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ABSTRACT 

 

 

CONDITION BASED MAINTENANCE POLICIES 

FOR A CRITICAL UNIT 

 

Kablan, Ercan 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Yasemin Serin 

 

December 2018, 86 pages 

 

This thesis analyses a maintenance optimization problem of a critical unit used in 

military systems. It is aimed to model the stochastic deterioration behavior of these 

units and develop some maintenance policies. For this purpose, periodic inspection 

times which maximize expected time to failure are proposed to be able to provide 

preventive maintenance before failures. 

In the scope of this work, resistance measurements from the field are gathered for ten 

months. First, functions representing the increase in resistance are obtained. Then they 

are transformed into the deterioration condition of the unit. Then optimal maintenance 

policies depending on these conditions are found for various objectives using Markov 

models. 

 

Keywords: Condition Based Maintenance, Markovian Deterioration, Markov 

Decision Process 
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ÖZ 

 

 

KRİTİK BİR BİRİM İÇİN DURUMA BAĞLI BAKIM POLİTİKALARI 

 

Kablan, Ercan 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin Serin 

 

Aralık 2018, 86 sayfa 

 

Bu tez, askeri sistemlerde kullanılan kritik bir birimin bakım optimizasyon problemini 

analiz etmektedir. Bu çalışmada bu birimlerin rassal bozulma davranışlarını 

modellemek ve bazı bakım politikaları geliştirmek amaçlanmıştır. Arızadan önce 

önleyici bakım faaliyetlerinin uygulanabilmesini sağlamak adına, arızaya kadar süreyi 

en çoklayan periyodik gözlemler önerilmiştir.  

Bu çalışma kapsamında, on ay boyunca sahadan direnç ölçümleri alınmıştır. Önce, 

dirençteki artışı temsil eden fonksiyonlar elde edilmiştir. Sonra bu fonksiyonlar 

ünitenin “bozulma durumu”na dönüştürülmüştür. Daha sonra eskime sürecinin 

Markov modelleri kullanarak ve değişik amaçlar altında duruma bağlı en iyi bakım 

politikaları bulunmuştur.   

 

Anahtar kelimeler: Duruma Bağlı Bakım, Markov Bozulma, Markov Karar Süreci 
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CHAPTER 1 

 

 

INTRODUCTION AND LITERATURE SURVEY 

 

 

 

1.1. Introduction 

Maintenance optimization is a significant discipline to preserve functionality of 

systems or to apply timely and cost effective solutions in case of failures. Lack of 

enough effort for this field causes cost of detecting design problems after fielding to 

consume very high portion of budgets and correspondingly dramatic decrease in 

customer satisfaction. This fact and some other related factors like rising support 

costs, necessities to reduce logistic footprint and financial risks make organizations to 

think more about their designs.  

There are some general policies in maintenance optimization to determine 

maintenance tasks and intervals. Generally, Preventive Maintenance (PM) and 

Condition Based Maintenance (CBM) methodologies are used to eliminate 

undesirable effects of failures. PM is a scheduled maintenance task, while CBM 

involves monitoring the condition of the system and deciding to apply a maintenance 

task according to its condition. Gillespie (2015) defines Condition Based Maintenance 

as a way of determining an on-condition activity for the equipment that ages according 

to planned operational profile. In other words, it means monitoring a deteriorating 

equipment and taking suitable actions at decision points. Shin and Jun (2015) sort 

benefits of adopting CBM methodology as foreseeing forthcoming failures, 

effectively managing maintenance policies and avoiding risks that may cause costly 

problems.  
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Nowadays, we see various technologies becoming parts of design solutions to allow 

condition monitoring effectively. It may even be possible to remotely monitor instant 

conditions of systems that operate very far away. In this study, we evaluate the 

preventive maintenance suggestion of a critical unit from Condition Based 

Maintenance point of view due to high failure frequency. 

Problem studied in this thesis is related with Condition Based Maintenance 

optimization of a radar. A critical unit of a radar, called slip ring, is inspected and a 

maintenance policy for these units is tried to be established. Slip rings provide wireless 

transmission of information for rotational movements and deteriorates with daily 

usage. Since it is a critical unit of radars frequent failure is not acceptable not only for 

system owners but also for the company. Therefore, it is aimed in this study to be able 

to offer some improvements by assessment of natural deterioration of slip rings and 

optimizing maintenance policies. 

In the literature, Markovian behaviors of these aging equipment are studied 

intensively. Stochastic modeling of deterioration problems is established for various 

infrastructures and systems. Generally, estimation of transition probabilities and 

determination of inspection or replacement intervals form the main constituents of 

these problems studied in the literature. Some additional aspects like life cycle cost 

considerations, maintenance policies under available actions and different objectives 

and constraints are incorporated into these problems. Within the scope of this thesis, 

we try to estimate transition probabilities and determine optimum maintenance 

policies with different objective function considerations. 

Following part briefly describes the context of chapters:  

In Chapter 1, purpose of the study is outlined along with the introduction part and 

short technical information is given about the unit under inspection. It also discusses 

some literature review related to study conducted. Main results of some studies are 

given. 
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Chapter 2 explains the problem that is subject to this work in detail and describes 

some linear and nonlinear models which are used to investigate details of the problem.  

Chapter 3 explains the analysis methods, computational results and interpretations. It 

also contains parametric analysis because of the probabilistic nature of the problem. 

Chapter 4 is the final chapter of this thesis and states conclusions and advises some 

future works that can be part of further researches.  

1.2. Literature Survey 

There exist many studies about stochastic deterioration modeling of systems in the 

literature. In this field, Condition Based Maintenance models are quite common and 

can be classified according to many factors and some steps similar to our work 

generally take part in these studies.  

Condition Based Optimization models can be studied for both discrete state and 

continuous state deterioration problems. This classification made by Alaswad and 

Xiang (2017) is further detailed in one level and classified for single and multi-unit 

systems. In this thesis, a discrete state deterioration problem for a single unit is 

considered. Park et al. (2011) develop an equipment modeling which is a continuous 

time Markov Chain for three types of units. Due to ease of computations, they convert 

it to discrete time Markov chain by uniformization. Kallen and Noortwijk (2005) 

apply a continuous time Markov process for bridges in Netherlands to determine an 

optimized periodic inspection time. They discuss the benefit of using continuous time 

Markov process instead of discrete time Markov process which neglects aging 

property. Main concern of this study is modeling the uncertain time between state 

transitions with a probability distribution with increasing failure rate. 

Alaswad and Xiang (2017) go through literature and summarize Condition Based 

Maintenance optimization studies for modeling stochastic deterioration problems. 

They review these models based on various factors like inspection frequency, 

inspection quality, optimization criteria etc. Some problems also differ in method of 

estimating transition probabilities.  
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Models can differ in inspection frequency. Time between consecutive inspections 

effect maintenance policies. Observed systems can be monitored continuously, 

periodically or non-periodically. Ye et al. (2015) propose a dynamic policy that 

generates optimal inspect/replace decisions and inspection interval for the next 

observation. In that regard, we want to propose optimal and non-periodic inspection 

intervals which have to be adjusted in accordance with the observed conditions.  

CBM optimization models can be solved under various optimization criteria such as 

cost minimization, downtime minimization and multi objective. We intend to find 

optimal maintenance policies for different objective function considerations including 

cost minimization and downtime minimization. Ferreira et al. (2009) propose a 

decision model which simultaneously satisfy decision maker’s two different objective 

to determine optimal inspection intervals. They use delay time analysis for that 

purpose. Masoumi (2014) uses cost minimization to obtain optimal policies. Jin 

(2016) benefits from stochastic approaches to conduct a material selection process. 

He uses life cycle cost estimates as decision criteria. Three types of sewer pipes are 

used as alternatives and three life cycle stages and relevant costs are assessed to make 

an evaluation for best alternative. Kurt and Kharoufeh (2010) work on a system to 

satisfy maintenance optimization with a number of repair constraint which sets a limit 

for this system to be repaired before replacement. They try to minimize total cost of 

operation and maintenance activities. They also work on cumulative number of repairs 

effect on the system’s condition. As the number of repair increases, system gets more 

prone to failures. 

Aging factor can also be incorporated into these studies. Commonly as good as new 

and as bad as old assumptions are used for analyzing data. Intermediate assumptions 

are also studied in the literature. Do et al. (2015) suggest a hybrid maintenance policy 

that includes both imperfect and perfect maintenance activities. At the first part of 

their study they evaluate the advantages and disadvantages of imperfect repairs. Chan 

and Asgarpoor (2006) try to find maintenance policies by assuming that repair of 

random failures do not bring the component’s state to an as good as new condition 

while repairs due to deterioration make the component as good as new. For our case, 
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we assume that maintenance activities bring observed units to as good as new 

condition.  

Different decision variables can take place such as inspection intervals, deterioration 

limits, maintenance policies etc. Chan and Asgarpoor (2006) use Markov Decision 

Process to find optimum maintenance policies and calculate mean time to preventive 

maintenance. Their model consist of both random failures and failures due to aging. 

Butt et al. (1994) use dynamic programming and try to eliminate maintenance and 

repair options. Park et al. (2011) apply a dynamic programming model for a modified 

semi Markov chain to find optimal inspection intervals. They develop a semi Markov 

chain which adopts arbitrarily distributed times between events and propose optimal 

inspection times. Wirahadikusumah et al. (1998) also uses nonlinear regression 

approach and dynamic programming to assess condition of sewer systems and develop 

maintenance policies. Kallen and Noortwijk (2005) propose optimal inspection 

intervals in accordance with expected costs. Masoumi (2014) aim to find optimal 

maintenance policies for bridges in Turkey and Jiang et al. (1988) want to obtain 

transition probabilities. In our case we use actions to apply at decision points and 

expected first passage times as decision variables. 

Some differences in the data used for transition matrix estimation are observed. Jin 

(2016) states main challenge of his study as lack of historical data which is essential 

for a condition deterioration curve and with the help of relevant associations’ data 

empirical curves that range for life cycle of pipes are used. In contrast to that, in order 

to reflect the real situation for a system that operates in a dynamic environment 

collection of real records are considered as important. Jiang et al. (1988) calculate 

transition probabilities with the help of a historical data. From those records, number 

of total transitions for system level or subcomponent level is calculated from one state 

to another and used for estimation of transition probabilities. 

We see that condition based monitoring is very common for the infrastructure 

elements since maintaining the existing structure is more cost effective than building 

new ones. Masoumi (2014) studies different failure mechanisms and corresponding 

bridge elements and considers maintenance optimization for every single element. 
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Estimated transition probabilities and determined actions are used in Markov Decision 

Process to obtain optimal policies. At the end of the study he creates a bridge 

management system to give management capability to authorized bodies in Turkey. 

Masoumi and Akgul (2012) also study part of this bridge management system before. 

Masoumi (2014) suggests a prioritization approach to determine criticality of the 

maintenance actions and satisfy the financial constraints. 

We also reviewed papers which consists different transition matrix estimation 

methods. In this content, when it gets difficult to obtain sufficient data to use in 

Markov processes, some empirical methods are used to create curves that represents 

natural deterioration behaviors. It is better to evaluate transition probabilities with real 

data but challenges may lie in to obtain or use real data to evaluate transition 

probabilities. Following studies include instructions about transition probabilities 

generation methods. 

Jiang et al. (1988) proposes a Markov chain model to predict bridge deteriorations. 

They use both percentage prediction model and nonlinear regression model for 

estimation of transition probabilities. Since, Markov Chain requires time homogeneity 

of transition probabilities, nonlinear regression approach is also used to satisfy the 

time homogeneity property.  

Butt et al. (1994) propose a methodology to create an efficient pavement management 

system. They apply a dynamic programming approach that uses Markovian transition 

probabilities estimated by nonlinear regression approach as input to and try to 

eliminate some maintenance and repair options within constraints. Recommended 

output is then evaluated to stay within the budget limits and prioritize the options with 

the help of cost/benefit analysis. 

Masoumi (2014) and Jin (2016) also use nonlinear regression approach to estimate 

transition probabilities. Generally, curves that represents deterioration process and 

provides condition states are used in this approach. For this part, we find a curve which 

fits to directly observable information of deterioration behavior and then convert this 

information into the states.  



7 

  

 

Madanat et al. (1995) also work on transition probabilities generation methods, 

Poisson regression model and ordered probit model, in two different studies and 

proposes them as viable options with case studies.  

First study of Madanat et al. (May 1995) is about application of Poisson regression 

model to generate transition probabilities of an infrastructure. During the development 

of a discrete incremental deterioration model, it is assumed that number of state 

transitions over an inspection period is the dependent variable of Poisson regression 

model. Within this framework Poisson probability mass function is used to specify 

that dependent variable. Stated shortcoming of nonlinear regression models, affecting 

variables, also integrated into the problem. A deterministic exponential equation is 

used to model these variables in order to satisfy non-negativity of dependent variable 

and Maximum Likelihood Estimation technique used to estimate unknown 

parameters. Once the parameters are estimated, transition probabilities are calculated.  

In another study, Madanat et al. (June 1995) develop a model for transition 

probabilities to be estimated by using Ordered Probit Model which is used in social 

sciences to incorporate hidden variables or characteristics into models. Main 

assumption is a hidden continuous random variable that exists behind the 

unobservable part of the process. This establishment is helpful to overcome latency 

drawback of nonlinear regression approach since the deterioration itself is not directly 

measurable. Both Poisson regression approach and ordered probit model are assessed 

to be useful for modeling high number of state options because number of drops in 

condition states will not be meaningful for low number of states. 

Baik et al. (2006) also use Ordered Probit Model to estimate transition probabilities 

for a wastewater management system. They discuss the suitability of this method 

against the nonlinear optimization approach and explain the need of data collection 

for explanatory variables. 

Since the deterioration process is probabilistic in nature, some of the reviewed papers 

consist of consistency evaluations. Jin (2016) suggests an uncertainty evaluation 

approach to avoid wrong estimates of deterioration and performs simulations to 

choose most cost-effective option at the end of the study. Jiang et al. (1998) conduct 



8 

  

 

chi-squared goodness of fit tests to check whether real values are close to predicted 

values or not. 

In this thesis, steps that are similar to given literature above and required to be able to 

fit a Markovian model for a natural deterioration process are followed. Different than 

the previous studies different optimization models are used and optimal policies are 

compared.  
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CHAPTER 2 

 

 

PROBLEM DEFINITION AND MODELING 

 

 

 

2.1. Problem Definition 

In this thesis, Condition Based Maintenance (CBM) method is our concern to analyze 

a real life problem of a defense company. Operational life of military systems requires 

high readiness values. Especially very high availability requirements are projected 

into contracts to ensure that operational duties are achieved with high success rates. 

For that reason, some parts of the systems may require more care. 

We explain the problem under consideration in detail in this section. The units 

observed for the study belong to air defense radars of a defense company. Radar is a 

detection system that determines the distance and location of objects with the help of 

radio waves. As the definition implies, the word “Radar” stands for “Radio Detection 

and Ranging” and radars provide air and surface surveillance and target identification 

within various ranges. Therefore, they hold an important place for national security.  

Complexity of radars may increase in parallel to design requirements. They constitute 

many subsystems, assemblies and equipment. Among these, we observe a critical unit 

of an air defense radar. The units that are observed in radars are slip rings and their 

functionality is essential for continuous operation. Generally, they are used in radar 

systems, periscopes, vehicles etc. In the present case, a slip ring serves as a bridge 

between the two important subsystems of the radars: antennas and processing 

sections; they take the responsibility of communication of these major subsystems.  
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Antenna subsystem has the 360° scanning capability and signals gathered by the 

antennas flow down to be processed with the help of these slip rings. In other words, 

slip rings provide contactless transmission between antenna and processing section of 

the radar. They provide contactless transmission for various voltages and even for 

high rotational speeds. Pictures of a slip ring and its pins can be seen in Appendix A.  

Rotation of slip rings means the action of turning about its center in accordance with 

the movement of the antenna. According to data gathered from the field, operating 

hours of these slip rings are in terms of number of rotations. Depending on the rotating 

speed of the antenna, slip rings make 30 rotations per minute and according to this 

usage profile numbers of rotations are transformed into operating hours of radars.  

Each radar under consideration has one slip ring whose deterioration has to be 

monitored. In every slip ring, there are yellow rings called pins and fixed brushes 

whose brush wires enter between the canals of yellow rings. This electrical activity 

creates a natural resistance at the pins of slip rings and resistance of these pins effects 

radar functionality. Environmental conditions and time of use increase the resistance 

of the pins, as a result it results in the loss of communication which is a very critical 

problem.  

Only resistance of a single pin reaching a critical level causes a communication error. 

Therefore, life of a slip ring is equivalent to life of a pin. So, we can think that the pins 

of a slip ring work in series configuration and reliability of the slip rings is the 

reliability of the least reliable pin.   

Every slip ring consists of 7 pins1 and an unused slip ring embodies pins with 0.5 Ω 

(ohm) resistances. While these slip rings are in operation, pin resistances randomly 

increase due to operating conditions. But rapid increase in pin resistances is not an 

expected situation. However, for our case very early failures are in picture and this is 

a critical problem for the mission profiles that have very high strategic importance. 

                                                      
1 Slip rings contain more than 90 pins but in the scope of this study 7 pins that cause failures are 

evaluated. 
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We observe 9 failures in 10 months. This is a major reason to look for a solution for 

this problem. Table 1 shows the all failures occurred during the observation period.  

Table 1 Failure Records of Slip Rings 

Slip Ring Rotations 

Corresponding 

Operating 

Hour 

Failure 

Notice 

9 1,486,800 826 1st Failure 

10 2,107,800 1,171 1st Failure 

11 2,165,400 1,203 1st Failure 

11 1,348,200 749 2nd Failure 

13 1,274,400 708 1st Failure 

13 2,557,800 1,421 2nd Failure 

19 1,303,202 724 1st Failure 

19 1,146,600 637 2nd Failure 

20 2,884,860 1,603 1st Failure 

An unused slip ring embodies pins with 0.5 ohm resistances. As the operational life 

begins, pin resistance starts increasing. These slip rings are planned to be operational 

with a requirement of 30 rotations per minute which corresponds to approximately 

8333 hours of operation without maintenance. According to preventive maintenance 

proposal of the producer, a slip ring would need a lubrication of pins at every 15 

million rotations. This implies 4 or 5 years between consecutive lubrication periods. 

However, compelling operational life or design problems may prevent them to operate 

as planned. Generally, this problem causes dramatic increase of costs for the 

utilization stages of radars because of long service life demand of users.  

As the operation time increases, equipment wear-out becomes inevitable and if 

required precautions are not taken, customer satisfaction and critical military 

operations suffer from this. It is aimed to prevent failures of the radar due to fact that 

long downtimes affect availability. It is interesting to note that original equipment 

manufacturer of this unit recommends a preventive maintenance period which equals 

to approximately fifteen times of observed average failure time. 
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Preventive maintenance of slip rings involves lubrication of pins and brushes with a 

special type of grease to smooth rotation, control the heat and prevent increased 

resistances of pins. It is not only applied at predefined periods but also at the time of 

slip rings failures. Since the failure of this unit is very undesirable, a subcontractor 

field technician is assigned to make periodic resistance measurements of the pins. 

Thus, pin resistances are measured once a month with a multimeter or an ohm meter. 

The producers of slip rings offer a service life that requires low maintenance needs. 

Radars comprising such units have to be useful very long times without any 

intervention. In parallel with this assumption, it is proposed to apply a preventive 

maintenance for every 15 million rotations. However, currently the monitoring 

frequency is increased to collect data, 4 radars and 8 slip rings are observed and 

resistance measurements are collected. Normally 4 slip rings are operational for 4 

radars and other slip rings are used as spares. Radars under consideration operate in 

South East of Turkey; exact locations are not given due to confidentiality. In here, we 

want to say radars operate at the climatically same environment. 

Importance of early intervention before failures is another reason to study this 

problem. A failure takes 3 or 4 days to retain the radars back in operation since we 

intervene after failures and cause some waiting times. However, if a sound condition 

monitoring is implemented, it will only take few hours to keep radars in operation 

with an as good as new state. After maintenance, slip rings are assumed to be as good 

as a new unit, because offered preventive maintenance returns resistance values to 

new unit conditions. As the number of preventive maintenances increases, the 

assumption of returning to an unused slip ring’s condition may be unrealistic because 

of the aging and preventive maintenance intervals may decrease. But this issue is not 

included in the scope of this study. 

Since support strategies of these radars do not constitute an effective Condition Based 

Maintenance policy, the units could be intervened after the failures. During the 

observation period it took 3-4 days to recover from failures. Therefore, we aim to 

reduce downtimes of radars. 
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In this thesis, we 

i.  modeled the stochastic deterioration behavior of the slip rings,  

ii.  fitted a Markov model, 

iii.  developed some control policies to optimize the long run costs or availability 

defined in several measures. 

2.2. Condition Definition 

Throughout the thesis study, every month resistance measurements are collected from 

4 radars and estimated values like transition probabilities, policies are updated. Before 

the final analysis period, there exists a 10-month data collection period that can be 

thought as preliminary work or preparation period of the thesis.  

Radars are placed at remote points and difficult to reach frequently. On the other hand, 

slip rings do not provide information about their conditions by remote monitoring; 

only a physical check can show the amount of actual deterioration. For that reason, 

we could only collect limited data about the conditions and failure times of these slip 

rings. 

From the expert opinion and from the resistance data, we observed that the resistance 

of a pin is non-decreasing, mostly increasing in time (rotation). Our aim is to fit a 

Markov model to this deterioration behavior of the pins. Since we have few data points 

to evaluate deterioration process for each radar separately, we aim to use data that 

comes from separate radars as if it comes from a single source. For this purpose, we 

want to check if the slip rings are similar. Correspondingly we want to check if the 

pins are similar. With the limited number of observations on the resistance 

measurements of the pins, it is not possible to perform any test homogeneity of the 

lifetime distributions of the pins. Rather, we simply check the most appropriate 

distribution for each pin resistance and check how close these distributions are.  
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Due to operation restrictions and costs we could collect pin resistances once a month 

for the 10-month observation period. In order to use the collected data in estimation 

of transition probabilities, we use a life data analysis software, Weibull ++, to check 

lifetime distributions of seven pins separately. Since the operation conditions, mission 

profiles and external factors like temperature, vibration etc. are assumed to be 

common for radars, we intended to see lifetime distributions and mean life 

calculations of each pin and using them we decide their similarity in terms of 

deterioration behavior.  

In order to use data from all radars together in estimation of transition probabilities 

and check the appropriateness of our assumption, we use a life data analysis software 

which is named Weibull++. 

Table 2 Weibull ++ Results 

Pin 
Proposed Lifetime 

Distribution 
Parameters 

Mean Life 

(Hours) 

1-2 Lognormal 
Mean: 7.2372 

Std: 0.4687 
1552 

4-5 Lognormal 
Mean: 7.2105 

Std: 0.3798 
1455 

7-8 

Weibull – 2 Parameter 
Beta: 5.0094 

Eta: 1563.1167 
1435 

Lognormal 
Mean: 7.2804 

Std: 0.3353 
1536 

10-11 Lognormal 
Mean: 7.1339 

Std: 0.3630 
1339 

13-14 Lognormal 
Mean: 7.2105 

Std: 0.3798 
1455 

16-17 Lognormal 
Mean: 7.1436 

Std: 0.4339 
1391 

19-20 Lognormal 
Mean: 7.1436 

Std: 0.4339 
1391 

 

Table 2 shows the lifetime distributions of different pins. We assume that distributions 

suggested by Weibull++ are similar enough and that these pins are identical. The slip 

ring resistances that are the maxima of 7 pin resistances will also be identical.  
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Next, we model the “deterioration” behavior of slip rings and then estimate the 

corresponding Markovian transition probabilities. To model the “deterioration” 

process, we prefer to use the data monitoring the maximum of the pin resistances 

which represents the slip ring deterioration rather than modeling individual pin 

resistances. This approach allows us to put data on top of each other and provides 

more data points.   

Figure 1 shows all measurements for a slip ring used in the radars under no 

maintenance. It consists of inspection hours and measured resistances that correspond 

to condition states according to our condition state classification. Last inspection 

shows failure of this unit. Depending on the amount of data collected this analysis 

could be conducted for individual slip rings as well.  

 

Figure 1 Resistances for an Individual Slip Ring (SN: 11) 
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The slip ring resistance is found to be between 30 Ω and up to 200 Ω when it has 

failed. That’s why slip ring resistance levels of 30 and above is defined as failure 

thresholds. As the base case, 3 (condition) states based on the resistance of a slip ring 

are defined as given in Table 3. We also use a 4 state classification given in Table 4 

to evaluate effect of increasing the number of states. State classifications are made 

intuitively. 

Table 3 Condition State Classification for 3-State Case 

State Slip Ring Resistance (Ω) 

1 0-5 

2  5-25 

3  >25 

Table 4 Condition State Classification for 4-State Case 

State Slip Ring Resistance (Ω) 

1 0-3  

2  3-16  

3 16-25 

4 >25  

At that point we define condition states according to resistance levels of slip rings. 

They are classified according to highest pin resistance measured. We define state 

spaces as 

 S = {As good as new (1), Up (2), Down (3)} for the 3 state case, 

 S = {As good as new (1), Up (2), Degraded (3), Down (4)} for the 4 state case. 

In here, we can state once more that slip ring resistance is actually the maximum of 

resistances of the 7 pins in that slip ring. 
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2.3. Modeling 

In order to analyze and optimize maintenance policies of sling rings Markov Processes 

are used. A base case and some other variances in the name of parametric analysis are 

evaluated. 

Let stochastic variable X(t) represent the condition of a slip ring at time t and we have 

discrete state space S = {As good as new (1), Up (2), Down (3)} as defined before. 

Since our maintenance action brings radars back to as good as new state and future 

condition states are assumed to depend on only present states for identical pins, we 

model deterioration of pins as a Markov Chain. In other words, pin resistances 

increase arbitrarily and they do not depend on history. Figure 2 describes the order of 

methodology used in this thesis. 

     

Figure 2 Methodology 

2.3.1. Curve Fitting Model 

The observed slip ring resistances can be seen in Figure 3. Points above threshold 

value (30 ohm) which is shown as a red line on the graph correspond to 9 slip ring 

failures. This figure is the graphical representation of complete data.  

Do the sensitivity analysis

Find first passage times

Find the optimal maintenance policies

Estimate the transition matrix for condition states

Transform resistances to condition states

Fit a curve to increase in resistances

Collect resistance data
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Figure 3 Observed Behavior of Slip Ring Resistances 

According to state classifications given in Table 3 and Table 4 resistance values are 

converted to the condition states. We fit curves to both observed resistances and the 

corresponding states with respect to time t. We define R(t) as the resistance fit and 

S(t) as the state fit of a slip ring at time t.  

We need these functions to estimate the transition matrix of the Markovian model that 

represents the state behavior if no interference is applied. It should represent the 

natural deterioration behavior of the slip rings. We expect a non-decreasing resistance 

fit with respect to time. Various functions like exponential, polynomial, power etc. 

are tried for those fits.  
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Goodness of these fits is measured using R2, the coefficient of determination, and 

Root Mean Square Error. Since this is a single variable fit, these measures are 

sufficient. Besides, we have very few data points that is discouraging to conduct a 

detailed statistical analysis. 

Table 5 Measurement Data 

Slip 

Ring 

Serial 

Pin Rotation 
Operating 

Hour 
Resistance 

Cond. 

State 

17 10-11 55,800 31 0.7 1 

15 4-5 176,400 98 0.8 1 

11 19-20 626,400 348 18.5 2 

19 1-2 649,800 361 3.3 1 

19 7-8 1,146,600 637 57.2 3 

11 19-20 1,202,400 668 19.2 2 

11 13-14 1,348,200 749 160.2 3 

10 13-14 1,463,400 813 15.7 2 

9 16-17 1,486,800 826 49.7 3 

13-2 7-8 1,557,000 865 3.5 1 

10 19-20 2,107,800 1,171 196 3 

20 13-14 2,392,200 1,329 18.5 2 

13 7-8 2,557,800 1,421 35 3 

17 19-20 2,678,400 1,488 2.5 1 

20 4-5 2,884,860 1,603 78 3 

Problem is analyzed with 3 condition states as the base case. Maximum values of 

resistance measurements and corresponding condition states with observation times 

are partially given in Table 5. Operating hour column is created from a simple 

conversion of number of rotations as explained before.  

2.3.1.1. Fit to Observations 

According to data, we use models given in Table 6 to find the best fits. We evaluate 

two options for curve fitting. Since we use single variable regression models, we try 

to check suitability of the model with R-square and Root Mean Square Error Measures 

which shows the difference between actual and estimated data.  
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Table 6 shows models providing highest measures for resistance fit alternative. As 

can be seen in Table 6, R2 values are low. The best fits in that sense, Gaussian with 2 

terms, give an undesirable behavior; the fitted curves do not have monotone behavior 

as we expect. The best fits can be seen in Figure 4 and Figure 5. 

 Table 6 Types of Models and Goodness of Fit Results 3-State 

Root Mean Square Error (RMSE) measures how much error there is between two data 

sets. 

Figure 4 shows the Gaussian model for state fit which seems applicable in contrast to 

other evaluated models.  

 

Figure 4 Gaussian Model for State Fit 

 

Model Data R-Square 
Root Mean 

Square Error 

Gaussian with 2 terms 

Condition State 

versus Operating 

Time 

S(t) 

0.4111 0.7220 

Sum of Sine with 2 terms 0.4065 0.7248 

Fourier with 2 terms 0.4031 0.7269 

Polynomial 4th Degree 0.4016 0.7160 

Power 0.3550 0.7098 

Exponential 0.3161 0.7309 

Gaussian with 2 terms 

Resistance versus 

Operating Time 

R(t) 

0.8174 23.4137 

Sum of Sine with 2 terms 0.4331 41.2532 

Fourier with 2 terms 0.3508 44,1439 

Polynomial 4th Degree 0.3222 44.3747 

Power 0.2314 45.1201 

Exponential 0.1753 46.7374 
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Figure 5 shows the Gaussian model for resistance fit which seems applicable in 

contrast to other evaluated models.  

 

Figure 5 Gaussian Model for Resistance Fit 

We observe similar results for the 4 state case of the problem. Table 7 shows models 

providing highest measures. 

Table 7 Types of Models and Goodness of Fit Results 4-State 

 

 

 

Model Data R-Square 
Root Mean 

Square Error 

Gaussian with 2 terms 

Condition State 

versus Operating 

Time 

S(t) 

0.4959 0.9955 

Sum of Sine with 2 terms 0.4128 1.0743 

Fourier with 2 terms 0.4139 1.0733 

Polynomial 4th Degree 0.4139 1.0559 

Power 0.3789 1.0380 

Exponential 0.3131 1.0915 

Gaussian with 2 terms 

Resistance versus 

Operating Time 

R(t) 

0.8174 23.4137 

Sum of Sine with 2 terms 0.4331 41.2532 

Fourier with 2 terms 0.3508 44.1439 

Polynomial 4th Degree 0.3222 44.3747 

Power 0.2314 45.1201 

Exponential 0.1753 46.7374 
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As a solution we try to smooth the data by taking averages over the slip rings. In this 

case, we only fit curves for average resistances for the following reason: converting 

resistances to condition states causes some information loss about the slip rings. When 

we use averages as observations, number of observations decreases to 8 which does 

not seem to be sufficient for a limited response. Instead, corresponding condition 

states are determined from the fitted resistances at every time point. 

2.3.1.2. Fit to Averages 

In this section, we find a function that will represent the behavior of slip rings in other 

words, deterioration of resistances. Based on the mean life observation of slip rings, 

we bring together the measurements of each slip ring and try curve fitting. Since first 

failure times of these units are ranging from 637 to 1603 hours, the data cause our 

curve to have some fluctuations which may cause misrepresentation. This non-

monotone behavior does not represent increasing resistance/deterioration of a slip ring 

well. 

Therefore, we look at this part with averages of 200 hours of resistance, as well. This 

approach restricts us to study with less data points but provides higher R-square 

measures. Table 10 shows average resistances. 

Table 8 200 Hours Resistance Averages 

Time Interval 

(Hour) 

Average 

Resistance 

Condition 

State 

(3 State) 

Condition 

State 

(4 State) 

0-200 0.62 1 1 

200-400 3.10 1 2 

400-600 1.58 1 1 

600-800 63.22 3 4 

800-1000 22.97 2 3 

1000-1200 98.40 3 4 

1200-1400 93.75 3 4 

1400-1600 38.50 3 4 
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According to data in Table 8, we check goodness of fits for the same models used in 

fit to observations section. Table 9 shows the fitting results for resistance fit that is 

both applicable for 3 and 4 state cases. As stated before we do not apply curve fitting 

for operating time versus state data. 

Table 9 Types of Models and Goodness of Fit Results 3-State 

Model Data R-square 

Power 

Resistance versus 

Operating Time 

0.7822 

Polynomial 4th Degree 0.7710 

Gaussian with 1 term 0.7281 

Exponential 0.7061 

Fourier N/A 

Sum of Sine N/A 

In consideration of above assessments, we pick Power model for average resistances 

and continue to analysis process explained in Figure 2. Figure 6 shows the Power 

model for both 3 state and 4 state resistance fits. 

 

Figure 6 Power Fit – R(t) 

From the fitting, coefficients for the Power function are obtained as 

R(t) = 9x10−7t2.5016                                               (2.1) 
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According to Power fitting function Table 10 shows the time increments and 

corresponding condition states. Then, we move to next step, “estimate the transition 

matrix” with these results. All models that are used in this section are given in 

Appendix. 

Table 10 Condition States for Time Increments 

Operating 

Time 
𝐑(𝐭) = 𝟗𝐱𝟏𝟎−𝟕𝐭𝟐.𝟓𝟎𝟏𝟔 

Condition 

State (3 

State) 

Condition 

State (4 

State) 

200 0.51 1 1 

400 2.91 1 1 

600 8.02 1 1 

800 16.47 2 3 

1000 28.78 3 4 

1200 45.41 3 4 

1400 66.77 3 4 

1600 93.25 3 4 

2.3.2. Markov Chain Model 

Let X(t) be the condition of the slip ring at time t, X(t) in S = {1, 2, 3}. Here we use 

the fact that the resistances are non-decreasing over time and assume that slip ring 

condition state may increase more than one state. Under this setting, the transition 

matrix is an upper triangular matrix as in (2.2) if not interfered.  So, for a 3 state chain, 

there are 3 transition probabilities to estimate. Under do nothing action p33 equals one. 

P =  [

p11 p12 1 − p11 − p12

0 p22 1 − p22

0 0 p33

]      (2.2) 

The estimation of these probabilities is performed in two steps: 

i. Fit a curve to the deterioration of the resistance of a slip ring over time 

(described in the previous section) 

ii. Estimate the transition probabilities that produce closest expected states to that 

curve 
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Along with the fitted function, the Markov Chain model forms the objective function 

of a nonlinear regression approach to estimate the transition probabilities. The initial 

probability distribution over states I(0)  and transition matrix Pij(t)  are the main 

constituents of this model. Estimating the probability distribution over states by 

multiplying the initial state vector and power of transition matrix is known as a 

Markovian property used in the estimation process. 

Let I(t) be the initial probability distribution at time t and let P(t)=[ pij(t) ] be the t 

step transition matrix of the process. Then we have 

I(t) = I(O) x Pt       (2.3) 

and the expected state at time t under P is  

E(X(t), P ) = ∑ ∑  j P{ X(t) = j ǀ X(0) = i }P{X(0) = i}j∈Si∈S  

= ∑ ∑  j pij P{X(0) = i}j∈Si∈S  

= I(t)x R = I(O) x Pt x R                  (2.4) 

where R is the transpose of state vector [1, 2, 3].  

We estimate the transition probabilities in (2.2) so that total “distance” between the 

state obtained from the fitted curve and expected value of the state from Markov chain 

model is minimized. Minimum time increment that the inspections are performed in 

data is 200 hours and the last inspection is at 1600. Hence, we need Pt, t=1, 2, …, 8 to 

construct (2.4). Maximum number of matrix power is simply the division of last 

inspection time by 200 hours of time increment.  
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The model to give the unknown transition probabilities (decision variables of the 

model) pij is 

Minimize ∑ |Y(t) − E[X(t), P)]|8
t=1                             (2.5) 

Subject to 

0 ≤ pij ≤ 1                   (2.6) 

where 

Y(t) is the condition state at time t obtained from fitted function,  

E[X(t), P)] is the expected value of the condition state as in time t given in (2.4).  

2.3.3. Optimization with Markov Decision Process 

Markov Decision Process (MDP) is a tool to select the appropriate action at value of 

the observed state of a Markovian process so that an objective is achieved in the long 

run. Let X(t) be the state of the process/slip ring at time t taking values from the state 

space S = {As good as new (1), Up (2), Down (3)}. Suppose we observe the state of 

the process at every period t (at every 200 hours). We can either i) “do nothing” or ii) 

“maintain” depending on the state of the process. We call A = { do nothing (0), 

maintain (1) } the action set. If do nothing action is applied then X(t) evolves 

according to the transition matrix P(do nothing) = [ pij(0) ] estimated from (2-5)-(2.6). 

If maintain action is applied then the states improve according to a different transition 

matrix P(maintain) = [ pij (1)]. We assume various forms for P(maintain) in 

computations. 

The following linear programming formulation is used to obtain the optimal steady 

state probabilities, and equivalently, the optimal policy with respect to a linear 

objective function: 
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Minimize ∑ ∑ ciaπia
A
a∈Ai∈S                      (2.7) 

Subject to 

∑ πjaa∈A − ∑ ∑ πiapij(a) = 0      j ∈a∈Ai∈S S                            (2.8) 

∑ ∑ πia = 1a∈Ai∈S                           (2.9) 

πia ≥ 0, i ∈ S,       a ∈ A                (2.10) 

where the decision variables 

πia = lim
t→∞

P {X(t) = i, A(t) = a}  

and the parameters 

cia is the expected cost of taking action a in state i, 

pij(a) is the transition probability from state i to state j under action a, 

are used. 

It is well known that, due to the coefficient matrix in (2.8)-(2-9) there is a deterministic 

optimal policy obtained by  

lim
t→∞

P {A(t) = a| X(t) = i} =
πia

∑ πiaa∈A
 

                                     = {
1 if πia > 0 
0 otherwise

  

A policy gives which action to use at each state. Optimal policies naturally differ with 

respect to the objective functions. We used several optimization criteria in this study: 

 Minimize long run average cost: ∑ ∑ ciaπiaa∈Ai∈S  

 Maximize / minimize long run probability of up or down states:  ∑ πiaa∈A   

 Maximize first passage time from up states to a down state  



28 

  

 

The cost quantities cia in (2.7) are difficult to measure because maintenance is really 

cheap except the travel costs. Failure on the other hand is disastrous and long 

downtimes may cause catastrophic results. 

In MDP methodology, usually objective functions that are linear functions of the 

steady state probabilities are employed as extensions of above linear program. In the 

present study, we also used the maximization of the expected first passage time to 

failure state. For a given transition matrix P=[pij], expected first passage times μij 

time from state i to state j can be computed by solving the following system of linear 

equations: 

μij = 1 + ∑ p
ik

 μkjk≠j
𝑘∈𝑆

   i, j ∈ S   (2.11) 

However, when the policy is unknown, expected first passage times are not linear 

functions of the unknown steady state probabilities of the linear program. We can 

rewrite equation (2.11) in terms of πia = lim
t→∞

P {X(t) = i, A(t) = a} as follows: 

μiF = 1 +

[
 
 
 
 

∑∑ lim
t→∞

P{A(t) = a│X(t) = i} pij(a)

a∈Aj≠F
j∈S ]

 
 
 
 

μjF 

μiF = 1 +

[
 
 
 
 

∑∑
πia

∑πia
a∈Aj≠F

j∈S

pij(a)

]
 
 
 
 

μjF 
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Hence, the following nonlinear model gives the steady state probabilities that 

maximize first passage times to failure state from any state i:  

Maximize μiF                       (2.12) 

Subject to 

μiF = 1 + [∑ ∑
πia

∑πia
a∈Aj≠F

j∈S

pij(a)] μjF                               (2.13) 

(2.8), (2.9), and (2.10). 

The optimal solution of this MDP formulation is expected to produce randomized 

policies, i.e.,  πia is positive for more than one action.  These policies are difficult to 

apply in general.   

In order to produce deterministic optimal policies, we introduce the following 

constraints: 

∏ πia = 0                                    ∀ia∈A                (2.14) 
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CHAPTER 3 

 

 

COMPUTATIONAL RESULTS 

 

 

 

The maintenance of the slip rings is quite straight forward requiring simple 

lubrication. In fact, such an activity renews any pin to a state that is as good as new.  

When visited, all the pins are lubricated leaving a slip ring that is also as good as new. 

The difficulty of monitoring and maintaining is in their remoteness. However, we 

need the probability distribution after one transition. We can use various assumptions 

for that. We assumed that all states evolve as state 1 evolves under do nothing action 

in one period. 

We first give the results for base case with S = {As good as new (1), Up (2), Down 

(3)}. We then conduct parametric analysis for two different deterioration assumptions 

after a “Maintain” action is performed. For this case, we keep the first row of transition 

matrix under do nothing action as they estimated. 

We use the following two transition matrices under maintain (1) action as two separate 

cases: 

P(1) =  [

p11(0) p12(0) p13(0)
α β 1 − α − β
α β 1 − α − β

]           (3.1) 

 

P(1) =  [
p11(0) p12(0) p13(0)

α 1 − α 0
β 1 − β 0

]              (3.2) 
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We also give the results for 4 state case with S = {As good as new (1), Up (2), 

Degraded (3), Down (4)} and conduct parametric analysis, as well. At this time, we 

assume same parameters for all state transitions. 

P(2) =  [

α β 1 − α − β 0
α β 1 − α − β 0
α β 1 − α − β 0
α β 1 − α − β 0

]                  (3.3) 

3.1. Base Case: 3 Condition States 

Matrix structure under “Do Nothing” action consists of 3 states and probabilities for 

the upper triangular part which implies it is not probable to observe an improvement 

on the measured resistances and radar will stay in state 3 unless an intervention is 

made or an action is taken. 

P(0) =  [
p11 p12 1 − p11 − p12

0 p22 1 − p22

0 0 1
] 

Open form of objective function that belongs to nonlinear minimization model can be 

written as Y(t) − E(X(t), P) =  Y(t)–  I(0). P(t). R and running of this optimization 

model gives us transition probabilities.  

As described in the previous chapter 

 I(0) is initial state vector and in this thesis it is always assumed as I(0) = [1 0 0].  

 P (t) is the tth power of the transition matrix. In this problem, we took the powers 

of transition matrix from 1 to 8 and R is the transpose of the state vector.  
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Close and open forms of nonlinear optimization model are given below: 

Min ∑|Y(t) − E[(X(t), P)]|

8

t=1

 

0 ≤ pij ≤ 1 

Min |Y(1) − E[(X(1), P)]| + |Y(2) − E[X(2), P)]| + |Y(3) − E[X(3), P)]| + |Y(4) −

E[X(4), P)]| + |Y(5) − E[X(5), P)]| + |Y(6) − E[X(6), P)]| + |Y(7) − E[X(7), P)]| + 

|Y(8) − E[X(8), P)]| 

0 ≤ p11 ≤ 1 

0 ≤ p12 ≤ 1 

0 ≤ p22 ≤ 1 

This is equivalent to 

Minimize ∣ 1 − (3 − 2x(1) − x(2))) + (1 − (−2x(1)2 − x(1)x(2) − x(2)x(3) +

3)) + (1 − (−2x(1)3 − x(2)x(3)2 − x(1)2x(2) − x(1)x(2)x(3) + 3)) + (2 −

(−2x(1)4 − x(2)x(1)3 − x(2)x(1)2x(3) − x(2)x(1)x(3)2 − x(2)x(3)3 + 3)) +

(3 − (−2x(1)5 − x(2)x(1)4 − x(2)x(1)3x(3) − x(2)x(1)2x(3)2 −

x(2)x(1)x(3)3 − x(2)x(3)4 + 3)) + (3 − (−2x(1)6 − x(2)x(1)5 −

x(2)x(1)4x(3) − x(2)x(1)3x(3)2 − x(2)x(1)2x(3)3 − x(2)x(1)x(3)4 −

x(2)x(3)5 + 3)) + (3 − (−2x(1)7 − x(2)x(1)6 − x(2)x(1)5x(3) −

x(2)x(1)4x(3)2 − x(2)x(1)3x(3)3x(3)3 − x(2)x(1)2x(3)4 − x(2)x(1)x(3)5 −

x(2)x(3)6 + 3)) + (3 − (−2x(1)8 − x(2)x(1)7 − x(2)x(1)6x(3) −

x(2)x(1)5x(3)2 − x(2)x(1)4x(3)3 − x(2)x(1)3x(3)4 − x(2)x(1)2x(3)5 −

x(2)x(1)x(3)6 + x(2)x(3)7 + 3)) ∣  

x(1) + x(2) < 1 

0 < x(3) < 1 
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In this formulation X(1), X(2) and X(3) correspond to p11, p12 and p22 respectively. In 

order to solve this model a Matlab code 2 is used. Matlab code scans all possible 

regions according to possible (0, 1) range for unknown variables and perform lots of 

iterations to search for minimum objective function value. At first 10 initial points are 

generated and transition probabilities and corresponding matrices are obtained. Then 

more points are generated and same results are found to search an optimal point.  

Determined matrix structure under do nothing action consists of 3 unknown 

probabilities and they are generated as p11=0.8136, p12=0.1038 and p22=0.5730 with 

the minimum objective function value of 1.11e-10 which yields a transition probability 

matrix: 

P(0) =  [
0.8136 0.1038 0.0826

0 0.5730 0.4270
0 0 1

] 

Under maintain action it is assumed that rows of transition probability matrix is equal 

to each other and radar wears out with the probabilities of first row of the transition 

matrix under do nothing action. 

P(1) =  [
0.8136 0.1038 0.0826
0.8136 0.1038 0.0826
0.8136 0.1038 0.0826

] 

Estimated probabilities yield a condition state for every time increment. Open form 

of objective function given in (2.5) is used to check the performance of prediction. x, 

y and z in the model corresponds to unknown probabilities respectively P11, P12 and 

P22 and Table 11 shows related points generated from fitting function and Markov 

Chain model. 

 

 

 

                                                      
2 All Matlab codes used for solving linear and nonlinear optimization models are given in APPENDIX 

section of the thesis. 
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Table 11 3-State Results 

t R(t) S(t) E(X(t),P) 

200 0.51 1 1.26900 

400 2.91 1 1.58309 

600 8.02 1 1.84650 

800 16.47 2 2.06145 

1000 28.78 3 2.23639 

1200 45.41 3 2.37873 

1400 66.77 3 2.49453 

1600 93.25 3 2.58875 

We use Table 11 to see how close the estimated points are. Generated points and 

comparison can be shown in a graph, as well. Figure 7 shows the differences between 

Y(t) and E[X(t),P)] along with the observed states which are transformed from 

average resistances. 

 

Figure 7 State Estimations 
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Second step of the optimization problem is Markov Decision Process. Model given in 

objective function (2.7) and constraints (2.8), (2.9) and (2.10) is used to obtain steady 

state probabilities and policies. This is our first model for the base case. 

Objective function is determined as minimizing operation costs which are comprised 

of replacement cost of 1000 and failure cost of 10000. But these cost values are used 

for evaluation purposes. They do not reflect real values. Three states and 2 possible 

actions create a cost matrix of 

 C = [
0 1000
0 1000

10000 1000
]  

Open form of optimization problem is written as: 

Min 1000 Π11+1000Π21 +10000Π30 +1000Π31 

Subject to 

Π10+ Π11+Π20 +Π21 +Π30 +Π31=1 

(1-P11(0)) Π10+(1- P11(1)) Π11- Π20P21(0)- Π21P21(1)- Π30P31(0)- Π31P31(1)=0 

-P12(0) Π10-P12(1) Π11+(1-P22(0))Π20+(1-P22(1)) Π21- Π30P32(0)- Π31P32(1)=0 

-P13(0) Π10-P13(1) Π11-P23(0) Π20-P23(1) Π21+(1-P33(0)) Π30+(1-P33(1)) Π31=0 

Πia ≥ 0 i=1, 2, 3 and a=0, 1  

Optimal steady state probabilities 

Πia = [

0.6545 0

0.1956 0

0 0.1499

] 

determine optimal maintenance policy as do nothing in states 1 and 2 and maintain in 

state 3. 
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Next, expected first passage times are calculated based on the optimal policy. 

Transition probability under the above optimal policy is  

P =  [
0.8136 0.1038 0.0826

0 0.5730 0.4270
0.8136 0.1038 0.0826

] 

First passage times to failure state 3 is calculated from the state 1 and state 2 with the 

following equations: 

μ1F = 1 + P11μ1F + P12μ2F     (3.4) 

μ2F = 1 + P21μ1F + P22μ2F     (3.5) 

 Expected first passage time to failure state from state 1: 6.67 transition periods 

 Expected first passage time to failure state from state 2: 2.34 transition periods 

Results mean that failure time from state 1 under policy obtained with above MDP 

model is approximately is 1330 hours and failure time from state 2 is 460 hours in 

accordance with the transition of 200 hours.  

In this regard, our policy is very similar to company’s current approach against 

unexpected failures of slip rings. We intervene the units upon failures and expect a 

failure time from state 1 to be approximately 1330 hours. Then we can suggest 

checking these units with state 1 before 1300 hours of operation and in the same 

manner units with state 2 before 400 hours of operation. We think that this intervals 

suit the recent situation well. But we are aware of the need for sufficient data in order 

to make more accurate suggestions. 

We next solve the second model which maximizes first passage time to failure state 

from state 1.  

In here, μiF is the expected first passage time to failure state from starting state i. After 

incorporating transition probabilities under do nothing and maintenance actions the 

model becomes 
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Maximize μ1F 

Subject to 

π10 + π11 + π20 + π21 + π30 + π31 = 1 

π10(1 − P11(0)) + π11(1 − P11(1)) − π20P21(0) − π21P21(1) − π30P31(0)

− π31P31(1) = 0 

−π10P12(0) − π11P12(1) + π20(1 − P22(0)) + π21(1 − P22(1)) − π30P32(0)

− π31P32(1) = 0 

−π10P13(0) − π11P13(1) − π20P23(0) − π21P23(1) + π30(1 − P33(0)) + π31(1

− P33(1)) = 0 

πia ≥ 0       ∀ a, i 

μ1F = 1 + [
π10

π10+π11
P11(0) +

π11

π10+π11
P11(1)] μ1F + [

π10

π10+π11
P12(0) +

π11

π10+π11
P12(1)] μ2F                     (3.6) 

μ2F = 1 + [
π20

π20+π21
P21(0) +

π21

π20+π21
P21(1)] μ1F + [

π20

π20+π21
P22(0) +

π21

π20+π21
P22(1)] μ2F                  (3.7) 

μiF ≥ 0        for i = 1 and 2 

The nonlinear equations (3.6) and (3.7) of the model can be re-written as 

0.1864μ1F − 0.1038μ2F = 1 

0.4270π20μ2F + 0.8962π21μ2F − 0.8136π21μ1F − π20 − π21 = 0 
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The optimal solution is 

π10 = 0.3387 

π11 = 0.3387 

π21 = 0.086 

π30 = 0.1673 

π31 = 0.0688 

μ1F = 12.1065 

μ2F = 12.1065 

which is highly randomized. Randomized policies are very difficult to implement. In 

order to avoid this, we add the following constraints to obtain deterministic optimal 

policies: 

π10π11 = 0 

π20π21 = 0 

π30π31 = 0 

Then the optimal solution is 

π10 = 0.8136 

π21 = 0.1038 

π31 = 0.0826 

μ1F = 12.1065 

μ2F = 12.1065 

which uses do nothing action in state 1 and maintain in states 2 and 3. If we adopt this 

policy, we can suggest higher inspection frequency with higher costs. 
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Our third model given below finds maintenance policies with the objective of 

minimizing the steady state probability of failure state. 

Min Π30+ Π31 

Subject to 

Π10+ Π11+Π20 +Π21 +Π30 +Π31=1 

(1-P11(0)) Π10+(1- P11(1)) Π11- Π20P21(0)- Π21P21(1)- Π30P31(0)- Π31P31(1)=0 

-P12(0) Π10-P12(1) Π11+(1-P22(0)) Π20+(1-P22(1)) Π21- Π30P32(0)- Π31P32(1)=0 

-P13(0) Π10-P13(1) Π11-P23(0) Π20-P23(1) Π21+(1-P33(0)) Π30+(1-P33(1)) Π31=0 

Πia ≥ 0 i=1, 2, 3 and a=0, 1 

Steady state probabilities are 

π10 = 0.8136 

π21 = 0.1038 

π31 = 0.0826 

which uses do nothing action in state 1 and maintain in states 2 and 3. 
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Table 12 Comparison of Optimization Modes for the Base Case 

 Min∑∑ciaπia

A

a∈Ai∈S

 Max μ13 Min Π30+ Π31 

Cost 149.95 186.4 186.4 

Π30+ Π31 0.1499 0.0826 0.0826 

μ13 6.67 transitions 12.11 transitions 12.11 transitions 

Policy 
1: DN 

2: DN 

3: Maintain 

1: DN 

2: Maintain 

3: Maintain 

1: DN 

2: Maintain 

3: Maintain 

Table 12 summarizes the results of optimization models. We obtain different policies 

for different objectives. It is clear from the table that if it is desirable to have longer 

expected first passage times to failure state, higher costs have to be accepted.  

Since the transition probability matrix under maintain action is an assumption, a 

parametric analysis is conducted to examine sensitivity of the problem.  

3.1.1. Case 1 

Two different matrix structures are developed for parametric analysis. Main purpose 

of this section is to see how suitable maintenance policies change in accordance with 

the transition probabilities. Case 1 is analyzed with the following transition matrix:  

P(1) =  [

0.8136 0.1038 0.0826
α β 1 − α − β
α β 1 − α − β

] 
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Matlab code to obtain steady state probabilities for base case is slightly modified for 

case 1 and α and β are increased with 0.1 increments to see differences in maintenance 

policies. Table 13 shows some of the solutions. 

Let Policy A be maintain in 3 only (states 1 and 2 are not observed), 

 Policy B be do nothing in 2, maintain in 3 (state 1 is not observed), 

 Policy C be do nothing in 1 and 2, maintain in 3.  

Table 13 Case 1 Results 

α β π10 π11 π20 π21 π30 π31 Policy 

0 0           1.0000 A 

0 0.1     0.1898     0.8102 B 

0 0.2     0.3190     0.6810 B 

0 0.4     0.4837     0.5163 B 

0 0.6     0.5842     0.4158 B 

0 0.7     0.6211     0.3789 B 

0 0.8     0.6520     0.3480 B 

0 0.9     0.6782     0.3218 B 

0 1     0.7008     0.2992 B 

0.1 0 0.3218   0.0782     0.5999 C 

0.1 0.1 0.2822   0.1918     0.5260 C 

0.1 0.2 0.2512   0.2804     0.4683 C 

0.1 0.3 0.2264   0.3516     0.4220 C 

0.1 0.4 0.2060   0.4099     0.3841 C 

0.1 0.5 0.1890   0.4586     0.3524 C 

Results are illustrated in Figure 8. We assumed increasing deterioration probabilities 

represented by α > β > 1 − α − β. 
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Figure 8 Changes in Optimal Policy wrt and  for Case 1 

Figure 8 shows that for every value of αexcept zero we obtain policy C which we do 

nothing for states 1 and 2 and perform a maintenance for state 3. If α =0 meaning it is 

not possible to completely renew the unit after maintenance, the optimal policy 

eliminates state 1. Optimal policy does not  change although our assumption is not 

valid for some regions of the graph. 

3.1.2. Case 2  

Another case in the name of parametric analysis, Case 2, is analyzed with the 

following matrix structure.  

P(1) =  [
0.8136 0.1038 0.0826

α 1 − α 0
β 1 − β 0

] 
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In this case it is assumed that if we perform a replacement while in state 2, we will 

not see state 3 at the next inspection. Same rule applies for state 3, too. We use Matlab 

to obtain steady state probabilities. Table 14 shows some of the solutions. Policy B 

and C are the same policies found in case 1. Different from the case 1, we find policy 

D. 

Let Policy B be do nothing in state 2, maintain in 1 only (states 1 is not observed), 

 Policy C be do nothing in 1 and 2, maintain in 3, 

 Policy D be do nothing in 1, maintain in 2 and 3.  

Table 14 Case 2 Results 

α β π10 π11 π20 π21 π30 π31 Policy 

0 0     0.7008     0.2992 B 

0 0.1 0.1421   0.5929     0.2649 C 

0 1 0.6995   0.1701     0.1304 C 

0.1 0     0.7008     0.2992 B 

0.1 0.1 0.1421   0.5929     0.2649 C 

0.1 0.8 0.6308   0.2222     0.1470 C 

0.1 0.9 0.6672   0.1946     0.1382 C 

0.2 0     0.7008     0.2992 B 

0.2 0.1 0.1421   0.5929     0.2649 C 

0.3 0.7 0.5895   0.2536     0.1570 C 

0.4 0     0.7008     0.2992 B 

0.4 0.1 0.1421   0.5929     0.2649 C 

0.5 0.4 0.4230   0.3798     0.1971 C 

0.5 0.5 0.4872   0.3311     0.1816 C 

0.6 0 0.7177     0.2230   0.0593 D 

0.6 0.1 0.1421   0.5929     0.2649 C 

0.6 0.3 0.3469   0.4376     0.2155 C 

0.6 0.4 0.4230   0.3798     0.1971 C 

0.7 0 0.7414     0.1974   0.0612 D 

0.8 0.1 0.7661     0.1706   0.0633 D 

1 0 0.7880     0.1469   0.0651 D 
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Figure 9 shows the results. Here, we assume both α and β to be greater than 0.5 in 

order to satisfy p21>p22 and p31>p32. For this case three different maintenance policies 

are in picture, as well. Our expectation for α and β shows that policy C is optimal. For 

this policy we do nothing for states 1 and 2 and maintain for state 3. If β is less than 

0.5, p32 will be greater than p31 and this may imply policy D for the values of α greater 

than 0.6. Policy D makes us to do nothing for state 1 and perform a maintenance for 

states 2 and 3 since we have more probability for seeing the slip rings in state 2 after 

a maintenance for slip rings at state 3. This means being more precautious than the 

policy C. 

 

Figure 9 Changes in Optimal Policy wrt and  for Case 2 
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3.2. 4-State Case 

In this case, one more condition state is added to condition state classification and 

same data given in Table 5 is used again. Table 15 partially shows the state 

classification according to measured resistances. 

Matrix structure for this case is given below and does not constitute a major difference 

from the case with 3 states. Matrix structure under do nothing action: 

P(0) =  [

P11 P12 P13 1 − P11 − P12 − P13

0 P22 P23 1 − P22 − P23

0 0 P33 1 − P33

0 0 0 1

] 

Condition states are classified in parallel with the new case. 

Table 15 Measurement Data 

Slip 

Ring 

Serial 

Pin Rotation 
Operating 

Hour 

Cond. 

State 
Resistance 

17 10-11 55,800 31 1 0.7 

15 4-5 176,400 98 1 0.8 

11 19-20 626,400 348 3 18.5 

19 1-2 649,800 361 2 3.3 

19 7-8 1,146,600 637 4 57.2 

11 19-20 1,202,400 668 3 19.2 

11 13-14 1,348,200 749 4 160.2 

10 13-14 1,463,400 813 2 15.7 

9 16-17 1,486,800 826 4 49.7 

13-2 7-8 1,557,000 865 2 3.5 

10 19-20 2,107,800 1,171 4 196 

20 13-14 2,392,200 1,329 3 18.5 

13 7-8 2,557,800 1,421 4 35 

17 19-20 2,678,400 1,488 1 2.5 

20 4-5 2,884,860 1,603 4 78 

Next, we use Markov Chain model for determining transition probabilities. As stated 

in the previous cases a nonlinear optimization model is used to estimate unknown 

transition probabilities. Close form of nonlinear optimization model is given below: 
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Min ∑|Y(t) − E[(X(t), P)]|

8

t=1

 

0 ≤ pij ≤ 1 

In this formulation X(1), X(2), X(3), X(4), X(5) and X(6) corresponds to p11, p12, p13, 

p22, p23 and p33 respectively. With initial starting point generation assumption, our 

code tries to scan all possible regions according to possible (0, 1) range for unknown 

variables and perform lots of iterations to search for minimum objective function 

value for 4 state problem structure.  

Transition matrix under do nothing action is obtained as 

P(0) =  [

0.6721 0.2187 0.0568 0.0524
0 0.6036 0.1964 0.2000
0 0 0.5446 0.4554
0 0 0 1

] 

Under maintain action it is assumed that rows of transition probability matrix is equal 

to the first row of do nothing transition matrix. 

P(1) =  [

0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524

] 

Same rule is applied as in the previous cases and transition probabilities and 

corresponding matrix are obtained with the aim of finding an optimum policy. 

Estimated probabilities yield a condition state for every time increment. Open form 

of objective function given in (2.5) is used to check the performance of prediction. 

Table 16 shows related points generated from fitting function and Markov Chain 

model. 
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Table 16 4-State Results 

t R(t) S(t) E(X(t),P) 

200 0.51 1 1.48950 

400 2.91 1 1.79900 

600 8.02 1 2.41330 

800 16.47 3 2.78570 

1000 28.78 4 3.08820 

1200 45.41 4 3.32600 

1400 66.77 4 3.50810 

1600 93.25 4 3.58880 

In order to check the performance of the estimates generated points can again be 

shown in a graph. Figure 10 shows the differences between Y(t) and E[X(t),P)] along 

with the observed states which are transformed from average resistances.  

 

Figure 10 Estimated versus observed states 
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First model of the optimization models is then applied with the same objective 

function and constraints structure given before. As stated before objective function is 

to minimize operation costs which are comprised of replacement cost of 1000 and 

failure cost of 10000 and 4 states and 2 possible actions create a cost matrix below.  

C = [

0 1000
0 1000
0 1000

10000 1000

]  

Open form of the problem is written as: 

Min 1000 Π11+1000Π21 +0Π30 +1000Π31+10000Π40+1000Π41 

Subject to 

Π10+ Π11+Π20 +Π21 +Π30 +Π31+ Π40+ Π41=1 

(1-P11(0)) Π10+(1- P11(1)) Π11- Π20P21(0)- Π21P21(1)- Π30P31(0)- Π31P31(1)- Π40P41(0)- 

Π40P41(1)=0 

-P12(0) Π10-P12(1) Π11+(1-P22(0))Π20+(1-P22(1)) Π21- Π30P32(0)- Π31P32(1)- Π40P42(0)- 

Π40P42(1)=0 

-P13(0) Π10-P13(1) Π11-P23(0) Π20-P23(1) Π21+(1-P33(0)) Π30+(1-P33(1)) Π31- Π40P43(0)- 

Π40P43(1)=0 

-P14(0) Π10-P14(1) Π11-P24(0)Π20-P24(1) Π21- Π30P34(0)- Π31P34(1)+ Π40 (1-P43(0))+Π41 

(1-P43(1))=0 

Πia ≥ 0 i=1, 2, 3, 4 and a= 0, 1 

We find steady state probabilities as 

Πia =

[
 
 
 
 
 
 
 
0.3511

0
0.2882

0
0.1894

0
0

0.1713]
 
 
 
 
 
 
 

 

This policy can be stated as acting upon failures as in the base case.  
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Next, expected first passage times are calculated based on the optimal policy. 

Transition probability matrix is generated from do nothing or maintenance actions 

decisions obtained with MDP. 

P =  [

0.6721 0.2187 0.0568 0.0524
0 0.6036 0.1964 0.2000
0 0 0.5446 0.4554

0.6721 0.2187 0.0568 0.0524

] 

 

μ1F = 1 + P11μ1F + P12μ2F + P13μ3F    (3.6) 

μ2F = 1 + P21μ1F + P22μ2F + P23μ3F    (3.7) 

μ3F = 1 + P31μ1F + P32μ2F + P33μ3F    (3.8) 

We solve the above equations and the results are given below: 

 Expected first passage time to failure state from state 1: 5.84 transition periods 

 Expected first passage time to failure state from state 2: 3.61 transition periods 

 Expected first passage time to failure state from state 3: 2.20 transition periods 

In accordance with the transition period of 200 hours, we convert estimated first 

passage times to operating hours: 

μ1F = 5.84 transitions  1100 hours 

μ2F = 3.61 transitions  700 hours 

μ3F = 2.20 transitions  400 hours 

We can again adjust inspection times of slip rings, if we adopt this policy. In here, we 

can share an important observation. Every constituent for this model except the 

number of states is kept the same with the base case, same policy is obtained but 

expected first passage times estimations get closer to real situation. 
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We next solve our second model which maximizes first passage time to failure state 

from state 1 for the 4 state case.  

Max µ14 

St 

Π10 + Π11 + Π20 + Π21 + Π30 + Π31 + Π40 +Π41 =1 

0.3279 Π10 + 0.3279 Π11 - 0.6721Π21 – 0.6721Π31 – 0.6721Π41=0 

-0,2187Π10 – 0.2187Π11 + 0.3964Π20 + 0.7813Π21 – 0.2187Π31 – 0.2187Π41=0 

-0,05687Π10 – 0.0568Π11 - 0.1964Π20 - 0.0568Π21 + 0.4554Π30 + 0.9432Π31 – 

0.0568Π41 =0 

-0,0524Π10 – 0.0524Π11 - 0.2Π20 - 0.0524Π21 -0.4554Π30 - 0.0524Π31 +0.9476Π41 =0 

0.3279μ1F – 0.2187μ2F – 0.0568μ3F=1 

0.3964μ2F Π20 + 0.7813μ2F Π21 – 0.6721μ1F Π21 – 0.1964μ3F Π20 – 0.0568μ3F Π21 -

Π20 - Π21 = 0 

0.4554μ3F Π30 + 0.9432μ3F Π31 – 0.6721μ1F Π31 – 0.2187μ2F Π31 – Π30 – Π31 =0 

Π10 Π11 =0 

Π20 Π21 =0 

Π30 Π31 =0 

Π40 Π41 =0 

πia ≥ 0, i ∈ S,       a ∈ A 

μiF ≥ 0, i= 1, 2, 3 
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Following steady state probabilities which mean a different policy are obtained: 

π10 = 0.4331 

π20 = 0.3556 

π31 = 0.1064 

π41 = 0.1049 

μ1F = 7.42 

μ2F = 5.17 

μ3F = 5.34 

Optimal policy for this model means doing nothing for state 1 and state 2 and 

maintaining for states 3 and 4. This policy has following transition matrix:  

P =  [

0.6721 0.2187 0.0568 0.0524
0 0.6036 0.1964 0.2000

0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524

] 

If we solve the equations (3.4) and (3.5) we obtain following first passage times as in 

the model for deterministic policy: 

 μ1F = 7.42 transitions  1400 hours 

 μ2F = 5.17 transitions  1000 hours 

 μ3F = 5.34 transitions  1000 hours 

If we adopt this policy, we can suggest higher inspection times but this policy causes 

higher costs. 

Finally, our third model to minimize the probabilities of being in state 4 under do 

nothing and maintain actions gives the following results: 
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Min Π40+ Π41 

Subject to 

(2.8), (2.9) and (2.10) 

Steady state probabilities: 

π10 = 0.6721 

π21 = 0.2187 

π31 = 0.0568 

π41 = 0.0524 

This model gives a different policy from both first and second optimization models. 

We do nothing for state 1 and maintain for the rest.  

This policy yields following transition matrix and expected first passage times: 

P =  [

0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524
0.6721 0.2187 0.0568 0.0524

] 

Expected first passage times: 

 μ1F = 19.08 transitions  3800 hours 

 μ2F = 19.08 transitions  3800 hours 

 μ3F = 19.08 transitions  3800 hours 
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Table 17 summarizes the results of the optimization models solved for 4 state case: 

Table 17 Comparison of Optimization Modes for the 4 State Case 

 Min∑ ∑ciaπia

A

a∈Ai∈S

 Max μ14 Min Π40+ Π41 

Cost 171.28 211.3 327.9 

Π40+ Π41 0.1713 0.1049 0.0524 

μ14 5.84 7.42 19.08 

Policy 

1: DN 
2: DN 
3: DN 
4: Maintain 

1: DN 
2: DN 

3: Maintain 
4: Maintain 

1: DN 
2: Maintain 
3: Maintain 
4: Maintain 

3.2.1. Parametric Analysis – 4-State 

Parametric analysis to see how proposed policies change is performed for the 4 state 

case. Following matrix structure is assumed suitable for this case and Matlab code is 

modified. 

P(1) =  [

α β 1 − α − β 0
α β 1 − α − β 0
α β 1 − α − β 0
α β 1 − α − β 0

] 
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Different combinations imply different policies. Table 18 shows the results partially. 

Let Policy X be maintain in 3 only (states 1, 2 and 3 are not observed), 

 Policy Y be maintain in 2 and 3 (states 1 and 4 are not observed), 

 Policy Z be maintain in 2 only (states 1, 3 and 4 are not observed), 

 Policy W be maintain in 1 and 3 (states 2 and 4 are not observed), 

 Policy V be maintain in 1 and 2 (states 3 and 4 are not observed), 

 Policy U be maintain in 1, 2 and 3 (state 4 is not observed), 

 Policy T be maintain in 1 only (states 2, 3 and 4 are not observed). 

Table 18 Parametric Analysis Results 

α β π10 π11 π20 π21 π30 π31 π40 π41 Policy 

0 0      1.00   X 

0 0.1    0.10  0.90   Y 

0 0.2    0.20  0.80   Y 

0 0.3    0.30  0.70   Y 

0 0.4    0.40  0.60   Y 

0 0.5    0.50  0.50   Y 

0 0.6    0.60  0.40   Y 

0 0.7    0.70  0.30   Y 

0 0.8    0.80  0.20   Y 

0 0.9    0.90  0.10   Y 

0 1    1.00     Z 

0.1 0  0.1    0.90   W 

0.1 0.1  0.1  0.10  0.80   W 

0.1 0.2  0.1  0.20  0.70   W 

0.4 0.5  0,4  0,5  0,1   U 

0.4 0.6  0,4  0,6     V 

0.5 0  0,5    0,5   W 

0.5 0.2  0,5  0,2  0,3   U 

1 0  1       T 
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Lines on Figure 11 show the restrictions α > β > 1 − α − β we assumed. For the 4 

state case, we observe more policies in contrast to base case. Among these policy U 

which means performing a maintenance for state 1, 2 and 3 is optimal. If we do not 

have a chance to see slip rings in state 3 or 4 after a maintenance performed while 

they are in any of the states, then policy V will be optimal. Optimal policy remains 

the same although our assumption is not valid for some regions of the graph as in the 

case 1 of base case. 

 

Figure 11 Changes in Optimal Policy wrt and  with 4 state 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 

4.1. Conclusion  

In this thesis, we evaluate maintenance history of a fielded unit which stochastically 

deteriorates by daily usage and causes a critical failure. Failure records are used and 

lifetime distributions of each pins located inside the observed units are checked to be 

able to observe an identical behavior. We then look for a curve that represents the 

expected behavior of deterioration for all units together. Two different aspects: fit to 

observations and fit to averages are implemented to find the best curve. We make use 

of this curve and solve a nonlinear optimization model to estimate transition 

probabilities of deterioration process.  

In order to prevent undetected failures of units, we benefit from MDP and propose 

maintenance policies under different optimization criteria: cost minimization, long 

run probability minimization of down states and expected first passage time 

maximization. We look for optimal policies consisting of two possible actions: “Do 

nothing” and “Maintain”. We assume different transition matrices under maintain 

actions. Under each setting or policy, we calculate first passage times and determine 

inspection periods accordingly. We evaluate this real-life problem under two state 

classifications: base case and 4 state case. We observe that if we act upon failures and 

keep every factor same for each classification, the results get better with increased 

number of states for the same policies. Detailed state classification increases the 

precision. 

We conduct a parametric analysis to see how policies can change depending upon the 

transition probabilities under maintain action.  
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As a result, we propose to monitor resistance/conditions of the unit closely.  Collecting 

sufficient data, defining models with larger number of states, a condition based 

maintenance will improve the performance of the units significantly.  

4.2. Future work 

It would be beneficial if a more detailed state classification were possible although a 

larger number of observations would be needed. Larger number of states would 

decrease too early or too late maintenance. 

Environmental measurements like temperature, vibration etc. can also be recorded and 

used in resistance fits. Then a proper regression analysis could be performed rather 

than a simple curve fitting.  

The objectives can be considered simultaneously incorporating multi objective 

decision making tools. The trade of between them could be evaluated involving the 

real decision makers of the units.  

In this thesis, units are assumed to be as good as new after repair. However, this may 

not be a realistic assumption for some systems. Maintenance types and restoration 

percentages can be added to the problem studied. 

It is difficult to provide realistic cost measures for this problem. Maintenance action 

is cheap itself but being in a down state can result in disastrous outcomes since it is a 

matter of life. Therefore, cost parameterization can be adopted, as well. 
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APPENDIX A 

 

 

PICTURES OF SLIP RING 

 

 

 

1. A slip ring 

 

Figure 12 Slip Ring Unit of Radar 

2. Pins of a slip ring 

 

Figure 13 Pins of Slip Ring 
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APPENDIX B 

 

 

MATLAB CODES 

 

 

 

1. Matlab code to estimate transition probabilities / base case 

clc; 

clear all; 

tic; 

y=1000;  

options = optimoptions('fmincon','Algorithm','interior-point');  

objective=@(x) abs((1-(3-2*x(1)-x(2)))+(1-(-2*x(1)^2-x(1)*x(2)-x(2)*x(3)+3))+(1-

(-2*x(1)^3-x(2)*x(3)^2- x(1)^2*x(2)-x(1)*x(2)*x(3)+3))+(2-(-2*x(1)^4-

x(2)*x(1)^3-x(2)*x(1)^2*x(3)-x(2)*x(1)*x(3)^2-x(2)*x(3)^3+3))+(3- (-2*x(1)^5-

x(2)*x(1)^4-x(2)*x(1)^3*x(3)-x(2)*x(1)^2*x(3)^2-x(2)*x(1)*x(3)^3-

x(2)*x(3)^4+3))+(3-(-2*x(1)^6-x(2)*x(1)^5-x(2)*x(1)^4*x(3)-x(2)*x(1)^3*x(3)^2-

x(2)*x(1)^2*x(3)^3-x(2)*x(1)*x(3)^4-x(2)*x(3)^5+3))+(3-(-2*x(1)^7-x(2)*x(1)^6-

x(2)*x(1)^5*x(3)-x(2)*x(1)^4*x(3)^2-x(2)*x(1)^3*x(3)^3-x(2)*x(1)^2*x(3)^4-

x(2)*x(1)*x(3)^5-x(2)*x(3)^6+3))+(3- (-2*x(1)^8-x(2)*x(1)^7-x(2)*x(1)^6*x(3)-

x(2)*x(1)^5*x(3)^2-x(2)*x(1)^4*x(3)^3-x(2)*x(1)^3*x(3)^4-x(2)*x(1)^2*x(3)^5-

x(2)*x(1)*x(3)^6+x(2)*x(3)^7+3)));t=1; 

k=[1,1,1]; 

n=[1,1,1]; 

for d1=0:0.25:0.75; 

   for d2=0:0.25:0.75; 

        for d3=0:0.25:0.75;             

for j=2:2:2;  

    for i=1:j; 

        t1=d1+0.25*rand(1); 

        t2=d2+0.25*rand(1);    

             if (t1+t2>1)   

                 break                             

             end            

        t3=d3+0.25*rand(1); 

        x0=[t1,t2,t3]; 

        disp(['Initial guess: ' num2str(x0)]); 

        disp(['Initial objective: ' num2str(objective(x0))]); 

        A= [1,1,0];  

        b= (1); 

        Aeq=[ ]; 



66 

  

 

        beq=[ ]; 

        nonlcon=[ ]; 

        lb=[0 0 0]; 

        ub=[1 1 1]; 

[x,fval,ef,output,lambda,hessian]=fmincon(objective,x0,A,b,Aeq,beq,lb,ub,nonlcon,

options); 

        disp(['Final probabilites: ' num2str(x)]); 

         

            if objective(x)<y; 

                y=objective(x);   

                for l=1:3; 

                    k(t,l)=x(1,l);  

                end 

                for l=1:3; 

                    n(t,l)=x0(1,l);  

                end 

            end 

        disp(['Final objective: ' num2str(objective(x))]); 

        m=[x(1) x(2) 1-x(1)-x(2);0 x(3) 1-x(3); 0 0 1]; 

        disp(m); 

        z(t)=y; 

    end 

    t=t+1; 

    break 

    disp(['Min objective: ' num2str(z(t))]);          

end  

        end 

   end 

end  

disp(['Min of min objectives: ' num2str(y)]); 

toc; 

2. Matlab code to estimate steady state probabilities / base case 

clc; 
clear all; 
tic; 
objectivecoefficients=[0;1000;0;1000;10000;1000]; 
 Aeq= [1 1 1 1 1 1; 0.1864 0.1864 0 -0.8136 0 -0.8136; -0.1038 -0.1038 0.4270 

0.8962 0 -0.1038; -0.0826 -0.0826 -0.4270 -0.0826 0 0.9174]; 
beq=[1;0;0;0]; 
lb=zeros(6,1); 
options = optimoptions('linprog','Algorithm','simplex'); 
[x,fval,exitflag,output,lambda] = 

linprog(objectivecoefficients,[],[],Aeq,beq,lb,[],[],options); 
disp(x); 
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disp(['objective: ' num2str(fval)]); 
toc; 

3. Matlab code to estimate first passage times / base case  

syms x; 
syms y; 
m=[0.8136 0.1038 0.0826;0 0.5730 0.4270;0.8136 0.1038 0.0826]; 

x=1+m(1,1)*x+m(1,2)*y; 
y=1+m(2,1)*x+m(2,2)*y; 
[solx,soly] = solve(x==1+m(1,1)*x+m(1,2)*y,y==1+m(2,1)*x+m(2,2)*y) 

4. Matlab code to estimate steady state probabilities / Parametric case 1 

clc; 
clear all; 
tic; 
objectivecoefficients=[0;1000;0;1000;10000;1000]; 
t=1; 
for a=0:0.1:1 
    for b=0:0.1:(1-a) 
        Aeq= [1 1 1 1 1 1; 0.1864 0.1864 0 -a 0 -a; -0.1038 -0.1038 0.4270 (1-(1-a)) 0 -         

(1-b); -0.0826 -0.0826 -0.4270 0 0 1]; 
        beq=[1;0;0;0]; 
        lb=zeros(6,1); 
        options = optimoptions('linprog','Algorithm','simplex'); 
        [x,fval,exitflag,output,lambda] = 

linprog(objectivecoefficients,[],[],Aeq,beq,lb,[],[],options); 
        disp(x); 
        disp(['objective: ' num2str(fval)]); 
         y=transpose(x); 
            for l=1:6; 
                z(t,l)=y(1,l); 
            end 
          t=t+1; 
     end 
 end 
toc; 
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5. Matlab code to estimate steady state probabilities / Parametric case 2 

clc; 
clear all; 
tic; 
objectivecoefficients=[0;1000;0;1000;10000;1000]; 
t=1; 
for a=0:0.1:1 
    for b=0:0.1:(1-a) 
        Aeq= [1 1 1 1 1 1; 0.1864 0.1864 0 -a 0 -b; -0.1038 -0.1038 0.4270 (1-(1-a)) 0 -

(1-b); -0.0826 -0.0826 -0.4270 0 0 1]; 
        beq=[1;0;0;0]; 
        lb=zeros(6,1); 
        options = optimoptions('linprog','Algorithm','simplex'); 
        [x,fval,exitflag,output,lambda] =    

linprog(objectivecoefficients,[],[],Aeq,beq,lb,[],[],options); 
        disp(x); 
        disp(['objective: ' num2str(fval)]); 
         y=transpose(x); 
            for l=1:6; 
                z(t,l)=y(1,l); 
            end 
          t=t+1; 
     end 
 end 
toc; 

6. Matlab code to estimate transition probabilities / 4 state case: 

clc; 

clear all; 

tic; 

y=1000;  

options = optimoptions('fmincon','Algorithm','interior-point');  

objective = @(x) abs ((1-(4-2*x(2)-x(3)-3*x(1))) + (2-(4-x(2)-x(6)*x(3)-

2*x(1)*x(2)-x(1)*x(3)-3*x(1)^2-2*x(4)*x(2))) + (1-(4-x(6)^2*x(3)-2*x(1)^2*x(2)-

x(1)^2*x(3)-3*x(1)^3-x(4)*x(5)*x(2)-x(5)*x(6)*x(2)-2*x(4)*x(1)*x(2)-

x(5)*x(1)*x(2)-x(6)*x(1)*x(3)-2*x(4)^2*x(2))) + (4-(4-x(6)^3*x(3)-2*x(1)^3*x(2)-

x(1)^3*x(3)-3*x(1)^4-x(4)^2*x(5)*x(2)-x(5)*x(6)^2*x(2)-2*x(4)*x(1)^2*x(2)-

2*x(4)^2*x(1)*x(2)-x(5)*x(1)^2*x(2)-x(6)*x(1)^2*x(3)-x(6)^2*x(1)*x(3)-

x(4)*x(5)*x(6)*x(2)-x(4)*x(5)*x(1)*x(2)-x(5)*x(6)*x(1)*x(2)-2*x(4)^3*x(2))) + 

(3-(4-x(6)^4*x(3)-2*x(1)^4*x(2)-x(1)^4*x(3)-3*x(1)^5-x(4)^3*x(5)*x(2)-

x(5)*x(6)^3*x(2)-2*x(4)*x(1)^3*x(2)-2*x(4)^3*x(1)*x(2)-x(5)*x(1)^3*x(2)-

x(6)*x(1)^3*x(3)-x(6)^3*x(1)*x(3)-2*x(4)^2*x(1)^2*x(2)- x(6)^2*x(1)^2*x(3)-

x(4)*x(5)*x(6)^2*x(2)-x(4)^2*x(5)*x(6)*x(2)-x(4)*x(5)*x(1)^2*x(2)-

x(4)^2*x(5)*x(1)*x(2)-x(5)*x(6)*x(1)^2*x(2)-x(5)*x(6)^2*x(1)*x(2)-

x(4)*x(5)*x(6)*x(1)*x(2)-2*x(4)^4*x(2))) + (4-(4-x(6)^5*x(3)-2*x(1)^5*x(2)-



69 

  

 

x(1)^5*x(3)-3*x(1)^6-x(4)^4*x(5)*x(2)-x(5)*x(6)^4*x(2)-2*x(4)*x(1)^4*x(2)-

2*x(4)^4*x(1)*x(2)-x(5)*x(1)^4*x(2)-x(6)*x(1)^4*x(3)-x(6)^4*x(1)*x(3)-

2*x(4)^2*x(1)^3*x(2)-2*x(4)^3*x(1)^2*x(2)-x(6)^2*x(1)^3*x(3)-

x(6)^3*x(1)^2*x(3)-x(4)*x(5)*x(6)^3*x(2)-x(4)^3*x(5)*x(6)*x(2)-

x(4)*x(5)*x(1)^3*x(2)-x(4)^3*x(5)*x(1)*x(2)-x(5)*x(6)*x(1)^3*x(2)-

x(5)*x(6)^3*x(1)*x(2)-x(4)^2*x(5)*x(6)^2*x(2)-x(4)^2*x(5)*x(1)^2*x(2)-

x(5)*x(6)^2*x(1)^2*x(2)-x(4)*x(5)*x(6)*x(1)^2*x(2)-x(4)*x(5)*x(6)^2*x(1)*x(2)-

x(4)^2*x(5)*x(6)*x(1)*x(2)-2*x(4)^5*x(2))) + (4-(4-x(6)^6*x(3)-2*x(1)^6*x(2)-

x(1)^6*x(3)-3*x(1)^7-x(4)^5*x(5)*x(2)-x(5)*x(6)^5*x(2)-2*x(4)*x(1)^5*x(2)-

2*x(4)^5*x(1)*x(2)-x(5)*x(1)^5*x(2)-x(6)*x(1)^5*x(3)-x(6)^5*x(1)*x(3)-

2*x(4)^2*x(1)^4*x(2)-2*x(4)^3*x(1)^3*x(2)-2*x(4)^4*x(1)^2*x(2)-

x(6)^2*x(1)^4*x(3)-x(6)^3*x(1)^3*x(3)-x(6)^4*x(1)^2*x(3)-

x(4)*x(5)*x(6)^4*x(2)-x(4)^4*x(5)*x(6)*x(2)-x(4)*x(5)*x(1)^4*x(2)-

x(4)^4*x(5)*x(1)*x(2)-x(5)*x(6)*x(1)^4*x(2)-x(5)*x(6)^4*x(1)*x(2)-

x(4)^2*x(5)*x(6)^3*x(2)-x(4)^3*x(5)*x(6)^2*x(2)-x(4)^2*x(5)*x(1)^3*x(2)-

x(4)^3*x(5)*x(1)^2*x(2)-x(5)*x(6)^2*x(1)^3*x(2)-x(5)*x(6)^3*x(1)^2*x(2)-

x(4)*x(5)*x(6)^2*x(1)^2*x(2)-x(4)^2*x(5)*x(6)*x(1)^2*x(2)-

x(4)^2*x(5)*x(6)^2*x(1)*x(2)-x(4)*x(5)*x(6)*x(1)^3*x(2)-

x(4)*x(5)*x(6)^3*x(1)*x(2)-x(4)^3*x(5)*x(6)*x(1)*x(2)-2*x(4)^6*x(2))) + (4-(4-

x(6)^7*x(3)-2*x(1)^7*x(1)-x(1)^7*x(3)-3*x(1)^8-x(4)^6*x(5)*x(2)-

x(5)*x(6)^6*x(2)-2*x(4)*x(1)^6*x(2)-2*x(4)^6*x(1)*x(2)-x(5)*x(1)^6*x(2)-

x(6)*x(1)^6*x(3)-x(6)^6*x(1)*x(3)-2*x(4)^2*x(1)^5*x(2)-2*x(4)^3*x(1)^4*x(2)-

2*x(4)^4*x(1)^3*x(2)-2*x(4)^5*x(1)^2*x(2)-x(6)^2*x(1)^5*x(3)-

x(6)^3*x(1)^4*x(3)-x(6)^4*x(1)^3*x(3)-x(6)^5*x(1)^2*x(3)-

x(4)*x(5)*x(6)^5*x(2)-x(4)^5*x(5)*x(6)*x(2)-x(4)*x(5)*x(1)^5*x(2)-

x(4)^5*x(5)*x(1)*x(2)-x(5)*x(6)*x(1)^5*x(2)-x(5)*x(6)^5*x(1)*x(2)-

x(4)^2*x(5)*x(6)^4*x(2)-x(4)^3*x(5)*x(6)^3*x(2)-x(4)^4*x(5)*x(6)^2*x(2)-

x(4)^2*x(5)*x(1)^4*x(2)-x(4)^3*x(5)*x(1)^3*x(2)-x(4)^4*x(5)*x(1)^2*x(2)-

x(5)*x(6)^2*x(1)^4*x(2)-x(5)*x(6)^3*x(1)^3*x(2)-x(5)*x(6)^4*x(1)^2*x(2)-

x(4)*x(5)*x(6)^2*x(1)^3*x(2)-x(4)*x(5)*x(6)^3*x(1)^2*x(2)-

x(4)^2*x(5)*x(6)*x(1)^3*x(2)-x(4)^2*x(5)*x(6)^3*x(1)*x(2)-

x(4)^3*x(5)*x(6)*x(1)^2*x(2)-x(4)^3*x(5)*x(6)^2*x(1)*x(2)-

x(4)^2*x(5)*x(6)^2*x(1)^2*x(2)-x(4)*x(5)*x(6)*x(1)^4*x(2)-

x(4)*x(5)*x(6)^4*x(1)*x(2)-x(4)^4*x(5)*x(6)*x(1)*x(2)-2*x(4)^7*x(2)))); 

t=1; 

k=[1,1,1,1,1,1]; 

n=[1,1,1,1,1,1]; 

for d1=0:0.25:0.75; 

   for d2=0:0.25:0.75; 

        for d3=0:0.25:0.75; 

            for d4=0:0.25:0.75; 

                for d5=0:0.25:0.75; 

                    for d6=0:0.25:0.75; 

for j=1:1:2;  

    for i=1:j; 

        t1=d1+0.25*rand(1); 

        t2=d2+0.25*rand(1);  
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        t3=d3+0.25*rand(1); 

        t4=d4+0.25*rand(1); 

        t5=d5+0.25*rand(1); 

        t6=d6+0.25*rand(1); 

             if (t1+t2+t3>1)   

                 break                             

             end 

             if (t4+t5>1) 

                 break 

             end     

        x0=[t1,t2,t3,t4,t5,t6]; 

        disp(['Initial guess: ' num2str(x0)]); 

        disp(['Initial objective: ' num2str(objective(x0))]); 

        A=[1,1,1,0,0,0;0,0,0,1,1,0];  

        b=[1;1]; 

        Aeq=[]; 

        beq=[]; 

        nonlcon=[]; 

        lb=[0 0 0 0 0 0]; 

        ub=[1 1 1 1 1 1]; 

[x,fval,ef,output,lambda,hessian]=fmincon(objective,x0,A,b,Aeq,beq,lb,ub,nonlcon,

options); 

        disp(['Final probabilites: ' num2str(x)]); 

            if objective(x)<y; 

                y=objective(x);   

                for l=1:6; 

                    k(t,l)=x(1,l);  

                end 

                for l=1:6; 

                    n(t,l)=x0(1,l);  

                end 

            end 

        disp(['Final objective: ' num2str(objective(x))]); 

        m=[x(1) x(2) x(3) 1-x(1)-x(2)-x(3);0 x(4) x(5) 1-x(4)-x(5); 0 0 x(6) 1-x(6);0 0 0 

1]; 

        disp(m); 

        z(t)=y; 

    end 

    t=t+1; 

    break 

    disp(['Min objective: ' num2str(z(t))]);          

end  

                    end 

                end 

            end 

        end 

   end 
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end  

disp(['Min of min objectives: ' num2str(y)]); 

toc; 

7. Matlab code to estimate steady state probabilities / 4 state case 

clc; 
clear all; 
tic; 
objectivecoefficients=[0;1000;0;1000;1000;1000;10000;1000]; 
Aeq= [1 1 1 1 1 1 1 1; 0.3279 0.3279 0 -0.6721 0 -0.6721 0 -0.6721; -0.2187 -

0.2187 0.3964 0.7813 0 -0.2187 0 -0.2187; -0.0568 -0.0568 -0.1964 -0.0568 0.4554 

0.9432 0 -0.0568;-0.0524 -0.0524 -0.2 -0.0524 -0.4554 -0.0524 0 0.9476]; 

beq=[1;0;0;0;0]; 
lb=zeros(8,1); 
options = optimoptions('linprog','Algorithm','simplex'); 
[x,fval,exitflag,output,lambda] = 

linprog(objectivecoefficients,[],[],Aeq,beq,lb,[],[],options); 
disp(x); 
disp(['objective: ' num2str(fval)]); 
toc; 

8. Matlab code to estimate first passage times / 4 state case  

clc; 

clear all; 

tic; 

syms x; 

syms y; 

syms z; 

m=[0.6721   0.2187  0.0568  0.0524; 0   0.6036  0.1964  0.2;0.6721  0.2187  0.0568  

0.0524;0.6721   0.2187  0.0568  0.0524]; 

x=1+m(1,1)*x+m(1,2)*y+m(1,3)*z; 

y=1+m(2,1)*x+m(2,2)*y+m(2,3)*z; 

z=1+m(3,1)*x+m(3,2)*y+m(3,3)*z; 

[solx,soly,solz] = 

solve(x==1+m(1,1)*x+m(1,2)*y+m(1,3)*z,y==1+m(2,1)*x+m(2,2)*y+m(2,3)*z,z=

=1+m(3,1)*x+m(3,2)*y+m(3,3)*z); 
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9. Matlab code to estimate steady state probabilities / 4 state parametric 

clc; 
clear all; 
tic; 
objectivecoefficients=[0;1000;0;1000;1000;1000;10000;1000]; 
t=1; 
for a=0:0.1:1 
     for b=0:0.1:(1-a) 

Aeq= [1 1 1 1 1 1 1 1; 0.3279 1-a 0 -a 0 -a 0 -a; -0.2187 -b 0.3964 (1-b) 0 -b 0 

-b; -0.0568 -(1-a-b) -0.1964 -(1-a-b) 0.4554 (1-(1-a-b)) 0 -(1-a-b);-0.0524 0 -

0.2 0 -0.4554 0 0 0]; 

         beq=[1;0;0;0;0]; 
         lb=zeros(8,1); 
         options = optimoptions('linprog','Algorithm','simplex'); 

[x,fval,exitflag,output,lambda] = 

linprog(objectivecoefficients,[],[],Aeq,beq,lb,[],[],options); 
         disp(x); 
         disp(['objective: ' num2str(fval)]); 
          y=transpose(x); 
             for l=1:8; 
                 z(t,l)=y(1,l); 
             end 
          t=t+1; 
     end 
 end 
toc; 

10. Matlab code to estimate steady state probabilities to max µ1F / 3 state 

clc; 
clear all; 
tic; 
fun=@(x)-x(7); 
x0=[0 0 0 0 0 0 1 0]; 
lb=zeros(8,1); 
ub=[]; 
disp(['Initial objective: ' num2str(fun(x0))]); 
A=[]; 
b=[]; 
Aeq=[1 1 1 1 1 1 0 0; 0.1864 0.1864 0 -0.8136 0 -0.8136 0 0; -0.1038 -0.1038 0.4270 

0.8962 0 -0.1038 0 0; -0.0826 -0.0826 -0.4270 -0.0826 0 0.9174 0 0;0 0 0 0 0 0 0.1864 

-0.1038]; 

beq=[1;0;0;0;1]; 
nonlincon=@nlcon_2; 
options = optimoptions('fmincon','Algorithm','interior-point'); 
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[x,fval,exitflag,output,lambda] = 

fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlincon,options); 
disp(x); 
disp(['Final objective: ' num2str(fun(x))]); 
toc; 
 

function [c,ceq]=nlcon_2(x) 
c=[]; 
ceq(1) = 0.4270*x(3)*x(8)+0.8962*x(4)*x(8)-0.8136*x(4)*x(7)-x(3)-x(4); 

ceq(2) = x(1)*x(2); 
ceq(3) = x(3)*x(4); 
ceq(4) = x(5)*x(6); 
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APPENDIX C 

  

 

MEASUREMENT DATA 

 

  

 

Field data used in analysis process is given in Table 19. 

Table 19 Measurement Data 

No 

Slip 

Ring 

Serial 

Pin Rotation 
Operating 

Hour 

Cond. 

State 

(3 

State) 

Cond. 

State 

(4 

State) 

Resistance 

11 17 10-11 55,800 31 1 1 0.7 

21 15 4-5 176,400 98 1 1 0.8 

20 10 1-2 244,800 136 1 1 0.5 

16 17 1-2 298,800 166 1 1 0.7 

33 19 4-5 302,400 168 1 1 0.5 

8 11 1-2 311,400 173 1 1 0.5 

14 13-2 7-8 361,800 201 1 1 0.7 

37 9 10-11 383,400 213 1 1 0.5 

22 15 1-2 415,800 231 1 1 0.8 

1 13 16-17 439,200 244 1 1 1.7 

2 9 13-14 446,400 248 1 1 0.9 

17 17 4-5 565,200 314 1 1 0.7 

12 11 19-20 626,400 348 2 3 18.5 

3 19 1-2 649,800 361 1 2 3.3 

15 13-2 10-11 675,000 375 1 1 0.7 

9 19 10-11 1,009,800 561 1 2 3.5 

29 10 7-8 1,011,600 562 1 1 0.8 

27 15 10-11 1,042,200 579 1 1 0.8 

6 9 10-11 1,049,400 583 1 1 1.9 

23 13-2 19-20 1,049,400 583 1 1 0.9 

35 19 7-8 1,146,600 637 3 4 57.2 

18 11 19-20 1,202,400 668 2 3 19.2 

7 13 4-5 1,274,400 708 3 4 69.1 

25 17 13-14 1,283,400 713 1 1 0.7 
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Table 19 Continued 

13 19 19-20 1,303,200 724 3 4 72.9 

19 11 13-14 1,348,200 749 3 4 160.2 

30 10 13-14 1,463,400 813 2 2 15.7 

10 9 16-17 1,486,800 826 3 4 49.7 

24 13-2 7-8 1,557,000 865 1 2 3.5 

28 15 10-11 1,900,800 1,056 1 1 0.8 

31 10 19-20 2,107,800 1,171 3 4 196 

36 11 4-5 2,165,400 1,203 3 4 169 

4 20 13-14 2,392,200 1,329 2 3 18.5 

32 13 7-8 2,557,800 1,421 3 4 35 

26 17 19-20 2,678,400 1,488 1 1 2.5 

5 20 4-5 2,884,860 1,603 3 4 78 
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APPENDIX D 

 

 

CURVE FITTING MODELS 

 

 

 

1. Polynomial Models 

A Polynomial model is defined with the following equation:  

y = ∑ pix
n+1−i

n+1

i=1

 

where 

n+1 is the order of the polynomial and n is the degree of the polynomial 

1. Exponential Models 

An Exponential model is defined with the following equation:  

y = aebx 

where 

a and b are the coefficients. 

2. Fourier 

Fourier series are defined with the following equation:  

y = a0 + ∑ai cos(iwx) + bi sin(iwx)

n

i=1

 

where 

a0 is constant 
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w is the fundamental frequency of the signal 

n is the number of terms in series 

3. Gaussian 

Gaussian models are described with the following equation: 

y = ∑aie
[−(

x−bi
ci

)
2

]
n

i=1

 

where 

a is the amplitude 

b is the centroid 

c is related peak width 

n is the number of peaks 

4. Power 

Power series are defined as: 

y = axb 

where 

a and b are the coefficients. 

5. Sum of Sine 

These models are used for fitting periodic functions: 

y = ∑sin(bix + ci)

n

i=1

 

a is the amplitude 

b is the frequency 

c is the phase constant for each wave 

n is the number of terms
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APPENDIX E 

 

 

PARAMETRIC ANALYSIS 

 

  

 

1.  3-State - Case 1 

Table 20 Case 1 Results 

α β π10 π11 π20 π21 π30 π31 Policy 

0 0           1.0000 A 

0 0.1     0.1898     0.8102 B 

0 0.2     0.3190     0.6810 B 

0 0.3     0.4127     0.5873 B 

0 0.4     0.4837     0.5163 B 

0 0.5     0.5394     0.4606 B 

0 0.6     0.5842     0.4158 B 

0 0.7     0.6211     0.3789 B 

0 0.8     0.6520     0.3480 B 

0 0.9     0.6782     0.3218 B 

0 1     0.7008     0.2992 B 

0.1 0 0.3218   0.0782     0.5999 C 

0.1 0.1 0.2822   0.1918     0.5260 C 

0.1 0.2 0.2512   0.2804     0.4683 C 

0.1 0.3 0.2264   0.3516     0.4220 C 

0.1 0.4 0.2060   0.4099     0.3841 C 

0.1 0.5 0.1890   0.4586     0.3524 C 

0.1 0.6 0.1746   0.4999     0.3255 C 

0.1 0.7 0.1623   0.5353     0.3025 C 

0.1 0.8 0.1515   0.5660     0.2825 C 

0.1 0.9 0.1421   0.5929     0.2649 C 

0.2 0 0.4598   0.1118     0.4285 C 

0.2 0.1 0.4178   0.1928     0.3894 C 

0.2 0.2 0.3829   0.2602     0.3569 C 

0.2 0.3 0.3534   0.3173     0.3293 C 

0.2 0.4 0.3281   0.3662     0.3058 C 
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Table 20 Continued 

0.2 0.5 0.3061   0.4085     0.2853 C 

0.2 0.6 0.2870   0.4456     0.2675 C 

0.2 0.7 0.2701   0.4783     0.2517 C 

0.2 0.8 0.2550   0.5073     0.2377 C 

0.3 0 0.5364   0.1304     0.3333 C 

0.3 0.1 0.4975   0.1933     0.3091 C 

0.3 0.2 0.4639   0.2478     0.2883 C 

0.3 0.3 0.4346   0.2954     0.2700 C 

0.3 0.4 0.4088   0.3373     0.2540 C 

0.3 0.5 0.3858   0.3745     0.2397 C 

0.3 0.6 0.3653   0.4077     0.2270 C 

0.3 0.7 0.3469   0.4376     0.2155 C 

0.4 0 0.5851   0.1422     0.2727 C 

0.4 0.1 0.5500  0.1937   0.2563 C 

0.4 0.2 0.5188  0.2394   0.2418 C 

0.4 0.3 0.4910  0.2801   0.2288 C 

0.4 0.4 0.4661  0.3167   0.2172 C 

0.4 0.5 0.4435  0.3498   0.2067 C 

0.4 0.6 0.4230  0.3798   0.1971 C 

0.5 0 0.6189  0.1504   0.2307 C 

0.5 0.1 0.5871  0.1940   0.2189 C 

0.5 0.2 0.5585  0.2333   0.2082 C 

0.5 0.3 0.5325  0.2689   0.1985 C 

0.5 0.4 0.5089  0.3014   0.1897 C 

0.5 0.5 0.4872  0.3311   0.1816 C 

0.6 0 0.6436  0.1565   0.1999 C 

0.6 0.1 0.6148  0.1942   0.1910 C 

0.6 0.2 0.5885  0.2287   0.1828 C 

0.6 0.3 0.5643  0.2604   0.1753 C 

0.6 0.4 0.5421  0.2895   0.1684 C 

0.7 0 0.6625  0.1611   0.1764 C 

0.7 0.1 0.6362  0.1943   0.1694 C 

0.7 0.2 0.6120  0.2251   0.1630 C 

0.7 0.3 0.5895  0.2536   0.1570 C 

0.8 0 0.6775  0.1647   0.1578 C 

0.8 0.1 0.6533  0.1945   0.1522 C 

0.8 0.2 0.6308  0.2222   0.1470 C 

0.9 0 0.6896  0.1676   0.1428 C 

0.9 0.1 0.6672  0.1946   0.1382 C 

1 0 0.6995  0.1701   0.1304 C 



81 

  

 

2.  3-State - Case 2 

Table 21 Case 2 Results 

α β π10 π11 π20 π21 π30 π31 Policy 

0 0     0.7008     0.2992 B 

0 0.1 0.1421   0.5929     0.2649 C 

0 0.2 0.2550   0.5073     0.2377 C 

0 0.3 0.3469   0.4376     0.2155 C 

0 0.4 0.4230   0.3798     0.1971 C 

0 0.5 0.4872   0.3311     0.1816 C 

0 0.6 0.5421   0.2895     0.1684 C 

0 0.7 0.5895   0.2536     0.1570 C 

0 0.8 0.6308   0.2222     0.1470 C 

0 0.9 0.6672   0.1946     0.1382 C 

0 1 0.6995   0.1701     0.1304 C 

0.1 0     0.7008     0.2992 B 

0.1 0.1 0.1421   0.5929     0.2649 C 

0.1 0.2 0.2550   0.5073     0.2377 C 

0.1 0.3 0.3469   0.4376     0.2155 C 

0.1 0.4 0.4230   0.3798     0.1971 C 

0.1 0.5 0.4872   0.3311     0.1816 C 

0.1 0.6 0.5421   0.2895     0.1684 C 

0.1 0.7 0.5895   0.2536     0.1570 C 

0.1 0.8 0.6308   0.2222     0.1470 C 

0.1 0.9 0.6672   0.1946     0.1382 C 

0.1 1 0.6995   0.1701     0.1304 C 

0.2 0     0.7008     0.2992 B 

0.2 0.1 0.1421   0.5929     0.2649 C 

0.2 0.2 0.2550   0.5073     0.2377 C 

0.2 0.3 0.3469   0.4376     0.2155 C 

0.2 0.4 0.4230   0.3798     0.1971 C 

0.2 0.5 0.4872   0.3311     0.1816 C 

0.2 0.6 0.5421   0.2895     0.1684 C 

0.2 0.7 0.5895   0.2536     0.1570 C 
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Table 21 Continued 

0.2 0.8 0.6308   0.2222     0.1470 C 

0.2 0.9 0.6672   0.1946     0.1382 C 

0.2 1 0.6995   0.1701     0.1304 C 

0.3 0     0.7008     0.2992 B 

0.3 0.1 0.1421   0.5929     0.2649 C 

0.3 0.2 0.2550   0.5073     0.2377 C 

0.3 0.3 0.3469   0.4376     0.2155 C 

0.3 0.4 0.4230   0.3798     0.1971 C 

0.3 0.5 0.4872   0.3311     0.1816 C 

0.3 0.6 0.5421   0.2895     0.1684 C 

0.3 0.7 0.5895   0.2536     0.1570 C 

0.3 0.8 0.6308   0.2222     0.1470 C 

0.3 0.9 0.6672   0.1946     0.1382 C 

0.3 1 0.6995   0.1701     0.1304 C 

0.4 0     0.7008     0.2992 B 

0.4 0.1 0.1421   0.5929     0.2649 C 

0.4 0.2 0.2550   0.5073     0.2377 C 

0.4 0.3 0.3469   0.4376     0.2155 C 

0.4 0.4 0.4230   0.3798     0.1971 C 

0.4 0.5 0.4872   0.3311     0.1816 C 

0.4 0.6 0.5421   0.2895     0.1684 C 

0.4 0.7 0.5895   0.2536     0.1570 C 

0.4 0.8 0.6308   0.2222     0.1470 C 

0.4 0.9 0.6672   0.1946     0.1382 C 

0.4 1 0.6995   0.1701     0.1304 C 

0.5 0     0.7008     0.2992 B 

0.5 0.1 0.1421   0.5929     0.2649 C 

0.5 0.2 0.2550   0.5073     0.2377 C 

0.5 0.3 0.3469   0.4376     0.2155 C 

0.5 0.4 0.4230   0.3798     0.1971 C 

0.5 0.5 0.4872   0.3311     0.1816 C 

0.5 0.6 0.5421   0.2895     0.1684 C 
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Table 21 Continued 

0.5 0.7 0.5895   0.2536     0.1570 C 

0.5 0.8 0.6308   0.2222     0.1470 C 

0.5 0.9 0.6672   0.1946     0.1382 C 

0.5 1 0.6995   0.1701     0.1304 C 

0.6 0 0.7177     0.2230   0.0593 D 

0.6 0.1 0.1421   0.5929     0.2649 C 

0.6 0.2 0.2550   0.5073     0.2377 C 

0.6 0.3 0.3469   0.4376     0.2155 C 

0.6 0.4 0.4230   0.3798     0.1971 C 

0.6 0.5 0.4872   0.3311     0.1816 C 

0.6 0.6 0.5421   0.2895     0.1684 C 

0.6 0.7 0.5895   0.2536     0.1570 C 

0.6 0.8 0.6308   0.2222     0.1470 C 

0.6 0.9 0.6672   0.1946     0.1382 C 

0.6 1 0.6995   0.1701     0.1304 C 

0.7 0 0.7414     0.1974   0.0612 D 

0.7 0.1 0.7479     0.1903   0.0618 D 

0.7 0.2 0.2550   0.5073     0.2377 C 

0.7 0.3 0.3469   0.4376     0.2155 C 

0.7 0.4 0.4230   0.3798     0.1971 C 

0.7 0.5 0.4872   0.3311     0.1816 C 

0.7 0.6 0.5421   0.2895     0.1684 C 

0.7 0.7 0.5895   0.2536     0.1570 C 

0.7 0.8 0.6308   0.2222     0.1470 C 

0.7 0.9 0.6672   0.1946     0.1382 C 

0.7 1 0.6995   0.1701     0.1304 C 

0.8 0 0.7601     0.1771   0.0628 D 

0.8 0.1 0.7661     0.1706   0.0633 D 

0.8 0.2 0.7722     0.1640   0.0638 D 

0.8 0.3 0.3469   0.4376     0.2155 C 

0.8 0.4 0.4230   0.3798     0.1971 C 

0.8 0.5 0.4872   0.3311     0.1816 C 



84 

  

 

Table 21 Continued 

0.8 0.6 0.5421   0.2895     0.1684 C 

0.8 0.7 0.5895   0.2536     0.1570 C 

0.8 0.8 0.6308   0.2222     0.1470 C 

0.8 0.9 0.6672   0.1946     0.1382 C 

0.8 1 0.6995   0.1701     0.1304 C 

0.9 0 0.7754     0.1606   0.0640 D 

0.9 0.1 0.7809     0.1546   0.0645 D 

0.9 0.2 0.7866     0.1485   0.0650 D 

0.9 0.3 0.7923     0.1423   0.0654 D 

0.9 0.4 0.4230   0.3798     0.1971 C 

0.9 0.5 0.4872   0.3311     0.1816 C 

0.9 0.6 0.5421   0.2895     0.1684 C 

0.9 0.7 0.5895   0.2536     0.1570 C 

0.9 0.8 0.6308   0.2222     0.1470 C 

0.9 0.9 0.6672   0.1946     0.1382 C 

0.9 1 0.6995   0.1701     0.1304 C 

1 0 0.7880     0.1469   0.0651 D 

1 0.1 0.7932     0.1413   0.0655 D 

1 0.2 0.7984     0.1356   0.0659 D 

1 0.3 0.8037     0.1299   0.0664 D 

1 0.4 0.8091     0.1241   0.0668 D 

1 0.5 0.4872   0.3311     0.1816 C 

1 0.6 0.5421   0.2895     0.1684 C 

1 0.7 0.5895   0.2536     0.1570 C 

1 0.8 0.6308   0.2222     0.1470 C 

1 0.9 0.6672   0.1946     0.1382 C 

1 1 0.6995   0.1701     0.1304 C 
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3. 4-State 

Table 22 Parametric Results – 4-State 

α β π10 π11 π20 π21 π30 π31 π40 π41 Policy 

0 0      1   X 

0 0.1    0.1  0.9   Y 

0 0.2    0.2  0.8   Y 

0 0.3    0.3  0.7   Y 

0 0.4    0.4  0.6   Y 

0 0.5    0.5  0.5   Y 

0 0.6    0.6  0.4   Y 

0 0.7    0.7  0.3   Y 

0 0.8    0.8  0.2   Y 

0 0.9    0.9  0.1   Y 

0 1    1     Z 

0.1 0  0.1    0.9   W 

0.1 0.1  0.1  0.1  0.8   U 

0.1 0.2  0.1  0.2  0.7   U 

0.1 0.3  0.1  0.3  0.6   U 

0.1 0.4  0.1  0.4  0.5   U 

0.1 0.5  0.1  0.5  0.4   U 

0.1 0.6  0.1  0.6  0.3   U 

0.1 0.7  0.1  0.7  0.2   U 

0.1 0.8  0.1  0.8  0.1   U 

0.1 0.9  0.1  0.9     V 

0.2 0  0.2    0.8   W 

0.2 0.1  0.2  0.1  0.7   U 

0.2 0.2  0.2  0.2  0.6   U 

0.2 0.3  0.2  0.3  0.5   U 

0.2 0.4  0.2  0.4  0.4   U 

0.2 0.5  0.2  0.5  0.3   U 

0.2 0.6  0.2  0.6  0.2   U 

0.2 0.7  0.2  0.7  0.1   U 

0.2 0.8  0.2  0.8     V 

0.3 0  0.3    0.7   W 

0.3 0.1  0.3  0.1  0.6   U 

0.3 0.2  0.3  0.2  0.5   U 

0.3 0.3  0.3  0.3  0.4   U 

0.3 0.4  0.3  0.4  0.3   U 

0.3 0.5  0.3  0.5  0.2   U 

0.3 0.6  0.3  0.6  0.1   U 
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Table 22 Continued 

0.3 0.7  0.3  0.7     V 

0.4 0  0.4    0.6   W 

0.4 0.1  0.4  0.1  0.5   U 

0.4 0.2  0.4  0.2  0.4   U 

0.4 0.3  0.4  0.3  0.3   U 

0.4 0.4  0.4  0.4  0.2   U 

0.4 0.5  0.4  0.5  0.1   U 

0.4 0.6  0.4  0.6     V 

0.5 0  0.5    0.5   W 

0.5 0.1  0.5  0.1  0.4   U 

0.5 0.2  0.5  0.2  0.3   U 

0.5 0.3  0.5  0.3  0.2   U 

0.5 0.4  0.5  0.4  0.1   U 

0.5 0.5  0.5  0.5     V 

0.6 0  0.6    0.4   W 

0.6 0.1  0.6  0.1  0.3   U 

0.6 0.2  0.6  0.2  0.2   U 

0.6 0.3  0.6  0.3  0.1   U 

0.6 0.4  0.6  0.4     V 

0.7 0  0.7    0.3   W 

0.7 0.1  0.7  0.1  0.2   U 

0.7 0.2  0.7  0.2  0.1   U 

0.7 0.3  0.7  0.3     V 

0.8 0  0.8    0.2   W 

0.8 0.1  0.8  0.1  0.1   U 

0.8 0.2  0.8  0.2     V 

0.9 0  0.9    0.1   W 

0.9 0.1  0.9  0.1     V 

1 0  1       T 

 

 

 

 

 

 

 


