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Head of Department, Computer Engineering

Prof. Dr. Ahmet Coşar
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ABSTRACT

A FRAMEWORK FOR DESIGN AND PERSONALIZATION OF DIGITAL,
JUST-IN-TIME, ADAPTIVE INTERVENTIONS

Gönül, Suat
Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Ahmet Coşar

November 2018, 150 pages

Adverse and suboptimal health behaviors and chronic diseases are responsible from

a substantial majority of deaths globally. Studies show that personalized support

programs yield better results in overcoming these undesired behaviors and diseases.

Digital, just-in-time and adaptive interventions are mobile phone-based notifications

that are being used to support people wherever and whenever needed in coping with

the health problem. In this study, a framework is proposed for design and personal-

ization of such interventions. The design part targets intervention designers and al-

lows them to configure interventions that address specific needs of a particular health

problem or population. The personalization part presents a reinforcement learning

based mechanism to optimize intervention delivery strategies with respect to tim-

ing, frequency and type of interventions. Specifically, two reinforcement learning

models, namely intervention-selection and opportune-moment-identification, are em-

ployed simultaneously. The models are fed with data obtained pertaining to people’s

long-term and momentary contexts. While the intervention-selection model adapts

the intervention delivery with respect to type and frequency, the opportune-moment-
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identification model tries to find the most opportune moment to send interventions.

Two improvements over the standard reinforcement algorithms are proposed to boost

the learning performance. First, a customized version of eligibility traces is employed

to reward past actions throughout the agent’s trajectory in a selective manner. Second,

the transfer learning method is utilized to reuse knowledge across multiple learning

environments. The design and personalization modules of the proposed approach are

validated individually. For the design part, it is shown that the proposed approach ad-

dresses the requirements of the intervention design specifications extracted from the

extant literature. It is also shown that the design mechanism was utilized to design in-

terventions for a real-life care program. The personalization part is validated mainly

via a simulated case-study. Four personas are simulated with differentiating param-

eters in their daily activities, preferences on specific intervention types and attitude

towards the targeted behavior. The results show that the improved algorithms yield

better results compared to the standard versions and capture the simulation variations

associated to the personas. A small-scale real-life case study has also been conducted

utilizing a preliminary version of the proposed personalization method. Better results

were obtained by the proposed approach compared to the base algorithm and a fixed

intervention delivery schedule.

Keywords: just-in-time adaptive interventions, intervention scheduling optimization,

reinforcement learning, m-health
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ÖZ

DİJİTAL, ANLIK, UYARLANABİLİR MÜDAHALELERİN DİZAYN VE
KİŞİSİLLEŞTİRİLMESİNE YÖNELİK BİR SİSTEM

Gönül, Suat
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Coşar

Kasım 2018 , 150 sayfa

Dünya çapındaki ölümlerin büyük çoğunluğunun sebebi sağlığa uygun olmayan dav-

ranışlar ve kronik hastalıklardır. Çalışmalar, kişiye özgü destek programlarıyla bu

istenmeyen davranış ve hastalıkların üstesinden gelinmesinde daha iyi sonuçlar alın-

dığını göstermektedir. Dijital, anlık ve uyarlanabilen müdahaleler herhangi bir ko-

num ve zamanda, sağlık problemleriyle başetmek üzere uygulanan cep telefonu bil-

dirimleridir. Bu çalışmada, sağlıkla ilgili müdahalelerin dizaynı ve kişiselleştirilme-

sine yönelik bir sistem önerilmektedir. Çalışmanın müdahale dizaynına yönelik kısmı

müdahale tasarımcılarını hedeflemekte ve belirli bir sağlık problemi ya da kitlenin

gereksinimlerine uygun müdahaleler tanımlamalarını sağlamaktadır. Kişiselleştirme

kısmıysa müdahale uygulama stratejilerini müdahalenin zamanlamasına, sıklığına ve

çeşidine göre eniyileyen pekiştirmeli öğrenme tabanlı bir mekanizma sunmaktadır.

Bu mekanizma müdahale seçme ve uygun an tespitine yönelik, birbirleriyle senk-

ronize bir şekilde çalışan, iki farklı pekiştirmeli öğrenme modeli içermektedir. Bu

modeller kişilerin uzun-vadeli ve anlık bağlamlarıyla ilgili toplanan verilerle bes-

lenmektedir. Müdahale seçme modeli müdahale uygulamasını sıklık ve çeside göre
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uyarlarken, uygun an belirleme modeli uygulamanın zamanlamasına etki etmekte-

dir. Öğrenme performansını arttırmak amacıyla, standart algoritmaların üzerine iki

iyileştirme önerilmektedir. İlk olarak, öğrenme vekilinin takip ettiği yol boyunca geç-

miş adımlarını seçici bir şekilde ödüllendirmesine yönelik uyarlanmış uygunluk izleri

önerilmektedir. İkinci iyileştirmedeyse öğrenme transferi yöntemi belirli bir pekiştir-

meli öğrenme ortamında öğrenilen bir bilginin birden ortamda yeniden kullanılma-

sını sağlamaktadır. Dizayn ve kişiselleştirme modülleri ayrı ayrı doğrulanmaktadır.

Dizayn kabiliyetleri, önerilen yaklaşımın literatürden elde edilen müdahale gereksi-

nimlerinin karşıladığını göstererek doğrulanmaktadır. Bunun yanı sıra dizayn meka-

nizması bir gerçek hayat tedavi programı için gerekli müdahaleleri tanımlamak için

kullanılmıştır. Önerilen kişiselleştirme yöntemi ise esasen temsili deney yöntemiyle

doğrulanmıştır. Günlük aktivitelerinde, belirli müdahale yöntemleriyle ilgili tercih-

lerinde ve hedeflenen davranış değişikliğine karşı tavırlarında farklılaşan dört farklı

karakterin simülasyonu yapılmıştır. Sonuçlar iyileştirilmiş algoritmaların standart al-

goritmalara göre daha iyi sonuç verdiğini ve simülasyonu yapılan karakterlere atfe-

dilen farklılıklara uygun şekilde tepki verdiğini göstermiştir. Önerilen kişiselleştirme

yöntemiyle ilgili, ilk versiyonlarından biriyle yapılan küçük çaplı gerçek hayat de-

neyine yönelik sonuçlar da sunulmaktadır. Bu deneyde, önerilen yöntemle standard

algoritmalara ve sabit müdahale uygulama planlarına göre daha iyi sonuçlar elde edil-

miştir.

Anahtar Kelimeler: anlık uyarlanabilir bildirimler, bildirim planlama optimizasyonu,

pekiştirmeli öğrenme, m-sağlık
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CHAPTER 1

INTRODUCTION

1.1 Chronic Disease Care Process Leading to Personalized Self-Management

One in four of 117 million adults in the US, had two or more chronic health diseases,

also known as non-communicable diseases, as of 2012[1]. Such diseases kill almost

40 million people each year corresponding to 70% of deaths globally[2]. Projections

show that the prevalence will further increase in the upcoming decades[3]. In propor-

tion with this prevalence, chronic diseases have become a great burden on healthcare

providers, especially on the primary care professionals considering also the shortage

of specialists[4]. The burden is especially high on primary care professionals, who

provide the majority of the services for chronic disease care[5]. According to Iyengar

et al., healthcare providers have a clinic visit time of 19.3 minutes in average, leaving

little time for them to analyze reams of data and review patients’ various needs[6].

Fortunately, patients can strive for their health by themselves. In this respect, behav-

ioral lifestyle patterns are important predictors of health outcomes such that patients

can reduce the risk of chronic diseases by adopting healthier lifestyles. The evidence

is overwhelming that physical activity and diet can reduce the risk of developing nu-

merous chronic diseases and in many cases even reverse the existing disease[7]. Thus,

during the clinic visits, despite the limited available time, patients and doctors collab-

oratively plan the activities that would help gaining healthier lifestyle habits on the

long term[8].

Despite the action plans draw a general frame for tasks to perform, daily care is in

people’s own hands. Complexity of management of chronic diseases require multiple

daily self-care decisions indicating that being adherent to a predetermined action plan
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is usually not sufficient throughout people’s lives[9]. Funnel et al. further state that

although the action plan is well aligned with persons’ healthcare, it must also be tai-

lored to fit their priorities, resources and lifestyle while taking multiple physiological

and personal psychosocial factors into account.

1.2 Personalized Self-Management Support

Adaptive interventions have emerged in order to deal with persons’ varying responses

to treatments in terms of adherence as well as their evolving behavioral adoption and

health outcome during the waxing and waning course of the treatment[10]. The prob-

lem with fixed interventions is that the varying intervention needs of individuals may

not be met optimally by using a single, uniform composition, dosage, frequency or

content of the intervention. Conversely, adaptive interventions alter these parameters

across individuals, and/or within individuals across time. All these parameters vary

in accordance with the intervention needs of individuals.

Employing adaptive interventions respecting to individual needs and preferences are

proven to yield better outcomes in terms of quality of life and psychosocial and emo-

tional outcomes. Existing health behavior change theories, e.g. Self Determination

Theory[11], provide the scientific knowledge and background for the design of adap-

tive interventions. Such theories, first, define a set of conceptual input elements as

the determinants of the behavior; then, examine interrelationships between these el-

ements; and finally, predict the outputs as behaviors or health outcomes. As these

models run on personal data, they output individualized outcomes. However, recent

systematic review studies point out to the lack of theoretical foundation of contem-

porary self-management apps[12, 13]. This indicates that apps should base their self-

management support strategy on literally proven theories. The lack of theoretical

foundation can be explained to some extent with the gap between the conceptual ba-

sis and practical application of behavior change theories. Although they describe the

behavior change conceptually, they do not specify practical methods about how to

realize the change[14]. Approaches like Intervention Mapping[15] try to close this

gap by introducing behavior change technique (BCT) taxonomies as a collection of

practical applications of theory-based concepts.
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Thanks to the technological advances it is now possible to deliver adaptive interven-

tions wherever and whenever they are needed via mobile devices, making people

accessible all the time. Interventions delivered in such a spontaneous way are called

just-in-time adaptive interventions (JITAI)[16]. This concept is mainly used for inter-

ventions as a special case of adaptive interventions addressing unique and changing

needs of people[17]. Mobile phone / sensing technologies enabled collection of per-

sonal data continuously. So, the JITAI concept holds enormous potential for adapting

mobile phone delivered interventions to the dynamics of a person’s emotional, social,

physical and contextual state, so as to prevent negative health outcomes and promote

the adoption and maintenance of healthy behaviors. The more frequent the data is

sensed, the better capturing of dynamically changing needs, which enables provision

of the type/amount of support in the right conditions[16].

1.3 A Framework for Design and Personalization of JITAIs

The main aim in this study is to deliver a reusable and expandable JITAI design and

personalization framework that can be instantiated by different self-management sup-

port systems targeting different diseases/problems with different sets of intervention,

triggering conditions and data sources.

Considering the design module, BCT and JITAI concepts are harmonized to provide

theoretically valid self-management support to people via personalized interventions.

The proposed framework provides an environment to design interventions. For the

sake of clarity, it worths differentiating the user interface design of JITAIs from the

design activities towards composing a JITAI by configuring their conceptual compo-

nents including decision points, intervention options, tailoring variables and decision

rules[18]. In this study, the focus is on the latter aspect. Offering constructs matching

with the JITAI components, the proposed design mechanism facilitates JITAI design

activities, as described in [4]. The mechanism is highly customizable and expandable

with add-on constructs, enabling designers to customize the core capabilities to de-

velop JITAIs tailored to a particular health problem/population. The design constructs

are bound to accompanying software modules, which can also be customized and ex-

panded, for processing of heterogeneous personal data as desired. Complementarily,
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a well-defined rule definition language is proposed to enable intervention designers

defining decision rules that utilize these data integration and processing constructs.

The personalization module targets care receivers by monitoring their self-management

and health-related behaviors and delivering mobile phone notifications in response to

their continuously changing context during daily activities. Utilizing decision rules

makes the proposed approach a rule-based system assessing the intervention trig-

gering conditions by continuously monitoring data streams for a person including

the health and behavioral observations as well as contextual information. However,

purely rule-based, static systems cannot deduce opportune moments to send an in-

tervention when the interruptibility of the person is high[19]. In addition to the

momentary ones, some parameters might evolve throughout a long period of time.

For example, one’s preferences and perceptions about the interventions might change

over time. He/she might get used to the interventions and form a kind of habituation

towards similar interventions[20]; or might start feeling burdened as the number of

interventions is too high and require too much cognitive resources[21]. Thus, such

systems are limited in terms of personalization of the intervention delivery strategies

as they do not adapt themselves in a systematic way to maintain engagement of people

with interventions and improving adherence to a care program. This is a critical limi-

tation considering that prolonged adherence is inversely proportional with the burden

created by the interventions[22].

Beyond a rule-based system, a novel learning method that is closely linked with the

aforementioned JITAI components is proposed. This learning method tailors inter-

vention delivery strategies dynamically in terms of intervention type, timing and fre-

quency using machine learning techniques, in compliance with people’s action plans,

changing physical / psychological contexts as well as their changing preferences over

time. Thanks to their feedback loop-based learning mechanisms, dynamic systems

are superior than the static ones in adapting intervention delivery according to per-

sonal values, conditions or patterns; thus, reducing the burden of interventions. Dy-

namic systems, as the proposed one, can tackle with cases where the static ones fail,

as exemplified above. Therefore, for example, the proposed method might learn not

to deliver a particular intervention for a particular person even if the triggering con-

ditions are met considering that the user’s past reactions were negative to it; or the
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learning algorithm might prefer postponing delivery of an intervention having the

triggering conditions met but the person is driving.

Concerning the support enabled by the proposed approach, it should be noted that

interventions delivered by the system do not aim to replace the care and support of

healthcare professionals but aim to facilitate self-management following shared deci-

sion making, where care receivers and care providers agree on behavioral treatment

goals and daily actions to pursue and follow-up until the next clinical visit of care

receiver[23]. The term action plan is used to refer to these behavioral goals and daily

actions in the rest of the manuscript.

1.4 Reinforcement Learning for Personalization of JITAIs

A reinforcement learning (RL)[24] based algorithm is proposed for personalization

of JITAIs. Using RL for JITAI optimization is convenient for a number of reasons:

Firstly, an RL agent learns through experience. Therefore, it does not require an

initial data set, as other forms of learning methods to train the internal policy to select

appropriate actions. However, it is still possible to bootstrap the learning process

to make sensible choices of interventions by configuring the policy based on expert

knowledge[25]. Furthermore, the RL framework is convenient for modelling people’s

varying context and designing a learning algorithm based on continuously changing

context values.

Having an iterative nature, an RL agent performs an action in the environment it is in,

observes state changes of the environment, processes the emitted rewards, update its

learning model based on the reward and makes a transition to a next state. Similarly,

considering the application of RL in the self-management support domain, the learn-

ing algorithm reacts to the changing context of people and updates its internal policy,

aiming to discover a (near-) optimal personalized policy.

In principle, traditional RL already provides mechanisms to learn solutions for any

task without the need of human supervision. However, in case RL agents begin learn-

ing tabula rasa, i.e. no prior knowledge from a domain expert is available, the number

of samples needed to learn a nearly optimal solution is often prohibitive in real-world
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problems[26, 27]. So, learning a near-optimal policy is often slow or infeasible, espe-

cially if the experiment is being conducted includes real-world elements. In addition

to long learning times, learning performance in a traditional RL system is usually

asymptotical to a logarithmic curve, meaning that during the beginning phase of the

learning process the actions taken will mostly be random when the state space is

rarely explored[28]. Addressing these two challenges, the objective is to deliver an

algorithm discovering a personalized policy quickly, which works relatively good

even at the beginning of the learning process. To achieve this, two improvements on

the standard RL algorithm i.e. Q-Learning[29] are introduced. The first improvement

is related to better rewarding of past actions considering the effectiveness of the past

actions. In this respect, the standard eligibility tracing mechanism[30] is modified

by not rewarding the past actions that are perceived useless; in other words, actions

that do not contribute performing the targeted behavior. Second, transfer learning

method[27, 31] is utilized to reuse knowledge generated in a specific environment i.e.

a specific person, across other environments. The aim is to discover common patterns

that are valid for most of the people. For example, people are unlikely to engage with

mobile phone notifications when they are physically active. So, such knowledge can

be learnt once for a person and can be reused for others.

As will be described in detail in Sec. 5, selecting the intervention to be delivered

and identifying the opportune moment to deliver the intervention are approached sep-

arately. In this respect, two dedicated RL models are employed to learn personal-

ized patterns over these two concepts, namely intervention-selection and opportune-

moment-identification models. Running in a synchronized manner, these models cap-

ture distinct components of JITAIs such that while the intervention-selection model

optimizes the intervention delivery in terms of adaptivity (i.e. time and frequency)

and the opportune-moment-identification model focuses on the just-in-timeness (i.e.

timing) aspects.

1.5 Outline

In the rest of the manuscript, related works are presented including studies provid-

ing personalized support for self-management / behavior change and computational
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approaches aiming at personalization of mobile phone notifications in Sec. 2. Re-

lated works also include studies proposing alternative ways of rewarding past actions

and knowledge transfer in RL environments. Background and preliminaries follow

the related work. Varying concepts and techniques that are of relevance to the pro-

posed approach are presented. The first two concepts, i.e. action plan and JITAIs,

are from the self-management domain. Following them, an overview is given about

RL along with the eligibility traces and transfer learning methods, which are the two

concepts related to the core learning mechanism. As the last item in Sec. 3, the

habit formation model that have been adopted to simulate habit-related parameters

is presented. Then, in Sec. 4, the JITAI design framework is presented. Spefically,

the conceptual foundations of self-management, template-based JITAI design mech-

anism and the rule definition language are elaborated consequtively. Sec. 5 presents

the overall learning algorithm as well as the Markov Decision Processes (MDP) for

intervention-selection and opportune-moment-identification models. Presentation of

Communication Engine, follows the algorithm description. Communication Engine

is the software implementing the overall conceptual approach described throughout

the manuscript. Then comes the validation, which is composed of two main parts.

First, the existing resources in the literature are identified that include specifications

pertinent to JITAI design. Then, the way the expandable JITAI design mechanism ad-

dresses the requirements of the existing JITAI design specifications is presented. In

the second part of the validation, the simulated case study is elaborated by describing

simulation parameters, their differentiations among personas and hypotheses driven

by these differentiations. Following the simulation design, results obtained from the

simulated experiments are presented and checked against the hypotheses. The disser-

tation is concluded after discussing the limitations and potential improvements on the

proposed approach.
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CHAPTER 2

RELATED WORK

As this dissertation is intended to act as a bridge between the computer science and

health behavior change fields, related works are taken into account from both per-

spectives. In Sec. 2.1, studies providing personalized support (in form of mobile

phone-based interventions) to people suffering from chronic diseases or health prob-

lems are presented. Considering these studies, the specific interest is on their system

design and computational methods facilitating the personalization of the support. By

broadening the scope and getting closer to the computer science field, in Sec. 2.2,

relatively more generic approaches, dealing with personalization of mobile phone

notifications, are presented. Afterwards, studies related to the two main contribu-

tions of this study (customized eligibility traces and transfer learning) are presented.

Specifically, studies proposing alternative methods of rewarding past actions and ap-

plying transfer learning in the RL domain are presented. Finally, in Sec. 2.5, a brief

introduction is done about the related works considering the system design.

2.1 Personalized Support for Self-Management / Behavior Change

There are a myriad of recent studies providing personalized support to patients suf-

fering from chronic diseases in their self-management activities [32, 33] or to people

with health-related problems like obesity[34] or people with unhealthy behaviors like

alcohol / smoking addiction[35], sedentary behavior[36] in breaking unhealthy be-

haviors / habits. Systematic reviews of such studies usually focus on a specific disease

/ problem and analyze the self-management approaches in multiple dimensions such

as clinical outcomes, supported intervention types, communication mode with users
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and so on[12, 37, 38]. Specific interest is on studies claiming to be providing individ-

ualized and automated feedback to users since this kind of communication mode has

a similar rationale with JITAIs. So, studies are not focused if they include a manual

decision-making step such as a care provider evaluates the recently gathered personal

data and initializes a personalized intervention after the evaluation[39, 40].

In general, the main methodology followed by studies providing automated person-

alized interventions is to have a set of rules to be executed upon an update on the

relevant inbound data sources. Some studies use clinical guidelines as a source of

such rules. Although the target audience of clinical guidelines is care practition-

ers, they can still be used to extract self-management rules targeting patients. For

example, American Diabetes Association (ADA) recommends lifestyle recommen-

dations including 150 minutes of physical activity per week similar in intensity to

brisk walking; or reducing sedentary time by breaking after at most 90 minutes spent

sitting[41]. Such conditions can be used as a goal, against which users’ performance

are evaluated and in turn a dynamic intervention is provided based on the evalua-

tion. DialBetics[42] is such a system using Japan Diabetic guidelines[43] to give

advice on lifestyle modifications, matched to the patient’s input about food and ex-

ercise. DialBetics gather measurements twice a day. The intervention is determined

and delivered right after the data gathering. Similarly, the system proposed by Liu et

al. collect weekly questionnaire-based data. After assessment of the data according

to Global Initiative for Asthma guidelines[44], patients receive a self-management

advice immediately[45].

A similar strategy is also followed by studies that do not claim any compliance with

evidence-based guidelines. The app developed by Ben-Zeev et al. prompted a ques-

tionnaire 3 times in a day within pre-determined time periods for assessment of men-

tal status of schizophrenia patients[32]. In response to the participant entries, the

system delivered a tailored intervention. Gustafson et al. introduce a set of self-

management modules, one of which to track global positioning system (GPS) data

and warn people suffering from alcohol addiction when they come close to a pre-

viously identified high-risk location[35]. Fioravanti et al. keep an up-to-date patient

state composed of parameters like self-check inputs, drug intake, physical activity and

provides automatic messaging to diabetes patients by analyzing the recent data[33].
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Analysis is done via a set of pre-defined rules targeting a set of diabetic patient-related

profiles such as lack of motivation for people with negative perception of the disease;

comorbidities for diabetics having one or more additional disorders.

From the computer science point of view, the studies referred above can be seen

as rule-based systems. Such systems evaluate the criteria to deliver an intervention

always using the same rule set established addressing a specific problem once at the

beginning of the care program. Most of the studies reviewed fall into this category and

they neither introduce a mechanism adapting itself automatically on parameters that

might change over time nor fine-tune the timing / frequency of interventions during

the day. Related to the static nature of existing studies, the lack of computational

models capturing complex relationships between elements of personalized behavior

change in different time scales is already pointed out in [46].

2.2 Computational Approaches Aiming at Personalization of Mobile Phone

Notifications

Although they are much less compared to rule-based approaches, there are also stud-

ies researching on computational approaches dealing with adaptivity and just-in-

timeness, which are the two optimization dimensions targeted also in this work. Thus,

both aspects are individually considered.

The adaptivity aspect

Computational approaches dealing with the adaptivity of interventions by recogniz-

ing longer term changes on individuals range from control systems engineering based

dynamic modelling[47] to agent-based modeling[48] to machine learning based ap-

proaches including Bayesian network-based classification[49]. A group of studies

introduce tailor-made models targeted at specific diseases / problems. For example,

Chih et al. introduce an agent-based model for uncovering the predictors of food

choice and obesity in the presence of cue-reward conditioning[49]. Hammond et al.

use Bayesian modeling for predicting lapse status based on recovery progress and

lapse history parameters[48]. Mohan et al. introduce a model-based approach main-

taining a parameterized model of an individual’s aerobic capability that predicts per-
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formance to be able to guide users with adaptive goal setting interventions[50]. Sim-

ilarly, Goldstein et al. use supervised machine learning techniques to predict dietary

lapses based on contextual tailoring variables and deliver personalized interventions

according to the strong predictors of the lapse[51].

Some dynamic system models, on the other hand, lay out a generic architecture cap-

turing the models of the health behavior theories composed of interrelated variables

with a mathematical representation. The mathematical representation facilitates mon-

itoring the changes on the dynamic model variables over time and enables adapting

JITAIs based on the changes[52]. While Navarro-Barrientos et al. propose a dynam-

ical system model for Theory of Planned Behavior[53] to be used to generate weight

loss related interventions[47], Martin et al. propose a model for Social Cognitive

Theory[54] to perform simulations of the model using physical activity of individuals

over time as a referential behavior where habituation is treated as a feature determin-

ing the behavioral response[55]. Spruijt-Metz et al. introduce a timescale separate

model building on Social Cognitive Theory by establishing causal interrelationships

among the variables ranging from minutely to yearly timescales[46]. This model,

though, is a conceptual representation without any mathematical representation.

The just-in-timeness aspect

Mobile / sensing technologies and machine learning techniques are proposed to be

used collaboratively to optimize intervention delivery concerning the just-in-timeness

aspect of interventions. Towards this aim, studies try to identify interruptible mo-

ments of users where interruptibility refers to likelihood of attracting one’s attention.

Pejovic et al. utilize and compare a set of classifiers to predict opportune moments

to deliver interventions based on variables including time, step count, location and

emotions[19]. Boyer et al. use Bayesian networks to predict drug cravings based on

physiological parameters including skin conductance, skin temperature, motion and

pulse[56]. Morrison et al. use location, movement and time data to build a classi-

fier for predicting users’ reactions to stress management interventions[57]. Interrupt-

ibility is also studied outside the healthcare domain. Pielot et al. build a XGBoost

classifier[58] using features that are formed with variables from five main groups of

person data[59]. The data include communication activity, person context, demo-

graphics, state of the phone and physical activity status; and the classifier predicts
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whether participants will engage with suggested content that is offered by the mo-

bile app at the time of posting a non-specific notification. Using similar approaches,

numerous other studies also provide examples of classifier-based opportune moment

identification[60, 61, 62, 63].

Concerning RL, which is the specific machine learning approach used for the inter-

vention delivery optimization, studies find utilization of RL for this problem appro-

priate. For example, Kelly et al. argue that reinforcement learning may enable an

intelligent real-time therapy optimizing the delivery of interventions by learning over

the daily psychological context to be retrieved dynamically during the day[64]. Simi-

larly, Pejovic et al. see MDPs, which are the backbone of RL-based learning models,

as a natural way to model the problem of measuring efficiency of interventions in

terms of the observed behavioral outcomes[25].In [65] and [66], authors utilize RL

for optimization of intervention delivery in real-time by modeling it as a contextual

bandit problem[67]. These studies are similar to ours in terms of representation of

the real-time intervention delivery optimization problem with RL constructs and val-

idation of the proposed optimization algorithms in a simulated setting. Similar to the

presented approach, the authors model the environment state with elements represent-

ing various momentary context parameters such as location, calendar data or physical

activity status. The authors present a simplified and simulated scenario about reduc-

ing smoking for heavy smokers as an instantiation of their conceptual model. The

study considers a single generic intervention type and simulates decision points of

JITAIs and people’s smoking urge. This approach differs from ours with respect to

the learning algorithm. While the current study utilizes Q-Learning[68] supported

by transfer learning for cross-individual knowledge transfer[26], the referred study

utilizes an actor-critic algorithm.

2.3 Rewarding Past Actions

Eligibility traces are one of the basic mechanisms for rewarding the past actions[30].

Standard eligibility tracing has two slightly different variations, namely accumulating

traces and replacing traces. In accumulating traces, eligibility value of a revisited

state is increased by 1, which may end up with eligibility values larger than 1. In
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replacing traces case, though, eligibility values of revisited states are reset to 1. This

basically means consideration of frequency and recency heuristics in accumulating

and replacing traces respectively. In the current study, accumulating traces are utilized

as a fast learning rate is desired for frequently visited states.

Some studies are similar to ours in terms of selective, postponed updates of the past

actions considering that some of the actions taken could be suboptimal. For example,

Bloch et al. propose the Temporal Second Difference Traces method so that trace

updates can be performed after apparently suboptimal actions have been taken[69].

Rather than keeping track of the eligibilities in the usual sense, the method keeps

track of the updates being performed. Using this information, it is able to optimize the

updates as more information becomes available. Other interesting rewarding mecha-

nisms include postponing the update of a visited state by recording the agents’ last-

visit experiences until the revisit of the state to improve the quality of the update [70].

Kormushev et al. propose a concept, called Time Hopping, to prevent failures (i.e.

taking wrong actions) in rarely explored states[28]. The approach, though, is only

valid for simulation-based studies as very little can be done in setting the environ-

ment state as desired in real-life. Nevertheless, such an approach could be used to

increase the learning rates of rather rarely explored states.

2.4 Transfer Learning Strategies in RL

The survey study conducted by Taylor et al. provides a comprehensive summary

about ways of applying transfer learning in the RL domain [71]. The survey classifies

related studies into a set of groups based on the similarities and differences between

the environments among which the knowledge could be transferred. Referring to this

survey, our study is classified into the group where state and action states of the en-

vironments are the same. A subset of studies included in this group transfer whole

policies among tasks. The methods utilized in this subset either learn from easy mis-

sions or break down the task to easier missions. However, the JITAI personalization

problem does not have a modular structure. So, approaches working on hierarchical

or modular tasks would not work on this problem. Lazaric follows a similar approach

with us where state transitions are saved as tuples of source state, taken action, target

14



state and emitted reward. His method checks the similarity of information collected

in the current task to transfer the knowledge or not[72]. As elaborated in the next

section, our data items, i.e. the stored data at each transition, include only state and

actions, where each tuple indicates the most performed action to be taken in the as-

sociated state. In the proposed approach, such mappings are maintained in a single

common policy. Nevertheless, partial policy transfers or criteria-based knowledge

transfer as in [73] might be appropriate for our case as well considering that source

tasks might have certain regions in their policies that have relatively more similarities

with the target tasks’ policies.

2.5 System Design

The closest study to ours in terms of laying out an expandable architecture for design

and triggering of interventions was produced by van de Ven, Pepijn et al. [74]. Their

main aim is to provide context-aware or time-based triggers for delivery of ecological

momentary assessments (EMA) on mobile devices. EMAs are a means of eliciting in-

formation about a person’s physical and mental state in real-time in subjects’ natural

environment as opposed to retrospective assessment[75]. The software they intro-

duce, called ULTEMAT, provides capabilities for definition of EMAs along with the

triggering rules. The rules can be bound to data sources available to smart phones.

ULTEMAT, however, does not have a component for automated optimization of its

EMA delivery mechanism. Although it is quite a recent study, the authors claim that

their platform is the only one providing a flexible and versatile solution for definition

and triggering of EMAs on mobile phones based on user behavior and context, which

is consistent with our findings from the literature survey conducted throughout this

work.

Finally, in order not to divert the focus of the study, computational scalability related

aspects of the overall system as well as individual components are just mentioned

briefly in Sec. 8. Nevertheless, regarding the scalability aspect, to our knowledge,

no other study proposes software modules performing in a distributed manner to

perform computation for self-management support e.g. parallel processing of trig-

gering rules for interventions. There are numerous studies, though, dealing with

15



management of data produced wearable devices, body sensors or other means on

cloud-based, scalable software architectures[76, 77, 78]. More comprehensive sys-

tems as a pervasive healthcare infrastructure are also available, still with scalability

capabilities[79, 80].
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CHAPTER 3

BACKGROUND AND PRELIMINARIES

3.1 Self-Management of Health Problems

3.1.1 Action Plans

An action plan contains a list of planned activities to be performed by the person for

achieving the targeted behavior change and associated clinical outcomes [81]. An

action plan partitions a day, as depicted in Fig. 3.1, into time frames. Each activity

is associated with two sequential time frames during the day. The first time frame is

the period through which the activity is supposed to be performed. The second time

frame follows the first one.

Such a partioning creates a set of points in time where a decision is made for deliver-

ing an intervention. To generate the action plan-driven decision points, first the set of

activities (AP), is defined as follows:

AP = {a | a is any distinct activity included in the action plan}

Then, the set of points generated for the action plan (DPAP) can be represented as,

with the abuse of notation,

DPAP = {dp2i−1, dp2i | ∀iai ∈ AP, i > 0}

The set definition above implies that there would be a corresponding decision point

for each timeframe associated with a planned activity.

This structure is utilized for an initial categorization of intervention types in select-
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Figure 3.1: Partitioning of the daily time frame according to the action plans

ing an appropriate one for personalized self-management support. In the scope of

this study, two main categories of interventions are considered namely reminders and

motivations. While the reminder interventions are of use in the first timeframe, the

motivation interventions are applied in the second one. Various psychological con-

vincing techniques might be utilized while composing the intervention content. For

example, a motivational intervention can benefit from social comparison and another

one can use comparison of past performances of the same individual.

3.1.2 JITAI Components

Having JITAIs in the center of the proposed approach, the conceptual foundations

of JITAIs are presented in this section. JITAIs, as studied in the literature, include

four components[18] that are of interest for this study: decision points, intervention

options, tailoring variables and decision rules

• Decision points are moments in time when a decision about the self-management

support must be made. They could be periodic (e.g. daily / weekly), event-

based (e.g. reaching a daily goal, or after a planned session of exercise),

condition-based (e.g. if the blood glucose level is higher than a pre-defined

threshold); or specified by fixed time points. The complete set of decision

points (DP ) is composed of DPAP and DPRW , i.e. DP = DPAP

⋃
DPRW .

As just described DPAP is driven by action plans set towards coping with
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the health problem. DPRW contains the decision points that are driven by

the changes in variables pertaining to people’s momentary context. As will

be described in the rest of the manuscript, DPAP and DPRW are utilized by

intervention-selection and opportune-moment-identification models.

• Intervention options indicate possible intervention characteristics such as content,

type (e.g. motivation, educational, warning), amount (e.g. dose, intensity),

mode (e.g. SMS, push notification) or timing of support that can be chosen at

any decision point. Intervention options have a special importance as they are

the very components of JITAIs that would be optimized based on the needs of

individuals by the proposed approach.

• Tailoring variables are the parameters that influence personalization of interven-

tion options respecting individual needs. For example, location, mood or per-

ceived habit strenght of the person can be tailoring variables to determine the

best intervention options. Tailoring variables could be self-reported or passively

collected data about persons’ psychosocial, physiological and environmental

contexts. They can also be inferred or calculated values as a result of certain

data processing and analytics operations. In general, the set of all tailoring

variables (TV ) is defined as follows:

TV = {tv | tv is any variable utilized in decision−making

for intervention delivery}

• Decision rules are the constructs that link the former three components. Decision

rules are formed with expressions conditioning on tailoring variables. They

are evaluated at decision points. Upon satisfaction, each condition necessi-

tates choosing a particular intervention option. An example decision rule could

be: Send a relaxation intervention to the user if the measured stress levels are

higher than a threshold, where change in stress level is the decision point, re-

laxation intervention is the intervention option and measured stress level is the

tailoring variable.
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3.2 Reinforcement Learning

In RL systems, learning agents observe the sequential state changes of the environ-

ment that they are in and execute actions according to the perceived state. These

systems are characterized as Markovian as the knowledge accumulated during learn-

ing process retained in the recently perceived state of the environment. Design and

execution perspectives are considered in order to lay out the basics for RL systems.

From the design point of view, RL systems are implemented as Markov Decision

Processes (MDP). An MDP M is a tuple of four parameters such that: M = <S, A,

P, R>, where S is the finite set of states, A is the finite set of actions, P is the state

transition probability matrix including the probabilities in the form of P(s, a, s’) =

P[st+1 = s’ | st = s, at = a], where s,s’ ∈ S, a ∈ A and t denotes the step index on

the MDP. Lastly, R: R(s,a) → IR is the reward function mapping a state-action pair

to a number. The reward indicates the desirability of the action a taken in state s

concerning the maximization of the aggregated rewards in the long-run [24].

From the execution point of view, an RL system maintains a value function, Q: Q(s,a)

→ IR, keeping the expected, long-term reward for the state-action pairs. At each

learning step, the agent takes an action following a policy, Π: Π(S)→ A, which is a

mapping from the state set to the action set. In this study, a greedy policy is used such

that ΠG: Π(s) = argmaxa Q(s,a), where a ∈ A, s ∈ S, meaning that at each state, the

action leading to maximum long-term reward is selected. As the base RL algorithm

connecting the described pieces, Q-Learning [29] is used. At each step of the learning

process, Q-Learning updates the q-value of the current state-action pair. Upon taking

the action at and observing state st+1 and reward rt+1 at step t, Q-Learning updates q-

value of the current state-action pair, Q(st , at), by amount of the temporal difference

(TD) error, represented with δt. TD-error basically represents the difference between

the estimated reward at any given state and the actual reward received. Eq. 3.1 and

Eq. 3.2 show the Q-Learning update procedure.

δt ← rt+1 + γ maxa ∈ A Q(st+1, a)−Q(st, at) (3.1)

Q(st, at)← Q(st, at) + αδt (3.2)

In these equations, α is the learning rate and γ is the discount factor which weights

20



immediate rewards relative to future rewards.

Our main motivation for using Q-Learning is that as an offline algorithm, it allows

integration of knowledge from other policies. This feature is aligned with our inten-

tion towards employing transfer learning between environments to reuse knowledge

across environments. However, theoretically, the base Q-Learning algorithm requires

infinitely many steps for convergence as proven in [68]. In the subsequent two sec-

tions, the preliminaries of the eligibility traces and transfer learning approaches are

presented. These two methods are utilized for achieving a near-optimal policy faster

than the base Q-Learning algorithm.

3.2.1 Eligibility Traces

The base Q-Learning algorithm is categorized as one-step backup algorithm as it

updates the q-values of the current state-action pair by taking only the q-values of

the next step into account. Algorithms using eligibility traces propagate information

faster and, hence, they usually converge much faster to the optimal policies than their

one-step counterparts [73, 82]. Instead of one-step backup, eligibility traces enable n-

step backups by keeping the track of the trajectory of the states that the agent visited,

and actions taken in the visited states. Each trace has also an eligibility value that is

a weight indicating the temporal proximity of the trace to the current state. Once a

reward is emitted by the environment, in addition to the current state-action pair, all

the previous pairs referred by the traces are credited with positive reward or blamed

with negative reward in proportion to their eligibilities [30]. At each step, all the q-

values and eligibilities associated with the traces are updated according to Eq. 3.3

and Eq. 3.4, respectively.

Q(st, at)← Q(st, at) + δtE(st, at) (3.3)

E(st, at)← λγE(st, at) (3.4)

In these equations, δt is the TD-error, λ is the trace decay parameter and γ is the

discount factor.
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3.3 Transfer Learning

Transfer learning is a method that allows a learning agent to leverage the past knowl-

edge from one or more sources environments in the agent’s own environment [27].

Surveys analyzing studies that utilize transfer learning in RL systems introduce a set

of analysis and design activities that can be followed to apply the transfer learning

properly considering the problem of interest. Firstly, the similarities and differences

between the environments are analyzed with respect to state variables, action sets,

goal states and transition probabilities. The next step is to choose a method for de-

termining the source environments of which knowledge to be transferred. Simply, all

environments or a specific one can be chosen; or the selection can be done accord-

ing to a custom mechanism. Lastly, the granularity and structure of the knowledge

to be transferred are determined. The transferred knowledge might be, for example,

experience instances, policies, partial policies or q-values.

The literature also introduces a set of common evaluation metrics, which are also

utilized in this study, for evaluating the outcomes of the knowledge transfer. These

metrics include jump-start, asymptotic performance, total reward, transfer ratio and

time to threshold [71] and they are also used while analyzing the results of the simu-

lated case study.

• Jump-start represents the improved performance of a learning agent at the begin-

ning of learning process compared to the base algorithm without using trans-

ferred knowledge.

• Asymptotic performance is the maximum performance that is achieved by the al-

gorithms.

• Total reward is the amount of reward collected throughout the learning process.

• Transfer ratio is the total amount of rewards accumulated thanks to the transferred

knowledge to the total amount of rewards gathered with the base algorithm

without any transferred knowledge.

• Time to threshold indicates the number of steps to reach a pre-defined perfor-

mance level.
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3.4 Social-Psychological Model of Prospective Memory and Habit Develop-

ment

As a person performs a particular behavior more and more, s/he forms habit for that

behavior enabling the person to spend less and less cognitive resources to remember

and perform the behavior [83]. Tobias introduces a social-psychological model of

prospective memory and habit development, which was also tested with empirical

data[84]. The model is related to this study in terms of simulation of the personal real-

life conditions. Specifically, for the sake of having a theoretically valid simulation,

the model is benefited for simulation of habit-related behavior parameters that are in

turn related to performance of the targeted behavior.

The model introduces a set of principles explaining the effect of memory aids on the

behavior performance. In this respect, the model introduces accessibility and acces-

sibility threshold as the main determinant concepts for remembering a behavior. The

accessibility concept is described as an indicator of ease of remembering the behav-

ior. The model states intensity of commitment to the behavior, forgetting, behavior

performance, events and situational cues as the factors influencing the accessibility.

For example, while forgetting decreases the accessibility; performing the behavior

and availability of situational cues increase the accessibility over time. Accessibil-

ity threshold is the value that the accessibility must reach for a memory content to

be remembered. According to the model, the threshold value depends mainly on the

available cognitive resources, behavior performance frequency and habit strength pa-

rameters. Among these parameters, habit strength has its own dynamics such that

while it decays in proportion to its current value if the behavior is not performed, it

increases by performing the behavior.

The model is instantiated with two external parameters namely the behavior fre-

quency and the commitment intensity. While commitment intensity is defined as

the strength of any form of internal pressure felt by a person to perform a behavior,

behavior frequency is defined as the ratio of number of times executing the behavior

to the total number of opportunities to perform a behavior, within a certain period in

the past. According to the model, the time to form a habit for the targeted behavior

is inversely proportional with these parameters. That is, the higher the commitment
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intensity and/behavior frequency, the shorter time needed to form habit or vice versa.

These parameters are configured while simulating habit formation processes of the

hypothetical personas in the scope of the validation activities.

The dynamics described above are represented with an iterative mathematical model.

At each iteration, the values of the accessibility, habit strength, behavior frequency

and salience of situational cues (which is represented numerically) are updated. The

habit formation model is iterated in sync with action plans. Time-series data set

generated by the habit formation model can defined as:

HFTS = {<accessibility, habitstrength, behaviorfrequency,

salience1, ..., saliencen >i | ∀idpi ∈ DPAP}

In the set definition above, n corresponds the number of intervention types that are

designed by the behavior change experts in a specific self-management support pro-

gram.

Upon comparing the current values of accessibility and accessibility threshold, the

model provides its output as an indicator of whether the person would remember

performing the behavior or not. The assumption is that if the behavior is remembered,

it would also be performed by the person; otherwise, it would not.
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CHAPTER 4

JITAI DESIGN

In this chapter, first, the conceptual foundations of self-management are presented

by explaining the relationships between several concepts, such as behavioral goals,

action plans or interventions, pertaining to the self-management of health problems.

The main motivation is to show how JITAIs are related to these self-management

concepts. Following the conceptual foundations of self-management, the template-

based JITAI design mechanism is described by mapping its elements to the JITAI

components that are studied in the literature. Lastly, the Rule Definition Language is

presented by elaborating its built-in constructs. The design module of the proposed

framework has also been published in [85].

4.1 Conceptual Foundations of Self-Management

Self-management conditions change during a care process. New goals might be set,

action plans might be updated or new personal values might be considered. To be

able to have a generic support system for self-management, meeting the requirements

of such changes, either appropriate interventions should already be in place or the

system should be easily expandable to introduce new interventions. So, this implies

that JITAIs would be adapted upon such changes to deliver the appropriate support.

Such a goal requires a structured representation of the relationship between JITAIs

and other self-management concepts that are subject to change. As will be presented

below, this relationship, in turn, shapes the intervention delivery mechanism in enu-

merating the time points for initiating an intervention and filtering a set of eligible

interventions at those points among the complete set of interventions. Fig. 4.1 shows
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Figure 4.1: Inter-relationship of self-management concepts

the relationships of self-management concepts.

The need for self-management primarily arises from a chronic disease (e.g.diabetes)

or a medical condition (e.g. obesity). Self-management activities are performed to

deal with a specific problem like too few blood glucose measurements related to the

main disease or condition. Problems are related to a problem area, which is a health-

related behavior such as, but not limited to, blood glucose monitoring. carbohydrate

intake, physical activity or stress. (Examples are given in relation to the diabetes dis-

eases as the first potential real-life case study will be in this area). Problems might

be related to other problems that must also be addressed e.g. insufficient knowledge

about the usage of medical devices. Personal values describe what is important for

people, serving as a compass guiding them throughout their lives. Barriers are ob-

stacles for many people in meeting realistic goals and activities for self-management

and hence, in attempting to move towards their values [86]. They are usually the main

causes of problems e.g. forgetting or feeling frustrated over lack of success. The con-

cepts so far, i.e. the ones represented with blue boxes, were the concepts that reflect
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the present status of people pertinent to the main disease/health condition.

On the other hand, the concepts represented with green boxes can be seen as counter-

measures against the major health problem. In general, the counter-measure concepts

are initialized in a way that meet the requirements of problem solving strategies and

also respect the personal values and conditions of people. The self-management sup-

port aimed via the delivery of digital interventions does not aim to replace the care and

support of healthcare professionals but aim to facilitate self-management after shared

decision making, where care receivers and care providers agree on behavioral treat-

ment goals and daily actions to pursue and follow-up until the next clinical visit [23].

In the light of this approach, goals specify the targets to be achieved as an indication

of resolving the problems. Goals can have different timescales e.g. weekly, monthly

and they can be related to each other. For example, a short term behavioral goal (e.g.

minimum 150 minutes of daily physical activity) can be set to reach a longer-term

health status goal (e.g. %0.7 decrease on HbA1c in 6 months). Action plans are asso-

ciated on one hand with barriers and problems and on the other hand with goals, where

the goals are resolving indicators of corresponding problems. Action plans contain

a list of planned activities to be performed by the person for achieving the targeted

behavior change and associated outcomes [81]. Specifically, each activity is associ-

ated with a particular problem meaning that performing the activity helps overcoming

that problem. Having their own objectives, activities may require dedicated methods

to support people, which would be realized with appropriate interventions. JITAIs,

in this respect, are intended to be in place whenever needed with the required char-

acteristics. Lastly, BCTs recommend varying psychological methods to overcome a

problem. Therefore, the content of a JITAI is defined in conformance with the recom-

mendations of BCTs. Behavior change taxonomies [87, 88] are sources of behavior

change techniques (BCT) that can be used to conceive theory-driven interventions

4.2 Template-Based JITAI Design

The template-based design mechanism enables configuration of interventions tar-

geting specific health problems in compliance with the JITAI framework presented

in [16]. The mechanism facilitates intervention design for behavior change scien-
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tists and intervention designers by enabling configuration of four JITAI components

namely; decision points, intervention options, tailoring variables and decision rules.

While the template contains elements that match with these JITAI components, it has

also additional elements setting up the relationship between JITAIs and action plans

as laid out in the previous section. Below, the elements supported by the JITAI-design

template are described.

The description element is for convenience of intervention designers, letting them

to state the objective and reasoning of the JITAI along with the conditions suitable

for delivering the intervention in a human-readable manner. The targeted behavior

element links the JITAI to a problem area e.g. blood glucose monitoring and therefore

to the problems associated to the problem area. As presented in detail in Sec. 5,

this relationship is utilized for narrowing down the complete list of interventions as

required by the learning algorithm towards adaptation of intervention types.

The decision point element provides the capability to define event-based and time-

bound points when a decision would be made to initiate an intervention (e.g. deliver

a notification via mobile phone) or not. Time-bound points could be specified as

specific points (e.g. at 8:00AM and 9:00PM) or in a periodic way, optionally during a

certain time-frame (e.g. at each 30 minutes between 10:00AM and 6:00PM). Event-

based points capture user-initiated points, which could be manual (e.g. when the

person asks for care provider support) or bound to a change in a certain tailoring

variable (e.g. when the daily step count exceeds 10000).

Action plans are another source of event-based points in the following manner: Each

planned activity in the action plan is supposed to be performed within a time frame(e.g.

first blood glucose monitoring activity should be performed between 9:00AM and

11:00AM in the morning). In this respect, the proposed framework generates event-

based decision points related to the performance of a specific planned activity. As

might be recalled, an example of decision points generated for two planned activ-

ities in an action plan was depicted Fig. 3.1. Two decision points are created for

each activity such that the first one is set for an upcoming activity before the activity

time frame. This point might fall also into the activity time frame if the behavior

has not been performed yet. The second point is set for after the activity time frame.
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These two types of decision points are called upcoming_actionand post_action. They

restrict the set of whole set of interventions keeping only the eligible interventions

according to their categories, which are defined in the next paragraph.

The category element is closely linked with the decision points. It serves for two

purposes. Besides indicating the type of interventions, it is also an indicator for inter-

ventions’ decision points such that only interventions categorized as reminder would

be considered in the upcoming_action decision points and only motivation interven-

tions are considered in the post_action decision points.

A mapping (M ) is established between each activity a defined in an action plan

(a ∈ AP ) and an eligible set of interventions (EAa) such that M : A → EAa, a ∈
AP,EAa ⊂ AIS . Therefore, at each point, an action is_at is selected such that

is_at ∈ EAa. This mapping is established via the targeted behavior component of

the JITAI design template. Each JITAI instance is also associated with a behavior.

On the other hand, each a decision point is also related to an action plan activity,

which is prescribed for a specific behavior. Therefore, a relation between the activi-

ties decision points and eligible interventions is established via the common behavior

addressed by these two concepts. This relationship is illustrated in Fig. 4.2.

Figure 4.2: Relationship between interventions and decision points

Furthermore, the EAa set is filtered according to the type of the decision points.

That is, if a decision point prior to the activity, only the reminder interventions are

selected. Otherwise only the motivation interventions become potential candidates to

be selected. Let’s define the final eligibile set of actions at a decision point as EAdp,

which will be referred in the next chapter.

The behavior change technique and content enable specification of the intervention
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options. These two elements are related to each other such that the designers are

supposed to determine an appropriate content for the intervention as suggested by the

behavior change technique. In this way, several interventions, implementing different

psychological methods, can be defined for the same purpose. For instance, a moti-

vational intervention can be instantiated by providing information about the activities

to be performed, comparison-by-self considering the person’s past performance or

comparison-with-others [88].

The rule element corresponds to the decision rule component of JITAIs. It incorpo-

rates the tailoring variables as operands in the decision rules. Tailoring variables can

be any raw / processed data or inferred knowledge obtained from people’s contexts

related to their environment, their physical or medical conditions or devices they use.

The rule construct is elaborated in the next section by presenting its role in the Rule

Definition Language.

Last but not least, Nahum-Shani et al. introduce two additional concepts namely, dis-

tal outcome and proximal outcome to represent goals to be achieved by care receivers

with the support of JITAIs[18]. Distal outcomes usually represent the ultimate goals

as primary clinical outcomes like losing weight or having lower levels of HbA1c.

Proximal outcomes intend to represent relatively short-term goals through which the

effectiveness of interventions can be measured. These two concepts are not the direct

properties of a JITAI. Rather, they are captured by the goals defined in action plans.

Each intervention instantiated with the proposed template is associated with actiona

plan goals via the associated goal element. In this way, an intervention can be linked

with one or more goals, therefore, with proximal and distal outcomes. As described in

the Sec. 4.3, a set of built-in constructs are provided for measuring the effectiveness

of interventions considering the targeted outcomes.
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Table 4.1: Elements of JITAI design template

JITAI

Compo-

nent

Template

Element

Element Example

- Description One achieves a daily, weekly or monthly blood glu-

cose monitoring goal consequtively, and the system

motivates her/him to maintain the behavior

- Targeted

Behavior

Blood glucose monitoring

Decision

Points

Category Reminder or motivation

Decision

Points

Decision

Points

event_based points driven by the planned activi-

ties in action plans, enumarated as upcoming_action,

post_action

event_based points conditioned on tailoring variables

e.g. step count exceeds 10000

time_bound points that could be specific time points

or time points specified via period and/frequency base

points

Intervention

Options

Behavior

Change

Technique

(BCT)

Providing rewards contingent on successful behav-

ior(derived from CALO-RE taxonomy [88])

Continued on next page
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Table 4.1 – Continued from previous page

JITAI

Compo-

nent

Template

Element

Example Instantiation

Intervention

Options

Content "en": " Well done you are doing a great job! You

successively achieved your BG monitoring goal for

last ${streak_value} ${streak_temporal}s.",

"es": " Bien hecho, está haciendo un gran trabajo!

Su objetivo de monitorización de la glucosa ha

sido alcanzado exitosamente durante los últimos

${streak_value} ${streak_temporal}. ",

The example has two placeholders that are

streak_value and streak_temporal. While the

former placeholder represents the number of sequen-

tial temporal periods in which the person reached the

blood glucose monitoring goal, the latter specifies the

temporal period e.g. days, weeks or months.

Decision

Rules /

Tailoring

Variables

Rule [goal.monthly=ACHIEVED and

goal.monthly[1]=ACHIEVED,

goal.weekly=ACHIEVED and

goal.weekly[1]=ACHIEVED,

goal.daily=ACHIEVED and

goal.daily[2]=ACHIEVED].

Distal /

Proximal

Outcomes

Associated

Goal

•Monitoring blood glucose levels three times a day

•Minimum of 8000 steps per day

• 7% HbA1c at the end of three months
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4.3 Rule Definition Language

This work is closely related with the activities performed in the POWER2DM(Predictive

Model-Based Decision Support for Diabetes Patient Empowerment) project1. The

objective of POWER2DM is to develop and validate a personalized self-management

support system for diabetes patients. A multidisciplinary discussion between com-

puter scientists and cognitive behavioral psychologists in the project revealed that the

interventions must meet the following requirements to be effective. They should 1)

ensure clinical safety, capturing the specifications from clinical guidelines, 2) be in

line with personal self-management goals and actions as planned in clinical visits, 3)

be in line with health behavior change theories and 4) conform to people’s prefer-

ences in order not to create burden with irrelevant notifications sent in inappropriate

times[89]. Aiming to be sufficiently expandable towards meeting these requirements,

a rule definition language is proposed with the Backus–Naur form notation [90] as de-

picted in Listing 4.1. The rules specified via this language are set as the rule element

of JITAI templates.

Listing 4.1: Grammar of the rule definition language

< t a i l o r i n g _ v a r i a b l e> : : =< t a i l o r i n g _ v a r i a b l e>|

< t a i l o r i n g _ v a r i a b l e> < temporal>

< temporal> : : =< temporal> | < temporal> " [ " < index> " ] "

< r u l e> : : =< t a i l o r i n g _ v a r i a b l e> <opera tor> <number>

< t a i l o r i n g _ v a r i a b l e><opera tor>< t a i l o r i n g _ v a r i a b l e>

< r u l e _ l i s t > : : =< r u l e> | < r u l e> <boolean_op> < r u l e _ l i s t >

< r u l e _ l i s t _ l i s t > : : =< r u l e _ l i s t > | < r u l e _ l i s t > " , "< r u l e _ l i s t _ l i s t >

<dec is ion_ r u l e> : : = " [ " < r u l e _ l i s t _ l i s t > " ] "

Tailoring variables are data integrating and processing constructs, with correspond-

ing software modules. They transform raw data aggregated from external sources to

an actionable form to be actioned by the modules of the decision making and learn-

ing pipeline of JITAI personalization. Tailoring variables are bound to physiological,

psychological or environmental contexts of people. They include, but not limited to,

measurements obtained from medical devices, raw data sensed from wearables and

1 http://www.power2dm.eu/
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phone sensors as well as actionable knowledge inferred from factual data via various

data analysis operations. Goal-related variables let gauging the effectiveness of inter-

ventions. However, each goal type has its own internal logic for such an evaluation,

which requires specialized methods. Tailoring variables can be specialized by suffix-

ing sub-variables. For example, adherence:bgm outputs the adherence for the blood

glucose monitoring behavior given the corresponding software module is in place.

Individual variables form a person state which is updated continuously each time

one of the variables change. The information aggregrated inside the person state is

consumed by the decision rules as described below and by the learning algorithm as

described in Sec. 5.

The temporal construct is used to evaluate a tailoring variable considering a specific

time interval. It can be set to daily, weekly or monthly to get the average value during

the specified interval. It can also be set to best, weekly-worst kind of specifiers to get

peak values for the desired variable. The temporal construct can also be assigned with

an index that allows data retrieval for a specific period in the past. The following rule

expression can be given as an example containing the design constructs introduced

so far: stress.monthly < stress.monthly[-1]. The expression is interpreted as follows:

The average stress value in the current month should be less than the average stress

value during the last month.

The proposed design mechanism is expandable via a bottom-up manner. At the finest

level, any type of data sources, either static or streaming, can be integrated for better

sensing of people’s internal and external contexts on varying time scales. A multi-

dimensional data space can be defined for a person with data types including but not

limited to demographic information, self-reported information via questionnaires or

mobile app, measurements obtained from medical devices, contextual information

sensed from wearables and phone sensors as well as actionable knowledge inferred

from factual data via various data analysis operations. Inferred knowledge may in-

clude, for example, adherence to specific activities prescribed in action plans, relapse

risk of unhealthy behaviors or enumerated representation of the person’s geographic

location. Following the data integration, it is possible to define custom data pro-

cessing modules to be used throughout intervention delivery decision making. Such
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modules could for example calculate the average blood glucose values during the last

month or compare measurements of a person with the rest of the population. The top-

most level at the expandability approach is definition of new interventions by reusing

the data processing modules. This is realized via the rule definition language, spec-

ficially by tailoring variables, which enable referring to the data processing modules

in decision rule configurations of JITAIs. Appendix A contains the complete list of

built-in constructs included in the rule definition language, as specifically used in the

POWER2DM study/real word care program, for which the details are presented later

on.

Having elaborated the JITAI design mechanism and the rule definition language, a

more comprehensive example is presented in Fig. 4.3. The figure shows a set of com-

plementary interventions addressing the blood glucose monitoring problem. From

left to right, decision points are the first branching node for interventions. Each par-

ticular value of the decision point makes only a subset of interventions available for

delivery. Then, rules including conditions on tailoring variables further restrict the

eligibile intervention set further based on the specified conditions. For instance, in-

tervention 7 and 8 are considered for delivery only if the weekly or monthly goal is

not achieved. Each intervention is associated with a theory-based behavior change

technique, which in turn drives the content of the intervention. Such sets of inter-

ventions could be defined based on the combinations of decision points, goals and

conditions.
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CHAPTER 5

THE JITAI PERSONALIZATION ALGORITHM

In this chapter, the JITAI personalization algorithm is presented. Personalization

occurs by learning person-specific patterns on intervention delivery. Reinforcement

learning (RL)[24] method is used as the backbone of the proposed algorithm, learn-

ing such patterns. Considering that the aim is to learn a personalized strategy on

various aspects of intervention delivery, first, an analogy is established between the

feedback loop-based mechanisms of intervention delivery and RL, which is partially

described in a previously published article [91]. The two concepts are further aligned

by distributing the JITAI elements over two RL models. It is claimed that the RL

models are able to capture the dynamics of the JITAI elements and personalize them

in terms of adaptivity (i.e. time and frequency) and just-in-timeness (i.e. timing) as-

pects of JITAIs only if they are employed simultaneously. The first model, called

the intervention-selection model, adapts the intervention delivery strategy consider-

ing that the person still needs to be supported via interventions or s/he does not need

extrinsic support anymore e.g. the person might have formed habit on the targeted be-

havior. In the meantime, the model also learns personal preferences on intervention

types throughout the overall learning process. The second one, i.e. the opportune-

moment-identification model, learns the most opportune moments throughout peo-

ple’s daily lives to deliver interventions.

Before elaborating the conceptual and technical details of the learning models, pre-

senting an overview of the overall algorithm would help reader to better follow the

details presented in the subsequent sections. The proposed algorithm is an RL-based,

iterative algorithm that aims to take the best action at each iteration. It works in

sync with people’s action plans that are created collaboratively by care receivers
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and care providers to cope with a health problem. Fig. 5.1 shows how the execu-

tion of the RL models are projected onto the time frames of action plan activities.

∀dp, dp ∈ DPAP , i.e. for all decision points of intervention selection model, a state

transition occurs such that the learning agent travels from is_s1 to is_sn. At each

decision point, the intervention selection model selects an intervention for delivery.

Similarly, ∀dp, dp ∈ DPRW , the opportune-moment-identification model makes state

transitions starting from omi_s1 to omi_sn. Each state transition occurs when there is

a change in the momentary context of the person. However, the opportune-moment-

identification is disabled in cases no particular intervention type is selected by the

intervention-selection model. For example, considering Fig. 5.1, no intervention type

is selected in is_s2. Therefore, there is no state transition of the opportune-moment-

identification model throughout the second time frame. At each decision point, the

opportune-identification-model decides to deliver the selected intervention or not.

Figure 5.1: Execution of intervention-selection and opportune-moment-identification

models in sync with the time frames associated to action plan activities

However, each model has its own iteration patterns, actions to take or state compo-

sitions. Furthermore, at each iteration, each model follows distinct set of procedures

to update its state parameters or to select an action. Sec. 5.1 is dedicated to intro-

duce the conceptual differences in the RL setups of the two models by setting out

from an analogy between RL and JITAI framework. Deriving from this analogy,
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the opportune-moment-identification and intervention-selection models are formal-

ized with two MDPs in Sec. 5.2.1 and 5.2.2 respectively. As mentioned, the mechan-

ics of the models, therefore the MDPs, differentiate from each other. Specifically, the

opportune-moment-identification model utilizes the two aforementioned optimization

techniques, i.e. customized eligibility traces and transfer learning. These two con-

cepts address the jump-start challenge attributed to RL algorithms. The technical

details of the eligilibity traces and transfer learning techniques are presented in Sec.

5.2.1.1 and Sec. 5.2.1.2 respectively. On the other hand, the intervention-selection

model embeds an evidence-based, mathematical model to update some of the inter-

nal state parameters pertaining to habit formation. As previously described, the habit

formation model is also an iterative model running in sync with the intervention-

selection model. Similarly, in Sec. 5.2.2, how the habit formation model is integrated

with the simulation of habit related state parameters at each iteration i.e. state transi-

tion is presented. Finally, the complete sequence of the algorithm steps is presented in

Sec. 5.3 connecting all the optimization methods and showing interlinked execution

of the intervention-selection and opportune-moment-identification models.

5.1 Alignment of Self-Management Concepts with RL

Alignment of the static conceptual elements of JITAIs and dynamics of interven-

tion delivery mechanism with RL is a prior, necessary step to be able to define the

RL models with complete details. The objectives of establishing such an alignment

include: to show why RL is a convenient approach to solve the problem of JITAI

personalization; how the RL models capture the theoretical characteristics of JITAIs;

and how they work in harmony on one hand with these theoretical foundations and on

the other hand with action plans prescribing practical measures to tackle with health

problems.

5.1.1 Analogy of Intervention Delivery and RL

JITAI personalization problem is approached from two perspectives. Selection of the

correct intervention type and selection of the proper moment to deliver interventions
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are treated as two sub-problems to be dealt with separately, in a person-specific way.

Although these concepts are captured with distinct analogies, the alignment depicted

in Fig. 5.2 is applicable for both cases. Below, the common and distinctive character-

istics of each analogy are discussed.

Figure 5.2: Analogy between RL and JITAI delivery mechanism

Common characteristics in both analogies: As stated previously, a traditional RL

setup includes two main concepts namely the environment and agent. As depicted in

Fig. 5.2, the person, as the observed entity with an associated internal state, cor-

responds to the environment concept of the RL mechanism. The person state is

composed of parameters pertaining to the person’s psychosocial, physiological and

environmental contexts. Instantaneous values of these parameters represent the state

that the environment is in. Changing context of the person is modeled as a series of

state transitions of the environment. The mobile app, as the learning agent observing

the person, takes relevant actions considering the current person state at each state

change. The engagement and reaction of the person to delivered interventions as well

as performance associated to the target behavior are emitted as a reward.

The two analogies differentiate in four parameters namely, state parameters, state

transitions, action sets and reward functions. Considering that these are also the ele-

ments of an MDP, elaboration of the analogies reveals the details of the corresponding

RL environments.
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Specifics of the intervention-selection - RL analogy: The initial differentiating

factor of the intervention-selection - RL analogy is the parameters composing the

person state. The person state of the intervention-selection model mostly contains

parameters that have long-term timescales. Because, selection of the best-matching

intervention type, where selecting none of the available interventions types is also

an option, can be learnt via the long-term parameters such as preferences on inter-

vention types, past performance or habit strength than momentary parameters. The

next differentiating factor is the state transitions. The intervention-selection model

captures the dynamics of an action plan by evaluating the necessity of delivering an

intervention for each planned activity as shown in Fig. 3.1. The model decides on the

type of the intervention to be sent. Therefore, state transitions of the RL environment

correspond to the decision points driven by the action plan.

At each transition, either intervention types that are applicable for the specific activ-

ity is selected as the action or no type is selected at all (meaning that no intervention

would be sent) for that activity. Finally, the emitted reward has two meanings depend-

ing on the selected action. In case of a certain intervention type is selected, the reward

indicates the acceptance/non-acceptance of the intervention type by the person. Oth-

erwise, i.e. in case no intervention delivery action is taken, the reward indicates the

necessity/non-necessity of an intervention for performing the behavior.

Specifics of the opportune-moment-identification - RL analogy: In this case, the

state parameters are mainly composed of momentary context parameters like time,

physiological status or location as the aim is to identify an opportune moment to

deliver an intervention during the day. So, a state transition occurs each time one

of these parameters change. The available actions at each state include delivering

an intervention or not. The emitted reward signal hints about the suitability/non-

suitability of the moment for the person’s engagement with the intervention.

5.1.2 Distributing the JITAI Components over the Two RL Models

As introduced before, the template-based design mechanism addresses the four JITAI

components as follows: decision points, intervention options, tailoring variables and
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decision rules. Opportune-moment-identification and intervention-selection models

are also able to capture the dynamics of these elements. As a result, the learning

procedure is able to optimize the intervention options, which are the adaptable com-

ponents of JITAIs.

Intervention options are mainly related to the content, delivery mode or timing of

JITAIs. Therefore, such parameters can be seen as characteristics of a JITAI. In

the presented alignment, intervention options related to content are captured by the

intervention-selection model. On the other hand, the opportune-moment-identification

model deals with the timing of interventions.

Tailoring variables capture peoples’ specific experiences (e.g. high levels of stress)

or contexts (e.g. prolonged sedentary behavior) and moderate the decision making to-

wards dealing with the captured values via an appropriate intervention option. There-

fore, tailoring variables correspond to the state parameters that are used for repre-

senting the state the environment is in. An instantiated state represents logically con-

junction of tailoring variables composing the state. For example, let’s assume that

the state is composed of two parameters: 1) duration of being sedentary in minutes

and 2) a binary value indicating that the current stress value is higher than the weekly

average. Then, a state with (30, yes) values indicates that the person is sedentary in

the past 30 minutes and his/her stress level is higher-than-average. In the proposed

approach, tailoring variables are distributed over the two RL models. While the tai-

loring variables pertaining to long-term parameters are mapped to the states of the

intervention-selection model, the tailoring variables related to momentary parameters

are captured by the opportune-moment-identification model.

Decision points of JITAIs correspond to state transitions of the RL environments.

Therefore, the intervention-selection and opportune-moment-identification models

have their own decision point patterns. Fig. 5.1 has already showed the decision

point patterns for both models. The eventual RL algorithm works in sync with de-

cision points of both models. At each decision point (i.e. at each state change), it

produces a relevant reward according to the underlying model.

Decision rules link intervention options, decision points and tailoring variables. As

just discussed, intervention options are captured by RL actions, tailoring variables are
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captured by state parameters and decision points are captured by the state transitions.

And lastly, a learning agent’s policy accumulates state-action mappings where each

such mapping indicates a specific action to be taken in a specific state. Each distinct

state can be considered as a set of decision rules based on the conditions constructed

with the instantaneous values of the tailoring variables. Considering the example

above, the decision rule can be interpreted as logical conjunction of the two tailoring

variables. That is, when the person is sedentary for more than last 30 minutes and has

a higher-than-average stress level.

Rewards collected by the learning agent during the learning process is a performance

indicator for the intervention delivery strategy considering the goals set for the tar-

geted behavior. As presented earlier, the goals are representatives of the proximal/dis-

tal outcomes of the JITAI framework. Therefore, an indirect relation between rewards

and proximal/distal outcomes can be established such that the more rewards that the

learning agent collects, the more the targeted outcomes are achieved.

The agent optimizes its policy over time by learning from people’s experiences. As it

visits different states, it learns how to behave in different conditions and finds a (near-)

optimal strategy that suits the user best. With this base approach, though, the learning

algorithm needs to consider all tailoring variables inside the person state against the

complete set of actions (i.e. intervention types), which would require a long learning

time. Instead, decision rules associated to individual intervention instances are used

to limit the complete action set by keeping only the interventions of which rules are

satisfied at each decision point.

5.2 RL Models

Driven by the analogies above, dedicated RL models are employed for personaliza-

tion of the intervention-selection and opportune-moment-identification concepts. In

this section, the formal definitions of these models are presented. It is assumed that

people are fully observable thanks to the directly sensed or inferred contextual val-

ues required throughout the learning process. This makes using MDPs appropriate

to formally describe the RL environments. An MDP M is characterized with a tu-
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ple consisting of four parameters (state set, action set, probability matrix and reward

function) represented as M = <S, A, P, R>. Below, the intervention-selection and

opportune-moment-identification models are presented in terms of these four MDP

components.

5.2.1 The Opportune-Moment-Identification Model

The MDP instantiated for the opportune-moment-identification model is represented

with:

MOMI = <SOMI, AOMI, POMI, ROMI>.

Considering that the opportune-moment-identification model aims to capture person-

specific patterns over momentary data, the person state includes parameters pertaining

to physiological, psychological or environmental context of the person. Each state

sOMI such that sOMI ∈ SOMI is composed of six parameters as defined below:

sOMI = <time, location, physical_activity_status, phone_screen_status, emotional_status,

number_of_interventions_sent_for_planned_activity>

The time required to reach a (near) optimal policy with an RL solution is inversely

proportional with the size of state and action sets. Therefore, state parameters with

continuous values are avoided, but they are modeled as discrete parameters with a

range on the natural numbers set, as described below:

• time = {x: x >= 0 and x <95, x ∈ IN}. This parameter is used to represent the time

during the day. The time value is generalized to represent only the quarterly

periods. Its value is calculated with the following equation: time = h*4 + bm /

15c, where hour h is defined as h = {h: h >= 0 and h <24, h ∈ IN} and minute

m is defined as m = {m: m >= 0 and h <60, m ∈ IN}.

• location : Location represents whereabouts of the person with three enumerated

values namely Home, Office and Other.

• physical_activity_status: This parameter is used to enumerate the physical activity

of the person with Sedentary, Indoor_Activity, Walking, Running and Driving
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alternatives.

• phone_screen_status: Enumerated value of phone screen status that can be On or

Off.

• emotional_status: Enumerated value representing the emotions that a person may

have including Neutral, Happy, Excited, Relaxed, Angry and Stressed alterna-

tives.

• number_of_interventions_sent_for_planned_activity: This parameter keeps the num-

ber of delivered interventions for the active activity defined in the action plan.

The action set of the opportune-moment-identification model(AOMI) includes two el-

ements: Deliver_Intervention and Deliver_Nothing that are respectively used for de-

livering a certain type of intervention or not delivering any intervention. The set is

formally described as follows:

AOMI = {Deliver_Intervention, Deliver_Nothing}

ROMI first considers the action taken at step t (omi_at). The algorithm generates a

relatively small negative reward denoted with the not_sent variable in order to pre-

vent the learning algorithm getting stuck at a local minima, which is caused by never

selecting an intervention. In cases where an intervention is delivered (omi_at =

Deliver_Intervention) the algorithm initiates the reward by considering the per-

son’s reaction to the intervention. Rewards sent_reacted and sent_not_reacted are

generated for reacting (reactedt = true) and non-reacting (reactedt = false) to the

intervention. Initial values for sent_reacted and sent_not_reacted are set to 1000

and -2 respectively. This reflects the higher importance given to discovery of a state

that is suitable for intervention delivery, that leads to engagement with the interven-

tion; than discovery of a state resulting without any engagement. In cases where an

engagement does not happen the negative reward is multiplied with the number of

successive attempts of intervention delivery. The aim is to minimize the burden of

interventions on people. In cases where engagement happens, the reward is further

updated according to the temporal proximity of the intervention delivery to the actual

engagement time with the intervention (differencet). Three ranges are defined into
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which the temporal difference (td) of delivery and engagement can fall. The ranges

can be represented as: 0 <= td <= 30, 30 <td <= 60 and td >60. The lower the

temporal difference, the higher the reward. Initial values picked for these cases are 2,

-1 and -2 respectively. As a summary, while Eq. 5.2 shows calcuation of the reward

generated for the temporal proximity, Eq. 5.1 shows calcuation of the eventual reward

generated at each step of the opportune-moment-identification model.

omi_rt =



not_sent, if omi_at = Deliver_Nothing

sent_not_reacted *number_of_attemptst, if
omi_at = Deliver_Intervention,

reactedt = false

sent_reacted +temporal_rewardt, if
omi_at = Deliver_Intervention,

reactedt = true

(5.1)

temporal_rewardt =


long_difference, if differencet > 60

medium_difference, if 30 ≥ differencet > 60

short_difference, if differencet < 30

(5.2)

The opportune-moment-identification model is a stochastic environment considering

the way of state transitions occur. As presented earlier, SOMI is mainly composed of

parameters pertaining to people’s varying momentary contexts. Therefore, concern-

ing transitions from state omi_st to omi_st+1, the values of omi_st+1 are observed

from people’s daily activities. This means that this model does not have a well-defined

transition probability matrix.

5.2.1.1 Selective Eligibility Traces

Fig. 5.3 depicts how the environment and agent interact with each other in the

opportune-moment-identification-model. ai denotes the action taken when the en-

vironment is in state si and ri is the reward received for ai. The boxes labeled
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Figure 5.3: Agent-environment interactions during the intervention delivery process

with j indicate that an intervention is delivered to the person as an action i.e. De-

liver_Intervention has been taken; otherwise means that the Deliver_Nothing action

has been taken. ∀dp, dp ∈ DPRW , for each decision point of the opportune-moment-

identification model, the algorithm makes a decision on delivering the intervention

(i.e. the one selected by the intervention-selection model) or not at each step based

on its internal policy until the behavior is performed or the person engages with the

intervention. As seen in the figure, throughout a learning episode, the algorithm might

deliver an intervention several times. However, the person might not see or engage

with interventions immediately. One or more interventions might be processed or

discarded after a certain amount of time by the person when s/he interacts with the

delivered interventions. In the example, there would be two delivered interventions,

i.e. j1 and j2, at state s7.

Delayed response to the delivered intervention necessitates rewarding past actions.

The RL literature has a solution for such cases: eligibility traces. However, the stan-

dard eligibility trace approach is not suitable for the proposed approach. Because,

for example, assume that the person would only engage with j2 and discards j1. r7

would be a positive reward as the person has seen/engaged with j2. In this case, the

standard eligibility tracing mechanism gives credit to all previous actions, including

a1, a3 and a5. However, rewarding a1 and a3 is an inconsistency. Because, those ac-

tions are suboptimal as interventions were sent in inappropriate moments without any

engagement.
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This inconsistency is addressed by customizing the eligibility criteria of retrospective

rewarding. The proposed approach is basically to assess whether an intervention is

engaged or discarded once seen by the person and reward only the engaged ones. Tra-

ditionally, all the traces would have been rewarded in the same way in proportion to

their weights. For this domain, however, it is obvious that the discarded interventions

would not contribute performing the targeted behavior. So, previous actions resulting

in discarded interventions are not rewarded. Complementary to this modification, it

is ensured that the action just before the engagement with the intervention would be

Deliver_Action even if it were originally Deliver_Nothing action. For example, in

Fig. 5.3, although a7 is a Deliver_Nothing action originally, it was indeed an oppor-

tune moment for engaging with the intervention. So, the eligibility trace is modified

as if a Deliver_JITAI action were taken in s7. This modification lets the algorithm

to favor taking Delivery_JITAI action in future visits to s7. The algorithm described

in Fig. 5.4 shows the two modifications performed on the standard eligibility trace

mechanism.

5.2.1.2 Transfer Learning Across Opportune-Moment-Identification Environ-

ments

To be able to apply transfer learning in an RL setup, first, the similarities / differ-

ences of the environments among which the knowledge to be shared should be ana-

lyzed. Our intention is to apply the transfer learning method in opportune-moment-

identification model. In this respect; while the state space, action space and reward

functions have the same configuration, only the transition functions differ, which is

obvious as they reflect the distinctive characteristics of people.

Having these similarities and differences, it is decided to have complete policies as

the knowledge to be transferred to achieve a jump start in terms of effectiveness of

the algorithm at the beginning phase of the learning process. Having the policy of

others, a learning agent could perform better in unknown states. It may consider

choosing the actions taken by the other agents in the same or similar states, instead

of choosing a random action. However, this requires identification of other agents,

whose policies to be transferred to the current agent. To deal with this problem, a
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Figure 5.4: Modifications on the standard eligibility traces
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common policy (CP) is maintained that aggregates all the actions taken by all the

agents. The common policy acts as a case repository accumulating the transitions

happened in all the environments [92].

Definition 1: (Common Policy - CP): CP: SOMI → {(a, n) | a ∈ AOMI, n ∈ IN+}

where CP is a function that maps states to action-number tuples. Each tuple includes

the action along with the number of agents taking that action in the given state. CP is

not transfered among environments as it is but it is used as a raw data source to train

a supervised-learning based State Classifier (SC).

Definition 2 (State Classifier - SC): SC: SOMI→ AOMI, where SC is a function from

the state space to the action space, providing classification capability for states that

have not been discovered by the current agent. It might even be the case that a state

might have not been discovered by any of the agents. Even so, the classifier is able

to produce predictions considering the similarity of the states that were previously

discovered.

SC is trained during the execution of the overall learning process, which is performed

via a set of trials, each of which includes a set of learning episodes. CP is updated

after each episode, based on the activities of the agent throughout the episode. The

update algorithm for CP is explained in Fig. 5.5. Once CP is updated, data items

are generated out of it to train SC. Each training data item is a tuple with a state and

label as follows: data_item = (s, l), where s ∈ SOMI and l ∈ AOMI. The label of each

data item is determined by considering the selection counts of actions by the agents.

Simply, the action with the highest number of selection for the given state is set as the

label.

As presented before, the state parameters of the opportune-moment-identification

model are enumerated values, which makes decision trees an appropriate method to

perform classification on the data items. Specifically, it has been decided to use the

Random Forests [93] as they are more suitable to realize customized transfer learn-

ing approaches, such as transferring partial policies, by modifying the tree generation

accordingly. In this study, though, the default tree generation and classification mech-
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Figure 5.5: The algorithm for updating CP after each episode

anism provided by the Apache Spark library[94] is used. By default, a random forest

grows many classification trees such that each tree is trained with a subset of the

initial training data. To classify a new data item, the item is put down each of the

trees in the forest. Each tree gives a classification output and the forest chooses the

classification having the higher output over all the trees in the forest.

5.2.2 The Intervention-Selection Model

The MDP for the intervention-selection model is represented with: MIS = <SIS, AIS,

PIS, RIS>.

SIS is the state set, where each state sIS such that sIS ∈ SIS is represented with a tuple

composed of four parameters as follows:

sIS = <habit_strength, behavior_frequency, day_type, remember_behavior>

Having the same reasoning with the opportune-moment-identification model concern-

ing not having large state and action sets, all the state parameters are modeled as
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discrete parameters as follows:

• habit_strength = {x: x >= 0 and x <10, x ∈ IN}. Habit strength represents the

strength of automaticity of the behavior without occupying the mind to remem-

ber performing the behavior. In other words, the higher the habit strength is,

the less need for providing cues in the form of interventions for reminding the

behavior.

• behavior_frequency = {x: x >= 0 and x <10, x ∈ IN}. As described previously,

behavior frequency is the ratio of number of times executing the behavior to

the total number of opportunities to perform a behavior, within a certain time

frame.

• day_type: Day type is an enumeration that can take either weekend or weekday

values. Its value is extracted from the date of the active learning episode i.e.

the simulated day.

• remember_behavior: Remembering behavior is also an enumeration that can take

either true or false values. The specific value of this parameter indicates whether

the person would remember performing the behavior as planned in the action

plan.

The action set of the intervention selection model is defined as follows:

AIS = {J1, J2, ... , Jn, No_Intervention}

The set includes intervention types, i.e. J1, ..., Jn that are supposed to be identi-

fied by domain experts addressing a particular disease/health problem. In addition

to the specific intervention types, not delivering any intervention, represented with

No_Intervention label, is also a possible action. However, not all actions are available

for each decision point but only the interventions included in the EAdp are eligible at

each decision point.

RIS function is conditioned on remembering the behavior at state st, delivering an in-

tervention and reacting to the delivered intervention. At each time step t during the

learning process, the reward is calculated based on these variables. Varying combi-

nations of conditions on these variables form the reward function as presented in Eq.
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5.3. The values for the six respective cases in the equations are instantiated as -3, -10,

10, -5, -1 and -50. The reasoning behind such an instantiation is to generate relatively

higher rewards in cases when the person does not remember performing the behavior

and an intervention type is selected as a counter action. Engaging with the interven-

tion is rewarded positively so that the interventions that are not engaged by the person

would be selected less. The worst decision of the algorithm would be not to select

any intervention even if the person would not remember performing the behavior. So,

this is the case where the largest reward, a negative one, is generated.

is_rt =



sent_remembered_reacted, if

is_at 6= No_Intervention,

remember_behavior(st) = true,

reactedt = true

sent_remembered_not_reacted, if

is_at 6= No_Intervention,

remember_behavior(is_st) = true,

reactedt = false

sent_not_remembered_reacted, if

is_at 6= No_Intervention,

remember_behavior(is_st) = false,

reactedt = true

sent_not_remembered_not_reacted, if

is_at 6= No_Intervention,

remember_behavior(is_st) = false,

reactedt = false

not_sent_remembered, if
is_at = No_Intervention,

remember_behavior(is_st) = true

not_sent_not_remembered, if
is_at = No_Intervention,

remember_behavior(is_st) = true

(5.3)
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PIS is a matrix of probabilities, P (is_st+1|is_s, is_at), indicating the probability of

transition from state is_s to state is_st+1 by taking the action is_at. The intervention-

selection model follows an episodic learning approach such that each day corresponds

to an episode. State transitions throughout an episode, i.e. a day, is laid out by the

action plan associated to the person. As described below, the transition dynamics

from state is_st to is_st+1 are deterministic. In the rest of this section, transition

dynamics about the individual state parameters are presented.

The subsequent value of the day_type parameter, i.e. the value for the state s’, is

trivial. It is simply extracted from the date associated with the simulated day. The

dynamics of the habit_strength and remember_behavior parameters are determined

by the habit formation model that are adopted from [84]. Similar to the RL models,

the habit formation model is also an iterative model and has its own internal dynamics.

It runs in parallel with the intervention-selection model. At each state transition of

the RL model, the habit formation model is also iterated by updating its internal

parameters including habit strength and behavior frequency. The time-series data

generated by the habit formation model is defined with the set HFTS as introduced

in Sec. 3.4.

Four parameters are updated at each step of the habit formation model, namely habit

strength, behavior frequency, accessibility and salience of reminders (interventions in

our case). Although accessibility and salience of reminder concepts are not directly

included in the laid-out RL model, they are essential parameters for predicting the

remembering of the behavior. In the rest of this section, the updating procedures of

these four parameters are presented via a set of equations that are adopted from the

habit-formation model. Following the update procedures, Eq. 5.13 and Eq. 5.14

show how the prediction on remembering the behavior is made. All these equations

are solved at each step of the intervention-selection model in order to calculate the

parameters of the next state.

The following three equations show the calculation of the next habit strength value

(hst+1). In Eq. 5.4, the decay amount on the habit strength arising from not per-

forming the behavior (bpt = false) is obtained. If the person performs the behavior

(bpt = true) the habit strength does not decrease. Then, in Eq. 5.5, the amount of
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increase on the habit strength is calculated in case the person has performed the be-

havior. Finally, the final value of the habit strength for the next step (hst+1) is obtained

in Eq. 5.6 by subtracting the decay amount from and adding the increase amount to

the value at the previous step (hst).

habit_strength_decayt =

hst ∗HDC, if bpt = false

0 otherwise
(5.4)

habit_gaint =

(hst ∗ (1− bft) ∗HDC, if bpt = false

0 otherwise
(5.5)

hst+1 = hst − habit_strength_decayt + habit_gaint (5.6)

In these equations, hst, bft and bpt are the habit strength, behavior frequency and

behavior performance at step t. bft indicates whether the behavior is performed or

not after the action at. HDC, i.e. the habit decay constant, is the constant introduced

by the habit formation model, adjusting the decay amount at each step. (Note that all

the habit-related constants in the equations in this section are obtained from the habit

formation model.)

Eq. 5.7 shows the calculation of the next value of behavior_frequency (bft+1). A

sliding window is maintained to keep a record for each opportunity to perform the

behavior within a particular period in the past. As a result of collaborative discussion

with cognitive behavior psychologists, it is decided to have the history size as 14

days, as records of past 2 weeks might contain certain patterns about the behaviors

of people about their self-management activities. The window is implemented as a

queue such that each of its items is a binary value indicating whether the behavior

has been performed or not. At each step, the oldest item (bpoldest) of the window

is removed from the queue, and the latest behavior performance indicator (bpnewest)

is pushed into the queue. The behavior frequency is the ratio of the number of the

behavior performances to the total opportunity count, as calculated in Eq. 5.7.

bft+1 = (bft ∗ opportunity_count− bpoldest + bpnewest)/opporunity_count (5.7)
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People get bored seeing the same type of notifications on their mobile phones. They

become unresponsive to such notifications or discard them [95]. In the scope of this

study, intervention types are grouped according to their categories (e.g. reminders

or motivations as mentioned earlier). Several intervention types with different con-

figurations e.g. underlying psychological methods might be related with the same

intervention category. For example, two reminder intervention types might be us-

ing different behavior change techniques to remind a behavior. Therefore, a distinct

salience indicator is maintained for each intervention type. Eq. 5.8 shows the calcu-

lation of the next values of intervention saliences (sali,t+1). Salience of interventions,

with the same category with the selected intervention (categoryi = categorysat) are

updated at each step.

The salience of the selected intervention type (is_at) decreases in proportion to the

current salience amount. The amount is calculated by using the SC constant of the

habit formation model. The salience values of other interventions having the same

category with the current intervention (i 6= is_at) are increased as the person is not

exposed to them. The same constant is used to calculate the decrease amount by

applying the opposite calculation on the current salience amount. Eq. 5.8 implements

the narrated logic. In the equation, the category concept is a function returning the

category of a given action.

∀i(i ∈ AIS and i 6= No_Intervention and category(i) = category(is_at)),

sali,t+1 =

sali,t − sali,t ∗ SC, if i = is_at

sali,t + sali,t ∗ SC, if i 6= is_at
(5.8)

According to the habit-formation model, the accessibility decreases at each step, in

proportion to its current amount (Eq. 5.9). On the other hand, it increases in presence

of a reminder (Eq. 5.10) and when the targeted behavior is performed (Eq. 5.11).

In our case, interventions are the reminders increasing the accessibility value. So,

if an intervention is selected as the action at step t, the accessibility is increased ac-

cordingly. The updated value of the accessibility is obtained by subtracting the decay

amount from and adding the increase amounts to the previous value (Eq. 5.12).
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acc_decayt = acct ∗ ADC (5.9)

acc_gain_remt =


(AGC_R + (1− AGC_R)

∗WCI_REM ∗ ci) ∗ salt
if is_at 6= No_Intervention

0 otherwise

(5.10)

acc_gain_pbt =

bft ∗ AGC_PB, if bpt = true

0 otherwise
(5.11)

acct+1 = acct − acc_decayt + acc_gain_pbt + acc_gain_remt (5.12)

In these equations, acct, bpt, bft, is_at and salt represent accessibility value, whether

the behavior performed, behavior frequency, selected action in the intervention-selection

model and salience of the selected intervention at step t. ci represent the commitment

intensity of the person indicating the strength of any form of internal pressure by the

person. Furthermore, ADC,AGC_PB,AGC_R and WCI_REM are the constants

of obtained from the habit formation model. They respectively represent the constants

for accessibility decay, accessibility gain constant by performing the behavior, acces-

sibility gain by reminders and weight of the commitment intensity in accessibility

gain by reminders. For more details on the model, please refer to the original study

[84].

The last step regarding the iteration of the habit formation model is to predict whether

the person would remember performing the behavior or not. The prediction is sim-

ply done by comparing the current accessibility value and the accessibility threshold

value. Accessibility threshold depends on the habit strength and behavior frequency

parameters. Based on these values, the threshold value is obtained using Eq. 5.13.

Getting the accessibility greater than the threshold indicates that the person would

remember performing the behavior (Eq. 5.14).
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acc_thresholdt =
ATC − (ATC ∗ ATH ∗ hst)
+(1− ATC) ∗ ATBF ∗ bft ∗ (1−DTH ∗ hst)

(5.13)

behavior_predictiont+1 =

true, if acct ≥ acc_thresholdt

false otherwise
(5.14)

In this equation, acct, hst and bft represent accessibility, habit strenght and behavior

frequency values at step t. ATC,ATH,ATBF and DTH are the constants rep-

resenting accessibility threshold, weight of habit strength in accessibility threshold,

weight of the behavior frequency in accessability threshold and distraction weight

due to habits. Similarly, to have better insight about the habit formation related con-

cepts, please refer to the original model. Presenting how the remembering is predicted

concludes the transition dynamics of intervention-selection model.

5.3 Overall Algorithm

In this section, the overall learning algorithm, combining all the pieces presented so

far, is described. The algorithm is partitioned into a set of sections for the sake of

clarity and easy understanding. Each learning episode has a daily time frame. In

other words, each day of people’s lives is processed throughout an episode. The over-

all algorithm, in this respect, describes the procedure followed throughout a single

learning episode.

The first section shows the inputs, all of which are complex data structures including

specific data elements used in the algorithm. The first four inputs are main compo-

nents of the RL environments, namely environment and agent objects of intervention-

selection and opportune-moment-identification models. The environment objects keep

track of the current state of the environment and transition history. The agent objects

are a proxy for the learning policy, which is used to select actions. The next input is

the habit_formation_model, which keeps the variables like habit strength or behavior

frequency required for simulating the habit formation model. As described earlier, an
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action plan includes daily planned activities for the person. Lastly, the State Classifier

is the trained model that is used to predict actions to be taken in unknown states.

The actual procedure starts with the second section, which in turn starts with the

outermost loop of the algorithm. This loop is executed such that ∀dp, dp ∈ DPAP , for

each decision point of the intervention-selection model throughout a learning episode.

The first step is to determine the action (is_at) to be taken in the current state (is_st) of

the intervention-selection model, by the learning agent of the intervention-selection

model. Internally, a greedy policy is used such that the action leading to the highest

long-term reward is selected. However, the policy does not select the action among

the complete set of intervention initially configured but from the set of eligible actions

for the decision points, i.e. EAdp.

In the third section, the opportune-moment-identification model is run only if a certain

intervention type is selected (is_at 6= No_Intervention). The first operation per-

formed by the opportune-moment-identification is to determine the action (omi_at)

based on the current state (omi_st) of the opportune-moment-identification model.

The same greedy logic is used by this model also. However, the learning algo-

rithm utilizes SC in case it has to select a random action (omi_as.selectMode =

RANDOM ). Such cases include encountering with an unknown state or having

same q-values for all actions in a state. In other cases, it utilizes the greedy policy

and selects the action with the highest q-value. Once the action selection is finalized,

the environment makes transition from the current state to the next state by taking the

selected action. For the opportune moment identification model, this basically means

an update in the person’s momentary context.

In the fourth section, two simulations take place. If the intervention is delivered

(omi_at = Deliver_Intervention), the person’s reaction to the delivered interven-

tion is simulated. The result of the simulation is either to discard the intervention

or engage with it. The second simulation is for performing the targeted behavior.

Whether the performance will be performed or not is determined by the habit for-

mation model. Details about the two simulation activities will be given in the next

section.

The fifth section starts with obtaining the reward (omi_rt) for the action taken by the
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opportune-moment-identification model via Eq. 5.1 and Eq. 5.2. Then, eligibility

traces are updated via Algorithm 1, and the transition is recorded into the episode

analysis object. At each step of the opportune-moment-identification model, the cur-

rent time is advanced according to the simulated daily activities. The decision making

on delivering the selected intervention lasts, in other words an episode of opportune-

moment-identification model runs, as long as the current time is within the time

frame associated with the current planned activity of the action plan (context_change

occurs within action_plan_activity.time_frame). Once the opportune-moment-

identification episode is over,CP is updated with the collected data during the episode

via Algorithm 2.

Following the fifth section, execution context switches back to the intervention-selection

model by advancing the habit formation model one step. During this phase, remem-

bering the behavior parameter, habit strength, behavior frequency, salience of inter-

ventions and accessibility of the behavior are updated as elaborated earlier by evalu-

ation of habit formation related equations from Eq. 5.4 to Eq. 5.14.

Finally, the next step for the intervention-selection model (is_st+1) is obtained us-

ing the updated parameters of the habit formation model and the reward (is_rt) is

generated via Eq. 5.3.
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Figure 5.6: Overall learning algorithm
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CHAPTER 6

COMMUNICATION ENGINE: THE SOFTWARE REALIZING THE JITAI

DESIGN AND DELIVERY PLANNING

Communication Engine is the implementation of the conceptual approach described

so far. Below, technical details about it are presented by elaborating the architectural

design, individual components and interactions between the components.

6.1 Reactive Programming within Lambda Architecture

A person context contains dynamic parameters e.g. physical activity status, location,

blood glucose measurements of which values are continuously updated according to

streaming data in real-time. Communication Engine ingests such streams of data,

processes and uses them to run the intervention delivery mechanism. In this respect,

Communication Engine is an event-driven application reacting to external events. So,

the reactive programming, which is a well-suited paradigm for working on asyn-

chronous data streams[96], is adopted to implement such a system. The following

technologies has been used to realize various reactive programming tasks:

• Apache Kafka1 for establishing a publish/subscribe mechanism between the data

sources and Communication Engine to monitor the new observations related to

persons and actions performed by the persons.

• Apache Spark2 and Spark Streaming3 for distributed processing of incoming data

streams as well as intervention delivery planning.
1 https://kafka.apache.org/
2 https://spark.apache.org/
3 https://spark.apache.org/streaming/

63



• Apache Cassandra4 for persisting the person state, which contains all the informa-

tion required to run the learning algorithm.

Considering the need for continuous monitoring of people’s changing context, per-

forming data management tasks in frequent intervals, running learning algorithms on

the recent context data and performing all these operations for all persons a scalable

architecture is proposed. The architecture can scale with increased number of partic-

ipants and data sources. In general, the implementation approach follows the lambda

architecture which is a scalable data-processing architecture designed to handle mas-

sive quantities of data by taking advantage of both batch and stream-processing meth-

ods [97] as illustrated in Fig. 6.1.

Figure 6.1: Data processing architecture of Communication Engine

Data is processed in two layers namely, batch layer and speed (streaming) layer,

which is the main characteristics of the lambda architecture. In the batch layer, daily

jobs run processing the data of all persons and update their person state. Batch jobs

are executed to retrieve the data that is not changed frequently like goals and action

plans. Streaming jobs handle the data that need continuous monitoring to update

patient state and react immediately on changes.

The two data processing layers are also applicable to trigger the intervention delivery

mechanism. In the batch layer, the mechanism is triggered periodically for a specific

period e.g. every 10-minutes. The streaming layer reacts to significant changes on

the data streams and trigger the mechanism with the updated person state.

4 http://cassandra.apache.org/
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6.2 Component Architecture

The reactive programming and lambda architecture paradigms are realized by several

components interacting with each other as depicted in Fig. 6.2. The entry component

in the architecture is the FHIR repository, which persists the data generated automat-

ically by devices / sensors or manually by persons themselves in HL7 FHIR format5.

The repository exposes the managed data via a REST API for on demand requests or

pushes the continuous stream data to Kafka. Stream Manager keeps track of the reg-

istered data channels and acts as an abstraction layer on the channels by transforming

the streamed data into proper format so that the rest of the components process it in a

distributed manner.

Figure 6.2: Internal architecture of Communication Engine

Person State contains any information required during the intervention planning and

delivery process. This component provides the Action Monitoring and Intervention

Handler components with up-to-date person state when requested. Vice versa, this

component keeps the person state always up-to-date both with the raw data retrieved

from the FHIR repository and with the deduced data generated by Action Monitoring

and Intervention Handler components.

A person state is composed of quite diverse information including scheduled activities

driven from the action plans, active goal, activities performed, delivered intervention

related to the scheduled activity and a set of behavioral and health metrics that might

represent a single measurement like blood glucose value at a specific time or a cal-

culated value as a result of an analytic procedure e.g. average blood glucose values
5 https://www.hl7.org/fhir/
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during the last week, percentage of abnormal blood glucose measurements or 3 high-

est readings in last 7 days. These variables contain the tailoring variables composing

the RL states. It is possible to expand the patient state with additional metrics without

disrupting the rest of the system. Employing Cassandra enables distributed storage of

the aggregated data within person states.

Action Monitoring runs as a Spark Streaming Job by processing the streams of person

metrics including the latest observations coming from the FHIR repository such as

blood glucose measurements, physical activity logs, dietary intake logs, medication

intake logs, etc. It then tries to match the observations related to a person with the

scheduled activities for him/her. Once such a match is detected, the person state is

updated with the information indicating how well the person adhered to the scheduled

activity in terms of timing, intensity and overall performance. For example, a new

blood glucose measurement will mark a scheduled blood glucose monitoring action

as performed along with the adherence performance.

Intervention Planner performs a set of tasks for evaluation of the conditions to initiate

an intervention, preparation of its content and its delivery to the person. Intervention

Planner itself is a complex component with sub-components specialized for distinct

tasks as depicted in Fig. 6.3. It acquires the activities specified in the action plan

of the person at a daily basis. Within the time frame associated with the action plan

activity, Action Plan Monitor periodically monitors the person state to check whether

the person has performed the activity or not. In either cases, Action Plan Monitor

triggers the Intervention Decision Handler in the valid time frame. Intervention De-

cision Handler, in turn executes the RL algorithm to decide whether an intervention

will be delivered to the person or not. Before delivering the intervention, Perfor-

mance Analyzer finalizes the intervention by calculating the placeholders included in

the content.
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Figure 6.3: Internal architecture of Communication Engine
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CHAPTER 7

VALIDATION

The validation activities are two-folded. Firstly, how the expandable JITAI design

mechanism meets the JITAI design-related specifications derived from various re-

sources like BCT taxonomies, clinical guidelines or algorithms for automated self-

management support is shown. Then, a simulation-based case study is laid out to

validate the proposed algorithm with respect to the adaptation of the intervention de-

livery strategy according to a set of simulation parameters. The scope of this study

is limited in terms of application of the learning algorithm in real-life case studies.

The main aim is to validate the algorithm in simulated settings before deploying it

in a real-life case study involving human participants. Nevertheless, a small-scale

real-life case study, utilizing a preliminary version of the algorithm, is also presented.

7.1 Validating the JITAI Design Mechanism

Validation of the JITAI-design mechanism is mainly done by relating the relevant

parts of BCTs, clinical guidelines and self-management support algorithms with the

proposed JITAI design mechanism. The aim is to identify the requirements to devise

an automated, theory-driven self-management support enabled by the integration of

the JITAI design mechanism and the learning algorithm. For example, a BCT tax-

onomy provides alternatives ways of motivating a person, which indicates a relation

to the intervention option element of JITAIs. Clinical guidelines recommend certain

amounts of a certain activity to performed within a certain amount of time. Consider-

ing the duration and amount criteria, an intervention should be associated with proper

decision rules executed at appropriate decision points, which implicitly requires inte-
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gration of relevant data sources as tailoring variables. This pattern applies also to any

effort aiming to automate self-management support. Below, after providing examples

about these concepts, it is argued that the proposed approach is capable of meeting

the JITAI-related specifications included in the existing resources.

Relating BCTs with the JITAI design mechanism: CALO-RE is a taxonomy in-

troducing 40 types of BCTs aiming to change people’s behaviors related to physical

activity and eating in a healthier manner[88]. The taxonomy guides prospective im-

plementers about the content of BCTs without any other specific details. As the mo-

tivation is to provide automated self-management support, BCTs are evaluated with

respect to the possibility to automate them by conditioning on a set of input param-

eters. This is a qualitative approach through which the suitability of each BCT is

evaluated for automation based on its description in the taxonomy. 31 out of 40 BCTs

introduced by CALO-RE are classified as suitable for automation. Goal setting, ac-

tion planning, fear arousal and prompting rewards contingent on effort or progress

towards behavior are some of the BCTs that are classified as suitable for automation.

BCTs that are not evaluated as suitable for automation are mostly the techniques that

require physical meeting of the care receivers and care givers, e.g. motivation inter-

viewing or agreeing on behavioral contracts. Some other BCTs are hard to be auto-

mated as management of the relevant data is not feasible. For example, prompting

generalization of a target behavior and environmental restructuring require repre-

senting, retrieval and processing the information about the physical environment in

which the behavior is performed. Appendix B includes the complete list of BCTs

that are classified as suitable or not suitable for automation. Furthermore, Appendix

C shows two example JITAI definitions related to two BCTs availabile in the CALO-

RE taxonomy. Overall, it is argued that the techniques classified as suitable can be

realized with the proposed design mechanism.

Relating clinical guidelines, algorithms and available studies with JITAI design:

Clinical guidelines provide clear starting points for JITAI components, even though

the relation between the JITAI framework and those resources is not stated explicitly.

American Diabetes Association (ADA)[98], the Joslin Clinical Guideline for Adults

with Diabetes[99] provide recommendations specific to diabetes disease. Some of
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the recommendations given by these guidelines are about people’s life-style related

to physical exercise, nutritional intake or self-monitoring of blood glucose. For ex-

ample, Joslin guideline recommends blood glucose monitoring 4-6 times per day,

2-4 consecutive days of postprandial monitoring, 60-90 minutes of physical activity

6-7 days per week. ADA recommends engagement in 60 minutes per day or more

physical activity, interrupting prolonged sitting every 30 minutes with short bouts of

physical activity. Such life-style recommendations are usually based on the condi-

tions of the person. For example, physical capacity of the person is measured with

physical functioning tests[100] before adjusting the intensity of the physical exercise.

Studies aiming to improve self-management of chronic diseases integrate various in-

formation manually through quizzes, questionnaires, likert scales about nutritional

intake, psychological status, physical functioning capability or automatically through

sensors, devices, mobile app usage statistics into their decision-making processes

[33, 74]. There are numerous examples on this but as a simple example, the ULTE-

MAT platform provides an intervention to learn the mood of the person via a likert

scale if the person has not specified his/her mood the day before.

In addition to the life-style related interventions, the proposed mechanism can also

be used to design interventions aiming to automate clinical decision making to a cer-

tain extent. For example, Predictive 303 algorithm introduces a rule set for adjusting

insulin detemir every 3 days based on the mean of three adjusted fasting plasma glu-

cose (aFPG) as follows: if mean aFPG < 80 mg/dl, reduce dose by 3 unit; if aFPG is

between 80 and 110 mg/dl, no change; and if aFPG > 110 mg/dl, increase dose by 3

unit[101].

Even though the relation between the JITAI framework and the specifications men-

tioned above is not stated explicitly, the examples exemplify different cases of tailor-

ing variables, decision points as well as decision rules specified in different resources.

For example, considering the interruption of inactivity example, the tailoring variable

is the physical activity status, the decision point is every minute and the decision rule

would be to check whether the person has been inactive for the last 30 minutes. Ap-

pendix D includes intervention definition examples based on the JITAI specifications

extracted from the aforementioned resources.
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Generic requirements to automate self-management support: The specifications

presented above lead the following conclusion: Designing a JITAI first requires the

integration of the data that would be used in decision-making processes related to in-

tervention delivery. In other words, the required tailoring variables should be in place.

Data to be integrated vary in nature (structured / unstructured, static / streaming) and

in source (devices, sensors, phone operating system, mobile app, forms or question-

naires). To be able to make reasoning on the integrated data it must be transformed

into a format that could be used in a decision rule. As in the interrupting inactivity ex-

ample, this could be reducing the last 30 minutes of physical activity data to a binary

indicator.

As stated in Sec. 4, the JITAI design mechanism is easily expandable in terms of

integration of additional data sources, either static or streaming and already provides

built-in tailoring variables that process the incoming data. The outcome of a tailoring

variable is considered as a metric and the person state could be expanded with as

much metrics as desired. Once the person state includes the information in the desired

format, decision rules can utilize that information. Decision rules are the elements

evaluating the suitability of the conditions to deliver an intervention automatically.

Thus, it is argued that the expandable data integration and processing capabilities

described above capture the JITAI-design-related requirements driven from existing

resources.

Validating the JITAI design capabilities in real-world case study: The JITAI design

capabilities have also been validated in the POWER2DM Project. The objective of

POWER2DM is to develop and validate a personalized self-management support sys-

tem for diabetes patients. In the project, computer scientists, behavioral psychologists

and internists have collaboratively come up with a set of JITAIs addressing diabetes

patients on different behaviors including blood glucose monitoring, exercising, med-

ication adherence and carbohydrate monitoring. Appendix E presents example JITAI

definitions in relation to these behaviors.
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7.2 Simulated Case Study

A simulation testbed for simulating the treatment and self-management process is laid

out to validate the personalization of intervention delivery strategies. Considering the

domain of the likely real-life case study, the simulation concepts are related to the

diabetes disease, if not generic. The testbed is composed of three main concepts to be

simulated namely an action plan, JITAIs and personas. Care process simulations are

performed for four personas with differentiating conditions related to the simulated

concepts. The aim is to show that the JITAI personalization algorithm captures the

persona-specific conditions and adapts the intervention delivery accordingly. Details

about the simulated concepts are in the subsequent sections.

7.2.1 An Imaginary Action Plan

A simple action plan is introduced driven by the targeted real-life case study. In this

respect, the aim is to make the diabetes patients form habit for measuring blood glu-

cose levels repetitively. Specifically, the action plan includes only a single activity,

which is blood glucose measurement that should be performed before each meal dur-

ing the day. This means that it is expected that blood glucose measurements will be

performed 3 times a day throughout the simulated care process.

A fixed intervention delivery strategy: Driven by this action plan, a fixed interven-

tion delivery strategy is defined as a baseline algorithm against which the results of

the proposed approach will be compared. Since the study proposes improvements in

the scope of the opportune-moment-identification model only, the fixed intervention

delivery strategy has implications only on this model. Specifically, the intervention-

selection model selects interventions as introduced before. That is it employs the RL-

based learning mechanism. On the other hand, concerning the opportune-moment-

identification model, delivery times of the interventions are always fixed in the fol-

lowing way: Interventions are sent at 9:00, 13:00 and 20:00 o’clocks only if a per-

son has not engaged with the intervention and has not performed the behavior yet.

Considering the way the opportune-moment-identification works, this means that the

Deliver_Intervention action is consideredat each decision point until the engagement
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happens or behavior performed.

7.2.2 An Imaginary Set of Interventions Identified for the Targeted Behavior

It is expected that intervention designers / behavior scientists would configure a set of

interventions to achieve the expected outcomes of the care program. The algorithms

is supposed to learn personal preferences on these interventions. In this respect, three

types of intervention are configured such that two of them are used for reminding

the behavior and the third one is used for motivation. Therefore, only the reminder

interventions are applicable in a state where reminding the behavior is targeted. On

the other hand, only one motivational intervention is applicable where the targeted

support is about motivating. Please refer to Fig. 5.1 and Fig. 3.1 that show how

interventions with different categories are distinguished. Targeting the blood glu-

cose monitoring behavior, three JITAI instances, each of which implements a specific

behavioral change technique (BCT) as described in the CALO-RE taxonomy, are de-

fined. Below, distinguishing characteristics of these three interventions are presented

with respecto to their JITAI components. Furthermore, Appendix F shows their in-

stantiation via the proposed design mechanism.

• Intervention-1 Prompting self-monitoring of behavior: The first intervention is a

standard reminder. Having the reminder category, the intervention is supposed

to be sent within the period during which the activity is supposed to be per-

formed.

• Intervention-2 Reminding with comparing with others: This is also a reminder

intervention. While reminding the activity, it also motivates the person by pre-

senting a comparison with others in terms of performance of the targeted be-

havior. This intervention has the same decision rules with the previous one. So,

both will be considered as eligible interventions at the same decision points.

• Intervention-3 Praising the performed behavior: This one is a motivational inter-

vention complimenting the person on successful performance of the planned

behavior. It is associated with three decision rules representing the achievement

of the monitored goal in daily, weekly and monthly timescales respectively.
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Meeting only one of them is sufficient for making this intervention eligible for

delivery.

7.2.3 Persona Simulation

Four distinguishing dimensions are considered for the simulated people. The first one

is the habit formation, which is an indicator of the strength of automaticity of per-

forming the targeted behavior without external intervention. As described in detail

in Sec. 5, an evidence-base habit formation model has been integrated to simulate

habit-related concepts in a theoretically valid way. According to the model, forming

habit takes varying durations for different people as the model is instantiated with

person-specific values. The second dimension is daily activities of people. Daily ac-

tivities vary for each individual and they have an impact on responding to a delivered

intervetion and performing the actual behavior. A concept called activity timeline is

introduced to represent all the daily activities of a person during the day from wake

up to sleep. Using the activity timelines, activities for each simulated person are

generated in a randomized way. The third dimension is reactions to the delivered

interventions, which is affected by the suitability of daily activities concerning the

engagement with interventions as well as preferences of people on specific interven-

tions types. The last one is the actual behavior performance. It is determined by the

prediction on remembering the behavior by the habit formation model and suitability

of the daily activity for performing the behavior.

The aforementioned four distinguishing factors are configured for four personas via

several rules and conditions. The learning algorithm is expected to adapt the inter-

vention delivery strategy in a way that captures the varying configurations of these

simulation parameters. Details about the persona-specific configurations of the simu-

lation parameters are presented in the subsequent sections.

7.2.3.1 Configuring the Habit Formation Model

The habit formation model had been summarized in the preliminaries section stat-

ing that the model needs two external inputs for its initialization, which are be-
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havior frequency and commitment intensity. Considering that both parameters can

take values between 0 and 1, the following values are set to 0.2, 0.4, 0.6 and 0.8 for

Person − 1, P erson − 2, P erson − 3 and Person − 4 respectively. Having a rel-

atively higher commitment intensity is an indicator of giving more importance to or

having more desire for the targeted behavior. From the opposite perspective, having a

relatively less commitment intensity might indicate that a person would be unwilling

to perform the behavior without expecting long-term benefits. It might also be the

case that the person might be finding the behavior difficult or demanding [102, 103].

For simplicity, the initial behavior frequencies are initiated with the corresponding

person’s commitment intensity value.

7.2.3.2 Simulating Daily Activities

Daily activities are simulated via activity timelines. The aim of having such timelines

is to simulate states that are (or not) suitable for engaging with interventions and

to simulate states that are suitable (or not) for performing the activities described in

action plans. A timeline is a placeholder for a sequence of activities to be performed

throughout the day. Timelines are populated with predefined activities, with a fixed

order, that can be semi-randomized for each person for each simulated day. The semi-

randomization is realized in the following way: Firstly, a subset of the activities are

selected among the initial complete set activities. Then, each activity is associated

with a start time and duration. The sequence of activities differ for each learning

episode, i.e. a simulated day, and from person to person. Each activity contains

information regarding the time, location, physical activity, emotional status and phone

screen status of the person. An example activity is presented in Table 7.1, containing

possible values for the activity parameters (middle column) and specific instantiations

of the parameters (right column). Emotional status is selected from a predefined set

of options with a certain probability. According to the example, the person would

have neutral emotional status with a probability of 70%. Most of the time, an activity

does not have a fixed start time, but has a relative one depending on the duration of

the previous activity. The duration is also not fixed. In the example, the duration of

the activity can be between 30 minutes and 60 minutes.
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Table 7.1: Elements of a daily activity

Daily Acitivity

Element

Possible Values Example Value

activity descrip-

tion

<Verbal description of the activity> checking daily news

and e-mails before

start working

location Home / Office / Outside OFFICE

physical activity Sedentary / Walking / Running / In-

door_Activity / Driving

Sedentary

phone usage Active / Screen_Off Active

emotional status Emotional status: Neutral / Relaxed /

Angry / Stressed

Neutral = 70%

Stressed = 15%

Angry= 15%

start time A relative time or fixed time point Relative

start time varia-

tion

A contextually (considering the daily

activities) appropriate number

0

duration A contextually (considering the daily

activities) appropriate number

45 minutes

duration varia-

tion

A contextually (considering the daily

activities) appropriate number

15 minutes

behavior perfor-

mance suitabil-

ity

Yes / No Yes
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Table 7.2: Preferences associated to simulated personas on intervention types

Intervention-1 Intervention-2 Intervention-3

Person 1 0% 50% 10%

Person 2 20% 80% 80%

Person 3 80% 10% 80%

Person 4 50% 50% 50%

7.2.3.3 Simulating Reactions to Interventions

Personal preferences on specific intervention types and suitability of the daily activity

are the determinants of engaging with an intervention. Personal preferences on inter-

vention types are simply represented with a percentage that is used as the probability

of engaging with an intervention. Persona-specific preferences on intervention types

are given in Table 7.2. The percentages are basically a reflection of personal traits on

appreciation of the interventions by the person. For example, an intervention content

may include social interaction with other people, which may not be preferred by the

person. The values have been selected heuristically to be able to observe contrasting

values based on differing preferences of the personas on the same intervention types.

These probabilities are considered only if the current daily activity is also suitable for

checking the phone and engaging with the intervention. In this respect, three of the

daily activity parameters namely emotional status, physical activity status and phone

screen status are used as determinants for engaging with an intervention. Specifically,

people are assumed to engage with an intervention when they are sedentary, have a

neutral / relaxed emotional mood and when their phone screen is on.

7.2.3.4 Simulating Behavior Performance

Whether the person would perform the behavior or not is actually the outcome of the

habit formation model. If it is positive, it is assumed that the person would perform

the behavior during the activity. Some of the activities included in the activity time-
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lines are marked as as suitable for performing the behavior. For this purpose, the

behavior_performance_suitability parameter is set accordingly as seen in Table 7.1.

7.2.4 Hypotheses

Driven by the benchmarked parameters of simulated personas, the following hypothe-

ses are introduced as conditions for which the JITAI personalization algorithm is

expected to adapt intervention delivery accordingly. For each hypothesis, the corre-

sponding simulation parameters leading to the hypothesis are also presented:

• Varying parameter: According to the habit formation model referred in the current

study, people with higher commitment intensities perform the behavior more

frequently and reaches maximum habit strength faster.

Hypothesis 1: The proposed approach should deliver interventions throughout

a longer period of time as the commitment intensity associated with a persona

decreases.

• Varying parameter: A well-formed habit (i.e. automatic performance of the new

behavior) indicates that the person performs the behavior with less dependence

on extrinsic reminders and motivators.

Hypothesis 2: The number of delivered interventions should be inversely pro-

portional with the perceived habit strength and become more and more inter-

mittent throughout the simulated care process.

• Varying parameter: As a reflection of their individual differences and preferences,

the simulated people favor different intervention types.

Hypothesis 3: The ratio of selected interventions should be proportional to the

preferences of the persons.

• Varying parameter: Daily activities of each person are generated semi-randomly

based on personal activity timelines. Therefore, in addition to that each per-

son has distinct activities during the day, the activities for the same person vary

among the simulated days because of the randomness included in the activity

generation mechanism. Varying daily activities determine both when the be-

havior could be performed and when the intervention (i.e. the mobile phone
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notification) can be engaged with.

Hypothesis 4: The proposed approach should deliver interventions respecting

to people’s daily life patterns by respecting the timing and suitability of activi-

ties for engaging with the intervention and performing the behavior.

7.3 Results

In the light of the experimental setup presented in the previous section, the results

are presented from two main perspectives. First, concerning the suitability of the

proposed approach for personalization of JITAIs, how the experiment results validate

the proposed hypotheses is discussed. It is claimed that the proposed approach adapts

intervention delivery strategy in terms of the adaptivity (i.e. type and frequency of

interventions) and just-in-timeness (i.e. timing of interventions) aspects. Second, raw

results from the simulated experiments are presented intending to show improvements

beyond the base RL algorithm and the jump-start challenge being addressed by the

proposed approach. The results are analyzed with respect to the evaluation metrics

commonly used in the transfer learning domain.

Eight experiments are conducted such that each experiment contains 100 trials and

each trial contains 100 learning episodes. The first four experiments are configured

for Person-1, Person-2, Person-3 and Person-4 respectively. They do not utilize the

State Classifier as it has not been trained yet. The aggregated data throughout the first

four experiments are used to train the State Classifier. The fifth to eighth experiments

are conducted again for Person-1, Person-2, Person-3 and Person-4 respectively, but

now utilizing also the State Classifier. All the results presented below are average

results obtained from the experiments 5-8. The results of the individual experiments

are used in cases where person-specific results are presented. Otherwise, the data of

the experiments are merged, and the results are compiled out of the merged data.

7.3.1 Validation of Hypotheses

Hypothesis-1 validation: The commitment intensities are set in an increasing manner

from Person-1 to Person-4. This implies that the time required to form habit for the
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targeted behavior should be the shortest for Person-4 and the longest for Person-1.

The left-y versus x-axis of Fig. 7.1 represents the number of interventions delivered

in each episode. The dappled lines with square shapes show the values obtained for

this metric. As hypothesized the number of interventions declines to vicinity of zero

the latest for Person-4, i.e. the algorithm delivers interventions for a longer time for

Person-4 compared to other persons. The length of the intervention delivery period

decreases for each person inversily proportional to the commitment intensity values

set for the associated personas.

Figure 7.1: Episode vs intervention count vs habit strength plot

Right-y axis versus x-axis of Fig. 7.1 represents the simulated habit strength per

episode. The time elapsed to reach the maximum habit strength for each person is

also in consistency with the commitment intensities set previously such that Person-1

reaches the latest and Person-4 reaches the earliest. Considering the length of the

duration to reach the maximum habit strength, the values obtained in our study are

congruent with the results obtained by Lally et al. [83]. They develop an habit for-

mation model on empirical data regarding the performance of targeted behavior and

habit strength perceived by the subjects. Their model outputs the duration for form-
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ing habit on the targeted behaviors where behaviours are in varying complexities.

According to Lally et al., the duration for habit formation varies from almost a month

to a few months where the complexity of behavior is the main determinant. In this

study, only one behavior type is considered. However, as stated earlier, studies show

that the same behavior might be perceived in varying difficulties by different peo-

ple. Considering all these factors, it is argued that the simulation is realistic in terms

of generation of habit strength values i.e. performing the targeted behavior without

needing extrinsic reminders.

Hypothesis-2 validation: Looking again at the dappled lines of Fig. 7.1 showing

the number of delivered interventions, the averages are relatively high in the start-

ing phase of the learning process for each persona. Although there are fluctuations,

during this initial phase, it can be observed that the average numbers of delivered in-

terventions for Person-1, the dapped blue line, are higher than the others most of the

time. That is, Person-1 who has the lowest commitment intensity receives the highest

number of interventions. Furthermore, as shown in Fig. 7.2-a, the total number of

interventions delivered for Person-1 is higher than the rest. After a while in Fig. 7.1,

the number of delivered intervention decreases to vicinity of zero. As envisioned by

the second hypothesis, the number of delivered interventions reacts to the changing

habit strength. The number of delivered interventions is inversely proportional with

the perceived habit strength. It can also be observed that the change rate of inter-

vention throughput of the algorithm is inversely correlated with the change rate of

the simulated habit strength. That is, as the increase rate of habit strength increases,

decrease rate of the number of intervension increases in similar amounts.
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Figure 7.2: Person vs intervention type ratio plot

Hypothesis-3 validation: Before validating the obtained results against the simula-

tion configurations and hypotheses, it should be reminded that the three simulated

intervention types are clustered into the two disjoint sets according to their cate-

gories. That is, only the interventions of the same set can be alternatives to each

other. Therefore, the results should be evaluated independently for each set. Being

reminder interventions, Intervention-1 and Intervention-2 belongs to the reminder set,

whereas Intervention-3 belongs the motivation set.

To be able to validate the reflection of preferences of different persons on the same

intervention, the intervention ratios i.e. Fig. 7.2-b should be analyzed. The ratios ob-

tained for Intervention-1 reflect the specific preferences i.e. 0%, 20%, 80% and 50%

for Person-1 to Person-4 respectively. However, Intervention-2 and Intervention-3 do

not reflect the initial preferences. This is because, actually, the preferences of an indi-

vidual person on intervention types do not sum up to 1. As previously stated earlier,

each specific preference value is used as a probability when the user is presented with

the associated intervention type. For example, Person-1 never reacts to Intervention-1

or Person-2 reacts to Intervention-2 or Intervention-3 80% of the time upon encoun-

tering with one of these interventions. What should be evaluated is the compari-

son of intervention ratios among each distinct set per individual basis. From this

point of view, ratios of Intervention-1 and Intervention-2 reflect the initial prefences

for all persons. For example, the ratio of Intervention-1 ratio is higher than the ra-

tio of Intervention-2 for Person-3, considering that preferences of Person-3 is 80%
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and 10% for Intervention-1 and Intervention-2 respectively; ratio of Intervention-1

is higher than the ratio of Intervention-2 for Person-3; ratios of Intervention-1 and

Intervention-2 are almost equal to each other.

At the first glance, though, it can be said that there are inconsistencies between pref-

erences and the obtained results. For example, Person-1 has no interest at all for

Intervention-1 and little interest for Intervention-3. But, the results show that the ra-

tios for Intervention-1 and Intervention-3 are 15% and 40% respectively. In case of

Intervention-1, the main reason of the inconsistency is random selection of interven-

tions in unknown states i.e. the states that have not encountered before by the learning

agent. That is, the learning agent make random decisions on selecting Intervention-

1 or Intervention-2. This problem applies also to Intervention-3, which is the only

alternative in the relevant intervention set. In addition to that, the algorithm favors

intervention delivery regardless of its type, in case the person is predicted not to per-

form the behavior. In such cases, any type of intervention is considered as a cue

remanding the behavior.

Hypothesis-4 validation: According to the design of the simulation, intervention de-

livery and behavior performance do not necessarily happen at the same time. Most

of the time there is a temporal difference between the two. Fig. 7.3 shows the ratio

of interventions that fall into pre-defined ranges of such temporal differences. An

individual range is represented at with a bar in the plot. Overall, the figure validates

the hypothesis such that the ratio of delivered interventions decreases as the time dif-

ference increases except the 31-60 minute bar. For 74% of the interventions, the time

difference is not more than 30 minutes. The violation of the pattern arises from the

daily activties that are suitable for intervention delivery but not behavior performance.

This is actually an indicator of the algorithm’s capability on learning the personalized

patterns.

Furthormore, the results also capture the conditions on persons’ contextual parame-

ters set for the intervention engagement. Specifically, interventions have been sent in

suitable conditions such that in physically sedentary mode; in a convenient emotional

mode and when the phone screen is on 76%, 80% and 69% of the time respectively.
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Figure 7.3: Difference between JITAI delivery and behavior performance times

7.3.2 Improvements on the Base Algorithm

In this section, results both for the intervention-selection and opportune-moment-

identification models are presented. Concerning the former model, results obtained

with the base RL algorithm, i.e. Q-Learning, are presented. Based on the results, it

is argued that the base algorithms converge sufficiently fast considering the relatively

low complexity of the model. Then, comparative results obtained by the opportune-

moment-identification model are presented. The base RL algorithm is compared with

the two extended versions using the modified eligibility traces and transfer learning

methods. It is argued that the extended versions yield better results than the base

algorithm.

7.3.2.1 Results for the Intervention-Selection Model

Fig. 7.4 shows the raw rewards aggregated per episode per person. The plot shows

that the rewards correlate with the habit strength plot as depicted in Fig. 7.1, indicat-
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Figure 7.4: Rewards per episode in the intervention selection model

ing that the perceived habit strength is a strong determinant of the obtained rewards.

This is an expected effect as the algorithm is expected to make the intervention deliv-

ery more intermittent as the perceived habit strength increases.

As can be seen in the figure the total reward amount reaches a plateau before the

trial ends. This is an acceptable convergence time considering the targeted specific

domain. For example, for diabetes, although specific studies claim that two-weekly

doctor visits yield faster achievement of targeted clinical outcomes [104], standard-

based guidelines recommend 3-monthly or 6-monthly visits [98]. Therefore, it is

argued that achieving a convergence in approximately 100 episodes is satisfactory in

the scope of this study.

Intervention selection model deals with adaptation of intervention delivery with re-

spect to frequency and type of interventions. Concerning the frequency aspect, it has

been already shown that the number of delivered interventions is adjusted based on

people’s perceived habit strength in Fig. 7.1. Fig. 7.2-a also shows that the personal

preferences have been reflected on the selected intervention types. Complementary
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to these results, Fig. 7.5 shows the reaction ratio, representing the ratio of number of

interventions engaged with to the total number of delivered interventions per episode

per person. The results show that the reaction ratio is around 50% in average for

all personas during periods where interventions are actively delivered. The reaction

ratios point out potential improvements for the intervention-selection model. In the

discussion section, some potential improvements are discussed to obtain better re-

sults.

Figure 7.5: Ratio of engaged interventions

Complexity of the Model: These results have been obtained using the standard Q-

Learning algorithm. As an implication of the complexity of the model, it should be

noted that the total number of distinct states visited by the learning agent is 96 in aver-

age among the trials. As will be seen in the next section, this number is much higher

for the opportune-moment-identification model, which necessitates improvements on

the base algorithms.
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7.3.2.2 Results for the Opportune-Moment-Identification Model

In this section, results obtained for the opportune-moment-identification model are

discussed with respect to the performance metrics introduced by the transfer learning

methodology, namely: jump-start, asymptotic performance, total reward, transfer

ratio and time-to-threshold.

Fig. 7.6 addresses all these metrics simultaneously. The figure shows the rewards

aggregated per episode. Rewards are shown for 3 versions of the learning algorithm

utilized by the opportune-moment-identification model. The green line shows the re-

sults for the base Q-Learning (QL) algorithm. The blue line shows the results for the

base algorithm improved with the selective eligibility traces (QL-SET). Lastly, the red

line shows the results for the base algorithm improved with both the selective eligi-

bility traces and transfer learning mechanism (QL-SET-TL). Furthermore, the yellow

line shows the rewards obtained via the fixed delivery schedule.

Figure 7.6: Rewards collected per episode in the opportune-moment-identification

model
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The blue line laying over the green one, indicates a better jump-start achieved by the

selective eligibility traces compared to the base algorithm. Nevertheless, the red line

outperforms the other two with a notable highest jump start at the beginning of the

learning process. The area under the lines correspond to the total rewards collected by

each algorithm. According to the figure, QL-SET-TL collects more reward than the

others throughout the experiment. This also implies that QL-SET-TL is more effective

than the others considering the ratio of number of engaged interventions to the total of

number interventions sent. With respect to the asymptotic performance, QL-SET-TL

has a higher course than the other two during the active intervention delivery periods.

Concerning the time-to-threshold metric, no specific threshold is defined. However,

it can be said that all versions stabilize almost at the same time. Lastly, the area

between the red line (QL-SET-TL) and blue line (QL-SET) correspond to the rewards

that were collected thanks to the transfer learning. In this respect, considering the

active intervention delivery period, the area between the blue and red lines indicate

a notable contribution of transfer learning on the collected rewards. The results also

show that the fixed delivery schedule performed the worst compared to all the versions

of the RL-based algorithm.

The results presented in Fig. 7.6 shows that QL-SET-TL performs the best at the

beginning of the learning process. In this respect, Fig. 7.7 shows the ratio of actions

determined by State Classifier versus the agent’s internal policy. The State Classifier

selects most of the actions at the beginning of trials. The number of actions selected

by the agent’s internal policy increases gradually as the agent itself learns more and

more about its environment.
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Figure 7.7: Ratio of actions per action selection mechanism

Complexity of the Model: The number of distinct states that the agent visits in

this model is 2596 in average, indicating a quite larger state set compared to the

intervention-selection model. Although the complexity of the model has increased, it

still performs well considering the timing differences between the intervention deliv-

ery and behavior performance times as depicted in Fig. 7.3. Also, despite the higher

complexity of the model, QL-SET-TL obtains relatively higher rewards. These results

substantiate the role of transfer learning on selecting better actions.

7.3.3 Real-Life Case Study

In addition to the simulated case study, a small-scale real-world experiment has also

been conducted, where a preliminary version of the opportune-moment-identification

algorithm was in place to break the sedentary behaviors of office workers during the

working hours [91]. In that study, though, SARSA[105] as the base RL algorithm

was used instead of Q-Learning.
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Table 7.3: Real-world experiment results

Control-

fix

Control-

SARSA

Focus

Average reaction time in seconds 2252 500 712

Total number of engaged interventions 10 67 72

Ratio of engaged interventions to the total number

of interventions

3% 23% 38%

Average number of daily interventions (per user) 4 7 2

17 office workers have been recruited to make them more physically active during

their work life. Specifically, the aim was to motivate them to take a break via in-

terventions in the form of mobile app notifications. The mobile app collects their

contextual data (wi-fi, activity and phone screen status) during the day. Upon an

update on one of these parameters, the algorithm decides in real time to deliver an

intervention or not. It updates its internal policy by processing the user reactions that

could be: discarding an intervention, seeing the intervention details or clicking one of

the two buttons (positive / negative) located in the intervention detail page indicating

their willingness to perform the suggested activity.

The participants are divided into three groups namely; control-fix, control-sarsa and

focus. Control-fix group receives interventions 4 times a day such that at least one

hour after starting to work (morning and afternoon) and at least one hour after the pre-

vious intervention. Control-SARSA and focus groups receive interventions dynam-

ically based on the decisions of SARSA and SARSA-SET-TL respectively. Results

obtained from an almost 2 weeks of experiment are presented in Table 7.3.

As expected, even for this small, initial experiment significantly better results have

been obtained by the proposed approach. Both, SARSA and SARSA-SET-TL yield

better results than the fixed schedule considering the number of engaged interventions

and their ratio to the total number of interventions sent. Reaction times for the fixed

schedule is also quite high compared to the dynamic delivery mechanisms indicating

that dynamic algorithms were better in adjusting the timing of interventions. Com-
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paring the base SARSA and SARSA-SET-TL, the latter outperforms on the ratio of

engaged interventions, validating the proposed improvements on the base algorithms.

The reaction time is higher for SARSA-SET-TL, as if it performed worse in terms of

timing of interventions. However, the SARSA algorithm sends much more interven-

tions than SARSA-SET-TL, that are probably seen by users earlier. This assumption

is consistent with the lower engagement ratios of SARSA.

7.3.4 Validation of the Reward Function Instantiations

Reward functions of the RL models are critical as they guide the learning agent in

the correct direction by generating appropriate amount of rewards considering the

appropriateness of the action taken. Therefore, instantiation of the reward values are

critical in terms of representation of the desirability of actions. Reward constants

should be set considering the Learning rate parameter of RL systems, which is used

to adjust the impact of recently observed rewards on the accumulated knowledge (Eq.

3.2). As the learning rate increases, the impact of the recent reward also increases

and it affects the internal policy more. According to the way the learning agents are

supposed to behave, some conditions in the reward functions are desired and some of

them are not. While specifying reward values for each condition zero (0) has been

accepted as the neutral point and the magnitude of the rewards have been determined

according to the desirability of the conditions. However, although specific values

have picked as reward values, they are not definitive and they can be changed by

shifting the neutral point and scaling the values as long as the relations among the

reward values are preserved in terms of the magnitude and sign of rewards. In the two

subsequent sections, the details about this approach are presented along with some

experimental results obtained with varying reward values.

7.3.5 Validation of the Opportune-Moment-Identification Model Reward Func-

tion

The reward function of the opportune-moment-identification model includes two equa-

tions (Eq. 5.1 and Eq.5.2), both of which include 3 constants. Eq. 5.1 is conditioned
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on two variables namely the action taken (omi_at) and reaction to the delivered in-

tervention (reactedt). Its main aim is to produce a reward indicating whether the

state where an intervention is delivered is an appropriate state for engaging with

the intervention or not. Thus, considering the variables included, the case where

an intervention is delivered as an action and the person’s reaction to the interven-

tion is positive i.e. (omi_at = Deliver_Interventionandreactiont = true) is

desired. Therefore, in case an intervention is delivered but the reaction is negative

i.e. (omi_at = Deliver_Interventionandreactiont = true), a relatively smaller

reward should be generated. The relative difference between the rewards generated

for these two cases has the following implications. From a domain-specific perspec-

tive, it shows the importance given to the two cases. In this manner, discovering a

state that is appropriate for engaging with an intervention is more critical. However,

there might be cases that are appropriate for engagement but no engagement occurs

because of the randomization factors. Such cases might be observed successively and

in this situation the burden created on the person is represented by multiplying neg-

ative reward with the number_of_attemptst variable. If the sequence of such cases

gets longer, the magnitude of the negative reward increases. Thus, to neutralize or

even revert the incorrect knowledge learnt in such situations quickly, sent_reacted

value has chosen relatively higher (1000). Nevertheless, it could have been chosen

in different amounts resulting with a similar performance as long as it would be the

largest value among the rewards specified for the cases of the equation. Fig. 7.8,

specifically (a), (b), (c) and (d) parts, show the rewards obtained for Person-1 for the

values 50, 500, 2500 and 10000 respectively while the other reward values are fixed.

Although the results obtained with 500 and 2500 values provide similar results in

terms of learning performances of the benchmarked algorithms. The pattern changes

towards to the edge cases. In case an even larger reward is specified, the learning per-

formances of QL-SET and QL-SET-TL overlap as the effect of negative cases become

negligible. On the other side, setting a smaller value for sent_reacted weakens its

effect. As a result, since the number of undesired actions taken by QL-SET is fewer

compared to QL-SET-TL, performance plots of these two algorithms diverge and the

amount of rewards obtained by QL-SET get closer to the base QL. Modifying only the

sent_not_reacted reward creates just the opposite effect created by sent_reacted.
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Figure 7.8: Rewards obtained with the modified the sent-reacted variable in Eq. 5.1

The intiutive choice for the not_sent reward specified for the cases with no inter-

vention delivery would be 0 since there is no feedback available from the person.

However, in this case, the learning agent gets stuck at a local minima by always se-

lecting the Deliver_Nothing action. In order to prevent this scenario, a nominal

negative reward is generated to force the agent take the Deliver_Intervention after

some time.

The second equation generates a value to fine-tune reward generated for the desired

case. Basically, the temporal difference between the intervention delivery and be-

havior performance is considered. The aim is to have this difference as smallest as

possible to increase the effectiveness of the intervention. Therefore, the values are

picked in a decreasing manner as the difference gets higher. Providing that this pat-

tern is preserved while specifying reward values in to scope of this equation, the

results are also maintained. Fig. 7.9, specifically (a), (b), (c) and (d) parts, show the

results obtained when the reward values are multiplied by 10, 25, 50 and 125. As

can be seen from the figure, the results obtained for the first three scales reflect the
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initial patterns, even though the lines get closer as the scaling increases. However,

increasing the scale even further causes all the results to overlap. This is because the

rewards generated in the first equation become negligible.

Figure 7.9: Rewards obtained with varying scales of temporal rewards

7.3.6 Validation of the Intervention-Selection Model Reward Function

Similarly, the reward function of the intervention-selection model is also a conditional

equation (Eq. 5.3) depending on 3 variables namely delivered action (is_at), remem-

bering the behavior (remember_behaviort) and reaction to the delivered intervention

(reactedt). The reward values for the conditions of this equation have basically iden-

tified based on the intervention selection policy that we want the learning agent to

come up with.

Considering the habit formation model, situational cues should be provided to peo-

ple if they forget to perform the behavior. Thus, the cases where the person does

not remember to perform the behavior i.e. (remember_behavior = false) is crit-

ical. Among the cases satisfying this main condition, the case where no interven-
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tion is delivered is the most critical one because it leads to non-performance of

the behavior at all. Therefore, a relatively large, negative reward is specified for

this case (-50). There are two more cases where the person does not remember

to perform the behavior. These two remaining cases include intervention delivery

(is_at 6= No_Intervention). However, engagement may or may not occur. The case

where an engagement occurs is a desired case so, a positive reward (10) is set for this

case. Since the non-engagement cases are considered as burden on the person, they

are negatively rewarded. However, since the person forgets to perform the behavior,

the reward specified for this case (-5) is larger than the reward specified for the case

where the person remembers to perform the behavior and does not engage with the

intervention (-10).

In the first case of the equation, the person remembers the behavior and also reacts

to the delivered intervention (remember_behaviort = true and reactedt = true).

However, this is still accepted as a burden on the person since s/he does not need to

be reminded. Therefore, the reward is specified as 3 for this case.

Lastly, -1 reward is specified for the case where the person remembers the behav-

ior and no intervention is delivered. Similar to the case of the opportune-moment-

identification mode, there is no feedback available. Therefore, although 0 reward for

this case seems intuitive, in order to prevent getting stuck in a local minima, 1 reward

is specified for this case.

Scaling the reward values all together does not change the algorithm results. Fur-

thermore, similar to the opportune-moment-identification model, the overall reward

patterns are obtained with individually modified reward values as long as the magni-

tude and sign conditions are preserved.
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CHAPTER 8

DISCUSSION

Legitimacy of the approach: The dynamic JITAI personalization mechanism and

multi-dimensional expandability of the JITAI design mechanism are the two innova-

tive characteristics of the proposed approach advancing the state-of-the-art research.

Both characteristics bring opportunities for adoption of the system by various enti-

ties such as mobile/web application vendors in the behavioral health software mar-

ket, public health organizations or other healthcare organizations working on clinical

studies aiming at large scale digital interventions in patient populations.

From a perspective of improved care programs, the proposed approach has a criti-

cal importance. Patients can strive for their health by themselves. In this respect,

behavioral lifestyle patterns are important predictors of health outcomes such that pa-

tients can reduce the risk of chronic diseases by adopting healthier lifestyles. The

evidence is overwhelming that physical activity and diet can reduce the risk of devel-

oping numerous chronic diseases and in many cases even reverse the existing disease

[7]. As introduced earlier, personalized support is a critical enabler of increasing

the adherence to behaviors like physical activity or diet. Therefore, the proposed

algorithm with the capability of adapting itself towards a personalized intervention

delivery strategy is a valuable tool for behavior change programs.

Capturing the rules associated with the simulated concepts: Simulation results have

already been discussed in the previous section by describing how they are aligned

with the hypotheses and how they deviate from the expected results along with the

causes of deviations. As a summary, it is argued that the proposed algorithm is able

to capture the rules that are associated with the simulated concepts.
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Further improvements: Despite the innovative character of the current approach, there

is room for potential improvements. For example, as mentioned earlier, the fluctua-

tions of the intervention counts in Fig. 7.1 happen when the learning algorithm en-

counters with unknown states, i.e. the cold-start problem. Tackling with the cold-start

problem, the evidence formed in various micro-randomized trials[106], measuring the

effect of individual intervention components, or any expert knowledge-based heuris-

tic can be utilized to provide a warm-start for the learning algorithm. An unknown

state might be encountered for example when the person would reach to a certain

habit strength, the highest one, for the first time. Instead of taking random actions

in such cases, the algorithm might employ a machine learning classifier to make an

educated guess or it may simply favor not delivering an intervention in proportion

with the current habit strength. The RL methodology is convenient for integration

of such external knowledge by setting the initial scores of relevant state-action pairs

inside the learning agent’s policy accordingly.

In the scope of this study, only an initial basis has been established concerning the

model parameters that are utilized to capture the personalized patterns in relative

contexts. Therefore, it is not claimed that those are the necessary/sufficient set of

parameters. On the contrary, the models could be enriched with additional contextual

parameters pertaining to environment, mobile phone or person him/herself to repre-

sent the person more accurately. Such an improvement may in turn require further

optimization of the algorithm, e.g. identification of covariant parameters, for its ap-

plicability on the personalized care domain concerning the performance.

Specific to the intervention-selection model, as described earlier, the intervention-

selection model is mainly based on the mathematical habit formation model. Al-

though, currently a model-free approach has been implemented, the model can be

designed as a model-based system. This enables training of the value-function of

the RL environment via intermediate simulations before taking an action. Even, the

intervention-selection model could be split into two separate models such that the first

one would learn on delivering an intervention or not for a specific activity prescribed

in the action plan. Note that this differs from the opportune-moment-identification

model, which consider momentary parameters to deliver the selected intervention or

not. The second model would just learn the preferences of people on the interven-
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tion types. This might lead to better results considering the selection of interventions

types.

Besides the improvements on the learning models, the JITAI design capabilities could

be improved with additional intervention types or content presentation modalities.

Appendix A presents all the currently available constructs of the design approach.

Albeit being a simple system concerning the limited number of built-in constructs

targeting the POWER2DM case study, the design mechanism lays out the basis to

expand the system with more constructs as needed by the targeted health problem.

A limitation of the study is the limited scope of the simulation. A limited number

parameters are considered as differentiating factors in the persona simulation includ-

ing preferences on intervention types, commitment intensities and daily activities.

However, a more realistic simulation could be achieved by also considering factors

like self-efficacy, motivation, prior experience changing the behavior or outcome ex-

pectancies.
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CHAPTER 9

CONCLUSION

The main outcome of this study is a framework that can be utilized for JITAI design

and personalization. The framework can be customized for specific care programs tar-

geting varying health problems and populations. The design mechanism, incorporat-

ing a rule definition language, can be specialized with add-on constructs to conceive

interventions addressing the specific requirements of a care program. The personal-

ization part employs a reinforcement learning based approach to optimize/personalize

the intervention delivery concerning the frequency, type and timing of interventions

dynamically according to the data aggregated for people over time.

The JITAI design mechanism has been validated by providing example JITAI def-

initions where the characteristics of JITAIs are extracted from various relevant re-

sources available in the literature such as clinical guidelines and taxonomies of be-

havior change; and from a real-world case study providing self-management support

to diabetes patients. The personalized intervention delivery mechanism has been val-

idated through simulated and real-life case studies. Although the real-life case study

has been performed with a preliminary version of the personalization algorithm, it

has yielded better results compared to a fixed intervention delivery strategy. In the

scope of simulated case study; action plans, JITAIs and personas, with differentiating

characteristics are simulated. The obtained results show that the personalization al-

gorithm is able to capture the rules associated with the simulated concepts indicating

its potential to be used in real-world settings.

In future studies, the aim is to validate the JITAI personalization mechanism empir-

ically throughout the randomized controlled trial to be carried out in the scope of

POWER2DM with 280 diabetes patients in total[107].
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APPENDIX A

BUILT-IN CONSTRUCTS OF RULE DEFINITION LANGUAGE

A.1 Tailoring Variables

Tailoring variables are data integration and processing modules that respectively pro-

vide the external information to the rest of the system and perform custom analytics

on the integrated data. Below, the built-in contexts included in the current version of

the Rule Definition Language along with their brief descriptions are presented.

• goal: How far the person has reached the default goal associated to a behavior.

This gets one of the enumerated values defined below:

◦ Not achieved the goal (0)

◦ Almost achieved goal (1)

◦ About to achieve goal (2)

◦ Achieved goal (3)

◦ Achieved more than goal (4)

• adherence: Adherence to the behavior. Takes values between 0 and 1, which

means no adherence and complete adherence respectively. A behavior may

have different goals, so may have different adherence calculations. Some of the

examples used in the proposed system are shown below:

◦ adherence: nmeds: Performance calculated according to the number of

medication intakes matched.

◦ adherence: duration: Performance calculated according to the duration of

the physical exercise and what is planned.
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◦ adherence: logging: Performance calculated if the planned meals are logged

succesfully.

◦ adherence: lowcarb: Performance calculated based on the carb intake and

what is planned.

• steps: Step counts.

• stress_level: Enumerated stress values obtained through a 5-valued likert scale

where the values range from none to very high

• time_to_threshold: Indicates the number of steps to reach a pre-defined perfor-

mance level.

A.2 Temporals

Temporal constructs are applied to the contexts to obtain values for a specific period,

peak points or combination of both.

• daily: Daily average value for a given context.

• weekly: Weekly average value for a given context.

• monthly: Monthly average value for a given context.

• best: Best value for a given context.

• worst: Worst value for a given context.

Period-based and peak values can be combined as best-day, best-week, best-month,

worst-day, worst-week and worst-month.

A.3 Placeholders

Placeholders are custom data processing modules of which values can be embedded

in intervention content. They enable designing generic intervention option templates

specific to a Behavioral Change Technique (BCT) such that placeholders could be
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instantiated with a dynamically calculated value based on the person-specific data.

The followings are the currently available placeholders:

• streak_value: Calculates the number of successive achievement of a goal. It is

used together with the streak_temporal placeholder and the calculation is done

based on the temporal constraint specified in streak_temporal placeholder.

• streak_temporal: Temporal period for which the goal is reached. It can take

months, weeks, days and times values.

• goal_temporal: Temporal period associated with a goal.

• goal_remaining: Number of remaining goals.

• action_time: Planned time for the activity specified in the action plan.

The rest of the placeholders are related to comparison of the last goal performance

of the person with either the average of the previous performances of the person

him/herself or performance of the rest of the population.

• comparison_temporal: Temporal period for the comparison.

• comparison_value: The difference between the last value of a goal and compared

value.

• comparison_population_percentage: Percentage of the population, which the

person is better than considering the goal performance.

• comparison_population_number: Number of people, which the person is better

than concerning the goal performance.

The following 4 placeholders are also related to comparison of the current goal per-

formance. But this time, the calculations are performed assuming that the person

performs the behavior in the next opportunity. The aim is to motivate people by

showing how the goal performance improves when the behavior is performed.

• comparison_simulation_temporal:
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• comparison_simulation_value:

• comparison_simulation_population_percentage:

• comparison_simulation_population_number:

A.4 Temporal Index

Indices allow data retrieval for contexts for a specific period in the past.

• If no index is associated with a context, the latest value of the context is considered

◦ e.g. goal = ACHIEVED means, if the person reaches the latest goal

◦ e.g. goal.daily = ACHIEVED means, if the person reaches the goal today

◦ e.g. goal.monthly = ACHIEVED means, if the person reaches the goal this

month

• If index is positive, it means the comparison should be satisfied for each of the

latest values specified by index

◦ e.g. goal[4] = NOT ACHIEVED means, if the person does not achieve

his/her goals for latest 4 actions

◦ e.g. stress[7] > NORMAL means, for the last 7 stress recordings, the person

has higher-than-normal stress levels (i.e. HIGH or VERY HIGH)

◦ e.g. goal.daily[3] = ACHIEVED means, if the person achieves his/her daily

goals for the last 3 days

• If index is negative, it means the comparison should be satisfied for the temporal

given by the index itself

◦ goal.weekly[-1] = NOT ACHIEVEDmeans, if the person does not achieve

his/her last week goal

◦ stress.monthly<stress.monthly[-2] means, if the average stress of the per-

son’s stress in this month is less than 2 months-before average
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A.5 Logical Operators

Rule conditions can be joined by “and”s; where both of them should be satisfied

• e.g. goal.monthly = 2 and goal.montly[-1] = 2 means if the person reaches his/her

goal both this month and last month

Rules can also be specified sequentially in a comma-separated way. In this case, they

are evaluated sequentially. Considering the following example, first, the monthly goal

will be checked and then the weekly and finally the daily. The subsequent rules are

tested only if the former ones fail.

• e.g. ["goal.monthly = 3", "goal.weekly = 3","goal.daily = 3"]

A.6 Behavior Change Techniques

Communication Engine currently implements 4 literature-driven behavior change tech-

niques as listed below:

• General reinforcement

• Positive comparison with self

• Positive comparison with others

• Goal / action plan monitoring
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APPENDIX B

ANALYSIS OF CALO-RE TAXONOMY

Table B.1: Implementation feasibility for the BCTs of CALO-RE taxonomy

BCT number

in the taxon-

omy

BCT Name Implementation

Feasibility

1 Provide information on consequences of be-

haviour in general

Yes

2 Provide information on consequences of be-

haviour to the individual

Yes

4 Provide normative information about others’

behaviour

Yes

5 Goal setting (behaviour) Yes

6 Goal setting (outcome) Yes

7 Action planning Yes

8 Barrier identification/Problem solving Yes

9 Set graded tasks Yes

10 Prompt review of behavioural goals Yes

11 Prompt review of outcome goals Yes

12 Prompt rewards contingent on effort or

progress towards behaviour

Yes

13 Provide rewards contingent on successful be-

haviour

Yes

Continued on next page
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14 Shaping Yes

16 Prompt self-monitoring of behaviour Yes

17 Prompt self-monitoring of behavioural out-

come

Yes

18 Prompting focus on past success Yes

19 Provide feedback on performance Yes

20 Provide information on where and when to

perform the behaviour

Yes

21 Provide instruction on how to perform the be-

haviour

Yes

22 Model/ Demonstrate the behaviour Yes

23 Teach to use prompts/ cues Yes

26 Prompt practice Yes

27 Use of follow up prompts Yes

28 Facilitate social comparison Yes

31 Prompt anticipated regret Yes

32 Fear Arousal Yes

33 Prompt Self talk Yes

34 Prompt use of imagery Yes

35 Relapse prevention/ Coping planning Yes

36 Stress management/Emotional control training Yes

38 Time management Yes

3 Provide information about others’ approval No

15 Prompting generalization of a target behaviour No

24 Environmental restructuring No

25 Agree behavioural contract No

29 Plan social support/ social change No

Continued on next page
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30 Prompt identification as role model/ position

advocate

No

37 Motivational interviewing No

39 General communication skills training No

40 Stimulate anticipation of future rewards No
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APPENDIX C

EXAMPLE INTERVENTION DEFINITIONS DRIVEN BY THE CALO-RE

TAXONOMY

Two intervention definition examples are presented corresponding to set graded tasks

and relapse prevention / coping planning techniques introduced in the CALO-RE tax-

onomy. For each example, a set of properties are provided including: a description

explaining the purpose of the intervention; decision points specifying the moments

when the interventions would be considered for delivery; behavior targeted by the in-

tervention; behavior change technique (BCT) deriving the content of the intervention

and decision rules that should be satisfied for activating the intervention delivery at

the specified decision points.

Table C.1: Intervention example implementing the setting grated tasks technique

Template

Element

Value

description The person complied with the physical exercise related ac-

tivities concerning the scheduled timings. However, s/he

has not fulfilled the activities in terms of intensity. So, the

system suggests milder activities.

decision

points

event = [post_action]

behavior Physical exercise

BCT Setting graded tasks

Continued on next page
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decision

rules

adherence.weekly> 0.8 and

adherence:intensity.weekly< 0.5

content

• en: You are on track with your physical exercises with an

${weekly_action_plan_adherence}. However, it seems it

would be better if we lower the intensity of the activities. How

about ${milder_physica_exercise_amount} minutes each day?

associated

goal
• 30 minutes of physical activity at least 4 days in a week

• 3 kg reduction in body weight in the next 6 months

In case patients have both diabetes and depression, both diseases require simultaneous

attention[108]. In the following example, it is inconclusively assumed that increas-

ing levels of stress and irregular carbohydrate intakes in the last 3 days might be an

indicator of depression.

Table C.2: Intervention example implementing the relapse prevention/coping plan-

ning technique

Template

Element

Value

description The system first checks that the person has complied with

both the carbohydrate intake and stress level loggings.

Then, it detects that the person has increasing levels of

stress and irregular levels of carbohydrate intake consider-

ing the data aggregated during the last 3 days.

Continued on next page
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decision

points

event = [post_action]

behavior Carbohydrate monitoring

BCT Relapse prevention/ coping planning

decision

rules

adherence:logging.daily [3] > 0.8 and

stress_level.daily[-2] >stress_level.daily [-3] and

stress_level.daily [-1] >stress_level.daily [-2] and

stress_level.daily [-1] >stress_level.daily and

carbohydrate_intake(kcal)_variance.daily [3] > 300

content

• en: An change in the daily routine will help you nowadays. Would

you consider scheduling an event with your friends?

associated

goal
• Prevent lapses of depression
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APPENDIX D

EXAMPLE INTERVENTION DEFINITIONS DRIVEN BY THE

RESOURCES AVAILABLE IN LITERATURE

The first example, described in D.1 is related to recommendations given by the Amer-

ican Diabetes Association on prolonged sitting cases.

Table D.1: Intervention example encouring a person to take a break after 30 minutes

of prolonged sitting

Template

Element

Value

description The person is sitting during the last 30 minutes and the

system encourages him/her to take a break and walk.

decision

points

event = [change in tailoring variable representing being

sedentary]

behavior Walking

BCT Provide information on consequences of behavior to the

individual

decision

rules

retrospective_inactivity.minute[30]= 1

content

• en: Taking a break at every 30 minutes help you to cope with

the diabetes and it’s already 30 minutes you have been sitting.

How about to take a break now?

Continued on next page
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associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Prevent prolonged sedentary behavior during the day

The second example is driven by the Predictive 303 algorithm for adjusting the insulin

levels based on the fasting plasma glucose measurements of the patient.

Table D.2: Intervention example adjusting the insulin dosage based on the Predictive

303 algorithm

Template

Element

Value

description Predictive 303 algorithm introduces a rule set for adjusting

insulin detemir every 3 days based on the mean of three ad-

justed fasting plasma glucose (aFPG) as follows: if mean

aFPG< 80 mg/dl, reduce dose by 3 unit; if aFPGis between

80 and 110 mg/dl, no change; and if aFPG> 110 mg/dl, in-

crease dose by 3 units. Based on these rules, the system

guides the person on adjusting his/her insulin intake levels.

This specific intervention handles the first case.

decision

points

event = [change in tailoring variable representing the

aFBG measurements in the last 3 days]

behavior Insulin intake

BCT -

decision

rules

aFPG.daily [3]<80

Continued on next page
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content

• en: You have 70 mg/dl of aFBG in average in the last 3

days. You should decrease the increase by 3 units to

${new_insulin_level}.

associated

goal
• Prevent hyperglicemia lapses
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APPENDIX E

EXAMPLE INTERVENTION DEFINITIONS FROM THE POWER2DM

REAL-WORLD CASE STUDY

One example intervention definition is presented for each of the four behaviors ad-

dressed in the POWER2DM Project, namely blood glucose monitoring, carbohydrate

monitoring, physical exercise and medication adherence. There are 120 intervention

definitions in total addressing these behaviors. The definitions that are not presented

in this study have been defined as reminders or motivations with a specific BCT con-

sidering the goal achievement. For example, the intervention described in E.1 is a

reminder implementing positive comparison with others technique for blood glucose

monitoring. It is supposed be delivered when the person is close achieving the associ-

ated goal. There could be multiple implementations of the same type of intervention

that are valid in the same set of conditions.

Table E.1: Intervention example for blood glucose monitoring behavior

Template

Element

Value

description Patient has upcoming BG monitoring action and is close to

achieve his monthly, weekly or daily goal, we remind him

with motivation with a simulation comparison with others.

decision

points

event = [upcoming_action]

behavior Blood glucose monitoring

BCT Positive comparison with others

Continued on next page

135



Table E.1 – Continued from previous page

decision

rules

goal.monthly = 2", "goal.weekly = 2

content

• en: Just to remind you; You have an upcoming ${ac-

tion_name} schedule(${action_time})! If you can com-

plete it, your performance will be better than ${compari-

son_simulation_population_percentage}% of others ${com-

parison_simulation_temporal}.

• es: Solo para recordarle; ¡Tiene una próxima ${ac-

tion_name} programada (${action_time})! Si puede

completarla, su rendimiento será mejor que ${compari-

son_simulation_population_percentage}% de los demás

${comparison_simulation_temporal}.

• nl: Om je te helpen herinneren; Je heb teen schema

voor ${action_name} (${action_time})! Als je het

kun voltooien, is je prestatiemeter dan ${compari-

son_simulation_population_percentage}% van anderen

${comparison_simulation_temporal}.

associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Monitoring blood glucose levels 3 times a day
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Table E.2: Intervention example for carbohydrate monitoring behavior

Template

Element

Value

description Patient gets high carb in his last meal, but he was not that

bad in the last two days, the system motivates her/him by

comparing possible performance (if s/he can complete re-

maining tasks) with past.

decision

points

event = [post_action]

behavior Carbohydrate monitoring

BCT Positive comparison with self

decision

rules

adherence:logging = 1 and

adherence:lowcarb< 1 and

goal.daily = NOT ACHIEVED and

goal.daily[2] != NOT ACHIEVED

Continued on next page
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content

• en: It seems, you didn’t achieve low carbohydrate intake

for your last meal. No problem, if you can adhere

your remaining carb monitoring tasks, still you will be

${comparisonhsimulation_value}% better than ${compari-

son_simulation_temporal}.

• es: Parece que no logró una ingesta bajaen carbohidratos en

su última comida. No hay problema, si puede cumplir sus

tareas de registro de carbohidratos restantes, aún así ten-

drá ${comparison_simulation_value}%mejor que ${compar-

ison_simulation_temporal}.

• nl: Het lijkteropdat je jedoel om weinig koolhydratente eten bij

de laatste maaltijd niet hebt gehaald. Geen probleem, als je de

resterende doelen/taken voor vandaag behaalt, dan ben je nog

altijd ${comparison_simulation_value}% beter dan ${com-

parison_simulation_temporal}.

associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Keep daily calorie intake under 2000 (kCal)

Table E.3: Intervention example for physical exercise behavior

Template

Element

Value

description Patient has almost achieved his last exercise goal, so we

motivate him by general reinforcement.

Continued on next page
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decision

points

event = [post_action]

behavior Physical exercise

BCT Generic reminder

decision

rules

goal = ALMOST ACHIEVED and

goal.weekly = NOT ACHIEVED

content

• en: Almost there for the ${goal_temporal} exercise session! Per-

form your exercise ${goal_remaining} minutes more than next

time, and you will reach your goal.

• es: ¡Casilisto para la sesión de ejercicio de ${goal_temporal}! Re-

alices ejercicio ${goal_remaining} unos minutos más que la

próximavez y alcanzará su objetivo.

• nl: Je hebt ${goal_temporal} bijna behaald! Nog

${goal_remaining} minuten meer dan vorige keeren dan

zul je jedo elbehalen.

associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• 30 minutes of physical activity at least 4 days in a week
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Table E.4: Intervention example for medication adherence behavior

Template

Element

Value

description Patient forgets to log his last medication schedule, but he

was not that bad in the last two days, we will motivate him

by comparing possible performance (if he can complete

remaining tasks) with past.

decision

points

event = [post_action]

behavior Medication adherence

BCT Positive comparison with self

decision

rules

adherence:nmeds = 0 and

goal.daily[-1] = ACHIEVED

Continued on next page
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content

• en: It seems, you forget to log your last medication in-

take ’${action_name}’ (${action_time}). Please log your

medication intake (or the reason not taking it). If you

can complete your remaining tasks, still you will be

${comparison_simulation_value}% better than ${compari-

son_simulation_temporal}.

• es: Parece que se olvidó registrar suúltimatoma de med-

icación ’${action_name}’ (${action_time}). Registre la

toma de sumedicación (o la razón por la que no lo

toma). Si puede completar sus tareas restantes, aúnes-

tará ${comparison_simulation_value}% mejor que ${compar-

ison_simulation_temporal}.

• nl: Het lijktalsof je vergeten bent om je medicatie in tevo-

eren ${action_name} (${action_time}). Vul je medi-

catie alsnog in (of de reden waarom je deze niet hebt

ingenomen). Als je jeresterendedoelen/taken voor van-

daag behaalt, dan ben je gemiddeld nog steeds ${com-

parison_simulation_value}%beter in je doel dan ${compari-

son_simulation_temporal}.

associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Keep monthly medication adherence ratio over 80%
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APPENDIX F

INTERVENTION DEFINITIONS FOR THE SIMULATED CASE STUDY

In this section, the 3 imaginary interventions used in the simulated case study are

presented.

Table F.1: Ordinary reminder intervention example

Template

Element

Value

description Patient has upcoming BG monitoring action and is close to

achieve his monthly, weekly or daily goal, we remind him

with motivation with a simulation comparison with others.

decision

points

event = [upcoming_action]

behavior Blood glucose monitoring

BCT Prompt self-monitoring of behavior

decision

rules

- (Interpretation: At each decision point associated with

the reminder interventions)

content

• en: Just to remind you; You have an upcoming ${action_name}

schedule (${action_time})!.

Continued on next page
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associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Monitoring blood glucose levels 3 times a day

Table F.2: Reminder intervention example using social comparison BCT

Template

Element

Value

description Patient has an upcoming blood glucose monitoring activ-

ity. So, the system reminds him / her to perform the mea-

surement. Besides reminding, the intervention also aims

to motivate the person by comparing his/her performance

with the rest of the population.

decision

points

event = [upcoming_action]

behavior Blood glucose monitoring

BCT Prompt self-monitoring of behavior, Facilitate social com-

parison

decision

rules

goal.daily = NOT_ACHIEVED (Interpretation: Today’s

goal of blood glucose monitoring has not been achieved)

content

• en: You have not measured your blood glucose today! Your ${ac-

tion_name} performance is already better than the ${popula-

tion_percentage}% of participants. Keep going! You have an

upcoming ${action_name} schedule (${action_time})!

Continued on next page
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associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Monitoring blood glucose levels 3 times a day

Table F.3: Motivation intervention example praising the performance

Template

Element

Value

description Patient has performed a scheduled blood glucose monitor-

ing activity. The system motivates him/her to create an

incentive for performing the behavior next time.

decision

points

event = [ post_action]

behavior Blood glucose monitoring

BCT Praising the performed behavior

decision

rules

planned_activity=MISSED and

goal = ACHIEVED (Interpretation: The recent planned

blood glucose monitoring activity considering the current

time has been performed)

content

• en: You are doing very good in ${action_name}. Keep it up!"

associated

goal
• Reducing HbA1c levels below 7% in the next 6 month

• Monitoring blood glucose levels 3 times a day
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