
 
 

MICROMECHANICAL MODELING OF CARBON NANOTUBE – POLYMER 
COMPOSITES 

 

 

 

 

 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 
 

VAHİDULLAH TAÇ 
 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

AEROSPACE ENGINEERING 
 
 
 

 

 

 

DECEMBER 2018 

  



 

  



 
Approval of the thesis: 

 
MICROMECHANICAL MODELING OF CARBON NANOTUBE – 

POLYMER COMPOSITES 
 
 

submitted by VAHİDULLAH TAÇ in partial fulfillment of the requirements for the 
degree of Master of Science in Aerospace Engineering Department, Middle East 
Technical University by, 
 
Prof. Dr. Halil Kalıpçılar  
Dean, Graduate School of Natural and Applied Sciences    
  
Prof. Dr. İsmail Hakkı Tuncer  
Head of Department, Aerospace Engineering  
  
Assoc. Prof. Dr. Ercan Gürses  
Supervisor, Aerospace Engineering  
  
 
 

 

 
 

 

Examining Committee Members:  
  
Prof. Dr. Altan Kayran  
Dept. of Aerospace Engineering, METU  
  
Assoc. Prof. Dr. Ercan Gürses  
Dept. of Aerospace Engineering, METU  
  
Assoc. Prof. Dr. Demirkan Çöker  
Dept. of Aerospace Engineering, METU  
  
Assist. Prof. Dr. Ali Javili  
Mechanical Engineering Dept., Bilkent University  
  
Assist. Prof. Dr. Tuncay Yalçınkaya  
Dept. of Aerospace Engineering, METU  
  
  

Date: 14/12/2018 
 
 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced all 
material and results that are not original to this work. 

 

  

Name, Last name: Vahidullah Taç 

Signature: 



v 
 

 

ABSTRACT 

 

 

MICROMECHANICAL MODELING OF CARBON NANOTUBE – 

POLYMER COMPOSITES 

 
 
 

Taç, Vahidullah 

MSc, Department of Aerospace Engineering 

Supervisor : Assoc. Prof. Dr. Ercan Gürses 

 
 
 

December 2018, 69 pages 

 

A micromechanics-based model is developed to simulate carbon nanotube – polymer 

nanocomposites and analyze its mechanical behavior. The nanocomposite is first 

divided into four distinct regions, or phases, based on mechanical behavior and 

density; the carbon nanotube, the interface, the interphase and the polymer. The finite 

element method was later used to combine the nanotube and interface phases into an 

effective fiber for better representation and incorporation of their roles and constitutive 

properties in the micromechanical model. The elastic moduli of the interphase were 

modelled in a position dependent manner to better represent its true nature. Parametric 

studies were performed on the model and the results were compared with the previous 

work in the literature. The four phases were each found to have significant effects on 

the behavior of the nanocomposite. It was observed that when a soft interface model 

is used, the direct effect of the carbon nanotube on the stiffness of the nanocomposite 

vanishes, and the interphase becomes the sole reinforcement phase in the composite. 

Whereas in the case of a stiff interface the CNT significantly affects the mechanical 
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properties of the composite through the effective fiber. Thinner but longer carbon 

nanotubes were found to better enhance the stiffness of the nanocomposite compared 

to thick and short nanotubes. 

 

Keywords: Carbon Nanotube, Micromechanics, Interface, Interphase, 

Nanocomposite, Homogenization 
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ÖZ 

 

 

KARBON NANOTÜP – POLİMER KOMPOZİTLERİNİN 

MİKROMEKANİKSEL MODELLEMESİ 

 
 
 

Taç, Vahidullah 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi : Doç. Dr. Ercan Gürses 

 

 

 

Aralık 2018, 69 sayfa 

 

Karbon nanotüplerle güçlendirilmiş olan polimer bazlı nano kompozit malzemelerin 

simülasyon ve mekanik analizi için bir adet mikromekanik model geliştirilmiştir. 

Öncelikle adı geçen nano kompozit mekanik özellikleri ve yoğunluğuna göre karbon 

nanotüp, arayüz, ara-faz ve polimerden oluşan 4 farklı bölgeye veya faza ayrılmıştır. 

Daha sonra karbon nanotüp ve arayüz fazlarının mekanik özelliklerinin ve rollerinin 

mikromekanik modelde daha iyi yansıtılabilmesi için bu fazlar sonlu elemanlar 

modellemesiyle etkin fiber denen tek bir faza dönüştürülmüştür. Ara-faz bölgesinin 

daha iyi incelenebilmesi için bu fazın mekanik özelliklerinin fonksiyonel olarak 

biçimlendirilmesine karar verilmiştir. Modelin farklı değişkenleri üzerinde parametrik 

çalışmalar yapılıp literatürde mevcut olan diğer çalışmalarla kıyaslamalar yapılmıştır. 

4 fazın her birinin nanokompozit mekanik özelliklerini ciddi bir şekilde etkilediği 

görülmüştür. Arayüz fazı için yumuşak arayüz modeli kullanıldığında arayüzün 

yükleri karbon nanotüpe aktaramadığı için karbon nanotüpün kompozit mekanik 



viii 
 

özelliklerini direk olarak etkilemediği görülmüştür. Bu durumda ara-faz bölgesi 

kompozitteki tek güçlendirme fazı haline gelmektedir. Sert arayüz modeli 

kullanıldığında ise karbon nanotüp kompozit özelliklerini ciddi bir şekilde etkilediği 

görülmüştür. Ayrıca ince ve uzun nanotüplerin kompoziti kalın ve kısa nanotüplerden 

daha çok güçlendirdiği görülmüştür. 

  

Anahtar Kelimeler: Karbon Nanotüp, Mikromekanik, Arayüz, Ara-faz, 

Nanokompozit, Homojenleştirme 
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CHAPTER 1 

 

INTRODUCTION 

 

 

This thesis is a summary of the research work that the author has performed during his 

studies at the department of Aerospace Engineering at Middle East Technical 

University on micromechanical modeling of carbon nanotube composites. This 

chapter is dedicated to providing introductory information about the contents, 

material, methods and tools used throughout the research work. 

Specifically, carbon nanotubes, carbon nanotube – polymer nanocomposites and 

micromechanics will be explained in detail in the following subsections. 

 

1.1 Carbon Nanotubes 

Carbon nanotubes are nano-scale helical tubes entirely made out of carbon atoms. In 

a carbon nanotube each carbon atom forms a covalent bond, the strongest chemical 

bonds two atoms can make, with three other carbon atoms. The discovery of carbon 

nanotubes is usually attributed to Iijima [1], although they had been observed as far 

back as 1959 [2]. The ends of the nanotubes are usually covered with semi-spherical 

all-carbon structures called fullerenes. An illustration of a typical carbon nanotube 

with fullerenes is shown in Figure 1.  
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Figure 1. An illustration of a carbon nanotube. 

 

Carbon nanotubes can be classified in a number of ways including chirality and 

number of layers.  

In essence carbon nanotubes are rolled and seemed graphite sheets. The angle at which 

the hypothetical graphite sheet is rolled determines the chirality vector of the nanotube. 

Two important chirality vectors (n,n) and (n,0) are called “armchair” and “zigzag”, 

respectively, as indicated in Figure 2 sourced from [3]. Any other nanotube is “chiral” 

with a chirality vector of (m,n). 

 

 

Figure 2. Carbon nanotube chirality vector. 

 

Another way to categorize carbon nanotubes is through their number of layers. 

Sometimes two or more carbon nanotubes are nested in each other. In such cases the 
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nanotube is called a Double Walled Carbon NanoTube (DWCNT) or Multi-Walled 

Carbon Nanotube (MWCNT) depending on the number of layers. If there is a single 

layer, the nanotube is called Single Walled Carbon Nanotube (SWCNT). Double 

walled and multi-walled are presented in Figure 3. 

 

 
Figure 3. 5 walled (a), double walled (b) and 7 walled (c) carbon nanotubes as observed by 

Iijima [1]. 

 

Carbon nanotubes are often referred to as wonder materials due to their outstanding 

performance in multiple domains such as stiffness, strength, surface area to volume 

ratio, thermal and electrical conductivity and others [4]. Of particular interest to this 

research work is the stiffness, which is generally accepted to be above 1 TPa in the 

literature [5,6]. This is the highest stiffness directly observed by man to date. The 

stiffness and strength properties of carbon nanotubes are compared to some other 

commonly used high performance materials in Figure 4 and Figure 5 respectively. The 

data in these plots was obtained from [4]. 



4 
 

 

Figure 4. Young’s modulus of various high-performance engineering materials as compared 
to carbon nanotubes. 

 

 

Figure 5. Ultimate strength of various high-performance engineering materials as compared 
to carbon nanotubes. 
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The aforementioned properties make carbon nanotubes some of the most highly 

sought-after materials in the industry, and subjects of interest in academia. They have 

been referred to as wonder materials due to their potential to revolutionize the 

materials industry in the upcoming decades. Carbon nanotubes have been suggested 

as the only materials that make the space elevator possible; a hypothesized structure 

extending to space to be used for transporting goods and humans to space [7]. While 

as of the date of writing of this thesis such macro-scale applications of carbon 

nanotubes remains distant, they are already revolutionizing the materials industry as 

reinforcements in polymer-based nanocomposite materials. 

 
1.2 Carbon Nanotube – Polymer Composites 

Their superior mechanical properties have helped carbon nanotubes gain much 

attention in the study of reinforcements for polymer matrix composites. Their high 

surface area to volume ratio and aspect ratio allows maximized use of their properties 

in polymer-based composites. Sometimes carbon atoms in the nanotubes make bonds 

with the polymer atoms, in a process called functionalization. This maximizes 

interfacial shear strength allowing for stronger adhesion between polymer and 

nanotube. When not functionalized, the interface between the polymer and the 

nanotube is dominated by Van der Waals forces. Last but not least, under ordinary 

conditions nanotubes are randomly scattered in the polymer, this results in a composite 

with isotropic constitutive behavior, as opposed to anisotropic composites produced 

from macroscopic fibers.  

Of particular interest to this thesis is the improvement in stiffness, or elastic moduli, 

of the nanocomposite as a result of addition of carbon nanotubes. The rate of 

improvement of the stiffness of polymers by the introduction of carbon nanotubes is 

reported to be up to many tens of folds [8–12].  

Two issues are currently seen as the major obstacles in further advancement and 

popularization of carbon nanotube – polymer composites [13]: 

1- A lack of proper understanding and modelling of the interfacial region in 

polymer-carbon nanotube composite. 
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2- Issues with even distribution and dispersion of nanotubes in the polymer 

matrix. 

This thesis aims to help solve the former problem by developing a micromechanical 

model to represent carbon nanotube-polymer composites in mechanical analyses. 

Micromechanics is one of the alternatives in analyzing carbon nanotube composites, 

the others being production and subsequent mechanical experimentation [14–16], the 

finite element method [9] and atomistic simulations [10,17]. Micromechanics stands 

out among the alternatives by being easy to use and light but very powerful. 

1.3 Micromechanics 

Micromechanics refers to the study of heterogeneous mechanical domains in the level 

of individual heterogeneities. Analytical and computational homogenization methods 

are valuable tools that can be used to obtain average elastic moduli and strains in 

heterogeneous materials in a simple and independent manner. Development of 

powerful micromechanical models for the simulation and study of carbon nanotube – 

polymer composites could lead the way for better understanding, and hence, wider 

usage, as well as improved performance, of this class of composites. In the following 

subsections, some widely used analytical homogenization models will be introduced. 

1.3.1 J.D. Eshelby 

Eshelby is often credited as being the founding father of micromechanics due to the 

strong impact that his 1957 paper has had on micromechanics [18]. Eshelby posited a 

single elastic ellipsoidal region inside an infinite domain with different elastic 

properties than that of the domain. The infinite domain was to be loaded at infinity. 

Eshelby sought to find the elastic state of the inclusion and the matrix. Eshelby reached 

two important conclusions that form the basis of all subsequent self-consistent 

methods, which are; 

1- The free strain of an elastic inclusion is linearly related to the constrained 

strain of the same inclusion embedded in an elastic matrix by what is known 

as the Eshelby tensor. 

2- The strain in the inclusion is uniform. 
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These two conclusions allowed for the determination of the effective elastic properties 

of composite materials as follows: 

 𝑪 = 𝑪G + 𝑣A_𝑪A − 𝑪G` a𝑰 + 𝑺b𝑪Gcd_𝑪A − 𝑪G`ef
cd

 ( 1 ) 

where 𝑪, 𝑪G and 𝑪A are the elastic moduli tensors of the composite, matrix and 

inclusion, respectively. 𝑣A is the volume fraction of the composite defined as 𝑣A =

(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛)/(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒), 𝑰 is the 4th order identity 

tensor and 𝑺 is the Eshelby tensor for the ellipsoidal inclusion.  

The calculation of the Eshelby tensor is done through complex elliptical integration. 

However, if the inclusion is of isotropic behavior the procedure is simplified. For an 

isotropic ellipsoidal inclusion with radii 𝑎, 𝑏 and 𝑐 lying on axes 𝑥, 𝑦 and 𝑧 

respectively, where a 𝑎 > 𝑏 > 𝑐 the elements of the Eshelby tensor are given as 

follows [19] 

 𝑆dddd =
3

8𝜋(1 − 𝜈) 𝑎
u𝐼dd +

1 − 2𝜈
8𝜋(1 − 𝜈) 𝐼d 

𝑆dduu =
1

8𝜋(1 − 𝜈) 𝑏
u𝐼du +

1 − 2𝜈
8𝜋(1 − 𝜈) 𝐼d 

𝑆ddww =
1

8𝜋(1 − 𝜈) 𝑐
u𝐼dw +

1 − 2𝜈
8𝜋(1 − 𝜈) 𝐼d 

𝑆dudu =
𝑎u + 𝑏u

16𝜋(1 − 𝜈) 𝐼du +
1 − 2𝜈

16𝜋(1 − 𝜈)
(𝐼d + 𝐼u) 

𝑆dddu = 𝑆duuw = 𝑆duwu = 0 ( 2 ) 

 

The rest of the elements of the Eshelby tensor can be obtained by a cyclic permutation 

of the dimensions 𝑎 ⟶ 𝑏 ⟶ 𝑐 accompanied with the corresponding index 

permutation 1 ⟶ 2⟶ 3. 

The terms 𝐼 are given in terms of standard elliptical integrals and are given as  

 
𝐼d =

4𝜋𝑎𝑏𝑐

(𝑎u − 𝑏u)(𝑎u − 𝑐u)
d
u	
[𝐹(𝜃, 𝑘) − 𝐸(𝜃, 𝑘)] 

( 3 ) 



8 
 

𝐼w = 	
4𝜋𝑎𝑏𝑐

(𝑎u − 𝑏u)(𝑎u − 𝑐u)
d
u	
�
𝑏(𝑎u − 𝑐u)

d
u

𝑎𝑐 − 𝐸(𝜃, 𝑘)� 

where  

 
𝜃 = arcsin�

𝑎u − 𝑐u

𝑎u , 𝑘 = 	�
𝑎u − 𝑏u

𝑎u − 𝑐u 
( 4 ) 

and 

 𝐼d + 𝐼u + 𝐼w = 4𝜋 

3𝐼dd + 𝐼du + 𝐼dw =
4𝜋
𝑎u  

3𝑎u𝐼dd + 𝑏u𝐼du + 𝑐u𝐼dw = 3𝐼d 

𝐼du =
𝐼u − 𝐼d
𝑎u − 𝑏u ( 5 ) 

and the standard elliptical integrals are defined as  

 
𝐹(𝜃, 𝑘) = 	�

𝑑𝑤
(1 − 𝑘u sinu 𝑤)d/u

�

R
 

𝐸(𝜃, 𝑘) = 	� (1 − 𝑘u sinu 𝑤)d/u𝑑𝑤
�

R
 ( 6 ) 

If the inclusion is spherical, i.e. 𝑎 = 𝑏 = 𝑐 then Eshelby’s tensor has the following 

compact form 

 
𝑆CD�T =

5𝜈 − 1
15(1 − 𝜈) 𝛿CD𝛿�T +

4 − 5𝜈
15(1 − 𝜈) (𝛿C�𝛿DT + 𝛿CT𝛿D�) ( 7 ) 

It is interesting to note that in a spherical inclusion the Eshelby’s tensor does not 

depend on the actual radius of the inclusion.  

Another interesting case is when the inclusion is an elliptic cylinder (𝑐 → ∞), in which 

case the elements of the Eshelby tensor become: 

 
𝑆dddd =

1
2(1 − 𝜈)

�
𝑏u + 2𝑎𝑏
(𝑎 + 𝑏)u +

(1 − 2𝜈)
𝑏

𝑎 + 𝑏
�	 

𝑆uuuu =
1

2(1 − 𝜈)
�
𝑎u + 2𝑎𝑏
(𝑎 + 𝑏)u +

(1 − 2𝜈)
𝑎

𝑎 + 𝑏
�		 ( 8 ) 
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𝑆wwww = 0 

𝑆dduu =
1

2(1 − 𝜈)
�

𝑏u

(𝑎 + 𝑏)u +
(1 − 2𝜈)

𝑏
𝑎 + 𝑏

� 

𝑆uuww =
1

2(1 − 𝜈)
2𝜈𝑎
𝑎 + 𝑏 

𝑆uudd =
1

2(1 − 𝜈)
�

𝑎u

(𝑎 + 𝑏)u +
(1 − 2𝜈)

𝑎
𝑎 + 𝑏

� 

𝑆wwdd = 𝑆wwuu = 0 

𝑆dudu =
1

2(1 − 𝜈)
�
𝑎u + 𝑏u

2(𝑎 + 𝑏)u +
(1 − 2𝜈)

2
� 

𝑆ddww =
1

2(1 − 𝜈)
2𝜈𝑏
𝑎 + 𝑏 

𝑆uwuw =
𝑎

2(𝑎 + 𝑏) 

𝑆wdwd =
𝑏

2(𝑎 + 𝑏) 

1.3.2 Mori-Tanaka 

Mori and Tanaka devised a method of calculating the average internal stress in a 

matrix-inclusion system in which the inclusion has transformation strain1. They also 

show that the stress in the matrix is composed of two parts; the average stress and the 

locally fluctuating stress the mean of which is trivial throughout the matrix [20]. Using 

the Mori-Tanaka model the effective elastic moduli of the composite become [21]: 

 𝑪 = _𝑓G𝑪G + 𝑓A𝑪A𝑨`_𝑓G𝑰 + 𝑓A𝑨`
cd

 ( 9 ) 

where 𝑓G  and 𝑓A  are the volume fractions of the matrix and the inclusion, respectively, 

and 𝑪G and 𝑪A are the moduli tensors of each respective phase. 𝑰 is the 4th order unity 

tensor and 𝑨 is a dilute strain concentration tensor given as 

 𝑨 = b𝑰 + 𝑺(𝑪G)cd_𝑪A − 𝑪G`e
cd

 ( 10 ) 

where 𝑺 is Eshelby’s tensor. 

                                                
1 Transformation strain, or eigenstrain is a strain field without an associated stress field. Strains 
resulting from thermal expansion are one subgroup of this type of strain. 
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The biggest difference between Eshelby’s and Mori-Tanaka models is that Eshelby’s 

model assumes there is a single inclusion embedded in an infinitely large domain. In 

Mori-Tanaka type models there are multiple coaxial inclusions embedded in an 

infinite domain. This allows for much greater flexibility resulting in widespread use 

of Mori-Tanaka type models in nanocomposite modeling.  

1.3.3 Qu 

Qu [22] developed an approximate method for the determination of the Eshelby tensor 

for an ellipsoidal inclusion with a slightly weakened interface. He assumed a uniform 

spring layer of vanishing thickness between the inclusion and the matrix across which 

stresses are continuous but displacements may not be 

 𝛥𝜎CD𝑛D = b𝜎CD(𝒙)|�� − 𝜎CD(𝒙)|��e𝑛D = 0 

𝛥𝑢C = 𝑢C(𝒙)|�� − 𝑢C(𝒙)|�� = 𝜂CD𝜎D�𝑛� ( 11 ) 

where 𝜎CD(𝒙)|��, 𝜎CD(𝒙)|��, 𝑢C(𝒙)|�� and 𝑢C(𝒙)|�� represent the stresses and 

displacements as 𝒙 approaches the interface, 𝑆, from the outside (𝑆�) and inside (𝑆c), 

respectively, and 𝜂CD  is the compliance tensor of the interface and 𝑛C is the surface 

normal of the interface. The case of 𝜂CD = 0 corresponds to a perfect interface, while 

𝜂CD → ∞ corresponds to complete debonding. A slightly weakened interface then 

corresponds to a small 𝜂CD . Qu goes on to provide a special form for 𝜂CD  as 

 𝜂CD = 𝛼𝛿CD + (𝛽 − 𝛼)𝑛C𝑛D ( 12 ) 

where 𝛼 and 𝛽 are the compliance in the tangential and normal directions to the 

interface. In Qu’s formulation the strain in the ellipsoidal inclusion, 𝜖CD , in terms of 

the uniform eigenstrain, 𝜖ČD  as 

𝜖CD(𝒙) = 𝑆CD�T𝜖�̌T + 𝐿�TGN𝐿A���𝜖�̌� � 𝜂�A𝐺CDGN(𝝃 − 𝒙)𝑛�𝑛T𝑑𝑠(𝜉)
�

− 𝐿�TGN𝐿A��� � 𝜂�A𝜖��(𝝐)𝐺CDGN(𝝃 − 𝒙)𝑛�𝑛T𝑑𝑠(𝜉)
�

 ( 13 ) 

An iterative formulation is then given as 
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𝜖CD
(N)(𝒙) = 𝑆CD�T𝜖�̌T + 𝐿�TGN𝐿A���𝜖�̌� � 𝜂�A𝐺CDGN(𝝃 − 𝒙)𝑛�𝑛T𝑑𝑠(𝜉)

�

− 𝐿�TGN𝐿A��� � 𝜂�A𝜖��
(Ncd)(𝝃)𝐺CDGN(𝝃 − 𝒙)𝑛�𝑛T𝑑𝑠(𝜉)

�
 

𝑛 = 1, 2, 3… 
( 14 ) 

The leading order solution for small 𝜂�A can be found as 

𝜖CD(𝒙) ≈ 𝜖CD
(d)(𝒙) = 𝑆CD�T𝜖�̌T + 𝑇CD��(𝒙)(𝐼���T − 𝑆���T)𝜖�̌T ( 15 ) 

where 

𝑇CD��(𝒙) = 𝐿�TGN𝐿��A� � 𝜂�A𝐺CDGN(𝝃 − 𝒙)𝑛�𝑛T𝑑𝑠(𝝃)
�

 ( 16 ) 

and  

𝐺CDGN(𝒙) =
1
4
b𝜙GC,ND(𝒙) + 𝜙GD,NC(𝒙) + 𝜙NC,GD(𝒙) + 𝜙ND,GC(𝒙)e ( 17 ) 

and 𝜙 is Green’s function for an infinite medium. 

An alternative form of ( 15 ) can be written as 

 𝜖CD(𝒙) = 𝑆CD�TR (𝒙)𝜖�̌T ( 18 ) 

where modified Eshelby’s tensor for an ellipsoidal inclusion with a slightly weakened 

interface, 𝑺R, is given as 

 𝑆CD�TR (𝒙) = 𝑆CD�T + 𝑇CD��(𝒙)(𝐼���T − 𝑆���T) ( 19 ) 
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CHAPTER 2 

 

MICROMECHANICAL MODEL 

 

 

After an extensive literature review process, we identified the weaknesses of the 

micromechanical models currently used for modeling nanocomposites and tried to 

address those weaknesses with a new model. Insofar as the nature of the 

micromechanical model is usually not affected by the nature of the inclusion or the 

matrix, all micromechanical models applied to nano-scale composites regardless of 

the inclusion type will be discussed here. This chapter is a summary of those activities.  

 

2.1 Literature Review 

A host of analytical methodologies can be used for the simulation and mechanical 

analysis of nanocomposites like the finite element method, micromechanics and 

molecular dynamics. Each of the methods has its own set of advantages as compared 

to the others. For example, atomistic simulations such as molecular dynamics offer 

great precision and flexibility at the cost of increased solution and setup time, as well 

as human labor. Micromechanics on the other hand offers handy tools that can readily 

be applied to nanocomposite analysis without a great loss in accuracy of solutions. 

The simplest micromechanical model used for modeling of carbon nanotube – 

polymer composites consists of a simple single-inclusion Mori-Tanaka model in 

which the inclusion represents the nanotube. The scientific community has long 

recognized the need for more sophisticated models that also incorporate the interfacial 

region between the nanotube and the polymer. For example Yang and Cho [23] model 

a nanocomposite using three phases that represent the inclusion (reinforcement), the 

matrix and the interfacial gap between the inclusion and the matrix. The three phases 

are embedded in a fictitious infinite domain that represents the nanocomposite. They 
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obtain the mechanical properties of the inclusion and the polymer using molecular 

dynamics simulations but use a curve fitting methodology for the interface.  

Yang et al. [10] divide a carbon nanotube – polymer nanocomposite into 3 regions 

comprising of the inclusion, the matrix and the interphase; which is a region of the 

matrix around the nanotube with modified mechanical properties. They also recognize 

the weak region between the nanotube and the polymer; which is usually referred to 

as the interface phase. They incorporate the effects of the interface into the carbon 

nanotube to obtain an effective fiber. They also merge the interphase and the matrix 

to obtain an effective matrix. They then use a multi inclusion model with the effective 

fiber and the effective matrix to represent the nanocomposite. They then compare the 

performance of their micromechanical model with molecular dynamics simulations. 

Another study done by Tsai et al. [24] replaces the carbon nanotube in the composite 

with a solid cylinder of equivalent mechanical properties by comparing the energy in 

the molecular dynamics and finite element models under identical loading conditions. 

An effective interphase representing the non-bonded gap between the nanotube and 

polymer was obtained through energy comparison. A three-phase micromechanical 

model was used to obtain the mechanical properties of the nanocomposite.  

In a comprehensive 2003 paper Odegard et al. [14] study carbon nanotube (CNT) – 

polymer composites using a variety of methodologies such as equivalent continuum 

modeling, molecular dynamics, micromechanics and experimentation. The 

micromechanical model they use consists of two phases representing the effective 

fiber and the polymer. The properties of the carbon nanotube are obtained from 

molecular dynamics simulations and later turned into an effective fiber using 

equivalent-continuum modeling. The stiffness tensors obtained through the continuum 

micromechanical models are homogenized using an orientation averaging integral and 

compared to experimental results they obtain through synthesizing and subsequent 

testing of carbon nanotube composites. 

Wang et al. show that Mori-Tanaka type models do not compensate for the coated or 

nested nature of the inclusions in a series of two papers [25,26]. They then proceed to 

developing a modified strain concentration factor that accounts for this phenomenon. 
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They model a series of CNT nanotubes with soft interface for verification of the model 

and comparison with the literature. 

It has consistently recognized that a region of the polymer in the direct vicinity of the 

nanotube has elevated densities [17,24,27] making it likely that the mechanical 

properties are also altered in the said region. Ignoring this behavior could result in 

erroneous, referred to as interphase in this thesis, could play a significant, and perhaps 

even monopolistic role [17] in the stiffening of the nanocomposite.  

Another issue seen in the micromechanical models currently offered in the literature 

for modeling of nanocomposites is that they tend to model the nanocomposite using 2 

or at most 3 phases. This is despite the overwhelming evidence that there are at least 

four distinct phases, in a nanocomposite consisting of the nano inclusion, the interface 

(IF), the interphase (IP), and the bulk polymer (BP). The interface2 refers to the 

interfacial gap between CNT and polymer atoms that is mostly dominated by Van der 

Waals forces, the interphase is a part of the polymer in the vicinity of the CNT that 

has position dependent properties due to electrostatic interaction with the CNT atoms, 

while bulk polymer refers to the rest of the polymer. 

The research work reported in this thesis aims to address the aforementioned 

deficiencies by using a micromechanical model with multiple inclusions. The model 

also allows for position dependent grading of phase moduli; a property that was 

utilized in the interphase in this research work. The results were further improved by 

homogenization of the CNT and IF phases using finite element analysis. The results 

of the micromechanical model are then homogenized using an orientation averaging 

algorithm to better represent actual nanocomposites.    

 

                                                
2 The interface in this context refers to one of the phases in the nanocomposite and it has a finite 
volume and thickness. This may be in contrast to some other scientific lexicons where the word 
interface refers only to the surface through which two elements interact. 
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2.2 Definition of the Model 

We adopt a multi-inclusion micromechanical model outlined in [28] based on the 

Mori-Tanaka method [20,21,29]. The model posits multiple concentric ellipsoidal 

phases of elastic behavior. The dimensions of the ellipsoids are given as 𝑎d, 𝑏d, 𝑐d for 

the first phase, 𝑎u, 𝑏u, 𝑐u for the second phase and et cetera and are thought to be 

similar in shape, i.e. ¥¦
¥§
= ¨¦

¨§
= ©¦

©§
= 𝛾. The inclusions are assumed to be embedded in 

a theoretical phase called the infinite medium. A schematic representation of the 

micromechanical model is given in Figure 6. 

 

 

Figure 6. Graphical representation of the phases in the micromechanical model used in this 
study. 

 

The infinite medium represents the final nanocomposite that is effectively 

homogenous, and hence a single phase in a continuum scale. To this end the 

calculations in the micromechanical model were iterated until the elastic moduli of the 

infinite medium matched the initial guesses. A flowchart that shows how the current 

micromechanical model works is shown in Figure 7. Further information about the 

determination of the elastic moduli of the infinite medium can be found in Appendix 

A.  
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Figure 7. Sequence of operations in the current micromechanical model. 
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The elasticity tensor of the nanocomposite of 𝑛 phases is given as 

 𝑪 = 𝑪CNO[𝑰 + (𝑺 − 𝑰)Λ][𝑰 + 𝑺Λ]cd 

Λ =	¬𝑓CΛC
N

C­d

 

 

( 20 ) 

where 𝑺 is Eshelby’s tensor for an ellipsoidal inclusion, 𝑰 is 4th order unity tensor, 𝑓C 

is the volume fraction of the i-th phase, and 𝑪CNO  is the moduli tensor of the infinite 

medium. Note that Eshelby’s tensor depends on the aspect ratio of the inclusion. This 

dependency can be used to analyze inclusions of different shapes by choosing 

appropriate values for the inclusion aspect ratio. Although throughout this thesis only 

fiber-like inclusions are studied, the model can easily be adopted to study plate-like 

and spherical inclusions as well. This is demonstrated in Appendix B.  

Parameter Λ is defined differently for phases that are graded than for those with 

constant moduli. For phases with constant mechanical properties Λ is given as 

 ΛC = a_𝑪CNO − 𝑪C`
cd
𝑪CNO − 𝑺f

cd
 

 
( 21 ) 

and when the phase is functionally graded Λ is obtained by an integration scheme as 

follows 

 
ΛC =

3
1 − 𝛾w

� 𝑟uλC(𝑟)𝑑𝑟
d

¯
 

𝜆C = 	 a_𝑪CNO − 𝑪C(𝑟)`
cd
𝑪CNO − 𝑺f

cd
 

𝛾 =
𝑎d
𝑎u
=
𝑏d
𝑏u
=
𝑐d
𝑐u

 

( 22 ) 

It is worth noting that among 𝛾 and 𝑓C, two variables are dependent on the others. For 

example, in a 3-phase model specifying 𝛾 and 𝑓w also fixes the values of 𝑓d and 𝑓u as 

follows 

 𝑓d = (1 − 𝑓w)𝛾w 

𝑓u = (1 − 𝑓w)(1 − 𝛾w) 
( 23 ) 
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2.3 Orientation Averaging 

Orientation averaging is used to determine the average value of a tensorial term over 

all orientations defined by transformation from local fiber coordinates to global 

coordinates. Orientation averaging is used in micromechanical modeling of non-

spherical inclusions to account for the different distributions of inclusion orientation 

such as random and axisymmetric orientation distributions. The orientation averaging 

integral of a tensor 𝑨 is denoted as 〈𝑨〉	and is defined as [14,30] 

〈𝑨〉 =
∫ ∫ ∫ 𝐴̅(𝜙, 𝜃,𝜓)	𝑔(𝜙,𝜓) sin(𝜃) 𝑑𝜙	𝑑𝜃	𝑑𝜓	¸/u

R
¸
R

¸
c¸

∫ ∫ ∫ 𝑔(𝜙, 𝜓) sin(𝜃) 𝑑𝜙	𝑑𝜃	𝑑𝜓	¸/u
R

¸
R

¸
c¸

 ( 24 ) 

where 

 𝐴̅CD�T = 𝑐CA𝑐D�𝑐�W𝑐T�𝐴A�W� 

 
( 25 ) 

𝑐CD are the direction cosines for the transformation given as 

 𝑐dd = cos𝜙 cos𝜓 − sin𝜙 cos𝜃 sin 𝜓 

𝑐du = sin𝜙 cos𝜓 + cos𝜙 cos𝜃 sin 𝜓 

𝑐dw = sin𝜓 sin 𝜃 

𝑐ud = 	− cos𝜙 sin𝜓 − sin𝜙 cos𝜃 cos𝜓 

𝑐uu = − sin𝜙 sin𝜓 + cos𝜙 cos𝜃 cos𝜓 

𝑐uw = sin 𝜃 cos𝜓 

𝑐wd = sin 𝜙 sin 𝜃 

𝑐wu = 	− cos𝜙 sin 𝜃 

𝑐ww = cos𝜃 

 

( 26 ) 

and 𝑔 is the orientation distribution function defined as [30] 

 𝑔(𝜙,𝜓) = exp(−𝑠d𝜙u) exp(−𝑠u𝜓u) 

 
( 27 ) 

𝑠d and 𝑠u are two parameters that control the orientation. Three significant 

combinations of 𝑠d and 𝑠u are given as follows 
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Random 𝑠d = 0  𝑠u = 0 𝑔(𝜙, 𝜓) =1 

Aligned 𝑠d = 0 𝑠u = ∞ 𝑔(𝜙, 𝜓) = 𝛿(𝜙 − 0)𝛿(𝜓 − 0) 

Axisymmetric 𝑠d = 𝑘 𝑠u = ∞ 𝑔(𝜙, 𝜓) = exp	[−𝑘𝜙u]𝛿(𝜓 − 0) 

 

where 𝛿(𝑥 − 𝑥R) is Dirac’s delta function. The three distributions, as applied to CNT-

polymer composites, represent the cases in which the nanotubes are evenly and 

randomly oriented in all directions, all aligned in a single direction, and partially 

aligned in a single direction, respectively.  

 

2.4 Moduli of the Micromechanical Phases 

Before the micromechanical model can be implemented the elastic moduli of all the 

constituent phases must be determined. The following subsections are dedicated to 

explaining how the moduli of the different phases are obtained. 

 

2.4.1 Carbon Nanotubes (CNT) 

The mechanical properties of carbon nanotubes are usually characterized using a 

variety of methods ranging from experimental procedures [5,6,31], the finite element 

method [8,9,32] and atomistic modeling such as molecular dynamics [10,24]. Carbon 

nanotubes are usually reported to be of transversely isotropic behavior and have 

longitudinal Young’s modulus around 1 TPa [5,6,31]. We adopt the results of Tsai et 

al. [24] for the moduli tensor of the carbon nanotubes. They study three sample single 

walled zigzag carbon nanotubes of varying radii using molecular dynamics. Then they 

replace carbon nanotubes with solid cylinders of the same radii as the CNTs by varying 

the elastic moduli of the solid cylinder in the finite element model until its elastic 

energy matches that of the CNT in the molecular dynamics model under various 

loading conditions. We adopted their results for use in our analyses and reported the 

moduli in Table 1. 
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Table 1. Elastic coefficients of carbon nanotubes as a function of the CNT radius 
(source: [24]). 

Chirality 
[ - ] 

Radius 
[Å] 

𝐸d 
[GPa] 

𝐺du 
[GPa] 

𝜐du     
[ - ] 

𝐸u 
[GPa] 

𝜐uw      
[ - ] 

(10,0) 3.9 1382.5 1120 0.272 645 0.2 

(14,0) 5.5 981.5 779.2 0.27 504 0.2 

(18,0) 7.1 759.9 596.3 0.27 425 0.2 

 

2.4.2 Interface (IF) 

The interface refers to the bordering region between the CNT and the polymer. If the 

carbon nanotube is not functionalized, i.e. the CNT has not formed chemical bonds 

with the polymer atoms, the interface is a gap of approximately 3.4 Å thickness 

separating the CNT from the polymer [33]. The phase is dominated by Van der Waals 

forces that are formed between the carbon atoms of the CNT and the molecules of 

polymer. The interface is assumed to behave in an isotropic elastic manner. The 

Young’s modulus of the interface was adopted from [24] while the Poisson’s ratio was 

assumed to be equal to 0.3. This assumption was made on the basis that most isotropic 

materials have Poisson’s ratios close to 0.3 and that this parameter does not affect the 

end results in a significant manner. This hypothesis was confirmed by changing the 

Poisson’s ratio to 0.2 and 0.4 respectively and verifying that the moduli of the 

nanocomposite are not affected in a discernable way. Methods of calculating the 

elastic properties of the interface are rare, although many studies have focused on 

interfacial shear strength of the interface. For example Refs. [34,35] report fiber 

pullout studies of CNT-polymer systems which result in interface strength values 

depending on the fractures in the matrix. The stiffness of the interface depends on a 

number of factors such as the materials of the polymer and the inclusion, 

functionalization between the inclusion and the matrix, and a phenomenon where the 

polymer chains graft around the inclusion. It is expected that the interface be very soft 

when no chemical functionalization or polymer grafting is present in the system, while 

a stiffer interface is probable otherwise. To this end we study two models of the 
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interface corresponding to the two cases; a soft and a stiff interface. The two models 

assume interface stiffnesses of 0.3𝐸ASTUGVW  and 5𝐸ASTUGVW , respectively, where 

𝐸ASTUGVW  corresponds to the Young’s modulus of the polymer, while the Poisson’s 

ratio was kept constant and equal to that of the polymer. A similar study was 

previously conducted in [36]. We compare the two cases in the Figure 25, but a stiff 

interface was utilized in all other comparisons. 

 

2.4.3 Effective Fiber (EF) 

Mori-Tanaka based micromechanical models assume that there are multiple inclusions 

with different volume fractions and mechanical properties scattered evenly inside an 

infinite domain [25,26]. This effectively means that in such a micromechanical model 

the inclusions are not necessarily nested, as shown in Figure 8 (a). This is in contrast 

to the actual CNT-polymer composite in which the inclusions are nested as shown in 

Figure 8 (b). The double inclusion model proposed by Hori and Nemat-Nasser [29], 

used in this paper, is derived for nested inclusions but as shown in [25] this model is 

equivalent to the plain multiphase model of Mori-Tanaka for the case where all 

inclusions have the same aspect ratio. While for some cases this deficiency of the 

Mori-Tanaka models may not cause significant error but if the issues of stress transfer 

from one phase to the other are important the error caused by continued usage of the 

model may become too great to ignore.  
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Figure 8. Mori-Tanaka distribution of micromechanical inclusions (a), and the distribution in 
an actual carbon nanotube composite (b). 

 

The interface phase in the current study is a very small region with small moduli. This 

renders the interface insignificant if used in a purely rule-of-mixtures methodology. 

Rather than an insignificant small phase with trivial effect on the nanocomposite, the 

interface phase is seen as one of the most important phases in the nanocomposite due 

to its role in carrying the stresses from the polymer to the CNT. For example, if the 

interface is very weak the inclusion of the CNT in the micromechanical model would 

not make sense because it would be effectively isolated from the rest of the composite. 

Even if the interface is moderately stiff, it is anticipated that it will significantly alter 

the way the carbon nanotube performs in the nanocomposite.  

To accurately model the interface resembling, as closely as possible, its true role in 

the physics of the nanocomposite, we decided to merge the carbon nanotube and the 

interface into a single phase known as the “effective fiber” using a method that 

accounts for the nested, or coated, nature of the CNT and interface. The finite element 

method stood out with its ease of use and flexibility. 

To this end we prepared two sets of finite element models with three models each 

corresponding to the three CNT radii used in this study. In one of the sets the actual 

configuration of the CNT and the interface were modelled in their nested state, as 

shown in Figure 9 (left) and Figure 10 (left). The other set consists of a single solid 
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cylinder representing the effective fiber (see Figure 9 (right) and Figure 10 (right)). 

We applied the same loading conditions to the two sets and varied the moduli of the 

effective fiber model until the displacements of the two sets matched. We applied 

multiple loading conditions, each of which induces a different type of displacement, 

so as to amplify the role of a different elastic coefficient. When the displacements of 

the two sets matched the moduli assigned to the effective fiber were taken to be final. 

 

 

 

Figure 9: Isometric views of finite element models consisting of CNT and the interface 
(left), and effective fiber (right). 

1 

2 
3 
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Figure 10. Side views of finite element models consisting of CNT and the interface (left), 
and effective fiber (right). 

 

The two finite element models have identical outer dimensions. We used Abaqus FEA 

to build the models consisting of C3D10 elements. Approximately 22000 elements 

were used for the CNT-interface model and 70000 elements for the effective fiber 

model. A study was performed on the convergence of the solutions and it was verified 

that the numbers of elements used were sufficient. 

The effective fiber is expected to show transversely isotropic behavior, resembling the 

CNT. A transversely isotropic material has 5 independent material properties that we 

have to determine before using the effective fiber in the micromechanical model. 

While a number of combinations can be listed for the 5 independent parameters, we 

decided to use longitudinal and transverse Young’s moduli, 𝐸d and 𝐸u, shear modulus 

𝐺du and Poisson’s ratios 𝜈du and 𝜈uw. All the other moduli can be calculated using 

these 5 parameters assuming the effective fiber is transversely isotropic. 

With the addition of the effective fiber the sequence of operations of the model is 

shown in Figure 11. Here “Micromechanics module” refers to Figure 7. 

 

 

 

Interface (IF) 

CNT 
Effective Fiber 

2 

1 
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2.4.3.1 Young’s Modulus 𝑬𝟏 in the Longitudinal Direction 

In order to obtain the Young’s modulus in the longitudinal direction we applied 

uniform pressure on one end of the finite element models and assumed the other end 

is symmetric in the longitudinal direction. This is tantamount to making the cylinders 

twice as long and applying the same uniform pressure on both ends. The average 

displacement in the surface with applied pressure is then used as a measure of 

comparison between the two sets of finite element models. 

 

Start 
Combine IF and CNT 

into EF using FEM 
4 phase composite 

Micromechanics 

Module 
3 phase com

posite 
End 

Figure 11: Sequence of operations in the current model. 
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Figure 12: Loading conditions used to obtain the longitudinal modulus of the effective fiber. 

 

 

2.4.3.2 Young’s Modulus 𝑬𝟐 in the Transverse Direction and Poisson’s ratio 𝝂𝟏𝟐 

The next two coefficients, 𝐸u and 𝜈du can be determined in the same loading by 

measuring and matching the displacements in different directions. To this end we 

loaded the finite element model with a uniform pressure on the sides as shown in 

Figure 13. Then the average displacement of the top surface in the longitudinal 

direction, as well as the average shrinkage in the radius of the cylinder were used to 

determine the two elastic moduli. 
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Figure 13: Loading conditions used to obtain the transverse modulus and Poisson’s ratio ν12 
of the effective fiber. 

 

2.4.3.3 Shear Modulus 𝑮𝟏𝟐 and Poisson’s ratio 𝝂𝟐𝟑 

Out-of-plane shear modulus 𝐺du and the associated Poisson’s ratio 𝜈uw are calculated 

next. For this purpose, the finite element model was twisted on one end with a 

uniformly distributed torsional load while the other end was assumed to have a 

symmetric boundary condition as shown in Figure 14. The average radial displacement 

on the top surface was then taken as the criteria to determine the shear modulus. 
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It was observed that the Poisson’s ratio 𝜈uw did not affect the results in any of the 

loading conditions used so far in a discernable way. This not only implies that the 

methods used so far cannot be used to determine this coefficient, but also that it does 

not significantly alter the results. While a new methodology could be devised to 

determine 𝜈uw the fact that it does not alter the results a lot suggested that a simple 

assumption for this parameter could suffice. This practice is common for this 

coefficient in the literature [24]. To this end we assumed two values for 𝜈uw; 0.2 and 

0.4 and observed that the moduli of the nanocomposite were not affected in a 

distinguishable way. 

 

 

Figure 14: Loading conditions used to obtain G12. 

 

The elastic moduli were then obtained using the methodology described so far. The 

results are shown in Table 2 for the stiff interface model and Table 3 for the soft 

interface model. 
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Table 2: Transverse elastic constants of the effective fiber with a stiff interface model 
(𝐸XY = 5	𝐸ASTUGVW) 

CNT Radius 
[Å] 

𝐸d 
[GPa] 

𝐸u  
[GPa] 

𝐺du  
[GPa] 

𝜈du  

[ - ] 

𝜈uw 

[ - ] 

3.9 113.0 38.0 40.0 0.32 0.2 

5.5 112.0 19.6 49.0 0.32 0.2 

7.1 73.2 17.0 39.0 0.34 0.2 

 

Table 3: Transverse elastic constants of the effective fiber with a soft interface model  
(𝐸XY = 0.3	𝐸ASTUGVW) 

CNT Radius 
[Å] 

𝐸d 
[GPa] 

𝐸u  
[GPa] 

𝐺du  
[GPa] 

𝜈du  

[ - ] 

𝜈uw 

[ - ] 

3.9 14.7 3.81 4.5 0.33 0.2 

5.5 14.0 2.01 3.8 0.6 0.2 

7.1 13.2 1.84 2.8 0.9 0.2 

 

Detailed information about effective fiber property determination is given in Appendix 

C. 

2.4.3.4 Verification with a Rheological Model 

The elastic moduli obtained above for the effective fiber region can be verified using 

a simple springs analogy for a quick sanity check. For this purpose, the CNT and 

interface combination is divided into four regions consisting of  

1. CNT 

2. Portion of the interface covering the sides of the CNT 

3. Portion of the interface covering the top of the CNT 

4. Portion of the interface covering the bottom of the CNT 

The four regions are shown in Figure 15 
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Idealizing the four regions as simple beams and modifying Hooke’s law we can 

replace the 4 regions by simple springs. Hooke’s law for simple beams in uniaxial 

loading reads  

 𝜎 = 𝐸𝜖 
𝐹
𝐴 = 𝐸

𝑥
𝐿 

𝐹 = Z¾
¿
𝑥	  

( 28 ) 

where 𝐹 represents the applied force, 𝐸 its Young’s modulus, 𝐴 its cross sectional 

area, 𝐿 its length and 𝑥 its elongation. The last expression in Eqs. ( 28 ) is identical to 

the constitutive equation of a simple string, i.e. 𝐹 = 𝑘𝑥. Then the structural elements 

can be replaced with springs that have spring constants that are equal to 𝑘 = Z¾
¿

. 

The four regions can then be represented by simple springs with effective stiffnesses 

𝑘d, 𝑘u and 𝑘w = 𝑘À as shown in Figure 16. 

 IF 

CNT 

4 

2 

3 

1 

Figure 15. Partitioning of the CNT and interface model into four regions. 
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Figure 16. Simplification of the 4 regions in the CNT + interface model with linear springs. 

 

 𝑘C =
𝐸C𝐴C
𝐿C

 ( 29 ) 

Then the effective fiber of the whole model is obtained using equations for the 

effective spring constants of springs connected in series and parallel as follows: 

 𝑘 = 𝑘u +
𝑘d𝑘w

2𝑘d + 𝑘w
 

𝐸 =
𝑘𝐿
𝐴  

( 30 )  

Using this method yields the following values for the longitudinal Young’s modulus 

of the effective fiber: 

 

Table 4: Longitudinal Young’s modulus of the effective fiber for the three CNT radii and the 
stiff interface model calculated with the rheological model. 

CNT Radius 
[Å] 

𝐸d 
[GPa] 

3.9 162.4 

5.5 159.1 

7.1 154.4 

4 

2 

3 
1 
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Table 5: Longitudinal Young’s modulus of the effective fiber for the three CNT radii and the 
soft interface model calculated with the rheological model. 

CNT Radius 
[Å] 

𝐸d 
[GPa] 

3.9 15.0 

5.5 15.0 

7.1 14.9 

 

Table 4 and Table 5 serve to verify the results of Table 2 and Table 3, respectively. 

Being highly simplified, the rheological model is bound to have some errors, which 

is seen from the comparison of Table 2 and Table 4. However, the results match 

much better when using a soft interface model. 

 

2.4.4 Interphase (IP) 

The interphase is a portion of the polymer that has altered properties next to the carbon 

nanotube. It has been observed that the density of the polymer rises quasi-

exponentially with some oscillations in the direct vicinity of the nanotube in the radial 

direction [17,24]. For example in the density plot of Figure 17 generated by Tsai et al. 

[24] one can see the spike in density of the polymer (polyamide – PI) close to the 

surface of the CNT. This jump in the density corresponds to the interphase region, 

while the gap between the interphase and the CNT (indicated by a density of 0 g/cc) 

is the interface. This can also be seen in the atomistic simulations of Herasati et al. 

[37] reported in Figure 18. 
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Figure 17. Density distribution of a PI-CNT composite in the radial direction originating in 
the center of the CNT. Image courtesy of [24]. 
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Figure 18. Atomistic images of the interphase region in a Poly Vinyl Chloride (PVC) – CNT 
Composite (top) and density distribution of Poly Vinyl Chloride (PVC) in the radial 

direction from surface of the CNT (bottom). Image obtained from [37]. 

 

This suggests a functionally graded model could better represent the true nature of the 

interphase. We chose three functions to model the interphase; constant, linear and 

exponential. The exponential function is given as  
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𝐸(𝑥) =

𝐸(u) − 𝐸(d)

𝑒c¥ − 1
(𝑒c¥Á − 1) + 𝐸(d)	 

 

( 31 ) 

where 𝑥 = 0 and 𝐸 = 𝐸(d) at the inner boundary (next to the interface) and 𝑥 = 1 and 

𝐸 = 𝐸(u) at the outer boundary of the interphase. 𝑎 is a parameter that controls the rate 

of exponential decay. Moduli 𝐸(d) and 𝐸(u) can be chosen to be equal to anything 

depending on the situation. In the current study, it was deemed necessary that when 

an effective fiber is used to replace the interface and the CNT the Young’s modulus 

be continuous, such that the Young’s modulus at the inner boundary is equal to the 

longitudinal Young’s modulus of the effective fiber, 𝐸(d) = 𝐸ZY . The modulus at the 

outer boundary is then set to be equal to that of the bulk polymer, 𝐸(u) = 𝐸[\ . 

Poisson’s ratio of the interphase was kept constant and equal to that of the polymer. 

The thickness of the interphase is an important parameter; however, its value is highly 

controversial. Interphase thickness values ranging from 3 to 25.5 Å have been reported 

in the literature [17,24,38]. 

Figure 19 shows the distribution of the Young’s modulus across the whole composite 

in a figurative manner when an effective fiber is used instead of the CNT and the 

interface.  
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Figure 19: Representative Young’s modulus distribution across the micromechanical model. 

This representation of the interphase is in line with the observations made in 

experiments of nanoparticulate composites as shown in Figure 20 and Figure 21. 

 

Figure 20. Illustrated AFM measurement of the local shear modulus around a TiO2-
Elastomer nanocomposite. Note that the abscissa of the plot on the right side corresponds to 

the white line crossing the nanoparticle on the left side. Image obtained from [39]. 
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Figure 21. Representative Young’s modulus of CNT-Natural Rubber nanocomposite and its 
corresponding modulus-length curve to represent the interphase thickness. Image obtained 

from [40]. 

2.4.5 Bulk Polymer (BP) 

In this study, the resulting moduli of the nanocomposite are studied relative to that of 

the polymer using stiffening ratios. As such the absolute values of the polymer moduli 

were not held in high significance. But it was deemed beneficial to use a polymer from 

which a carbon nanotube composite has previously been synthesized. To this end a 

polymer named LARC-SI produced and tested by [14] is used that has a Young’s 

modulus of 3.8 GPa and a Poisson’s ratio of 0.4. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION  

 

 

3.1 Results 

A LARC-SI – SWCNT polymer was then analysed using the micromechanical model 

described in CHAPTER 2. A number of parametric studies were performed to study 

the effects of various variables such as the number of inclusions, interphase thickness, 

CNT radius and et cetera on the moduli of the composite. In all of these studies the 

orientation distribution of the carbon nanotubes was assumed to be random, unless 

specified otherwise. The results were compared with other numerical as well as 

experimental studies in the literature whenever possible. 

3.1.1 Number of Inclusions 

One of the most fundamental methods that can be used to model carbon nanotube – 

polymer composites is that of Mori and Tanaka [20] using two phases. However, as 

described in the previous chapter this is very unrealistic. It is widely known that there 

are at least four phases in a nanocomposite that should be accounted for in the 

micromechanical model. In this subsection, we study how reducing the number of 

inclusions to 3 or even 2 affects the performance of the micromechanical model. We 

use three micromechanical models consisting of a two-phase Mori-Tanaka model, a 

3-phase and a 4-phase model and compare the moduli resulted by the three models. In 

the 2-phase model the two phases consist of a CNT phase and a polymer phase, while 

the existence of other phases is ignored. In the 3-phase model the three phases are the 

CNT, interface and the polymer, while the interphase is assumed not to exist. Finally, 

in the 4-phase model all the four phases are present. The moduli of the phases are 
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described in CHAPTER 2.  In all three cases the polymer, interface, and CNT are used 

as described in 2.4.3 Effective Fiber (EF), 2.4.2 Interface (IF)  (assuming a stiff 

interface) and Table 1 respectively. In the 4 phase model the interphase moduli are 

assumed to vary from those of the interface and the polymer respectively. We do not 

use an effective fiber in this subsection to keep the results simple, but we still apply 

randomization of CNT orientation distribution. 

 

 

Figure 22. Comparison of 2-phase, 3-phase and 4-phase micromechanical models. 

 

The results of the analysis are shown in Figure 22. Only Young’s modulus is shown 

to keep the figure simple, but shear modulus follows a similar trend as a result of 

homogenization of the CNT orientation distribution. Note that an exponential 

interphase modulus distribution was used with 𝑎 = 5, CNT radius of 3.9 Å, interphase 

thickness of 𝑡X\ = 10	Å and a CNT aspect ratio of 40. The 4-phase model currently 

overestimates the moduli of the composite because the micromechanical model does 

not “see” that the interface is coated around the CNT. In reality the CNT does not 

interact with the polymer directly, and instead, stresses are transferred to the CNT 

through the interface. However, as the purpose of this model is to show how the 
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number of phases affects the results, the current configuration is deemed to be 

sufficient and the issue of “coating” of the interface is considered in the next 

subsections. It is also beneficial as using a coated effective fiber model would cause a 

negative effect on the moduli of the composite which would bring it closer to the other 

two models in Figure 22 thus obscuring the error caused by the other two methods. 

The modulus of the interphase is supposed to start from that of the interface and end 

with that of the polymer.  

3.1.2 Interphase Modulus Distribution 

The interphase is a crucial phase in the nanocomposite. According to some theories 

the entirety of the stiffening effect of the carbon nanotube is due to the interphase, 

rather than the direct contribution of the CNT [17]. Even if this is not the case, 

depending on the size of the interphase it could have a large effect on the stiffness of 

the composite. Even using moderate assumptions for interphase thickness such as 10 

Å results in an interphase larger than the CNT and the interface combined. As such, it 

is of grave importance that the interphase be functionally graded. However, the nature 

of the function by which it is graded is an unknown. To study the effect of the function 

we plotted the normalized Young’s modulus of the nanocomposite for various CNT 

radii using different interphase modulus distribution functions in Figure 23. An 

interphase thickness of 10 Å and a volume fraction of 1% were assumed in this plot. 

For constant IP case the Young’s modulus of the IP was set to the average of the 

longitudinal Young’s modulus of the effective fiber and Young’s modulus of the 

polymer. 
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Figure 23. Normalized composite moduli vs CNT radius for various interphase moduli 
distributions. 

 

It is seen that the stiffening effect of the nanotube reduces as its radius grows. This is 

an expected behavior with multiple reasons. First, since the CNTs used in this study 

are single walled, a larger CNT means a larger empty space inside the CNT. The only 

part of the CNT that contributes to the stiffness is the part with carbon atoms, known 

as the wall. But a larger CNT radius means a smaller portion of the CNT is occupied 

by the wall; resulting in reduced CNT moduli.  

Furthermore, keeping the volume fraction of the inclusion the same but increasing the 

CNT radius effectively means reducing the number of carbon nanotubes in the 

composite, but increasing their size. Since the thickness of the interphase is constant 

with respect to CNT radius [17], and since the interphase also has a great stiffening 

effect on the composite, using smaller but more numerous carbon nanotubes result in 

more of the polymer being turned into the interphase.  

Figure 23 also shows how choosing different functions for the distribution of the 

Young’s modulus in the interphase affects the stiffness of the nanocomposite. It is 
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observed that using a constant and linear distribution results in unreasonably large and 

unrealistic stiffening ratios. For example, using 1% CNT by volume with a radius of 

3.9 Å and a constant interphase modulus distribution results in a composite stiffness 

that is more than 3 times that of the polymer.  

An exponential distribution is also much more flexible than the other two distributions 

with the parameter 𝑎. One can even simulate constant and linear distribution by 

utilizing proper values of 𝑎. Last but not least the use of an exponential distribution is 

further motivated by the observations made in the literature that the density of the 

interphase shows a quasi-exponential decay with some oscillations in the radially 

outward direction from the center of the CNT [17,24,27]. 

3.1.3 Contributions of the Phases 

Figure 24 and Figure 25 show column charts of the contribution of each phase to the 

stiffness of the nanocomposite when using stiff and soft interface models respectively. 

These plots were obtained by starting from a pure polymer and gradually adding the 

rest of the phases in correct volume fractions. The volume fraction of the CNT was 

kept at 1% and radius at 3.9 Å. This plot serves to show three important concepts. 

First, one can clearly see that all four phases in the nanocomposite are contributing in 

significant proportions to the modulus using a stiff interface. On the other hand, using 

a soft interface degrades the stress transfer mechanism to the point that the interface 

and the CNT play almost no role in the reinforcement of the polymer. A similar study 

was previously obtained in [17]. However, it should be noted that the interphase profile 

was kept constant in both cases. This is seen as an explanation, and thereby 

justification, of the use of the current 4-phase model. 

One can also see that the interphase becomes increasingly important as its thickness 

grows to even mediocre values. At an interphase thickness of 10 Å the interphase 

occupies more volume than the CNT and reinforces the polymer almost as much as 

the CNT.  

Last but not least the plot shows how the interface really works. The plot has three sets 

of columns, the left one in each set represents the coated inclusion model with effective 
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fiber. The right one represents a classical Mori-Tanaka type model with 4 phases. As 

discussed in 2.4.3 Effective Fiber (EF) the Mori-Tanaka type model does not consider 

the coated nature of the phases. And since the interface has a higher stiffness than the 

polymer, the model predicts that the interface has a positive contribution to the 

stiffness of the nanocomposite (shown in light gray in Figure 24). While in reality the 

opposite is true. The interface serves to weaken the carbon nanotube resulting in a 

negative contribution to the stiffness of the nanocomposite. The real contribution of 

the interface is the difference between the contributions of the carbon nanotubes and 

effective fibers in each set which is only evident when a coated interface model is 

utilized. In other words, using a purely micromechanical model does not fully disclose 

the role of the interface in the nanocomposite. Since the interface is such a small phase, 

its direct contribution to the nanocomposite is not very significant. This is evident 

from the fact that the right columns in the two figures are almost identical. This issue 

however, is tackled by the homogenization of the CNT and the interfaces using finite 

element analyses (See the difference in the left columns). 
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Figure 24. Contribution of each phase to the modulus of the nanocomposite when using a 
stiff interface model. 
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Figure 25. Contribution of each phase to the modulus of the nanocomposite when using a 
soft interface model. 

 

3.1.4 Interphase Thickness 

Since the interphase seems to carry arguably the greatest role in the stiffening of the 

nanocomposite, it is important to characterize and study the interphase as much as 

possible. The most controversial aspect of the interphase is probably its thickness. 

Figure 26 shows the variation of normalized composite stiffness as a function of CNT 

vol. %. Some other numerical and experimental data is also superimposed to compare 

the current model with the findings in the literature [14,41,42]. The plot was obtained 

using 𝑎 = 5.  The plot indicates that increasing CNT volume fraction exponentially 

increases the stiffening ratio.  

It is observed that the current model overestimates the composite stiffness especially 

in increasing volume fractions. This is because as the volume fraction increases the 

micromechanical model approaches the dilute limit. The model also does not take into 
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effect issues such as proper dispersion and distribution of CNTs across the composite, 

which get worse with increasing volume fractions. 

 

 

Figure 26. Results of the current model using a CNT radius of 3.9 Å, interphase thickness of 
3 Å, and 𝑎 = 5 compared to experimental and numerical findings in the literature 

[14,41,42]. 

 

3.1.5 CNT Orientation Distribution 

The analyses performed so far assumed a random distribution of CNT orientation in 

the composite. This assumption leads to isotropic composites. However, if for some 

reason the distribution is not random an anisotropic composite is obtained. For 

example, if the fibers tend to align towards a single direction the composite becomes 
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stiffer in that direction and softer in others. In Figure 27 two sets of composite moduli 

are plotted that were obtained using random and completely aligned distributions of 

CNT orientation. An interphase thickness of 5 Å and 𝑎 = 1 are used. It is seen that the 

Young’s modulus of the aligned composite in the direction of alignment, 1, is very 

high, while shear modulus and Young’s modulus in the transverse direction are lower. 

On the other hand, a random distribution of CNT orientation results in both moduli 

(shear and Young’s) with moderate values. 

 

Figure 27: Composite moduli vs effective fiber vol.% for aligned and random inclusion 
distributions. 
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reached. Figure 28 shows a plot of normalized CNT moduli as a function of effective 

fiber aspect ratio. The data plotted indicates that the moduli rise sharply until an aspect 

ratio of about 20, and some more until 50, but after that no discernable change is seen 

as a function of aspect ratio. The data plotted was obtained for CNT radius of 3.9 Å 

and 1% effective fiber by volume. 

 

Figure 28: Composite Young’s and shear moduli vs effective fiber aspect ratio
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CHAPTER 4 

 

CONCLUSIONS 

 

 

Numerous molecular dynamics studies reported in the literature indicate that there are 

at least four distinct regions, or phases, in a carbon nanotube – polymer nanocomposite 

including the carbon nanotube, the interface, the interphase and the bulk polymer. 

Since the phases have highly varying roles and mechanical properties, it is important 

to account for all of them when developing a model for nanocomposite simulation.  

The interface is a small and soft region dominated by Van der Waals bonds, as 

compared to the covalent bonds of the carbon nanotube, and it is mainly responsible 

for stress transfer from the polymer to the CNT. Since Mori-Tanaka based models do 

not take into account this property, it is important to model this region with a different 

method such as the finite element method so that the true role of the interface is 

accounted for. 

It is also noted that as opposed to the commonly held notion in the literature, the CNT 

is not the only stiffening agent in the nanocomposite. In fact, the interphase may be 

even more important than the CNT in this regard. Since the interphase consists of such 

a large swathe of the nanocomposite it has a crucial effect on the stiffness of the 

composite.  

This study shows that carbon nanotube – polymer nanocomposites can be modelled 

with high fidelity using 4 phases and properly integrating the phases in a way which 

accurately reflects the true nature of the phases in an actual nanocomposite. 
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4.1 Recommendations and Future Work 

It is observed during the course of this study that some experimental and atomistic 

scale studies are required to better understand CNT-polymer composites. For example, 

there is no single, or even converging, point of view on the thickness of the interphase 

in the literature. This is despite the fact that the interphase probably has the greatest 

impact in stiffening of the nanocomposite. Studies focusing on the thickness of the 

interphase and its dependencies on various outside parameters could highly improve 

the state of the analytical models currently available. 

The moduli tensor of the CNT and the interface change with CNT radius. The way in 

which this change occurs is of crucial importance in modeling of nanocomposites. If 

the evolution of the moduli of the CNT with its radius, as well as the number of walls 

and chirality vectors is better understood, this could lead to ever self-sustaining 

methods to be developed for the simulation of carbon nanotube composites. 

In terms of modeling it is advised that a multitude of methodologies be used in 

harmony, as was done in this study, as it suits the challenges at hand. It is also possible 

that more compact methods such as Qu’s micromechanical model introduced in 

CHAPTER 1 be used to simplify the models even more. However, a small loss in 

accuracy and fidelity is to be expected. 
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APPENDIX A 

 

 

The fictitious infinite medium in Mori-Tanaka type micromechanical models 

comprises of a homogenized medium that represents the entire composite in a 

continuum configuration. The only piece of information available about this 𝐶CNO  

beforehand is that it lies somewhere between the inclusion properties and the matrix 

properties (for a 2-phase system). Hence accurate use of such models requires an 

iterative approach in which the mechanical properties of the infinite medium are 

assigned assumed values and corrected in later iterations until the guesses assigned to 

the moduli are confirmed by the final composite moduli. For small inclusion volume 

fractions the moduli are expected to be much closer to those of the matrix than the 

inclusion. Using this information, in the isotropic case, we first assign the moduli of 

the matrix (polymer) to the infinite medium. Then after every calculation of the 

micromechanical model we check if the assumed Young’s and shear moduli of the 

infinite medium are within 5% of the calculated composite moduli. If this condition is 

not satisfied the calculated moduli are assigned to the infinite medium and the 

calculations are restarted. This scheme resembles a fixed-point iteration algorithm. We 

found that the choice of initial guesses does not significantly affect the convergence. 

However, we plot how the accuracy requirement affects the convergence of the system 

in Figure 29. The horizontal axis represents the maximum tolerable error in the values 

of infinite medium Young’s and shear moduli and the vertical axis shows the number 

of iterations necessary to converge using this tolerance. 

This plot is obtained for the case of a CNT with 3.9 Å, using an interphase thickness 

of 5	Å and an exponential interphase moduli distribution with 𝑎 = 5. The CNT aspect 

ratio was assumed to be 100. 
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Figure 29. Number of iterations needed to converge given a maximum tolerance in infinite 
medium Young’s and shear moduli. 
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APPENDIX B 

 

 

Whereas this thesis is focused on the study of fiber-like inclusions, the model and 

methodologies developed can easily be adopted to analyze spherical and plate-like 

inclusions just as well. This can be used to study composites of graphene platelets, 

silica and fullerenes. To demonstrate this we study the effects of inclusion shape using 

a 3-phase micromechanical model in this appendix. The 3 phases consist of the 

inclusion, an interface and the matrix (bulk polymer). The interface is modelled in a 

position dependent manner where the moduli decay exponentially in the radially 

outward direction. The Young’s modulus of the interface, 𝐸, in terms of Young’s 

moduli of the inclusion and the bulk polymer, 𝐸X  and 𝐸[\ as  

 𝐸(𝑥) =
𝐸ÆÇ − 𝐸È
𝑒cÉ − 1

(𝑒cÉÁ − 1) + 𝐸È 
( 32 ) 

 

where 𝑎 is the rate of exponential decay and it was set to 10 in this study.  

We select three inclusions with cylindrical, spherical and plate-type shapes. The 

cylindrical inclusion has a radius of 5 Å and a length of 100 Å. The spherical inclusion 

has a radius of 5 Å and the plate type inclusion has a maximum thickness of 1 Å and 

a radius of 10 Å. The inclusion shapes are shown in Figure 30. Polyimide was selected 

to act as the matrix with a Young’s modulus of 2.5 GPa and a Poisson’s ratio of 0.34. 

The interface was assumed to have a thickness of 10 Å. The inclusion is assumed to 

have a Young’s modulus of 1 TPa and a Poisson’s ratio of 0.3 in all three cases. The 

orientations of the inclusion were then homogenized to simulate a composite with 

randomly distributed inclusion orientation. This results in an isotropic behavior of the 

nanocomposite.  
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Figure 30. Cylindrical (left), spherical (center) and plate-like (right) inclusion shapes. 

 

The cylindrical inclusion appears to have resulted in higher stiffening of the polymer 

as seen in Figure 31, followed by the spherical inclusion. The higher stiffening effect 

of the cylindrical inclusion is a result of its high aspect ratio. A high inclusion aspect 

ratio allows for greater adhesion with the polymer due to increased contact area.  

While the plate like inclusion has a higher surface area to volume ratio, it is larger in 

volume than the spherical inclusion. For the same inclusion volume fraction 

decreasing the size of the inclusion is tantamount to increasing the number of 

inclusions which in turn results in higher interface volume fractions. Since the 

interface is stronger than the polymer, and hence helps reinforce it, increased interface 

volume fraction results in stiffer nanocomposites.  

Next we investigate how the inclusion shape affects the performance. Figure 31 and 

Figure 32 depict variation in normalized composite stiffness with respect to cylindrical 

inclusion aspect ratio, defined as length of the cylinder divided by the diameter, and 

plate-like inclusion aspect ratio, defined as diameter of the plate divided by its width, 

respectively for an inclusion volume fraction of 1%. In both cases the composite 

stiffness rises until a point of saturation, where the contact surface area is large enough 

to efficiently transfer stress to the inclusion. The difference is, in the case of the 

cylindrical inclusion the curve saturates much earlier than plate-like inclusions. The 

curve of cylindrical inclusions appears to stabilize after an aspect ratio of 100, while 

that of plate-like inclusions does so an order of magnitude later, at around 1000 aspect 
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ratio. Furthermore, using a plate-like inclusion shape one can reach much higher 

stiffening ratios than using cylindrical inclusions. 

In Figure 33 we study the effects of inclusion size on the composite moduli. The plots 

of Figure 33 show how nanocomposite stiffness varies by changing inclusion radii for 

an inclusion volume fraction of 1%. While all three inclusion shapes indicate 

exponential decay, they stabilize at different points. The top left plot shows how 

increasing inclusion size while keeping the shape the same affects the composite 

Young’s modulus. The Young’s modulus starts to level at around inclusion radius of 

50 Å, while the other inclusion types start to stabilize at a radius of around 10 Å.  

This loss in stiffness by increasing inclusion size is attributed to the decreased relative 

size of the interface. Larger structures result in decreased surface area to volume ratio. 

And since the volume of the interface depends on the contact area between the 

inclusion and the polymer, larger inclusions result in less interface and ergo a softer 

composite. 

 

Figure 31. Variation of normalized composite Young’s modulus, E/EBP as a function of 
inclusion volume fraction for cylindrical, spherical ad plate-like inclusions. 
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Figure 32. Variation of normalized composite Young’s modulus as a function of cylindrical 
inclusion aspect ratio (left) and plate-like inclusion aspect ratio (right). 

 

 

 
 

Figure 33. Variation of normalized composite stiffness with respect to cylindrical inclusion 
radius (top left), spherical inclusion radius (top right), and plate-like inclusion radius 

(bottom). 
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In conclusion, three different inclusion shapes were investigated for reinforcing 

polymeric materials in the nanometer scale; cylindrical, spherical and plate-like 

inclusions. The inclusions all have the same material properties which is roughly equal 

to those of carbon nanotubes. The interface was modelled in a graded manner using 

an exponentially decaying function. The cylindrical inclusion appears to perform 

better at low aspect ratios compared to the alternatives. This is because of the high 

surface area to volume fraction that such a geometry displays. However, one can 

increase the composite stiffness to much higher values using high aspect ratio plates.
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APPENDIX C 

 

 

Determination of the effective fiber elastic properties is a key task in modeling of 

carbon nanotube – polymer composites. In this study, we used the equivalence of 

displacements under a certain loading condition as a criterion for defining the effective 

fiber, such that the effective fiber should show similar displacements under given 

loading conditions as the actual carbon nanotube and interface combination. The 

loading conditions are summarized in 2.4.3 Effective Fiber (EF). Here we show in a 

detailed fashion how our effective fiber matches the carbon nanotube and interface 

combination (real model) and how the moduli of the effective fiber affect the 

displacements in those loading conditions. To study this effect, we multiplied the a 

given modulus by a factor 𝛼 and observed how the displacements deviated from the 

real model. For example, 𝛼 = 0.5 means a given modulus of the effective fiber was 

halved, while everything else remained the same. Figure 34 shows this study for the 

case of axial compression. It is seen that no other modulus except for the axial Young’s 

modulus (𝐸d) (shown with empty squares) affects the axial displacement in this 

loading condition in a significant fashion; thereby enabling the definitive 

determination of the axial Young’s modulus. Next the radial displacement (normalized 

by the same displacement in the CNT – interface model under the same loading 

condition) in the radial loading case was plotted against 𝛼. This plot (Figure 35) 

indicates that two moduli, 𝐸d and 𝐸u affect the displacement. However, since 𝐸d was 

already fixed using Figure 34, the effect of this modulus can be eliminated; thus, 

allowing for the determination of 𝐸u. Following the same logic in Figure 36 allows for 

finding 𝜈du. This figure shows the normalized axial displacement under the same 

loading.  

Last but not least, plotting hoop displacement under torsional loading shows that only 

shear modulus 𝐺du affects this displacement component. Using a simple fitting 

procedure thus results in the determination of the value of 𝐺du. 
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Figure 34. Variation of axial displacement in axial loading as a function of effective fiber 
moduli.  
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Figure 35. Variation of radial displacement in radial loading as a function of effective fiber 
moduli. 
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Figure 36. Variation of axial displacement in radial loading as a function of effective fiber 
moduli. 
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Figure 37. Variation of hoop displacement in torsional loading as a function of effective 
fiber moduli. 
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