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submitted by MERVE SEÇGİN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mathematics Department, Middle East Tech-
nical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics

Assoc. Prof. Dr. Fırat Arıkan
Supervisor, Mathematics Department, METU

Examining Committee Members:

Prof. Dr. Yıldıray Ozan
Mathematics Department, METU

Assoc. Prof. Dr. Fırat Arıkan
Mathematics Department, METU

Assoc. Prof. Dr. Sinem Çelik Onaran
Mathematics Department, Hacettepe University

Assoc. Prof. Dr. Mehmetcik Pamuk
Mathematics Department, METU

Assist. Prof. Dr. Elif Medetoğulları
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ABSTRACT

TIGHT CONTACT STRUCTURES ON HYPERBOLIC
THREE-MANIFOLDS

Seçgin, Merve

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Fırat Arıkan

August 2018, 52 pages

In this dissertation, we study tight contact structures on hyperbolic 3-manifolds and

homology spheres. We build a family of infinitely many hyperbolic 3-manifolds ad-

mitting tight contact structures. To put it more explicitly, we consider a certain in-

finite family of surface bundles over the circle whose monodromies are taken from

some collection of pseudo-Anosov diffeomorphisms. We show the existence of tight

contact structure on every closed 3-manifold obtained via rational r-surgery along a

section of any member of the family except one r. Consequently, we obtain infinitely

many hyperbolic closed 3-manifolds admitting tight contact structures.

Moreover, we construct infinitely many contractible 4-manifolds bounded by a ho-

mology sphere as generalized Mazur type manifolds built by Akbulut and Kirby.

Specifically, the construction is formed by a 4-dimensional 2-handlebody where in-

finitely many of them have hyperbolic Stein fillable boundaries.

Keywords: Tight contact structure, Open Book, Hyperbolic, Homology Sphere

v



ÖZ

HİPERBOLİK ÜÇ-MANİFOLDLAR ÜZERİNDEKİ SIKI KONTAKT
YAPILAR

Seçgin, Merve

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Fırat Arıkan

Ağustos 2018 , 52 sayfa

Bu tezde, hiperbolik 3-manifoldlar ve homoloji küreleri üzerindeki sıkı kontakt yapı-

ları çalıştık. Üzerinde sıkı kontakt yapılar olan sonsuz sayıda hiperbolik 3-manifold

ailesi inşa ettik. Daha açık ifade etmek gerekirse, monodromisi bazı pseudo-Anosov

topluluğundan alınan, sonsuz sayıda, belirli bir çember üzerindeki yüzey demeti aile-

sini dikkate aldık. Bir r haricinde, ailenin herhangi bir öğesinin bir kesitine rasyonel

r-ameliyat yapılarak elde edilen her 3-manifold üzerinde sıkı kontakt yapının varlı-

ğını gösterdik. Sonuç olarak, üzerinde sıkı kontakt yapılar olan sonsuz tane hiperbolik

kapalı 3-manifold elde ettik.

Dahası, Akbulut ve Kirby tarafından oluşturulan genelleştirilmiş Mazur tip manifold-

larına benzer şekilde, bir homoloji küresi tarafından sınırlanan sonsuz tane büzülebilir

4-manifold inşa ettik. Yapı, özellikle, sonsuz tanesi hiperbolik Stein doldurulabilir sı-

nıra sahip olan 4-boyutlu 2-kulplu cisimden meydana gelmektedir.

Anahtar Kelimeler: Sıkı Kontakt Yapı, Açık Kitap, Hiperbolik, Homoloji Küresi
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CHAPTER 1

INTRODUCTION

Although contact geometry has been working areas of physicists since the 19th cen-

tury, it has been studied as a major field in mathematics after Lutz and Martinet

[39] showed the existence of contact structures in all 3-manifolds. Besides having

many applications in physics, such as geometrical optics, classical mechanics etc.,

it has also played a key role in mathematics, especially in low dimensional topol-

ogy, for example, to prove the property P conjecture by Kronheimer and Mrowka

[32]. Together with the classical result of Eliashberg [12] that guarantees the exis-

tence of overtwisted contact structures and the examples of non-existence of tight

contact structures [21, 36] in some closed 3-manifolds, it was affirmed that tight con-

tact structures have more leverage to understanding the topology of the underlying

manifold.

One of the most useful topological aspects to study 3-manifolds is open book decom-

position, which is relevant to contact structures. Giroux [27] completed the result

of Thurston and Winkelnkemper [52] saying that every open book admits a contact

structure, by a pioneering correspondence of contact structures on a 3-manifold up to

isotopy and open book decompositions up to positive stabilization.

Many other techniques have been developed to investigate tight contact structures. As

an illustration, one can give some special complex compact submanifolds of complex

spaces, so-called Stein manifolds named by Karl Stein, which imply tightness on

the boundaries. Besides that, Ozsváth and Szabó have brought a different approach

to contact and symplectic topology with many more applications. They established

powerful algebraic tools; one of them is called contact invariant defined in [44], which

assures that the contact structure on a 3-manifold is tight if the corresponding contact

1



invariant does not vanish.

Moreover, one can restrict attention to geometric aspects of 3-manifolds to study

contact structures on them. Since tight contact structures on the connected sum of two

3-manifolds decompose uniquely as tight contact structures on each component, one

can focus on contact structures on irreducible 3-manifolds. As a result of Thurston’s

groundbreaking conjecture which is called geometrization conjecture, irreducible 3-

manifolds are characterized as Seifert fibered or toroidal or hyperbolic manifolds. In

two independent work [6, 30], Colin and Honda-Kazez-Matić showed the existence

of tight contact structures on toroidal 3-manifolds which means that it contains an

incompressible torus. Besides, the existence problem of tight contact structures on

Seifert fibered manifolds is completed by Lisca and Stipsicz. They in [37], proved

that a closed oriented Seifert fibered 3-manifold admits a tight contact structure if and

only if it is not obtained via (2q − 1)−surgery along the (2, 2q + 1) torus knot in

the 3-sphere S3 for q ≥ 1. However, whether every hyperbolic 3-manifold admits

a tight contact structure or not is still an open problem. Many mathematicians have

investigated tightness in the hyperbolic world which is the generic case in dimension

three (see [5, 31, 49], etc.). Etgü in [18] also explored infinitely many hyperbolic

3-manifolds that carry tight contact structures. His construction uses Dehn surgeries

along sections of hyperbolic torus bundles over the circle S1. The first part of this

thesis generalizes these ideas for surface bundles over S1 with fiber genus at least

two. The thesis is organized as follows:

In Chapter 2, we give background about contact 3-manifolds, mapping class groups,

open book decompositions and Giroux correspondence, Lefschetz fibrations and Stein

manifolds, Heegaard Floer homology and finally hyperbolic 3-manifolds.

In Chapter 3 , we consider closed connected oriented surface Σg with genus g at least

two and Σg-bundles over the circle Mφ with monodromy φ = tma1ta2 · · · ta2gtna2g+1

where ai’s are simple closed curves as in Figure 3.1 and tai indicates the Dehn twist

along the curve ai. Denote by Mφ(r) the resulting manifold of rational r-surgery

along a section in Mφ. This construction gives a family of infinitely many hyper-

bolic 3-manifolds admitting tight contact structures as a corollary of the following

theorems:

2



Theorem 1.0.1. Mφ(r) is hyperbolic 3-manifold for all but finitely many m ∈ Z and

r ∈ R.

Theorem 1.0.2. Mφ(r) admits a tight contact structure for any positive integers m,n

and for any rational number r 6= 2g − 1.

On the other hand, Gabai [25] discovered that if the first Betti number b1 of a 3-

manifold is positive , it admits taut foliations which lead to construct infinitely many

tight contact structure by Eliashberg and Thurston [17]. Hence, it is purposeful to

investigate the tightness of contact structures on homology spheres. In this man-

ner, in Chapter 4, we built infinitely many contractible 4-dimensional handlebod-

ies which have homology spheres as boundary similar to generalized Mazur mani-

folds introduced by Akbulut and Kirby [2, 40]. Specifically, let W±(l, k, n) be the

4-dimensional manifold formed by one 0-handle, one 1-handle and one 2-handle at-

tached along the curve γ in Figure 4.2 with framing k. Then, we show thatW±(l, k, n)

is contractible with homology spheres as boundary for all k, l ∈ Z and n ∈ N. In ad-

dition, the boundary of the minus version is hyperbolic and Stein fillable.

3
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CHAPTER 2

BACKGROUND

2.1 Contact 3-Manifolds

In this section, we will recall some background from contact geometry and topology.

The reader can see [26] for more details. A hyperplane distribution ξ in a (2n +

1)-dimensional manifold M is a subbundle of the tangent bundle TM such that at

every point p of M the intersection of tangent space TpM with ξ is a 2n-dimensional

subspace of TpM . In dimension 3, sometimes a hyperplane distribution is called a

plane field. Given a hyperplane distribution ξ in M and a point p ∈ M , there exist a

neighborhood of p, say U , and a 1-form α defined on U such that kerα = ξ|U .

Definition 2.1.1. A contact structure ξ on a (2n+ 1)-dimensional manifold M is de-

fined as a hyperplane distribution which is maximally nonintegrable; i.e., α∧(dα)n 6=
0 for all 1-form α with kerα = ξ locally or globally. Here, α is called a contact form

and the pair (M, ξ) a contact manifold.

If one can find a 1-form α defined on all M having the property kerα = ξ, then ξ

will be called coorientable. Given a coorientable contact structure kerα = ξ, α is

called a contact form. A coorientable contact structure ξ = kerα is called positive in

M if α ∧ (dα)n > 0 with respect to the given orientation on M . In what follows, any

contact structure will be positive and coorientable and for the rest of the dissertation,

(M, ξ) will denote a contact 3-manifold unless otherwise stated. Now, we will focus

on contact 3-manifolds and give some examples to be more illustrative.

Example 2.1.2. Consider the standard Cartesian coordinates (x, y, z) in R3 and the

1-form α = dz+xdy. It can be shown that α∧dα = dx∧dy∧dz 6= 0. ξstd = kerα is

5



Figure 2.1: Standard contact structure in R3. Pictured by Patrick Massot.

Figure 2.2: The contact structure ξot in R3. Pictured by Patrick Massot.

named the standard contact structure on R3. One can see the picture of ξstd in Figure

2.1.

Example 2.1.3. Consider the coordinates (x1, y1, x2, y2) ∈ S3 ⊂ R3 and the 1-form

α = x1dy1−y1dx1 +x2dy2−y2dx2 as restricted to S3. Then it can be checked that α

is a contact form on S3. The contact form ξstd = kerα is called the standard contact

structure on S3.

Example 2.1.4. Another example of contact structure on R3 can be given by ξot =

ker(cos(r)dz + rsin(r)dθ) where (r, θ, z) is the cylindrical coordinate in R3 (see

Figure 2.2).

Example 2.1.5. S1 × S2 admits a contact structure given by the kernel of the 1-form

α = zdθ + xdy − ydx where θ ∈ S1 and (x, y, z) ∈ S2 ⊂ R3. ξstd = kerα is also

called the standard contact structure on S1 × S2.

There is a dichotomy among contact structures: tight vs. overtwisted. If one can

6



find an embedded disk D in a contact 3-manifold (M, ξ) such that Tp(∂D) ⊂ ξp at

every point of p ∈ ∂D and the framings of ∂D coming from ξ and D coincide then

ξ is called an overtwisted contact structure. Here, D is called an overtwisted disk.

Otherwise ξ will be called a tight contact structure. The notion of "framing" will be

addressed again in Subsection 2.1.1.

Definition 2.1.6. Two contact 3-manifolds (M1, ξ1) and (M2, ξ2) are contactomor-

phic if there is a diffeomorphism φ betweenM1 andM2 such that φ∗(ξ1) = ξ2. If there

is a contactomorphism between two contact manifolds (M, ξ1) and (M, ξ2) which is

isotopic to the identity, we say that ξ1 and ξ2 are isotopic.

Remark 2.1.7. While Examples 2.1.2, 2.1.3 and 2.1.5 are tight contact structures,

the Example 2.1.4 is an example of an overtwisted contact structure and the the disk

given in Figure 2.2 is an overtwisted disk in (M, ξot). In fact, Examples 2.1.2, 2.1.3

and 2.1.5 are the unique tight contact structures up to isotopy, on R3, S3 and S1×S2,

respectively (see [26], Theorem 4.10.1(a)).

The restriction of ξstd in Example 2.1.3 onto S3 \ {∗} is contactomorphic to the stan-

dard contact structure on R3. But the contact structures in Example 2.1.2 and Example

2.1.4 are not contactomorphic.

Theorem 2.1.8. [12] Every closed compact 3-manifold admits a contact structure.

More precisely, any plane field is homotopic to an overtwisted contact structure.

We don’t have the similar existence result of tight contact structures on closed com-

pact 3-manifolds.

Theorem 2.1.9. [21] There exist a closed compact 3-manifold which does not admit

any tight contact structure.

All contact structures locally look the same. We restrict the following theorem to

dimension 3.

Theorem 2.1.10. (Darboux) Given a pair (M, ξ) and a point p ∈ M , there exist a

neighborhood U of p and a contactomorphism φ : (U, ξ|U) → (R3, ξstd) such that

φ(p) = (0, 0, 0).

7



We state some definitions and theorems to be prepared for Subsection 2.1.2.

Definition 2.1.11. Given an embedded surface Σ in (M, ξ), the characteristic folia-

tion induced on Σ, denoted as Σξ, is the singular 1-dimensional foliation, defined as

(Σξ)x = ξx ∩ TxΣ at each point x of Σ.

It is easy to see that there are finitely many points x at which (Σξ)x = TxΣ otherwise

(Σξ)x is a line in TxΣ. Characteristic foliation on a surface holds information about a

neighborhood of the surface.

Theorem 2.1.12. [19] Let Σ and Σ′ be embedded surfaces in (M, ξ) and (M ′, ξ′),

respectively. If φ is a diffeomorphism between Σ and Σ′ preserving characteristic

foliations on them, then φ can be extended to a contactomorphism between some

neighborhoods of surfaces.

Definition 2.1.13. A vector field in (M, ξ) is called contact if the flow of the vector

field preserves ξ; i.e.,(φt)∗(ξ) = ξ where (φt)∗ is the induced map of time t flow φt on

tangent bundles.

Definition 2.1.14. Let Σ be a surface in (M, ξ). If there is a contact vector field

transverse to ξ on Σ, the surface is called a convex surface.

Definition 2.1.15. Given a convex surface Σ in (M, ξ), the set

{w ∈ Σ : X(w) ∈ ξw}

is called dividing set of Σ where X is a contact vector field transverse to Σ.

Note that a dividing set of a surface Σ, generally denoted by ΓΣ, forms a union of

smooth 1-submanifolds; i.e, curves. These curves are called dividing curves. It’s a

fact that different contact vector fields transverse to a surface give rise to the same

isotopy type of corresponding dividing sets.

To determine tightness of a neighborhood of a convex surface, it’s enough to interpret

the dividing set.

Theorem 2.1.16. Giroux Criterion [29]

Let Σ be an embedded surface in (M, ξ). If Σ 6= S2, then Σ has a tight neighborhood

if and only if all dividing curves are homotopically nontrivial. In addition, S2 has a

tight neighborhood if and only if ΓS2 is connected.

8



2.1.1 Knots in Contact 3-Manifolds

As knots play an important role in low dimensional topology, they carry lots of in-

formation in contact topology too. There are two different kind of knots in contact

topology. In this subsection, we will give some definitions, properties and invariants

of these knots. We refer the reader to [20] for more details.

Definition 2.1.17. A knot L in a contact 3-manifold (M, ξ) is Legendrian if TL ⊂ ξ.

An oriented knot T in (M, ξ) is called transverse if ξ is positively transverse to the

tangent line of T at every point of T .

Let’s first study Legendrian knots in (R3, ξstd). We will focus on transverse knots

later in Subsection 3.2.1. Given a Legendrian knot L, fix a parametrization of it:

φ : S1 → R3, φ(t) = (x(t), y(t), z(t)).

Since L is tangent to ξstd, φ′(t) ∈ ξstd = ker(dz + xdy) which means that

z′(t) + x(t)y′(t) = 0. (2.1)

There are two projections of Legendrian knots: front projection and Lagrangian pro-

jection. We focus on the front projection of L which is Π(L) where Π : R3 →
R2,Π(x, y, z) = (y, z). Combining with the parametrization φ, we have φΠ : S1 →
R2, φΠ(t) = (y(t), z(t)). If y′(t) vanishes, so does z′(t) by the Equation 2.1. Assum-

ing that φ is an immersion (in fact embedding) implies that y′(t) can not be zero since

φΠ must be also an immersion. Hence, there is no vertical tangencies in a front projec-

tion. On the other hand, front projection gives all information about the Legendrian

knot by −x(t) = z′(t)
y′(t)

as long as y′(t) 6= 0. One can easily check that y′(t) is zero

only at isolated points, so called cusps. We choose that positive x-axis points into the

page by convention. Another fact about front projection is that at each crossing the

part having more positive slope under-crosses the other part. One can see cusps and

the rule of crossing in Figure 2.3.

A framing of a knot (smooth) K is a trivialization of the normal bundle νK of K.

We define Seifert framing as the trivialization of νK given by push-off of K along a

Seifert surface of K. A Legendrian knot L in (M, ξ) has a canonical framing which

is called contact framing; i.e., the trivialization defined by a normal vector field to ξ.

9



Figure 2.3: Legendrian representations of unknot (on the left) and left-handed trefoil

(on the right).

If L is null-homologous; i.e., if there is a surface Σ bounded by L, ξ|Σ is the trivial

bundle since every (oriented) plane bundle on a surface with boundary is trivial. This

trivialization yields a trivialization of L, say ν(L). Now we define some classical

invariants of Legendrian knots.

Definition 2.1.18. Thurston-Bennequin number of a Legendrian null-homologous

knot L, denoted by tb(L), is the linking number lk(L′, L′′) where L′ and L′′ are push-

offs of L with respect to Seifert framing and contact framing, respectively. Let L

also be oriented and let v be a nonzero vector field in the trivialization ν(L) defined

above. The rotation number of L is defined as the winding number of the vector field

v, denoted by rot(L).

Given an (oriented) Legendrian knot L in (R3, ξstd), the Thurston-Bennequin number

can be computed as tb(L) = wr(L) − 1
2
c(L) where wr(L) is the writhe of L; i.e.,

the sum of the signs of the crossings, and c(L) is the number of cusps in the front

projection of L. We can also interpret the rotation number from the front projection

as rot(L) = 1
2
(d − u) where d (respectively u) is the number of down (respectively

up) cusps.

Definition 2.1.19. Let L be an oriented Legendrian knot in (M, ξ). A positive (resp.

negative) stabilization of L is obtained by adding one down cusp (resp. up cusp) in

the front projection as in Figure 2.4.

A Legendrian band is a band in the front projection such that one boundary compo-

nent is Legendrian and the other one is a push-off of it in the z-direction. Given two

oriented Legendrian knot L1 and L2, the Legendrian connected sum of them is the

connected sum of the knots by a Legendrian band as in Figure 2.5. If the orientation

matches, then the Legendrian sum is called a Legendrian handle addition, otherwise
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(a)

(b)

Figure 2.4: (a) Adding a down cusp to a Legendrian arc. (b) Adding an up cusp to a

Legendrian arc.

L2L1

(a)

(b)

Figure 2.5: (a) Legendrian handle addition of L1 over L2. (b) Legendrian handle

substraction of L1 over L2.

it is called a Legendrian handle substraction. One can find the details in [10].

Two knots K1 and K2 are isotopic means that there is a smooth map i : S1× I →M

such that i(S1 × {0}) = K1, i(S1 × {1}) = K2 and i(S1 × {t}) is a knot in M for

all t.

Theorem 2.1.20. Every knotK in a contact manifold (M, ξ) can beC0-approximated

to an isotopic Legendrian knot and an isotopic transverse knot positively (or nega-

tively) with respect to ξ (ξ is cooriented.).

2.1.2 Contact Surgery

Let K be a knot in a 3-manifold M and let ν(K) be the normal bundle of K. A

Dehn surgery along K in M is basically the operation of removing ν(K) and gluing

a solid torus by identifying the boundary of the solid torus with the boundary of the

complement M \ ν(K) via an orientation reversing diffeomorphism. More precisely,

let f : ∂(S1×D2)→ ∂(M\ν(K)) and let µ be the meridian (i.e., the curve bounding a
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disk) of ∂(M \ν(K)). Clearly µ is a generator of the first homology groupH1(∂(M \
ν(K))) ' Z ⊕ Z. However, the other generator, so-called longitude, may not be

canonical. Let λ be the preferred longitude and let f be defined by f(m) = pµ + qλ

wherem is the meridian of ∂(S1×D2). Note that it is enough to be given the coprime

pair (p, q) to determine f and hence the surgery, when the longitude is fixed. The

surgery is called (p
q
)-surgery along the knot K in M .

Given a null-homologous knotK, there is a canonical framing called the Seifert fram-

ing of K that is the push-off of K along a Seifert surface for K. There is also a

canonical framing for a given Legendrian knot L in a contact 3-manifold, the contact

framing of L, which is defined by the push-off of the knot along a vector field trans-

verse to the contact planes. Note that these framings do not depend on the chosen

Seifert surface and the transverse vector field.

Definition 2.1.21. If K is a null-homologous knot in a 3-manifold M and λ is chosen

with respect to the Seifert framing ofK then a Dehn surgery which is defined as above

is called a topological surgery. If K is a Legendrian knot and λ is a push-off of K

with respect to the contact framing, Dehn surgery is called contact surgery.

Contact (−1)-surgery is sometimes called Legendrian surgery. It is easy to check that

contact (r)-surgery along a Legendrian knot L is topologically equivalent to topolog-

ical (r + tb(L))-surgery along L. The next theorem illustrates the importance of

surgery theory.

Theorem 2.1.22. [33, 54] Every closed connected oriented 3-manifold can be ob-

tained by a Dehn surgery along a link in S3.

The previous theorem has a contact version too.

Theorem 2.1.23. [9] Every closed connected oriented contact 3-manifold (M, ξ)

can be obtained by a sequence of contact (±1)-surgeries along a Legendrian link

in (S3, ξstd).

In [8], Ding and Geiges introduced contact (r)-surgery along a Legendrian knot ex-

plicitly. We will give the details about this definition.
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Theorem 2.1.24. Contact Neighborhood Theorem

If (L1,M1) and (L2,M2) are diffeomorphic to each other where Li is a Legendrian

submanifold of the contact manifold Mi for each i = 1, 2, then they have contacto-

morphic neighborhoods.

Let L ⊂ (M, ξ) be a Legendrian knot. Consider the manifoldM ′ obtained via contact

(r)-surgery along L where r = p
q
∈ Q. We will define a contact structure ξ′ on M ′ as

follows:

Let ν(L) be a tubular neighborhood of L. According to the Contact Neighborhood

Theorem, (ν(L), ξ|ν(L)) is contactomorphic to (S1×D2, ζ = ker(cosθdx− sinθdy))

where θ ∈ S1, (x, y) ∈ R2 and L is identified with S1 × {(0, 0)}. Let Nδ be the solid

torus S1 × {(x, y) : x2 + y2 ≤ δ2} in S1 ×D2. It can be checked that the vector field

X = x ∂
∂x

+ y ∂
∂y

is a contact vector field and is transverse to ξ|∂Nδ and hence ∂Nδ is

a convex surface. Then one can talk about the dividing set on it which can be easily

computed as

{(θ,±δsinθ,±δcosθ) : θ ∈ S1}.

It is easy to observe that the canonical longitudes on ∂Nδ determined by the con-

tact framing are the dividing curves. Let us fix the positive one as λ. According to

Giroux’s criterion (see Theorem 2.1.16), the boundary torus of Nδ has a tight neigh-

borhood since it has no homotopically trivial dividing curves.

Let f : (Nb, ζ) → (M, ξ) be a contact embedding identifying the core of Nb with

L. Let φ : N → N be an orientation preserving diffeomorphism fixing boundary

components such that φ(µ) = pµ+qλ where N = Nb \ int(Na) with a < δ < b. One

can construct M ′ as (M \ f(Na)) ∪ Nb by identifying boundaries with x ∈ ∂Nb ∼
f(φ(x)) ∈ ∂(M \ f(Na)).

If p 6= 0, then the contact structure φ−1(ζ) can be extended to a contact structure ξ′ on

M ′ since ∂Nδ has nonzero slope and by Honda (see Theorem 2.3, [29]) it guarantees

a tight contact structure on Nb.

If p = 0, the contact structure ξ′ can be obtained by using Lutz twist. We refer the

reader to [9] for details.

Theorem 2.1.25. [9] Every contact (r)-surgery can be converted into a sequence of
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contact (±1)-surgeries.

A contact surgery diagram is a Legendrian link diagram accompanied by a rational

number for each link component which shows the contact surgery along the link in

(S3, ξstd) with given rational number coefficients. Since (S3 \ {∗}, ξstd) is contacto-

morphic to the standard contact structure on R3, the surgery can be thought in (R3, ξ).

In [11], it is given an explicit algorithm of converting a contact surgery diagram into

a diagram that consists of only (±1)’s as contact surgery coefficient. The details of

this algorithm is given below where we again exclude the case of contact (0)-surgery.

Consider contact (r)-surgery along a Legendrian knot L in (S3, ξstd) with r < 0. Let

r = r1 + 1− 1

r2 − 1
···− 1

rn

where ri ≤ −2 for all i ∈ {1, 2, . . . , n}. We take a front projection of L, say L1,

drawn with extra |r1 + 2| zigzags as indicated in Figure 2.6. Similarly, let Li be the

Legendrian copy of Li−1 with additional |ri + 2| zigzags for i ∈ {2, . . . , n}. Then

the sequence of contact (−1)-surgeries along the Legendrian knots L1, L2, . . . , Ln

coincides with the contact (r)-surgery along L.

Let r = p
q
> 0 and let n ∈ N such that q − np < 0. Then contact (+1)-surgeries

along Legendrian push-offs of L, say L1, L2, . . . , Ln, together with contact ( p
q−np)-

surgery alongL correspond to contact (r)-surgery. Since p
q−np is negative, this surgery

coefficient can be converted into −1’s as above.

Note that contact ( 1
k
)-surgery along a Legendrian knot for some integer k results in

a unique contact structure; however, except these surgery coefficients, the choice of

left or right zigzags may give rise to non-contactomorphic contact structures.

Example 2.1.26. Contact (+1)-surgery along the Legendrian unknot on the left in

Figure 2.6 , gives S1 × S2 with the standard contact structure.

2.2 Mapping Class Groups

Consider a compact oriented connected surface Σn
g of genus g with n boundary com-

ponents. Let Homeo+(Σn
g , ∂Σn

g ) denote the group of orientation-preserving home-
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Figure 2.6: A Legendrian unknot and its copies with an additional zigzag.

omorphisms of Σn
g which are the identity on ∂Σn

g . The set of isotopy classes of

Homeo+(Σn
g , ∂Σn

g ) is called the mapping class group of Σn
g , denoted by MCG(Σn

g ).

Definition 2.2.1. Given a simple closed curve c on a compact oriented surface Σ, a

tubular neighborhood of c, say N , in Σ is homeomorphic to an annulus S1 × [0, 1].

Fix a homeomorphism φ from N to an annulus. Let f : S1 × [0, 1] → S1 × [0, 1] be

a map defined by f(eiθ, t) = (ei(θ+2π), t) where eiθ ∈ S1 ⊂ C. A positive Dehn twist

about the curve c is a homeomorphism tc : Σ→ Σ defined as follows:

tc(x) =

φ
−1 ◦ f ◦ φ(x) x ∈ N

x x ∈ Σ \N

By a negative Dehn twist, we mean −1 power of a positive Dehn twist.

Theorem 2.2.2. [34] Every element of MCG(Σ) can be represented by a product of

Dehn twists.

2.3 Open Book Decomposition and Giroux Correspondence

Throughout this section, M will be a closed oriented 3-manifold.

Definition 2.3.1. A pair (Σ, φ) is called an abstract open book decomposition of M

if Σ is a compact oriented surface with boundary and φ is a self-diffeomorphism

of Σ which is the identity on a neighborhood of the boundary. φ is named as the

monodromy of the open book decomposition.

Definition 2.3.2. We say a pair (B, π) is an open book decomposition of M if B is

an oriented link in M and complement of B in M is a fibration π over S1 such that
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every fiber is a Seifert surface for B. Here, B is called the binding and the Seifert

surface is called the page of the open book decomposition.

Denote by M(Σ,φ) the surface bundle over circle (or mapping torus ) with a fiber Σ

and the monodromy φ : Σ→ Σ; i.e., the quotient space Σ× [0, 1]/∼ where ∼ is the

relation defined by (x, 0) ∼ (φ(x), 1) for all x ∈ Σ. Given an abstract open book

decomposition (Σ, φ) of M , consider the corresponding mapping torus M(Σ,φ). It is

obvious that ∂M(Σ,φ) =
∐
|∂Σ|

S1×S1 where the first S1 indicates a boundary component

of Σ and the second one is the base of M(Σ,φ). Then fill each boundary component

of M(Σ,φ) with a solid torus S1 × D2 via a diffeomorphism ∂(S1 × D2) → S1 × S1

sending the longitude S1×{∗} to the corresponding boundary component of Σ and the

meridian to the base S1. Note that the resulted closed 3-manifold is diffeomorphic

to M and the cores of the glued solid tori in M form the binding of an open book

decomposition. Also observe that the complement of the cores in M is diffeomorphic

to M(Σ,φ).

Definition 2.3.3. A positive stabilization of an abstract open book decomposition

(Σ, φ) is defined as the new open book decomposition (Σ′, φ◦ta) where Σ′ is obtained

by attaching a 1-handle to Σ, and a is a simple closed curve on Σ′ intersecting the

cocore of the 1-handle exactly once. Similarly, (Σ′, φ ◦ t−1
a ) is called a negative

stabilization of (Σ, φ).

Theorem 2.3.4. [4] Any closed oriented 3-manifold admits an open book decompo-

sition.

Definition 2.3.5. Let ξ be a contact structure on M . We say that ξ is supported by an

open book decomposition (B, π) of M if there is a contact 1-form α for ξ such that

dα is a positive area form on each page of (B, π) and α is positive on the binding B

with respect to the orientation on it givn by the pages.

Let L be a Legendrian knot in (M, ξ). One can show that there is an open book

decomposition supporting ξ such that L sits on a page of the open book and the

framing given by the page and by ξ agree.

Theorem 2.3.6. [52] Any open book decomposition of M supports a contact struc-

ture.
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In the construction of the previous theorem, Thurston and Winkelnkemper show that

the binding of an open book supporting a contact structure ξ, is transverse to ξ. In

the following theorem, Giroux completes the missing direction of the theorem of

Thurston and Winkelnkemper.

Theorem 2.3.7. Giroux Correspondence [27]

Given a 3-manifold M , there is a one-to-one correspondence between open book

decompositions on M up to positive stabilizations and contact structures on M up to

isotopies.

2.4 Lefschetz Fibrations and Stein Manifolds

In this section, otherwise stated, X will be a compact oriented 4-manifold. X is a

complex manifold if there is an atlas of charts (Ui, φi) where Ui is homeomorphic to

C2 and φi is a holomorphic map; i.e., complex differentiable map at every point of

Ui.

Definition 2.4.1. A map f : X → C where C is a compact oriented surface is called

a Lefschetz fibration if

• there are finitely many critical values c1, c2, . . . cn in the interior of C, having

unique critical point pi for each i and

• there exist charts around pi and ci for each i matching with the orientations of

X and C where, in the restriction of f on the charts, we have f(z1, z2) = z1z2.

Remark 2.4.2. A Lefschetz fibration is sometimes called positive Lefschetz fibration

because of the condition that charts must agree with the orientations of total and

base spaces. If the condition is taken out then f : X → C in the previous definition

is called achiral Lefschetz fibration.

Remark 2.4.3. By Sard’s theorem, f−1(c) = Σg is a compact oriented surface (pos-

sibly with boundary) for a fixed g for all non-critical values c ∈ C. Any such surface

is called a regular fiber.

Let f : X → D2 be a Lefschetz fibration over a 2-disk and let {d1, d2, . . . , dn} be the

set of critical values in int(D2) as indicated in Figure 2.7 and pi be the critical point
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Figure 2.7: The base of a Lefschetz fibration from X onto D2 with critical values

d1, d2, . . . , dn surrounded by disks B1, B2, . . . , Bn, respectively, and a regular value

d0 circled by a disk B0.

in X corresponding to di for all i. Fix a regular value d0 and consider arcs γi from

d0 to di and pairwise disjoint small disks Bi with center di for all i ∈ {0, 1, . . . , n}
(see Figure 2.7). Then f−1(B0) is diffeomorphic to the Σ × D2 where Σ is a regular

fiber and f−1(B0 ∪ ν(γ1) ∪ B1) is diffeomorphic to Σ × D2 ∪ H2
1 where H2

1 is a

4-dimensional 2-handle attached to Σ × D2 along an embedded simple closed curve

α1 in a fiber with framing −1 relative to the framing coming from Σ× D2. Here, α1

is called a vanishing cycle. Additionally, one can show that f−1(∂(B0 ∪ ν(γ1)∪B1))

is diffemorphic to Σ-bundle over S1 with monodromy tα1 . More generally, f−1(B0 ∪
n⋃
i=1

(ν(γi) ∪ Bi)) is diffeomorphic to Σ × D2 ∪
n⋃
i=1

H2
i where each H2

i is attached to

Σ × D2 along αi with the counterclockwise order appearing in Figure 2.7 (so with

the order from n to 1). Similarly, f−1(∂(B0 ∪
n⋃
i=1

(ν(γi) ∪ Bi))) is the Σ-bundle over

S1 with monodromy tα1tα2 . . . tαn . One can also show that ∂X admits the open book

decomposition (Σ, tα1tα2 . . . tαn).

Definition 2.4.4. A Lefschetz fibration f : X → C is called allowable if all vanishing

cycles are homologically non-trivial. A positive allowable Lefschetz fibration over D2

having fibers with boundary is called a PALF.

Definition 2.4.5. A complex manifold X of any dimension is holomorphically convex
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if given a compact subset K ⊂ X , the holomorphically convex hull of K; i.e.,

K̄ = {z ∈ X : |f(z)|≤ sup
w∈X

f(w), for all holomorphic function of X},

is again compact. X is called holomorphically separable if for any pair of points x, y

of X , we can find a holomorphic function f such that f(x) 6= f(y).

Definition 2.4.6. A complex manifold X of complex dimension n is called a Stein

manifold if it is holomorphically convex and holomorphically separable.

Remark 2.4.7. By Eliashberg and Gromov [16], every Stein manifold can be properly

biholomorhically embedded in CN , for some positive integer N . Given a complex

manifold X of complex dimension 2, if there is a proper biholomorphic embedding

X ↪→ CN , then X is called a Stein surface.

The next theorem points out the the relation between Lefschetz fibrations and Stein

surfaces.

Theorem 2.4.8. [3, 38, 1] Every compact Stein surface with boundary admits in-

finitely many PALF.

Conversely, any PALF is also a Stein manifold.

Definition 2.4.9. A contact 3-manifold (M, ξ) is Stein fillable if there is a Stein man-

ifold (X, J) where J is the complex structure such that ∂X = M and the induced

contact structure from J; i.e., J(T (∂X)) ∩ T (∂X), is contactomorphic to ξ.

Theorem 2.4.10. [27] A contact 3-manifold (M, ξ) is Stein fillable if and only if it

has a compatible open book decomposition (Σ, φ) such that φ can be written as a

product of positive Dehn twists.

Example 2.4.11. (A, id) is a compatible open book of (S1 × S2, ξstd) in Example

2.1.5 where A is the annulus and id denotes the identity map. Thus, (S1×S2, ξstd) is

Stein fillable. Also, (S3, ξstd) in Example 2.1.3, admits a unique Stein filling which is

diffeomorphic to D4 equipped with the standard complex structure (see [13, 15]).

Theorem 2.4.12. [14, 55] Legendrian surgery preserves Stein fillability. More pre-

cisely, given a Stein manifold X , the cobordism obtained by attaching a 2-handle

along a Legendrian knot in the contact boundary with framing −1 relative to the

contact framing extends the Stein structure.
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Legendrian

Tangle

Figure 2.8: A Legendrian link diagram in standard form.

Eliashberg gave a topological handlebody description of 4-dimensional Stein mani-

folds.

Theorem 2.4.13. [14] An oriented open 4-manifold X is a Stein manifold if and only

if it is the interior of a 4-manifold obtained by one 0-handle, 1-handles and 2-handles

such that each 2-handle is attached to a Legendrian knot with framing −1 relative to

the canonical framing of the knot.

Gompf [28] determined the picture of the handlebody diagram of a Stein manifold.

A Legendrian link diagram in standard form, as indicated in Figure 2.8, consists of

n 1-handles (represented by horizontal ball pairs), n pairs of horizontal distinguished

segments corresponding to each ball pair and a Legendrian tangle; i.e., union of Leg-

endrian arcs and knots, with endpoints touching the segments. As in Legendrian

knots, the Thurston Bennequin number of a link component L of a Legendrian tangle

is given by the formula tb(L) = wr(L)− 1
2
c(L).

Proposition 2.4.14. [28] An oriented compact connected 4-manifold X is a Stein

surface if and only if it admits a handlebody diagram formed by a Legendrian link

diagram in standard form equipped with 2-handles attached to link components Li’s

with framing tb(Li)− 1.
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Figure 2.9: A move in a Legendrian link diagram of a Stein manifold.

Gompf [28] also defined some moves for the handlebody diagram of a Stein mani-

fold. In particular, as in Figure 2.9, one can swing a strand of a Legendrian tangle

in a Legendrian link diagram in standard form. Note that this move increases the

Thurston-Bennequin number of the link component that owns the strands by one, but

it does not change the Stein structure of the diagram.

2.5 Heegaard Floer Homology

In the early 2000s, Ozsváth and Szábó defined powerful algebraic tools of low di-

mensional objects (see [43, 42, 44, 45]). In this section, we will review an invariant

of a closed 3-manifold called Heegaard Floer homology. We give some fundamental

definitions and theorems of Heegaard Floer homology.

Given a closed oriented connected 3-manifold M , it is assigned four variants of

Heegaard Floer homology groups, ĤF , HF+, HF− and HF∞. We will focus on

ĤF (M), a finitely generated Abelian group associated to M .

A genus g-handlebody is a 3-dimensional handlebody consisting of one 0-handle and

g 1-handles. A decomposition M = H0∪
Σ
H1 where each Hi is a genus g-handlebody

glued to each other by a diffeomorphism of ∂H0 = ∂H1 = Σ, is called a Heegaard

decomposition of genus g of M .

Theorem 2.5.1. [48] Every closed connected orientable 3-manifold admits a Hee-

gaard decomposition.

One can find the proof of the theorem in [47]. Now suppose M = H0 ∪
Σ
H1 is a

Heegaard decomposition of genus g. Then the triple (Σ,α,β) is called a Heegaard

diagram if α and β are two systems of disjoint simple closed curves α1, α2, . . . , αg

and β1, β2, . . . , βg respectively and the curves αi’s (resp. βj’s) form homologically
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independent sets in ∂H0 (resp. ∂H1). Curves satisfying these conditions are called

attaching circles. Let Symg(Σ) be the unordered g-tuples consisting of points in Σ

and let Tα = α1 × · · · × αg, Tβ = β1 × · · · × βg in Symg(Σ).

Fix a Heegaard diagram (Σ,α,β) of M and a point z in Σ away from αi’s and

βj’s. Consider ĈF (M) as the free Abelian group generated by the intersection points

in Tα ∩ Tβ with Z/2Z coefficients. Given x, y ∈ Tα ∩ Tβ, a holomorphic disk

connecting x and y is a holomorphic map Φ : D2 → Symg(Σ) where Φ(−i) = x,

Φ(i) = y, Φ({Re(z) ≥ 0}) ⊂ Tα and Φ({Re(z) ≤ 0}) ⊂ Tβ. Here, we regard

the complex structure on Symg(Σ) inherited from Σ. Finally, we roughly define

differential map ∂ : ĈF (M) → ĈF (M) as ∂(x) =
∑

yi∈Tα∩Tβ

niyi where ni is the

number of holomorphic disks connecting x and y that don’t involve z. Note that

ĈF (M) forms a chain complex equipped with ∂.

Definition 2.5.2. The homology group of the chain complex ĈF (M) is called the

(hatted) Heegaard Floer homology of M , denoted by ĤF (M).

There is a notion called spinc structure on the tangent bundle of a manifold that can

be illustrated as a generalization of orientation. In [53], Turaev showed that there is a

one-to-one correspondence between spinc structures on a closed connected oriented

3-manifold M and equivalence classes of non-vanishing vector fields on M .

Remark 2.5.3. Every intersection point x ∈ Tα∩Tβ corresponds to a spinc structure

tx. If there is a holomorphic disk between two intersection points, they have the same

spinc structures. This yields a chain complex ĈF (M, t) having the homology group

ĤF (M, t). One can see that ĤF (M) splits as
⊕

t∈Spinc(M)

ĤF (M, t) where Spinc(M)

denotes the set of spinc structures onM . We refer to the lecture notes [46] for details.

ĤF (M) determines an invariant for contact structures on M . Given a contact struc-

ture ξ, this gives a spinc structure tξ defined as the equivalence class of a nonzero

vector field transverse to ξ everywhere. In [44], Ozsváth and Szábó describe an invari-

ant called contact invariant or contact class c(M, ξ) as an element of ĤF (−M, tξ),

where −M denotes the reversed oriented M , in the following manner:

Ozsváth and Szábó also introduced knot Floer homology which is an extension of

Heegaard Floer homology. This time, fix two points w and z disjoint from a Heegaard
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diagram (Σ,α,β) of M . This yields a knot K in M which is obtained by union of

push-offs of two arcs connecting w and z in Σ such that one lies in a tubular neighbor-

hood of αi’s and so does the other in a tubular neighborhood of βj’s. Define the chain

complex ĈFK(M,K) similar to ĈF (M). Now, differential counts the holomorphic

disks disjoint from w and z. ĈFK(M,K) has a Z-filtration. Let ĈFK(M,K, n) be

the subcomplex with filtration level less than or equal to n. Then it corresponds to

the homology group ĤFK(M,K, n) so-called knot Floer homology of (M,K) with

filtration ≤ n.

Theorem 2.5.4. [44] If K is a fibered knot of genus g in M , then

ĤFK(−M,K,−g) ' Z.

The reader can find the proof and details about knot Floer homology in [44].

Definition 2.5.5. Let K be a fibered knot of genus g and let ξ be the contact structure

supported by the open book of K. Then the homology class of the image of the

generator in ĤFK(−M,K,−g) under the inclusion

ι : ĈFK(−M,K,−g)→ ĈF (−M)

is called the contact class c(M, ξ). Note that it can be also seen in ĤF (−M, tξ).

The contact class holds much information about the contact structure.

Theorem 2.5.6. [44] If ξ is an overtwisted contact structure in M , then c(M, ξ)

vanishes.

Theorem 2.5.7. [44] If (M, ξ) is a Stein fillable contact manifold then c(M, ξ) does

not vanish, hence ξ is tight. In particular ĤF (S3) is isomorphic to Z/2Z and the

contact class on it is nonzero.

Lemma 2.5.8. [35] Let ξ be the contact structure on S1 × S2 obtained via contact

(+1)-surgery along the Legendrian unknot with Thurston bennequin number −1 in

(S3, ξstd). Then c(S1 × S2, ξ) is nonzero.

Let M1 be a 3-manifold obtained via n-surgery along a knot K in M0 where n ∈ Z.

It is easy to see that there is a cobordism W from M0 to M1 which is constructed
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Figure 2.10: A cancelling pair. A Legendrian unknot and its Legendrian push-off.

by attaching a 2-handle along K with framing n to M0 × I . Suppose that s is a

spinc structure on W such that s|M0 = t0 and s|M1 = t1. Then (W, s) associates a

homomorphism

FW,s : ĤF (M0, t0)→ ĤF (M1, t1).

Let L be a Legendrian knot in (M, ξ) and let (M±
L , ξ

±
L ) be the result of contact (±1)-

surgery along L.

Theorem 2.5.9. [35, 44] F−W (c(M, ξ)) = c(M+
L , ξ

+
L ) where −W be the reversed

oriented cobordism induced by the surgery and

F−W =
∑

s∈Spinc(−W )

F−W,s : ĤF (−M, s|−M)→ ĤF (−M+
L , s|−M+

L
).

So we have the following immediate corollary:

Corollary 2.5.10. If c(M, ξ) is nonzero, so is c(M−
L , ξ

−
L ).

Proof. Consider a Legendrian push-off of L, say L′, in (M−
L , ξ

−
L ) and apply contact

(+1)-surgery alongL′ (see Figure 2.10). By Proposition 8 of [8], the contact surgeries

cancel each other which means that we get (M, ξ). Hence we have a homomorphism

F−W : ĤF (−M−
L ) → ĤF (−M) sending c(M−

L , ξ
−
L ) to c(M, ξ) by the previous

theorem. This finishes the proof.

2.6 Hyperbolic 3-Manifolds

In this section, we review some basics of hyperbolic 3-manifolds and some ground-

breaking theorems.
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A hyperbolic 3-manifold M is a Riemannian 3-manifold with negative constant sec-

tional curvature. Unless otherwise stated, a hyperbolic manifold M will be assumed

to have a complete metric giving a finite volume.

2.6.1 Nielsen-Thurston Classification

An isotopy class of a compact orientable surface self-homeomorphism was charac-

terized by Nielsen-Thurston. We focus on the classification of homeomorphisms on

a closed surface. We give definitions of the classes and some backgrounds before

stating the classification.

A measured foliation on a closed surface Σ is a singular foliation F with a transverse

measure (see [24] and [50] for details).

Definition 2.6.1. Let f be an element of MCG(Σ) where Σ is a closed orientable

surface. Then f is called;

• periodic if fk is the identity of MCG(Σ) for some k.

• reducible if there exists a finite set of disjoint homotopically nontrivial simple

closed curves on Σ fixed by f .

• pseudo-Anosov if there are a transverse pair of measured foliations on Σ, say

Fu and Fs, and a real number λ > 1 such that

f(Fu) = λFu, f(Fs) =
1

λ
Fs.

Theorem 2.6.2. [41, 50] A self-homeomorphism f of a closed surface Σ is isotopic

to either periodic or reducible or pseudo-Anosov homeomorphism. Additionally, a

pseudo-Anosov homeomorphism is neither periodic nor reducible.

When Thurston classified diffeomorphism of surfaces, he proved the following theo-

rem:

Theorem 2.6.3. [50] Let Mf be a surface bundle over the circle with monodromy f .

Then,

f is pseudo-Anosov⇔Mf is a hyperbolic 3-manifold.
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Now, we state a fundamental theorem of Thurston which is called the Hyperbolic

Dehn Surgery Theorem. A complete hyperbolic 3-manifold with finite volume is

called cusped if it has no boundary. A cusped hyperbolic 3-manifold has n-cusps if it

is the interior of a compact manifold with boundary a disjoint union of n-tori.

Theorem 2.6.4. [51] Let M be a cusped hyperbolic 3-manifold with n-cusps. Let

Ti’s be the tori that form the boundary of a compact manifold whose interior is M

where i ∈ {1, . . . , n}. Denote by M(r1, r2, . . . , rn) the manifold which is obtained

from M by filling Ti with slopes ri = pi
qi

. Then M(r1, r2, . . . , rn) is also a hyperbolic

3-manifold except finite values for ri.
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CHAPTER 3

TIGHT CONTACT STRUCTURES ON SOME HYPERBOLIC

3-MANIFOLDS

3.1 Family of Infinitely Many Hyperbolic 3-Manifolds

In this section, we will build some hyperbolic 3-manifolds based on the work of

Thurston [50, 51] and Fathi [23].

Consider the closed oriented surface Σg with g ≥ 2 and the simple closed curves

a1, a2, · · · , a2g+1 on Σg as shown in Figure 3.1.

Let φ ∈MCG(Σg) be the isotopy class of the homeomorphism

tma1ta2 · · · ta2gtna2g+1
. (3.1)

Let Mφ stand for the Σg-bundle with monodromy φ. Since φ has a fixed point for

each m,n ∈ Z, we can ensure that Mφ has a section. Denote by Mφ(r) the surgered

manifold obtained via rational r-surgery along a section of Mφ. Now we can state the

main theorem of this section.

Theorem 3.1.1. Mφ(r) is a hyperbolic 3-manifold for all m ∈ Z and r ∈ R but

finitely many of m’s and r’s.

In 1987, Fathi [23] gave a way to construct pseudo-Anosov homeomorphisms as prod-

ucts of Dehn twists.

Let α and β be two simple closed curves in a compact oriented surface Σ. We will

denote ι(α, β) the geometric intersection number of the representatives of α and β in

minimal positions.
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Fact 3.1.2. For any two simple closed curves α and β, we have

ι(α, β) = 0 ⇐⇒ tα(β) = β

Proposition 3.1.3. [22] For any two simple closed curves α and β with ι(α, β) = 1,

we have tαtβ(α) = β.

Definition 3.1.4. We shall say that a set of simple closed curves α1, α2, · · · , αk fills

a compact oriented surface Σ if Σ \ {α1, α2, . . . , αk} is the disjoint union of some

topological disks and annuli.

Theorem 3.1.5. [23] Let f ∈ MCG(Σ) and let α be a simple closed curve in Σ.

If the orbit set of α under f ; i.e., {f i(α) | i ∈ {0, 1, . . .}}, fills Σ, then tmα f is a

pseudo-Anosov diffeomorphism except for at most 7 consecutive values of m.

a1

a2

a3

a4 a2g−2 a2g

a2g−3a5 a2g−1 a2g+1

Figure 3.1: Simple closed curves on the surface Σg.

Lemma 3.1.6. Let φ be the class in MCG(Σg) as described in (3.1) above. Then φ

is pseudo-Anosov for any integer n and for all but at most 7 consecutive values of m.

Proof. Let α represent the curve a1 and let f be the product of Dehn twists

ta1ta2 · · · ta2gtna2g+1
.

Then, regarding Fact 3.1.2 and Proposition 3.1.3, one can conclude that

f(α) = ta1ta2 · · · ta2gtna2g+1
(a1) = ta1ta2(a1) = a2,

f 2(α) = ta1ta2 · · · ta2gtna2g+1
(a2) = ta1ta2ta3(a2) = ta1(a3) = a3, and inductively,

f i(α) = ta1ta2 · · · ta2gtna2g+1
(ai) = ta1ta2 · · · taitai+1

(ai) = ta1ta2 · · · tai−1
(ai+1) =

ai+1 for all i ∈ 1, 2, . . . , 2g − 1.
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It is clear that Σg \ {a1, a2, . . . a2g} = Σg \ {α, f(α), . . . , f 2g−1(α)} is a topological

disk. Hence the orbit set of α under f fills Σg. By Theorem 3.1.5, we know that

tmα f is pseudo-Anosov homeomorphism for all integers n and for all but at most 7

consequtive values of m.

Proof of Theorem 3.1.1 . As stated in Theorem 2.6.3, all Mφ’s are hyperbolic

3-manifolds since φ is a pseudo-Anosov homeomorphism when m,n ∈ Z except at

most 7 consequtive values of m. According to Hyperbolic Dehn Surgery Theorem

2.6.4, we can say all Mφ(r)’s are hyperbolic 3-manifolds by avoiding exceptional

slopes r and 7 successive integers m.

3.2 A Family of Infinitely Many Tight Contact Manifolds

3.2.1 Transverse Surgery and Its Relation with Contact Surgery

In this subsection, we shall give definitions of admissible and inadmissible transverse

surgery and their relations with contact surgery due to [5] and [7].

Given a transverse knot T in a contact 3-manifold (M, ξ), there is a neighborhood N

of T such that N is contactomorphic to S1 × {r ≤ a} in

(S1 × R2, ξ0 = ker(cosf(r)dz + f(r)sinf(r)dθ))

for some a where z ∈ S1, (r, θ) ∈ R2, f : [0,∞) → [0, π) is an increasing onto

map, and the contactomorphism sends T onto {r = 0}. So the characteristic foliation

on a torus {r = r0} with respect to ξ0 is the union of leaves f(r0)µ − cot(f(r0))λ

where µ is the meridian and λ is the longitude given by {θ = θ0} for some θ0. Hence

the slope of the leaves of the characteristic foliation on {r = r0} is −cot(f(r0))
f(r0)

which

means linear.

Definition 3.2.1. Contact cut

Let M be a 3-manifold with torus boundary Σ. Consider a smooth free S1-action
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on Σ and the quotient of M , say M ′, under the action. Then the orbits of the action

are embedded curves on Σ with some slope r. Notice that M ′ can be topologically

obtained via r-Dehn filling along Σ. Now, let ξ be a contact structure on M such

that the slope of the characteristic foliation Σξ is r. Since the slope is linear, one can

find a diffeomorphism from Σ to a torus in (S1×R2, ξ0) preserving the characteristic

foliations. By Theorem 2.1.12, there is a contactomorphism between a neighborhood

of Σ, say N , in (M, ξ) and a neighborhood of the torus in (S1 × R2, ξ0), say Ns,r =

Ns −Nr where s is is the slope of the boundary of the solid torus Ns and ∂Nr is

contactomorphic to Σ.

Now, extend the S1-action on N such that each level torus in N is invariant under

the action. Suppose that the contact form α in N describing ξ is invariant under

the action. Hence, the induced contact form α′ under the action defines the contact

structure ξ′ on M ′. Here, (M ′, ξ′) is called the contact cut of (M, ξ) along Σ.

Definition 3.2.2. Admissible transverse surgery

Let T be a transverse knot in (M, ξ). Consider the solid torus Ns in (S1 × R2, ξ0)

contactomorphic to a neighborhood N of T where Ns has the boundary torus Ts

with slope s. Let MT (r) be the manifold obtained via topological r-surgery along T

where r ∈ (−∞, s). The contact structure ξT (r) on MT (r) is defined as follows:

Since the slope of the characteristic foliation is an increasing function, one can think

that the solid torus Nr is included in Ns where r is the slope of the leaves of the

characteristic foliation in ∂Nr. It is easy to define a free S1-action on ∂Nr such

that the orbits are the leaves of the characteristic foliation. After contact cut in

(M − ∂Nr, ξ|M−∂Nr) along ∂Nr, the resulting contact manifold (MT (r), ξT (r)) is

called the admissible transverse r-surgery along T in (M, ξ).

Theorem 3.2.3. [5] Given a Legendrian knot L ⊂ (M, ξ), the obtained contact struc-

ture after Legendrian surgery along L can be obtained as an admissible transverse

surgery along a transversal push-off of L. On the contrary, if T is a transverse knot

in (M, ξ), the admissible transverse r-surgery along T with r < s where s is the slope

of the boundary of the neighborhood of T as mentioned above, can be obtained via

Legendrian surgery along some Legendrian link in the neighborhood.

In [7], Conway found an equivalence between inadmissible transverse surgery, de-
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fined below, and positive contact surgery.

Definition 3.2.4. Indmissible transverse surgery

Let T be a transverse knot in (M, ξ) and let N be a neighborhood of T which is

contactomorphic to a solid torus in (S1 × R2, ξ0 = ker(cosrdz + rsinrdθ)) as in

Definition 3.2.2, in this case, the slope of curves in the characteristic foliation is−∞;

i.e., meridional and it is taken r instead of f(r) for simplicity. Fix a framing λ of T

whose image under the contactomorphism is S1 × {(0, 0)}. Then, glue a thickened

torus, with the contact structure ξ0 on it, to M − ∂N such that contact planes twist

out at some slope b. Finally, performing contact cut on the boundary gives a new

contact manifold which is called an inadmissible transverse surgery along T .

Theorem 3.2.5. [7] Inadmissible transverse r-surgery along a transverse knot T

corresponds to the contact (r)-surgery on a Legendrian push-off of T where all sta-

bilizations are chosen to be negative as shown in the section.

Recall that if a knot is the binding (resp. a binding component) of an open book

decomposition, then it is called fibered (resp. integrally fibered) knot. The genus of

a null-homologous knot K in a 3-manifold is the minimum number of genus of any

Seifert surface for K.

Theorem 3.2.6. [7] Given an integrally fibered transverse knot T where the contact

structure ξ supported by T is tight (resp. has nonzero contact invariant), the inadmis-

sible transverse r-surgery along T for r > 2g − 1, where g is the genus of T , also

admits a tight contact structure (resp. nonzero contact invariant).

31



3.2.2 Main Theorem

Theorem 3.2.7. Assume thatMφ(r) is a 3-manifold as constructed in the Section 3.1.

Then Mφ(r) admits tight contact structure for any positive integers m,n and for any

rational number r 6= 2g − 1.

B1

B1

A2 A2

A4

A4

B2 B2

A6 A6

B3

B3

B1

B1

A2 A2

A4

A4

B2 B2

A6 A6

B3

B3

(a) (b)

B

(The case g = 3 is shown)

a2
a3

a4
a5

a6

B

a7

Σ1
g

a1

Figure 3.2: (a) A Lefschetz fibration structure on Xφ. (b) Another handle description

of Xφ obtained by flipping the connecting bands in (a).

Proof. We will analyze the proof with respect to the genus g of the fiber Σg. First as-

sume g ≥ 3 odd. Note that conjugation of the monodromy by any class ofMCG(Σg)
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B1B1

A2 A2

A4A4

B2 B2

A6 A6

B3B3

(a)

B1B1

A2 A2

A4A4

B2 B2

A6 A6

B3B3

(b)

Figure 3.3: Other handle diagrams for Xφ.

does not change the mapping torus up to diffeomorphism. Since

ta2 · · · ta2gtna2g+1
tma1 = t−ma1 φ t

m
a1

we may replace φ in (3.1) with the mapping class ta2 · · · ta2gtna2g+1
tma1 . Also observe

that Mφ(r) can be also obtained from a Dehn surgery on the binding of an open book

decomposition whose page is Σ1
g (punctured Σg) and monodromy can be still assumed

to be φ ∈ MCG(Σ1
g). We will construct the required contact structure ξ on Mφ(r)

via Dehn surgery on the open book decomposition (Σ1
g, φ) along its binding.

By Theorem 2.4.10, the contact structure, say ξ0, (before the surgery along the bind-

ing) supported by (Σ1
g, φ) is Stein fillable. More precisely, consider the handlebody

diagram of the smooth 4-manifold Xφ given in Figure 3.2-(a) (in the case of genus

3) with “2g” 1-handles and “m + n + 2g − 1” 2-handles. Note that Figure 3.2-(a)

describes a Lefschetz fibration structure on Xφ for g = 3 with a regular fiber Σ1
g and

the vanishing cycles a1, a2, ..., a2g+1. There are n copies for a2g+1 andm copies for a1
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(not drawn for simplicity). All coefficients are −1 with respect to the framing given

by the page Σ1
g. We remark that no handle is attached along the binding of the induced

open book (Σ1
g, φ) on the boundary ∂Xφ which is realized as B in Figure 3.2-(a).

Next starting from the topological description in Figure 3.2-(a) of Xφ, we’ll get a

diagram describing a Stein structure on Xφ inducing ξ0 as follows: First we flip the

twisted bands over the 1-handles as pointed out in Figure 3.2-(a) and get Figure 3.2-

(b). Figure 3.3-(a) gives another handle description of Xφ obtained by moving the

feet of 1-handles as indicated by the dotted arrows in Figure 3.2-(b). Then flip the

bands as shown in Figure 3.3-(a) to get rid of one more left half twist for each band

(see Figure 3.3-(b)), and obtain Figure 3.4-(a) by flipping the connecting bands over

the feet of 1-handles suggested by the dotted arrows in Figure 3.3-(b). Figure 3.4-(b)

defines a Stein structure on Xφ obtained by putting the attaching circles in part (a)

into Legendrian positions, where a Legendrian realization L0 of B in the tight contact

boundary ∂Xφ is also provided. All coefficients (except on L0) are −1 with respect

to Thurston-Bennequin (contact) framing in ∂Xφ and no handle is attached along L0.

Note that tb(L0) = 2 (the case g = 3 is shown). In the general case, tb(L0) = g − 1.

Finally, we use the trick in Figure 2.9 to obtain a Legendrian representation L of B

with tb(L) = 2g − 1 (see Figure 3.5). Note that Figure 3.5 describes the same Stein

structure on Xφ as in Figure 3.4-(b).

Now if g ≥ 2 is even, we replace the monodromy φ with tna2g+1
ta2 · · · ta2gtma1 since

tna2g+1
t−ma1 φ t

−n
a2g+1

tma1 = tna2g+1
ta2 · · · ta2gtma1 .

Then starting from the handlebody diagram given in Figure 3.6-(a) (where the case

g = 4 is shown) and following the moves as in the case of odd genus, one can get Fig-

ure 3.6-(b) describing a Stein structure realizing a Legendrian representation L with

tb(L) = 2g − 1 as in Figure 3.5. One should note that we need to consider different

monodromies (but still giving the same mapping torus) depending on the parity of g

to make the contact and the page framing on any attaching circle coincide.

Now (in any case of g) we first (Legendrian) slide (Stein) 2-handle corresponding

a3 over the ones represented by the curves a1, a5, a7, ..., a2g+1, and then cancel the 2-

handles represented by a5, a7, ..., a2g−1 with the corresponding 1-handles. Second, we
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B1B1

A2 A2

A4A4

B2 B2

A6 A6

B3B3

(a)

L0

n−copy

m−copy

B2

A6

B3B3

A6

A4 A4

B2

B1 B1

A2 A2

B

(b)

Figure 3.4: (a) The last handle diagram forXφ. (b) The Stein structure onXφ obtained

from the Lefschetz fibration structure in (a).

(Legendrian) slide 2-handles represented by the curves a1 and a2g+1 over a fixed one

(chosen from each family in Figure 3.5 / Figure 3.6-(b)), and then cancel 1-handles

B1 and Bg with the chosen 2-handles corresponding a1 and a2g+1 respectively. Also

we cancel each 1-handle Ai with the 2-handle corresponding the curve ai for each

i even. As a result, we obtain another (but equivalent) Stein structure on Xφ which

can be also considered as the contact surgery diagram for ξ0 on ∂Xφ. Finally, we set

r′ = r−2g+1 and perform contact (r′)-surgery along L ⊂ (∂Xφ, ξ0) to get a contact

structure ξ on Mφ(r) whose diagram is given in Figure 3.7 (where we use continued

fractions).

First suppose r′ = r − 2g + 1 < 0. Any contact surgery with negative contact
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L

n−copy

m−copy

B2

A6

B3B3

A6

A4 A4

B2

B1 B1

A2 A2

Figure 3.5: The same Stein structure on Xφ as in Figure 3.4-(b).

framing can be converted to a sequence of contact (−1)-surgeries and (−1)-surgeries

preserve Stein fillability by Theorem 2.4.12. Thus (Mφ(r), ξ) is Stein fillable hence

tight according to Theorem 2.5.7.

Now let r′ = r − 2g + 1 > 0. By Thurston-Winkelnkemper construction in Theo-

rem 2.3.6, they also showed that the binding B is transverse to the contact structure

supported by the open book decomposition, i.e it is an integrally transverse fibered

knot. Also since ∂Xφ is Stein fillable, ξ0 has nonzero contact invariant according to

Ozsváth and Szabó, see Theorem 2.5.7. By Theorem 3.2.5, we know that contact

(r′)-surgery corresponds to inadmissible transverse r-surgery along B. As a result

of Conway’s work (see Theorem 3.2.6), it is concluded that (Mφ(r), ξ) has nonzero

contact invariant (hence tight). This finishes the proof of Theorem 3.2.7.
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n−copy
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B2

A6 A6

A4 A4

B2

B1 B1

A2 A2
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A2 A2

A4

A4

B2 B2

A6 A6

(a)

B

a2
a3

a4
a5

a6
a7

Σ1
g

A8

A8

B4 B4

a8

a9

(b)

(The case g = 4 is shown)

B3

B3

A8

B4

B3 B3

B4

A8

a1

Figure 3.6: (a) A Lefschetz fibration structure on Xφ when g = 4. (b) The Stein

structure on Xφ obtained from the Lefschetz fibration structure in (a).
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r′

− 1
n−1

− 1
m−1

−4

Figure 3.7: The contact 3-manifold (Mφ(r), ξ). (The case g = 3 is shown.)
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CHAPTER 4

TIGHT CONTACT STRUCTURES ON SOME HOMOLOGY SPHERES

In this chapter, some homology spheres admitting tight contact structures are exhib-

ited and we will mention about its importance. There is a close relation between

foliation theory and contact geometry.

A taut foliation is a foliation such that there exists a circle intersecting with every

fiber transversely. Gabai in [25] showed that if the first Betti number b1 of an irre-

ducible 3-manifold is positive, then the manifold admits a taut foliation. Eliashberg

and Thurston in [17], gave a way to construct fillable (hence tight) contact structures

on a manifold admitting taut foliation. This leaves us the question whether every

homology sphere admits a tight contact structure or not.

In [2], Akbulut and Kirby generalized Mazur manifolds (see [40]) which are con-

tractible 4-manifolds bounded by homology spheres different from 3-sphere. Their

construction includes one 0-handle, one 1-handle and one 2-handle which is shown

in Figure 4.1. Here, k ∈ Z and l ∈ Z indicates l full twist (left or right depending on

the sign of l).

1

l

k

W±(l, k)

+

Figure 4.1: Generalized Mazur Manifolds constructed by Akbulut and Kirby.

39



n

l

k

+ 1

n

l

k

W±(l, k, n)

l + k

+ 1

n

∂

+

γ

Figure 4.2: Equivalent Kirby diagrams of W±(l, k, n) and a Kirby diagram of

∂(W±(l, k, n)).

We will construct a generalization of these type of manifolds. Let W±(l, k, n) be a

4-manifold obtained by one 0-handle, one 1-handle and one 2-handle as indicated in

Figure 4.2 where n ∈ N and k, l ∈ Z.

Proposition 4.0.8. W±(l, k, n) is diffeomorphic to W±(l+ 1, k− 1, n) for all l, k, n.

Proof. First we add one 1-handle and one 2-handle to the diagram of W±(l, k, n)

which is diffeomorphic to W±(l, k, n). Then we slide the 2-handle, the 1-handle and

the 2-handle attached afterwards respectively as shown in Figure 4.3. Finally we get

the the diagram of W±(l + 1, k − 1, n).

Proposition 4.0.9. W±(l, k, n) is a contractible 4-manifold for all l, k, n.

Proof. The proof is based on the proof of Proposition 1 in [40]. LetW1 be the handle-

body consisting one 0-handle and one 1-handle. Then it is diffeomorphic to S1×D3.

Consider the 4-dimensional 2-handle H2 = D2 × D2 and the attaching circle γ in

∂(S1 × D3) = S1 × S2 which is the image of the circle γ′ = ∂D2 × {∗} by an em-
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+n

l

k

W±(l, k, n)

+n

l

k

1

Slide 2-handle

+n

l

k − 1

1

Slide 1-handle
+n

l

k − 1

1

Introduce
a canceling pair

Slide 2-handle

+n

l + 1

k − 1

1
Delete

the canceling pair

+n

l + 1

k − 1

W±(l + 1, k − 1, n)

Figure 4.3: A sequence of handle slides of 1- and 2-handles.
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bedding φ : ∂D2 ×D2 ↪→ ∂W1 with framing k as in Figure 4.2. One can see that γ is

a generator of H1(S1 × S2). Now consider

γ × I ⊂ ∂W1 × I ⊂ ∂(W1 × I) = S1 × S3 ⊂ W1 × I = S1 × D4,

γ′ × I ⊂ ∂H2 × I ⊂ ∂(H2 × I) = S4 ⊂ H2 × I = D5 and extension of φ to

φ′ : (∂D2 × D2) × I ↪→ ∂W1 × I as identity of the I component. So the thickened

W±(l, k, n) can be obtained by

W±(l, k, n)× I = W1 × I ∪
φ′
H2 × I = S1 × D4 ∪

φ′
D5.

Since the embedding of γ′ in S4 and as a generator, the embedding of γ in S1×S3 are

unique, it can be taken the unknot, the generator of H1(S1 × S2), as the embedding

in S1 × S3 instead of γ. Thus, we get W±(l, k, n) × I ∼= D5 which finishes the

proof.

Recall that M is an integral homology sphere if Hi(M,Z) ' Hi(S
3,Z) for all i.

Proposition 4.0.10. ∂(W±(l, k, n)) is an integral homology sphere for all l, k, n.

Proof. Fix l, k, n and let W± denote W±(l, k, n) and M± denote ∂(W±(l, k, n)) for

simplicity. First we observe that:

∂(W± × I) ∼= ∂D5 = S4 by the proof of the previous proposition and

∂(W± × I) = (W± × {0}) ∪ (M± × I) ∪ (W± × {1}) which is diffeomorphic to

W± ∪
M±

W± obtained by identifying the boundaries with identity.

Set X± := W± ∪
M±

W± ∼= S4 and let X± = A ∪ B where A (resp. B) is the

union of the first (resp. second) W± component in X± with the collar neighborhood

of M± in the other W±. Thus A and B are both diffeomorphic to W±. Applying

Mayer-Vietoris sequence to X± = A ∪B, we get:

0 → H4(X±) → H3(M±) → H3(W±) ⊕ H3(W±) → H3(X±) → H2(M±) →
H2(W±)⊕H2(W±)→ H2(X±)→ H1(M±)→ H1(W±)⊕H1(W±)→ H1(X±)→
H0(M±)→ H0(W±)⊕H0(W±)→ H0(X±)→ 0.
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k + 2l − 1

1

Lγ

Figure 4.4: Stein fillable contact structure of ∂(W−(l, k, n)) for l ≥ 0 and k ≤ 0.

Hence,

Hi(M
±) =

Z i = 0, 3

0 otherwise

which implies that M± is an integral homology sphere for all l, k, n.

Theorem 4.0.11. ∂(W−(l, k, n)) admits a Stein fillable contact structure for all l, k, n.

Proof. First assume that l ≥ 0 and k ≤ 0. Turning the topological diagram of

∂(W−(l, k, n)) into a contact surgery diagram, we get a Legendrian realization Lγ

of γ with tb(Lγ) = 1 − 2l as in Figure 4.4. So the contact framing of Lγ must be

k + 2l − 1 which is negative. Then the contact surgery on Lγ can be converted into

a sequence of (−1)-surgeries. Since (+1)-surgery along the unknot gives the unique

Stein fillable contact structure in S1×S2 and Legendrian surgery preserves fillability,

the contact structure given in Figure 4.4 is Stein fillable.

Secondly, let l < 0 or k > 0. Through Proposition 4.0.8, we can find a diffeomorphic

copy ∂(W−(l′, k′, n)) of ∂(W−(l, k, n)) such that l′ ≥ 0 and k′ ≤ 0. This leads to

interpret a Stein fillable contact structure on ∂(W−(l, k, n)), by following the first

step of the proof.
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