

SOFTWARE EQUIVALENCE CHECKING BASED ON UNIT TESTING AND

SYMBOLIC EXECUTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK ÜNALTAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INFORMATION SYSTEMS

NOVEMBER 2018

Approval of the thesis:

SOFTWARE EQUIVALENCE CHECKING BASED ON UNIT TESTING

AND SYMBOLIC EXECUTION

submitted by BURAK ÜNALTAY in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems Department, Middle East

Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assoc. Prof. Dr. Altan Koçyiğit

Supervisor, Information Systems Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Aysu Betin Can

Information Systems Dept., METU

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems Dept., METU

Assoc. Prof. Dr. Pekin Erhan Eren

Information Systems Dept., METU

Assoc. Prof. Dr. Tuğba Taşkaya Temizel

Information Systems Dept., METU

Assist. Prof. Dr. Tülin Erçelebi Ayyıldız

Computer Engineering Dept., Başkent University

Date: 14.11.2018

III

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Burak Ünaltay

Signature :

IV

ABSTRACT

SOFTWARE EQUIVALENCE CHECKING BASED ON UNIT TESTING

AND SYMBOLIC EXECUTION

Ünaltay, Burak

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Altan Koçyiğit

November 2018, 45 pages

Hardware is one of the best representatives of our ever-changing world. For most of

the end users this is nothing but a nuisance as they have to renew their electronics each

year. For the embedded system designers who has to deal with this change in frontier

however it is a definite threat. Embedded system designers have a close relationship

to the hardware as the software runs on it highly tuned for the platform it runs on. It is

when hardware is completely obsolete this impact reaches its peak because customized

software will need heavy refactoring and often times a complete rewrite. One has to

be sure to have a functionally equivalent product after this refactoring effort. This

requires a costly and lengthy validation process. Sum of all validation efforts for this

purpose could be identified as equivalence checking. Here in this study, we lay out a

method that automatically deals with problem of equivalence checking. Our method is

tested against two evaluation scenarios. In first scenario, our method is tested against

small function bodies. In second scenario, it is tested against a larger code example

that is closer to a real production code. In both ways of evaluation, our method is able

deduce equivalency with a score of 5 out of 6.

KEYWORDS: Software Equivalence, Software Equivalence Checking, Automatically

Generated Unit Tests, Symbolic Execution.

V

ÖZ

SEMBOLİK YÜRÜTMEDEN ELDE EDİLEN BİRİM TESTLERİN YAZILIM

DENKLİĞİNİ KANITLAMADA KULLANILMASI

Ünaltay, Burak

Yüksek Lisans, Bilişim Sistemleri

Tez Yöneticisi: Assoc. Prof. Altan Koçyiğit

Kasım 2018, 45 sayfa

Günümüzde her şey nasıl değişime uğruyorsa, donanım komponentleri de bu

değişimin parçası olmak zorunda. Bu durum son kullanıcı için küçük rahatsızlıklar

yaratmakta. Fakat gömülü sistem tasarımcıları için bu durum çok daha kritik, çünkü

gömülü yazılımlar üzerinde çalışacakları donanıma yüksek bir oranda bağlı

olduğundan herhangi bir donanım değişikliği yazılım geliştirme süreçlerine büyük

külfetler getirmekte. En büyük zorluk ise donanımın artık üretilmemesi durumunda

ortaya çıkacaktır. Böyle bir durumda eski donanım için tasarlanmış yazılım ağır bir

yenileme sürecine girecek ve hatta tamamen baştan yazılmak zorunda kalacaktır. Bu

yenileme sürecinden sonra eski yazılım ve donanım ile yeni yazılım ve donanım ikilisi

ile fonksiyonel anlamda denk olmalıdır. Bu denkliği test etmek oldukça uzun ve etraflı

bir süreçtir ve denklik testi olarak adlandırılır. Bu çalışmada denklik testini otomatik

olarak gerçekleştirebilen bir method ortaya koyuyoruz. Methodumuz iki

değerlendirme yöntemiyle test edilmiştir. İlk yöntemde küçük boyutlu fonksiyonlarla

ikinci yöntemde ise gerçek hayat senaryolarına daha yakın bir kod örneği

kullanılmıştır. İki yöntemde de methodumuz 6 üzerinden 5 başarı oranı sağlamıştır.Bu

tezden elden edilen veriler, mevcut kanadın statik test sonuçlarına katkı sağlayacaktır.

ANAHTAR KELİMELER: Yazılım Denkliği, Yazılım Denkliği Testi, Otomatik

Oluşturulmuş Birim Testler, Sembolik Yürütme.

VI

This dissertation is dedicated to my beloved family. Without their support, I could

not have done it.

VII

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof. Dr. Altan Koçyiğit. Thanks to his support

and guidance, I was able to see through this study. I would also like to thank my

girlfriend Meltem Özyıldız for her support during the whole process.

VIII

TABLE OF CONTENTS

ABSTRACT ... 4

ÖZ ... 5

ACKNOWLEDGEMENTS ... 7

TABLE OF CONTENTS ... 8

LIST OF TABLES ... 10

LIST OF FIGURES .. 11

ABBREVIATIONS .. 12

1. INTRODUCTION... 1

1.1. Why is Equivalence Checking Important ? ... 1

2. LITERATURE REVIEW .. 3

2.1. Software Equivalency Checking Methods .. 4

2.2. Testing Methods .. 7

2.2.1. Symbolic Execution Based Methods ... 7

2.2.2. Model Based Testing ... 9

2.2.3. Combinatorial Testing ... 10

2.2.4. Random Testing ... 11

2.2.5. Search Based Testing ... 12

3. PROPOSED EQUIVALENCE TESTING METHOD 15

3.1. Equivalence Testing and Our Approach .. 15

3.2. Testing Approach Employed ... 16

3.3. Tools Selection .. 17

3.4. KLEE Symbolic Execution Engine ... 18

3.5. Testing Approach Employed ... 21

IX

4. EVALUATION OF THE PROPOSED METHOD .. 25

4.1. Error Insertion ... 25

4.2. Evaluation with Common Error Scenarios .. 28

4.3. Evaluation with a Larger Code Example .. 29

4.4. Suggestions for Incorrect Dereference Case ... 32

5. CONCLUSION ... 33

REFERENCES ... 35

APPENDIX .. 41

ERROR CASES .. 41

X

LIST OF TABLES

Table 4.1 : Overview of Results ... 28

Table 4.2 : Overview of Results ... 30

XI

LIST OF FIGURES

Figure 3.1 : Our approach for software equivalence testing 16

Figure 3.2 : Sample function .. 19

Figure 3.3 : Example program ... 20

Figure 3.4 : Folder that contains metadata of the sample KLEE run 20

Figure 3.5 : Example KLEE test tool run ... 21

Figure 3.6 : File tests.c ... 22

Figure 3.7 : Flowchart of our approach .. 23

Figure 4.1 : Modified local types ... 26

Figure 4.2 : Wrong if statement ... 27

Figure 4.3 : Uninitialized local variable ... 27

Figure 4.4 : Flowchart of the algorithm in discussion ... 31

Figure A.1 : Forgotten equal sign .. 41

Figure A.2 : Modified local types .. 42

Figure A.3 : Wrong if statement .. 43

Figure A.4 : Uninitialized local variable .. 43

Figure A.5 : Forgotten break statement.. 44

Figure A.6 : Operator precedency I.. 45

Figure A.7 : Operator precedency II .. 45

Figure A.8 : Operator precedency III ... 45

XII

ABBREVIATIONS

NIST National Institute of Standards and Technology

CBMC C Bounded Model Checker

CT Combination Testing

AES Advanced Encryption Standard

VLSI Very Large Scale Integration

DSP Digital Signal Processor

MBT Model Based Testing

SUT System Under Test

SDL Specification and Description Language

DART Directed Automated Random Testing

KLEE KLEE LLVM Execution Engine

CIVL Concurrency Intermediate Verification Language

LLVM Low Level Virtual Machine

CPU Central Processing Unit

GHz Gigahertz

GB Gigabytes

RAM Random Access Memory

XIII

1

CHAPTER 1

1. INTRODUCTION

In today’s fast-moving world, everything is subject to change and this definitely

includes hardware components. This situation causes a minor inconvenience for the

end users since they constantly have to change their electronics to keep up with the

technological advancements. However, it poses a much more serious challenge for

embedded system designers as hundreds of components go end of life each year. As

embedded software is often highly tuned for the hardware it runs on, changing

hardware components has a huge impact on the software development process. The

real challenge is when the hardware is completely obsolete and has to be replaced by

a newly designed one because the software will need heavy refactoring and sometimes

even a complete rewrite to work with the new hardware. After this refactoring process,

one has to be sure that the new hardware and software stack has the identical behavior

with the previous one. This can be a quite tedious and lengthy validation process.

Summation of this validation efforts could be identified as equivalence checking.

1.1. Why is Equivalence Checking Important ?

Equivalence checking in low level software is quite important for several reasons. One

of the reasons is that majority of the embedded software is expected to run for several

years at a time without any intervention. This stems from the fact that cheap low level

electronics are so common that even simplest of devices have several of them. The

devices we mention could be anything and everything around us such as:

- A subsystem in a mobile phone

- A thermostat in a living room

- A sensor measuring vitality signals of a patient

- Controller of an irrigation system

- A meteorological measurement system situated at the top of a mountain

These examples could be expanded with ease, as we are surrounded billions of such

devices. According to a research, there will be 30 billion connected devices by the year

2020 [1]. The main connecting point of our examples is updating, patching, fixing

them in terms of software means is highly unlikely and sometimes downright

impossible especially the embedded software driving them. Therefore, it is of absolute

importance that these run, for lack of a better term, like a clock since the world as we

know revolves around them. This brings us to our main point, which is how do we

make sure that our software acts exactly like it is designed even when hardware is

2

constantly changing. It is an undeniable fact that hardware grows old and as

technological advancements are pushing limits old technology is destined to disappear.

In this constant stream of change, it is not surprising to come across to a point where

our trusted microchip is not produced anymore. Hence the new iteration of whatever

product we might be working on, has to be based on some other architecture,

processor, instruction set, etc. As software engineers working on such embedded

devices, it is imperative that they must treat hardware and software as a whole system.

Hence, the work of porting the software to a new hardware platform should not cause

any change of features. Occurrence of unexpected changes and hiccups will interfere

with the whole system. If the aim and scope of the product you are working on aligns

with the principles mentioned above, then the equivalence of the software running both

on the new and old platforms is of utmost importance.

This thesis explores this issue and lays out an automated equivalence checking

framework. Our scope will be limited to embedded systems only, therefore ‘C’ will be

our choice of programming language for the software components under equivalence

investigation. The ‘equivalence checking’ process will be conducted using unit tests.

Our aim is to automatically generate unit test cases for both original and modified

components and later on use them to reason about how the modified software

component compared to original one.

In the next chapter, there will be a literature review covering different methods that

could be used in such a framework. Main methods that will be investigated are already

existing equivalence checking methods and testing methods for software components.

The third chapter will explain our proposed method from an architectural point of view

and presents a basic implementation that can be used to check equivalence of software

components. The fourth chapter presents evaluation of the proposed framework by

means of two cases. Final chapter is where we conclude our achievements and discuss

about future work that could be done to improve and build on top of our current efforts.

3

CHAPTER 2

2. LITERATURE REVIEW

This chapter contains an investigation of methods that could be used to build a software

equivalence checking platform. The “software” we mention here assumed to be

developed in C programming language as embedded systems are heavily coded in C.

We propose two different implementations of a software component with a common

interface can be checked for equivalence by having a rigid and through testing strategy.

Well thought out test scenarios could expose faulty refactoring of the software

component early on, hence avoiding costly and untimely bug fixes. However, it is a

well-known fact that testing is costly. But it should also be noted that software bugs

are even costlier. According to a report made by Tricentis, a software test company, a

total of 548 software errors affected 4.4 billion people and cost 1.1 trillion in assets

[1]. To give a little perspective, another report compiled for NIST (National Institute

of Standards and Technology) shows that the cost of inadequate infrastructure for

software testing is estimated to range from $22.2 to $59.5 billion [3]. Although a direct

comparison is not exactly meaningful, there is no denying that the cost of software

errors grows rapidly. Against this rapid growth, it is only natural that an abundance of

research on software testing is present. Within all this research, our aim is to find the

ones that automate the process of testing, so that we could test both original and

refactored components for equivalence without excessive costs.

It is important to remind the reader that our focus is the embedded domain. This results

in several difficulties. Software in particular is not guaranteed to have proper

documentation, a model nor requirements at all. In the embedded domain, this holds

true as well, maybe even more than the other domains of software. As we focus on

proving functional equivalence between two software components implemented in C

programming language with embedded domain restrictions, the method to prove

functional equivalence between software components should not be picky. In other

words, the equivalence testing method should be able to take in the source code itself

with implementation and interface parts and it should suffice for equivalence analysis.

This restriction is not in place to undermine any possible equivalence checking method

but simply a requirement brought out by necessity. This necessity stems from affairs

in embedded software industry, as it is perfectly natural to have missing or no

documents at all, nor requirements which is clarifying what this particular software

product is responsible with. Often times when faced with a refactoring process of a

legacy software component, the software developer have only source code itself as the

guide for whole process. Therefore, expecting a complete documentation,

requirements for software or a model encompassing the entire software capabilities

4

which can be used to generate code, tests and other utilities is out of the question. Now

these expectations could be perfectly valid for other domains, but for our case we

assume that the code does have such amenities and for good reason too.

2.1. Software Equivalency Checking Methods

In this subheading, there will be an investigation of how current state of the art deals

with checking software equivalence. A change of target hardware platform is not the

only case where you might need to refactor your components so that they will stay

functionally equivalent to the previous ones. A change in the toolchain that is being

used could also require you to refactor your software to make it stay functionally

equivalent. In another situation, you might want to check whether the version e.g., 1.5

is functionally equivalent to version 1.7 or you might be interested to upgrade the

version of a library that is being used in your code base and you want to be sure that it

will not break any important bits and pieces. Aforementioned situations along with

many of them will put you in a situation where you will have to confirm software

equivalence to ensure a safe transition period.

Jiang et al. [4] introduce an algorithm to automatically mine functionally equivalent

code fragments of arbitrary size. They treat the concept of function equivalence based

on the set of inputs and their respective set of outputs. They set the core of the

algorithm as automated random testing and by getting inspiration from Schwartz’s

randomized polynomial identity testing [5] . The algorithm first extracts the candidate

code fragments from the source code, later on, random inputs are generated to separate

code fragments depending on their output values for respective inputs. They

investigated the algorithm on the source code of Linux Kernel 2.6.24. They claim that

they have found many code fragments that are although syntactically different, they

are functionally equivalent. The study mentions that this method can scale million-line

programs and is able to analyze the Linux kernel within several days with parallel

processing. Although this method is mainly designed to detect duplicate code

segments, it is possible to extend it to analyze equivalence of the components as well.

Post et al. [6] analyzed the functional equivalence between two AES(Advanced

Encryption Standard) implementations. This checking process is done using automatic

bounded model checking [7], which is a successful technique in hardware domain used

for equivalence checking. Cryptographic algorithms have long been using bit-level

operations. This situation in particular makes them suitable for bounded model

checking. It is mentioned in the study that equivalence proved for the first three rounds

of AES encryption routines semi-automatically. In addition to this, they were able to

achieve the full proof of equivalence by manual intervention.

Godlin et al. [8] focus on verification of programs by regression. It is mentioned that

real programs cannot be specified with high level invariants or temporal properties. To

add to this fact, it is even harder to describe what a specific part of the code should do.

5

Therefore to avoid these challenges, the industry takes on a different approach with

regression testing. Regression testing has no need for a formal specification. A deep

understanding of the code is not required either. Having a practical approach, Godlin

et al. include regression testing in their toolset while proving functional equivalence

between two programs. Though this technique has long been used by the industry, it

comes with some shortcomings. The tooling used in the study and the choice of the

programming language have been decided by lack of maturity of the tools in other

programming languages. Achieving scalability is another concern of theirs.

Matsumoto et al. [9] present an equivalence checking method for two C programs.

Their main method of finding out the equivalence is symbolic simulation. However,

in their claim, verifying equivalency of all the variables takes a considerable amount

of time. To tackle this problem, they make use of textual differences between

descriptions. Using these differences, they aim to minimize the number of checks

hence shortening the required time. Through several experiments, their method

provides shorter execution times for the symbolic simulation. It is important to note

that the “C programs” that are being investigated are not hand written code but

generated as an output of VLSI(Very Large Scale Integration) design process.

Feng et al. [2] introduce an idea for formal verification of equivalence of structurally

similar software. The idea revolves around the concept of cutpoints which is a method

for formal equivalence verification of combinational circuits. They took this initial

idea and implemented it in the software domain. They claim that they have better

execution time performance compared to that of the previous approaches, although

false inequivalences are still a problem. Their future work suggestions include

improvements on false inequivalences and scalability.

Ciobaca et al. [3] introduce a language-independent proof system for full equivalence.

Given two programs as input, a proof tree deducts whether they are equivalent or not.

They showcase their method on two programs which calculates Collatz sequence. The

programs are implemented in different languages. It is also noted that this example is

particularly interesting because it is now known beforehand whether the sequence will

terminate or not. In the study, it is shown that programs are equivalent although neither

termination nor divergence could not be established.

Wood et al. [4] argue that when programmers change their code, they intend to keep

some parts of the program’s behavior. Following this logic, they propose a formal

criterion to characterize the preserved part of the program behavior. The criterion is

"two program versions are equivalent up to a set of affected objects A, if executions

of these versions correspond at each execution step when the objects in A is not

considered". Then they move on to propose a sufficient condition for this criterion. It

is sufficient to establish that traces of calls to the methods and returns between A

objects and the rest of the objects are equivalent. They claim that examination of stack

6

and heap at each execution step is not necessary. The proof they provide to this

condition is verified using Dafny program verifier [5].

Papadakis et al. [6] propose Trivial Compiler Equivalence, which is a method that

makes use of the already available compiler facilities to address identification of

mutants in programs. It is argued that their method is applicable to real-world programs

and can also aid already existing tools to detect equivalent and duplicated mutants.

Their method is able to discard more than \%7 and \%21 of all the equivalent and

duplicated mutants.

Now that we have enough background information on how equivalence checking is

dealt with it is time to gauge each of these methods for our case. Jiang et al. [7] propose

a method to identify functionally equivalent code in their study. Their algorithm finds

the possible equivalent parts of code in the entire code base and then moves on to the

part where it checks whether they are actually equivalent or not by using random

testing approaches. The part of the algorithm where it extracts parts of possible

functionally equivalent code is of no value for our problem as it is already known

which parts of code are functionally equivalent in our case. The part where they

confirm the equivalence using random testing can prove useful for our case although

whether random testing can provide a meaningful test suite to catch errors that might

have gone unnoticed otherwise, is still questionable. Post et al. [8] propose a solution

using bounded model checking. In their solution, however they had to use several

manual steps. These manual steps include modifications to the source code so that the

code would conform the tool they are using to perform bounded model checking

(CBMC) [9] This is undesirable for us as we want to automate this process in its

entirety if possible. Godlin et al. [10] also use CBMC as the underlying engine in their

verification approach. They are also involving user in certain parts of the algorithm.

Matsumoto et al. [11] are making use of symbolic execution at the core of their

algorithm, however they are lightening the load on symbolic execution by making use

of textual differences on the code. This algorithm designed to work on generated C

code, hence may not be as performant as it is shown in the study when code is hand

coded and not generated. Code generators often work with similar patterns because

their main responsibility is mapping certain models to certain sentences of

programming language. As such, finding textual differences in generated code is not

the same task as finding textual differences on hand coded programs because hand

coded programs will most definitely be different with naming, indenting, choice of

words, placement of statements, argument type and so on. Although studies of Post et

al. [8] Godlin et al. [10] and Matsumoto et al. [11] do not exactly align with our goals

and assumptions for this research, yet they are providing the idea of using a model or

path checker as the base of our approach. As the model and path checkers are

mathematically proven, even though we are not aiming for formal equivalence

checking, they will provide us fidelity, nevertheless. Feng et al. [2] adopt notion of

cutpoints from equivalence checking of electrical circuitry. Their idea is cutting up the

7

code in bite size pieces so that symbolic execution times will be manageable. These

cutpoints should be points where in between the state should not change. In the study,

the programming language is an assembly dialect for a certain DSP(Digital Signal

Processor) series. This is a fairly simple language compared to C programming

language. Finding such cutpoints means finding candidates for certain code structures

that can act as barriers around a certain state. In assembly language, these structures

are often reads and writes, memory barriers, instruction barriers, branches, system

calls, interrupts and so on. In a higher order programming language such as C, these

structures could practically be anywhere hidden behind library calls, system calls or

any function for that matter. Therefore, finding such cutpoints in higher order software

is much more complicated as it requires a complicated parsing process, maybe even a

symbolic engine on its own. Therefore, we refrain from this effort, because higher

order languages deal with statements that can change the state every other line,

completely defeating the purpose of the study. Ciobaca et al. [3] provide a

mathematically sound method for equivalence checking which is also language

agnostic. However it is unable to handle symbolic statements, rendering it useless for

our case. Wood et al. [4] lay out an interesting approach. It is however focused on two

different versions of the same code one is predecessor of the other one. In our case, it

is imperative for us to deal with a complete rewrite as long as the interface stays the

same, however. Finally, the method of Papadakis et al. [6] is not suitable for our

purposes either. Because it is designed to find equivalent code pieces in large code

bases, and can give false alarms.

2.2. Testing Methods

A literature review reveals 5 main testing related research areas which are namely:

- Symbolic Execution Based Testing

- Model Based Testing

- Combinatorial Testing

- Random Testing

- Search Based Testing

2.2.1. Symbolic Execution Based Methods

Symbolic execution is executing a program for a set of classes of inputs, rather

than a set of sample inputs. In that way, each symbolic execution increment

might be equivalent to a large number of normal test cases. Obtained results

can be checked against a ground truth for correctness [12].

Symbolic execution engine maintains a state where it keeps information about

the next statement which will be evaluated, a symbolic store where symbolic

8

or concrete values are kept and path constraints which is the list of assumptions

on symbols to reach that particular state [13]. By exploring the program in this

manner while doing the bookkeeping of program state, one can identify all

unsafe inputs to a program that will possibly cause an unwanted situation.

However actually achieving this on a real-world program comes with

challenges. Baldoni et al. [13] present these challenges under five headings as

such:

o Memory: The way symbolic execution engine handles memory is

important. It should be able to handle both simple and complex data

structures. Also, special data types such as pointers should also be

handled both symbolically and concretely.

o Environment and third-party components: How does the engine handle

interactions between different software products? Calls to third party

libraries or system calls can change the system state which should be

dealt with by the symbolic execution engine.

o State space explosion: Loops and other programming structures can

increase the number of possible execution states. Symbolic execution

engine should be able to handle this situation in a reasonable amount of

time. Santelices et al. state that traditional approach to symbolic

execution where each execution path analyzed one by one does not

scale since a typical program has many paths and the number of paths

grows with the size of the program. This problem is also called path

explosion [12].

o Constraint Solving: When symbolic execution was first introduced,

constraint solvers were a serious limitation. However significant

advances in constraint solving has now made symbolic execution viable

compared to 70s when constraint solvers pose a serious liability since

symbolic execution cannot generate an input if the symbolic path

constraint along a feasible execution path contains formulas that cannot

be (efficiently) solved by a constraint solver. An example to this might

be nonlinear constraints [14].

o Binary code: Whether the symbolic engine can analyze the program

without needing the source code is also an important question where

the source code is not available.

The challenges listed above did not hinder the advancements in this area of

research. Modern symbolic execution engines also make use of concrete

execution together with symbolic execution. One such example is called

“Concolic Testing”.

Concolic Testing performs symbolic execution dynamically, while the program

is executed on some concrete input values. Concolic testing maintains separate

9

states for both concrete and symbolic values. Concrete state represents the

mapping between variables to their concrete values. Symbolic state however

only keeps the mapping for variables that only have non-concrete values.

Concolic execution also needs initial concrete values for inputs. It executes a

program with some random input, extracts symbolic constraints on branch

points and then uses a constraint solver to choose next execution path. This is

repeated systematically or heuristically until all possible execution paths are

explored, or until a user defined criteria is met [15].

Another approach to modified symbolic execution engines is Execution-

Generated Testing [15]. The EGT approach works by separating concrete and

symbolic state of a program. Later on, for each execution of and operation it

checks whether all the values are concrete. If this is indeed the case, the

operation is executed as it is. On the other hand if there is at least one symbolic

variable then the operation is executed symbolically, by updating the path

condition of the current path.

2.2.2. Model Based Testing

Modeling is about capturing the know-how about a system and reusing it as the

system grows. This practice is quite beneficial for the design team, however

for the testing team the software model is especially valuable because the

model contains information regarding what the system should be doing. By

having such a model, test engineers now have a way to define how the system

reacts to specified inputs. Test scenarios can now be described as a sequence

of actions to the system. Since all the actions revolve around the model, it

provides great reuse as the model will grow with the system. However, it brings

in a caveat that the model should be the heart of the development and should

be continuously maintained so that the test scenarios stay relevant with the

changing system. [16]

Anand et al. [17] define Model-based testing (MBT) as a light-weight formal

method which uses models of software systems for the derivation of test suites.

Contrary to traditional formal methods, which aim at verifying programs

against formal models, MBT aims at gathering insights in the correctness of a

program using often incomplete test approaches. In model-based testing, the

system under test (SUT) is treated as a black box system which simply

produces outputs for a range of inputs. The internal state of SUT is changing

with every increment of the execution. Since model at hand describes the

input/output relationship, a test selection algorithm can derive test cases by

choosing a finite subset of the input/output relationship represented by the

model. Depending on the tooling, test suites might be generated in the desired

language.

10

There are three main ways to approach to the problem. They are namely:

• Axiomatic approaches: These methods are based on logic calculus.

• Finite State Machine approaches: In the FSM approach, the model is

formalized by a Mealy machine, where inputs and outputs are paired on

each transition. Test selection derives sequences from that machine

using some coverage criteria. [17]

• Labeled Transition System approaches: Labeled transition systems

(LTS) are a common formalism for describing the operational

semantics of process algebra. They have also been used for the

foundations of MBT.

According to Orso et al., MBT has several advantages over the other test

generation techniques. Coverage based techniques specifically are not reliable

because all of the code is treated equally, and an ideal way does not exist to

generate test cases covering more than unit tests. MBT on the other hand can

result in better test generation because of the domain knowledge, expertise and

abstraction the model provides. [18]

As there are a number of ways to model a system, model-based testing

approaches also vary heavily. Kerbrat et al. proposes a requirements-based

approach where a system model is created using requirements that are being

expressed in SDL(Specification and Description Language). Then the system

model is used to create test cases related to the requirements [19]. Nebut et al.

have a similar approach where they formalize requirements based on use cases

extended with contracts. Later on, a transition system is automatically built

which is used synthesize test cases [20].

The main disadvantage of MBT techniques is that not every software has a

formal model. Even if the stakeholders are willing to put an effort to have such

a model there are limitations that come with it as well. The generated test cases

are either limited by the modeling language or the tooling that comes with it.

In addition to the technical challenges, there are also organizational challenges.

The adoption rate of the modeling language and the tools by both technical and

managerial staff is quite important [21]. All in all, MBT requires a high level

of commitment from all stakeholders participating in software development

because it will only be beneficial where the model is center of all phases of

software life cycle.

2.2.3. Combinatorial Testing

Suppose that Software Under Test (SUT) is a game software that will run over

the network. Inner workings of such a game depend on numerous parameters.

11

These parameters could be the operating system the software is running on, or

the number of players, type of graphics processing unit and many more. Also

note that these parameters can have values in different variety. Interactions

between these parameters could cause unexpected erroneous states. For

example, think of a certain piece of hardware not being compatible with a

certain operating system. Parameters and their possible values make up a large

combination space. Trying out every combination in such a space is often out

of the questions because of limitations such as time and budget. Provided that

you are not bound by such limitations, testing all of the combinations will still

be considered a waste because many of the combinations in said combination

space does not cause any problems at all. Combinatorial testing provides

practical ways to detect failures caused by specific combinations of parameters

while still adhering to real world limitations. [22]

Originally, combination testing(CT) used for test case generation where

parameters and their values are system inputs and each row of the covering

array can be considered as a test case. It was also applied for test protocol

conformance. Recent applications of combinatorial testing samples

configurations to be tested. Software product lines are a popular area of

research under CT. Since software product lines have a well-defined parameter

set, a CT model can be extracted from these parameters. There is also a

modified version of CT called sequence-based CT where each and every

parameter becomes a location within a sequence and values of those parameters

are repeated at every location. This approach has been used to test GUIs. [17]

2.2.4. Random Testing

Hamlet states that the technical meaning of random testing refers to an

unsystematic choice of test data, such that there is no correlation among test

cases [23]. This contrast between “random” and “systematic” stems from

physical measurements being unpredictable. Hamlet mentions two major

points:

• Selection of random points is algorithmically easy, and this can be used

to generate a multitude of test cases

• Statistical independence among test points allows statistical prediction

of significance in the observed results.

Because of a lack of systematic approach, random testing is considered one of

the weakest method of testing. However, combined with different approaches,

it can be quite formidable. Yue et al. introduce an enhanced form of random

testing called Adaptive Random Testing [24]. This technique seeks to distribute

test cases more evenly within the input space. It stands on the idea that for non-

12

point types of failure patterns, an even spread of test cases is more likely to

detect failures using fewer test cases than ordinary random testing. They claim

that adaptive random testing does outperform ordinary random testing

significantly (by up to as much as 50\%) for the set of programs under study.

Another different approach is called DART [25] which is short of Directed

Automated Random Testing, it is the first tool to use concolic testing. In this

approach, a combination of techniques are being used namely:

• automated extraction of the interface of a program with its external

environment using static source-code parsing

• automatic generation of a test driver for this interface that performs

random testing to simulate the most general environment the program

can operate in

• dynamic analysis of how the program behaves under random testing

and automatic generation of new test inputs to direct systematically the

execution along alternative program paths.

Selling point of DART is testing can be performed completely automatically

on any program that compiles.

2.2.5. Search Based Testing

Search based software testing is making use of meta-heuristic optimizing

search technique, such as Genetic Algorithm to automate or partially automate

a test process. One example of this could be generation of test data. The most

important part of the optimization process is the fitness function. Fitness

function is responsible for guiding the search to good solutions within an

almost infinite search space, while still being committed to a practical time

limit. [26]

Search based testing aims to treat software engineering problems as search

problems. These search problems however should not be confused by textual

or hyper textual searching. Search problems in search-based testing domain is

a problem in which optimal or near optimal solutions are searched in space of

possible solutions. [27]

McMinn [26] mentions that for a testing problem to be applicable for a search-

based optimization it needs to have two attributes :

• Representation: Candidate solutions should be encodable so that they

can be processed by a search algorithm.

• Fitness Function: Each fitness function is problem specific and needs

to be defined for every problem.

13

As flexible as they are, search-based testing approaches are still vulnerable in

certain areas. For the best solution, optimization approaches use a fitness

function that encodes domain knowledge, however this process may pose a

challenge for specific domains. For example, to test a password cracking

problem in Unix/Linux one needs knowledge about Digital Encryption

Standard. Furthermore, since there is no guidance in the system they will fall

into random search because there is no intermediate state between decrypted

password and failure of decryption. Search space of such a problem is flat with

one success point which is the case where candidate string actually matching

the user password [22].

Search-based software testing is a relatively new area of research that is also

quite promising as it is applicable to many problems. To get the most of it

however, domain knowledge should be adhered to create a fitness function that

will make the solution accessible in a practical amount of time and space.

14

15

CHAPTER 3

3. PROPOSED EQUIVALENCE TESTING METHOD

In this chapter we propose an approach to the problem of equivalence checking. We

will explain flow of our algorithm by separating it into three stages. Later on our

rationale about the selection of tools is followed together with a simple example of its

usage. Finally, a prototype implementation will be explained step by step.

3.1. Equivalence Testing and Our Approach

Equivalence testing for software domain can be defined as the summation of all efforts

to validate that a refactored software component works functionally equivalent to the

original component. Our approach of equivalence testing is based on unit tests. This

approach relies on testing both components and comparing results against each other

for equivalence. In this approach it should be noted that implementation details are not

of importance and a black box approach is taken, therefore it is assumed that the

external interface of the software component will not change. Generation of the unit

tests will be done using a symbolic engine, the reason of this choice is explained in the

following section. In figure 3.1, a visual representation of the proposed method is

given.

In our approach, we start with extracting each function to be tested. This stage is called

parser. Our choice of target programming language is C, therefore our parser is

responsible for extraction of functions from software component to pass it onto next

stage adhering to the C syntax rules. In order to construct a testing program (such as

the one given in listing \ref{lst:chap3_lst2}) parser needs to provide function name,

parameter types for the function and return type.

The next stage is responsible for taking in functions to be tested and then generating

tests for each function. The tests need to be generated for original and modified

components. In our approach, original component taken as a baseline and modified

component is expected to work exactly as the original one. Therefore, it is important

for us to not only extract test cases from the original component but from the modified

one as well since any new test cases modified component could generate should

produce the same output as the original component. After being fed with each function,

symbolic engine state is also responsible for formatting each of them accordingly and

setting up required test benches for them as well. This stage should also contain the

16

necessary means to communicate with the test generator itself. in our case this is KLEE

(KLEE LLVM Execution Engine) symbolic engine [15].

The final stage is called test executor and responsible for comparing the components

and evaluating their equivalence. Next section explains how the selection of symbolic

engine has been made and what are the important factors on this selection as well as

the implementation of our approach.

Figure 3.1 : Our approach for software equivalence testing

3.2. Testing Approach Employed

Having investigated all five of these testing methods explained in Chapter 2, and

focusing on the possible methods that will enable us to automatically generate test

cases, one can see that symbolic execution outshines them all in our case. Instead of

expanding on its advantages, it is beneficial to understand why other methods would

not be as useful as symbolic execution. Therefore, in this subheading, shortcomings of

these testing methods will be discussed.

- Model Based Testing : Model based testing fails to be our testing method of

choice for this study for several reasons. First and most important reason is that

the fact that not every software has a designated model. This is even more true

when topic of consideration is embedded software. It is particularly important

to note that any effort to make use of model based testing will require an

already existing and verified model which is the heart of model based software

development. Model based software development requires the model to be the

center of all activities so that it can be assured the model is up to date and

represents the entire business logic. This way automatic code generation, test

17

generation, formal verification is possible. However this investment is not

possible for every software development endeavor and sometimes it is simply

impossible. The fact that model based techniques being tied to a modeling

language or tool makes it even harder.

- Combinatorial Testing : Combinatorial based techniques does not have

required tool support or means to generate unit tests. This reason alone is

enough to make it undesirable for our case.

- Random Testing : In its solitude, random testing does not offer critical test

cases that will give us the confidence while we compare two different

implementations. Advanced versions of random testing make use of combined

techniques to have more accurate scenarios. These techniques however heavily

used by symbolic execution engines as well consequently making random

testing less desirable against symbolic execution based methods.

- Search Based Testing : This method is particularly useful if there exists an

abundance of test cases. Making use of search based testing, one can reduce

the number already existing test cases while having the same coverage and

confidence.

Contrary to the methods mentioned above, symbolic execution provides a way to

generate test cases directly from source code itself with tools such as KLEE [15] .

These test cases are more desirable because symbolic execution engines analyze

branching points of the program. Branch points make up valid test cases because they

are important points where the decision of next instruction to be executed is made.

Therefore, one can say that by looking at the branch points, the behavior of the program

can be deduced. This behavior is to be expected to be the same for original and

refactored versions of our programs. By testing these branching points symbolic

engine provides, we can reason about equivalency of the different implementations of

the same component. For all the reasons listed above, main method to extract test cases

for equivalency check is decided to be the symbolic execution-based testing.

3.3. Tools Selection

We build our abstractions based on the requirements of a conceptual tool that will be

used to question two software components’ equivalency using unit tests which are

generated by using test cases extracted from a symbolic execution engine. The

components of such system could be listed below as:

• A parser to extract necessary information from the software component. This

parser is responsible for providing information about functions of the

component, their names, return values, arguments and their types.

• The symbolic engine itself. Engine will provide us ways to symbolically

execute our code excerpt and generate pivotal points for that execution sessions

for us to use in our unit tests.

18

• A test scenario generator which will use the information parser and symbolic

engine provides to generate our test scenario.

• A unit test engine to run our scenario.

• An OS communicator module which will let us operate the tools to generate

our test environment.

The most important component is naturally the symbolic execution engine. As our aim

is to build a software equivalency checker, there will not be an attempt to build our

own engine. Fortunately, we have several options to choose from engines that are able

to symbolically execute programs in C programming language. Those are namely:

• Crest

• Otter

• CIVL

• KLEE

Choosing our symbolic execution engine among these options is considerably easy for

several reasons. First and foremost, advancements in overall computing power and

constraint solvers made symbolic execution viable. Exploring the vast solution space,

especially when there are many paths to explore, could potentially take days. To make

use of these novel methods, it is reasonable to pick the engine with most vibrant

community and best available support. KLEE stands out from the rest based on these

prerequisites because it has the most recent code base compared to other engines. It is

still being updated and improved in 2018 while other engines seem to be deprecated.

Another reason that makes KLEE the best option out of these four is the tooling around

it. Thanks to this tool, extraction of information about the symbolic execution session

is a breeze, extensive parsing of dump files is not involved. Lastly it is easy to build

with the help of its website explaining the process, and also available in container

forms for people who does not want to bother with building the engine from scratch.

However, it is important to note that it is possible to use any other symbolic engine in

our approach, KLEE is only chosen because of the convenient points mentioned above.

3.4. KLEE Symbolic Execution Engine

To explain the usage of KLEE, the simple example given in Figure 3.2 and Figure 3.3

are provided. Suppose we have a function named “dummy_function” as defined in

Figure 3.2 :

19

Figure 3.2 : Sample function

To make this function execute symbolically we make use of KLEE’s provided

functions as such as the one given in Figure 3.3

20

Figure 3.3 : Example program

This small program now will be compiled using C compiler Clang using the command:

$ clang -I ../../include -emit-llvm -c -g main.c

This will provide us the intermediary llvm bytecode(.bc) file which will be used as :

$ klee main.bc

Now KLEE will generate metadata about the symbolic run and put them in a folder

called /klee-last with the content given in Figure 3.4.:

Figure 3.4 : Folder that contains metadata of the sample KLEE run

In our provided example, we have three test cases generated for us. Making use of the

test tool KLEE provides along with the engine, we can conveniently see what these

cases as shown in Figure 3.5:

21

Figure 3.5 : Example KLEE test tool run

3.5. Testing Approach Employed

A prototype implementation of the proposed approach illustrated by the flowchart

given in Figure 3.7. For ease of testing and convenience to the user, all steps in the

flowchart conducted by a python script given in Appendix 3 and fully automatic. Our

script starts with copying both the original and modified components to a test folder.

After this, using header file of the original component, the function prototypes are

extracted by invoking Ctags software. These function prototypes are then used to

extract information such as the name of the function, return type of the function and

list of the function arguments. This extraction is done by a custom parser implemented

in our script. For functions that are using other functions of the same component, the

cases are generated so that the file contains every function implementation used by

this function to properly compile the test case, parser is also responsible for this. Then,

this information is used to create a file in the form of Figure 3.3. This file will be fed

to the symbolic engine. After this file creation, a Makefile is created which contains

the recipe to generate LLVM bytecode and necessary steps to generate test cases from

this bytecode by making use of the symbolic execution engine. A template of this

Makefile can be found in Appendix 3 'make_test_cases'. Both of these files are then

put in a folder and Make is executed. After the execution of Make, KLEE will generate

test cases under this folder. Test cases are generated from both modified and original

components, therefore enabling us to catch more errors. Following this, test cases for

each function are gathered and a file as in Figure 3.6 generated along with a Makefile

which contains required recipe to compile and link this file into an executable. While

naming the generated test cases, first "Test" is appended to the end of the function

name for denoting the unit being tested. After this, each case is named by adding a

number at the end of the function name starting by zero. For example, for function

"wrong_if_statement" one can see that the unit being tested named as

"wrong_if_statementTest" and test cases starts from "wrong_if_statement0". The

values such as "0" and "16777217" are automatically generated by KLEE. For

environment mocking purposes one can use the compiler flag -DMOCK to provide a

platform independent replacement for platform dependent code regions. The keyword

"ASSERT_EQ" is macro that checks whether two values are equal. With this way

platform dependent code can also be tested with our approach. In the final step, this

executable is run, and tests results will be printed out on the console.

22

Figure 3.6 : File tests.c

23

Figure 3.7 : Flowchart of our approach

24

25

CHAPTER 4

4. EVALUATION OF THE PROPOSED METHOD

We evaluated the method via two cases. First evaluation scenario is for checking the

success of our approach on small functions. Second evaluation scenario focuses on

finding errors in different versions of a more complex algorithm that is implemented

by several functions. In the first case, our tool will be tested against two synthetic

software components. Every function in the modified component contains an error. In

the second case, we used two different implementations of a mock algorithm having a

common interface. The second implementation was also introduced with several

software bugs. As well as introducing bugs, the second implementation consists of

refactored implementations for every function involved in the first implementation of

the algorithm. Each of these cases is employed to check whether our tool is able to

pinpoint common errors that can possibly be seen in every software project. All of the

test cases were run on a Ubuntu (build 4.15.0-34-generic) virtual machine in

VirtualBox [28] on top of a machine with the following specifications : Intel i7 CPU

2.8 @ GHz, 16 GBs of RAM, 1 TB of HDD, 64-bit Windows 10 operating system.

4.1. Error Insertion

In this section, we will explain how software errors are inserted in the functions to be

tested in two cases. We are only providing three examples for brevity. Rest of the code

snippets that we have tested our cases against could be found in Appendix.

The first error case stems from modified local types (Figure 4.1). Changing local data

types without planning ahead could lead to overflows and many other undesired cases.

Our tool was able to find 5 unique test cases for this example below. Out of these 5

cases, input values 41 and 44 was able to showcase failure cases.

26

Figure 4.1 : Modified local types

The second example contains a wrongly used if statement (Figure 4.2). Notice that on

the fifth line of the original code sample there exists a check between value1 and

value2. However, on the modified version of the function one can see that one '=' is

missing. Although it is clearly not what the developer intended to do it is a valid C

statement. Nowadays modern toolchains can easily catch errors like this. However,

working with the bleeding edge toolchains are not always possible when embedded

systems are in consideration. Improper use of compiler flags can also cause this error

to go unnoticed.

27

Figure 4.2 : Wrong if statement

The third example features an uninitialized local variable local_var (Figure 4.3). It is

easy to fix but can have devastating consequences if not realized in development time.

This example in particular will cause you to have different output values depending on

your compiler and linker options.

Figure 4.3 : Uninitialized local variable

28

4.2. Evaluation with Common Error Scenarios

This approach will investigate the performance of our approach with several software

bugs that are found in some of the prevalent open source software projects. Our tool

will do the equivalence checking of a synthetic component containing each of these

popular software bugs in several methods. The modified component contains the

‘fixed’ versions of these methods. These common software bugs [29] contains cases

such as :

- Modified local variable types

- Uninitialized local variable

- Forgotten break statement

- Operator precedence

- Incorrect dereference

- Incorrect loop control statements

In the first scenario, we seeded common software bugs into simple functions as

explained in Section 4.1. Both versions of the functions tested are given in Appendix

4.1. Then, we applied our testing tool. Our tool is able to extract 36 test cases out of

both modified and original components as can be seen from Table 4.1. The script took

24.54 seconds to execute in the machine configuration mentioned in above. Out of

these 36 test cases, 19 of them passed and 17 of them were failed. It was able to detect

each error case mentioned above except incorrect dereference example where it failed

to generate proper test cases in time and simply aborted. These error cases are extracted

from widely used open source projects [29] can very well end up in your code base

too.

Table 4.1 : Overview of Results

Total

Cases

Cases

Passed

Cases

Failed
Successful

Modified local variable

types
6 4 2 Y

Uninitialized local variable 4 0 4 Y

Forgotten break statement 8 6 2 Y

Operator precedence 10 5 5 Y

Incorrect dereference 0 0 0 N

Incorrect loop control

statements
8 4 4 Y

29

4.3. Evaluation with a Larger Code Example

This approach will use two different implementations of the same algorithm. Our

approach extracts test cases from each implementation and test both implementations

using these cases. Implementation of the algorithm can be seen in appendix. The

flowchart of the algorithm is given in Figure 4.4. To check whether our approach is

able to find errors in a larger code example, we inject each of the software bugs from

section 4.1

Below we will explain how our approach performed for each case. It was able to

generate 28 test cases in total and 11 of them failed as can be seen from Table 4.2. The

script took 127.36 seconds to execute in the machine configuration given above, note

that this number is quite different than the first example in section 4.2 because

symbolic engine had to symbolize arrays of integers instead of single integers this time.

Please note that you can only find source files and the python script to execute our

approach but not the test cases themselves. The reason for that is, the test cases

generated are quite verbose and including them in this document itself will simply

blow the size of it out of proportions. Instead, for readers' convenience, we made all

the source files, scripts and a user manual explaining how to setup your own

environment available in a Github repository [30]. This way, readers who are

interested can also reproduce the case for themselves and even modify it to use for

their cases.

For modified local variable types we introduced a bug to the refactored version of

quicksort algorithm. In the modified version of the quicksort function, one of the sub

functions called "split" has a local variable called "part_element". This variable's type

changed into int_16t. Our approach was able to catch the erroneous condition by

generation 6 test cases out of 3 failed.

"find_min" method contains an uninitialized variable in its modified implementation.

The nature of the algorithm calls for a variable with a big value so that it can do the

correct comparison for the whole span of integer values. However, in the modified

case this is simply forgotten. Our approach was able to generate 4 test cases for this

function and out of this 4, one of them failed.

Function named "scale" and "exit_filter" contains the forgotten break statement

scenario. Our approach generated five test cases for this method "scale". However,

none of the test cases was able to pinpoint the problem. When inspected, each test case

generated has different values for input parameter "scale_factor". However, for the

first input parameter for array "*in" one can see the all five test cases contains an array

full of zeros. Since scaling these "zero arrays" will only produce another array filled

with zeros. For function "exit_filter" our approach generated 8 test cases where 2 of

them failed. In short, we were able to catch the forgotten break statement but only one

flavor of it.

30

Function named "custom_filter" is the example case for operator precedence. Notice

that in second implementation has braces around the and operation with flag. Our

approach was able to uncover this error by generating 1 failing case out of 4 test cases

generated.

In function "reverse_array", one can see that in the first version a dynamic array is

created and passed onto the out pointer, however in second case a local variable created

and passed on instead. In second case, since the local variable will get destructed after

we get out of the function context it is for sure a bug. Our approach however fails to

detect this case. It is able to generate 2 test cases and none of them was able to pinpoint

the error case, failing to catch incorrect dereference scenario.

In function "offset_array", the modified version does the offsetting 4 elements at a

time. However, when looked carefully, one can see that the increment is done until the

loop variable reaches "arrlen/4". This causes the indexing to be faulty in main body of

the for loop. Our approach was able to generate 3 test cases for this specific scenario

and, out of those cases, one of them was able to detect the error case.

Table 4.2 : Overview of Results

Total

Cases

Cases

Passed

Cases

Failed
Successful

Modified local variable

types
6 4 2 Y

Uninitialized local variable 4 0 4 Y

Forgotten break statement 8 6 2 Y

Operator precedence 10 5 5 Y

Incorrect dereference 0 0 0 N

Incorrect loop control

statements
8 4 4 Y

31

Figure 4.4 : Flowchart of the algorithm in discussion

32

4.4. Suggestions for Incorrect Dereference Case

One can see that in both evaluation cases our approach fails to catch incorrect

dereference case. The failed cases we have observed stems from the fact that generated

case for an input array is simply filled with zeroes. This causes program to not follow

the branch that will have error on its path and error stays undetected. For situations

like these the user may need to perform some modifications on the source code to help

the symbolic engine generate more meaningful test cases. These modifications can be:

- Offsetting the input array with a nonzero value

- Changing the branching order of the program

- Changing the branching conditions of the program

33

CHAPTER 5

5. CONCLUSION

In this final chapter, we criticize of our approach, mention our contributions,

shortcomings and possible future improvements. The problem at hand was to see

whether we will be able to detect whether two software components are functionally

equivalent or not. For this endeavor, a literature research focusing on equivalence

testing is conducted. Out of many candidates, we dwindled down the number of studies

into eight. Within these studies the ideas are quite varying. Some of them are focusing

on formal methods, while others are borrowing ideas from electrical engineering and

quite interestingly some of them are even making use of textual differences to find

equivalence between software components. The approach of Jiang et al. [7] and

Papadakis et al. [6] for example is much better suited for finding equivalent code

pieces in large code bases compared to our approach. Post et al. [8]cannot handle

complex C structures as they are bounded by the tool they are using, therefore need

manual intervention. Godlin et al. [10] also have the same problem because of the same

reason. Although our approach does not have the same shortcomings with Post et al.

[8] and Godlin et al. [10] with respect to manual intervention there is still issues with

scalability that we are also experiencing. Our approach is quite similar to Matsumoto

et al. [11] although it can be said that they are more better suited for automatically

generated programs compared to our approach. Approach of cutpoints by Feng et al.

[2] can provide us with better execution time if it can be extended to use C

programming language. Ciobaca et al. [3] provide better coverage with their language

agnostic approach and it is also mathematically proven, once their approach is able to

tackle on parametrized functions it will be better suited to use in domains such as

aerospace and medical industry which requires absolute precision and correctness. If

one is looking for a solution where each commit is compared against the previous one,

approach of Wood et al. [4] is much more suitable then our approach.

In this study, we based equivalence checking on unit tests. Moreover, the process is

aimed to be automatic. Therefore we have shown that symbolically executing the

software and extracting important branch points, and later on using them as our test

cases is a viable method to check equivalence. To prove what we have deduced, we

provide a prototype implementation of our approach. In order to achieve this, we've

looked into how industry deals with automatically generated test cases and symbolic

execution engines. This literature research yielded the symbolic engine to be used and

the outline of the architecture of our approach. Finally, we evaluated the success of

our approach by means of two sample cases.

34

The first one was focusing in synthetic software functions introduced with common

software errors. Our approach was able to generate 36 test cases for these functions in

25.54 seconds. Out of these cases 17 of them failed. Therefore, except the incorrect

dereference error, all software bugs inserted are detected by our tool. In the incorrect

dereference example, our tool failed to generate proper test cases in the predefined

time interval and simply aborted.

The second case was to insert these bugs on a larger code example and to see whether

our solution is able to detect it. Our solution was quite successful in first case of

evaluation where it detected all software bugs with ease except "incorrect dereference"

scenario. However, second method of evaluation proved more challenging for us, as

our approach was not able to detect "incorrect dereference" scenario. Our approach

generated 28 test cases in 127.36 seconds where 11 of them failed. For this method of

evaluation success rate of the cases is 5 out of 6.

Under light of these evaluations, our achievements can be said to include automatic

generation of unit tests for a specific software component and its modified counterpart

by simply executing a script. It was important for us to make this process fully

automated since it could be a part of nightly build process in a professional software

development environment. The script also leaves the user with a test bench that can

easily be extentable for further modifications to the cases.

Future work is needed to extend it to be used with C++. Further investigation is also

needed as our approach struggle to different flavors of the same error type. This

problem stems from the fact that branch points generated from symbolic engine are

sometimes simply useless values as a test case. To tackle this problem future work

could be invested on building better test programs to feed into symbolic engine. Right

now the test program is quite straightforward where it simply makes input parameters

symbolic and calls the function with those values.

35

REFERENCES

[1] Internet of Things (IoT) connected devices installed base worldwide from 2015

to 2025 (in billions), 2018 (accessed March 3, 2018).

[2] X. Feng, A. J. Hu, D. Computer Science and U. British Columbia, "Cutpoints for

Formal Equivalence Verification of Embedded Software," 2005.

[3] S. Ciobaca, D. Lucanu, V. Rusu and G. Ro?u, "A language-independent proof

system for full program equivalence," Formal Aspects of Computing, vol. 28, pp.

469-497, 2016.

[4] T. Wood and S. Drossopoulou, "Program Equivalence through Trace

Equivalence," 2013.

[5] Microsoft, "Dafny: A Language and Program Verifier for Functional

Correctness," 2008. [Online]. Available: https://www.microsoft.com/en-

us/research/project/dafny-a-language-and-program-verifier-for-functional-

correctness/.

[6] M. Papadakis, Y. Jia, M. Harman and Y. Le Traon, "Trivial compiler

equivalence: A large scale empirical study of a simple, fast and effective

equivalent mutant detection technique," Proceedings - International Conference

on Software Engineering, vol. 1, pp. 936-946, 2015.

36

[7] L. Jiang and Z. Su, "Automatic mining of functionally equivalent code fragments

via random testing," Proceedings of the eighteenth international symposium on

Software testing and analysis - ISSTA '09, p. 81, 2009.

[8] H. Post and C. Sinz, "Proving functional equivalence of two AES

implementations using bounded model checking," Proceedings - 2nd

International Conference on Software Testing, Verification, and Validation,

ICST 2009, pp. 31-40, 2009.

[9] A. Biere, A. Cimatti and E. M. Clarke, "Bounded Model Checking," vol. 58,

2003.

[10] O. Strichman and B. Godlin, "Regression verification - A practical way to verify

programs," Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4171

LNCS, pp. 496-501, 2008.

[11] T. Matsumoto, H. Saito and M. Fujita, "An equivalence checking method for C

descriptions based on symbolic simulation with textual differences," IEICE

Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, Vols. E88-A, pp. 3315-3322, 2005.

[12] G. Tassey, "The economic impacts of inadequate infrastructure for software

testing," National Institute of Standards and Technology (NIST), p. 309, 2002.

37

[13] R. Baldoni, E. Coppa, D. C. D'Elia, C. Demetrescu and I. Finocchi, "A Survey

of Symbolic Execution Techniques," pp. 1-53, 2016.

[14] C. Cadar and K. Sen, "Symbolic execution for software testing: three decades

later," Communications of the ACM, vol. 56, pp. 82-90, 2013.

[15] C. Cadar, D. Dunbar and D. R. Engler, "KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs,"

Proceedings of the 8th USENIX conference on Operating systems design and

implementation, pp. 209-224, 2008.

[16] L. Apfelbaum and J. Doyle, "Model Based Testing," Procedings of the 10th

Internation Software Quality Week, pp. 1-14, 1997.

[17] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M.

Harman, M. J. Harrold and P. McMinn, "An orchestrated survey of

methodologies for automated software test case generation," Journal of Systems

and Software, vol. 86, pp. 1978-2001, 2013.

[18] A. Orso and G. Rothermel, "Software testing: a research travelogue (2000-

2014)," Proceedings of the on Future of Software Engineering - FOSE 2014, pp.

117-132, 2014.

[19] A. Kerbrat, T. Jéron and R. Groz, "Automated test generation from SDL

specifications," in SDL Forum, 1999.

38

[20] C. Nebut, F. Fleurey, Y. L. Traon and J. M. Jezequel, "Automatic Test

Generation: A Use Case Driven Approach," 2006.

[21] A. Hartman, "Model Based Testing : What ? Why ? How ? and Who cares ?,"

Agenda, 2006.

[22] G. Antoniol, "Search based software testing for software security: Breaking code

to make it safer," IEEE International Conference on Software Testing,

Verification, and Validation Workshops, ICSTW 2009, pp. 87-100, 2009.

[23] R. Hamlet, "Random testing," Encyclopedia of Software Engineering, pp. 970-

978, 1994.

[24] T. Y. Chen, H. Leung and I. K. Mak, "Adaptive Random Testing," Advances in

Computer Science - ASIAN 2004, pp. 3156-3157, 2005.

[25] P. Godefroid, N. Klarlund and K. Sen, "DART: directed automated random

testing," Proceedings of the 2005 ACM SIGPLAN conference on Programming

language design and implementation, pp. 213-223, 2005.

[26] P. McMinn, "Search-Based Software Testing: Past, Present and Future," 2011

IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops, pp. 153-163, 2011.

[27] M. Harman, Empirical Software Engineering and Verification, vol. 7007, 2012.

39

[28] "VirtualBox," 2018 (accessed September 29, 2018). [Online]. Available:

https://www.virtualbox.org/.

[29] E. R. Andrey Karpov, 100 bugs in Open Source C/C++ projects, 2012 (accessed

March 3, 2018).

[30] B. Ünaltay, "thesis," 2018 (accessed September 29, 2018). [Online]. Available:

https://github.com/burakunaltay/thesis.

40

41

APPENDIX

ERROR CASES

Figure A.1 : Forgotten equal sign

42

Figure A.2 : Modified local types

43

Figure A.3 : Wrong if statement

Figure A.4 : Uninitialized local variable

44

Figure A.5 : Forgotten break statement

45

Figure A.6 : Operator precedency I

Figure A.7 : Operator precedency II

Figure A.8 : Operator precedency III

