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ABSTRACT 

 

DETECTING QUEUE LENGTH ON URBAN ARTERIALS USING 

FLOATING CAR DATA (FCD) 

 

Altıntaşı, Oruç 

Doctor of Philosophy, Civil Engineering 

Supervisor: Assoc. Prof. Dr. Hediye Tüydeş Yaman 

Co-Supervisor: Prof. Dr. Kağan Tuncay 

 

November 2018, 149 pages 

 

Accurate estimation of queue lengths whether in the approach of a signalized 

intersection or near a bottleneck location along an uninterrupted urban arterial is 

essential for better traffic management. This requires reliable traffic data, which is 

traditionally obtained from loop detectors, video cameras, etc. More recently, Floating 

Car Data (FCD) is being increasingly used as an alternative traffic data source due to 

its lower cost and high coverage area. Commercially available FCD is obtained from 

GPS equipped vehicles moving in the traffic and can provide speed or travel time data 

for many segments for even 1-min intervals in real-time. The main focus of this thesis 

is to develop a mathematical model to estimate queue length (QL) in both signalized 

intersections and uninterrupted arterials using FCD. The model is mainly based on 

determination of speed threshold value for QL estimation. Speed field, generated from 

FCD using 4-node quadratic interpolation technique, was used to generate imaginary 

vehicle trajectory data and provided iso-speed contours in FCD. The model 

performance was first tested in VISSIM environment by creating a hypothetical 

approach leg of a signalized intersection. Later, model performance was evaluated in 

two study corridors (an uninterrupted urban arterial and a signalized intersection) 

located in Ankara. For the signalized case, selection of speed threshold of 20 km/h 



 

 

 

vi 

 

provided promising estimation results with a root mean square error (RMSE) of 23.21 

m and a mean absolute percentage error (MAPE) of 7.68%. For the uninterrupted 

corridor, selection of speed threshold as 42 km/h provided the maximum QL profile 

over time. 

 

Keywords: Floating Car Data (FCD), Queue length estimation, FCD quality, 

Signalized intersection, Uninterrupted urban arterial 
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ÖZ 

 

HAREKETLİ ARAÇ VERİSİ (FCD) KULLANARAK KENTSEL 

ARTERLERDE KUYRUK UZUNLUĞU TESPİTİ 

 

Altıntaşı, Oruç 

Doktora, İnşaat Mühendisliği 

Tez Danışmanı: Doç. Dr. Hediye Tüydeş Yaman 

Ortak Tez Danışmanı: Prof. Dr. Kağan Tuncay 

 

Kasım 2018, 149 sayfa 

 

Kuyruk uzunluğunun sinyalize kavşak yaklaşım kolunda veya kesintisiz kentsel 

arterdeki dar boğaz yakınlarında doğru tahmin edilmesi iyi bir trafik koridor yönetimi 

için önemlidir. Kuyruk boyunun doğru tahmini güvenilir trafik verisinin olmasını 

gerektirir ki bu trafik verisi geleneksel olarak döngü detektörlerinden, video kamera 

vb. verilerden elde edilmektedir. Düşük maliyeti ve geniş ağ alanı sebebiyle, Hareketli 

Araç Verisi (FCD) son zamanlarda alternatif veri kaynağı olarak daha fazla 

kullanılmaktadır. Trafikte hareket eden GPS donanımlı araçlardan elde edilen FCD, 

gerçek zamanlı olarak 1 dakikalık aralıklarla bile birçok segment için hız veya seyahat 

süresi verilerini sağlamaktadır. Bu tezin ana konusu, FCD verisi kullanarak hem 

sinyalize kavşakta hem de kesintisiz kentsel arterde kuyruk uzunluğunu tahmin etmek 

için matematiksel bir model geliştirmektir. Geliştirilen model temel olarak kuyruk 

uzunluğu tahmini için eşik hız değerinin belirlenmesine dayanmaktadır. 4-düğüm 

noktalı sonlu eleman interpolasyonu tekniği kullanılarak FCD'den elde edilen hız alan 

verisi, sanal araç takip verisini oluşturmak ve FCD'de eş-hız eğrilerini elde etmek için 

kullanılmıştır. Modelin performansı öncelikle VISSIM benzetim ortamında 

oluşturulan bir sinyalize kavşağın yaklaşım kolunda test edilmiştir. Sonrasında, 

modelin performansı Ankara ili içerisinde bulunan iki koridorda (kesintisiz kentsel 
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arter ve sinyalize kavşak) değerlendirilmiştir. Sinyalize kavşak için, eşik hız değeri 20 

km/sa olduğunda, önerilen modelle gözlemlenen kuyruk boyu ile tahmin edilen 

kuyruk boyunun ortalama karesel hatanın karekökü (RMSE) değeri 23.21 m ve 

ortalama mutlak yüzde hata (MAPE) değeri 7.68% olarak hesaplanmıştır. Kesintisiz 

akımın olduğu kentsel arterde ise eşik hız değeri 42 km/sa olarak seçildiğinde, kuyruk 

boyunun zaman içerisindeki değişim profili elde edilmiştir. 

 

Anahtar Kelimeler: Hareketli Araç Verisi (FCD), Kuyruk boyu tahmini, FCD kalitesi, 

Sinyalize kavşak, Kesintisiz kentsel arter 
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nQ  : estimated queue length obtained from FCD speed for signal cycle  

,n n N  
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CHAPTER 1  

 

1. INTRODUCTION 

 

Signalized intersections are designed to follow a stop-and-go traffic management, 

which inherently causes queue formations. However, oversaturation at these 

intersections make them more susceptible for longer travel times and delays, if signal 

timings are not properly designed. For delay minimization, queue length (QL) of an 

approach is one of the main parameters (Tiaprasert et al., 2015). Typical methods for 

QL (which is also called maximum queue length) include either a cumulative traffic 

input-output model or a shockwave based model (Li et al., 2013). The former requires 

the determination of the cumulative arrival and departure flows continuously at 

intersections that cannot be always practical in real cases (Cai et al., 2014). The most 

common technique is implementation of Lighthill-Whitham-Richard (LWR) 

shockwave model, which uses the principles of conservation of vehicles and a traffic 

fundamental diagram that relates the flow-density relation (Cetin, 2012). To measure 

the arrival traffic flow rate, signal control systems traditionally utilize fixed-point 

sensors (i.e. inductive loop detectors) to estimate QLs and arrange the signal timings 

to minimize them (Bagheri et al., 2015). However, cost of installation and operation 

of these sensors is economically challenging for urban arterials with complex network 

and queue formation structures which requires data collection at many locations. 

 

QL estimation for uninterrupted flows such as, freeways, multilane highways or major 

urban arterials is also essential for better management of traffic control. Especially in 

urban arterials, certain locations experience recurrent congestion due to the commute 

travels during peak hours and queues are formed when the vehicles on the road exceed 

the capacity. Thus, accurate estimation of queue lengths at these locations may help 

traffic engineers to develop Intelligent Transportation System (ITS) strategies to 
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alleviate the traffic congestion. Queue lengths near bottleneck location can be 

traditionally detected via input-output models or LWR shock wave model as similar 

in signalized intersection. The traffic data are generally collected from loop detectors 

or probe vehicle data.  

 

More recently, Floating Car Data (FCD) has been used increasingly in urban network 

monitoring, mainly due to its lower cost and higher coverage. Today, it is 

commercially provided by a number of private companies such as, INRIX, TomTom, 

and Be-Mobile even in developing countries such as Turkey. The basic principle of 

FCD is to collect real-time traffic data by locating the vehicle via mobile phones or 

GPS over the entire road network, and to produce time-dependent average travel time 

(or speeds) for road segments. But, the format of the FCD depends on whether it is 

from an individually probe vehicle, or anonymously (and mostly commercially) 

processed data of multiple vehicles tracked for other purposes (such as from fleet data 

of taxis, trucks, etc.). While the former has capability to portray dynamics of the 

vehicle in a time-space diagram (i.e. location of queue join or exit, acceleration, 

deceleration, etc.), the latter mostly carries only average speed (or travel time) 

information determined over a given segment during a selected aggregation epoch 

time.  

 

1.1. Research Objective 

The main objective of this thesis is to propose a methodology for queue length 

estimation using commercial FCD speed. The FCD speed in this thesis was not 

obtained from probe vehicle data; instead, it was taken from a private company as 

processed data. In general, FCD speeds are provided with TMC (Traffic Message 

Channel) codes for the long road segments, varying from 500 m to 1500 m. The 

available data had road uniformly spaced road segment lengths with a maximum 

length of 50 m. This enabled to measure the queue lengths more precisely.   
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In addition to investigations carried out to assess its potential for queue length 

detection, the quality of commercial FCD speed for urban arterial was evaluated by 

performing a set of analysis to determine the current quality for speed and Level of 

Service (LOS) estimation and quantify its current penetration rate.  

 

1.2. Scope of the Study 

There is still no established methodology for FCD use in estimation of queue length 

in real life, as shockwave based queue length algorithms generally utilizes vehicle 

trajectories, which cannot be applicable for commercial FCD, as it carries an average 

speed data instead of individual vehicle time and location specifics; thus, it requires 

redefinition of “queue” and QL estimation using average speed information, which is 

the scope of this study.  

 

For this purpose, analytical model was developed to estimate the queue lengths via 

commercial FCD. The model is mainly based on determination of speed threshold 

value for queue length estimation. Speed field, generated from FCD using 4-node 

quadratic interpolation technique, was used to create imaginary vehicle trajectory data 

and provided iso-speed contours in FCD. To control data quality, first, the model 

performance was tested in VISSIM environment by creating a hypothetical approach 

leg of a signalized intersection. Later, model performance was tested in two study 

corridors (uninterrupted urban arterial and signalized intersection) located in Ankara. 

To evaluate the model performance, Ground Truth (GT) data was also collected via 

video recording for both cases. For uninterrupted arterial, GT speed and flow data was 

obtained during two weekdays including morning and off-peak hours, which was used 

to  

i) evaluate the current quality of FCD in terms of speed and LOS estimation,  

ii) derive analytical relation between FCD speed and GT speed, which will be 

later used to estimate FCD speed threshold for queue length estimation. 
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Additionally, GT data was also collected for signalized intersection to observe actual 

queue lengths which was later used to compare the estimated queue lengths obtained 

from the proposed model. For all cases, Mean Absolute Percentage Error (MAPE) and 

root mean square error (RMSE) were selected as performance indicators to evaluate 

model performance.         

 

1.3. Structure of the Thesis 

Chapter 2 mainly presents the required background necessary to study FCD and queue 

length estimation. This chapter mainly consists of three sections. The first section 

includes the FCD studies in traffic engineering especially in traffic state estimation, 

traffic flow estimation and FCD quality evaluation. The second section covers the 

background information for traffic flow modeling concept and the final section 

includes the queue length estimation studies.  

 

Before, discussing the proposed methodology for queue length estimation, Chapter 3 

describes the structure of current commercial FCD and includes various analysis to 

evaluate the existing quality of FCD in terms of speed and Level of Service (LOS) 

estimation performance and its potential for urban traffic monitoring. Current 

penetration rate of the FCD is also discussed. Chapter 4 presents the proposed 

methodology for queue length estimation from FCD for signalized intersections and 

uninterrupted urban arterials, followed by simulation-based analysis results in Chapter 

5. Chapter 6 includes the queue length estimation results for commercial FCD and 

followed by the conclusion section in Chapter 7.  
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

As a background for the proposed methodology and research findings, some key 

aspects of the available literature is summarized. The first part of the section provides 

the potential usage of FCD speed (obtained from either commercial companies or 

probe vehicle data) in traffic engineering studies especially for traffic state and traffic 

flow estimation for urban arterials. Furthermore, the studies regarding the effect of 

penetration rate of FCD for quality evaluation are also presented. The second part of 

the section mainly focused on traffic flow modeling concept and followed by the queue 

length estimation methods and related studies. 

 

2.1. FCD Studies 

The potential use of the FCD in traffic engineering studies is summarized by Leduc 

(2008) as follows:   

 Detection focused: Congestion detection, traffic state estimation, incident 

detection, origin-destination matrix determination for commuter trips. 

 Application focused: i) Optimization of existing infrastructures through a 

better use of the current road network, ii) dynamic network traffic control, iii) 

improved information services e.g. traffic information, dynamic route 

guidance, road message signs, etc., iv) improved vehicle fleet management 

especially for cargo companies, and v) shorten driving times to reduce costs. 

 Planning and Policy focused: Plan for future investments, new perspectives in 

transport modelling: real-time data could be used to set up dynamic transport 

models capable to provide forecasts in a very short period of time.  
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Among the potential usage of FCD discussed above, the researchers in the literature 

more focused on the four main concepts to evaluate its potential for i) traffic state 

estimation, ii) traffic flow estimation, iii) quality evaluation and iv) queue length 

estimation as shown in Figure 2.1 and further discussed in the following subsections.   

 

Figure 2.1. Floating Car Data (FCD) based studies. 

 

 Traffic State Estimation 

In the absence of additional data sources, to detect traffic states, examining speed 

profiles of the selected corridor enabled to observe sudden changes amongst 

consecutive segments, as well as exploring the statistical distribution of speeds for 

each road segment (Quayle et al., 2010; Pan et al., 2011; Shoufeng et al., 2013, Wang 

et al., 2014). This will later be used to identify the recurrent/non-recurrent congestion 

locations or detection of the bottleneck locations (Xu et al., 2013; Li et al., 2012; 

Reinthaler et al., 2010). 
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Traffic state estimation studies have been performed either using historical data set or 

using real time traffic data (Petrovska and Stevanovic, 2015). Historical data analysis 

covers the examination of the speed distribution, statistical methods such as clustering, 

principal component analysis, etc. to capture the traffic states. Pongnumkul et al. 

(2013) used historical data set for examining the speed profiles and defined different 

congestion levels based on the different speed values to state traffic states. However, 

the authors did not clearly state how they determined these speed thresholds for the 

congested levels. Vasudevan et al. (2015) defined the congestion state based on the 

decrease in speed in accordance with the free flow speed. While, highly congested 

state was defined as the speed less than the 1/3 of the free flow speed, uncongested 

state was specified as the speed greater than 2/3 of the free flow speed.  

 

Pascale et al. (2015) proposed the spatio-temporal clustering methods for the traffic 

state estimation in urban arterial. Clustering analysis resulted in 6 different states and 

threshold speed values were determined for each state. Later, selected urban arterial 

was visualized according the determined speed thresholds. On the other hand, Liu et 

al. (2015) defined speed threshold values for 5 different traffic states, but they did not 

discuss how they obtained these threshold values. Li et al. (2012) used 3 months of 

historical FCD to examine variabilities in average speeds, and attempted to determine 

congestion locations depending on sudden decreases in average speeds in consecutive 

road segments. Xu et al. (2013) highlighted the issues when dealing with the enormous 

historical data set when endeavoring to find meaningful traffic and congestion 

patterns. They obtained FCD from 12,000 GPS-equipped taxi fleets in Wuhan city, 

China. They proposed a statistical method for data analysis (data cube management) 

for congestion detection. Adu-Gyamfi and Sharma (2015) proposed time series data 

analysis to identify similar traffic patterns, especially congested one. Their model had 

a success of 74% accuracy for freeways, while this percentage was 63% for urban 

arterial.  
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Reinthaler et al. (2010) used FCD from both taxi fleets and public transport in the 

German city of Dusseldorf. Public transportation-based data was found to provide 

more accurate results for speed and travel time values. Furthermore, they developed a 

model to integrate these two data sources for estimating traffic states and to identify 

the most congested locations. Altintasi et al. (2017) also proposed pattern search 

algorithm to detect 12 different traffic states (i.e. bottleneck release locations, 

congested flow, stable flow conditions etc.) from FCD and their algorithm 

successfully detect the traffic states for urban arterial. Different than these studies, 

Fabritiis et al. (2008) utilized real time FCD to estimate short term speed prediction 

(15-min and 30-min) as well as detecting the congestion location for the Roma Ring 

Road. FCD speeds were obtained for a one day with 3-min aggregation. A neural 

network-based model was proposed which estimated the short term speeds with 2% to 

8% for 15-min and 3% to 16% for 30-min predictions. Furthermore, congested 

locations were detected with 90% accuracy.  

 

 Traffic Flow Estimation 

Particularly for the determination of the relationship between traffic flow parameters, 

two of the three parameters (speed, density and flow) must be known, in order to 

explain the relationships between them. Since FCD provided only speed data, 

combining such data with other traffic data sources (such as the RTMS, inductive 

loops, video cameras, Automated Vehicle Identification systems etc.) enabled to 

establish traffic fundamental diagram. These kinds of studies involve data collection 

and implementation of well-known traffic flow models to best fit the data (Zhao et al., 

2009; Anuar et al., 2015). 

 

Few studies were performed to examine the potential of commercial FCD speed for 

developing fundamental diagram. More comprehensive study was conducted by Chase 

et al. (2012) by utilizing Inrix speed data (a private company providing FCD speed) 

and microwave radar sensor data to investigate speed-flow relationships. The authors 
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stated that due to systematic errors occurring in the FCD, the desired speed-flow 

relation could not be obtained. These systematic errors were the truncation of the speed 

at the posted speed limit in FCD and the low penetration rate.   

 

Zhao et al. (2009) analyzed traffic flow characteristics on ring road expressways in 

Beijing using FCD and RTMS data. However, in this study, FCD speeds were obtained 

from probe vehicle trajectory data. While average speeds were obtained from both 

data types, whilst volumes were accessed from RTMS data only. Data were combined, 

in order to derive the flow-speed relationship in which Van Aerde traffic flow model 

was chosen the best model to explain this relation. Furthermore, results indicated that 

speeds of the two dataset were highly correlated with R2 value of 0.98. Similar to this 

study, Anuar et al. (2015) used probe vehicle based FCD speed and loop detectors for 

traffic flow estimation. Four different traffic flow models were employed 

(Greenshield, Norhwestern, Underwood and Van-Aerde) and Van Aerde traffic flow 

model was selected as the best one with 98 veh/h/ln RMSE.  

 

 FCD Quality Evaluation 

Parallel to the increased use of FCD in traffic estimation, evaluating the quality of 

FCD has been the focus of many studies (Table 2.2 and Table 2.3). FCD quality was 

compared to speed from additional traffic data sources or to ground truth data, such as 

Bluetooth speed data, sensors or loop detectors. Studies showed that FCD presented 

different performance on freeways than urban arterials. Urban arterials had a more 

challenging environment due to traffic signals, intermediate access points, and other 

flow-interrupting situations (such as bus stops, speed enforcement points, etc.); thus, 

additionally requiring a higher penetration rate to detect traffic states (Hu et al., 2016; 

Cambridge Systematics, 2012 ).  

 

Haghani (2010) compared the average speed of road segments obtained from FCD and 

Bluetooth data. Statistical evaluation was performed for 4 speed categories: i) below 
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30mph, ii) 30-45 mph, iii) 45 and 60 mph, and iv) speed above 60 mph. Bluetooth 

mean speeds were not found to be significantly different from the FCD speeds for each 

speed category. Zhao et al. (2009) compared the RTMS and FCD average speeds, and 

stated that RTMS speed values were generally 6% higher than FCD speed values. 

Chase et al. (2012) evaluated the reported speeds obtained from 3 different kinds of 

traffic data: i) FCD was obtained from Inrix with 5-minute aggregation. Travel time, 

speed, average speed and reference speed data were obtained; ii) Microwave radar 

sensors with 5-min aggregation speed data. Volume and occupancy values were 

collected from the same corridor for the same study period; iii) Radar sensors, for 

which only speed values were obtained. Speed profiles showed that all data types had 

a similar pattern. Speed differences obtained from Inrix and microwave radar sensor 

data were compared and differences were found normally distributed. 

 

Inaccuracy of FCD speeds for urban arterial was attributed to low penetration rate of 

the FCD, while it was found to be successful for travel time estimation for freeways 

(Kondyli et al., 2016). Zhao et al. (2009) found a highly correlated linear relationship 

between RTMS and FCD speeds (R2=0.97 for a freeway), but Hu et al. (2016) found 

a maximum R2=0.36, when the ground truth speed was between 64.4-72.4 km/h for 

an urban arterial. Mean Absolute Percentage Error (MAPE) was reported to be rather 

high when the speed was below 15 km/h (209%), and the lowest MAPE obtained was 

between 72.4-80.5 km/h as 4.1%. Accuracy of FCD was found to be not acceptable 

for real-time traffic state estimation, but useful for long-term traffic characterization. 

Kim and Coifman (2014) showed that FCD responded to a sudden speed change 6-

minute later, and quality of the data reduced for speeds lower than 56 km/h. Wang et 

al. (2014) reported that FCD produced a systematic bias and could not capture sudden 

changes in traffic states. 
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Table 2.1. Studies comparing FCD with different traffic data sources on Freeways. 

 

Study Data type Length Duration GT Data 
Measure of 

Effectiveness 

Kondyli et al. 

(2016) 

FCD 

(STEWARD, 

INRIX, 

HERE) and 

Bluetooth 

12.6km 

1 day 

(15:30-

18:30) 

Probed 

vehicles 

FCD overestimated the 

travel times 

Zhao et al. 

(2009) 
FCD(INRIX) NA 

5 days 

(06:00-

10:00) 

RTMS 
Linear regression, R2= 

0.97 

Wang et al. 

(2014) 
FCD(INRIX) 123.9km 7 days 

License 

plate 

readers 

A quick response for 

road 

closure 

Adu-Gyamfi 

and Sharma 

(2015) 

FCD(INRIX) NA 1 month 
Loop 

Detectors 

Detect short term 

congestion events with 

74% accuracy 

Chase et al. 

(2012) 

FCD(INRIX, 

TrafficCom 

and 

SpeedInfo) 

3.2km 20 days RTMS 

Systematic errors 

observed 

in TrafficCom 

Haghani et al. 

(2010) 
Bluetooth 148.1km 9 days 

FCD 

(INRIX) 

Not significantly 

different for each speed 

bin 

Latimer and 

Glotzbach 

(2012) 

FCD(INRIX, 

TrafficCast 

and HERE) 

32.2km 

4 days 

(06:00-

20:00) 

Probed 

vehicles 

INRIX had a less 

average 

absolute speed error 

NA=Not Available 
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Table 2.2. Studies comparing FCD with different traffic data sources on urban arterials. 

 
Study Data 

type 

Length Duration GT Data Measure of 

Effectiveness 

Hu et al. 

(2016) 

FCD 

(INRIX) 
2.8km 1 month Bluetooth 

Up to 209% MAPE 

observed 

at congested hours 

Kondyli et al. 

(2016) 

FCD 

(HERE) 
NA 

1 day 

(15:30-18:30) 

Probed 

vehicles 

Not accurately estimated 

speed due to the small 

sample size 

Kim and 

Coifman 

(2014) 

FCD 

(INRIX) 
22.4km 2 months 

Loop 

detectors 

Average absolute speed 

error of 4.8-9.6 km/h 

Wang et al. 

(2014) 
FCD 4.8km 7 days 

License 

plate 

readers 

Mean absolute percent 

error in speed as 17-73% 

Adu-Gyamfi 

and Sharma 

(2015) 

FCD 

(INRIX) 
NA 1 month 

Loop 

Detectors 

Detect short term 

congestions with 63% 

accuracy 

Anuar et al. 

(2015) 

Probed 

vehicle 
NA 

1 day 

(10:00-18:00) 

Loop 

detector 
6.4% MAPE in average 

Schneider et 

al. (2010) 
FCD 14.4km 

1 day  

(06:30-10:30/ 

15:30-19:30) 

Bluetooth 
Not significantly 

different results 

Brockfeld et 

al. (2007) 

Taxi- 

FCD 
2km 

4 days 

(morning and 

evening 

peaks) 

License 

plate 

readers 

Short term speed drops 

were not captured 

Quayle et al. 

(2010) 
Bluetooth 1.28km 

1 day  

(07:00-09:00) 
FCD Showed similar pattern 

NA=Not Available 

 

 

 Penetration Rate for FCD Quality 

Quality of FCD depends certainly on the source of the GPS-based data feeding to as 

well as the nature of aggregation in FCD process. The impact of the FCD penetration 

rate was investigated mainly for different purposes as i) travel time reliability, ii) 

traffic state detection (such as, congestion or incident detection), and iii) speed 

prediction. Brockfeld et al. (2007) utilized a taxi-based FCD system in urban corridor 

with 2 km long in Nuremberg, Germany, to investigate the impact of FCD penetration 

rate for congestion detection. Due to the insufficient penetration rate, FCD travel time 

data was evaluated by aggregating 15-min intervals and compared with license plate 

recognition data collecting in 4 days. Results indicated that while long term congestion 
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was detected with a high reliability, short time congestion could not be captured 

precisely. However, the current penetration of FCD was not discussed for the study 

location. Kerner et al. (2005) investigated the minimum FCD penetration rate required 

for better traffic state estimation. The results showed that 1.5% FCD penetration rate 

enabled detection of an incident location with a 65% probability. When the FCD 

penetration was 2%, success rate was 85%. Vandenberghe et al. (2012) investigated 

the minimum penetration rate as well as the FCD time interval to be required for 

detecting incident and traffic congestion location in a simulation environment. While 

FCD with 1.0% penetration rate and 10 sec interval was successful to detect incident 

locations for highways, this rate was not adequate for urban arterials. Hong et al. 

(2007) also proposed minimum 2% penetration rate for traffic state detection by 

performing simulation based analysis. 

 

For the speed prediction studies, while Herrera et al. (2010) specified 2-3% FCD 

penetration rate is enough for better speed prediction, Cheu et al. (2002) found this 

rate as 6% for their simulation based study. A more compressive study has been 

conducted by Klunder et al. (2017) regarding the effect of different FCD penetration 

rate for speed prediction in a 100 m urban road segment in Amsterdam, Netherland. 

Average absolute percentage errors (AAPE) have been computed for different 

penetration rates and they fit a curve showing the relationship between the penetration 

rate and corresponding estimation error. For 1% penetration rate, AAPE was not 

reported due to the higher error, but 10% penetration rate generated 5.6% AAPE value. 

Fabriitis et al. (2008) reported that at least 2.4% penetration rate was necessary for 

better speed prediction, while the current penetration rate was calculated as 1.7%. In 

an attempt to derive fundamental diagram using loop detector flow data and FCD 

speed data, Sunderrajan et al. (2016) created various scenarios with different FCD 

penetration rates; the minimum percentage of FCD was found as 5% for better 

estimation of this diagram. 
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2.2. Traffic Flow Modeling 

 Traffic Fundamental Diagram 

For better management of traffic on urban arterials, it is essential to derive a 

fundamental diagram (FD), which is the mathematical representation of the 

relationships of the flow parameters of average speed (u), density (k) and flow (q) at a 

macroscopic level. Relations between u – q – k for an urban corridor have a crucial 

effect on the arterial design and planning for effective solutions to urban arterial 

congestion problem (Van Aerde and Rakha, 1995). The basic relation between the 

traffic flow parameters is   

          q uk                    [2.1] 

which captures the limiting traffic flow conditions such that there will be no flow, if 

average speed or density is zero. Relations between two parameters, such as (u – q), 

(u – k) or (q – k) are necessary to further study the nature of traffic flow such as 

capacity.   

The traffic flow simply defined as number of vehicles passing some designated 

roadway point during a time. In general traffic flow can be calculated as  

                   
1

q
h

                   [2.2] 

where; h represents the average time headway in unit time per vehicle and calculated 

as follows:  

               1

n

i

i

h

h
n




                                                                                                                   [2.3] 

where; ih  is the time headway between the passages of the front bumpers of successive 

vehicles at some designated highway point, and n is the number vehicles.  
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Space mean speed, on the other hand can be defined as the average speed of the 

vehicles based on the total time spent travelling over a given length of the roadway 

and calculated as  

 

           

1

1

1 1n

i i

u

n u




                  [2.4] 

where; iu is the speed of the ith  vehicle.  

If a 2-parameter relation is obtained from site observations, it is always possible to get 

the third parameter from Equation [2.1]. The traditional fundamental diagram 

representing the relationship between the flow and density is illustrated in Figure 2.2.  

Greenshields (1935) proposed a linear relationship between speed and density for 

uninterrupted traffic flows observed on highways, which produced a parabolic flow-

density (and flow-speed) relationship. However, this model was not found reliable for 

congested traffic regimes (Zhao et al., 2009). To simulate realistic traffic flow, more 

complex models have been developed in recent decades. These models used nonlinear 

relationships between speed and density. Three different exponential functions, which 

have non-linear speed-density relations, were developed in Underwood (1961), 

Northwestern (1967), and Pipes (1967). Later, Van Aerde (1995) proposed a single 

traffic regime flow model that captured the different flow conditions both free flow 

and congested regimes in a single equation.  

 

Figure 2.2. Shockwave speeds in fundamental diagram (Liu et al., 2011). 
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 Queue Definitions for Interrupted and Uninterrupted Traffic Flows  

What defines entering to or exiting from a queue is a very essential issue that’s need 

to be clarified for both interrupted (such as, signalized intersection) and an 

uninterrupted urban arterial since they have different traffic flow characteristics. For 

the former one, HCM (2010) defined “Stopped-Vehicle State (or Queued State)” 

showing the state when a vehicle is in the queue. To determine the “Stopped-Vehicle 

State”, speed thresholds are used in which the selection of a near-zero speed threshold 

value would be more stable instead of selecting zero speed threshold. The report 

suggested to use 5 km/h speed threshold for entering the queue. An example vehicle 

trajectory data for signalized intersection is provided in Figure 2.3, showing the queue 

entrance and move locations more clearly.  

 

  

Figure 2.3. Space time diagram including vehicle trajectories for several signal cycles on a signalized 

approach (HCM, 2010). 
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Queue definition for uninterrupted flows is completely different since the traffic flow 

is continuous and is not interrupted with the signals. In other words, in this case no 

“Stopped-Vehicle State” occurs because the vehicle never came to stop. So, assuming 

5 km/h speed threshold is not applicable. An example vehicle trajectory data for very 

congested segment is provided in Figure 2.4. As it can be seen from the Figure 2.4, 

the queue entrance and move locations are not clear as the interrupted flow condition.  

 

 

Figure 2.4. Space time diagram including vehicle trajectories for oversaturated road segments for 

uninterrupted flows (HCM, 2010). 

 

On the other hand, for queue detection, derivation of traffic fundamental diagram is 

necessary to identify i) traffic flow parameters (such as, capacity flow, density and 

speed at capacity, jam density), ii) undersaturated and oversaturated regions based on 

the aforementioned parameters. HCM (2010) provided flow-density relationship for 

the different free-flow speed (FFS) values, separately for the uninterrupted flow 

condition (see Figure 2.5 for FFS of 75 mi/h). After determination of the capacity flow 

and density at capacity, the region where the density values lower than the density at 

capacity is depicted as the undersaturated region. The other side, however, is regarded 
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as the oversaturated region. Based on these information, “Moving-Vehicle State” 

concept was defined as follows:  

 The uncongested state, in which a vehicle is moving in a traffic stream              

that is operating below its capacity 

  The congested state, in which the traffic stream has reached a point that               

is at or slightly above its capacity, but no queuing is observed; and  

 The severely congested state, in which downstream bottlenecks have affected 

the operation ad queue occurs.  

So, it is crucial to determine the speed value for severely congested state where the 

queues are observed.  

 

 
 

Figure 2.5. Flow-density relation for FFS of 75 mi/h (HCM, 2010). 

 

A precise definition for distinguishing congested state and severely congested state 

required more complex algorithms (HCM, 2010) but the report suggested to select 

threshold speeds in which severely congested region could be specified when the 

speed is below one‐third of the target speed. The target speed here, is the speed at 

which the driver prefers to travel. Other study conducted by Hall et al. (1992) 

generalized the speed-flow curve for collecting the traffic data during 52 days from 

multilane highway located in Ontarino, Canada (see Figure 2.6). The authors divided 
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the speed-flow curve into three part as: i) the speed higher than the speed at capacity 

was named as uncongested region, ii) the traffic flow near the capacity was named as 

the queue discharge region (Segment 2 in Figure 2.6), and iii) the breakpoint at which 

speeds started to decrease from speed at capacity and this region was named as “within 

a queue”.   

 

In addition to these information for queue detection, independent from the speed-flow 

curves, Elefteriadou et al. (1995) utilized loop detector data to identify the speed 

threshold limits to detect queue lengths near a bottleneck location on a freeway. Based 

on the 3-months of loop detector data the authors reported speed threshold limit of 35 

km/h. In other words, the vehicle speed dropped below 35 km/h, regarded as entering 

the queue.    

 

 

Figure 2.6. Generalized shape of speed-flow curve for uninterrupted flows (Hall et al., 1992). 

 

 Traffic Flow at Signalized Intersections 

Before discussing the queue length estimation models and related studies, it is useful 

to discuss the key concepts and definitions used in the analysis of traffic at signalized 
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intersections. The first crucial concept is the saturation flow rate which represents the 

maximum number of vehicles that can pass through a signalized intersection if the 

intersection is green during one-hour (HCM, 2010). Saturation flow rate can be 

calculated as  

3600
s

h
          [2.5]  

Where  

s: saturation flow rate in veh/h, 

h: saturation headway in sec/veh, and 

3600: number of seconds per hour.  

 

Based on HCM (2010), saturation flow can be determined by calculation of the 

saturation headway after the 4th vehicle following the beginning of a green time as 

shown in Figure 2.7. When a signal changes from red to green, the vehicles in the 

queue do not start moving simultaneously; there could be initial lag due to drivers 

reacting to the change of signal indication (Mannering et al., 2009). The drivers do not 

completely utilize the green time and causes some loses, namely start-up lost time (see 

Figure 2.7). HCM (2010) recommended to take 2 sec/phase as a start-up lost time. 

Furthermore, when the signal indication changes from green to yellow and if there is 

an all-red interval (AR), there could be another lost time, namely clearance lost time. 

Thus, the total lost time (tL) can be calculated as  

L sl clt t t                     [2.6] 

Where   

Lt : total lost time for a movement during a cycle in seconds,  

slt : start-up lost time in second, and  

clt : clearance lost time in seconds.  
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Figure 2.7. Saturation flow rate and lost time for a signalized intersection (HCM, 2010). 

 

Another important parameter is the calculation of the effective green time (g) that 

represents the time which is effectively used by the traffic and calculated as follows:  

 

Lg G Y AR t                      [2.7] 

 

Where 

G  : displayed green time for a traffic movement in seconds,  

Y   : displayed yellow time for a traffic movement in seconds,  

AR : displayed all-red time in seconds. 

 

Approach capacity is also crucial parameter for signalized intersections. The capacity 

of the approach represents the hourly volume that can be accommodated when the 

intersection approach had less than 100% green time (Mannering et al., 2009), and 

formulated as follows:  
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( * / )c s g C                    [2.8]

     

Where 

c : capacity (maximum hourly volume of a movement) in veh/h, 

s : saturation flow rate in veh/h,  

g/C : ratio of effective green time to cycle length.  

 

Finally, degree of saturation, denoted as X, can be calculated (see Equation [2.9]) 

showing the traffic condition of the approach, whether oversaturated or undersaturated 

as follows: 

 If X <1, arrival flow per cycle can be discharged in a single green period 

(undersaturated intersections), and when this value closes to one then the 

arrival flow reaches to capacity flow.    

 If X>1, then the approach is oversaturated and arrival flows per cycle can not 

be discharged in a single green period and residual queues could be observed.  

 

/

/ C

q s
X

g

 
  
 

                  [2.9] 

 

 Shockwaves in Signalized Intersections  

The trafic data obtained from either loop detectors or probe vehicles, the Lighthill-

Whitham-Richard (LWR) shockwave models are commonly most preferable for 

queue length estimation which uses the principles of conservation of vehicles and a 

traffic fundamental diagram that explains the flow-density relation (Mecit, 2012).  

At signalized intersections, signal changes lead to the generation of various shockwave 

speeds as  

2 1

2 1

q qq
w

k k k


 
 

                [2.10] 
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which is the difference in flows of the two traffic states divided by the difference in 

densities. The shockwave speeds are illustrated on traffic fundamental diagram in 

Figure 2.2. 

 

When the signal is in red interval, vehicles were forced to stop and generating 

backward moving shockwave speed (donated as 1w ) and formulated as: 

1

0 n

a

n

j a

q
w

k k





                [2.11a] 

where n

aq  and n

ak  represents the arrival flow rate and density, respectively for the cycle 

n. 
jk  represents the jammed density. Liu et al. (2009) specified the shockwave speed 

on an approach of an intersection more explicitly, as shown in Figure 2.8a. When the 

red time turns to green then the second shockwave speed is formed, discharge 

shockwave, and vehicles are assumed to discharge at saturation flow rate (Mecit, 

2012) and formulated as:  

2

0m

m j

q
w

k k





               [2.11b] 

where mq  and mk  represents the saturation flow and density at saturation flow 

condition. The two shockwave speeds are overlapped at a time, showing the maximum 

queue length location. Later, new shockwave speed is formed which is defined as 

departure shockwave (see Figure 2.8c), 3w , and formulated as:    

3

n

m a

n

m a

q q
w

k k





                [2.11c] 

For the oversaturated condition where the residual queue exists at the end of the green 

time, forth shockwave speed is formed (Figure 2.8d), 4w , moving to upstream with a 

speed of 

1

4 1

0 n

a

n

j a

q
w

k k









              [2.12d] 
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Figure 2.8. Shockwave speeds for a signalized intersection (Liu et al., 2009). 

 

2.3. Queue Length Estimation Studies 

For delay minimization based control, queue length of an approach is one of the main 

parameters (Tiaprasert et al., 2015). Typical methods for queue (which is also called 

maximum queue) length include either a cumulative traffic input-output model or a 

shockwave based model (Li et al., 2013). The former one was first proposed by 

Webster (1958) and utilized by many researchers for queue length estimation 

(Akcelik, 1999; Strong et al., 2006; Sharma et al., 2007). This model requires the 

determination of the cumulative arrival and departure flow continuously at 

intersections that cannot be always practical in real cases (Cai et al., 2014) when the 

rear of the queue exceeds the vehicle detector location. This leads to larger estimation 

error in queue estimation (Skabardonis, and Geroliminis, 2008). Furthermore, it could 

not provide spatio-temporal distribution of the queue length (Liu et al., 2009). On the 

(a) (b) 

(d) (c) 
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other hand, the most common technique is implementation of Lighthill-Whitham-

Richard (LWR) shockwave model. For this model, it is crucial to measure the arrival 

traffic flow rate for each cycle which can be provided by either fixed-point sensors 

(i.e. inductive loop detectors) (Akcelik, 2001; Skabardonis and Geroliminis, 2008, Liu 

et al., 2009) or mobile sensors (Comert and Cetin, 2009; Ban et al., 2011). Unlike 

input-output model, LWR shockwave model provided the complicated queuing 

process in both temporal and spatial dimensions.   

 

 Queue Length Estimation with Loop Detector 

Queue length estimation at signalized intersections studies traditionally required 

arrival flow data, which is generally provided by the loop detectors. Loop detectors 

provides reliable and more accurate traffic data (such as volume, occupancy, headway, 

and time gap) which are the essential parameters for the queue length estimation 

(Klein, 2006). However, the main drawback of this system is that when the queues 

exceed the detector location, then it could not be possible to collect arrival flow data. 

Thus, the location of the loop detector for the upstream of the intersection is necessary.  

According to the FHWA (2006) report, the location of the loop detector was associated 

with minimum green time interval and approach speeds for low-speed approaches 

while approach speed was used only parameter for high-speed approaches as shown 

in Table 2.3. On the other hand, SCOOTS, is a commercial company for performing 

adaptive signal control systems, stated that the loop detector should be located 8-12s 

travel time from the upstream of the intersection.   

 

Existing studies regarding queue length estimation from loop detectors generally have 

not been depended on such distances. For example, Liu et al. (2009) proposed a 

shockwave based queue length estimation model for oversaturated intersections by 

defining different break points from detector occupancy and time gap data. The loop 

detector was located 120 m distance from the stop line. In their study, queue length 

for each cycle exceeded the detector location, and the authors defined three break 
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points (A, B, and C as shown in Figure 2.9) which represent the times that the traffic 

flow changes at the detector location. 

 

Table 2.3. Loop detector location and related parameters for urban signalized intersections (FHWA, 

2006). 
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Approach 

Speed 

Loop detector 

location from 

stop line 

mi/h km/h meter second mi/h km/h meter 

15 24 12 9 35 56 77 

20 32 18 11 40 64 87 

25 40 24 12 45 72 100 

30 48 30 13 50 80 108 

 55 88 118 

 

 

Figure 2.9. Shockwave speeds and break points at an intersection (Liu et al., 2009). 

 

The break point A and B was calculated from the detector occupancy time by assuming 

the 3 s occupancy time was a threshold value as shown in Figure 2.10a. Thus the time, 

TA in Figure 2.9 was recorded when the detector occupancy was greater than 3 sec and 

by performing simple mathematical operations backward moving shockwave was 
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calculated. Similarly, discharge speed was determined by determining TB, which is the 

time that detector occupancy was less than 3 s. Thus, the point H, which is the 

maximum queue location, can be determined by solving equation of the two lines. On 

the other hand, Point C, was calculated from time gap data as shown in Figure 2.10b, 

later be used to calculate residual queue location which is Point D in Figure 2.9. Their 

model had a MAPE value of 9.34% to 22.03% with an average of 14.93%.   

 

  

Figure 2.10. a) Detector occupancy time, b) time gap data for a one cycle (Liu et al., 2009). 

 

Similar study conducted by Geroliminis and Skabardonis (2008) that the authors 

proposed shockwave based model by utilization of real time 30 sec aggregated loop 

detector data. While the occupancy and time gap values were utilized to estimate 

maximum queue location, the aggregation of these values made it harder to determine 

the time gap data between consecutive vehicles. While the model had a great success 

for estimating maximum queue length in uniform arrival pattern, the model had limited 

success when fluctuations in arrival traffic flow was observed. On the other hand, 
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Muck (2002) proposed a linear regression model instead of using shockwave based 

model to estimate queue lengths when the queue exceeded the detector location. The 

model had a success of estimating maximum queue location even the queues ten times 

far away from the detector location. However, no performance measures were defined 

to quantify the errors. 

  

For undersaturated cases, Badillo et al. (2012) performed a simulation based study 

which utilized a fine-grained loop detector data (every 1s occupancy and time gap data 

were taken) located in 228 m from the upstream of the intersection. The authors 

defined a “Look Ahead Interval Time” for arrival flow calculation. The arrival flow (

aq ) and corresponding density value ( ak ) were obtained from detector data based on 

“Look Ahead Interval Time”; however, 
jq and 

jk values were assumed to be constant 

value according to the empirical observations. Shockwave model was implemented to 

identify the maximum queue length locations.  

 

 Queue Length Estimation with Probe Vehicle Data 

Since vehicle-to-vehicle and vehicle-to-infrastructure communications are growing, 

data obtained from probe vehicles gain importance to develop new methods in queue 

length estimation (Mecit, 2012). Probe vehicle data provides probe trajectory, which 

means location and speed of the vehicle is known over time. Thus, it is possible to 

identify the time when the vehicle join the queue, and similarly the time when the 

probe vehicle leaving the queue by assuming 5 km/h threshold speed as recommended 

in (Mecit ,2012, Cai et al., 2014).  

 

Comert and Cetin (2009) focused on the importance of the probe vehicle data for real 

time queue length estimation at signalized intersections. The proposed analytical 

model evaluated how the queue length changed at the near the intersections and 

conditional probability distribution of the queue length was derived. The authors 

reported that time and location of the last probe vehicle should be utilized to estimate 
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queue length if more than one probe vehicle is joined the queue. Furthermore, they 

defined an error range for the different penetration rate of the probe vehicle data.  

 

Cetin (2012) developed a mathematical model that utilized the position and time 

coordinate of at least one probe data for estimating the queue lengths at oversaturated 

intersections. The position and time coordinates of the probe vehicle when joining the 

back of the queue was utilized to estimate the evaluation of back of the queue as well 

as the critical points (such as, maximum queue and residual queue locations). The 

model was tested with different penetration rate as well. While the model was 

successful even for 5% penetration rate, it could not estimate the queue length, when 

a probe vehicle was not captured in a cycle. A follow up study, for undersaturated 

condition, Unal and Cetin (2014) examined queue dynamics from probe vehicle data 

using shockwave model, which estimated the queue length location with mean 

absolute percentage error of (MAPE) 23.6% for 10% probe vehicle penetration. 

 

In Neumann (2010), examined frequencies of the probe vehicles near the signalized 

intersections, statistical method was proposed to estimate the daily queue lengths. Ban 

et al. (2011) utilized travel time data obtained from the mobile sensors (treated as 

FCD) between predefined virtual points before and after the intersection for estimating 

the real time queue length. The model was tested in both simulation environment and 

a field that the distance between two virtual points were selected as 860 m. The 

estimation was based on the observation of the critical pattern changes of travel time. 

Sharp increase or decrease in travel time of the probe vehicle in a location was spotted 

and regarded as the joining/leaving the queue location. Later, shockwave based model 

was implemented to estimate the queue length. The effect of penetration rate of probe 

vehicle on queue length estimation was also tested. Under full penetration rate, the 

model had a success rate of 80%-90%, while the success rate was 15%-32% for 20% 

penetration rate. The authors reported that at least 40% penetration rate was necessary 

for reliable queue length estimation.   
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Cheng et al. (2011) also utilized only probe vehicle trajectory for cycle-by-cycle queue 

length estimation. Similar to the aforementioned studies, joining and leaving the queue 

locations were detected from space-time diagram and shockwave model was 

implemented. Three different data sources were used as NGSIM (Next Generation 

Simulation), simulation based and probe vehicle data equipped with GPS. NGSIM 

provided real vehicle trajectory data from video recordings. The results of the observed 

12 cycle indicated that the queue length estimations from NGSIM data were found 

with an MAPE of 22.26% while GPS equipped vehicle produced MAPE of 25.49%. 

Simulation-based analysis have been created both representing undersaturated and 

oversaturated traffic condition, which resulted in MAPE value of 17.46% and 19.23%, 

respectively.  

 

Implementing shockwave model is not always necessary for queue length estimation 

from probe vehicle data. For example, Li et al. (2013) performed simulation-based 

study in VISSIM and utilized probe trajectory and signal timing data without 

information of arrival traffic flow and other essential parameters for queue length 

estimation. In their model, location and time information of the last probed vehicle 

that joined the queue in a cycle was determined. Later this information was used to 

calculate the queue increase rate since start of red time was known. Similarly, location 

and time information of this probe vehicle was recorded when this vehicle leaved the 

queue. Thus, queue discharge speed was calculated. Then maximum queue location 

was determined based on these two parameters. The effect of probe vehicle penetration 

rate showed that MAPE was found as 4.29% for 90% penetration rate, while this value 

was raised to 60.82% for 10% penetration.  

 

Similarly, Tiaprasert et al. (2015) presented a mathematical model for real time queue 

length estimation from probe vehicle data for actuated and fixed control signalized 

intersections tested in a simulation environment. The model utilized the position of 

the last probe vehicle joining the queue for each cycle. The model was applicable 
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without arrival flow rate, signal timing data and queue characteristics information. To 

overcome the big estimation error from the low penetration rate, the study proposed a 

discrete wavelet transform algorithm to improve the model accuracy. The results 

indicated a RMSE value of 8 vehicles (corresponding to approximately 40 m) when 

the penetration of the probe vehicle is 10%. For the full penetration, RMSE was found 

as 3 vehicles (approximately 15 m). 

 Queue Length Estimation by Fusing Loop Detector with Probe 

Vehicle Data 

To enhance the accuracy of the queue estimation at signalized intersections, fusing 

loop detector with probe vehicle trajectory data have been focused of many studies. 

This fusion could be performed either using data fusion algorithms such as Kalman 

filtering or combined the two data sources jointly to determine the shockwave speeds 

as well as the queue lengths. For the former, Li et al. (2013) estimated the queue length 

by utilizing Kalman filtering method for probe vehicle and loop detector data 

separately. Later, weighted combination of the queue length was calculated according 

to these two data source, which resulted in the estimated queue length. The model was 

tested in VISSIM simulation environment under varying penetration rate of probe 

vehicle. The author stated that significance of the data fusion was observed under low 

penetration rate, but still the model produced rather high MAPE value as more than 

60% for 10% penetration.  

 

Cai et al. (2014) examined the real time cycle-by-cycle queue lengths by using loop 

detector (located 50 m from the upstream of the intersection) and probe vehicle 

trajectory data obtained from mobile sensors in an urban arterial in China. The 

mathematical formulations were developed for three different cases separately, which 

were based on the LWR shockwave model. The representation of three cases are 

illustrated in Figure 2.11. For Case 1, the queue exceeds the detector location (marked 

as Point A in Figure 2.11a) and probe vehicle was joined and leaved the queue at 

Points B1 and C1 respectively. To calculate the maximum queue location, which is 
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Point D, the two shockwave speeds were calculated based these points. Since the 

location of the detector is known, the time when the detector was occupied (Point A) 

was calculated from the detector occupancy data by assuming 3 sec as a threshold 

limit. Since the location and time information of the Point B1 are known from probe 

trajectory, backward moving shockwave can be calculated from equation of the line. 

Similarly, discharge shockwave can be calculated from the line equation.    

 

For Case 2, probe vehicle was assumed to join the queue after the detector location. 

Same procedure was implemented to estimate the maximum queue location. On the 

other hand, in Case 3, Point A did not exist since the queue did not exceed the detector 

location (see Figure 2.11b). In this case, detector data was utilized to obtained arrival 

flow and density data, and probe trajectory data information was utilized to calculate 

the Point D. The results indicated that while the MAPE values were found as 11.60% 

and 9.98% for Case 1 and 2, respectively, this value was 26.40% for the Case 3. For 

their model, at least one probe vehicle was necessary to estimate the queue length.  

 

Wang et al. (2017) also presented a similar methodology for queue length estimation 

that traffic states (arrival flow, arrival density etc.) were identified from loop detectors 

and location of stop and move of the probe vehicles were used to implement LWR 

model. The model had a capability of estimating queue length with MAPE of 17.09% 

among 11 cycles from site observation, but failed in estimating the residual queues for 

oversaturated condition. 

 



 

33 

 

 

Figure 2.11. Representation of scenarios a) Case 1 and Case 2, b) Case 3 for  Cai et al., (2014) study. 
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CHAPTER 3  

 

3. FCD STRUCTURE AND QUALITY 

 

In this chapter, the structure of the commercial FCD in Turkey will be discussed first, 

and followed by the description of the study corridors. The forth section mainly 

focuses on the evaluation of quality of the existing FCD in terms of i) speed 

estimation, ii) Level of Service (LOS) estimation and iii) LOS-based urban traffic 

monitoring by carrying out a set of analysis. The current penetration rate of FCD was 

also determined by performing Monte Carlo simulations in the final section.  

 

3.1. FCD Structure  

FCD used in this study included “real-time average speed data” published at 1-minute 

intervals for predefined road segments by a private company, Be-Mobile. FCD for 

Turkey comes from 600,000 GPS equipped vehicles (among the total 19 million 

registered vehicles), which corresponds to approximately 3% penetration rate. With 

such penetration, FCD has become a major traffic data source for urban arterials, along 

which there existed almost no traffic data sources or counts before. Today, real-time 

broadcasted FCD has provided traffic data for almost 5,000 segments (road segments 

less than 50 m) in Ankara (see Figure 3.1a), which covers almost 250 km of road 

network, and requires storage capacity of 8GB area per day. 
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Figure 3.1. a) Location of two study corridors in Ankara (Be-mobile, 2018); bi-directional location of 

some of the FCD segments in b) Dumlupınar Boulevard, c) Muhsin Yazıcıoğlu Street. 

 

 

(a) 

(b) Study Corridor 1 

(c) Study Corridor 2 
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For efficiency, the invariant portion of the data (Segment ID, Length, Road Class 

Type, Speed Limit, Optimal Speed, and Local Coordinates) was shared once in a static 

table (see Table 3.1). The dynamic part of the data included attributes Segment ID, 

Date, Time, Speed ( t

FCDu ), Travel Time, and Coverage (Table 3.2); and the segment 

ID was the repeated parameter connecting the two parts of the data. In this data, as 

t

FCDu  was equal to “Length (from static part)” divided by “Travel Time (from dynamic 

part)” – it was not a parameter observed independently. However, evaluation of the 

FCD for the many corridors in Ankara showed that published t

FCDu  never exceeded the 

speed limit defined in the static part; thus, it was a truncated value. “Coverage” was 

explained by the data provider as “number of probe vehicles included in the average 

speed calculation” and the maximum value was observed as 10 in the study corridor 

data, suggesting “inclusion of data from 10 probed vehicles”. However, the details of 

the averaging function have not been clearly stated, such as, if 10 vehicles were 

observed at time t, or within a certain time interval before it, which was more likely 

the case; thus, it has not been regarded as a very reliable measure. Optimal speed was 

a parameter created by the FCD provider based on some archival evaluation, but not 

clearly defined. The FCD static data table was augmented to include a Local ID, 

showing the consecutiveness of the segments along the study corridor. 

 

Table 3.1. Static information of sample road segments located in the Dumlupınar Blvd. Corridor. 

Segment 

Id 

Length 

(m) 

Road 

Class 

Optimal 

Speed 

Speed 

Limit 

Start  

Coordinate 

End  

Coordinate 

Local  

Id 

676110 40.33 1 70 70 32.734701, 

39.9065 

32.735171, 

39.906523 

19 

676111 40.33 1 70 70 32.735171, 

39.906523 

32.735642, 

39.906545 

20 

676107 49.36 1 70 70 32.735642, 

39.906545 

32.736104, 

39.906564 

21 

676108 49.36 1 70 70 32.736104, 

39.906564 

32.736565, 

39.906594 

22 

676109 49.36 1 70 70 32.736565, 

39.906594 

32.737025, 

39.906627 

23 

 



 

38 

 

Table 3.2. Sample dynamic attributes for the “676111” road segment. 

Segment Id Day Time Travel Time (s) Speed Coverage 

676111 01.07.2016 8:00 2.48 70.00 10 

676111 01.07.2016 8:01 2.48 70.00 8 

…      

676111 01.07.2016 8:59 2.54 69.79 10 

676111 01.07.2016 9:00 2.89 61.34 10 

…      

 

3.2. Study Corridor 1 

Two study corridors were selected for this thesis (see Figure 3.1). The first study 

corridor has an approximately 3.6 km stretch along Dumlupınar Blvd. in Ankara, a 

major arterial in the form of a multilane urban highway corridor, with three lanes in 

each direction (see Figures 3.2a, 3.2b, 3.2c). The study corridor consists of 82 FCD 

segments in one direction which delivers real-time average speed data in 1-minute 

periods for a fine and almost uniform segmentation with maximum length of 50 m. 

The static information of the road segments for this corridor is given in Table A.1.    

 

The corridor includes two main interchanges of J1 (located between segments 10 and 

19) and J2 (located between segments 72 and 82) and an electronic speed enforcement 

at Segment 26. Note: Although recently the speed limits were raised to 82 km/h for 

passenger cars (in practice, this meant 90 km/h due to tolerance in enforcement) and 

70 km/h for commercial vehicles for this corridor, the FCD network data still showed 

70 km/h as the coded limit and thus FCD speed values were truncated at this limit in 

the published data. Although this created some inaccuracy in the evaluation of traffic 

conditions, the error was observed on the uncongested regimes and caused minimal 

inconvenience in the evaluation of congested periods and bottlenecks.   
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Figure 3.2. a) Locations of Study Corridor 1 of 3.6 km length b) with 40 FCD segments in the eastern 

part, c) 42 FCD segments in the western part d) with a close look-up on the control Segment 57 with 

GT data. 

 

 Ground Truth Data 

In order to evaluate the quality of existing FCD from different aspects for different 

traffic conditions, Ground Truth (GT) data was collected. In order to collect GT data, 

a video camera was installed at a high-rise building along the study corridor to record 

traffic on a specific segment (Seg. 57 in Figure 3.2d) for two days (Friday October 21, 

2016 and Tuesday October 25, 2016). The video camera view provided clear visibility 
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of the segment (49.15 m) for all three lanes. The analysis time period, T, was 07:30 to 

16:00, (during which daylight was available for data processing) and included the 

morning peak and noon off-peak hours. Using a MATLAB code, the video camera 

was processed twice manually to obtain values of i) 1-minute traffic flow and ii) speed 

for each lane separately. The flow was determined by counting vehicles crossing a 

virtual line at Location 1 in Figure 3.2d. While determining the speed of a vehicle i, 

entry and exit times were recorded at Locations 1 and 2, respectively. First, spot speed 

of the vehicle, t

iu , was calculated, but it was then converted to space mean speed for 

the segment, tu , by taking the harmonic mean to be comparable with the t

FCDu  value. 

As detecting t

iu  required tracking of the vehicle i between the two observation points, 

the next vehicle for speed data, vehicle i+1, was selected as the first vehicle observed 

at Location 1, when vehicle i passed Location 2; this caused a lower sampling rate for 

speed data compared to full flow observation in the GT values. Furthermore, as the 

FCD speed values were published for segments, not for each lane separately, lane-

based traffic data (flow and speed values) were combined to obtain segment-based 

traffic flow and speed values. Figure 3.3 shows 1-minute flow and speed volumes for 

both counting days, which illustrate the sampling in the speed data.  

 

 

Figure 3.3. Traffic counting results of two counting days. 
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3.3. Study Corridor 2 

The second corridor is located in Muhsin Yazıcıoğlu Street in Cukurambar and 

composed of two consecutive signalized intersections as shown in Figure 3.4. The first 

one is located at the intersection of the Muhsin Yazıcıoğlu and Ufuk University Street, 

and the second one is almost 327 m far away from the upstream of the first 

intersection. The direction from Muhsin Yazıcıoğlu to Ufuk University Street, labelled 

as Approach 1, has four lanes in which the inner most lane is designated to right turn 

movements and remaining lanes are for through movements with 3.75 m lane width 

and 50 km/h desired speed. For the reverse direction, labelled as Approach 2, it has 

three lanes in which the inner most lane reserves for parking area and the other two 

lanes have a width of 3.75 m and 50 km/h desired speed. 8 FCD segments for this 

study corridor were defined from Be-Mobile bi-directionally and FCD segment 

lengths varied from 38.85 m to 41.43 m. Static information of the FCD segments are 

provided in Table A.2.   

 

  

Figure 3.4. Study Corridor 2 located between 2 signalized intersections of length 327 m covered in 8 

FCD segments. 

 

Approach 2 

Study Corridor 2 

Int 1 

Int 2 
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 GT Data for Muhsin Yazıcıoğlu Street  

GT data was collected via video records obtained from drone to examine the queue 

lengths over time for the Approach 1 and Approach 2 as shown in Figure 3.5. Queue 

lengths from video records were detected for each lane separately for every 5 sec. 

Duration of the video was 11 minutes covering 6 and 7 cycles for Approach 1 and 2, 

respectively. Queue length profile of the approaches indicated that queue lengths were 

around 210 m for Approach 1 while they were in between 75 m and 125 m for the 

other approach (see Figure 3.5). 

 

Further analysis have been carried out to determine critical parameters of the 

approaches such as saturation flow rate, capacity and degree of saturation. Based on 

the HCM (2010) procedure discussed in Section 2.2.3, saturation flow rate was 

calculated by taking the average headway of the vehicles after the 4th vehicle passing 

through from the stop line. This process was implemented for all lanes separately. 

Then, calculated lane-based average headway was put into the Equation [2.5] and 

resulted in saturation flow rate of 2018 veh/h, 1866 veh/h and 1860 veh/h for Lane 1, 

Lane 2 and Lane 3, respectively (see Table 3.3). For the Approach 2, the saturation 

flow rate for the lanes showed very similar values which was around 1900 veh/h. 

Furthermore, lane-based arrival flow rate was also determined for the analysis period 

as shown in Table 3.3 for the two approaches. To calculate the capacity, it is first 

necessary to determine the effective green time (see Equation [2.7]) in which signal 

timing information of the approaches as follows:  

 Approach 1: G= 24 sec, R=84 sec, Y=2 sec, AR= 2 sec, C=110 sec 

 Approach 2: G= 28 sec, R=63 sec, Y=2 sec, AR=2 sec C=93 sec 

Assuming start-up lost time as 2 sec (HCM, 2010) and clearance lost time as 3 sec, 

total lost time (tL) was calculated as 5 sec/phase. Using Equation [2.7], effective green 

times (g) were found 23 sec and 27 sec for the Approach 1 and 2, respectively. Finally, 

lane-based capacity flow values were obtained using Equation [2.8] as shown in Table 

3.3. It is clearly seen that for all lanes of Approach 1, arrival flow rate was greater than 
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the capacity which resulted in degree of saturation (X) of 1.50, 1.52 and 1.32 for Lane 

1, Lane 2 and Lane 3, respectively, which were oversaturated. On the other hand, 

Approach 2 was not oversaturated for all lanes in which X were calculated as 0.86 and 

0.80 for the Lane 2 and Lane 3, respectively.      

 

 

Figure 3.5. Lane based as well as average observed queue lengths for Approach 1 and 2. 

 

Table 3.3. Traffic analysis results of the Approach 1 and 2. 

 
Saturation 

Flow (s) 

(veh/h) 

Traffic 

Demand 

 (q) (veh/h) 

Capacity 

(veh/h) 

( * / )c s g C  

Degree of 

Saturation  

/

/ C

q s
X

g

 
  
 

 

Approach 1 

Lane 1 2018 632 422 1.50 

Lane 2 1866 594 390 1.52 

Lane 3 1860 516 389 1.32 

Approach 2 

Lane 2 1854 464 538 0.86 

Lane 3 1912 444 555 0.80 



 

44 

 

3.4. FCD Quality in Turkey 

The quality of commercially available FCD was evaluated for Dumlupınar Blvd. in 

terms of i) descriptive evaluation, ii) speed estimation performance, iii) LOS 

estimation performance and iv) urban traffic monitoring. The methodological 

framework for evaluating the quality of FCD speed was presented in detail in 

Appendix B. This section only provides the analytical results based on the proposed 

methodology. 

 

 Descriptive Evaluations 

GT speed profiles for the two study days were very similar; sudden drops were 

observed after 07:30 indicating severe congestion until 09:00 (see Figure 3.6). No 

congestion was detected until the end of the study period, which did not include the 

evening peak due to early sunsets in October. During off-peak period, vehicle spot 

speeds varied between 40 km/h- 130 km/h and had an average speed range of 70 km/h 

-80 km/h. During the peak period, range between the maximum and minimum spot 

speeds was smaller as expected. (Note: video camera data was not available between 

10:23-10:53 for October 21, 2016). 

 

Plotting FCD speed,
t

FCDu , profile in juxtaposition with GT values, tu , showed that 

t

FCDu  mostly followed the average tu  (see Figure 3.6), sometimes underestimating or 

overestimating it. Key findings are summarized as follows: 

 When traffic states changed from uncongested to congested regime (or vice 

versa), 
t

FCDu  did not respond to the sudden drop/increase in speed at the same 

rate. 

 In the congested regime, FCD overestimated the speeds. 

 Since 
t

FCDu was truncated at 70 km/h, it was not possible to observe speeds 

beyond this limit, particularly during off-peak hours. However, for tu  values 
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close to but not exceeding 70 km/h, 
t

FCDu underestimated the speeds, which 

may be due to the probed vehicles traveling slowly through the segment. 

 

Figure 3.6. Speed profile of the 
t

FCDu  and tu as well as max

tu and min

tu for the two weekdays between 

07:30-16:00.  

 

GT-based fundamental diagram with 
tq and tu  was plotted as shown in Figure 3.7. 

Van Aerde fit to the GT data suggested a free flow speed limit of 91.7 km/h and a 

speed value of 47.4 km/h producing the highest capacity (which also falls within LOS 

C range). When 
t

FCDu  was as a surrogate measure for real speed values in this diagram 

(see Figure 3.8), there was a large variability and scattered distribution in the FCD-

based fused diagram. Besides the sharp border in the uncongested region due to the 
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speed limit truncation, overestimations in the congested region were clearly visible, 

similar to the conclusions stated by Chase et al. (2012). 

 

 

Figure 3.7. Fundamental diagram and LOS threshold limits of GT data.  

 

Figure 3.8. Fundamental diagram and LOS threshold limits of GT data and FCD speeds. 

 Speed Estimation Performance 

As shown in Table 3.4, the daily speed data sample sizes were very close summing up 

to a total 802 in the aggregated data set. Following the data preprocessing step 
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described in Appendix B, 27 FCD speed values were eliminated as outliers and left a 

total of 775 values in the filtered dataset. When two days were examined separately, 

no significant difference was observed in the performances measures. Based on the 

aggregated 2-day results, speed estimation uMAPE  and uRMSE values were calculated 

as 16.64% and 10.85 km/h, respectively, with raw FCD speeds. However, these errors 

were reduced to 14.19% and 8.71 km/h, respectively, when filtered FCD speed dataset 

were used. Majority of the error stemmed from morning peak speed values, which 

showed uMAPE  and uRMSE values of 42.29% and 12.12 km/h, respectively. 

Significant deterioration in uMAPE  values despite a small increase in uRMSE  can be 

explained by a) time lag in FCD response to congestion entry/exit, which was captured 

in descriptive evaluations, and b) magnification in percentage calculation with small 

speed values. Thus, MAPE-based performance evaluation during for low-speed 

regimes should be made with caution. The lowest uMAPE  and uRMSE for speed 

estimations were obtained at the off-peaks, which showed that FCD speeds were only 

8.83% different than real values on average, and had an average difference of 7.89 

km/h.  
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Table 3.4. FCD speed performance based on uMAPE , uRMSE  and R2 measures. 

Analysis Time Period 

Raw FCD  Filtered FCD  

uMAPE  

(%) 

uRMSE  

(km/h) 
R2 uMAPE  

(%) 

uRMSE  

(km/h) 
R2 

 

October 21, 2016                                            (n=396)                                      (n=384) 

Whole study period 16.10 9.38 0.61 15.10 8.83 0.71 

AM peak 49.94 13.56 0.79 45.68 12.28 0.82 

Off-peak 9.55 9.22 NA* 8.77 7.91 NA* 

 

October 25, 2016                                          (n= 406)                                    (n= 391) 

Whole study period 17.22 11.67 0.45 13.65 8.73 0.68 

AM peak 47.52 13.87 0.76 36.94 11.72 0.82 

Off-peak 11.07 11.17 NA* 9.03 8.01 NA * 

 

Aggregated 2-day results                             (n= 802)                                     (n=775) 

Whole study period 16.64 10.85 0.53 14.19 8.71 0.71 

AM peak 49.22 13.69 0.76 42.29 12.12 0.82 

Off-peak 10.28 10.20 NA * 8.83 7.89 NA * 

* Due to almost constant speed values during off-peaks, estimation of R2 measure was not 

appropriate. 

 

A transformation function to estimate speeds from FCD speed was developed using a 

regression analysis. When truncated GT speeds, 
t

tru , were regressed against FCD 

speeds (
t

FCDu ) using aggregated 2-day dataset, results showed a non-linear best-fit with 

a rather low R2 value of 0.53 (see Table 3.4) for the whole analysis period (see Figure 

3.9a) and provided the speed transformation function, FCDu , in the form of 

0.025( )
13.672 FCDu

FCDu e                                                        [3.1a] 

But, the speed transformation relation in Fig 3.10a with  

) 0.033(
  =6.841

AM
FCDAM

FCD

u
u e                                                                        [3.1b] 

had an improved success for morning peak hours with R2=0. 76 (see Table 3.4). When 

the same analysis was repeated with filtered FCD speeds, the success of the speed 

transformation was improved even more with  
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*0.0302( )

* 9.8115 FCDu

FCDu e       (R2 = 0.71)                                             [3.1c] 

* ) 

*

0.0333(
  =7.0159

AM
FCDAM

FCD

u
u e              (R2= 0.82)                       [3.1d] 

as shown in Figure 3.9b and 3.10b. (Note: Most of the outliers were observed during 

the off-peak periods at high GT speeds more than 60 km/h. The high impact of filtering 

can be clearly seen comparing Figures 3.9a and 3.10a).  

 

 

Figure 3.9. Speed estimations using a) raw FCD speeds, 
t

FCDu ,b) filtered FCD speeds, *

t

FCDu  , for the 

whole study period. 
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Figure 3.10. Speed estimations using a) raw FCD speeds, b) filtered FCD speeds for the AM 

peak.   

 

As seen above, the quality of FCD speed estimation varied significantly under 

different regimes; thus, a further breakdown of uMAPE  and uRMSE  for different speed 

intervals as proposed by (Wang et al. 2014; Hu et al. 2016) was presented in Table 

3.5. Speed intervals were selected based on the LOS threshold limits as shown in Table 

B.1, which were also used in the LOS estimation. Due to longer off-peak periods in 

the data, the majority of the tu was in LOS A or LOS B categories (702 samples out  

of 802 speed values). For 278 records with speeds within LOS A range (266 

observations in filtered data) uMAPE  and uRMSE  were observed as high as 22.47% 
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and 20.42 km/h, respectively, which is clearly a problem due to speed limit truncation 

in FCD. In LOS B range, these values dropped to 12.60% and 11.40 km/h, sharply.  

 

 
Table 3.5. uMAPE and uRMSE distribution in HCM-based LOS speed intervals (2-day analysis). 

LOS 
GT Speed 

 Interval 

Sample 

Size 
uMAPE

(%) 
uRMSE  

(km/h) 

Sample 

Size 
uMAPE  

(%) 
uRMSE  

(km/h) 

Raw FCD (n= 802) Filtered FCD (n=775) 

From raw GT  

A  tu ≥77 278 22.47 20.42 266 20.56 17.47 

B 60 ≤ tu <77 424 12.60 11.40 417 11.88 10.23 

From truncated GT 

 

A/B 

t

tru =70a 600 10.27 10.26 583 8.92 8.07 

60 ≤ tu <70 102 8.30 8.28 100 7.46 6.86 

 

C 45≤ tu <60 25 13.05 7.69 25 13.05 7.69 

D 36≤ tu <45 6 33.93 14.58 6 33.93 14.58 

E 27≤ tu <36 8 70.01 22.79 5 54.67 17.67 

F tu <27 61 85.99 16.82 56 75.25 14.79 

a Errors due to the truncations were calculated separately for the joint LOS value  

 

 

To create a fair comparison, truncated GT speeds were used to determine the uMAPE

and uRMSE values for the 600 truncated speed values ( t

tru =70 km/h), which were found 

as 10.27% and 8.92 km/h, respectively, showing the contribution of truncation in FCD 

resulting in overestimation of performance measure values significantly (see Table 

3.5). For 102 observations between 60 km/h and 70 km/h, uMAPE  and uRMSE  

dropped to 8.30% and 8.28 km/h, respectively. Within the LOS C range, two 

performance measures had similar values of 13.05% and 7.69 km/h, respectively. 

However, for speed values within LOS D to LOS F levels, FCD had increasing 

uMAPE  and uRMSE values, reaching 75.25% and 14.79 km/h, suggesting that available 

FCD could not estimate speed values reliably and was not capable of capturing real-

time congestion, as also indicated in Wang et al. (2014) and  Hu et al. (2016). (Note:
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uMAPE  and uRMSE values dropped slightly when extreme values in FCD were 

filtered, but did not change the characteristics within different LOS levels). 

 

 LOS Estimation Performance 

To test the quality of FCD for LOS estimation, GT and FCD speeds, tu and 
t

FCDu , 

were used to estimate LOS levels directly based on HCM definitions given in Table 

B.1. Consistency between these two sets of LOS values were illustrated in Table 3.6a 

showing that majority of the time traffic flew in high-speed regime (>60 km/h) and 

constituted LOS A/B conditions, which was also determined by FCD speeds. On the 

other hand, for low-speed regimes during peak hours, FCD could not estimate the LOS 

F values correctly (Table 3.6a). The performance measures were determined as

LOSMAPE = 27.15% and LOSRMSE = 0.80; a correlation coefficient value of only 0.50. 

Elimination of the outliers only (see Table 3.6b), brought down the LOSMAPE and 

LOSRMSE values to 19.80% and 0.60, respectively, and increased the R2 value to 0.71.  

 

Using the speed transformation function derived above, two more sets of LOS values 

were obtained which were compared to the GT LOS as shown in Table 3.6c and 3.6d. 

Transformation of raw FCD speeds enabled significant improvement in LOS 

estimation, especially correcting FCD speeds during low-speed regimes with LOS F; 

while R2 value was raised to 0.67, the LOSMAPE and LOSRMSE scores dropped to 

26.80% and 0.7, respectively (see Table 3.6c). Additionally, speed transformation 

over filtered FCD speeds improved LOS estimation performance up to the level of R2 

= 0.81, LOSMAPE = 15.4% and LOSRMSE =0.5 (see Table 3.6d). 
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Table 3.6. Comparison of GT- and FCD-based LOS estimations for Segment 57 (2-day analysis). 

 (a) 
LOS (

FCDu )  

Total 
(b) 

LOS (
*FCDu ) 

  

Total A/B C D E F A/B C D E F 

L
O

S
 

A/B 552 130 6 10 4 702 

L
O

S
 

A/B 552 130 1   
683 

C 17 8    25 C 17 8    
25 

D 1 3 2   6 D 1 3 2   
6 

E 3 3 2   8 E   3 2    
5 

F  7 16 27 11 61 F   2 16 27 11 56 

Total 571 158 27 37 15 802 Total 570 146 21 27 11 775 

R2=0.50 

LOSMAPE =27.15%;  LOSRMSE = 0.8 

R2=0.71  

LOSMAPE =19.80%; LOSRMSE = 0.6 

 

(c)  
LOS(

FCDu ) 

Total 
(d) 

LOS(
*FCDu ) 

  

Total A/B C D E F A/B C D E F 

L
O

S
 

A/B 
552 125 6 15 4 702 

L
O

S
 

A/B 
552 129 2   683 

C 16 5 2 1  24 C 16 7 2   25 

D  2 2 1 1 6 D  3 1 2  6 

E   4 4  8 E   3 2  5 

F   2 8 52 62 F   1 4 51 56 

Total 568 132 16 29 57 802 Total 568 139 9 8 51 775 

R2=0.67 

LOSMAPE =26.80%; LOSRMSE = 0.7 

R2=0.81 

LOSMAPE =15.40%; LOSRMSE = 0.5 

 

 FCD Performance for Urban Corridor Monitoring 

Though it is valuable to evaluate FCD at a control segment over different performance 

measures, the availability of such detailed GT for an urban corridor is very 

challenging. However, based on the intuition gained over the control segment 

evaluation, it is possible to estimate speed and LOS over a longer urban stretch. As an 

application, LOS mapping over the study corridor with 82 segments shown in Figure 

3.2 was performed for a morning period of 07:30-09:00 for October 21 (see Figure 

3.11a) and October 25 (see Figure 3.12a). LOS mapping with raw FCD speeds 

suggested a queue formation at J2 starting at Segment 72 around 8 am that spilled back 

to Segment 36 by 8:30 am corresponding to a maximum queue length of 1.8 km. This 

queue dissipated by 9 am, suggesting a morning congestion effect of the interchange. 
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However, existence of LOS D and LOS E along this queue formation may be due to 

noise in FCD, which was eliminated in LOS estimations using transformed speed 

values in Figures 3.11b and 3.11c, which showed a clearer spatio-temporal queue 

formation (see Figures 3.12b and 3.12c for October 25). A much smaller but persistent 

congestion was also detected at the interchange J1, and decrease in LOS was observed 

due to electronic enforcement at Segment 26, temporarily between 8 am and 9 am, 

which was more visible with the speed transformation. The free flowing conditions in 

the upstream of J1 (segments 1-15) were captured consistently.  

 

Figure 3.11. LOS estimations for the study corridor using a) raw FCD speeds, b) transformed FCD 

speeds, c) transformed filtered FCD speeds for the day of October 21.  
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Figure 3.12. LOS estimations for the study corridor using a) raw FCD speeds, b) transformed FCD 

speeds, c) transformed filtered FCD speeds for the day of October 25. 

 

As a check, the LOS values from all three LOS maps for the control Segment 57 were 

displayed in juxtaposition to the GT LOS values for the two days, which suggested 

that FCD always lagged responding to sudden regime changes, and had noise in the 

data during congestion (see Figure 3.13).  
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Figure 3.13. Comparison of LOS estimations for Segment 57 for a) October 21, b) October 25 data. 

 

Furthermore, a clearer picture could be taken when a longer duration FCD-based LOS 

data was analyzed for the whole weekdays in October, 2016 as shown in Figure 3.14. 

Disregarding the spatio-temporal fluctuations among segments and observation times, 

when dominant traffic states at each segment for each observation time (which is 1-

min) defined as the state that were observed more than 50% of the 24 weekdays in 

October, corridor characteristic was detected from the FCD, such that there was an 

recurrent bottlenecks at Segment 72, Segment 48 and Segment 17. The queue caused 

by Segment 72 was expected to spill back to Segment 56 with more than 50% 

probability, whereas uncongested regime was expected on segments 1-15 with the 

same probability. 
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Figure 3.14. Dominant traffic states (more than 50% probability) for October month. 

 

3.5. Evaluation of Current FCD Penetration Rate 

The quality of FCD under varying penetration rates was evaluated by creating various 

FCD subsets from GT speed dataset using Monte Carlo (MC) simulations. This 

analysis enabled to derive both FCD quality-penetration rate relation and the current 

penetration rate of the existing FCD. The framework for deriving this relationship was 

explained in more detail in Appendix C.  

 

The plots showing the relationship between FCD penetration rates and error measures 

in Figures C.4, C.5 and C.6 suggested a strong logarithmic relation. Logarithmic 

functions developed for uMAPE (or uRMSE ) in Table 3.7 were used as a guide to 

estimate the current penetration rates at the study location. For the whole study period, 

measured uMAPE of 17.22% obtained from raw FCD data from the whole study 

period (see Table 3.4) , corresponds to an FCD penetration rate between 0.76% (from 

u,maxMAPE ) to 0.35% (from 
u,minMAPE ) with an average of 0.54% penetration. A much 

lower error value of 13.65%  (see Table 3.4) determined from the filtered FCD speeds 

suggested FCD penetration rates between 1.87% and 1.02%.  
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Table 3.7. Estimated level of FCD penetration,
FCD , from speed data for different analysis periods 

(Oct. 25, 2016). 

 

 

 

 

Error-Penetration Rate Relation       R2 

Estimated FCD 
Penetration 

 Rate (
FCD ) in % 

Raw Filtered 

Whole 

u,maxMAPE = -3.944ln(q)+16.128    

uMAPE       = -3.678ln(q)+14.991     

u,minMAPE = -3.376ln(q)+13.710 

0.99 

0.99 

0.99 

0.76 

0.54 

0.35 

1.87 

1.44 

1.02 

AM Peak 

u,maxMAPE = -7.377ln(q)+26.654 

uMAPE       = -4.359ln(q)+17.343 

u,minMAPE = -3.580ln(q)+13.875 

0.98 

0.99 

0.96 

0.06 

0.00* 

0.00* 

0.25 

0.01 

0.00* 

Off-peak    

u,maxMAPE  = -3.921ln(q)+15.808 

uMAPE        = -3.528ln(q)+14.329 

u,minMAPE   = -3.019ln(q)+12.518 

0.99 

0.98 

0.99 

3.35 

2.52 

1.62 

5.63 

4.49 

3.17 

Whole 

u,max RMSE  = -3.769ln(q)+14.843 

uRMSE       = -3.421ln(q)+13.514 

u,min RMSE = -3.179ln(q)+12.532 

0.99 

0.99 

0.99 

2.32 

1.71 

1.31 

5.06 

4.05 

3.31 

AM Peak 

u,max RMSE = -5.878ln(q)+18.456 

uRMSE        = -2.206ln(q)+7.9339 

u,min RMSE  = -1.500ln(q)+5.6015 

0.96 

0.99 

0.99 

2.18 

0.07 

0.00* 

3.14 

0.18 

0.02 

Off-peak 

u,maxRMSE = -3.958ln(q)+15.887 

uRMSE       = -3.550ln(q)+14.334 

u,minRMSE = -3.163ln(q)+12.885 

0.99 

0.99 

0.99 

3.29 

2.44 

1.72 

7.34 

5.94 

4.67 

*Estimated FCD penetration rate value was less than 0.005% 

 

 

Repeating the same analysis for the uRMSE suggested a range for the current 

penetration rate, FCD , equivalent to errors in penetration rates of 1.31% to 5.06%. 

Analyzing errors in peak and off-peak periods separately suggested that: 
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 During the peak period, estimated FCD penetration rate,
FCD  <1% (except for 

the 3.14% based on 
u,maxRMSE formulation) 

 Off-peak FCD quality suggested a penetration rate, 
FCD = [2.44%; 5.94%].  

 

3.6. Potential use of FCD for Monitoring Urban Traffic in Ankara   

In the light of the research findings described above, the comparison of FCD speeds 

against a ground truth data for a control segment on an urban study corridor in Ankara, 

Turkey showed that   

 FCD speed mostly followed the GT speed profiles except for a few outliers, 

and had free flowing speed values. 

 truncation of FCD speeds at the posted speed limits, a common practice in 

commercial data to prevent speed enforcement traps on the roads, brings a 

permanent error mostly for the off-peak periods, but, truncation at the free 

flow conditions rarely affect LOS estimations negatively.  

 data filtering in FCD can significantly improve speed and LOS estimations 

for urban corridors  

 the regression results between the GT and FCD speeds may be non-linear 

suggesting different relations during congested and uncongested regimes.  

 it is critical to work with multiple performance measures (MAPE, RMSE, R2, 

etc.) to monitor FCD quality, as neither of them can assess the quality 

successfully alone. 

 major queue formations and dissipations can be observed in FCD-based LOS 

monitors. 

All these results showed that FCD could serve as a useful surrogate measure for urban 

speed monitoring at a macro level, such as LOS estimation. On the other hand, when 

used as the only traffic data source to monitor urban corridors in developing countries, 

it is very important to evaluate the quality of FCD regularly in space (separately for 

every urban corridor), even if it is against a short term GT data, to develop speed 
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transformation functions properly, which would improve corridor monitoring 

performance. Furthermore, it is helpful to repeat these evaluations over time, as 

penetration rate of GPS-equipped vehicles may increase which would increase the 

quality of FCD inherently. However, data clean up would always be necessary due to 

errors in data processing which is kept as a black-box in the commercial sector. 

Filtering can be carried out on a statistical basis, on either historical FCD availability 

or simply distribution of errors between FCD and GT values. Thus, it is crucial to keep 

a good archive of FCD speeds to have an understanding of speed distributions, which 

can be used to develop filters to detect outliers in real-time use.  

 

The use of FCD speeds in a predefined fundamental flow-density relation, etc. can 

provide flow estimation, but errors due to truncation and laggings in FCD speeds must 

be handled carefully. Such an application will definitely require data fusion of FCD 

speed and flow (or density) from other traffic data sources. In this case, it is also 

important to check data quality of both sources and develop more probabilistic 

relations considering quality levels of the FCD speeds and the other parameter. 
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CHAPTER 4  

 

4. METHODOLOGY FOR DETECTING QUEUE LENGTH USING FCD 

 

As discussed in literature review part, FCD speed can be obtained from either probe 

vehicles or processed data of the multiple probe vehicles, which produced average 

speed data over a given segment. For the former one, since space-time diagram of the 

vehicle could be derived, it could be possible to identify time and location information 

of the vehicle when join and leave the queue by assuming a speed threshold value 

(commonly assumed as 5 km/h for signalized intersections). Based on these 

information, shockwave based models are implemented to estimate the maximum 

locations (Comert and Cetin, 2009; Cheng et al., 2011;  Mecit, 2012; Li et al., 2013). 

On the other hand, when processed FCD speed can be considered, existing models 

cannot be appropriate since this data encompass the average speed of both moving and 

stopping vehicles. So, it is necessary to redefine the queue definition by selecting an 

speed threshold, QLv , value representing the maximum queue length. This 

methodology provides how this speed threshold is selected to estimate queue lengths 

(see Figure 4.1). 

 

FCD speed for a defined road segment s, epoch time  (equals to 60 sec in commercial 

FCD) and at time interval t, denoted as 
,t

su 
, was only input parameter for the proposed 

model. Independent from the traffic condition, whether signalized or uninterrupted 

flows, the framework of the proposed methodology mainly consists of two parts 

including i) speed field estimation and ii) queue length estimation process as shown 

in Figure 4.1.  
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Figure 4.1. Framework for queue length estimation from FCD.   



 

63 

 

4.1. Speed Field Estimation from FCD   

Average FCD speeds, 
,t

su 
, were employed in a 4-node quadratic interpolation to 

generate a estimated speed value, ( , )U x t , for any given location x and time t as 

4
,

1

( , ) ( , ) t

m m

m

U x t N x t u 



                                                             [4.1] 

where; Nm :node-specific interpolation function for the mth node such that  

1 2 3 4

( )( ) ( ) ( )
,   ,    ,    

t t x x t x x tx t t x
N N N N

x t x t x t x t

      
   

       
 

Sending an imaginary vehicle j  from the midpoint location of the first segment of 

the road corridor at time / 2 , the next location of the vehicle was calculated by 

assuming a travel distance traversed at speed of ( , )U x t for the assumed time step t . 

Similarly, at any given point jx of the imaginary vehicle trajectory, the next location (

'jx ) of the imaginary vehicle would be  

' ( , )*j j j tx x U x t                            [4.2] 

at the next time step ' tt t   , where ( , )U x t value is calculated using relations in 

Equation  [4.1]. t  was taken as 0.1 sec, which means it could be possible to have an 

location and time information of imaginary vehicles for every 0.1 sec. Imaginary 

vehicle trajectory generation stops when the updated position is beyond the midpoint 

of the last FCD segment of the corridor. In this study, imaginary vehicles were created 

at every 10 sec, and imaginary vehicle generation was terminated at the end of analysis 

period. Example imaginary vehicle trajectory data for the study corridor 1 

(Dumlupınar Blvd) are shown in Figure 4.2a. Based on the imaginary vehicle 

trajectory data, Figure 4.2a gives an idea about the existing bottleneck location which 

is Segment 72 (around 3293 m far from the initial segment in Figure 4.2a) and slope 

of the lines before and after this location draw a conclusion about the speed changes 
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around this location. Using the location and time ( , )x t information augmented with the 

speed ( , )U x t , thematic speed maps were obtained as shown in Figure 4.2b.  

 

Figure 4.2. a) Imaginary vehicle trajectory data generation, b) thematic speed map for the study 

corridor 1.  
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After obtainment of thematic speed maps, accurate selection of speed threshold, QLv , 

and drawing iso-speed contours based on the selected QLv value enabled to estimate 

the possible queue length profile over time (see Figure 4.1). To draw iso-speed 

contours, 4-node quadratic interpolation method was revised in a way that time and 

position information of sending imaginary vehicle was recorded when its speed first 

dropped to selected QLv  near bottleneck location. Repeating same procedure for every 

imaginary vehicle provided queue entry location and connecting this location with a 

line enabled to form iso-speed contours as shown in Figure 4.2b. However, the critical 

issue here is how to determine the QLv  for providing minimum queue length 

estimation error.  

 

4.2. Selection of Speed Threshold for Queue Length Estimation  

Selection of QLv  for queue length estimation for uninterrupted flows requires the 

identification of the severe congested states (where the queue occurs) as described in 

Section 2.2.2. As recommended in HCM (2010), severe congested state can be 

determined by taking the one-third of the target speed. The target speed was defined 

as the speed at which the driver prefers to travel. So, based on the GT speed profile 

presented in Figure 3.6, the target speed was taken as 82 km/h which was also the 

speed limit of the study corridor. Thus, taking one-third of the 82 km/h resulted in 

27.3 km/h which meant the speeds below 27.3 km/h were assumed to join the queue. 

So, QLv  value can be selected as 27.0 km/h for queue length estimation. On the other 

hand, it could be possible to select another QLv  by implementing transformation 

functions in Equations [3.1b] and [3.1d] separately to obtain corresponding FCD 

speeds. When the transformation function in Equation [3.1b], showing the relationship 

between GT speed and raw FCD speed, was used, corresponding FCD speed was 

calculated as 41.97 km/h. Similarly, Equation [3.1d] resulted in FCD speed of 41.56 

km/h, which is quite similar values. So, two QLv  values were selected for queue length 
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detection for the study corridor 1 as considering the transformed FCD speed, 42.0 

km/h, and without the transformed speed as 27.0 km/h. 

 

On the other hand, for signalized intersections, since FCD speed in this study was 

averaged for the predefined road segments, selecting QLv  as 5 km/h is not valid for 

defining maximum queue location. Determination of QLv  value for signalized 

intersection can be determined by collecting Ground Truth data to observe the actual 

queue length for each cycle in real time and to determine the corresponding FCD 

speeds from thematic speed maps when the maximum queue length is achieved. 

Alternatively, it can be determined by utilization of VISSIM simulation environment. 

It could be possible to generate a signalized intersection and a synthetic FCD speeds 

for the defined segment lengths of the approach leg. Selecting different speed 

threshold values, zv , and calculating the queue length estimation errors provided to 

derive error-speed threshold function and minimum value of this function provided 

the optimum speed threshold value which is donated as optv .     
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CHAPTER 5  

 

5. QUEUE LENGTH ESTIMATION WITH FCD IN VISSIM ENVIRONMENT 

 

5.1. Signalized Intersection in VISSIM Environment  

To evaluate the performance of the proposed model in signalized intersection, 

VISSIM simulation was utilized to generate a road corridor with a signalized 

intersection. The framework for queue length estimation is composed of five parts: i) 

VISSIM simulation for ground truth and synthetic FCD data generation, ii) speed field 

estimation, iii) queue length observation, iv) queue length estimation and v) 

performance evaluation (see Figure 5.1). VISSIM simulation data was processed 

multiple times with different FCD penetration rate ( ) and speed aggregation epoch 

time ( ). Using VISSIM COM Interface, a MATLAB code has been developed to 

track the vehicles in the network for each 0.1 simulation second and generated vehicle 

trajectory data (Task T1 in Figure 5.1), which composed of vehicle identification, a 

sequence of time, position, speed data and whether the tracked vehicle is FCD vehicle 

or not. An example vehicle trajectory for the study segments in VISSIM environment 

is provided in Figure 5.2, which was used to extract time and position of a vehicle i) 

joining the queue, and ii) leaving the queue by assuming 5 km/h threshold speed limit. 

For each cycle, “Joined Queue Data Set” and “Leaved Queue Data Set”  were created 

(Task T2) in which  the former was later be utilized to extract the position and time 

information of the last vehicle that joined the queue in Task T6.  

 



 

68 

 

 

Figure 5.1. Framework for simulation-based queue length estimation from FCD.   

 

In Task T3, to generate the synthetic FCD speed, 
,t

su 
, individual vehicle travel times 

over for the road segment s  during the epoch time  , were measured by sensors in 

VISSIM. Finally 
,t

su 
 was determined by dividing the segment length by the average 

travel time at time interval t, and assumed to represent the speed at the midpoint of a 

space-time finite element as shown in Figure 5.3 (superscript   was omitted to simply 

the figure). (Note: Synthetic FCD for shorter epoch times of  = 30 sec and 15 sec 

were created, to evaluate sensitivity to potential FCD precision in the future FCD 

formats). 
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Figure 5.2. Vehicle trajectory data with Joined/Leaved Queue Data Set in VISSIM. 

  

 

Figure 5.3. FCD speed and imaginary vehicle trajectory data generation. 
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In T4, using 4-node interpolation method discussed in Section 4.1 was employed to 

synthetic FCD speed to generate imaginary vehicle trajectory data as well as the 

thematic speed maps. Imaginary vehicles were created at every 10 sec, and imaginary 

vehicle generation was terminated at the end of T=3600 seconds. Using the location 

and time ( , )x t information augmented with the speed ( , )U x t , thematic speed maps 

(defined in T5) were obtained as shown in Figure 5.4. 

 

 

Figure 5.4. Thematic speed maps with iso-speed contours. 

 

 Determination of Optimum Speed Threshold 

To determine the opt , different speed threshold values, z , were selected for drawing 

iso-speed contour lines during the simulation period (see Figure 5.4). Selected z  for 

this study were {20 km/h, 25 km/h, 30 km/h, 35 km/h, 40 km/h}. For this purpose, 4-
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node quadratic element interpolation method has been revised in a way that when each 

imaginary vehicle speed drops to selected z , the algorithm ended and recorded the 

time and location information. Therefore, during the simulation period, the time and 

location for each imaginary vehicle were connected a line to form an iso-speed contour 

(see Figure 5.4).  

 

“Joined Queue Data Set” matrices were utilized to determine position and time 

information of the last joined vehicle for each cycle from simulation (T6). The last 

joined vehicle was defined as the last vehicle that joined the queue for the cycle n (see 

Figure 5.5). According to the time information of the last joined vehicle, the position 

of the iso-speed contour line were determined for each cycle, and sum of square error 

(SSE) has been computed in Equation [4.1] and denoted as ,zeSSE . This process was 

re-repeated for every selected speed threshold.   

2

,z ,z

1 1

( )
N N

n n

e n e e

n n

SSE x x
 

                  [5.1] 

where,  

n

ex : the location of last vehicle joined the queue at signal cycle n,  n=1,2,..N 

n

,zex : the location of iso-speed contour line z when the last vehicle entering to queue 

at signal cycle n,  n=1,2,..N 

 

Thus, minimization of the ,zeSSE  enabled to determine the opt  for the possible queue 

length estimation profile.  
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Figure 5.5. Iso-speed contour with Joined/Leaved Queue Dataset for error calculation. 

 

 Performance Evaluation 

The model performance was evaluated by QMAPE  and QRMSE  by comparing the 

actual queue lengths with the estimated ones from Equation [5.2] and Equation [5.3], 

respectively.  
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5.2. VISSIM Scenarios  

To estimate the queue length from FCD speed data, a simple synthetic network has 

been created in simulation environment VISSIM. A single one-lane link of 

approximately 1 km was created, and a signal head was located at the end of the 

synthetic network and segment lengths were designed as 50 m lengths. All vehicles 

are assumed passenger cars with the desired speed of 70 km/h and they enter the 

network at a constant rate but randomly. All other parameters are kept at the default 

values built within VISSIM and simulation time was set to 3600 sec. To test the 

efficiency of the model three set of simulation runs have been performed by 

considering different traffic conditions and cycle times as shown in Table 5.1. Based 

on the design parameters discussed above, saturation flow rate of the approach was 

determined as 2160 veh/h in which the capacity of the approach for different traffic 

conditions are illustrated in Table 5.1. The capacity was calculated as 1032 veh/h for 

the Condition 1 (C1) and Condition 3 (C3), while it was 1008 veh/h for C2. Degree of 

saturation (X) for C1 was calculated as 0.60 representing undersaturated traffic 

condition, while the others were very close to 1, showing the mixed traffic condition 

(see Table 5.1). For this analysis, the model performance was tested under full 

penetration of FCD vehicle, and its strength was also tested in various penetration rate 

which will be discussed in the following section.  

 
Table 5.1. Traffic conditions and corresponding input parameters for simulation based queue length 

estimation. 

Traffic condition 
Traffic 

Demand 

Cycle Length 

(sec) 

(Green/Red) 

Capacity 

(c) 

Degree of 

Saturation 

(X) 

Condition (C1): 

Undersaturated 
650 veh/h 

90 sec 

(45 sec/45 sec) 

1032 

veh/h 
0.60 

Condition (C2): Mixed  

(Undersaturated+ 

Oversaturated) 

950 veh/h 
60 sec 

(30 sec/30 sec) 

1008 

veh/h 
0.94 

Condition (C3): Mixed  

(Undersaturated+ 

Oversaturated) 

950 veh/h 
90 sec 

(45 sec/45 sec) 

1032 

veh/h 
0.92 
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 Undersaturated Condition 

To examine the strength of the proposed model for the undersaturated condition, the 

traffic demand was set to 650 veh/h with a cycle length of 90 sec as shown in Table 

5.1. At end of the simulation, simulated FCD speeds obtained for each segment were 

discretized to generate imaginary vehicle trajectory data and speed field data by using 

the finite element method as described in the methodology section.  

 

Use of 4-node quadratic interpolation method in speed field estimation provided the 

thematic speed maps shown in Figure 5.6 on which Joined and Leaved Queue Data 

sets (as obtained from ground truth data) were displayed jointly. For  =60 sec, 

thematic speed maps provided some insights about extension of queue lengths over 

time depicted by an enveloping lower speed zones (<30 km/h) around maximum 

queue points, despite lack of precision on formation and dissipation of them in each 

cycle (see Figure 5.6a). The queue dynamics were slightly more observable when 

was selected as 30 sec as shown in Figure 5.1b, which were further improved with 

=15 sec (see Figure 5.6c); though a traditional 5 km/h threshold was not appropriate 

(nor reached sometimes) for queue detection in FCD speeds. To determine opt , 

several speed thresholds, z , were selected (Figure 5.7a for  =60 sec case) and errors 

in ,zeSSE were determined. Plotting ,zeSSE vs z  values as shown in Figure 5.8 

produced an error-speed threshold function; minimum value of which would produce 

the optimum speed threshold in FCD, opt , defining the queue length. For  =60 sec 

(see Figure5.7a for the iso-speed contours), the minimum error in queue length 

estimation was achieved if opt of 32.0 km/h was selected (see Table 5.2). This 

produced QMAPE and QRMSE of 28.6% and 15.2 m, respectively.  
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Figure 5.6. Comparison of the queue lengths obtained from vehicle trajectory data and speed thematic 

map for FCD with a) 60 sec b) 30 sec, c) 15 sec epoch times for C1. 

 



 

76 

 

 

Figure 5.7. Iso-speed contours for a) 60 sec, b) 30 sec and c) 15 sec epoch times with observed queue 

lengths obtained from vehicle trajectory data for C1. 
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Figure 5.8. Derivation of 
,zeSSE and z  function for opt determination for C1. 

Table 5.2. opt  and corresponding 
Q

MAPE  and 
Q

RMSE  values for different  values for C1. 

  (%) 

Last Join Queue 

Speeds  
opt  

(km/h) 

QMAPE  

(%) 

QRMSE  

(m) 

100 ( =60sec) 32.0 km/h 32.0 28.6 15.2 

100 ( =30sec) 28.1 km/h 28.1 23.7 14.7 

100 ( =15sec) 22.6 km/h 22.6 21.9 12.3 

 

When the same analysis was repeated with  = 30 sec, selected speed threshold 

defining queue length was found as 28.1 km/h, which had a QMAPE  and QRMSE

values of 23.7% and 14.7 m, respectively. The opt  valued dropped to 22.6 km/h for 

 = 15 sec case which also slightly improved QMAPE  and QRMSE values. To 

understand the real success in the two performance measures, it is helpful to display 

the observed and estimated queue lengths for every cycle as shown in Figure 5.9.  



 

78 

 

 

Figure 5.9. Comparison of the cycle based estimated queue lengths with observed ones for C1. 
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 Mixed Condition 

To evaluate the model performance under both undersaturated and oversaturated 

cases, two sets of simulation have been performed under different cycle times with the 

same demand (see Table 5.1). Implementation of the 4-node quadratic interpolation 

method in speed field estimation provided the thematic speed maps as shown in Figure 

5.10 and Figure 5.12 for the C2 and C3, respectively. Similar to the C1, thematic speed 

maps provided insights about where the queue extends in each cycle for each  ’s. As 

expected, due to the big aggregation of the FCD speed (  =60 sec), it could not 

possible to observe the queue dynamics (see Figure 5.10a and Figure 5.12a) for the 

C2 and C3, whereas the queue dynamics were more observable when  = 15 sec (see 

Figure 5.10c and Figure 5.12c).  

 

Drawing iso-speed contours for the C2 and C3 (see Figure 5.11 and Figure 5.13, 

respectively) and deriving the error-speed threshold function (see Figure 5.14 and 

Figure 5.15), gives opt  and corresponding QMAPE and QRMSE values as follows:  

 When  =60 sec,   

 minimum error in queue length estimation was achieved if opt = 30.8 

km/h for C2, which produced QMAPE and QRMSE of 21.8% and 14.2 

m, respectively (see Table 5.3). 

 opt  was determined as 35.3 km/h for C3 with QMAPE and QRMSE  

of 9.7% and 12.6 m, respectively, which produced less estimation 

error when compared to C2.   

 When  =30 sec,   

 opt value was almost same for C2 and C3 (Table 5.3) as 29.5 km/h 

and 29.9 km/h, respectively. QMAPE was found as 21.9% for the C2, 

while it was only 9.2% for C3.  
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 QRMSE values were calculated as 15.3 m and 11.1 m, which were 

very close to each other.  

 When  =15 sec,   

 opt was 24.3 km/h and 27.9 km/h with QMAPE of 20.8% and 9.1% 

for C2 and C3, respectively.  

 

Finally, observed and estimated queue lengths for every cycle are illustrated in Figures 

5.16 and 5.17 for C2 and C3, respectively. It is concluded that selecting lower  ’s 

provides to examine the queue dynamics more precisely and only changes the selected 

opt . However, it does not significantly change queue length estimation errors.   
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Figure 5.10. Comparison of the queue lengths obtained from vehicle trajectory data and speed 

thematic map for FCD with a) 60 sec b) 30 sec, c) 15 sec epoch times for C2. 
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Figure 5.11. Iso-speed contours for a) 60 sec, b) 30 sec and c)15 sec epoch times with observed queue 

lengths obtained from vehicle trajectory data for C2. 
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Figure 5.12. Comparison of the queue lengths obtained from vehicle trajectory data and speed 

thematic map for FCD with a) 60 sec b) 30 sec, c) 15 sec epoch times for C3. 
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Figure 5.13. Iso-speed contours for a) 60 sec, b) 30 sec and c)15 sec epoch times with observed queue 

lengths obtained from vehicle trajectory data for C3. 
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Figure 5.14. Derivation of ,zeSSE and z  function for opt determination for C2. 

 

 

Figure 5.15. Derivation of ,zeSSE and z  function for opt determination for C3. 
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Table 5.3. opt  and corresponding 
Q

MAPE  and 
Q

RMSE values for different  values for C2 and 

C3. 

  (%) 

Last Join Queue  

speeds 
opt  

(km/h) 

QMAPE  

(%) 

QRMSE  

(m) 

 

C2 

100 ( =60sec) 30.8 km/h 30.8 21.8 14.2 

100 ( =30sec) 29.5 km/h 29.5 21.9 15.3 

100 ( =15sec) 24.3 km/h 24.3 20.8 15.1 

 

C3 

100 ( =60sec) 35.3 km/h 35.3 9.7 12.6 

100 ( =30sec) 29.9 km/h 29.9 9.2 11.1 

100 ( =15sec) 27.9 km/h 27.9 9.6 12.7 
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Figure 5.16. Comparison of the cycle based estimated queue lengths with observed ones for C2. 
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Figure 5.17. Comparison of the cycle based estimated queue lengths with observed ones for C3. 
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 Generalized Relation 

For the same test network, in addition to calculation of the opt and corresponding 

queue length estimation error for different traffic conditions separately, it could be 

useful to derive only one opt  value for the test network and evaluate the estimation 

errors for each condition. To determine generalized opt for the test network, ,zeSSE

values obtained from each three condition were summed up to get only one value for 

a speed threshold value, zv . Later, plotting the zv with the ,zeSSE  provided the speed 

threshold-error function as shown in Figure 5.18 and opt value was determined. The 

overall results are provided in Table 5.4.  opt value was calculated as 33.3 km/h for 

 =60 sec and produced QMAPE and QRMSE  of 30.6% and 15.7 m for C1, 

respectively. This showed almost 2% increase in QMAPE value and 0.7 m increase in 

QRMSE value when compared the estimation results in Table 5.2. While QMAPE  

value raised from 21.8% to 27.8% for C2, QRMSE increased only 2.7 m. On the other 

hand, slightly increase in errors were observed in C3 that QMAPE and QRMSE were 

found as 9.9% and 13.7 m, respectively. opt was determined as 29.4 km/h and 25.0 

km/h for  =30 sec and  =15 sec, respectively and QMAPE and QRMSE values 

showed slightly increase and providing acceptable estimation errors as shown in Table 

5.4. 
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Figure 5.18. Derivation of ,zeSSE and z  function for opt determination for the test network. 

 

Table 5.4. opt  and corresponding 
Q

MAPE  and 
Q

RMSE values for different  values. 

  opt  

(km/h) 

C1 C2 C3 

QMAPE  

(%) 

QRMSE  

(m) 

QMAPE  

(%) 

QRMSE  

(m) 

QMAPE  

(%) 

QRMSE  

(m) 

60 sec 33.3 30.6 15.7 27.8 16.9 9.9 13.7 

30 sec 29.4 26.3 15.1 24.2 14.5 9.7 11.8 

15 sec 25.0 24.4 13.4 24.3 19.5 9.8 12.4 

 

5.3. Estimating Queue Length with Different Penetration Rates 

To test the sensitivity of the model to FCD penetration rate ( FCD ), same network has 

been rerun by choosing different FCD vehicle penetration in VISSIM simulation 

considering C2 input values. For this analysis, six different penetration rates were 

selected as FCD  = {5%, 10%, 15%, 25%, 35% and 50%}. However, especially, under 

low penetration rates, lack of enough probe vehicles over a segment within the 

selected epoch time caused lack of FCD speeds for some time intervals and segments, 

and thus, endangered the speed field estimation step. To overcome this problem, for 

missing FCD speeds, archival values were assigned as mostly done in commercial 

data processing.  
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Though it is not possible to know the use and preparation of archival information in 

commercial FCD speeds, for this study, two alternative archival data sets were 

prepared such that archival speed values come from either a) a simulation-based 

archive from 30 VISSIM simulation runs, or b) short term archival data which was 

average of the last 5 min values at a segment. For the former, VISSIM simulations 

were generated using the same total demand of 950 veh/h but with different random 

seeds as  

 6 simulation run with study demand  

 6 simulation run with 10% increase in demand 

 6 simulation run with 15% increase in demand 

 6 simulation run with 10% decrease in demand 

 6 simulation run with 15% decrease in demand 

Taking the average of speeds of all simulation runs for every segment ,  ss S

provided archival FCD speed value. 

 

 Queue Length Estimation Results 

Queue length estimation results for different penetration rates are provided in Table 

5.5 for both archival data. It was observed that both archival data produced almost 

same estimation errors expect for FCD =5%. This is mainly due to the effect of the 

archival data in which archive usage for this penetration was 43.9%. The model 

estimated the queue lengths with QMAPE  of 26.3% and QRMSE  of 17.3 m for FCD

=50%, which were slightly higher when compared to full penetration rate results. It 

means that even 50% penetration rate of FCD vehicles, the model produced promising 

estimation results.  
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While the QMAPE  and QRMSE  were found as 26.9% and 18.8 m, respectively for

FCD = 35%, these values were calculated as 36.5% and 22.2 m for FCD =25%. For 

FCD =15%, QMAPE  and QRMSE  values were around 40% and 30 m, respectively but 

sharp increase in QMAPE  was observed and reached to 60% when FCD = 5%.  

 

Calculated opt value was around 31.0 km/h for short term archival data and it did not 

substantially change with the penetration rate. It was dropped to 28.0 km/h when FCD

=5%. On the other hand, based on the simulation-based archival data, calculated opt  

was almost same until FCD =15%, it was calculated as 24.3 for FCD =15% and FCD

=10%. With the lower penetration rate slightly lower opt was calculated as 23.2 km/h. 

In addition to the numerical results, Figure 5.19 and Figure 5.20 illustrate the thematic 

speed maps for different penetration rates with optimum iso-speed contours for 

simulation-based and short term archival data sets, respectively. 

 

Table 5.5. Performance evaluation and opt values under different penetration rate of FCD. 

FCD  

(%) 

Archive 

usage 

(%) 

From simulation-based archival 

data 

From short term archival 

data 

opt  

(km/h) 

QMAPE   

(%) 

QRMSE  

(m) 
opt  QMAPE   

(%) 

QRMSE  

(m) 

100 - 30.8 21.8 14.2 30.8 21.8 14.2 

50 0.9 30.8 27.1 17.8 31.0 26.3 17.3 

35 1.3 31.2 27.8 18.6 31.0 26.9 18.8 

25 4.0 31.5 36.5 22.1 31.5 36.5 22.2 

15 16.7 24.3 42.8 30.8 30.5 40.3 30.2 

10 23.1 24.3 49.4 32.2 31.1 46.9 32.4 

5 43.9 23.2 59.1 39.9 28.0 67.2 47.6 
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Figure 5.19. Queue length estimation result with different FCD vehicle penetration rate for 

simulation-based archival data. 
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Figure 5.20. Queue length estimation result with different FCD vehicle penetration rate for short term 

archival data. 
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CHAPTER 6  

 

6. QUEUE LENGTH ESTIMATION WITH COMMERCIAL FCD 

 

In addition to the simulation-based study, the proposed model was also applied to 

commercial FCD speed data for two study corridors described in Chapter 3. In this 

section, current potential of commercial FCD for queue length estimation was 

discussed for signalized intersection and uninterrupted urban arterial. 

 

6.1. Queue Length Estimation at Signalized Intersection 

The model performance for queue length estimation in commercial FCD was tested in 

two approaches of the two consecutive intersections (see Figure 3.4) as described in 

Section 3.3. FCD speeds were provided for 8 segments with various segment lengths 

as shown in Table A.2. While considering the Approach 1 of the Int 1, 4-node 

quadratic interpolation method was implemented to FCD speed data which resulted in 

thematic speed map during 17:15 to 17:26 on November 30, 2017. Joint representation 

of lane-based actual queue lengths with thematic speed maps is illustrated in Figure 

6.1a. During the analysis period, the intersection was oversaturated for all cycles in 

which the average queue lengths extended to almost 210 m far from the stop line 

location.  

 

To determine the QLv for queue length estimation, different speed thresholds were 

selected and iso-speed contours were trying to draw during the analysis period. 

Selected speed thresholds were 15 km/h, 20 km/h, 25 km/h and 30 km/h for this 

approach. However, it was difficult to draw iso-speed contours for some zv  values 

(see Figure 6.1b) since multiple queue front locations could be detected for the 

selected zv  for the same imaginary vehicles. For example, many iso-speed contour 
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can be drawn when zv was 15 km/h. However, drawing all possible iso-speed contours 

for this zv  could not represent the maximum queue locations as shown in Figure 6.1b. 

When zv =30 km/h, it was not appropriate to draw iso-speed contour because it did not 

clearly represent the maximum queue locations as well. On the other hand, iso-speed 

contour of 20 km/h and 25 km/h seemed to be best fit for the study case and provided 

to draw continuous iso-speed contour near the maximum queue locations.  Even more 

deviations were observed for the second and third cycles, drawing 25 km/h iso-speed 

contour estimated the maximum queue location of the remaining cycles. Thus, QLv for 

this approach can be selected either 20 km/h or 25 km/h in which queue length 

estimation errors are provided in Table 6.1. Estimated queue lengths for six cycles 

produced QMAPE  and QRMSE  of 7.68% and 23.21 m, respectively when QLv was 

selected as 20 km/h. On the other hand, selection of QLv as 25 km/h resulted in increase 

of QMAPE  to 16.41% and QRMSE to 36.33 m.  
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Figure 6.1. a) Observed queue lengths with thematic speed map, b) observed average queue lengths 

with iso-speed contours for Approach 1. 

 

 



 

98 

 

Table 6.1. QMAPE and QRMSE of estimated queue lengths for different optv values for Approach 1. 

Cycle # 
Observed 

Queue Length 

Estimated Queue Length (m) 

QLv =20 km/h QLv =25 km/h 

1 207.2 218.1 167.8 

2 183.5 236.2 228.5 

3 215.0 217.7 271.6 

4 195.6 193.3 209.2 

5 213.3 195.4 232.0 

6 191.1 193.6 215.9 

QMAPE  7.68% 16.41% 

QRMSE   23.21 m 36.33 m 

 

To gain further insights about QLv , a longer duration beyond the control dataset can 

be selected at the full peak hour of 17.00-18.00 for the same day. The ground truth 

data collection time was also indicated in broken lines as shown in Figure 6.2. It can 

be clearly observed that selection of QLv  as 15 km/h could not provide the consistent 

queue length profile between 17:00 to 17:30 in which the approach was oversaturated 

in this time interval (see Figure 6.2a). However, after 17:30, it provided a consistent 

queue length profile until the end of the analysis period. The growing of the queues 

could be clearly captured from 17:05 to 17:17 by either selecting QLv of 20 km/h or 25 

km/h. At time 17:17 queue lengths were extended to 258 m far from the intersection 

stop line (70 m far from the initial segment in Figure 6.2b) when QLv was 20 km/h. At 

time 17:11-17:19, QLv of 20 km/h estimated two possible queue lengths in which some 

part of the this time interval was also fall into the ground truth data collection time 

interval as shown in Figure 6.1b. This situation may be due to the stop and move traffic 

in that time interval or the noises as well as the low penetration rate of FCD. It was 

also proved in Figure 6.1b that the possible queue length could be the farthermost 

location from the stop line of the intersection. Similar situation was also observed at 

time interval 17:26-17:30 in Figure 6.2b. Queue lengths were gradually decreased 

after 17:30 remained almost constant at time 17:45 to 17:55.   
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Selection of QLv as 25 km/h provided smooth queue length estimation profile in 

general (see Figure 6.3a). Multiple queue lengths was also observed at time interval 

17:11-17:19. On the other hand, selection of QLv as 30 km/h did not provide the queue 

length estimation profile. Instead, it provided the border between the low speed zones 

and higher speed zones as shown in Figure 6.3b.  

 
Figure 6.2. Thematic speed map of Approach 1 with a) QLv  =15 km/h, b)  QLv =20 km/h. 
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Figure 6.3. Thematic speed map of Approach 1 with a) QLv  =25 km/h, b) QLv =30 km/h. 

 

Approach 2 

For Approach 2 of the Int 2 (see Figure 3.4), thematic speed map of the FCD speeds 

with the observed queue lengths is illustrated in Figure 6.4a. The effect of the low 

penetration rate in the dataset was clearly observed in this approach. For example, 
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while the observed queue lengths were extended to almost 110 m far from the stop 

line in cycles 2 and 3 at between 17:17 and 17:20, FCD speed could not reflect the 

real situation. This approach was not as oversaturated as the previous one in which the 

average queue lengths were ranging from 75 m to 125 m. (Note: There was a 

systematic error in the farthermost segment from the stop line of the intersection, 

Segment ID “1212701”, FCD speed was not published for this segment, so the 

approach length was around 284 m.)  

 

Due to the undersaturated traffic condition, multiple queue front location was not 

captured during the analysis period and it could be possible to draw only one 

continuous iso-speed contour for all selected zv  as shown in Figure 6.4b. In the light 

of the determined QLv  values for the previous approach, calculation of queue length 

estimation errors for the same QLv values also produced promising results as tabulated 

in Table 6.2. When QLv =20 km/h, QMAPE  and QRMSE were found as 19.45% and 

27.77 m, respectively. On the other hand, selection of QLv  as 25 km/h resulted in 

almost 3% decrease in QMAPE  and 6.58 m decrease in QRMSE value (see Table 6.2).  

 

Similar to Approach 1, queue length profiles were further examined for the peak hour 

of 17.00-18.00. For each QLv value, queue length profiles were depicted over time as 

shown in Figure 6.5. While QLv of 15 km/h provided inconsistent queue length profile 

at time 17:00-17:15, queue growing and dissipation profile can be observed for the 

remaining time intervals (see Figure 6.5a). This may be mainly due to the 

undersaturated condition of the approach in this time interval since it did not provide 

reliable queue length profile when the approach was oversaturated (see Figure 6.2a). 

When QLv was selected as 20 km/h, it presented consistent queue length profile over 

time in general but multiple queue front locations were detected at time 17:34-17:36 

(see Figure 6.5b). As discussed, this may be due to the queue growing and dissipation 
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process or the noises in FCD. Similar profile was also observed when QLv  was 25 

km/h (see Figure 6.5c).  Finally, Figure 6.5d represents the queue length profile of 30 

km/h, but as it is discussed previously, this value was generally not represent the queue 

lengths, instead distinguished between the high regimes from slow ones.   

 

Figure 6.4.  a) Observed queue lengths with thematic speed map, b) observed average queue lengths 

with iso-speed contours for Approach 2. 
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 Table 6.2. QMAPE and QRMSE of estimated queue lengths for different optv values for Approach 2. 

Cycle # Observed 
Estimated Queue Length (m) 

QLv =20 km/h QLv =25 km/h 

1 126.5 112.1 121.6 

2 113.0 94.0 113.1 

3 124.0 63.2 85.4 

4 117.5 89.2 100.3 

5 80.5 89.9 103.3 

6 78.0 92.9 106.2 

7 124.5 119.5 128.7 

QMAPE  19.45% 16.80% 

QRMSE  27.77 m 21.19 m 
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Figure 6.5. Thematic speed map of Approach 2 with a) QLv =15 km/h, b) QLv =20 km/h, c) QLv =25 

km/h, and d) QLv =30 km/h. 
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6.2. Queue Length Estimation on Dumlupınar Boulevard 

Queue length estimation of the study corridor was performed during two study days, 

October 21, 2016 and October 25, 2016 in which the GT data was also available as 

discussed in Section 3.2.1. Analysis period only includes the morning peak hours 

between 07:30-09:00 to examine the queue lengths around bottleneck locations. 

 

4-node quadratic interpolation method was applied to FCD speed data for 82 segments 

(see Figure 3.2 for the study corridor and Table A.1 for the segment lengths) in which 

imaginary vehicles were sent from the first segment of the study corridor for every 10 

sec. Speed field estimation provided the thematic speed map which gave insight about 

the potential bottleneck locations as shown in Figure 6.6 and Figure 6.7, respectively.  

Three bottleneck locations were detected in which major bottleneck location was 

around Segment 72 (in J2 with 3293 m far from the initial segment). Second bottleneck 

location was at Segment 48 (at 2200 m in Figure 6.6) and final bottleneck location 

was around J1. The speed field estimation of the corridor also produced similar results 

with the LOS-based urban traffic monitoring discussed in Section 3.4.4 (see Figure 

3.11). Among these bottleneck locations, long queues from the upstream of the 

Segment 72 were observed for the both study days and queue length analysis only 

focused on only around this location. 

 

Queue join locations were determined by selecting two QLv  values as 27.0 km/h and 

42 km/h as discussed in Section 4.2. When QLv was selected as 27.0 km/h, the border 

of the queue growing profile was observable at between 07:30 and 08:00 (see Figure 

6.6a). After this time, multiple queue join locations were detected at some locations; 

representing stop and move traffic before reaching to bottleneck release location. 

Effect of the bottleneck location caused to extend the queue lengths up to 1600 m far 

from the bottleneck location at time 08:10 (see Figure 6.7a). Queue lengths were 

gradually decreased after 08:15 and almost dissipated at time 08:40. On the other hand, 
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selection of QLv as 42 km/h provided more smooth queue growing and dissipation 

profile as shown in Figure 6.6b. Queue lengths started to increase at 07:30 and reached 

to 1800 m at time 08:15 (see Figure 6.7a). Queue lengths were almost constant 

between 08:15-08:30 and then gradually decreased.  

 
Figure 6.6. Thematic speed map obtained from commercial FCD speed data with a) QLv =27 km/h, b) 

QLv =42 km/h for queue length estimation on October 21,2017. 
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Figure 6.7. Estimated queue lengths for two different QLv values for Dumlupınar Blvd. on a) October 

21,2017, b) October 25,2017.   

 

 

Queue length profile of the second day also provided the border of the queue growing 

and dissipation profile when QLv was 27 km/h (see Figure 6.8a). Queue lengths were 

started to increase after 07:45 and reached to maximum queue location at 08:05 

suggesting 800 m in length (see Figure 6.7b). Among 08:05-08:25, queue lengths 

remained constant and then gradually decreased. Stop and move traffic was also more 

observable during 08:00-08:25, but selection of QLv as 42 km/h, eliminated many of 

them and suggesting maximum queue length of 1800 m from the upstream of the 

bottleneck location (see Figure 8.b). In overall, during the analysis period, queue 

length profile of the second day is illustrated in Figure 6.7b.  
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Figure 6.8. Thematic speed map obtained from commercial FCD speed data with a) QLv =27 km/h, b) 

QLv =42 km/h for queue length estimation on October 25, 2017. 
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To determine appropriate QLv for FCD, lane-based individual vehicle travel speeds 

obtained for control Segment 57 were utilized. For GT data, queued vehicles were 

determined by 27 km/h speed threshold limit. In other words, a vehicle speed lower 

than that value assumed as in the queue. For the same segment, imaginary vehicle 

speeds generated from 4-node quadratic interpolation method was derived and 

imaginary queued vehicles were identified for the two QLv values, seperately and 

compared with the GT data. To provide a contiunity, thematic speed map of the 

Segments 56, 57 and 58 were derived for October 25, 2016 during 07:45-08:45 as 

shown in Figure 6.9a. Lane-based vehicular speed maps for the same time interval are 

illustrated in Figures 6.9b, 6.9c and 6.9d for lane 1, lane 2 and lane 3, respectively. 

Joint representation of the queued vehicles for each lanes as well as the imaginary 

queued vehicles are illustrated in Figure 6.9e. The x-axis represents the time and y-

axis includes dummy variable to clearly compare the queued vehicles with the 

imaginary ones. The results indicated that almost all observed vehicles were in the 

queue during 07:53-08:39, but selection of optv  as 27 km/h estimated the queued 

vehicles only at some points and had limited success. However, selection of optv as 42 

km/h provided better estimation results except the time interval of 07:50-07:54 as 

shown in Figure 6.9e. This is mainly due to the late response of FCD speed for the 

sudden speed change as discussed previously.  
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Figure 6.9. Thematic speed map of a) Segments 56, 57 and 58, b) lane 1, c) lane 2, d) lane 3, e)  

comparison of lane-based queued vehicles with imaginary queued vehicle for different QLv . 

 

(e) 



 

111 

 

6.3. Generalization of Queue Length Estimation for Study Corridor 

For uninterrupted flow condition, selection of QLv  is based on the determination of 

the severely congested state defined in HCM (2010). Based on the target speed of the 

study corridor, one-third of it would provide the possible queue join threshold speed. 

However, it is very crucial to estimate the corresponding FCD speed since the current 

quality of commercial FCD indicated that it overestimated the speeds under congested 

period. For this purpose, the GT speed data were utilized to derive analytical relation 

between two. For this study, after implementation of the transformation function, QLv

value was determined as 42 km/h and provided promising queue length estimation 

result.   

 

When considering QLv for the signalized intersections, while QLv of 20 km/h produced 

less estimation error for the Approach 1 of the study corridor, QLv of 25 km/h 

generated lower estimation error for the other approach. However, all two QLv values 

produced tolerable estimation errors. Thus, it could be possible to select only one QLv

for the study case either 20 km/h or 25 km/h. Alternatively, it could be possible to 

estimate queue length profile by drawing iso-speed contours starting from 20 km/h 

and increasing speed threshold value by 1 km/h up to speed threshold value of 25 

km/h. Thus, for every 1 km/h, iso-speed contours can be drawn which provided 

possible queue length profile, indicating formation and dissipation of the queue 

lengths of the approaches during analysis period as shown in Figure 6.10. For 

Approach 1, while QLv of 20 km/h estimated the queue length as 182 m at time 17:20,  

QLv of 21 km/h, 22 km/h, 23 km/h, 24 km/h and 25 km/h estimated the queue length 

as 184 m, 187m, 191 m, 195 m and 199 m, respectively at the same time. Thus, taking 

the average of these provided average queue length, and implementing the same 

procedure during the analysis period provided the average queue length profile over 

time which was the generalized queue length profile as shown in Figure 6.10. 
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However, the results indicated that at some locations selected QLv estimated the queue 

lengths at multiple locations. For example, during 17:12-17:18 all QLv ’s estimated the 

queue lengths at two locations that this can be due to the noises in the dataset or there 

was multiple queue formation and dissipation at this time interval. Without 

information of the GT data, it could not possible to decide in which queue length was 

the accurate one. Hence, the average queue length profile was much more deviated 

from the expected location as shown in Figure 6.10. Same situation was also 

observable for the Approach 2 during 17:35-17:38.  

 

Average queue length profile of the analysis period revealed that: 

 For Approach 1, queue lengths were gradually increased and reached to 175 m 

at time 17:10.  The approach was oversaturated during 17:10-17:30 in which 

the queue lengths were generally in between 175 m to 250 m. After 17:30, 

queue lengths were gradually decreased, the approach becomes undersaturated 

traffic condition at time 17:40 in which the queue lengths were ranged in 50 m 

to 100 m.  

 For Approach 2, queue lengths were generally in between 60 m to 120 m 

during 17:10 to 17:30, and the maximum value was achieved at time 17:40 

with 150 m. During the analysis period, the approach was undersaturated in 

general.  

 

It should be noted that at some locations, iso-speed contours were intersected each 

other which was drawn by broken lines in Figure 6.10. For example, at time 17:12, 

iso-speed contour of 22 km/h coincided with iso-speed contour of 24 km/h and 25 

km/h for Approach 1. This is mainly due to the fact that, during 17:11-17:16, 

imaginary vehicle speeds were not dropped to 22 km/h at this time interval. Similar 

situation was also observed for 23 km/h iso-speed contour for the same time interval.  
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Figure 6.10. Generalized queue length profile obtained from different speed thresholds for Approach 1 

and 2.  
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CHAPTER 7  

 

7. CONCLUSIONS AND FURTHER RECOMMENDATIONS 

 

In this chapter, general overview and conclusions of this thesis is summarized and 

followed by the further recommendations.  

 

7.1. General Overview and Conclusions 

Traditional methods to estimate the queue lengths are input-output models and LWR 

shock wave model which require perfect arrival traffic flow data. This data is 

commonly provided by the sensors such as loop detectors. Although loop detectors 

enable high quality traffic data, the vehicles are detected only at certain locations. 

Furthermore, cost of installation and operation of this sensor make it harder to locate 

everywhere for urban arterials with complex network and queue formation structures. 

On the other hand, since vehicle-to-vehicle and vehicle-to-vehicle communication 

technologies are growing, the traffic data obtained from GPS equipped vehicles, 

namely FCD, provides new horizon to develop methods to estimate the queue lengths. 

When compared to other traffic data sources, FCD is a relatively cheap traffic data 

source with high coverage area, which can carry spatio-temporal speed information 

over long urban corridors in real-time. The increasing availability of GPS-equipped 

vehicles in traffic will keep FCD as an important traffic data source in the near future 

in which the current penetration rate of FCD was in between 1% to 5% in Ankara.   

 

This thesis focuses on developing a new model to estimate queue length via 

commercial FCD speed. Without information of arrival traffic flow rate, signal timing 

data or queue related characteristics, the model only requires FCD speed as input. The 

methodology was mainly based on the determination of the speed threshold value 

providing the minimum queue length estimation error. Implementation of 4-node 
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quadratic interpolation provided the speed field estimation as well as the imaginary 

vehicle trajectory data in which these would later be used to identify the potential 

bottleneck locations. After identification of the bottleneck locations, selecting 

appropriate speed threshold and identifying queue join location of the imaginary 

vehicles based on this speed threshold value would give insight about the spatio-

temporal formation and dissipation of the queue length over time. 

 

 The proposed model was tested in three different cases as  

 VISSIM simulation environment by creating a hypothetical signalized 

intersection,  

 two approaches of the two urban signalized intersections, and 

 uninterrupted urban arterial located in Ankara.  

 

In simulation-based analysis, model performance was evaluated for various traffic 

demands and signal cycle times considering undersaturated and oversaturated traffic 

condition. For all cases, the model produced tolerable queue length estimation errors 

for all scenarios that QRMSE was in a range of 13 m-16 m. Furthermore, the overall 

analysis revealed that 5 km/h speed threshold assumption for joining the queue is not 

valid for FCD since it encompasses the average speeds of both moving and stopping 

vehicles for the selected epoch time. Thus, for the epoch time of 60 sec, a signalized 

intersection with 70 km/h design speed, optimum speed value depicting the queue 

length was around 30 km/h. Further evaluation of different epoch times (15 sec and 

30 sec) of FCD speeds also enabled to give insight of the sensitivity of FCD precision 

in the future FCD formats. Smaller epoch time of FCD speed allowed prediction of 

the queue dynamics more precisely; however, estimation errors were not found to be 

significant. The only significant difference was in the optimum speed threshold value 

in which the lower epoch time produced lower optimum speed threshold value. 

Additionally, the model performance was tested under different FCD penetration 

rates, suggesting QRMSE of 30 m at even 15% penetration rate seems to be acceptable.  



 

117 

 

 

Implementation of the proposed model to commercial FCD speed had also great 

success in estimating queue lengths when compared to observed ones for urban 

signalized intersection case. Even for the noises in the commercial FCD speed, QLv of 

20 km/h and 25 km/h provided reasonable queue length estimation errors ranging from 

7.68% to 19.45% in QMAPE values and 21.19 m to 36.33 m in QRMSE values.  Hence 

any of which can be selected as the QLv of the signalized intersection. Alternatively, 

to generalize the methodology to signalized corridors, multiple QLv ’s can be selected, 

and taking the average of the queue lengths obtained from each QLv  at a given time, 

and repeat the same procedure during the analysis period provides the generalized 

average queue length profile of the study corridor.     

 

Queue length profiles of some of the QLv showed that multiple queues can be detected 

behind a bottleneck location at the same time. This can be explained by either due to 

the low penetration and noise in FCD speed or multiple queue growing and dissipation 

occurring simultaneously. In that case, without support of GT data, it is not easy to 

decide which one is the real queue length or whether there is unstable flow condition 

causing multiple queue formations. Another critical issue is that as commercial FCD 

is processed data, low penetration of FCD may generate bigger estimation errors. For 

this reason, GT data should be collected at certain intervals to evaluate FCD quality 

and to calibrate the QLv  value.  

 

For the third case, implementation of the method to an uninterrupted urban arterial 

provided to detect potential bottleneck locations on the arterial. Queue formation and 

dissipation around the bottleneck location were detected by selecting two different 

QLv values. Based on HCM (2010) procedure for identifying QLv , one-third of the 

target speed was calculated and resulted in QLv of 27.0 km/h. Queue length estimation 
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power was further improved by performing transformation function which resulted in 

QLv of 42.0 km/h. Different than signalized intersection, multiple queue join locations 

were frequently observed suggesting stop and move traffic before reaching to 

bottleneck location. Selection QLv as 42.0 km/h revealed that FCD had great success 

to estimate queued vehicles when compared to GT data for the control segment. Thus, 

for uninterrupted flows, the GT data should be collected to derive the transformation 

function between GT and FCD speed.   

 

As a conclusion, FCD can be used as a traffic data source for determination of a queue 

length and is expected to be used extensively as its penetration rate increases. 

 

7.2. Recommendations for Future Studies 

In the light of the research findings for queue length estimation via commercial FCD, 

further recommendations for future studies are listed below: 

 This thesis has not addressed the question of real-time queue estimation. Thus, 

the proposed model can be modified to estimate the queue length in real-time 

for all approaches of the intersection which will be used as an input for real-

time traffic signal optimization. Signal timings can be optimized more 

accurately which resulted in minimum delay and travel time; thus, better 

management of the signalized intersection.  

 Similarly, real-time estimation of the queue lengths for uninterrupted urban 

arterials may provide real-time traffic management of the urban arterial.  

 Since the commercial FCD is a processed data, fusing other traffic data sources 

with commercial FCD may significantly improve the accuracy of the queue 

length estimation. For example, fusing loop detectors with commercial FCD 

at a signalized intersection may decrease the estimation errors and eliminate 

the effect of the low penetration rate of FCD. Data fusion algorithms can be 

utilized.  
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 Similarly, locating loop detectors at certain locations (generally preferred at 

every 250 m from the bottleneck location (FHWA, 2006)) for uninterrupted 

urban arterials and fusing with the FCD may significantly improve the queue 

length estimation.  

 

 

  



 

120 

 

 



 

 

 

121 

 

REFERENCES 

Adu-Gyamfi, Y.O., and Sharma, A. 2015. Reliability of probe speed data for Detecting 

congestion trends. In IEEE 18th International Conference on Intelligent 

Transportation Systems, Las Palmas, Spain, 15-18 Sept. 2015. 

 

Akcelik, R. 1999. A queue model for HCM 2000. ARRB Transportation Research 

Ltd., Vermont South, Australia. 

 

Anuar, K., Habtemichael, F., and Cetin, M. 2015. Estimating traffic flow rate on 

freeways from probe vehicle data and fundamental diagram. In IEEE 18th 

International Conference on Intelligent Transportation Systems, Las 

Palmas,Spain, 15-18 Sept. 2015. 

 

Altintasi, O., Tuydes-Yaman, H., and Tuncay, K. 2017. Detection of urban traffic 

patterns from Floating Car Data (FCD). Transportation Research 

Procedia,Vol. 22, 381-391 (doi.org/10.1016/j.trpro.2017.03.057). 

 

Badillo, B. E., Rakha, H., Rioux, T. W. and Abrams, M. 2012. Queue length 

estimation using conventional vehicle detector and probe vehicle data. In 

15th International Conference on Intelligent Transportation Systems (ITSC), 

pp. 1674-1681.  

 

Bagheri, E., Mehran B. and Hellinga B. 2015. Real-time estimation of saturation flow 

rates for dynamic traffic signal control using connected-vehicle data. 

Transportation Research Record: Journal of the Transportation Research 

Board. No:2487, pp. 69-77. 

 

Ban, X. J., Hao, P., Sun, Z. 2011. Real time queue length estimation for signalized 

intersections using travel times from mobile sensors. Transportation 

Research Part C, 2011. Vol: 19, pp. 1133-1156. 

 



 

 

 

122 

 

Brockfeld, E., Passfeld, B., and Wagner, P. 2007. Validating travel times calculated 

on the basis of taxi floating car data with test drives, 14th ITS Conference, 

Beijing, China, October 9th-13th. 

 

Cai, Q., Wang, Z., Zheng, L., Wu, B. and Wang, Y. 2014. Shockwave approach for 

estimating queue length at signalized intersections by fusing data from point 

and mobile sensors. Transportation Research Record: Journal of the 

Transportation Research Board. No: 2422, pp. 17-22. 

 

Cambridge Systematics. 2012. Travel time data collection white paper, Florida Dept. 

of Transportation, Tallahassee, FL. 

 

Cetin, M. 2012. Estimating queue dynamics at signalized intersections from probe 

vehicle data: Methodology based on kinematic wave model. Transportation 

Research Record: Journal of the Transportation Research Board. No: 2315, 

pp. 164–172.  

 

Chase, R.T, Williams, B.M., Rouphail, N.M. and Kim, S. 2012. Comparative 

evaluation of reported speeds from corresponding fixed-point and probe-

based detection systems. Journal of Transportation research record, pp. 110- 

119.  

 

Cheng, Y., Qin, X., Jin, J., Ran, B. and Anderson, J. 2011. Cycle-by-cycle queue 

length estimation for signalized intersections using sampled trajectory data. 

Transportation Research Record, 2257(1), 87-94. 

 

Cheu, R.L., Xie, C., Lee, D.H. 2002. Probe Vehicle Population and Sample Size for 

Arterial Speed Estimation, Computer Aided Civil Infrastructure. 

Engineering. Vol: 17(1), pp. 53–60. 

 

 



 

 

 

123 

 

Comert G., and M. Cetin. 2009. Queue length estimation from probe vehicle location 

and the impacts of sample size. European Journal of Operational Research. 

Vol: 197, pp. 196-202. 

 

Elefteriadou, L., Roess, R., and McShane, W. 1995. Probabilistic nature of breakdown 

at freeway merge junctions. Transportation Research Record, No 1484:80– 

89. 

 

Fabritiis, C., Ragona, R., and Valenti, G. 2008. Traffic estimation and prediction based 

              on real time floating car data. Proceeding of the 11th International 

Conference on Intelligent Transportation Systems, Beijing, China.  

 

FHWA. 2016. Traffic Control Systems Handbook: Chapter 6. Detectors.  

https://ops.fhwa.dot.gov/publications/fhwahop06006/chapter_6.htm#ref1. 

 

Greenshields, B. (1935). A study of traffic capacity. Proceeding of the Highway  

Research Board, Vol. 14, pp.  448-477. 

 

Haghani, A., Hamedi, M., Sadabadi, K.F., Young, S., and Tarnoff, P. 2010. Data 

Collection of Freeway Travel Time Ground Truth with Bluetooth Sensors. 

Transportation Research Record: Journal of the Transportation Research 

Board pp. 60-68. 

 

Hall, F. L., Hurdle, V.F. and Banks, J.H. 1992. Synthesis of recent work on the nature 

of speed-flow and flow occupancy relationships on freeways. Transportation 

Research Record No:1365, TRB, National Research Council, Washington 

D.C, pp. 12-18. 

 

HCM 2010. Highway Capacity Manuel, Transportation Research Board of the 

National Academies,  Washington, D.C., USA. 

 



 

 

 

124 

 

Herrera, J.C., Work D.B, Herring, R., Ban, X.G., Jacobson, Q., Bayen A.M. 2010. 

Evaluation of Traffic Data Obtained via GPS-enabled Mobile Phones: The 

Mobile Century Field Experiment. Transportation Research Part C: 

Emerging Technology Vol: 18(4), pp. 568–583. 

 

Hong, J.,  Zhang, X., Wei Z., Li, L. and Ren Y. 2007. Spatial and temporal analysis 

of probe vehicle-based sampling for real-time traffic information system. 

Proc. 2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey, pp. 

1234–1239. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000815.  

 

Hu, J., Fontaine, M.D., and Ma, J. 2016.  Quality of private sector travel-time data on 

arterials. Journal of Transportation Engineering, 142(4). Available from:              

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000815.  

 

Kerner, B.S., C. Demir, R.G. Herrtwich, S. L. Klenov, H. Rehborn, M., Aleksic, A. 

Haug. 2005. Traffic State Detection with Floating Car Data in Road 

Networks. Proceeding of the 8th International IEEE conference on Intelligent 

Transportation Systems, Vienna, Austria, September 13-16. 

 

Kim S., and Coifman, B. 2014. Comparing INRIX speed data against concurrent loop 

detector stations over several months. Transportation Research Part C 49:59-

72. 

 

Klein, L., Mills, M.K. and Gibson, R.P. 2006. Traffic Detector Handbook: Third 

edition-Vol (1). Publication number: FHWA-HRT-06-108. 

 

Klunder, G.A., Taale, H., Kester, L. and Hoogendoorn, S. 2017. Improvement of 

Network Performance by In-Vehicle Routing Using Floating Car Data. 

Journal of Advanced Transportation, Volume 2017, 

https://doi.org/10.1155/2017/8483750 

 

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000815
https://doi.org/10.1155/2017/8483750


 

 

 

125 

 

Kondyli, A., George, B., and Elefteriadou, L. 2016. Comparison of travel time 

measurement methods along freeway and arterial facilities. Transportation 

Letters, The International Journal of Transportation Research. Doi: 

http://dx.doi.org/10.1080/19427867.2016.1245259. 

 

Latimer, C., and Glotzbach, G. 2012. Evaluation of third party travel time data. ITS 

America 22nd Annual Meeting and Exposition, 21-23 May 2012, National 

Harbor, MD. Available from:  

              http://itswc.confex.com/itswc/AM2012/webprogram/ Paper10870.html. 

 

Leduc, G. 2008. Road Traffic Data: Collection Methods and Applications (Technical 

report-- JRC 47967). Working Papers on Energy, Transport and Climate 

Change. 

 

Li, Q., Ge, Q., Miao, L. and Qi, M. 2012. Measuring variability of arterial road traffic 

condition using archived probe data. Journal of Transportation Systems 

Engineering and Information Technology. Vol. 12(2). 

 

Li, J.Q., Zhou, K., Shladover, S.E. and Skabardonis, A. 2013. Estimating queue length 

under connected vehicle technology using probe vehicle, loop detector, and 

fused data. Transportation Research Record: Journal of the Transportation 

Research Board, No: 2356, 17–22. 

 

Liu, D., Kitamura, Y., Zeng, X., Araki, S., Kakizaki, K. 2015. Analysis and 

visualization of traffic conditions o road network by route bus probe data. 

IEEE 18th International Conference on Intelligent Transportation Systems. 

 

Liu, H., Xinkai, W., Wenteng, M.,  Heng, H. 2009. Real-time queue length estimation 

for congested signalized intersections. Transportation Research Part C, Vol: 

17, pp. 412-427. 

 

http://dx.doi.org/10.1080/19427867.2016.1245259


 

 

 

126 

 

Mannering, F.L., Washburn, S.S. and Kilareski, W.P. 2009. Principles of highway 

engineering and traffic analysis. 4th edition, John Wiley&Sons, Inc. 

 

Muck, J. 2002. Using detectors near the stop-line to estimate traffic flows. Traffic 

Engineering and Control 43, 429–434. 

 

Neumann, T. 2010. Floating-Car Data for urban traffic monitoring: A new approach, 

its applications and future visions. The Young European Arena of Research. 

 

Pan, S., Jiang, B., Zou, N. and Jia, L. 2011. Average speed estimation using multi-

type Floating Car Data. Proceeding of the IEEE, International Conference on 

Information and Automation, Shenzhen, China. 

 

Pascale, A., Mavroeidis, D., Thanh-Lam, H.2015. Spatio-temporal clustering of urban 

networks: a real case scenario in London, CD-ROM. Transportation 

Research Board of the National Academies,Washington, D.C. 

 

Petrovska, N. and  Stevanovic, A. 2015. Traffic Congestion Analysis Visualisation 

Tool, In: IEEE 18th International Conference on Intelligent Transportation 

Systems. 

 

Pipes, L. A. (1967). Car following models and the fundamental diagram of road traffic, 

Transportation Research, Vol. 1, pp. 21-29. 

 

Pongnumkul, S.,  Kamsiriphiman, N., Poolsawas, J. and Amornwat, W. 2013. 

Congestion Grid: A Temporal Visualization of Road Segment Congestion 

Level Data. In: 13th International Symposium on Communications and 

Information Technologies. 

 

Quayle, S.M, Koonce, P., DePencier, D. and Bullock D. M. 2010. Arterial 

performance measures with media access control readers Portland, Oregon, 



 

 

 

127 

 

pilot study. Transportation Research Record: Journal of the Transportation 

Research Board. No. 2192, Washington, D.C., pp. 185–193. 

Reinthaler, M., Weichenmeier, F., Nowotny, B. and Hildebrandt, R. 2010. Evaluation 

of Speed Estimation by Floatıng Car Data (within the research Project 

dmotion (research report). 

 

Schneider, W.H., Turner, S.M.  Roth, J., and Wikander, J. 2010. Statistical validation 

of speeds and travel times provided by a data service. Technical report: 

FHWA/OH-2010/2, 2010.  

 

Sharma, A., Bullock, D.M., Bonneson, J. 2007. Input–output and hybrid techniques 

for real-time prediction of delay and maximum queue length at a signalized 

intersection. Transportation Research Record, No: 2035, TRB, National 

Research Council, Washington, DC, pp. 88–96. 

 

Shoufeng, L., Yanhui, M. and Ximin, L., 2013. The analysis of characterization of 

urban traffic congestion based on mixed speed distribution of taxi GPS data. 

Applied Mechanics and Materials, Vol. 241-244, 2076-2081. 

 

Strong, D.W., Nagui M.R, Ken C. 2006. New calculation method for existing and 

extended HCM delay estimation procedure. No:06-0106, Proceedings of the 

85th annual meeting of the Transportation Research Board, Washington, DC. 

 

Skabardonis, A. and Geroliminis, N. 2008. Real-time Monitoring and Control on 

Signalized Arterials. Journal of Intelligent Transportation Systems. 12 (2), 

64–74. 

 

Sunderrajan, A.,  Viswanathan, V.,  Cai, W. and  Knoll. A. 2016. Traffic State 

Estimation Using Floating Car Data. Procedia Computer Science. Vol:80, 

pp. 2008-2018. 

 



 

 

 

128 

 

Tiaprasert, K., Zhang, Y., Wang, X. B. and Zeng, X. 2015. Queue length estimation 

using connected vehicle technology for adaptive signal control. IEEE 

Transactions on Intelligent Transportation Systems. 16(4). 

 

Unal, O. and Cetin M. 2014. Estimating Queue Dynamics and Delays at Signalized 

Intersections from Probe Vehicle Data. Presented at 93th Annual Meeting of 

the Transportation Research Board, Washington, D.C. 

 

Underwood, R. T. (1961). Speed, volume, and density relationship: Quality and theory 

of traffic flow, Yale Bureau of Highway Traffic, pp. 141-188. 

 

Vandenberghe, W., Vanhauwaert, E., Verbrugge, S., Moerman, I. and Demeester P. 

2012. Feasibility of Expanding Traffic Monitoring Systems with Floating Car 

Data Technology. IET Intelligent Transportation systems. Vol: 6(4), pp. 347-

354. 

 

Van Aerde, M. and Rakha, H. 1995. Multivariate calibration of single regime speed-

flow-density relationships. 6th International Vehicle Navigation and 

Information System. July 30-August 2, pp. 334-341. 

 

Van Aerde, M. (1995). Single regime speed-flow-density relationship for congested 

and congested highways, In 74th TRB Annual Conference, ed. Washington, 

D.C. 

 

Vasudevan, M., Negron, D., Feltz, M., Mallette, J., Wunderlich, K. 2015. Predicting 

Congestion States from Basic Safety Messages Using Big Data Analytics, 

CD-ROM. Transportation Research Board of the National Academies, 

Washington, D.C. 

 

 



 

 

 

129 

 

Wang, X., Liu, H., Yu, R., Deng, B., Chen, X. and Wu, B. 2014. Exploring operating 

speeds on urban arterials using floating car data: case study in shanghai. 

Journal of Transportation Engineering, doi: 10.1061/(ASCE)TE.1943-

5436.0000685. 

 

Wang, Z., Cai,Q., Wu, B., Zheng, L. and Wang, Y.2017. Shockwave-Based Queue 

Estimation Approach for Undersaturated and Oversaturated Signalized 

Intersections Using Multi-Source Detection Data. Journal of Intelligent 

Transportation Systems Technology, Planning, and Operations. Vol: 21(3), 

pp. 167-178. 

 

Webster F. 1958. Traffic Signal Settings. Road Research Technical Paper 39. Road 

Research Laboratory, London. 

 

Xu, L., Yue, Y. and Li, Q. 2013. Identifying urban traffic congestion pattern from 

historical Floating Car Data. 13th COTA International conference of 

Transportation Professionals (CICTP 2013).  

 

Zhao, N., Yu, L., Zhao, H. and Wen G.  2009. Analysis of Traffic Flow Characteristics 

on Ring Road Expressways in Beijing: Using Floating Car Data and Remote 

Traffic Microwave Sensor Data. Transportation Research Record: Journal of 

the Transportation Research,  pp. 178-185. 

 

 

  



 

 

 

130 

 

 



 

 

 

131 

 

APPENDICES 

A. STATIC INFORMATION TABLE OF FCD SEGMENTS 

 

Table A.1. Static information of the FCD road segments on Dumlupınar Blvd. 

Segment 

Id 

Length 

(m) 

Road 

Class 

Start  

Coordinate 

End  

Coordinate 

Local  

Id 

676555 48.24 1 32.725874;39.906164 32.726438;39.906186 1 

676556 48.24 1 32.726438;39.906186 32.727001;39.906209 2 

676557 48.24 1 32.727001;39.906209 32.727565;39.906229 3 

676116 40.56 1 32.727565;39.906229 32.728038;39.90625 4 

676117 40.56 1 32.728038;39.90625 32.728512;39.906271 5 

676118 40.56 1 32.728512;39.906271 32.728985;39.906293 6 

676119 40.56 1 32.728985;39.906293 32.729459;39.906314 7 

902667 40.87 1 32.729459;39.906314 32.729936;39.906326 8 

902668 40.87 1 32.729936;39.906326 32.730413;39.906349 9 

902669 40.87 1 32.730413;39.906349 32.730891;39.906369 10 

902670 40.87 1 32.730891;39.906369 32.731368;39.906393 11 

902671 40.87 1 32.731368;39.906393 32.731845;39.906416 12 

131016 40.87 1 32.731845;39.906416 32.732203;39.906426 13 

1233325 46.49 1 32.732203;39.906426 32.732528;39.906438 14 

184647 46.49 1 32.732528;39.906438 32.733071;39.906453 15 

184648 46.49 1 32.733071;39.906453 32.733614;39.906469 16 

184649 46.49 1 32.733614;39.906469 32.734157;39.906485 17 

184650 46.49 1 32.734157;39.906485 32.734701;39.9065 18 

676110 40.33 1 32.734701;39.9065 32.735171;39.906523 19 

676111 40.33 1 32.735171;39.906523 32.735642;39.906545 20 

676107 49.36 1 32.735642;39.906545 32.736104;39.906564 21 

676108 49.36 1 32.736104;39.906564 32.736565;39.906594 22 

676109 49.36 1 32.736565;39.906594 32.737025;39.906627 23 

198299 49.36 1 32.737025;39.906627 32.737601;39.906657 24 

198300 49.36 1 32.737601;39.906657 32.738177;39.906685 25 

198301 49.36 1 32.738177;39.906685 32.738754;39.906705 26 

198302 49.36 1 32.738754;39.906705 32.73933;39.906729 27 

198303 49.36 1 32.73933;39.906729 32.739907;39.90675 28 

6905751 26.91 1 32.739907;39.90675 32.740049;39.906756 29 

6905750 26.91 1 32.740049;39.906756 32.740364;39.906768 30 
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Table A.1.  Static information of the FCD road segments on Dumlupınar Blvd (continued).  

Segment 

Id 

Length 

(m) 

Road 

Class 

Start  

Coordinate 

End  

Coordinate 

Local  

Id 

6810212 49.16 1 32.740364;39.906768 32.740938;39.906789 31 

6810213 49.16 1 32.740938;39.906789 32.741512;39.90681 32 

6810214 49.16 1 32.741512;39.90681 32.742086;39.906833 33 

6810215 49.16 1 32.742086;39.906833 32.74266;39.906856 34 

6810216 49.16 1 32.74266;39.906856 32.743234;39.906884 35 

6810217 49.16 1 32.743234;39.906884 32.743808;39.906912 36 

6810218 49.16 1 32.743808;39.906912 32.744382;39.906932 37 

6810219 49.16 1 32.744382;39.906932 32.744956;39.906953 38 

6810220 49.16 1 32.744956;39.906953 32.745531;39.90697 39 

6810221 49.16 1 32.745531;39.90697 32.746105;39.906989 40 

6810222 49.16 1 32.746105;39.906989 32.746679;39.907015 41 

6810223 49.16 1 32.746679;39.907015 32.747253;39.907041 42 

6810224 49.16 1 32.747253;39.907041 32.747827;39.907066 43 

6810225 49.16 1 32.747827;39.907066 32.748401;39.907091 44 

6810226 49.16 1 32.748401;39.907091 32.748975;39.907115 45 

6810227 49.16 1 32.748975;39.907115 32.749549;39.907139 46 

6810228 49.16 1 32.749549;39.907139 32.750122;39.907165 47 

6810229 49.16 1 32.750122;39.907165 32.750696;39.907192 48 

6810230 49.16 1 32.750696;39.907192 32.75127;39.907215 49 

6810231 49.16 1 32.75127;39.907215 32.751845;39.907229 50 

6810232 49.16 1 32.751845;39.907229 32.752419;39.90725 51 

6810233 49.16 1 32.752419;39.90725 32.752993;39.90728 52 

6810234 49.16 1 32.752993;39.90728 32.753567;39.907302 53 

6810235 49.16 1 32.753567;39.907302 32.754141;39.90732 54 

6810236 49.16 1 32.754141;39.90732 32.754716;39.907337 55 

6810237 49.16 1 32.754716;39.907337 32.755289;39.907363 56 

6810238 49.16 1 32.755289;39.907363 32.755863;39.90739 57 

6810239 49.16 1 32.755863;39.90739 32.756438;39.90741 58 

6810240 49.16 1 32.756438;39.90741 32.757012;39.907428 59 

6810241 49.16 1 32.757012;39.907428 32.757586;39.907449 60 

6810242 49.16 1 32.757586;39.907449 32.75816;39.907472 61 

198322 39.45 1 32.75816;39.907472 32.758621;39.907491 62 

198323 39.45 1 32.758621;39.907491 32.759082;39.90751 63 

198324 39.45 1 32.759082;39.90751 32.759542;39.907529 64 

198325 39.45 1 32.759542;39.907529 32.760003;39.907546 65 

198326 48.25 1 32.760003;39.907546 32.760567;39.907565 66 

198327 48.25 1 32.760567;39.907565 32.76113;39.907588 67 
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Table A.1.  Static information of the FCD road segments on Dumlupınar Blvd (continued).  

Segment 

Id 

Length 

(m) 

Road 

Class 

Start  

Coordinate 

End  

Coordinate 

Local  

Id 

198328 48.25 1 32.76113;39.907588 32.761694;39.907616 68 

198329 48.25 1 32.761694;39.907616 32.762257;39.907644 69 

198330 48.25 1 32.762257;39.907644 32.76282;39.907672 70 

198320 28.29 1 32.76282;39.907672 32.76315;39.907687 71 

198321 28.29 1 32.76315;39.907687 32.763481;39.907699 72 

205309 39.48 1 32.763481;39.907699 32.763942;39.907712 73 

1209316 39.18 1 32.763942;39.907712 32.764399;39.907724 74 

1209317 39.18 1 32.764399;39.907724 32.764857;39.907741 75 

1209318 13.03 1 32.764857;39.907741 32.765009;39.907745 76 

835497 13.60 1 32.765009;39.907745 32.765167;39.907757 77 

5565077 39.18 1 32.765167;39.907757 32.765649;39.907765 78 

5565078 39.18 1 32.765649;39.907765 32.76613;39.907781 79 

5565079 39.01 1 32.76613;39.907781 32.766611;39.907797 80 

5565080 39.01 1 32.766611;39.907797 32.767093;39.907813 81 

184687 39.01 1 32.767093;39.907813 32.767549;39.907822 82 

Note: Average speed and speed limit of the road segments are 70 km/h.    
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Table A.2. Static information of the FCD road segments on Muhsin Yazıcıoğlu Street. 

Segment 

ID 

Length 

(m) 

Road 

Class 

Average 

Speed 

Speed 

Limit 

Start 

Coordinate 

End 

Coordinate 

Int 1 - Approach 1 

2004037 40.90 6 46 50 
32.809644; 

39.903973 

32.809424; 

39.904302 

2004038 40.90 6 46 50 
32.809424; 

39.904305 

32.809178; 

39.904616 

2004039 40.90 6 46 50 
32.809178; 

39.904616 

32.808912; 

39.904922 

2004049 40.90 6 46 50 
32.808912; 

39.904922 

32.808646; 

39.905242 

2004050 40.90 6 46 50 
32.808646; 

39.905242 

32.808379; 

39.905557 

2004051 40.90 6 46 50 
32.808379; 

39.905557 

32.808111; 

39.905874 

2004052 40.90 6 46 50 
32.808111; 

39.905874 

32.807843; 

39.906191 

2004053 40.90 6 46 50 
32.807843; 

39.906191 

32.807575; 

39.906508 

Int 2-Approach 2 

1212701 41.43 6 46 50 
32.807425; 

39.906336 

32.807658; 

39.906015 

1212702 41.43 6 46 50 
32.807658; 

39.906015 

32.807934; 

39.905709 

1212703 41.43 6 46 50 
32.807934 

39.905709 

32.808210; 

39.905402 

1212704 41.43 6 46 50 
32.808210; 

39.905402 

32.808484; 

39.905094 

1212705 41.43 6 46 50 
32.808484; 

39.905094 

32.808773; 

39.904795 

2004040 38.85 6 46 50 
32.808773; 

39.904795 

32.809025; 

39.904504 

2004041 38.85 6 46 50 
32.809025; 

39.904504 

32.809283; 

39.904216 

2004042 38.85 6 46 50 
32.809283; 

39.904216 

32.809538; 

39.903926 
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B. METHODOLOGY FOR GT VERSUS FCD EVALUATION 

Quality of the available FCD speed was evaluated by comparing the GT and FCD 

datasets via different analyses as described below:  

Descriptive Evaluation: This step includes visual assessment of quality of FCD in 

describing speed profile and fundamental diagram. For the former, speed profiles by 

tu  and t

FCDu  were graphed together to reveal insights about the reliability of FCD 

speeds. GT-based maximum and minimum vehicle speeds, 
max

tu  and 
min

tu , were also 

included to give an idea about the potential reasons behind deviations in FCD values, 

as well as level of outliers in the FCD. For the latter, a GT diagram was obtained by 

plotting ( tq versus tu ), which was compared against a fused diagram plotted as ( tq  

versus t

FCDu ). This fused diagram provides a visual check on whether the expected 

traditional distribution could be obtained or not, especially detecting any problems in 

portraying the congested and uncongested regimes. Note: In the fundamental diagram 

plots, a single regime traffic flow model was also fit to GT values using Van Aerde 

(1995) formulation as between flow, speed and density kt  as 

*t t tq u k   and   
2

1 3

1t

t

t
f

k
c

c c u
u u



 


                                                                 [B.1] 

where uf represents the free flow speed, and 
1c , 

2c  and 
3c are model parameters 

describing congested and uncongested part of the relation as discussed in Zhao et al. 

(2009) and Anuar et al. (2015).  

Speed Estimation Performance Evaluation: The success of FCD speeds as a 

surrogate measure for real speeds was evaluated based on the following performance 

measures: 

i) MAPE was used in (Wang et al. 2014; Anuar et al. 2015; Hu et al. 2016) to 

measure error in speeds and calculated as 
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1

1
*100

t tT
FCD

u t
t

u u
MAPE

T u


                                                    [B.2]

 ii) RMSE was applied in (Anuar et al. 2015) for speed errors, and formulated 

as       

2

1

1
( )

T
t t

u FCD

i

RMSE u u
T 

                                                 [B.3] 

where T shows the analysis period in terms of minutes. 

iii) Furthermore, a regression analysis R2 (correlation coefficient) was determined 

for the speed transformation function of  

( )t t

FCD FCDu f u                                     [B.4] 

to decide whether there was a strong relation between the FCD speeds and 

real values. However, the regression analysis was performed for the whole 

study period as well as only peak periods as FCD speed quality was expected 

to differ during congested regimes. Furthermore, it was repeated with filtered 

FCD speed datasets, to see the impact on data filtering the performance of 

speed transformation.   

LOS Estimation Performance: Instead of estimating speeds directly, it is also very 

helpful to estimate LOS, a quantitative measure representing quality of service for 

traffic monitoring purposes. HCM (2010) defined LOS level for urban roads based on 

“the reductions in travel speed as a percentage of the free-flow speed of the corridor” 

as shown in Table A-1.  With this definition, for an urban corridor with 90 km/h speed 

limit, speeds over 60 km/h correspond to uncongested regimes, while LOS C 

represents “stable flow” and speeds below 36 km/h (LOS E and F) designate 

“unstable/congested flow” conditions (Note: Due to the aforementioned truncation at 

70 km/h, it was not possible to determine “LOS A” and “LOS B” separately, but, a 

joint state of “A/B” was defined, whereas the remaining 4 levels were exactly matched 

with LOS C to LOS F). 
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Table B.1 Average speed intervals and corresponding LOS values for urban roads based on HCM 

(2010). 

 

LOS 
HCM Flow Condition 

Travel Speed 

as a  

Percentage of 

Base 

Free-flow 

Speed 

Travel Speed Intervals 

for speed limit= 90 

km/h 

Traffic 

State 

A Free flow conditions >85% tu >77km/h 
A/B 

B Unimpeded flow condition 67%-85% 60km/h < tu <77km/h 

C Stable flow 50%-67% 45km/h < tu <60km/h C 

D 
Approaching to unstable 

flow  

40%-50% 36km/h < tu <45 km/h D 

E Unstable flow 30%-40% 27km/h < tu <36km/h E 

F Congested flow <30% tu <27km/h F 

 

To assess the power of FCD speed in estimating real-time LOS at control Segment 57, 

LOS for a time interval t, was estimated by GT ( tLOS ) and FCD ( t

FCDLOS ), which 

were later used to calculate performance measures again, MAPE and RMSE values as 

formulated  

1

1
*100

t tT
FCD

LOS t
t

LOS LOS
MAPE

T LOS


                [B.5] 

2

1

1
( )

T
t t

LOS FCD

i

RMSE LOS LOS
T 

                          [B.6] 

Similar to speed estimation performance evaluation, a correlation coefficient between 

tLOS and 
t

FCDLOS was calculated for LOS performance evaluation, as well.  

In addition to the evaluation of the LOS performance of FCD at a control location 

(Segment 57), the potential use of commercial FCD for urban corridor monitoring was 

evaluated for the entire study corridor.  

Data Preprocessing: To minimize the impact of FCD speed related problems in the 

quality evaluation, two different set of data was formed. First, to compensate for the 

truncation in the FCD speeds, a truncated set from GT speeds, denoted as
t

tru , was 

created and use as an alternative GT set. Secondly, extreme values in FCD were 
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filtered, and a cleaned-up data set were created. This set were denoted by
*

t

FCDu , where 

“*” stands for the filtering process. Upper and lower limits for the FCD speed filter 

were determined by analyzing the distribution of Absolute Speed Error, ASE, which 

is 
tt

FCD

t uuASE  defined for each time, t T . A tolerance upper limit was chosen 

by simply assuming two folds of the interquartile (IQR) range for the ASE to create an 

upper limit for tolerance in the errors as  

3 2tolerance ASE ASEASE Q IQR                    [B.7] 

where Q3 represents the 75-percentile value. FCD speeds with ASE larger than the 

tolerance were filtered out. 
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C. ESTIMATION OF QUALITY OF FCD UNDER VARYING 

PENETRATION RATES 

 

The quality of FCD under varying penetration rates was evaluated by creating various 

FCD subsets from GT speed dataset, t

iu , using Monte Carlo simulations (Figure C.1). 

In this process, assuming a selected penetration rate,  , a randomly selected speed 

subset was created, first; the average of the selected speeds was used to obtain 

“simulated FCD average speed data”, 
,

t

FCD k
u , for every minute t in the kth Monte Carlo 

simulation. For each penetration rate, in every simulation scenario k,  simulated FCD 

speed values were compared with the GT values, to calculate speed MAPE and RMSE 

measures denoted by, ,u kMAPE
and ,u kRMSE

, respectively. Overall analysis of the 

scenarios provided average, minimum and maximum values for the MAPE, for each 

selected , denoted as uMAPE

, ,minuMAPE

and ,maxuMAPE
, respectively. In this study, six 

different penetration rates were selected as  = {5%, 10%, 15%, 25%, 35% and 50%}, 

and k=20. Randomly generated Monte Carlo simulations were created for each 

penetration rate, . Increasing the number of Monte Carlo simulations yielded only 

minor changes in the results. Plotting the change of these performance measures 

against penetration rate produced characteristic functions for these errors. As MAPE 

and RMSE values against a flow-based penetration rate,
q , would be more useful in 

analyzing the current FCD penetration rate, 
q for each penetration rate,  , was 

determined based on the ratios of the GT flow and speed dataset (Table C.1). The 

function between the MAPE and RMSE values against q  was later used to draw 

insights about the current FCD penetration rate in the study area.  
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Figure C.1. Monte Carlo simulation approach to derive quality-penetration rate relation for FCD speed. 

 

Table C.1.  and corresponding q values for different time periods of the day of October 25, 2016. 

 

  

(%) 

q (%) 

All  

day 

Peak  

period 

Off- 

peak 

5 3.49 2.21 3.77 

10 6.38 4.06 6.88 

15 9.27 5.93 10.00 

25 15.10 9.59 16.30 

35 20.91 13.27 22.57 

50 29.59 18.73 31.96 
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Compiling the results of 20 Monte Carlo simulations (randomly created using the GT 

speed data from October 25, 2016) for each of six selected FCD penetration rates, , 

the change of performance measures of Speed R2 (Figure C.2), uMAPE  and uRMSE

values (Figure C.3) were depicted. Despite fluctuations among random scenarios, 

there was a visible reduction in both error measures, when  was increased, as 

expected. When 5% of the GT speed data was used to simulate FCD speeds, t

FCD
u , (

 = 5% which corresponded to 
q =3.49% for the whole study period in Table C.1), 

speed R2 values were in between 0.70 to 0.80, which is promising result. Even for 

10% penetration rate, R2 values were raised to 0.85. After 25% penetration rate, this 

value was very closed to 1.00. According to the Figure 3.17a, the uMAPE values were 

in the range of 9%-11% and uRMSE  changed within the range of 9-11 km/h for 

=5%.  Error measures decreased 50%, when  was increased to 15%. Availability of 

much higher FCD penetration rates brought the error measures uMAPE  and uRMSE  

down (as low as 2% and 2 km/h).  

 

 

Figure C.2. Variation of Speed R2 performance of Monte Carlo simulation by penetration rate. 
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Figure C.3. Variation of uMAPE and uRMSE performance for Monte Carlo Simulations. 

Average, maximum and minimum values of uMAPE  and uRMSE among 20 MC runs 

were plotted against the flow-based FCD penetration rates,
q , to obtain a relationship 

between the two. Due to variations in the uMAPE  and uRMSE  values in the peak and 

off-peak periods, plots were created for these periods as well in Figures C.,4, C.5 and 

C.6, respectively. For both plots indicated a strong logarithmic decay between FCD 

penetration rates and error measures. 
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Figure C.4. Variations of  uMAPE  and uRMSE  measures as a function of penetration rates for whole 

analysis period.   



 

 

 

144 

 

 
Figure C.5.  Variations of uMAPE  and uRMSE  measures as a function of penetration rates for 

AM peak. 
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Figure C.6. Variations of uMAPE  and uRMSE  measures as a function of penetration rates for off-

peak period. 
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