) for the decision vector x where p is the number of 

the objectives and fi(x) is the value of the i
th 

objective. 

 

Furthermore, assume that the original problem is as presented below. 

 

1 2 3" " ( (x), (x), (x),..., (x))

Subject to:

pmin f f f f

x X

 

 

For a minimization problem, the solution x is called efficient if there is no x´ ∈ X 

such that  

i) fk(x’) ≤ fk(x) for k = 1,..., p  

ii) fk(x’) < fk(x) for at least one k. 

 

If there is such an x’, then x is called inefficient. If x is efficient, then f=f(x) is 

called nondominated point. Whenever x is inefficient the corresponding point in 

objective space called dominated.  
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A feasible solution x ∈ X is called weakly efficient if there is no x´ ∈ X such that  

             fk(x’) < fk(x) for all k = 1,..., p. 

Then, the point f=f(x) is called weakly nondominated. 

 

The rest of the paper is structured as follows. In Section 2, a brief literature review 

is provided and original contribution of this thesis to literature is given. In Section 

3, a detailed description of the problem is provided.  In section 4, the proposed 

methods are presented, and the computational results for both exact and heuristic 

algorithms are reported in Section 5. Finally, conclusions and future research 

direction are discussed in Section 6. 
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             CHAPTER 2 
 

 

 

2. LITERATURE REVIEW 

 

 

 

 

Digitalization of manufacturing has dramatically transformed the conventional 

production approaches to more automated structures. Recent changes in 

technology and customers’ diverse product demands inevitably push companies to 

employ a high-variant mixed-model production line for most of the product 

segments. Despite the advantages, such an assembly line has high complexities 

due to the number of parts needed to be transferred from warehouses to the 

assembly line. 

  

Early studies regarding the mass production focused on assembly line balancing 

and operational sequencing to improve the efficiency of the production line. A 

comprehensive literature review of assembly line balancing is provided by 

Sivasankaran and Shahabudeen (2014). As newly developed approaches have 

improved the efficiency of these production lines, the complexity of feeding these 

lines has increased proportionally.  

 

Problems raised after changes applied to assembly line has been addressed by 

many studies that aim to improve different aspects of production systems such as 

line balancing, operational sequencing and facility layout. On the other hand, 

according to many recent studies, part feeding at assembly line has been 

addressed by relatively fewer studies (Fathi et al. 2014). 

 

Various new feeding policies are developed in response to the increasing 

complexity due to the increasing number of parts needed to be transferred from 
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warehouses to the assembly line. In addition to traditional line stocking feeding 

approach, policies such as Kanban and kitting are developed to reduce inventory 

at the assembly line (Kilic and Durmusoglu 2014).  

  

In this thesis, we made a classification based on the classification scheme 

provided by Kilic and Durmusoglu (2014). We classify studies into three classes 

namely line stocking, Kanban and kitting. Furthermore, we classify studies that 

mainly compare different part feeding policies as a separate group and determine 

under which conditions each policy performs better than others.    

2.1. Line stocking 

 

Line stocking is mainly executed as transferring parts from a central warehouse to 

the storage area of the relevant workstation. In this approach, required 

components are being carried as an entire unit load for each component from the 

warehouse to the designated station. When a specific part is no longer needed, it is 

transferred to the warehouse again, and if the unit load is empty or not necessary 

in future, then it is removed from the station in order to open space at that station. 

(Zammori et al 2015). In this approach, the continuous use of the material is 

enabled but in case of high variability, there will be a high amount of stock 

besides the assembly line (Corakci 2008). Transfer vehicles can be different based 

on packaging types. For unit loads, pallets are used for transportation, and for 

small boxes, tugger trains will make periodical tours on a certain path.  In the first 

case, the replenishment target is the reorder level and in the second case two bin 

policy is used for replenishment (Limere et al. 2012). 

 

Salameh and Gattas (2001) formulated a model to find the optimum JIT inventory 

stock level by minimizing the sum of the holding cost and the shortage cost. Their 

key concern is to prevent any loss caused by the production interruption. 
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Choi and Lee (2002) compared static and dynamic part feeding policies for an 

automotive company. According to their definition, static part feeding is to supply 

parts based on predefined demand needs. In their dynamic part feeding approach, 

they forecast the demand based on the consumption. This approach enables the 

feeders to swiftly adapt in case of changes in production plans. Their single 

objective is to put a penalty on late and early deliveries and minimize the total 

penalty. Computational experiments show that their dynamic approach produces a 

better solution than the conventional static approach.  

 

Wänström and Medbo (2008) studied the design of component racks and choice 

of packaging types to improve the efficiency of part feeding systems. They 

showed that the feeding process could be improved by changing parameters for 

racks and package types.  

 

Souza et al. (2008) addressed the packing problem to minimize stock beside the 

assembly line and the frequency of feeders. They formulated a single objective 

mathematical model and developed a Greedy Randomized Adaptive Search 

Procedure (GRASP) to solve the NP-Hard problem. Their GRASP method 

managed to decrease operational costs more than 50%. 

 

Cunha and Souza (2008) modified the procedure developed by Souza et al. 

(2008). The modified version produces tighter bounds than the previous version of 

the procedure.  

 

Golz et al. (2011) developed a heuristic solution for in-house transportation. They 

decompose the entire process into two main parts. In the first part, they produce 

the demand based on the daily production plan. In the second step, they merge the 

tours where it is possible under the capacity constraints. After making all possible 

merges, they assign the tours with an aim to minimize the number of required 

drivers.   
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Alnahhal M. and Noche B. (2013) used a mathematical model, analytic equations 

and a dynamic programming to address the line-side inventory, the number of 

trains and the variability in loading problems simultaneously. They first determine 

a period length and then assign feeders to provide parts to the same stations at 

each period during the shift. The most important objective is to minimize the 

number of trains and the number of trains is determined by using dynamic 

programming. Then, they solve a mixed integer mathematical model to minimize 

the total stock at and the maximum stock at the assembly line. They also keep 

route length close to average route length to decrease the variability.  

 

Rao et al. (2013) developed a mathematical model and a GASA (genetic 

algorithm and simulated annealing) heuristic in order to find schedules for a single 

vehicle that feeds mixed-model assembly lines with minimum total travel cost. 

They use a backward tracking approach to minimize interaction between formerly 

scheduled materials and appending materials.  

 

Zhou and Peng (2017) developed a mathematical model to minimize the 

maximum weighted inventory level in all stations and production cycles during 

the planning horizon. They also proposed a backtracking algorithm which yields 

the exact solution for small-scale instances. They developed a modified discrete 

artificial bee colony (MDABC) metaheuristic for real life instances.   

 

Zhou and Xu (2018) developed two mathematical models to minimize the number 

of operators and the unit delivery cost for line integrated supermarkets. A 

dynamic programming is presented to find global optimum for small-size 

problems and a search algorithm for large-size problems. They first determine the 

number of logistic operators and stations assigned to operators. Next, they 

determine cyclic delivery schedules and operators. 
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2.2. Kitting 

 

Kitting is the gathering of parts needed for the manufacture of a particular product 

then delivering this compact package to the assembly line (Zammori et al 2015). 

Kitting works well when the ERP data is robust, but it could fail because of weak 

ERP system structure. Many of the studies on this subject focus on how to 

optimize the kitting process. For a review see Kilic and Durmusoglu (2014).  

 

Günther et al. (1996) developed a mixed integer programming model and a 

heuristic algorithm to address three aspects of kitting problem. They investigated 

how to arrange a right mix of components to be supplied to each station, assign 

jobs to stations and determine a minimum number of operators. The mathematical 

model fails to produce optimal solutions in reasonable time periods. Their 

heuristic algorithm produces optimal solutions for most of the tested datasets with 

a very short run time. 

 

Chen and Wilhelm (1997) developed a linear programming model and a heuristic 

approach to feed the assembly line under the kitting policy.  The objective was to 

minimize the total cost. The cost includes job earliness, job tardiness, and in-

process holding costs. Their algorithm gave priority to the parts with the earliest 

due date. After kits are determined, the algorithm shifts the starting times to avoid 

earliness.   

 

Carlsson and Hensvold (2008) found that kitting is more beneficial for high 

variant assembly lines based on a real-life study. Their study also took qualitative 

assessments into account in addition to quantitative results. 

 

Battani et al. (2010) developed a procedure to decide on centralization and 

decentralization of component warehouses. The procedure was formulated as a 
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step-by-step process based on successive linear programming optimizations to 

determine whether centralization or decentralization was favorable for relevant 

components.  

 

Kilic and Durmusoglu (2012) developed a single objective mathematical model 

where the objective is to minimize the cost consisting of WIP and the number of 

workers for design of a kitting system.  

 

Limère et al. (2015) developed a model to choose between kitting and line 

stocking by considering the walking distance of the operator. Their mathematical 

model also demonstrated how specific characteristics of a part influence the 

chances of a part being kitted. 

2.3. Kanban 

 

Kanban is developed for decentralized warehouse systems which enables delivery 

of parts to assembly line frequently in a short time. Kanban method aims to 

reduce WIP and to shorten the long travel distance to deliver parts from the 

central warehouse to the assembly line (SendilKumar and Panneerselvam 2007).  

 

Shahabudeen et al. (2002) studied single card kanban system and determined the 

number of kanbans and the lot size. They formulated a bi-criteria objective 

function to maximize throughput and minimize aggregate Kanban queue. They 

used simulated annealing technique to solve the problem.  

 

Jerald et al. (2006) developed an optimization technique called adaptive genetic 

algorithm. The algorithm has two objectives: i) minimizing the penalty cost for 

not meeting the delivery and ii) minimizing machine idle time. Their adaptive 

algorithm produces better results than the genetic algorithm. 
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Shahabudeen and Sivakumar (2008) developed a genetic algorithm and simulated 

annealing (SA) based search methods to minimize the inventory and backorder 

demand. Instead of traditional Kanban system with a fixed number of Kanban 

cards, they used an adaptive Kanban system. Their results showed that SA based 

algorithm yields better solutions with   large reductions in CPU times. 

 

Emde et al. (2012a) investigated loading of tow trains from a supermarket area 

with an objective to minimize inventory near the assembly line. In their problem, 

tow trains follow predefined paths and the demand of each station is determined 

based on the time required for the next visit. After deriving the demand, tow trains 

are loaded. They developed an exact polynomial-time algorithm for their problem. 

 

Emde and Boysen (2012b) developed a mathematical model and an exact 

dynamic model which determines the optimal number of decentralized 

supermarkets. The algorithm also determines the best location for each 

supermarket that minimizes associated travel cost. 

 

Emde and Boysen (2012c) developed a mathematical model and a polynomial 

time exact dynamic model to solve vehicle routing and scheduling problems 

simultaneously. Their objective is to minimize the total travel cost and the stock 

level at each station. 

 

Faccio et al. (2013a) proposed a general framework for problems dealing with 

Kanban and supermarket systems. They used a static and a dynamic approach 

separately. They determined which factors have significant impacts on the 

performance of the feeding policy.   

 

Faccio et al. (2013b) minimized the total cost function composed of inventory 

costs, handling costs, and stock-out costs for feeding a multiple mixed-model 

assembly-line system.  
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Fathi et al. (2014) developed a multi-objective mathematical model and a heuristic 

algorithm. The objectives are to minimize inventory at each station and to 

minimize the number of tours required to feed the assembly line. In their study the 

transfer vehicle uses a predefined path to deliver parts. This structure enables the 

predetermination of exact demand of each station at the arrival of the vehicle.  

 

Lolli et al. (2015) used simulation to compare different scenarios and find the 

number of operators required to avoid inline shortages. They analyze the scenarios 

with respect to the number of kanbans simultaneously taken in charge by 

operators.  

 

Battani et al. (2015) addressed the design of the automated part logistic system in 

which a supermarket used as a warehouse. They also developed an analytic model 

to select the most appropriate transportation system.  

 

Bortolini et al. (2015) developed an analytical cost model to optimize the Kanban 

number through the minimization of the total cost function.  

2.4. Comparison of Different Feeding Policies 

 

Bozer and McGinnis (1992) developed a descriptive model to compare the kitting 

and the line stocking policies. In their specific example, they showed that floor 

spaced requirements and the average WIP decreases with kitting.  

 

Karlsson and Thoresson (2011) developed a guiding manual to manage the 

transformation of feeding policy for automobile companies from sequenced 

material flows into kitted material flow. They determined which parts should be 

delivered by a kitting policy.   
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Caputo and Pelagagge (2011) compared three different approaches based on cost 

(personnel and equipment) and performance (WIP) by using quantitative 

benchmarks and descriptive models.  They showed that hybrid methods yield 

better results in terms of the total cost than pure feeding approaches.  

 

Caputo et al. (2013) developed an integer linear programming model to choose 

the optimal feeding policy for each part. The model calculates an average cost as a 

function of cost generating actions and items for each policy. Their results show 

that applying the same feeding policy to all parts may yield poor results in terms 

of total cost. They proposed that part feeding policy of each part should be 

determined separately.  

 

Caputo et al. (2015a) developed a model to measure the efficiency of kitting 

policy based on various cost items such as safety stock-holding cost, WIP holding 

cost, cost for floor occupation at workstations. Their descriptive model considers 

resource size and computation of systems’ economic performances for kitting. 

The model also provides a quantitative benchmark to compare the efficiency of 

kitting with other part feeding policies. 

 

Caputo et al. (2015b) developed an optimization model to choose cost minimizing 

part feeding policy. Their model determines the most cost-efficient part feeding 

policy for each part. They showed that for different parts different hybrid policies 

could yield better results. 

 

Caputo et al. (2015c) developed an analytical model to compare JIT and line 

stocking part feeding policies. Their model includes some new critical cost factors 

such as error cost. They showed that for different parts different hybrid policies 

could yield better results. 
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Caputo et al. (2016) compared different part feeding policies. They developed a 

parametric model for three feeding policies and mapped areas where each feeding 

policy is more efficient. 

 

Caputo et al. (2018) made a sensitivity analysis and a parametric analysis to 

explore the impact of part features on total delivery cost for different feeding 

policies. They mapped the areas where each feeding policy is more efficient, and 

this enables to choose the best feeding policy for each part.  

 

Hanson et al. (2012) compared the time required to fetch the parts for kitting and 

line stocking policies using ANOVA. They showed that kitting has shorter 

fetching time than line stocking.  They also discussed other advantages and 

disadvantages of both policies such as space requirement, pre-sorting time etc. 

 

Hanson and Brolin (2013) compared the efficiency of kitting system with 

continuous supply based on their real-life observations. They tried to show that 

under which conditions the kitting system was more efficient than the continuous 

supply.  

 

Faccio (2014) developed a decision-making tool to determine under which 

condition each part feeding policy performs better. They applied their model to a 

case study and compared the efficiency of kitting, kanban and hybrid feeding 

policies. They considered the impact of product mix variations and model 

varieties on part feeding policy and tried to find the breakeven points to determine 

under which conditions each part feeding policy performs better. 

 

Sali et al. (2015) compared different part feeding policies based on the total cost 

which includes part preparation before assembly, picking, in-plant transportation 

and storage costs. Their multi-scenario analysis shows that parameters used in the 

cost function have an impact on the performance of the feeding policy. Analysis 
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of scenarios shows under which conditions a feeding policy yields a better 

performance.  

 

Sali and Sahin (2016) developed a comprehensive mathematical model to choose 

the most appropriate feeding policy for each individual component. The model 

calculates an average cost as a function of cost generating factors.  

 

Usta et al. (2017) developed a hierarchical clustering analysis and used activity-

based cost methodology to compare the performance of kitting and hybrid feeding 

policies. Based on the different scenario analysis, their results point out that 

hybrid policies yield better performance.  

2.5. Contribution to Literature 

 

Many of the previous studies have a single objective that aims to improve the 

internal part feeding. Number of tours and stock level at each station are among 

the mostly addressed objectives either directly or indirectly. The only study that 

aims to improve both in-plant traffic and assembly line stocks with a 

mathematical programming model was conducted by Fathi et al. (2014).  Since, 

they use a single objective model, to the best of our knowledge, our study is the 

first study that attempts to generate all nondominated solutions. 

 

In this thesis, we use two objective functions without a priori information on 

paths. Since the paths and travel durations are not predefined, the exact demand of 

each station cannot be determined in advance. We develop a new model which 

splits the working period into one-hour slots and determines the demand for each 

of these one-hour slots. As a result, a certain demand is obtained for each time 

slot. Furthermore, previous studies assume all baskets are compatible and this 

allows transfer of different baskets together. We also address the incompatible 

basket problem.  
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In order to clearly demonstrate the aim of our study, we made a new classification 

table. The detailed classification based on objectives and implemented 

methodologies are presented in Table 1. Studies without a mathematical model are 

classified under the last column. Studies with a mathematical model are classified 

into two groups according to whether the objective function is single or multi-

objective. As the main concern of this study is number of tours (NT) and stock 

level (SL), the objective functions other than these are classified as other (O). 

 

As seen from the table, most of the studies have single objectives.  16 studies that 

focus on line stocking, address NT and SL objectives more than the other two 

groups. Some of these studies have different objectives and we classified them 

under the last column by labelling them as “Other”. Studies are classified under 

kitting mainly try to improve the kitting process. The questions they address are 

how to determine the kit size, where to store kits, when to start kitting process for 

a specific kit etc. Kanban studies mostly address SL and O objectives. Generally, 

they aim to increase the number of the kanbans per cycle. In line stocking, the 

main target is to minimize either the number of tours or the amount of stock 

besides the line.  
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Table 1. Literature review matrix 

 

 

NT: Number of tours.  SL: Stock at the line.   O: Other.

NT SL O NT SL O NT SL O

Salameh and Gattas (2001) X

Choi and Lee (2002) X X

Cunha and Souza (2008) X X

Souza et al. (2008) X X

Wänström and Medbo (2008) X

Golz et al. (2011) X

Alnahhal M. and Noche B. (2013) X X X X

Rao et al. (2013) X X

Zhou and Peng (2017) X

Zhou B. and Xu J. (2018) X

Günther et al. (1996) X

Chen and Wilhelm (1997) X

Carlsson and Hensvold (2008) X

Battani et al. (2010) X

Kilic and Durmusoglu (2012) X

Limère et al. (2015) X

Shahabudeen et al. (2002) X

Jerald et al. (2006) X

Shahabudeen P. and Sivakumar (2008) X X

Emde et al. (2012a) X

Emde and Boysen (2012b) X

Emde and Boysen (2012c) X X

Faccio et al.(2013a) X

Faccio et al.(2013b) X

Fathi et al. (2014) X X

Lolli et al. (2015) X

Battani et al. (2015) X

Bortolini et al. (2015) X

Bozer and McGinnis (1992) X

Karlsson and Thoresson (2011) X

Caputo and Pelagagge (2011) X

Hanson et al. (2012) X

Hanson and Brolin (2013) X

Faccio (2014) X

Caputo et al. (2013) X

Caputo et al.(2015a) X

Caputo et al.(2015b) X

Caputo et al.(2015c) X

Caputo et al.(2016) X

Sali et al. (2015) X

Sali and Sahin (2016) X

Usta et al. (2017) X

Caputo et al.(2018) X

Other Approaches
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  CHAPTER 3 

 

 

3. PROBLEM DEFINITION 

 

 

 

The problem in this thesis is defined based on problem symptoms at two Turkish 

plants which manufacture refrigerator and dishwasher. Both plants have high level 

of stocks at the assembly line and high internal traffic. The assembly lines are 

mixed model and the conveyors are moving at a constant speed. There is only one 

warehouse with a single I/O point. There are many forklift drivers whose job is to 

feed associated assembly lines. They use forklifts to feed the assembly lines. Each 

forklift driver is free to make his own delivery plan for the given daily production 

plan. The parts are being transferred from a central warehouse to the assembly 

lines. Each driver is responsible to deliver a set of parts. Each part type is used at 

a specific station.  

 

We address a general problem where a part could be used at more than one 

stations. Forklifts have limited capacity and it is not suitable to transfer different 

basket types in the same tour. The capacity of forklift regarding number of baskets 

that could be delivered is different for different basket types. The drivers do not 

pursue a predetermined path.  

 

In this thesis, to determine the aggregated demand of each station the total 

working time is divided into slots.   Demand is satisfied by delivering the demand 

of each slot in the previous time slots.  

 

As desired, the amount of stock at the assembly line could be minimized by 

increasing the frequency of the forklifts. However, this will increase the internal 
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traffic. In this thesis, we aim to minimize both amount of stock at the assembly 

line and internal traffic. 
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CHAPTER 4 

 

 

4. PROPOSED METHODS 

 

 

 

In this section, a mixed integer linear programming (MILP) model is formulated. 

The model gives optimal loading and delivery schedule. In the second part, a 

problem specific heuristic algorithm is developed to overcome the shortcoming of 

the mathematical model for large size problems.  

We divide total working time in a shift into one-hour slots. Based on the daily 

production schedule and the speed of the assembly line, we determine demand of 

parts in each time slot. Based on the time studies, we find an average tour 

duration. Using the average tour time, we calculate maximum number of tours 

that could be performed in a time slot. The forklift drivers do not have to perform 

all tours in a time slot. They may deliver all demand with fewer tours than the 

maximum allowed number of tours.  

 

Parts are assumed to be delivered in different basket types. It is not possible to 

deliver different basket types on the same tour.  

 

The demand of a station at a time slot must be transferred in previous time slots. 

For example, the demand of the 3
rd

 time slot could be transferred either in the 1
st
 

or the 2
nd

 time slot. The stock level at the end of the 2
nd

 time slot has to be enough 

to satisfy the demand of the 3
rd

 time slot.  
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4.1. Exact Method 

 

Parameters 

 

 

 

1,...    Set of parts

1,...    Set of forklifts

1,...     Set of stations

demand for  at station s  at timeslot t 

maximum weight allowed to be transferred byforklift  

weight of unit loa

M = ,n
m

F = ,n
F

S = ,n
S

D part m M S
mst

WM f F
f

W
m

 



 d of part  

amount of part remained at station from previousshift     

                      A very large positive constant

   number of timeslots at oneshift time  

maximum number of tourscould be made by forklift

m M kg

I m M s S
ms

K

n

h a



 

basketT basket type of part m
m

 

 

Decision Variables 

number of basketsof stocks of part  at station s  at the end of time

slot t

stock of part  at station s  at the end of time slot t

number of unit loadsof part carried tostation at tour ofmstr

= m M S
mst

= m M S
mst

= m M s S r







 

 

  f timeslot t by

forklif

1, if forklift f  transfers part m  on tour r at time slot t
{

0, otherwise

1, if forklift f  makes tour r at time slot t
{

0, otherwise

fmtr

ftr

t f F

F M

F
=







 




 

 

αmst is the rounded-up value of Βmst. For example, let’s assume we have two 

baskets of part m at station s at time slot t. If we use 60% of parts in one basket, 
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then Βmst will be equal to 1.4. But we know that the number of baskets is 2 at that 

station and we could track the stock in terms of basket by setting αmst equal to 2. 

 

Mathematical Model 

 

 

 

1 1

1

1

1

1
1

(i)

(ii)

Subject to:

*W 1,... 1,... (1)

1,... (2)

1,... 1 0 (3)

n h

ftr

f F t r

n

mst

m M s S t=

fmstr m f

s S m M

mstms t

n

mst mst msl

l t

fmstrms t
r=

min

min

WM f F,t = ,n,r = ,h

D m M,s S,t = ,n

m M,s S,t = ,n D

+









 

 

  

 

 



 



  

   

     









,s 1,... (4)

s (5)

* , 1,... , 1,... (6)

* 1,... 1,... (7)

1 , , , 1,...

h

mst mst

f F

ms0 ms

fmstr fmtr

s S

fmtr ftr

m M

fmtr fltr m l

D = m M S,t = ,n

= I m M, S

K f F,m M t = ,n r = ,h

K f F,t = ,n,r = ,h

f F,m M l M basketT basketT t = ,





 

 

 







   

  

   

  

      







 

, r 1.. (8)

, 1,... 1,... ,m 1,... , , (9)

0,integer ,s 1,... (10)

0 ,s 0,... (11)

0,integer ,s 1,... 1,... (12)

0,1

ftr ltm

mst

mst

fmstr

ftr

n h

f F,l F t = ,n,r = ,h = ,h f l r m

m M S,t = ,n

m M S,t = ,n

f F, m M S,t = ,n,r = ,h

f F,t =

 











     

   

   

    

  

 

1,... 1,... (13)

, 1,... , r 1.. (14)0,1fmtr

,n,r = ,h

f F,m M t = ,n h     

 

 



 

24 

 

The first objective function (i) aims to minimize the total number of baskets of the 

stock at the assembly line. The second objective function (ii) aims to minimize the 

total number of the tours.  

 

Constraint (1) ensures that a load of any forklift does not exceed the capacity of 

that forklift. Constraint (2) forces the model to keep the stock level at least as 

large as the demand to prevent any shortage. Constraint (3) determines the 

number of baskets for the stocks. This constraint has to be satisfied if the part will 

be used in the remaining time slots. If 
1

0
n

msl

l t

D
 

 in constraint (3) is satisfied, 

then this means that there is demand for part m at station s in the remaining time 

slots. If there isn’t any demand for that part, then mst  will take the value of zero 

to minimize the stock objective. Constraint (4) is a balance constraint that 

calculates the stock by subtracting consumed parts from the delivered parts. 

Constraint (5) initialize starting stock level. Constraints (6) and (7) establish link 

between variables fmstr , fmtr  and ftr . Constraint (8) ensures that different 

basket types cannot be transferred on the same tour. Constraint (9) removes the 

symmetries and restricts the solution space for forklifts and tours.  

 

This model has similarities with capacitated lot sizing problem both in constraints 

and objective function. But the concepts of both problems are quite different as 

well. Indeed, the capacitated lot sizing models could be used before using this 

model to determine which products will be produced in each time slot and this 

model could be used to determine schedule of parts.   

 

In the mathematical model, it is assumed that each part could be used by more 

than one station. This assumption necessitates tracking the station information. 

For example, let’s assume that β122=0.3 and β132=0.4 and their sum will be β122 

+β132 =0.7. If we don’t have station information, then the third constraint will 
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force α12 (αmt without station index) to be equal to 1. But we know that in total 

there exist two baskets in the stock, one is at station 2 and the other one is at 

station 3.   

 

We use ε-constraint method to solve the mathematical model. In the next part, we 

give a definition of the ε-constraint method and an example to show how we 

apply it to our problem. 

 

ε-constraint Method 

 

In this method, all other objectives are transferred into the constraints except one 

as shown below. 

 

1

2 2

3 3

(x)

Subject to:

(x) e

(x) e

...

(x) ep p

min f

f

f

f

x X









 

x is variable, and X is set of feasible solutions. (x)if is the i
th 

objective function. ei 

is the bound for i
th 

objective function. 

 

In this thesis, we address a bi-objective problem where values of both objective 

functions are integer, and total number of tours is expected to be in a limited 

range. This enables us to find all efficient points if the problem size is not very 

large. We first generate the solution that gives the minimum stock level. This 

solution also gives us an upper bound on the total number of the tours. Next, we 

use tour objective as a constraint and the upper bound as RHS. Then we decrease 

the RHS of the tour constraint one each time and resolve the problem. The 

termination condition is to reach an infeasible case which indicates that demand 
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cannot be satisfied with such a small number of tours. We provide an example of 

the method for a small dataset of our problem below.  

 

Let us assume that the original models is (model 1) and model for ε-constraint 

method is (model 2). As it is seen from model 2, we added 1*f(x)  term to the 

objective function. This version of the model is called as modified ε-constraint 

model.   is a very small positive constant and the added term prevent the model 

to end up with a weakly nondominated solution.  

   
1

2



Model 1

(x) (totalstocklevel)

(x) (totalnumberof tours)

subject to

Min f

Min f

x X

                
1 2

2

2



 





Model

(x) * f(x)

subject to

(x)

Min f

f

x X

 

Dataset 1.1 (given in Appendix B) is used to illustrate the ε-constraint method. At 

the first step, we take ε as a big number and find the solution that minimizes the 

total stock (
1(x)f ). The value of the first objective function is 40 and the value of 

the second objective function is 18 for the first solution. 

 

After finding the first solution, we update the RHS value as18-0.1 (ε=0.1) and 

find the minimum value of the first objective under these conditions which is 41. 

Since the value of the second objective function is 17 at this solution, we set the 

RHS to 17- 0.1 and find the next nondominated solution.  

 

Then, the next nondominated solution is generated as (42, 16) and the RHS is 

updated as 16- 0.1 to find the next solution. 
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All other solutions are generated by following the same procedure. At point (65, 

12), we set the RHS to 12- 0.1. Since there is no feasible solution on the left side 

of this point, we end up with an infeasible problem. At this point, we terminate the 

method and provide all generated solutions as the set of nondominated points in 

Table 2.  

 

Table 2. All nondominated points for dataset 1.1 

 

 

 

The mathematical model can solve small-size problems in reasonable time periods 

when we try to find the solution that minimizes the total stock at the line. On the 

other hand, when we try to minimize the total number of the tours the solution 

time could be too long for even small-size problems. Due to the complexity of the 

assembly line part feeding problem, it could be impossible to solve it for large 

size problems. Here we developed a problem specific heuristic algorithm to 

overcome this difficulty. A detailed description is given below. 

 

4.2. Heuristic Algorithm 

 

Below we have listed steps to prepare data to use in the proposed algorithm 

Number of Baskets 

as Stock Number of Tours

40 18

41 17

42 16

43 15

46 14

55 13

65 12
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1) Determine the demand of each time slot 

2) Classify the demand of each time slot based on the basket types (this will 

help us to solve the basket type constraint before even starting to solve the 

problem) 

4.  

Overview of the algorithm is given below. 

 

Step 1: Check cumulative number of tours demanded for each of the time slots 

and if it exceeds the cumulative number of maximum tours allowed until that time 

slot then the problem is infeasible. Otherwise, go to step 2. 

 

Step 2: If there is demand for the same part at same station in a future time slot 

then subtract the remaining stock of deliveries from the demand of that future 

time slot and find net demand. If the inventory stock is bigger than the demand, 

then subtract the demand from inventory and delete that demand. Go to step 3. 

 

Step 3: Find the time slots whose required number of tours exceed maximum tour 

limit. Choose the time slot that has the highest basket demand among these 

violating slots. Break the tie in favor of the highest time slot index. At this step, 

calculate the cost of moving one tour of each basket type to previous time slots. 

Choose the tour that brings lowest extra stock and break the tie by selecting the 

one that decreases number of tours. The second tie breaking rule is selecting the 

one with lowest basket type index. If necessary, move the baskets of the tour by 

splitting to more than one previous time slot. If there is a fractionally loaded tour 

for a basket type, choose this one as a candidate for that basket type. If the 

candidate could not be moved, then the algorithm tries to choose another 

candidate among other basket types and it chooses the one with lowest extra stock 

and applies the tie breaking rules whenever there are candidates with same level 

of stock. Do this until all parts are assigned to tours and a feasible solution is 

obtained. Go to step 4. 
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Step 4: The solution obtained at the end of the third step, has the minimum stock 

level among all solutions generated by the algorithm. Keep this solution as the 

first solution point generated by the heuristic algorithm. Try to move fractionally 

loaded tours to previous time slots and merge them with fractionally loaded tours 

of those previous time slots to decrease the number of the tours. If there is any 

tour gain after merges, then for those fractionally loaded tours calculate the cost of 

merging in terms of stock level and move the one that has minimum cost.  Break 

the tie by selecting the one with the highest time slot index and lowest basket type 

index. Do this whenever a gain from the total number of tours is possible. 

 

The heuristic algorithm is depicted in Figure 1. Each of the colored boxes 

corresponds to one of the steps that are explained above and the corresponding 

step is labelled on the corners of the boxes. 

 

Below, we also provide steps of the algorithm and provide a flowchart to illustrate 

algorithm.  

 

Steps of the Algorithm 

 

cstD demand for basket type c at station s ∈S at time slot t 

tcctour  cumulative number of tours required until time slot t for basket type c 

tourtc     number of tours required for basket type c to deliver the demand of the 

time slot t 

cv          capacity of forklift for basket type c 

Step1: Calculate all cumulative number of tours required until each time slot

1

l

cst

s S t
tc

c

D

ctour
v

 


 .  If it exceeds tour limit, terminate otherwise go to step 2.  
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Step 2: Determine the net demand and go to step 3.  

Step 3: Find time slots with the highest number of tours: max {

D
cst

s Stour
tc v

c


 }. Break the tie in favor of the highest time slot index. If it 

doesn’t exceed tour limit go to step 4. Otherwise, shift the tour with lowest extra 

stock (break the tie for tour gain and the lowest basket type index) and go to step 

3. A detailed flowchart of this step is given in Figure 2.  

 

Step 4: Find the tours that provide one tour gain after shifting. If there isn’t such a 

tour, then terminate the algorithm. Otherwise, shift the tour that causes a 

minimum stock increase. Break the tie for highest time slot index and minimum 

basket type index respectively. Repeat step 4. A detailed flowchart of this step is 

given in Figure 3. 

 

The first three steps use an insertion heuristic to find the first feasible solution. 

While applying the insertion heuristic, the violating tours and the remaining tours 

could be thought as two separate groups. Without the violating tours, the 

remaining tours already create a feasible base with minimum number of stocks by 

assigning each tour to the closest previous time slot. At each iteration; one tour 

among the violating tours is inserted into the assigned base by choosing the 

cheapest insertion option in terms of stock level increment.  

 

At the fourth step, another heuristic approach is used to construct the other 

solution points. The saving method is used to merge tours and decrease the total 

number of tours. The heuristic finishes when no more tour gain is possible.  



 

 

 

 

Figure 1. Flowchart of the heuristic algorithm 

3
1
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Figure 2 shows how infeasibilities are eliminated, and the first feasible solution is 

obtained. If the number of tours required to deliver demand of a time slot exceeds 

the number of the tours allowed, then this time slot is called violating time slot. At 

this step, the most violating time slot is determined. The algorithm shifts one tour 

of this time slot to previous time slots. After the shift, the algorithm again finds 

the most violating time slot and makes a shift again until all violating tours are 

eliminated. Shifting a tour to previous time slots increases the total stock. For 

example, assume that we have a tour loaded with 5 baskets and scheduled to the 

4
th

 time slot.  If this tour is shifted to the 3
rd

 time slot, the total stock will increase 

by 5.  

 

The algorithm chooses the largest time index and smallest basket type as tie 

breaking rule. Choosing the smallest time index could eliminate some possible 

merges in the future steps. So, the largest time index rule ensures that these 

possible merges are not eliminated. For example, assume there are partially 

loaded tours at time slots 3, 4, and 5. Three of them are from the same basket type 

and forklift capacity is enough to transfer three of them together. If we choose the 

5
th

 time slot as a candidate, then the first merge will happen at the 4
th

 time slot. 

But if we choose the 4
th
 time slot as a candidate slot then we will never merge the 

4
th

 and 5
th

 time slots’ demand at time slot 4. By doing this, we may miss some of 

the solutions.  Therefore, the tie breaking rule is in favor of the largest time index.  

 

The second tie break is in favor of the smallest basket type. We arrange our data 

in a way that smallest basket type has the highest capacity in terms of number 

baskets that could be transferred by a forklift. In this case, the total capacity is 

filled with many small baskets. So, we expect that these small units will provide 

more merging opportunity by being able to be distributed to many previous time 

slots. 
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Figure 2. Details of the process that shift one tour of the most violating time slot 
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Figure 3 shows how we merge two tours to gain one tour and obtain all remaining 

solutions by repeating this step. 

 

 

 

Figure 3. Details of the process that combines partially loaded tours 
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4.3. An Illustrative Example 

 

In this section we explain the proposed heuristic algorithm on small-size 

illustrative example problem. Table 3 presents the demands of each station as a 

number of baskets. For simplicity we assume that the demand of the first time slot 

is delivered from the previous shift and we take the demand as zero for this time 

slot. Since step 1 and step 2 are independent we will first explain step 2 and then 

go to step 1. Step 2 is just a data normalization but step 1 checks the feasibility 

and the algorithm does not enter step 2 if it is infeasible. Here using net demands 

makes it easy to track so we will start with step 2. Because, by using net demand, 

we just work with integer values since the number of baskets will be integer.  

 



 

 

           Table 3. Demand of parts for each station (basket) 

 

 

 

 

 

           Table 4. Net demand of parts for each station (basket) 

 

  

Parts/Stations 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 1.7 0 0 0 0 0 0 1.2 0 0 0 0 0 0 0 1.6 0 0 1 0 1.1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 1.2 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0 1 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 2.6 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 1.7 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0.7 0 0 0 1 0 0.8

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2.4 0 0 0 1.7

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0

Time Slot 1 Time Slot 2 Time Slot 3 Time Slot 4

3
6
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Step 2 

Using the demand data, we calculated the net demand of each time slot. The 

demand for part 1 at the first station in the second time slot is 1.7. In order to 

satisfy it 2 baskets of part 1 must be delivered at the first time slot. After the 

consumption of the first time slot, the remaining part will be 30% of a basket. 

Since the demand for the same part at the same station in the last time slot is 1.4, 

after subtracting the remaining stock the net demand will be 1.1 in the last time 

slot. Another example is demand of part 6 at station 4 in the first time slot is 70% 

of a basket. In order to satisfy the demand, one basket must be delivered. Demand 

at the third time slot is 10% of a basket for this part. This means that we could 

delete the demand of the third time slot to calculate net demand and the remaining 

part stock will be 20% after this time slot and this remaining part will be used at 

the last time slot. Demand in the last time slot is one basket and the remaining part 

stock will decrease the demand to 80% of a basket. In this manner, we calculated 

the net demand of parts at each station for all time slots as in Table 4. 

 

After calculating the net demand, we rounded up these data to obtain the number 

of baskets that should be delivered as in Table 5. Step 2 ends here, and we next 

show how step 1 is performed. 



 

 

 

      Table 5. Number of baskets should be delivered to satisfy the demand 

 

 
 

 

 

3
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Step 1 

The algorithm calculates the tour demand of each time slot by using basket types 

and capacity information as provided in Table 6.  

 

Table 6. Basket type and capacity information for each part 

 

 

 

In order to calculate the tour demand of any time slot, algorithm consolidates the 

same basket types’ demand.  

 

For example, for the second time slot: Parts 2 and 6 are in the same group (Basket 

type=2) and their total basket demand is 4 (2+2) and 3 (1+2) respectively and their 

total demand is 7. The forklift capacity for the second basket type is 4, and this 

implies that at least 2 tours required at the first time slot to provide demand of the 

second time slot for parts 2 and 6. Below we present all calculations for the first 

step. 
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* **
* **

21

* **
* **

22

* **
* **

23

* **
* **

24

(2 2) 0
tour 2 / 3 1, 3

6

(2 2) (1 2)
tour 7 / 4 2, 6

4

0 0
tour 0 4, 7

3

1 1
tour 2 / 2 5, 8

2

part part

part part

part part

part part

 
 

  
 


 


 

As seen from the calculations the total tour requirement is 4 and does not exceed 

the allowed tour capacity of 6. 

Below we also provided the calculation until the third time slot to show how the 

cumulative tour requirement is derived. 

* **
* **

31

* **

32

* **

33

* **

34

(2 2) (2 1)
tour 7 / 6 2 , 3

6

(2 2 1 2) (1 1)
tour 9 / 4

4

(0 0) (1 1)
tour 2 / 3

3

(1 1) (1 1)
tour 4 / 2

2

nd rdtime slot time slot
  

 

    
 

  
 

  
 

As seen from the calculations, the cumulative tour requirement is 8 for the 

consecutive two time slots and the cumulative allowed tour capacity is 12 which 

is the sum of 6 tours of each time slot. 

 

We could calculate the tour requirement of each time slot in this fashion. We 

could check the feasibility of this problem by just also calculating the cumulative 

tour requirement of the fourth time slot. We have not presented this last 

calculation here, but the result does not violate the feasibility and this specific 

example has a feasible solution. If the problem is infeasible then the number of 

forklifts should be increased.  
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Step 3 

After showing the feasibility and calculating the net demand, we apply step 3. 

Here we calculate the tour demand of each time slot separately based on the net 

demands. We already calculated the demand of the second time slot at step 1 of 

the algorithm. We present below the calculations for time slots 3 and 4. 

 
* **

* **

31

* **
* **

32

* **
* **

33

* **
* **

34

(2 1) 0
tour 1/ 2 1, 3

6

1 1
tour 1/ 2 2, 6

4

1 1
tour 2 / 3 4, 7

3

1 1
tour 1 5, 8

2

part part

part part

part part

part part

 
 


 


 


 

 

* **
* **

41

* **
* **

42

* **
* **

43

* **
* **

44

2 (2 1)
tour 5 / 6 1, 3

6

(1 1) (1 1 1)
tour 5 / 4 2, 6

4

1 (3 2)
tour 2 4, 7

3

3 0
tour 3 / 2 5, 8

2

part part

part part

part part

part part

 
 

   
 

 
 


 
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Based on these calculations, we derived the final demand of each time slot as in 

the Table 7.  

 

Table 7. Final demand of each time slot 

 

Basket Type/Time Slot 
1 2 3 4 

1 0 1 1 1 

2 0 2 1 2 

3 0 0 1 2 

4 0 1 1 2 

Total Demand 0 4 4 7 

 

 

We assume that the maximum tour number allowed is 6. Under these conditions 

only the last time slot with 7 tours requirement violates the maximum tour limit. 

Here, the algorithm eliminates the violation by trying to move tours of last time 

slot. In this case, one tour shift satisfies the requirements. If there were another 

time slot with the same tour number, then the algorithm still would move tours of 

the last time slot first. This is the result of the tie breaking rule that mandates to 

choose the largest time slot index. Since we have two extra tour capacity at time 

slot 3, we could move any of the tours in time slot 4.  There is only one tour of the 

basket type 1 which is partially loaded and contains 5 baskets. This means that if 

we move this tour for one time slot then the stock number will increase by 5 units. 

There are 2 tours for the second basket type and it is obvious that moving the 

partially loaded one will bring one unit extra stock. There are 2 fully loaded tours 

of the third basket type and moving one of them will bring 3 units extra stock. The 

fourth basket type has 2 tours and again the partially loaded one is the proper 

candidate which brings one unit extra stock. The minimum extra stock is one unit 

and two basket types provide this minimum extra stock level. Our tie breaking 

rule leads us to choose the one that provides tour gain. In this case we choose the 

second basket type as the candidate to move.  
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This shift decreases the total tour requirement of the fourth time slot from 7 to 6 

which is within the limit. On the other hand, an extra basket at time slot 3 does not 

increase the total tour requirements. There is a partially loaded tour of second 

basket type at time slot 3 and this tour has 2 basket spaces.  Below, the updated 

tour calculation is given for the second basket type at time slot 3. 

 

* ** ***
* ** ***

32

1 1 1
tour 3 / 4 part 2, part 6, part 6 shifted from timeslot 4

4

 
 

 

 

Under these conditions, the incumbent situation gives the first feasible solution 

which is also the solution that provides the minimum stock level among all other 

solutions provided by the algorithm.  

 

It is difficult to calculate the stock level of this solution manually, so we do not 

derive the total stock level here.  

 

Step 4 

The algorithm tries to combine tours and gain one tour to improve the total 

number of the tour objective.  

 

We start the calculation from time slot 3. There is a partially loaded tour of basket 

type 1 with 3 baskets. At time slot 2 there is a partially loaded tour of basket type 

1 with 4 baskets. The vehicle capacity is 6 for basket type 1 and we still need 2 

tours for 7 baskets. This means that moving first basket type does not provide any 

tour improvement. So, we directly eliminate this shift option.  

 

When we check the second basket type, the same thing happens. There is a 

partially loaded tour at time slot 3 with 3 baskets (one comes from time slot 4 
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after step 3 of the algorithm) and one partially loaded tour at time slot 2 with 3 

baskets. With a vehicle capacity of 4 for basket type 2, we still need 2 tours to 

deliver these 6 baskets. We also eliminate this option. 

 

When we try to move the partially loaded tour of basket type 3 same thing 

happens again. The total number of baskets is 4 and the vehicle capacity is 3 then 

we need 2 tours. So, we also eliminate this option. 

 

There is no partially loaded tour of basket type 4 at time slot 3 so there is no shift 

option. 

 

Since the algorithm assesses all shift options before making any shift at step 4, we 

next consider shift options for time slot 4. To clarify, below we present the 

number of baskets for each basket type on the partially loaded tours in Table 8.  

Table 8 ignores the fully loaded tours. As seen from the table, the only tour 

gaining move is to distribute baskets of the last tour of type 1 to the second and 

third time slots. Since there is only one option for shifts the algorithm performs 

directly this shift and terminates. If there were alternative moves, then the 

algorithm would choose the one that brings the minimum increase in stock.   

 

Table 8. Number of baskets on partially loaded tours 

 

Basket Type / Time Slots 1 2 3 4 

1 0 4 3 5 

2 0 3 3 0 

3 0 0 2 0 

4 0 0 0 1 

 

 

 

 



 

45 

 

Three baskets of the 4
th

 time slot are shifted to the 3
rd

 time slot and two baskets 

are shifted to the 2
nd

 time slot. The new tour schedule is presented in Table 9. 

Since all baskets of the 4
th

 time slot for type 1 are merged with partially loaded 

tours of previous time slots, the total number of tours is decreased by one.  

 

Table 9. Number of baskets on partially loaded tours after the first shift 

 

Basket Type / Time Slots 1 2 3 4 

1 0 6 6 0 

2 0 3 3 0 

3 0 0 2 0 

4 0 0 0 1 
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CHAPTER 5 

 

 

5. COMPUTATIONAL STUDY 

 

 

 

All datasets (demands) are generated randomly, and each set size is tested for five 

randomly generated problems. These datasets are not included in appendices since 

they might take hundreds of pages. 

 

In the first problem set, the number of parts is 8, the number of stations is 6 and 

demand is generated with 5% probability. We use uniform distribution (U (0,1)) 

for each demand cell to generate the demand. We also used uniform distribution 

for the probability. The mathematical model generates all nondominated points. 

The results show that the heuristic algorithm is able to generate a corresponding 

point with same tour number for all the nondominated points. The heuristic 

algorithm can generate the solution that minimizes the stock and some 

nondominated points close to this solution for tested datasets. 60% of the 

nondominated points are generated by heuristic algorithm. On the other hand, as 

we get closer to other extreme solution, the minimum stock objective starts to 

deviate from corresponding nondominated points. But the difference is still very 

small. The average difference is about 4% and standard deviation of difference is 

6.9%. The average difference is obtained by dividing sum of percentage 

differences to number of nondominated points. The maximum difference is 23% 

which is occurred in the fifth run.  
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In the second problem set, the number of parts is 8, the number of stations is 6 and 

the probability is 10%. The results show that the heuristic algorithm again 

achieves to generate a corresponding point with the same tour number for all of 

the nondominated points. 60% of the nondominated points are generated by 

heuristic algorithm. The average difference is 1.9%, standard deviation of 

difference is 3.4% and maximum difference is 11%. The heuristic algorithm is 

again able to generate the solution that minimizes the stock for all runs. 

 

In the third problem set, the number of parts is 8, the number of stations is 6 and 

the probability is 15%. Under this problem set, required number of tours is 

increased to 8. Changing only the required number of tours makes it difficult for 

the mathematical model to solve the problem. The mathematical model failed to 

generate some of the solutions. Heuristic algorithm generates all nondominated 

points that are generated by mathematical model and some other solution points. 

 

In the fourth problem set, the number of parts is 8, the number of stations is 52 

and the probability is 5%. The number of tours required is between 15 and 20 for 

different randomly generated problem sets. Still mathematical model only 

generates one nondominated point over all five runs. Heuristic algorithm easily 

generates all of its solutions in less than 10 seconds for this problem set. 

 

In the fifth problem set, the number of parts is 8, the number of stations is 52 and 

the probability is 10%. We realized that in this problem set, parts delivered in the 

first time slot could also satisfy the demand in the remaining time slots 

significantly. So, we multiply the demand of the third time slot with 3 and demand 

of the fourth time slot with 4. We use the same logic also for the remaining time 

slots and multiply the demand with 5, 6 and 7, respectively. This ensures that the 
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algorithm makes many shifts from the higher time slots to lower time slots. This 

approach improves the quality of comparison between mathematical model and 

heuristic approach. But the problem size is still too large for the mathematical 

model to generate the results. Heuristic algorithm easily generates all solutions in 

less than 10 seconds for this problem set, too. 

 

In the sixth problem set, the mathematical model and heuristic algorithm are 

compared for a large size problem. In the sixth set, we assume there are 52 

stations and 152 parts. We also assume that each basket type has 38 parts. The 

probability to generate demand for each time slot, station and part combination is 

1%. We did this to prevent a problem set where all parts have demand in all time 

slots and at all stations.  After putting this probability constraint, we observe that 

still the number of the tours required is around 30 for one time slot which is larger 

than the original case. This problem set shows the time efficiency of the heuristic 

algorithm. But the problem size is very big for the mathematical model to solve. 

On the other hand, the heuristic algorithm generates all solutions at once in less 

than 10 seconds. 

 

All solutions are given in Table 10. Based on the solutions that mathematical 

model finds, 63% of all nondominated points are generated by heuristic algorithm. 

We do not count partially generated solutions. Since, heuristic algorithm is 

capable to generate the nondominated solutions that are close to extreme solution 

that minimize the stock level and mathematical model fails to generate solutions 

that are close to other extreme solution that minimizes the number of tours taking 

partially generated solutions into account will yield biased results. Under these 

conditions, if we take those points into our calculation the result mislead us to the 

conclusion that heuristic algorithm performs better than calculated 63%. Average 
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difference of the stock objective between solutions generated by exact and 

heuristic methods is 3% and standard deviation of difference is 5.6%. 

 

Based on the results, we could say that the heuristic algorithm solves the problem 

in a very short time even for large size problems for tested datasets. The heuristic 

algorithm successfully generates the solution that minimizes stock level. The 

algorithm could also generate nondominated solutions close to this solution. As 

we get closer to other solutions, the stock level could slightly differ from 

nondominated points for some problems. The overall average of difference is 3%. 

The overall average is obtained by dividing sum of percentage difference to 

number of nondominated points. But for all cases, the heuristic algorithm 

manages to produce a corresponding point with the same number of tours. On the 

other hand, the number of stocks for these corresponding points is sometimes 

different. The overall deviation occurs at 37% of all solutions generated both 

methods.  
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Table 10. Comparison of results for the mathematical model and heuristic algorithm 

 

 

Problem Set Problem Stock Tour Time(s) Stock Tour Time(s)

40 18 4 40 18 0%

41 17 4 41 17 0%

42 16 4 42 16 0%

43 15 4 43 15 0%

46 14 4 47 14 2%

55 13 12 63 13 15%

65 12 7 75 12 15%

46 18 5 46 18 0%

47 17 5 47 17 0%

49 16 9 49 16 0%

51 15 8 52 15 2%

54 14 7 56 14 4%

44 19 4 44 19 0%

45 18 4 45 18 0%

48 17 6 48 17 0%

51 16 8 51 16 0%

57 15 7 57 15 0%

50 19 4 50 19 0%

51 18 5 51 18 0%

54 17 6 56 17 4%

59 16 29 66 16 12%

29 12 4 29 12 0%

31 11 4 32 11 3%

35 10 6 43 10 23%

41 9 6 49 9 20%

63 22 8 63 22 0%

65 21 15 65 21 0%

67 20 58 69 20 3%

71 19 60 71 19 0%

75 18 16 80 18 7%

81 17 31 90 17 11%

91 16 931 100 16 10%

54 20 4 54 20 0%

56 19 35 56 19 0%

59 18 12 59 18 0%

62 17 25 63 17 2%

81 25 5 81 25 0%

82 24 6 82 24 0%

83 23 6 83 23 0%

85 22 25 85 22 0%

88 21 10 89 21 1%

91 20 9 92 20 1%

95 19 25 98 19 3%

87 26 4 87 26 0%

88 25 5 88 25 0%

89 24 11 89 24 0%

92 23 404 93 23 1%

96 22 526 104 22 8%

106 29 323 106 29 0%

107 28 4410 107 28 0%

108 27

114 26

Average 

Difference (%)

4,6%

1,1%

0,0%

3,9%

11,4%

4,4%

0,4%

1%

2%

NA

6

5 10 8 6 6

NA NA

6

5 10 8 6 6

2

1 10 8 6 6

2 10 8 6 6

3 10 8 6 6

4 10

6

2 10 8 6 6

3 10 8 6 6

Difference (%)

1

1 10

4 10

Heuristic Algorithm

8 6

8 6

8 6

Max Tour 

Limit

Mathematical Model Number 

of Parts

Number of 

Stations
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80 28 8 80 28 0%

81 27 41 81 27 0%

83 26

85 25

90 24

95 23

107 22

104 31 69 104 31 0%

106 30 556 106 30 0%

108 29

111 28

118 27

102 33 72 102 33 0%

103 32 189 103 32 0%

104 31 257 104 31 0%

106 30

109 29

112 28

121 27

112 33 6 112 33 0%

113 32 47 113 32 0%

115 31

120 30

128 29

119 36

120 35

121 34

124 33

128 32

130 31

286 73

299 72

345 95

349 94

352 93

266 77 59 266 77 0%

267 76

268 75

269 74

270 73

272 72

287 71

4 472 90 10 NA NA 8 52 20

329 95

330 94

331 93

334 92

336 91

354 90

738 164 10 738 164 0%

743 163

765 162

577 150

578 149

579 148

580 147

582 146

584 145

615 144

3 856 173 10 NA NA 8 52 30

843 177

846 176

638 153

639 152

640 151

643 150

646 149

NA

30

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

20

5

1 10 8 52 30

2 NA 10 NA 8 52 30

NA

4 NA 10 NA 8 52 30

5

8

4

1 NA 10 NA 8 52 15

2 NA 10 NA 8 52 20

3 10 8 52 15
NA NA

8

8

NA NA

4 10 8 6 8

NA NA

8 6
3

1 10 8 6 8

NA NA

2 10 8 6 8

NA NA

3

5 NA 10 NA

10

5 NA 10

NA 10 NA

NA

NA

6

52

8 52NA

NA

8
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496 157

497 156

499 155

518 157

519 156

520 155

521 154

522 153

524 152

526 151

547 150

506 159

507 158

508 157

509 156

511 155

513 154

527 162

528 161

529 160

532 159

536 158

539 157

553 156

565 155

490 156

491 155

492 154

493 153

494 152

495 151

497 150

501 149

NA

NA

NA

NA

6

1

2

3

4

5

NA 10

10NA

NA

NA 10 152 52NA

NA

NA

NA

152 52 30

52 30

52 30

30

152

152

30

10

NA

NA

NA 10 152 52
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CHAPTER 6 

 

 

6.  CONCLUSION 

7.  

 

 

In this thesis, we address traffic and assembly line side stock problems of 

manufacturing companies. Most of the studies regarding the assembly line focus 

on line balancing, facility layout and lot sizing problems. Part feeding at assembly 

line has been addressed by relatively fewer studies. Especially, there are very few 

multi-objective studies. Contemporary assembly plants have high product 

diversity and high model variability. This makes the design of the material 

delivery policy a more complex task. Increasing the number of vehicles could be a 

solution to control stock level but this leads to the in-plant traffic problem. 

Therefore, a balance should be maintained between stock and traffic level to 

overcome this challenge. 

 

In our study, a bi-objective mathematical model has been developed to create a 

loading and transportation schedule for each vehicle driver. We show that the 

mathematical model fails to solve large size problems. Then, we develop a 

heuristic algorithm to overcome the drawbacks of the mathematical model.  

 

Based on the tested datasets, we observed that our heuristic algorithm can solve 

the problem size with 152 parts and 52 stations in less than 10 seconds. The 

heuristic algorithm not only achieves to solve problems in a very reasonable time 

limit but also generates a point with the same number of tours for all 

nondominated points of tested datasets. The failure of the mathematical model to 

solve the big size problems makes it impossible to compare the results of these 

problems.  
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To the best of our knowledge, our study is the first study that attempts to generate 

all nondominated solutions. With its time efficiency, good results and easy to 

apply structure, the heuristic algorithm could improve the part feeding policy of 

manufacturing plants.  

 

Further studies could incorporate different objectives, which are mostly desired to 

be optimized, such as minimizing maximum stock, minimizing number of 

forklifts. Also, the dynamic part feeding approach could be used to dynamically 

determine the demand under predictable cases which enables to determine 

demand without use of time slots. Results of heuristic method could be good 

starting points for evolutionary heuristic methods.  

 

In our model, we try to minimize total number of baskets at stations. We are 

attaching same importance to each basket type. In other words, each basket type 

has a weight value of 1. On the other hand, the area occupied by each basket type 

could be different from each other and this could be a critical concern. In that 

case, the objective function used in this thesis could be converted to total space 

occupied by baskets at stations by using different weights for each basket type. In 

that case, the current version of the heuristic algorithm should also be modified 

accordingly. This can be a further research topic. 
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APPENDIX A 
 

 

 

Parameters for pseudo code 

demand for basket type  at station s  at timeslot t 

demand of par  at station s  at timeslot t

A residualof par at station s at timeslot t

cumulative number of tours required until timeslot t for basket

cst

mst

mst

tc

D c S

D t m S

t m S

ctour







typec

tour number of tours required for basket type to deliver thedemand of the timeslot

capacityof forklift for basket type

number of tourscan be madein each timeslo

number of timeslots
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c

c t

v c

r t

n

 
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1

Step1

calculateall : , 2,...,

forall 2..

{

if *( 1) then

{

the problem is infeasible

}

else{

go tostep 2

}
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( 1)
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( 1) ( 1)

Step 2

forall ( in1..6, in parts, in stations)

{

( )

{

forall ( 1..6)

{

forall( 1..6)

{

If ( ) then

{

0

{

Else

{

}

}

}

go tostep3

mst mst mst

mst ms l

ms l

mst mst ms l

ms l ms l mst

t m s

A RoundUp D D

t in

l in

A D

D

A A D

D D A







 

 





 

 

 

 



 

65 

 

Step3

( )
calculateall : , , 2,...,

If ( max{ ,0} 0)

1

{

go tostep 4

}

Else

{

Find the most violating timeslot:break the tie byselecting the highest timeslot

Find moving cost of all tours in this

D
cs t

s Stour c C s S t n
tc v

c

n
tour r

tc
t c C


    

  
 

timeslot:break the tie byselecting minumum

basket typeindex

Move this tour and update thestate

repeat thestep3

}

 

 

Step 4

If(any tour gain is possible)

{

Find moving cost of all tours:break the tie byselecting highest timeslot and minumum

basket typeindex

Move this tour and update thestate

repeat thestep 4

}

Else

{

break

}
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APPENDIX B 

 

 

 

Problems 

 

Problem Set 1 / Problem 1 

 

 

 
 

 
 

 
 

 

Parts/Stations 1 2 3 4 5 6 1 2 3 4 5 6

1 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0

2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2

7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2 0,8 0,0 0,0

Time Slot 1 Time Slot 2

1 2 3 4 5 6 1 2 3 4 5 6

0,0 0,0 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,1 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,9 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Time Slot 3 Time Slot 4

1 2 3 4 5 6 1 2 3 4 5 6

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 4,9 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,1

0,0 0,0 0,0 0,0 0,0 0,0 0,0 4,2 0,0 4,0 1,5 4,5

0,0 2,4 0,0 0,0 0,0 1,9 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,9 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Time Slot 5 Time Slot 6

1 2 3 4 5 6

0,0 0,0 0,0 0,0 0,0 0,0 1

0,0 0,0 1,5 0,0 0,0 0,0 1

0,0 0,0 4,7 0,0 0,0 0,0 2

0,5 0,0 0,0 0,0 0,0 0,0 2

0,0 0,0 0,0 0,0 0,0 0,0 3

0,0 1,6 0,0 0,0 2,5 0,0 3

0,0 0,0 0,0 0,0 0,0 0,0 4

0,0 0,0 0,0 0,0 0,0 0,0 4

Time Slot 7 Basket 

Type




