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ABSTRACT 

 

SOFTWARE EQUIVALENCE CHECKING BASED ON UNIT TESTING 

AND SYMBOLIC EXECUTION 

 

 
Ünaltay, Burak 

M.S., Department of Information Systems 

Supervisor: Assoc. Prof. Altan Koçyiğit 

 

November 2018, 45 pages 

Hardware is one of the best representatives of our ever-changing world. For most of 

the end users this is nothing but a nuisance as they have to renew their electronics each 

year. For the embedded system designers who has to deal with this change in frontier 

however it is a definite threat. Embedded system designers have a close relationship 

to the hardware as the software runs on it highly tuned for the platform it runs on. It is 

when hardware is completely obsolete this impact reaches its peak because customized 

software will need heavy refactoring and often times a complete rewrite. One has to 

be sure to have a functionally equivalent product after this refactoring effort. This 

requires a costly and lengthy validation process. Sum of all validation efforts for this 

purpose could be identified as equivalence checking. Here in this study, we lay out a 

method that automatically deals with problem of equivalence checking. Our method is 

tested against two evaluation scenarios. In first scenario, our method is tested against 

small function bodies. In second scenario, it is tested against a larger code example 

that is closer to a real production code. In both ways of evaluation, our method is able 

deduce equivalency with a score of 5 out of 6. 

 

 

 

 

 

KEYWORDS: Software Equivalence, Software Equivalence Checking, Automatically 

Generated Unit Tests, Symbolic Execution.  
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ÖZ 

 

SEMBOLİK YÜRÜTMEDEN ELDE EDİLEN BİRİM TESTLERİN YAZILIM 

DENKLİĞİNİ KANITLAMADA KULLANILMASI 

 
Ünaltay, Burak 

Yüksek Lisans, Bilişim Sistemleri 

Tez Yöneticisi: Assoc. Prof. Altan Koçyiğit 

 

Kasım 2018, 45 sayfa 

Günümüzde her şey nasıl değişime uğruyorsa, donanım komponentleri de bu 

değişimin parçası olmak zorunda. Bu durum son kullanıcı için küçük rahatsızlıklar 

yaratmakta. Fakat gömülü sistem tasarımcıları için bu durum çok daha kritik, çünkü 

gömülü yazılımlar üzerinde çalışacakları donanıma yüksek bir oranda bağlı 

olduğundan herhangi bir donanım değişikliği yazılım geliştirme süreçlerine büyük 

külfetler getirmekte. En büyük zorluk ise donanımın artık üretilmemesi durumunda 

ortaya çıkacaktır. Böyle bir durumda eski donanım için tasarlanmış yazılım ağır bir 

yenileme sürecine girecek ve hatta tamamen baştan yazılmak zorunda kalacaktır. Bu 

yenileme sürecinden sonra eski yazılım ve donanım ile yeni yazılım ve donanım ikilisi 

ile fonksiyonel anlamda denk olmalıdır. Bu denkliği test etmek oldukça uzun ve etraflı 

bir süreçtir ve denklik testi olarak adlandırılır. Bu çalışmada denklik testini otomatik 

olarak gerçekleştirebilen bir method ortaya koyuyoruz. Methodumuz iki 

değerlendirme yöntemiyle test edilmiştir. İlk yöntemde küçük boyutlu fonksiyonlarla 

ikinci yöntemde ise gerçek hayat senaryolarına daha yakın bir kod örneği 

kullanılmıştır. İki yöntemde de methodumuz 6 üzerinden 5 başarı oranı sağlamıştır.Bu 

tezden elden edilen veriler, mevcut kanadın statik test sonuçlarına katkı sağlayacaktır.  
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CHAPTER 1 

 

1. INTRODUCTION 

 

In today’s fast-moving world, everything is subject to change and this definitely 

includes hardware components. This situation causes a minor inconvenience for the 

end users since they constantly have to change their electronics to keep up with the 

technological advancements. However, it poses a much more serious challenge for 

embedded system designers as hundreds of components go end of life each year. As 

embedded software is often highly tuned for the hardware it runs on, changing 

hardware components has a huge impact on the software development process. The 

real challenge is when the hardware is completely obsolete and has to be replaced by 

a newly designed one because the software will need heavy refactoring and sometimes 

even a complete rewrite to work with the new hardware. After this refactoring process, 

one has to be sure that the new hardware and software stack has the identical behavior 

with the previous one. This can be a quite tedious and lengthy validation process. 

Summation of this validation efforts could be identified as equivalence checking. 

1.1. Why is Equivalence Checking Important ? 

Equivalence checking in low level software is quite important for several reasons. One 

of the reasons is that majority of the embedded software is expected to run for several 

years at a time without any intervention. This stems from the fact that cheap low level 

electronics are so common that even simplest of devices have several of them. The 

devices we mention could be anything and everything around us such as: 

- A subsystem in a mobile phone 

- A thermostat in a living room  

- A sensor measuring vitality signals of a patient  

- Controller of an irrigation system  

- A meteorological measurement system situated at the top of a mountain 

These examples could be expanded with ease, as we are surrounded billions of such 

devices. According to a research, there will be 30 billion connected devices by the year 

2020 [1]. The main connecting point of our examples is updating, patching, fixing 

them in terms of software means is highly unlikely and sometimes downright 

impossible especially the embedded software driving them. Therefore, it is of absolute 

importance that these run, for lack of a better term, like a clock since the world as we 

know revolves around them. This brings us to our main point, which is how do we 

make sure that our software acts exactly like it is designed even when hardware is 
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constantly changing. It is an undeniable fact that hardware grows old and as 

technological advancements are pushing limits old technology is destined to disappear. 

In this constant stream of change, it is not surprising to come across to a point where 

our trusted microchip is not produced anymore. Hence the new iteration of whatever 

product we might be working on, has to be based on some other architecture, 

processor, instruction set, etc. As software engineers working on such embedded 

devices, it is imperative that they must treat hardware and software as a whole system. 

Hence, the work of porting the software to a new hardware platform should not cause 

any change of features. Occurrence of unexpected changes and hiccups will interfere 

with the whole system. If the aim and scope of the product you are working on aligns 

with the principles mentioned above, then the equivalence of the software running both 

on the new and old platforms is of utmost importance. 

This thesis explores this issue and lays out an automated equivalence checking 

framework. Our scope will be limited to embedded systems only, therefore ‘C’ will be 

our choice of programming language for the software components under equivalence 

investigation. The ‘equivalence checking’ process will be conducted using unit tests. 

Our aim is to automatically generate unit test cases for both original and modified 

components and later on use them to reason about how the modified software 

component compared to original one.   

In the next chapter, there will be a literature review covering different methods that 

could be used in such a framework. Main methods that will be investigated are already 

existing equivalence checking methods and testing methods for software components. 

The third chapter will explain our proposed method from an architectural point of view 

and presents a basic implementation that can be used to check equivalence of software 

components. The fourth chapter presents evaluation of the proposed framework by 

means of two cases. Final chapter is where we conclude our achievements and discuss 

about future work that could be done to improve and build on top of our current efforts. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

This chapter contains an investigation of methods that could be used to build a software 

equivalence checking platform. The “software” we mention here assumed to be 

developed in C programming language as embedded systems are heavily coded in C. 

We propose two different implementations of a software component with a common 

interface can be checked for equivalence by having a rigid and through testing strategy. 

Well thought out test scenarios could expose faulty refactoring of the software 

component early on, hence avoiding costly and untimely bug fixes. However, it is a 

well-known fact that testing is costly. But it should also be noted that software bugs 

are even costlier. According to a report made by Tricentis, a software test company, a 

total of 548 software errors affected 4.4 billion people and cost 1.1 trillion in assets 

[1]. To give a little perspective, another report compiled for NIST (National Institute 

of Standards and Technology) shows that the cost of inadequate infrastructure for 

software testing is estimated to range from $22.2 to $59.5 billion [3]. Although a direct 

comparison is not exactly meaningful, there is no denying that the cost of software 

errors grows rapidly. Against this rapid growth, it is only natural that an abundance of 

research on software testing is present. Within all this research, our aim is to find the 

ones that automate the process of testing, so that we could test both original and 

refactored components for equivalence without excessive costs.  

It is important to remind the reader that our focus is the embedded domain. This results 

in several difficulties. Software in particular is not guaranteed to have proper 

documentation, a model nor requirements at all. In the embedded domain, this holds 

true as well, maybe even more than the other domains of software. As we focus on 

proving functional equivalence between two software components implemented in C 

programming language with embedded domain restrictions, the method to prove 

functional equivalence between software components should not be picky. In other 

words, the equivalence testing method should be able to take in the source code itself 

with implementation and interface parts and it should suffice for equivalence analysis. 

This restriction is not in place to undermine any possible equivalence checking method 

but simply a requirement brought out by necessity. This necessity stems from affairs 

in embedded software industry, as it is perfectly natural to have missing or no 

documents at all, nor requirements which is clarifying what this particular software 

product is responsible with. Often times when faced with a refactoring process of a 

legacy software component, the software developer have only source code itself as the 

guide for whole process. Therefore, expecting a complete documentation, 

requirements for software or a model encompassing the entire software capabilities 
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which can be used to generate code, tests and other utilities is out of the question. Now 

these expectations could be perfectly valid for other domains, but for our case we 

assume that the code does have such amenities and for good reason too. 

2.1. Software Equivalency Checking Methods  

In this subheading, there will be an investigation of how current state of the art deals 

with checking software equivalence. A change of target hardware platform is not the 

only case where you might need to refactor your components so that they will stay 

functionally equivalent to the previous ones. A change in the toolchain that is being 

used could also require you to refactor your software to make it stay functionally 

equivalent. In another situation, you might want to check whether the version e.g., 1.5 

is functionally equivalent to version 1.7 or you might be interested to upgrade the 

version of a library that is being used in your code base and you want to be sure that it 

will not break any important bits and pieces. Aforementioned situations along with 

many of them will put you in a situation where you will have to confirm software 

equivalence to ensure a safe transition period. 

Jiang et al. [4] introduce an algorithm to automatically mine functionally equivalent 

code fragments of arbitrary size. They treat the concept of function equivalence based 

on the set of inputs and their respective set of outputs. They set the core of the 

algorithm as automated random testing and by getting inspiration from Schwartz’s 

randomized polynomial identity testing [5] . The algorithm first extracts the candidate 

code fragments from the source code, later on, random inputs are generated to separate 

code fragments depending on their output values for respective inputs. They 

investigated the algorithm on the source code of Linux Kernel 2.6.24. They claim that 

they have found many code fragments that are although syntactically different, they 

are functionally equivalent. The study mentions that this method can scale million-line 

programs and is able to analyze the Linux kernel within several days with parallel 

processing. Although this method is mainly designed to detect duplicate code 

segments, it is possible to extend it to analyze equivalence of the components as well.  

Post et al. [6] analyzed the functional equivalence between two AES(Advanced 

Encryption Standard) implementations. This checking process is done using automatic 

bounded model checking [7], which is a successful technique in hardware domain used 

for equivalence checking. Cryptographic algorithms have long been using bit-level 

operations. This situation in particular makes them suitable for bounded model 

checking. It is mentioned in the study that equivalence proved for the first three rounds 

of AES encryption routines semi-automatically. In addition to this, they were able to 

achieve the full proof of equivalence by manual intervention.  

Godlin et al. [8] focus on verification of programs by regression. It is mentioned that 

real programs cannot be specified with high level invariants or temporal properties. To 

add to this fact, it is even harder to describe what a specific part of the code should do. 
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Therefore to avoid these challenges, the industry takes on a different approach with 

regression testing. Regression testing has no need for a formal specification. A deep 

understanding of the code is not required either. Having a practical approach, Godlin 

et al. include regression testing in their toolset while proving functional equivalence 

between two programs. Though this technique has long been used by the industry, it 

comes with some shortcomings. The tooling used in the study and the choice of the 

programming language have been decided by lack of maturity of the tools in other 

programming languages. Achieving scalability is another concern of theirs. 

Matsumoto et al. [9] present an equivalence checking method for two C programs. 

Their main method of finding out the equivalence is symbolic simulation. However, 

in their claim, verifying equivalency of all the variables takes a considerable amount 

of time. To tackle this problem, they make use of textual differences between 

descriptions. Using these differences, they aim to minimize the number of checks 

hence shortening the required time. Through several experiments, their method 

provides shorter execution times for the symbolic simulation. It is important to note 

that the “C programs” that are being investigated are not hand written code but 

generated as an output of VLSI(Very Large Scale Integration) design process.  

Feng et al. [2] introduce an idea for formal verification of equivalence of structurally 

similar software. The idea revolves around the concept of cutpoints which is a method 

for formal equivalence verification of combinational circuits. They took this initial 

idea and implemented it in the software domain. They claim that they have better 

execution time performance compared to that of the previous approaches, although 

false inequivalences are still a problem. Their future work suggestions include 

improvements on false inequivalences and scalability. 

Ciobaca et al. [3] introduce a language-independent proof system for full equivalence. 

Given two programs as input, a proof tree deducts whether they are equivalent or not. 

They showcase their method on two programs which calculates Collatz sequence. The 

programs are implemented in different languages. It is also noted that this example is 

particularly interesting because it is now known beforehand whether the sequence will 

terminate or not. In the study, it is shown that programs are equivalent although neither 

termination nor divergence could not be established.  

Wood et al. [4] argue that when programmers change their code, they intend to keep 

some parts of the program’s behavior. Following this logic, they propose a formal 

criterion to characterize the preserved part of the program behavior. The criterion is 

"two program versions are equivalent up to a set of affected objects A, if executions 

of these versions correspond at each execution step when the objects in A is not 

considered". Then they move on to propose a sufficient condition for this criterion. It 

is sufficient to establish that traces of calls to the methods and returns between A 

objects and the rest of the objects are equivalent. They claim that examination of stack 
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and heap at each execution step is not necessary. The proof they provide to this 

condition is verified using Dafny program verifier [5].  

Papadakis et al. [6] propose Trivial Compiler Equivalence, which is a method that 

makes use of the already available compiler facilities to address identification of 

mutants in programs. It is argued that their method is applicable to real-world programs 

and can also aid already existing tools to detect equivalent and duplicated mutants. 

Their method is able to discard more than \%7 and \%21 of all the equivalent and 

duplicated mutants.   

Now that we have enough background information on how equivalence checking is 

dealt with it is time to gauge each of these methods for our case. Jiang et al. [7] propose 

a method to identify functionally equivalent code in their study. Their algorithm finds 

the possible equivalent parts of code in the entire code base and then moves on to the 

part where it checks whether they are actually equivalent or not by using random 

testing approaches. The part of the algorithm where it extracts parts of possible 

functionally equivalent code is of no value for our problem as it is already known 

which parts of code are functionally equivalent in our case. The part where they 

confirm the equivalence using random testing can prove useful for our case although 

whether random testing can provide a meaningful test suite to catch errors that might 

have gone unnoticed otherwise, is still questionable. Post et al. [8] propose a solution 

using bounded model checking. In their solution, however they had to use several 

manual steps. These manual steps include modifications to the source code so that the 

code would conform the tool they are using to perform bounded model checking 

(CBMC) [9] This is undesirable for us as we want to automate this process in its 

entirety if possible. Godlin et al. [10] also use CBMC as the underlying engine in their 

verification approach. They are also involving user in certain parts of the algorithm. 

Matsumoto et al. [11] are making use of symbolic execution at the core of their 

algorithm, however they are lightening the load on symbolic execution by making use 

of textual differences on the code. This algorithm designed to work on generated C 

code, hence may not be as performant as it is shown in the study when code is hand 

coded and not generated. Code generators often work with similar patterns because 

their main responsibility is mapping certain models to certain sentences of 

programming language. As such, finding textual differences in generated code is not 

the same task as finding textual differences on hand coded programs because hand 

coded programs will most definitely be different with naming, indenting, choice of 

words, placement of statements, argument type and so on. Although studies of Post et 

al. [8] Godlin et al. [10] and Matsumoto et al. [11] do not exactly align with our goals 

and assumptions for this research, yet they are providing the idea of using a model or 

path checker as the base of our approach. As the model and path checkers are 

mathematically proven, even though we are not aiming for formal equivalence 

checking, they will provide us fidelity, nevertheless. Feng et al. [2] adopt notion of 

cutpoints from equivalence checking of electrical circuitry. Their idea is cutting up the 
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code in bite size pieces so that symbolic execution times will be manageable. These 

cutpoints should be points where in between the state should not change. In the study, 

the programming language is an assembly dialect for a certain DSP(Digital Signal 

Processor) series. This is a fairly simple language compared to C programming 

language. Finding such cutpoints means finding candidates for certain code structures 

that can act as barriers around a certain state. In assembly language, these structures 

are often reads and writes, memory barriers, instruction barriers, branches, system 

calls, interrupts and so on. In a higher order programming language such as C, these 

structures could practically be anywhere hidden behind library calls, system calls or 

any function for that matter. Therefore, finding such cutpoints in higher order software 

is much more complicated as it requires a complicated parsing process, maybe even a 

symbolic engine on its own. Therefore, we refrain from this effort, because higher 

order languages deal with statements that can change the state every other line, 

completely defeating the purpose of the study. Ciobaca et al. [3] provide a 

mathematically sound method for equivalence checking which is also language 

agnostic. However it is unable to handle symbolic statements, rendering it useless for 

our case. Wood et al. [4] lay out an interesting approach. It is however focused on two 

different versions of the same code one is predecessor of the other one. In our case, it 

is imperative for us to deal with a complete rewrite as long as the interface stays the 

same, however. Finally, the method of Papadakis et al. [6] is not suitable for our 

purposes either. Because it is designed to find equivalent code pieces in large code 

bases, and can give false alarms. 

2.2. Testing Methods  

A literature review reveals 5 main testing related research areas which are namely: 

- Symbolic Execution Based Testing 

- Model Based Testing 

- Combinatorial Testing 

- Random Testing 

- Search Based Testing 

 

 

2.2.1. Symbolic Execution Based Methods  

Symbolic execution is executing a program for a set of classes of inputs, rather 

than a set of sample inputs. In that way, each symbolic execution increment 

might be equivalent to a large number of normal test cases. Obtained results 

can be checked against a ground truth for correctness [12].  

Symbolic execution engine maintains a state where it keeps information about 

the next statement which will be evaluated, a symbolic store where symbolic 
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or concrete values are kept and path constraints which is the list of assumptions 

on symbols to reach that particular state [13]. By exploring the program in this 

manner while doing the bookkeeping of program state, one can identify all 

unsafe inputs to a program that will possibly cause an unwanted situation. 

However actually achieving this on a real-world program comes with 

challenges. Baldoni et al. [13] present these challenges under five headings as 

such: 

o Memory: The way symbolic execution engine handles memory is 

important. It should be able to handle both simple and complex data 

structures. Also, special data types such as pointers should also be 

handled both symbolically and concretely. 

o Environment and third-party components: How does the engine handle 

interactions between different software products? Calls to third party 

libraries or system calls can change the system state which should be 

dealt with by the symbolic execution engine. 

o State space explosion: Loops and other programming structures can 

increase the number of possible execution states. Symbolic execution 

engine should be able to handle this situation in a reasonable amount of 

time. Santelices et al. state that traditional approach to symbolic 

execution where each execution path analyzed one by one does not 

scale since a typical program has many paths and the number of paths 

grows with the size of the program. This problem is also called path 

explosion [12]. 

o Constraint Solving:  When symbolic execution was first introduced, 

constraint solvers were a serious limitation. However significant 

advances in constraint solving has now made symbolic execution viable 

compared to 70s when constraint solvers pose a serious liability since 

symbolic execution cannot generate an input if the symbolic path 

constraint along a feasible execution path contains formulas that cannot 

be (efficiently) solved by a constraint solver. An example to this might 

be nonlinear constraints [14]. 

o Binary code: Whether the symbolic engine can analyze the program 

without needing the source code is also an important question where 

the source code is not available. 

The challenges listed above did not hinder the advancements in this area of 

research. Modern symbolic execution engines also make use of concrete 

execution together with symbolic execution. One such example is called 

“Concolic Testing”.  

Concolic Testing performs symbolic execution dynamically, while the program 

is executed on some concrete input values. Concolic testing maintains separate 
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states for both concrete and symbolic values. Concrete state represents the 

mapping between variables to their concrete values. Symbolic state however 

only keeps the mapping for variables that only have non-concrete values. 

Concolic execution also needs initial concrete values for inputs. It executes a 

program with some random input, extracts symbolic constraints on branch 

points and then uses a constraint solver to choose next execution path. This is 

repeated systematically or heuristically until all possible execution paths are 

explored, or until a user defined criteria is met [15]. 

Another approach to modified symbolic execution engines is Execution-

Generated Testing [15]. The EGT approach works by separating concrete and 

symbolic state of a program. Later on, for each execution of and operation it 

checks whether all the values are concrete. If this is indeed the case, the 

operation is executed as it is. On the other hand if there is at least one symbolic 

variable then the operation is executed symbolically, by updating the path 

condition of the current path. 

2.2.2. Model Based Testing  

Modeling is about capturing the know-how about a system and reusing it as the 

system grows. This practice is quite beneficial for the design team, however 

for the testing team the software model is especially valuable because the 

model contains information regarding what the system should be doing. By 

having such a model, test engineers now have a way to define how the system 

reacts to specified inputs. Test scenarios can now be described as a sequence 

of actions to the system. Since all the actions revolve around the model, it 

provides great reuse as the model will grow with the system. However, it brings 

in a caveat that the model should be the heart of the development and should 

be continuously maintained so that the test scenarios stay relevant with the 

changing system. [16] 

Anand et al. [17] define Model-based testing (MBT) as a light-weight formal 

method which uses models of software systems for the derivation of test suites. 

Contrary to traditional formal methods, which aim at verifying programs 

against formal models, MBT aims at gathering insights in the correctness of a 

program using often incomplete test approaches. In model-based testing, the 

system under test (SUT) is treated as a black box system which simply 

produces outputs for a range of inputs. The internal state of SUT is changing 

with every increment of the execution. Since model at hand describes the 

input/output relationship, a test selection algorithm can derive test cases by 

choosing a finite subset of the input/output relationship represented by the 

model. Depending on the tooling, test suites might be generated in the desired 

language. 
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There are three main ways to approach to the problem. They are namely: 

• Axiomatic approaches: These methods are based on logic calculus. 

• Finite State Machine approaches: In the FSM approach, the model is 

formalized by a Mealy machine, where inputs and outputs are paired on 

each transition. Test selection derives sequences from that machine 

using some coverage criteria. [17] 

• Labeled Transition System approaches: Labeled transition systems 

(LTS) are a common formalism for describing the operational 

semantics of process algebra. They have also been used for the 

foundations of MBT.  

According to Orso et al., MBT has several advantages over the other test 

generation techniques. Coverage based techniques specifically are not reliable 

because all of the code is treated equally, and an ideal way does not exist to 

generate test cases covering more than unit tests. MBT on the other hand can 

result in better test generation because of the domain knowledge, expertise and 

abstraction the model provides. [18] 

As there are a number of ways to model a system, model-based testing 

approaches also vary heavily. Kerbrat et al. proposes a requirements-based 

approach where a system model is created using requirements that are being 

expressed in SDL(Specification and Description Language). Then the system 

model is used to create test cases related to the requirements [19]. Nebut et al. 

have a similar approach where they formalize requirements based on use cases 

extended with contracts. Later on, a transition system is automatically built 

which is used synthesize test cases [20].  

The main disadvantage of MBT techniques is that not every software has a 

formal model. Even if the stakeholders are willing to put an effort to have such 

a model there are limitations that come with it as well. The generated test cases 

are either limited by the modeling language or the tooling that comes with it. 

In addition to the technical challenges, there are also organizational challenges. 

The adoption rate of the modeling language and the tools by both technical and 

managerial staff is quite important [21]. All in all, MBT requires a high level 

of commitment from all stakeholders participating in software development 

because it will only be beneficial where the model is center of all phases of 

software life cycle. 

2.2.3. Combinatorial Testing  

Suppose that Software Under Test (SUT) is a game software that will run over 

the network. Inner workings of such a game depend on numerous parameters. 
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These parameters could be the operating system the software is running on, or 

the number of players, type of graphics processing unit and many more. Also 

note that these parameters can have values in different variety. Interactions 

between these parameters could cause unexpected erroneous states. For 

example, think of a certain piece of hardware not being compatible with a 

certain operating system. Parameters and their possible values make up a large 

combination space. Trying out every combination in such a space is often out 

of the questions because of limitations such as time and budget. Provided that 

you are not bound by such limitations, testing all of the combinations will still 

be considered a waste because many of the combinations in said combination 

space does not cause any problems at all. Combinatorial testing provides 

practical ways to detect failures caused by specific combinations of parameters 

while still adhering to real world limitations. [22] 

Originally, combination testing(CT) used for test case generation where 

parameters and their values are system inputs and each row of the covering 

array can be considered as a test case. It was also applied for test protocol 

conformance. Recent applications of combinatorial testing samples 

configurations to be tested. Software product lines are a popular area of 

research under CT. Since software product lines have a well-defined parameter 

set, a CT model can be extracted from these parameters. There is also a 

modified version of CT called sequence-based CT where each and every 

parameter becomes a location within a sequence and values of those parameters 

are repeated at every location. This approach has been used to test GUIs. [17] 

2.2.4. Random Testing  

Hamlet states that the technical meaning of random testing refers to an 

unsystematic choice of test data, such that there is no correlation among test 

cases [23]. This contrast between “random” and “systematic” stems from 

physical measurements being unpredictable. Hamlet mentions two major 

points: 

• Selection of random points is algorithmically easy, and this can be used 

to generate a multitude of test cases  

• Statistical independence among test points allows statistical prediction 

of significance in the observed results. 

Because of a lack of systematic approach, random testing is considered one of 

the weakest method of testing. However, combined with different approaches, 

it can be quite formidable. Yue et al. introduce an enhanced form of random 

testing called Adaptive Random Testing [24]. This technique seeks to distribute 

test cases more evenly within the input space. It stands on the idea that for non-
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point types of failure patterns, an even spread of test cases is more likely to 

detect failures using fewer test cases than ordinary random testing. They claim 

that adaptive random testing does outperform ordinary random testing 

significantly (by up to as much as 50\%) for the set of programs under study. 

Another different approach is called DART [25] which is short of Directed 

Automated Random Testing, it is the first tool to use concolic testing. In this 

approach, a combination of techniques are being used namely: 

• automated extraction of the interface of a program with its external 

environment using static source-code parsing  

• automatic generation of a test driver for this interface that performs 

random testing to simulate the most general environment the program 

can operate in  

• dynamic analysis of how the program behaves under random testing 

and automatic generation of new test inputs to direct systematically the 

execution along alternative program paths. 

Selling point of DART is testing can be performed completely automatically 

on any program that compiles. 

2.2.5. Search Based Testing  

Search based software testing is making use of meta-heuristic optimizing 

search technique, such as Genetic Algorithm to automate or partially automate 

a test process. One example of this could be generation of test data. The most 

important part of the optimization process is the fitness function. Fitness 

function is responsible for guiding the search to good solutions within an 

almost infinite search space, while still being committed to a practical time 

limit. [26] 

Search based testing aims to treat software engineering problems as search 

problems. These search problems however should not be confused by textual 

or hyper textual searching. Search problems in search-based testing domain is 

a problem in which optimal or near optimal solutions are searched in space of 

possible solutions. [27] 

McMinn [26] mentions that for a testing problem to be applicable for a search-

based optimization it needs to have two attributes : 

• Representation: Candidate solutions should be encodable so that they 

can be processed by a search algorithm.  

• Fitness Function: Each fitness function is problem specific and needs 

to be defined for every problem. 
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As flexible as they are, search-based testing approaches are still vulnerable in 

certain areas. For the best solution, optimization approaches use a fitness 

function that encodes domain knowledge, however this process may pose a 

challenge for specific domains. For example, to test a password cracking 

problem in Unix/Linux one needs knowledge about Digital Encryption 

Standard. Furthermore, since there is no guidance in the system they will fall 

into random search because there is no intermediate state between decrypted 

password and failure of decryption. Search space of such a problem is flat with 

one success point which is the case where candidate string actually matching 

the user password [22]. 

Search-based software testing is a relatively new area of research that is also 

quite promising as it is applicable to many problems. To get the most of it 

however, domain knowledge should be adhered to create a fitness function that 

will make the solution accessible in a practical amount of time and space. 
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CHAPTER 3 

 

3. PROPOSED EQUIVALENCE TESTING METHOD 

 

In this chapter we propose an approach to the problem of equivalence checking. We 

will explain flow of our algorithm by separating it into three stages. Later on our 

rationale about the selection of tools is followed together with a simple example of its 

usage. Finally, a prototype implementation will be explained step by step. 

3.1. Equivalence Testing and Our Approach  

Equivalence testing for software domain can be defined as the summation of all efforts 

to validate that a refactored software component works functionally equivalent to the 

original component. Our approach of equivalence testing is based on unit tests. This 

approach relies on testing both components and comparing results against each other 

for equivalence. In this approach it should be noted that implementation details are not 

of importance and a black box approach is taken, therefore it is assumed that the 

external interface of the software component will not change. Generation of the unit 

tests will be done using a symbolic engine, the reason of this choice is explained in the 

following section. In figure 3.1, a visual representation of the proposed method is 

given. 

In our approach, we start with extracting each function to be tested. This stage is called 

parser. Our choice of target programming language is C, therefore our parser is 

responsible for extraction of functions from software component to pass it onto next 

stage adhering to the C syntax rules. In order to construct a testing program (such as 

the one given in listing  \ref{lst:chap3_lst2} ) parser needs to provide function name, 

parameter types for the function and return type. 

The next stage is responsible for taking in functions to be tested and then generating 

tests for each function. The tests need to be generated for original and modified 

components. In our approach, original component taken as a baseline and modified 

component is expected to work exactly as the original one. Therefore, it is important 

for us to not only extract test cases from the original component but from the modified 

one as well since any new test cases modified component could generate should 

produce the same output as the original component. After being fed with each function, 

symbolic engine state is also responsible for formatting each of them accordingly and 

setting up required test benches for them as well. This stage should also contain the 
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necessary means to communicate with the test generator itself. in our case this is KLEE 

(KLEE LLVM Execution Engine) symbolic engine [15]. 

The final stage is called test executor and responsible for comparing the components 

and evaluating their equivalence. Next section explains how the selection of symbolic 

engine has been made and what are the important factors on this selection as well as 

the implementation of our approach. 

 

Figure 3.1 : Our approach for software equivalence testing 

3.2. Testing Approach Employed 

Having investigated all five of these testing methods explained in Chapter 2, and 

focusing on the possible methods that will enable us to automatically generate test 

cases, one can see that symbolic execution outshines them all in our case. Instead of 

expanding on its advantages, it is beneficial to understand why other methods would 

not be as useful as symbolic execution. Therefore, in this subheading, shortcomings of 

these testing methods will be discussed. 

- Model Based Testing : Model based testing fails to be our testing method of 

choice for this study for several reasons. First and most important reason is that 

the fact that not every software has a designated model. This is even more true 

when topic of consideration is embedded software. It is particularly important 

to note that any effort to make use of model based testing will require an 

already existing and verified model which is the heart of model based software 

development. Model based software development requires the model to be the 

center of all activities so that it can be assured the model is up to date and 

represents the entire business logic. This way automatic code generation, test 
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generation, formal verification is possible. However this investment is not 

possible for every software development endeavor and sometimes it is simply 

impossible. The fact that model based techniques being tied to a modeling 

language or tool makes it even harder. 

- Combinatorial Testing : Combinatorial based techniques does not have 

required tool support or means to generate unit tests. This reason alone is 

enough to make it undesirable for our case. 

- Random Testing : In its solitude, random testing does not offer critical test 

cases that will give us the confidence while we compare two different 

implementations. Advanced versions of random testing make use of combined 

techniques to have more accurate scenarios. These techniques however heavily 

used by symbolic execution engines as well consequently making random 

testing less desirable against symbolic execution based methods. 

- Search Based Testing : This method is particularly useful if there exists an 

abundance of test cases. Making use of search based testing, one can reduce 

the number already existing test cases while having the same coverage and 

confidence. 

Contrary to the methods mentioned above, symbolic execution provides a way to 

generate test cases directly from source code itself with tools such as KLEE [15] . 

These test cases are more desirable because symbolic execution engines analyze 

branching points of the program. Branch points make up valid test cases because they 

are important points where the decision of next instruction to be executed is made. 

Therefore, one can say that by looking at the branch points, the behavior of the program 

can be deduced. This behavior is to be expected to be the same for original and 

refactored versions of our programs. By testing these branching points symbolic 

engine provides, we can reason about equivalency of the different implementations of 

the same component. For all the reasons listed above, main method to extract test cases 

for equivalency check is decided to be the symbolic execution-based testing. 

3.3. Tools Selection 

We build our abstractions based on the requirements of a conceptual tool that will be 

used to question two software components’ equivalency using unit tests which are 

generated by using test cases extracted from a symbolic execution engine. The 

components of such system could be listed below as: 

• A parser to extract necessary information from the software component. This 

parser is responsible for providing information about functions of the 

component, their names, return values, arguments and their types.  

• The symbolic engine itself. Engine will provide us ways to symbolically 

execute our code excerpt and generate pivotal points for that execution sessions 

for us to use in our unit tests.  
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• A test scenario generator which will use the information parser and symbolic 

engine provides to generate our test scenario.  

• A unit test engine to run our scenario.  

• An OS communicator module which will let us operate the tools to generate 

our test environment.  

The most important component is naturally the symbolic execution engine. As our aim 

is to build a software equivalency checker, there will not be an attempt to build our 

own engine. Fortunately, we have several options to choose from engines that are able 

to symbolically execute programs in C programming language. Those are namely: 

• Crest  

• Otter 

• CIVL 

• KLEE 

Choosing our symbolic execution engine among these options is considerably easy for 

several reasons. First and foremost, advancements in overall computing power and 

constraint solvers made symbolic execution viable. Exploring the vast solution space, 

especially when there are many paths to explore, could potentially take days. To make 

use of these novel methods, it is reasonable to pick the engine with most vibrant 

community and best available support. KLEE stands out from the rest based on these 

prerequisites because it has the most recent code base compared to other engines. It is 

still being updated and improved in 2018 while other engines seem to be deprecated. 

Another reason that makes KLEE the best option out of these four is the tooling around 

it. Thanks to this tool, extraction of information about the symbolic execution session 

is a breeze, extensive parsing of dump files is not involved. Lastly it is easy to build 

with the help of its website explaining the process, and also available in container 

forms for people who does not want to bother with building the engine from scratch. 

However, it is important to note that it is possible to use any other symbolic engine in 

our approach, KLEE is only chosen because of the convenient points mentioned above. 

3.4. KLEE Symbolic Execution Engine 

To explain the usage of KLEE, the simple example given in Figure 3.2 and Figure 3.3 

are provided. Suppose we have a function named “dummy_function” as defined in 

Figure 3.2 : 
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Figure 3.2 : Sample function 

To make this function execute symbolically we make use of KLEE’s provided 

functions as such as the one given in Figure 3.3 
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Figure 3.3 : Example program 

This small program now will be compiled using C compiler Clang using the command: 

$ clang -I ../../include -emit-llvm -c -g main.c 

This will provide us the intermediary llvm bytecode(.bc) file which will be used as : 

$ klee main.bc 

Now KLEE will generate metadata about the symbolic run and put them in a folder 

called /klee-last with the content given in Figure 3.4.: 

 

Figure 3.4 : Folder that contains metadata of the sample KLEE run 

In our provided example, we have three test cases generated for us. Making use of the 

test tool KLEE provides along with the engine, we can conveniently see what these 

cases as shown in Figure 3.5: 
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Figure 3.5 : Example KLEE test tool run 

3.5. Testing Approach Employed 

A prototype implementation of the proposed approach illustrated by the flowchart 

given in Figure 3.7. For ease of testing and convenience to the user, all steps in the 

flowchart conducted by a python script given in Appendix 3 and fully automatic. Our 

script starts with copying both the original and modified components to a test folder. 

After this, using header file of the original component, the function prototypes are 

extracted by invoking Ctags software. These function prototypes are then used to 

extract information such as the name of the function, return type of the function and 

list of the function arguments. This extraction is done by a custom parser implemented 

in our script. For functions that are using other functions of the same component, the 

cases are generated so that the file contains every function implementation used by 

this function to properly compile the test case, parser is also responsible for this. Then, 

this information is used to create a file in the form of Figure 3.3. This file will be fed 

to the symbolic engine. After this file creation, a Makefile is created which contains 

the recipe to generate LLVM bytecode and necessary steps to generate test cases from 

this bytecode by making use of the symbolic execution engine. A template of this 

Makefile can be found in Appendix 3 'make_test_cases'. Both of these files are then 

put in a folder and Make is executed. After the execution of Make, KLEE will generate 

test cases under this folder. Test cases are generated from both modified and original 

components, therefore enabling us to catch more errors. Following this, test cases for 

each function are gathered and a file as in Figure 3.6 generated along with a Makefile 

which contains required recipe to compile and link this file into an executable. While 

naming the generated test cases, first "Test" is appended to the end of the function 

name for denoting the unit being tested. After this, each case is named by adding a 

number at the end of the function name starting by zero. For example, for function 

"wrong_if_statement" one can see that the unit being tested named as 

"wrong_if_statementTest" and test cases starts from "wrong_if_statement0". The 

values such as "0" and "16777217" are automatically generated by KLEE. For 

environment mocking purposes one can use the compiler flag -DMOCK to provide a 

platform independent replacement for platform dependent  code regions. The keyword 

"ASSERT_EQ" is macro that checks whether two values are equal. With this way 

platform dependent code can also be tested with our approach. In the final step, this 

executable is run, and tests results will be printed out on the console. 
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Figure 3.6 : File tests.c 
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Figure 3.7 : Flowchart of our approach 
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CHAPTER 4 

 

4. EVALUATION OF THE PROPOSED METHOD 

 

We evaluated the method via two cases. First evaluation scenario is for checking the 

success of our approach on small functions. Second evaluation scenario focuses on 

finding errors in different versions of a more complex algorithm that is implemented 

by several functions. In the first case, our tool will be tested against two synthetic 

software components. Every function in the modified component contains an error. In 

the second case, we used two different implementations of a mock algorithm having a 

common interface. The second implementation was also introduced with several 

software bugs. As well as introducing bugs, the second implementation consists of 

refactored implementations for every function involved in the first implementation of 

the algorithm. Each of these cases is employed to check whether our tool is able to 

pinpoint common errors that can possibly be seen in every software project. All of the 

test cases were run on a Ubuntu (build 4.15.0-34-generic) virtual machine in 

VirtualBox [28] on top of a machine with the following specifications : Intel i7 CPU 

2.8 @ GHz, 16 GBs of RAM, 1 TB of HDD, 64-bit Windows 10 operating system. 

4.1. Error Insertion 

In this section, we will explain how software errors are inserted in the functions to be 

tested in two cases. We are only providing three examples for brevity. Rest of the code 

snippets that we have tested our cases against could be found in Appendix. 

The first error case stems from modified local types (Figure 4.1). Changing local data 

types without planning ahead could lead to overflows and many other undesired cases. 

Our tool was able to find 5 unique test cases for this example below. Out of these 5 

cases, input values 41 and 44 was able to showcase failure cases. 
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Figure 4.1 : Modified local types 

The second example contains a wrongly used if statement (Figure 4.2). Notice that on 

the fifth line of the original code sample there exists a check between value1 and 

value2. However, on the modified version of the function one can see that one '=' is 

missing. Although it is clearly not what the developer intended to do it is a valid C 

statement. Nowadays modern toolchains can easily catch errors like this. However, 

working with the bleeding edge toolchains are not always possible when embedded 

systems are in consideration. Improper use of compiler flags can also cause this error 

to go unnoticed. 
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Figure 4.2 : Wrong if statement 

The third example features an uninitialized local variable local_var (Figure 4.3). It is 

easy to fix but can have devastating consequences if not realized in development time. 

This example in particular will cause you to have different output values depending on 

your compiler and linker options. 

 

Figure 4.3 : Uninitialized local variable 
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4.2. Evaluation with Common Error Scenarios 

This approach will investigate the performance of our approach with several software 

bugs that are found in some of the prevalent open source software projects. Our tool 

will do the equivalence checking of a synthetic component containing each of these 

popular software bugs in several methods. The modified component contains the 

‘fixed’ versions of these methods. These common software bugs [29] contains cases 

such as : 

- Modified local variable types 

- Uninitialized local variable 

- Forgotten break statement 

- Operator precedence 

- Incorrect dereference 

- Incorrect loop control statements 

In the first scenario, we seeded common software bugs into simple functions as 

explained in Section 4.1. Both versions of the functions tested are given in Appendix 

4.1. Then, we applied our testing tool. Our tool is able to extract 36 test cases out of 

both modified and original components as can be seen from Table 4.1. The script took 

24.54 seconds to execute in the machine configuration mentioned in above. Out of 

these 36 test cases, 19 of them passed and 17 of them were failed. It was able to detect 

each error case mentioned above except incorrect dereference example where it failed 

to generate proper test cases in time and simply aborted. These error cases are extracted 

from widely used open source projects [29] can very well end up in your code base 

too. 

 

Table 4.1 : Overview of Results 

 
Total 

Cases 

Cases 

Passed 

Cases 

Failed 
Successful 

Modified local variable 

types 
6 4 2 Y 

Uninitialized local variable 4 0 4 Y 

Forgotten break statement 8 6 2 Y 

Operator precedence 10 5 5 Y 

Incorrect dereference 0 0 0 N 

Incorrect loop control 

statements 
8 4 4 Y 
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4.3. Evaluation with a Larger Code Example 

This approach will use two different implementations of the same algorithm. Our 

approach extracts test cases from each implementation and test both implementations 

using these cases. Implementation of the algorithm can be seen in appendix. The 

flowchart of the algorithm is given in Figure 4.4. To check whether our approach is 

able to find errors in a larger code example, we inject each of the software bugs from 

section 4.1 

Below we will explain how our approach performed for each case. It was able to 

generate 28 test cases in total and 11 of them failed as can be seen from Table 4.2. The 

script took 127.36 seconds to execute in the machine configuration given above, note 

that this number is quite different than the first example in section 4.2 because 

symbolic engine had to symbolize arrays of integers instead of single integers this time. 

Please note that you can only find source files and the python script to execute our 

approach but not the test cases themselves. The reason for that is, the test cases 

generated are quite verbose and including them in this document itself will simply 

blow the size of it out of proportions. Instead, for readers' convenience, we made all 

the source files, scripts and a user manual explaining how to setup your own 

environment available in a Github repository [30]. This way, readers who are 

interested can also reproduce the case for themselves and even modify it to use for 

their cases. 

For modified local variable types we introduced a bug to the refactored version of 

quicksort algorithm. In the modified version of the quicksort function, one of the sub 

functions called "split" has a local variable called "part\_element". This variable's type 

changed into int_16t. Our approach was able to catch the erroneous condition by 

generation 6 test cases out of 3 failed.  

"find_min" method contains an uninitialized variable in its modified implementation. 

The nature of the algorithm calls for a variable with a big value so that it can do the 

correct comparison for the whole span of integer values. However, in the modified 

case this is simply forgotten. Our approach was able to generate 4 test cases for this 

function and out of this 4, one of them failed. 

Function named "scale" and "exit_filter" contains the forgotten break statement 

scenario. Our approach generated five test cases for this method "scale". However, 

none of the test cases was able to pinpoint the problem. When inspected, each test case 

generated has different values for input parameter "scale_factor". However, for the 

first input parameter for array "*in" one can see the all five test cases contains an array 

full of zeros. Since scaling these "zero arrays" will only produce another array filled 

with zeros. For function "exit_filter" our approach generated 8 test cases where 2 of 

them failed. In short, we were able to catch the forgotten break statement but only one 

flavor of it. 
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Function named "custom_filter" is the example case for operator precedence. Notice 

that in second implementation has braces around the and operation with flag. Our 

approach was able to uncover this error by generating 1 failing case out of 4 test cases 

generated.  

In function "reverse_array", one can see that in the first version a dynamic array is 

created and passed onto the out pointer, however in second case a local variable created 

and passed on instead. In second case, since the local variable will get destructed after 

we get out of the function context it is for sure a bug. Our approach however fails to 

detect this case. It is able to generate 2 test cases and none of them was able to pinpoint 

the error case, failing to catch incorrect dereference scenario. 

In function "offset_array", the modified version does the offsetting 4 elements at a 

time. However, when looked carefully, one can see that the increment is done until the 

loop variable reaches "arrlen/4". This causes the indexing to be faulty in main body of 

the for loop. Our approach was able to generate 3 test cases for this specific scenario 

and, out of those cases, one of them was able to detect the error case. 

Table 4.2 : Overview of Results 

 
Total 

Cases 

Cases 

Passed 

Cases 

Failed 
Successful 

Modified local variable 

types 
6 4 2 Y 

Uninitialized local variable 4 0 4 Y 

Forgotten break statement 8 6 2 Y 

Operator precedence 10 5 5 Y 

Incorrect dereference 0 0 0 N 

Incorrect loop control 

statements 
8 4 4 Y 
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Figure 4.4 : Flowchart of the algorithm in discussion 
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4.4. Suggestions for Incorrect Dereference Case 

One can see that in both evaluation cases our approach fails to catch incorrect 

dereference case. The failed cases we have observed stems from the fact that generated 

case for an input array is simply filled with zeroes. This causes program to not follow 

the branch that will have error on its path and error stays undetected. For situations 

like these the user may need to perform some modifications on the source code to help 

the symbolic engine generate more meaningful test cases. These modifications can be: 

- Offsetting the input array with a nonzero value  

- Changing the branching order of the program  

- Changing the branching conditions of the program 
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CHAPTER 5 

 

5. CONCLUSION 

 

In this final chapter, we criticize of our approach, mention our contributions, 

shortcomings and possible future improvements. The problem at hand was to see 

whether we will be able to detect whether two software components are functionally 

equivalent or not. For this endeavor, a literature research focusing on equivalence 

testing is conducted. Out of many candidates, we dwindled down the number of studies 

into eight. Within these studies the ideas are quite varying. Some of them are focusing 

on formal methods, while others are borrowing ideas from electrical engineering and 

quite interestingly some of them are even making use of textual differences to find 

equivalence between software components. The approach of Jiang et al. [7] and 

Papadakis et al. [6] for example is much better suited for finding equivalent code 

pieces in large code bases compared to our approach. Post et al. [8]cannot handle 

complex C structures as they are bounded by the tool they are using, therefore need 

manual intervention. Godlin et al. [10] also have the same problem because of the same 

reason. Although our approach does not have the same shortcomings with Post et al. 

[8] and Godlin et al. [10] with respect to manual intervention there is still issues with 

scalability that we are also experiencing. Our approach is quite similar to Matsumoto 

et al. [11] although it can be said that they are more better suited for automatically 

generated programs compared to our approach. Approach of cutpoints by Feng et al. 

[2] can provide us with better execution time if it can be extended to use C 

programming language. Ciobaca et al. [3] provide better coverage with their language 

agnostic approach and it is also mathematically proven, once their approach is able to 

tackle on parametrized functions it will be better suited to use in domains such as 

aerospace and medical industry which requires absolute precision and correctness. If 

one is looking for a solution where each commit is compared against the previous one, 

approach of Wood et al. [4] is much more suitable then our approach. 

In this study, we based equivalence checking on unit tests. Moreover, the process is 

aimed to be automatic. Therefore we have shown that symbolically executing the 

software and extracting important branch points, and later on using them as our test 

cases is a viable method to check equivalence. To prove what we have deduced, we 

provide a prototype implementation of our approach. In order to achieve this, we've 

looked into how industry deals with automatically generated test cases and symbolic 

execution engines. This literature research yielded the symbolic engine to be used and 

the outline of the architecture of our approach. Finally, we evaluated the success of 

our approach by means of two sample cases.  
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The first one was focusing in synthetic software functions introduced with common 

software errors. Our approach was able to generate 36 test cases for these functions in 

25.54 seconds. Out of these cases 17 of them failed. Therefore, except the incorrect 

dereference error, all software bugs inserted are detected by our tool.  In the incorrect 

dereference example, our tool failed to generate proper test cases in the predefined 

time interval and simply aborted. 

The second case was to insert these bugs on a larger code example and to see whether 

our solution is able to detect it. Our solution was quite successful in first case of 

evaluation where it detected all software bugs with ease except "incorrect dereference" 

scenario. However, second method of evaluation proved more challenging for us, as 

our approach was not able to detect "incorrect dereference" scenario. Our approach 

generated 28 test cases in 127.36 seconds where 11 of them failed. For this method of 

evaluation success rate of the cases is 5 out of 6.  

Under light of these evaluations, our achievements can be said to include automatic 

generation of unit tests for a specific software component and its modified counterpart 

by simply executing a script. It was important for us to make this process fully 

automated since it could be a part of nightly build process in a professional software 

development environment. The script also leaves the user with a test bench that can 

easily be extentable for further modifications to the cases. 

Future work is needed to extend it to be used with C++. Further investigation is also 

needed as our approach struggle to different flavors of the same error type. This 

problem stems from the fact that branch points generated from symbolic engine are 

sometimes simply useless values as a test case. To tackle this problem future work 

could be invested on building better test programs to feed into symbolic engine. Right 

now the test program is quite straightforward where it simply makes input parameters 

symbolic and calls the function with those values. 
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APPENDIX 

 

ERROR CASES 

 

 

Figure A.1 : Forgotten equal sign 
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Figure A.2 : Modified local types 
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Figure A.3 : Wrong if statement 

 

 

Figure A.4 : Uninitialized local variable 
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Figure A.5 : Forgotten break statement 
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Figure A.6 : Operator precedency I 

 

 

Figure A.7 : Operator precedency II 

 

 

Figure A.8 : Operator precedency III 


