
PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS ON
MULTICORE PLATFORMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İLKE ÇUĞU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

NOVEMBER 2018

Approval of the thesis:

PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS
ON MULTICORE PLATFORMS

submitted by İLKE ÇUĞU in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East Tech-
nical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Murat Manguoğlu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Cevdet Aykanat
Computer Engineering Department, Bilkent University

Assoc. Prof. Dr. Murat Manguoğlu
Computer Engineering Department, METU

Assist. Prof. Dr. Hande Alemdar
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: İlke Çuğu

Signature :

iv

ABSTRACT

PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS
ON MULTICORE PLATFORMS

Çuğu, İlke

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Murat Manguoğlu

November 2018, 93 pages

Many large-scale applications in science and engineering require the solution of sparse

linear systems. One well-known approach is to solve these systems by factorizing the

coefficient matrix into nonsingular sparse triangular matrices and solving the resulting

sparse triangular systems via backward and forward sweep (substitution) operations.

This can be considered as a direct solver or it is part of the preconditioning operation

in an iterative scheme if incomplete factorization is computed. Often, these sparse

triangular systems are the main performance bottleneck due to their inherently se-

quential nature. With the emergence of multi-core platforms, the interest in solving

sparse triangular linear systems effectively in parallel has grown. In this thesis, a

parallel sparse triangular linear system solver based on the generalization of Spike al-

gorithm is proposed. The performance constraints of the proposed algorithm and their

impacts on the performance are evaluated on matrices from different application do-

mains. Furthermore, performance comparisons are made against the state-of-the-art

parallel sparse triangular solver of Intel’s Math Kernel Library.

v

Keywords: Sparse Triangular Linear Systems, Direct Solution, Parallel Computing

vi

ÖZ

ÇOK ÇEKİRDEKLİ MİMARİLERDE SEYREK ÜÇGEN DOĞRUSAL
SİSTEMLERİN PARALEL ÇÖZÜMÜ

Çuğu, İlke

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Murat Manguoğlu

Kasım 2018 , 93 sayfa

Bilim ve mühendislikteki pek çok uygulama seyrek doğrusal sistemlerin çözümüne

ihtiyaç duyar. Doğrusal sistemleri çözmenin en iyi bilinen yöntemlerinden biri onları

üçgensel çarpanlarına ayırıp bu üçgensel sistemleri çözmektir. Üçgensel doğrusal sis-

temler gerek doğrudan yöntemlere gerekse yinelemeli önkoşullamalara çözüm sağlar

ya da tekrar tekrar işlenerek verilen problemleri çözüme yaklaştırırlar. Seri çözümlere

uygun doğaları nedeniyle bu seyrek üçgensel doğrusal sistemlerin çözümü genelde

paralel çözümlerdeki verimin ana belirleyicisidir. Çok çekirdekli mimarilerin yaygın-

laşmasıyla seyrek üçgensel doğrusal sistemleri paralel olarak çözme eğilimi artmıştır.

Bu tez çalışmasında, seyrek üçgensel doğrusal sistemlerin, Spike algoritmasına dayalı

paralel çözümü tanıtılmıştır. Algoritmanın performans karakteristikleri ve bunların et-

kileri çeşitli uygulama alanlarından matrisler kullanılarak test edilmiştir. Ek olarak,

İntel’in Temel Matematik Kütüphanesinde bulunan paralel seyrek üçgensel doğrusal

sistem çözücü ile karşılaştırmalar yapılmıştır.

vii

Anahtar Kelimeler: Seyrek Üçgensel Doğrusal Sistemler, Doğrudan Çözüm, Paralel

İşlem

viii

To my family

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Assoc. Prof. Dr.

Murat Manguoğlu for his guidance and encouragement. I have done two summer

internships and this thesis work with him where he gave me the discipline of rigorous

experimentation, and provided the freedom I need to work productively. He is very

delicate and serious about his work, so his approval for this thesis is highly valuable.

During my graduate studies, I have also worked on machine learning with Asst. Prof.

Dr. Emre Akbaş. I would like to thank him for taking interest in a student’s research

ideas and transforming them into research projects. His open-minded and progressive

nature created a fruitful research environment for me.

Special thanks goes to my ultimate research associate, Eren Şener. I worked with

him in every machine learning project I got involved. He endured every failure and

annoyance in those projects, and he was always ready to start working on the next

one.

I want to thank my thesis committee members Prof. Dr. Cevdet Aykanat and Asst.

Prof. Dr. Hande Alemdar for the feedback they provided.

I would like to thank Dr. Christian Blug and Dr. Itır Önal Ertuğrul for providing

references during my PhD applications. In addition, I thank Maja Pavlovic for her

surprising support for my PhD applications.

Before proceeding any futher, I thank the quickest wit I know, Mr. Ender Gör.

I also want to thank Zülal Öztürk, Alişan Tosun, Furkan Onursal, Çağrı Erciyes, and

Sinan Sarıoğlu because why not.

Finally, I would like to thank my father Fahrettin Çuğu, my mother Eda Danişe Çuğu,

my elder sister Gülay Çuğu Bal, and my aunt Hülya Bilal for providing a peaceful

and supportive environment throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGEMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 5

2.1 Matrix Ordering . 5

2.2 Parallel Sparse Triangular Solvers 7

2.2.1 Level-scheduling Based Methods 8

2.2.2 Self-scheduling Based Methods 9

2.2.3 Graph-coloring Based Methods 10

2.2.4 Block-diagonal Based Methods 11

3 THE PROPOSED ALGORITHM 13

4 PERFORMANCE CONSTRAINTS 21

xi

4.1 Preprocessing . 21

4.2 Solution . 23

5 NUMERICAL EXPERIMENTS . 25

5.1 Performance Overview . 27

5.2 Case Study . 30

5.2.1 ct20stif . 31

5.2.2 FEM_3D_thermal1 33

5.2.3 finan512 . 35

5.2.4 pwtk . 37

5.2.5 shallow_water1 39

5.2.6 venkat50 . 41

6 CONCLUSION AND FUTURE WORK 43

REFERENCES . 45

APPENDICES

A RESULTS OF ALL NUMERICAL EXPERIMENTS 53

A.1 Speed-up results . 53

A.1.1 Dubcova2 . 53

A.1.2 Dubcova3 . 54

A.1.3 FEM_3D_thermal1 55

A.1.4 G3_circuit . 56

A.1.5 apache2 . 57

A.1.6 bmwcra_1 . 58

xii

A.1.7 boneS01 . 59

A.1.8 c-70 . 60

A.1.9 c-big . 61

A.1.10 consph . 62

A.1.11 ct20stif . 63

A.1.12 ecology2 . 64

A.1.13 engine . 65

A.1.14 filter3D . 66

A.1.15 finan512 . 67

A.1.16 parabolic_fem . 68

A.1.17 pwtk . 69

A.1.18 shallow_water1 70

A.1.19 torso3 . 71

A.1.20 venkat50 . 72

A.2 Runtime results . 74

A.2.1 t = 2 . 74

A.2.2 t = 4 . 78

A.2.3 t = 8 . 81

A.2.4 t = 10 . 84

A.2.5 t = 16 . 87

A.2.6 t = 20 . 90

xiii

LIST OF TABLES

TABLES

Table 5.1 Properties of the test matrices. 26

Table 5.2 Statistics of the preprocessing times of PSTRSV and MKL in mil-

liseconds. 29

Table 5.3 Statistics regarding the required iterations by PSTRSV for amorti-

zation. 30

Table A.1 Speedup results of PSTRSV using different reoderings for Dubcova2 53

Table A.2 Speedup results of MKL using different reoderings for Dubcova2 . . 54

Table A.3 Speedup results of PSTRSV using different reoderings for Dubcova3 54

Table A.4 Speedup results of MKL using different reoderings for Dubcova3 . . 55

Table A.5 Speedup results of PSTRSV using different reoderings for FEM_3D_thermal1 55

Table A.6 Speedup results of MKL using different reoderings for FEM_3D_thermal1 56

Table A.7 Speedup results of PSTRSV using different reoderings for G3_circuit 56

Table A.8 Speedup results of MKL using different reoderings for G3_circuit . 57

Table A.9 Speedup results of PSTRSV using different reoderings for apache2 . 57

Table A.10Speedup results of MKL using different reoderings for apache2 . . . 58

Table A.11Speedup results of PSTRSV using different reoderings for bmwcra_1 58

Table A.12Speedup results of MKL using different reoderings for bmwcra_1 . . 59

xiv

Table A.13Speedup results of PSTRSV using different reoderings for boneS01 . 59

Table A.14Speedup results of MKL using different reoderings for boneS01 . . . 60

Table A.15Speedup results of PSTRSV using different reoderings for c-70 . . . 60

Table A.16Speedup results of MKL using different reoderings for c-70 61

Table A.17Speedup results of PSTRSV using different reoderings for c-big . . 61

Table A.18Speedup results of MKL using different reoderings for c-big 62

Table A.19Speedup results of PSTRSV using different reoderings for consph . 62

Table A.20Speedup results of MKL using different reoderings for consph . . . 63

Table A.21Speedup results of PSTRSV using different reoderings for ct20stif . 63

Table A.22Speedup results of MKL using different reoderings for ct20stif . . . 64

Table A.23Speedup results of PSTRSV using different reoderings for ecology2 64

Table A.24Speedup results of MKL using different reoderings for ecology2 . . 65

Table A.25Speedup results of PSTRSV using different reoderings for engine . . 65

Table A.26Speedup results of MKL using different reoderings for engine 66

Table A.27Speedup results of PSTRSV using different reoderings for filter3D . 66

Table A.28Speedup results of MKL using different reoderings for filter3D . . . 67

Table A.29Speedup results of PSTRSV using different reoderings for finan512 . 67

Table A.30Speedup results of MKL using different reoderings for finan512 . . 68

Table A.31Speedup results of PSTRSV using different reoderings for parabolic_fem 68

Table A.32Speedup results of MKL using different reoderings for parabolic_fem 69

Table A.33Speedup results of PSTRSV using different reoderings for pwtk . . . 69

Table A.34Speedup results of MKL using different reoderings for pwtk 70

xv

Table A.35Speedup results of PSTRSV using different reoderings for shal-

low_water1 . 70

Table A.36Speedup results of MKL using different reoderings for shallow_water1 71

Table A.37Speedup results of PSTRSV using different reoderings for torso3 . . 71

Table A.38Speedup results of MKL using different reoderings for torso3 72

Table A.39Speedup results of PSTRSV using different reoderings for venkat50 72

Table A.40Speedup results of MKL using different reoderings for venkat50 . . 73

Table A.41The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 2 for parallel solvers. 77

Table A.42The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 4 for parallel solvers. 81

Table A.43The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 8 for parallel solvers. 84

Table A.44The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 10 for parallel solvers. 87

Table A.45The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 16 for parallel solvers. 90

xvi

Table A.46The elapsed times of preprocessing and solution parts of the pro-

posed algorithm and Intel MKL against the best sequential algorithm for

different matrix reorderings. Measured in milliseconds. The number of

threads is 20 for parallel solvers. 93

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 Taxonomy of parallel direct sparse triangular system solvers 7

Figure 3.1 The sparse triangular linear system of Ux = b 14

Figure 3.2 An example structure of the S matrix. The blue elements are from

the original matrix where the orange ones represent the "spikes" resulted

from D−1U . 16

Figure 3.3 The illustration of D +R = U . 16

Figure 3.4 Construction of the reduced system 17

Figure 3.5 The illustration of light beams as dependency mappings. 17

Figure 4.1 The dependencies presented in the original system. We only need

to calculate S matrix parts highlighted in red to construct the reduced system. 22

Figure 5.1 Overall performance comparison of the proposed solver, Intel MKL

and the best sequential solver. Bars indicate the number of test cases

where the given solver outperforms others. We ignore the test cases where

we are unable to evaluate the performance due to memory constraints. . . 28

Figure 5.2 The highest speed-ups achieved by the proposed solver and Intel

MKL solver. {R: RCM, C: ColPerm, N: NDP, M: METIS, A: AMD, O:

ORIGINAL} symbols on bars indicate the matrix reordering algorithms

which give the best result. The thread counts are placed under them. . . . 28

Figure 5.3 The illustration of ct20stif for different matrix reorderings. 31

xviii

Figure 5.4 The speed-up comparison for ct20stif 32

Figure 5.5 The preprocessing time comparison for ct20stif 32

Figure 5.6 The illustration of FEM_3D_thermal1 for different matrix reorder-

ings. 33

Figure 5.7 The speed-up comparison for FEM_3D_thermal1 34

Figure 5.8 The preprocessing time comparison for FEM_3D_thermal1 34

Figure 5.9 The illustration of finan512 for different matrix reorderings. 35

Figure 5.10 The speed-up comparison for finan512 36

Figure 5.11 The preprocessing time comparison for finan512 36

Figure 5.12 The illustration of pwtk for different matrix reorderings. 37

Figure 5.13 The speed-up comparison for pwtk 38

Figure 5.14 The preprocessing time comparison for pwtk 38

Figure 5.15 The illustration of shallow_water1 for different matrix reorderings. 39

Figure 5.16 The speed-up comparison for shallow_water1 40

Figure 5.17 The preprocessing time comparison for shallow_water1 40

Figure 5.18 The illustration of venkat50 for different matrix reorderings. 41

Figure 5.19 The speed-up comparison for venkat50 42

Figure 5.20 The preprocessing time comparison for venkat50 42

xix

LIST OF ABBREVIATIONS

MIMD Multiple Instruction, Multiple Data

SIMD Single Instruction, Multiple Data

SOR Successive Over-Relaxation

GPGPU General Purpose Graphics Processing Unit

CPU Central Processing Unit

AMD Approximate Minimum Degree

NDP Nested Dissection Permutation

RCM Reverse Cuthill-McKee

CM Cuthill-McKee

ColPerm Column Permutation

BFS Breath-First Search

MKL Math Kernel Library

STRSV Sparse Triangular System Solver

PSTRSV Parallel Sparse Triangular System Solver

CSR Compressed Sparse Row

MPI Message Passing Interface

OpenMP Open Multi-Processing

ICCG Incomplete Cholesky Conjugate Gradient

ILU Incomplete LU Factorization

BLAS Basic Linear Algebra Subprograms

CUDA Compute Unified Device Architecture

xx

CHAPTER 1

INTRODUCTION

Many applications of science and engineering require the solution of large sparse

linear systems. One well-known approach is to solve these systems by factorizing the

coefficient matrix into nonsingular sparse triangular matrices and solving the resulting

sparse triangular systems via backward and forward sweep (substitution) operations.

This can be considered as a direct solver or if incomplete factorization is computed,

it could also be considered as a part of the preconditioning in an iterative scheme.

Common sparse factorizations that require the solution of sparse triangular systems

include: LU, QR factorizations and their incomplete counterparts (incomplete LU and

incomplete QR). Furthermore, Gauss-Seidel and its variants such as Successive Over

Relaxations (SOR) and Symmetric SOR require the solution of a sparse triangular

system at each iteration.

For large problems, not only solution of linear systems is often the most time consum-

ing operation, but also in parallel computing platforms solution of triangular systems

is less scalable compared to the factorization. Solution of triangular systems are often

a sequential bottleneck due the dependencies between unknowns during forward and

backward sweeps. Therefore, scalable parallel algorithms for solving sparse trian-

gular linear systems are needed. Currently, there are many sparse triangular solver

implementations available as standalone functions or within LU/ILU factorization

softwares. The amount of interest in sparse triangular solvers is tremendous which

is also seen by the number of available software packages. These include Euclid [1],

Aztec [2], The Yale Sparse Matrix Package [3], SuperLU [4], HYPRE [5], PAR-

DISO [6], PETSc [7], MUMPS [8], UMFPACK [9], PSBLAS [10], and PSPASES [11].

Furthermore, sparse matrix operations started to appear also in widely used machine

1

learning frameworks such as Tensorflow [12], Caffe2 [13], PyTorch [14], Theano [15],

and MXNet [16].

Along with the software packages, parallel triangular solvers are extensively studied

in the literature for both MIMD and SIMD architectures. Most parallel solutions are

focused on level-scheduling [17, 18] and graph-coloring [19] algorithms with a few

exceptions where algorithms are tailored for the specific conditions arise in targeted

problem domains. These algorithms address the mathematical nature of dependencies

between elements and try to solve the given sparse triangular system efficiently, but

they do not attempt to change the sparsity structure that prevents effective parallelism.

Hence, they are often combined with matrix reordering algorithms to increase the

available parallelism. In this setting, given coefficient matrices are first reordered

by a matrix ordering algorithm, then the reordered system is solved by a parallel

sparse triangular solver. In addition, one of the challenges in parallel sparse matrix

operations is the poor memory coalescing caused by the sparse matrix rows with

varying number of nonzeros. Therefore, effective data layouts for sparse triangular

systems are also investigated in the literature.

In this thesis, we propose a Spike [20] based parallel direct sparse triangular system

solver. We implement the proposed algorithm for multicore shared address space

architectures. The Spike algorithm is originally designed for banded linear sys-

tems [21, 22, 23, 24] and generalized for sparse linear systems first as a solver for

banded preconditioner [25, 26] and later as the generalization of the banded spike

algorithm for general sparse systems [27, 28, 29]. Furthermore, the banded Spike

algorithm was implemented for GPGPU [30] and Multicore [31] architectures. Our

work expands and specialize the algorithm for the sparse triangular case which dif-

fers significantly from the original banded triangular case. The concurrency available

for the proposed solver is tightly coupled with the sparsity structure of the coefficient

matrix. Hence, we also employ matrix reordering to improve parallelism, and use

five well-known methods which are METIS [32, 33], Approximate Minimum De-

gree Permutation (AMD) [34], Column Permutation (ColPerm) in Matlab R2018a,

Nested Dissection Permutation (NDP) [35, 36], and Reverse Cuthill-McKee Order-

ing (RCM) [36] in the numerical experiments.

2

We first summarize the parallel sparse triangular solver literature and explain the em-

ployed matrix reordering algorithms in Chapter 2. We describe the proposed parallel

algorithm for the solution of sparse triangular linear systems in Chapter 3. Then, we

analyze the performance constraints of the preprocessing and the solution phases in

Chapter 4. Performance comparison of the proposed method and the parallel solver

of Intel MKL is given in Chapter 5, and we conclude in Chapter 6.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, first, we give some background information about the matrix order-

ing algorithms employed in this thesis to explore the effect of different reordering

approaches on the parallel performance. Second, we summarize and categorize the

parallel sparse triangular solver algorithms found in the literature.

2.1 Matrix Ordering

The concurrency available for parallel sparse triangular system solvers are tightly

coupled with the sparsity structure of the coefficient matrix of a given linear system.

Hence, in the literature, several studies [37, 38, 39, 40, 41, 42, 43, 44] are focused on

reordering the coefficient matrix beforehand to increase the available parallelism. In

this thesis, we also employ matrix reordering to improve parallelism, and use METIS

[32, 33], AMD [34], ColPerm, NDP [35, 36] and RCM [36] during the experiments.

Note that for METIS, AMD and RCM which require symmetric matrices, we apply

the reordering to the matrix (|A|T + |A|) when we have an unsymmetric test matrix

A, then the resulting permutation is used on the original matrix A to produce the

reordered version. In this section, we briefly discuss the employed matrix ordering

algorithms.

Nested Dissection Permutation algorithm is proposed by Alan George [35] in 1973,

and re-factored by Alan George and Joseph W. Liu [36] in 1981. NDP is a graph sep-

arator algorithm in which the coefficient matrix is transformed into a graph and it is

split into subgraphs that are not connected. In other words, the algorithm recursively

finds a separator and cuts the given graph into two halves with nearly equal sizes.

5

This reordering is particularly useful for the proposed algorithm since it pushes the

dependency elements (which are explained in Chapter 3) towards the boundaries of

the partitions and maximizes the reflection ri (see Chapter 3) parameters. We explain

the benefit of having large ri values in Chapter 4, and present the empirical evidence

in Chapter 5.

Reverse Cuthill-McKee algorithm is proposed by Alan George and Joseph W. Liu [36]

in 1981. It is a simple improvement over the original algorithm, which is designed

by Elizabeth Cuthill and James McKee [45] in 1969, to reduce the fill-in even further.

RCM is a variant of the standard breath-first search algorithm. It introduces a strict

traversal policy to the BFS algorithm in which adjacent nodes are visited in ascending

vertex order. During the traversal, each visited node is inserted into the result set

R. At the end, R indicates the new order of the vertices. In RCM this result set is

reversed, and that is the only difference between RCM and CM.

METIS [32] is a software package developed in Karypis Lab, which contains serial

or parallel (ParMETIS [33]) programs for graph partitioning and fill-reducing sparse

matrix ordering. We used the multilevel k-way partitioning scheme in METIS Version

5.1.0 during our experiments. Specifically, we selected the communication volume

minimization mode in which METIS tries to gather the nonzeros near the main diag-

onal of the coefficient matrix.

Approximate Minimum Degree ordering algorithm is proposed by Patrick R. Amestoy,

Timothy A. Davis and Iain S. Duff [34] in 1996 which is an extension over the original

minimum degree algorithm proposed by William F. Tinney and John W. Walker [46]

in 1967. Unlike the original one, AMD does not compute the exact vertex degrees

instead it computes an upper bound to approximately set the degrees of the vertices.

The algorithm is one of the most widely used fill-reducing heuristics. Briefly, the co-

efficient matrix is again taken as a graph and AMD iterates through the given graph in

a greedy fashion where the next node with the smallest approximate degree is selected

and eliminated in each step.

ColPerm is a sparse column permutation algorithm available in Matlab2018a. It pro-

duces a permutation vector to order the columns of the given coefficient matrix ac-

cording to increasing number of nonzeros.

6

Parallel Sparse Triangular System Solvers

Level scheduling based

GPGPU

[47, 48, 49]

CPU

[39, 40, 50]

Self scheduling based

GPGPU

[51, 52]

CPU

[53, 54]

Graph coloring based

GPGPU

[55, 56]

CPU

[42, 57, 44]

Block diagonal based

CPU

[58, 37, 38, 41]

Figure 2.1: Taxonomy of parallel direct sparse triangular system solvers

2.2 Parallel Sparse Triangular Solvers

In this section, we categorize and briefly discuss the parallel sparse triangular system

solvers found in the literature for both MIMD and SIMD architectures. Generic per-

formance improvements on sparse triangular system solvers such as the data layout

optimization in [59] are not covered since they do not specifically propose parallel

algorithms. In addition, since the proposed algorithm offers a direct solution to the

given triangular linear system, we will focus on the direct solvers rather than the iter-

ative solvers such as [60, 61] where Jacobi and Block-Jacobi iterations are proposed

for solving sparse triangular systems with increased parallelism in exchange for a

direct solution.

We give the taxonomy tree of the direct solvers in Figure 2.1. In this tree, we group the

studies in the literature under four main categories. These groups are defined as level-

scheduling [17, 18], self-scheduling [62], graph-coloring [19], and block diagonal

based methods. In these categories, level-scheduling and self-scheduling methods are

rooted from the same idea of treating the coefficient matrix as a directed acyclic graph

and representing the dependencies as levels, but they differentiate on whether barrier

synchronization is employed or not. Compared to others, graph-coloring methods are

focused on the reordering of the coefficient matrix to exploit concurrency which is not

explicitly available in the original form of the triangular system. For the algorithms

that are not using any level construction or coloring, we found a common idea of

processing block diagonals as isolated systems and treating the rest as dependencies

between these systems. Therefore, we labeled them as block diagonal based methods

and finalized the taxonomy tree. Note that, in some studies, combination of different

7

categories in a hybrid parallel solver is proposed or conjectured as more effective than

plain approaches.

2.2.1 Level-scheduling Based Methods

Level scheduling algorithm is first introduced by Anderson and Saad [17], and later

by Saltz [18]. It forms levels of rows by exploring the dependencies in the coefficient

matrix by treating it as a directed acyclic graph. Concurrency is achieved within lev-

els by processing the rows in parallel. However, the levels are processed sequentially.

This algorithm consists of two phases, called analysis and solve. In analysis phase,

levels are formed by traversing the graph representation of the coefficient matrix, and

in the solve phase, the sparse triangular system is solved by using the level represen-

tation. In general usage, the solve phase is called multiple times in an iterative solver

after a single analysis phase.

Naturally, earlier studies implemented level-scheduling algorithm for CPUs. In [40],

the sparse triangular solve is deemed as the main bottleneck for the ICCG algorithm.

Therefore, a level-scheduling based parallel algorithm is proposed for the triangular

solution which is accompanied with a matrix reordering phase for the coefficient ma-

trix to solve the performance problem caused by the poor spatial locality of the data.

Moreover, in [39], level-scheduling algorithm is tested for different thread affinities

and barrier types. In the implementation of the analysis phase, they used a variant of

BFS to form the levels, and, as an improvement over the original algorithm, they per-

muted the system symmetrically with respect to the levels to sort the rows/columns

in order of the levels. For the solution phase, they propose the usage of barriers that

use spin-locks and active polling to improve the performance. The most recent work

on level-scheudling [50] introduced a new data layout, named Sparse Level Tile lay-

out, to improve the data reuse of the right hand side and solution vectors. It is stated

that the proposed layout may introduce more levels to a given problem. However,

the performance drop caused by the extra levels are solved by utilizing fast register

communication for level synchronization.

Recently, level-scheduling algorithm is also adapted to GPGPUs. The first implemen-

tation of this kind is proposed in [47] and its BFS based analysis phase is integrated

8

into parallel ILU and Cholesky factorizations in [63]. Another study [49] improved

the parallel performance of level-scheduling algorithm by replacing the row-levels

with subgraph levels to increase the data locality. In addition, a new matrix storage

format named HEC (Hybrid ELL and CSR) [64] is adapted for the solution phase

of the level-scheduling algorithm in [48] to increase the effective bandwidth of the

GPGPU.

2.2.2 Self-scheduling Based Methods

Self-scheduling [62] is a modification over the level-scheduling scheme where the

barrier synchronization between levels are replaced with individual waiting mecha-

nisms. In other words, each processing unit waits for its direct dependency to be

computed and immediately starts to work upon receiving the result or notification

even if the others in the same level are still waiting.

As in level-scheduling case, earlier studies implemented this approach for CPUs. In

[54], a self-scheduling scheme for the triangular solution part of the ICCG is proposed

with a dynamic work sharing between processors. Another CPU implementation is

proposed in [53] where they run three operations after the construction of the lev-

els to improve the parallel performance. First, they eliminate the dependency edges

between the elements that are assigned to the same thread since they will naturally

execute in program order. Second, they combine tasks into supertasks to reduce the

number of dependency edges. Third, they remove the transitive edges since they are

already covered by the execution flow.

Some of the recent work on parallel sparse triangular system solvers managed to de-

ploy the self-scheduling idea to GPGPUs. In [52] a synchronization free algorithm

based on spin-locks is proposed to overcome the barrier synchronization in the level-

scheduling. In addition, their method requires a simple preprocessing phase where

they only compute the in-degree of each vertex. On the other hand, another study

[51] directly focused on the level-scheduling implementation in CUDA, and proposed

a self-scheduling based alternative in which the modified BFS is replaced with a par-

allel topological sorting algorithm to set the levels, and the barrier synchronization is

replaced with a counter-based scheduling mechanism where each element only waits

9

for its own dependencies.

2.2.3 Graph-coloring Based Methods

Graph coloring algorithm [19] tries to assign the minimum number of colors to ver-

tices of a graph in a way that two neighboring vertices are not allowed to have the

same color. Compared to others, graph coloring is an NP-complete problem, there-

fore heuristics that are used for coloring may vary among the parallel solver imple-

mentations. Over the years, several studies explored the possible implementation of

graph-coloring to increase the parallelism of sparse triangular solvers.

In [57], authors used graph multi-coloring for the effective distribution of compu-

tational workload between processors. In which, the coefficient matrix is reordered

according to the computed row colors. They used this graph partitioning scheme in

the parallel triangular solve phases of ILU(0), Block SOR and Symmetric SOR. In a

contemporary study [44], a multi-coloring algorithm based on the saturation degree

ordering algorithm [65] is proposed to improve the performance of parallel Gauss-

Seidel iterations. This algorithm is specifically designed for the last diagonal matrix

blocks resulted from the block-diagonal-bordered ordering [66] applied on power sys-

tem matrices. In a recent CPU implementation [42], authors proposed algebraic block

multicolor ordering which is an improvement over the block multicolor ordering [67]

for the coefficient matrix of the triangular solve in the ICCG method. In this scheme,

resulting matrix blocks with the same color are solved in parallel and each thread

process one or more of these blocks, but the computation within a block is sequential.

Graph-coloring methods are also investigated for SIMD architectures. In [56], the

level-scheduling based approach in [47] is outperformed by a graph-coloring based

parallel sparse triangular solver implementation in CUDA. They devised a coloring

scheme in which each colored group of rows depends only one or more previous

groups. Moreover, it is hypothesized that combining this graph-coloring approach

with level-scheduling may improve the overall performance. The idea of developing

a hybrid approach is proved to be useful in [55] where graph coloring based on find-

ing the maximum independent set [68] is combined with level-scheduling for ILU

factorization.

10

2.2.4 Block-diagonal Based Methods

In this section, we propose a new category, called block diagonal based methods,

for the parallel sparse triangular solvers in the literature. The governing dynamics

for these solvers are the isolated triangular systems in the form of block diagonals

within a coefficient matrix. In general, these isolated systems are solved by sequential

sparse triangular solvers simultaneously. The perfect parallelism is prevented by the

off-diagonal parts. Hence, parallel solutions in the literature are mostly focused on

effective messaging structures, matrix partitioning procedures, and workload sharing

policies. This seems particularly suitable for CPUs since we did not found a GPGPU

counterpart that can be considered as a block diagonal based method.

In the literature, we have found several studies that can be named under this cate-

gory. For example, in [58] a parallel sparse triangular solver tailored for the sparsity

structure arise in sparse Cholesky and LU factorizations is proposed, in which both

dense and sparse solvers are utilized and assigned to different parts of a given tri-

angular system. Moreover, the parallel sparse triangular solver in SuperLU_DIST

[41] also employed the block diagonal approach. Specifically, during the solution,

when a dependent element is computed the owner processor send the result to the

ones that are waiting for it. After receiving the dependent element, each processor

computes the local sum, and at the end the diagonal processor performs the division.

In another study [38], two algorithms, called block anti diagonal and anti diagonal

column algorithms, are proposed. In these algorithms, the coefficient matrix is parti-

tioned into diagonal blocks and rectangular off-diagonal blocks. The diagonal blocks

are processed sequentially whereas the rectangular blocks are processed in parallel.

Finally, a structure adaptive algorithm [37] is proposed. This algorithm identifies the

independent rows in the coefficient matrix and groups them together via reordering.

Then, it analyzes the structure of the reordered matrix and distributes the workload

accordingly. Provided they exist, it processes the dense off-diagonal blocks by us-

ing highly tuned dense BLAS operations in separate processes. In addition to this

algorithm, they built an prioritized messaging scheme between processes to send the

computed dependent elements right away while handling diagonal blocks. As a side

note, since the computation in sparse triangular solve is very small relative to the

11

amount of data, they deemed cache inefficiencies as intolerable and processed the

rows in large chunks.

The proposed algorithm in Chapter 3 can be considered as a block diagonal

based method.

12

CHAPTER 3

THE PROPOSED ALGORITHM

The objective of the proposed algorithm is to solve sparse lower or upper triangular

systems of equations in parallel. Without loss of generality assume a systems of

equations is given,

Ux = b (3.1)

where U ∈ Rn×n, full-rank, sparse upper triangular matrix. b and x are the right hand

side and solution vectors, respectively.

The proposed parallel algorithm is designed based on the parallel Spike scheme in

which the coefficient matrix is factorized into block diagonal matrix and the spike

matrix. We refer the reader to the references in Chapter 1 for a more detailed descrip-

tion of the general and banded Spike factorizations.

In our case, the coefficient matrix is triangular and sparse. Hence, we have the fol-

lowing Spike factorization

U = DS (3.2)

where D is block triangular with diagonal blocks that are also sparse and upper trian-

gular, and S (illustrated in Figure 3.2) is upper triangular with identity main diagonal

blocks and some dense columns (i.e. the spikes) in the upper off-diagonal blocks

only. Given the linear system in Eq. 3.1 and the factorization in Eq. 3.2, the proposed

algorithm can be described as follows. Assume, we multiply both sides of Eq. 3.1

with D−1 from left and obtain,

D−1Ux = D−1b. (3.3)

Then, since

S = D−1U, (3.4)

13

Figure 3.1: The sparse triangular linear system of Ux = b

we obtain the following modified system which has the same solution vector as the

original system in Eq. 3.1,

Sx = g (3.5)

where

g = D−1b. (3.6)

Note that obtaining the modified system is perfectly parallel in which there is no

communication requirement. The key idea of the Spike algorithm is that the modified

system contains a small reduced system (which does not exist in the original system in

Eq. 3.1) that is independent from the rest of the unknowns. After solving this smaller

reduced system, the solution of the original system can be also retrieved in perfect

parallelism. The Spike algorithm was originally designed for the parallel computer

architectures where the cost of arithmetic operations are much lower than the cost of

interprocess communication and memory operations [22]. Today’s multicore parallel

architectures can perform arithmetic operations an order of magnitude faster, and this

trend is not likely to change in the near future. Therefore, the arithmetic redundancy

cost can be easily amortized and this observation is also valid for the sparse triangular

case.

Now, we illustrate the proposed algorithm on a small (13×13) system given (without

numerical values of nonzeros) in Figure 3.1. Given a partitioning of the coefficient

matrix, we also partition the right hand side and the solution vectors, conformably.

14

Next, we extract the block diagonal part of the coefficient matrix, such that,

U = D +R (3.7)

where R is the remaining nonzeros in the off-diagonal blocks. For the small example

this is illustrated in Figure 3.3. In general, D is in the form of

D =


D1

D2

. . .

Dt

 (3.8)

where t is the number of partitions (or threads) and each Di is a separate independent

mi ×mi triangular matrix.

The modified system in Eq. 3.5 contains a smaller independent reduced system,

Ŝx̂ = ĝ (3.9)

where x̂ corresponds to the dependencies in the original system (Figure 3.4).

We define ith block row (Ri) as follows,

Ri =
(

0, .., 0, Ri,i+1, Ri,i+2, ..., Ri,t

)
. (3.10)

Furthermore, after identifying the bottom zero rows of Ri (if they exist), we define R̂i

as follows,

Ri =

R̂i

0

 (3.11)

where the size of R̂i is ki×n with ki ≤ mi. Note that ki is determined by the sparsity

structure of Ri. R̂i determines the dependencies in partition i to other partitions if

ki 6= 0. Otherwise, the unknowns belonging to partition i are completely independent.

Using Eq. 3.1 and 3.7 we obtain the following system,

Dx = b−Rx (3.12)

where only those elements of x that are corresponding to nonzero columns of R are

needed to compute the right hand side. We denote these elements of R in the nonzero

columns as dependency elements. In fact, the reduced system in Eq. 3.9 can be formed

15

Figure 3.2: An example structure of the S matrix. The blue elements are from the

original matrix where the orange ones represent the "spikes" resulted from D−1U

Figure 3.3: The illustration of D +R = U

by identifying the unknowns in x required by the dependency elements. Hence, for

most cases both S and g only need to be computed partially (i.e. only Ŝ and ĝ are

needed). After solving the reduced system in Eq. 3.9, we update the right hand side

of the system in Eq. 3.12 and solve it. Note that this last step involves solving inde-

pendent triangular systems of equations since, unlike the original system, problem is

decoupled now.

An important point is that after computing g in Eq. 3.6, some elements in x are already

available without any further computations. This happens when ki < mi. In order to

elaborate, if we split Di matrix into two parts with respect to ki, then the sub-matrix

below the ki will not have any corresponding dependency elements. In other words,

16

Figure 3.4: Construction of the reduced system

Figure 3.5: The illustration of light beams as dependency mappings.

let us denote the lower sub-matrix as D(b)
i from now on, the solution of

D
(b)
i g

(b)
i = b

(b)
i (3.13)

directly gives the partial solution of the original system. Hence,

x
(b)
i = g

(b)
i (3.14)

We further partition the upper part of gi into two vectors with respect to a parameter

we call "the reflection", ri. If we think dependency elements as light sources sending

light beams towards the bottom of the matrix and the diagonal as a mirror, then we

can model the dependencies in a nonsingular triangular system as reflections of these

light beams. These reflections are illustrated in Figure 3.5 and indicated as red arrows.

17

The topmost arrow for each partition is selected as the reflection ri and it shows the

upper bound for the necessary part of each Si matrix that we have to calculate to be

able to form the reduced system Ŝ. Specifically, for

gi =


g
(t)
i

g
(m)
i

g
(b)
i


ri

ki − ri
mi − ki

(3.15)

where ri ≤ ki, we do not need to make any calculations for g(t)i vectors to construct Ŝ.

In addition, if ri > ki, then x̂i = ĝi since there is no "spike" within the range of row

indices [ri,mi]. Our implementation takes ri = ki when ri > ki for simplification. If

there is no reflection in the given partition, we set hasReflectioni parameter as false

and deem further partitioning of Di (Eq. 3.16) as unnecessary.

Exploiting these properties saves us from recomputing x(b)i and redundant operations

with g(t)i . Therefore, we partition each Di where hasReflectioni is true as:

Di =


D

(t)
i Qi P

(t)
i

D
(m)
i P

(b)
i

D
(b)
i

 , D
(t;m)
i =

D(t)
i Qi

D
(m)
i

 , D
(m;b)
i =

D(m)
i P

(b)
i

D
(b)
i


(3.16)

conformable with the partitioning of gi vectors.

With these further partitions at hand, now, we can see that ĝi can be obtained via the

solution of

D
(m;b)
i g

(m;b)
i = b

(m;b)
i (3.17)

In detail, we select the elements of g(m;b)
i , which are computed using the elements

in b(m;b)
i that are hit by a light beam as in Figure 3.5, to form ĝi. Then we solve the

reduced system and update the corresponding elements in x.

Ŝx̂ = ĝ

x← x̂
(3.18)

Then, we compute the new right-hand side vector for the independent triangular sys-

tems of D(t;m)
i partitions:

b
(t;m)
i := b

(t;m)
i − (R̂ix+ Pix

(b)
i) (3.19)

18

where Pi =

P (t)
i

P
(b)
i


The last step is to solve the isolated systems using the updated right-hand side without

recomputing x(b)i :

D
(t;m)
i x

(t;m)
i = b

(t;m)
i (3.20)

In order to achieve better load-balance, even if we do not have a reflection at a given

partition (i.e. hasReflectioni = false), we can still partition Di with respect to ki.

Hence, we can solve Eq. 3.13 instead of waiting for idle while other threads are

solving Eq. 3.17. However, we do this only if the performance drop in Eq. 3.17:

λ
(1)
old = max{nnz(D

(m;b)
i)|i ∈ {1, ..., t}, hasReflectioni}

λ
(1)
additional = max{nnz(D

(b)
i)|i ∈ {1, ..., t},¬hasReflectioni}

loss(1) = max(0, λ
(1)
additional − λ

(1)
old)

(3.21)

is smaller than the overall gain in Eq. 3.19 and Eq. 3.20:

λ
(2)
old_1 = max{nnz(R̂i) + nnz(Di)|i ∈ {1, ..., t},¬hasReflectioni}

λ
(2)
old_2 = max{nnz(R̂i) + nnz(Pi) + nnz(D

(t;m)
i)|i ∈ {1, ..., t}, hasReflectioni}

λ
(2)
old = max(λ

(2)
old_1, λ

(2)
old_2)

λ(2)new = max{nnz(R̂i) + nnz(Pi) + nnz(D
(t;m)
i)|i ∈ {1, ..., t}}

gain(2) = max(0, λ
(2)
old − λ

(2)
new)

(3.22)

We add a small constant into the inequality and form the condition as:

gain(2) > loss(1) + ε (3.23)

If the condition in Eq. 3.23 is met, we proceed with the further partitioning of the

Di matrices for the threads with no reflection to improve the load-balance. In the im-

plementation, we indicate this by setting isOptimizedi parameter of a relevant thread

as true. If Ri is an empty matrix, in other words ki = 0, for thread i, then we select

the best cut αi preserving the condition in Eq. 3.23 and set ki = αi. Note that we

split the operations into the preprocessing and solution stages such that any operation

that does not require the right hand side vector, b, constitutes the preprocessing stage.

19

Remaining operations constitute the solution stage. This splitting is useful when mul-

tiple systems with the same coefficient matrix but different right hand side vectors are

solved repeatedly, which is often the case in practice. The solution stage of PSTRSV

is given in algorithm 1.

Algorithm 1 PSTRSV
Input: Partitioned and factored coefficient matrix U = DS, reduced coefficient

matrix Ŝ, together with associated dependency information and b, the right-hand

side vector

Output: x, solution vector of Ux = b

for each thread i = 1, 2, ..., t do

if hasReflectioni or isOptimizedi then

Solve the triangular system D
(m;b)
i g

(m;b)
i = b

(m;b)
i for g(m;b)

i

end if

Wait until all threads reach this point

for a single thread i do

Solve the reduced system Ŝx̂ = ĝ for x̂

Update the solution vector x← x̂

end for

Wait until all threads reach this point

if hasDependencei then

b
(t;m)
i := b

(t;m)
i − (R̂ix+ Pix

(b)
i)

end if

if hasReflectioni or isOptimizedi then

Solve the triangular system D
(t;m)
i x

(t;m)
i = b

(t;m)
i for x(t;m)

i

else

Solve the triangular system Dixi = bi for xi

end if

end for

return x

20

CHAPTER 4

PERFORMANCE CONSTRAINTS

In this section, we present key parameters that influence the performance of the pro-

posed algorithm. These parameters are ri, ki, and the number of nonzeros in Ŝ. We

analyze the performance for the preprocessing and solution stages separately.

4.1 Preprocessing

In preprocessing stage, we handle operations that are independent from the right hand

side vector. This splitting is useful when it is used in an iterative scheme, preprocess-

ing is done for once and the solver is often called multiple times. Hence, the cost of

the preprocessing can usually be amortized. The operations involved in the prepro-

cessing stage are the partitioning of Di and Ri, computing Si parts when necessary,

building the reduced system, and investigation for a better load-balance. Among

these, memory allocation and the computation required for Si are the most significant

performance bottleneck for the test matrices in the preprocessing time.

We only need the nonzeros of Si within the range of row indices [ri, ki] to build the

reduced system (Figure 4.1). In Eq. 3.4, S has the following structure:

Si =
(

0, ..., 0, I, Si,i+1, Si,i+2, ..., Si,t

)
. (4.1)

If we ignore preceding zero blocks, we get

Ŝi =


I S̄

(t)
i

I S̄
(b)
i

I 0

 (4.2)

21

Figure 4.1: The dependencies presented in the original system. We only need to

calculate S matrix parts highlighted in red to construct the reduced system.

conformable with the partitioning of gi and Ri. In other words,

Si =
(

0, Ŝi

)
(4.3)

Then, we can compute S̄i by solving

D
(t;m)
i S̄i = R̄i (4.4)

where

S̄i =

S̄(t)
i

S̄
(b)
i

 , R̂i =
(

0, R̄i

)
(4.5)

Note that Eq. 4.4 is a triangular system with multiple right hand side vectors, R̄i.

However, we do not need to compute S̄(t)
i since it has no contribution to the reduced

system. Therefore, we only solve a part of the system which is represented by the

following equality,

D
(m)
i S̄

(b)
i = R̄

(b)
i (4.6)

where

R̄i =

R̄(t)
i

R̄
(b)
i

 (4.7)

In the implementation, we transform R̄
(b)
i into a dense matrix containing only columns

with at least one nonzero since S̄(b)
i is expected to have dense spikes. We denote them

as R̄(b)
densei

and S̄(b)
densei

respectively. Let di be the number of columns in Ri having at

22

least one nonzero. Then, S̄(b)
densei

is a (ki−ri+1)×di dense matrix which is computed

only if ri ≤ ki. In other words, for a matrix where ri > ki,∀i ∈ {1, 2, ..., t} there is no

memory allocation or computational cost for R̄(b)
densei

and S̄(b)
densei

matrices. Naturally,

this also holds if di = 0,∀i ∈ {1, 2, ..., t} since having no dependency element is the

ideal scenario for parallelism. Nevertheless, it is still beneficial to have a relatively

small value ofmax{ki−ri|i ∈ {1, 2, ..., t}} for di 6= 0 considering the dense structure

of the spikes.

4.2 Solution

In the solution stage, we have two parallel regions and a sequential region (Eq. 3.18)

between them. We can optimize the performance of these two parallel regions using

the load-balance strategy explained in Chapter 3. This leaves us with Eq. 3.18 where

we solve the reduced system and update the solution vector.

The coefficient matrix Ŝ of the reduced system is a d × d unit diagonal triangular

matrix where d is at most the sum of all di explained in Section 4.1:

d ≤
t∑

i=1

di (4.8)

since di values through partitions may contain duplicated columns. Solving the re-

duced system requiresO(nnz(Ŝ)−d) operations. Again, for di = 0, ∀i ∈ {1, 2, ..., t}
there is no reduced system, so we have perfect parallelism. However, for most cases

where d 6= 0, the sparsity structure ofU determines the number of off-diagonal nonze-

ros in Ŝ. For a matrix where ri > ki,∀i ∈ {1, 2, ..., t}, Ŝ is the identity matrix. Hence,

there is no need to solve the reduced system,

Ŝ = I , when ri > ki,∀i ∈ {1, 2, ..., t}

Ix̂ = ĝ from Eq. 3.9

x̂ = ĝ

(4.9)

and if we directly store gi vectors in xi parts before forming ĝ, then there is no memory

operation for updating the solution vector either. If ri ≤ ki,∃i ∈ {1, 2, ..., t}, then

the computational cost will be determined by the sparsity structure of the dependency

elements within the range of row indices [ri, ki].

23

24

CHAPTER 5

NUMERICAL EXPERIMENTS

We perform numerical experiments to demonstrate the parallel scalability of the pro-

posed algorithm against the multithreaded double precision sparse triangular system

solver (mkl_sparse_d_trsv) of Intel MKL 2018 [69]. Hereafter, we refer to them as

PSTRSV and MKL, respectively. We have obtained twenty real-world test matrices

from the SuiteSparse Matrix Collection [70] that arise in variety of application ar-

eas and have a variety of dimensions/nonzeros (see Table 5.1 for properties and the

application domains that they arise in).

As we have mentioned in Chapter 4, the sparsity structure of the triangular matrix

is expected to have a significant influence on the performance of triangular solvers.

Therefore, for both PSTRSV and MKL, we experiment with five well-known ma-

trix reordering schemes. These are METIS [32, 33], Approximate Minimum De-

gree Permutation (AMD) [34], Column Permutation (ColPerm of Matlab R2018a),

Nested Dissection Permutation (NDP) [35, 36], and Reverse Cuthill-McKee Ordering

(RCM) [36]. After applying the permutation, we remove the strictly lower triangular

part of the matrix to obtain U matrix. As explained in Section 2.1, for reorderings that

require symmetric matrices, when we have an unsymmetric test matrix A, we apply

the reordering to the matrix (|A|T +|A|), then the resulting permutation is used on the

original matrix, A. For all test problems, we use a random right hand side vector.

We use a computer with 2 sockets and 2 Intel(R) Xeon(R) CPU E5-2650 v3 pro-

cessors each having 10 cores and 16 GB of memory. Threads are distributed us-

ing "KMP_AFFINITY = granularity = fine,compact,1,0". Matrices are stored in

Compressed Sparse Row (CSR) format and the proposed solver is implemented us-

ing C programming language with OpenMP [71]. We repeat each run 1, 000 times

25

Matrix Dimension(n) Non-zeros(nnz) Application

1. Dubcova2 65, 025 1, 030, 225 2D/3D Problem

2. Dubcova3 146, 689 3, 636, 643 2D/3D Problem

3. FEM_3D_thermal1 17, 880 430, 740 Thermal Problem

4. G3_circuit 1, 585, 478 7, 660, 826 Circuit Simulation

5. apache2 715, 176 4, 817, 870 Structural Sim.

6. bmwcra_1 148, 770 10, 641, 602 Structural Problem

7. boneS01 127, 224 5, 516, 602 Model Reduction

8. c-70 68, 924 658, 986 Optimization

9. c-big 345, 241 2, 340, 859 Optimization

10. consph 83, 334 6, 010, 480 2D/3D Problem

11. ct20stif 52, 329 2, 600, 295 Structural Problem

12. ecology2 999, 999 4, 995, 991 2D/3D Problem

13. engine 143, 571 4, 706, 073 Structural Problem

14. filter3D 106, 437 2, 707, 179 Model Reduction

15. finan512 74, 752 596, 992 Economic Problem

16. parabolic_fem 525, 825 3, 674, 625 Fluid Dynamics

17. pwtk 217, 918 11, 524, 432 Structural Problem

18. shallow_water1 81, 920 327, 680 Fluid Dynamics

19. torso3 259, 156 4, 429, 042 2D/3D Problem

20. venkat50 62, 424 1, 717, 777 Fluid Dynamics

Table 5.1: Properties of the test matrices.

26

and obtain the average of the required wallclock time. The required time to obtain

the solution for PSTRSV and MKL are given for t ∈ {2, 4, 8, 10, 16, 20} threads

as well as the preprocessing times (for MKL this implies mkl_sparse_d_create_csr,

mkl_sparse_set_sv_hint and mkl_sparse_optimize function calls) required by both in

Appendix A.2. Preprocessing time excludes reordering time since it is common for

both algorithms. Speed-ups obtained for each system are given in Appendix A.1. In

the remaining parts of this chapter, we offer two perspectives built upon these re-

sults. First, we give a performance overview of the proposed algorithm against Intel

MKL. Second, we present a case study to capture a detailed picture of the parallel

performance for different matrix reordering algorithms.

5.1 Performance Overview

For performance overview, we present the number of test cases where the fastest

solution is provided by a particular triangular solver in Figure 5.1. In addition, we

give the best speed-up achieved by PSTRSV and MKL for all matrices in Figure 5.2.

In this chart, we show only the best speed-up achieved for a given test matrix as

well as the matrix reordering and number of threads being used to achieve the best

speedup. For a more detailed breakdown of the speedups, we refer the reader to A.1.

The final residuals obtained by PSTRSV are comparable with MKL.

The speed-up (s) is computed against the baseline sequential time. The baseline is

either our custom sequential sparse triangular solver implementation (algorithm 2) or

sequential solver in Intel MKL whichever is the fastest for the given problem;

s =
min(runtimecustom, runtimeMKL)

runtimeparallel
. (5.1)

In general, PSTRSV provides the best speedup for most of the test cases. This can be

observed in Figure 5.1 where PSTRSV is better than others in 65% of the test cases on

average for t > 2. Furthermore, in Figure 5.2, we present the best speed-ups achieved

for each of the 20 test matrices. PSTRSV outperforms MKL in 80% of the test cases

and is 2.3 times faster on average. Based on the results, PSTRSV benefits most from

the parallelism provided by NDP in 9/20 cases, METIS in 6/20 cases, and AMD in

3/20 cases. For the other 2 cases, the original coefficient matrix gave the best results.

27

Figure 5.1: Overall performance comparison of the proposed solver, Intel MKL and

the best sequential solver. Bars indicate the number of test cases where the given

solver outperforms others. We ignore the test cases where we are unable to evaluate

the performance due to memory constraints.

Figure 5.2: The highest speed-ups achieved by the proposed solver and Intel MKL

solver. {R: RCM, C: ColPerm, N: NDP, M: METIS, A: AMD, O: ORIGINAL} sym-

bols on bars indicate the matrix reordering algorithms which give the best result. The

thread counts are placed under them.

28

t
PSTRSV MKL

min max avg std min max avg std

2 2.40 75.22 26.97 204.20 4.11 251.50 78.77 616.41

4 4.02 5995.39 875.11 10215.81 2.82 131.36 46.50 338.93

8 4.07 2988.42 576.13 5972.42 2.17 114.80 32.89 244.67

10 4.17 2756.16 495.46 5161.81 2.58 118.37 31.32 242.35

16 4.41 2961.46 372.92 4223.28 0.19 115.57 27.41 206.61

20 4.12 2219.22 327.21 3500.55 0.44 264.46 35.85 332.74

Table 5.2: Statistics of the preprocessing times of PSTRSV and MKL in milliseconds.

ColPerm and RCM, on the other hand, are not suitable for both PSTRSV and MKL.

Algorithm 2 STRSV
Input: U matrix in CSR format and b, the right-hand side vector

Output: x, solution vector of Ux = b

x[n− 1] = b[n− 1]/u[iu[n− 1]]

for i = n− 2, n− 3, ..., 0 do

t = b[i]

for j = iu[i] + 1, iu[i] + 2, ..., iu[i+ 1]− 1 do

t := t− u[j] ∗ x[ju[j]]

end for

x[i] = t/u[iu[i]]

end for

return x

So far, we have only looked into the solution time which excludes the preprocessing

time. Now, we study the required number of iterations to amortize the preprocessing

time. First, we give some statistics of preprocessing times required by both PSTRSV

and MKL in Table 5.2. Note that preprocessing stage of PSTRSV is parallel which is

reflected as a decrease in the average preprocessing times in Table 5.2 as increasing

the number of threads (t). When t = 2, r0 = 0 and k1 = 0 which results in a relatively

low preprocessing time since there is no cost regarding R̄(b)
densei

and S̄(b)
densei

matrices

29

t min max avg std

2 23 205 71.21 184.22

4 18 10572 944.44 14406.53

8 15 4772 378.24 5510.77

10 20 7525 317.20 7442.40

16 14 1517 226.86 2300.81

20 13 2229 209.18 2561.27

Table 5.3: Statistics regarding the required iterations by PSTRSV for amortization.

as explained in Section 4.1. The relatively high standard deviation in preprocessing

times of PSTRSV indicates that PSTRSV is more sensitive to sparsity structure than

MKL. Even though the cost of preprocessing for PSTRSV is relatively high, it can

be amortized by the fast triangular solution stage. In Table 5.3, we give the number

of iterations required by the proposed algorithm to amortize the preprocessing time

against the best sequential solver. Note that, we only compute the required number of

iterations only for those cases where PSTRSV has a speed-up s > 1 since, otherwise,

it would require infinite amount of iterations. The parallelism available in preprocess-

ing stage also affects amortization positively. Consistent with the Table 5.2, average

iteration count required for amortization drops as number of threads are increased

(for t > 2). Although, overall MKL requires less preprocessing time than PSTRSV,

it cannot amortize the lost time in 21/120 test cases for any t ∈ {2, 4, 8, 10, 16, 20},
whereas PSTRSV cannot amortize the lost time only in 9/120 test cases.

5.2 Case Study

In a number of cases, we were not able to run solvers for a particular test matrix or

its reordered version due to memory constraints. Hence, we have only 6 cases where

we are able to measure the performance for all of the reorderings we mentioned along

with the original matrix using each thread count t ∈ {2, 4, 8, 10, 16, 20}. For these 6

test cases, we present the speed-up curves in Figures 5.4, 5.7, 5.10, 5.13, 5.16, and

30

5.19, and preprocessing times in Figures 5.5, 5.8, 5.11, 5.14, 5.17, and 5.20. Now, we

look into those 6 cases where all reordering schemes work in more detail.

5.2.1 ct20stif

Figure 5.3: The illustration of ct20stif for different matrix reorderings.

ct20stif (Figure 5.3). According to Figure 5.4, PSTRSV outperforms MKL by obtain-

ing a speed-up of ∼ 4× by using NDP, METIS and AMD. However, MKL performs

slightly better than PSTRSV when RCM, ColPerm, and ORIGINAL reorderings are

employed, while the speed-up is poor (< 2). For preprocessing, MKL is faster than

PSTRSV for t > 2. In Figure 5.5, it can be seen that PSTRSV benefits the most from

METIS and NDP whereas MKL favors RCM and AMD. For both solvers, ColPerm

causes poor preprocessing performance.

31

Figure 5.4: The speed-up comparison for ct20stif

Figure 5.5: The preprocessing time comparison for ct20stif

32

5.2.2 FEM_3D_thermal1

Figure 5.6: The illustration of FEM_3D_thermal1 for different matrix reorderings.

FEM_3D_thermal1 (Figure 5.6). According to Figure 5.7, for all methods the speed-

up is poor. PSTRSV outperforms MKL only in NDP case by reaching∼ 2.5× speed-

up. For preprocessing, in Figure 5.8, PSTRSV outperforms MKL when NDP and

ORIGINAL ordering are used for t = 20. For t = 2, PSTRSV again has a faster

preprocessing phase. Nevertheless, PSTRSV benefits the most from METIS in all

cases whereas RCM is the most suitable one for MKL. On the other hand, ColPerm

and AMD are not suitable for PSTRSV.

33

Figure 5.7: The speed-up comparison for FEM_3D_thermal1

Figure 5.8: The preprocessing time comparison for FEM_3D_thermal1

34

5.2.3 finan512

Figure 5.9: The illustration of finan512 for different matrix reorderings.

finan512 (Figure 5.9). According to Figure 5.10, PSTRSV outperforms MKL in all

cases except ColPerm, where both perform poorly. The best speed-up attained by

PSTRSV is ∼ 6. MKL consistently produces < 1 speed-up for all cases. For pre-

processing, Figure 5.11 shows that PSTRSV requires lesser time than MKL when

METIS is selected for t ∈ {2, 4, 20}. MKL outperforms PSTRSV in the rest of the

cases for t > 2. As in Case 5.2.1, for both solvers, ColPerm deteriorates the prepro-

cessing performance.

35

Figure 5.10: The speed-up comparison for finan512

Figure 5.11: The preprocessing time comparison for finan512

36

5.2.4 pwtk

Figure 5.12: The illustration of pwtk for different matrix reorderings.

pwtk (Figure 5.12). According to Figure 5.13, PSTRSV outperforms MKL by reach-

ing a speed-up of ∼ 3 with NDP, METIS, and AMD. Poor parallelism with RCM

results in worse performance than MKL which is able to reach ∼ 2× speed-up. For

preprocessing, MKL is faster than PSTRSV for t > 2. In Figure 5.14, it can be seen

that PSTRSV benefits the most from METIS whereas MKL gets better performance

with RCM, NDP, METIS and AMD. Again as in Cases 5.2.1 and 5.2.3, ColPerm is

not suitable for both solvers.

37

Figure 5.13: The speed-up comparison for pwtk

Figure 5.14: The preprocessing time comparison for pwtk

38

5.2.5 shallow_water1

Figure 5.15: The illustration of shallow_water1 for different matrix reorderings.

shallow_water1 (Figure 5.15). According to Figure 5.16, PSTRSV achieves a good

speed-up regardless the reordering method. PSTRSV outperforms MKL in all cases

by a factor of ∼ 4. For preprocessing, MKL outperforms PSTRSV for t > 2. In

Figure 5.17, we can see that ColPerm, unlike the other cases, results in compara-

ble preprocessing performance with METIS for PSTRSV when t = 20. Neverthe-

less, METIS is the best performer in overall for PSTRSV whereas RCM, NDP and

AMD are not suitable in this case. For MKL, RCM produces the best results for

t ∈ {4, 8, 16}, but it performs poorly for t = 20. Both solvers benefit from ColPerm,

NDP and METIS for t = 20.

39

Figure 5.16: The speed-up comparison for shallow_water1

Figure 5.17: The preprocessing time comparison for shallow_water1

40

5.2.6 venkat50

Figure 5.18: The illustration of venkat50 for different matrix reorderings.

venkat50 (Figure 5.18). According to Figure 5.19, PSTRSV outperforms MKL by

reaching at most ∼ 5× speed-up for NDP, METIS, AMD, and ORIGINAL cases.

Again, poor parallelism with RCM results in a worse performance than MKL which

is able to reach ∼ 2× speed-up. As in most cases, MKL outperforms PSTRSV in the

preprocessing phase for t > 2. In Figure 5.20, METIS is the most suitable reordering

for PSTRSV, and RCM is the most suitable one for MKL. As in Cases Cases 5.2.1,

5.2.3 and 5.2.4, ColPerm degrades the preprocessing performance for both solvers.

41

Figure 5.19: The speed-up comparison for venkat50

Figure 5.20: The preprocessing time comparison for venkat50

42

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we presented a Spike based parallel sparse triangular linear system

solver. We defined the key performance parameters of the proposed algorithm and

analyzed their effect in terms of solution time. As test problems, we used matrices

obtained from the SuiteSparse Matrix Collection that arise in real world applications

and applied five well-known matrix reordering schemes. Experimental results show

that the proposed algorithm benefits from METIS, AMD and NDP reorderings. Ac-

cording to the results, the proposed algorithm outperforms parallel sparse triangular

solver of Intel MKL 2018 on a multicore arhitecture.

Several future work directions present themselves. First, a further study can be di-

rected on the preprocessing performance of the proposed algorithm. In this work,

there are some test cases where the proposed algorithm does not provide a solution

due to the memory limitations we set, so a highly parallel approach with a reduced

memory usage would solve this problem. Second, other matrix reordering frame-

works such as PaToH [72] can be evaluated in terms of suitability for the proposed

algorithm. Furthermore, we introduced the performance parameters of the proposed

algorithm in Chapter 4. These parameters can be used to devise a specialized graph

partitioning algorithm to improve the load-balance. Third, an MPI implementation of

the proposed algorithm may prove useful for very large problems that are distributed

among different processors.

43

44

REFERENCES

[1] D. Hysom and A. Pothen, “A scalable parallel algorithm for incomplete fac-

tor preconditioning,” SIAM Journal on Scientific Computing, vol. 22, no. 6,

pp. 2194–2215, 2001.

[2] S. Hutchinson, J. Shadid, and R. Tuminaro, “Aztec user’s guide. version 1,” tech.

rep., oct 1995.

[3] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, “Yale sparse

matrix package i: The symmetric codes,” International Journal for Numerical

Methods in Engineering, vol. 18, pp. 1145–1151, aug 1982.

[4] X. S. Li and J. W. Demmel, “Superlu_dist: A scalable distributed-memory

sparse direct solver for unsymmetric linear systems,” ACM Transactions on

Mathematical Software (TOMS), vol. 29, no. 2, pp. 110–140, 2003.

[5] R. D. Falgout and U. M. Yang, “hypre: A library of high performance precondi-

tioners,” in International Conference on Computational Science, pp. 632–641,

Springer, 2002.

[6] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, “Pardiso: a high-

performance serial and parallel sparse linear solver in semiconductor device

simulation,” Future Generation Computer Systems, vol. 18, no. 1, pp. 69–78,

2001.

[7] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-

cin, V. Eijkhout, W. Gropp, D. Kaushik, et al., “Petsc users manual revision 3.8,”

tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States), 2017.

[8] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, “A fully asynchronous

multifrontal solver using distributed dynamic scheduling,” SIAM Journal on

Matrix Analysis and Applications, vol. 23, no. 1, pp. 15–41, 2001.

45

[9] T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for

sparse lu factorization,” SIAM Journal on Matrix Analysis and Applications,

vol. 18, no. 1, pp. 140–158, 1997.

[10] S. Filippone and M. Colajanni, “Psblas: A library for parallel linear algebra

computation on sparse matrices,” ACM Transactions on Mathematical Software

(TOMS), vol. 26, no. 4, pp. 527–550, 2000.

[11] M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson, “Pspases: An

efficient and scalable parallel sparse direct solver,” in In Proceedings of the

Ninth SIAM Conference on Parallel Processing for Scientific Computing, Cite-

seer, 1999.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Soft-

ware available from tensorflow.org.

[13] “Caffe2: A new lightweight, modular, and scalable deep learning framework,”

tech. rep., Facebook AI Research, USA, 2017.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in

NIPS-W, 2017.

[15] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-

las, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Berg-

eron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-

Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier,

K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté,

A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Diele-

man, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,

46

O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre,

P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,

K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent,

S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz,

J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memi-

sevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pas-

canu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth,

P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V.

Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subra-

manyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vin-

cent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu,

L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano: A Python framework for fast

computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,

May 2016.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,

and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[17] E. Anderson and Y. Saad, “Solving sparse triangular linear systems on parallel

computers,” International Journal of High Speed Computing, vol. 1, no. 01,

pp. 73–95, 1989.

[18] J. H. Saltz, “Aggregation methods for solving sparse triangular systems on mul-

tiprocessors,” SIAM Journal on Scientific and Statistical Computing, vol. 11,

no. 1, pp. 123–144, 1990.

[19] R. Schreiber and W.-P. Tang, “Vectorizing the conjugate gradient method,” Pro-

ceedings of the Symposium on CYBER 205 Applications, 1982.

[20] A. H. Sameh and R. P. Brent, “Solving triangular systems on a parallel com-

puter,” SIAM Journal on Numerical Analysis, vol. 14, no. 6, pp. 1101–1113,

1977.

[21] S.-C. Chen, D. J. Kuck, and A. H. Sameh, “Practical parallel band triangular

system solvers,” ACM Transactions on Mathematical Software (TOMS), vol. 4,

no. 3, pp. 270–277, 1978.

47

[22] J. J. Dongarra and A. H. Sameh, “On some parallel banded system solvers,”

Parallel Computing, vol. 1, no. 3-4, pp. 223–235, 1984.

[23] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: the spike

algorithm,” Parallel computing, vol. 32, no. 2, pp. 177–194, 2006.

[24] E. Polizzi and A. Sameh, “Spike: A parallel environment for solving banded

linear systems,” Computers & Fluids, vol. 36, no. 1, pp. 113–120, 2007.

[25] M. Manguoglu, A. H. Sameh, and O. Schenk, “Pspike: A parallel hybrid sparse

linear system solver,” in European Conference on Parallel Processing, pp. 797–

808, Springer, 2009.

[26] O. Schenk, M. Manguoglu, A. Sameh, M. Christen, and M. Sathe, “Parallel scal-

able pde-constrained optimization: antenna identification in hyperthermia can-

cer treatment planning,” Computer Science-Research and Development, vol. 23,

no. 3-4, pp. 177–183, 2009.

[27] M. Manguoglu, “A domain-decomposing parallel sparse linear system solver,”

Journal of Computational and Applied Mathematics, vol. 236, no. 3, pp. 319–

325, 2011.

[28] M. Manguoglu, “Parallel solution of sparse linear systems,” in High-

Performance Scientific Computing, pp. 171–184, Springer, 2012.

[29] E. S. Bolukbasi and M. Manguoglu, “A multithreaded recursive and nonrecur-

sive parallel sparse direct solver,” in Advances in Computational Fluid-Structure

Interaction and Flow Simulation, pp. 283–292, Springer, 2016.

[30] I. E. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. H. Sameh, “A di-

rect tridiagonal solver based on givens rotations for gpu architectures,” Parallel

Computing, vol. 49, pp. 101–116, 2015.

[31] K. Mendiratta and E. Polizzi, “A threaded spike algorithm for solving general

banded systems,” Parallel Computing, vol. 37, no. 12, pp. 733–741, 2011.

[32] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for parti-

tioning irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1,

pp. 359–392, 1998.

48

[33] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning

and sparse matrix ordering,” Journal of Parallel and Distributed Computing,

vol. 48, no. 1, pp. 71–95, 1998.

[34] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree or-

dering algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17,

no. 4, pp. 886–905, 1996.

[35] A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal

on Numerical Analysis, vol. 10, no. 2, pp. 345–363, 1973.

[36] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite

Systems. Prentice Hall Professional Technical Reference, 1981.

[37] E. Totoni, M. T. Heath, and L. V. Kale, “Structure-adaptive parallel solution of

sparse triangular linear systems,” Parallel Computing, vol. 40, no. 9, pp. 454–

470, 2014.

[38] J. Mayer, “Parallel algorithms for solving linear systems with sparse triangular

matrices,” Computing, vol. 86, no. 4, p. 291, 2009.

[39] M. M. Wolf, M. A. Heroux, and E. G. Boman, “Factors impacting performance

of multithreaded sparse triangular solve,” in International Conference on High

Performance Computing for Computational Science, pp. 32–44, Springer, 2010.

[40] E. Rothberg and A. Gupta, “Parallel iccg on a hierarchical memory multiproces-

sor — addressing the triangular solve bottleneck.,” Parallel Computing, vol. 18,

no. 7, pp. 719 – 741, 1992.

[41] X. S. Li, “Evaluation of sparse lu factorization and triangular solution on multi-

core platforms,” in International Conference on High Performance Computing

for Computational Science, pp. 287–300, Springer, 2008.

[42] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic block multi-color

ordering method for parallel multi-threaded sparse triangular solver in iccg

method,” in Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE

26th International, pp. 474–483, IEEE, 2012.

49

[43] A. Pothen and F. L. Alvarado, “A fast reordering algorithm for parallel sparse tri-

angular solution,” SIAM journal on scientific and statistical computing, vol. 13,

no. 2, pp. 645–653, 1992.

[44] D. P. Koester, S. Ranka, and G. C. Fox, “A parallel gauss-seidel algorithm for

sparse power system matrices,” in Proceedings of the 1994 ACM/IEEE confer-

ence on Supercomputing, pp. 184–193, IEEE Computer Society Press, 1994.

[45] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matri-

ces,” in Proceedings of the 1969 24th national conference, pp. 157–172, ACM,

1969.

[46] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network equations

by optimally ordered triangular factorization,” proc. IEEE, vol. 55, no. 11,

pp. 1801–1809, 1967.

[47] M. Naumov, “Parallel solution of sparse triangular linear systems in the pre-

conditioned iterative methods on the gpu,” tech. rep., NVIDIA Corp., Westford,

MA, USA, 2011.

[48] Z. Chen, H. Liu, and B. Yang, “Parallel triangular solvers on gpu,” arXiv

preprint arXiv:1606.00541, 2016.

[49] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Constan-

tinides, “Balancing locality and concurrency: solving sparse triangular systems

on gpus,” in 2016 IEEE 23rd International Conference on High-Performance

Computing (HiPC), pp. 183–192, IEEE, 2016.

[50] X. Wang, W. Xue, W. Liu, and L. Wu, “swsptrsv: a fast sparse triangular solve

with sparse level tile layout on sunway architectures,” in Proceedings of the

23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pp. 338–353, ACM, 2018.

[51] R. Li, “On parallel solution of sparse triangular linear systems in cuda,” arXiv

preprint arXiv:1710.04985, 2017.

[52] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A synchronization-free algo-

rithm for parallel sparse triangular solves,” in European Conference on Parallel

Processing, pp. 617–630, Springer, 2016.

50

[53] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying synchroniza-

tion for high-performance shared-memory sparse triangular solver,” in Interna-

tional Supercomputing Conference, pp. 124–140, Springer, 2014.

[54] S. W. Hammond and R. Schreiber, “Efficient iccg on a shared memory mul-

tiprocessor,” International Journal of High Speed Computing, vol. 4, no. 01,

pp. 1–21, 1992.

[55] M. Naumov, P. Castonguay, and J. Cohen, “Parallel graph coloring with applica-

tions to the incomplete-lu factorization on the gpu,” tech. rep., NVIDIA Corp.,

Westford, MA, USA, 2015.

[56] B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan, “Adapting sparse

triangular solution to gpus,” in 2012 41st International Conference on Parallel

Processing Workshops, pp. 140–148, IEEE, 2012.

[57] S. Ma and Y. Saad, “Distributed ilu(0) and sor preconditioners for unstructured

sparse linear systems,” tech. rep., Army High Performance Computing Research

Center, 1994.

[58] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick, “Au-

tomatic performance tuning and analysis of sparse triangular solve,” in In ICS

2002: Workshop on Performance Optimization via High-Level Languages and

Libraries, 2002.

[59] B. Smith and H. Zhang, “Sparse triangular solves for ilu revisited: data layout

crucial to better performance,” The International Journal of High Performance

Computing Applications, vol. 25, no. 4, pp. 386–391, 2011.

[60] E. Chow, H. Anzt, J. Scott, and J. Dongarra, “Using jacobi iterations and block-

ing for solving sparse triangular systems in incomplete factorization precondi-

tioning,” Journal of Parallel and Distributed Computing, vol. 119, p. 219–230,

2018.

[61] H. Anzt, E. Chow, and J. Dongarra, “Iterative sparse triangular solves for pre-

conditioning,” in European Conference on Parallel Processing, pp. 650–661,

Springer, 2015.

51

[62] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and

scheduling of loops,” IEEE Transactions on computers, vol. 40, no. 5, pp. 603–

612, 1991.

[63] M. Naumov, “Parallel incomplete-lu and cholesky factorization in the precondi-

tioned iterative methods on the gpu,” tech. rep., NVIDIA Corp., Westford, MA,

USA, 2012.

[64] H. Liu, S. Yu, Z. Chen, B. Hsieh, and L. Shao, “Sparse matrix-vector multipli-

cation on nvidia gpu,” pp. 185–191, 2012.

[65] D. Brélaz, “New methods to color the vertices of a graph,” Communications of

the ACM, vol. 22, no. 4, pp. 251–256, 1979.

[66] D. P. Koester, S. Ranka, and G. Fox, “Parallel block-diagonal-bordered sparse

linear solvers for electrical power system applications,” in Scalable Parallel Li-

braries Conference, 1993., Proceedings of the, pp. 195–203, IEEE, 1993.

[67] T. Iwashita and M. Shimasaki, “Block red-black ordering: A new ordering strat-

egy for parallelization of iccg method,” International Journal of Parallel Pro-

gramming, vol. 31, no. 1, pp. 55–75, 2003.

[68] M. Luby, “A simple parallel algorithm for the maximal independent set prob-

lem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036–1053, 1986.

[69] “Intel math kernel library. reference manual,” tech. rep., Intel Corporation, Santa

Clara, USA, 2018.

[70] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM

Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1, 2011.

[71] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-

memory programming,” IEEE Computational Science and Engineering, vol. 5,

no. 1, pp. 46–55, 1998.

[72] U. V. Catalyürek and C. Aykanat, “Patoh: a multilevel hypergraph partitioning

tool, version 3.0,” Bilkent University, Department of Computer Engineering,

Ankara, vol. 6533, 1999.

52

APPENDIX A

RESULTS OF ALL NUMERICAL EXPERIMENTS

A.1 Speed-up results

In this section, we present the computed speed-up s for each test matrix using the

approach explained in Chapter 5. Due to memory constraints, the speed-up results

are marked as "-" for the cases where we are not able to run both solvers.

A.1.1 Dubcova2

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.82 0.77 0.83 0.83 0.79 0.79

4 1.34 - 1.52 1.53 1.41 -

8 1.69 - 2.94 2.84 2.65 -

10 1.62 - 3.46 3.14 3.21 -

16 1.15 0.03 5.11 2.44 4.74 0.03

20 1.26 0.03 4.04 3.18 3.91 0.03

Table A.1: Speedup results of PSTRSV using different reoderings for Dubcova2

53

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.86 0.49 0.50 0.59 0.53 0.58

4 0.82 - 0.49 0.63 0.63 -

8 0.82 - 0.50 0.62 0.75 -

10 0.81 - 0.49 0.53 0.78 -

16 0.81 0.55 0.37 0.26 0.67 0.59

20 0.81 0.33 0.26 0.34 0.91 0.64

Table A.2: Speedup results of MKL using different reoderings for Dubcova2

A.1.2 Dubcova3

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.85 0.88 0.85 0.89 0.85 0.81

4 1.11 - 1.45 1.26 1.39 -

8 1.12 - 2.48 1.52 2.28 -

10 1.04 - 3.11 2.48 2.90 -

16 0.73 - 2.91 1.81 3.00 -

20 0.54 - 3.02 1.50 3.10 -

Table A.3: Speedup results of PSTRSV using different reoderings for Dubcova3

54

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.64 0.85 0.65 0.71 0.58 0.69

4 0.61 - 0.82 0.84 0.61 -

8 0.62 - 0.95 0.99 0.64 -

10 0.62 - 0.97 1.00 0.67 -

16 0.48 - 0.73 0.93 0.46 -

20 0.42 - 1.82 1.14 1.26 -

Table A.4: Speedup results of MKL using different reoderings for Dubcova3

A.1.3 FEM_3D_thermal1

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.83 0.80 0.85 1.35 0.77 0.84

4 1.20 0.23 1.57 1.60 0.84 0.69

8 0.84 0.20 2.57 2.06 1.07 0.45

10 0.69 0.21 2.40 1.74 1.22 0.58

16 0.37 0.25 1.71 1.21 1.18 0.28

20 0.45 0.23 2.00 1.26 0.94 0.27

Table A.5: Speedup results of PSTRSV using different reoderings for

FEM_3D_thermal1

55

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.83 0.62 0.60 0.89 0.58 0.89

4 1.30 0.67 0.64 1.14 0.76 1.03

8 1.55 0.67 0.65 1.65 0.84 1.06

10 1.55 0.67 0.71 1.57 0.92 1.10

16 1.00 0.62 0.52 1.70 0.73 0.75

20 0.94 0.55 0.20 1.55 0.65 0.14

Table A.6: Speedup results of MKL using different reoderings for

FEM_3D_thermal1

A.1.4 G3_circuit

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.88 0.91 0.99 0.89 0.93 0.92

4 - - - 1.63 - -

8 - - - - - -

10 - - - 3.44 - -

16 - - - 3.32 - -

20 - - - 4.23 - -

Table A.7: Speedup results of PSTRSV using different reoderings for G3_circuit

56

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.30 1.18 0.46 1.07 0.40 1.00

4 - - - 1.37 - -

8 - - - - - -

10 - - - 1.22 - -

16 - - - 1.04 - -

20 - - - 1.51 - -

Table A.8: Speedup results of MKL using different reoderings for G3_circuit

A.1.5 apache2

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.93 0.92 0.97 0.94 0.91 0.91

4 - - - 1.54 - -

8 - - - 1.49 - -

10 - - - 1.85 - -

16 - - - 3.06 - -

20 - - - 1.31 - -

Table A.9: Speedup results of PSTRSV using different reoderings for apache2

57

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.63 1.38 0.59 1.84 0.55 1.85

4 - - - 2.97 - -

8 - - - 4.40 - -

10 - - - 5.26 - -

16 - - - 4.68 - -

20 - - - 4.55 - -

Table A.10: Speedup results of MKL using different reoderings for apache2

A.1.6 bmwcra_1

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.95 1.04 0.97 1.24 0.97 0.99

4 0.75 - 1.80 2.04 1.78 1.24

8 0.43 - 3.03 2.53 2.50 0.88

10 0.32 - 3.31 2.83 2.98 0.87

16 0.24 - 1.73 1.35 1.52 0.52

20 - - 1.67 1.09 1.30 0.52

Table A.11: Speedup results of PSTRSV using different reoderings for bmwcra_1

58

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 1.05 1.05 0.91 1.22 1.04 1.19

4 1.51 - 1.22 1.93 1.39 1.68

8 2.04 - 1.47 3.34 1.85 2.15

10 2.14 - 1.52 3.88 2.01 2.17

16 1.99 - 1.24 4.37 1.99 1.94

20 - - 2.91 3.65 3.56 5.55

Table A.12: Speedup results of MKL using different reoderings for bmwcra_1

A.1.7 boneS01

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.92 0.94 0.91 1.34 0.92 0.95

4 0.29 - 1.58 0.89 1.57 0.34

8 0.24 - 2.76 1.64 2.75 0.19

10 0.23 - 3.10 2.28 3.11 0.18

16 0.21 - 2.82 0.60 2.63 -

20 0.17 - 2.54 1.35 2.52 -

Table A.13: Speedup results of PSTRSV using different reoderings for boneS01

59

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.88 0.66 0.78 0.98 0.82 0.99

4 1.13 - 0.99 1.25 1.03 1.44

8 1.40 - 1.19 1.75 1.28 2.03

10 1.46 - 1.23 1.57 1.39 2.38

16 0.96 - 0.92 1.54 1.01 -

20 2.23 - 0.76 2.90 2.11 -

Table A.14: Speedup results of MKL using different reoderings for boneS01

A.1.8 c-70

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 - - - - - 0.82

4 - - - - - 1.02

8 - - - - - 1.36

10 - - - - - 1.49

16 - - - - - 1.70

20 - - - - - 1.97

Table A.15: Speedup results of PSTRSV using different reoderings for c-70

60

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 - - - - - 0.49

4 - - - - - 0.49

8 - - - - - 0.49

10 - - - - - 0.48

16 - - - - - 0.50

20 - - - - - 0.18

Table A.16: Speedup results of MKL using different reoderings for c-70

A.1.9 c-big

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 - - - - - 0.78

4 - - - - - 0.92

8 - - - - - 1.22

10 - - - - - 1.40

16 - - - - - 1.67

20 - - - - - 1.86

Table A.17: Speedup results of PSTRSV using different reoderings for c-big

61

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 - - - - - 0.48

4 - - - - - 0.46

8 - - - - - 0.46

10 - - - - - 0.46

16 - - - - - 0.47

20 - - - - - 0.17

Table A.18: Speedup results of MKL using different reoderings for c-big

A.1.10 consph

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.94 0.97 0.95 0.96 0.98 1.08

4 0.18 0.36 1.55 0.95 1.25 0.50

8 - 0.15 1.71 0.63 1.40 0.25

10 - 0.13 2.20 0.53 1.04 0.20

16 - 0.12 1.39 0.42 0.81 0.12

20 - - 1.39 0.37 0.67 -

Table A.19: Speedup results of PSTRSV using different reoderings for consph

62

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 1.22 1.11 0.92 1.08 0.90 0.89

4 2.02 1.49 1.23 1.80 1.02 0.89

8 - 2.02 1.49 2.39 1.17 0.98

10 - 2.25 1.56 2.61 1.16 0.96

16 - 1.71 1.21 1.97 0.83 0.62

20 - - 3.17 2.90 2.68 -

Table A.20: Speedup results of MKL using different reoderings for consph

A.1.11 ct20stif

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.86 0.83 0.85 1.18 0.82 0.85

4 0.32 0.50 1.44 1.42 1.40 0.91

8 0.29 0.51 2.30 2.10 2.48 1.08

10 0.28 0.52 2.74 2.16 2.77 1.01

16 0.26 0.40 3.95 3.55 4.36 1.51

20 0.34 0.65 3.62 3.00 3.51 0.91

Table A.21: Speedup results of PSTRSV using different reoderings for ct20stif

63

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.79 0.60 0.68 0.78 0.72 0.79

4 1.15 0.87 0.87 1.04 0.97 1.23

8 1.60 1.15 1.11 1.37 1.33 1.68

10 1.77 1.28 1.12 1.61 1.40 1.79

16 1.51 0.91 0.99 1.66 1.33 1.97

20 1.84 1.44 1.77 2.68 2.82 2.03

Table A.22: Speedup results of MKL using different reoderings for ct20stif

A.1.12 ecology2

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.85 0.93 0.92 0.93 0.91 0.93

4 1.10 1.24 1.39 1.46 - 1.32

8 1.29 - 2.34 2.65 - -

10 1.31 - - 3.19 - -

16 1.26 - 2.46 3.28 - -

20 1.17 - - 4.00 - -

Table A.23: Speedup results of PSTRSV using different reoderings for ecology2

64

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.39 1.07 0.44 2.04 0.52 1.09

4 0.37 1.01 0.46 1.35 - 1.02

8 0.38 - 0.43 1.54 - -

10 0.38 - - 3.21 - -

16 0.28 - 0.32 1.35 - -

20 0.06 - - 2.22 - -

Table A.24: Speedup results of MKL using different reoderings for ecology2

A.1.13 engine

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 - 0.92 0.89 0.92 0.88 0.89

4 - - 1.42 1.55 1.52 1.22

8 - - 2.63 2.55 2.65 1.81

10 - - 2.88 2.96 2.97 -

16 - - 2.81 2.91 2.86 1.50

20 - - 2.81 3.07 2.81 1.57

Table A.25: Speedup results of PSTRSV using different reoderings for engine

65

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 - 0.51 0.62 0.64 0.72 0.64

4 - - 0.84 0.97 0.97 1.01

8 - - 1.12 1.24 1.31 1.71

10 - - 1.18 1.26 1.32 -

16 - - 0.93 0.99 1.14 1.76

20 - - 1.93 1.63 2.19 1.80

Table A.26: Speedup results of MKL using different reoderings for engine

A.1.14 filter3D

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.87 0.81 0.87 0.93 0.84 0.87

4 0.84 - 1.49 1.27 1.36 0.64

8 0.59 - 2.70 2.32 2.14 0.17

10 0.47 - 3.14 3.75 2.77 0.11

16 0.30 - 4.75 2.88 3.25 0.08

20 0.24 - 3.98 2.02 2.52 0.07

Table A.27: Speedup results of PSTRSV using different reoderings for filter3D

66

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.68 0.38 0.61 0.40 0.59 0.40

4 0.84 - 0.67 0.41 0.65 0.39

8 0.96 - 0.71 0.26 0.72 0.34

10 0.96 - 0.75 0.44 0.75 0.31

16 0.69 - 0.61 0.38 0.67 0.15

20 0.84 - 0.39 0.28 1.04 0.36

Table A.28: Speedup results of MKL using different reoderings for filter3D

A.1.15 finan512

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.92 0.83 0.95 1.05 0.85 0.88

4 1.29 0.45 1.45 1.55 1.24 1.17

8 1.62 0.18 2.78 2.86 2.42 1.91

10 1.34 0.24 3.36 3.37 2.70 2.10

16 1.02 0.38 4.93 4.85 4.20 2.52

20 0.75 0.40 3.89 5.82 3.50 2.25

Table A.29: Speedup results of PSTRSV using different reoderings for finan512

67

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.45 0.52 0.41 0.51 0.54 0.59

4 0.48 0.54 0.39 0.47 0.68 0.55

8 0.51 0.56 0.37 0.48 0.80 0.54

10 0.50 0.59 0.35 0.59 0.83 0.54

16 0.26 0.50 0.25 0.30 0.60 0.39

20 0.39 0.20 0.35 0.20 1.00 0.13

Table A.30: Speedup results of MKL using different reoderings for finan512

A.1.16 parabolic_fem

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.92 0.86 0.95 0.91 0.91 0.85

4 1.36 - 1.56 1.42 - -

8 2.05 - 2.81 2.64 - -

10 2.27 - 3.25 2.99 2.97 -

16 2.51 - 2.60 2.42 3.22 -

20 2.25 - 3.90 2.53 2.43 -

Table A.31: Speedup results of PSTRSV using different reoderings for parabolic_fem

68

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 1.03 0.61 0.48 0.60 0.47 0.60

4 0.97 - 0.49 0.84 - -

8 0.96 - 0.49 1.23 - -

10 0.96 - 0.49 1.46 0.57 -

16 0.95 - 0.41 2.29 0.43 -

20 0.96 - 0.16 0.94 0.84 -

Table A.32: Speedup results of MKL using different reoderings for parabolic_fem

A.1.17 pwtk

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.97 0.98 0.96 1.10 0.95 0.98

4 1.43 1.04 1.76 1.62 1.73 1.50

8 1.27 1.07 3.05 2.73 2.90 2.19

10 1.13 0.91 3.16 2.58 3.10 1.81

16 0.75 0.63 3.22 3.37 3.02 1.45

20 0.61 0.44 3.23 3.64 2.89 1.07

Table A.33: Speedup results of PSTRSV using different reoderings for pwtk

69

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 1.10 0.83 0.96 0.89 1.06 0.85

4 1.60 0.92 1.51 0.90 1.49 0.84

8 2.14 1.00 2.39 1.21 2.05 0.98

10 2.29 1.01 2.69 1.11 2.23 1.04

16 1.57 0.62 2.32 1.42 1.75 0.73

20 1.60 0.51 3.09 1.39 2.30 0.62

Table A.34: Speedup results of MKL using different reoderings for pwtk

A.1.18 shallow_water1

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.85 0.90 0.91 0.89 0.88 0.89

4 1.46 1.56 1.64 1.61 1.49 1.51

8 2.00 2.48 2.62 2.68 2.52 2.48

10 2.33 2.85 3.06 3.11 3.12 2.85

16 2.80 3.80 4.58 4.54 4.42 3.80

20 2.00 3.00 3.24 3.47 3.12 3.00

Table A.35: Speedup results of PSTRSV using different reoderings for shal-

low_water1

70

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.47 0.46 0.42 0.57 0.48 0.45

4 0.67 0.43 0.43 0.47 0.58 0.43

8 0.93 0.45 0.43 0.61 0.78 0.45

10 0.98 0.43 0.42 0.53 0.88 0.45

16 0.48 0.44 0.28 0.57 0.71 0.44

20 0.20 1.33 0.28 2.03 0.39 1.90

Table A.36: Speedup results of MKL using different reoderings for shallow_water1

A.1.19 torso3

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.83 0.83 0.90 0.85 0.76 0.83

4 0.32 - 1.52 1.49 - 1.08

8 - - 2.65 1.02 - 0.98

10 - - 3.21 1.25 - 0.92

16 - - 3.69 1.43 - 0.41

20 - - 2.20 1.09 - 0.38

Table A.37: Speedup results of PSTRSV using different reoderings for torso3

71

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 0.57 0.96 0.53 1.02 0.60 1.04

4 0.59 - 0.48 1.54 - 1.84

8 - - 0.45 2.02 - 3.05

10 - - 0.43 2.27 - 3.84

16 - - 0.28 1.79 - 3.77

20 - - 0.25 2.47 - 3.71

Table A.38: Speedup results of MKL using different reoderings for torso3

A.1.20 venkat50

t
PSTRSV

RCM ColPerm NDP METIS AMD ORIG

2 0.80 0.79 0.82 1.38 0.81 0.78

4 1.03 0.18 1.56 1.45 1.53 1.25

8 0.79 0.20 2.00 2.77 2.90 1.47

10 0.74 0.23 3.55 2.89 3.53 1.36

16 0.86 0.28 3.67 4.11 4.96 1.73

20 0.83 0.31 4.23 3.93 4.52 1.54

Table A.39: Speedup results of PSTRSV using different reoderings for venkat50

72

t
MKL

RCM ColPerm NDP METIS AMD ORIG

2 1.00 0.67 0.75 0.64 0.84 0.64

4 1.50 0.70 1.25 0.72 1.19 0.66

8 2.20 0.63 0.89 0.77 1.74 0.58

10 2.37 0.59 2.50 0.82 1.98 0.54

16 1.75 0.34 2.29 0.52 2.00 0.32

20 2.09 0.68 2.62 1.39 2.31 0.57

Table A.40: Speedup results of MKL using different reoderings for venkat50

73

A.2 Runtime results

In this section, we present the wall-clock times taken to perform the preprocessing

and the solution phases of PSTRSV and MKL for each test case. Conformable with

the Chapter 5, only the cases where both solvers are able to run are considered.

A.2.1 t = 2

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 28.7 3.82 77.39 5.41 3.93

engine_ColPerm 29.3 4.06 130.57 7.35 3.69

engine_ORIGINAL 29.7 3.94 95.37 5.46 3.45

engine_METIS 24.8 3.78 89.00 5.32 3.38

engine_AMD 29.3 3.91 77.08 4.81 3.39

consph_RCM 32.8 4.36 77.43 3.37 4.11

consph_ColPerm 33.0 4.28 85.60 3.75 4.11

consph_NDP 33.5 4.99 95.89 5.14 4.79

consph_METIS 33.3 4.42 76.61 3.91 4.35

consph_ORIGINAL 34.0 3.89 81.93 4.74 4.18

consph_AMD 33.3 4.83 89.64 5.26 4.79

bmwcra_1_RCM 59.8 8.64 136.74 7.78 8.16

bmwcra_1_ColPerm 59.2 8.19 207.78 8.10 8.48

bmwcra_1_NDP 60.0 9.19 161.76 9.78 8.77

bmwcra_1_METIS 50.8 6.92 137.08 7.03 8.62

bmwcra_1_ORIGINAL 59.8 8.66 142.68 7.23 8.54

bmwcra_1_AMD 59.9 9.09 151.51 8.55 8.73

shallow_water1_RCM 2.5 0.47 7.26 0.85 0.42

shallow_water1_ColPerm 2.6 0.61 10.99 1.20 0.57

shallow_water1_NDP 2.9 0.58 9.44 1.26 0.55

shallow_water1_METIS 2.7 0.63 7.44 0.99 0.59

74

shallow_water1_ORIGINAL 2.6 0.62 11.21 1.23 0.57

shallow_water1_AMD 2.9 0.58 8.89 1.06 0.53

FEM_3D_thermal1_RCM 2.5 0.35 4.59 0.35 0.31

FEM_3D_thermal1_ColPerm 2.4 0.35 4.94 0.45 0.30

FEM_3D_thermal1_NDP 2.7 0.40 6.96 0.57 0.36

FEM_3D_thermal1_METIS 2.5 0.23 5.42 0.35 0.34

FEM_3D_thermal1_ORIGINAL 2.5 0.37 4.33 0.35 0.32

FEM_3D_thermal1_AMD 2.6 0.39 6.01 0.52 0.33

c-70_ORIGINAL 3.9 0.72 19.88 1.20 0.61

parabolic_fem_RCM 24.5 7.75 73.41 6.92 7.14

parabolic_fem_ColPerm 23.4 5.11 93.90 7.27 4.41

parabolic_fem_NDP 32.8 5.96 91.51 11.66 5.62

parabolic_fem_METIS 22.2 4.88 80.76 7.42 4.33

parabolic_fem_ORIGINAL 23.6 5.24 92.28 7.34 4.44

parabolic_fem_AMD 29.9 5.29 83.63 10.33 4.84

c-big_ORIGINAL 15.7 3.57 84.51 5.82 2.81

venkat50_RCM 10.3 1.48 17.53 1.19 1.21

venkat50_ColPerm 10.5 1.36 21.44 1.62 1.10

venkat50_NDP 10.3 1.31 20.48 1.42 1.10

venkat50_METIS 9.0 0.78 23.94 1.70 1.10

venkat50_ORIGINAL 10.3 1.37 20.59 1.67 1.09

venkat50_AMD 10.2 1.37 19.50 1.32 1.13

boneS01_RCM 32.7 4.85 83.97 5.09 4.34

boneS01_ColPerm 32.9 5.00 179.99 7.04 4.58

boneS01_NDP 33.2 5.19 97.20 6.14 4.65

boneS01_METIS 34.4 3.75 88.34 5.23 5.12

boneS01_ORIGINAL 38.4 5.49 93.60 5.25 5.06

boneS01_AMD 33.3 4.95 83.36 5.54 4.55

ct20stif_RCM 14.9 1.63 29.08 1.78 1.42

ct20stif_ColPerm 14.9 1.80 57.19 2.49 1.51

75

ct20stif_NDP 14.9 1.68 34.50 2.11 1.45

ct20stif_METIS 15.9 1.24 35.03 1.86 1.50

ct20stif_ORIGINAL 15.3 1.70 31.56 1.83 1.46

ct20stif_AMD 15.1 1.73 29.74 1.97 1.44

finan512_RCM 4.5 0.66 13.96 1.37 0.63

finan512_ColPerm 3.8 0.63 11.78 1.00 0.53

finan512_NDP 4.8 0.76 14.92 1.77 0.74

finan512_METIS 3.5 0.57 10.50 1.17 0.64

finan512_ORIGINAL 3.9 0.69 10.77 1.03 0.63

finan512_AMD 4.2 0.71 10.89 1.11 0.63

torso3_RCM 27.8 4.49 74.75 6.53 3.75

torso3_ColPerm 26.0 4.95 76.26 4.28 4.12

torso3_NDP 31.4 5.43 105.85 9.22 4.87

torso3_METIS 27.0 4.83 65.43 4.03 4.15

torso3_ORIGINAL 27.3 4.95 76.44 3.93 4.12

torso3_AMD 33.5 5.99 106.73 7.64 4.56

Dubcova2_RCM 6.2 1.32 18.34 1.25 1.10

Dubcova2_ColPerm 6.1 1.01 22.11 1.58 0.80

Dubcova2_NDP 7.1 1.13 17.66 1.87 0.97

Dubcova2_METIS 6.4 1.03 20.46 1.45 0.89

Dubcova2_ORIGINAL 6.4 1.07 23.45 1.45 0.85

Dubcova2_AMD 7.1 1.12 17.24 1.65 0.90

Dubcova3_RCM 22.3 3.26 55.49 4.32 2.80

Dubcova3_ColPerm 20.4 3.04 57.44 3.13 2.59

Dubcova3_NDP 22.9 3.11 51.03 4.07 2.64

Dubcova3_METIS 21.9 3.09 76.08 3.89 2.69

Dubcova3_ORIGINAL 20.7 3.17 104.62 3.78 2.51

Dubcova3_AMD 22.9 3.22 49.36 4.71 2.66

G3_circuit_RCM 64.3 10.78 234.20 32.12 9.50

G3_circuit_ColPerm 58.0 21.21 203.92 16.28 19.24

G3_circuit_NDP 75.2 14.06 251.50 30.16 13.98

76

G3_circuit_METIS 57.5 22.52 163.60 18.64 19.11

G3_circuit_ORIGINAL 58.1 21.92 196.77 20.16 20.13

G3_circuit_AMD 69.5 12.83 248.66 29.49 11.92

pwtk_RCM 66.1 8.69 143.00 7.65 8.31

pwtk_ColPerm 66.2 8.91 171.29 10.49 8.79

pwtk_NDP 65.9 9.31 155.55 9.32 8.98

pwtk_METIS 57.5 7.96 165.46 9.81 8.78

pwtk_ORIGINAL 66.8 8.92 165.91 10.28 8.76

pwtk_AMD 65.4 9.12 150.39 8.22 8.75

apache2_RCM 35.6 5.48 94.48 8.01 5.08

apache2_ColPerm 33.5 10.41 104.08 6.91 9.57

apache2_NDP 41.0 6.92 129.28 11.36 6.72

apache2_METIS 32.9 10.12 84.33 5.15 9.28

apache2_ORIGINAL 33.5 10.57 89.95 5.18 9.58

apache2_AMD 36.8 6.36 119.38 10.65 5.81

ecology2_RCM 36.3 6.49 129.45 13.85 5.58

ecology2_ColPerm 37.2 13.43 133.54 11.38 12.46

ecology2_NDP 40.5 7.63 129.24 15.83 7.18

ecology2_METIS 36.3 13.28 91.10 6.04 12.32

ecology2_ORIGINAL 37.3 13.33 133.43 11.37 12.44

ecology2_AMD 40.8 7.61 106.62 13.09 6.80

filter3D_RCM 17.3 2.68 39.76 3.42 2.34

filter3D_ColPerm 17.6 2.60 96.35 5.51 2.11

filter3D_NDP 17.3 2.82 46.89 4.05 2.47

filter3D_METIS 15.2 2.73 62.86 6.32 2.60

filter3D_ORIGINAL 17.2 2.86 68.75 6.30 2.53

filter3D_AMD 17.8 2.87 43.38 4.11 2.44

Table A.41: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 2 for parallel solvers.

77

A.2.2 t = 4

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 661.9 2.27 51.27 3.99 3.93

engine_ORIGINAL 2241.3 2.77 73.24 3.41 3.45

engine_METIS 187.8 2.27 56.61 3.52 3.38

engine_AMD 1307.6 2.32 50.79 3.50 3.39

consph_RCM 1866.0 22.23 53.74 2.03 4.11

consph_ColPerm 2785.1 11.53 59.25 2.78 4.11

consph_NDP 1988.7 3.06 65.35 3.85 4.79

consph_METIS 765.4 4.53 54.21 2.39 4.35

consph_ORIGINAL 1149.5 8.54 60.97 4.74 4.18

consph_AMD 2806.7 3.79 59.00 4.64 4.79

bmwcra_1_RCM 1430.7 10.87 89.77 5.44 8.16

bmwcra_1_NDP 1844.3 4.94 103.81 7.28 8.77

bmwcra_1_METIS 115.3 4.23 92.70 4.46 8.62

bmwcra_1_ORIGINAL 4179.5 6.92 92.87 5.09 8.54

bmwcra_1_AMD 6019.8 4.96 103.57 6.35 8.73

shallow_water1_RCM 44.0 0.28 5.20 0.61 0.42

shallow_water1_ColPerm 58.3 0.36 11.38 1.29 0.57

shallow_water1_NDP 51.1 0.33 6.44 1.25 0.55

shallow_water1_METIS 26.2 0.36 5.38 1.23 0.59

shallow_water1_ORIGINAL 59.6 0.37 11.50 1.29 0.57

shallow_water1_AMD 87.8 0.35 6.56 0.90 0.53

FEM_3D_thermal1_RCM 10.3 0.25 3.04 0.23 0.31

FEM_3D_thermal1_ColPerm 62.5 1.29 4.49 0.45 0.30

FEM_3D_thermal1_NDP 16.1 0.23 4.71 0.56 0.36

FEM_3D_thermal1_METIS 9.7 0.20 3.77 0.28 0.34

78

FEM_3D_thermal1_ORIGINAL 21.2 0.48 2.92 0.32 0.32

FEM_3D_thermal1_AMD 65.8 0.38 4.12 0.42 0.33

c-70_ORIGINAL 4.0 0.60 21.06 1.24 0.61

parabolic_fem_RCM 446.3 5.27 70.28 7.40 7.14

parabolic_fem_NDP 516.0 3.63 61.89 11.54 5.62

parabolic_fem_METIS 413.6 3.15 54.92 5.30 4.33

c-big_ORIGINAL 16.1 3.02 81.89 6.07 2.81

venkat50_RCM 158.2 1.16 12.22 0.80 1.21

venkat50_ColPerm 284.9 6.01 16.16 1.58 1.10

venkat50_NDP 87.2 0.70 13.79 0.87 1.10

venkat50_METIS 43.0 0.75 15.27 1.52 1.10

venkat50_ORIGINAL 144.1 0.87 14.02 1.65 1.09

venkat50_AMD 131.8 0.73 12.81 0.94 1.13

rma10_AMD 307.6 1.59 0.88 1.66 1.31

boneS01_RCM 1563.1 15.27 54.82 3.92 4.49

boneS01_NDP 1385.0 2.93 61.97 4.68 4.68

boneS01_METIS 695.0 5.69 55.70 4.06 5.19

boneS01_ORIGINAL 1575.4 14.94 58.34 3.52 5.06

boneS01_AMD 2411.4 2.90 55.00 4.43 4.61

ct20stif_RCM 369.0 4.47 18.69 1.23 1.42

ct20stif_ColPerm 2520.1 2.99 35.40 1.73 1.51

ct20stif_NDP 304.1 1.01 22.83 1.66 1.45

ct20stif_METIS 70.5 1.05 23.56 1.43 1.50

ct20stif_ORIGINAL 531.7 1.61 20.14 1.19 1.46

ct20stif_AMD 298.1 1.02 19.13 1.47 1.44

finan512_RCM 97.4 0.48 8.76 1.29 0.63

finan512_ColPerm 2552.6 1.18 8.92 0.98 0.53

finan512_NDP 26.9 0.51 9.91 1.89 0.74

finan512_METIS 4.3 0.40 7.84 1.32 0.64

finan512_ORIGINAL 1174.9 0.53 7.02 1.13 0.63

79

finan512_AMD 36.5 0.50 7.59 0.91 0.63

torso3_RCM 2388.3 11.86 48.79 6.36 3.75

torso3_NDP 3000.1 3.22 69.01 10.11 4.87

torso3_METIS 850.7 2.75 45.36 2.67 4.15

torso3_ORIGINAL 2477.2 3.81 50.82 2.23 4.12

Dubcova2_RCM 47.7 0.82 18.22 1.34 1.10

Dubcova2_NDP 58.6 0.63 12.19 1.95 0.97

Dubcova2_METIS 43.0 0.57 14.26 1.38 0.89

Dubcova2_AMD 94.3 0.64 11.53 1.42 0.90

Dubcova3_RCM 182.7 2.60 51.86 4.59 2.80

Dubcova3_NDP 254.0 1.86 33.03 3.26 2.64

Dubcova3_METIS 245.9 2.03 45.98 3.22 2.69

Dubcova3_AMD 367.3 1.98 33.12 4.35 2.66

G3_circuit_METIS 1116.3 12.00 122.56 14.35 19.11

pwtk_RCM 611.8 5.92 92.12 5.29 8.31

pwtk_ColPerm 522.2 8.36 123.02 9.46 8.79

pwtk_NDP 905.8 5.08 101.59 5.91 8.98

pwtk_METIS 309.2 5.38 109.32 9.69 8.78

pwtk_ORIGINAL 423.0 5.66 131.36 10.12 8.76

pwtk_AMD 3714.4 5.04 95.76 5.85 8.75

apache2_METIS 982.4 6.18 56.88 3.20 9.28

ecology2_RCM 1444.2 5.01 120.04 14.81 5.58

ecology2_ColPerm 1540.4 10.22 128.47 12.16 12.46

ecology2_NDP 1463.3 5.07 96.30 15.46 7.18

ecology2_METIS 576.8 8.52 75.39 9.15 12.32

ecology2_ORIGINAL 1538.5 9.55 127.35 12.29 12.44

filter3D_RCM 299.0 2.79 25.67 2.79 2.34

filter3D_NDP 318.0 1.65 31.13 3.66 2.47

filter3D_METIS 110.4 2.01 41.57 6.31 2.60

filter3D_ORIGINAL 463.8 3.93 44.04 6.52 2.53

80

filter3D_AMD 426.7 1.80 28.86 3.73 2.44

Table A.42: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 4 for parallel solvers.

A.2.3 t = 8

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 395.4 1.39 37.92 3.02 3.93

engine_ORIGINAL 2044.1 1.98 49.70 2.04 3.45

engine_METIS 172.5 1.25 40.03 2.72 3.38

engine_AMD 621.4 1.24 35.55 2.58 3.39

consph_ColPerm 1565.0 28.11 42.21 2.06 4.11

consph_NDP 1216.0 2.78 46.74 3.18 4.79

consph_METIS 559.1 6.86 39.68 1.80 4.35

consph_ORIGINAL 787.9 17.04 42.07 4.35 4.18

consph_AMD 1494.5 3.41 41.30 4.08 4.79

bmwcra_1_RCM 895.1 18.82 65.02 4.01 8.16

bmwcra_1_NDP 1021.4 2.92 74.53 6.00 8.77

bmwcra_1_METIS 436.3 3.41 63.88 2.58 8.62

bmwcra_1_ORIGINAL 2092.8 9.74 66.15 3.99 8.54

bmwcra_1_AMD 3016.1 3.54 70.91 4.78 8.73

shallow_water1_RCM 33.5 0.21 4.33 0.45 0.42

shallow_water1_ColPerm 26.9 0.23 10.62 1.28 0.57

shallow_water1_NDP 37.1 0.21 5.36 1.27 0.55

shallow_water1_METIS 17.3 0.22 4.36 0.96 0.59

shallow_water1_ORIGINAL 26.4 0.23 11.03 1.28 0.57

81

shallow_water1_AMD 60.3 0.21 4.84 0.68 0.53

FEM_3D_thermal1_RCM 17.7 0.37 2.17 0.20 0.31

FEM_3D_thermal1_ColPerm 46.2 1.47 4.08 0.45 0.30

FEM_3D_thermal1_NDP 18.3 0.14 3.59 0.55 0.36

FEM_3D_thermal1_METIS 8.2 0.16 2.64 0.20 0.34

FEM_3D_thermal1_ORIGINAL 22.1 0.73 2.03 0.31 0.32

FEM_3D_thermal1_AMD 32.6 0.30 2.85 0.38 0.33

c-70_ORIGINAL 4.1 0.45 19.96 1.24 0.61

parabolic_fem_RCM 376.6 3.48 63.68 7.41 7.14

parabolic_fem_NDP 589.9 2.00 45.33 11.49 5.62

parabolic_fem_METIS 344.6 1.68 43.77 3.60 4.33

c-big_ORIGINAL 16.4 2.27 71.72 6.05 2.81

venkat50_RCM 128.8 1.53 8.96 0.55 1.21

venkat50_ColPerm 158.7 5.59 12.00 1.77 1.10

venkat50_NDP 97.6 0.55 17.99 1.23 1.10

venkat50_METIS 30.9 0.40 10.34 1.45 1.10

venkat50_ORIGINAL 92.3 0.75 9.90 1.90 1.09

venkat50_AMD 71.8 0.39 9.40 0.65 1.13

boneS01_RCM 1282.9 18.26 38.93 3.17 4.34

boneS01_NDP 672.7 1.73 45.78 3.92 4.65

boneS01_METIS 256.6 3.21 40.69 2.92 5.12

boneS01_ORIGINAL 1121.2 26.36 45.48 2.51 5.06

boneS01_AMD 1013.4 1.82 39.74 3.57 4.55

ct20stif_RCM 241.9 4.85 14.39 0.89 1.42

ct20stif_ColPerm 1521.4 2.95 24.98 1.30 1.51

ct20stif_NDP 187.2 0.63 15.60 1.31 1.45

ct20stif_METIS 114.9 0.71 15.94 1.09 1.50

ct20stif_ORIGINAL 362.2 1.35 14.01 0.87 1.46

ct20stif_AMD 217.9 0.58 13.49 1.08 1.44

finan512_RCM 94.5 0.39 6.81 1.24 0.63

82

finan512_ColPerm 1392.7 3.01 7.22 0.95 0.53

finan512_NDP 22.9 0.27 7.18 2.01 0.74

finan512_METIS 6.9 0.22 6.33 1.31 0.64

finan512_ORIGINAL 343.6 0.33 5.17 1.17 0.63

finan512_AMD 29.1 0.26 5.81 0.79 0.63

torso3_NDP 1580.0 1.85 52.09 10.93 4.87

torso3_METIS 638.6 4.04 31.84 2.04 4.15

torso3_ORIGINAL 1545.4 4.19 36.30 1.35 4.12

Dubcova2_RCM 38.6 0.65 17.37 1.34 1.10

Dubcova2_NDP 42.7 0.33 8.14 1.94 0.97

Dubcova2_METIS 28.6 0.31 10.41 1.43 0.89

Dubcova2_AMD 60.8 0.34 8.36 1.20 0.90

Dubcova3_RCM 156.3 2.56 50.34 4.57 2.80

Dubcova3_NDP 178.8 1.08 23.46 2.78 2.64

Dubcova3_METIS 264.4 1.74 30.43 2.71 2.69

Dubcova3_AMD 258.5 1.03 22.60 4.09 2.66

pwtk_RCM 762.5 6.67 64.59 3.94 8.31

pwtk_ColPerm 2301.0 8.17 106.55 8.75 8.79

pwtk_NDP 784.9 2.93 72.15 3.75 8.98

pwtk_METIS 277.5 3.20 75.44 7.23 8.78

pwtk_ORIGINAL 1923.5 3.99 114.37 8.89 8.76

pwtk_AMD 1906.4 3.00 69.43 4.24 8.75

apache2_METIS 897.6 6.28 46.60 2.13 9.28

ecology2_RCM 1176.1 4.25 115.14 14.79 5.58

ecology2_NDP 1270.1 2.96 78.19 16.63 7.18

ecology2_METIS 541.5 4.72 66.04 8.00 12.32

filter3D_RCM 215.2 4.01 18.16 2.45 2.34

filter3D_NDP 212.5 0.92 21.45 3.49 2.47

filter3D_METIS 70.0 1.11 33.72 9.95 2.60

filter3D_ORIGINAL 867.0 15.02 30.88 7.43 2.53

83

filter3D_AMD 397.5 1.14 19.64 3.38 2.44

Table A.43: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 8 for parallel solvers.

A.2.4 t = 10

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 341.6 1.14 35.76 2.86 3.93

engine_METIS 177.3 1.16 35.03 2.68 3.38

engine_AMD 515.7 1.06 34.50 2.41 3.39

consph_ColPerm 1106.0 32.35 39.00 1.85 4.11

consph_NDP 861.0 2.16 40.89 3.05 4.79

consph_METIS 468.4 8.13 34.24 1.65 4.35

consph_ORIGINAL 708.6 21.75 45.15 4.45 4.18

consph_AMD 1391.2 4.54 37.93 4.08 4.79

bmwcra_1_RCM 1059.0 25.28 60.59 3.79 8.16

bmwcra_1_NDP 908.4 2.68 72.00 5.81 8.77

bmwcra_1_METIS 390.2 3.03 60.70 2.21 8.62

bmwcra_1_ORIGINAL 1633.8 9.84 60.92 3.95 8.54

bmwcra_1_AMD 2134.8 2.97 66.91 4.41 8.73

shallow_water1_RCM 31.1 0.18 4.28 0.43 0.42

shallow_water1_ColPerm 19.1 0.20 11.35 1.32 0.57

shallow_water1_NDP 35.5 0.18 4.83 1.30 0.55

shallow_water1_METIS 16.3 0.19 3.77 1.12 0.59

shallow_water1_ORIGINAL 19.4 0.20 10.97 1.28 0.57

84

shallow_water1_AMD 43.1 0.17 4.49 0.60 0.53

FEM_3D_thermal1_RCM 13.1 0.45 2.67 0.20 0.31

FEM_3D_thermal1_ColPerm 36.8 1.43 5.88 0.45 0.30

FEM_3D_thermal1_NDP 20.7 0.15 3.26 0.51 0.36

FEM_3D_thermal1_METIS 10.7 0.19 2.90 0.21 0.34

FEM_3D_thermal1_ORIGINAL 19.1 0.59 2.66 0.31 0.32

FEM_3D_thermal1_AMD 24.3 0.27 3.91 0.36 0.33

c-70_ORIGINAL 4.1 0.41 18.91 1.26 0.61

parabolic_fem_RCM 368.0 3.15 62.49 7.45 7.14

parabolic_fem_NDP 748.5 1.75 42.25 11.62 5.62

parabolic_fem_METIS 302.0 1.48 39.16 3.04 4.33

parabolic_fem_AMD 1141.8 1.66 39.91 8.70 4.84

c-big_ORIGINAL 16.1 1.99 68.73 6.04 2.81

venkat50_RCM 114.5 1.63 7.79 0.51 1.21

venkat50_ColPerm 198.7 4.87 10.60 1.88 1.10

venkat50_NDP 62.7 0.31 9.66 0.44 1.10

venkat50_METIS 28.4 0.38 9.51 1.34 1.10

venkat50_ORIGINAL 70.9 0.81 8.95 2.03 1.09

venkat50_AMD 71.4 0.32 8.25 0.57 1.13

boneS01_RCM 1122.6 19.10 36.93 3.04 4.49

boneS01_NDP 573.0 1.49 41.17 3.76 4.68

boneS01_METIS 312.5 2.23 40.93 3.25 5.19

boneS01_ORIGINAL 954.7 27.94 41.10 2.13 5.06

boneS01_AMD 751.8 1.48 35.19 3.31 4.61

ct20stif_RCM 226.5 5.09 12.94 0.80 1.42

ct20stif_ColPerm 1265.9 2.88 21.87 1.18 1.51

ct20stif_NDP 118.8 0.53 13.91 1.29 1.45

ct20stif_METIS 74.8 0.70 16.28 0.94 1.50

ct20stif_ORIGINAL 360.3 1.46 13.48 0.82 1.46

ct20stif_AMD 180.8 0.52 12.47 1.03 1.44

85

finan512_RCM 98.5 0.47 6.01 1.27 0.63

finan512_ColPerm 1133.0 2.34 6.67 0.93 0.53

finan512_NDP 27.4 0.22 6.16 2.09 0.74

finan512_METIS 11.7 0.19 10.03 1.08 0.64

finan512_ORIGINAL 276.9 0.30 4.55 1.16 0.63

finan512_AMD 38.2 0.23 5.24 0.75 0.63

torso3_NDP 1206.2 1.53 47.82 11.40 4.87

torso3_METIS 575.8 3.33 29.75 1.83 4.15

torso3_ORIGINAL 1125.9 4.49 36.27 1.07 4.12

Dubcova2_RCM 39.9 0.68 17.79 1.36 1.10

Dubcova2_NDP 44.9 0.28 7.57 1.96 0.97

Dubcova2_METIS 34.3 0.28 9.60 1.65 0.89

Dubcova2_AMD 55.0 0.28 7.96 1.16 0.90

Dubcova3_RCM 150.5 2.78 48.82 4.57 2.80

Dubcova3_NDP 166.8 0.85 21.55 2.73 2.64

Dubcova3_METIS 201.7 1.18 27.78 2.71 2.69

Dubcova3_AMD 243.0 0.85 21.29 4.02 2.66

G3_circuit_METIS 1099.6 5.64 86.86 15.86 19.11

pwtk_RCM 693.0 7.51 63.24 3.70 8.31

pwtk_ColPerm 2756.2 9.57 116.75 8.62 8.79

pwtk_NDP 933.4 2.82 67.75 3.31 8.98

pwtk_METIS 208.5 3.39 72.50 7.84 8.78

pwtk_ORIGINAL 2361.3 4.81 108.38 8.42 8.76

pwtk_AMD 1330.9 2.81 65.53 3.91 8.75

apache2_METIS 708.8 5.07 45.20 1.78 9.28

ecology2_RCM 1106.3 4.23 117.68 14.84 5.58

ecology2_METIS 415.1 3.88 55.80 3.82 12.32

filter3D_RCM 222.8 5.02 17.04 2.44 2.34

filter3D_NDP 174.4 0.79 19.81 3.32 2.47

filter3D_METIS 46.9 0.69 24.94 5.90 2.60

86

filter3D_ORIGINAL 855.6 23.58 28.17 8.02 2.53

filter3D_AMD 376.0 0.88 18.10 3.26 2.44

Table A.44: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix

reorderings. Measured in milliseconds. The number of threads is 10 for parallel

solvers.

A.2.5 t = 16

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 236.4 1.70 29.73 3.16 3.93

engine_ORIGINAL 1633.2 2.13 38.27 1.43 3.45

engine_METIS 115.7 1.35 27.41 3.38 3.38

engine_AMD 320.0 1.21 32.41 2.73 3.39

consph_ColPerm 1013.4 34.94 39.69 2.41 4.11

consph_NDP 802.9 3.38 45.83 3.88 4.79

consph_METIS 512.2 10.40 41.42 2.22 4.35

consph_ORIGINAL 770.0 34.85 49.73 6.71 4.18

consph_AMD 918.3 5.87 43.40 5.78 4.79

bmwcra_1_RCM 733.9 33.62 46.21 4.10 8.16

bmwcra_1_NDP 675.6 5.09 53.74 7.09 8.77

bmwcra_1_METIS 407.8 6.36 46.72 1.96 8.62

bmwcra_1_ORIGINAL 838.9 16.57 47.55 4.41 8.54

bmwcra_1_AMD 1125.8 5.79 48.31 4.43 8.73

shallow_water1_RCM 28.7 0.15 4.89 0.87 0.42

shallow_water1_ColPerm 15.8 0.15 11.89 1.29 0.57

shallow_water1_NDP 26.6 0.12 5.43 1.93 0.55

87

shallow_water1_METIS 9.1 0.13 4.85 1.03 0.59

shallow_water1_ORIGINAL 15.3 0.15 12.03 1.29 0.57

shallow_water1_AMD 31.3 0.12 6.25 0.75 0.53

FEM_3D_thermal1_RCM 15.7 0.81 3.18 0.30 0.31

FEM_3D_thermal1_ColPerm 27.2 1.26 4.43 0.52 0.30

FEM_3D_thermal1_NDP 20.9 0.21 3.93 0.69 0.36

FEM_3D_thermal1_METIS 10.0 0.28 3.74 0.20 0.34

FEM_3D_thermal1_ORIGINAL 19.6 1.18 2.57 0.44 0.32

FEM_3D_thermal1_AMD 19.8 0.28 4.85 0.45 0.33

c-70_ORIGINAL 4.4 0.37 18.72 1.27 0.61

parabolic_fem_RCM 286.9 2.84 61.24 7.49 7.14

parabolic_fem_NDP 400.4 2.16 39.07 13.71 5.62

parabolic_fem_METIS 247.6 1.82 36.32 1.92 4.33

parabolic_fem_AMD 660.8 1.50 42.20 11.12 4.84

c-big_ORIGINAL 16.1 1.65 66.03 5.90 2.81

venkat50_RCM 105.4 1.40 10.32 0.69 1.21

venkat50_ColPerm 304.2 4.03 12.91 3.24 1.10

venkat50_NDP 63.4 0.30 9.34 0.48 1.10

venkat50_METIS 24.5 0.27 8.47 2.13 1.10

venkat50_ORIGINAL 60.4 0.63 11.62 3.44 1.09

venkat50_AMD 50.7 0.23 9.43 0.57 1.13

boneS01_RCM 1165.1 21.12 42.75 4.57 4.49

boneS01_NDP 534.5 1.64 46.63 5.02 4.68

boneS01_METIS 391.2 8.43 42.92 3.28 5.19

boneS01_AMD 682.3 1.74 41.75 4.52 4.61

ct20stif_RCM 194.9 5.45 12.25 0.94 1.42

ct20stif_ColPerm 950.2 3.75 23.59 1.63 1.51

ct20stif_NDP 84.7 0.37 13.97 1.48 1.45

ct20stif_METIS 57.6 0.42 13.21 0.90 1.50

ct20stif_ORIGINAL 225.2 0.97 14.16 0.74 1.46

88

ct20stif_AMD 95.2 0.33 12.10 1.08 1.44

finan512_RCM 71.7 0.62 6.55 2.42 0.63

finan512_ColPerm 594.4 1.40 7.46 1.05 0.53

finan512_NDP 18.8 0.15 7.14 2.95 0.74

finan512_METIS 7.8 0.13 6.71 2.09 0.64

finan512_ORIGINAL 122.4 0.25 5.58 1.62 0.63

finan512_AMD 23.8 0.15 5.98 1.05 0.63

torso3_NDP 696.5 1.32 44.83 17.10 4.87

torso3_METIS 262.6 2.91 26.94 2.32 4.15

torso3_ORIGINAL 729.4 10.01 30.24 1.09 4.12

Dubcova2_RCM 45.6 0.95 16.08 1.35 1.10

Dubcova2_ColPerm 614.8 30.05 10.93 1.51 0.80

Dubcova2_NDP 31.9 0.19 7.56 2.62 0.97

Dubcova2_METIS 27.5 0.36 8.29 3.37 0.89

Dubcova2_ORIGINAL 1453.0 27.63 12.79 1.45 0.85

Dubcova2_AMD 39.2 0.19 8.38 1.34 0.90

Dubcova3_RCM 137.5 4.46 46.99 4.56 2.80

Dubcova3_NDP 114.8 0.53 20.86 3.33 2.64

Dubcova3_METIS 146.4 1.32 21.26 2.97 2.69

Dubcova3_AMD 146.0 0.49 25.12 4.90 2.66

G3_circuit_METIS 912.4 5.76 102.83 18.38 19.11

pwtk_RCM 817.7 11.01 71.78 5.29 8.31

pwtk_ColPerm 2814.1 13.66 123.15 13.77 8.79

pwtk_NDP 763.6 2.79 72.35 3.87 8.98

pwtk_METIS 222.4 2.61 71.43 6.17 8.78

pwtk_ORIGINAL 1189.4 6.05 104.58 11.92 8.76

pwtk_AMD 1169.9 2.84 75.05 4.92 8.75

apache2_METIS 479.3 3.00 41.11 1.88 9.27

ecology2_RCM 858.5 4.83 113.25 14.75 5.58

ecology2_NDP 721.1 3.40 76.28 23.01 7.18

89

ecology2_METIS 428.8 3.60 54.11 5.85 12.32

coater2_ORIGINAL 5.9 0.24 0.19 0.24 0.20

filter3D_RCM 195.8 7.93 18.63 3.41 2.34

filter3D_NDP 136.2 0.52 18.06 4.06 2.47

filter3D_METIS 56.6 0.90 19.73 6.85 2.60

filter3D_ORIGINAL 769.4 32.07 26.29 16.54 2.53

filter3D_AMD 247.2 0.75 17.95 3.62 2.44

Table A.45: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix

reorderings. Measured in milliseconds. The number of threads is 16 for parallel

solvers.

A.2.6 t = 20

Matrix
PSTRSV MKL

STRSV
Prep. Sol. Prep. Sol.

engine_NDP 226.8 1.43 35.57 1.64 4.01

engine_ORIGINAL 1391.0 2.04 43.53 1.45 3.45

engine_METIS 105.0 0.70 28.63 1.53 3.38

engine_AMD 322.1 0.81 32.33 1.51 3.38

consph_NDP 429.9 3.41 39.61 1.46 4.75

consph_METIS 442.9 11.81 36.98 1.50 4.35

consph_AMD 594.0 6.31 36.22 1.41 4.74

bmwcra_1_NDP 653.8 5.26 62.98 3.01 8.77

bmwcra_1_METIS 419.2 7.94 54.27 2.36 8.62

bmwcra_1_ORIGINAL 857.7 16.27 49.09 1.54 8.54

bmwcra_1_AMD 981.6 6.71 54.41 2.45 8.73

90

shallow_water1_RCM 29.5 0.21 15.84 2.05 0.42

shallow_water1_ColPerm 12.1 0.19 7.65 0.43 0.57

shallow_water1_NDP 28.3 0.17 15.98 1.98 0.55

shallow_water1_METIS 10.9 0.17 6.61 0.29 0.59

shallow_water1_ORIGINAL 11.7 0.19 6.80 0.30 0.57

shallow_water1_AMD 32.5 0.17 8.27 1.37 0.53

FEM_3D_thermal1_RCM 13.8 0.69 3.19 0.33 0.31

FEM_3D_thermal1_ColPerm 24.9 1.30 6.92 0.55 0.30

FEM_3D_thermal1_NDP 16.0 0.18 6.67 1.81 0.36

FEM_3D_thermal1_METIS 9.8 0.27 4.23 0.22 0.34

FEM_3D_thermal1_ORIGINAL 17.8 1.18 153.93 2.28 0.32

FEM_3D_thermal1_AMD 20.9 0.35 4.09 0.51 0.33

c-70_ORIGINAL 4.1 0.31 26.47 3.44 0.61

parabolic_fem_RCM 281.7 3.18 59.91 7.40 7.14

parabolic_fem_NDP 405.1 1.44 95.54 34.70 5.62

parabolic_fem_METIS 244.7 1.71 57.17 4.61 4.33

parabolic_fem_AMD 644.8 1.99 55.95 5.74 4.84

c-big_ORIGINAL 16.7 1.51 102.03 17.03 2.81

venkat50_RCM 97.1 1.45 9.91 0.58 1.21

venkat50_ColPerm 237.1 3.58 15.57 1.62 1.10

venkat50_NDP 49.4 0.26 11.40 0.42 1.10

venkat50_METIS 23.1 0.28 11.04 0.79 1.10

venkat50_ORIGINAL 52.8 0.71 11.50 1.90 1.09

venkat50_AMD 52.3 0.25 11.38 0.49 1.13

rma10_AMD 118.3 5.61 0.44 1.69 1.31

boneS01_RCM 861.7 20.04 34.85 1.79 4.34

boneS01_NDP 478.9 1.84 61.65 6.16 4.68

boneS01_METIS 282.3 3.84 40.74 1.79 5.19

boneS01_AMD 599.6 1.83 46.71 2.19 4.61

ct20stif_RCM 207.8 4.14 15.81 0.77 1.42

91

ct20stif_ColPerm 793.5 2.34 26.01 1.05 1.51

ct20stif_NDP 80.0 0.40 16.47 0.82 1.45

ct20stif_METIS 57.1 0.50 12.46 0.56 1.50

ct20stif_ORIGINAL 162.7 1.60 13.64 0.72 1.46

ct20stif_AMD 94.9 0.41 13.93 0.51 1.44

finan512_RCM 89.7 0.84 11.50 1.62 0.63

finan512_ColPerm 437.5 1.33 14.91 2.60 0.53

finan512_NDP 23.3 0.19 13.64 2.12 0.74

finan512_METIS 9.5 0.11 26.28 3.19 0.64

finan512_ORIGINAL 129.6 0.28 12.80 4.81 0.63

finan512_AMD 41.3 0.18 9.11 0.63 0.63

torso3_NDP 924.3 2.21 80.57 19.63 4.87

torso3_METIS 258.7 3.82 29.77 1.68 4.15

torso3_ORIGINAL 594.8 10.76 31.40 1.11 4.12

Dubcova2_RCM 43.0 0.87 17.66 1.35 1.10

Dubcova2_ColPerm 527.2 28.68 18.09 2.39 0.80

Dubcova2_NDP 37.6 0.24 13.76 3.74 0.97

Dubcova2_METIS 22.4 0.28 16.33 2.64 0.89

Dubcova2_ORIGINAL 1091.1 28.21 21.68 1.32 0.85

Dubcova2_AMD 39.9 0.23 9.24 0.99 0.90

Dubcova3_RCM 130.9 3.83 47.61 4.49 2.80

Dubcova3_NDP 123.6 0.66 28.53 1.34 2.64

Dubcova3_METIS 126.3 1.09 27.15 2.58 2.69

Dubcova3_AMD 152.0 0.64 26.47 2.49 2.66

G3_circuit_METIS 953.2 4.52 110.75 12.64 19.11

pwtk_RCM 679.4 13.53 75.71 5.19 8.31

pwtk_ColPerm 2245.2 20.04 126.81 17.07 8.79

pwtk_NDP 784.7 2.78 81.35 2.91 8.98

pwtk_METIS 175.7 2.41 76.68 6.33 8.78

pwtk_ORIGINAL 1277.4 8.19 77.71 14.08 8.76

92

pwtk_AMD 988.5 3.03 73.70 3.80 8.75

apache2_METIS 860.5 7.06 57.48 2.04 9.28

ecology2_RCM 869.0 5.19 264.46 57.61 5.58

ecology2_METIS 273.2 2.76 53.84 3.82 12.32

filter3D_RCM 214.4 9.80 19.45 2.80 2.34

filter3D_NDP 118.4 0.62 34.86 6.33 2.47

filter3D_METIS 68.5 1.29 32.51 9.33 2.60

filter3D_ORIGINAL 822.6 38.08 39.09 7.10 2.53

filter3D_AMD 222.9 0.97 24.28 2.34 2.44

Table A.46: The elapsed times of preprocessing and solution parts of the proposed

algorithm and Intel MKL against the best sequential algorithm for different matrix

reorderings. Measured in milliseconds. The number of threads is 20 for parallel

solvers.

93

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Matrix Ordering
	Parallel Sparse Triangular Solvers
	Level-scheduling Based Methods
	Self-scheduling Based Methods
	Graph-coloring Based Methods
	Block-diagonal Based Methods

	THE PROPOSED ALGORITHM
	PERFORMANCE CONSTRAINTS
	Preprocessing
	Solution

	NUMERICAL EXPERIMENTS
	Performance Overview
	Case Study
	ct20stif
	FEM_3D_thermal1
	finan512
	pwtk
	shallow_water1
	venkat50

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Results of All Numerical Experiments
	Speed-up results
	Dubcova2
	Dubcova3
	FEM_3D_thermal1
	G3_circuit
	apache2
	bmwcra_1
	boneS01
	c-70
	c-big
	consph
	ct20stif
	ecology2
	engine
	filter3D
	finan512
	parabolic_fem
	pwtk
	shallow_water1
	torso3
	venkat50

	Runtime results
	t = 2
	t = 4
	t = 8
	t = 10
	t = 16
	t = 20

