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ABSTRACT

A MULTIOBJECTIVE APPROACH TO ASSEMBLY LINE PART
FEEDING PROBLEM

Kizilyildirim, Ramazan
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Esra Karasakal

December 2018, 67 pages

The change in product diversity and sense of quality to increase customer
satisfaction has also affected the design and management of assembly lines.
Keeping the amount of stock at desired levels to provide parts to the assembly line
and prevent the accumulation of stocks at assembly line has become an
increasingly challenging problem for manufacturing companies that have high
product diversity and high model variability. Increasing the number of vehicles
might be a solution to control stock level but this leads to in-plant traffic problem.
Therefore, a balance should be maintained between stock and traffic level to
overcome this challenge. Although there is a comprehensive literature on
assembly line optimization, assembly line part feeding problem has been

addressed by relatively few studies.

In this thesis, we aim to minimize the number of tours needed to feed the
assembly line and the line side stock of a company which has many production
lines and produces a wide variety of products. A bi-objective mathematical model
is developed to produce a transportation schedule for each vehicle driver. Since,
the mathematical model is solved optimally for only small-size problems, a
problem-specific heuristic algorithm is developed to solve large-size problems.

The heuristic algorithm generates solutions within a very short time period for



large-size problems. The heuristic algorithm is capable to produce almost all

nondominated solutions.

Keywords: Assembly Line Part Feeding, Multiobjective Optimization
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MONTAJ HATTI PARCA BESLEME PROBLEMI ICiIN COK AMACLI
BiR YAKLASIM

Kizilyi1ldirim, Ramazan
Yiiksek Lisans Endiistri Miithendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Esra Karasakal

Aralik 2018, 67 sayfa

Miisteri memnuniyetini arttirmak i¢in Uriin ¢esitliligi ve kalite anlayisinda
yasanan degisim, iiretim siire¢lerini de etkilemistir. Yiiksek iiriin ¢esitliligine ve
iretim hattinda yiiksek model degiskenligine sahip tiretim firmalar1 i¢in hat yani
stok miktarin1 arzu edilen seviyelerde tutarak hatti1 beslemek ve ara madde
yigilmalarmi 6nlemek giderek zorlasan bir problem halini almistir. Bu sorunu
¢Ozmek i¢in arag¢ sayisini arttirmak firma igi trafik problemine neden oldugu icin
iki amac arasinda bir denge kurulmasi gerekliligi ortaya ¢ikmaktadir. Uretim
stireglerine iliskin kapsamli bir literatiir olmasina ragmen montaj hatti parca

besleme problemi az sayida ¢alisma tarafindan ele alinmistir.

Bu tezde ¢ok sayida iiretim hattma sahip ve ¢ok ¢esitli iiriin {ireten bir firma igin
hat yan1 stok miktarinin ve hatti beslemek ic¢in gerekli arag tur sayisinin en
azlanmas1 amac¢lanmistir. Her bir arag siiriiciisii i¢in tasima ¢izelgesi olusturmay1
hedefleyen iki amagli bir matematiksel model gelistirilmistir. Matematiksel model
sadece ¢ok kiiciik Olgekli problemleri ¢ozebilmektedir. Bu nedenle, problem
spesifik bir sezgisel algoritma gelistirilmistir. Sezgisel algoritma biiyiik
problemler i¢in dahi ¢ok kisa siirede domine edilmemis ¢oziimlerin tamamina

yakmini liretmistir.

Anahtar Kelimeler: Montaj Hatt1 Parca Besleme, Cok Amagli Optimizasyon
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CHAPTER 1

INTRODUCTION

With increasing product variety, the complexity of the preventive maintenance
problem of assembly line has increased. Contemporary part assembly plants use
high variant mixed model assembly lines for manufacturing to respond to the
increasing variety. On the other hand, this complicates the part feeding policy and
requires a relatively large storage space at the assembly line or an increase in the
frequency of in-plant traffic. In order to address these problems, different line
feeding policies such as “kitting”, “Kanban-based” and “hybrid” have been
developed besides the conventional “line siding” policy (Kilic and Durmusoglu
2015).

In line siding policy, parts are being delivered from a central warehouse to line in
baskets at predefined time slots. This strategy is easy to execute and does not need
any extra material handling before the delivery. On the other hand, a significant
amount of parts is carried in the same basket to avoid any shortage. When variety
is high, the total amount of the stock at the assembly line is also relatively high
(Bozer and McGinnis 1992).

In part feeding system, bringing a group of parts together in predetermined
quantities and then delivering them to the line is called kitting (Carlsson and
Hensvold 2008). In Kitting, only specific parts, which are needed for future time

slots, are handled and delivered to the stations (Sali et al. 2015).



In Kanban based part feeding system, every basket is associated with a kanban
card which contains all related information about parts (Sendil Kumar and
Panneerselvam 2007). Stations are refilled, according to consumption, by parts
that are pulled via Kanban cards (Facio et al.2013).

These three policies aim to deliver required parts to the assembly line with
minimum associated cost. For some production systems, the hybrid combination
of these three approaches could suit best for the production system. Besides
decreasing related costs, creating a conducive working environment is also one of
the objectives of these feeding systems. Previous studies mostly focus on the
macro level comparison of different feeding policies. These macro level studies
mostly try to find the best hybrid solution based on long run calculations. At the
micro level, there is a need to further enlighten different aspects of each policy
separately. In this study, we develop an approach to improve the line siding
feeding policy.

As stated in many other studies, the assembly line part feeding problem is NP-
hard (Fathi et al. 2014). Decreasing the stock to its minimum level requires high
in-plant traffic or decreasing the traffic ends up with a high level of side stock.
Both objectives are conflicting, and a tradeoff exists between them. In order to
optimize these two objectives, transfer vehicles’ loading problem and delivery

schedule problem should be solved, simultaneously.

We develop a multi-objective mathematical model that minimizes total stock at
the assembly line and the total number of tours required to feed the assembly line.
We use epsilon constrained method to generate all nondominated solutions of the
exact method. We observe that the exact method can be only used for small-size
problems. In this thesis, we also develop a problem specific heuristic algorithm to
solve large-size problems efficiently. Computational experiments show that

heuristic algorithm generate almost all nondominated solutions. Solution time of



the heuristic algorithm is less than ten seconds for tested data sets. We create a
very large random dataset to challenge the solution time of the heuristic algorithm
and results validate the time efficiency of the algorithm.

In the next section we want to give some important definitions related to multi-

objective optimization problems.

1.1.  Definitions and Some Theory for Multiobjective Optimization

Efficient, nondominated, weakly efficient and weakly nondominated points

Let x be the decision vector, X be the feasible decision region of a multi-objective
problem. Let also the point f=(f1(x), f2(X),..., fo(X)) be the corresponding point in
objective space F (image of X) for the decision vector x where p is the number of

the objectives and fi(x) is the value of the i" objective.

Furthermore, assume that the original problem is as presented below.

“min" (£, f, 09, f,(0),.... F, ()
Subject to:

Xxe X

For a minimization problem, the solution x is called efficient if there is no x” € X
such that
i) fu(x”) <fu(x) fork=1,..., p

ii) fu(x”) < fi(x) for at least one k.

If there is such an x’, then X is called inefficient. If x is efficient, then f=f(x) is
called nondominated point. Whenever x is inefficient the corresponding point in

objective space called dominated.



A feasible solution x € X is called weakly efficient if there is no x” € X such that
fu(x”) < fi(x) forallk =1,..., p.

Then, the point f=f(x) is called weakly nondominated.

The rest of the paper is structured as follows. In Section 2, a brief literature review
is provided and original contribution of this thesis to literature is given. In Section
3, a detailed description of the problem is provided. In section 4, the proposed
methods are presented, and the computational results for both exact and heuristic
algorithms are reported in Section 5. Finally, conclusions and future research
direction are discussed in Section 6.



CHAPTER 2

LITERATURE REVIEW

Digitalization of manufacturing has dramatically transformed the conventional
production approaches to more automated structures. Recent changes in
technology and customers’ diverse product demands inevitably push companies to
employ a high-variant mixed-model production line for most of the product
segments. Despite the advantages, such an assembly line has high complexities
due to the number of parts needed to be transferred from warehouses to the

assembly line.

Early studies regarding the mass production focused on assembly line balancing
and operational sequencing to improve the efficiency of the production line. A
comprehensive literature review of assembly line balancing is provided by
Sivasankaran and Shahabudeen (2014). As newly developed approaches have
improved the efficiency of these production lines, the complexity of feeding these

lines has increased proportionally.

Problems raised after changes applied to assembly line has been addressed by
many studies that aim to improve different aspects of production systems such as
line balancing, operational sequencing and facility layout. On the other hand,
according to many recent studies, part feeding at assembly line has been

addressed by relatively fewer studies (Fathi et al. 2014).

Various new feeding policies are developed in response to the increasing

complexity due to the increasing number of parts needed to be transferred from



warehouses to the assembly line. In addition to traditional line stocking feeding
approach, policies such as Kanban and kitting are developed to reduce inventory
at the assembly line (Kilic and Durmusoglu 2014).

In this thesis, we made a classification based on the classification scheme
provided by Kilic and Durmusoglu (2014). We classify studies into three classes
namely line stocking, Kanban and kitting. Furthermore, we classify studies that
mainly compare different part feeding policies as a separate group and determine
under which conditions each policy performs better than others.

2.1.  Line stocking

Line stocking is mainly executed as transferring parts from a central warehouse to
the storage area of the relevant workstation. In this approach, required
components are being carried as an entire unit load for each component from the
warehouse to the designated station. When a specific part is no longer needed, it is
transferred to the warehouse again, and if the unit load is empty or not necessary
in future, then it is removed from the station in order to open space at that station.
(Zammori et al 2015). In this approach, the continuous use of the material is
enabled but in case of high variability, there will be a high amount of stock
besides the assembly line (Corakci 2008). Transfer vehicles can be different based
on packaging types. For unit loads, pallets are used for transportation, and for
small boxes, tugger trains will make periodical tours on a certain path. In the first
case, the replenishment target is the reorder level and in the second case two bin

policy is used for replenishment (Limere et al. 2012).

Salameh and Gattas (2001) formulated a model to find the optimum JIT inventory
stock level by minimizing the sum of the holding cost and the shortage cost. Their

key concern is to prevent any loss caused by the production interruption.



Choi and Lee (2002) compared static and dynamic part feeding policies for an
automotive company. According to their definition, static part feeding is to supply
parts based on predefined demand needs. In their dynamic part feeding approach,
they forecast the demand based on the consumption. This approach enables the
feeders to swiftly adapt in case of changes in production plans. Their single
objective is to put a penalty on late and early deliveries and minimize the total
penalty. Computational experiments show that their dynamic approach produces a
better solution than the conventional static approach.

Wainstrom and Medbo (2008) studied the design of component racks and choice
of packaging types to improve the efficiency of part feeding systems. They
showed that the feeding process could be improved by changing parameters for

racks and package types.

Souza et al. (2008) addressed the packing problem to minimize stock beside the
assembly line and the frequency of feeders. They formulated a single objective
mathematical model and developed a Greedy Randomized Adaptive Search
Procedure (GRASP) to solve the NP-Hard problem. Their GRASP method

managed to decrease operational costs more than 50%.

Cunha and Souza (2008) modified the procedure developed by Souza et al.
(2008). The modified version produces tighter bounds than the previous version of

the procedure.

Golz et al. (2011) developed a heuristic solution for in-house transportation. They
decompose the entire process into two main parts. In the first part, they produce
the demand based on the daily production plan. In the second step, they merge the
tours where it is possible under the capacity constraints. After making all possible
merges, they assign the tours with an aim to minimize the number of required

drivers.



Alnahhal M. and Noche B. (2013) used a mathematical model, analytic equations
and a dynamic programming to address the line-side inventory, the number of
trains and the variability in loading problems simultaneously. They first determine
a period length and then assign feeders to provide parts to the same stations at
each period during the shift. The most important objective is to minimize the
number of trains and the number of trains is determined by using dynamic
programming. Then, they solve a mixed integer mathematical model to minimize
the total stock at and the maximum stock at the assembly line. They also keep
route length close to average route length to decrease the variability.

Rao et al. (2013) developed a mathematical model and a GASA (genetic
algorithm and simulated annealing) heuristic in order to find schedules for a single
vehicle that feeds mixed-model assembly lines with minimum total travel cost.
They use a backward tracking approach to minimize interaction between formerly
scheduled materials and appending materials.

Zhou and Peng (2017) developed a mathematical model to minimize the
maximum weighted inventory level in all stations and production cycles during
the planning horizon. They also proposed a backtracking algorithm which yields
the exact solution for small-scale instances. They developed a modified discrete

artificial bee colony (MDABC) metaheuristic for real life instances.

Zhou and Xu (2018) developed two mathematical models to minimize the number
of operators and the unit delivery cost for line integrated supermarkets. A
dynamic programming is presented to find global optimum for small-size
problems and a search algorithm for large-size problems. They first determine the
number of logistic operators and stations assigned to operators. Next, they

determine cyclic delivery schedules and operators.



2.2. Kitting

Kitting is the gathering of parts needed for the manufacture of a particular product
then delivering this compact package to the assembly line (Zammori et al 2015).
Kitting works well when the ERP data is robust, but it could fail because of weak
ERP system structure. Many of the studies on this subject focus on how to
optimize the kitting process. For a review see Kilic and Durmusoglu (2014).

Giinther et al. (1996) developed a mixed integer programming model and a
heuristic algorithm to address three aspects of kitting problem. They investigated
how to arrange a right mix of components to be supplied to each station, assign
jobs to stations and determine a minimum number of operators. The mathematical
model fails to produce optimal solutions in reasonable time periods. Their
heuristic algorithm produces optimal solutions for most of the tested datasets with

a very short run time.

Chen and Wilhelm (1997) developed a linear programming model and a heuristic
approach to feed the assembly line under the Kitting policy. The objective was to
minimize the total cost. The cost includes job earliness, job tardiness, and in-
process holding costs. Their algorithm gave priority to the parts with the earliest
due date. After Kits are determined, the algorithm shifts the starting times to avoid

earliness.

Carlsson and Hensvold (2008) found that kitting is more beneficial for high
variant assembly lines based on a real-life study. Their study also took qualitative

assessments into account in addition to quantitative results.

Battani et al. (2010) developed a procedure to decide on centralization and

decentralization of component warehouses. The procedure was formulated as a



step-by-step process based on successive linear programming optimizations to
determine whether centralization or decentralization was favorable for relevant

components.

Kilic and Durmusoglu (2012) developed a single objective mathematical model
where the objective is to minimize the cost consisting of WIP and the number of
workers for design of a kitting system.

Limére et al. (2015) developed a model to choose between Kitting and line
stocking by considering the walking distance of the operator. Their mathematical
model also demonstrated how specific characteristics of a part influence the
chances of a part being kitted.

2.3.  Kanban

Kanban is developed for decentralized warehouse systems which enables delivery
of parts to assembly line frequently in a short time. Kanban method aims to
reduce WIP and to shorten the long travel distance to deliver parts from the

central warehouse to the assembly line (SendilKumar and Panneerselvam 2007).

Shahabudeen et al. (2002) studied single card kanban system and determined the
number of kanbans and the lot size. They formulated a bi-criteria objective
function to maximize throughput and minimize aggregate Kanban queue. They

used simulated annealing technique to solve the problem.

Jerald et al. (2006) developed an optimization technique called adaptive genetic
algorithm. The algorithm has two objectives: i) minimizing the penalty cost for
not meeting the delivery and ii) minimizing machine idle time. Their adaptive

algorithm produces better results than the genetic algorithm.

10



Shahabudeen and Sivakumar (2008) developed a genetic algorithm and simulated
annealing (SA) based search methods to minimize the inventory and backorder
demand. Instead of traditional Kanban system with a fixed number of Kanban
cards, they used an adaptive Kanban system. Their results showed that SA based
algorithm yields better solutions with large reductions in CPU times.

Emde et al. (2012a) investigated loading of tow trains from a supermarket area
with an objective to minimize inventory near the assembly line. In their problem,
tow trains follow predefined paths and the demand of each station is determined
based on the time required for the next visit. After deriving the demand, tow trains
are loaded. They developed an exact polynomial-time algorithm for their problem.

Emde and Boysen (2012b) developed a mathematical model and an exact
dynamic model which determines the optimal number of decentralized
supermarkets. The algorithm also determines the best location for each

supermarket that minimizes associated travel cost.

Emde and Boysen (2012c) developed a mathematical model and a polynomial
time exact dynamic model to solve vehicle routing and scheduling problems
simultaneously. Their objective is to minimize the total travel cost and the stock

level at each station.

Faccio et al. (2013a) proposed a general framework for problems dealing with
Kanban and supermarket systems. They used a static and a dynamic approach
separately. They determined which factors have significant impacts on the

performance of the feeding policy.
Faccio et al. (2013b) minimized the total cost function composed of inventory

costs, handling costs, and stock-out costs for feeding a multiple mixed-model

assembly-line system.

11



Fathi et al. (2014) developed a multi-objective mathematical model and a heuristic
algorithm. The objectives are to minimize inventory at each station and to
minimize the number of tours required to feed the assembly line. In their study the
transfer vehicle uses a predefined path to deliver parts. This structure enables the
predetermination of exact demand of each station at the arrival of the vehicle.

Lolli et al. (2015) used simulation to compare different scenarios and find the
number of operators required to avoid inline shortages. They analyze the scenarios
with respect to the number of kanbans simultaneously taken in charge by

operators.

Battani et al. (2015) addressed the design of the automated part logistic system in
which a supermarket used as a warehouse. They also developed an analytic model

to select the most appropriate transportation system.

Bortolini et al. (2015) developed an analytical cost model to optimize the Kanban

number through the minimization of the total cost function.

2.4.  Comparison of Different Feeding Policies

Bozer and McGinnis (1992) developed a descriptive model to compare the kitting
and the line stocking policies. In their specific example, they showed that floor

spaced requirements and the average WIP decreases with Kitting.

Karlsson and Thoresson (2011) developed a guiding manual to manage the
transformation of feeding policy for automobile companies from sequenced
material flows into kitted material flow. They determined which parts should be

delivered by a kitting policy.

12



Caputo and Pelagagge (2011) compared three different approaches based on cost
(personnel and equipment) and performance (WIP) by using quantitative
benchmarks and descriptive models. They showed that hybrid methods yield

better results in terms of the total cost than pure feeding approaches.

Caputo et al. (2013) developed an integer linear programming model to choose
the optimal feeding policy for each part. The model calculates an average cost as a
function of cost generating actions and items for each policy. Their results show
that applying the same feeding policy to all parts may yield poor results in terms
of total cost. They proposed that part feeding policy of each part should be
determined separately.

Caputo et al. (2015a) developed a model to measure the efficiency of Kitting
policy based on various cost items such as safety stock-holding cost, WIP holding
cost, cost for floor occupation at workstations. Their descriptive model considers
resource size and computation of systems’ economic performances for kitting.
The model also provides a quantitative benchmark to compare the efficiency of

Kitting with other part feeding policies.

Caputo et al. (2015b) developed an optimization model to choose cost minimizing
part feeding policy. Their model determines the most cost-efficient part feeding
policy for each part. They showed that for different parts different hybrid policies

could yield better results.

Caputo et al. (2015c) developed an analytical model to compare JIT and line
stocking part feeding policies. Their model includes some new critical cost factors
such as error cost. They showed that for different parts different hybrid policies

could yield better results.

13



Caputo et al. (2016) compared different part feeding policies. They developed a
parametric model for three feeding policies and mapped areas where each feeding
policy is more efficient.

Caputo et al. (2018) made a sensitivity analysis and a parametric analysis to
explore the impact of part features on total delivery cost for different feeding
policies. They mapped the areas where each feeding policy is more efficient, and
this enables to choose the best feeding policy for each part.

Hanson et al. (2012) compared the time required to fetch the parts for kitting and
line stocking policies using ANOVA. They showed that kitting has shorter
fetching time than line stocking. They also discussed other advantages and

disadvantages of both policies such as space requirement, pre-sorting time etc.

Hanson and Brolin (2013) compared the efficiency of kitting system with
continuous supply based on their real-life observations. They tried to show that

under which conditions the Kitting system was more efficient than the continuous

supply.

Faccio (2014) developed a decision-making tool to determine under which
condition each part feeding policy performs better. They applied their model to a
case study and compared the efficiency of kitting, kanban and hybrid feeding
policies. They considered the impact of product mix variations and model
varieties on part feeding policy and tried to find the breakeven points to determine

under which conditions each part feeding policy performs better.

Sali et al. (2015) compared different part feeding policies based on the total cost
which includes part preparation before assembly, picking, in-plant transportation
and storage costs. Their multi-scenario analysis shows that parameters used in the

cost function have an impact on the performance of the feeding policy. Analysis

14



of scenarios shows under which conditions a feeding policy yields a better

performance.

Sali and Sahin (2016) developed a comprehensive mathematical model to choose
the most appropriate feeding policy for each individual component. The model

calculates an average cost as a function of cost generating factors.

Usta et al. (2017) developed a hierarchical clustering analysis and used activity-
based cost methodology to compare the performance of kitting and hybrid feeding
policies. Based on the different scenario analysis, their results point out that

hybrid policies yield better performance.

2.5.  Contribution to Literature

Many of the previous studies have a single objective that aims to improve the
internal part feeding. Number of tours and stock level at each station are among
the mostly addressed objectives either directly or indirectly. The only study that
aims to improve both in-plant traffic and assembly line stocks with a
mathematical programming model was conducted by Fathi et al. (2014). Since,
they use a single objective model, to the best of our knowledge, our study is the

first study that attempts to generate all nondominated solutions.

In this thesis, we use two objective functions without a priori information on
paths. Since the paths and travel durations are not predefined, the exact demand of
each station cannot be determined in advance. We develop a new model which
splits the working period into one-hour slots and determines the demand for each
of these one-hour slots. As a result, a certain demand is obtained for each time
slot. Furthermore, previous studies assume all baskets are compatible and this
allows transfer of different baskets together. We also address the incompatible

basket problem.

15



In order to clearly demonstrate the aim of our study, we made a new classification
table. The detailed classification based on objectives and implemented
methodologies are presented in Table 1. Studies without a mathematical model are
classified under the last column. Studies with a mathematical model are classified
into two groups according to whether the objective function is single or multi-
objective. As the main concern of this study is number of tours (NT) and stock
level (SL), the objective functions other than these are classified as other (O).

As seen from the table, most of the studies have single objectives. 16 studies that
focus on line stocking, address NT and SL objectives more than the other two
groups. Some of these studies have different objectives and we classified them
under the last column by labelling them as “Other”. Studies are classified under
kitting mainly try to improve the kitting process. The questions they address are
how to determine the kit size, where to store Kits, when to start kitting process for
a specific kit etc. Kanban studies mostly address SL and O objectives. Generally,
they aim to increase the number of the kanbans per cycle. In line stocking, the
main target is to minimize either the number of tours or the amount of stock

besides the line.

16



Table 1. Literature review matrix

Single objective
MP

Multi-objective
MP

Other Approaches

NT[sSL| o

NT|[sSL| O

NT|[sSL| o

Salameh and Gattas (2001)

Choi and Lee (2002)

Cunha and Souza (2008)

Souza et al. (2008)

Winstrdm and Medbo (2008)
Golzetal. (2011)

Alnahhal M. and Noche B. (2013)
Rao et al. (2013)

Zhou and Peng (2017)

Zhou B. and Xu J. (2018)

Line stocking

X
X X

Giinther et al. (1996)

Chen and Wilhelm (1997)
Carlsson and Hensvold (2008)
Battani et al. (2010)

Kilic and Durmusoglu (2012)
Limére et al. (2015)

Kitting

X XX

Shahabudeen et al. (2002)
Jerald et al. (2006)

Emde et al. (2012a)

Emde and Boysen (2012b)
Emde and Boysen (2012c)
Faccio et al.(2013a)
Faccio et al.(2013b)

Fathi et al. (2014)

Lolli et al. (2015)

Battani et al. (2015)
Bortolini et al. (2015)

Kanban

Shahabudeen P. and Sivakumar (2008)

X X X

X X

Bozer and McGinnis (1992)
Karlsson and Thoresson (2011)
Caputo and Pelagagge (2011)
Hanson et al. (2012)

Hanson and Brolin (2013)
Faccio (2014)

Caputo et al. (2013)

Caputo et al.(2015a)

Caputo et al.(2015b)

Caputo et al.(2015c)

Caputo et al.(2016)

Saliet al. (2015)

Sali and Sahin (2016)

Usta et al. (2017)

Caputo et al.(2018)

Comparison of Policies

X X X X X XX X X

X

X X X

NT: Number of tours. SL: Stock at the line. O: Other.
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CHAPTER 3

PROBLEM DEFINITION

The problem in this thesis is defined based on problem symptoms at two Turkish
plants which manufacture refrigerator and dishwasher. Both plants have high level
of stocks at the assembly line and high internal traffic. The assembly lines are
mixed model and the conveyors are moving at a constant speed. There is only one
warehouse with a single 1/0 point. There are many forklift drivers whose job is to
feed associated assembly lines. They use forklifts to feed the assembly lines. Each
forklift driver is free to make his own delivery plan for the given daily production
plan. The parts are being transferred from a central warehouse to the assembly
lines. Each driver is responsible to deliver a set of parts. Each part type is used at

a specific station.

We address a general problem where a part could be used at more than one
stations. Forklifts have limited capacity and it is not suitable to transfer different
basket types in the same tour. The capacity of forklift regarding number of baskets
that could be delivered is different for different basket types. The drivers do not

pursue a predetermined path.
In this thesis, to determine the aggregated demand of each station the total
working time is divided into slots. Demand is satisfied by delivering the demand

of each slot in the previous time slots.

As desired, the amount of stock at the assembly line could be minimized by

increasing the frequency of the forklifts. However, this will increase the internal
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traffic. In this thesis, we aim to minimize both amount of stock at the assembly

line and internal traffic.
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CHAPTER 4

PROPOSED METHODS

In this section, a mixed integer linear programming (MILP) model is formulated.
The model gives optimal loading and delivery schedule. In the second part, a
problem specific heuristic algorithm is developed to overcome the shortcoming of
the mathematical model for large size problems.

We divide total working time in a shift into one-hour slots. Based on the daily
production schedule and the speed of the assembly line, we determine demand of
parts in each time slot. Based on the time studies, we find an average tour
duration. Using the average tour time, we calculate maximum number of tours
that could be performed in a time slot. The forklift drivers do not have to perform
all tours in a time slot. They may deliver all demand with fewer tours than the

maximum allowed number of tours.

Parts are assumed to be delivered in different basket types. It is not possible to

deliver different basket types on the same tour.

The demand of a station at a time slot must be transferred in previous time slots.
For example, the demand of the 3" time slot could be transferred either in the 1%
or the 2" time slot. The stock level at the end of the 2™ time slot has to be enough

to satisfy the demand of the 3™ time slot.
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4.1. Exact Method

Parameters
M :{1,...,n } Set of parts
m

F :{1,...,nF} Set of forklifts

S = {1,...,nS } Set of stations

Dmst demandfor partme M atstationse S attimeslot t

WM f maximum weight allowed to be transferred by forklift f € F

W weight of unitload of partme M (kg)

ImS amount of partm € M remained atstations € S from previousshift
K A very large positive constant

n number of timeslots at oneshift time

h maximum number of tours could be made by a forklift

basketTm basket type of partm

Decision Variables

et = number of baskets of stocks of partm e M at station se S at the end of time
slot t
ﬂmst =stock of partme M at station se S at the end of time slot t

Zmsr —numberof unitloadsof partm e M carried tostation s € Sat tour r of timeslot t by
forklift f e F
1, if forklift f € F transfers part me M on tour r at time slot t

9 = .
me =1 0, otherwise

s —{ 1, if forklift f € F makes tour r at time slot t
f" 0, otherwise

amst 1S the rounded-up value of Bng. For example, let’s assume we have two

baskets of part m at station s at time slot t. If we use 60% of parts in one basket,

22



then Bt Will be equal to 1.4. But we know that the number of baskets is 2 at that

station and we could track the stock in terms of basket by setting ams:equal to 2.

Mathematical Model

n _h

mind > > 5y (i)

feF t=1 r=1
min > > > a., (ii)

meM seS t=1
Subject to:
DD X "W, WM, vfeFt=1..nr=1..,h ()
seS meM
,Bms(t_l) 2D, vVmeM,seSt=1..n (2)
Ot = Prst vmeMseSt=1..,n-1 > D >0 (3)

I=t+1
h
By + Z Z;(fmstr —D,« = Bt vVmeM,seSt=1,..n (4)
feF r=1

Bioso = lins vmeM,;seS (5)
D Ximse < e *K vfeFmeM,t=1,..,nr=1..,h (6)
seS
Y G S0 *K vf eFt=1,..nr=1..,h (7)
meM
Gitr T e <1 vf e F,meM,l € M,basketT,, #basketT,,t=1,..,n,r=1.h  (8)
Otr < Oum vieFleF,t=1..,nr=1.,hhm=1..,hf>lr>m (9)
o, = 0,integer VmeM,seSt=1..n (10)
Pos 20 vVmeM,seSt=0,.,n (11
Ximsr 2 0, 1NtEQEr VieF,meM,seSt=1,..,nr=1..,h (12)
S €10,1} vfeFt=1..,nr=1..,h (13
G €1{0,1} vf eFmeM,t=1,.,n,r=1.h (14)
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The first objective function (i) aims to minimize the total number of baskets of the
stock at the assembly line. The second objective function (ii) aims to minimize the
total number of the tours.

Constraint (1) ensures that a load of any forklift does not exceed the capacity of
that forklift. Constraint (2) forces the model to keep the stock level at least as
large as the demand to prevent any shortage. Constraint (3) determines the
number of baskets for the stocks. This constraint has to be satisfied if the part will

n
be used in the remaining time slots. If » D
I=t+1

> 0in constraint (3) is satisfied,

msl

then this means that there is demand for part m at station s in the remaining time

slots. If there isn’t any demand for that part, then «_, will take the value of zero

mst
to minimize the stock objective. Constraint (4) is a balance constraint that
calculates the stock by subtracting consumed parts from the delivered parts.
Constraint (5) initialize starting stock level. Constraints (6) and (7) establish link

between variables ..., 9., and J, . Constraint (8) ensures that different

fmtr

basket types cannot be transferred on the same tour. Constraint (9) removes the

symmetries and restricts the solution space for forklifts and tours.

This model has similarities with capacitated lot sizing problem both in constraints
and objective function. But the concepts of both problems are quite different as
well. Indeed, the capacitated lot sizing models could be used before using this
model to determine which products will be produced in each time slot and this

model could be used to determine schedule of parts.

In the mathematical model, it is assumed that each part could be used by more
than one station. This assumption necessitates tracking the station information.
For example, let’s assume that B12,=0.3 and B132=0.4 and their sum will be P12

+B132 =0.7. If we don’t have station information, then the third constraint will
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force a1z (ame Without station index) to be equal to 1. But we know that in total
there exist two baskets in the stock, one is at station 2 and the other one is at

station 3.

We use g-constraint method to solve the mathematical model. In the next part, we
give a definition of the g-constraint method and an example to show how we
apply it to our problem.

g-constraint Method

In this method, all other objectives are transferred into the constraints except one
as shown below.

min f, (X)
Subject to:
f,(X) <=¢e,
f,(x) <=e¢,
f,(x)<=¢e,
xe X

x is variable, and X is set of feasible solutions. f; (x)is the i objective function. e;
is the bound for i" objective function.

In this thesis, we address a bi-objective problem where values of both objective
functions are integer, and total number of tours is expected to be in a limited
range. This enables us to find all efficient points if the problem size is not very
large. We first generate the solution that gives the minimum stock level. This
solution also gives us an upper bound on the total number of the tours. Next, we
use tour objective as a constraint and the upper bound as RHS. Then we decrease
the RHS of the tour constraint one each time and resolve the problem. The

termination condition is to reach an infeasible case which indicates that demand
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cannot be satisfied with such a small number of tours. We provide an example of

the method for a small dataset of our problem below.

Let us assume that the original models is (model 1) and model for e-constraint
method is (model 2). As it is seen from model 2, we added 0*f(x), term to the
objective function. This version of the model is called as modified e-constraint
model. ¢ is a very small positive constant and the added term prevent the model

to end up with a weakly nondominated solution.

Model 1 Model 2

Min f(x), (totalstocklevel) Min f(x), +0*f(x),
Min f(x), (totalnumberoftours) subjectto
subjectto f(x),<e

xeX xeX

Dataset 1.1 (given in Appendix B) is used to illustrate the e-constraint method. At
the first step, we take ¢ as a big number and find the solution that minimizes the

total stock ( f(x),). The value of the first objective function is 40 and the value of

the second objective function is 18 for the first solution.

After finding the first solution, we update the RHS value as18-0.1 (¢=0.1) and
find the minimum value of the first objective under these conditions which is 41.
Since the value of the second objective function is 17 at this solution, we set the

RHS to 17- 0.1 and find the next nondominated solution.

Then, the next nondominated solution is generated as (42, 16) and the RHS is

updated as 16- 0.1 to find the next solution.
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All other solutions are generated by following the same procedure. At point (65,
12), we set the RHS to 12- 0.1. Since there is no feasible solution on the left side
of this point, we end up with an infeasible problem. At this point, we terminate the
method and provide all generated solutions as the set of nondominated points in
Table 2.

Table 2. All nondominated points for dataset 1.1

Number of Baskets
as Stock Number of Tours
40 18
41 17
42 16
43 15
46 14
55 13
65 12

The mathematical model can solve small-size problems in reasonable time periods
when we try to find the solution that minimizes the total stock at the line. On the
other hand, when we try to minimize the total number of the tours the solution
time could be too long for even small-size problems. Due to the complexity of the
assembly line part feeding problem, it could be impossible to solve it for large
size problems. Here we developed a problem specific heuristic algorithm to

overcome this difficulty. A detailed description is given below.

4.2.  Heuristic Algorithm

Below we have listed steps to prepare data to use in the proposed algorithm
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1) Determine the demand of each time slot

2) Classify the demand of each time slot based on the basket types (this will
help us to solve the basket type constraint before even starting to solve the
problem)

Overview of the algorithm is given below.

Step 1: Check cumulative number of tours demanded for each of the time slots
and if it exceeds the cumulative number of maximum tours allowed until that time

slot then the problem is infeasible. Otherwise, go to step 2.

Step 2: If there is demand for the same part at same station in a future time slot
then subtract the remaining stock of deliveries from the demand of that future
time slot and find net demand. If the inventory stock is bigger than the demand,
then subtract the demand from inventory and delete that demand. Go to step 3.

Step 3: Find the time slots whose required number of tours exceed maximum tour
limit. Choose the time slot that has the highest basket demand among these
violating slots. Break the tie in favor of the highest time slot index. At this step,
calculate the cost of moving one tour of each basket type to previous time slots.
Choose the tour that brings lowest extra stock and break the tie by selecting the
one that decreases number of tours. The second tie breaking rule is selecting the
one with lowest basket type index. If necessary, move the baskets of the tour by
splitting to more than one previous time slot. If there is a fractionally loaded tour
for a basket type, choose this one as a candidate for that basket type. If the
candidate could not be moved, then the algorithm tries to choose another
candidate among other basket types and it chooses the one with lowest extra stock
and applies the tie breaking rules whenever there are candidates with same level
of stock. Do this until all parts are assigned to tours and a feasible solution is

obtained. Go to step 4.
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Step 4: The solution obtained at the end of the third step, has the minimum stock
level among all solutions generated by the algorithm. Keep this solution as the
first solution point generated by the heuristic algorithm. Try to move fractionally
loaded tours to previous time slots and merge them with fractionally loaded tours
of those previous time slots to decrease the number of the tours. If there is any
tour gain after merges, then for those fractionally loaded tours calculate the cost of
merging in terms of stock level and move the one that has minimum cost. Break
the tie by selecting the one with the highest time slot index and lowest basket type

index. Do this whenever a gain from the total number of tours is possible.

The heuristic algorithm is depicted in Figure 1. Each of the colored boxes
corresponds to one of the steps that are explained above and the corresponding
step is labelled on the corners of the boxes.

Below, we also provide steps of the algorithm and provide a flowchart to illustrate

algorithm.
Steps of the Algorithm

D demand for basket type c at station s €S at time slot t

cst

ctour,, cumulative number of tours required until time slot t for basket type c
tour,  number of tours required for basket type c to deliver the demand of the

time slot t

Vv capacity of forklift for basket type c

c

Stepl: Calculate all cumulative number of tours required until each time slot

>y,

ctour, ===t If it exceeds tour limit, terminate otherwise go to step 2.
v

c
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Step 2: Determine the net demand and go to step 3.

Step 3: Find time slots with the highest number of tours: max {

z DCSt

tour, =S€S

te }. Break the tie in favor of the highest time slot index. If it

doesn’t exceed tour limit go to step 4. Otherwise, shift the tour with lowest extra
stock (break the tie for tour gain and the lowest basket type index) and go to step
3. A detailed flowchart of this step is given in Figure 2.

Step 4: Find the tours that provide one tour gain after shifting. If there isn’t such a
tour, then terminate the algorithm. Otherwise, shift the tour that causes a
minimum stock increase. Break the tie for highest time slot index and minimum
basket type index respectively. Repeat step 4. A detailed flowchart of this step is

given in Figure 3.

The first three steps use an insertion heuristic to find the first feasible solution.
While applying the insertion heuristic, the violating tours and the remaining tours
could be thought as two separate groups. Without the violating tours, the
remaining tours already create a feasible base with minimum number of stocks by
assigning each tour to the closest previous time slot. At each iteration; one tour
among the violating tours is inserted into the assigned base by choosing the

cheapest insertion option in terms of stock level increment.
At the fourth step, another heuristic approach is used to construct the other

solution points. The saving method is used to merge tours and decrease the total

number of tours. The heuristic finishes when no more tour gain is possible.
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Figure 2 shows how infeasibilities are eliminated, and the first feasible solution is
obtained. If the number of tours required to deliver demand of a time slot exceeds
the number of the tours allowed, then this time slot is called violating time slot. At
this step, the most violating time slot is determined. The algorithm shifts one tour
of this time slot to previous time slots. After the shift, the algorithm again finds
the most violating time slot and makes a shift again until all violating tours are
eliminated. Shifting a tour to previous time slots increases the total stock. For
example, assume that we have a tour loaded with 5 baskets and scheduled to the
4" time slot. If this tour is shifted to the 3™ time slot, the total stock will increase
by 5.

The algorithm chooses the largest time index and smallest basket type as tie
breaking rule. Choosing the smallest time index could eliminate some possible
merges in the future steps. So, the largest time index rule ensures that these
possible merges are not eliminated. For example, assume there are partially
loaded tours at time slots 3, 4, and 5. Three of them are from the same basket type
and forklift capacity is enough to transfer three of them together. If we choose the
5" time slot as a candidate, then the first merge will happen at the 4™ time slot.
But if we choose the 4™ time slot as a candidate slot then we will never merge the
4™ and 5™ time slots’ demand at time slot 4. By doing this, we may miss some of

the solutions. Therefore, the tie breaking rule is in favor of the largest time index.

The second tie break is in favor of the smallest basket type. We arrange our data
in a way that smallest basket type has the highest capacity in terms of number
baskets that could be transferred by a forklift. In this case, the total capacity is
filled with many small baskets. So, we expect that these small units will provide
more merging opportunity by being able to be distributed to many previous time

slots.
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Start

.

~

Is there any violation? 0

]/

Yes
4

Find the most violating
time slot
Break the tie:the biggest
time index

v

Calculate the total stock increase
for each tour of this time slot in
case of shifting and choose the

one that causes the least stock
increase.

Break the tie: 1. tour gaining, 2.

the smallest basket type index

v

Shift this tour to previous
time slots

Figure 2. Details of the process that shift one tour of the most violating time slot
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Figure 3 shows how we merge two tours to gain one tour and obtain all remaining

solutions by repeating this step.

( Start )
 —

Find all
partially
loaded tours

L 4
Calculate the
hifti

scenarios for

these tours

Take partially loaded tours that provide
one tour gain after merges. Among them
choose the one that causes the minimum
stock increase.
Break the tie:the biggest time index and
the smallest basket type index

Figure 3. Details of the process that combines partially loaded tours
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4.3.  An lllustrative Example

In this section we explain the proposed heuristic algorithm on small-size
illustrative example problem. Table 3 presents the demands of each station as a
number of baskets. For simplicity we assume that the demand of the first time slot
is delivered from the previous shift and we take the demand as zero for this time
slot. Since step 1 and step 2 are independent we will first explain step 2 and then
go to step 1. Step 2 is just a data normalization but step 1 checks the feasibility
and the algorithm does not enter step 2 if it is infeasible. Here using net demands
makes it easy to track so we will start with step 2. Because, by using net demand,
we just work with integer values since the number of baskets will be integer.
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Table 3. Demand of parts for each station (basket)

Time Slot 4

10

0.8
17

0.7

Time Slot 3

0.1

Time Slot 2

10

17

0.7

Time Slot 1

1

Parts/Stations
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Table 4. Net demand of parts for each station (basket)
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Step 2

Using the demand data, we calculated the net demand of each time slot. The
demand for part 1 at the first station in the second time slot is 1.7. In order to
satisfy it 2 baskets of part 1 must be delivered at the first time slot. After the
consumption of the first time slot, the remaining part will be 30% of a basket.
Since the demand for the same part at the same station in the last time slot is 1.4,
after subtracting the remaining stock the net demand will be 1.1 in the last time
slot. Another example is demand of part 6 at station 4 in the first time slot is 70%
of a basket. In order to satisfy the demand, one basket must be delivered. Demand
at the third time slot is 10% of a basket for this part. This means that we could
delete the demand of the third time slot to calculate net demand and the remaining
part stock will be 20% after this time slot and this remaining part will be used at
the last time slot. Demand in the last time slot is one basket and the remaining part
stock will decrease the demand to 80% of a basket. In this manner, we calculated

the net demand of parts at each station for all time slots as in Table 4.
After calculating the net demand, we rounded up these data to obtain the number

of baskets that should be delivered as in Table 5. Step 2 ends here, and we next

show how step 1 is performed.
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Table 5. Number of baskets should be delivered to satisfy the demand

1

2

2| 0] 0] O

0l 0] 0] O

0f 0| 0] O

0l 0] 0] O

0l 0] 0] O
0|l 0f 0] 1

0l 0] 0] O
0l 0] 0] O

0
0
0
0
0
0
0
0

1
0
0
0
0
0
1
0

8| 9| 10

0
0
0
0
0
0
0
1

7
0
0
0
0
0
0
0
0

6
2
0
0
1
1
1
0
0

2 3| 4] 5
0] 0] 0] 0

1l of o] O

0l 0f 0 O

0l 0] 0] 0
0l 0] 0] O
0l 0f 0 O
0l 0] 0] O
0l 0/ 0/ O

2| 0] 0] O
0| 0f 0] O

0l 0] 0 O

0l 0] 0] O

1| 0f 0f O
0| 0f 0] O
0 0] 0] O

0l 0] 0] O

0
0
0
0
0
0
0
0

0
0
0
0
0
2
0
1

0
0

0
0

0
0

0
0

0|0

2(0
0|0
0|0
0|0
0|0
0|0
0|0

2
0
0
0
0
0
0
0

0|0|0|0|0f0f{0|0] O] O

0|0|0|0|0f0f0[0] O] O

0[0]0j0[0j0|0[{0] O] O

0/0|0]0|0[0[0[0] O] O

0|0|0|0|0f0f{0|0] O] O

0[0]0|0[0]0|0f0] O] O

0|0|0|0|0|0f{0[0] O] O

0/0|0|0|0f0f0[0] O] O

Parts/Stations | 1| 2| 3|4|5|6| 7| 8| 9| 10

5
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Step 1

The algorithm calculates the tour demand of each time slot by using basket types

and capacity information as provided in Table 6.

Table 6. Basket type and capacity information for each part

Capacity of
Parts [BasketType| Forklift
1 1 &
2 2 4
3 1 &
4 3 3
3 4 2
6 2 4
7 3 3
8 4 2

In order to calculate the tour demand of any time slot, algorithm consolidates the

same basket types’ demand.

For example, for the second time slot: Parts 2 and 6 are in the same group (Basket
type=2) and their total basket demand is 4 (2+2) and 3 (1+2) respectively and their
total demand is 7. The forklift capacity for the second basket type is 4, and this
implies that at least 2 tours required at the first time slot to provide demand of the
second time slot for parts 2 and 6. Below we present all calculations for the first

step.
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_(2+2)+0”

tour,, _TZZ/S “partl, “part3
tour,, = (2+2) Z(HZ) =714 “part2,” part6
tour,, = % =0 “part4,” part7
tour,, = % =2/2 “part5,” part8

As seen from the calculations the total tour requirement is 4 and does not exceed

the allowed tour capacity of 6.

Below we also provided the calculation until the third time slot to show how the

cumulative tour requirement is derived.

C(2+2) +(2+1)”

tour,, = 5 =716 “2" timeslot, 3" time slot
tour,, = (2+2+1+2) +(1+1) _9/4
4
tour,, = (0+0) +A+1) 573
tour34=(l+1) J;(“l) =4/2

As seen from the calculations, the cumulative tour requirement is 8 for the
consecutive two time slots and the cumulative allowed tour capacity is 12 which

is the sum of 6 tours of each time slot.

We could calculate the tour requirement of each time slot in this fashion. We
could check the feasibility of this problem by just also calculating the cumulative
tour requirement of the fourth time slot. We have not presented this last
calculation here, but the result does not violate the feasibility and this specific
example has a feasible solution. If the problem is infeasible then the number of

forklifts should be increased.
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Step 3

After showing the feasibility and calculating the net demand, we apply step 3.
Here we calculate the tour demand of each time slot separately based on the net
demands. We already calculated the demand of the second time slot at step 1 of

the algorithm. We present below the calculations for time slots 3 and 4.

tour,, :W:UZ “partl, “part3
tour,, = L Zl*k =1/2 “part2,” part6
tour,, = L J;l** =2/3 “part4,” part7
tour,, = L ;1** =1 “part5,” part8
tour,, = % =5/6 “partl, “part3
tour,, = (L+d) + Ell+1+l)** =5/4 “part2,” part6
tour,, = ﬂ =2 “part4,” part7
tour,, = 3407 _ 3/2 “part5,” part8
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Based on these calculations, we derived the final demand of each time slot as in
the Table 7.

Table 7. Final demand of each time slot

Basket Type/Time Slot

1 0 1 1 1
2 0 2 1 2
3 0 0 1 2
4 0 1 1 2
Total Demand 0 4 4 7

We assume that the maximum tour number allowed is 6. Under these conditions
only the last time slot with 7 tours requirement violates the maximum tour limit.
Here, the algorithm eliminates the violation by trying to move tours of last time
slot. In this case, one tour shift satisfies the requirements. If there were another
time slot with the same tour number, then the algorithm still would move tours of
the last time slot first. This is the result of the tie breaking rule that mandates to
choose the largest time slot index. Since we have two extra tour capacity at time
slot 3, we could move any of the tours in time slot 4. There is only one tour of the
basket type 1 which is partially loaded and contains 5 baskets. This means that if
we move this tour for one time slot then the stock number will increase by 5 units.
There are 2 tours for the second basket type and it is obvious that moving the
partially loaded one will bring one unit extra stock. There are 2 fully loaded tours
of the third basket type and moving one of them will bring 3 units extra stock. The
fourth basket type has 2 tours and again the partially loaded one is the proper
candidate which brings one unit extra stock. The minimum extra stock is one unit
and two basket types provide this minimum extra stock level. Our tie breaking
rule leads us to choose the one that provides tour gain. In this case we choose the

second basket type as the candidate to move.
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This shift decreases the total tour requirement of the fourth time slot from 7 to 6
which is within the limit. On the other hand, an extra basket at time slot 3 does not
increase the total tour requirements. There is a partially loaded tour of second
basket type at time slot 3 and this tour has 2 basket spaces. Below, the updated

tour calculation is given for the second basket type at time slot 3.

tour,, = % =3/4 “part 2, part 6, “part 6 shifted from timeslot 4

Under these conditions, the incumbent situation gives the first feasible solution
which is also the solution that provides the minimum stock level among all other

solutions provided by the algorithm.

It is difficult to calculate the stock level of this solution manually, so we do not

derive the total stock level here.

Step 4

The algorithm tries to combine tours and gain one tour to improve the total

number of the tour objective.

We start the calculation from time slot 3. There is a partially loaded tour of basket
type 1 with 3 baskets. At time slot 2 there is a partially loaded tour of basket type
1 with 4 baskets. The vehicle capacity is 6 for basket type 1 and we still need 2
tours for 7 baskets. This means that moving first basket type does not provide any

tour improvement. So, we directly eliminate this shift option.

When we check the second basket type, the same thing happens. There is a

partially loaded tour at time slot 3 with 3 baskets (one comes from time slot 4
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after step 3 of the algorithm) and one partially loaded tour at time slot 2 with 3
baskets. With a vehicle capacity of 4 for basket type 2, we still need 2 tours to
deliver these 6 baskets. We also eliminate this option.

When we try to move the partially loaded tour of basket type 3 same thing
happens again. The total number of baskets is 4 and the vehicle capacity is 3 then

we need 2 tours. So, we also eliminate this option.

There is no partially loaded tour of basket type 4 at time slot 3 so there is no shift

option.

Since the algorithm assesses all shift options before making any shift at step 4, we
next consider shift options for time slot 4. To clarify, below we present the
number of baskets for each basket type on the partially loaded tours in Table 8.
Table 8 ignores the fully loaded tours. As seen from the table, the only tour
gaining move is to distribute baskets of the last tour of type 1 to the second and
third time slots. Since there is only one option for shifts the algorithm performs
directly this shift and terminates. If there were alternative moves, then the

algorithm would choose the one that brings the minimum increase in stock.

Table 8. Number of baskets on partially loaded tours

Basket Type / Time Slots |1|2(3|4
1 0/4|3|5
2 0/3/3|0
3 0/0{2]0
4 0/0|0]1
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Three baskets of the 4™ time slot are shifted to the 3™ time slot and two baskets
are shifted to the 2" time slot. The new tour schedule is presented in Table 9.
Since all baskets of the 4™ time slot for type 1 are merged with partially loaded
tours of previous time slots, the total number of tours is decreased by one.

Table 9. Number of baskets on partially loaded tours after the first shift

Basket Type / Time Slots

O|I0|0|O|F
OO|W|I(IN
OIN|W| oW
R O oo~

AWIN|F
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CHAPTER 5

COMPUTATIONAL STUDY

All datasets (demands) are generated randomly, and each set size is tested for five
randomly generated problems. These datasets are not included in appendices since

they might take hundreds of pages.

In the first problem set, the number of parts is 8, the number of stations is 6 and
demand is generated with 5% probability. We use uniform distribution (U (0,1))
for each demand cell to generate the demand. We also used uniform distribution
for the probability. The mathematical model generates all nondominated points.
The results show that the heuristic algorithm is able to generate a corresponding
point with same tour number for all the nondominated points. The heuristic
algorithm can generate the solution that minimizes the stock and some
nondominated points close to this solution for tested datasets. 60% of the
nondominated points are generated by heuristic algorithm. On the other hand, as
we get closer to other extreme solution, the minimum stock objective starts to
deviate from corresponding nondominated points. But the difference is still very
small. The average difference is about 4% and standard deviation of difference is
6.9%. The average difference is obtained by dividing sum of percentage
differences to number of nondominated points. The maximum difference is 23%

which is occurred in the fifth run.
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In the second problem set, the number of parts is 8, the number of stations is 6 and
the probability is 10%. The results show that the heuristic algorithm again
achieves to generate a corresponding point with the same tour number for all of
the nondominated points. 60% of the nondominated points are generated by
heuristic algorithm. The average difference is 1.9%, standard deviation of
difference is 3.4% and maximum difference is 11%. The heuristic algorithm is
again able to generate the solution that minimizes the stock for all runs.

In the third problem set, the number of parts is 8, the number of stations is 6 and
the probability is 15%. Under this problem set, required number of tours is
increased to 8. Changing only the required number of tours makes it difficult for
the mathematical model to solve the problem. The mathematical model failed to
generate some of the solutions. Heuristic algorithm generates all nondominated

points that are generated by mathematical model and some other solution points.

In the fourth problem set, the number of parts is 8, the number of stations is 52
and the probability is 5%. The number of tours required is between 15 and 20 for
different randomly generated problem sets. Still mathematical model only
generates one nondominated point over all five runs. Heuristic algorithm easily

generates all of its solutions in less than 10 seconds for this problem set.

In the fifth problem set, the number of parts is 8, the number of stations is 52 and
the probability is 10%. We realized that in this problem set, parts delivered in the
first time slot could also satisfy the demand in the remaining time slots
significantly. So, we multiply the demand of the third time slot with 3 and demand
of the fourth time slot with 4. We use the same logic also for the remaining time

slots and multiply the demand with 5, 6 and 7, respectively. This ensures that the
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algorithm makes many shifts from the higher time slots to lower time slots. This
approach improves the quality of comparison between mathematical model and
heuristic approach. But the problem size is still too large for the mathematical
model to generate the results. Heuristic algorithm easily generates all solutions in
less than 10 seconds for this problem set, too.

In the sixth problem set, the mathematical model and heuristic algorithm are
compared for a large size problem. In the sixth set, we assume there are 52
stations and 152 parts. We also assume that each basket type has 38 parts. The
probability to generate demand for each time slot, station and part combination is
1%. We did this to prevent a problem set where all parts have demand in all time
slots and at all stations. After putting this probability constraint, we observe that
still the number of the tours required is around 30 for one time slot which is larger
than the original case. This problem set shows the time efficiency of the heuristic
algorithm. But the problem size is very big for the mathematical model to solve.
On the other hand, the heuristic algorithm generates all solutions at once in less

than 10 seconds.

All solutions are given in Table 10. Based on the solutions that mathematical
model finds, 63% of all nondominated points are generated by heuristic algorithm.
We do not count partially generated solutions. Since, heuristic algorithm is
capable to generate the nondominated solutions that are close to extreme solution
that minimize the stock level and mathematical model fails to generate solutions
that are close to other extreme solution that minimizes the number of tours taking
partially generated solutions into account will yield biased results. Under these
conditions, if we take those points into our calculation the result mislead us to the

conclusion that heuristic algorithm performs better than calculated 63%. Average
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difference of the stock objective between solutions generated by exact and

heuristic methods is 3% and standard deviation of difference is 5.6%.

Based on the results, we could say that the heuristic algorithm solves the problem
in a very short time even for large size problems for tested datasets. The heuristic
algorithm successfully generates the solution that minimizes stock level. The
algorithm could also generate nondominated solutions close to this solution. As
we get closer to other solutions, the stock level could slightly differ from
nondominated points for some problems. The overall average of difference is 3%.
The overall average is obtained by dividing sum of percentage difference to
number of nondominated points. But for all cases, the heuristic algorithm
manages to produce a corresponding point with the same number of tours. On the
other hand, the number of stocks for these corresponding points is sometimes
different. The overall deviation occurs at 37% of all solutions generated both

methods.
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Table 10. Comparison of results for the mathematical model and heuristic algorithm

Mathematical Model Heuristic Algorithm Average Number [ Number of | Max Tour
Problem Set |Problem Stock Tour Time(s) Stock Tour Time(s) | Difference (%) | Difference (%) | of Parts | Stations Limit
40 18 4 40 18 0%
41 17 4 41 17 0%
42 16 4 42 16 0%
1 43 15 4 43 15 10 0% 4,6% 8 6 6
46 14 4 47 14 2%
55 13 12 63 13 15%
65 12 7 75 12 15%
46 18 5 46 18 0%
47 17 5 47 17 0%
2 49 16 9 49 16 10 0% 1,1% 8 6 6
51 15 8 52 15 2%
54 14 7 56 14 4%
1 44 19 4 44 19 0%
45 18 4 45 18 0%
3 48 17 6 48 17 10 0% 0,0% 8 6 6
51 16 8 51 16 0%
57 15 7 57 15 0%
50 19 4 50 19 0%
51 18 5 51 18 0%
4 10 3,9% 8 6 6
54 17 6 56 17 4%
59 16 29 66 16 12%
29 12 4 29 12 0%
31 11 4 32 11 3%
5 10 11,4% 8 6 6
35 10 6 43 10 23%
41 9 6 49 9 20%
63 22 8 63 22 0%
65 21 15 65 21 0%
67 20 58 69 20 3%
1 71 19 60 71 19 10 0% 4,4% 8 6 6
75 18 16 80 18 7%
81 17 31 90 17 11%
91 16 931 100 16 10%
54 20 4 54 20 0%
2 56 19 35 56 19 10 0% 0,4% s 6 6
59 18 12 59 18 0%
62 17 25 63 17 2%
81 25 5 81 25 0%
82 24 6 82 24 0%
2 83 23 6 83 23 0%
3 85 22 25 85 22 10 0% 1% 8 6 6
88 21 10 89 21 1%
91 20 9 92 20 1%
95 19 25 98 19 3%
87 26 4 87 26 0%
88 25 5 88 25 0%
4 89 24 11 89 24 10 0% 2% 8 6 6
92 23 404 93 23 1%
96 22 526 104 22 8%
106 29 323 106 29 0%
s 107 28 4410 107 28 10 0% NA g s 6
NA 108 27 NA
114 26
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80 28 8 80 28 0%
81 27 41 81 27 0%
83 26
85 25 10 NA 6 8
NA 90 24 NA
95 23
107 22
104 31 69 104 31 0%
106 30 556 106 30 0%
108 29 10 NA 6 8
NA 111 28 NA
118 27
102 33 72 102 33 0%
103 32 189 103 32 0%
104 31 257 104 31 0%
106 30 10 NA 6 8
NA 109 29 NA
112 28
121 27
112 33 6 112 33 0%
113 32 47 113 32 0%
115 31 10 NA 6 8
NA 120 30 NA
128 29
119 36
120 35
NA 121 34 10 NA NA 6 8
124 33
128 32
130 31
NA 286 73 10 NA NA 52 15
299 72
345 95
NA 349 94 10 NA NA 52 20
352 93
266 77 59 266 77 0%
267 76
268 75
269 74 10 NA 52 15
NA NA
270 73
272 72
287 71
NA 472 90 10 NA NA 52 20
329 95
330 94
NA 331 53 10 NA NA 52 20
334 92
336 91
354 90
738 164 10 738 164 0%
743 163 10 NA 52 30
NA NA
765 162
577 150
578 149
579 148
NA 580 147 10 NA NA 52 30
582 146
584 145
615 144
NA 856 173 10 NA NA 52 30
NA 843 17 10 NA NA 52 30
846 176
638 153
639 152
NA 640 151 10 NA NA 52 30
643 150
646 149
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496 157
NA 497 156 10 NA NA 152 52 30
499 155
518 157
519 156
520 155
NA 21 154 10 NA NA 152 52 30
522 153
524 152
526 151
547 150
506 159
507 158
NA 508 157 10 NA NA 152 52 30
509 156
511 155
513 154
527 162
528 161
529 160
NA 532 159 10 NA NA 152 52 30
536 158
539 157
553 156
565 155
490 156
491 155
492 154
NA 493 153 10 NA NA 152 52 30
494 152
495 151
497 150
501 149
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CHAPTER 6

CONCLUSION

In this thesis, we address traffic and assembly line side stock problems of
manufacturing companies. Most of the studies regarding the assembly line focus
on line balancing, facility layout and lot sizing problems. Part feeding at assembly
line has been addressed by relatively fewer studies. Especially, there are very few
multi-objective studies. Contemporary assembly plants have high product
diversity and high model variability. This makes the design of the material
delivery policy a more complex task. Increasing the number of vehicles could be a
solution to control stock level but this leads to the in-plant traffic problem.
Therefore, a balance should be maintained between stock and traffic level to

overcome this challenge.

In our study, a bi-objective mathematical model has been developed to create a
loading and transportation schedule for each vehicle driver. We show that the
mathematical model fails to solve large size problems. Then, we develop a

heuristic algorithm to overcome the drawbacks of the mathematical model.

Based on the tested datasets, we observed that our heuristic algorithm can solve
the problem size with 152 parts and 52 stations in less than 10 seconds. The
heuristic algorithm not only achieves to solve problems in a very reasonable time
limit but also generates a point with the same number of tours for all
nondominated points of tested datasets. The failure of the mathematical model to
solve the big size problems makes it impossible to compare the results of these

problems.
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To the best of our knowledge, our study is the first study that attempts to generate
all nondominated solutions. With its time efficiency, good results and easy to
apply structure, the heuristic algorithm could improve the part feeding policy of

manufacturing plants.

Further studies could incorporate different objectives, which are mostly desired to
be optimized, such as minimizing maximum stock, minimizing number of
forklifts. Also, the dynamic part feeding approach could be used to dynamically
determine the demand under predictable cases which enables to determine
demand without use of time slots. Results of heuristic method could be good

starting points for evolutionary heuristic methods.

In our model, we try to minimize total number of baskets at stations. We are
attaching same importance to each basket type. In other words, each basket type
has a weight value of 1. On the other hand, the area occupied by each basket type
could be different from each other and this could be a critical concern. In that
case, the objective function used in this thesis could be converted to total space
occupied by baskets at stations by using different weights for each basket type. In
that case, the current version of the heuristic algorithm should also be modified

accordingly. This can be a further research topic.
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APPENDIX A

Parameters for pseudo code

D,  demand forbaskettypec atstation s €S attimeslot t

D,, demandof partm atstationse S attimeslot t

A, residualof part matstations € S at timeslot t

ctour,, cumulative number of toursrequired until timeslot t for basket typec

tour,  number of toursrequired for basket type c to deliver the demand of the timeslott
v, capacity of forklift for basket typec

r number of tourscan be madein each timeslot
n number of timeslots
Stepl
|
2.2 Dy
calculateall :ctour, = ==L vceC,l=2,..,n
Vv

C

forall(tin2..n)

{
if (ctour, >=r*(t—1))then

{

the problem isinfeasible

}

else{
gotostep?2

¥
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Step 2
forall (tinl1..6, min parts, sin stations)

{
A\nst = Roundup(Dmst) - Dmst

{
forall (tinl..6)

{
forall(linl..6)

{
If (A = Dygqrpy) then
{
Dms(l+1) =0
Amst = Anst - Dms(l+1)

{
Else

{
Dms(l+1) = Dms(l+l) - Anst
}

b
gotostep3
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Step3

ZS I:)cs(t)
calculateall:tourtC -S5€> VceC,seS5,t=2,...,n
Y
c

If( g max{ > tourtc—r,O}:O)

t=1 ceC
{
gotostep4
b
Else
{

Find the most violating time slot:break the tie by selecting the highest timeslot
Find moving cost of all toursin this timeslot:break the tie by selecting minumum
basket type index

Move this tour and update the state

repeat the step3

¥

Step 4
If(any tour gainis possible)
{
Find moving cost of all tours:break the tie by selecting highest time slot and minumum
basket type index
Move this tour and update the state
repeat thestep 4
}
Else

break
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APPENDIX B

Problems
Problem Set 1/ Problem 1
Time Slot 1 Time Slot 2
Parts/Stations 1 2 3 4 5 6 1 2 3 4 5 6
1 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2
7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2 0,8 0,0 0,0
Time Slot 3 Time Slot 4
1 2 3 4 5 6 1 2 3 4 5 6
0,0 0,0 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,1
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,1 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,9 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Time Slot 5 Time Slot 6
1 2 3 4 5 6 1 2 3 4 5 6
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 4,9 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,1
0,0 0,0 0,0 0,0 0,0 0,0 0,0 4,2 0,0 4,0 1,5 45
0,0 2,4 0,0 0,0 0,0 1,9 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,9 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Time Slot 7 Basket
1 2 3 4 5 6 Type
0,0 0,0 0,0 0,0 0,0 0,0 1
0,0 0,0 1,5 0,0 0,0 0,0 1
0,0 0,0 4,7 0,0 0,0 0,0 2
0,5 0,0 0,0 0,0 0,0 0,0 2
0,0 0,0 0,0 0,0 0,0 0,0 3
0,0 1,6 0,0 0,0 2,5 0,0 3
0,0 0,0 0,0 0,0 0,0 0,0 4
0,0 0,0 0,0 0,0 0,0 0,0 4
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