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Scientific Computing, METU

Prof. Dr. Vilda Purutçuoğlu
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ABSTRACT

EFFICIENT SIMULATION AND MODELLING OF COUNTERPARTY CREDIT
RISK

Hekimoğlu, Alper Ali

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Prof. Dr. Sevtap Kestel

December 2018, 142 pages

After 2008-2009 crisis, measurement of Counterparty Credit risk has become an es-
sential part of Basel-III regulations. The measurement involves a complex calcula-
tion, simulation and scenario generation process which involve a heavy computational
cost. Moreover, the counterparty default calculation is an important part depending
on scenario generation and state of the economy, state of the counterparty, liquidity
as well as the bank itself.

In this thesis we develop flexible structural credit risk models and an efficient simu-
lation framework for Counterparty Credit Risk calculations. The credit risk models
are of Merton type, Black-Cox Barrier type and Stochastic Barrier type in Variance
Gamma environment. We proceeded by modifying stochastic volatility models to be
used for credit risk and default dependence. Moreover, we derive a liquidity adjusted
option price for stochastic volatility models to measure indirect effect of liquidty on
credit spreads. The models studied were all developed to include default dependence
between counterparties using an affine factor framework.

Keywords: Counterparty Credit Risk, Efficient Simulation, Structural Credit Risk,
Variance Gamma, Stochastic Volatility, Liquidity adjustment.
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ÖZ

KARŞI TARAF KREDİ RİSKİ MODELLEMESİ VE ETKİN SİMÜLASYONU

Hekimoğlu, Alper Ali

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Prof. Dr. Sevtap Kestel

Aralık 2018, 142 sayfa

2008-2009 krizi sonrasında Karşıtaraf Kredi Riski ölçümü Basel-III düzenlemeleri-
nin önemli bir parçası haline gelmniştir. Söz konusu riskin ölçümü yüksek hesaplama
maliyeti doğuran karmaşık hesaplamalar, simülasyonlar ve senaryo üretim süreçlerini
içermektedir. Ayrıca, Karşıtaraf temerrüt tahmin süreci, ekonomik ve finansal koşul-
ları dikkate alan senaryo üretimine, karşıtarafın finansal durumu ve likidite koşulları
ile bankanın durumuna da bağlı olarak değiştiğinden önem taşımaktadır.

Bu tezde, Karşıtaraf Kredi Riski ölçümü özelinde etkin bir simülasyon altyapısı ve
esnek yapısal kredi riski modelleri geliştirilmiştir. Bu çerçevedeki kredi riski mo-
delleri, Varyans Gama süreci çerçevesinde Merton yapısal özelliğni ve Black-Cox
Bariyer-Stokastik bariyer özelliklerini taşıyacak şekilde tasarlanmıştır. Ayrıca söz ko-
nusu kredi riski modelleri, stokastik volatilite sürecini içerecek şekilde de genişletil-
miştir. Ek olarak, stokastik volatilite modelleri, likidite düzeyinin opsiyon fiyatı üze-
rindeki etkisini gösterecek şekilde düzenlenmiştir. Tezdeki tüm modeller taraflar arası
kredi riski bağımlılığını içerecek şekilde tasarlanmıştır.

Anahtar Kelimeler: Karşıtaraf Kredi Riski, Etkin Simülasyon, Yapısal Kredi Riski,
Varyans Gama, Stokastik Volatilite, Likidite ayarlaması.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Aftermath of 2008 financial crisis the financial regulation environment had undergone

a more strict phase in the context of financial derivatives [32]. These events elucidated

the importance of measuring the risk concept Counterparty Credit Risk . Counterparty

risk occurs when a party to an OTC (Over the Counter) derivatives contract may fail

to perform on its contractual obligations, causing losses to the other party [22].

Especially after the aforementioned crisis, measurement of this risk has become one

of the main challenges for regulators and banks. Hence, correct assessment and man-

agement of counterparty credit risk has become a major concern for financial market

regulators. It contributed to the reconstructing the behavioural style of banks and their

counterparties.

The regulatory environment has changed significantly with increasing speed aimed

to reduce the risk of bank failures and to increase financial stability. Therefore, this

regime shift helped constructing a more robust composition of capital via capital re-

quirements, related to counterparty risk exposures. In that context, moving away from

the Basel I regime which was introduced in 1988 with a first well established princi-

ple and method set on risk based regulation, to the Basel II (2005) and, even more,

the Basel III (2010) regimes have pointed to the need and importance of an enhanced

sensitivity of credit risk measurement. In Basel-III and complementaries, capital re-

quirements have been linked to more sophisticated measures of counterparty credit

risk such as the Credit Valuation Adjustment (CVA), Debt Value Adjustment (DVA).
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More recently the potential volatility of the same (VaR of CVA) captured via VaR

models inconjunction with stress testing under extreme market scenarios has been

put in place [33].

In this thesis we wanted to construct first; flexible and realistic, calibratable to real

data, credit risk models of different properties. This was aimed to fit the needs of

Counterparty Credit Risk framework. The theoretical grounds of out credit risk mod-

els lies on subordinated Levy processes such as Variance Gamma , Normal Inverse

Gaussian and stochastic volatility. Our modification of these models is to embed an

affine decomposition structure [32, 6] to their architecture. Such a framework not

only enables a more concrete Counterparty Credit Risk calculation but also enables

right/wrong way risks which have become crucial concepts of Basel-III/IV framework

particularly for Counterparty Credit Risk . It is important to note that, we extended

Black-Cox type barrier models [8] to contain Levy process with the affine decompo-

sition and a Monte Carlo (MC) Simulation procedure in that environment is derived.

Second, due to the computational burden elicited by the measurement of this risk, we

study and develop some formulas to increase the efficiency of Counterparty Credit

Risk simulation. The purpose is not to rely on hardware capacity, rather to find out

analytical formulas for efficiency. In that context we developed formulas for optimal

parameters in terms of MC simulation and these are used to calculate CCR metrics

such as EPE, CVA and DVA etc. We find that it is possible to obtain some optimal

levels for number of simulations and number of simulation paths for CVA calculation.
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Third, the stress testing of Counterparty Credit Risk has not been implemented with

a link economc state, so we propose Counterparty Credit Risk measurement allowing

stress testing. We have constructed such framework based on Variance Gamma pro-

cess. We see that this point is crucial, as the connection between macroeconomic and

financial key factors with counterparty default has not been paid much importance in

the calculation of Counterparty Credit Risk . The importance of this issue showed

its role in the 2008 financial crisis where collapse of financial system emanated from

macroeconomic breakdown as to what have observed.

Lastly, we derive an option formula embedded with a liquidity adjustment factor. It

has structural feature, however it’s a stochastic volatility model different from other

classical models of that kind. The importance of this is to observe the effect of liq-

uidity constraint, which is the first activity we see in markets during financial crisis,

on the credit spreads.

1.2 Preliminaries

Credit risk occurs when one party of a financial agreement fails to satisfy financial

obligations and causes losses to the other party due to its deterioration in credit quality

[32]. According to Basel-II/III, CRD-IV of EU Banks are required to set aside a

capital for the unexpected losses from that risk. There are two methods for calculation

of required capital for banks:

1. Standard Approach: This method has no internal modelling component and

all risk based components are predefined and preset by the Basel Banking Com-

mittee.

2. Economic Capital Approach: Economic Capital Approach mainly utilizes

credit risk models to account for calculation of risk and adjustment of captial

based on the loss obtained from the model. The main goal of this component is

quantification of expected loss (EL) and unexpected loss (UL). The key com-

ponents of this quantification are [33].

A- Probability of Default (PD)

3



B- Loss Given Default (LGD)

C- Exposure at Default (EAD)

Thus, this method is mainly interested in modelling of those risk parameters.

As mentioned, Expected Loss (EL) calculation is done by the formula:

EL = PD × LGD × EAD

Then Unexpected Loss (UL) calculation, which is at the core of ratings based

approaches in Basel II/III.

UL = V aR− PD × LGD × EAD

1.2.1 Recovery Ratio (RR)

The first exogenous input credit risk modelling is the recovery ratio [33]. The default

event could be defined in many ways; it could be real inability to meet the obligations

or missing payments. In the same way, loss on default can also vary in multiple ways.

The most common are: 1) Receive cash in proportion of market value, 2) Receive

cash in proportion of principal value. Thus, the recovery is a ratio, RR ∈ (0, 1).

A common assumption is to use %40 which is also a predefined ratio in Basel-II/III

regulations.

As a result, %60 is loss given default, which is termed in practice LGD. In practice it

is observed that [33]:

Recovery rate is a function of the seniority,

The distribution of recovery rate is asymmetrical and skewed at the right tail,

The data displays a remarkable dispersion around the mean for each debt class,

Bank debt has the highest recovery rate and is generally less volatile than the other

debt classes.
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CHAPTER 2

COUNTERPARTY CREDIT RISK ESTIMATION AND

CHALLENGES

2.1 Definition

Counterparty Credit Risk, basically can be defined as credit risk or default risk, that

counterparty will fail to satisfy the payment obligations due to another party. Consider

a fixed rate loan without any subtelities in which the borrower makes annual fixed

payments to the lender for ten years before paying back the principal of the loan

[22]. In this case the borrower defaults if there is a failure to pay any of the interest

payments or the principal of the loan during the life of the loan [22].

The same is true for bonds and other securities, however in this case the defaulting

side will be the issuer of the security. Derivatives also expose counterparties to credit

risk. Some of which the payments are bidirectional and the both counterparties incur

default event such as interest rate swaps (IRS) [22].

Counterparty credit risk is present when one counterparty has an exposure to the other.

The exposure at default (EAD) is the total amount owed by the defaulting party to the

non-defaulting party. EAD could be written [22]:

EAD = max(V, 0), (2.1)

where V is the value of derivative.

There is no exposure if the non-defaulting party has liabilities towards the defaulting

party and this gives the max function in equation 2.1. If the exposure above is pos-

itive and non-defaulting party has liabilities to the defaulting party, the net position
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will form the basis of the claim the creditor will make against the defaulter through

bankruptcy proceedings [22].

The Expected Positive Exposure is the amount of exposure party A, the side that

carries risky position due to the counterparty (party B), has at some future date given

that the expectation or average taken over all simulated future outcomes on the date

of interest as defined below [22]:

EPE(t) = E{max(V, 0)|Ft}. (2.2)

Expected Exposure is simply the expected exposure at each specific point of time e.g

payment dates. These exposure measures display an important role in the estimation

of the important counterparty credit risk metric: Credit Valuation Adjustment (CVA)

[22].

The Expected Negative Exposure (ENE) is the expected exposure that party B carries

due to party A as seen from the perspective of A [22].

ENE(t) = E{max(−V, 0)|Ft}. (2.3)

The expected negative exposure enters the calculation of debit and funding valuation

adjustments (DVA and FVA) which are the extensions of CVA with multiple defaults

are considered [22]. The unilateral and bilateral default cases are:

-

PD(t, T ) = E(1t<τ<T ) = P (τ < T ), (2.4)

-

PD1,2(t, T ) = E(1{t<τ1,2<T,τ2,1>T} = P (τ1,2 < T, τ2,1 > T )

= P (τ1,2 < T |τ2,1 > T )(1− P (τ2,1 < T )), (2.5)

respectively.
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2.1.1 Credit Valuation Adjustment CVA

The major concept for the CCR modelling is Credit Valuation Adjustment (CVA). It

is a metric to quantify CCR and measures the expected loss from missing payments

of the derivative due to the default of counterparty. As we defined before, this is

a unilateral assumption. If the bilateral assumption is used then it is called Debt

Valuation Adjustment (DVA).

These have become an integral part of Basel III regulatory requirements and IAS39

accounting rules [33]. The CVA could be mathematically defined:

CV A(t) = E
(
1{τ≤T}(1−R)(e(−

∫ τ
t r(s)ds))V+(T ) | Ft

)
This can be calculated:

CV A(t) =

∫ T

t

(
(1−R)e−

∫ t
s r(u)duV+(T )

)
dPDs (2.6)

= E
(
1{τ≤T}|Ft

)
E ((1−R) | Ft)E(

(
e(−

∫ T
t r(u)du))V+(T ) | Ft

)
)

2.2 CVA Estimation and Challenges

The major problem exists for CVA is the need for numerous simulations for the de-

termination of derivative pricing components path and default risk on the path. The

default risk to be the first and the others require scenarios for the simulation as well.

It is affected by many macro and idiosynratic factors which are to be simulated.

As a result, a method which either by approximation of the path or a complexity /

variance reduction will be very important. It is also possbile to find some semi-closed

form solutions for same cases which alleviates the burden remarkably. These will

significantly contibute to the calculation of CVA, DVA or other variants.
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2.2.1 Scenario Generation and Path Simulation

The first step in calculating credit exposure is to generate potential market scenarios

at a fixed set of simulation dates {tk}Nk=1 in the future. Market scenarios are specifica-

tions of a set of price factors that could impact the values of the trades in the portfolio

severely. Some of the price/risk factors are foreign exchange (FX) rates, interest rates,

equity prices, commodity prices and credit spreads.

The scenarios are usually specified via stochastic differential equations (SDE). Typi-

cally, these SDEs describe Markovian processes and are solvable in closed form [44].

For example, a popular choice for modelling FX rates and stock indices is the gener-

alized geometric Brownian motion given by [44]:

dX(t) = µ(t)X(t)dt+ σ(t)dWt. (2.7)

The solution of this SDE is known as geometric Brownian Motion

X(t) = X(s) exp

(
(

∫ t

s

µ(s)− 0.5σ(s)2ds) +

∫ t

s

σ(s)dW (s)

)
. (2.8)

For scenario generation there are two approaches namely Path-Dependent Simulation

(PDS) and Direct Jump to Simulation Date (DJS) [44]. In PDS for each time interval

on the path scenarios are generated whereas in DJS scenarios are directly generated

or jumped from t=0 to scenario date t.

Above equations change for PDS:

X(tk) = X(tk−1) exp

(∫ tk
tk−1

µ(s)− 0.5σ2(s)ds

tk−1 − tk
+

∫ tk
tk−1

σ(s)dWs

tk − tk−1

)
(2.9)

for DJS:

X(tk) = X(t0) exp

(∫ tk
t0
µ(s)− 0.5σ2(s)ds

tk − t0
+

∫ tk
t0
σ(s)dWs

tk − t0

)
(2.10)

The price factor distribution at a given simulation date obtained using either PDS or

DJS is identical. However, a PDS method may be more suitable for path-dependent,

American/Bermudan and asset-settled derivatives [44].

Scenarios can be generated either under the real world probability measure or under

the risk-neutral probability measure. Under the real world measure, both drifts and

8



volatilities are calibrated to the historical data of price factors. Under the risk-neutral

measure, drifts must be calibrated to ensure there is no arbitrage of traded securities

on the price factors.

Additionally, volatilities must be calibrated to match market implied volatilities of

options on the price factors.

2.2.2 Computational Complexity "An Illustration"

For CVA measurement the banks have to run simulations for different risk factors,

economic scenarios for each counterparty so an efficient simulation with reduced

computational burden is very beneficial.

For illustration, an example of a generic CVA calculation algorithm is given as follows

[33]:

1. Simulate the Cox-Ingersoll-Ross (CIR) model,

CIR Model has the SDE:

dr(t) = λ(µ− r(t))dt+ σ
√
rtdWt

Its solution is:

r(t) = e−λ(t−s)(r(s)− µ) + µ+

∫ t

s

e−λ(t−u)σ
√
r(t)dW (u)

The simulation will be based on discretization below:

rk(ti) = rk(ti−1) + λ
(
µ− rk(ti−1)

)
∆t+ σv

√
rk(ti−1)εk

√
∆t, (2.11)

where ε ∼ N(0, 1).

This simulation ensures the positive r(t) if Feller condition (2λµ ≥ σ2) is

satisfied.

2. Calculate discount rate process (could be Money market account):

MMA(T ) = MMA(t)e
∫ T
t r(s)ds

The calculation starts with discretization,

MMA(ti) = MMA(ti−1)e
∫ ti
ti−1

r(k)(s)ds
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where the integral in the exponential is approximated by (Simpson integration

here but naturally more advanced technique could be used),

MMA(ti) = MMA(ti−1) exp

(
h

3

(
r(k)ti − 4r(k)ti−1 + rkti−2

))
3. Use implied bond price of CIR model to simulate term structure,

B(t, t+ τ) = exp (A(τ) +B(τ)r(t))

After discretization of this equation we have:

B(s, ti) = exp
(
A(ti − s) +B(ti − s)r(k)(s)

)
4. Compute fair value of swap where f(t) is fixed rate of the IRS:

FV (k)(s) = 1− P (k)(s, Tn) +
f(t)

12

n∑
i=1

P (k)(s, ti)

5. Calculate exposure value for simulation k:

E(k) = max(FV (k)(s), 0)

6. Calculate CVA for simulation k and t = ti:

CVA(k) = (1−R)PD(ti, ti−1)E(k)D(ti)

7. Then calculate final CVA for N simulations:

CVA =
1

N

N∑
k=1

M∑
i=1

CVA(k)(ti) (2.12)

2.2.3 Default Probability Simulation with State of Economy (Stress Testing)

An overlooked but very important part of the CVA is the stress testing of credit risk

component. Since CVA is averaged over marginal default probabilities, a default

probability calculation with a strong link with state of the economy is very important.

For practical calculations default probabilities are bootstrapped using CDS spreads

[33]. However, there are not many credit risk models incorporated into CVA calcula-

tions directly.
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CHAPTER 3

EFFICIENT SIMULATION FOR COUNTERPARTY CREDIT

RISK

3.1 Introduction

There are four studies particularly directed at obtaining an efficient framework for

Counterparty Credit Risk estimation [41, 19, 39, 9].

In the first study [41], the author obtains an approximation formula for CVA by ap-

plying asymptotic expansion method based on infinite dimensional analysis called the

Watanabe-Yoshida theory and the Malliavin calculus. Author estimates CVA of the

interest rate swap which has an underlying interest rate model of SABR.

This model is widely used by practitioners in the financial industry [50] and is popu-

lar, thus application of mentioned methodology is claimed to reduce the time it takes

to calculate the CVA of the swap by Monte Carlo simulation. Using a new approach,

he derives an approximate formula for the CVA of the swap.

This new formula is shown to enable CVA calculation much faster than Monte Carlo

method. However, the method requires some tedious derivations and some Malliavin

Calculus.

11



Definition 3.1. Asymptotic Expansion

Let’s consider Rd valued diffusion process and Xε to be the solution to the following

SDEs [50]

dXε = V0(Xε, ε)dt+ εV (Xε)dWt (3.1)

Xε
0 = x0 (3.2)

where ε ∈ [0, 1] is a known as perturbation parameter. The following therem is

provided in [55].

Theorem: Suppose V0 : R×[0, 1]→ Rd and V : Rd×Rm are smooth and derivatives

of any order are bounded. Next, suppose that a function g: Rd → R to be smooth

and all derivatives are of polynomial growth orders. Then for ε ↓ 0, g(X
(ε)
T ) has

asymptotic expansion:

g(X
(ε)
T ) = g0T + εg1T + ε2g2T + ε3g3T + o(ε3) (3.3)

The coefficients g0T , g1T , g2T and g3T could be obtained by Taylor’s formula with the

following Wiener-Ito integrals:

g0T = g0
XT

g(1T ) =
d∑
j=1

∂jg(X0
T )Dj

T

g(2T ) =
d∑

i,j=1

∂i∂jg(X0
T )Di

TD
j
T +

1

2

d∑
j=1

∂jE
j(T )

g(3T ) =
d∑

i,j,k=1

∂i∂j∂kg(X0
T )Di

TD
j
TD

k
T +

1

2

d∑
i,j=1

∂i∂jE
i(T )Dj(T ) +

1

6

d∑
i=1

∂ig(X0
T )F T

i

where Dt = ∂X(ε)

∂ε
|ε=0, Dt = ∂X(ε)

∂ε
|ε=0, Et = ∂2X(ε)

∂ε2
|ε=0, Ft = ∂3X(ε)

∂ε3
|ε=0 .

We can see that as long as precision of this approximation is good, there is no need for

multiple Monte Carlo simulations for CVA calculation. Only single path simulation

to calculate Wiener-Ito Integrals for conditional expectation is sufficient.

The study of [19] is the first one examine an efficient simulation framework for

Counterparty credit risk measurement methods such as CVA. Their approach is based
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on comparison of PDS and DJS path simulation [44] in terms of Mean Squared Error

(MSE). The PDS method as we know from (2.9),

X(tk) = X(tk−1)e

(
(µk,k−1−0.5σ2

k,k−1)(tk−tk−1)+σk,k−1

√
(tk−tk−1)Z

)
(3.4)

The covariance between pathwise elements are:

E(XtkXtk−1
) = E(exp(Zk + Zk−1))

= exp
(
µk + µk−1 + 0.5(σ2

k + σ2
k−1 + 2Cov(Zk, Zk−1))− µk − µk−1 − 0.5(σ2

k + σ2
k−1)

)
= exp(Cov(Zk, Zk−1))

For DJS from (2.10) the solution is:

X(tk) = X(t0) exp
(

(µ0,k−1 − 0.5σ2
0,k−1)(tk − t0) + σ0,k−1

√
(tk − t0)Z̃

)
(3.5)

where Z ∼ N (0,Σ) and Z̃ ∼ N(0, 1).

Here for DJS,

E(XtkXtk−1
) = exp

(
Cov(Z̃i, Z̃i−1)

)
.

Since by construction Cov(Z̃i, Z̃i−1) = 0 then E(XtkXtk−1) = 0. We can see that

PDS has a correlated path whereas DJS has uncorrelated path. This is important since

CVA with no correlated path will have a smaller variance.

CVA(T) =
T∑
t=1

VtdPt

Var(CVA(T)) =
T∑
t=1

[
V ar(Vt)∆P

2
t + 2Cov(Vt, Vs)∆Pt∆Ps

]
This is very favorable for DJS, however DJS has a computational cost

(
N + N(N−1)

2

)
due to random number generations, PDS has N random number generations. How-

ever PDS has N2 operations due to covariance terms whereas DJS has N operations.

Given that Complexity = Var(replication)× E(Ct) we will have:

Ct(DJS)

Ct(PDS)
= N

and
V ar(DJS)

V ar(PDS)
=

1

N

13



where Ct is the computation time. This shows that comparability is possible for both

estimators since total complexity is approximately the same.

In the study [39] optimal quantization methodology was used to calculate Counter-

party Credit Risk involving EPE and CVA. Let’s first define quantization.

3.1.1 Quantization

Let X be a random vector on a probability space (Ω, F,P) taking values Rd. Let

Px denote the image law in Rd. Optimal quantization consists in the approximation

of X by another random vector q(X) and the (xi), the optimal quantizer of X , are

chosen[42] such that for integer p ≥ 1,∫
Rd
min(||xi − v||p)Px(dv) = min(E||X − q(X)||p). (3.6)

Here q(X) =
∑N

i=1 xi1Ci(x)(X) and Ci(x) = (y ∈ Rd, ||y−xi|| < ||y−xj||,∀i 6= j)

is the ith Voronoi of x. The quadratic quantization could be directly defined for p = 2.

To make things clear on how to find out optimal Voronoi cells we can start with Rd

where d = 1. For p = 2 we can write previous equation

Q =

∫
R
min((xi − v)2)Px(dv) = min(E||X − q(X)||2) (3.7)

Then to find optimal value we can use the first and the second order conditions since

quadratic quantization uses a convex function. Then, we proceed

∂Q

∂xi
=

∫
R

2(xi − v)Px(dv) = 0 (3.8)

Then

xi =

∫ xi+1

xi−1
vPx(dv)∫ xi+1

xi−1
Px(dv)

(3.9)

Using these optimal quantiles of the distributions it’s possible to efficiently simulate

and approximate the derivative price, EPE, CVA or any other parameter of interest.

Hence, the authors of [39] used the methodolgy with slight extensions. As authors

claim, results seem to be quite accurate and time efficient.
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The concept of brownian local time and occupation time to approximate the value of

brownian motion functional is used by [9] to estimate another Counterparty Credit

Risk metric EPE where the authors claim high efficiency.

3.1.2 Brownian Local Time

Let W (t)t≥0 be standard brownian motion defined over probability space (Ω,F ,P).

The local time can be defined as the time it takes the brownian motion to stay close

to level of A ∈ R [9]. The concept was first introduced by Paul Levy (1965). Levy

has defined this random time in sound ground by [9]:

Lt(A) =
1

2ε
lim
ε→0

µ{0 ≤ s ≤ t, : |W (t)− ε| ≤ A}.

Then it is possible to write the occupation time [9]:

β(B,ω) =

∫ t

0

1B(W (s)ds) =

∫
B

L(t)(x, ω)dx.

The benefit of this equality will be in writing Brownian Motion functionals that the

following result will confirm,

β(B,ω) =

∫ t

0

f(W (s)ds) =

∫
B

f(x)L(t)(x, ω)dx, 0 ≤ t ≤ T.

The authors [9] exploit this result to calculate derivative prices which are naturally

functionals of Brownian Motion and then to calculate EPE which they claim to be

efficient in simulation.

3.2 Efficient Simulation of Derivative Price

Given that CCR is a computationally intensive task, reduction of variance and bias is

of high importance. Hence, a possible issue as the target objective function is MSE.

For that purpose we will be using Multilevel Monte Carlo Method introduced by [20].
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3.2.1 Multilevel Monte Carlo Methodology

This methodology [20] defines a Monte Carlo estimator with telescopic sum which is

an estimation with control variate.

E(P̃L) = E(P̃0) +
L∑
l=1

(E(P̃l)− E(P̃l−1)) (3.10)

Then, defining more levels, such as multi levels inside paths one, can obtain a better

estimator:

E(P̃L) = E(P̃0) +
L∑
l=1

1

Nl

Nl∑
j=1

(E(P̃ j
l )− E(P̃ j

l−1))

Using multilevel estimator above we can find a prediction of exact E(P ) by optimiz-

ing MSE:

MSE(P) = E(P − P̃L)2

MSE(P) = (E(P )− E(P̃L))2 + E(E(P̃L)− P ))2

MSE(P) = Bias2 + Var

This could be done by optimizing number of Nl, L simulation number at each time

step and number levels in the timeframe. Thus, our optimization problem will be

given fixed computational budget:

argmax
Nl,L

Lf(Nl, L) =
L∑
l=0

Vl
Nl

+ λ
[ L∑
l=0

Nlhl − C
]

∂Lf

Nl

=
L∑
l=0

(
−Vl
N2
l

)
+

L∑
l=0

λ

hl
= 0

Vl
N2
l

=
λ

hl
, Nl =

√
λ−1

Vl
hl

L∑
l=0

Vl
Nl

≤ ε2

2
,

L∑
l=0

√
Vl
hl
λ

1
2 ≤ ε2

2
, λ(− 1

2
) ≥

L∑
l=0

Using these we obtain an optimal value Nl as such:

Nl =
⌊ √Vl

hl

L∑
l=0

√
Vl
hl

2ε−2
⌋

(3.11)

Using the fact that Bias=Chl, hl = T
2L

and Chl ≤ ε√
2

then an upper bound for L is

obtained

Lmax = log

(√
2CTε−1

log 2

)
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3.2.2 MLMC Algorithm

The outline of the algorithm is as follows:

1. Begin with L = 0

2. Calculate the initial estimate of VL using for example 100 samples

3. Determine optimal Nl using (3.11)

4. Generate additional samples as needed for new Nl

5. if L < Lmax set L = L+ 1 and go to second step.

As suggested in [20] the Lmax could be improved dramatically by evaluating bias.

3.3 An Optimal Simulation Framework for Counterparty Credit Risk

In this method the approach is to find optimal number of simulation amount N and

M optimal number of simulation paths to calculate Counterparty credit risk measure

of interest.

We take EPE in equation (2.2) first for illustrative purposes,

EPEt = θt =

∫ t

0

E[Vs]ds

ÊPEt = θ̂t =
M∑
i=1

N∑
j=1

Vij
N

∆i

and we can decompose bias and variance for PDS estimator as follows:

Var(θt) =
M∑
i=1

Var(Vj)
N

∆2
i +

2

N

M∑
i,j=1

Cov(Vi, Vj)∆i∆j

Bias2
t = (EPE− ÊPEt)2

Bias2
t =

(
M∑
i=1

N∑
j=1

Vij
N

∆i − EPEt

)2

The reason we set the framework over EPE rather than CVA is that it is more trivial

to write it in terms of discrete time differences. However, we can extend the same to

CVA assuming a disrcetized PD change of O(∆t).
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We can further write this in terms of order notation which will be the basis for our

optimization problem and for this purpose we follow the construction of [19]. We can

see that ∆i term is {ti − ti−1} = T
M

which simply O( 1
M

). Then given the derivative

price estimator V̂t is of order O( 1
N

) and given ∆i’s order. We can write variance,

V ar(θt) =
M∑
i=1

V ar(Vj)

N
∆2
i +

2

N

M∑
i,j=1

Cov(Vi, Vj)∆i∆j (3.12)

Assume:

E(V 2
i ) ≤ L1, E(ViVj) ≤ L2,

Then we write,

V ar(θt) ≤
(
T

M

)2
L1M

N
+

(
T

M

)2
2L2M

N

=
T 2(L1 + 2L2)

MN
∼= O(

1

MN
)

Therefore the variance is of O( 1
MN

) +O( 1
N

) and bias is of O( 1
M2 ).

Given that, we first start with the minimization problem defined by the authors [19] :

arg min
M,N

c1

MN
+
c2

N
+

c3

M2
(3.13)

subject to C = c4MN

We must pay attention to the fact that the PDS based CCR estimator θt variance from

equation (3.4) is dependent on derivative price estimator variance. This fact requires

a resort to use of variance reduction techniques. Here a possible candidate is MLMC

of Section 3.2.1 which we explained previously. Because at each time point of the

derivative price path, it is possible to define levels and reduce variance by MLMC.

When we go back to our optimization problem, then we can see that it is straightfor-

ward to solve this problem via lagrange multiplier.

L(M,N, λ) =
( c1

MN
+
c2

N
+

c3

M2

)
+ λ(c4MN − C) (3.14)

∂L

∂N
=
−c1

N2M
− −c2

N2
+ λc4M = 0

∂L

∂M
=
−c1

NM2
− 2c3

N2
+ λc4N = 0

Then we proceed by solving this set of equations:
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c1 + c2M

c4N2M2
=
c1M + 2c3M

c4N2M3

M =
c2N

2

2c3

Then the final solution yields:

M = (
2Cc3

c4c2

)
1
3 = C

1
3 C̃

N =
1

2
(
4c2C

2

c2
4c3

) = C
2
3 Ĉ

Ĉ = (
4c2

c2
4c3

)
1
3 , C̃ = (

2c3

c4c2

)
1
3

We can change the problem above by reverse the case above such that, given an MSE

level ε2 what could the optimal budget be, then we see one-to-one relationship with

the (3.14):

L(M,N, λ) = c4MN + λ(
c1

MN
+
c2

N
+

c3

M2
− ε2) (3.15)

∂L

∂N
= c4M +

−c1

N2M
− −c2

N2
= 0

∂L

∂M
= c4N + λ

(
−c1

NM2
− 2c3

N2

)
= 0

We proceed by solving the equation set:

N2

c1 + c2M
=

M3

c1M + 2c3M

N =

√
2c3M

c2

1√
2n3

+
3

n
= ε2

Let
√
n = x then we can proceed to solve a cubic equation below and find n such that

n = x2

x3 − 3x

ε2
−
√

2

2ε2
= 0 (3.16)

If we compare equations (3.15) and (3.16) we see that they are the same and there is

a primal-dual relationship. Thus, for a constraint MSE we can either solve nonlinear

(3.14) using (3.16) and then find C = NM complexity or we can solve (3.16) and

find C = NM directly.

We can see that optimal number of simulations,N , and optimal number of time paths,

M , are obtained by previous solution. This solution could be used for calculating
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EPE, CVA and other variant measures similarly. However, these estimators have time

discretization bias since originally the measures are defined as an integral calculation

whereas in practice the calculations are to be applied with rough Riemann sum. This

naturally creates a time discretization bias. Another Bias source is the calculation of

derivative price. Because some of the sophisticated derivatives and even the nature of

derivative might require a discretized scheme which could be of an Euler-Maruyama

or Milstein type.

In order to verify validity of the formulas we made an application using optimal time
discretization M and optimal number of simulations N derived in (3.14). The appli-
cation was implemented for various computational budgets regarding simple GBM
model:

Table 3.1: Results of Optimal Simulation for GBM EPE
MSEopt/MSE MSE N M Complexity

Coefs=1 119.02 0.00016 8963 134 12× 105

Coefs=Opt 214.23 9.183-05 5646 213 12× 105

Coefs=1 72.89 0.00027 41602 288 12× 106

Coefs=Opt 356.88 5.592-05 26207 458 12× 106

The table compares the MSE of plain Monte Carlo Simulations and the MSE of

optimal parameter Monte Carlo Simulations regarding Geometric Brownian Motion

(GBM). As per for tractability and as we have exact result for expectation of GBM,

we use this simple model. We take total complexity budget, N = 100.000,M = 12

so N ×M = 1.200.000, in order to replicate industry convention of monthly cash

flow schedule. First calculate the MSE with these parameters and the MSE with op-

timal N and M from (3.15) or (3.14). We can immediately see better results using

optimal simulation parameters in terms of MSE compared to plain Monte Carlo Path

simulation.

3.3.1 Removing Bias via Stratified Sampling

Our estimator θt =
∑M

i=1 E(Vti)∆i for EPEt and θt =
∑M

i=1E(Vti)dFti for CV At

which can further write by conditioning on a new random variable τ ,

θt =
M∑
i=1

E(Vτ |τ = ti)p(τ = ti)
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This is going to be random time for EPE and default time for CVA. This methodology

is known as stratified sampling and reduces variance of the estimator by conditioning

[46].

From law of total variance the variance of a random variable could be decomposed

[46]:

V ar(X) = V ar(E(X|Y )) + E(V ar(X|Y ))

Thus, derivative price estimator E(Vτ |τ = t) has lower variance than E(Vτ ).

In addition, our new estimator has destroyed bias exposed during EPE and CVA cal-

culation but not derivative price estimation, since the bias in this estimation has a

different source which comes from path simulation of pricing SDE if exists. The

stratified sampling opened us a way to further define more optimal and detailed simu-

lation runs for each time point. This could be calculated again by another constrained

optimization problem solution:

L(Nm, Vm, pm) =
M∑
m=1

Vm(pm)2

Nm

+ λ(
M∑
m=1

Nm −N) (3.17)

∂L

∂Nm

= −Vm(pm)2

(Nm)2
+ λ = 0

∂L

∂λ
=

M∑
m=1

Nm −N = 0

Nm =

√
Vm
λ
pm

M∑
m=1

√
Vm
λ
pm = N, Nm =

√
VmpmN∑M

m=1

√
Vmpm

This is very important for an additional efficiency gain. Given optimal total number

of simulation runs N we will further have optimal number of simulations Nm for

each time point m of total time path M . It is now possible to apply these formulas to

calculate the aforementioned CCR measures for simple Geometric Brownian Motion

based stock price which has an exact solution. This allows us to calculate MSE,

variance and bias easily which is key to evaluate the efficiency of our methodology.
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3.3.2 Finding Arbitrary Coefficients

The previous optimization problem is constructed by using convergence order and

there are arbitrary coefficients involved. In applications it’s not so easy to select these

arbitrary coefficients. Because there is a huge search space which makes it difficult

to optimize the coefficients. In this study, rather than finding the set coefficients over

a large volume of coefficient pool, we can set a constraint on the sum of coefficients

and narrow the search or optimization to this smaller space. In [19] the arbitrary

coefficients are assumed to be one. Given this assumption the second constrained

optimization problem will be defined as:

L(λ, c1, c2, c3) =

(
4c2C

2

c2
4c3

) 1
3

+ λ(
3∑
j=2

cj −K) (3.18)

∂L

∂c2

=
1

3

(
4C2

c2
4c3

) 1
3

c
− 2

3
2 + λ

∂L

∂c3

=
−1

3

(
4c2C

2

c2
4

) 1
3

c
− 4

3
3 + λ

∂L

∂c4

=
−2

3

(
4c2C

2

c3

) 1
3

c
− 5

3
4 + λ

After some algebraic operations we find the optimal arbitrary coefficients given K

are c2 = K
4

= c3, c4 = K
2

3.3.3 General Efficient Algorithm for EPE and CVA Simulation

1. Calculate M and N from 3.15

2. Calculate Vm for pm = 1
M

and Nm = N
M

3. Then set Nm =
√
VmpmN∑M

m=1

√
Vmpm

4. Then use MLMC to calculate path dependent derivative prices to reduce Vm

5. Recalculate EPE/CVA using

θ̂t =
M∑
m=1

Nm∑
j=1

Vmj
Nm

∆m(dFm) (3.19)
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CHAPTER 4

CREDIT RISK MODELLING IN COUNTERPARTY CREDIT

RISK

4.1 Introduction

The default modelling of Counterparty Credit Risk is a complicated task since there

are many subtelities of this concept. As mentioned in Chapter 1, we should consider

the cases of unilateral and multilateral defaults. In context of this modelling efforts

two paradigms emerged over the years [14]. These are Reduced Form/Intensity/Haz-

ard Rate models and Structural/Firm Value Models. In this chapter we examine these

models, their properties and make some extensions through the inclusion of Levy Pro-

cesses, particularly in structural credit risk models. We will start with intensity/hazard

rate models.

4.2 Intensity Based Credit Risk Models

Intensity models (also called reduced form when convenient) defines the default through

an exogenous jump process [14]. In the context of these models; the default time τ

is the first jump time of a Poisson process, with deterministic or stochastic (Cox pro-

cess) intensity. In these models the default is not triggered by well-known, easily

observable market variables rather by an exogenous component, independent of all

the default-free market information. Moreover, this modelling embraces the opinion

that default-free market with its interest rates, exchange rates and so forth, does not

give complete information on the default process, and there is not explicitly defined
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variables affecting the driving process behind the default [14].

This structure of modelling is not in the same line with firm value models (structural

models) where default arrives, when the market value of assets of the firms hits a

default barrier associated with the debt level. The benefit of this reduced form family

of models is particularly its conformity with credit spread modelling and its basic

formulation, which is easy to numerically calibrate to corporate bond data or Credit

Default Swap (CDS) [14].

The explicit CDS calibration and CDS option formulas have been studied in [10]

and [11]. Before moving into technical details intensity models, we can present their

general properties and why these models are regarded particularly useful for CDS

spread modelling.

In basic reduced form or intensity models, the default time τ is the first jump of

a Poisson process. It is useful to point out that the first jump time of a (time-

inhomogeneous) Poisson process obeys roughly the following:

- Given that the subject has not defaulted (we can say not jumped due to Poisson

process) before t, (risk-neutral) probability of defaulting (jumping) in the next

dt infinitesmal time interval is [14],

Q{τ ∈ [t, t+ dt]|τ > t,Ft} = λ(t)dt.

There are well accepted models used in the context of CCR modelling as per CVA

calculation. Most popular frequently used models contain Black-Cox intensity [8]

and Vasicek [52] one factor model. Authors of the study [11] used JCIR++ model to

extend Cox intensity model with exponential jump process. These models could be

easily calibrated to CDS prices [14] JCIR++ model can be written [11]:

dλt = κ(µ− λt)dt+ σ
√
λtdWt + ydJt(α). (4.1)

The model is of tractable affine jump diffiusion (AJD) class [14] and the survival

probability can be defined by:

Q(τ > t|Ft) = 1{τ>t}α̃(t, T )e(−β̃(t,T )) = 1{τ>t}P
JCIR++(t, T, λ). (4.2)
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This has an exact solution below obtained by solving Riccati Equations [11]:

α̃(t, T ) = A(t, T )

 2he

(
h+κ+2γ

2
(T−t)

)
2h+ (κ+ h+ 2γ)eh(T−t)

 .

β̃(t, T ) = B(t, T ).

4.3 Affine Factor Intensity Model

The general properties of intensity of models are given at the introduction. These

models are comfortable to calibrate to CDS spreads and credit term structure, there-

fore, they are practical tools to generate market relevant default probabilities and de-

fault spreads. However, from a Counterparty Credit Risk context these models do not

generate dependence between the counterparties to account for DVA or wrong/right

way risks. In order to add dependence it’s possible to introduce an affine structure to

the intensity such as:

λjt = λj1t + cλ2t (4.3)

In this relation, the first term accounts for idiosyncratic component and second term

is the systematic-common component. By doing so we decompose the intensity prop-

agated by individual default and from systematic default effects. This enables us to

setup a dependence between counterparties and the underlying asset.

In order to exploit the formula in [11] we should obtain similar process given in (4.1);

a CIR process. This is possible if conditions explained at the Appendix C are satisfied.

Hence, we setup the model to satisfy this structure. Given this setup we will be able

to add a link between default intensities of different companies. Therefore, we will

have the intensity models such that:

dλt = κ(µ1 + cµ2 − (λ1t + cλ2t))dt+ σ
√
λ1t + cλ2tdWt + ydJt(α) (4.4)

dλ1t = κ(µ1 − λ1t)dt+ σ
√
λ1tdWt + (1− c)ydJt(α)

dλ2t = κ(µ2 − λ2t)dt+ σ
√
λ2tdWt + cydJt(α)
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4.4 Structural Credit Risk Models Based on Levy Processes

In the structural approach, there is an explicit assumption that the both firm’s assets

and capital dynamics follow a specific stochastic process and there are other partic-

ular assumpitons as well. Given these assumptions, the firm defaults if its value of

assets falls below a specific threshold, mainly a liability barrier, which also named

distress barrier. Based on those assumptions, a firm is assumed to default if its as-

sets fall below some specified level at the maturity of the liabilities. This maturity is

mostly supposed to be one year and accordingly liabilities of this maturity is taken

into consideration. The other structural credit risk model is barrier structural model.

This model percieves the default event as the knockout option where the option ter-

minates when the asset value falls below a specific barrier at any time in the maturity

of the option. Thus, the difference from Merton type structural model is the timing of

default.

In our study we plan to calculate the credit risk regarding both the Merton type and

Cox type (Barrier) [8] models in the context of some well-known Levy Processes as

these models have attracted interest in financial literature. The reason for that is; they

accommodate distributions with non zero higher moments (skewness and kurtosis)

due to the presence of jumps, therefore allowing a more realistic representation of

stylized features of market quantities such as assets returns [33].

Levy Process, could be described in general; it is a stochastic process endowed a

filtered probability space (Ω,F ,P) with independent and stationary increments which

has an infinitely divisible distribution [51].
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This process could be described by its characteristic function, which is a crucial result

of well-known Levy-Khintchine representation. Charateristic function has a represen-

tation in that context:

φL(u, t) = E(eiuL(t)) = etϕL(u), u ∈ R (4.5)

which is basically Fourier transform of Levy process L(t) naturally i is imaginary part

and ϕL(·) is log of chararteristic function or characteristic exponent. This further has

decomposition of [51]

ϕL(u) = −1

2
u · Au+ iγ · u

∫
Rd

(eiux − 1− iu · x1{|x|≤1})ν(dx) (4.6)

For a scalar Levy process the formula above will be in the form

ϕL(u) = −1

2
u2A+ iγu

∫ ∞
−∞

(eiux − 1− iux1{|x|≤1})ν(dx) (4.7)

where this is summarised by Levy triplet (A, γ, ν). The Levy processes frequently

preferred in finance are Brownian Motion , Variance Gamma (VG) and Normal In-

verse Gaussian (NIG) processes. In addition Levy stochastic volatility models are

also used in order to employ volatility clustering into modelling process.

4.5 Variance Gamma Process

4.5.1 Introduction to Variance Gamma Model

The Variance Gamma (VG) model is used in the financial literature for several years.

The model was introduced as a stochastic process more robust than the geometric

Brownian motion and but is similar in representation. Yet, it is more realistic in

terms of reflecting the structure of financial market returns, namely equity returns, to

overcome the problems that the Black and Scholes model has in pricing of options,

which are because of anti-symmetry and fat tail observed in the financial markets. To

include these facts in the model, two additional parameters are introduced, compared

with the Geometric Brownian Motion , which allow to control the skewness and the

kurtosis of the distribution of equity price returns. The first presentation of the model

was in Madan-Seneta (1990) [38]. The model presented in this paper is a symmetric

variance gamma model where the only control parameter is for kurtosis, and there is
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no parameter to account for nonzero skewness observed of equity returns in financial

markets. In a another paper by Seneta (2004) [48], the empirical properties of the

model are studied.

In the paper by [37], the authors studied equilibrium option pricing for the symmetric

variance gamma process using a representative agent model with a constant relative

risk aversion utility function. The resulting risk neutral measure studied in the paper

was a non-symmetric variance gamma process and the drift was negative to account

for positive risk aversion. The complete study of this general variance gamma process

was in Madan, Carr and Chang (1998) [36] where a closed form solution using this

process as the underlying for European Vanilla options was presented.

4.5.2 Variance Gamma Process as Time Change

The Variance Gamma model is defined as a time changed Brownian Motion with

and/or without drift where time change is a gamma process. The process is a pure

jump process that accounts for high activity, in keeping with the normal distribution,

by having an infinite number of jumps in any interval of time [24].

Unlike many other jump models, it is not necessary to introduce a diffusion com-

ponent for the VG process, as the Black–Scholes model is a parametric special case

already and high activity is already accounted for.

Unlike normal diffusion, the sum of absolute log price changes is finite for the VG

process. Since VG has finite variation, it can be written as the difference of two

increasing processes, the first of which accounts for the price increases, while the

second explains the price decreases. In the case of the VG process, the two increas-

ing processes that are subtracted to obtain the VG process are themselves gamma

processes [24].

The model could be defined:

b(t, σ, θ) = θt+ σWt

X(t;σ, γ, θ) = b(γ(t; 1, ν), σ, θ) (4.8)

= θγ(t; 1, ν) + σW (γ(t; 1, ν))
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It is actually possible to write variance gamma process in terms of difference of two

gamma processes. To start with, we consider a gamma process Ga(t;µ, ν) where it

has independent increments over non-overlapping intervals, (t, t + h], and µ is the

mean per unit and ν is variance per unit of the process.

Then we define γ = Ga(t + h;µ, ν) − Ga(t;µ, ν) with G > 0 and given gamma

function Γ(·), we can write density of the increment:

fγ =
(µ
ν

)µ2h
ν γ

µ2h
ν exp(−µ

γ
)

Γ(µ
2h
ν

)
(4.9)

Using this process enables us to see each unit of calendar time can be seen as having

a time length given by an independent random variable that has a gamma density with

unit mean and positive variance [24], which we can write as γ(t; 1, ν). Therefore we

can understand this model as having correspondence for different levels of trading

activity during different time periods [17].

The economic intuition [12] underlying the stochastic time change approach to stochas-

tic volatility is due to the Brownian scaling property. This property connects changes

in scale to changes in time and thus random changes in structure of volatility could be

captured by random changes in time. Thus the stochastic time change of the variance

gamma model enables us to represent stochastic volatility in a pure jump process[24].

Given the properties above, the probabilistic properties of variance gamma model

could be written starting from density first by conditioning argument [24]:

F (x;σ, θ, ν) =

∫ ∞
0

f(x;σ, θ, ν|γ = g)f(g)dg (4.10)

=

∫ ∞
0

φ(θg, σ
√
g)fγ(

t

ν
, ν)dg

This proceeds,

=

∫ ∞
0

1

σ
√

2πg
e

(
− (x−θg)2

2σ2g

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

F (x;σ, θ, ν) =

∫ ∞
0

Φ

(
x− θg
σ
√
g

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

where Φ(x) is the cumulative standart normal distribution function. We start deriving

characteristic function of variance-gamma model by writing:

E(eiuX) = E(E(eiu(θγ+σW (γ)))|γ = g) (4.11)
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Then using the characteristic function of a N(µ, σ) random variable, we further con-

tinue deriving variance gamma characteristic function:

E(eiuθg−0.5σ2g) = E(ei(uθ+i0.5u
2σ2)g) = E(eizg) = Φ(g) (4.12)

uθ + i
1

2
u2σ2 = z

where Φ(g) is the characteristic function of gamma distributed random variable eval-

uated at scale parameter of t
ν

and shape parameter of ν. Given this, the characteristic

function is:

Φ(u) =

(
β

β − iu

)α
In our case u = z, α = t

ν
and β = ν which leads to:

Φ(z) =

( 1
ν

1
ν
− iz

) t
ν

Then given 4.12 we will have final explicit formula for variance gamma characteristic

function:

Φ(u) =

(
1

1− iuθν + 1
2
u2σ2ν)

) t
ν

(4.13)

4.5.3 Parameters of Variance Gamma Process

After observing equation (4.13) we can see that given the characteristic function

above the moments of variance gamma process is written [17]:

E(X(t)) = θ

V(X(t)) = νθ2 + σ2

E(X(t)− θ)3 = θν
3σ2 + 2νθ2

(σ2 + νθ2)
3
2

E(X(t)− θ)4 = 3(1 + 2ν − νσ4(νθ2 + σ2)−2)

We begin by writing the model subordinated by γ conditional on the value of g:

X(t) = θg + σ
√
gz,

where z is a standart normally distributed random variable. Some useful results of

gamma distribution are beneficiary. Assume a gamma density and reparametrize it
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for easyness such that b = 1
ν

and a = t
ν

f(γ, a, b) = baxa−1e−xb

Corresponding moment generating function becomes:

Mx(u) = E(eux) =

∫∞
0
baxa−1e−x(b+u)

Γ(a)
=

(
b

b+ u

)a
=

(
1

1 + u
b

)a
First and second derivatives of moment generating function at zero are:

M
′

x(0) = E[γ]

=
a

b

M
′′

x (0) = E[γ2]

= V (γ) + E[γ]

=
a

b2
+ (

a

b
)2

M
′′′

x (0) = E[γ3]

=
a(a+ 1)(a+ 2)

b3

M
′′′′

x (0) = E[γ4]

=
a(a+ 1)(a+ 2)(a+ 3)

b4

Given that γt process which has a mean of t and variance of νt on the interval t and

taking back reparametrization the formulas from above will change accordingly:

E[γ] =
a

b
= t, ν =

1

b

E[γ2] =
a

b2
= νt+ t2

E[γ3] = t3 + 3νt+ 2ν2t

E[γ4] = 6ν3t+ 11ν2t2 + 6νt3 + t4

Using these results from gamma process moments of variance gamma is derived as

follows [17] :
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First and Second Moments:

E[X(t)] = E[E[X(t)|γ = g]]

= θE[g] +
√
gE[z] = θt

E[X(t)− EX(t)]2 = E[X(t)− θt]2

= E[θ(g − t) + σ
√
gz]2 = E[θ(g − t)]2 + 0 + E[σ2gE[z2]]

= θ2(νt− 2t2 + t2 + t2) = θ2(νt− t2 + t2) + σ2t

= (θ2ν + σ2)t

Third Moment:

E[X(t)− EX(t)]3 = E[θ(g − t) + σ
√
gz]3

= E[θ3(g − t)3 + 3θ2(g − t)2σ
√
gz + 3θ(g − t)σ2gz2 + σ3g3/2z3]

= θ3E(g − t)3 + 0 + 3θσ2E[(g − t)g] + 0 = θ3E(g − t)3 + 3θσ2νt

= (t3 + 3νt2 + 2ν2t− 3νt2 − 3t3 + 3t3 − t3) + 3θσ2νt

= θ3νt(3t+ 2ν − 3t) + 3θσ2νt = (2θ3ν2 + 3θσ2ν)t

Fourth Moment:

E[X(t)− EX(t)]4 = E[θ(g − t) + σ
√
gz]4

= E[θ4(g − t)4 + 4θ3(g − t)3σ
√
gz + 6θ2(g − t)2σ2gz2

+ 4θ(g − t)σ3g
3
2 z3 + σ4g2z4]

= (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+ (3σ4 + 6σ2θ2ν + 3θ4ν2)t2
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As we can see the variance gamma model has a higher kurtosis than normal dis-

tribution e.g. order of 3 and a non-zero skewness. Thus, is a possible candidate for

modelling financial markets where empricially high kurtosis and skewed distributions

are observed.

4.5.4 Variance Gamma Factor Construction

Variance gamma process can be decomposed into different variance gamma processes

under some convolution restrictions. In our framework we will work with a multi-

variate variance gamma process in Rn with common components in each variance

gamma process used in [33]. Hence, let X(t) = (X1(t), X2(t), . . . , Xn(t)) be a

Rn variance gamma with common components. Let’s further assume that Y (t) =

(Y1(t), Y2(t), . . . , Yn(t)) is another Rn variance gamma process with independent

components.

Additionally, we assume last term, Z(t), to be a multivariate variance gamma process

where the commonality is imposed and it is independent from Y (t). Finally, we have

a coefficient cj ∈ R for j = 1, . . . , n. As a result, we can model dependence between

Xj(t)s via common term Z(t) in an affine structure:

X(t) = Y (t) + cZ(t) (4.14)

Here again Y (t) and Z(t) are of the form

Y (t) = θY γ + σYW (γ)

Z(t) = θZγ + σZW (γ)

The dependent variance gamma structure in the context of credit risk has been studied

by [40] and in a general multivariate setting in [35]. The use of such a model has some

advantages. This comes mainly in terms of calibration and setting up characteristic

function and convoluted density. for example, in [17] the difficulty of calibration and

complexity in copula based models is mentioned. Moreover, in [17] the affine model

was used not for whole process but in the subordinator gamma part.

However, this does not entirely capture the dependence and negative dependence

poses problems as the setting up connection via an increasing time change process
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causes numerical problems. Thus, use of an affine factor structure with a common

component solves the problem of dependence and calibration with its flexible struc-

ture.

4.5.5 Variance Gamma Affine Factor Asset Value Model

Now given linear factor model we can define the related asset price process. It is pos-

sible to obtain an option price based variance gamma model using the linear factor

structure above. We can define the asset price process as the Geometric Brownian

Motion with gamma time change or Geometric Variance Gamma . Given a risk neu-

tral probability measure we can set out the formal pricing equation:

S(t) =S(0)e(r−Φ(−i))t+X(t)

=S(0)e(r−Φ(−i))t+Y (t)+cZ(t) (4.15)

where Φ(u) is the characteristic function of a variance gamma process. Using this

setup we can derive an option pricing formula that, in some way incorporate the

effects of common systematic factor. Moreover, as a byproduct of this formula, we

can obtain the Probability of Default (PD) to be used in credit risk estimations.

4.5.6 General European Option Price Formula for Variance Gamma Setting

A formula for variance gamma European call option has been derived in [37, 36].

Here, we derive a similar formula based on the characteristic functions but not via

Fourier inversion. It’s based on the application of the measure change through char-

acteristic function. This methodolgy helps us to derive a similar formula more easily

when underlying is an variance gamma affine factor model.
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To begin with, we assume a European call option with strike K and with maturity T

whose dynamics are governed by the risk neutral measure mentioned above. Define

stock risk-adjusted probability measure P S and its Radon-Nikodym derivative [18,

24]:

Z(t) =
S(T )

S(0)ert
= e−φ(−i)t+X(t)

Then we can write the price of such instrument:

C(K, r, T, σ) = E[e−rT (S(T )−K)+]

= E(S(0)e((−Φ(−i))T+X(T ))
1A)− E(Ke−rT1A)

= S(0)Es(1A)−Ke−rTE(1A)

This leads to the formula,

C(K, r, T, σ) = S(0)Ps(S(T ) > K)−Ke−rTP(S(T ) > K) (4.16)

where this general representation is given first in [5].

Let,

A :=
{

log

(
S(0)

K

)
+ (r − φ(−i))T > X(T )

}
and Es(1A) is the expectation under the stock risk adjusted measure P S induced by

variance gamma asset price. Similar to Black-Scholes framework we can formulize

well-known parameters d1, d2 as:

d1 =
log(S(0)

K
) + (r − φ(−i))t+ θsg

σ
√
g

(4.17)

d2 =
log(S(0)

K
) + (r − φ(−i))t+ θg

σ
√
g

Using the facts,

(i) X(T ) = θg + σWg

(ii) A :=
{

log
(
S(0)
K

)
+ (r − φ(−i))T + θg > −σWg

}
After normalization we have,

A :=
{ log(S(0)

K
) + (r − φ(−i))T + θg

σ
√
g

>
−Wg

σ
√
g

}
(4.18)
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Inserting A, we find that:

E(1A) = P(S(T ) > K)

= P

(
log(S(0)

K
) + (r − φ(−i))T + θg

σ
√
g

>
−Wg

σ
√
g

)

=

∫ ∞
0

N

(
log(S(0)

K
) + (r − φ(−i))T + θg

σ
√
g

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

=

∫ ∞
0

N(d2(g))
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg (4.19)

Then we proceed,

Es(1A) = Ps(S(T ) > K)

= P

(
log(S(0)

K
) + (r − φ(−i))T + θsg

σ
√
g

>
−Wg

σ
√
g

)

=

∫ ∞
0

N

(
log(S(0)

K
) + (r − φ(−i))T + θsg

σ
√
g

)
gt/ν−1e−g/νs

ν
t/ν
s Γ(t/ν)

dg

This is compactly written,

Ps(S(T ) > K) =

∫ ∞
0

N(d1(g))
gt/νe−g/νs

ν
t/ν
s Γ(t/ν)

dg (4.20)

Using 4.19 and 4.20 we finally obtain Variance Gamma option price below:

C(K, r, T, σ) = S(0)P1(T/ν, νs, g, θs, σ)−Ke−rTP2(T/ν, ν, g, θ, σ) (4.21)

where the probabilities P1 and P2 are:

P1 = FV G(x;σ, θs, t/ν, νs) =

∫ ∞
0

N (d1(g))
gt/ν−1e−g/νs

ν
t/ν
s Γ(t/ν)

dg (4.22)

P2 = FV G(x;σ, θ, t/ν, ν) =

∫ ∞
0

N (d2(g))
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg (4.23)

The difference between 4.22 and 4.23 comes from a stock risk adjusted probability

measure P S . These formulas are useful for derivations and understanding the model.
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However, the density developed by [36] outlined below allevites the numerical com-

putations in terms of both speed and precision. The cdf and pdf are as follows:

FV G(x, θ, σ, ν, µ) =

∫ x

−∞

2e
θy

σ2

ν
τ
ν

√
2πσΓ( τ

ν
)

(
(y − µ)2

2σ2

ν
+ θ2

) 2−ν
4ν

(4.24)

×K τ
ν
− 1

2

(
1

σ2

√
(y − µ)2

(
2σ2

ν
+ θ2

))
dy,

fV G(x, θ, σ, ν, µ) =
2e

θx
σ2

ν
τ
ν

√
2πσΓ( τ

ν
)

(
(x− µ)2

2σ2

ν
+ θ2

) 2−ν
4ν

(4.25)

×K τ
ν
− 1

2

(
1

σ2

√
(x− µ)2

(
2σ2

ν
+ θ2

))
respectively.

Using Esscher Transform which is the method to obtain a measure change in Levy

Processes, [51] and corresponding Radon-Nikodym derivative

dQ

dP
=

eθYt

E(eθYt)

for θ ∈ R we define Theorem 4.1.

Theorem 4.1. Let

Z(t) =
dQ

dP
= e−φ(−i)t+Y (t)

be the Radon-Nikodym derivative, where θ = 1 above and Y (t) is a variance gamma

random variable. Then under this new probability measure we will have a character-

istic function:

φsy(u, t) = Es(eY (t)) = etψ
(s)

ψ(s) =
1

ν
log

(
1

1− iuθsνs + 1
2
(σu)2νs

)
which again points to another variance gamma random variable with new parameters

θs, νs and corresponding densities in (4.26) and (4.27).

fs(x, g) =
1√

2πσ2g
e

(
x−θsg
σ
√
g

)2 g1/ν−1e−g/νs

ν
1/ν
s Γ(1/ν)

dg (4.26)

f(x, g) =
1√

2πσ2g
e

(
x−θg
σ
√
g

)2 g1/ν−1e−g/ν

ν1/νΓ(1/ν)
dg (4.27)

37



Proof. Under new measure P Y we can write characteristic function

Ey(eY (t)) = E(Z(t)eiuY (t)) = E(eY (t)(iu+1))e−ψ(−i)t = E(eY (t)i(u−i))e−ψ(−i)t

Let u− i = v, then

E(eY (t)iv)e−ψ(−i)t = φyx(v)

=
φ(−i)
φ(v)

=
1− θν − 0.5σ2ν

1− i(u− i)θν + 0.5(u− i)2σ2ν

=
1− θν − 0.5σ2ν

1− θν − 0.5σ2ν
(
1− iu(σ2 + θ) ν

1−θν−0.5σ2ν
+ 0.5σ2u2 ν

1−θν−0.5σ2ν

)
Let κ = (1− θν − 0.5σ2ν) then we obtain

φ(−i)
φ(v)

=
κ

κ
(
1− iu(σ2 + θ) ν

κ
+ 0.5(σu)2 ν

k

)
φy(u) =

(
1

1− iuθsνs + 0.5(σu)2νs

) 1
ν

θs = σ2 + θ

νs =
ν

κ

Thus, using this new characteristic function and corresponding parameters the densi-

ties at (4.26) and (4.27) could be obtained.

4.5.7 European Option Price Formula for affine factor Variance Gamma Model

Using the framework above we can obtain factor extended variance gamma option

price for an affine factor model. We start by writing general pricing equation for a

call option,

C(K, r, T, σ, c) = E(e−rT (S(T )−K)+) (4.28)

Then, using (4.15) we can write this expectation by law of iterated expectations,

C(K, r, T, σ, c) = E(E(S(0)e−ΦZ(−ci)T+cze−ΦY (−i)T+Y (T )
1A)|Z(T ) = z)

− E(E(Ke−rT1A)|Z(T ) = z)

= S(0)E
(
e−ΦZ(−ci)T+czEy(1A|Z(T ) = z)

)
(4.29)

−Ke−rTE
(
E(1A)|Z(T ) = z

)
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Then we define exponential Variance Gamma process g(z),

g(z) = e−ΦZ(−ci)T+cz

Then embedding g(z) inside the log(S(T )) we have cz in the resulting formula below:

C(K, r, T, σ, c, z) = S(0)

∫ ∞
−∞

Py(S(T ) > K)g(z)fZ(z)dz

−Ke−rT
∫ ∞
−∞

P(S(T ) > K)fZ(z)dz (4.30)

Here,

A : = {log(S(T )) > log(K)}

= {log(
S(0)

K
) + (r − φx(−i))T + cz + θg > −Y (T )}

Furthermore:

A :=
{ log(S0

K
) + (r − φx(−i))T + cz + θg

σY
√
g

>
−Wg

σY
√
g

}
Then given the set A and using Theorem 4.1 we specify Radon-Nikodym derivative;

dQ
dP

= e−φY (−i)t+Y (t)

Considering the general variance gamma option pricing formula (4.21) we obtain

Black-Scholes type parameters d1, d2 for affine factor model below:

d1 =
log(S(0)

K
) + (r − q − φX(−i))t+ θYs g + cz

σY
√
g

(4.31)

d2 =
log(S(0)

K
) + (r − q − φX(−i))t+ θY g + cz

σY
√
g

(4.32)

Using these parameters and adding the dividend we finally have variance gamma

affine factor call option formula:

C(K, r, T, σ, c) = S(0)e−qT
∫ ∞
−∞

FV G(d1(z))fZ(z)dz

−Ke−rT
∫ ∞
−∞

FV G(d2(z))fZ(z)dz (4.33)

In conclusion; the model is quite fast to calculate using either numerical integral [53]

with quadrature or semi-closed form distribution function (4.24). It’s worth noting

that the study of [53] has a simple yet very sucessful formulas to approximate normal
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cumulative distribution function (CDF) and probability density function (PDF). Using

this study we present formulas below (4.34) and (4.35).

F (x) = exp

(
−358x

23
+ 111 arctan

(
37x

294

)
+ 1

)−1

, −∞ < x <∞ (4.34)

g(x) =
−358

23
+ 111

(
1 +

(
37

294
x

)2
)−1

37

294

f(x) = g(x)F (x)(F (x)− 1) (4.35)

These two formulas above have enormously increased the speed of complex integrals

involving normal cdf. For example any value on normal approximation took 300

times faster than regular cdf evaluation in python scipy package. The same timing

took 343 times faster for pdf.

If we evaluate the model in terms of market compatibility, the model successfully
satisfies the smile effect as we can see in Figure 4.1.
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4.5.8 Barrier Model under Variance Gamma Process

In order to model the first passsage time of a variance gamma process, first we should

write the joint distribution of Brownian Motion and its maximum/minimum sepa-

rately as these formulas derived in detail by [49] and [29]:

P(Mt ≤ m) =

∫ m

0

∫ m

w

2(2m− w)

t
√

2πt
e
−1
2t

(2m−w)2

dmdw +

∫ 0

−∞

∫ m

w

2(2m− w)

t
√

2πt
e
−1
2t

(2m−w)2

dmdw

P(Mt ≤ m,Wt ≤ w) = 1−
∫ ∞

2m−w

1√
2π
e−

z2

2 dz

=

∫ m

−∞

∫ w

−∞

2(w − 2m)

t
√

2πt
e
−1
2t

(w−2m)2

dmdw (4.36)

For minimum:

P(Mt ≤ m) =

∫ 0

−∞

∫ w

m

2(w − 2m)

t
√

2πt
e
−1
2t

(w−2m)2

dmdw +

∫ ∞
m

∫ m

−∞

2(w − 2m)

t
√

2πt
e
−1
2t

(w−2m)2

dmdw

P(Mt ≤ m,Wt ≥ w) =

∫ w−2m

−∞

1√
2π
e−

z2

2 dz

=

∫ m

−∞

∫ ∞
w

2(w − 2m)

t
√

2πt
e
−1
2t

(w−2m)2

dmdw (4.37)

When we take the derivative of the distribution with respect tomwe will get marginal

of the maximum Mt:

fMt =

∫ ∞
m

−2√
2πt

e−
(2m−w)2

2t dm

For minimum Mt:

fMt =

∫ m

−∞

2√
2πt

e−
(w−2m)2

2t dm

Given these, it is particularly appealing to write density of first passage time of the

Variance Gamma after an immediate conditioning. However, this will be possible
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only under the fact that the passage time now depends on the time change of Brownian

Motion where it is gamma process here. This notion is called first passage time of

the second kind [26] and it is easier to derive formulas regarding to the maximum and

minimum of Variance Gamma process as suggested in [26].

In [35] it is suggested that first passage time problems regarding variance gamma

could be obtained after solving the Partial Integro Differential Equation (PIDE) im-

plied by the asset price process and boundary conditions specific to the problem.

Also, as stated in [51] barrier type problems regarding Levy Processes with jumps

either requires the solution of Wiener Hopf factorization of characteristic exponent of

Levy process or requires related PIDE solution. In [51] computationally expensive

Monte Carlo simulation suggested as well. However, if we use First Passage Time of

second kind for barrier type problems, the challenges and complexities are overcome.

As proved in [27] first passage time of the second kind converges to first passage time

of the first kind with τ 1 ≥ τ 2 [26]. When a continous time change (subordinator) is

γt is used, these two stopping times coincide [26]. These concepts could be defined

as:

(i) First Passage time of the first kind is the first time Variance Gamma passes a

threshold.

τ 1 = inf
{
t : W (γt) ≤ L

}
, 0 < t < T

- The τ 1 of Brownian Motion is defined as:

τ 1
W (t) = inf

{
t : W (t) ≤ L

}
, 0 < t < T

(ii) First Passage Time of the second kind is the first time stochastic time change

passes First Passage Time of Brownian Motion .

τ 2 = inf
{
t : τ 1

W (t) ≤ γt

}
, 0 < t < T

Thus, we use First Passage Time of the second kind for calculations regarding subor-

dinated Levy processes since the subordinator becomes the key variable for Laplace

transform of First Passage Time of the second kind and other calculations.
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This overcomes the complexity of the First Passage Time of the first kind regard-

ing subordinated Levy Processes. As a result after an intermediate conditioning on

the subordinator [26]; density of the maximum of Variance Gamma process can be

obtained as follows:

P(MV G(t) ≤ m) =

∫
P(MV G(t) ≤ m|γ = g)f(g)dg

=

∫ m

0

∫ m

w

2(2m− w)

g
√

2πg
e
−(2m−w)2

2g dmdw

+

∫ 0

−∞

∫ m

w

2(2m− w)

g
√

2πg
e
−(2m−w)2

2g dmdw

P(MV G(t) ≤ m,Wt ≤ w) =

∫ ∞
0

(
1−

∫ ∞
2m−w

1√
2πg

e−
z2

2g dz

)
gt/ν−1e−g/ν

ν1/νΓ(1/ν)
dg

=

∫ ∞
0

(∫ m

−∞

∫ w

−∞

2(w − 2m)

g
√

2πg
e
−(w−2m)2

2g dmdw

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

Similarly density of the minimum of Variance Gamma process can be obtained as

follows:

P(MV G(t) ≤ m) =

∫
P(MV G(t) ≤ m|γ = g)f(g)

=

∫ ∞
0

(∫ 0

m

∫ m

w

2(w − 2m)

g
√

2πg
e
−(w−2m)2

2g dmdw

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

+

∫ ∞
0

∫ w

m

2(w − 2m)

g
√

2πg
e
−(w−2m)2

2g dmdw
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg (4.38)

P(MV G(t) ≤ m,Wt ≤ w) =

∫ ∞
0

(∫ 2w−m

−∞

1√
2πg

e−
z2

2g dz

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

=

∫ ∞
0

(∫ m

−∞

∫ ∞
w

2(w − 2m)

g
√

2πg
e
−(w−2m)2

2g dmdw

)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

(4.39)

43



4.6 Levy Process Stochastic Volatility Models

4.6.1 Introduction

The use stochastic volatility model in option pricing has been introduced by Heston

(1993) which is a brand new approach to option price modelling through character-

istic function of log-stock price [23]. He embedded stochastic volatility into SDE of

asset price process which was previously modelled by geometric brownian motion of

B-S framework. The model could be written [23]:

dSt
St

= rdt+
√
vtdWt

dvt = α(µ− vt)dt+ σv
√
vtdW

v
t

dW S
t dW

v
t = ρdt (4.40)

Heston [23] states that this assumption of asset return process is successful to explain

skew and smile facts in option prices where Black-Scholes model fails to satisfy.

Black-Scholes model is successful in stock options although with such biases. Es-

pecially in currency options, the model’s ability to fit is quite insufficient since the

empirical asset price distributions are not generally normal [23]. Moreover, Heston

[23] states that adding stochastic volatility solves smile whereas correlation between

underlying asset return process and the stochastic volatility solves skew problem.

Then conjecturing a structure similar to Black-Scholes he assumed option price of

the form [23],

C(S, v, t) = SP1 −KB(t, T )P2 (4.41)

where B(t, T ) is the discount bond maturing at T , P1 = PS(S(T ) > K) and P2 =

P(S(T ) > K).

Then writing X = log(S(t)) and using characteristic function of this argument

f(S, v, T ;u) = eiuX with Feynman-Kac formula, he derives partial differential equa-

tion (PDE) of this characteristic function. Assuming a conjecture for this function

satisfying the PDE which is [23],

f(S, v, T ;u) = eA(t,T )+B(t,T )v(t)+iux (4.42)

he then finds a semi-closed form for (4.41). This conjecture is very useful and is used

an extended version of this model for our later derivations introducing affine factor
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decomposition for stochastic volatility models. This stochastic volatility factor model

carries all features of Heston model plus there is volatility decomposition. However,

in order to progress we first start with time changed stochastic volatility models which

are similar and mathematically more tractable.

4.6.2 Geometric Brownian Motion Stochastic Arrival Model (GBMSA-GBMCIR)

This model is most basic subordinated stochastic volatility models where the stochas-

tic volatility comes from an Integrated CIR process. However, the subordinator ICIR

and the subordinated brownian motion is uncorrelated. This is actually no corre-

lated type of Heston model. This model is important to define, at least theoretically,

in a sense that it is easier to generate slighly more advanced models equipped with

stochastic vollatility through time changing.

We define the model as follows:

Definition 4.1. Let {W (t) : t ≥ 0} be a scaled Brownian Motion with drift θ. Let

{X(t) : t ≥ 0} be a ICIR process with parameters α, β and σv. Then the Levy

process,

Z(t) = WX(t) + θX(t)

is called Geometric Brownian Motion stochastic arrival (GBMSA) process [24] θ, α, β ∈
R and σv ∈ R+

This model is actually time change representation of some type of Heston stochastic

volatility model. The time change representation of Brownian Motion makes these

models more flexible and very convenient for deriving charateristic function and mo-

ment generating function. Thus there is more room for easier model extension. The

time change is a ICIR process since this allows mean reversion in stochastic volatility

and volatility clustering.

Moreover, statistical properties of CIR and ICIR processes turns this model construc-

tion, mathematically tractable. We can illustrate the time change representation under

risk neutral measure directly as follows:

dSt
St

= rdt+ σdW (V (t)) (4.43)
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where V (t) =
∫ t

0
v(s)ds as defined in (4.44).

After recollecting all these Heston model SDE without correlation (dW S(t)dW v(t) =

0) is obtained

dSt
St

= rdt+
√
vtdWt

dvt = α(µ− vt)dt+ σv
√
vtdW

v
t (4.44)

where σ, σv ∈ R+ and α, µ ∈ R. Then further, Heston Model’s jump extension,

namely Bates Model, could be written below where ln(1+y) ∼ N (ln(1+ ŷ−δ2, δ2))

dSt
St

= rdt+ dW (V (t)) + λydJt (4.45)

As mentioned before time change representation of Heston/Bates Model, which is

named in [24] GBMSA and we use the same, is useful for deriving chararteristic

function and makes the structure more flexible for different modelling specifications.

The only caveat is that the correlation between the subordinator or stochastic volatility

term and stock price is lost as stated earlier.

This is required because we use time change representation of Bohner type [12] and

this does not admit correlation between the underlying Brownian Motion and the

time change process. The reason we use this representation although the correlation

is lost which accounts for the skew effect, is that we can define better models that can

account skew as well with less effort.

Given this alternative time change representation for stochastic volatility models which

have time change from integrated CIR process (ICIR) such that,

V (t) =

∫ t

0

ν(s)ds, (4.46)

dνt = κ(β − νt)dt+ σν
√
νdWt. (4.47)

Then, we can write characteristic function for log(St) on the condition that cor(dWt, dW
v
t ) =

0 based on the method for writing characteristic function for subordinated processes

[51] as:

ϕX(Vt)(u) = ϕVt(iφXt(u)) (4.48)

Here ϕ and φ denote characteristic function and the log-characteristic function re-

spectively. Therefore, if we know characteristic functions of both subordinator and
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the original process we can easily derive characteristic function of time changed (sub-

ordinated) process. Using this method, we can then obtain characteristic function of

the GBMSA [24] model. We can write the final characteristic function of (4.43) using

(4.48) first by writing the characteristic function with subordination explicitly:

ϕX(Vt)(u) = E(eiu(θVt+σW (Vt))) = E(E(eiu(θVt+σW (Vt)))|Vt = v) (4.49)

Then we can use the characteristic function of Geometric Brownian Motion to evalu-

ate the expectation inside:

E(E(eiu(θVt+σW (Vt)))|Vt = v) = E(eiuθv−
vσ2u2

2 )

= E(ei(uθ+i
σ2u2

2
)v) = E(eibv) (4.50)

Here, b = uθ + iσ
2u2

2
which is our new pivot term in the characteristic function. As

we know that Vt is an ICIR process and it has a characteristic function of the form

[24, 49]:

E(eiuVτ |Ft) = A(τ, u)eB(τ,u)v(t) (4.51)

A(τ, u) =
eκ

2 βτ
σv

2

(
cosh(γτ

2
) + κ

γ
sinh(γ τ

2
)
)κ2 βτ

σ2
v

B(τ, u) =
2iu

κ+ γ coth(γτ
2

)
.

and τ = T − t. Using this general form for an ICIR process and (4.50), we can find

the general form of characteristic function for GBMSA process by substiuting the

pivot b = uθ + iσ
2u2

2
term for u in (4.50).

Finally, we obtain,

γGBMSA =
√
κ2 + σ2

v(σ
2u2 − 2iuθ)

BGBMSA(τ, u) =
2iuθ − u2σ2

κ+ γ coth(γτ
2

)

AGBMSA(τ, u) =
e
κ2βτ

σ2
v(

cosh(γτ
2

) + κ
γ

sinh(γ τ
2
)
) 2κβ

σ2
v

At first, it looks the same in structure as the parameters above however, due to γ

term all formulas change completely and B(τ, u) term also has different element in
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numerator. Finally for GBMSA process our characteristic function will be:

E(eiu(θVt+σW (Vt))) = AGBSA(T − t, u)eBGBSA(T−t,u)v(t) (4.52)

The jump augmented case as in Bates model above will be trivial to write since the

filtrations generated by subordinated and jump components; FW (Vt)

⋂
FJ = ∅ which

means jumps and the subordinated processes are independent. Therefore, the jump

augmented characteristic function of the model which we can call GBMSAj could be

written as:

E(e
iu
(
θVT+W (VT )+

∑N(T )
i=N(t)

log(yi)
)
|Ft) = AGBMSA(T − t, u)eBGBMSA(T−t,u)v(t)

× E(eiu
∑N(T )
i=N(t)

log(yi)) (4.53)

When log-stock price is considered the complete formula adjusted for risk neutral

measure will be:

E(e
iu
(

log(S(0))+(r−φ(−i))(T−t)+θVT+W (VT )+
∑N(T )
i=N(t)

log(yi)
)
|Ft) = e

iu

(
log(S(0))+(r−φ(−i))(T−t)

)
× AGBMSA(T − t, u)eBGBMSA(T−t,u)v(t)E(eiu

∑N(T )
i=N(t)

log(yi)) (4.54)

Remark 4.1. As we can observe, the time change representation turns the derivation of

stochastic volatility or brownian motion with ICIR time change into a very practically

solvable case unless we want to integrate the correlation between the time change and

the diffusion; cor(dW d, dW V ) 6= 0.

4.6.3 Stochastic Volatility Option Price Model

This model uses GMBSA asset price process as the underlying. This is the similar

to Heston Option Price Model with the only difference no correlation between sub-

ordinator V (t) and stock price S(t). To more general, we added other parameters of

Brownian Motion ; drift and volatility.

As per used for Heston Model, the methodology for option pricing is based on char-

acteristic function and obtaining cumulative distribution via Fourier inversion of this

function.
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This will enable us to calculate expected pay-off as presented below:

V (St, vt, K, r, τ, σv, θ) = StFs − e−rτKF

Fs =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)fs(St, vt, K, r, τ, σv, θ, u)

iu
du

)
(4.55)

F =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)f(St, vt, K, r, τ, σv, σ, θ, u)

iu
du

)
(4.56)

The Fs shows Ps(S(t) > K) is stock risk-adjusted probability measure [5] as we use

in deriving Variance Gamma option price formula. The F shows P(S(t) > K) un-

der risk neutral measure similar to Black-Scholes structure. As explained previously

we obtain probabilities from inverse Fourier transform of GBMSA model charater-

istic function. However, the Fs requires a similar measure change process applied

to (4.5.6). The characteristic functions used in (4.55) and (4.56) comes from (4.54).

However, as mentioned, the measure change process slightly modifies the characteris-

tic function required to find Fs, thus we obtain the characteristic function components

A(τ, u) and B(τ, u) of (4.55), in the PS measure, as follows:

γsGBSA =
√
κ2 + σ2

v((u
2 − 1)− 2(θ + ui(1 + θ)))

Bs
GBSA(τ, u) =

2(iu(1 + θ) + θ) + (u2 − 1)

κ+ γs coth(γ
sτ
2

)

AsGBSA(τ, u) =
e
κ2βτ

σ2
v(

cosh(γ
sτ
2

) + κ
γs

sinh(γs τ
2
)
) 2κβ

σ2
v

4.6.4 A GBMSA-GBMCIR Model with Affine Factor Time Change

In this model we use and extend previous GBMSA model with an affine structure

with two components similar to previous Levy process model Variance Gamma .

However, the difference here is the affine combination takes place only in time change

component not the overall Levy process.

W (X(t)) = W
(
Y (t) + cZ(t)

)
(4.57)

where Y (t) and Z(t) are stochastic time change components.
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We use the simple affine model (4.14) as the basis to capture the dependence between

companies’ asset value processes. The decomposition involves idiosyncratic Y (t) and

systematic Z(t) as before and Z(t) accounts for dependency since this is assumed to

be common in all asset prices. This affine model could be used either in modelling

dependency via time change or via direct modelling as in (4.14). Since our asset value

process comes from GBMSA, we first start by constructing an affine model for time

change to capture dependency at least in terms of business time, which is stochastic

as mentioned before. Under this set-up log-asset value process is given in definition

(4.2).

Definition 4.2. Let {W (t) : t ≥ 0} be a scaled Brownian Motion with drift θ. Let

{X(t) : t ≥ 0} be a ICIR process with parameters α, β, σv. Then the Levy process,

WX(t) + θX(t) = WY (t)+cZ(t) + θ(Y (t) + cZ(t))

could be called Geometric Brownian Motion Stochastic Arrival Affine Factor (GBM-

SAf) process with θ, α, β ∈ R and σv ∈ R+ where X(t) is as defined in (4.46).

However, this structure comes with an important constraint on the time change pro-

cess. Because, both components of the time change have ICIR process. Thus, the

linear combination should also have ICIR process. To achieve this, the process un-

der the integral must be a CIR process. However, this could only be achieved after

imposing some coefficient constraints on Y (t) and Z(t) otherwise we can not use

the conjecture (4.51). Thus, after satisfying these constraints the sum Y (t) + cZ(t)

will be a ICIR process where we prove at the appendix (C) using moment generating

function (MGF) of CIR process (non-central χ2 distribution).

As a result, our final characteristic function for GBMSA model with affine ICIR time

change will be:

γGBMSAf =
√
κ2 + σ2

v(u
2 − 2iuθ)

BGBMSAf (τ, u) =
2iuθ − u2

κ+ γ coth(γτ
2

)
(4.58)

AGBMSAf (τ, u) =
e
κ2(β1+cβ2)τ

σ2
v(

cosh(γτ
2

) + κ
γ

sinh(γ τ
2
)
) 2κ(β1+cβ2)

σ2
v

(4.59)
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ϕ(u, τ) = AGBMSAf (u, τ)eBGBSAf (u,τ)X(0)

= AGBMSAf (u, τ)eBGBSAf (u,τ)[Y (0)+cZ(0)] (4.60)

The characteristic function of jump augmented GBMSAf model is GBMSAfJ and it

is similar to (4.53).

ϕ(u, τ) = AGBMSAf (u, τ)eBGBSAf (u,τ)X(0)E(eiuJ) (4.61)

= AGBMSAf (u, τ)eBGBSAf (u,τ)[Y (0)+cZ(0)]

×E(eiu
∑N(t)
i=0 log(yi))

where we now have idiosyncratic factors and systematic factor in the setup.

Moreover, the Y (t) and Z(t) are governed by,

Z(t) =

∫ ∞
0

z(s)ds

Y (t) =

∫ ∞
0

y(s)ds

The underlying CIR processes have the SDEs,

dyt = κ(β1 − yt)dt+ σv
√
y(t)dW y

t ,

dzt = κ(β2 − z(t))dt+ σv
√
z(t)dW z

t .

As we can see, the constraints are in the adjustment term κ and volatility of volatility

term σv are the same in both processes. In order to account the assumption at the be-

ginning, that cor(Z, Y ) = 0 will still be valid here via cor(dWY , dWZ) = 0.However,

the long-run mean terms β1, β2 are different to distinguish the two process. As a re-

sult given these two constrained processes, we can still use general GBMSA and ICIR

characteristic function structures for an affine ICIR time change process.

Lemma 4.2. Given two ICIR processes Y (t) and Z(t) the affine combination, Y (t)+

cZ(t) and c ∈ R, is also an ICIR process unless they have different adjustment and

volatility parameters

Proof. Using MGF of CIR process, applying it to linear combination Y (t) + cZ(t)

and after some algebra, we can see that adjustment and volatility parameters have to

be the same to keep the MGF of this combination still a valid CIR MGF. The details

are given in Appendix C.
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4.6.5 Stochastic Volatility Affine Factor Option Pricing Model

This model is very similar to Heston model having the only difference that no corre-

lation between subordinator and the subordinated process exists. However, we have

added other parameters of Brownian Motion : drift and volatility to generalize the

model.

As per used for Heston Model, the methodology for option pricing is based on char-

acteristic function and obtaining cumulative distribution via Fourier inversion of this

function. This will enable us to calculate expected pay-off. We define the option

price,

C(St, vt, K, r, τ, σv, θ, c, κ, β1, β2) = StFs − e−rτKF

Fs =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)fs(St, vt, K, r, τ, σv, θ, c, κ, β1, β2, u)

iu
du

)
(4.62)

F =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)f(St, vt, K, r, τ, σv, θ, c, κ, β1, β2, u)

iu
du

)
(4.63)

The Fs shows Ps(S(t) > K) and F shows P(S(t) > K) as before. Again, we obtain

probabilities from inverse Fourier transform of GBMSAj model characteristic func-

tion given by (4.61). The derivation of Fs requires a similar measure change process

applied to (4.5.6). The characteristic functions used in (4.62) and (4.63) comes from

(4.61).

As mentioned before, the measure change process slightly modifies the characteristic

function required to find Fs. Thus we obtain the characteristic function components

A(τ, u) and B(τ, u) of (4.62), in the PS measure, as follows:

γsGBMSAf =
√
κ2 + σ2

v((u
2 − 1)− 2(θ + ui(1 + θ)))

Bs
GBMSAf (τ, u) =

2(iu(1 + θ) + θ) + (u2 − 1)

κ+ γs coth(γ
sτ
2

)

AsGBMSAf (τ, u) =
e
κ2(β1+β2c)τ

σ2
v(

cosh(γ
sτ
2

) + κ
γs

sinh(γs τ
2
)
) 2κ(β1+β2c)

σ2
v
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We can then extend this affine factor setting to n factors case thanks to lemma (4.2)

after satisfying the constraints about parameters. Then trivially the components of the

characteristic function will be:

γGBMSAnf =
√
κ2 + σ2

v(u
2 − 2iuθ)

BGBMSAf (τ, u) =
2iuθ − u2

κ+ γ coth(γτ
2

)
(4.64)

AGBMSAnf (τ, u) =

exp

(
κ2(β0+

∑n
j=1(βjcj))τ
σ2
v

)
(

cosh(γτ
2

) + κ
γ

sinh(γ τ
2
)
) 2κ(β0+

∑n
j=1

(βjcj))
σ2
v

(4.65)

For the PS measure:

γsGBMSAnf =
√
κ2 + σ2

v((u
2 − 1)− 2(θ + ui(1 + θ)))

Bs
GBMSAnf (τ, u) =

2(iu(1 + θ) + θ) + (u2 − 1)

κ+ γs coth(γ
sτ
2

)

AsGBSAnf (τ, u) =

exp

(
κ2(β0+

∑n
j=1(βjcj))τ
σ2
v

)
(

cosh(γ
sτ
2

) + κ
γs

sinh(γs τ
2
)
) 2κ(β0+

∑n
j=1

(βjcj))

σ2
v

Then complete form of characteristic function leads to the formula,

ϕ(u, τ) = AGBMSAf (u, τ)eBGBSAf (u,τ)X(0) (4.66)

= AGBMSAnf (u, τ)eBGBSAnf (u,τ)[
∑n
j=0(Y (0)+cjZj(0))]
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4.6.6 Variance Gamma with Stochastic Arrival (VGSA-VGCIR) Model

This model has been first introduced by [12]. For details [24] is suggested. In some

studies, VGCIR name was used as well. The previous GMBSA model is a model

to account for integrating volatility clustering into diffusion models via time change

[24]. However, the original process Geometric Brownian Motion is still lacking the

skewness inherent in log-returns of equities [32].

Therefore, it could be useful to employ a time change in a process which contains

skewness already with a stochastic volatility coming from ICIR. For that reason, the

model; Variance Gamma Stochastic Arrival (VGSA) could be a more complete in

comparison to GBMSA and its variants. Similar to GBMSA model, the variance

gamma model embraces stochastic volatility through stochastic time change.

There is a need for a stochastic time change even for the Variance Gamma which has

a higher skewness and kurtosis value than pure Brownian Motion . The reason is that,

the stochastic volatility in the VG model does not allow for volatility clustering, which

is a feature of asset prices in financial markets in addition to skew. It is possible to

implement volatility clustering in the model if random time changes persists, which

requires that the rate of time change be mean reverting. The natural candidate for

such a time change is the CIR process and is perfectly valid for modelling volatility

if Feller conditions are satisfied. The importance of such a model in terms of option

pricing is; this model will allow calibration of option prices to both maturity (τ) and

strike (K) dimensions [24].

The model is defined:

dvt = α(β − vt)dt+ σ
√
vtdWt

V (t) =

∫ t

0

v(s)ds

XV GSA(t) = XV G(V (t);σ, α, β)

As outlined (4.67) Y (t) is a ICIR process. As we have written for GBMSA case it is

better to write and define the model through its characteristic function below, where

it is possible to write using (4.48).

E((eiuXV GSA(t)) = ϕV (t)(iφV G(u)) (4.67)
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From that equation we will have φV G(u) in the ICIR characteristic function instead

of u term. We can write (4.67) using (4.51) in the explicit form:

A(τ, u) =
e
κ2 βτ

σ2
v(

cosh(γτ
2

) + κ
γ

sinh(γ τ
2
)
)κ β

σ2
v

B(τ, u) =
2iφV G(u)

κ+ γ coth(γτ
2

)

γ(u) =
√
κ2 − 2σ2

viφV G(u)

4.6.7 An Affine Factor VGSA Model

Our result on convolution of ICIR process particular to affine decomposition model

we have used throughout the study, could also be exploited here to still present the

convoluted VGSA model in the form above. We will make use of the results involving

GBMSAf model directly as we are still in ICIR environment after linear combination

thanks to the 4.2.

Defining affine factor VGSA model below, we can proceed by exploiting the structure

of (4.66).

XV GSA(V (t)) = XV GSA(Y (t) + cZ(t))

To have a general structure, we assume Y (t) and Z(t) are both ∈ Rn as we defined

for affine factor variance gamma case before.

Now, the only difference here compared to GBMSAf model is that, we work here with

variance gamma characteristic function different from brownian motion characteristic

function. The lemma 4.2 and VGSA characteristic function will lead to the following

result for evaluating affine factor VGSA model.

ϕ(u, τ) = AV GSAf (u, τ)eBV GSAnf (u,τ)X(0)

= AV GSAnf (u, τ)eBV GSAf (u,τ)[
∑n
j=0(Y (0)+cjZj(0))] (4.68)
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where the components AV GSAnf (τ, u) and BV GSAf (τ, u) are

AV GSAnf (τ, u) =
eκ

2 [β0+
∑n
j=1(βjcj)]
σv

2

τ(
cosh(γτ

2
) + κ

γ
sinh(γ τ

2
)
)κ2

β0+
∑n
j=1

(βjcj)τ

σ2
v

BV GSAf (τ, u) =
2iφV G(u)

κ+ γ coth(γτ
2

)

γV GSA(u) =
√
κ2 − 2σ2

viφV G(u).

In the next topic we proceed with a similar model where in this case, we allow cor-

relation between subordinator and the stock price with jump as is in Bates model.

Moreover, we now impose our linear decomposition structure over the subordina-

tor. This model is naturally the correlated version of GBMSAfj model which also

accounts the skew and smile effects as is taken into account VGSA model as well.

4.6.8 An Affine Factor Bates Model

In order to account for various non-gaussian features of return of asset prices, volatil-

ity smiles and more realistic structural credit risk modelling, Heston model and its

jump added extension Bates model was produced. The stochastic volatility feature of

these models enables volatility clustering and smile effect. However, it’s possible to

extend these models considering additional factors. During crisis or stress periods,

the volatility and illiquidty may increase simultaneously in a way to switch depen-

dence to a positive or negative tail structure. For these reasons and conditions it’s

possible to extend the asset price model of a company to a factor based structure.

This could be in the form of decomposing time change or stochastic volatility into

different components to account for systematic and unsystematic effects.

This will enable an environment in which dependencies between companies and even
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wrong-way risk is captured. We define the model as follows:

dSL(t)

SL(t)
= rdt+W S

√
(V (t) + aL(t)) + ydNt − λŷdt

= rdt+
√

(Vt + aLt)W (t)S + ydNt − λŷdt

dLt = α(β − L(t))dt+ η
√
LtdW

L
t

dVt = κ(θ − V (t))dt+ σv
√
V (t)dW V (t)

Lt =

∫ t

0

L(s)ds, Vt =

∫ t

0

V (s)ds

d ln(S(t)) =

(
r − λŷ − V (t)

2
− aL(t)

2

)
dt+

√
(V (t) + aL(t))dW S

t + ydNt

dW SdWL = ρSLdt, dW SdW V = ρSV dt

The solution to the model above will be similar to Heston/Bates model which uses

a charateristic function approach. Because it is trivial to see that the model is still a

stochastic volatility model and the stochastic volatility is still in the same square root

process form. The major difference is the addition a new term to volatility and so to

the predefined functional structure of characteristic function.

Let Xc
t = logSt, then the characteristic function with the well-known form:

E[eiuX
c
t |Xc

t = x] =

∫ ∞
−∞

eiuxf(x)dx (4.69)

and using Feynman-Kac Theorem and applying Ito’s Lemma over the function then

setting dt terms to zero for martingale correction we obtain the PIDE below:

E(eiuX
c
t |Xc

t = x, Vt = ν, Lt = ζ) = f(t, ν, x, ζ)

=
1

2
fxx(ν + aζ) +

1

2
fννσvν +

1

2
fζζη

2ζ + fxνρxνσvν

+ fxζρxζηζ + fx(r − λŷ −
v

2
− aζ

2
)

+ fν [κ(θ − ν)] + fζ [α(β − ζ)] + ft

+ λE[f(t, ν, xJ , ζ)− f(t, ν, xc, ζ)] = 0 (4.70)
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Then given at time t = T characteristic function has terminal value E(eiux|XT = x)

and τ = T − t we can write an Ansatz [51]:

f(t, ν, x, ζ) = exp(A(τ) +B(τ)ν + C(τ)ζ + iux)fJ (4.71)

where fJ is the characteristic function of jump part, whose distribution is log-normal

ln(1 + y) ∼ N (ln(1 + ŷ)− σ2
jp

2
, σ2

jp))

We start by plugging the Ansatz above to the 4.70 then we obtain PDE with time

dependent coefficients:

−u2f
1

2
(ν + aζ) +B2(τ)σ2

vf + iuB(τ)ρxνσvνf + iuC(τ)ρxζηζf

+iu

(
r − λŷ − ν

2
− aζ

2

)
f + (Aτ (τ) + νBτ (τ) + ζCτ (τ)) f

+B(τ) (κ(θ − ν)) f + C(τ) (α(β − ζ)f) = 0

Recollecting related to terms and setting each equal to zero we obtain three Ricatti

type differential equations:

ν

(
B(τ)2σ2

v

2
+B(τ)[iuρxνσv − κ]−Bτ (τ)− (

u2 + iu

2
)

)
= 0 (4.72)

ζ

(
C(τ)2η2

2
+ C(τ)[iuρxζβ − α]− Cτ (τ)− (

a(u2 + iu)

2
)

)
= 0 (4.73)

Aτ (τ) + iu(r − λŷ) +B(τ)κθ + C(τ)αβ = 0, (4.74)

subject to initial conditions:

B(0) = 0, C(0) = 0, A(0) = 0.

The solution of (4.72) requires some transformations to have a more solvable and

familiar ODE form. For that purpose we have a transformation suggested by [49] to

solve CIR characteristic function more practically. Let,

fB(τ) = e
−σ2

v
2

∫ τ
0 B(u)du (4.75)

fC(τ) = e
−η2

2

∫ τ
0 C(u)du, (4.76)
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Then we proceed by writing B(τ) and C(τ) in terms of fB and of fC ,

f
′

B(τ) =
−σ2

v

2
B(τ)fB(τ) (4.77)

B(τ) =
−2

σ2
v

f
′

B(τ)

fB(τ)
(4.78)

B
′
(τ) =

−2

σ2
v

 f
′′

B(τ)

fB(τ)
−

(
f
′

B(τ)

fB(τ)

)2
 . (4.79)

We substitute back these results to (4.72) to simplify it and obtain a more familiar

ODE form,

2

θ2

 f
′′

B(τ)

fB(τ)
−

(
f
′

B(τ)

fB(τ)

)2
− −2

θ2

f
′

B(τ)

fB(τ)
A+

4

θ4

(
f
′

B(τ)

fB(τ)

)2
θ2

2
− C = 0

=
2

θ2

[
f
′′

B(τ)

fB(τ)
− A f

′

B(τ)

fB(τ)

]
− C fB(τ)

fB(τ)
= 0

= f
′′

B(τ)− Af
′

B(τ)− Cθ2

2
fB(τ) = 0

= f
′′

B(τ)− Af
′

B(τ)−DfB(τ) = 0

A = (iuρθ − κ), D =
Cσ2

v

2
, C =

u2 + iu

2

Finally for the Ricatti equations, (4.72) and (4.73) we obtain second order ODE be-

low,

f
′′

B(τ)− Af
′

B(τ)− CBθ
2

2
fB(τ) = 0 (4.80)

and

f
′′

C(τ)− ACf
′

C(τ)− CCβ
2

2
fC(τ) = 0, (4.81)

respectively. Since this is a general second order ODE form we can propose general

solution,

f(x) = A1e
λ1x + A2e

λ2x

The boundary conditions of the new form will be:

fB(τ) = 1 and f
′

B(τ) = 0.
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Using these conditions we have the system of equations:

fB(0) = A1 + A2 = 1

f
′

B(0) = A1λ1 + A2λ2 = 0

Computations for A1, A2 and fB(τ) yield,

A1 =
−λ2

λ1 − λ2

, A2 =
λ1

λ1 − λ2

fB(τ) =
λ1

λ1 − λ2

eλ2x − λ2

λ1 − λ2

eλ1x (4.82)

Here λ1 and λ2 are the roots of the quadratic form obtained by plugging the proposed

solution in the ODE. Using equation 4.80 we have,

λ2 − λA−D = 0

λ1,2 =
A2 ±

√
∆

2

A = (iuρxνθ − κ)

D =
Cσ2

v

2
=
σ2
v(u

2 + iu)

4
√

∆ =

√
(iuρxν − κ)2 + σ2

v (u2 + iu) (4.83)

Furthermore, using (4.77) and (4.79) we have,

B(τ) =
−2

θ2

[
λ2λ1eλ2τ

λ1−λ2
− λ1λ2eλ1τ

λ1−λ2

λ1eλ2τ

λ1−λ2
− λ2eλ1τ

λ1−λ2

]

λ1 × λ2 =
A2 −∆

4
=
−σ2

v(u
2 + iu)

4

B(τ) =

(u2+iu)[eλ2τ−eλ1τ ]
2

λ2eλ2τ − λ2eλ1τ
=

(u2+iu)[e(A−
√

∆)τ/2−e(A+
√

∆)τ/2]
2

(A+
√

∆)
2

e(A−
√

∆)τ/2 − (A−
√

∆)
2

e(A+
√

∆)τ/2

=

(u2+iu)[e(−
√

∆)τ/2−e(
√

∆)τ/2]
2

−A
2

(
e(
√

∆)τ/2 − e
√

∆τ/2
)

+
√

∆
2

(
e(
√

∆)τ/2 + e
√

∆τ/2
)

=
−(u2 + iu)

−A+
√

∆ coth(
√

∆
2

)
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Finally, we have the solution as follows:

B(τ) =
−(u2 + iu)

(κ− iuρxνθ) +
√

∆ coth(
√

∆τ
2

)
. (4.84)

Since B(τ) and C(τ) has similar ODE forms with mere difference in constant term

we reach a similar solution for C(τ) by substituting the modified constant and the

other terms of C(τ),

C(τ) =
−a(u2 + iu)

(α− iuρxζβ) +
√

∆C coth(
√

∆Cτ
2

)
(4.85)

where the terms are obtained using (4.80).

∆C = A2
C + 4DC , AC = (iuρxζβ − α) , DC =

a(u2 + iu)β2

4

∆C = (iuρxζβ − α)2 +
[
a(u2 + iu)β2

]
From these solutions for C(τ) and B(τ) we obtain the solution for A(τ) as:

A(τ) = iu(r − λŷ)τ +

∫ τ

0

[B(s)κθ + C(s)αβds] (4.86)

The integral (4.86) can be evaluated as follows:

Write the solution of B(τ) or C(τ) in the form of below:

A1 = u2 + iu, A2 = κ− iuρxνθ, A3 =
√

∆∫
B(s)ds = −

∫ [
A1dx

A2 + A3 coth( τ
2
)

]

= −

[
A1

A2 + A3
eτ+1
ex−1

]

= −
∫  A1(ex − 1)dx

(A3 + A2)
(
ex + A3−A2

A3+A2

)


Letting ex = u the integral becomes:∫
B(s)ds = −

∫
(u− 1)du

u(A3 + A2)(u+ A3 − A2)
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Using partial fractions the result will be:

2

A2
3 − A2

2

ln(|A2(ex − 1) + A3(ex + 1)|)− x

A3 − A2

Using the substitutes for A1, A2, A3 we will have:

∫
B(s)κθds = τκθ

(κ− iuρxνθ)
σ2
v

− 2κθ

σ2
v

ln
(

(κ− iuρxνθ)(e
√

∆τ
2 − 1) +

√
∆(e

√
∆τ
2 + 1)

)
+KB (4.87)

Likewise the solution for C(τ) is going to be:

∫
C(s)αβds = ταβ

(α− iuρxζβ)

η2

− 2αβ

η2
ln
(

(α− iuρxζβ)(e
√

∆cτ
2 − 1) +

√
∆c(e

√
∆cτ
2 + 1)

)
+KC

(4.88)

Using the boundary condition for A(τ); A(0) = 0 we find the integral constants KB

and KC . This means using (4.87) and related boundary conditions:

−2κθ

σ2
v

ln(2
√

∆) +KB = 0

KB =
2κθ

σ2
v

ln(2
√

∆)

−2κθ

σ2
v

ln(2
√

∆) +KC = 0

KC =
2αβ

η2
ln(2

√
∆C)

Substituting these into 4.87 and 4.88 we obtain:

∫
B(s)κθds = τκθ

(κ− iuρxνθ)
σ2
v

− 2κθ

σ2
v

ln
(

(κ− iuρxνθ)(e
√

∆τ
2 − 1) +

√
∆(e

√
∆τ
2 + 1)

)
+

2κθ

σ2
v

ln(2
√

∆)

= τκθ
(κ− iuρxνθ)

σ2
v

− 2κθ

σ2
v

ln

(
(κ− iuρxνθ)

(e
√

∆τ − 1)

2
√

∆
+

(e
√

∆τ + 1)

2

)
(4.89)
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After writing exponential functions of above equation in the form of sinh and cosh,

we finally have∫
B(s)κθds = τκθ

(κ− iuρxνσv)
σ2
v

− 2κθ

σ2
v

ln

(
(κ− iuρxνσv)√

∆
sinh(

√
∆τ

2
) + cosh(

√
∆τ

2
)

)
(4.90)

and∫
C(s)αβds = ταβ

(α− iuρxζν)

η2

− 2αβ

η2
ln

(
(α− iuρxζη)√

∆C

sinh(

√
∆Cτ

2
) + cosh(

√
∆Cτ

2
)

)
. (4.91)

The formulas for ∆ and ∆C are

√
∆ =

√
(iuρxνθ − κ)2 + σ2

v (u2 + iu)√
∆C =

√
(iuρxζβ − α)2 + (aβ2(u2 + iu))

respectively.

Therefore, after collecting all the integral solutions above we finally obtain for A(τ):

A(τ) = iu(r − λŷ)τ +

∫ τ

0

[B(s)κθ + C(s)αβds]

The call option price implied by this affine factor structure for Heston/Bates Model

will be:

V (St, vt, ζt, K, r, τ, ρxζ , ρxv, α, β, θ, κ, a, σv, η) = StFs −Ke−rτF (4.92)

Fs =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)fs(logSt, vt, ζt, τ, u)

iu
du

)
(4.93)

[10pt]F =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)f(logSt, vt, ζt, τ, u)

iu
du

)
(4.94)

f s = e
As(τ)+Bs(τ)vt+Cs(τ)ζ+iu logSt+λτ

[
(1+µ)ui+1 exp

(
σ2
jp(ui−u2)

2

)
−(1+µ)

]
(4.95)

f = e
A(τ)+B(τ)vt+C(τ)ζ+iu logSt+λτ

[
(1+µ)ui exp

(
−σ2

jp(u2+ui)

2

)
−1

]
(4.96)
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The components of the characteristic functions are:

∆s = ((1 + ui)ρxvθ − κ)2 + σ2
v(u

2 − ui)

∆cs = ((1 + ui)ρxζβ − α)2 + η2(u2 − ui)

Bs(τ) =
(−u2 + iu)

κ− (1 + ui)ρxvθ +
√

∆s coth(
√

∆sτ
2

)

B(τ) =
−(u2 + iu)

(κ− iuρxνθ) +
√

∆ coth(
√

∆τ
2

)

Cs(τ) =
a(−u2 + iu)

α− (1 + ui)ρxζβ +
√

∆cs coth(
√

∆csτ
2

)

C(τ) =
−a(u2 + iu)

(α− uiρxζβ) +
√

∆c coth(
√

∆cτ
2

)

The components regarding subscript s are defined under stock price risk adjusted

measure PS as indicated in (4.16). The characteristic function for measure PS is

found by:

(i) Apply Theorem 4.1 to have a new characteristic function under PS:

E(
eiu lnS(t)elnS(t)

ϕ(−i)
) = E(

e(iu+1) lnS(t)

ϕ(−i)
)

= E(
ei(u−i) lnS(t)

ϕ(−i)
)

(ii) Substituting u− i = v we have new charateristic function E(eiv lnS(t)).

(iii) Applying this directly to the option pay-off we obtain new components of the

characteristic function under PS.

4.6.9 Extending Jump Heston Model (Bates Model) with Skewed-Normal Jumps

A fundamental part of finance theory is based on the assumption, either explicitly

or implicitly, that the asset returns have multivariate or univariate normal probability

distribution [1]. Nevertheless, many published studies indicate that this assumption

is not valid empirically and is not observed in the financial data analysis. Moreover,
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models based on this assumption fail to satisfactorily fit real-world data. Thus, its use

for the pricing of many financial instruments is questionable.

The skewed-normal distribution introduced by [4] could be a good candidate as it is

flexible to adjust for either negative or positive skewness of the data. As found in [34]

that currencies whose changes are more sensitive to negative market jumps provide

significantly higher expected returns. Because of that, it is worth to study such a

case for pricing of many derivatives, particularly options as well, as the underlier

for these instruments are directly exchange rate or stock price, which have a well-

observed skewness. We can change this assumption by switching to skewed-normal

distribution, where we had a very brief introduction at Section 4.6.9.1, introduced by

[4].

The characteristic function of this distribution derived by [43, 4]:

ϕZ(u) = e
−u2

2

(
1 + iG(

uδ√
1 + δ2

)

)
(4.97)

G(x) =

∫ x

0

√
2

π
e
v2

2 dv

By using the characteristic function of skewed normal distribution (4.97), the charac-

teristic function of logSt (4.92), where we study log-normal jumps, and its character-

istic function after PS measure change will change accordingly as follows:

fSN = e
A(τ)+B(τ)vt+C(τ)ζ+iu logSt+λτ

[
exp −u

2

2

(
1+iG( uδ√

1+δ2
)

)
−1

]
(4.98)

f sSN = e
As(τ)+Bs(τ)vt+Cs(τ)ζ+iu logSt+λτ

[
exp

−(u−i)2
2

(
1+iG(

(u−i)δ√
1+δ2

)

)
−1

]
(4.99)

4.6.9.1 Skewed-Normal Distribution

A random variable Z has a skewed-normal distribution with parameter α, denoted

by Z ∼ SN(α). Its density is given by f(z, α) = 2Φ(αz)φ(z) where Φ and φ

are cumulative distribution function and density function of standard normal random

variate, z, α ∈ R. The general properties of this distribution are [4]:

(i) SN (0) = N (0, 1)
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(ii) If Z ∼ SN (α) then −Z ∼ SN (−α)

(iii) As λ → ∓∞, SN (α) tends to the half-normal distribution, ∓|X| when X ∼
N (0, 1)

(iiii) If Z ∼ SN (α) then Z2 ∼ χ2
1

The characteristic function of this distribution is [43] :

ΦZ(t) = e
−t2

2 (1 + iG(δt)) (4.100)

where δ = α
1+α2 , and for x ≥ 0, we have

G(x) =

∫ x

0

√
2

π
e
u2

2
du (4.101)

G(−x) = −G(x)

4.6.10 Extension of Heston Model with a Microstructure Adjustment on un-

derlying Asset Price Process

It’s stated in many studies [34] that microstructure contaminates prices due to trading

noise, which is significant especially in small company stock prices. In financial mar-

kets where distress exists could also create significantly microstructure affected prices

which makes it crucial to consider this effect in pricing of any instrument having the

stock price as the underlier. For that reason, the modification of equity options which

takes the stock price as the underlier is worthwile to study. Therefore, we correct

the stock price possibly contaminated by trading noise and rederive the option price

implied by this price process. This extension could also be reflected in credit risk via

trading noise cleaned credit spreads and PD.

In order to model the microstructure effect, we assumed the liquidity or trading noise

effect behaving like ICIR process as assumed in [30] for bond prices.

Λ(t) =

∫ t

0

λ(s)ds (4.102)

dλt = κ(β − λt)dt+ ζ
√
λtdWt

Then our microstructure corrected stock price could be defined:

S̃t = e−Λ(t)St = LtSt
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Here the trade noise correction serves as an illiquidity adjustment and is supposed to

discount the stock price since illiquidity is a factor to be compensated by a premium

in order to avoid loss or reduction in profits of investors caused by lack of trade [30].

Taking into account the price impact of microstructure noise modelled by a ICIR

process, we rederive the option pricing model of stochastic volatility with jumps. We

write the option payoff for corrected price as:

Vt = E(e−r(T−t)(S̃T −K)|Ft)+ (4.103)

In terms of stochastic volatility models terms we can rederive the pricing formula

using the model we have used in (4.55) after some analytical effort.

The derivation starts by rewriting the respective probabilities for S and risk neutral

measure. These probabilities are familiar but these are defined for noise/illiquidity

adjusted stock price S̃t

Ps(S̃T > K) = F s, P(ST > K) = F.

Using illiquidity adjustment Lt term and setting x = log(L) we have:

Fs =
1

2
+

1

π

∫ ∞
0

∫ ∞
0

Re

(
e−iu(log(K)−x)Φs(u)f(x)

iu
dudx

)
(4.104)

F =
1

2
+

1

π

∫ ∞
0

∫ ∞
0

Re

(
e−iu(log(K)−x)Φ(u)f(x)

iu
dudx

)
. (4.105)

Since the Lt is a ICIR process, the density could be obtained by Fourier inverting

charateristic function. Using Fubini theorem we can further write

F =
1

2
+

1

π

∫ ∞
0

eiuxf(x)dx

∫ ∞
0

Re

(
e−iu log(K)

iu
Φ(u)

)
du

First element in the above double integral is actually characteristic function of x =

log(Lt) = Λ(t) which is defined to be ΦL(u). Further we can write the formula

for probabilities as the product of two characteristic functions and Fourier inversion

component as

FL =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)

iu
Φ(u)ΦL(u)du

)
and

FL
s =

1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)

iu
Φ(u)sΦL(u)du

)
.
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The final option price is

Vt = StF
L
s −Ke−r(T−t)FL

This result is expected to help us in investigating the impact trading noise or illiquidity
on credit spreads, PD and the price of the option itself. We can see the effect from
figure 4.2 below.

(a) Liquidty Unadjusted CDS Spread Bates
Model (b) Liquidty Adjusted CDS Spread Bates Model

Figure 4.2: Bates Model Liquidity Adjusted Spread

4.7 Credit Risk Estimation under Structural Models

4.7.1 Merton Type Models

Credit risk estimation using structural models has been popular for decades. In the

context of macrofinancial risk, the Merton model has become a tool for even for reg-

ulators. The model relies on the fact that market actors know and process information

efficiently under information flow being instant [21]. For that reason, any financial

or political news or information regarding any company, sector could be equally re-

flected in the price of the equity. This requires, the default probability to be a function

of market value of the company.

The model uses normally distributed asset return process and market value of as-

sets have log-normal distribution, which is at the heart of Black-Scholes and Merton

Model (BSM). Thus, our asset value process will be the basic log-normal value pro-

cess of BSM model:
dAt
At

= µdt+ σdWt
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The same process at risk neutral measure can be written as:

dAt
At

= rdt+ σdWt

We may then write

AT = At exp
(
(r − 0.5σ2)(T − t) + σ(WT −Wt)

)
Based on the asset price process we write the market value of the company as

Et = AtN(d1)−Ke−r(T−t)N(d2), (4.106)

where the terms d1 and d2 are

d1 =
log(At

L
) + (r + 0.5σ2)(T − t)

σ(T − t)

d2 =
log(At

L
) + (r − 0.5σ2)(T − t)

σ(T − t)

respectively.

In this model, a company’s market value is assumed to have the properties of an option

contract. This has strong financial ground such that; a company’s equity can be seen

as an option contract with shareholders of the same company. Because, in the case of

a default the shareholders take the remaining assets of the firm after bondholders or

creditors are satisfied financially. We can thus formulate the pay-off of this transaction

as:

Et = e−r(T−t) max({AT − L, 0} (4.107)

Since this is similar to the payoff of an option, it is reasonable to determine the market

value of a company by an option pricing formula where BSM and its extensions are

convenient. Given the market value of a company’s equity, we can calculate the

default probability through the option valuation formula and its components.

In the BSM model, probability of default under risk-neutral measure is defined by

P(AT < L) = P(Ate
(r−0.5σ2)(T−t)+σ(WT−Wt) < L), (4.108)

Real world probability measure is defined by

P(AT < L) = P(Ate
(µ−0.5σ2)(T−t)+σ(WT−Wt) < L). (4.109)
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Then the difference between default barrier L and AT under risk-neutral measure and

actual measure is going to be respectively where we it is called Distance-to-Default

(DD)

DDRN
T =

log(At
L

) + (r − 0.5σ2)(T − t)
σ
√
T − t

DDT =
log(At

L
) + (µ− 0.5σ2)(T − t)

σ
√
T − t

Then we calculate risk-neutral default probability

PRN(AT ≤ L) = P

(
log(At

L
) + (r − 0.5σ2)(T − t)
σA
√
T − t

)

Then we calculate real world default probability

PRW (AT ≤ L) = P

(
log(At

L
) + (µ− 0.5σ2)(T − t)
σA
√
T − t

)

4.7.2 Estimating Unobserved Parameters in Structural Credit Risk Models

The major issue regarding the structural models is the estimation of parameters which

is a similar challenge to BSM; however in structural models, depending on the un-

derlying process, there are at least one unknown parameter, unobserved asset value

At is common then σA or more is possible. Since the equity model of the company

is an option, it is possible to assume the company’s market value as the option value.

Therefore, in order to find the At and σA we have to use either a statistical estima-

tion methodology such as maximum likelihood estimation (MLE) or filtering using

historical market values of stock prices. This is still an indirect method since market

values are unobserved or a possible two equation system based methodology as we

have two unknowns.

For these purposes we can start with the equation system based estimation method

[31]. This method exploits the Ito’s Lemma in order to reach an equation system.

To be specific, it is assumed that equity price itself has a log-normal process with

different diffusion parameter.

As the equity process is an option we can write the its PDE using Feynman-Kac
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theorem applying Ito’s lemma similar to BSM equation [49]

dEt =
(
− rEt +

∂Et
∂t

dt+ r
∂Et
∂At

dt+
1

2

∂2Et
∂A2

t

σ2
A

)
dt+ σA

∂Et
∂At

dWt (4.110)

Assuming Et has a log-normal process as suggested above we can write:

dEt = EtσEtdWt

This means equtity process Et is a martingale. From BSM model discounted asset

price process is a martingale as well. Thus, the elements under dt terms is going to

be zero which is also a direct result of Feynman-Kac [49]. Hence, we are left with

second part of (4.110) and (4.111) where it’s convenient to equate these two, since

they have to be equal by assumption. Then we obtain the condition

EtσEtdWt = σA
∂Et
∂At

dWt (4.111)

Besides, we have (4.106) which is the result of option payoff

Et = AtN(d1)−Ke−r(T−t)N(d2) (4.112)

Finally, we have these two equation system to be solved numerically to estimate At

and σA. This methodology has been used and generated for BSM model since it

is more convenient to generate a system of equations with only a GBM modelled

equity value process. The usage of the structural model is similar for the other Levy

processes with some subtleties.

A generic algorithm for estimating At for structural models will be:

(i) Calculate call option price at root At−1 and ∆C of the same option at At−1

(ii) Apply Newton-Raphson formula at each iteration,

At = At−1 −
C(At)

∆C(At)

- In case BSM is used this step will be complemented by

σAt =
σEt∆CAt

Et

due to (4.111) and Newton-Raphson step will be,

At = At−1 −
C(At, σAt)

∆C(At, σAt)
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(iii) Then recalculate the Call price using At and ∆C using P1 if underlying pro-

cess is Variance Gamma (4.21) or F s either from (4.93) or (4.55) if underlying

process is stochastic volatility,

- Again in BSM model this step will be recalculate the Call price using At, σAt
and ∆C using N(d1(At, σAt)) from (4.112).

(iv) Then if ε = At−At−1 the preset convergence level ε is achieved stop iteration,

(v) Calculate PD(t, T ) = P(AT < LT ) using P2 from (4.21) if Variance Gamma

process is used or F from (4.56) or (4.94) if stochastic volatility is used.

- Again in BSM model this will be Calculate PD(t, T ) = P(AT < LT ) using

the N(d2) from (4.112).

The ∆C will always be P1 from (4.21) due to the relationship we derived in equation
(E.3). This algorithm presents a way to estimate the unobserved parameters of the
model. However, it’s also possible to use a MLE method to estimate the same param-
eters [31]. After applying this algorithm to our extended Bates affine factor stochastic
volatility model, we obtain following results:
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Figure 4.3: Bates Affine Model market Value of Assets A(t) & PD-Akbank

We see that model consistently works and estimates A(t) however, the PD seems to

overestimate compared to Merton model. We will see later that Variance Gamma

model also estimates higher PD than Merton model. This situation is possibly due to

model parameter calibration and numerical sensitivity of fourier inversion during PD

calculation in Bates affine model. Nevertheless, the model calculates higher PD than

Brownian Motion Merton model and is more prudent to gauge risk accumulation.
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4.8 Credit Risk Estimation under Variance Gamma Environment

4.8.1 Merton Type Credit Risk Estimation

As explained in the previous section Merton model application in Brownian Motion

environment is more straightforward than other Levy processes. In Variance Gamma

environment due to its pure jump nature it is not trivial to apply the same reasoning.

The system of equations (4.112) and (4.111) alleviates the estimation of unobserved

asset value A(t) and volatility σA considerably. This equation system obtained by

introducing (4.110). The same reasoning could be applied to Variance Gamma case,

however we have totally 4 parametersA(t), θA, σA and νA. In additon we ought to find

θE, σE and νE as it is required that equity process follows its own Variance Gamma to

apply Merton’s analogy. In order to apply structural credit risk estimation algorithm

in previous section, we write E(t) to be a exponential martingale below:

E(t) = E(0)e−tφ(−i)E+XE(t) (4.113)

The E(t) equity of the company, which is the option price in Merton context, is a

function of A(t) and the Ito’s lemma for this Variance Gamma functional is:

dE(t) =
(
− rE(t) +

∂E(t)

∂t
+ r

∂E(t)

∂A(t)
A(t) (4.114)

+

∫ ∞
−∞

[
E(At−e

XA(t) , t)− E(At− , t)

− ∂E(A(t), t)

∂A(t)
(eXA − 1)

]
ν(dx)

)
dt+

∂E(t)

∂A(t)
dXA(t)A(t)

dE(t) = E(t)dXE(t) (4.115)

Similar to Brownian Motion case the Variance Gamma implied call option price could

be found by the setting dt part, the variance gamma PIDE equal to zero. Then we are

left with most right of the (4.114) and (4.115). In order to reconcile both processes

since they are supposed to be the same, we have to equate these terms.

∂E(t)

∂A(t)
dXA(t)A(t) = E(t)dXE(t) (4.116)
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Using (E.3) in Appendix E we can write that ∂E(t)
∂A(t)

= FV G(d1) under Variance Gamma

process. After that we obtain system equations

E(t)θE = FV G(d1)θAA(t)

E(t)σE = FV G(d1)σAA(t)

νA = νE

We set the gamma scale parameters to be the same since we assume σ− algebra G
generated by the subordinator in both variance gamma processes are the same as they

belong to same company.

We already have from (4.21) and adapting it yields

E(A(t), θA(t), σA(t), D, r) = A(t)FV G(d1)−De−rtFV G(d2) (4.117)

As a result we complete the set of four equations for four unknown parameters as

we desired. The problem is that we have to calibrate the equity process E(t) to

log-returns of stock prices to find θE, σE, νE or we could resort to equity options of

the company which is better to find risk-neutral parameters lastly it’s possible to use

parameters calibrated to CDS spreads, if exists for the company which are risk neutral

as well.

We construct a hypothetical application in this regard and we found that the well-
known Merton model algorithm for contingent claims analysis works fairly well in
our Variance Gamma case too. As we can see from figures below 4.4b and 4.4a Vari-
ance Gamma credit risk model presented acceptable results such that, hypothetical
equity and unobserved asset prices have an expected trend as well as PD.
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0 10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

0.5

0.6
sgmEt
sgmAt

(b) DB VG Merton Model Sigma Et & At

Figure 4.4: VG Structural Model Estimated Market Value of Assets A(t) & PD

In order to implement these numerical calculations we need model risk-neutral pa-

rameters where we obtained from fitting Variance Gamma barrier model to CDS
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prices of Deutsche Bank for 2012. The equity values and distress barrier; liabilities

are specified 50 whereas market capitalization values are adjusted to range between

30 and 10 since they are supposed come from equity market.

Another empirical study is on the data 1 for the period 2011-2017. We compare
Variance Gamma Merton model and Brownian Motion Merton model where the latter
is conventional model used for structural PD estimation. We see from figure 4.5 below
that the Variance Gamma model is clearly superior to the Brownian Motion model due
to possibly fat tail property. Because in Brownian Motion model, PD almost vanishes
for low risk area however, Variance Gamma model shows a plausible PD level for the
liability level.
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Figure 4.5: VG Merton Model and BM Merton Model PD-Akbank

4.8.2 Barrier Type Credit Risk Estimation

These models are important in the sense that they could provide more realistic im-

provement over Merton’s structural credit risk model while preserving the similar

default probability measurement process or metrics. This model has first been intro-

duced in [8], where default is defined as the knock-out option. More formally, default

could be defined as a stopping time as expressed in (4.118) where the stopping time is

connected to the minimum of GBM to be less than liability threshold Lt within time

to maturity. However, as our random variable is a time changed Brownian Motion

process, we will have to re-adjust the stopping time with respect to Variance Gamma.

This can be defined

τ = inf
(
t : eX(t) ≤ Lt

)
, 0 < t < T (4.118)

1 Akbank’s (fifth largest bank in Turkey in terms of asset magnitude) balance sheet liabilities and market value
of equity for 2011-2017.
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where

X(t) = θγ + σW (γ)

as first defined in (4.8)

PD(t, T ) = E(1{t<τ<T}) = P(τ < T )

where asset price of the company is below the liability Lt. Here we will use time

changed BMs defined in the previous section as the underlying process for the assets

of the company. The liability Lt could be either constant, a deterministic function of

time or a stochastic process.

The credit risk measurement here has the same underlying stochastic process, hence

the same probabilistic structure with down-and-out barrier options except the under-

lying structure is a two factor variance gamma process. Thus for any pricing or mea-

surement purpose the joint distribution of BM and its maximum/minimum plus the

distribution function of time change is required.

4.8.2.1 Flat Barrier

We have outlined probabilistic properties regarding joint distribution of Brownian

Motion and its maximum/minimum. This model is introduced by [8] to find the bond

price based on the default probability implied by asset price underlied by minimum

Brownian Motion . We further extend this model by changing Brownian Motion to

variance gamma process whose probabilistic properties are outlined in (4.5.8). Thus,

given the debt/distress threshold L or Lt we concisely write default probability im-

plied by Variance Gamma (VG) model:

PD(t, T ) =

∫ ∞
0

P
(
Mγ − (r − φ(−i))τ ≤ log

(
A(t)

L

)
|γ = g

)
f(g)dg (4.119)

Using suggestion in [26] and formula in [29] where we give derivation at the appendix
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F, we have final formula for PD(t, T ) as follows:

PD(t, T ) =

∫ ∞
0

N
 ln

(
L
A(t)

)
− µ− θ

σ
√
γ

+ e
2θ̃
σ2 ln( L

A(t)
)N

 ln
(

L
A(t)

)
− µ+ θ

σ
√
γ


×g

τ/ν−1e−g/ν

ντ/νΓ(τ/ν)
dg

(4.120)

where µ = (r − q − φ(−i))τ .

We can further simplify the formula below to a semi-closed form formula using equa-

tion (4.24) as follows:

PD(τ) = FV G

(
ln
( L

A(t)

)
− µ,−θ, τ

)
+ e

− 2θ

σ2
A

ln( L
A(t))FV G

(
ln
( L

A(t)

)
− µ, θ, τ

)
,

(4.121)

where τ = T − t.

4.8.2.2 Stochastic Barrier

In order to model financial distress position of a company, the assumption of constant

liability could be abandoned. However, it is important to model liability realistically

which enforces to find a market value of debt structure. As we use Variance Gamma

in many modelling purposes in this study, we can base dynamic stochastic liability

structure on Variance Gamma process as well. A similar idea was used in [25] consid-

ering Brownian Motion for stochastic liability. Therefore, the proposed methodology

and analytical results of previous section enables us to find Default Probabilities for

a stochastic debt environment.

There will be dependence between market value of assets and liabilities of the same

company. Therefore, dependence or correlation structure could also be implemented

either by using the same stochastic time change or imposing correlation between

brownian motions of assets and liabilities.

We start with general structure and derive the PD in the case of stochastic barrier then

we continue with affine factor model. To be consistent we assume Variance Gamma
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value process for both market value of assets and liabilities. Thus, we can propose a

model such as:

Dt = D0 exp
(

(r − φL(−i))t+XD(t)
)
,

where X(t) = θDγ + σDWD(γ)

A(t) = A0 exp
(

(r − q − φA(−i))t+XA(t)
)
.

where XA(t) = θAγ + σAWA(γ) and dWAdWD = ρdt.

In this model we use same gamma subordinator for the Brownian Motion as market

evaluates the financial information for a company simultaneously thus more or less

the assets and liabilities have a connection due to risk evaluation. Moreover, the

Brownian Motion part is also correlated as it is the main driver of asset and liability

value processes.

We may also assume same stochastic time change for assets and liabilities since the

market absorbes the infomation regarding the company’s financial standing. There-

fore trading time could be correlated. This will make the derivation more tractable.

As a result the same γ subordinator and correlated brownian motion assumptions lead

to correlation in the Variance Gamma environment

ρi,j =
θiθj + σiσjρ√

(θ2
i + σ2

i )(θ
2
j + σ2

j )
(4.122)

The formal definition of the default is the event that the assets are below a liability

barrier at any time until debt maturity as in (4.108). As defined in (4.118)

τ = inf{t : eX(t) ≤ D(t)}, t < τ < T

PD(t, T ) = E(1{t<τ<T})

= P(τ < T )

However, in this case the liability is stochastic as well which reflects the market val-

uation of debts especially when the firm has an issued debt in the market. We can

formally write probability of default

PD(t, T ) = P(MA(t) ≤ D(t)).

where MA(t) is the minimum of XA.
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However, it could be more convenient to use a solvency level barrier for both mathe-

matical tractability and solvency is a key financial ratio followed by the market. For

these purposes, we can target a level L such that values below that barrier will send

the company to default more formally we can define:

PD(t, T ) = P
(
A(t)

D(t)
≤ L

)
. (4.123)

Using the solvency barrier we write the process L(t) where the derivation is given in

G,

L(t) =
A0

D0

e

(
φD(−i)−φA(−i)−φAD(−i)

)
t+(θA−θD)γ+σAWA(γ)−σDWD(γ)

.

Remark 4.2. Here we write the variance gamma process in terms of drift and brownian

motion components since it is more intuitive to write in this form rather than single

variance gamma process for later derivations.

Given the solvency barrier L the PD can be written as:

PD(0, t) = P

(
A0

D0

e

(
φD(−i)−φA(−i)−φAD(−i)

)
t+(θA−θD)γ+min(σAWA(γ)−σDWD(γ))

≤ L

)

We can redefine composite Variance Gamma processes in the exponent above by first

defining WD of the debt as the correlated Brownian Motion conditioned on γ = g

WD(g) = ρWA(g) +
√

1− ρ2W (g)

WAD(g) = σAWA(g)− σDWD(g) (4.124)

We write composite diffusion parameter of the subordinated Brownian Motion

σAD =
√
σ2
A + σ2

D − 2σAσDρ (4.125)

θAD = θA − θD (4.126)

Finally, we can write

PD(0, t) = P

(
A0

D0

e

(
φD(−i)−φA(−i)−φAD(−i)

)
t+θADγ+σADMAD(γ)

≤ L

)
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After this setup we can use formulas (4.121) to calculate PD for stochastic liability

barrier:

PD(t, T ) =

∫ ∞
0

N ( log( L
L0

) + θ̃ADg

σAD
√
g

)
+ e

−2mθ̃AD
σ2
AD

log( L
L0

)
N

 log
(
L
L0

)
− θ̃ADg

σAD
√
g

×
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

(4.127)

where we define components,

µ = (φD(−i)− φA(−i)− φAD(−i)− q)τ

L(0) =
A(0)

D(0)

m = log
L

L0

.

4.8.3 Affine Factor Variance Gamma Barrier Model

In order to construct a dependence between asset price processes, it is convenient to

construct the link with the state of the economy by means of an affine factor decom-

position. Similar to what we have done in (4.5.6) we will modify the single Variance

Gamma process as an affine model of two variance gamma processes. Consistent

with our general affine factor variance gamma model framework we have our decom-

position:

Xt = Yt + cZ(t), (4.128)

Y (t;σ, γ, θ) = θ1γ1(t; 1, ν) + σ1W (γ1(t; 1; ν))

Z(t;σ, γ, θ) = θ2γ2(t; 1, ν) + σ2W (γ2(t; 1; ν))

This model could be used for cases which requires dependence between counterpar-

ties and the underlying asset of the derivative. Thanks to affine structure, we would be

modelling possible dependencies without resorting to methods such as copulas which

are difficult to calibrate numerically. However, the challenge of this model will be its

complexity due to many components. We can write default probability process for

this model:

P (τ < T ) = P
(
Ate

(r−φ(−i))τ+MX(τ) < L
)
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In order to find a solution we can follow two ways: first is to write variance gamma as

the difference between two gamma processes and apply this to the affine factor sum,

second is to exploit the results of infimum of brownian motion . The steps for these

methods are:

(i) We can force the linear combination of the variance gamma processes Y (t) +

cZ(t) to be another variance gamma process. This means the making convolu-

tion to be closed under variance gamma . As we indicate at the 4.10.3 there are

some conditions defined rigorously for variance gamma process closed under

convolution. If we satisfy these constraints, we would have another variance

gamma with parameters coming from variance gamma components of linear

combination. As a result we have a final variance gamma process using the

aforementioned constraints and (4.128)

Y (t) + cZ(t) = V G

(
θ1 + cθ2,

√
σ2

1 + c2σ2
2,

ν1ν2

ν1 + ν2

)
(4.129)

This leads to the following correlation coefficient for any two assets in the vari-

ance gamma environment:

ρV Gi,j =
cicj (θ2

ZνZ + σ2
Z) t√

(θ2
i + σ2

i )(θ
2
j + σ2

j )
(4.130)

Using the sum X(t) = Y (t) + cZ(t) and working through its minimum we can

use formula (4.121) again to calculate PD under this linear combination.

Then after convolution, (4.121) will become:∫ ∞
0

(
N

(
log( L

At
) + θ̃yzg

σyz
√
g

)
+ e

−2θ̃yz log( L
At

)

σ2
yz N

(
log( L

At
)− θ̃g

σyz
√
g

))
(4.131)

×g
τ/νyz−1e−g/νyz

ν
τ/νyz
yz g(τ/νyz)

dg

where

µyz = r − q − (φy(−i) + φz(−i))

νyz =
νyνz
νy + νz

θ̃yz = θy + cθz − µyz

σyz =
√
σ2
y + c2σ2

z .
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Again to simplify and improve this result, we again use (4.24) using necessary

parameters form the formula above as follows:

PD(τ) = FV G

(
ln
( L

A(t)

)
− µyz,−θyz, τ

)

+ e

−2θyz ln( L
A(t)

)−µyz

σ2
yz FV G

(
ln
( L

A(t)

)
− µyz, θyz, τ

)
(4.132)

where t < τ < T .

(ii) The other method proposed is to regroup the negative and positive parts of

the linear combination and to write a new variance gamma process which can

be written as the difference of two Gamma processes [17]. We can write this

proposal:

Y (t) + cZ(t) = γ1p(νp, µ1p) + cγ2p(νp, µ2p)

− (γ1n(νn, µ1n) + cγ2n(νn, µ2n)) (4.133)

However, there is another complication here is that Gamma distributed random

variables are also subject to some constraints to be closed under convolution.

This constraint is [2] for two independent Gamma variatesX1 ∼ Ga(µ1, ν) and

X2 ∼ Ga(µ2, ν) we have the sum X1 +X2 ∼ Ga(µ1 + µ2, ν).

Therefore, Gamma distribution is closed under convolution as long as scale

coefficient is the same for both Gamma processes. Hence, we will have to find

a way to obtain an exact if not an approximate Gamma variate without forcing

the Gamma components of the negative and positive variates of (4.133) to keep

scale parameters ν the same. This could give more flexibility.

The approximate way to obtain two Gamma processes from (4.133) could be

to use Welch-Satterthwaite equation which gives an approximate distribution

for sum of gamma random variables with different parameters, for which a

convolution is not closed unless same scale parameters is assumed. Using the
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approximation formula derived in [54, 47], we obtain for our case:

pc = µ1ν1 +
N∑
j=2

cjµjνj

νc =
µ1ν

2
1 +

∑N
j=2 cjµjν

2
j

pc

µc =
p2
c

µ1ν2
1 +

∑N
j=2 cjµjν

2
j

After this approximation we end-up with variance gamma process since we

have difference of two variance gamma processes finally. This result enables

us to use (4.121) via redefinition of parameters accordingly.

4.8.4 Affine Factor Variance Gamma Stochastic Barrier Model

As given in (4.128) we have two components in the linear setup

Xt = Yt + cZ(t)

where,

Y (t;σ, γ, θ) = θ1γ1(t; 1, ν) + σ1W (γ1(t; 1; ν))

Z(t;σ, γ, θ) = θ2γ2(t; 1, ν) + σ2W (γ2(t; 1; ν))

Using this setup and equations (4.124)– (4.125)–(4.126) and (4.131) we obtain∫ ∞
0

(
N

(
log( L

At
) + θ̃ADγ

σADγ

)
+ e

−2θ̃AD log( L
At

)

σ2
AD N

(
log( L

At
)− θ̃ADγ
σADγ

))
(4.134)

× gτ/νyze−g/νyz

ν
τ/νyz
yz Γ(τ/νyz)

dg

where we define,

µAD = (φA(−i)− φD(−i)− φAD(−i)− q)

φA = φy(−i) + φz(−i)

νA =
νyνz
νy + νz

θ̃AD = θA − θD − µAD

θA = θy + cθz

σA =
√
σ2
y + c2σ2

z

σAD =
√
σ2
A + σ2

D − 2σAσDρ
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The derivation is a combination of factor variance gamma and stochastic barrier

model. Here we use the first method proposed for affine factor barrier model which

uses convolution of variance gamma process under constraint.

4.9 Monte Carlo Framework For Variance Gamma Credit Risk Model

In order to justify the validity of (4.121) it is useful to resort to Monte Carlo (MC)

Simulation. However, the path dependency of the PD process here makes it slightly

more difficult to implement a safe MC simulation. As given in [51] the price of an op-

tion or a derivative with barrier feature, it is more trivial to solve the PIDE for the Levy

process or use a MC simulation. The use of plain MC involves approximation of the

First Passage Time τ ∼= inf[t ≥ 0 : At ≤ L] with discretized interval; ∆t = tk − tk−1

and τ∆t ∼= min[tk ≥ 0 : Atk ≤ L]. However, under this approach the process might

cross the barrier and return back, this corresponds to a sudden default and survival

in credit risk terms, which might be missed during a plain simulation MC simulation

due to discrete time interval. In order to capture this event, we could either calculate

P(inf At,t+∆ < L|At > L,At+∆t > L) or we can calculate P(inf A(s)t<s<T ) to eval-

uate the minimum of A(t) under entire maturity. We can calculate this probability by

the help of the conditional probability:

P(eM(t) ≤ m|W (t) = w) = 1−
∫ w

m

e2µ(w−µ)2(w − 2µ)

t
dµ

= e
2m(w−m)

t

where M(t) = inf W (t) This corresponds to the distribution of Brownian Bridge

with the interval [0, t] and W (t) = w,W (0) = 0,M(t) ≤ log(L). We can extend this

approach to the time changed/subordinated brownian motion case by conditioning on

the subordinator.

We can write this probability under the variance gamma case:

P(eM(γ) ≤ m|W (γ) = w) =

∫ ∞
0

e
2m(w−m)

g gα−1e
−g
α

βα

Γ(α)
dg (4.135)

This expression could be calculated under numerical quadrature. However, we can

obtain a semi-closed form formula where we start by presenting the formula in [13]:

Γα(β) = 2
α
2Kα(2

√
b) (4.136)

85



This function is called generalized incomplete gamma function andKν(y) is the mod-

ified Bessel function of the second kind.

This formula is the closed form of general expression

Γα(b) =

∫ ∞
0

e−t−
b
t tα−1dt

We can observe that after some substiution we can directly use this expression for the

integral (4.135). The substiution follows:

b =
2m(m− w)

ν
, α =

τ

ν
, g = νt

This follows:

P(eM(γ) ≤ m|W (γ) = w) =

∫ ∞
0

e
2m(w−m)

g gα−1e
−g
α
β−α

Γ(α)
dg (4.137)

=

∫ ∞
0

e
−b
t
−ttα−1ν

α−1− τ
ν

Γ( τ
ν
)
νdt

Given that α = τ
ν

and νdt term we obtain

P(eM(γ) ≤ m|W (γ) = w) =

∫ ∞
0

e
−b
t
−tt

τ
ν

1

Γ( τ
ν
)
dt

using (4.136) the expression above yields

P(MX(γ) ≤ m) = Γ 2m(m−w)
ν

(τ
ν

)
(4.138)

= 2
( |2m(m− w)|

ν

) τ
2ν
K τ

ν

(
2

√
|2m(m− w)|

ν

)
Now we can use this equation to generate inf X(γ). Since we have P (MX(γ) ≤ m),

it is possible to use inverse transform method to generate MX(γ). To proceed we first

generate U ∼ U(0, 1) then solve (4.138)to find the root b.

Γ 2m(m−w)
ν

(τ
ν

)
= 2
( |2m(m− w)|

ν

) τ
2ν
K τ

ν

(
2

√
|2m(m− w)|

ν

)
= U

After solving for b, we simulate X(γ) and plug it in below as w then exploit the

substitution to find theMX(γ) which ism below. After solving the quadratic equation

below we obtain m.
2m(m− w)

ν
= b

2m2 − 2mw − bν = 0

m =
2w ±

√
4w2 + 8bν

4

m =
w −

√
w2 + bν

4

2
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This secures thatMX(γ) is less thanX(γ) which is a necessary condition. Otherwise,

solving (4.138) directly for m might cause numerical instabilities. The main idea be-

hind this approach comes from simulation of inf W (t) where we have given a detailed

derivation at the appendix A. After finding MX(γ) we are ready to calculate default

probability of assets having an exponential variance gamma process. This could be

calculated by

P
(
A(τ) ≤ L|Ft

)
= P

(
A(t)

L
e(r−φ(−i))τ+MX(γ) ≤ 1

)
(4.139)

where MX(γ) = inf(W (γ) + θ(γ))

Then we write the MC algorithm in summary as follows

Algorithm 1 Monte Carlo algorithm for Simulating Minimum of Variance Gamma

and PD calculation.
1: procedure VGPDMCSIM(ν, τ, U, Z)

2: Generate r.v. U ← U(0, 1),

3: Use,

Γ τ
ν

(b) = 2b
τ
2νK τ

ν

(
2
√
b
)

= U

4: Using inverse transform find b,

Γ−1
τ
ν

(U) = b,

5: Simulate Variance Gamma r.v by Brownian Motion subordination,

W (γ) = Zγ + θγ,

Z ∼ N(0, 1) and γ = Ga( τ
ν
, ν)

6: Find MX(γ) = m by using following equation

m =
w −

√
w2 + bν

4

2
,

7: After obtaining many simulated m calculate PD(τ) given liability L as in

(4.139)

P
(
A(τ) ≤ L|Ft

)
= P

(
A(t)

L
e(r−φ(−i))τ+MX(γ) ≤ 1

)
,

where τ = T − t.
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A hypothetic model with exact and MC simulated PD calculations have presented in
figures 4.6a and 4.6b below. We can see a very close almost the same results for exact
formula and MC simulation procedure outlined above.

(a) VG Model Cox Barrier PD: At=100.0, L=50.0,
r=0.04,q=0.0, ν=0.5,σ=0.2,θ =-0.08

(b) VG Model Cox Barrier PD: At=100.0, L=50.0,
r=0.04,q=0.0, ν=0.5,σ=0.2,θ =-0.08

(c) BM Black-Cox Barrier PD: At=100.0, L=50.0
r=0.04,q=0.0, σ=0.2

Figure 4.6: VG Black-Cox and BM Black-Cox Monte Carlo vs Analytical Formula

88



4.10 Stress Testing in Counterparty Credit Risk

4.10.1 Introduction

The stress testing in Counterparty Credit Risk setting is not a straightforward prob-

lem. Linking default probability to state of economy is not trivial. Although, we

construct an affine factor Variance Gamma model containing systematic factor in our

Counterparty Credit Risk setting, this setup still is does not contain a decent structure

to account for some macro variables that drive the state of the economy i.e. GDP,

inflation, exchange rate etc.

Moreover, still we can not insert key market variables such as CDS spreads, VIX

index. The reason we have to insert the these variables into Counterparty Credit Risk

framework is that this type of a credit risk model will enable macrofinancial stress

testing and scenario analysis.

4.10.2 Variance Gamma Macro Credit Risk Model

Given in the introduction, our purpose is to construct a model which enables stress

testing. For that reason, we decide to use [52] type model which is mainly used in

[28] for macroeconomic stress testing. This model has a structural Merton model type

construction and is studied by Vasicek (1997) to model porfolio loss distribution. The

model assumes that the asset return of a company has the structure:

Rit =
√

1− ρ2Zit + ρUt (4.140)

where Zit is idisyncratic factor for ith company’s asset return and Ut is the common

factor representing the state of the economy. Both random variables are N(0, 1) and

independent. Our contribution to this structure is to use variance gamma process for

both random variables Z and U in order to make the asset return distribution more

skewed and fatter tails than the Normal. This has similarities what we have studied in

affine factor variance gamma model. Therefore, the results tools and formulas related

to this model could also be used in this construction when needed.

However, the construction is more akin to [40] which is a one factor variance gamma
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copula. We can write model:

Rit =
√

1− ρ2ZV G
it + ρUV G

t (4.141)

where

Ut ∼ V G(ρθ, σ,
ν

1− ρ
)

Zit ∼ V G(
√

1− ρ2θ, σ,
ν

ρ
)

Rit ∼ V G(θ, σ, ν) (4.142)

The parameters are chosen so that final distribution is (4.142) this can be shown using

the result in [40] about the sum of two Variance Gamma processes for which we have

given a derivation at Appendix (D):

X1 ∼ V G(θ1, σ1, ν1)

X2 ∼ V G(θ2, σ2, ν2)

Then we have,

X1 +X2 ∼ V G

(
θ1 + θ2,

√
σ2

1 + σ2
2,

ν1ν2

ν1 + ν2

)
(4.143)

As a result we have a final variance gamma process using the aforementioned con-

straints and (4.128)

I(t) + cZ(t) = V G

(
θI + cθZ ,

√
σ2
Z + c2σ2

Z ,
νIνZ
νI + νZ

)
(4.144)

As mentioned using result (4.143) we obtain (4.142). Now we can detail how we

obtain (4.142) using (4.143). The (4.142) is the final Variance Gamma process we

want to achieve given its decomposition (4.141). First, our conjectured gamma scale

parameter is ν and we have our parameters:

ν1, ν2 = (
ν

1− ρ
,
ν

ρ
)

Using (4.143)

ν =
ν1ν2

ν1 + ν2

=

ν2

ρ(1−ρ)

ν( 1
1−ρ + 1

ρ
)

Second, for the drift θ we have

θRit =
√

1− ρ2θV GZit + ρθV GUt
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From properties given at (4.142) we obtain

θRit = (1− ρ2)θ + ρ2θ = θ

Third, we set σ parameter same for both Ut and Zit.

This completes the derivation of (4.142) where we desired to have a convenient

parametrization for the systematic and idiosyncratic components of Rit return pro-

cess . However, we are free to choose different parameters for Ut and Zit.

Moreover, considering our specific model the ρ dependence coefficient of Ri, Rj re-

turns of any two company’s assets become:

ρRit,Rjt =
ρiρj(θ

2
i

ν2
i

(1−ρi)2 + σ2
i )

σiσj
(4.145)

ρRit,Rjt =
ρiρj(θ

2
j

ν2
j

(1−ρj)2 + σ2
j )

σiσj
(4.146)

This is a direct result of our constrained setting about two uncorrelated variance

gamma processes. The reason for this construction is to have more degrees of free-

dom and obtain a return distribution that has the same distribution as the state of the

economy and idiosyncratic components.

This modelling enables to integrate macro-economic and key market variables as con-

trol variables for the common factor Ut. As we will see we can calibrate and use the

model for credit risk measurement similar to [40].

After this point, general asset return model based on Variance Gamma , we can start

a Credit Risk Model with state of economy components. Our dependent key variable

has some form of default probability variable such as PD extracted from CDS, non-

performing loan (NPL) ratio or PDs direct from a portfolio. This variable is actually

probability of a binary event which is linked to the asset return of a company staying

below a threshold T , namely default threshold:

P(Yt = 1) = P(Rit < T )

In order to integrate this default event with the state of the economy, macroeconomic

variables and key financial variables, some form of model is needed. For that purpose
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we can start with a linear model of key economic variables such as:

It = β0 + β1X1t + β2X2t + · · ·+ βkXkt (4.147)

Equivalently,

It = Xtβ

where Xt is a (N ×K) matrix and β is a (k × 1) vector of coefficients. We link this

linear combination with the default threshold T by equating them below [28]:

P(Rit < T ) = P
(
ρUt +

√
1− ρ2Zit < Xtβ

)
= ΨV G(Xtβ)

where ΨV G is the cumulative distribution function of V G random variable. We can

further write the same default probability by conditioning on the state of the economy

Ut as:

P(Rit < T ) = P
(
ρUt +

√
1− ρ2Zit < Xtβ

)
(4.148)

=

∫ ∞
−∞

P

(
Zit <

Xtβ − ρu√
1− ρ2

∣∣∣∣∣Ut = u

)
f(u)du

=

∫ ∞
−∞

ΨV GZit

(Xtβ − ρu√
1− ρ2

)
ψV Gu(u)du

The next task is, using this formula and the data, to estimate the parameters of whole

process. Since we have a PD function in hand, it’s possible to derive a function for

estimation.

4.10.3 Variance Gamma Vasicek Factor Model PD Estimation

As we mentioned in previous section a calibration must be implemented to make fur-

ther predictions, stress tests and simulations regarding PD. However, the calibration

is not straightforward and a statistical estimation method must be used. Therefore,

we first propose a non-linear least squares (NLS ) method, however we have (k) pa-

rameters form linear model and 4 parameters from variance gamma model.

In our model, construction we adjust the parameters of variance gamma process so

that an estimation is possible with minimum effort and higher degrees of freedom.

Because we have a combination of two variance gamma random variables meaning
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7 different parameters at the beginning. Now in our adjusted model we have 4 pa-

rameters to estimate. As we have a model for Probability of Default we can select

variable proxy for PD to calibrate the β coefficients of the linear model. We now

write estimation function of the model:

PD(θ, ν, σ, β1, β2 . . . βj) =

√∑N
i=1(PDi

Company − CDSiModel)
2

N
(4.149)

The last equation is more convenient to work with as it is more tractable mathemati-
cally and more lenient in terms of numerical optimization. Therefore, after optimizing
(4.149) we can obtain parameters of (4.147). The important issue is the estimation
of variance gamma process parameters ρ, θ, σ, ν which will be solved in next sec-
tion. We implement a hypothetical stres test experiment for Variance Gamma model
below:
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Figure 4.7: Variance Gamma Model Strest Test Exercise-Double Volatility Scenario

In this exercise, we double systematic volatility to see the effect on Counterparty

Credit Risk . We observe an almost ten fold increase in CVA. It is trivial to see that

common factor shows its role on both counterparty PD and the value of underlier to

account wrong way risk.

4.11 Calibration of Parameters for Variance Gamma Process in General

The calibration is a delicate issue and is important for estimation, simulation and pre-

diction tasks. Calibration of models has many aspects; such as calibration to market

prices of the instruments, direct estimation from time series using Method of Mo-

ments (MME), Maximum Likelihood Estimation (MLE) and linear, non-linear filter-

ing techniques. We start with a modified MME method which was developed in [16]
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for variance gamma and normal inverse gaussian processes. Because these will be in-

puts for MLE estimation of variance gamma and normal inverse gaussian one-factor

credit risk models. We can start with writing moments of variance gamma process in

terms of θ2ν = κ since this is a very common terms among first four moments:

µ1 = θt

µ2 = σ2(κ+ 1)

µ3 = σ2θν(2κ+ 3)t

µ4 = 3σ4t

(
ν(2
(
κ+ 1)2 − 1

)
+ t(κ+ 1)2

)

We can further set (κ+ 1)2 = E and define new idenntities in terms of moments such

that:

µ4

3µ2
2

− 1 =

3σ4t

(
ν(2E − 1) + tE

)
3σ4t2E

− 1 =
2ν

t
− ν

Et
(4.150)

µ3

µ2µ1

=
2(2
√
E + 1)√
E

(4.151)

Using (4.150) and setting µ4

3µ2
2
− 1 = A and (4.151) and setting µ3

µ2µ1
= C we can

derive ν using these relationships. We obtain the relationships below by elaborating

over equations:

E =
ν

2ν − At

ν =
C
√
E

2
√
E + 1

=
C

2 + 1√
E

Using (4.150)

1√
E

=
2− At
ν

⇒ ν
(√

2− At

ν

)
+ 2ν = C ⇒

√
2ν2 − Atν = C − 2ν

Then we can see that

2ν2 + ν(At− 4C) + C2 = 0⇒ ν =
4C − At∓

√
(At− 4C)2 − 8C2

4

The A and C terms are for asymptotic moments, and are substituted by sample mo-

ments at which the methodology of MME is based on. Further we continue to derive
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moments as we have formula for ν and it’s linked to E and this also specifies or is the

component of other moments. Therefore finally we conclude:

ν =

4µ̂3

µ̂2µ̂1
−
(
µ̂4

3µ̂2

2 − 1
)
t∓
√(

( µ̂4

3µ̂2
2
− 1)t− 4 µ̂3

µ̂2µ̂1

)2

− 8
(

µ̂3

µ̂2µ̂1

)2

4

θ =
µ̂1

t

σ =
µ̂2

t
√

ν

2ν−
(

µ̂4
3µ̂2

2
−1

)
t

Now as we have derived the variance gamma process distribution parameters θ, ν, σ,

we will then optimize NLS function (4.149), conditioned on variance gamma process

parameters calculated here, derived in 4.10.3 to estimate the macro-financial variable

coefficients.

If our purpose is to estimate the parameters θ, ν, σ through MLE we can write down

likelihood function as follows:

`(ρ, ν, θ, σ) =
T∏
t=1

ψV G(θ, ν, σ | xt, τ) (4.152)

Then log-likelihood function is

`(ρ, ν, θ, σ) =
T∑
t=1

ψV G(θ, ν, σ | xt, τ) (4.153)

where for example regarding daily data, we can set τ=1. For more detailed analysis

regarding high frequency data the study [16] could be used as reference.

Here ψ shows the density of Variance Gamma process and we use the equation (4.25)

as a semi-closed form for this density. After setting up the log-likelihood function

we can either numerically optimize it given the data or optimize through analytical

derivatives.

4.12 Calibration of Parameters under Affine Factor Structure: A Case Study

The calibration procedure in this model is different since we use Credit Default Swap

(CDS) spreads or option prices as the variable to model and as our modelling architec-

ture is different from plain Variance Gamma equity return process. In terms of imple-

mentation methodology; we will use non-linear least squares to coincide the market
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CDS spreads or option prices with that of proposed model. In our empirical applica-

tion, we used the dataset of [32] which use CDS spreads of the companies; Deutsche

Bank (DB), ENIspa 2 and Brent future call prices as of 24, June 2014. The reason

is, we followed their affine factor decomposition methodology although with major

diferences such as considering Variance Gamma process different from their normal

inverse gaussian one and additionally using Variance Gamma Black-Cox structural

model in the affine model context. Thus, for comparison and benchmarking purposes

at the same time we use their dataset. Moreover, we give a parameter surface graph

which shows the model’s ability to fit a full dataset. For that purpose we use again

CDS spreads for Deutsche Bank for December of 2012 due to data availability. We

present the parameter surface in Figure 4.9.

The non-linear least squares method is a common method to find parameters of risk-

neutral measure in that sense. As a benchmark market variable, we will use CDS

spreads. This objective function is:

f(θ, ν, σ, ...) =

√∑N
i=1(CDSiMarket − CDSiModel)

2

N
(4.154)

where N shows number of maturities in the term structure and CDSModel is the CDS

spread generated by the model, whereas CDSMarket is the market quotes for that.

To calibrate Brent futures market call prices we used Variance Gamma option price

formula of equation (4.21). The calibration procedure is similar to above such that

the objective function is:

f(θ, ν, σ, ...) =

√∑M
j=1(CalljMarket − Call

j
Model)

2

M
(4.155)

Here M shows number available calls for various strikes. We can see from Figure
(4.8) and Table 4.1 above that the calibration produced almost perfect fit for call
prices. The results turn out to be slightly better than our followed study [32].

2 ENIspa is an Italian oil and gas company whereas Deutsche Bank is the largest bank in Germany operating
globally.
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Table 4.1: VG Parameter Estimates for Brent Futures Options
Option Market Price Model Price Strike
1 15.32 15.317 98.5
2 14.84 14.832 99.0
3 14.35 14.348 99.5
4 13.87 13.865 100.0
5 13.39 13.384 100.5
6 12.90 12.904 101.0
7 12.43 12.427 101.5
8 11.95 11.952 102.0
9 11.48 11.479 102.5
10 11.01 11.009 103.0
11 10.54 10.542 103.5
12 10.03 10.079 104.0
13 9.62 9.619 104.5
14 9.17 9.165 105.0
15 8.72 8.717 105.5
16 8.28 8.274 106.0
17 7.84 7.834 106.5
18 7.41 7.414 107.0
19 7.01 7.00 107.5
20 6.61 6.599 108.0
21 6.22 6.215 108.5
22 5.85 5.858 109.0
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Figure 4.8: Brent Futures Call Fit for VG Call Option Model

In order to implement non-linear least squares optimization we have switched be-
tween Levenberg-Marquardt and Nelder-Mead algorithm for a better fit results. As
indicated and used in [35] Nelder-Mead is a derivative free optimization method and
generally a preferred tool for calibration purposes whereas Levenberg-Marquardt is
a widely used optimization algorithm for curve fitting. As given below, the parameter
surface graph shows a fairly good fit to the CDS spread term structure.
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Figure 4.9: VG Black-Cox Model CDS calibration Surface

This fairly large parameter and prediction space is obtained by fitting the CDS, as

mentioned before, to the data of Deutsche Bank (DB) as of December, 2012. The

term structure we used encompasses 6m, 1y, 2y, 3y, 4y, 5y, 7y and 10y as data allows.

This shows the flexibility of our variance gamma Black-Cox structural PD model and

the success of Levenberg-Marquardt algorithm for curve fitting.
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In order to make a comparison with our benchmark paper [32], we implemented

another calibration using the same CDS term structure for at the date 26 June 2014

for Deutsche Bank and ENI. The term structure covers 6m, 1y, 2y, 3y, 4y, 5y, 7y

and 10y. The parameters from this calibration will be used Counterparty Credit Risk

calculation in CVA estimation section.

However, we also checked the fitting flexbility of the model using some of the data
in [35]. We can see successful fits in both flat barrier model 4.10a and stochastic
barrier model 4.11b below. The Table 4.2 confirms fairly good fit our barrier model
numerically. In the last row, the table also shows unobserved implied asset value
of the company. We see that, allowing the model to specify asset value internally
produces a better RMSE as we have one more parameter to fit the curve. However,
we observe that the difference is marginal as well.
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(a) Parameters: ν=1.4,σ=0.22,θ =0.0045,r =0.032,q =0.021
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(b) Parameters: θ=0.0167, σ=0.234

Figure 4.10: VG Black-Cox and BM Black-Cox Credit Risk Model CDS Fit
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(a) Deutsche Bank (DB): ν=1.33,θA=-0.6529,θD=-
0.6504 σA= 0.245,σD=0.416,ρAD=0.932
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(b) ENI: ν=0.82,θA=-1.4836,θD=-1.4874σA=
0.457,σD= 0.644,ρAD=0.982

Figure 4.11: VG Stochastic Barrier Credit Risk Model Fit

We check whether the model is also working better compared to its brownian motion

counterpart, namely Black-Cox model, and we calibrated this model to the same data.

We can see from 4.10b above that our variance gamma barrier model is superior than

brownian motion barrier model as well due to larger parametric structure of Variance

Gamma and its ability to generate plausible spreads even for very short-term.

99



Table 4.2: VG Barrier Credit Risk Model CDS Market Fit
Term Str. Market CDS Spread (DB) Model CDS Spread
6m 44.23 41.73
1y 57.83 58.22
2y 89.07 91.08
3y 116.37 119.84
4y 143.73 142.59
5y 164.43 159.39
7y 177.15 178.87
10y 186.25 187.02

Term Str. Market CDS Spread (ENI) Model CDS Spread
6m 27.39 25.78
1y 40.71 42.20
2y 77.00 76.12
3y 101.89 104.52
4y 125.11 124.98
5y 142.28 138.40
7y 148.53 150.85
10y 151.79 151.60

Company RMSEmerton % Market Val. of Assets RMSEnomerton % Market Val. of Assets Liability Barrier
DB 2.567537 83.55 2.584384 100.0 50.0
ENI 2.031100 64.92 2.133691 100.0 50.0

In terms of PD estimation, we use our pre-calibrated VG Black-Cox barrier type
credit risk estimation to account for a sudden default event which is more realistic
by definition [32, 35]. We can observe this from figures 4.12a and 4.12b below that
there is a clear PD vanishing at very near short-terms for brownian motion Black-Cox
model whereas variance gamma model displays byfar larger PD estimates which is
usable in practice.
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Figure 4.12: VG Black-Cox & BM Black-Cox Short Term PD

We expect same results in spreads as well since we derive spreads from PD term

structure. In order to calculate CVA, we used Brent Crude oil options prices as the

derivative contract for the same date. The model architecture we have used is the

affine factor convolution constrained variance gamma which accounts for default de-

pendence between parties plus dependence of counterparty and underlier. This de-

pendence is reflected in the ENI SpA which is an Italian multinational oil and gas

company, the counterparty in the study and the Brent future option, the underlier.

4.12.1 Calibration of Variance Gamma Factor Components

Next issues are the calibration of affine factor model parameters I(t) and Z(t) and

reconciling the equality in distribution of X(t) = I(t) + cZ(t). In order to find the

parameters of I(t) and Z(t) we have first matched the correlation (4.130) implied by
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variance gamma process to the empirical correlation matrix of related companies’.

For our estimation purposes it’s sufficient to use 3 companies’ data. However it’s

possible to extend this procedure to many companies.

This helps us find the parameters ci, cj, θZ , νZ , σZ as a first step of procedure. The

last three of this set is the parameters of systematic component Z(t). The empirical

correlation calibration procedure will lead to set of equations below:

ρ12

√
(θ2

1 + σ2
1)(θ2

2 + σ2
2) = c1c2

√
θ2
ZνZ + σ2

Z (4.156)

ρ13

√
(θ2

1 + σ2
1)(θ2

3 + σ2
3) = c1c3

√
θ2
ZνZ + σ2

Z

ρ23

√
(θ2

2 + σ2
2)(θ2

3 + σ2
3) = c2c3

√
θ2
ZνZ + σ2

Z

After solving this system of equations, we obtain 5 parameters mentioned above to be

used for finding idiosyncratic component parameters. The solution is implemented

using standard least squares and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm and Conjugate Gradient (CG) method interchangeably.

Here the parameters θi, νi, σi correspond to ones calibrated to CDS spreads and op-

tion prices. The second step is, using (4.128) convolution constraints, to derive the

parameters of idiosynratic process I(t). The convolution constrains lead to the so-

lutions for parameters of I(t) for jth company in the multivariate variance gamma

setting :

θjI(t) = σX(t) − cjθZ(t) (4.157)

σjI(t) =
√
σ2
X(t) − c2

jθ
2
Z(t)

νjI(t) =
νZ(t)νj
νZ(t) − νj

We see from table below that the empirical correlation matrix fit is very successful

with RMSE=1e-6 which means (4.156) is solved. The rest of the parameters is de-

rived according to (4.157).

Table 4.3: VG Idiosyncratic and Systematic Component Parameter Estimates
Company ρ̂ ρ cj ν νS νZ ,θZ ,σZ σS θS
1 0.534878 0.534890 0.197950 1.295654 1.698915 5.458517 0.186767 -0.015145
2 0.218622 0.218627 0.320822 0.700210 0.803249 -0.019799 0.159392 -0.046399
3 0.360111 0.360111 0.071632 2.996702 6.644505 0.325164 0.077847 0.041472
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4.12.2 Verification of Distributional Equality

We solve the problem of checking distributional equality that secures the sanity of

factor decomposition; X(t) = I(t) + cZ(t) via [15]’s COS method and convolution

formula from probability theory. The details of the theory and implementation the

COS method could be found both [15] and [24].

As well known, convolution of independent random variables has the result [7]

P
(

(X = Y + Z) ≤ x
)

=

∫
ΩZ

P
(
Y ≤ x− Z

∣∣∣Z = z
)
dPZ(ω)

Then the cdf of X can be written if f(z), the density of Z, is defined as in [7]

F (x) =

∫ x

−∞
Fy

(
(x− z)

∣∣∣Z(t) = z
)
f(z)dz

Then the density of x, f(x), will be:

f(x) =

∫ x

−∞
fy (x− z) f(z)dz (4.158)

In our case where we define convolution X = I + cZ we obtain

f(x) =

∫ x

−∞
fI (x− cjz) f(z)dz (4.159)

Therefore if we get equality of densities for all quantiles with a negligible numerical

error we could be safe to use the affine factor decomposition. Particularly in terms of

calculations involving probabilities. After calibrating models to data and using COS

method and convolution we obtain quite satisfactory results for density equality under

variance gamma convolution constraints for e.g. first asset of calibration data set.

We used Wilcoxon signed-rank test which show whether two samples come from

same distribution and Kolmogorov-Smirnov (K-S) test for whether two distributions

are same by comparing empirical CDFs. The test results show robust P-value=0.844

for Wilcoxon and P-value=0.96 for K-S test. P-value=0.7 regarding asset 1 in our

data set the same test results are Pvalue=0.7 for Wilcoxon and P-value=0.8 for K-S

test.

In figures (4.15a, (4.15b)) below, we see almost perfect quantile-quantile match for
asset 1 and asset 2 in the dataset we use. Therefore, we soundly see the equality
in distribution is satisfied for asset 2 and asset 1 with their affine factor decomposi-
tions. For calculations involving convolution method we used closed form densities
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in equation (4.24). For COS method we used variance gamma characteristic function
in equation (4.13).
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Figure 4.13: VG Affine Factor Model Convolution Asset 1
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Figure 4.14: VG Affine Factor Model Convolution Asset 2

(a) VG QQ-Plot Asset2: I(t)+cS(t) vs X(t); Wilcoxon,
K-S Tests P-val=0.844,0.96

(b) VG QQ-Plot Asset1: I(t)+cS(t) vs X(t); Wilcoxon,
K-S Tests P-val=0.7,0.8

Figure 4.15: VG Convoluted Processes QQ-Plots
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CHAPTER 5

COUNTERPARTY CREDIT RISK ESTIMATION USING LEVY

PROCESSES

5.1 Introduction

Thus far we modify and study a variety of models in terms of PD calculation both in

stochastic volatility subordinated models and subordinated infinite activity pure jump

models. We define and work out Counterparty Credit Risk in detail at first chapter.

As mentioned, it requires significant computation effort and credit risk estimation of

both counterparties plus wrong way risk to be taken into consideration. This chapter is

constructed to study and apply proposed methods in previous chapters to estimate key

Counterparty Credit Risk measure CVA, wrong way risk. The latter is important to

consider due to possible dependence between the underlying process of the derivative

contract and the credit risk of the counterparty. As we explain in previous chapters on

the structrural credit risk models, our extended affine factor methodology of [32, 33]

enables us to model the link, asset value dependence between the counterparties of

the derivative transaction and the derivative itself.

Therefore, a detailed estimation methodology concerning the Counterparty Credit

Risk and calibration of the proposed models with the market price and default data,

such as CDS spreads, is key to estimate the risk measure. In this chapter we plan to

set-out possible methods to implement these targets.
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5.2 CVA Estimation and Application in Affine Factor Levy Models

The general definition and formula for CVA is given in (2.6). Given this methology

we can first write a general formula for the Levy models we study so far. Therefore

we can start with variance gamma process. As first defined in (2.6) we can recall it as

follows:

CV A(t) =

∫ T

t

(
(1−R)e−

∫ T
s r(u)duV+(T )

)
dPDs (5.1)

We compactly write

CV A(t) = (1−R)

∫ T

t

V (s)dPDs (5.2)

Here V (s) is the value of the derivative at time of the valuation and this extends until

the maturity due to the definition of CVA.

CV A(t)1 = (1−R)
N∑
j=1

(1− PD1
tj

)1− PD2
tj
Vtj (5.3)

CV A(t)2 = (1−R)
N∑
j=1

PD1
tj

(1− PD2
tj

)Vtj (5.4)

where the subscripts show the CVA of both parties in the transaction.

Hence, for each discrete time point we will have to re-evaluate the derivative price and

PDj, PDk , for the jth, kth company. More elaborately and considering the Levy

processes we have studied do far containing the affine factor framework proposed by

[32] we write:

CV A(t)j = (1−R)E(1{Ajte(r−φ(−i)X )τ+Yj(t)+cjZ(t)>Lj}1{Akte(r−φ(−i)X )τ+Yk(t)+ckZ(t)<Lk}×

D(τ)V (S(τ)+)) (5.5)

CV A(t)k = (1−R)E(1{Ajte(r−φ(−i)X )τ+Yj(t)+cjZ(t)<Lj}1{Akte(r−φ(−i)X )τ+Yk(t)+ckZ(t)>Lk}×

D(τ)V (S(τ)+)) (5.6)

The important distinction here is the connection between counterparties and the deriva-

tive underlier through common term Z(t) which corresponds to systematic risk factor.

It could be observed that this is a general framework and it’s possible to write spefi-

cic verisons of it for the Levy processes we have used so far. Starting with variance
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gamma environment we can materially write the CVA:

CV A(t)j = (1−R)
T∑
i=1

FV G(Z;Ajt, Lj, σj, θj, τi/νj, νj, cj)× (5.7)(
1− FV G(Z;Akt, Lk, σk, θk, τi/νk, νk, ck

)
× V (St, K, r, τi, σu, cu, θu)

CV A(t)k = (1−R)
T∑
i=1

FV G(Z;Ajt, Lj, σj, θj, τi/νj, νj, cj)× (5.8)(
1− FV G(Z;Akt, Lk, σk, θk, τi/νk, νk, ck

)
× V (St, K, r, τi, σu, cu, θu)

Using our factor based variance gamma option pricing formula (4.33) we can rewrite

CVA in terms of it as follows:

CV A(t)j = (1−R)

∫ ∞
−∞

FV Gj(d2j(z))
(

1− FV Gk(d2k(z))
)
fZ(z)V (τ, z)dz (5.9)

CV A(t)k = (1−R)

∫ ∞
−∞

(
1− FV Gj(d2j(z))

)
FV Gk(d2k(z)fZ(z)V (τ, z)dz

(5.10)

Here the last term V (τ, z) is the derivative transaction for which the two counter-

parties are in deal. These integrals could be calculated using numerical quadrature.

However due to the complex nature of variance gamma density, where in practice

the PD term FV G also has another integral inside as given in (4.19). Thus, it’s more

practical and safer to use inversion of characteristic function for recovering density.

For this purpose it’s possible to use in particular the COS method of [15] to calculate

the densities and integrals defined at (5.9) and (5.10).

For a plain vanilla option or a forward option contract we can derive a semi-closed

form formula using characteristic functions as follows:

CV A(t)j = (1−R)

(
1−

∫ ∞
−∞

Re

e−iu log( L
Ajt

)
φV Gj

iu
du

)× (5.11)

(
1−

∫ ∞
−∞

Re

(
e
−iu log( L

Akt
)
φV Gk

iu
du

))
× C(St, K, r, q, σ, θ, ν, τ)

This will be compactly written as a product of two PDs and the call option price:

CV A(t)j = (1−R)× (1− PDj)× PDk × C
(
St, K, r, q, σ, θ, ν, c, τ

)
CV A(t)k = (1−R)× (1− PDk)× PDj × C

(
St, K, r, q, σ, θ, ν, c, τ

)
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The derivation of these final formulas involves dealing with characteristic functions

and some algebric arrangements, thus we give the detailed derivation in Appendix C.

In Heston/Bates environment the CVA will be similarly:

CV A(t)j = (1−R)
T∑
i=1

[
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)f(logAjt, vt, ζt, τl, cj, u)

iu
du

)]

×

(
1−

[
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)f(logAkt, vt, ζt, τl, ck, u)

iu
du

)])
×

V (St, K, r, τl, σu, cu, θu)

(5.12)

CV A(t)k = (1−R)
T∑
l=1

[
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)f(logAjt, vt, ζt, τl, cj, u)

iu
du

)]

×

(
1−

[
1

2
+

1

π

∫ ∞
0

Re

(
e−iu ln(K)f(logAkt, vt, ζt, τl, ck, u)

iu
du

)])
×

V (St, K, r, τl, σu, cu, θu)

(5.13)

where f is the density stated in (4.96). We can see an example of an IRS swap CVA
with our variance gamma barrier model:

0 2 4 6 8 10
Payment Dates

0

2

4

6

8

10

12

CV
A 

bp
s

CVA

Figure 5.1: An IRS Swap CVA Example

The PD is calculated using Variance Gamma barrier as we mentioned and the simula-

tion is implemented using the generic Counterparty Credit Risk algorithm we set-out

in first chapter. For that purpose we calibrated CIR model to 1 year FED treasury

bond rate series for necessary interest rate simulations. The calibration is done with
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our analytic derivation formula we present at Appendix B.

Additionally we have figure below an example of CVA calculations regarding vari-
ance gamma model and affine factor augmented Bates model we have derived in this
study.

Figure 5.2: CVA for Variance Gamma and Bates Stochastic Volatility Models

As we can see our augmented Bates model displays a more steep CVA rise as lia-

bility level is increased. However, variance gamma model shows a less vanishing

of CVA compared to augmented Bates model in lower risk liability levels. This is

possibly higher PD calculated by using Bates model as the default model. It is worth

to note that in Figure 4.3 the similar results is observed as well that the Bates model

overestimates the default probability for even low risk area.
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5.3 CVA VaR and Expected Shortfall (ES)

As it’s well-known from Basel-II and Basel-III regulators require capital to be allo-

cated for unexpected lossed from market risk via the Value-at-Risk (VaR) measure

in terms of model based risk measurement. We recall that VaR is used to measure

maximum loss at a given confidence level over a given time horizon. In mathematical

terms:

V aR(X) = sup
{
X ≤ F (1− α)−1

}

The term VaR of CVA refers to the potential unexpected losses that a bank could face

is case of a deterioration of the credit quality of its counterparty, at a given confidence

level (1 − α) and over given horizon. In Basel-III the VaR of CVA is constrained to

be linked to changes in counterparty credit spreads not to any possible market vari-

ables such as exchange rate, interest rates, commodities or any other reference market

variable[33]. However, the correct specification of VaR of any risk measure requires

multivariate distribution of risk factors and VaR. Therefore, counterparty credit spread

and the key risk factors in the pricing of the derivative contract should be taken into

consideration during the calculation of CVA VaR. The regulatory VaR calculation in

terms of CVA could be calculated with the same methodology of market risk VaR,

which requires the emprirical or theoretical joint distribution of CVA, market risk

factors and credit spread of the counterparties.

After full distribution of these risk factors are obtained we can calculate VaR or ES.

These factors to be simulated are based on real world measure as the scenarios are

subject to real world distribution. After these scenarios are calculated many times, M

times, we will be ready to apply the scenarios for derivative price calculation. This

requires the simulation based calculation of CVA to be repeated M times to get a

CVA distribution of which VaR is to be calculated.

We see an example in figure below for an empirical distribution of CVA. In this distri-
bution CVA-VaR and CVA-ES for an Interest Rate (IRS ) swap are calculated. Since
this exercise is based on interest rate scenarios, we use our CIR process analytical
calibration formula derived in Appendix B to simulate interest rate scenarios.

110



0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
CVA Distribution VaR %99 = 40.8 and ES = 44.68

Figure 5.3: Empirical CVA Distribution of an IRS Swap

The figure displays a loss distribution as the CVA is a expected loss. The benefit

of this empirical distrinbution is that it enables us to calculate risk measures such as

VaR and ES. In this hypothetical example we calculate the VaR(%99)=40.8 whereas

the more strict measure which is suggested by Basel-III, ES(%99) is calculated to be

44.68.
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CHAPTER 6

CONCLUSION

In this study we aimed to find out some formulas enabling efficient simulation of

Counterparty Credit Risk in the context of CVA and EPE. The results we reached

shows some absolute efficiency. However, this efficiency could be improved by com-

plementing it with other efficiency methods found in the literature such as quantiza-

tion and brownian motion local time methods. Naturally, these efficiency methodolo-

gies are in the form of analytical methodologies and algorithmic type not a hardware

aid is used, the efficiency of this type could be used for further optimization. We plan

to study these additional methodologies in further studies.

Our second purpose is to find a Credit Risk model of structural type flexible in terms

of PD calculation and calibration to CDS spreads. Since this is an implicit option

model, it’s also necessary for the model to satisfy the market features such as skew,

smile and fat tail property of log returns, which is a criticized drawback of Black-

Scholes model.

For these reasons we propose Levy processes with jumps, particularly subordinated

processes which are said to be promising in many studies such as [3, 36] and many

others. Among those we choose variance gamma process for its mathematical tractabil-

ity and flexibility. We observe that variance gamma process is quite sucessful to sat-

isfy volatility smile, skew and fat tail in log equity distributions. In Variance Gamma

based credit risk environment we re-derive Variance Gamma option price of [36] par-

ticular to our purpose of deriving a default dependent structural framework. We see

that this model fits market option price quotes perfectly. Thus, we confirm the accu-

rateness of our reformulation in addition to replicating results in literature. We then
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extend this alternative derivation method to linear factor decomposition allowing de-

fault dependence between counterparties.

Moreover in credit risk context, we develop another model of Variance Gamma pro-

cess with barrier feature. Although estimations of credit risk in a barrier context have

been done for some time, they have been mostly implemented via numerical methods

such as solutions of PIDE, Wiener-Hopf factorization or Monte Carlo simulations of

barrier type. For this purpose we make a slight change on Black-Cox barrier model by

introducing time change through Variance Gamma process. After model construction

and testing for various parametric cases, we calibrated it to the real CDS data. We

observe that it successfully fits to the CDS spread even slighly better than its normal

inverse gaussian counterpart compared to study of [32] and remarkably better than

Brownian Motion based Black-Cox barrier model. Since our main purpose was to

use a flexible model for Counterparty Credit Risk measures, we wanted to transform

the Variance Gamma barrier model into a type that can integrate default dependence

of counterparties or dependence between PD and underlying asset.

For achieving this purpose we follow [32, 6] affine linear factor decomposition which

could be used for the purposes above. We saw that this calibrates to empirical cor-

relation structure very well and the distriubutional equality between original process

and its convolution by the factors match almost equally in distribution. Then we pre-

sented an example calculation of CVA calculation carried out by this model in hand.

In terms of variance gamma based credit risk models, we additionally developed a

modified Merton model for this process having features similar to original Merton

model. We see that it works quite accurate and fast.

In addition to Variance Gamma based models, we continue to construct models of

stochastic volatility time change case. We see that these models catch volatiliy skew

and smile as well. We integrated default dependence and dependence between pro-

cesses through affine factor decomposition of stochastic volatiliy time change. The

integration was done through a modification of Bates model and is brand new in that

sense.

This model was also seen to integrate dependence between counterparties success-

fully and could also be used in Counterparty Credit Risk calculation. However cali-
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bration is a bit challenge. As a variant of this model, we add a liquidity adjustment

factor to see whether a liquidity drought could impose a change in PD and a rise in

implied spread by the model. We saw that this absolutely shows expected changes in

spreads and PD when there is liquidity drought or liquidity abundance.

Our last purpose is to integrate the state of economy to the CVA calculation. The

economic crisis, recession or growth states could implicitly effect the PD of coun-

terparties or risk factors e.g. interest rate, exchange rate scenarios. Therefore, these

factors should have been integrated to the Counterparty Credit Risk calculations.

For that reason we develop model through modifying [28] study which was an appli-

cation of Vasicek credit risk model [52] into the stress testing. Our modification is to

introduce variance gamma process this model. Since this model contained normally

distributed random variables, we expected that our new model could be better in fit-

ting with real nature of market data and economic state. Our stress testing model of

variance gamma Vasicek type is also a good candidate for integrating stress testing

to CVA calculations. Moreover, we also conclude that our affine factor augmented

stochastic volatiliy model could be used for these purposes and for pricing purpose.

Finally, we conclude that our variance gamma Black-Cox barrier model could be

safely used in any purpose of structural credit risk calculations and fitting to credit

spread term structure.

For further research, we plan to extend brownian motion local time approach of [9]

and possibly the quantization approach of [39] to our efficient CVA calculation frame-

work. Moreover, we aim to extend our efficient Counterparty Credit Risk calculation

setup for the cases bias introduced by SDE simulation methods of Euler-Maruyama

and Milstein.

Lastly, we aim to improve our Levy stochastic volatility models in the context of

affine factor decomposition and find approximations for factorizations related to First

Passage Time of Levy subordinated processes. Extending these processes to the stress

testing framework as we do for variance gamma process will be our another further

project.
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APPENDIX A

DERIVATION OF MAXIMUM OF BROWNIAN MOTION

SIMULATION

The simulation of maximum of Brownian Motion is not a trivial process and is depen-

dent on simulation of a Brownian Motion path. The derivation here straihgtforward

and useful, we used this procedure for deriving minimum of variance gamma as well

in the study.

After using conditional distribution maximum of Brownian Motion and using Brow-

nian Motion path as given, we can simulate the maximum. We can start by writing

conditional distribution of Brownian Motion and its maximum: As given in [49] we

can write

fM(t)|W (t)(m|w) =
fM(t),W (t)(m,w)

fW (t)(w)

=
2(2m− w)

t
√

2πt

√
2πte−

(2m−w)2

2t
+w2

2t

=
2(2m− w)

t
e
−2m(m−w)

t

Using this conditional density we can derive the maximum process:

P (Mt ≤ m|W (t) = w)

∫ m

w

=
2(2u− w)

t
e
−2u(u−w)

t du = 1− e
−2m(m−w)

t

Then given that any CDF is uniformly distributed we can start by simulating uniform
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distribution and continue by inverse transformation method:

1− e
−2m(m−w)

t = U

−2m2 + 2mw

t
= 1− ln(U)

2m2 − 2mw + t(1− ln(U)) = 2m2 − 2mw + C = 0

C = t(1− ln(U))

This is standart quadratic function then it is trivial to find the roots

∆ = 4w2 − 8C

m1,2 =
2w ±

√
∆

4
(A.1)

Then using the positive root from this final formula we can easily obtain maximum

of Brownian Motion. This exact solution for the roots of maximum process will help

us simulate maximum of Brownian Motion without using any numerical root finding

method. The summary of the method is

(i) Simulate a Brownian Motion Path

(ii) Simulate uniform random variable U(0, 1)

(iii) Then use A.1 to find the roots m1 & m2

(iv) Select the postive root as the simulated maximum value
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APPENDIX B

DERIVATION FOR ANALYTIC CALIBRATION OF

COX-INGERSOLL-ROSS (CIR) SDE

Although CIR process has transition density of non-central χ2 distribution and we

can write log-likelihood based on that, we can not analytically derive the optimal set

of parameters that maximize the log-likelihood. Instead we can use an approximation

methodology where we can set-up an Euler discretization tn − tn−1 = ∆t and given

this small grid; the discretized CIR process will be:

dYt = a(b− Yt−1)∆t+ σ
√
Yt−1∆tε

The transition density of CIR process becomes:

p(St|St−1) =
1√

2πσ2∆tYt−1

e
−(Yt−(Yt−1(1−a)+ab))2

2σ2∆tYt−1

N(Yt−1(1 − a∆t) + ab∆t, σ2∆tYt−1). Then given that Gaussian transition density,

we can find parameters which optimize the log-likelihood. The log-likelihood can be

written as:

L = logL(a, b, σ, Yt−1) = −(T−1) lnσ−1

2

T∑
t=2

Yt−1−
(T − 1)

2
ln 2π−1

2

T∑
t=1

(Yt − µ)2

σ2Yt−1

µ = Yt−1(1− a) + ab

Therefore, first step is to obtain first order condition(FOC) for parameter b:

∂L

∂b
=

T∑
t=2

Yt − µ
σ2Yt−1

a

= a
T∑
t=2

Yt − Yt−1

σ2Yt−1∆t
+
a2∆t(T − 1)

σ2∆t
− a2b = 0
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Using FOC we will have:

a =

∑T
t=2

Yt−Yt−1

Yt−1∆t

1− T +
∑T

t=2
b

Yt−1

We can parametrize this for further use:

a =
A

∆t(B + bC)

Then FOC for parameter a will be:

∂L

∂a
=

T∑
t=2

(Yt − µ)(Yt−1 − b)
σ2∆tYt−1

= 0

This will be:

T∑
t=2

(
Yt − Yt−1 + a∆tYt−1 − ab∆t

σ2∆t
+
b(1− a∆t)(T − 1)

σ2∆t

)
= b

T∑
t=2

(
Yt

σ2∆tYt−1

)

= (YT − Y1) + a
T∑
t=2

(Yt−1) + 2abB − bB + ab2C = bF

= D + aE + 2abB − bB + ab2C = bF

= D +
A

∆t(B + bC)
(E + 2bB + b2C)− bB = bF

F =
T∑
t=2

(
Yt

σ2∆tYt−1

)

Then we can further simplify:

b(CD∆t+ 2AB∆t−B2∆t−BF∆t) + b2(A∆t−BC∆t− FC∆t) +G = b2Ã+ bB̃ +G = 0

Here we can write Ã

Ã = ∆tC

(
T∑
t=2

(
Yt
Yt−1

− 1)− (1− T +
T∑
t=2

Yt
Yt−1

)

)

Using the fact that
∑T

t=2 1 = T − 1

Ã = ∆tC

(
T∑
t=2

(
Yt
Yt−1

− 1)− (
T∑
t=2

Yt
Yt−1

− 1)

)
= 0

Since Ã is literally 0 we have a linear equation:

bB̃ +G = 0

124



whose solution

b = −G
B̃

(B.1)

Using this result for b we will have:

a =
AB̃

∆t(BB̃ −GC)
(B.2)

where

B̃ = (CD∆t+ 2AB∆t−B2∆t−BF∆t)

Then FOC for parameter σ will be:

∂L

∂σ
= −(T − 1)

σ
+

T∑
t=2

(Yt − µ)22σYt−1

σ4Y 2
t−1

= 0

This will finally give us:

σ2 =
1

T − 1

T∑
y=2

(Yt − µ)2

∆tYt−1

where µ can be calculated using (B.1)–(B.2) and (B.1).
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APPENDIX C

PROOF OF LEMMA 3.2

The moment generating function (MGF) of CIR process can be written as given in

[49]:

E(euX(t)) =

(
1

1− 2v(t)u

) 2a
σ2

e

(
e−btuX(0)
1−2v(t)u

)
(C.1)

The v(t) term is given as:

v(t) =
σ2

4b

(
1− e−bt

)
(C.2)

moreover, ak, b, c ∈ R and σ ∈ R+. As given in Section 3 the Y (t) and Z(t) are ICIR

processes an were given by:

Z(t) =

∫ ∞
0

z(s)ds

Y (t) =

∫ ∞
0

y(s)ds

dyt = (a1 − byt)dt+ σv
√
y(t)dW y

t

dzt = (a2 − bz(t))dt+ σv
√
z(t)dW z

t

Here the coefficients are different from 4.47 and their equivalents are a1,2 = κβ1,2

and b = κ, σv = σv here.

The linear combination X(t) = Y (t) + cZ(t) can be written as:

X(t) =

∫ ∞
0

y(s) + cz(s)ds

To prove that X(t) is a ICIR process, we have to prove that y(t) + cz(t) is also a

CIR process. For that purpose we will use MGF of CIR process since the equality in

distributions will require same MGF. Thus, we write the MGF of linear combination

below, starting by Y (t). Since Y (t) and Z(t) are independent by assumption, we can
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separately write their MGFs

E(euY (t)) =

(
1

1− 2v(t)u

) 2a1
σ2
v

e

(
e−btu(Y (0))

1−2v(t)u

)
.

Here Z(t) process is linearly transformed to cZ(t) and we can proceed by writing the

MGF for cZ(t) as

E(eucZ(t)) =

(
1

1− 2v(t)u

) 2ca2
σ2
v

e

(
e−btu(cZ(0))

1−2v(t)u

)
.

This yields the joint MGF as

E(eu(Y (t)+cZ(t))) =

(
1

1− 2v(t)u

) 2(a1+ca2)

σ2
v

e

(
e−btu(Y (0)+cZ(0))

1−2v(t)u

)
. (C.3)

As we can see the MGF of affine model matches general CIR MGF form as long as

the volatility and adjustment coefficient of CIR processes y(t) and z(t) are the same.

Thus, satisfying this constraint and using the structure of MGF we can produce a

convoluted ICIR process and it will have the SDE

dxt = d(y(t) + cz(t)) = (a1 + ca2 − b(y(t) + cz(t)))dt+ σv
√
y(t) + cz(t)dW z

t

More compactly we can write:

dxt = (ax − bx(t))dt+ σv
√
x(t)dW z

t

We can use then charateristic function for ICIR suited for the affine transformation.

The characteristic function will be

ϕ(u, τ) = A(u, τ)eB(u,τ)X(0) (C.4)

= A(u, τ)eB(u,τ)[Y (0)+cZ(0)].
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APPENDIX D

VARIANCE GAMMA AND NORMAL INVERSE GAUSSIAN

CONVOLUTION DERIVATION

As stated in [40] and [45] if certain conditions are satisfied, it is possible to have a

variance gamma process after summing i.i.d variance gamma processes, which is vari-

ance gamma process is closed under convolution under some required conditions [45].

We can start with presenting Laplace transform [45] of variance gamma process as it

is very useful to show independence, convolution etc.

LV G(z) = eµz

(
α2 − β2

α2 − (β + z)2

)λ

(D.1)

Then keeping the parameters α and β fixed it’s possible to arrive another variance

gamma process with Laplace transform [45]:

LV G(z) = LV G1(z)LV G2(z) = eµ1z

(
α2 − β2

α2 − (β + z)2

)λ1

eµ2z

(
α2 − β2

α2 − (β + z)2

)λ2

LV G(z) = e(µ1+µ2)z

(
α2 − β2

α2 − (β + z)2

)(λ1+λ2)

Therefore we have another variance gamma process with new parameters still the

same α and β

V G(µ1 + µ2, α, β, λ1 + λ2)

If we re-parametrize the variance gamma as in [51] so that it is harmonius with our
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regular notation we have:

α =

√
θ2 + 2σ2

ν

σ2

β =
θ

σ2

λ =
1

ν

Assume that our two iid variance gamma processes are:

V G1 = θ1γ + σ1W (γ)

V G2 = θ2γ + σ2W (γ)

For two iid variance gamma process the parameters we have used for Laplace trans-

form will be:

α1 =

√
θ2

1 +
2σ2

1

ν1

σ2
1

, β1 =
θ1

σ2
1

α2 =

√
θ2

2 +
2σ2

2

ν2

σ2
2

, β2 =
θ2

σ2
2

Then the sum could be in the form:

V G1 + V G2 = V G = (θ1 + θ2)γ +
√

(σ2
1 + σ2

2)W (γ) (D.2)

Then the α and β will be:

α =

√
(θ1 + θ2)2 +

2σ2
1+σ2

2

ν

σ2
1 + σ2

2

(D.3)

β =
θ1 + θ2

σ2
1 + σ2

2

λ =
1

ν1

+
1

ν2

=
ν1 + ν2

ν1ν2

In order to have this same α and β we must have

θ1 + θ2

σ2
1 + σ2

2

=
θ2

σ2
2

=
θ1

σ2
1

= C1 (D.4)

Then

θ2 = C1σ
2
2

θ1 = C1σ
2
1
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As a result
C(σ2

1 + σ2
2)

σ2
1 + σ2

2

= C1 (D.5)

This satisfies the β equivalence, for α equivalence using α1 and α2 we can write:

σ2
1ν1 = C2 (D.6)

σ2
2ν2 = C2

For the sum; using (D.3) we can write:

α =

√
C1 +

2(σ2
1+σ2

2)(ν1+ν2)

ν1ν2

σ2
1 + σ2

2

(D.7)

This could be simplified:

α =

√
C1 +

2(ν1 + ν2)

(σ2
1 + σ2

2)ν1ν2

(D.8)

Then using (D.6) we will have:

α =

√
C1 +

2(ν1 + ν2)

C2(ν2 + ν1)

Finally

α =

√
C1 +

2

C2

which is the same as α1 and α2 as required.

Therefore new variance gamma which is the sum two iid variance gamma process

will be:

V G(θ1 + θ2,
√
σ2

1 + σ2
2,

ν1ν2

ν1 + ν2

) (D.9)

The second part of the proof involves normal inverse gaussian process which is the

other infinite activity pure jump Levy process. Start with Laplace transform [45]

LNIG(z) = e
µz+

(√
α2−β2−

√
α2−(β+z)2

)
δ

(D.10)

Our new two iid normal inverse gaussian process will be in the form:

NIG1 = θ1ι+ σ1W (ι)

NIG2 = θ2ι+ σ2W (ι)
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Similar to Variance Gamma process the sum of two normal inverse gaussian process

will have Laplace transform:

LNIG1(z)LNIG1(z) = e
(µ1+µ2)z+

(√
α2−β2−

√
α2−(β+z)2

)
(δ1+δ2)

(D.11)

Therefore, as long as we keep α and β parameters same, the normal inverse gaussian

process will be closed under convolution, as a result the sum of two normal inverse

gaussian processes will be normal inverse gaussian with parameters:

NG

(
θ1 + θ2,

√
σ2

1 + σ2
1,

ν1ν2

ν1 + ν2

)
(D.12)

α1 =

√
θ2

1 +
2σ2

1

ν1

σ2
1

, β1 =
θ1

σ2
1

α2 =

√
θ2

2 +
2σ2

2

ν2

σ2
2

, β2 =
θ2

σ2
2

As we can see this result is the same as variance gamma process. The reason for that

is that the Laplace transform requires α and β parameters to be the same as the two

iid normal inverse gaussian processes. Moreover, the α and β formulas in normal

inverse gaussian process is exactly the same as variance gamma . These requirements

are as in the variance gamma :

θ2 = C1σ
2
2, (D.13)

θ1 = C1σ
2
1,

σ2
1ν1 = C2,

σ2
2ν2 = C2. (D.14)

If we elaborate further, we see that the requirements imply the same structure of

variance gamma process convolution. A useful application of this could be in variance

gamma option pricing. Write two variance gamma processes driving returns of stocks

in the equity market such that

S1 = XS1 + CS1Z,

S2 = XS2 + CS2Z.

Here, XS1 and XS2 terms are independent idiosynratic components respectively for

each stock and Z term is the systematic component. This framework is the same as
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we do in 4.5.6. However, this time we restrict the system to be still variance gamma

process and derive the parameters that sustain it. As a result we have the respective

return process for two stocks having the same systematic component.

S1 = V G
(
θS1 + CS1θZ = θ1, σ

2
S1

+ C2
S1
σ2
Z = σ2

1,
νS1νZ
νS1 + νZ

= ν1

)
S2 = V G

(
θS2 + CS2θZ = θ2, σ

2
S2

+ C2
S2
σ2
Z = σ2

2,
νS2νZ
νS2 + νZ

= ν2

)
. (D.15)

Using the conditions in (D.13) we will obtain a set of formulas for parameters that

form the system. From (D.15) we see that the variance of the stocks can both be

written as:

σ2
1 = σ2

S1
(1 +

νS1

νZ
)

σ2
2 = σ2

S2
(1 +

νS2

νZ
)

Further using the (D.13) and after tedious algebra we obtain:

νS1

νS2

=
θ2σ

4
1

θ1σ4
2

= Rc, R =
θ1σ

2
2

θ2σ2
1

We also know that:
σ2
S2

σ2
S2

=
R2

Rc

= RS12

Using all these we see that

σ2
S1

=
σ2

1 −R2σ2
2

1−R2RS12

and

σ2
S2

=
σ2

1 −R2σ2
2

1−R2RS12

RS12

Further using the (D.13) again we obtain:

θS1 =
θ1 −Rθ2

1−RRN

, RN =
σ2
S2

σ2
S1

R

Collecting all above and after some effort we have:

νS1 =
RRν − 1

RνDν

, Dν =
ν1ν2

ν1 − ν2

νS2 = RννS1 , cνZ =
ν1νS1

ν1 − νS1

θZ =
θ1 − θS1

CS1

, σZ =

√
σ2

1 − σ2
S1

C2
S1
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APPENDIX E

DERIVATION HESTON/BATES MODEL DELTA

First, the option value is written as usual:

E((ST −K)+) = E((ST −K)1{ST>K}) (E.1)

Then the derivative of this expectation is:

∂E((ST −K)1{ST>K})

∂St
= ES(1{ST>K}|Ft) + E(δ((ST −K)e−rτ )ST e

−rτ |Ft)

−E(Ke−rτδ((ST −K)e−rτ )|Ft)
(E.2)

Here δ is Dirac function and is the derivative of Heaviside function 1{ST>K} This

leads to the result:

∂E((ST −K)1{ST>K})

∂S
=
∂C

∂S
= ES(1{ST>K}|Ft) = P s(ST > K) = Fs (E.3)

We have this result since the Dirac terms are equal to 1 when ST = K. This leads to

the formula using (E.2):

Stp
s(St) = Ke−rτp(Ke−rτ )

where ps and p correspond to densities under risk neutral measure P and stock risk-

adjusted PS measure respectively.

Then given this general conclusion, we can see that numerically Heston Call will also

have ∆ = Fs

As we have derived previously, see (4.92) the affine Heston Call with Jump/Bates
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Model has final formula and parameters:

V (St, vt, ζt, K, r, τ, ρxζ , ρxv, α, β, θ, κ, a, σv, η) = StFs − e−rτKF

Fs =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)fs(logSt, vt, ζt, τ, u)

iu
du

)
F =

1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)f(logSt, vt, ζt, τ, u)

iu
du

)
f s = exp

{
A(τ) +B(τ)vt + C(τ)ζ + iu logSt + λτ

[
(1 + µ)ui+1 exp

(
σ2
jp(ui− u2)

2

)
− 1

]}
f = exp

{
A(τ) +B(τ)vt + C(τ)ζ + iu logSt + λτ

[
(1 + µ)ui exp

(−σ2
jp(u

2 + ui)

2

)
− 1

]}
The greek of the call can be calculated:

∂C

∂S
= Fs + StiuFs −Ke−rτ

iuF

St

The result (E.2) over Heston/Bates Model implies

St
1

2π

∫ ∞
−∞

Re
(
e−iu log(K)fs(logSt, vt, ζt, τ, u)du

)
−

Ke−rτ
1

2π

∫ ∞
−∞

Re
(
e−iu log(K)f(logSt, vt, ζt, τ, u)du

)
= 0

Therefore,
∂C

∂S
= Fs

136



APPENDIX F

DERIVATION OF DISTRIBUTION FUNCTION OF

BROWNIAN MOTION MINIMUM

Corollary:

Ŵ (T ) = αT +W (T )

As given in [49]:

P̃{M̂(T ) ≤ m} = P̃{M(T ) + αT ≤ m} (F.1)

= Φ(
m− αT√

T
)− e2αmΦ(

−αT −m√
T

)

and

f(m,w) = −2(2m− w)

T
√

2πT
e
−1
2T (2m− w)2 =

2(w − 2m)

T
√

2πT
e
−1
2T

(2m−w)2

where w ≥ m,m ≤ 0. and M̂(T ) = sup Ŵ (t), 0 < t < T

Proof:

P̃{inf W (t) + αT ≤ m} = P̃{sup−W (t)− αT ≥ −m}

= P̃{sup−W (t)− αT ≥ −m}

= P̃{supW (t)− αT ≥ −m} = P̃{M(T )− αT ≥ −m}

= 1− P̃{M(T )− αT ≤ −m}

We could write above equalities via reflection property of brownian motion and using

the fact that −W (t) ∼ W (t) [29]. Then using (F.1) (i.e. α = −α and m = -m) we

can write:

1− P̃{M(T )− αT ≤ −m} = 1− Φ

(
−m+ αT√

T

)
+ e−2αmΦ

(
αT +m√

T

)
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Then finally our first equality becomes:

P̃{inf W (t) + αT ≤ m} = 1− P̃{M(T )− αT ≤ −m}

= Φ

(
m− αT√

T

)
+ e2αmΦ

(
m+ αT√

T

)
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APPENDIX G

SOLVENCY PROCESS DERIVATION

Proof. We have pure jump process with infinite activity defined below:

X(t) = X(0) +

∫ t

0

b(s)ds+

∫ t

0

∫
R

ydJ(y, t)

Define exponential Levy process

S(t) = S(0)eX(t)

This has an alternative reprsesentation via Ito’s lemma:

S(t) = S(0) +

∫ t

0

S(u)dX(u) (G.1)

where dX(t) = b(t)dt+ ydJ(t)

R(t) is an exponential Levy process of the form:

R(t) =
A(0)

D(0)
e

(
(φD(−i)−φA(−i))t+XA(t)−XD(t)

)
Let’s assume XA(t)−XD(t) = X(t) then Applying Ito’s lemma for Levy processes

as given in [51] we obtain:

R(X(t), t)−R(X(0), 0) =

∫ t

0

∫ ∞
−∞

[
R(X(s), s)−R(X(s−), s) (G.2)

−R(s)(ey − 1)ν(dy)
]
ds

+

∫ t

0

(
φD(−i)− φA(−i)

)
R(s)ds

+

∫ t

0

∫ ∞
−∞

[
f(X(s), s)− f(X(s−), s)

]
dJ̃(y, s)

Using the fact that below formula defines expectation with respect to jump measure

we finally obtain:

E(X(t)) =

∫ ∞
−∞

(ey − 1)ν(dy) = φX(−i) = φXA−XD(−i)
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Then we get:

R(X(t), t) = R(X(0), 0) +

∫ t

0

(
φD(−i)− φA(−i)− φXA−XD(−i)

)
R(X(s−))ds+∫ t

0

∫ ∞
−∞

R(X(s−))
[
eX(s)−X(s−) − 1

]
dJ̃(y, s)

Then given (G.1), we can see that it has the same structure with the equation above.

Using that the result follows:

R(t) = R(0) exp(
(
φD(−i)− φA(−i)− φXA−XD(−i)

)
t+X(t))

where we have defined X(t) = XA(t)−XD(t).
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