PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS ON
MULTICORE PLATFORMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ILKE CUGU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

NOVEMBER 2018

Approval of the thesis:

PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS
ON MULTICORE PLATFORMS

submitted by ILKE CUGU in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East Tech-
nical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oguztiiziin
Head of Department, Computer Engineering

Assoc. Prof. Dr. Murat Manguoglu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Cevdet Aykanat
Computer Engineering Department, Bilkent University

Assoc. Prof. Dr. Murat Manguoglu
Computer Engineering Department, METU

Assist. Prof. Dr. Hande Alemdar
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Tlke Cugu

Signature

v

ABSTRACT

PARALLEL SOLUTION OF SPARSE TRIANGULAR LINEAR SYSTEMS
ON MULTICORE PLATFORMS

Cugu, ilke
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Murat Manguoglu

November 2018, 93] pages

Many large-scale applications in science and engineering require the solution of sparse
linear systems. One well-known approach is to solve these systems by factorizing the
coefficient matrix into nonsingular sparse triangular matrices and solving the resulting
sparse triangular systems via backward and forward sweep (substitution) operations.
This can be considered as a direct solver or it is part of the preconditioning operation
in an iterative scheme if incomplete factorization is computed. Often, these sparse
triangular systems are the main performance bottleneck due to their inherently se-
quential nature. With the emergence of multi-core platforms, the interest in solving
sparse triangular linear systems effectively in parallel has grown. In this thesis, a
parallel sparse triangular linear system solver based on the generalization of Spike al-
gorithm is proposed. The performance constraints of the proposed algorithm and their
impacts on the performance are evaluated on matrices from different application do-
mains. Furthermore, performance comparisons are made against the state-of-the-art

parallel sparse triangular solver of Intel’s Math Kernel Library.

Keywords: Sparse Triangular Linear Systems, Direct Solution, Parallel Computing

vi

0z

COK CEKIRDEKLI MIMARILERDE SEYREK UCGEN DOGRUSAL
SISTEMLERIN PARALEL COZUMU

Cugu, ilke
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii
Tez Yoneticisi : Dog. Dr. Murat Manguoglu

Kasim 2018 ,[93] sayfa

Bilim ve miihendislikteki pek cok uygulama seyrek dogrusal sistemlerin ¢oziimiine
ihtiya¢ duyar. Dogrusal sistemleri ¢6zmenin en iyi bilinen yontemlerinden biri onlari
licgensel carpanlarina ayirip bu liggensel sistemleri ¢ozmektir. Ucgensel dogrusal sis-
temler gerek dogrudan yontemlere gerekse yinelemeli 6nkosullamalara ¢oziim saglar
ya da tekrar tekrar iglenerek verilen problemleri ¢6ziime yaklastirirlar. Seri ¢oziimlere
uygun dogalar1 nedeniyle bu seyrek iigcgensel dogrusal sistemlerin ¢oziimii genelde
paralel ¢oziimlerdeki verimin ana belirleyicisidir. Cok ¢ekirdekli mimarilerin yaygin-
lagsmasiyla seyrek ticgensel dogrusal sistemleri paralel olarak ¢cozme egilimi artmistir.
Bu tez ¢alismasinda, seyrek iicgensel dogrusal sistemlerin, Spike algoritmasina dayali
paralel ¢oziimii tamtilmistir. Algoritmanin performans karakteristikleri ve bunlarin et-
kileri cesitli uygulama alanlarindan matrisler kullanilarak test edilmistir. Ek olarak,
Intel’in Temel Matematik Kiitiiphanesinde bulunan paralel seyrek iicgensel dogrusal

sistem ¢oziicii ile karsilastirmalar yapilmustir.

vii

Anahtar Kelimeler: Seyrek Ucgensel Dogrusal Sistemler, Dogrudan Coziim, Paralel

Islem

viii

To my family

X

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Assoc. Prof. Dr.
Murat Manguoglu for his guidance and encouragement. I have done two summer
internships and this thesis work with him where he gave me the discipline of rigorous
experimentation, and provided the freedom I need to work productively. He is very

delicate and serious about his work, so his approval for this thesis is highly valuable.

During my graduate studies, I have also worked on machine learning with Asst. Prof.
Dr. Emre Akbas. I would like to thank him for taking interest in a student’s research
ideas and transforming them into research projects. His open-minded and progressive

nature created a fruitful research environment for me.

Special thanks goes to my ultimate research associate, Eren Sener. I worked with
him in every machine learning project I got involved. He endured every failure and
annoyance in those projects, and he was always ready to start working on the next

one.

I want to thank my thesis committee members Prof. Dr. Cevdet Aykanat and Asst.

Prof. Dr. Hande Alemdar for the feedback they provided.

I would like to thank Dr. Christian Blug and Dr. Itir Onal Ertugrul for providing
references during my PhD applications. In addition, I thank Maja Pavlovic for her

surprising support for my PhD applications.
Before proceeding any futher, I thank the quickest wit I know, Mr. Ender Gor.

I also want to thank Ziilal Oztiirk, Alisan Tosun, Furkan Onursal, Cagr1 Erciyes, and

Sinan Sarioglu because why not.

Finally, I would like to thank my father Fahrettin Cugu, my mother Eda Danise Cugu,
my elder sister Giilay Cugu Bal, and my aunt Hiilya Bilal for providing a peaceful

and supportive environment throughout my life.

TABLE OF CONTENTS

ABSTRACT]. o v
OZ . . . vii
ACKNOWLEDGEMENTS|o o o oo X
TABLE OF CONTENTS| oo o oo xi
LIST OF TABLES]
LISTOFFIGURESI oo oo oo XViii
LIST OF ABBREVIATIONSI XX
CHAPTERS
1 INTRODUCTIONI o . 1
2 BACKGROUND AND RELATED WORKI 5
[2.1 Matrix Ordering| oL 5
2.2 Parallel Sparse Triangular Solvers|. 7
[2.2.1 Level-scheduling Based Methods|. 8
[2.2.2 Self-scheduling Based Methods| 9
[2.2.3 Graph-coloring Based Methods| 10
[2.2.4 Block-diagonal Based Methods| 11

3 THE PROPOSED ALGORITHM 13

4 PERFORMANCE CONSTRAINTS 21

xi

M2 Solution| 23

5 NUMERICAL EXPERIMENTS| 25

5.1 Performance Overviewl 27

[5.2 Case Study| 30

B21 ct20stifl 31

B22 FEM 3D thermall] 33

523 finanS12l. 35

[5.2.4 pwtkl. . .o 37

[5.2.5 shallow_waterl| 39

41

6 CONCLUSION AND FUTURE WORK 43

REFERENCES| 45
APPENDICES

A RESULTS OF ALL NUMERICAL EXPERIMENTS 53

53

53

54

A.1.3 FEM_ 3D thermall] 55

A.1.4 G3 curcutt]. 56

(A.1.5 apache?| oo 57

A.1.6 bmwcra_1|. 58

xii

[A.1.8 C-70 . .o 60
(A.1.9 c-bigl. 61
[A.1.10 consph|. 62
ALIT c20stuflo 63
[A.1.12° ecology?| 64
[A.1.13 engme|. 65
AL14 filter3D 66
AL.1S finand12f. L oo 67
[A.1.16 parabolic_fem|. 68
ALT7 pwtkl.o 69
[A.1.18 shallow_waterl| 70
I.1 [SO3| 71
A.1.20 venkatdOl 72
A2 Runtimeresults 74
(A.2.1 t=20 . . 74
(A.2.2 t=4 . . 78
[A2.3 t=8 . . 81
[A24 t=100 84
[A2.5 t=160 87
A.2.6 t=200 . .. 90

xiil

LIST OF TABLES

TABLES

Table|5.1 Properties of the test matrices.| 26

Table |5.2 Statistics of the preprocessing times of PSTRSV and MKL 1n mul- [

Table|A.1 Speedup results of PSTRSV using different reoderings for Dubcova2| 53

Table|A.2 Speedup results of MKL using different reoderings for Dubcova?| . . 54

Table|A.3 Speedup results of PSTRSV using different reoderings for Dubcovas| 54

Table|A.4 Speedup results of MKL using different reoderings for Dubcovas|. . 55

Table|A.5 Speedup results of PSTRSV using different reoderings for FEM_3D_thermall| 55

Table|A.6 Speedup results of MKL using different reoderings for FEM_3D_thermall| 56

Table|A.7 Speedup results of PSTRSV using different reoderings for G5_circuit| 56

Table|A.8 Speedup results of MKL using different reoderings for G3_circuitf . 57

Table|A.9 Speedup results of PSTRSV using different reoderings for apache2| . 57

Table |A.10Speedup results of MKL using different reoderings for apache?|. . . 58

Table|A.11Speedup results of PSTRSV using different reoderings for bmwcra_1| 58

Table |A.12Speedup results of MKL using different reoderings for bmwcra_1|. . 59

X1V

Table |A.13Speedup results of PSTRSV using different reoderings for boneS0I|. 59

Table |A.14Speedup results of MKL using different reoderings for boneSOI|. . . 60
Table |A.15Speedup results of PSTRSV using different reoderings for c-70| . . . 60
Table |A.16Speedup results of MKL using different reoderings for c-70 61
Table |A.17Speedup results of PSTRSV using different reoderings for c-bigl . . 61
Table |A.18Speedup results of MKL using different reoderings for c-big| 62

Table |A.19Speedup results of PSTRSV using different reoderings for consph| . 62

Table |A.20Speedup results of MKL using different reoderings for consph| . . . 63

Table |A.21Speedup results of PSTRSV using different reoderings for cz20stif| . 63

Table [A.22Speedup results of MKL using different reoderings for c£20stif| . . . 64

Table |A.23Speedup results of PSTRSV using different reoderings for ecology?l 64

Table [A.24Speedup results of MKL using different reoderings for ecology2| . . 65

Table |A.25Speedup results of PSTRSV using different reoderings for engine|. . 65

Table [A.26Speedup results of MKL using different reoderings for engine|. . . . 66

Table |A.27Speedup results of PSTRSV using different reoderings for filtersD| . 66

Table |A.28Speedup results of MKL using different reoderings for filtersD| . . . 67

Table |A.29Speedup results of PSTRSV using different reoderings for finan512|. 67

Table |A.30Speedup results of MKL using different reoderings for finan512 . . 68

Table|A.31Speedup results of PSTRSV using different reoderings for parabolic_fem| 68

Table |A.32Speedup results of MKL using different reoderings for parabolic_fem| 69

Table |A.33Speedup results of PSTRSV using different reoderings for pwtk| . . . 69

Table [A.34Speedup results of MKL using different reoderings for pwitk|. 70

XV

Table [A.35Speedup results of PSTRSV using different reoderings for shal- [

low waterl|. e 70

Table[A.36Speedup results of MKL using different reoderings for shallow_waterl| 71

Table |A.37Speedup results of PSTRSV using different reoderings for forsos| . . 71

Table |[A.38Speedup results of MKL using different reoderings for forsos| 72

Table |A.39Speedup results of PSTRSV using different reoderings for venkat50, 72

Table |A.40Speedup results of MKL using different reoderings for venkat50, . . 73

Table [A.41The elapsed times of preprocessing and solution parts of the pro- [

posed algorithm and Intel MKL against the best sequential algorithm for [

different matrix reorderings. Measured 1in milliseconds. The number of |

threads 1s 2 for parallel solvers.| 77

Table [A.42The elapsed times of preprocessing and solution parts of the pro- [

posed algorithm and Intel MKL against the best sequential algorithm for [

different matrix reorderings. Measured 1in milliseconds. The number of |

threads 1s 4 for parallel solvers.| 81

Table [A.43The elapsed times of preprocessing and solution parts of the pro- [

posed algorithm and Intel MKL against the best sequential algorithm for [

different matrix reorderings. Measured 1in milliseconds. The number of |

threads 1s 8 for parallel solvers.| 84

Table [A.44The elapsed times of preprocessing and solution parts of the pro- [

posed algorithm and Intel MKL against the best sequential algorithm for [

different matrix reorderings. Measured 1in milliseconds. The number of |

threads 1s 10 for parallel solvers.| 87

Table [A.45The elapsed times of preprocessing and solution parts of the pro- [

posed algorithm and Intel MKL against the best sequential algorithm for [

different matrix reorderings. Measured 1in milliseconds. The number of |

threads 1s 16 for parallel solvers.| 90

Xvi

Table [A.46The elapsed times of preprocessing and solution parts of the pro-

| posed algorithm and Intel MKL against the best sequential algorithm for

| different matrix reorderings. Measured 1in milliseconds. The number of

| threads 1s 20 for parallel solvers.|

Xvil

LIST OF FIGURES

FIGURES
Figure[2.1 Taxonomy of parallel direct sparse triangular system solvers| 7
Figure[3.1 The sparse triangular linear systemof Ux =6 14

Figure|3.2 An example structure of the S matrix. The blue elements are from [

| the original matrix where the orange ones represent the "spikes” resulted |

| from D= Ul 16
Figure(3.3 The illustrationof D+ R=U|. 16
Figure|3.4 Construction of the reduced system| 17
Figure (3.5 The illustration of light beams as dependency mappings.| 17

Figure 4.1 The dependencies presented in the original system. We only need [

| to calculate S matrix parts highlighted 1n red to construct the reduced system.| 22

Figure[5.1 Overall performance comparison of the proposed solver, Intel MKL [

| and the best sequential solver. Bars indicate the number of test cases |

| where the given solver outperforms others. We 1gnore the test cases where [

| we are unable to evaluate the performance due to memory constraints.| . . 28

Figure [5.2 'The highest speed-ups achieved by the proposed solver and Intel |

| ORIGINAL} symbols on bars indicate the matrix reordering algorithms [

| which give the best result. The thread counts are placed under them.| . . . 28

Figure[5.3 The illustration of c20stif for different matrix reorderings.|. 31

xXviii

Figure[5.4 The speed-up comparison for ct20stif| 32
Figure[5.5 The preprocessing time comparison for c£20stif|. 32
Figure|5.6 'The illustration of FEM_5D_thermall for different matrix reorder- |
..................................... 33
Figure[5.7 'The speed-up comparison for FEM_3D_thermall|. 34
Figure[5.8 'The preprocessing time comparison for FEM 5D _thermall| 34
Figure|5.9 'The illustration of finan5/2 for different matrix reorderings.| 35
Figure[5.10 The speed-up comparison for finan512| 36
Figure[5.11 The preprocessing time comparison for finan512| 36
Figure[5.12 The illustration of pwtk for different matrix reorderings.| 37
Figure[5.13 The speed-up comparison forpwtk| 38
Figure[5.14 The preprocessing time comparison for pwtk| 38
Figure|5.15 The 1llustration of shallow_waterl for different matrix reorderings.| 39
Figure[5.16 The speed-up comparison for shallow_waterl|. 40
Figure[5.17 The preprocessing time comparison for shallow_waterl| 40
Figure[5.18 The illustration of venkat50 for different matrix reorderings.| 41
Figure[5.19 The speed-up comparison for venkat50, 42
Figure[5.20 The preprocessing time comparison for venkat>0) 42

Xix

MIMD
SIMD
SOR
GPGPU
CPU
AMD
NDP
RCM
CM
ColPerm
BFS
MKL
STRSV
PSTRSV
CSR
MPI
OpenMP
ICCG
ILU
BLAS

CUDA

LIST OF ABBREVIATIONS

Multiple Instruction, Multiple Data
Single Instruction, Multiple Data
Successive Over-Relaxation

General Purpose Graphics Processing Unit
Central Processing Unit

Approximate Minimum Degree

Nested Dissection Permutation

Reverse Cuthill-McKee

Cuthill-McKee

Column Permutation

Breath-First Search

Math Kernel Library

Sparse Triangular System Solver

Parallel Sparse Triangular System Solver
Compressed Sparse Row

Message Passing Interface

Open Multi-Processing

Incomplete Cholesky Conjugate Gradient
Incomplete LU Factorization

Basic Linear Algebra Subprograms

Compute Unified Device Architecture

XX

CHAPTER 1

INTRODUCTION

Many applications of science and engineering require the solution of large sparse
linear systems. One well-known approach is to solve these systems by factorizing the
coefficient matrix into nonsingular sparse triangular matrices and solving the resulting
sparse triangular systems via backward and forward sweep (substitution) operations.
This can be considered as a direct solver or if incomplete factorization is computed,
it could also be considered as a part of the preconditioning in an iterative scheme.
Common sparse factorizations that require the solution of sparse triangular systems
include: LU, QR factorizations and their incomplete counterparts (incomplete LU and
incomplete QR). Furthermore, Gauss-Seidel and its variants such as Successive Over
Relaxations (SOR) and Symmetric SOR require the solution of a sparse triangular

system at each iteration.

For large problems, not only solution of linear systems is often the most time consum-
ing operation, but also in parallel computing platforms solution of triangular systems
is less scalable compared to the factorization. Solution of triangular systems are often
a sequential bottleneck due the dependencies between unknowns during forward and
backward sweeps. Therefore, scalable parallel algorithms for solving sparse trian-
gular linear systems are needed. Currently, there are many sparse triangular solver
implementations available as standalone functions or within LU/ILU factorization
softwares. The amount of interest in sparse triangular solvers is tremendous which
is also seen by the number of available software packages. These include Euclid [[1],
Aztec [2], The Yale Sparse Matrix Package [3l], SuperLU [4], HYPRE [5], PAR-
DISO [6]], PETSc [7], MUMPS [8], UMFPACK [9], PSBLAS [10], and PSPASES [11]].

Furthermore, sparse matrix operations started to appear also in widely used machine

learning frameworks such as Tensorflow [[12], Caffe2 [13], PyTorch [14], Theano [15],
and MXNet [16]].

Along with the software packages, parallel triangular solvers are extensively studied
in the literature for both MIMD and SIMD architectures. Most parallel solutions are
focused on level-scheduling [17, [18] and graph-coloring [19] algorithms with a few
exceptions where algorithms are tailored for the specific conditions arise in targeted
problem domains. These algorithms address the mathematical nature of dependencies
between elements and try to solve the given sparse triangular system efficiently, but
they do not attempt to change the sparsity structure that prevents effective parallelism.
Hence, they are often combined with matrix reordering algorithms to increase the
available parallelism. In this setting, given coefficient matrices are first reordered
by a matrix ordering algorithm, then the reordered system is solved by a parallel
sparse triangular solver. In addition, one of the challenges in parallel sparse matrix
operations is the poor memory coalescing caused by the sparse matrix rows with
varying number of nonzeros. Therefore, effective data layouts for sparse triangular

systems are also investigated in the literature.

In this thesis, we propose a Spike [20] based parallel direct sparse triangular system
solver. We implement the proposed algorithm for multicore shared address space
architectures. The Spike algorithm is originally designed for banded linear sys-
tems [21, 22, 23 24] and generalized for sparse linear systems first as a solver for
banded preconditioner [25, 26] and later as the generalization of the banded spike
algorithm for general sparse systems [27, 28, 29]. Furthermore, the banded Spike
algorithm was implemented for GPGPU [30] and Multicore [31] architectures. Our
work expands and specialize the algorithm for the sparse triangular case which dif-
fers significantly from the original banded triangular case. The concurrency available
for the proposed solver is tightly coupled with the sparsity structure of the coefficient
matrix. Hence, we also employ matrix reordering to improve parallelism, and use
five well-known methods which are METIS [32, 33], Approximate Minimum De-
gree Permutation (AMD) [34], Column Permutation (ColPerm) in Matlab R2018a,
Nested Dissection Permutation (NDP) [35, 36], and Reverse Cuthill-McKee Order-

ing (RCM) [36] in the numerical experiments.

We first summarize the parallel sparse triangular solver literature and explain the em-
ployed matrix reordering algorithms in Chapter 2] We describe the proposed parallel
algorithm for the solution of sparse triangular linear systems in Chapter [3] Then, we
analyze the performance constraints of the preprocessing and the solution phases in
Chapter @ Performance comparison of the proposed method and the parallel solver

of Intel MKL is given in Chapter 5| and we conclude in Chapter 6]

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, first, we give some background information about the matrix order-
ing algorithms employed in this thesis to explore the effect of different reordering
approaches on the parallel performance. Second, we summarize and categorize the

parallel sparse triangular solver algorithms found in the literature.

2.1 Matrix Ordering

The concurrency available for parallel sparse triangular system solvers are tightly
coupled with the sparsity structure of the coefficient matrix of a given linear system.
Hence, in the literature, several studies [37, 38, 139,140, 141, 42| 43| 44 are focused on
reordering the coefficient matrix beforehand to increase the available parallelism. In
this thesis, we also employ matrix reordering to improve parallelism, and use METIS
[32, 33], AMD [34]], ColPerm, NDP [35, 36] and RCM [36] during the experiments.
Note that for METIS, AMD and RCM which require symmetric matrices, we apply
the reordering to the matrix (]A|T +|A|) when we have an unsymmetric test matrix
A, then the resulting permutation is used on the original matrix A to produce the
reordered version. In this section, we briefly discuss the employed matrix ordering

algorithms.

Nested Dissection Permutation algorithm is proposed by Alan George [35] in 1973,
and re-factored by Alan George and Joseph W. Liu [36]] in 1981. NDP is a graph sep-
arator algorithm in which the coefficient matrix is transformed into a graph and it is
split into subgraphs that are not connected. In other words, the algorithm recursively

finds a separator and cuts the given graph into two halves with nearly equal sizes.

5

This reordering is particularly useful for the proposed algorithm since it pushes the
dependency elements (which are explained in Chapter [3)) towards the boundaries of
the partitions and maximizes the reflection r; (see Chapter [3) parameters. We explain
the benefit of having large r; values in Chapter {] and present the empirical evidence

in Chapter 5

Reverse Cuthill-McKee algorithm is proposed by Alan George and Joseph W. Liu [36]
in 1981. It is a simple improvement over the original algorithm, which is designed
by Elizabeth Cuthill and James McKee [45] in 1969, to reduce the fill-in even further.
RCM is a variant of the standard breath-first search algorithm. It introduces a strict
traversal policy to the BFS algorithm in which adjacent nodes are visited in ascending
vertex order. During the traversal, each visited node is inserted into the result set
R. At the end, R indicates the new order of the vertices. In RCM this result set is
reversed, and that is the only difference between RCM and CM.

METIS [32] is a software package developed in Karypis Lab, which contains serial
or parallel (ParMETIS [33]]) programs for graph partitioning and fill-reducing sparse
matrix ordering. We used the multilevel k-way partitioning scheme in METIS Version
5.1.0 during our experiments. Specifically, we selected the communication volume
minimization mode in which METIS tries to gather the nonzeros near the main diag-

onal of the coefficient matrix.

Approximate Minimum Degree ordering algorithm is proposed by Patrick R. Amestoy,
Timothy A. Davis and Iain S. Duff [34] in 1996 which is an extension over the original
minimum degree algorithm proposed by William F. Tinney and John W. Walker [46]
in 1967. Unlike the original one, AMD does not compute the exact vertex degrees
instead it computes an upper bound to approximately set the degrees of the vertices.
The algorithm is one of the most widely used fill-reducing heuristics. Briefly, the co-
efficient matrix is again taken as a graph and AMD iterates through the given graph in
a greedy fashion where the next node with the smallest approximate degree is selected

and eliminated in each step.

ColPerm is a sparse column permutation algorithm available in Matlab2018a. It pro-
duces a permutation vector to order the columns of the given coefficient matrix ac-

cording to increasing number of nonzeros.

| Parallel Sparse Triangular System Solvers |

| Level scheduling based | | Self scheduling based | | Graph coloring based | | Block diagonal based

GPGPU CPU GPGPU CPU GPGPU CPU CPU
(47,148,491 [| [39,140,150] [] 514 152] [531154] [S5L1561 (42} 157, 144] [58, 137,138, 141]]

Figure 2.1: Taxonomy of parallel direct sparse triangular system solvers

2.2 Parallel Sparse Triangular Solvers

In this section, we categorize and briefly discuss the parallel sparse triangular system
solvers found in the literature for both MIMD and SIMD architectures. Generic per-
formance improvements on sparse triangular system solvers such as the data layout
optimization in [S9] are not covered since they do not specifically propose parallel
algorithms. In addition, since the proposed algorithm offers a direct solution to the
given triangular linear system, we will focus on the direct solvers rather than the iter-
ative solvers such as [60} [61] where Jacobi and Block-Jacobi iterations are proposed
for solving sparse triangular systems with increased parallelism in exchange for a

direct solution.

We give the taxonomy tree of the direct solvers in Figure[2.1] In this tree, we group the
studies in the literature under four main categories. These groups are defined as level-
scheduling [[17, [18]], self-scheduling [62], graph-coloring [19], and block diagonal
based methods. In these categories, level-scheduling and self-scheduling methods are
rooted from the same idea of treating the coefficient matrix as a directed acyclic graph
and representing the dependencies as levels, but they differentiate on whether barrier
synchronization is employed or not. Compared to others, graph-coloring methods are
focused on the reordering of the coefficient matrix to exploit concurrency which is not
explicitly available in the original form of the triangular system. For the algorithms
that are not using any level construction or coloring, we found a common idea of
processing block diagonals as isolated systems and treating the rest as dependencies
between these systems. Therefore, we labeled them as block diagonal based methods

and finalized the taxonomy tree. Note that, in some studies, combination of different

7

categories in a hybrid parallel solver is proposed or conjectured as more effective than

plain approaches.

2.2.1 Level-scheduling Based Methods

Level scheduling algorithm is first introduced by Anderson and Saad [17], and later
by Saltz [18]]. It forms levels of rows by exploring the dependencies in the coefficient
matrix by treating it as a directed acyclic graph. Concurrency is achieved within lev-
els by processing the rows in parallel. However, the levels are processed sequentially.
This algorithm consists of two phases, called analysis and solve. In analysis phase,
levels are formed by traversing the graph representation of the coefficient matrix, and
in the solve phase, the sparse triangular system is solved by using the level represen-
tation. In general usage, the solve phase is called multiple times in an iterative solver

after a single analysis phase.

Naturally, earlier studies implemented level-scheduling algorithm for CPUs. In [40],
the sparse triangular solve is deemed as the main bottleneck for the ICCG algorithm.
Therefore, a level-scheduling based parallel algorithm is proposed for the triangular
solution which is accompanied with a matrix reordering phase for the coefficient ma-
trix to solve the performance problem caused by the poor spatial locality of the data.
Moreover, in [39], level-scheduling algorithm is tested for different thread affinities
and barrier types. In the implementation of the analysis phase, they used a variant of
BFS to form the levels, and, as an improvement over the original algorithm, they per-
muted the system symmetrically with respect to the levels to sort the rows/columns
in order of the levels. For the solution phase, they propose the usage of barriers that
use spin-locks and active polling to improve the performance. The most recent work
on level-scheudling [50]] introduced a new data layout, named Sparse Level Tile lay-
out, to improve the data reuse of the right hand side and solution vectors. It is stated
that the proposed layout may introduce more levels to a given problem. However,
the performance drop caused by the extra levels are solved by utilizing fast register

communication for level synchronization.

Recently, level-scheduling algorithm is also adapted to GPGPUs. The first implemen-
tation of this kind is proposed in [47]] and its BFS based analysis phase is integrated

8

into parallel ILU and Cholesky factorizations in [63]]. Another study [49] improved
the parallel performance of level-scheduling algorithm by replacing the row-levels
with subgraph levels to increase the data locality. In addition, a new matrix storage
format named HEC (Hybrid ELL and CSR) [64] is adapted for the solution phase
of the level-scheduling algorithm in [48]] to increase the effective bandwidth of the

GPGPU.

2.2.2 Self-scheduling Based Methods

Self-scheduling [62] is a modification over the level-scheduling scheme where the
barrier synchronization between levels are replaced with individual waiting mecha-
nisms. In other words, each processing unit waits for its direct dependency to be
computed and immediately starts to work upon receiving the result or notification

even if the others in the same level are still waiting.

As in level-scheduling case, earlier studies implemented this approach for CPUs. In
[54]], a self-scheduling scheme for the triangular solution part of the ICCG is proposed
with a dynamic work sharing between processors. Another CPU implementation is
proposed in [53] where they run three operations after the construction of the lev-
els to improve the parallel performance. First, they eliminate the dependency edges
between the elements that are assigned to the same thread since they will naturally
execute in program order. Second, they combine tasks into supertasks to reduce the
number of dependency edges. Third, they remove the transitive edges since they are

already covered by the execution flow.

Some of the recent work on parallel sparse triangular system solvers managed to de-
ploy the self-scheduling idea to GPGPUs. In [52] a synchronization free algorithm
based on spin-locks is proposed to overcome the barrier synchronization in the level-
scheduling. In addition, their method requires a simple preprocessing phase where
they only compute the in-degree of each vertex. On the other hand, another study
[S1] directly focused on the level-scheduling implementation in CUDA, and proposed
a self-scheduling based alternative in which the modified BFS is replaced with a par-
allel topological sorting algorithm to set the levels, and the barrier synchronization is

replaced with a counter-based scheduling mechanism where each element only waits

9

for its own dependencies.

2.2.3 Graph-coloring Based Methods

Graph coloring algorithm [19] tries to assign the minimum number of colors to ver-
tices of a graph in a way that two neighboring vertices are not allowed to have the
same color. Compared to others, graph coloring is an NP-complete problem, there-
fore heuristics that are used for coloring may vary among the parallel solver imple-
mentations. Over the years, several studies explored the possible implementation of

graph-coloring to increase the parallelism of sparse triangular solvers.

In [57]], authors used graph multi-coloring for the effective distribution of compu-
tational workload between processors. In which, the coefficient matrix is reordered
according to the computed row colors. They used this graph partitioning scheme in
the parallel triangular solve phases of ILU(0), Block SOR and Symmetric SOR. In a
contemporary study [44], a multi-coloring algorithm based on the saturation degree
ordering algorithm [65] is proposed to improve the performance of parallel Gauss-
Seidel iterations. This algorithm is specifically designed for the last diagonal matrix
blocks resulted from the block-diagonal-bordered ordering [66]] applied on power sys-
tem matrices. In a recent CPU implementation [42]], authors proposed algebraic block
multicolor ordering which is an improvement over the block multicolor ordering [67]
for the coefficient matrix of the triangular solve in the ICCG method. In this scheme,
resulting matrix blocks with the same color are solved in parallel and each thread

process one or more of these blocks, but the computation within a block is sequential.

Graph-coloring methods are also investigated for SIMD architectures. In [S6], the
level-scheduling based approach in [47] is outperformed by a graph-coloring based
parallel sparse triangular solver implementation in CUDA. They devised a coloring
scheme in which each colored group of rows depends only one or more previous
groups. Moreover, it is hypothesized that combining this graph-coloring approach
with level-scheduling may improve the overall performance. The idea of developing
a hybrid approach is proved to be useful in [55] where graph coloring based on find-
ing the maximum independent set [68]] is combined with level-scheduling for ILU

factorization.

10

2.2.4 Block-diagonal Based Methods

In this section, we propose a new category, called block diagonal based methods,
for the parallel sparse triangular solvers in the literature. The governing dynamics
for these solvers are the isolated triangular systems in the form of block diagonals
within a coefficient matrix. In general, these isolated systems are solved by sequential
sparse triangular solvers simultaneously. The perfect parallelism is prevented by the
off-diagonal parts. Hence, parallel solutions in the literature are mostly focused on
effective messaging structures, matrix partitioning procedures, and workload sharing
policies. This seems particularly suitable for CPUs since we did not found a GPGPU

counterpart that can be considered as a block diagonal based method.

In the literature, we have found several studies that can be named under this cate-
gory. For example, in [58]] a parallel sparse triangular solver tailored for the sparsity
structure arise in sparse Cholesky and LU factorizations is proposed, in which both
dense and sparse solvers are utilized and assigned to different parts of a given tri-
angular system. Moreover, the parallel sparse triangular solver in SuperLU_DIST
[41] also employed the block diagonal approach. Specifically, during the solution,
when a dependent element is computed the owner processor send the result to the
ones that are waiting for it. After receiving the dependent element, each processor
computes the local sum, and at the end the diagonal processor performs the division.
In another study [38]], two algorithms, called block anti diagonal and anti diagonal
column algorithms, are proposed. In these algorithms, the coefficient matrix is parti-
tioned into diagonal blocks and rectangular off-diagonal blocks. The diagonal blocks
are processed sequentially whereas the rectangular blocks are processed in parallel.
Finally, a structure adaptive algorithm [37] is proposed. This algorithm identifies the
independent rows in the coefficient matrix and groups them together via reordering.
Then, it analyzes the structure of the reordered matrix and distributes the workload
accordingly. Provided they exist, it processes the dense off-diagonal blocks by us-
ing highly tuned dense BLAS operations in separate processes. In addition to this
algorithm, they built an prioritized messaging scheme between processes to send the
computed dependent elements right away while handling diagonal blocks. As a side

note, since the computation in sparse triangular solve is very small relative to the

11

amount of data, they deemed cache inefficiencies as intolerable and processed the

rows in large chunks.

The proposed algorithm in Chapter [3] can be considered as a block diagonal

based method.

12

CHAPTER 3

THE PROPOSED ALGORITHM

The objective of the proposed algorithm is to solve sparse lower or upper triangular
systems of equations in parallel. Without loss of generality assume a systems of
equations is given,

Uz =b 3.1)

where U € R™", full-rank, sparse upper triangular matrix. b and x are the right hand

side and solution vectors, respectively.

The proposed parallel algorithm is designed based on the parallel Spike scheme in
which the coefficient matrix is factorized into block diagonal matrix and the spike
matrix. We refer the reader to the references in Chapter [I|for a more detailed descrip-

tion of the general and banded Spike factorizations.

In our case, the coefficient matrix is triangular and sparse. Hence, we have the fol-

lowing Spike factorization

U= DS (3.2)

where D is block triangular with diagonal blocks that are also sparse and upper trian-
gular, and S (illustrated in Figure is upper triangular with identity main diagonal
blocks and some dense columns (i.e. the spikes) in the upper off-diagonal blocks
only. Given the linear system in Eq. [3.1]and the factorization in Eq.[3.2] the proposed
algorithm can be described as follows. Assume, we multiply both sides of Eq. [3.1]

with D~! from left and obtain,
DUz =D '. (3.3)

Then, since

S =D71U, (3.4)

13

[
B
o

O ulls

G mE— =
mlin Hale
v 0| B H

B THE
wB H B

Figure 3.1: The sparse triangular linear system of Ux = b

we obtain the following modified system which has the same solution vector as the
original system in Eq.

Sz (3.5)

Il
S

where

g=D7'b. (3.6)

Note that obtaining the modified system is perfectly parallel in which there is no
communication requirement. The key idea of the Spike algorithm is that the modified
system contains a small reduced system (which does not exist in the original system in
Eq. that is independent from the rest of the unknowns. After solving this smaller
reduced system, the solution of the original system can be also retrieved in perfect
parallelism. The Spike algorithm was originally designed for the parallel computer
architectures where the cost of arithmetic operations are much lower than the cost of
interprocess communication and memory operations [22]]. Today’s multicore parallel
architectures can perform arithmetic operations an order of magnitude faster, and this
trend is not likely to change in the near future. Therefore, the arithmetic redundancy
cost can be easily amortized and this observation is also valid for the sparse triangular

case.

Now, we illustrate the proposed algorithm on a small (13 x 13) system given (without
numerical values of nonzeros) in Figure 3.1 Given a partitioning of the coefficient

matrix, we also partition the right hand side and the solution vectors, conformably.

14

Next, we extract the block diagonal part of the coefficient matrix, such that,
U=D+R 3.7

where R is the remaining nonzeros in the off-diagonal blocks. For the small example

this is illustrated in Figure In general, D is in the form of
D = . (3.8)

where ¢ is the number of partitions (or threads) and each D; is a separate independent

m; X m; triangular matrix.
The modified system in Eq. contains a smaller independent reduced system,
S7 =7 (3.9)
where T corresponds to the dependencies in the original system (Figure [3.4).
We define i'" block row (R;) as follows,
Ri = (0,..,0, Rusin, Risias oo Ris) (3.10)

Furthermore, after identifying the bottom zero rows of R; (if they exist), we define RZ-

as follows,

R; = (3.11)

where the size of }c{, is k; x n with k; < m,;. Note that k; is determined by the sparsity
structure of R;. R; determines the dependencies in partition ¢ to other partitions if
k; # 0. Otherwise, the unknowns belonging to partition ¢ are completely independent.

Using Eq. [3.1)and [3.7] we obtain the following system,
Dz =b— R (3.12)

where only those elements of x that are corresponding to nonzero columns of R are
needed to compute the right hand side. We denote these elements of R in the nonzero

columns as dependency elements. In fact, the reduced system in Eq.[3.9|can be formed

15

=
o
o

i
EEEEEEEE
a

|
T
|
|
i
|
|
i
|
|
i
T
|
|
|
|
|
'
|
|
0
|
|
|
T
|
0
|
|
|
|
|
|
'

=

Figure 3.2: An example structure of the S matrix. The blue elements are from the

original matrix where the orange ones represent the "spikes" resulted from DU

° R U
- L]
R m
i I S i Riz D 'R s U |_|
i : E E
+ : : _ -
D i i RE\:‘ U, J
N 1 ? ____________ P T : |
D3 U33

Figure 3.3: The illustration of D + R = U

by identifying the unknowns in z required by the dependency elements. Hence, for
most cases both S and g only need to be computed partially (i.e. only S and g are
needed). After solving the reduced system in Eq. [3.9] we update the right hand side
of the system in Eq. [3.12] and solve it. Note that this last step involves solving inde-
pendent triangular systems of equations since, unlike the original system, problem is

decoupled now.

An important point is that after computing ¢ in Eq.[3.6] some elements in z are already
available without any further computations. This happens when k; < m;. In order to
elaborate, if we split D; matrix into two parts with respect to k;, then the sub-matrix

below the k; will not have any corresponding dependency elements. In other words,

16

=)
=)
.4

Ly

8

l

. :
LT PP T T yITT]

Figure 3.4: Construction of the reduced system

[
]
o

N) oo
"I all=
v mil | ml =
- =l=
Uz =11
T R
Ufaq‘_::
. .

Figure 3.5: The illustration of light beams as dependency mappings.

(b)

let us denote the lower sub-matrix as D; from now on, the solution of

DY g® — (3.13)
directly gives the partial solution of the original system. Hence,

2" = g\ (3.14)

We further partition the upper part of g; into two vectors with respect to a parameter
we call "the reflection”, r;. If we think dependency elements as light sources sending
light beams towards the bottom of the matrix and the diagonal as a mirror, then we
can model the dependencies in a nonsingular triangular system as reflections of these

light beams. These reflections are illustrated in Figure[3.5]and indicated as red arrows.

17

The topmost arrow for each partition is selected as the reflection r; and it shows the
upper bound for the necessary part of each S; matrix that we have to calculate to be

able to form the reduced system S. Specifically, for

S Ty
gi=| " | k-r (3.15)
gz(b) m; — kz

®)

where r; < k;, we do not need to make any calculations for g; ’ vectors to construct S.

In addition, if r; > k;, then ; = g; since there is no "spike" within the range of row
indices [r;, m;|. Our implementation takes r; = k; when r; > k; for simplification. If
there is no reflection in the given partition, we set hasReflection; parameter as false

and deem further partitioning of D; (Eq. [3.16) as unnecessary.

©

Exploiting these properties saves us from recomputing x,) and redundant operations

()

with g;”'. Therefore, we partition each D; where hasReflection; is true as:
(t) , (®)
D; Qi b DY o pm - p)
D; = p™ p® plm — [7 ' pim) — [i i
¢ i i ’ i D(m)) i D(b)
D(b) i i
(3.16)

conformable with the partitioning of g; vectors.

With these further partitions at hand, now, we can see that g; can be obtained via the
solution of

D" gt =yt (3.17)

K3 (2

(m;b)

[

in bgm;b) that are hit by a light beam as in Figure to form g;. Then we solve the

In detail, we select the elements of g, ", which are computed using the elements

reduced system and update the corresponding elements in .

)

Q)

T =
(3.18)

T4~

Then, we compute the new right-hand side vector for the independent triangular sys-

(t;m)

tems of D partitions:

plEm) . bl(t;m) _ (fm)ll’ + Bx(b)) (3.19)

i %

18

where P, =

The last step is to solve the isolated systems using the updated right-hand side without
(®)

i

recomputing x

DM {Em) = it (3.20)

7 3

In order to achieve better load-balance, even if we do not have a reflection at a given
partition (i.e. hasReflection; = false), we can still partition D; with respect to k;.
Hence, we can solve Eq. [3.13]instead of waiting for idle while other threads are

solving Eq. However, we do this only if the performance drop in Eq. 3.17}

A = maz{nnz(D{")i € {1, ..., t}, hasReflection;}

Niationas = maz{nn=(D)[i € {1, .., t}, ~hasReflection;} 62D
lOSS(l) = TTLCLCIJ(O,)\((zfi)ditional o AEJ}C)IZ)

is smaller than the overall gain in Eq. [3.19)and Eq. [3.20}

)\((jl)u = maz{nnz(R;) + nnz(D,)|i € {1, ...,t}, ~hasReflection;}

(tsm)

)\(()272 = maz{nnz(R;) + nnz(P;) +nnz(D\""™|i € {1, ..., t}, hasReflection;}

2 2 2
/\glc)l = max (>\(()lc)l_17 /\glc)l_Z)

A

A2 = maz{nnz(R;) + nnz(P;) + nnz(DZ(t;m))M e{l,..,t}}

new

~ (2
gain'® = maz(0,\5) — A2)

new

(3.22)

We add a small constant into the inequality and form the condition as:

gaz’n(2) > loss™M) + ¢ (3.23)

If the condition in Eq. [3.23]is met, we proceed with the further partitioning of the
D; matrices for the threads with no reflection to improve the load-balance. In the im-
plementation, we indicate this by setting isOptimized; parameter of a relevant thread
as true. If R; is an empty matrix, in other words k; = 0, for thread ¢, then we select
the best cut a; preserving the condition in Eq. and set k; = «;. Note that we
split the operations into the preprocessing and solution stages such that any operation

that does not require the right hand side vector, b, constitutes the preprocessing stage.

19

Remaining operations constitute the solution stage. This splitting is useful when mul-
tiple systems with the same coefficient matrix but different right hand side vectors are
solved repeatedly, which is often the case in practice. The solution stage of PSTRSV

is given in algorithm

Algorithm 1 PSTRSV

Input: Partitioned and factored coefficient matrix U = DS, reduced coefficient

matrix S, together with associated dependency information and b, the right-hand
side vector

Output: z, solution vector of Uz = b

for each thread: = 1,2, ..., do

if hasRe flection; or isOptimized; then

(m;b) _(m;b)

m;b
i 9 = it

for g,

Solve the triangular system D ;

end if

b(m;b)

Wait until all threads reach this point
for a single thread 7 do
Solve the reduced system S7 = g forx
Update the solution vector z < T
end for
Wait until all threads reach this point
if hasDependence; then
B = ™ _ (R + Pa”)
end if
if hasRe flection; or isOptimized; then
(t;m) (tm)

€T: =

A 7

(t;m)

b{"™ for x

Solve the triangular system D
else
Solve the triangular system D;x; = b; for x;
end if
end for

return x

20

CHAPTER 4

PERFORMANCE CONSTRAINTS

In this section, we present key parameters that influence the performance of the pro-
posed algorithm. These parameters are r;, k;, and the number of nonzeros in S. We

analyze the performance for the preprocessing and solution stages separately.

4.1 Preprocessing

In preprocessing stage, we handle operations that are independent from the right hand
side vector. This splitting is useful when it is used in an iterative scheme, preprocess-
ing is done for once and the solver is often called multiple times. Hence, the cost of
the preprocessing can usually be amortized. The operations involved in the prepro-
cessing stage are the partitioning of D; and R;, computing .S; parts when necessary,
building the reduced system, and investigation for a better load-balance. Among
these, memory allocation and the computation required for S; are the most significant

performance bottleneck for the test matrices in the preprocessing time.

We only need the nonzeros of \S; within the range of row indices [r;, k;] to build the

reduced system (Figure .T)). In Eq. [3.4] S has the following structure:

Si = (07 ceey 07 I, Si,i-‘,—l, SZ'J'_A'_Q, ceey Si,t) . (41)

If we ignore preceding zero blocks, we get
S; = I S (4.2)

21

g
=1
]

50

8

l

. .
LT PP TTIITT]

Figure 4.1: The dependencies presented in the original system. We only need to

calculate S matrix parts highlighted in red to construct the reduced system.

conformable with the partitioning of g; and R?;. In other words,

s = (0.5) (4.3)
Then, we can compute S; by solving
D¥™§S, = R, (4.4)

where

Si= _’Eb) . Ri=(0.R,) 4.5)

Note that Eq. is a triangular system with multiple right hand side vectors, R;.
However, we do not need to compute gl-(t) since it has no contribution to the reduced
system. Therefore, we only solve a part of the system which is represented by the
following equality,

Dms® = R (4.6)
where

4.7)

In the implementation, we transform Rl(b) into a dense matrix containing only columns
with at least one nonzero since S’i(b) is expected to have dense spikes. We denote them

as R and SV

dense; dense;

respectively. Let d; be the number of columns in R; having at

22

least one nonzero. Then, S

dense;

isa (k; —r;+1) x d; dense matrix which is computed
only if r; < k;. In other words, for a matrix where r; > k;,Vi € {1,2,...,t} there is no

memory allocation or computational cost for Rgglsei and S c(li)nsei

matrices. Naturally,
this also holds if d; = 0,Vi € {1,2,...,t} since having no dependency element is the
ideal scenario for parallelism. Nevertheless, it is still beneficial to have a relatively
small value of maz{k;—r;|i € {1,2,...,t}} for d; # 0 considering the dense structure

of the spikes.

4.2 Solution

In the solution stage, we have two parallel regions and a sequential region (Eq. [3.18)
between them. We can optimize the performance of these two parallel regions using
the load-balance strategy explained in Chapter[3] This leaves us with Eq. [3.18 where

we solve the reduced system and update the solution vector.

The coefficient matrix S of the reduced system is a d X d unit diagonal triangular

matrix where d is at most the sum of all d; explained in Section
t
d< Z d; (4.8)
=1

since d; values through partitions may contain duplicated columns. Solving the re-
duced system requires O(nnz(S) —d) operations. Again, ford; = 0,Vi € {1,2, ..., t}
there is no reduced system, so we have perfect parallelism. However, for most cases
where d # 0, the sparsity structure of U determines the number of off-diagonal nonze-
ros in S. For a matrix where ri > ki, Vi € {1,2,....t}, Sis the identity matrix. Hence,

there is no need to solve the reduced system,

~

S =1,whenr; > k;, Vi€ {1,2,....t}
Iz =g from Eq. [3.9] 4.9)
P=7
and if we directly store g; vectors in x; parts before forming g, then there is no memory
operation for updating the solution vector either. If r; < k;,3i € {1,2,...,t}, then

the computational cost will be determined by the sparsity structure of the dependency

elements within the range of row indices [r;, k;].

23

24

CHAPTER 5

NUMERICAL EXPERIMENTS

We perform numerical experiments to demonstrate the parallel scalability of the pro-
posed algorithm against the multithreaded double precision sparse triangular system
solver (mkl_sparse_d_trsv) of Intel MKL 2018 [69]. Hereafter, we refer to them as
PSTRSV and MKL, respectively. We have obtained twenty real-world test matrices
from the SuiteSparse Matrix Collection [/0] that arise in variety of application ar-
eas and have a variety of dimensions/nonzeros (see Table [5.1] for properties and the

application domains that they arise in).

As we have mentioned in Chapter [the sparsity structure of the triangular matrix
is expected to have a significant influence on the performance of triangular solvers.
Therefore, for both PSTRSV and MKL, we experiment with five well-known ma-
trix reordering schemes. These are METIS [32, [33]], Approximate Minimum De-
gree Permutation (AMD) [34]], Column Permutation (ColPerm of Matlab R2018a),
Nested Dissection Permutation (NDP) [35,136], and Reverse Cuthill-McKee Ordering
(RCM) [36]]. After applying the permutation, we remove the strictly lower triangular
part of the matrix to obtain U matrix. As explained in Section[2.1] for reorderings that
require symmetric matrices, when we have an unsymmetric test matrix A, we apply
the reordering to the matrix (A|” | A|), then the resulting permutation is used on the

original matrix, A. For all test problems, we use a random right hand side vector.

We use a computer with 2 sockets and 2 Intel(R) Xeon(R) CPU E5-2650 v3 pro-
cessors each having 10 cores and 16 GB of memory. Threads are distributed us-
ing "KMP_AFFINITY = granularity = fine,compact,1,0". Matrices are stored in
Compressed Sparse Row (CSR) format and the proposed solver is implemented us-

ing C programming language with OpenMP [71]. We repeat each run 1,000 times

25

Matrix Dimension(n) Non-zeros(nnz) Application

1. Dubcova2 65,025 1,030,225 2D/3D Problem

2. Dubcova3 146, 689 3,636,643 2D/3D Problem

3. FEM_3D_thermall 17,880 430,740 Thermal Problem
4. G3_circuit 1,585,478 7,660,826 Circuit Simulation
5. apache2 715,176 4,817,870 Structural Sim.

6. bmwecra_l 148,770 10,641,602 Structural Problem
7. boneSO1 127,224 5,516,602 Model Reduction
8. ¢70 68,924 658,986 Optimization

9. c-big 345,241 2,340,859 Optimization

10. consph 83,334 6,010,480 2D/3D Problem
11. ct20stif 52,329 2,600,295 Structural Problem
12. ecology2 999,999 4,995,991 2D/3D Problem
13. engine 143,571 4,706,073 Structural Problem
14. filter3D 106, 437 2,707,179 Model Reduction
15. finan512 74,752 596,992 Economic Problem
16. parabolic_fem 525,825 3,674,625 Fluid Dynamics
17. pwtk 217,918 11,524,432 Structural Problem
18. shallow_waterl 81,920 327,680 Fluid Dynamics
19. torso3 259, 156 4,429,042 2D/3D Problem
20. venkat50 62,424 1,717,777 Fluid Dynamics

Table 5.1: Properties of the test matrices.

26

and obtain the average of the required wallclock time. The required time to obtain
the solution for PSTRSV and MKL are given for ¢t € {2,4,8,10,16,20} threads
as well as the preprocessing times (for MKL this implies mkl_sparse_d_create_csr,
mkl_sparse_set_sv_hint and mkl_sparse_optimize function calls) required by both in
Appendix [A.2] Preprocessing time excludes reordering time since it is common for
both algorithms. Speed-ups obtained for each system are given in Appendix [A. 1] In
the remaining parts of this chapter, we offer two perspectives built upon these re-
sults. First, we give a performance overview of the proposed algorithm against Intel
MKL. Second, we present a case study to capture a detailed picture of the parallel

performance for different matrix reordering algorithms.

5.1 Performance Overview

For performance overview, we present the number of test cases where the fastest
solution is provided by a particular triangular solver in Figure In addition, we
give the best speed-up achieved by PSTRSV and MKL for all matrices in Figure[5.2]
In this chart, we show only the best speed-up achieved for a given test matrix as
well as the matrix reordering and number of threads being used to achieve the best
speedup. For a more detailed breakdown of the speedups, we refer the reader to
The final residuals obtained by PSTRSV are comparable with MKL.

The speed-up (s) is computed against the baseline sequential time. The baseline is
either our custom sequential sparse triangular solver implementation (algorithm [2)) or

sequential solver in Intel MKL whichever is the fastest for the given problem;

min(runtime runtimen gk,
5 — (custom)) (51)

Tuntimepm‘allel

In general, PSTRSYV provides the best speedup for most of the test cases. This can be
observed in Figure[5.1]where PSTRSYV is better than others in 65% of the test cases on
average for ¢ > 2. Furthermore, in Figure[5.2] we present the best speed-ups achieved
for each of the 20 test matrices. PSTRSV outperforms MKL in 80% of the test cases
and is 2.3 times faster on average. Based on the results, PSTRSV benefits most from
the parallelism provided by NDP in 9/20 cases, METIS in 6/20 cases, and AMD in

3/20 cases. For the other 2 cases, the original coefficient matrix gave the best results.

27

of cases

of threads

Figure 5.1: Overall performance comparison of the proposed solver, Intel MKL and
the best sequential solver. Bars indicate the number of test cases where the given
solver outperforms others. We ignore the test cases where we are unable to evaluate

the performance due to memory constraints.

I PSTRSV
mmm MKL

Nz

8o

Ak Pl Sy ‘\2'1 be ﬁQ\ B e AN L D ‘,-\:L & 0 &
O”,Qg,m 9 o« . ‘s@‘gf‘ P P P € & o é‘&od &85 & o o X &

Figure 5.2: The highest speed-ups achieved by the proposed solver and Intel MKL
solver. {R: RCM, C: ColPerm, N: NDP, M: METIS, A: AMD, O: ORIGINAL} sym-
bols on bars indicate the matrix reordering algorithms which give the best result. The

thread counts are placed under them.

28

PSTRSV MKL

min max avg std | min max avg std

2 1240 75.22 26.97 204.20 | 4.11 251.50 78.77 616.41
4 14.02 5995.39 &875.11 10215.81 | 2.82 131.36 46.50 338.93
8 | 4.07 2988.42 576.13 5972.42 | 2.17 114.80 32.89 244.67
10 | 4.17 2756.16 495.46 5161.81 | 2.58 118.37 31.32 242.35
16 | 4.41 2961.46 372.92 4223.28 | 0.19 115.57 27.41 206.61
20 | 412 2219.22 327.21 3500.55 | 0.44 264.46 35.85 332.74

Table 5.2: Statistics of the preprocessing times of PSTRSV and MKL in milliseconds.

ColPerm and RCM, on the other hand, are not suitable for both PSTRSV and MKL.

Algorithm 2 STRSV
Input: U matrix in CSR format and b, the right-hand side vector

Output: z, solution vector of Ux = b
x[n — 1] = b[n — 1] /ufiu[n — 1]]
forio=n—-2,n—-3,...,0do
t = bli]
for j = iuli] + 1,uli] + 2,...,iu[i + 1] — 1 do
t =t —ulj] * z[julj]]
end for
end for

return x

So far, we have only looked into the solution time which excludes the preprocessing
time. Now, we study the required number of iterations to amortize the preprocessing
time. First, we give some statistics of preprocessing times required by both PSTRSV
and MKL in Table[5.2] Note that preprocessing stage of PSTRSV is parallel which is
reflected as a decrease in the average preprocessing times in Table [5.2] as increasing
the number of threads (). Whent = 2, ry = 0 and k; = 0 which results in a relatively

low preprocessing time since there is no cost regarding RY and S¥ matrices

dense; dense;

29

t | min max avg std

2 23 206 T1.21 184.22
4 18 10572 944.44 14406.53
8 15 4772 378.24 5510.77
10| 20 7525 317.20 7442.40
16 | 14 1517 226.86 2300.81
20 | 13 2229 209.18 2561.27

Table 5.3: Statistics regarding the required iterations by PSTRSV for amortization.

as explained in Section 4.1} The relatively high standard deviation in preprocessing
times of PSTRSV indicates that PSTRSV is more sensitive to sparsity structure than
MKL. Even though the cost of preprocessing for PSTRSV is relatively high, it can
be amortized by the fast triangular solution stage. In Table [5.3] we give the number
of iterations required by the proposed algorithm to amortize the preprocessing time
against the best sequential solver. Note that, we only compute the required number of
iterations only for those cases where PSTRSV has a speed-up s > 1 since, otherwise,
it would require infinite amount of iterations. The parallelism available in preprocess-
ing stage also affects amortization positively. Consistent with the Table [5.2] average
iteration count required for amortization drops as number of threads are increased
(for t > 2). Although, overall MKL requires less preprocessing time than PSTRSV,
it cannot amortize the lost time in 21/120 test cases for any ¢ € {2,4, 8,10, 16,20},

whereas PSTRSV cannot amortize the lost time only in 9/120 test cases.

5.2 Case Study

In a number of cases, we were not able to run solvers for a particular test matrix or
its reordered version due to memory constraints. Hence, we have only 6 cases where
we are able to measure the performance for all of the reorderings we mentioned along

with the original matrix using each thread count t € {2, 4,8, 10, 16,20}. For these 6
test cases, we present the speed-up curves in Figures [5.4] 5.10, [5.13] [5.16] and

30

[5.19] and preprocessing times in Figures[5.5] [5.8} [5.11} [5.14] [5.17] and [5.20] Now, we

look into those 6 cases where all reordering schemes work in more detail.

5.2.1 ct20stif

«10° RCM «10° NDP
0 0 T
2 2
4 4
0 2 4 0 2 4
%10* =104
0 «10* METIS 0 <104 AMD 0 «10* ORIGINAL
Il’l-l"})h" T .

x10% %10*

Figure 5.3: The illustration of ct20stif for different matrix reorderings.

ct20stif (Figure[5.3). According to Figure[5.4] PSTRSV outperforms MKL by obtain-
ing a speed-up of ~ 4x by using NDP, METIS and AMD. However, MKL performs
slightly better than PSTRSV when RCM, ColPerm, and ORIGINAL reorderings are
employed, while the speed-up is poor (< 2). For preprocessing, MKL is faster than
PSTRSV for ¢ > 2. In Figure[5.5] it can be seen that PSTRSV benefits the most from
METIS and NDP whereas MKL favors RCM and AMD. For both solvers, ColPerm

causes poor preprocessing performance.

31

Speed-up

Speed-up

Elapsed time (ms) Elapsed time [ms)

Elapsed time {ms)

Speed-up

nThreads
ORIGINAL

& r T
5L o8 PSTRSV :
¥ MEKL

o o 4

I I

b w3

i 1]

& &2
1 B
u 1 1 i 1
0 5 10 15 20

nThreads

P
]

P
]

I PSTRSV
N MEL

Elapsed time (ms)

24
> >

RCM ColPerm MDP METIS ORIGINAL AMD RCM ColPerm MDP METIS ORIGINAL AMD
71 t=8 Ju . t= 1[}.
Y PSTRSV | 2 Il PSTRSV
pall SO ISR |~ IR SO SRR SO B S C IS I B MKL

211
zll:I
2‘5
28
2?
26
23
24
23

RCM ColPerm NDP METIS ORIGINAL AMD RCM ColPerm NDP METIS ORIGINAL AMD
t=16 " t=20
-------- B PSTRSW |oiocid el i B8 [PSTRSV
------ I MEL B | MEL

RCM ColPerrn NDP

METIS ORIGINAL AMD

Elapsed time (ms)

RCM ColPerrn NDP

METIS ORIGINAL AMD

Figure 5.5: The preprocessing time comparison for ct20stif

32

5.2.2 FEM_3D thermall

RCM ColPerm

0 0 .0
5000 5000 b 5000
10000 10000 10000
15000 15000 15000
0 5000 1000015000 0 5000 1000015000 0 5000 10000 15000
METIS AMD ORIGINAL
. 0 0
i~
NG
50001 Ny | 5000 5000
‘L \‘. (1 - -
10000 N 10000 10000
15000 % NN 15000 15000
v |
0 5000 1000015000 0 5000 1000015000 0 5000 10000 15000

Figure 5.6: The illustration of FEM_3D_thermall for different matrix reorderings.

FEM_3D_thermall (Figure[5.6). According to Figure[5.7] for all methods the speed-
up is poor. PSTRSV outperforms MKL only in NDP case by reaching ~ 2.5 x speed-
up. For preprocessing, in Figure [5.8] PSTRSV outperforms MKL when NDP and
ORIGINAL ordering are used for ¢ = 20. For ¢t = 2, PSTRSV again has a faster
preprocessing phase. Nevertheless, PSTRSV benefits the most from METIS in all
cases whereas RCM is the most suitable one for MKL. On the other hand, ColPerm
and AMD are not suitable for PSTRSV.

33

Speed-up

Speed-up

Elapsed time [ms) Elapsed time {(ms)

Elapsed time {ms)

nThreads

ORIGINAL

| [e—e PSTRSV
v MKL

nThreads

10
nThreads

15

Figure 5.7: The speed-up comparison for FEM_3D_thermall

21

ColPerm NDP
t=8

METIS ORIGINAL AMD

Elapsed time (ms)

21

26

ColPerm NDP METIS ORIGINAL AMD

t=10

26

23

N PSTRSV

ColPerm NDP

- t=16

METIS ORIGINAL AMD

ms)

Elapsed time |

2:\
24
23
22

21

5 BEm FSTRSY
"""" B MKL

ColPerm NDP METIS ORIGINAL AMD

t=20

24 ____________

N ML

2% [EE N fee

22

21
ColPerm NDP

I PSTRSV

METIS ORIGINAL AMD

Elapsed time (ms)

I PSTRSW
N MEL

ColPerm NDP METIS ORIGINAL AMD

Figure 5.8: The preprocessing time comparison for FEM_3D_thermall

34

5.2.3 finan512

«10* RCM «10* ColPerm «10* NDP
0 0~ 0 -
o\
2 2\
4 4 \
6 6,%‘
0 2 4 6 0 2 4 8
x10% x10% x10*
0 «10° AMD 0 « 10 ORIGINAL
2 2
4 i: 4
6 - e 6\
0 2 4 6 0 2 4 6
x10% %10 %104

Figure 5.9: The illustration of finan512 for different matrix reorderings.

finan512 (Figure [5.9). According to Figure [5.10} PSTRSV outperforms MKL in all
cases except ColPerm, where both perform poorly. The best speed-up attained by
PSTRSV is ~ 6. MKL consistently produces < 1 speed-up for all cases. For pre-
processing, Figure [5.11] shows that PSTRSV requires lesser time than MKL when
METIS is selected for ¢t € {2,4,20}. MKL outperforms PSTRSV in the rest of the
cases for t > 2. As in Case [5.2.1] for both solvers, ColPerm deteriorates the prepro-

cessing performance.

35

Speed-up

Speed-up

Elapsed time (ms) Elapsed time [ms)

Elapsed time {ms)

ORIGINAL

| [e—e PSTRSV
v MKL

P
™

%)
]

22

nThreads

nThreads

Figure 5.10: The speed-up comparison for finan512

t=

I PSTRSV
N MEL

NDP METIS ORIGINAL

AMD

Elapsed time (ms)

ColPerm NDP

METIS ORIGINAL AMD
t=10

NDP METIS ORIGINAL

t=16

Elapsed time (ms)

AMD

I PSTRSV

NDP METIS ORIGINAL AMD

t=20

I PSTRSV
N MEL

RCM ColPerrn NDP METIS ORIGINAL

Figure 5.11

AMD

Elapsed time (ms)

36

Il PSTRSV
I MEL

RCM ColPerrn NDP METIS ORIGINAL AMD

: The preprocessing time comparison for finan512

5.24 pwtk

«10° RCM 0 «10° ColPerm

0.5 0.5/

15 15
2 2
0 1 2 0 1 2
%105 «10° 108
«10° METIS 0 105 ORIGINAL
R —
05ft L 0.5
1t " X 1
15 ' 15
2 2 i
0 1 2 0 1 2
%108 %10°

Figure 5.12: The illustration of pwtk for different matrix reorderings.

pwitk (Figure[5.12). According to Figure[5.13] PSTRSV outperforms MKL by reach-
ing a speed-up of ~ 3 with NDP, METIS, and AMD. Poor parallelism with RCM
results in worse performance than MKL which is able to reach ~ 2x speed-up. For
preprocessing, MKL is faster than PSTRSV for ¢ > 2. In Figure[5.14] it can be seen
that PSTRSV benefits the most from METIS whereas MKL gets better performance
with RCM, NDP, METIS and AMD. Again as in Cases[5.2.1 and [5.2.3] ColPerm is

not suitable for both solvers.

37

Speed-up

Speed-up

Elapsed time (ms) Elapsed time [ms)

Elapsed time {ms)

nThreads

ORIGINAL

| [e—e PSTRSV
v MKL

Speed-up

P
]

%)
=

[N
[T N W N
= T T T R =

AMD

RCM ColPerrn NDP METIS ORIGINAL

Elapsed time (ms)

METIS ORIGINAL AMD
t=10

ColPerm NDP

212

METIS ORIGINAL AMD

t=16

RCM ColPerrn NDP

psed time [ms)

Ela

I PSTRSV

2 11
2 10
29
28
) T
26
22-

METIS ORIGINAL AMD
t=20

ColPerm NDP

I PSTRSV

RCM ColPerrn NDP METIS ORIGINAL AMD

psed time [ms)

Elz

I PSTRSV

RCM ColPerrn NDP METIS ORIGINAL AMD

Figure 5.14: The preprocessing time comparison for pwtk

38

5.2.5 shallow_waterl

0 <104 RCM 0 «10* ColPerm
2 2
4 4
6 6
8 8
0 2 4 6 8 0
x10% %104

0 <104 AMD 0 «10* ORIGINAL
2 : 28
4 -= i 4
6 - 6
8 8
0 2 4 6 8 0

Figure 5.15: The illustration of shallow_waterl for different matrix reorderings.

shallow_waterl (Figure [5.15). According to Figure[5.16] PSTRSV achieves a good
speed-up regardless the reordering method. PSTRSV outperforms MKL in all cases
by a factor of ~ 4. For preprocessing, MKL outperforms PSTRSV for ¢ > 2. In
Figure m we can see that ColPerm, unlike the other cases, results in compara-
ble preprocessing performance with METIS for PSTRSV when ¢ = 20. Neverthe-
less, METIS is the best performer in overall for PSTRSV whereas RCM, NDP and
AMD are not suitable in this case. For MKL, RCM produces the best results for
t € {4,8, 16}, but it performs poorly for ¢ = 20. Both solvers benefit from ColPerm,
NDP and METIS for ¢ = 20.

39

Speed-up

Speed-up

Elapsed time [ms) Elapsed time {(ms)

Elapsed time {ms)

Speed-up

Speed-up

nThreads
ORIGINAL

Speed-up

| [e—e PSTRSV
v MKL

Speed-up

10
nThreads

20
nThreads

Figure 5.16: The speed-up comparison for shallow_waterl

21

NDP METIS ORIGINAL AMD

Elapsed time (ms)

METIS ORIGINAL AMD

NDP

t=8 t=10
2 , T . T e T .
: : I PSTRSV . I PSTRSW
al B MKL [el 2 B MKL [TVTTUTTTRR T T

24

23

22

ColPerm

NDP METIS ORIGINAL AMD

. t=16

24

23

Elapsed time (ms)

22

21

26

METIS ORIGINAL AMD
t=20

NDP

I PSTRSV
N ML

23

bhd THUE & EEENN R

23

22

ColPerm NDP METIS ORIGINAL AMD

23
24

Elapsed time (ms)

I PSTRSW

ColPerm NDP METIS ORIGINAL AMD

Figure 5.17: The preprocessing time comparison for shallow_waterl

40

5.2.6 venkat50

0 «10° RCM

x10*

. 10* ORIGINAL

x10%

Figure 5.18: The illustration of venkat50 for different matrix reorderings.

venkat50 (Figure [5.18)). According to Figure [5.19) PSTRSV outperforms MKL by
reaching at most ~ 5x speed-up for NDP, METIS, AMD, and ORIGINAL cases.
Again, poor parallelism with RCM results in a worse performance than MKL which
is able to reach ~ 2x speed-up. As in most cases, MKL outperforms PSTRSV in the
preprocessing phase for ¢ > 2. In Figure[5.20] METIS is the most suitable reordering
for PSTRSV, and RCM is the most suitable one for MKL. As in Cases Cases [5.2.1]
[5.2.3]and [5.2.4] ColPerm degrades the preprocessing performance for both solvers.

41

Speed-up

= L
T

Speed-up

Elapsed time [ms) Elapsed time {(ms)

Elapsed time {ms)

nThreads

[

L L
T

ORIGINAL

| [e—e PSTRSV
v MKL

25

z-l

29
2&
2?
25
25
24
23

nThreads nThreads nThreads
Figure 5.19: The speed-up comparison for venkat50
.t= : 2 T : =? T T
B PSTRSV " o L W PSTRSV| G |
B MKL B MKL
PR - N N et - .
.......................... 26 R S;....... [—

NDP METIS ORIGINAL AMD

Elapsed time (ms)

23

2&

NDP METIS ORIGINAL AMD

t=10

NDP METIS ORIGINAL AMD

t=16

ColPerm

I PSTRSV

NDP METIS ORIGINAL AMD

t=20

RCM

ColPerm

I PSTRSV
N ML

NDP METIS ORIGINAL AMD

psed time [ms)

Elz

ColPerm

I PSTRSW
N MEL

NDP METIS ORIGINAL AMD

Figure 5.20: The preprocessing time comparison for venkat50

42

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we presented a Spike based parallel sparse triangular linear system
solver. We defined the key performance parameters of the proposed algorithm and
analyzed their effect in terms of solution time. As test problems, we used matrices
obtained from the SuiteSparse Matrix Collection that arise in real world applications
and applied five well-known matrix reordering schemes. Experimental results show
that the proposed algorithm benefits from METIS, AMD and NDP reorderings. Ac-
cording to the results, the proposed algorithm outperforms parallel sparse triangular

solver of Intel MKL 2018 on a multicore arhitecture.

Several future work directions present themselves. First, a further study can be di-
rected on the preprocessing performance of the proposed algorithm. In this work,
there are some test cases where the proposed algorithm does not provide a solution
due to the memory limitations we set, so a highly parallel approach with a reduced
memory usage would solve this problem. Second, other matrix reordering frame-
works such as PaToH [72]] can be evaluated in terms of suitability for the proposed
algorithm. Furthermore, we introduced the performance parameters of the proposed
algorithm in Chapter 4 These parameters can be used to devise a specialized graph
partitioning algorithm to improve the load-balance. Third, an MPI implementation of
the proposed algorithm may prove useful for very large problems that are distributed

among different processors.

43

44

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

D. Hysom and A. Pothen, “A scalable parallel algorithm for incomplete fac-
tor preconditioning,” SIAM Journal on Scientific Computing, vol. 22, no. 6,

pp. 2194-2215, 2001.

S. Hutchinson, J. Shadid, and R. Tuminaro, “Aztec user’s guide. version 1,” tech.

rep., oct 1995.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, “Yale sparse
matrix package i: The symmetric codes,” International Journal for Numerical

Methods in Engineering, vol. 18, pp. 1145-1151, aug 1982.

X. S. Li and J. W. Demmel, “Superlu_dist: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems,” ACM Transactions on

Mathematical Software (TOMS), vol. 29, no. 2, pp. 110-140, 2003.

R. D. Falgout and U. M. Yang, “hypre: A library of high performance precondi-
tioners,” in International Conference on Computational Science, pp. 632—-641,

Springer, 2002.

O. Schenk, K. Girtner, W. Fichtner, and A. Stricker, “Pardiso: a high-
performance serial and parallel sparse linear solver in semiconductor device

simulation,” Future Generation Computer Systems, vol. 18, no. 1, pp. 69-78,

2001.

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, V. Eijkhout, W. Gropp, D. Kaushik, et al., “Petsc users manual revision 3.8,”

tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States), 2017.

P. R. Amestoy, L. S. Duff, J.-Y. L’Excellent, and J. Koster, “A fully asynchronous
multifrontal solver using distributed dynamic scheduling,” SIAM Journal on

Matrix Analysis and Applications, vol. 23, no. 1, pp. 1541, 2001.

45

[9]

[10]

[11]

[12]

[13]

[14]

[15]

T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for
sparse lu factorization,” SIAM Journal on Matrix Analysis and Applications,
vol. 18, no. 1, pp. 140-158, 1997.

S. Filippone and M. Colajanni, “Psblas: A library for parallel linear algebra
computation on sparse matrices,” ACM Transactions on Mathematical Software

(TOMS), vol. 26, no. 4, pp. 527-550, 2000.

M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson, “Pspases: An
efficient and scalable parallel sparse direct solver,” in In Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, Cite-
seer, 1999.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Soft-

ware available from tensorflow.org.

“Caffe2: A new lightweight, modular, and scalable deep learning framework,”

tech. rep., Facebook Al Research, USA, 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in

NIPS-W, 2017.

R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-
las, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Berg-
eron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-
Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier,
K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Coté, M. Co6té,
A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Diele-
man, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,

46

[16]

[17]

[18]

[19]

[20]

[21]

O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre,
P. Hamel, 1. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent,
S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz,
J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memi-
sevic, B. van Merriénboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pas-
canu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth,
P. Sadowski, J. Salvatier, F. Savard, J. Schliter, J. Schulman, G. Schwartz, 1. V.
Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subra-
manyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vin-
cent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu,
L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano: A Python framework for fast
computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,

May 2016.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

E. Anderson and Y. Saad, “Solving sparse triangular linear systems on parallel
computers,” International Journal of High Speed Computing, vol. 1, no. 01,
pp- 73-95, 1989.

J. H. Saltz, “Aggregation methods for solving sparse triangular systems on mul-
tiprocessors,” SIAM Journal on Scientific and Statistical Computing, vol. 11,

no. 1, pp. 123-144, 1990.

R. Schreiber and W.-P. Tang, “Vectorizing the conjugate gradient method,” Pro-
ceedings of the Symposium on CYBER 205 Applications, 1982.

A. H. Sameh and R. P. Brent, “Solving triangular systems on a parallel com-
puter,” SIAM Journal on Numerical Analysis, vol. 14, no. 6, pp. 1101-1113,
1977.

S.-C. Chen, D. J. Kuck, and A. H. Sameh, “Practical parallel band triangular
system solvers,” ACM Transactions on Mathematical Software (TOMS), vol. 4,
no. 3, pp. 270-277, 1978.

47

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. J. Dongarra and A. H. Sameh, “On some parallel banded system solvers,”

Parallel Computing, vol. 1, no. 3-4, pp. 223-235, 1984.

E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: the spike
algorithm,” Parallel computing, vol. 32, no. 2, pp. 177-194, 2006.

E. Polizzi and A. Sameh, “Spike: A parallel environment for solving banded

linear systems,” Computers & Fluids, vol. 36, no. 1, pp. 113-120, 2007.

M. Manguoglu, A. H. Sameh, and O. Schenk, “Pspike: A parallel hybrid sparse
linear system solver,” in European Conference on Parallel Processing, pp. 797—

808, Springer, 2009.

O. Schenk, M. Manguoglu, A. Sameh, M. Christen, and M. Sathe, “Parallel scal-
able pde-constrained optimization: antenna identification in hyperthermia can-

cer treatment planning,” Computer Science-Research and Development, vol. 23,

no. 3-4, pp. 177-183, 2009.

M. Manguoglu, “A domain-decomposing parallel sparse linear system solver,”
Journal of Computational and Applied Mathematics, vol. 236, no. 3, pp. 319—
325, 2011.

M. Manguoglu, “Parallel solution of sparse linear systems,” in High-

Performance Scientific Computing, pp. 171-184, Springer, 2012.

E. S. Bolukbasi and M. Manguoglu, “A multithreaded recursive and nonrecur-
sive parallel sparse direct solver,” in Advances in Computational Fluid-Structure

Interaction and Flow Simulation, pp. 283-292, Springer, 2016.

I. E. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. H. Sameh, “A di-
rect tridiagonal solver based on givens rotations for gpu architectures,” Parallel

Computing, vol. 49, pp. 101-116, 2015.

K. Mendiratta and E. Polizzi, “A threaded spike algorithm for solving general
banded systems,” Parallel Computing, vol. 37, no. 12, pp. 733-741, 2011.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for parti-
tioning irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 359-392, 1998.

48

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering,” Journal of Parallel and Distributed Computing,

vol. 48, no. 1, pp. 71-95, 1998.

P.R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree or-
dering algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17,
no. 4, pp. 886905, 1996.

A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal

on Numerical Analysis, vol. 10, no. 2, pp. 345-363, 1973.

A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite

Systems. Prentice Hall Professional Technical Reference, 1981.

E. Totoni, M. T. Heath, and L. V. Kale, “Structure-adaptive parallel solution of
sparse triangular linear systems,” Parallel Computing, vol. 40, no. 9, pp. 454—

470, 2014.

J. Mayer, “Parallel algorithms for solving linear systems with sparse triangular

matrices,” Computing, vol. 86, no. 4, p. 291, 2009.

M. M. Wolf, M. A. Heroux, and E. G. Boman, “Factors impacting performance
of multithreaded sparse triangular solve,” in International Conference on High

Performance Computing for Computational Science, pp. 32—44, Springer, 2010.

E. Rothberg and A. Gupta, “Parallel iccg on a hierarchical memory multiproces-
sor — addressing the triangular solve bottleneck.,” Parallel Computing, vol. 18,

no. 7, pp. 719 — 741, 1992.

X. S. Li, “Evaluation of sparse lu factorization and triangular solution on multi-
core platforms,” in International Conference on High Performance Computing

for Computational Science, pp. 287-300, Springer, 2008.

T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic block multi-color
ordering method for parallel multi-threaded sparse triangular solver in iccg
method,” in Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pp. 474—483, IEEE, 2012.

49

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Pothen and F. L. Alvarado, “A fast reordering algorithm for parallel sparse tri-
angular solution,” SIAM journal on scientific and statistical computing, vol. 13,

no. 2, pp. 645-653, 1992.

D. P. Koester, S. Ranka, and G. C. Fox, “A parallel gauss-seidel algorithm for
sparse power system matrices,” in Proceedings of the 1994 ACM/IEEE confer-
ence on Supercomputing, pp. 184-193, IEEE Computer Society Press, 1994.

E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matri-
ces,” in Proceedings of the 1969 24th national conference, pp. 157-172, ACM,
1969.

W. F. Tinney and J. W. Walker, “Direct solutions of sparse network equations
by optimally ordered triangular factorization,” proc. IEEE, vol. 55, no. 11,
pp- 1801-1809, 1967.

M. Naumov, “Parallel solution of sparse triangular linear systems in the pre-
conditioned iterative methods on the gpu,” tech. rep., NVIDIA Corp., Westford,
MA, USA, 2011.

Z. Chen, H. Liu, and B. Yang, “Parallel triangular solvers on gpu,” arXiv

preprint arXiv:1606.00541, 2016.

A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Constan-
tinides, “Balancing locality and concurrency: solving sparse triangular systems
on gpus,” in 2016 IEEE 23rd International Conference on High-Performance
Computing (HiPC), pp. 183-192, IEEE, 2016.

X. Wang, W. Xue, W. Liu, and L. Wu, “swsptrsv: a fast sparse triangular solve
with sparse level tile layout on sunway architectures,” in Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 338-353, ACM, 2018.

R. Li, “On parallel solution of sparse triangular linear systems in cuda,” arXiv

preprint arXiv:1710.04985, 2017.

W. Liu, A. Li, J. Hogg, 1. S. Duff, and B. Vinter, “A synchronization-free algo-
rithm for parallel sparse triangular solves,” in European Conference on Parallel

Processing, pp. 617-630, Springer, 2016.

50

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying synchroniza-
tion for high-performance shared-memory sparse triangular solver,” in Interna-

tional Supercomputing Conference, pp. 124—140, Springer, 2014.

S. W. Hammond and R. Schreiber, “Efficient iccg on a shared memory mul-

tiprocessor,” International Journal of High Speed Computing, vol. 4, no. 01,

pp. 1-21, 1992.

M. Naumov, P. Castonguay, and J. Cohen, “Parallel graph coloring with applica-
tions to the incomplete-lu factorization on the gpu,” tech. rep., NVIDIA Corp.,
Westford, MA, USA, 2015.

B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan, “Adapting sparse
triangular solution to gpus,” in 2012 41st International Conference on Parallel

Processing Workshops, pp. 140-148, 1EEE, 2012.

S. Ma and Y. Saad, “Distributed ilu(0) and sor preconditioners for unstructured

sparse linear systems,” tech. rep., Army High Performance Computing Research

Center, 1994.

R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick, “Au-
tomatic performance tuning and analysis of sparse triangular solve,” in In ICS
2002: Workshop on Performance Optimization via High-Level Languages and
Libraries, 2002.

B. Smith and H. Zhang, “Sparse triangular solves for ilu revisited: data layout
crucial to better performance,” The International Journal of High Performance

Computing Applications, vol. 25, no. 4, pp. 386-391, 2011.

E. Chow, H. Anzt, J. Scott, and J. Dongarra, “Using jacobi iterations and block-
ing for solving sparse triangular systems in incomplete factorization precondi-
tioning,” Journal of Parallel and Distributed Computing, vol. 119, p. 219-230,
2018.

H. Anzt, E. Chow, and J. Dongarra, “Iterative sparse triangular solves for pre-
conditioning,” in European Conference on Parallel Processing, pp. 650-661,

Springer, 2015.

51

[62] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and
scheduling of loops,” IEEE Transactions on computers, vol. 40, no. 5, pp. 603—
612, 1991.

[63] M. Naumov, “Parallel incomplete-lu and cholesky factorization in the precondi-
tioned iterative methods on the gpu,” tech. rep., NVIDIA Corp., Westford, MA,
USA, 2012.

[64] H. Liu, S. Yu, Z. Chen, B. Hsieh, and L. Shao, “Sparse matrix-vector multipli-
cation on nvidia gpu,” pp. 185-191, 2012.

[65] D. Brélaz, “New methods to color the vertices of a graph,” Communications of

the ACM, vol. 22, no. 4, pp. 251-256, 1979.

[66] D. P. Koester, S. Ranka, and G. Fox, “Parallel block-diagonal-bordered sparse
linear solvers for electrical power system applications,” in Scalable Parallel Li-

braries Conference, 1993., Proceedings of the, pp. 195-203, IEEE, 1993.

[67] T.Iwashita and M. Shimasaki, “Block red-black ordering: A new ordering strat-
egy for parallelization of iccg method,” International Journal of Parallel Pro-

gramming, vol. 31, no. 1, pp. 55-75, 2003.

[68] M. Luby, “A simple parallel algorithm for the maximal independent set prob-
lem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036-1053, 1986.

[69] “Intel math kernel library. reference manual,” tech. rep., Intel Corporation, Santa

Clara, USA, 2018.

[70] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM
Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1, 2011.

[71] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE Computational Science and Engineering, vol. 5,

no. 1, pp. 46-55, 1998.

[72] U. V. Catalyiirek and C. Aykanat, “Patoh: a multilevel hypergraph partitioning
tool, version 3.0, Bilkent University, Department of Computer Engineering,

Ankara, vol. 6533, 1999.

52

APPENDIX A

RESULTS OF ALL NUMERICAL EXPERIMENTS

A.1 Speed-up results

In this section, we present the computed speed-up s for each test matrix using the
approach explained in Chapter [5} Due to memory constraints, the speed-up results

are marked as "-" for the cases where we are not able to run both solvers.

A.1.1 Dubcova2

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.82 0.77 0.83 083 0.79 0.79
4 1.34 - 1.52 1.53 141 -
8 1.69 - 294 2.84 2.65 -
10 | 1.62 - 346 3.14 321 -
16 | 1.15 0.03 S5.11 244 4774 0.03
20| 1.26 0.03 4.04 3.18 391 0.03

Table A.1: Speedup results of PSTRSV using different reoderings for Dubcova?2

53

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.86 0.49 0.50 0.59 053 0.58
4 0.82 - 049 0.63 0.63 -
8 0.82 - 0.50 0.62 0.75 -
10 | 0.81 - 049 0.53 0.78 -
16 | 0.81 0.55 0.37 026 0.67 0.59
20 | 0.81 0.33 0.26 034 091 0.64

Table A.2: Speedup results of MKL using different reoderings for Dubcova?2

A.1.2 Dubcova3

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.85 0.88 0.85 089 0.8 0.1
4 1.11 - 145 1.26 1.39 -
8 1.12 - 248 1.52 2.28 -
10 | 1.04 - 311 248 290 -
16 | 0.73 - 291 1.81 3.00 -
20 | 0.54 - 3.02 1.50 3.10 -

Table A.3: Speedup results of PSTRSV using different reoderings for Dubcova3

54

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.64 0.85 0.65 0.71 058 0.69
4 0.61 - 0.82 0.84 0.61 -
8 0.62 - 095 099 0.64 -
10 | 0.62 - 097 1.00 0.67 -
16 | 0.48 - 0.73 093 0.46 -
20| 0.42 - 1.82 1.14 1.26 -

Table A.4: Speedup results of MKL using different reoderings for Dubcova3

A.1.3 FEM_3D thermall

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.83 0.80 0.85 135 0.77 0.84
4 1.20 0.23 1.57 1.60 084 0.69
8 0.84 0.20 2.57 206 1.07 045
10 | 0.69 0.21 2.40 1.74 122 0.58
16 | 0.37 0.25 1.71 1.21 1.18 0.28
20| 045 0.23 2.00 1.26 094 0.27

Table A.5: Speedup results of PSTRSV wusing different reoderings for
FEM _3D_thermall

55

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.83 0.62 0.60 089 058 0.89
4 1.30 0.67 0.64 1.14 0.76 1.03
8 1.55 0.67 0.65 1.65 084 1.06
10 | 1.55 0.67 0.71 1.57 0.92 1.10
16 | 1.00 0.62 0.52 1.70 0.73 0.75
20 | 0.94 0.55 0.20 1.55 065 0.14

Table A.6: Speedup results of MKL using different reoderings for
FEM 3D thermall

A.1.4 G3_circuit

PSTRSV
t

RCM ColPerm NDP METIS AMD ORIG
2 | 0.8 091 099 089 093 0.92
4 ; ; - 163 - ;
8 . , - - - ,
10 ; ; - 344 ; .
16 - - - 332 - .
20 - - ~ 423 -]

Table A.7: Speedup results of PSTRSV using different reoderings for G3_circuit

56

MKL
t

RCM ColPerm NDP METIS AMD ORIG
2 | 0.30 118 046 107 040 1.00
4 - - B 1. - -
8 - - - - - -
10 - - - 122 - ;
16 - - - 104 - -
20 - - - 151 ; ;

Table A.8: Speedup results of MKL using different reoderings for G3_circuit

A.1.5 apache2

PSTRSV
t

RCM ColPerm NDP METIS AMD ORIG
2 | 093 0.92 097 094 091 0091
4 ; ; - 154 - .
8 - ; - 149 ; ;
10 : . - 185 - ;
16 - - - 3.6 ; ;
20 . ; - 131 ; ;

Table A.9: Speedup results of PSTRSV using different reoderings for apache?2

57

MKL
t

RCM ColPerm NDP METIS AMD ORIG
2 | 0.63 138 059 184 055 185
4 ; ; - 297 - -
8 - ; - 440 ; ;
10 - - - 526 ; ;
16 - - - 4.68 - -
20 ; ; ~ 455 ; ;

Table A.10: Speedup results of MKL using different reoderings for apache?2

A.1.6 bmwcra_1

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.95 1.04 097 124 097 0.99
4 0.75 - 1.80 204 1.78 1.24
8 0.43 - 3.03 253 250 0.88
10 | 0.32 - 331 283 298 0.87
16 | 0.24 - 173 1.35 1.52 0.52
20 - - 1.67 1.09 130 0.52

Table A.11: Speedup results of PSTRSV using different reoderings for bmwcra_1

58

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 1.05 1.05 0.91 1.22 1.04 1.19
4 1.51 - 1.22 193 1.39 1.68
8 2.04 - 147 334 1.85 215
10 | 2.14 - 1.52 3.88 2.01 2.17
16 | 1.99 - 124 437 1.99 1.94
20 - - 291 3.60 356 5.55

Table A.12: Speedup results of MKL using different reoderings for bmwcra_1

A.1.7 DboneS01

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.92 094 091 1.34 092 0.95
4 0.29 - 1.58 0.89 157 0.34
8 0.24 - 276 1.64 275 0.19
10 | 0.23 - 3.10 228 311 0.18
16 | 0.21 - 2.82 0.60 2.63 -
20| 0.17 - 254 1.35 2.52 -

Table A.13: Speedup results of PSTRSV using different reoderings for boneS01

59

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.88 0.66 0.78 098 0.82 099
4 1.13 - 0.99 1.25 1.03 1.44
8 1.40 - 1.19 1.7 1.28 2.03
10 | 1.46 - 1.23 1.57 139 238
16 | 0.96 - 092 1.54 1.01 -
20| 2.23 - 0.76 290 211 -

Table A.14: Speedup results of MKL using different reoderings for boneS01

A.l8 ¢-70
PSTRSV
t
RCM ColPerm NDP METIS AMD ORIG
2 - - - - - 0.82
4 ; ; - - - 102
8 - - - - - 1.36
10 - - - - - 149
16 - - - - - 170
20 - - - - - 197

Table A.15: Speedup results of PSTRSV using different reoderings for c-70

60

MKL
t

RCM ColPerm NDP METIS AMD ORIG
2 ; ; . - - 049
4 ; ; - - - 049
8 - - - - -~ 049
10 - - . - - 048
16 - - - - - 050
20 - - - - - 018

Table A.16: Speedup results of MKL using different reoderings for c-70

A.1.9 c-big
PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 - - - - - 0.78
4 - - - - - 092
8 - - - - - 1.22
10 - - - - - 140
16 - - - - - 167
20 - - - - - 186

Table A.17: Speedup results of PSTRSV using different reoderings for c-big

61

MKL
t

RCM ColPerm NDP METIS AMD ORIG
2 ; ; ; ; - 048
4 ; ; - - - 046
8 - - - ; ~ 046
10 - - ; ; - 046
16 - - - - - 047
20 - ; ; ; -~ 017

Table A.18: Speedup results of MKL using different reoderings for c-big

A.1.10 consph

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.94 097 0.95 096 098 1.08
4 0.18 0.36 1.55 095 125 0.50
8 - 0.15 1.71 0.63 140 0.25
10 - 0.13 2.20 0.53 1.04 0.20
16 - 0.12 1.39 042 081 0.12
20 - - 139 0.37 0.67 -

Table A.19: Speedup results of PSTRSV using different reoderings for consph

62

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 1.22 1.11 0.92 1.08 090 0.89
4 2.02 1.49 1.23 1.80 1.02 0.89
8 - 2.02 1.49 239 1.17 0.98
10 - 2.25 1.56 261 1.16 0.96
16 - 171 1.21 197 083 0.62
20 - - 317 290 2.68 -

Table A.20: Speedup results of MKL using different reoderings for consph

A.1.11 ct20stif

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.86 0.83 0.85 1.18 082 0.85
4 0.32 0.50 1.44 142 140 091
8 0.29 0.51 2.30 210 248 1.08
10 | 0.28 0.52 2.74 216 277 101
16 | 0.26 040 3.95 3.55 436 151
20| 0.34 0.65 3.62 3.00 351 091

Table A.21: Speedup results of PSTRSV using different reoderings for ct20stif

63

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.79 0.60 0.68 078 0.72 0.79
4 1.15 0.87 0.87 1.04 097 1.23
8 1.60 1.15 1.11 1.37 133 1.68
10 | 1.77 1.28 1.12 1.61 1.40 1.79
16 | 1.51 0.91 0.99 1.66 133 197
20| 1.84 1.44 1.77 268 282 203

Table A.22: Speedup results of MKL using different reoderings for cz20stif

A.1.12 ecology2

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.85 093 0.92 093 091 0.93
4 1.10 1.24 1.39 1.46 - 1.32
8 1.29 - 234 2.65 - -
10| 1.31 - - 3.19 - -
16 | 1.26 - 246 3.28 - -
20| 1.17 - - 4.00 - -

Table A.23: Speedup results of PSTRSV using different reoderings for ecology?2

64

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.39 1.07 0.44 2.04 0.52 1.09
4 0.37 1.01 0.46 1.35 - 1.02
8 0.38 - 043 1.54 - -
10 | 0.38 - - 3.21 - -
16 | 0.28 - 0.32 1.35 - -
20 | 0.06 - - 2.22 - -

Table A.24: Speedup results of MKL using different reoderings for ecology?2

A.1.13 engine

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 - 092 0.89 092 088 0.89
4 - - 142 1.55 1.52 1.22
8 - - 263 255 2.65 1.81
10 - - 2.88 296 297 -
16 - - 281 291 2.86 1.50
20 - - 281 3.07 281 1.57

Table A.25: Speedup results of PSTRSV using different reoderings for engine

65

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 - 0.51 0.62 0.64 072 0.64
4 - - 084 097 097 1.01
8 - - 112 1.24 131 1.71
10 - - 118 1.26 1.32 -
16 - - 093 099 114 1.76
20 - - 193 1.63 219 1.80

Table A.26: Speedup results of MKL using different reoderings for engine

A.1.14 filter3D

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.87 0.81 0.87 093 0.84 087
4 0.84 - 149 1.27 136 0.64
8 0.59 - 270 232 214 0.17
10 | 0.47 - 3.4 3.75 277 0.11
16 | 0.30 - 475 288 325 0.08
20| 0.24 - 3.98 2.02 252 0.07

Table A.27: Speedup results of PSTRSV using different reoderings for filter3D

66

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.68 0.38 0.61 0.40 059 0.40
4 0.84 - 0.67 041 0.65 0.39
8 0.96 - 071 026 072 0.34
10 | 0.96 - 0.75 044 075 031
16 | 0.69 - 0.61 0.38 0.67 0.15
20| 0.84 - 0.39 028 1.04 0.36

Table A.28: Speedup results of MKL using different reoderings for filter3D

A.1.15 finan512

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.92 0.83 0.95 1.0 085 0.88
4 1.29 045 1.45 1.5 124 117
8 1.62 0.18 2.78 286 2.42 1.91
10| 1.34 0.24 3.36 3.37 270 2.10
16 | 1.02 0.38 4.93 485 420 252
20| 0.75 0.40 3.89 5.82 350 225

Table A.29: Speedup results of PSTRSV using different reoderings for finan512

67

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.45 0.52 041 051 054 0.59
4 0.48 0.54 0.39 047 0.68 0.55
8 0.51 0.56 0.37 048 080 0.54
10 | 0.50 0.59 0.35 059 083 0.54
16 | 0.26 0.50 0.25 0.30 0.60 0.39
20| 0.39 0.20 0.35 020 1.00 0.13

Table A.30: Speedup results of MKL using different reoderings for finan512

A.1.16 parabolic_fem

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.92 0.86 0.95 091 091 0.85
4 1.36 - 1.56 1.42 - -
8 2.05 - 281 2.64 - -
10 | 2.27 - 325 299 297 -
16 | 2.51 - 2.60 242 3.22 -
20| 2.25 -390 253 243 -

Table A.31: Speedup results of PSTRSV using different reoderings for parabolic_fem

68

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 1.03 0.61 048 0.60 047 0.60
4 0.97 - 049 0.84 - -
8 0.96 - 049 1.23 - -
10 | 0.96 - 049 146 0.57 -
16 | 0.95 - 041 229 043 -
20| 0.96 - 0.16 094 0.84 -

Table A.32: Speedup results of MKL using different reoderings for parabolic_fem

A1.17 pwtk
PSTRSV
t
RCM ColPerm NDP METIS AMD ORIG
2 0.97 0.98 0.96 1.10 095 0.98
4 1.43 1.04 1.76 1.62 173 1.50
8 1.27 1.07 3.05 273 290 219
10 | 1.13 091 3.16 258 310 181
16 | 0.75 0.63 3.22 337 3.02 1.45
20| 0.61 0.44 3.23 3.64 289 1.07

Table A.33: Speedup results of PSTRSV using different reoderings for pwtk

69

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 1.10 0.83 0.96 0.89 1.06 0.85
4 1.60 0.92 1.51 090 149 0.84
8 2.14 1.00 2.39 1.21 2.05 0.98
10 | 2.29 1.01 2.69 .11 2.23 1.04
16 | 1.57 0.62 2.32 142 1.75 0.73
20 | 1.60 0.51 3.09 1.39 230 0.62

Table A.34: Speedup results of MKL using different reoderings for pwrk

A.1.18 shallow_waterl

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.85 0.90 091 0.89 088 0.89
4 1.46 1.56 1.64 1.61 1.49 1.51
8 2.00 248 2.62 2.68 252 248
10 | 2.33 2.85 3.06 3.11 312 285
16 | 2.80 3.80 4.58 454 442 3.80
20 | 2.00 3.00 3.24 347 312 3.00

Table A.35: Speedup results of PSTRSV using different reoderings for shal-

low_waterl

70

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.47 0.46 0.42 0.57 048 0.45
4 0.67 0.43 0.43 0.47 058 043
8 0.93 0.45 0.43 0.61 0.78 045
10| 0.98 043 0.42 0.53 088 045
16 | 0.48 0.44 0.28 0.57 071 0.44
20 | 0.20 1.33 0.28 203 039 1.90

Table A.36: Speedup results of MKL using different reoderings for shallow_waterl

A.1.19 torso3

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.83 0.83 0.90 085 0.76 0.83
4 0.32 - 1.52 1.49 - 1.08
8 - - 2.65 1.02 - 098
10 - - 321 1.25 - 092
16 - - 3.69 1.43 - 041
20 - - 220 1.09 - 038

Table A.37: Speedup results of PSTRSV using different reoderings for torso3

71

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 0.57 0.96 0.53 1.02 0.60 1.04
4 0.59 - 048 1.54 - 1.84
8 - - 045 2.02 - 3.05
10 - - 043 2.27 - 384
16 - - 0.28 1.79 - 377
20 - - 0.25 2.47 - 371

Table A.38: Speedup results of MKL using different reoderings for forso3

A.1.20 venkat50

PSTRSV

t

RCM ColPerm NDP METIS AMD ORIG
2 0.80 0.79 0.82 1.38 0.81 0.78
4 1.03 0.18 1.56 1.45 153 1.25
8 0.79 0.20 2.00 277 290 147
10| 0.74 0.23 3.55 289 353 1.36
16 | 0.86 0.28 3.67 411 496 1.73
20| 0.83 0.31 4.23 393 452 154

Table A.39: Speedup results of PSTRSV using different reoderings for venkat50

72

MKL

t

RCM ColPerm NDP METIS AMD ORIG
2 1.00 0.67 0.75 0.64 084 0.64
4 1.50 0.70 1.25 0.72 119 0.66
8 2.20 0.63 0.89 077 1.74 0.58
10 | 2.37 0.59 2.50 0.82 198 0.54
16 | 1.75 0.34 2.29 0.52 200 0.32
20 | 2.09 0.68 2.62 1.39 231 0.57

Table A.40: Speedup results of MKL using different reoderings for venkat50

73

A.2 Runtime results

In this section, we present the wall-clock times taken to perform the preprocessing
and the solution phases of PSTRSV and MKL for each test case. Conformable with

the Chapter[5] only the cases where both solvers are able to run are considered.

A21 t=2
Matrix PSTRSY MKL STRSV
Prep. Sol. | Prep. Sol.

engine_ NDP 287 3.82 | 7739 541 3.93
engine_ColPerm 29.3 4.06 | 130.57 7.35 3.69
engine_ ORIGINAL 29.7 394 | 9537 5.46 3.45
engine_ METIS 24.8 3.78 | 89.00 5.32 3.38
engine_ AMD 293 391 | 77.08 4.81 3.39
consph_RCM 32.8 436 | 7743 337 4.11
consph_ColPerm 33.0 428 | 85.60 3.75 4.11
consph_NDP 33.5 499 | 95.89 5.14 4.79
consph_METIS 33.3 442 76.61 391 4.35
consph_ORIGINAL 34.0 3.89 | 8193 4.74 4.18
consph_ AMD 33.3 483 | 89.64 5.26 4.79
bmwcra_1_RCM 59.8 8.64 | 136.74 17.78 8.16
bmwcra_1_ColPerm 59.2 819 | 207.78 8.10 8.48
bmwcra_1_NDP 60.0 9.19 | 161.76 9.78 8.77
bmwcra_1_METIS 50.8 692 | 137.08 7.03 8.62
bmwcra_1_ORIGINAL 59.8 8.66 | 142.68 7.23 8.54
bmwcra_1_AMD 59.9 9.09 | 151.51 8.55 8.73
shallow_water]_RCM 2.5 047 7.26 0.85 0.42
shallow_waterl ColPerm 26 0.61 10.99 1.20 0.57
shallow_waterl NDP 29 0.58 944 1.26 0.55
shallow_waterl METIS 2.7 0.63 744 0.99 0.59

74

shallow_waterl_ORIGINAL 26 0.62] 11.21 1.23 0.57
shallow_water] _AMD 2.9 0.58 8.89 1.06 0.53
FEM_3D_thermall_RCM 25 0.35 459 0.35 0.31
FEM_3D_thermall_ColPerm 24 0.35 494 045 0.30
FEM_3D_thermall_NDP 2.7 040 6.96 0.57 0.36
FEM_3D_thermall_METIS 25 0.23 542 0.35 0.34
FEM_3D_thermall_ORIGINAL 25 037 4.33 0.35 0.32
FEM_3D_thermall_AMD 26 0.39 6.01 0.52 0.33
c-70_ORIGINAL 3.9 0.72] 1988 1.20 0.61
parabolic_fem_RCM 245 7775 7341 6.92 7.14
parabolic_fem_ColPerm 234 511 | 9390 7.27 4.41
parabolic_fem_NDP 32.8 596 | 91.51 11.66 5.62
parabolic_fem_METIS 222 488 | 80.76 7.42 4.33
parabolic_fem_ORIGINAL 23.6 524 | 9228 7.34 4.44
parabolic_fem_AMD 299 529 | 83.63 10.33 4.84
c-big_ ORIGINAL 157 3.57 | 84.51 5.82 2.81
venkat50_RCM 10.3 148 | 1753 1.19 1.21
venkat50_ColPerm 10.5 1.36| 2144 1.62 1.10
venkat50_NDP 103 1.31 | 20.48 1.42 1.10
venkat50_METIS 9.0 078 | 23.94 1.70 1.10
venkat50_ORIGINAL 10.3 1.37| 20.59 1.67 1.09
venkat50_AMD 10.2 1.37 | 19.50 1.32 1.13
boneSO1_RCM 32.7 485 | 8397 5.09 4.34
boneS01_ColPerm 329 5.00|179.99 7.04 4.58
boneSO1_NDP 33.2 519 | 9720 6.14 4.65
boneS01_METIS 344 375 | 8834 523 5.12
boneS01_ORIGINAL 38.4 549 | 93.60 5.25 5.06
boneS01_AMD 33.3 495 | 83.36 5.54 4.55
ct20stif_ RCM 149 1.63] 29.08 1.78 1.42
ct20stif_ColPerm 149 1.80| 57.19 2.49 1.51

75

ct20stif_NDP 14.9 1.68 | 34.50 2.11 1.45
ct20stif_METIS 159 124 | 3503 186 1.50
ct20stif_ORIGINAL 153 1.70| 31.56 1.83 1.46
ct20stif_AMD 151 1.73| 29.74 197 1.44
finan512_RCM 45 066 | 13.96 1.37 0.63
finan512_ColPerm 3.8 0.63 11.78 1.00 0.53
finan512_NDP 4.8 076 | 14.92 1.77 0.74
finan512_METIS 3.5 057 | 1050 1.17 0.64
finan512_ORIGINAL 3.9 069 | 10.77 1.03 0.63
finan512_AMD 4.2 0.71] 10.89 1.11 0.63
torso3_RCM 27.8 449 | 7475 6.53 3.75
torso3_ColPerm 26.0 495 | 76.26 4.28 4.12
torso3_NDP 31.4 543 | 105.85 9.22 4.87
torso3_METIS 27.0 483 | 6543 4.03 4.15
torso3_ORIGINAL 273 495 | 76.44 3.93 4.12
torso3_AMD 33.5 599 | 106.73 7.64 4.56
Dubcova2_RCM 6.2 1.32| 1834 1.25 1.10
Dubcova2_ColPerm 6.1 1.01 22.11 1.58 0.80
Dubcova2_NDP 71 1.13| 17.66 1.87 0.97
Dubcova2_METIS 6.4 1.03| 2046 145 0.89
Dubcova2_ORIGINAL 6.4 1.07| 2345 145 0.85
Dubcova2_AMD 71 112] 1724 1.65 0.90
Dubcova3_RCM 22.3 326 | 5549 4.32 2.80
Dubcova3_ColPerm 204 3.04 | 5744 3.13 2.59
Dubcova3_NDP 229 3.11| 51.03 4.07 2.64
Dubcova3_METIS 21.9 3.09 | 76.08 @ 3.89 2.69
Dubcova3_ORIGINAL 20.7 3.17 | 104.62 3.78 2.51
Dubcova3_AMD 229 322 | 4936 4.71 2.66
G3_circuit_RCM 64.3 10.78 | 234.20 32.12 9.50
G3_circuit_ColPerm 58.0 21.21 | 203.92 16.28 19.24
G3_circuit_NDP 75.2 14.06 | 251.50 30.16 13.98

76

G3_circuit_METIS 57.5 2252 | 163.60 18.64 19.11
G3_circuit_ORIGINAL 58.1 21.92 | 196.77 20.16 20.13
G3_circuit_AMD 69.5 12.83 | 248.66 29.49 11.92
pwtk_ RCM 66.1 8.69 | 143.00 7.65 8.31
pwtk_ColPerm 66.2 891 | 171.29 10.49 8.79
pwtk_NDP 65.9 9.31 | 155.55 9.32 8.98
pwtk_ METIS 57.5 796 | 165.46 9.81 8.78
pwtk_ORIGINAL 66.8 8.92 | 165.91 10.28 8.76
pwtk_AMD 65.4 9.12 | 150.39 8.22 8.75
apache2_RCM 35.6 548 | 9448 8.01 5.08
apache2_ColPerm 33.5 1041 | 104.08 691 9.57
apache2_NDP 41.0 6.92 | 129.28 11.36 6.72
apache2_METIS 32.9 10.12 | 84.33 5.15 9.28
apache2_ORIGINAL 33.5 10.57 | 89.95 5.18 9.58
apache2_AMD 36.8 6.36 | 119.38 10.65 5.81
ecology2_ RCM 36.3 6.49 | 129.45 13.85 5.58
ecology2_ColPerm 372 1343 | 133.54 11.38 12.46
ecology2_NDP 40.5 7.63 | 129.24 15.83 7.18
ecology2_METIS 36.3 13.28 | 91.10 6.04 12.32
ecology2_ORIGINAL 37.3 13.33 | 133.43 11.37 12.44
ecology2_ AMD 40.8 7.61 | 106.62 13.09 6.80
filter3D_RCM 173 2.68 | 39.76 3.42 2.34
filter3D_ColPerm 176 260 | 96.35 5.51 2.11
filter3D_NDP 173 282 | 46.89 4.05 2.47
filter3AD_METIS 152 273 | 6286 6.32 2.60
filter3D_ORIGINAL 172 286 | 68.75 6.30 2.53
filter3AD_AMD 17.8 287 | 43.38 4.11 2.44

Table A.41: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 2 for parallel solvers.

77

A22 t=4

PSTRSV MKL
Matrix STRSV
Prep. Sol. | Prep. Sol.

engine_NDP 661.9 227 | 51.27 3.99 3.93
engine_ ORIGINAL 2241.3 277 | 7324 341 3.45
engine_ METIS 187.8 227 | 56.61 3.52 3.38
engine_ AMD 1307.6 232 | 50.79 3.50 3.39
consph_RCM 1866.0 22.23 | 53.74 2.03 4.11
consph_ColPerm 2785.1 11.53 59.25 2.78 4.11
consph_NDP 1988.7 3.06 | 65.35 3.85 4.79
consph_METIS 765.4 453 | 54.21 239 4.35
consph_ORIGINAL 1149.5 854 | 60.97 4.74 4.18
consph_AMD 2806.7 3.79 | 59.00 4.64 4.79
bmwcra_1_RCM 1430.7 10.87 | 89.77 5.44 8.16
bmwcra_1_NDP 1844.3 494 | 103.81 7.28 8.77
bmwcra_1_METIS 115.3 423 | 92.70 4.46 8.62
bmwecra_1_ORIGINAL 4179.5 6.92 | 92.87 5.09 8.54
bmwcra_1_AMD 6019.8 496 | 103.57 6.35 8.73
shallow_water] _RCM 44.0 0.28 5.20 0.61 0.42
shallow_waterl ColPerm 583 036 | 11.38 1.29 0.57
shallow_waterl_NDP 51.1 0.33 6.44 1.25 0.55
shallow_waterl _METIS 26.2 0.36 5.38 1.23 0.59
shallow_water] _ORIGINAL 59.6 037 | 11.50 1.29 0.57
shallow_water] _AMD 87.8 035 6.56 0.90 0.53
FEM_3D_thermall_RCM 10.3 0.25 3.04 0.23 0.31
FEM_3D_thermall ColPerm 62.5 1.29 4.49 0.45 0.30
FEM_3D_thermall_NDP 16.1 0.23 4.71 0.56 0.36
FEM_3D_thermall_METIS 9.7 020 3.77 0.28 0.34

78

FEM_3D_thermall ORIGINAL 21.2 048 2.92 0.32 0.32
FEM_3D_thermall AMD 65.8 0.38 412 042 0.33
c-70_ORIGINAL 40 060 | 21.06 1.24 0.61
parabolic_fem_RCM 446.3 5.27 | 70.28 7.40 7.14
parabolic_fem_NDP 516.0 3.63 | 61.89 11.54 5.62
parabolic_fem_METIS 4136 315 | 54.92 5.30 4.33
c-big_ ORIGINAL 16.1 3.02| 81.89 6.07 2.81
venkat50_RCM 1582 1.16 | 12.22 0.80 1.21
venkat50_ColPerm 2849 6.01 16.16 1.58 1.10
venkat50_NDP 7.2 070 | 13.79 0.87 1.10
venkat50 _METIS 43.0 075 | 1527 1.52 1.10
venkat50_ORIGINAL 1441 0.87 | 14.02 1.65 1.09
venkat50_AMD 131.8 0.73 | 1281 0.94 1.13
rmal0_AMD 307.6 1.59 0.88 1.66 1.31
boneSO01_RCM 1563.1 1527 | 54.82 3.92 4.49
boneSO01_NDP 1385.0 293 | 61.97 4.68 4.68
boneS01_METIS 695.0 5.69 | 55.70 4.06 5.19
boneS01_ORIGINAL 15754 1494 | 58.34 3.52 5.06
boneS01_AMD 24114 290 | 55.00 4.43 4.61
ct20stif RCM 369.0 4.47| 18.69 1.23 1.42
ct20stif _ColPerm 2520.1 299 | 3540 1.73 1.51
ct20stif NDP 304.1 1.01 | 22.83 1.66 1.45
ct20stif METIS 70.5 1.05| 2356 1.43 1.50
ct20stif ORIGINAL 531.7 1.61| 20.14 1.19 1.46
ct20stif AMD 298.1 1.02 | 19.13 147 1.44
finan512_ RCM 974 048 8.76 1.29 0.63
finan512_ColPerm 2552.6 1.18 892 0.98 0.53
finan512_NDP 26.9 0.51 991 1.89 0.74
finan512_METIS 4.3 0.40 7.84 1.32 0.64
finan512_ORIGINAL 11749 0.53 7.02 1.13 0.63

79

finan512_AMD 36.5 0.50 759 091 0.63
torso3_RCM 2388.3 11.86 | 48.79 6.36 3.75
torso3_NDP 3000.1 3.22 | 69.01 10.11 4.87
torso3_METIS 850.7 275 | 4536 2.67 4.15
torso3_ORIGINAL 24772 381 | 50.82 2.23 4.12
Dubcova2_RCM 477 082 | 1822 1.34 1.10
Dubcova2_NDP 58.6 0.63 | 12.19 1.95 0.97
Dubcova2_METIS 43.0 057 | 1426 1.38 0.89
Dubcova2 AMD 943 0.64 | 11.53 1.42 0.90
Dubcova3_RCM 182.7 2.60 | 51.86 4.59 2.80
Dubcova3_NDP 254.0 1.86 | 33.03 3.26 2.64
Dubcova3_METIS 2459 2.03 | 4598 3.22 2.69
Dubcova3_AMD 3673 198 | 33.12 4.35 2.66
G3_circuit_METIS 1116.3 12.00 | 122.56 14.35 19.11
pwtk_RCM 611.8 592 | 92.12 5.29 8.31
pwtk_ColPerm 522.2 836 | 123.02 9.46 8.79
pwtk_NDP 905.8 5.08 | 101.59 5.91 8.98
pwtk_METIS 309.2 538 | 109.32 9.69 8.78
pwtk_ORIGINAL 423.0 5.66 | 131.36 10.12 8.76
pwtk_AMD 37144 5.04 | 9576 5.85 8.75
apache2_METIS 982.4 6.18 | 56.88 3.20 9.28
ecology2_ RCM 1444.2 5.01 | 120.04 14.81 5.58
ecology2_ColPerm 1540.4 10.22 | 128.47 12.16 12.46
ecology2_NDP 1463.3 5.07 | 96.30 15.46 7.18
ecology2_METIS 576.8 852 | 75.39 9.15 12.32
ecology2_ORIGINAL 1538.5 9.55 | 127.35 12.29 12.44
filter3D_RCM 299.0 2.79 | 25.67 @ 2.79 2.34
filter3D_NDP 3180 1.65| 31.13 3.66 247
filter3D_METIS 1104 2.01 | 41.57 6.31 2.60
filter3D_ORIGINAL 463.8 3.93 | 44.04 6.52 2.53

80

filter3AD_AMD 426.7 1.80 | 28.86 3.73 2.44

Table A.42: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 4 for parallel solvers.

A23 t=8
PSTRSV MKL
Matrix STRSV
Prep. Sol. | Prep. Sol.

engine_NDP 3954 139 | 3792 3.02 3.93
engine_ ORIGINAL 2044.1 198 | 49.70 2.04 3.45
engine_ METIS 1725 125 | 40.03 2.72 3.38
engine_ AMD 621.4 1.24 | 3555 2.58 3.39
consph_ColPerm 1565.0 28.11 4221 2.06 4.11
consph_NDP 1216.0 2.78 | 46.74 3.18 4.79
consph_METIS 559.1 6.86 | 39.68 1.80 4.35
consph_ORIGINAL 7879 17.04 | 42.07 4.35 4.18
consph_AMD 14945 341 | 41.30 4.08 4.79
bmwcra_1_RCM 895.1 18.82 | 65.02 4.01 8.16
bmwecra_1_NDP 10214 292 | 74.53 6.00 8.77
bmwcra_1_METIS 436.3 341 | 63.88 2.58 8.62
bmwcra_1_ORIGINAL 2092.8 9.74| 66.15 3.99 8.54
bmwcra_1_AMD 3016.1 3.54 | 7091 4.78 8.73
shallow_waterl _RCM 33.5 0.21 433 0.45 0.42
shallow_waterl ColPerm 269 023 | 10.62 1.28 0.57
shallow_water1 _NDP 371 0.21 5.36 1.27 0.55
shallow_waterl METIS 17.3 0.22 4.36 0.96 0.59
shallow_waterl ORIGINAL 264 023 | 11.03 1.28 0.57

81

shallow_water] AMD 60.3 0.21 484 0.68 0.53
FEM_3D_thermall RCM 17.7 0.37 2.17 0.20 0.31
FEM_3D_thermall_ColPerm 46.2 147 4.08 045 0.30
FEM_3D_thermall NDP 18.3 0.14 3.59 0.55 0.36
FEM_3D_thermall METIS 82 0.16 264 0.20 0.34
FEM_3D_thermall ORIGINAL 22.1 0.73 2.03 031 0.32
FEM_3D_thermall AMD 32.6 0.30 2.85 0.38 0.33
c-70_ORIGINAL 41 045] 1996 1.24 0.61
parabolic_fem_RCM 376.6 3.48 | 63.68 741 7.14
parabolic_fem_NDP 589.9 2.00 | 45.33 11.49 5.62
parabolic_fem_METIS 3446 1.68 | 43.77 3.60 4.33
c-big_ORIGINAL 16.4 227 | 71.72 6.05 2.81
venkat50_RCM 128.8 1.53 896 0.55 1.21
venkat50_ColPerm 158.7 559 | 12.00 1.77 1.10
venkat50_NDP 976 055 | 17.99 1.23 1.10
venkat50_METIS 309 040 | 10.34 1.45 1.10
venkat50 ORIGINAL 92.3 0.75 990 1.90 1.09
venkat50_AMD 71.8 0.39 940 0.65 1.13
boneSO01_RCM 12829 18.26 | 38.93 3.17 4.34
boneS01_NDP 672.7 1.73 | 45.78 3.92 4.65
boneS01_METIS 256.6 3.21 | 40.69 2.92 5.12
boneS01_ORIGINAL 1121.2 26.36 | 45.48 2.51 5.06
boneS01_AMD 1013.4 1.82 | 39.74 3.57 4.55
ct20stif RCM 2419 485 | 14.39 0.89 1.42
ct20stif_ColPerm 15214 295 | 2498 1.30 1.51
ct20stif_NDP 1872 0.63 | 15.60 1.31 1.45
ct20stif METIS 1149 071 | 1594 1.09 1.50
ct20stif ORIGINAL 362.2 1.35| 14.01 0.87 1.46
ct20stif AMD 2179 058 | 13.49 1.08 1.44
finan512_RCM 94.5 0.39 6.81 1.24 0.63

82

finan512_ColPerm 1392.7 3.01 7.22 0.95 0.53
finan512_NDP 229 0.27 7.18 2.01 0.74
finan512_METIS 6.9 0.22 6.33 1.31 0.64
finan512_ORIGINAL 343.6 0.33 517 1.17 0.63
finan512_AMD 29.1 0.26 581 0.79 0.63
torso3_NDP 1580.0 1.85 | 52.09 10.93 4.87
torso3_METIS 638.6 4.04 | 31.84 2.04 4.15
torso3_ORIGINAL 15454 419 | 36.30 1.35 4.12
Dubcova2_RCM 386 065 | 1737 1.34 1.10
Dubcova2_NDP 42.7 0.33 814 1.94 0.97
Dubcova2_METIS 28.6 031 | 1041 1.43 0.89
Dubcova2_ AMD 60.8 0.34 8.36 1.20 0.90
Dubcova3_RCM 156.3 2.56 | 50.34 4.57 2.80
Dubcova3_NDP 178.8 1.08 | 23.46 2.78 2.64
Dubcova3_METIS 2644 174 | 3043 271 2.69
Dubcova3_AMD 258.5 1.03 | 22.60 4.09 2.66
pwtk_ RCM 762.5 6.67 | 64.59 3.94 8.31
pwtk_ColPerm 2301.0 8.17 | 106.55 8.75 8.79
pwtk_NDP 784.9 293 | 7215 3.75 8.98
pwtk_METIS 2775 320 | 7544 7.23 8.78
pwtk_ORIGINAL 19235 3.99 | 114.37 8.89 8.76
pwtk_ AMD 1906.4 3.00 | 69.43 4.24 8.75
apache2_METIS 897.6 6.28 | 46.60 2.13 9.28
ecology2_RCM 1176.1 4.25 | 115.14 14.79 5.58
ecology2_NDP 1270.1 296 | 78.19 16.63 7.18
ecology2_METIS 5415 4.72 | 66.04 8.00 12.32
filter3D_RCM 2152 4.01 | 18.16 2.45 2.34
filter3D_NDP 2125 092 | 2145 3.49 2.47
filter3D_METIS 70.0 111 | 33.72 9.95 2.60
filter3D_ORIGINAL 867.0 15.02 | 30.88 7.43 2.53

83

filter3AD_AMD 3975 114 | 19.64 3.38 2.44

Table A.43: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix re-

orderings. Measured in milliseconds. The number of threads is 8 for parallel solvers.

A24 t=10
PSTRSV MKL
Matrix STRSV
Prep. Sol. | Prep. Sol.

engine_ NDP 3416 114 | 3576 2.86 3.93
engine_ METIS 1773 116 | 35.03 2.68 3.38
engine_ AMD 515.7 1.06 | 34.50 241 3.39
consph_ColPerm 1106.0 32.35 | 39.00 1.85 4.11
consph_NDP 861.0 2.16 | 40.89 3.05 4.79
consph_METIS 468.4 8.13 | 34.24 1.65 4.35
consph_ORIGINAL 708.6 21.75 | 45.15 4.45 4.18
consph_AMD 1391.2 454 | 3793 4.08 4.79
bmwcra_1_RCM 1059.0 25.28 | 60.59 3.79 8.16
bmwcra_1_NDP 908.4 2.68 | 72.00 5.81 8.77
bmwcra_1_METIS 390.2 3.03| 60.70 2.21 8.62
bmwecra_1_ORIGINAL 1633.8 9.84 | 60.92 3.95 8.54
bmwcra_1_AMD 21348 297 | 66.91 4.41 8.73
shallow_water] RCM 31.1 0.18 4.28 043 0.42
shallow_water]l_ColPerm 191 020 11.35 1.32 0.57
shallow_waterl_NDP 35,5 0.18 4.83 1.30 0.55
shallow_water] METIS 16.3 0.19 3.77 1.12 0.59
shallow_water] ORIGINAL 194 020 | 1097 1.28 0.57

84

shallow_waterl_AMD 43.1 017 449 0.60 0.53
FEM_3D_thermall_RCM 13.1 0.45 2.67 0.20 0.31
FEM_3D_thermall_ColPerm 36.8 1.43 5.88 0.45 0.30
FEM_3D_thermall_NDP 20.7 0.15 3.26 0.51 0.36
FEM_3D_thermall_METIS 10.7 0.19 290 0.21 0.34
FEM_3D_thermall_ORIGINAL 19.1 0.59 2.66 0.31 0.32
FEM_3D_thermall_AMD 24.3 0.27 391 0.36 0.33
c-70_ORIGINAL 4.1 041 | 1891 1.26 0.61
parabolic_fem_RCM 368.0 3.15| 6249 745 7.14
parabolic_fem_NDP 748.5 1.75 | 42.25 11.62 5.62
parabolic_fem_METIS 302.0 148 | 39.16 3.04 4.33
parabolic_fem_AMD 1141.8 1.66 | 3991 8.70 4.84
c-big_ ORIGINAL 16.1 199 | 68.73 6.04 2.81
venkat50_RCM 1145 1.63 7.79 0.51 1.21
venkat50_ColPerm 198.7 487 | 10.60 1.88 1.10
venkat50_NDP 62.7 031 9.66 0.44 1.10
venkat50_METIS 28.4 0.38 951 1.34 1.10
venkat50_ORIGINAL 70.9 0.81 8.95 2.03 1.09
venkat50_AMD 714 032 8.25 0.57 1.13
boneSO01_RCM 1122.6 19.10 | 36.93 3.04 4.49
boneSO01_NDP 573.0 149 | 41.17 3.76 4.68
boneSO1_METIS 3125 223 | 4093 3.25 5.19
boneSO1_ORIGINAL 954.7 2794 | 41.10 213 5.06
boneS01_AMD 751.8 148 | 35.19 3.31 4.61
ct20stif_ RCM 226.5 5.09 | 1294 0.80 1.42
ct20stif_ColPerm 1265.9 2.88 | 21.87 1.18 1.51
ct20stif_NDP 1188 053 | 1391 1.29 1.45
ct20stif METIS 74.8 070 | 16.28 0.94 1.50
ct20stif ORIGINAL 360.3 1.46 | 13.48 0.82 1.46
ct20stif_AMD 180.8 0.52 | 12.47 1.03 1.44

85

finan512_ RCM 98.5 0.47 6.01 1.27 0.63
finan512_ColPerm 1133.0 2.34 6.67 0.93 0.53
finan512_NDP 274 0.22 6.16 2.09 0.74
finan512_METIS 11.7 019 | 10.03 1.08 0.64
finan512_ORIGINAL 276.9 0.30 4.55 1.16 0.63
finan512_AMD 382 0.23 524 0.75 0.63
torso3_NDP 1206.2 1.53 | 47.82 11.40 4.87
torso3_METIS 575.8 3.33 | 29.75 1.83 4.15
torso3_ORIGINAL 11259 449 | 36.27 1.07 4.12
Dubcova2_ RCM 399 0.68| 17.79 1.36 1.10
Dubcova2_ NDP 449 0.28 757 1.96 0.97
Dubcova2 METIS 34.3 0.28 9.60 1.65 0.89
Dubcova2_ AMD 55.0 0.28 796 1.16 0.90
Dubcova3_ RCM 150.5 278 | 48.82 4.57 2.80
Dubcova3_NDP 166.8 0.85| 21.55 2.73 2.64
Dubcova3_METIS 201.7 118 | 27.78 2.71 2.69
Dubcova3_ AMD 243.0 085 | 21.29 4.02 2.66
G3_circuit. METIS 1099.6 5.64 | R86.86 15.86 19.11
pwtk_RCM 693.0 7.51| 63.24 3.70 8.31
pwtk_ColPerm 2756.2 9.57 | 116.75 8.62 8.79
pwtk_NDP 9334 2.82 | 67.75 3.31 8.98
pwtk_METIS 208.5 339 | 7250 7.84 8.78
pwtk_ORIGINAL 2361.3 4.81 | 108.38 8.42 8.76
pwtk_ AMD 13309 281 | 65.53 3.91 8.75
apache2_METIS 708.8 5.07| 4520 1.78 9.28
ecology2_RCM 1106.3 4.23 | 117.68 14.84 5.58
ecology2_METIS 415.1 388 | 55.80 3.82 12.32
filter3D_RCM 2228 5.02 | 17.04 2.44 2.34
filter3D_NDP 174.4 0.79 | 1981 3.32 2.47
filter3D_METIS 469 0.69 | 2494 5.90 2.60

86

28.17 8.02
18.10 3.26

2.53

2.44

filter3D_ORIGINAL 855.6 23.58
filter3D_AMD 376.0 0.88

Table A.44: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix

reorderings. Measured in milliseconds. The number of threads is 10 for parallel

solvers.
A25 t=16
PSTRSV MKL
Matrix STRSV
Prep. Sol. | Prep. Sol.

engine_ NDP 2364 1.70 | 29.73 3.16 3.93
engine_ ORIGINAL 1633.2 2.13 | 38.27 1.43 3.45
engine_ METIS 1157 135 | 2741 3.38 3.38
engine_ AMD 320.0 1.21 | 3241 2.73 3.39
consph_ColPerm 1013.4 3494 | 39.69 241 4.11
consph_NDP 8029 338 | 4583 3.88 4.79
consph_METIS 512.2 10.40 | 41.42 2.22 4.35
consph_ORIGINAL 770.0 34.85 | 49.73 6.71 4.18
consph_AMD 918.3 5.87 | 43.40 5.78 4.79
bmwcra_1_RCM 733.9 33.62 | 46.21 4.10 8.16
bmwcra_1_NDP 675.6 5.09 | 53.74 7.09 .77
bmwcra_1_METIS 407.8 6.36 | 46.72 1.96 8.62
bmwcra_1_ORIGINAL 838.9 16.57 | 47.55 441 8.54
bmwcra_1_AMD 1125.8 5.79 | 48.31 4.43 8.73
shallow_water] RCM 28.7 0.15 4.89 0.87 0.42
shallow_waterl_ColPerm 158 015] 11.89 1.29 0.57
shallow_waterl NDP 26.6 0.12 5.43 1.93 0.55

87

shallow_water] _METIS 9.1 0.13 4.85 1.03 0.59
shallow_waterl] ORIGINAL 15.3 0.15 12.03 1.29 0.57
shallow_waterl _ AMD 31.3 0.12 6.25 0.75 0.53
FEM_3D_thermall_RCM 15.7 0.81 3.18 0.30 0.31
FEM_3D_thermall ColPerm 272 1.26 4.43 0.52 0.30
FEM_3D_thermall_NDP 20.9 0.21 3.93 0.69 0.36
FEM_3D_thermall_METIS 10.0 0.28 3.7 0.20 0.34
FEM_3D_thermall_ORIGINAL 19.6 1.18 257 044 0.32
FEM_3D_thermall_AMD 19.8 0.28 4.85 045 0.33
c-70_ORIGINAL 4.4 037 | 1872 1.27 0.61
parabolic_fem_RCM 286.9 2.84 | 61.24 7.49 7.14
parabolic_fem_NDP 4004 216 | 39.07 13.71 5.62
parabolic_fem_METIS 2476 1.82 | 36.32 1.92 4.33
parabolic_fem_AMD 660.8 1.50 | 42.20 11.12 4.84
c-big_ ORIGINAL 16.1 1.65 | 66.03 5.90 2.81
venkat50_RCM 105.4 140 | 10.32 0.69 1.21
venkat50_ ColPerm 304.2 4.03 1291 324 1.10
venkat50_NDP 63.4 030 9.34 048 1.10
venkat50_METIS 24.5 0.27 847 213 1.10
venkat50_ORIGINAL 60.4 0.63 | 11.62 3.44 1.09
venkat50_AMD 50.7 0.23 9.43 0.57 1.13
boneS01_RCM 1165.1 21.12 | 42.75 4.57 4.49
boneS01_NDP 0345 1.64 | 46.63 5.02 4.68
boneSO01_METIS 391.2 843 | 4292 3.28 5.19
boneS01_AMD 682.3 1.74 | 41.75 4.52 4.61
ct20stif_RCM 194.9 545 | 12.25 0.94 1.42
ct20stif _ColPerm 950.2 3.75| 2359 1.63 1.51
ct20stif_NDP 84.7 037 | 1397 148 1.45
ct20stif_METIS 57.6 042 | 1321 090 1.50
ct20stif_ORIGINAL 2252 097 | 14.16 0.74 1.46

88

ct20stif AMD 952 033 | 12.10 1.08 1.44
finan512_RCM 71.7 0.62 6.55 2.42 0.63
finan512_ColPerm 594.4 1.40 746 1.05 0.53
finan512_NDP 18.8 0.15 7.14 295 0.74
finan512_METIS 7.8 013 6.71 2.09 0.64
finan512_ORIGINAL 1224 0.25 5.58 1.62 0.63
finan512_AMD 23.8 0.15 5.98 1.05 0.63
torso3_NDP 696.5 1.32 | 44.83 17.10 4.87
torso3_METIS 262.6 291 | 2694 232 4.15
torso3_ORIGINAL 729.4 10.01 | 30.24 1.09 4.12
Dubcova2_ RCM 456 095 | 16.08 1.35 1.10
Dubcova2_ColPerm 614.8 30.05 | 10.93 1.51 0.80
Dubcova2_NDP 31.9 0.19 7.56 2.62 0.97
Dubcova2_METIS 27.5 0.36 829 3.37 0.89
Dubcova2_ORIGINAL 1453.0 27.63 | 12.79 1.45 0.85
Dubcova2_ AMD 39.2 0.19 838 1.34 0.90
Dubcova3_RCM 1375 446 | 4699 4.56 2.80
Dubcova3_NDP 114.8 0.53 | 20.86 3.33 2.64
Dubcova3_METIS 1464 132 | 21.26 297 2.69
Dubcova3_AMD 146.0 049 | 25.12 4.90 2.66
G3_circuit. METIS 912.4 5.76 | 102.83 18.38 19.11
pwtk_RCM 817.7 11.01 | 71.78 5.29 8.31
pwtk_ColPerm 2814.1 13.66 | 123.15 13.77 8.79
pwtk_NDP 763.6 279 | 7235 3.87 8.98
pwtk_METIS 2224 2.61 | 7143 6.17 8.78
pwtk_ORIGINAL 1189.4 6.05 | 104.58 11.92 8.76
pwtk_AMD 11699 2.84 | 75.05 4.92 8.75
apache2_METIS 479.3 3.00| 41.11 1.88 9.27
ecology2_ RCM 858.5 4.83 | 113.25 14.75 5.58
ecology2_NDP 721.1 340 | 76.28 23.01 7.18

89

ecology2_METIS 428.8 3.60 | 54.11 5.8 12.32
coater2_ORIGINAL 2.9 0.24 0.19 024 0.20
filter3D_RCM 195.8 793 | 18.63 341 2.34
filter3AD_NDP 136.2 0.52 | 18.06 4.06 2.47
filter3AD_METIS 56.6 090 | 19.73 6.85 2.60
filter3D_ORIGINAL 769.4 32.07 | 26.29 16.54 2.53
filter3AD_AMD 2472 075 | 1795 3.62 2.44

Table A.45: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix

reorderings. Measured in milliseconds. The number of threads is 16 for parallel

solvers.
A26 t=20
PSTRSV MKL
Matrix STRSV
Prep. Sol. | Prep. Sol.

engine_NDP 226.8 143 | 3557 1.64 4.01
engine_ORIGINAL 1391.0 2.04 | 43.53 145 3.45
engine_ METIS 105.0 0.70 | 28.63 1.53 3.38
engine_ AMD 3221 081 | 3233 1.51 3.38
consph_NDP 4299 341 | 39.61 1.46 4.75
consph_METIS 4429 1181 | 36.98 1.50 4.35
consph_AMD 594.0 6.31 36.22 141 4.74
bmwcra_1_NDP 653.8 5.26 | 62.98 3.01 8.77
bmwcra_1_ METIS 419.2 794 | 54.27 2.36 8.62
bmwcra_1 ORIGINAL 857.7 16.27 | 49.09 1.54 8.54
bmwcra_1_AMD 981.6 6.71 | bH4.41 245 8.73

90

shallow_water] RCM 295 0.21 15.84 2.05 0.42
shallow_waterl ColPerm 12.1 0.19 7.65 0.43 0.57
shallow_waterl _NDP 283 017 | 1598 1.98 0.55
shallow_waterl METIS 109 0.17 6.61 0.29 0.59
shallow_waterl] ORIGINAL 11.7 0.19 6.80 0.30 0.57
shallow_waterl_ AMD 325 017 827 1.37 0.53
FEM_3D_thermall RCM 13.8 0.69 3.19 0.33 0.31
FEM_3D_thermall ColPerm 249 1.30 6.92 0.55 0.30
FEM_3D_thermall NDP 16.0 0.18 6.67 1.81 0.36
FEM_3D_thermall METIS 98 0.27 423 0.22 0.34
FEM_3D_thermall ORIGINAL 17.8 1.18 | 153.93 2.28 0.32
FEM_3D_thermall AMD 209 0.35 4.09 0.51 0.33
¢-70_ORIGINAL 41 031 | 2647 344 0.61
parabolic_fem_RCM 281.7 318 | 59.91 7.40 7.14
parabolic_fem_NDP 405.1 1.44 | 95.54 34.70 5.62
parabolic_fem_METIS 2447 1.71 | 57.17 4.61 4.33
parabolic_fem_AMD 644.8 199 | 5595 5.74 4.84
c-big_ ORIGINAL 16.7 1.51 | 102.03 17.03 2.81
venkat50_RCM 97.1 145 991 0.58 1.21
venkat50_ColPerm 237.1 3.58 | 15.57 1.62 1.10
venkat50_NDP 494 026 | 11.40 0.42 1.10
venkat50_METIS 23.1 028 | 11.04 0.79 1.10
venkat50_ORIGINAL 52.8 0.71 | 11.50 1.90 1.09
venkat50_AMD 52.3 0.25 | 11.38 0.49 1.13
rmal0_AMD 118.3 5.61 044 1.69 1.31
boneSO01_RCM 861.7 20.04 | 34.85 1.79 4.34
boneS01_NDP 4789 1.84| 61.65 6.16 4.68
boneS01_METIS 282.3 3.84 | 40.74 1.79 5.19
boneS01_AMD 599.6 1.83 | 46.71 2.19 4.61
ct20stif RCM 207.8 4.14 | 1581 0.77 1.42

91

ct20stif ColPerm 793.5 234 | 26.01 1.05 1.51
ct20stif_NDP 80.0 040 | 16.47 0.82 1.45
ct20stif_METIS 57.1 0.50 | 12.46 0.56 1.50
ct20stif_ORIGINAL 162.7 1.60 | 13.64 0.72 1.46
ct20stif_ AMD 949 041 | 1393 0.51 1.44
finan512_RCM 89.7 0.84 | 11.50 1.62 0.63
finan512_ColPerm 4375 1.33 | 1491 2.60 0.53
finan512_NDP 23.3 019 | 1364 2.12 0.74
finan512_METIS 95 011] 26.28 3.19 0.64
finan512_ORIGINAL 129.6 0.28 | 12.80 4.81 0.63
finan512_AMD 41.3 0.18 9.11 0.63 0.63
torso3_NDP 924.3 221 | 80.57 19.63 4.87
torso3_METIS 258.7 3.82| 29.77 1.68 4.15
torso3_ORIGINAL 594.8 10.76 | 31.40 1.11 4.12
Dubcova2_RCM 43.0 087 | 1766 1.35 1.10
Dubcova2_ColPerm 527.2 28.68 | 18.09 2.39 0.80
Dubcova2_NDP 376 024 | 13.76 3.74 0.97
Dubcova2_METIS 224 028 | 16.33 2.64 0.89
Dubcova2_ORIGINAL 1091.1 28.21 | 21.68 1.32 0.85
Dubcova2_AMD 39.9 0.23 9.24 0.99 0.90
Dubcova3_RCM 130.9 3.83 | 47.61 4.49 2.80
Dubcova3_NDP 123.6 0.66 | 28.53 1.34 2.64
Dubcova3_METIS 126.3 1.09 | 27.15 2.58 2.69
Dubcova3_AMD 152.0 0.64 | 26.47 2.49 2.66
G3_circuit_METIS 953.2 4.52 | 110.75 12.64 19.11
pwtk_ RCM 679.4 1353 | 75.71 5.19 8.31
pwtk_ColPerm 2245.2 20.04 | 126.81 17.07 8.79
pwtk_NDP 784.7 278 | 81.35 2091 8.98
pwtk_METIS 175.7 241 | 76.68 6.33 8.78
pwtk_ORIGINAL 12774 819 | 77.71 14.08 8.76

92

pwtk_ AMD 988.5 3.03| 73.70 3.80 8.75
apache2_METIS 860.5 7.06 | 57.48 2.04 9.28
ecology2 RCM 869.0 5.19 | 264.46 57.61 5.58
ecology2_ METIS 273.2 276 | 53.84 3.82 12.32
filter3D_RCM 2144 9.80 | 1945 2.80 2.34
filter3D_NDP 1184 0.62 | 34.86 6.33 2.47
filter3D_METIS 68.5 1.29 | 3251 9.33 2.60
filter3D_ORIGINAL 822.6 38.08 | 39.09 7.10 2.53
filter3D_AMD 2229 097 | 2428 234 2.44

Table A.46: The elapsed times of preprocessing and solution parts of the proposed
algorithm and Intel MKL against the best sequential algorithm for different matrix
reorderings. Measured in milliseconds. The number of threads is 20 for parallel

solvers.

93

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Matrix Ordering
	Parallel Sparse Triangular Solvers
	Level-scheduling Based Methods
	Self-scheduling Based Methods
	Graph-coloring Based Methods
	Block-diagonal Based Methods

	THE PROPOSED ALGORITHM
	PERFORMANCE CONSTRAINTS
	Preprocessing
	Solution

	NUMERICAL EXPERIMENTS
	Performance Overview
	Case Study
	ct20stif
	FEM_3D_thermal1
	finan512
	pwtk
	shallow_water1
	venkat50

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Results of All Numerical Experiments
	Speed-up results
	Dubcova2
	Dubcova3
	FEM_3D_thermal1
	G3_circuit
	apache2
	bmwcra_1
	boneS01
	c-70
	c-big
	consph
	ct20stif
	ecology2
	engine
	filter3D
	finan512
	parabolic_fem
	pwtk
	shallow_water1
	torso3
	venkat50

	Runtime results
	t = 2
	t = 4
	t = 8
	t = 10
	t = 16
	t = 20

