
A VIRTUAL REALITY-BASED TRAINING ENVIRONMENT DESIGNED FOR
HANDS-ON EXPERIENCE OF SOFTWARE DEVELOPMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ULAŞ GÜLEÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

NOVEMBER 2018

Approval of the thesis:

A VIRTUAL REALITY-BASED TRAINING ENVIRONMENT DESIGNED FOR
HANDS-ON EXPERIENCE OF SOFTWARE DEVELOPMENT

submitted by ULAŞ GÜLEÇ in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Veysi İşler
Supervisor, Computer Engineering, METU

Assist. Prof. Dr. Murat Yılmaz
Co-supervisor, Computer Engineering, Çankaya Uni.

Examining Committee Members:

Prof. Dr. Ali Hikmet Doğru
Computer Engineering, METU

Prof. Dr. Veysi İşler
Computer Engineering, METU

Assoc. Prof. Dr. Aysu Betin Can
Information Systems, METU

Assoc. Prof. Dr. H. Hakan Maraş
Computer Engineering, Çankaya University

Assist. Prof. Dr. Ayça Tarhan
Computer Engineering, Hacettepe University

Date: 12.11.2018

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Ulaş Güleç

Signature :

iv

ABSTRACT

A VIRTUAL REALITY-BASED TRAINING ENVIRONMENT DESIGNED FOR
HANDS-ON EXPERIENCE OF SOFTWARE DEVELOPMENT

Güleç, Ulaş
Ph.D., Department of Computer Engineering
Supervisor : Prof. Dr. Veysi İşler
Co-Supervisor : Assist. Prof. Dr. Murat Yılmaz

November 2018, 126 pages

This thesis study proposes an environment that provides an interactive virtual reality
experience for individuals about the tasks of software development process starting
from requirement analysis through software testing. The environment transports par-
ticipants to the virtual world of a software development organization where they ex-
perience development problems. In this environment, the participant takes on the role
of a novice software developer being recruited into a virtual software development
organization who should work alongside five virtual characters, played by artificial
intelligence. This virtual world has a unique time-line where some virtual characters
serve as the company guide. This exclusive viewpoint draws participants from the 2D
separation of the classical experience and places them into the virtual world of soft-
ware development. Therefore, participants have a chance to experience the problems
occurred in software development process created for simulation. To understand the
effectiveness of the system it was tested with 32 students who are studying at com-
puter engineering department. According to the results obtained from the tests, the
designed training platform is a useful tool that can be efficiently used in the training
of individuals about the software development process.

Keywords: Software Development Process, Virtual Reality, 3D Environments, Soft-
ware Development Life Cycle

v

ÖZ

YAZILIM GELİŞTİRMENİN UYGULAMA DENEYİMİ İÇİN TASARLANMIŞ
SANAL GERÇEKLİK TABANLI EĞİTİM ORTAMI

Güleç, Ulaş
Doktora, Bilgisayar Mühendisliği Bölümü
Tez Yöneticisi : Prof. Dr. Veysi İşler
Ortak Tez Yöneticisi : Yrd. Doç. Dr. Murat Yılmaz

Kasım 2018 , 126 sayfa

Bu tez çalışması kişilere, gereksinim analizinden yazılım testine kadar devam eden
süreçte yazılım geliştirme görevlerine dayanan bir interaktif sanal gerçeklik tecrübesi
deneyimleyebilecekleri bir ortam sunar. Bu ortam katılımcıları, yazılım geliştirme
sorunları yaşanan gerçek hayat projelerinin simülasyonunun gerçekleştiği sanal bir
dünyaya taşır. Burada katılımcı, yapay zeka ile kontrol edilen beş karakterle birlikte
çalışması gereken işe yeni başlamış bir yazılım geliştiricisi rolündedir. Böylelikle ka-
tılımcılar, gerçek olaylara dayanan sanal bir yazılım projesinde gezinirken, bu sanal
karakterler gelişen olaylarla ilgili görüşlerini katılımcılara sunar. Bu sayede SDVRE,
katılımcılara 2B yaşanan klasik tecrübenin daha ilerisinde bir tecrübe yaşatarak 3B
sanal bir dünyada gerçek hayattakine benzer bir yazılım geliştirme dünyası sunar. Bu
sayede katılımcılar, simülasyon için yaratılmış olayları deneyimleyebilme imkanına
sahip olur. Geliştirilen ortamın başarısını anlamak için sistem, bilgisayar mühendis-
liği bölümünde öğrenim gören 32 öğrenci ile test edilmiştir. Testlerden elde edilen
sonuçlara göre, tasarlanan eğitim platformu, bireylerin yazılım geliştirme süreci hak-
kında eğitilmesinde kullanılabilecek verimli bir araçtır.

Anahtar Kelimeler: Yazılım Geliştirme Süreci, Sanal Gerçeklik, 3B Ortamlar, Yazılım
Geliştirme Yaşam Döngüsü

vi

To My Family...

vii

ACKNOWLEDGMENTS

Writing this part of my thesis shows that I’m nearing the end of this long marathon,
and when I look back, I’m proud of completing this really difficult but also very
beneficial and enjoyable process. At the same time, I feel very fortunate that I have
been taking several different courses from valued professors, working with successful
students and finding the opportunity to take part in valuable projects. This was really
an unforgettable experience for me.

First and the foremost, I would like to thank my sincere gratitude to my thesis advi-
sors, Prof. Dr. Veysi İŞLER and Dr. Instructor Murat YILMAZ since they provide me
this opportunity and constantly mentor me through this process. They taught me how
to become an advisor in future by publishing valuable publications, developing nec-
essary projects, excellently communicating with me and giving the vital comments
about my process. In addition to their academic skills, they are role models with their
social lives. Being the student of them is always a great honour for me in my whole
life.

I would like to also thank my Thesis Monitoring Committee members, Prof. Dr. Ali
Hikmet DOĞRU and Assoc. Dr. Hadi Hakan MARAŞ, for their directive advices
and excellent feedbacks. Due to these valuable comments, this study was formed as
the current structure since their comments have provided me to look the problems in
different perspectives.

My biggest chance in this life is my family. My father, Erdoğan GÜLEÇ, is a very
special person for me. He is my master, my leader, my protector from challenging
and undesirable situations, my resource of trust and pride... Shortly, he is my idol.
My mother, Gülay GÜLEÇ, is the definition of smile for me. She is the most self-
sacrificing person in all over the world. She is my best friend, my chef, my confidant...
In short, she is the reason of my existence. My brother, Çağdaş GÜLEÇ, is the most
valuable gift that I have taken in my whole life. He is the most enjoyable person in
all over the world and the most important member of our "band of brothers". And
finally, my sweetheart wife, Gamze GÜLEÇ, is the life companion of me. She is
the owner of my heart, my supporter, my luck, the resource of my good feelings, the
most special person in my life... Shortly, she is my everything. During this study,
they always stood beside me in every challenging situations. I could not complete
this study without their endless support and patience and could not pay their labours
on me whatever I do. Hence, I would like to dedicate this study to my family.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORKS 5

2.1 Definitions of Software, Software Development and Soft-
ware Engineering . 5

2.2 Software Development Methodologies 9

2.3 Importance of Using Virtual Reality Applications in Education 15

2.4 Tools Used in Software Engineering Training and Simulations 17

2.5 Summary . 19

3 PROPOSED VR TRAINING ENVIRONMENT 23

ix

3.1 Scenario Generator . 23

3.2 Virtual Office Environment 31

4 TEST AND EVALUATION METHODOLOGY 47

4.1 Qualitative Research Methodology 47

4.2 Quantitative Research Methodology 48

4.3 Mixed Research Methodology 49

4.4 Overall Research Design 51

4.5 Mechanism of the System 51

4.6 Participants . 56

4.7 Threats to Validity . 58

5 ANALYSIS AND TEST RESULTS 61

5.1 Pre-Test . 62

5.2 Post-Test . 65

5.3 Comparison Between Pre-Test and Post-Test Results 68

5.4 PQ and ITQ . 73

5.5 Validation Interviews . 75

6 CONCLUSIONS AND FUTURE WORKS 79

6.1 Discussion . 79

6.2 Validation of the Proposed Training Environment 81

6.3 Limitations . 82

6.4 Revisiting the Research Questions 83

x

6.5 Conclusion . 85

6.6 Future Work . 86

REFERENCES . 87

APPENDICES

A TRAINING PROGRAM SCENARIOS 97

B PRE-TEST SCENARIO . 103

C POST-TEST SCENARIO . 105

D T-TABLE . 109

E PRESENCE QUESTIONNAIRE . 111

F IMMERSIVE TENDENCIES QUESTIONNAIRE 117

G GRADING POLICY . 121

CURRICULUM VITAE . 123

xi

LIST OF TABLES

TABLES

Table 2.1 Comparison Table with the Existing Studies in the Literature 21

Table 4.1 Threats to Validity for Empirical Research in Software Engineering . 59

Table 5.1 Pre-Test Results of the Members in the Experimental Group 63

Table 5.2 Average Scores of Both Groups for All Parts in Pre-Test 63

Table 5.3 Pre-Test Results of the Members in the Control Group 64

Table 5.4 Post-Test Results of the Members in the Experimental Group 67

Table 5.5 Average Scores of Both Groups for All Parts in Post-Test 67

Table 5.6 Post-Test Results of the Members in the Control Group 68

Table 5.7 The Differences between Pre-Test and Post-Test Results 72

Table 5.8 PQ Scores of the Participants over 100 76

xii

LIST OF FIGURES

FIGURES

Figure 3.1 Use Case Diagram of System Administrator 24

Figure 3.2 Project Definition Segment . 25

Figure 3.3 Requirement Analysis Segment 26

Figure 3.4 Design Segment . 27

Figure 3.5 Implementation Segment . 28

Figure 3.6 Input Screen . 29

Figure 3.7 Test Segment . 30

Figure 3.8 Maintenance Segment . 31

Figure 3.9 Empty Content of the XML File 32

Figure 3.10 Use Case Diagram of Participant 33

Figure 3.11 Opening Screen of Virtual Office Environment 34

Figure 3.12 Starting Screen of Simulation . 34

Figure 3.13 Team Member in Requirement Analysis Phase 35

Figure 3.14 First Dialogue Box of NPC in the Requirement Analysis Phase . . 35

Figure 3.15 Project Description Document . 36

Figure 3.16 Opening Project Description Document 36

Figure 3.17 Reading Project Description Document 37

Figure 3.18 Finishing Project Description Document 37

Figure 3.19 Requirement Analysis Phase in Virtual Office 38

Figure 3.20 First Dialogue Box of NPC in the Design Phase 39

xiii

Figure 3.21 Design Phase in Virtual Office . 39

Figure 3.22 First Dialogue Box of NPC in the Implementation Phase 40

Figure 3.23 Implementation Phase in Virtual Office 41

Figure 3.24 First Dialogue Box of NPC in the Test Phase 42

Figure 3.25 Test Phase in Virtual Office . 43

Figure 3.26 First Dialogue Box of NPC in the Maintenance Phase 44

Figure 3.27 Maintenance Phase in Virtual Office 44

Figure 4.1 Overall Research Design . 50

Figure 4.2 Work Flow of the System . 56

Figure 4.3 Time Line of the Study . 57

Figure 5.1 Successful Students in the Experimental Group in Pre-Test 65

Figure 5.2 Successful Students in the Control Group in Pre-Test 66

Figure 5.3 Successful Students in the Experimental Group in Post-Test 69

Figure 5.4 Successful Students in the Control Group in Post-Test 70

Figure 5.5 The Difference Between Pre-Test and Post-Test Results of Both
Groups . 71

Figure 5.6 ITQ Scores of the Participants . 74

Figure 5.7 PQ Scores of the Participants . 75

xiv

LIST OF ABBREVIATIONS

VR Virtual Reality

SDLC Software Development Life Cycle

PQ Presence Questionnaire

ITQ Immersive Tendencies Questionnaire

NPC Non Player Character

XML Extensible Markup Language

HTML HyperText Markup Language

METU Middle East Technical University

MUDEK Association for Evaluation and Accreditation of Engineering
Programs

SLR Systematic Literature Review

NIST National Institute of Standards and Technology

xv

xvi

CHAPTER 1

INTRODUCTION

Software is a set of instructions designed to fulfil specific requirements of a user [1].

However, defining its requirements and implementing of software is a very compli-

cated process [2]. Consequently, many software projects fail to deliver acceptable

outcomes due to dynamic changes in requirements [3]. A reason for this is that

novice software developers cannot show a variety of skills especially during their

on-boarding process [4]. To bridge this gap, it is essential to provide hands-on expe-

rience in a virtual environment for novice practitioners where they can practice the

real life problems without having actual risks.

Virtual Reality (VR) is a technology that generates 3D environments in which users

can highly interact with various input and output equipments [5]. The aim of this

technology is to immerse a user in a computer-generated environment and produce

the feeling that they are physically in this environment [6]. Hence, it provides a

beneficial and immersive training environment that includes real-life conditions for

individuals [7]. Virtual environments are used to increase the level of knowledge and

experience of people working in many different fields, and to experience the problems

and events that they may encounter in real life [8]. Due to this property, in the last two

decades, VR becomes a very popular area [9] that provides opportunities in different

domains [10].

There are several different VR applications in different domains including educa-

tion [11], sports [12], psychology [13] and medicine [14]. With the progress of tech-

nology in VR over time, both the number of VR projects, the number of companies

that deal with VR projects and the number of domains where VR projects are com-

pleted are also increasing rapidly [15]. Many businesses are investing in this area to

1

take advantage of the benefits of VR technology [16].

These studies show that VR is an effective training tool that can be used to increase

individuals’ level of knowledge and experience in different working spaces. Hence,

the aim of this study is to increase the experience and knowledge levels of novice soft-

ware engineers about the tasks related to software development process by designing

a 3D virtual office environment. By using the potentials of a virtual office, a task-

based software engineering training can be conducted independently from customers

and instructors outside traditional office environments. Ultimately, an evidence-based

training in a virtual office environment promotes self-directed learning with case-

based assessments which is likely to improve performance and skills of students.

Therefore, the proposed VR environment is an opportunity for participants to prac-

tice software development tasks repeatedly to improve their practical skills before

gaining real-life experiences.

The research questions of this thesis are determined to guide the research as follows:

• RQ 1: Can the proposed training environment increase performance of stu-

dents on software engineering tasks (e.g. requirement capturing, coding, test-

ing, etc.)?

• RQ 2: Can the proposed training environment motivate the students for exer-

cising the tasks related to the each phase of SDLC?

The overall structure of this thesis takes the form of six chapters; including this intro-

duction chapter. The remaining parts of this thesis are structured as follows:

Chapter 2 firstly creates the background of the research by giving the definitions

of software and software development, illustrating the importance of software en-

gineering, software development processes and methods, and criticizing why there

exist several different software development methodologies. Then, this chapter also

explains the importance of VR applications in the education domain and details the

studies which were developed to train the individuals about the software development

process.

Chapter 3 details the system description by presenting the interfaces, the users and

2

their functionalities. In addition, this chapter also mentions about the technologies

used for the applications in the scope of this research.

Chapter 4 begins by describing the research techniques in the literature. After that,

the research technique used in this study is demonstrated with the reasons of selec-

tion. In addition, this chapter also includes the mechanism of the proposed system,

information about the participants of the study and the threats which may affect the

results of the study in a negative way.

Chapter 5 mentions how the developed system was tested by the participants and how

the results obtained from the tests were analyzed by using statistical tests. The visual

elements are also used to show the results more clearly. In addition, the opinions of

the participants about the system are also illustrated in this chapter.

Chapter 6 gives a summary of the overall study. Then, it tells the conclusions and

future works of the study. Finally, the dissertation is concluded by explaining the

future works.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORKS

The literature review has been presented in two different parts. The aim of the first

part is to create the background information of the study since this study aims to pro-

duce a virtual training environment to teach the basics of the software development

process to novice software engineers. To accomplish this aim, this part begins by

explaining what software, software development and the phases of software devel-

opment are, and it discusses the importance of software engineering, software devel-

opment processes and methods, and why many software development methods are

needed. Then, this part also compares the existing software development methodolo-

gies in order to show the reasons why many software projects fail although there exist

several different software development methodologies.

After determining the missing points of the existing software development method-

ologies, the second part of the literature review begins to find the solution that im-

proves the effects of the software development process on projects. In this part, the

importance of using VR applications for training purpose is indicated by giving exam-

ple studies in the literature. Furthermore, tools used for software engineering training

are explained in detail by comparing with each other. Based on the comparison, the

missing points of the existing tools in the literature are listed. Finally, a brief summary

of this chapter concludes the literature review of the study.

2.1 Definitions of Software, Software Development and Software Engineering

Software is an expandable, functional and programmable product that can run on a

computer [17]. Although the definition of software appears to be simple, the structure

5

of software including analysis, design, development and testing steps is very compli-

cated [18]. Hence, software is a product obtained after several long processes. At

this stage, the definition of software development becomes more meaningful since

software does not have a simple structure.

In 1971, Weinberg [19] described software development as a human activity that con-

sists of design, creation, implementation and maintenance phases. It can be also de-

fined as a combination of several significant phases that lead to transforming customer

requirements to a software product [20]. These phases are:

• Requirement Analysis: It is a phase that describes for what reason the system

is going to be created [21]. In addition, this phase also converts the needs of

customers to system specifications [22]. Pereira and Soares [23] point out the

importance of the requirement analysis phase in their study. They consider that

if the requirements of a system cannot be accurately determined, it causes to

develop useless products. In support, based on the CHAOS report released by

the Standish Group in 2015 [24], the requirement analysis has become more

critical nowadays since the failure rates in IT projects are very high due to

determining the wrong requirements. This issue is essential for software com-

panies because, if an error in a system is detected at the last stages of software

development life cycle (SDLC), it is more costly for companies to repair it at

the final stages than to repair it at the beginning stages. Therefore, the require-

ment analysis plays a key role in the development of software to develop more

accurate and less costly products since it is the first phase of a SDLC.

• Design: This phase contains a set of activities that should be accomplished to

develop a system [25]. It is also a decision-making phase for selecting the tech-

nique to complete the modules in the system [26]. This phase plays a key role

in SDLC. According to Karimi [27], the number of logical errors between 36%

and 74% is detected in the design phase. Although each phase is significant to

develop the projects properly, the design phase is more important than the other

phases since it affects the future of the systems [28]. If a system is designed

well, it fulfils the future expectations from the system.

• Implementation/Coding: This phase aims to classify and construct the cod-

6

ing and algorithm part of the system by taking into account of constraints and

demands obtained from the requirement analysis phase [29]. In addition, the

programming parts of the systems are also conducted in this phase based on

the tasks determined in the design phase [30]. Due to these properties of the

implementation phase, it directly affects the quality of the end product.

• Testing: It is a phase of software development considered as a frequently used

verification technique that finds errors in a system [31]. In addition to this defi-

nition, testing is a combination of both verification and validation methods that

consist of test plans, designs and procedures [32]. This phase is a significant

step in SDLC since it improves the quality of the product by finding and fixing

the missing points of the system [33]. In support, Ralph and Kelly [34] admin-

istrated an interview with 191 professionals in software engineering in order to

understand the factors that affect the success of the software product. Accord-

ing to results of the interview, participants feel safer after the product passes

the testing phase since they trust that all errors of the system are straightened in

testing stage.

• Maintenance: Maintenance phase provides changes, corrections and improve-

ments to the system after it is delivered to customers [35]. There are several

different types of improvements and changes such as corrective, adaptive and

perfective in the maintenance phase to make the system work properly [36, 37].

Schneidewind [38] points out that keeping the system appropriately running af-

ter delivering to the customer is an important and critical stage for the compa-

nies since it reflects the success of the software produced by applying whole

stages of software development. If the customer cannot be satisfied in this

phase, the entire work becomes useless. In support, April and Abran [39] agree

with the importance of the maintenance phase since customer expectations are

met at this stage.

These studies in the literature show that each phase of software development plays

a critical role in developing useful and successful products. Hence, software devel-

opment is an important issue such that its phases should be thought of and carried

out as engineering concepts in order to produce measurable, evaluable, reusable and

7

replicable products which have concrete outputs [40]. Although it is an essential is-

sue, most software projects fail [3]. According to the National Institute of Standards

and Technology (NIST), the annual loss of unsuccessful software projects to the US

economy was about $ 59 Billion in 2002 [41]. When todays data is analysed, the

total worldwide financial loss of failed software in 2017 was around 1.7 trillion dol-

lars [42]. These numerical values illustrate that most of the software companies waste

both time and money for developing completed software. In order to avoid such unde-

sirable circumstances, the software development process should be designed based on

an engineering point of view since the end product requires systematic development.

The systematic development within the engineering perspective creates the "software

engineering" concept. Software engineering is a set of engineering activities that

manages the phases of SDLC in order to produce high quality software products [43].

It is a discipline that tries to solve problems occurred in software development by

organizing the phases of SDLC [44]. Therefore, it improves the performance of soft-

ware within a systematic scheduling to achieve software quality [45]. Software qual-

ity measures both the software development process and the software product based

on a number of factors [46]. The studies [47, 48, 49, 50] in the literature analyse and

list these factors as: Correctness, Reliability, Efficiency, Integrity, Usability, Main-

tainability, Flexibility, Testability, Portability, Reusability, Functionality, Operability,

Compatibility, Modifiability

The studies in the literature illustrate that software should be developed within a

methodology that is systematically designed to meet the software quality criteria.

However, the methodology can differ based on the properties of software and com-

pany resources. Therefore, companies need to manage the phases of SDLC according

to their resources and the requirements of their customers in order to provide those

software quality criteria. The next section is going to explain the different software

development methodologies in detail.

8

2.2 Software Development Methodologies

A software development methodology is a method that applies the phases of SDLC in

different way based on the organizations’ resources, and the customers’ requirements.

Hence, there are several different software development methodologies which help

organizations to produce cost-effective and successful projects. The commonly used

methodologies are:

• Waterfall Development: Royce [51] developed this model based on his ex-

periences on the development of software projects. This model suggests that

each activity in the process of software development should be planned and

scheduled before performing on them. It has a specific order to implement the

phases of SDLC. The next process cannot start until the current phase is com-

pleted. The outputs or findings of a phase is going to be the inputs of the next

phase. It is suitable when the requirements are well defined, the scope of the

project is not complex and the requirements do not need to be changed rapidly.

• Prototype Development: Sommerville [52] describes this approach as a pro-

totyped version of a software product is produced to show a set of features of

the software product to the user. The goal is to acquire a certain degree of

understanding about design options and the problems occurring in the devel-

opment of a product. Since users can utilize the prototype and understand its

deficiencies more easily, software developers have an opportunity to design and

implement the product based on users’ feedback. Thus, the customers have a

chance to test the prototype for better improvement.

• Iterative and Incremental Development: A detailed study of iterative and

incremental development by Victor [53] reports that projects are developed it-

eratively and incrementally in this type of software development model. "Iter-

atively" and "incrementally" mean that the phases of SDLC are in a loop until

the user accepts the project. The products that are created after the implementa-

tion phase are shown to users to obtain their opinions about the system. Then,

it is updated based on these opinions. This process continues until all users

requirements are achieved.

9

• Spiral Development: Boehm [54] defines this model as an evolutionary soft-

ware model that uses risk assessment techniques for software components. This

model has loops which visit the software development phases. Each loop starts

with an objective definition in terms of performance and functionality and con-

tinues to plan how the objective can be achieved. The following iteration at-

tempts to solve the risks gathered from the previous step.

• Rapid Application Development: is an adaptive approach that frequently uses

risk mitigation techniques such as prototyping [55]. In addition, it also in-

creases the productivity by focusing on changes reducing the total delivery time

and verifying the solution that works for end users since they are a part of the

development team during the software development process [56]. Therefore,

agile methods are used for rapid application development where developers and

customers collaborate beginning from the design phase of a software project.

• V-Shaped Model: This is a type of waterfall development model that differs in

verification and validation techniques [57]. Testing of the product is completed

with the phases of SDLC simultaneously. This means that each phase has a

testing operation.

• Agile Development: The goal is to minimize the total cost, to produce high

quality products and to decrease total project time by adapting any updates and

changes iteratively [58]. Although there are different methodologies that can be

considered as Agile Software Development such as Scrum [59], Kanban [60]

and Extreme Programming [61], the general idea is to meet user requirements

and expectations whenever required or desired. In this method, the collabora-

tion between team members, the communication between organization mem-

bers and customers and testing are very significant concepts rather than classi-

cal phases of software development. The short-term objectives are determined

rather than the long-term objectives.

There exist many different software development methodologies in the literature since

none of them can be applicable to all types of software projects [62]. This means that

the software development methodologies have both advantages and disadvantages

since their components differ from each other [63, 64].

10

There are various studies in the literature which compare the existing software de-

velopment methodologies. In the first study, Saxena and Upadhyay [65] compared

waterfall and prototype development methodologies. In this study, the total develop-

ment time, expenditure to develop the project and user satisfaction were designated

as factors that determine whether a project is successful. In the light of these factors,

both methods have a number of advantages and disadvantages similarly to the other

software development models. The advantages of the waterfall development model

can be listed as having well defined stages, being easy to understand and easy to use,

and having a simple implementation process. In addition to these advantages, this

model requires minimum resources to complete a project in comparison to the other

models. On the other hand, this model also has a number of disadvantages, the first

of which is that the system cannot be used for requirements not occurring at the be-

ginning of the development stages. Another disadvantage is that this model does not

allow users to be involved in the development process of a system from the beginning.

In the prototype development model, users are included in the project development

process from the beginning of the project. This means that the users can continuously

give feedbacks about the project. Therefore, errors may be easily detected. In sum-

mary, the waterfall development model is suitable for well-defined projects which

require minimal updates when the prototype development model should be used to

develop more complex systems due to its dynamic and flexible structure.

Drury-Grogan and Kennedy [66] compare the waterfall and agile development mod-

els in their study. According to this study, the waterfall model enables project mem-

bers to focus on the project tasks, which occur in a linear sequence. A new task starts

after an existing task is completed. Thus, the aim of project members is to complete

the tasks assigned to them within the time schedule. For this reason, the project can be

easily managed. Although this can be seen as an advantage, it also brings some dis-

advantages. The first disadvantage is that the different teams are generally assigned

to each phase of SDLC in the waterfall development model. This situation causes a

continuous lack of sharing of knowledge and information among team members due

to every team member focusing on his own respective task. Thus, there is no strong

interaction between team members. Another disadvantage is that the project is tested

in the last stages of SDLC. This is a significant deficiency of this method since al-

11

most every project requires reworking. In addition, if a company wishes to rework

a project to rectify problems, the operation would be costly. The agile development

model fills these lacunae in the waterfall development model. It allows for an iterative

development of the project since the process of this method is dynamic. Therefore,

any new demands from customers may be more easily performed. Short-term tasks

are assigned to small teams which have high-level interactions between members.

A significant analysis and discussion on comparing the software development meth-

ods was presented by Moniruzzaman and Hossain [67]. This study illustrates the de-

ficiencies of existing traditional software development methods by comparing them

with the agile development model. According to this study, traditional software de-

velopment models feature the importance of planning instead of adapting customer

requirements, which seem to occur after a project starts. This situation makes the

projects more manageable; however, the studies in the literature [68, 69] indicate that

easy management of a project is not meaningful if it does not satisfy customer ex-

pectations. Traditional methods attempt to guarantee to finish a product based on

the requirements determined at the beginning of the project, whereas the aim of the

agile development model is to integrate the customers’ new requirements into the

system rapidly. Consequently, more qualified products can be produced at the end

of the development process. Additionally, the agile development model brings other

advantages. The first additional advantage is that it divides the objectives into the

small tasks. Thus, the time needed to complete a task is short. This provides rapid

development in addition to a rapid testing environment. Another advantage is that

customers are included in many aspects and steps of the project development process.

This produces opportunities for customers and developers since customers can see

any missing or undesirable parts of the projects, thereby enabling developers to deal

immediately with any deficiencies in a project. The last advantage is that this model

reduces the total reworking cost since the errors in the system are detected in the early

stages of the software development process.

Another comparative study completed by Mishra and Dubey [70] illustrates the sim-

ilarities and differences between the waterfall, V-Shaped, spiral and rapid applica-

tion development methods by explaining both the advantages and disadvantages of

each software development model. According to this study, the waterfall develop-

12

ment model cannot be applicable to a project in which requirements are dynamically

changed or updated. The other models were discovered to fill this gap. For example,

in the spiral development model, the developers start with a small set of requirements

at the beginning of the project and, if necessary, add new requirements in the follow-

ing stages. However, this dynamism causes delays in the delivery of projects if the

manpower is not adequate to complete any complex systems. The V-Shaped model is

an improved version of the waterfall development model in terms of the testing phase.

Although testing occurs after each phase, the requirements cannot be easily included

in the project development phase. The rapid application development model can have

projects finish in a short-time period if the requirements are well-defined; however,

the error rate may increase in the end product.

These studies in the literature illustrate that the existing software development method-

ologies cannot satisfy all non-functional requirements in which the end product should

contain. This means that each of them has some disadvantages. Because of this rea-

son, they may provide the requirements of the applications in a limited way. Hence,

they need to be improved in order to enhance the quality of the projects. In accor-

dance with this purpose, the literature has been scanned to find any studies that have

been carried out to determine the factors that make the existing software development

methodologies ineffective.

There are a number of studies [71, 72, 73] in the literature showing that the software

development methodologies are generally hard to be trained for software development

teams. Especially, the agile development needs to be combined with other techniques

such as "user centered design" [74] or "model driven development" [75] in order to

be successfully deal with development challenges. The reason for these challenges is

that the software development methodologies are hard to understand without real-life

practices. Although software development methods are well-understood by experi-

enced managers, they cannot easily transfer this tacit knowledge since novice practi-

tioners do not fully comprehend the technical details of software development [76].

Therefore, members in a software development team have to play different roles dur-

ing the software development project since they try to close each other’s deficien-

cies to bring out a successful software product. For this reason, roles in software

team members become exchangeable since the ultimate goal is to deploy the software

13

product [77]. However, if an introvert person is involved in the project, this situation

directly affects the quality of the software development process since the communi-

cation between the team members cannot be performed properly [78]. In particular,

in some software projects, team members should self organize to successfully com-

plete the software projects when their roles are not well-defined [79]. However, this

situation can also directly affect the success of the project negatively, due to the fact

that the workload within the team is not equal and that the self-organized people may

not share information.

When the above paragraph is summarized to illustrate the main drawbacks of the

existing software development models, the improvement of the following substances

is important to enhance the impact of the models on the projects:

• To increase the knowledge and experience levels of the project members re-

garding the applied process.

• To better identify the roles of individuals in the project team.

• To give more detailed information team members about their duties in the

project.

• To accelerate the adaptation process of new participants to the project.

• To choose more suitable people for the project.

As a result of this section, software development is a discipline that aims to stan-

dardize the tasks of software production. There are many different methodologies

proposed for software development. These methodologies, however, possess the

same sequential stages (i.e. requirements gathering, design, implementation, test-

ing, and integration) for both traditional and agile approaches. Each software project

includes these steps, without being dependent on the software development method-

ology. In other words, the tasks that arise in the phases of software development

are not dependent on the software development process. Consequently, a software

practitioner should know all these phases from both theoretical and practical point of

view. However, apart from the methodology chosen for production, novice software

practitioners should gain hands-on experience for all stages of software development.

14

Therefore, this study proposes a process-agnostic training environment that encapsu-

lates experience-based training for novice software engineers. The next section will

explain the benefits of VR applications when they are used to improve individuals’

experience and knowledge levels.

2.3 Importance of Using Virtual Reality Applications in Education

In this study, a VR environment is created to provide a workspace where the par-

ticipants can increase their both knowledge and experience levels about the basis of

software development process. Hence, it is important to figure out the importance of

the VR applications developed for training purposex. To achieve this, the literature

review was conducted to find similar studies that aim to train individuals in different

domains by using VR technology.

Fang and Teizer [80] developed a virtual environment to train both crane operators

and ground personnel. The aim of this study is to increase the collaboration between

crane operators and ground personnel by reducing the mistakes during a construction.

The cranes, construction materials and buildings used in real environment during con-

struction were modelled and integrated to the virtual environment. The training pro-

gram is scenario-based and it is expected that people perform certain tasks in each

scenario. The designed virtual environment is a multi-user environment and offers

instant communication between users. In this way, the users can prepare themselves

against the problems they may encounter in real life by experiencing these problems

with the communication created in the virtual environment. This environment has

been tested by construction graduate students. According to the results of this test,

the practice in the virtual environment improves the skills of the participants. In an-

other study by Bliss et al. [81], a virtual environment was designed to increase the

navigation capabilities of firemen. In order to understand the effect of the virtual en-

vironment, participants divided into three different groups as blueprint, VR and no

training. According to the results of this training program, the VR is an effective tool

that can be used in education domain. Seymour et al. [82] conducted a study to illus-

trate the effect of VR when it is used as a training tool. The aim of this study is to im-

prove the abilities of the medical students by creating a virtual environment. A group

15

of student (N = 16) was equally divided into two different groups, VR and non-VR.

At the beginning of the study, a pre-test was administered to evaluate the knowledge

levels of the students before training program. After the training program, a post-test

was also administered to illustrate the development of the students. According to the

results obtained from these tests, students who studied with VR developed themselves

more than the students who worked with traditional methods. In the same vein, Kan-

dalaft et al. [83] has a study to improve the social abilities, attention and functioning

of young adults who are diagnosed with autism at high levels. In Second Life, an

area including offices, buildings, shopping and coffee shops, restaurants, schools and

parks was reserved for only this training program. This virtual environment was used

by eight participants. The avatars in the virtual environment were modelled consid-

ering the appearance of the participants in order to increase the reality. The designed

training program was scenario-based and the scenarios such as meeting new people,

ordering food, conducting relationships with friends, making financial decisions were

designed to increase participants’ social skills. A pre-test and a post-test were admin-

istered to the participants in order to observe the development of the participants’

skills. The results of these tests illustrate that virtual environments can be used as

an important training tool which enhances individuals’ abilities. Another study com-

pleted by Elledge et al. [84] contains a virtual environment to increase the abilities

of medical students in treatment methods for maxillofacial emergencies. Throughout

their education life, there is no environment in which students can gain experience in

this regard. The students involved in this study used the virtual environment to fulfil

for these shortcomings within a month of training. The virtual environment involves

scenarios which consist of ten intervention directives frequently occurring in real life.

A pre-test and a post-test consisting of twenty multiple choice questions were admin-

istered to determine the improvement on the skills of the students. The qualitative

results obtained from the tests illustrate that there is a significant difference between

the students’ post test and pre-test scores in positive manner. Therefore, a virtual

environment is an effective tool to train the individuals.

These studies in the literature show that VR is an appropriate tool used in the training

of individuals in different working areas. The next section will mention about the

training tools, including VR, developed for software engineering training.

16

2.4 Tools Used in Software Engineering Training and Simulations

There are several different studies in the literature that train individuals about software

engineering concepts. While most of these studies are 2D or board/card games, and

involve many features of serious games, 3D virtual environments are also designed to

enable individuals to experience a more active learning process in some other studies.

An example study in this area was carried out by Baker et al. [85]. In this study, a

card game was developed with the aim of increasing the level of experience of people

about software development processes without involving real life risks. The game

is multi-player and each player is given tasks similar to tasks in real life projects.

The players must perform these tasks as soon as possible to meet the customer’s

requests in accordance with their budget. This game includes phases of the Waterfall

Development Model as a software development methodology and the players give

decisions related to project management as the project team leader. According to

the results of the study, this card game is a beneficial training tool that can be used

to support traditional methods since it creates a competitive atmosphere among the

players which encourages people to play.

Bollin et al. [86] developed a simulation framework to experience different software

development methodologies for the participants. This framework is a computer ap-

plication that contains elements similar to flowchart components. Hence, the partic-

ipants can develop the projects or decide on a topic by connecting these elements to

each other. In this way, the participants have a chance to improve their experience

levels on project development without living real experiences.

The idea of using games in software engineering education is also supported by

Hainey et al. [87] who produced a game that helps individuals about how the require-

ments of a project should be gathered and analyzed. In this game, the players should

manage and complete the software projects with different roles such as team leader,

system analyst, designer or project manager. The game was supported by non-player

characters who direct the players about their tasks. This game was tested with 92 stu-

dents to figure out whether the game is an effective tool which supports individuals

to increase their requirement analysis skills. Both pre and post test was administered

17

to see the difference between the participants’ knowledge levels before and after the

training program. According to the results obtained from this study, this game is very

useful to increase the knowledge levels of the participants about software engineering

since it attracts the attention of people.

Similarly, Rusu et al. [88] designed an interactive game that teaches the content of

the maintenance phase of SDLC to the students. This content was divided into four

categories: perfective, adaptive, preventive and corrective. The game dynamics of

this game are very similar to game dynamics of classical tower-defence game. The

bugs and errors in the system were represented as enemies and the projects were

represented as towers. The players try to protect their towers from the enemies by

using the available protection methods in the game. 18 students were selected to

test the efficiency of the game. The results of this study indicate that the games can

be an alternative learning technique which can be effectively used in the training of

software engineering topics.

When the 3D applications developed in this area are to be examined, Aydan et al. [89]

designed a serious game called "Floors" to teach the basics of ISO/IEC 12207:1995

in an enjoyable manner. For this game, a 3D virtual office environment supported

by non-player characters was created to further impress the participants. This virtual

environment was tested with 40 students. The students were divided into 2 equal

groups as one control group and one experimental group. The students in the control

group used traditional methods to learn the fundamentals of ISO/IEC 12207:1995

while the students in the experimental group used the designed game. The findings

of this study illustrated that the level of knowledge about the ISO/IEC 12207:1995 of

the participants in the experimental group improved considerably.

In the same vein, Ye et al. [90] used Second Life as a training tool where the faculty

members have the ability to answer their students’ questions about software engineer-

ing. The participants have avatars to represent themselves in the virtual environment.

A virtual classroom similar to real classroom was designed in Second Life to provide

communication between students and lecturers. This environment was tested with a

group of students (N = 25). After the study, a survey was administered with the partic-

ipants to obtain their opinions about the impact of the system on the users. The results

18

indicate that a virtual teaching strategy is advantageous in enhancing the knowledge

levels of students about software engineering field.

Another similar study was performed by Rodriguez et al. [91]. In this study, a 3D

virtual seminar room was designed to teach the practices of Scrum to software en-

gineering students without having time and facility limitations. This virtual environ-

ment consists of virtual elements similar to real elements in a meeting room such as

blackboard, charts and calendar. In this environment, the participants were allowed

to move the virtual objects in order to increase the reality of the system. An example

project was integrated into the system to demonstrate the flow of the Scrum method-

ology. The virtual environment was tested with 45 undergraduate students to measure

the effect of the environment on the individuals. According to the results obtained

from the tests, this virtual environment is a beneficial tool that can be used to explain

the flow of the Scrum method to the students.

Parsons and Stockdale [92] conducted a study in which a virtual world was designed

by using Open Wonderland to train the participants about the properties of agile soft-

ware development methodology such as user stories, features in user stories and team

collaboration. In this study, it is expected that the knowledge levels of participants

about agile software process is increased by development of a simple project that is

not related to software engineering. The findings of this study clarify that although the

developed tool requires significant improvements such as reality of the project, whole

project development process and more realistic project, it can be used for training

individuals about software engineering processes.

2.5 Summary

According to the results obtained from the literature review, it is necessary to train

software practitioners, especially novice ones, about the tasks related to software

development process in order to increase the quality and success of the software

projects. Although there exist a number of applications for this purpose in the lit-

erature, there are still some drawbacks of these systems that should be completed.

Table 2.1 shows these deficiencies on a study basis.

19

When these studies are analyzed in detail, the main weaknesses can be summarized

as:

• Low/Limited Increased Reality: The most important feature that affects the

learning progress of individuals is that the training environments should be sim-

ilar to real environments [93]. Although it is an essential issue for training tools,

the card and 2D games cannot fully provide this feature since these platforms do

not have enough hardware and software functions to detach the players from the

real environment. Hence, this situation decreases the sense of presence which

is one of the most significant factor that shows the success of the designed en-

vironment [94]. 3D environments can provide the sense of presence, however,

the existing studies did not have enough user interaction functions. Hence, they

did not measure their participants’ level of sense of presence.

• Missing Whole Project Development Processes: As mentioned in the previ-

ous sections, the software is a product obtained after several different phases.

Although the development of a software is a long process, the existing studies

aim to increase the participants’ level of knowledge about the specific phases.

None of them can inform the users about the whole project development.

• Limited Number of Stories: The existing studies only focused on one project

as an example test project. In addition, some of these projects were not related

to the software engineering and the other ones were not large scale projects like

in real life. Therefore, this case can be shown as an important drawback of the

existing systems, because, analyzing only one project limits the development of

individuals since the requirements of real life projects are very different from

each other. Hence, the participants cannot face different problems occurring in

the different types of the projects.

To sum up, this study purposes an interactive 3D virtual environment to help partic-

ipants gain experience based on the tasks of SDLC by enhancing the drawbacks of

the existing studies in the literature. Due to this environment, the participants have a

chance to face development problems and conflicting situations with some of distinc-

tive virtual personality characters without actual risks.

20

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
Ta

bl
e

w
ith

th
e

E
xi

st
in

g
St

ud
ie

s
in

th
e

L
ite

ra
tu

re

A
ut

ho
rs

Ty
pe

of
th

e
To

ol
H

ig
h

R
ea

lit
y

W
ho

le
Pr

oj
ec

tD
ev

el
op

m
en

t
Pr

oc
es

s
D

iff
er

en
tS

to
ri

es

B
ak

er
et

al
.[

85
]

C
ar

d
G

am
e

7

B
ol

lin
et

al
.[

86
]

C
om

pu
te

rA
pp

lic
at

io
n

7

H
ai

ne
y

et
al

.[
87

]
D

ig
ita

l2
D

G
am

e
7

7
7

R
us

u
et

al
.[

88
]

D
ig

ita
l2

D
G

am
e

7
7

7

A
yd

an
et

al
.[

89
]

3D
V

ir
tu

al
E

nv
ir

on
m

en
t

7
7

7

Y
e

et
al

.[
90

]
3D

V
ir

tu
al

E
nv

ir
on

m
en

t
7

7

R
od

ri
gu

ez
et

al
.[

91
]

3D
V

ir
tu

al
E

nv
ir

on
m

en
t

7
7

Pa
rs

on
s

an
d

St
oc

kd
al

e
[9

2]
3D

V
ir

tu
al

E
nv

ir
on

m
en

t
7

7
7

21

22

CHAPTER 3

PROPOSED VR TRAINING ENVIRONMENT

As was mentioned in the previous chapters, this study aims to train participants about

the tasks occurred during software development in a virtual environment which is

similar to real environment. Additionally, the proposed system also aims to elimi-

nate the shortcomings of the similar studies in the literature (see Chapter 2). In this

context, two complementary applications were developed, one as a desktop applica-

tion to create software project scenarios and the other one is a virtual environment in

which the participants can live the software development process of different software

projects. For this reason, the following section introduces the details of the scenario

generator. After that, the details of the virtual environment in which the participants

can experience the development process of a software project scenario generated by

the scenario generator program is explained.

3.1 Scenario Generator

In the literature, there are some studies developed for a similar purpose as this study.

Although there exist similar studies in the literature, they have some drawbacks when

they try to be used for training purpose (see Chapter 2).

"Scenario Generator" module was developed in order to make up for the lack of a

limited number of stories. This module enables the system administrator, who may

be an authorized person in the company, to enter the information, tasks and items that

are related to the whole project development processes as shown in the use-case dia-

gram of the system administrator (see Figure 3.1). Thus, this module has the ability

to produce several different project scenarios, which include the whole project devel-

23

opment process, so that the second and third missing points of the existing studies in

the literature can be eliminated due to these properties of the module.

Figure 3.1: Use Case Diagram of System Administrator

When a system administrator runs the module, the main page appears on the screen

as shown in Figure 3.2.

24

Figure 3.2: Project Definition Segment

Since the aim of this study is to experience participants the entire software develop-

ment process, it is necessary to generate a scenario which contains the several dif-

ferent assignments related to each phase of SDLC. For this reason, this page consists

of six different segments: "Project Information", "Requirement Analysis", "Design",

"Implementation", "Test" and "Maintenance" respectively.

In the first segment the administrator should enter the project definition into the re-

lated text-box, which is shown in Figure 3.2. After writing the whole project defini-

tion, the administrator should pass the second segment in order to enter the require-

ments of the project. In this page, there are two different categories that are "Real

Requirements" and "Fake Requirements" (see Figure 3.3).

25

Figure 3.3: Requirement Analysis Segment

This study can be considered as a kind of serious game so that it is necessary to put

some gaming concept into it. Because of this reason, there are two different require-

ment categories in this segment since the participant, who reads the project definition,

should determine the correct requirements for the project from the pool, which con-

sists of both correct and wrong requirements. Therefore, the system administrator can

figure out whether the participant can improve his/her level of knowledge by distin-

guishing the correct requirements from the wrong ones. In addition, the participants

have a chance to see their missing points since the virtual environment has the abil-

ity to give feedbacks to participants about their wrong choices during the simulation.

As a result of this phase, the system administrator can add both correct and wrong

requirements about the related project topic.

26

After recording the requirements of the project, the third segment asks the system

administrator to enter both the actors and the functionalities of the system as shown

in Figure 3.4. In addition, the system administrator can also create the relationships

between the actors and the functionalities using this segment. With this property,

novice software engineers can create use-case diagrams of software projects when

they arrive at the design stage in the virtual office environment.

Figure 3.4: Design Segment

Figure 3.5 illustrates the implementation segment of the module. In this page, the

system administrator records the problem that is expected from the trainee to solve

by developing an algorithm in the virtual office environment. Thanks to this phase,

the trainee’s coding ability can be measured since the trainee should write C# code to

solve the question entered by the system administrator.

27

Figure 3.5: Implementation Segment

This code is going to be automatically executed in the virtual environment. Hence,

it is necessary to add the inputs appropriate to the structure of the code and the out-

puts obtained from those inputs into the scenario in order to understand whether the

participant writes the code correctly. For this reason, this page allows the system ad-

ministrator to input the desired amount of input set in order to prevent the user from

guessing and writing the output directly without writing code in the virtual office

environment (see 3.6).

In the test phase of the software development process, the participant is expected to

perform a code review in the virtual office environment. In order for the participant to

be able to perform a code review, the system administrator must add a code block with

28

Figure 3.6: Input Screen

errors to the software development scenario. The screen in Figure 3.7 is designed to

allow this work to be done.

After the system administrator writes the code that includes bugs and errors, s/he

should determine the lines and the definitions of the errors. At this stage, there is

a similar logic to the requirement analysis phase. This means that the system ad-

ministrator can also add an error that is not in the code. In this case, the participant

should choose and match the correct error lines and definitions from the pool that is

constituted both correct and wrong errors in the virtual office environment.

29

Figure 3.7: Test Segment

For the final segment, which contains the fields related to the maintenance operations

of the project, the system administrator inputs both the definition and the order of the

tasks which should be ordered by the participant in the virtual office environment. A

screen as shown in Figure 3.8 is designed for the system administrator to enter this

information.

After entering all information about the whole software project development process,

an Extensible Markup Language (XML) file, which stores the whole information en-

tered by the administrator, is automatically created if all necessary fields are filled.

This file plays a critical role to standardize the scenarios related to software project

development process. The content of this file should be easily understood by people

30

Figure 3.8: Maintenance Segment

working in the field of software development. In addition, it has to be also under-

standable by the computer in order to visualize the entered scenario in the virtual

environment. Due to these reasons, an XML file is created by this desktop applica-

tion in order to create a common language for software project scenarios. The empty

content of the XML file is illustrated as in Figure 3.9.

3.2 Virtual Office Environment

The virtual office environment was designed to teach the basics of software engineer-

ing concepts to novice software engineers. In this environment, they have a chance

31

Figure 3.9: Empty Content of the XML File

to live the whole software development process without actual risks. Therefore, the

novice software engineers may increase both their knowledge and experience levels

about software engineering concepts by interacting with the environment with sev-

eral different functionalities as shown in the use-case diagram of the participant in

Figure 3.10.

This virtual environment, designed in close proximity to the real life, aims to expe-

rience a software project from the requirements analysis phase to the maintenance

phase. To accomplish this aim, an input, which contains the tasks related to the soft-

ware engineering, is required. As was mentioned in the previous section, this input

is provided by the "Scenario Generator" program as an XML file, which contains a

scenario of a software project. Hence, it is necessary to read the information in this

XML file in order to make the software project live in the virtual environment. For

this reason, when the participant opens the virtual office environment, a window in

Figure 3.11 appears on the screen in order to select the XML file generated by the

"Scenario Generator" program.

Before starting the simulation, the participant has to select the XML file. Otherwise,

the program gives a warning message that prompts the user to select the file. When

the file is uploaded the system, the participant starts the simulation as shown in Fig-

ure 3.12.

32

Figure 3.10: Use Case Diagram of Participant

As shown in this figure, the participant stands at the entrance of an office. In the

upper left corner of the screen there is a clock to show the elapsed time in the virtual

environment while there is a calendar to show the date in the right side of the screen.

The date was set up as June 1 at the beginning of the simulation since the participant

portrays the character who is a new worker of the virtual company. In addition, the

time zone of the virtual environment is adjusted to equal an hour in virtual environ-

ment to a minute in real life. Hence, a working day in the virtual office lasts 9 minutes

in real life. After passing 9 minutes in real life, the second working day in the virtual

office will start with an update in the date.

As it can be easily seen from Figure 3.12, there are five different cubicles in the office.

Each cubicle represents the each phase of SDLC. The cubicles on the left side of the

33

Figure 3.11: Opening Screen of Virtual Office Environment

Figure 3.12: Starting Screen of Simulation

screen are divided into two regions: the lower cubicle is for the requirement analysis

phase and the upper cubicle is for the design phase. The cubicles on the right side

of the screen are designed as the places where tasks relating to implementation, test

and maintenance phases are sequentially performed from bottom to top. Each cubicle

has a total of 4 employees, one of whom works on the same project as the virtual

character played by the participant. Hence, this virtual environment has a total of 20

non-player characters (NPC). Five of them have a basic AI algorithm with case-based

reasoning approach to guide the participant by determining the participants’ progress

in the environment.

The process of the project in the virtual environment starts when the participant’s

character goes to the character’s first project partner in the first cubicle. In order to

show that the employees are in the same project as the participant’s character, names

34

Figure 3.13: Team Member in Requirement Analysis Phase

are added on the employees as shown in Figure 3.13. The participant has to press

the "E" key on the keyboard to communicate with NPC. After pressing the "E" key, a

dialogue box opens as shown in Figure 3.14.

Figure 3.14: First Dialogue Box of NPC in the Requirement Analysis Phase

In this box, a message containing the tasks that the participant should complete is

illustrated to the participant. Once the participant receives the message from the NPC

in this manner, s/he continues to move in the environment to complete the task. As

the participant is expected to perform the requirement analysis at the first stage, the

NPC is asked to read the project description document from the participant in the first

message. Hence, the participant should first read the project description document.

To achieve this aim, s/he should find the project file. For this reason, a flashing light

is added to the file to show the document in the virtual office environment as shown

in Figure 3.15.

35

Figure 3.15: Project Description Document

When the participant moves to the side of the document as shown in Figure 3.16, a

message is displayed on the screen indicating that the participant should press the "E"

key to read the document.

Figure 3.16: Opening Project Description Document

After pressing the "E" key to open the document, the panel shown in Figure 3.17

appears on the screen.

This screen contains the definition of the project that the system administrator spec-

ified in the scenario generation program. To increase the reality of the virtual office

environment, both file model used in real life and paper texture as a background of

the panel is added to the screen since the participant reads the project description

from the papers inside of the file. The clock and calendar on the left and right upper

36

Figure 3.17: Reading Project Description Document

corners, which appears as the participant moves around in the office environment, are

removed from this screen in order not to limit the display on the screen. After read-

ing the project definition, the participant returns to his/her team member as shown

in Figure 3.18. The NPC on this screen understands that the participant has read the

project definition document and tells the participant that s/he can start the requirement

analysis phase of the project.

Figure 3.18: Finishing Project Description Document

When the participant starts the requirement analysis phase, the panel in Figure 3.19

appears on the screen. This screen contains two different sub-panels, being left and

right, and two buttons, one being at the center of the screen and the other being at the

bottom of the screen. In the left panel, both the correct and the wrong requirements

37

entered by the system administrator in the scenario generation program are listed as

a button. In the right panel, some of the correct requirements entered by the system

administrator in the scenario generation program are randomly selected and listed.

The participant should find and transfer the correct requirements of the project from

the list of all requirements. To do this operation, s/he has to click the button, which

contains a requirement of the project. When the participant clicks the button, the

background colors of the selected button changes from gray to green to show the

participant’s selection. The participant can choose several requirements one at a time.

After selecting the requirements, the participant should click "Transfer Items" button

to transfer the selected requirements to other list. When the participant considers that

the requirement analysis operations are completed, s/he should click "Done" button

to finish the requirement analysis phase.

Figure 3.19: Requirement Analysis Phase in Virtual Office

After finishing this phase, the NPC, who is responsible from the requirement analysis

phase of the project, informs the participant that this phase is over and that s/he should

go to the design phase. After the participant gets this information, s/he goes to the

NPC responsible for the design phase of the project (Figure 3.20).

In the design phase, it is expected from the participant to create a use-case diagram

of the project as an early design phase of the project [95, 96, 97]. As was mentioned

in the previous section, the system administrator determines the actors, the functions

and the relations between the actors and the functions of the project via using scenario

generation program. In the virtual environment, the participant should create the

38

Figure 3.20: First Dialogue Box of NPC in the Design Phase

correct relations between the actors and the functions. As shown in Figure 3.21, both

the actors and the functions are listed in the drop-down lists separately.

Figure 3.21: Design Phase in Virtual Office

In this screen, the participant can choose both the actors and functions via using drop-

down lists. In order to create the use-case diagram, the participant should select the

necessary actors and functions. For the actor selection operation, s/he selects the

actors from the drop-down list and clicks the "Add User" button. When this button is

clicked, the selected actor appears on the screen as a classical stick man. The same

idea is valid for the function selection. After the actors and the functions are ready

on the screen, the participant can create the relations between them. To do this, the

participant should select one of the actors or one of the functions on the screen. When

39

an item is selected, a line starts to be drawn on the screen. The direction of this line

depends on the direction of the mouse. This means that a line is being drawn towards

the direction of the mouse when the participant drags the mouse until selects another

item. However, there is a rule in here. This rule says that if the participant selects

an actor, the other selected item should be a function or vice versa. In this way,

the drawing of the use-case diagram is completed by establishing the relationships

between the actors and the functions. If the participant wants to remove the added

items, s/he should click the items two times. When an item is removed, the relation or

the relations that are connected the removed item are also removed. After completing

the diagram, the participant should click the "Done" button to complete the design

phase of the project.

When the design phase is completed, the NPC responsible for the design phase of the

project warns the participant that s/he should start the implementation phase of the

project. The participant who receives this warning goes to the NPC, who is in charge

of implementation phase (Figure 3.22).

Figure 3.22: First Dialogue Box of NPC in the Implementation Phase

The NPC, who is responsible for this phase, first congratulates the participant for

completing the first two stages and indicates to the participant the task to be done at

this stage. In this phase, the participant is expected to code a function of the corre-

sponding project with the C# programming language. In order for the participant to

write the code, the panel in Figure 3.23 appears.

40

Figure 3.23: Implementation Phase in Virtual Office

In this panel, there is a label at the top of the panel which includes the text of the

question that should be solved by the participant. In addition, there is a text-box at

the center of the panel which enables the participant to write the C# code to solve the

problem. In this section, a compiler, which is capable of executing the codes written

in C# programming language, was designed to see whether the code written by the

participant is correct. However, this compiler needs to have a specific structure in

order to run the code. This means that both the class name and the function name

should be fix to execute the code. For this reason, when the panel designed for the

implementation phase is opened, the structure of the code is ready inside of the text-

box. The participant can add new functions inside of the class, however, the functions

named with "myFunction" should be considered as a main function. Thus, it should

not be changed by the participant. The code written by obeying these rules can be

executed by the virtual environment without having any problems. This compiler

checks whether there is an error (run time or compile time) in the code. However,

it can not check whether the code being written is working properly for the purpose.

To overcome this problem, some necessary string operations were applied to the code

written by the participant before it was sent to the compiler. These operations can be

explained as follows:

• The code, which is requested from the participant to solve the problems, mostly

requires input. Hence, the participant should write "Console.ReadLine()" com-

mand to get the inputs. However, it is impossible to get inputs from the user of

41

the program. For this reason, "Console.ReadLine()" commands in the code ex-

change with the input values entered by the system administrator in the scenario

generation program to test the code before sending it to the compiler.

• The compiler runs the code with the inputs entered by the system administra-

tor. In most of the programs, the coders write "Console.WriteLine()" command

to illustrate the output of the program. Hence, the value written in the "Con-

sole.WriteLine()" command is read as the output of the program. After that,

this read value is compared with the output given by the inputs entered by the

system administrator. Therefore, it can be easily understood whether the code

written by the participant is correct or not.

After writing the code, the participant should click the "Done" button to complete the

implementation phase of the project. When the implementation phase is completed,

the NPC responsible for the implementation phase of the project warns the participant

that s/he should start the test phase of the project. The participant who receives this

warning goes to the NPC, who is in charge of this phase, in order to start the test

phase (Figure 3.24).

Figure 3.24: First Dialogue Box of NPC in the Test Phase

In this phase, the NPC guides the participant that they have a code block which is

required to be tested with the code-review technique since this technique plays a

critical role in the testing phase of SDLC [98, 99, 100]. The participant, who takes

the mission from the NPC, starts to do code review on the code which is shown in

42

Figure 3.25.

Figure 3.25: Test Phase in Virtual Office

This panel is constituted by two different sub-panels. In the left sub-panel, the code

block that is entered by the system administrator in the scenario generating program

and which should be tested by the participant is displayed to the participant in a

label. The number of code lines is automatically generated and integrated into the

string which includes the code block. In the right sub-panel, there are two different

drop-down lists, which are designed for the error line and definition respectively.

These drop-down lists include both correct and wrong errors. Thus, the participant

should find the correct ones and also match them correctly. Hence, there are two

challenges in this phase. When the participant wants to add the selected error lines

and definitions, s/he should click "Add Error" button. When this button is clicked, the

selected items in the drop-down lists are listed in the below section. If the participant

wants to remove the added items, s/he should click the items two times. After finding

the errors, the participant should click the "Done" button to complete the test phase

of the project.

When the test is completed, the NPC responsible for the test phase of the project

warns the participant that s/he should start the maintenance phase of the project. The

participant who receives this warning goes to the NPC, who is in charge of this phase,

in order to start the maintenance phase (Figure 3.26).

The NPC, who is responsible from the maintenance phase of the project, congratulates

43

Figure 3.26: First Dialogue Box of NPC in the Maintenance Phase

that the participant has arrived at the last stage and indicates the participant in this

phase of the tasks required to do so. In this phase, participant is expected to put

the tasks added to the system into the correct order. As shown in Figure 3.27, the

tasks are listed in the left of the panel. This structure is similar to the structure of the

requirement analysis phase. The only difference is that the participant cannot choose

more than one task at the same time to transfer the selected item to the other list.

The reason for this constraint is that the participant should constitute the order of the

tasks. Hence, a task should be selected one at a time.

Figure 3.27: Maintenance Phase in Virtual Office

When the participant considers that this phase is completed, s/he should click "Done"

button to finish this phase. After finishing this phase, the NPC tells the participant

44

that the simulation is over.

When the simulation is over, the evaluation process starts for the participant. This

process is important for the participants, because, the aim is to increase the level of

knowledge of the participants. To do this, a file, which consists of the true answers

of the tasks and the time that is spent by the participant in the each phase of SDLC,

is generated at the end of the simulation. The participants have a chance to see where

they made mistakes, what the correct answers were and how much time they spent

to complete the task in each phase of SDLC through the information written in the

feedback file. In this way their abilities, knowledge and experience levels can be

improved.

45

46

CHAPTER 4

TEST AND EVALUATION METHODOLOGY

This chapter describes the test and evaluation methodology of the current study. First

of all, this study is conducted by using the features of mixed research methodology

since both qualitative and quantitative analysis are applied to understand whether the

proposed environment works as expected or not. Hence, this chapter explains the

qualitative, quantitative and mixed research techniques. Then, the overall research

design is shown. After that, the systematic flow of the proposed environment is il-

lustrated in detail. Finally, this chapter is finalized by providing information on the

participants who use the system to increase their knowledge levels about software en-

gineering and listing the threats that may affect the results of the study in a negative

way.

4.1 Qualitative Research Methodology

Qualitative research methodology aims to get meaningful results through the text ob-

tained by interviewing individuals and taking the opinions of them about the related

research subjects [101]. In this technique, there are several different ways to get

opinions from people such as conducting interviews, making surveys and recording

the voice of the participants. This technique can be also called "numberless research

methodology" since there is no numerical data and analysis in this research method-

ology.

The qualitative research part of this study is completed in two different stages as:

• To administer an interview to get the suggestions of the lecturers about the flow

47

of the system.

• To administer an interview to get the opinions of the participants about the

proposed virtual environment.

For the first part of the qualitative analysis, the lecturers examined the general concept

of the system. Since this study aims to train the tasks that should be completed at the

each phase of SDLC, the content of the each task should be validated by the lecturers.

The reason for this validation is that this framework can be considered as a kind of

serious game. Hence, the content of the tasks should be educational as far as not

boring.

In the second part of the qualitative analysis, an interview was administered with the

participants to figure out the effect of the system. This interview is essential since the

opinions of the participants determine whether this system can be used as a training

tool for the tasks occurred in the each phase of SDLC.

4.2 Quantitative Research Methodology

Quantitative Research Methodology requires numerical values to reach the exact in-

formation by analyzing the numerical results of the tests administered with the partic-

ipants [102]. In general, participants are divided into two groups, one is control group

and the other is experimental group, to figure out the effect of the developed system.

The participants in the control group continue to work in traditional way while the

individuals in the experiment group work with the newly developed system [103]. At

the beginning of the study, a preliminary test is conducted to measure participants’

knowledge levels. At the end of the study, a post test is administered to measure the

progress of the participants in different groups.

In order to complete the numerical analysis part of this study, a methodology similar

to the one described above was conducted. This means that there are two different

groups, one is control group and the other is experimental group, in this study. At the

beginning of the study, it is necessary to determine the knowledge levels of the partic-

ipants in each group. For this reason, a pre-test was administered with the participants

48

before starting the training. Then, participants in the control group studied on the soft-

ware engineering topics for 6 weeks from traditional methods such as books, slides

or lecture notes, while the experimental group worked on the same topic by using

the designed environment without benefiting from traditional resources. Finally, a

post-test was administered with the participants in each group to identify whether the

participants’ knowledge levels improved. When the numerical values of these tests

were obtained, the suitable statistical tests such as Two-Sample T-Test was applied

the numerical data to illustrate the difference in the knowledge levels of both group

members in a statistical way if the difference exists. In addition to these statistical

tests, Presence Questionnaire (PQ) and Immersive Tendencies Questionnaire (ITQ)

were conducted with the participants in the experimental group to measure the re-

alism of the proposed virtual environment by determining the presence levels of the

participants.

4.3 Mixed Research Methodology

Mixed Research Methodology contains the properties of both qualitative and quan-

titative research methodologies [104]. In this technique, both numerical and non-

numerical analysis are conducted. It can be also considered as a hybrid approach

between the qualitative and quantitative analysis [105]. Due to this technique, the

findings obtained in both analyzes should complement each other.

In this study, a quantitative research approach supported by validation interviews,

which can be considered as a type of mixed research methodology, was utilized since

the research methodology of this study contains the properties of both qualitative and

quantitative research. A 3D virtual office environment was developed to train novice

software practitioners about the software development process. This environment was

tested with the students studied at computer engineering department as novice soft-

ware engineers in order to figure out whether the designed system is successful. To

achieve this issue, a pre-test (before the training period) and a post-test (after the train-

ing period) were administered to the participants in order to observe their progress

about software development process. These tests have provided numerical values as

quantitative data so that quantitative part of this study was completed by analysing the

49

numerical values with the statistical methods. In addition to these values, Presence

Questionnaire (PQ) and Immersive Tendencies Questionnaire (ITQ) were applied to

the participants to measure their presence levels in the designed virtual environment.

With these questionnaires, the participants’ presence levels were determined with the

numerical values. Hence, these numerical values also provide the quantitative part of

the research methodology of this study. For the qualitative part of the study, two dif-

ferent interviews were organized. In the first interview, a meeting was held with the

lecturers in order to understand whether the system would be useful for the individu-

als working in the area of software development before the development of the virtual

environment. In addition, a set of semi-structural interviews was also administered

to the participants in order to obtain their opinions about the system after the training

period. Therefore, the qualitative part of the research methodology was completed

by analyzing the comments of the lecturers and the opinions of the participants of the

study.

Figure 4.1: Overall Research Design

50

4.4 Overall Research Design

The overall research design of this study can be summarized as shown in Figure 4.1.

It started by reviewing the literature and arranging the designing systematic literature

review (SLR). The outcomes of the SLR [106] was published in Journal of Universal

Computer Science. After completing the literature review, the problem was specified

with respect to the findings obtained from the literature review. After determining

the problem, a solution was proposed for this problem during the second phase of the

research. The output of this phase was an international conference paper [107] as a

position paper. For the proposed solution, a training environment was developed in

the third phase of the study. Based on the results of this phase, a national conference

paper [108] was published. In the final phase of the study, proposed training platform

was tested with students from a private institute. In these tests, both qualitative and

quantitative data was gathered and used to determine whether the proposed system is

successful.

4.5 Mechanism of the System

As previously mentioned, a training platform was developed to train novice software

engineers about the software development process without having actual risks. The

aim is to increase the level of knowledge and experience of the novice software en-

gineers about the software development process by eliminating the missing points of

the existing studies in the literature, which have been developed for similar purpose.

To achieve this aim, two complementary applications were developed in the scope of

this study:

1. A desktop application for generating software project scenarios

2. A 3D virtual office environment

The purpose of the desktop application is to enable the authorized person/people in

companies to create different software project scenarios, which contain the tasks re-

lated to the whole project development process including requirement analysis, de-

51

sign, implementation, test and maintenance phases. This application produces an

XML file, namely with "Scenario.xml", that consists of the whole entered informa-

tion related to the project scenario by creating an ontological meta-language, which

can be understood by the individuals and computers. The tasks that should be com-

pleted by the participants are written inside of this file. The tag structure of the XML

file is as follows:

• <scenario> ... </scenario>: This tag is the outermost tag of the file. It shows

that the scenario begins and ends.

• <project> ... </project>: This tag in the "Scenario" tags indicates that the

information about the project starts and finishes.

• <definition> ... </definition>: Project scenario starts with project definition.

For this reason, this tag is the first tag in the "Project" tags and keeps the infor-

mation of the project definition.

• <requirements> ... </requirements>: This tag, which is the second tag in the

"Project" tags, has been created to show that information about the requirement

analysis has begun to be retained. The designed system can be considered as a

serious game, which teaches something to users in an enjoyable manner [109].

Hence, it involves some gaming concepts such that the novice software en-

gineer should find the correct requirements from the whole requirement list.

For this reason, this tag stores both the correct and wrong requirements of the

project.

• <realReqItem> ... </realReqItem>: This tag is the first tag in the "Require-

ments" tags. It is designed to keep the correct requirements of the project.

• <fakeReqItem> ... </fakeReqItem>: This tag is the second tag in the "Re-

quirements" tags. It is designed to keep the wrong requirements of the project.

• <design> ... </design>: The information about the design phase of the project

is kept in this tag, which is the third tag in the "Project" tags. At this stage, it

is expected from the novice software engineer to create the use-case diagram

of the project by finding the correct actors and functions, and matching them

52

correctly. Hence, this part contains the information of the actors and functions

of the system.

• <user> ... </user>: This tag is the first tag in the "Design" tags. It is designed

to keep the actors of the project.

• <function> ... </function>: This tag is the second tag in the "Design" tags. It

is designed to keep the functions of the project.

• <relation from = " " to = " " />: This tag is the third tag in the "Design" tags.

It stores the relation information between the actors and the functions. Instead

of the other tags, this tag does not store any information inside of itself. It has 2

properties, one of them "from" and the other one is "to", is to keep the necessary

information. "from" tag is designed for the actor information and "to" tag is for

the function information. In this way, the relations in the use-case diagram can

be stored.

• <implementation> ... </implementation>: This tag is the fourth tag of the

"Project" tags. At this phase, it is expected from the novice software engineer

to develop an algorithm to solve a problem related to the project. For this rea-

son, the problem statement should be recorded as a question inside of this tag.

In addition, the algorithm developed by the novice software engineer should

be automatically checked whether it properly works. To make this operation

automatically, the necessary inputs and the outputs should be also added to the

scenario since the virtual office environment has an ability to execute the writ-

ten code, however, several input-output sets have to be entered into the scenario

in order to prevent malicious behaviour such as calculating the result directly

by hand and printing the screen.

• <codeQuestion> ... </codeQuestion>: This tag is the first tag in the "Imple-

mentation" tags. It shows the question text of the problem of the project.

• <numberOfInputSet> ... </numberOfInputSet>: This tag is the second tag

in the "Implementation" tags. It illustrates how many input-output sets are en-

tered by the system administrator.

• <numberOfInput> ... </numberOfInput>: This tag is the third tag in the

53

"Implementation" tags. It illustrates how many inputs are required to test the

written code by the novice software engineer.

• <numberOfOutput> ... </numberOfOutput>: This tag is the fourth tag in

the "Implementation" tags. It illustrates how many outputs should be compared

with the output produced by the program developed by the novice software

engineer.

• <inputSet no = " "> ... </inputSet>: This tag is the fifth tag in the "Imple-

mentation" tags. It consists of the values of both inputs and the outputs. This

tag has also one property, which is designed to represent the number of the

input-output set.

• <input> ... </input>: This tag is the first tag in the "Input Set" tags. It stores

the values of the inputs.

• <output> ... </output>: This tag is the second tag in the "Input Set" tags. It

stores the values of the outputs.

• <test> ... </test>: The information about the test phase of the project is kept

in this tag, which is the fifth tag in the "Project" tags. In this phase, the novice

software engineer has to find the bugs and errors of the code, already written

before, related to the project. S/he should find the correct error line and the error

definition, and match them correctly. A structure similar to the requirement

analysis phase is also presented at this stage. In other words, this phase contains

both the correct errors and the wrong errors of the code of the project. The

novice software engineer has to find the correct ones from the whole errors.

• <code> ... </code>: This tag is the first tag in the "Test" tags. It is designed

to store the code of the project. The system administrator writes the code that

should be checked by the novice software engineer and record it to the file.

When the written code is saved to XML file, the code lines are automatically

created by the system and are recorded with the code text to the XML file. In

this way, the novice software engineer can see the line numbers of the code.

• <realErrors> ... </realErrors>: This tag is the second tag in the "Test" tags

and illustrates that the information of the correct errors starts and ends.

54

• <realErrorLine> ... </realErrorLine>: This tag is the first tag in the "Real

Errors" tags. It keeps the line numbers of the correct errors that the code has.

• <realErrorDefinition> ... </realErrorDefinition>: This tag is the second tag

in the "Real Errors" tags. It keeps the definitions of the correct errors that the

code has.

• <fakeErrors> ... </fakeErrors>: This tag is the third tag in the "Test" tags and

illustrates that the information of the wrong errors starts and finishes.

• <fakeErrorLine> ... </fakeErrorLine>: This tag is the first tag in the "Fake

Errors" tags. It keeps the line numbers of the wrong errors.

• <fakeErrorDefinition> ... </fakeErrorDefinition>: This tag is the second tag

in the "Fake Errors" tags. It keeps the definitions of the wrong errors.

• <maintenance> ... </maintenance>: This tag is the last tag of the "Project"

tags. In this stage, there are several different tasks related to the maintenance

phase. These tasks should be ordered by the novice software engineer. Hence,

the information of the tasks, such as the order and the definition of the task, has

to be stored between the "Maintenance" tags.

• <tasks> ... </tasks>: This tag is the first tag of the "Maintenance" phase. It

shows that the information about the tasks of the project begins and ends.

• <taskOrder> ... </taskOrder>: An order number of the task is stored between

these tags, which are the first tag in "Tasks" tags.

• <taskDefinition> ... </taskDefinition>: This tag is the second tag in "Tasks"

tags. It keeps the definitions of the tasks.

After producing the XML file, it is necessary to animate the scenario written in the

XML file in the virtual office environment. In order to accomplish this goal, the XML

file is parsed by the virtual office environment at the beginning of the simulation. The

information obtained after parsing the XML file is stored in the classes designed in

the back-end of the virtual environment. Thus, the novice software engineer can live

the project scenario written by the authorized person of the company in the virtual

55

office environment. The systematic work flow of the study can be summarized as

shown in Figure 4.2.

Figure 4.2: Work Flow of the System

4.6 Participants

During this study, 41 students, who are studying at the department of computer engi-

neering, have volunteered to participate to this study in order to test our educational

framework. However, 9 of these students were excluded from the study since they are

not suitable for the criteria of this study, which are:

• The students should know C# programming language since they develop an

algorithm using C# programming language in the implementation phase of the

simulation.

• The students should not have taken a "Software Engineering" course previously.

The reason for this restriction is that if a student has taken this course, we cannot

distinguish how much the student knows the concept of software engineering at

the beginning of the study since they take this course from different universities.

In order to prevent biased results the students who have not taken "Software

Engineering" course were selected.

56

The remaining 32 students were randomly divided into two groups, which are con-

trol and experimental groups. Thus, we obtained 2 groups of 16 people in order to

understand whether the system was successful. The students in the control group did

not use the virtual office environment. They have studied the software engineering

concepts from the books, presentations or videos. The students in the experimental

group just use the simulation environment. They were not allowed to use any other

resources related to the software engineering concepts. The training time lasted 6

weeks. Before the training period, a pre-test was administered with the 32 students

in order to measure their knowledge levels about software engineering. In this test,

a case-study was given to the students and it was expected from them to find the

requirements of the project given in the case-study, to create a use-case diagram of

the project, to develop an algorithm for the problem in the project, to find the errors

inside of a code block related to the project and to order the tasks for maintenance

operations of the project. The results of this test were calculated, however they were

not shared with the students. After six weeks, a post-test was administered with the

students in order to observe their progress. The content of the post-test was similar to

content of the pre-test. After obtaining the results, the statistical tests were applied to

figure out whether there exists a significant difference between the knowledge levels

of students in different groups about software engineering concepts. The time-line of

this study is shown in Figure 4.3.

Figure 4.3: Time Line of the Study

We started to look for the students on June 30, 2018. At the end of this operation,

41 students were found, however, 9 of them were extracted from the study since they

did not fulfil our limitations. After the remaining students were divided into 2 dif-

ferent groups, a pre-test was administered on July 23, 2018. In this way, the training

period began and continued 6 weeks. Each week, meetings were arranged with the

57

students to enable them to experience different project scenarios on the system. In

this way, they had a chance to face the problems occurred in 6 different projects.

After each session, PQ was applied in order to measure their presence levels in the

virtual office environment. At the end of the 6 weeks, a post-test was administered on

September 4, 2018. After getting the numerical values, an interview was organized

with the students to get their opinions about the system on September 7, 2018. After

obtaining both the qualitative and quantitative data, an analysis process has started

and continued until on September 19, 2018.

4.7 Threats to Validity

Each study in the literature may contain some threats to validity that may affect the

results of the study in a negative manner [110]. These factors can also decrease the

correctness and trustworthiness of the studies. They can be classified in four different

categories as shown in Table 4.1.

58

Table 4.1: Threats to Validity for Empirical Research in Software Engineering

Construct Validity Ability to measure the proposed idea in a correct way.

• Qualitatively: To get the opinions of experts and par-
ticipants about the proposed system and compare these
opinions with the opinions of the researcher. (i.e. valida-
tion interviews)

• Quantitatively: To measure the progress of the partic-
ipants on the subject by applying tests. (i.e. pre-test &
post-test)

Internal Validity The research design should be internally consistent.

• History effect: The participants may improve them-
selves about software engineering concepts by using
other resources before the training period.

• Testing effect: The participants may intentionally give
wrong answers to the questions asked in the pre and post
tests. In addition, the participants in the experimental
group may also study the software engineering concepts
from other resources. The students in the control group
did not receive any tasks such as homework, projects etc.
from us. Hence, their motivation may be decreased since
there was less inclination to study the software engineer-
ing except post-test.

• Instrumentation effect: Any change in the system dur-
ing the training period.

External Validity The results obtained from this study should be directive
for the researchers and should be generalized for target
population.

• A conceptual replication: A study develops a similar
training environment to teach the tasks related to each
phase of SDLC or uses same dynamics to increase the
learning process of the individuals.

Reliability The proposed training environment should be a benefi-
cial tool for the individuals, especially for the students,
to study the tasks occurred in the software development
process by supporting the traditional techniques.

59

60

CHAPTER 5

ANALYSIS AND TEST RESULTS

As was explained in the previous chapters, there are two groups, one is the control

group and the other one is the experimental group, in this study in order to understand

whether the developed environment is a useful tool to train individuals about software

engineering concepts. During the training period, the members of the control group

are not allowed to use the virtual office environment to study the software engineering

topics. They can only benefit from the books, videos, presentations and other tradi-

tional resources for these subjects. On the other side, the individuals, who are in the

experimental group, practice the software engineering concepts by using only the vir-

tual office environment. To perform this rule, it was requested from the participants

in the experimental group not to study from any books, videos, presentations or any

other sources related to software engineering during the training period.

The training period applied to the individuals is 6 weeks and during this period, the

people in the experimental group carried out the tasks related to 6 different projects

(see Appendix A), a different project scenario each week. In order to figure out the

efficiency of our system, it is necessary to observe the progress of the participants of

the study. To accomplish this issue, a pre-test, which was organized at the beginning

of the study, and a post-test, which was organized at the end of the study, were ad-

ministered to the participants. In this way, the change in the knowledge level of the

participants can be easily obtained by subtracting the results of the participants in both

tests. After the tests, two sample t-test was applied to the numerical data obtained as

a result of the exams in order to determine whether the results obtained yielded sig-

nificant results in the statistical scope. In addition to these tests, PQ and ITQ were

also applied to the participants in order to measure their involvement levels while they

61

were using the virtual office environment since this measurement illustrates the suc-

cess of the virtual environments. In this chapter, the details of pre and post tests, PQ

and ITQ, the opinions of the participants about the system and the statistical methods

will be described in detail.

5.1 Pre-Test

At the beginning of the training period, a pre-test was administered to the selected

group of students in order to determine their knowledge levels of software engineer-

ing. In this test, the students dealt with problems related to the sample project. The

definition of the project was given to the students and it was requested from them to

determine the requirements of the system, to detect the actors and functionalities of

the system by drawing the use-case diagram of the project as the design of the system,

to develop an algorithm to solve the problem related to the project scenario, to make a

code-review of a code block developed for a problem occurred in the project scenario

and to order the tasks revealed after delivering the project to the customer. Hence,

this system consists of 5 parts: "Requirement Analysis", "Design", "Implementation",

"Test" and "Maintenance".

The project scenario in the pre-test (see Appendix B) was taken from the exam orga-

nized in the "Software Engineering" course offered at the Department of Computer

Engineering, Çankaya University in order to build a proper assessment tool. After de-

termining the content of the pre-test, it was organized on July 23, 2018. 32 students,

who are currently studying at computer engineering departments, participated in this

exam. As was discussed in the previous part of this study, the students were equally

divided into 2 groups, one is the control group and the other one is the experimental

group. The pre-test results of both groups are shown in Table 5.1 for experimental

group and Table 5.3 for control group. When the average scores the member in both

groups were calculated in all parts of the test, the results are shown in Table 5.2.

When the quantitative data was analyzed, some important points appeared. The first

important point is that the average scores of the participants of both groups in "Re-

quirement Analysis" and "Design" parts are less than the participants’ average scores

62

Table 5.1: Pre-Test Results of the Members in the Experimental Group

Students Requirement
Analysis

Design Implementation Test Maintenance Total

Student 1 4 0 10 14 8 36
Student 2 8 4 16 20 14 62
Student 3 2 0 12 14 4 32
Student 4 4 0 12 14 6 36
Student 5 8 4 18 20 14 64
Student 6 2 0 6 12 8 28
Student 7 0 0 6 8 6 20
Student 8 4 0 10 12 8 34
Student 9 0 0 6 6 4 16
Student 10 0 0 2 4 4 10
Student 11 2 0 14 12 10 38
Student 12 2 0 8 8 6 24
Student 13 6 0 10 8 8 32
Student 14 4 0 12 10 8 34
Student 15 2 0 10 8 6 26
Student 16 2 0 12 8 4 26

in the other parts. Thus, the participants have some trouble when they identify the

requirements of the system and find the actors and the functionalities of the system.

For the "Implementation" and "Test" parts, they already know the C# programming

language so they did not face the problems they had in the first two phases of SDLC.

For the last part, which is the "Maintenance" phase, the participants have showed an

average success.

The second important point is that although the total average score of the participants

Table 5.2: Average Scores of Both Groups for All Parts in Pre-Test

Group Requirement
Analysis

Design Implementation Test Maintenance Total

Experimental
Group

3.1 0.5 10.2 11.1 7.4 32.4

Control
Group

2.9 0.1 9.6 10.2 7.9 30.6

63

Table 5.3: Pre-Test Results of the Members in the Control Group

Students Requirement
Analysis

Design Implementation Test Maintenance Total

Student 1 2 0 8 14 10 34
Student 2 4 0 8 10 8 30
Student 3 0 0 6 6 8 20
Student 4 6 0 10 8 12 36
Student 5 2 0 12 14 14 42
Student 6 2 0 10 8 10 30
Student 7 4 0 16 18 8 46
Student 8 4 0 14 12 10 40
Student 9 8 2 20 20 14 64
Student 10 0 0 6 4 4 14
Student 11 2 0 10 8 6 26
Student 12 2 0 6 8 4 20
Student 13 4 0 6 10 6 26
Student 14 2 0 8 4 2 16
Student 15 0 0 4 6 2 12
Student 16 4 0 10 12 8 34

in the experimental groups is a little bit higher than the total average score of the

participants in the control group, the average scores of the participants in both groups

are very close to each other in all parts of the exam. This means that the knowledge

levels of the students in both groups about the software development process are

similar at the beginning of the training program.

The last important point is the number of successful students in the pre-test. Accord-

ing to the grading policy (see Appendix G) applied at the courses given at the Middle

East Technical University (METU), at least 60 points has to be collected to pass the

course. When the results of the pre-test are analyzed by taking this criterion into

consideration, there were 2 students who achieved the grade to pass this test in the

experimental group as shown in Figure 5.1, and 1 student who achieved the grade to

pass the pre-test in the control group as shown in Figure 5.2. In total, the number of

students who could pass the test is 3 out of 32 students.

64

Figure 5.1: Successful Students in the Experimental Group in Pre-Test

5.2 Post-Test

At the end of the training period, a post-test was administered to the selected group

of students in order to determine the participants’ progress in their knowledge about

software engineering. In this test, the students dealt with the problems related to the

sample project as they did in the pre-test. Although the project scenario given in the

post-test is different from the project scenario given in the pre-test, the structural con-

tent of the tests are the same. In other words, in the post-test, participants are expected

to find solutions to the problems they encounter in all the software development pro-

cesses related to a project scenario.

The project scenario in the post-test (see Appendix C) was also taken from the exam

organized in the "Software Engineering" course offered at the Department of Com-

puter Engineering, Çankaya University in order to provide consistency between the

tests since the contents of the exams prepared of the "Software Engineering" course

are periodically controlled by the Association for Evaluation and Accreditation of

Engineering Programs (MUDEK). After determining the content of the post-test, it

was organized on September 4, 2018. There were 32 students selected for the training

program as experimental (16) and control groups (16). The post-test results of both

65

Figure 5.2: Successful Students in the Control Group in Pre-Test

groups are shown in Table 5.4 for the experimental group and Table 5.6 for the control

group. The average scores the member in both groups were calculated in all parts of

the test and the results are shown in Table 5.5.

When the post-test results are examined using the same process as in the pre-test,

some important results arise. The first important point is that the average scores of

the students in the "Requirements Analysis" and "Design" phases, which are missing

in the pre-test, have significantly increased in the post-test. The grades of the students

in the experimental group increased more than the grades of the students in the control

group. In addition, the average scores in other parts of the post-test are higher than

the scores obtained in the pre-test. This means that the training period was beneficial

for the participants, especially the students who used the virtual office environment,

as they have dramatically increased their abilities in software development process.

The second important point of this analysis appears when the results of the post-test

are compared on a group basis. This examination illustrates that the average scores of

the experimental group in all parts of the post-test, except "Maintenance" phase, are

higher than the average scores of the control group. It means that the students in the

experimental group had a more successful education period than the students in the

66

Table 5.4: Post-Test Results of the Members in the Experimental Group

Students Requirement
Analysis

Design Implementation Test Maintenance Total

Student 1 16 14 16 18 10 74
Student 2 12 16 18 20 12 78
Student 3 8 10 14 18 8 58
Student 4 10 12 18 16 8 64
Student 5 12 20 20 20 16 88
Student 6 10 8 6 14 8 46
Student 7 6 4 8 14 8 40
Student 8 10 12 8 12 8 50
Student 9 10 10 12 20 8 60
Student 10 6 2 8 12 4 32
Student 11 12 16 20 20 8 76
Student 12 8 10 12 12 6 48
Student 13 12 12 16 12 10 62
Student 14 8 10 14 14 6 52
Student 15 8 6 10 12 8 44
Student 16 8 6 12 10 6 42

control group.

The last important point is the number of successful students in the post-test. As was

indicated in the previous section, the students have to get at least 60 points out of

100 in order to pass the course according to the grading policy of METU. When the

students’ numerical values are examined in the post-test, there were 7 students, who

provided the minimum criteria that is required to be successful in the exam, in the

experimental group out of 16 students as shown in Figure 5.3 and 4 students, who

Table 5.5: Average Scores of Both Groups for All Parts in Post-Test

Group Requirement
Analysis

Design Implementation Test Maintenance Total

Experimental
Group

9.8 10.6 13.3 15.3 8.4 57.1

Control
Group

8.5 6.4 10.6 12.1 10.8 48.4

67

Table 5.6: Post-Test Results of the Members in the Control Group

Students Requirement
Analysis

Design Implementation Test Maintenance Total

Student 1 12 12 12 14 12 62
Student 2 8 10 12 10 8 48
Student 3 6 6 10 12 10 44
Student 4 10 12 16 16 14 68
Student 5 10 4 12 16 16 58
Student 6 6 2 10 10 12 40
Student 7 10 10 14 20 12 66
Student 8 8 6 10 10 10 44
Student 9 16 12 18 18 16 80
Student 10 4 4 8 10 10 36
Student 11 6 2 6 8 12 34
Student 12 6 6 10 12 8 42
Student 13 8 2 8 8 8 34
Student 14 8 4 10 12 6 40
Student 15 6 6 6 8 8 34
Student 16 12 4 8 10 10 44

passed the test, in the control group out of 16 students as illustrated in Figure 5.4. In

total, the number of students, who could pass the test, is 11 out of 32 students.

5.3 Comparison Between Pre-Test and Post-Test Results

When the results obtained from both pre-test and post-test are analyzed, it is easily

observed that there are some differences between these results. The first difference

is that the number of successful students in the post-test is higher than the number

of successful students in the pre-test. In the pre-test, a total of 3 students, 2 from

the experimental group and 1 from the control group, received the grade to pass the

test. In the post-test, this number reached 11 students, including seven from the ex-

perimental group and four from the control group. These numerical values show that

both training methods are beneficial to improve the level of knowledge of the par-

ticipants since the number of successful students in the post-test for each group is

increased with respect to the number of successful students in the pre-test. However,

68

Figure 5.3: Successful Students in the Experimental Group in Post-Test

since the number of successful students in the experimental group is higher than the

control group, it is seen that the virtual office environment is better than traditional

methods. Another difference is that the average scores of the participants in all parts

of the post-test is higher than the participants’ average scores in all parts of the pre-

test as shown in Figure 5.5. This observation also supports the idea that both training

methods are useful for individuals. However, the important finding is that the average

scores of the students in the experimental group are higher than the average scores of

the students in the control group in all parts of the post-test except the "Maintenance"

part. This means that the students, who were trained with the virtual office environ-

ment, have increased their knowledge levels more than the students, who have studied

the software engineering concepts by using traditional methods. Hence, our training

environment is more beneficial than the traditional methods.

In order to prove this claim statistically, two sample t-test have been used since the

groups were randomly constituted. The definitions of the variables used in the for-

mula of two sample t-test are listed as follows:

• µ1: the population mean of the differences between pre and post-test for the

experimental group

69

Figure 5.4: Successful Students in the Control Group in Post-Test

• µ2: the population mean of the differences between pre and post-test for the

control group

• n1: the sample size of the experimental group

• n2: the sample size of the control group

• X1: the sample mean of the differences between pre and post-test for the ex-

perimental group

• X2: the sample mean of the differences between pre and post-test for the control

group

• s21: the sample variance of the differences between pre and post-test for the

experimental group

• s22: the sample variance of the differences between pre and post-test for the

control group

• T: test statistic

• t: critical value

• p: probability value of differences

70

Two Sample T-Test Statistic Formula:

T = X1−X2√
(n1−1)s2

1
+(n2−1)s2

2
n1+n2−2

(1
n1

+ 1
n2

)

The hypothesis of the study should be identified before calculating the test statistic

denoted by "T". This study states the null hypothesis, which is illustrated as "H0", as

the difference between the population’s means of the experimental and control groups

is equal to each other. Hence, the alternative hypothesis indicates that the population

mean of the experimental group is greater than the population mean of the control

group. The statistical representations of these hypothesizes are shown as follows:

H0: µ1 = µ2

Ha: µ1 > µ2

Figure 5.5: The Difference Between Pre-Test and Post-Test Results of Both Groups

The value of "T" should be calculated at first in order to decide which hypothesis will

be accepted. To do this operation, the numerical data, which represents the differences

between pre-test and post-test scores of both groups (see Table 5.7), have been entered

to Minitab in order to figure out whether there is a significant difference between the

groups.

71

Table 5.7: The Differences between Pre-Test and Post-Test Results

Experimental Group Control Group

38 28
16 18
26 24
28 32
24 16
18 10
20 20
16 4
44 16
22 22
38 8
24 22
30 8
18 24
18 22
16 10

According to the results obtained from Minitab, when the value of significance level

(α) was selected as 0.05 and assuming the variances of the groups as equal to each

other, the value of test statistic (T) is 2.36 and "p" value is 0.03. For the critical value

(t), t-Table (see Appendix D) plays a critical role to calculate t. Hence, according to

t-Table, this value is equal to 2.04 when the number of population was selected as 30

(n1 + n2 - 2).

The numerical data obtained from the t-test provide important findings to prove whether

the study was successful or not in a statistical way. There are two different ways to

understand which of the above mentioned hypotheses will be accepted by using this

numerical data. In the first way, the calculated "p" value, which is equal to 0.03,

indicates that the null hypothesis has to be rejected since the value of "p" is smaller

than 0.05. In such cases, the statistic states to reject the null hypothesis. In the sec-

ond way, our test statistic value (T), which is calculated as 2.36, is greater than the

critical value (t), which is equal to 2.04 with respect to the t-Table. In such cases, the

statistic also states to reject the null hypothesis. As a result of this statistical analysis,

we accept the alternative hypothesis by rejecting the null hypothesis within a 99.5%

72

confidence interval. This means that the population mean of the differences between

pre-test and post-test of the experimental group is greater the population mean of the

differences between pre-test and post-test of the control group. Thus, according to

the statistical results, we can say that the members of the experimental group increase

their knowledge levels more than the members of the control group.

5.4 PQ and ITQ

The sense of presence is one of the critical factors to establish successful virtual envi-

ronments [111]. In order to provide this sense to the participants, the designed virtual

environments should be close to the real environments. As a result, the virtual en-

vironments can be considered a successful tool. For this reason, it is important to

measure the participants’ level of sense of presence after using the virtual environ-

ment in order to detect whether the virtual environment is successful.

PQ and ITQ are the most popular questionnaires to measure both the participants’

immersion levels and how much the individual tends to be immersed [112]. Hence,

this study has benefited from both PQ (see Appendix E) and ITQ (see Appendix F).

Before applying these questionnaires, items 23 and 24 in PQ, which are unrelated to

our study, were extracted from the PQ since our system does not include any haptic

mechanism, hence, it is not meaningful to measure these questions.

Before the training program, ITQ was organized to understand how much the par-

ticipants tend to be immersed. In this questionnaire, the participants have answered

18 questions. According to the question content, they rated each question at a value

between 1 and 7 to indicate how much the problem was appropriate for them. The

highest score that can be obtained from this test is 126. After calculating the score of

each participant, the results are obtained as shown in Figure 5.6.

When the scores illustrated in Figure 5.6 are evaluated over 100, there are 4 students

who tend to be immersed by 90 percent and above; 1 student who tends to be im-

mersed between 80 and 90 percent; 8 students who tend to be immersed between

70 and 80 percent; and 3 students who tend to be immersed below 70 percent. This

means that the participants tend to be immersed at an average of 74.55 percent. Ac-

73

Figure 5.6: ITQ Scores of the Participants

tually, this result was expected because the participants’ age range is between 20 and

22 so they can be easily affected by films, videos, games or any other technological

tools since they grow up with technological devices.

During the training period, PQ was organized with the students after each VR session

in order to measure their sense of presence. In this questionnaire the participants have

answered 22 questions. According to the question content, they rated each question

at a value between 1 and 7 to indicate their level of immersion based on the properties

and functionalities of the virtual environment. The highest score that can be obtained

from this test is 154. After calculating the score of each participant in each VR

session, the results are obtained as shown in Figure 5.7.

When the scores of PQ shown in Figure 5.7 are evaluated over 100, the immersion

levels of the participants can be listed as in Table 5.8.

When the values of PQ are examined, some important points are obtained from this

analysis. First of all, all students except one have felt themselves at least 70 percent

included in the virtual environment. Six students felt a strong immersion sense to our

virtual office environment at 85 percent and above. The second important point is

that although the PQ scores obtained from the last session is less than the PQ scores

74

Figure 5.7: PQ Scores of the Participants

obtained from the first session, the difference between these scores are close to each

other. This means that even when the system is used frequently by the participants, the

effect of the system on them remains almost the same. Lastly, the average PQ score

of the participants in whole training period is 77.06 percent. This score shows that the

participants have likened the virtual office environment to the real office environment

about 77.06 percent. As a conclusion, our virtual office environment has the ability

to create an atmosphere similar to the real office environment atmosphere so that

the participants can feel like they are in the real office environment. In this way

the participants’ level of knowledge and experience can be increased more since the

sense of presence is the most important factor that shows the success of the virtual

environments when they are used for educational purposes.

5.5 Validation Interviews

The quantitative part of the study was completed by administrating pre-test and post-

test, and organizing PQ and ITQ with the participants. The numerical values obtained

from these tests were also analyzed by applying two sample t-test in order to get valid

results in terms of statistic. As was mentioned in the "Test and Evaluation Methodol-

75

Table 5.8: PQ Scores of the Participants over 100

Students Session
1

Session
2

Session
3

Session
4

Session
5

Session
6

Student 1 89.61 86.36 87.66 84.42 85.06 83.77
Student 2 87.66 87.01 88.31 85.71 83.12 83.77
Student 3 76.62 74.68 74.03 72.73 70.13 68.18
Student 4 86.36 84.42 84.42 83.77 81.82 81.17
Student 5 94.81 92.21 90.26 90.91 89.61 90.26
Student 6 72.73 71.43 72.08 73.38 70.78 71.43
Student 7 70.13 72.08 68.83 68.18 64.94 63.64
Student 8 74.68 75.32 70.13 71.43 68.83 68.18
Student 9 78.57 77.27 74.03 75.32 72.73 71.43

Student 10 58.44 55.19 51.95 48.05 45.45 44.16
Student 11 95.45 93.51 94.16 91.56 90.91 92.21
Student 12 74.03 71.43 72.73 72.08 70.13 69.48
Student 13 89.61 90.26 90.91 89.61 88.31 88.96
Student 14 72.73 74.68 75.97 75.32 71.43 70.13
Student 15 70.13 70.78 68.83 67.53 68.18 69.48
Student 16 81.17 79.22 79.87 77.92 80.52 79.22

ogy" chapter, "Mixed Research Methodology" was used for the research methodology

of the study, hence, it was necessary to complete the qualitative part of the study. To

achieve this issue, a set of semi-structural interviews was organized with the lecturers

in order to obtain their comments about the system. The summary of these interviews

are as follows:

• "The fact that the practical knowledge given in the course can be tested in an

environment close to real life is a very positive feature in terms of the students’

development."

• "A limited number of practical environments such as intern-ship and graduate

projects is increasing via using this tool."

• "The students can increase their experience level by working in many different

project scenarios."

• "As projects developed in the market create risks for individuals, there is pres-

sure on people during project development. Such a platform that aims to edu-

76

cate people without having this pressure will play a positive role in the devel-

opment of individuals."

In addition to these comments, a set of semi-structural interviews was also organized

with the participants in order to learn their opinions about the system. The summary

of these interviews are as follows:

• "That was an amazing experience for me. I am a student and i have worked

as an intern last year. I was so shy to ask people what should I do who shall

I talk with etc. Most probably I will experience the same emotions during the

first month of my job. In my opinion these programs can help us get used to

work. Sometimes it is hard to ask people so many questions. Thanks to this

applications we can complete the tasks with no need to being annoying."

• "I have some problems in communicating with other students. I’m sure that

the same situation will occur when I start to work. If the companies use this

program in the orientation period by demonstrating the current workers and

their duties, this will be so helpful for me since there is no need to ask anyone

for help."

• "Before working in real life, I gained the confidence to experience the fields that

I will work in the future. I know this is virtual, but I didn’t feel that much when

I was using it. I think that if we could move instead of using a keyboard to move

in a virtual office environment, the realism of the system would increase."

• "Learning some things in real life can sometimes create unwanted results. This

training platform has enabled us to gain experience about software projects

without experiencing all these problems. It is a successful training tool be-

cause it provides opportunities to use this system frequently without the need

for space for training and trainers. The warnings given about the errors are

very important in terms of personal development."

77

78

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Discussion

This thesis study proposes a training environment to the novice software engineers in

order to increase both their level of knowledge and experience in a similar environ-

ment to the real environment without having actual risks. For this purpose a virtual

office environment was developed to teach the tasks occurred in the software devel-

opment process to the individuals who will work in this area. In addition, a desktop

application was also developed in order to make the virtual office environment more

dynamic since it enables system administrators to create different software project

scenarios. However, before developing these tools a literature review was conducted

to develop the background of the study. Firstly, it was begun to give the definitions

of software, software development and software engineering. After defining these

concepts, the reasons why it is necessary to develop the software projects within a

certain logical framework were explained to show the importance of the software

development methodologies. Then, it was explained why there are several different

software development methodologies in the literature and both the advantages and

disadvantages of the existing software development methodologies were illustrated.

After that, although there exist several different software development methodolo-

gies to produce successful software products, it was stated that most of the software

projects are finished by not providing the requirements of the customers. Hence, it

continued to illustrate the negative impacts of the unsuccessful software projects on

the economy of both the governments and companies. After finding this problem, the

reasons that cause the software projects to fail were researched and it was found that

79

the most important reason is the lack of knowledge and experience of the individuals,

who work in this area. In the last stage of the literature survey, the studies, which aim

to teach software engineering concepts to individuals, were analyzed in detail.

After analyzing the studies in the literature, it was determined that there are 3 main

missing points of the existing studies. These are:

• Low/Limited Increased Reality

• Missing Whole Project Development Processes

• Limited Number of Stories

As was mentioned before, the aim of this thesis is to develop a training tool for indi-

viduals about the software development process by eliminating the missing points of

the existing studies in the literature. To achieve this aim, 2 complementary applica-

tions were developed in the scope of this dissertation. These are: Scenario Generator

and Virtual Office Environment.

The below items describe how the programs developed in this study solved the miss-

ing points of the studies in the literature.

• Low/Limited Increased Reality: This missing point was solved by the "Vir-

tual Office Environment". The 3D virtual office environment with a head-

mounted display produces an interactive training environment which is similar

to the real office environment. The participants can interact with the workers,

who are NPCs working in the same company, in order to learn their missions in

the software project. In addition, the participants can also interact with the ele-

ments in the virtual office environment such as opening and reading the project

definition document. In this way the participants have the opportunity to test

and develop themselves in a virtual office environment, which is designed to

be closest to the real office environment, by dealing with project development

problems. The effect of the system on the participants was measured by PQ

and ITQ frequently used questionnaires in the literature.

• Missing Whole Project Development Processes: This missing point was solved

80

by "Virtual Office Environment" and "Scenario Generator". "Scenario Gen-

erator" program has the ability to produce an XML file, which contains the

missions related to the each phase of SDLC, by constructing an ontological

meta-language based on its own unique tag-structure. Thanks to this program,

which is used by the project manager or the team leader, the participants have

the chance to be involved in every phase of the software development process.

"Virtual Office Environment" parses the XML file produced by "Scenario Gen-

erator" and makes the scenario written in the XML file come alive. Hence,

the participants can experience the project scenario generated by the authorized

person of the company via the virtual office environment.

• Limited Number of Stories: This missing point was solved by "Scenario Gen-

erator". This program has the ability to produce an XML file, which contains

the missions related to each phase of SDLC. Hence, the project managers can

easily produce several different project scenarios by using this program.

6.2 Validation of the Proposed Training Environment

The potential threats of this study, which may affect the validity of the study, were

identified in Chapter 4. In order to deal with these threats, some procedures were

performed as follows:

• Construct Validity ⇒ Qualitative Measure: A set of semi structural inter-

views was organized by both the lecturers and the students.

• Construct Validity⇒ Quantitative Measure: A pre-test and a post-test were

administered with the students to determine their progress levels during the

training period. In addition, PQ and ITQ were also applied to understand the

success of the designed VR environment.

• Internal Validity ⇒ History Effect: A pre-test was administered with the

students for both groups at the beginning of the study in order to determine

their knowledge levels before starting the training period. Therefore, the history

effect was eliminated since their knowledge levels were almost the same at the

beginning of the study.

81

• Internal Validity⇒ Testing Effect: In order to eliminate this threat, the first

three students in both tests were given a gift. Therefore, the students tried to

give correct answers to the questions in order to be among the first three stu-

dents in the tests. In addition to this procedure, for determining the motivation

of the students in the control group, they were asked how many hours they

spent to study software engineering topics in a week. They have indicated that

they have studied the software engineering concepts for an average of 78 min-

utes per week. Hence, these students spent as much time as the students in the

experimental group to study software engineering subjects.

• Internal Validity⇒ Instrumentation Effect: refers any change in the system

during the training period. The designed system did not change during the

training period.

• External Validity ⇒ A Conceptual Replication: This study is based on the

literature that has been rigorously reviewed to assess potential needs of a virtual

training platform. As a result, some important and novel features were identi-

fied. After conducting this exploration, we have added a set of features to our

training platform to develop more efficient and immersive training environment

for the individuals. Therefore, a novel platform was designed to teach the tasks

related to software development process.

• Reliability: The students have tested the training platform. During the training

period, they have participated the necessary tests that show the success of the

designed platform. In order to address the reliability issues of the study, valid

statistical tests applied to the results obtained from these tests. In addition, a

set of semi-structural interviews was also conducted with the lecturers to obtain

their thoughts about our system as an expert point of view.

6.3 Limitations

Although the potential threats, which may affect the results of this study in a negative

manner, were eliminated, one of them cannot be eliminated since it depends on the

declaration of individuals. Hence, this threat may limit the validity of the study. It

82

can be listed as:

• The participants in the experimental group may also study the software engi-

neering concepts from other resources.

To deal with this threat, the students in the experimental group were warned informed

several times not to review the software engineering topics from other resources. They

have declared confirmed that they did not study these concepts from other resources,

however they may have studied.

6.4 Revisiting the Research Questions

In this section, the research questions from Chapter 1 are discussed in the light of the

results obtained from the user experiences. The aim of this study is to increase the

experience and knowledge levels of novice software engineers about the tasks related

to software development process by designing a 3D virtual office environment. By

using the potentials of a virtual office, a task-based software engineering training can

be conducted independently from customers and instructors outside traditional office

environments. By taking into account of this aim, this study has a total of 2 research

questions:

RQ 1: Can the proposed training environment increase performance of students on

software engineering tasks (e.g. requirement capturing, coding, testing, etc.)?

In order to response to the first research question, software engineering discipline

requires self directed training where VR-based environment is an opportunity to get

trained regarding best practices without having hands-on experience from the field.

We found that using VR simulation for training of software engineering tasks sig-

nificantly improves skills of software engineering trainees. This confirms that VR

simulation training is a complementary tool to conventional training. In order to

validate this claim, the proposed system was tested with the students. The students

were randomly divided into two groups, which are control and experimental groups.

The students in the control group studied the software engineering concepts from

traditional resources while the students in the experimental group used our training

83

platform for these topics. In order to understand the students’ progress, a pre-test and

a post-test were administered. The results of these tests indicated that the students in

the experimental group have increased their knowledge levels more than the students

in the control group.

In addition, the students cannot find the opportunity to take place in the real-life

projects frequently. However, the students had an opportunity to practice the tasks

occurred in different types of software projects by using this training platform since

this platform has the ability to produce and animate unlimited number of project

scenarios. In addition, artificial intelligent NPCs also help the students about the

tasks of the software development process. Therefore, the students could repeat the

concepts in the field of software engineering without having real-life constraints. As

a result, this environment provided an accelerated learning mechanism for them and

their knowledge levels were increased. In addition, the lecturers also confirmed that

students are able to transfer the tacit knowledge to explicit knowledge during the

interviews.

In such training environments, the realism of the virtual environments is one of the

most important aspects that highlights the success of designed environments. In gen-

eral, this realism is directly proportional to the feeling of being there. For this reason,

it is necessary to measure the sense of presence of the participants. To achieve this

purpose, PQ was administered with the students in the experimental group. Accord-

ing to the results obtained from PQ, the students have felt a strong immersion. This

means that our 3D virtual office environment is similar to real office environment.

Hence, the developed system is evaluated as successful.

RQ 2: Can the proposed training environment motivate the students for exercising

the tasks related to the each phase of SDLC?

Motivation plays a crucial role for the success of the individuals on a topic [113].

Hence, training environments should motivate the participants. In this study, the stu-

dents have used our virtual office environment six times. After each VR session, PQ

was administered. In here, the important point is that the difference between the score

of the first PQ and the score of the last PQ is almost equal for each student in the ex-

perimental group. This shows that our training platform has the ability to motivate

84

the students since both their PQ scores did not decrease and their knowledge levels

increased.

6.5 Conclusion

As can be seen, our training framework tried to eliminate the missing points of the

existing studies in the literature by gathering all properties into one environment.

Different testing methods were organized in order to learn whether this training plat-

form achieves this aim. For this purpose, 32 students, who are currently studying at

the computer engineering department, have tested our training platform. They were

randomly divided into 2 groups which are experimental and control groups. The

members in the control group could not use our training platform for the software en-

gineering topics. They were only allowed to use traditional resources such as books,

videos or presentations. The members in the experimental group were only allowed

to join our training environment to study defined software engineering problems. It

was strongly stated to them that they are not allowed to use any other resources to

study these subjects. A pre-test at the beginning of the training period and a post-test

at the end of the training period were administered in order to figure out the effects

of both training strategies. The results indicate that there is no significant difference

between the knowledge levels of both groups at the beginning of the program. At the

end of the training program, the knowledge levels of the program have dramatically

increased for both groups. However, the members in the experimental group have

increased their knowledge levels more than the members in the control group. This

means that our training platform provides a beneficial educational tool to teach the

software development process to individuals who will work in this area. To support

this idea, a set of semi-structural interviews was also organized with the participants

in order to learn their opinions about our training framework. According to the re-

sults obtained from these interviews, the participants have evaluated our platform as

a valuable training tool.

The success of our training platform was also tested by applying PQ and ITQ with

the participants to measure their sense of presence levels since presence is the most

important factor that shows the success of the virtual environments. After each VR

85

session, PQ was administered to the participants to observe their sense of presence

levels. These measurements specify that most of the participants have a strong "pres-

ence" feeling for our virtual office environment. When the average of all participants’

scores in six sessions is taken, a success rate of 77 percent is observed. This means

that our virtual office environment has the ability to create real office environment at-

mosphere 77% success. As a conclusion, the findings of this thesis demonstrate that

our virtual reality training platform can be efficiently used in the training of partici-

pants about the tasks occurred in the software development process.

6.6 Future Work

For the future works of this study, it is planned to increase the AI mechanism of the

NPCs in the virtual office environment by using deep learning algorithms. Hence, the

NPCs may produce their own dialogues to communicate with the participant about

the development process of the project or to automatically give duties of the project

to the participant without reading the XML file. In this way, the work load of the

project managers, who create the project scenario, may be decreased. In addition, an

on-line module in which it allows the multi-player concept is also planned to integrate

to the system. Hence, the participants have a chance to develop the projects with both

the real individuals and NPCs. Finally, text-to-speech property will be also included

into the system as a functionality of the participants. In this way, the participants can

use the system more dynamically since they can dynamically enter the speeches and

the NPCs have ability to understand these speeches. This would increase the sense of

presence of the participants.

86

REFERENCES

[1] P. Suber, “What is software?,” The Journal of Speculative Philosophy, pp. 89–
119, 1988.

[2] L. J. Osterweil, “What is software?,” Automated Software Engineering, vol. 15,
no. 3-4, pp. 261–273, 2008.

[3] E. J. Braude and M. E. Bernstein, Software engineering: modern approaches.
Waveland Press, 2016.

[4] A. Oram and G. Wilson, Making software: What really works, and why we
believe it. " O’Reilly Media, Inc.", 2010.

[5] S. Jayaram, H. I. Connacher, and K. W. Lyons, “Virtual assembly using virtual
reality techniques,” Computer-aided design, vol. 29, no. 8, pp. 575–584, 1997.

[6] I. Heldal, “Supporting participation in planning new roads by using virtual
reality systems,” Virtual Reality, vol. 11, no. 2-3, pp. 145–159, 2007.

[7] A. Z. Sampaio and O. P. Martins, “The application of virtual reality technol-
ogy in the construction of bridge: The cantilever and incremental launching
methods,” Automation in construction, vol. 37, pp. 58–67, 2014.

[8] L.-K. Cheng, M.-H. Chieng, and W.-H. Chieng, “Measuring virtual experi-
ence in a three-dimensional virtual reality interactive simulator environment:
a structural equation modeling approach,” Virtual Reality, vol. 18, no. 3,
pp. 173–188, 2014.

[9] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T. J. Davis,
“Effectiveness of virtual reality-based instruction on students’ learning out-
comes in k-12 and higher education: A meta-analysis,” Computers & Educa-
tion, vol. 70, pp. 29–40, 2014.

[10] R. Schroeder, Possible worlds: the social dynamic of virtual reality technology.
Westview Press, Inc., 1996.

[11] G. Lorenzo, A. Lledó, J. Pomares, and R. Roig, “Design and application of an
immersive virtual reality system to enhance emotional skills for children with
autism spectrum disorders,” Computers & Education, vol. 98, pp. 192–205,
2016.

87

[12] L. Donath, R. Rössler, and O. Faude, “Effects of virtual reality training (ex-
ergaming) compared to alternative exercise training and passive control on
standing balance and functional mobility in healthy community-dwelling se-
niors: a meta-analytical review,” Sports medicine, vol. 46, no. 9, pp. 1293–
1309, 2016.

[13] W. Peñate Castro, M. J. Roca Sanchez, C. T. Pitti González, J. M. Bethen-
court, J. A. de la Fuente Portero, and R. Gracia Marco, “Cognitive-behavioral
treatment and antidepressants combined with virtual reality exposure for pa-
tients with chronic agoraphobia,” International Journal of Clinical and Health
Psychology, vol. 14, no. 1, 2014.

[14] E. Yiannakopoulou, N. Nikiteas, D. Perrea, and C. Tsigris, “Virtual reality sim-
ulators and training in laparoscopic surgery,” International Journal of Surgery,
vol. 13, pp. 60–64, 2015.

[15] J. Gregory, Virtual reality. Cherry Lake, 2017.

[16] E. Pantano, “Innovation drivers in retail industry,” International Journal of
Information Management, vol. 34, no. 3, pp. 344–350, 2014.

[17] W. S. Humphrey, “The software engineering process: definition and scope,”
ACM SIGSOFT Software Engineering Notes, vol. 14, no. 4, pp. 82–83, 1989.

[18] S. McConnell, “Who needs software engineering?,” IEEE Software, vol. 18,
no. 1, pp. 5–8, 2001.

[19] G. M. Weinberg, The psychology of computer programming, vol. 932633420.
Van Nostrand Reinhold New York, 1971.

[20] O. Salo and P. Abrahamsson, “Empirical evaluation of agile software develop-
ment: The controlled case study approach,” Product Focused Software Process
Improvement, pp. 408–423, 2004.

[21] I. A. Zualkernan and W.-T. Tsai, “Are knowledge representations the answer
to requirement analysis?,” in Computer Languages, 1988. Proceedings., Inter-
national Conference on, pp. 437–443, IEEE, 1988.

[22] R. Thackeray and G. V. Treeck, “Applying quality function deployment for
software product development,” Journal of Engineering Design, vol. 1, no. 4,
pp. 389–410, 1990.

[23] C. S. Pereira and A. L. Soares, “Improving the quality of collaboration require-
ments for information management through social networks analysis,” Interna-
tional Journal of Information Management, vol. 27, no. 2, pp. 86–103, 2007.

88

[24] K. Kannan et al., “An approach for decomposing requirements into analysis
pattern using problem frames (drap-pf),” in Advances in Computing, Com-
munications and Informatics (ICACCI), 2015 International Conference on,
pp. 2392–2396, IEEE, 2015.

[25] V. Seidita, M. Cossentino, and S. Gaglio, “Using and extending the spem spec-
ifications to represent agent oriented methodologies,” in International Work-
shop on Agent-Oriented Software Engineering, pp. 46–59, Springer, 2008.

[26] P. S. Sajja, Essence of Systems Analysis and Design: A Workbook Approach.
Springer, 2017.

[27] J. Karimi, Computer aided process organization in software design. PhD the-
sis, The University of Arizona., 1983.

[28] T. G. Grbac, Ž. Car, and M. Vuković, “Requirements and architecture mod-
eling in software engineering courses,” in Proceedings of the 2015 European
Conference on Software Architecture Workshops, p. 36, ACM, 2015.

[29] F. Alonso, J. Fuertes, C. Montes, and R. Navajo, “A quality model: How to
improve the object-oriented software process,” in Systems, Man, and Cyber-
netics, 1998. 1998 IEEE International Conference on, vol. 5, pp. 4884–4889,
IEEE, 1998.

[30] S. A. Dart, R. J. Ellison, P. H. Feiler, and A. N. Habermann, “Software devel-
opment environments,” Computer, vol. 20, no. 11, pp. 18–28, 1987.

[31] B. Meyer, “Seven principles of software testing,” Computer, vol. 41, no. 8,
pp. 99–101, 2008.

[32] I. Burnstein, T. Suwanassart, and R. Carlson, “Developing a testing maturity
model for software test process evaluation and improvement,” in Test Confer-
ence, 1996. Proceedings., International, pp. 581–589, IEEE, 1996.

[33] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey on
bug prioritization,” Artificial Intelligence Review, vol. 47, no. 2, pp. 145–180,
2017.

[34] P. Ralph and P. Kelly, “The dimensions of software engineering success,” in
Proceedings of the 36th International Conference on Software Engineering,
pp. 24–35, ACM, 2014.

[35] T. Mens, “Introduction and roadmap: History and challenges of software evo-
lution,” in Software evolution, pp. 1–11, Springer, 2008.

[36] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer, “Automated clas-
sification of software change messages by semi-supervised latent dirichlet al-
location,” Information and Software Technology, vol. 57, pp. 369–377, 2015.

89

[37] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd
international conference on Software engineering, pp. 492–497, IEEE Com-
puter Society Press, 1976.

[38] N. F. Schneidewind, “The state of software maintenance,” IEEE Transactions
on Software Engineering, vol. 3, pp. 303–310, 1987.

[39] A. April and A. Abran, Software maintenance management: evaluation and
continuous improvement, vol. 67. John Wiley & Sons, 2012.

[40] S. McConnell, “The art, science, and engineering of software development,”
IEEE Software, vol. 15, no. 1, pp. 120–118, 1998.

[41] S. Planning, “The economic impacts of inadequate infrastructure for software
testing,” National Institute of Standards and Technology, 2002.

[42] A. Kiral and T. Ayyildiz Ercelebi, “Comparison of software quality metrics:
A case study,” in Proceedings of 12th Turkish National Software Engineering
Symposium (UYMS), 2018.

[43] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software engineer-
ing. Prentice Hall PTR, 2002.

[44] N. D. Singpurwalla and S. P. Wilson, Statistical methods in software engineer-
ing: reliability and risk. Springer Science & Business Media, 2012.

[45] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based software en-
gineering,” in Proceedings of the 26th international conference on software
engineering, pp. 273–281, IEEE Computer Society, 2004.

[46] M. Jørgensen, “Software quality measurement,” Advances in engineering soft-
ware, vol. 30, no. 12, pp. 907–912, 1999.

[47] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software qual-
ity. volume i. concepts and definitions of software quality,” tech. rep., DTIC
Document, 1977.

[48] B. W. Boehm, Characteristics of software quality, vol. 1. North-Holland,
1978.

[49] R. B. Grady, Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

[50] R. G. Dromey, “Cornering the chimera,” IEEE Software, vol. 13, no. 1, p. 33,
1996.

[51] W. W. Royce, “Managing the development of large software systems,” in pro-
ceedings of IEEE WESCON, vol. 26, pp. 328–338, Los Angeles, 1970.

[52] I. Sommerville, Software Engineering. Addison-Wesley, 2010.

90

[53] R. Victor, “Iterative and incremental development: A brief history,” IEEE
Computer Society, pp. 47–56, 2003.

[54] B. Boehm, “A spiral model of software development and enhancement,” ACM
SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14–24, 1986.

[55] G. Coleman and R. Verbruggen, “A quality software process for rapid applica-
tion development,” Software Quality Journal, vol. 7, no. 2, pp. 107–122, 1998.

[56] C. Schmittner, Z. Ma, and E. Schoitsch, “Combined safety and security devel-
opment lifecylce,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), pp. 1408–1415, IEEE, 2015.

[57] R. Thakurta and F. Ahlemann, “Understanding requirements volatility in soft-
ware projects-an empirical investigation of volatility awareness, management
approaches and their applicability,” in System Sciences (HICSS), 2010 43rd
Hawaii International Conference on, pp. 1–10, IEEE, 2010.

[58] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro, “Automated
error analysis for the agilization of feature modeling,” Journal of Systems and
Software, vol. 81, no. 6, pp. 883–896, 2008.

[59] H. Takeuchi and I. Nonaka, “The new new product development game,” Har-
vard business review, vol. 64, no. 1, pp. 137–146, 1986.

[60] D. Anderson, “The principles of the kanban method,” David J. Anderson &
Associates, 2010.

[61] K. Beck, Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[62] G. Kannabiran and K. Sankaran, “Determinants of software quality in offshore
development–an empirical study of an indian vendor,” Information and Soft-
ware Technology, vol. 53, no. 11, pp. 1199–1208, 2011.

[63] M. Huisman and J. Iivari, “Deployment of systems development methodolo-
gies: Perceptual congruence between is managers and systems developers,”
Information & Management, vol. 43, no. 1, pp. 29–49, 2006.

[64] K. Petersen and C. Wohlin, “A comparison of issues and advantages in agile
and incremental development between state of the art and an industrial case,”
Journal of systems and software, vol. 82, no. 9, pp. 1479–1490, 2009.

[65] A. Saxena and P. Upadhyay, “Waterfall vs. prototype: Comparative study of
sdlc,” Imperial Journal of Interdisciplinary Research, vol. 2, no. 6, 2016.

[66] M. L. Drury-Grogan and D. M. Kennedy, “Highlighting communication activ-
ities and inefficiencies between agile vs. waterfall methods: An agent based

91

model of knowledge sharing,” in 8th Pre-ICIS International Research Work-
shop on Information Technology Project Management (IRWITPM 2013), p. 46,
2013.

[67] A. Moniruzzaman and D. S. A. Hossain, “Comparative study on agile software
development methodologies,” arXiv preprint arXiv:1307.3356, 2013.

[68] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating to agile
methodologies,” Communications of the ACM, vol. 48, no. 5, pp. 72–78, 2005.

[69] T. Dyba and T. Dingsoyr, “What do we know about agile software develop-
ment?,” IEEE software, vol. 26, no. 5, pp. 6–9, 2009.

[70] A. Mishra and D. Dubey, “A comparative study of different software devel-
opment life cycle models in different scenarios,” International Journal of Ad-
vance Research in Computer Science and Management Studies, vol. 1, no. 5,
pp. 64–69, 2013.

[71] L. Van Velsen, J. Wentzel, and J. E. Van Gemert-Pijnen, “Designing ehealth
that matters via a multidisciplinary requirements development approach,”
JMIR research protocols, vol. 2, no. 1, 2013.

[72] B. Losada, M. Urretavizcaya, and I. Fernández-Castro, “A guide to agile devel-
opment of interactive software with a "user objectives"-driven methodology,”
Science of Computer Programming, vol. 78, no. 11, pp. 2268–2281, 2013.

[73] S. Blomkvist, “Towards a model for bridging agile development and user-
centered design,” Human-centered software engineering-integrating usability
in the software development lifecycle, pp. 219–244, 2005.

[74] A. P. Costa, L. P. Reis, and M. J. Loureiro, “Hybrid user centered development
methodology: An application to educational software development,” in Inter-
national Conference on Web-Based Learning, pp. 243–253, Springer, 2014.

[75] B. Losada, M. Urretavizcaya, J.-M. López-Gil, and I. Fernández-Castro,
“Combining intermod agile methodology with usability engineering in a mo-
bile application development,” in Proceedings of the 13th International Con-
ference on Interacción Persona-Ordenador, p. 39, ACM, 2012.

[76] M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis, “Project management in
plan-based and agile companies,” IEEE software, vol. 22, no. 3, pp. 21–27,
2005.

[77] J. Kollmann, H. Sharp, and A. Blandford, “The importance of identity and
vision to user experience designers on agile projects,” in Agile Conference,
2009. AGILE’09., pp. 11–18, IEEE, 2009.

[78] F. Tsui, O. Karam, and B. Bernal, Essentials of software engineering. Jones &
Bartlett Learning, 2016.

92

[79] O. Sohaib and K. Khan, “Integrating usability engineering and agile software
development: A literature review,” in Computer design and applications (IC-
CDA), 2010 international conference on, vol. 2, pp. V2–32, IEEE, 2010.

[80] Y. Fang and J. Teizer, “A multi-user virtual 3d training environment to advance
collaboration among crane operator and ground personnel in blind lifts,” in
Computing in Civil and Building Engineering (2014), pp. 2071–2078, Ameri-
can Society of Civil Engineers, 2014.

[81] J. P. Bliss, P. D. Tidwell, and M. A. Guest, “The effectiveness of virtual reality
for administering spatial navigation training to firefighters,” Presence: Teleop-
erators and Virtual Environments, vol. 6, no. 1, pp. 73–86, 1997.

[82] N. E. Seymour, A. G. Gallagher, S. A. Roman, M. K. O’Brien, V. K. Bansal,
D. K. Andersen, and R. M. Satava, “Virtual reality training improves operating
room performance: results of a randomized, double-blinded study,” Annals of
surgery, vol. 236, no. 4, pp. 458–464, 2002.

[83] M. R. Kandalaft, N. Didehbani, D. C. Krawczyk, T. T. Allen, and S. B. Chap-
man, “Virtual reality social cognition training for young adults with high-
functioning autism,” Journal of autism and developmental disorders, vol. 43,
no. 1, pp. 34–44, 2013.

[84] R. Elledge, S. McAleer, M. Thakar, F. Begum, S. Singhota, and N. Grew, “Use
of a virtual learning environment for training in maxillofacial emergencies:
impact on the knowledge and attitudes of staff in accident and emergency de-
partments,” British Journal of Oral and Maxillofacial Surgery, vol. 54, no. 2,
pp. 166–169, 2016.

[85] A. Baker, E. O. Navarro, and A. Van Der Hoek, “An experimental card game
for teaching software engineering processes,” Journal of Systems and Software,
vol. 75, no. 1, pp. 3–16, 2005.

[86] A. Bollin, E. Hochmüller, and R. T. Mittermeir, “Teaching software project
management using simulations,” in Software Engineering Education and
Training (CSEE&T), 2011 24th IEEE-CS Conference on, pp. 81–90, IEEE,
2011.

[87] T. Hainey, T. M. Connolly, M. Stansfield, and E. A. Boyle, “Evaluation of a
game to teach requirements collection and analysis in software engineering at
tertiary education level,” Computers & Education, vol. 56, no. 1, pp. 21–35,
2011.

[88] A. Rusu, R. Russell, E. Burns, and A. Fabian, “Employing software mainte-
nance techniques via a tower-defense serious computer game,” Edutainment
Technologies. Educational Games and Virtual Reality/Augmented Reality Ap-
plications, pp. 176–184, 2011.

93

[89] U. Aydan, M. Yilmaz, P. M. Clarke, and R. V. O’Connor, “Teaching iso/iec
12207 software lifecycle processes: A serious game approach,” Computer
Standards & Interfaces, vol. 54, pp. 129–138, 2017.

[90] E. Ye, C. Liu, and J. A. Polack-Wahl, “Enhancing software engineering edu-
cation using teaching aids in 3-d online virtual worlds,” in Frontiers in educa-
tion conference-global engineering: knowledge without borders, opportunities
without passports, 2007. FIE’07. 37th annual, pp. T1E–8, IEEE, 2007.

[91] G. Rodriguez, Á. Soria, and M. Campo, “Virtual scrum: A teaching aid to
introduce undergraduate software engineering students to scrum,” Computer
Applications in Engineering Education, vol. 23, no. 1, pp. 147–156, 2015.

[92] D. Parsons and R. Stockdale, “Cloud as context: Virtual world learning with
open wonderland,” in Proceedings of the 9th World Conference on Mobile and
Contextual Learning, Malta, pp. 123–130, 2010.

[93] J. Psotka, “Immersive training systems: Virtual reality and education and train-
ing,” Instructional science, vol. 23, no. 5, pp. 405–431, 1995.

[94] B. Çiflikli, V. İşler, and U. Güdükbay, “Increasing the sense of presence in
a simulation environment using image generators based on visual attention,”
Presence: Teleoperators and Virtual Environments, vol. 19, no. 6, pp. 557–
568, 2010.

[95] Q. Chen, J. Grundy, and J. Hosking, “An e-whiteboard application to support
early design-stage sketching of uml diagrams,” in Human Centric Computing
Languages and Environments, 2003. Proceedings. 2003 IEEE Symposium on,
pp. 219–226, IEEE, 2003.

[96] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D. E. M.
Nassar, H. Ammar, and A. Mili, “Architectural-level risk analysis using uml,”
IEEE transactions on software engineering, vol. 29, no. 10, pp. 946–960, 2003.

[97] A. M. Fernández-Sáez, M. R. Chaudron, and M. Genero, “An industrial case
study on the use of uml in software maintenance and its perceived benefits and
hurdles,” Empirical Software Engineering, pp. 1–65, 2018.

[98] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects
and social dynamics of contemporary code review: insights from open source
development and industrial practice at microsoft,” IEEE Transactions on Soft-
ware Engineering, vol. 43, no. 1, pp. 56–75, 2017.

[99] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer re-
viewers in modern code review,” IEEE Transactions on Software Engineering,
vol. 42, no. 6, pp. 530–543, 2016.

94

[100] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review participa-
tion in modern code review,” Empirical Software Engineering, vol. 22, no. 2,
pp. 768–817, 2017.

[101] R. Tesch, “Qualitative analysis: Analysis types and software tools,” London:
Falmer, 1990.

[102] D. Muijs, Doing quantitative research in education with SPSS. Sage, 2010.

[103] T. R. Black, Doing quantitative research in the social sciences: An integrated
approach to research design, measurement and statistics. Sage, 1999.

[104] R. B. Johnson, A. J. Onwuegbuzie, and L. A. Turner, “Toward a definition of
mixed methods research,” Journal of mixed methods research, vol. 1, no. 2,
pp. 112–133, 2007.

[105] J. M. Morse, Mixed method design: Principles and procedures. Routledge,
2016.

[106] U. Gulec, M. Yilmaz, and V. Isler, “A literature survey: Is it necessary to de-
velop a new software development methodology for virtual reality projects?,”
Journal of Universal Computer Science, vol. 23, no. 8, pp. 725–754, 2017.

[107] U. Gulec, M. Yilmaz, V. Isler, R. V. O’Connor, and P. Clarke, “Adopting virtual
reality as a medium for software development process education,” in Proceed-
ings of the 2018 International Conference on Software and System Process,
pp. 71–75, ACM, 2018.

[108] U. Gulec, M. Yilmaz, and V. Isler, “Factors that raise the reality of the vir-
tual office environment designed to educate software development processes,”
in Proceedings of 12th Turkish National Software Engineering Symposium
(UYMS), 2018.

[109] U. Ritterfeld, M. Cody, and P. Vorderer, Serious games: Mechanisms and ef-
fects. Routledge, 2009.

[110] M. Yilmaz, A software process engineering approach to understanding soft-
ware productivity and team personality characteristics: an empirical investi-
gation. PhD thesis, Dublin City University, 2013.

[111] W. Barfield and C. Hendrix, “The effect of update rate on the sense of presence
within virtual environments,” Virtual Reality, vol. 1, no. 1, pp. 3–15, 1995.

[112] B. G. Witmer and M. J. Singer, “Measuring presence in virtual environments:
A presence questionnaire,” Presence, vol. 7, no. 3, pp. 225–240, 1998.

[113] S. Yu and C. Levesque-Bristol, “Are students in some college majors more
self-determined in their studies than others?,” Motivation and Emotion, vol. 42,
no. 6, pp. 831–851, 2018.

95

96

APPENDIX A

TRAINING PROGRAM SCENARIOS

97

WEEK 1 SCENARIO

Traditionally, a voting machine has been defined by the mechanism the system uses to cast

votes and further categorized by the location where the system tabulates the votes. Your

company Elma Ltd. were asked to design a voting machine by Gantek A.Ş., on which voters

can see a list of candidates and select one to vote for.

The voting machine should check that each voter is eligible to vote. The electoral registrar will

also want to print a summary of the total votes for each candidate, and (separately) a list of the

voters who have voted, and a list of those who haven’t. In case of a dispute the machine should

also list a complete record of who voted for whom, but only a judge can use this function. The

machine shall be able to transmit 100 votes in every second to a cloud middleware. A voter

shall be able to understand the user interface in a reasonable period of time (e.g. think about

actual time for an individuals’ voting process). None of the actors involved in the voting

process should be able to link a ballot to a voter. Each and every ballot should directly be

recorded and counted. All votes are considered equal.

WEEK 2 SCENARIO

You are hired as a software engineer from a very fast growing company called Argela, Inc.

Innova was founded by Bülent Kaytaz who worked as a system engineer for Alcatel Lucent for

more than ten years. Later, he decided to start a company to generate innovative technologies

for the future of communication, which has grown rapidly and is now doing 10M Euros per

year in sales of software which, has crafted a series of telecom products that lead the way in

efficiency and intelligence. The services they provide are an elegant mix of compliance to

industry standards, scalable, open and able to keep pace with all the latest advancements. The

company now has 25 employees: 3 in management, 5 in marketing and sales, 5 in maintenance,

and 12 in software development. On December 22, 2017, Argela successfully completed and

delivered its “Development of Software Defined Network (SDN) Technologies, (MİLAT)

Project” to the Turkish Under Secretariat for Defense Industries (SSM).

Argela has decided to implement an interactive web-based alternative to the telephone

directory based solution that can be utilized in military, public safety and commercial

communication infrastructures enabling dynamic cybersecurity using such a service with 256

bit AES encryption, anybody with access to the Internet shall be able to browse and search the

company’s list of telephone customers to find their name, address, and phone number. In

addition, it shall be possible for the customers listed in the directory to extend this information

with their email- and web-addresses. To access this functionality, customers must authenticate

themselves by supplying a password provided by the telephone company. The system must

also handle updates of the directory by company staff. For security reasons, this shall not be

done from the web-interface, but only from workstations within the company’s internal

network.

98

The system should be able to handle 100 concurrent connections internally while should

respond to 1000 participants as quick as possible. In addition, there is a legacy system that

works with knowledge base, which was developed in COBOL where some important data

sometimes should be double-checked instantly. Therefore a facade might be essential for

providing some of the services. For security, an exact copy of selected calls need to be remain

in the database for one year while recoding footprints on the server need to be less than 20

megabytes. All designed user interfaces system should be following the GUI Standard 12024

which certainly states the training time even for a difficult walkthrough happen on the

application should not exceed half a day. SSM would like to have all development activities in

a given a constantly evolving functional and technical landscape by easily adapting to changing

requirements throughout the process with the visibility into the actual progress of projects that

needs to be available.

WEEK 3 SCENARIO

Field service employee Bob tries to open the door Nr.777 via the locking mechanism at its side.

Unfortunately, he breaks his key inside the lock without opening the door. He desperately

shakes the door handle, which causes an alarm. Security officer Steven, who is working at the

control center, receives a notification about the alarm. The notification consists of an audio

signal and a camera position. Steven opens LaVis and enters the camera position. LaVis shows

him the live picture of camera 1337 associated with the alarm. The live picture is overlaid with

a 3D-Model of the room in which door 777 is flashing red. Steven opens the “Security Staff”

menu that shows that three security staff members are available to deal with the alarm. LaVis

shows their names, IDs and the position of nearby cameras. In addition, the distance to door

777 is also shown. Two of the security staff members are working at a passage nearby; the third

one is further away. However, when Steven watches the videos of the associated cameras, he

sees that both are quite busy at the moment. So he decides to send Thomas, the third person.

Using Lavis’s drag and drop facility, He drags the icon for Tom to the location of the door

alarm. As a result of this action, Toms’ iPhone rings. Tom opens the display and sees the alarm

including the location of the door. When Thomas reaches the door, he meets Bob who is still

shaking the door. Thomas asks for Bob’s Staff ID Card. Then he verifies the ID card by typing

the ID number into the iPhone. The iPhone connects to the control center server and verifies

the ID number. After Tom compares Bob’s face with the picture on the ID card he unlocks the

door electronically using LaVis on his iPhone. He selects the door and clicks the “Unlock”

icon. Bob can finally go through the door.

99

WEEK 4 SCENARIO

The software system supports a computerized banking network including both human cashiers

and automatic teller machines (ATMs) to be shared by a consortium of banks. Each bank

provides its own computer to maintain its own accounts and process transactions against them.

Cashier stations are owned by individual banks and communicate directly with their own

bank’s computers. Human cashiers enter account and transaction data. Automatic teller

machines (ATM) communicate with a central computer that clears transactions with the

appropriate banks. An ATM accepts cash card, interacts with the user, communicates with the

central system to carry out the transaction, dispenses cash, and prints receipts. The system

requires appropriate record keeping and security provisions. The system must handle

concurrent accesses to the same account correctly. The banks will provide their own software

for their own computers. The cost of shared system will be appropriated to the banks according

to the number of customers with cash cards.

WEEK 5 SCENARIO

A telephone company has decided to implement an interactive web-based alternative to the

telephone directory. Using this service, anybody with access to the Internet shall be able to

browse and search the company’s list of telephone customers to find their name, address, and

phone number. In addition, it shall be possible for the customers listed in the directory to extend

this information with their email- and web-addresses. To access this functionality, customers

must authenticate themselves by supplying a password provided by the telephone company.

The system must also handle updates of the directory by company staff. For security reasons,

this shall not be done from the web-interface, but only from workstations within the company

s internal network.

WEEK 6 SCENARIO

Murat’s Pizza Delivery wants to speed up the ordering process, reduce losses caused by

misunderstandings on the phone and attract new customers. A new web-based pizza ordering

system that allows customers to enter orders in their web browsers is supposed to solve all three

issues. The system must be built for the WebObjects platform using the Xcode IDE and

integrate in an existing Apache environment.

The ordering system must be easy to use, as customers of all ages and expertise levels are

supposed to use it.

Customers may order pizzas with three different types of dough, thick or thin, and various

toppings. Customers must be able to register for a customer account. A customer account stores

address information and preferences, but no payment details for security reasons. Orders should

be possible with or without a customer account. For privacy reasons, customer data must be

stored in encrypted form only.

100

The system must be usable with all major web browsers (i.e. Internet Explorer, Firefox, Safari

and Opera) and be able to handle at least 10 customers ordering at the same time.

The cook can request a list of all open orders. When he has finished making a pizza, he marks

an order as “ready for delivery”.

A delivery note with the customer’s address, to be attached to the pizza by the cook, is printed

automatically.

101

102

APPENDIX B

PRE-TEST SCENARIO

103

PRE-TEST SCENARIO

Tadım Pizza Inc., is a city wide chain of pizza restaurants in Ankara with a tightly run operation

that uses a computer to manage inventory of ingredients – such as tomato sauce, pepperoni,

cheese and so on. They have an old system that runs on DOS and old computers. They want

to upgrade both the hardware and software. In addition to stock control of their ingredients,

they want to allow for web-based online ordering of pizzas for home delivery. This web

system will be integrated with the “point of sale” system in the restaurants that keeps track of

the orders in the restaurants.

In addition to traditional crust pizzas, they offer deep pan (Turkish-style) pizzas cheese bread,

garlic bread, and soda drinks of all kinds. They have a specialty line of Turkish pizzas with

pastrami, sucuk and mince meat, as well as a varying selection of Chef of the Day pizzas. This

is an experimental line of pizzas. The company wants to track the acceptance of pizzas from

online orders. If a pizza is popular it will be offered as part of the regular menu.

Each pizza on the menu can be ordered in different sizes.

Each pizza has different ingredients – and in different quantities.

Each pizza comes with a set list of toppings.

Each topping can be optionally ordered in lower, normal and higher amounts.

Additional toppings can be ordered.

Each ingredient and topping is supplied by a number of suppliers.

A pizza cannot be ordered if the ingredients are not available.

Each item on the menu may be single pizza or a combination item with side orders or soda

drinks.

When the ingredients run low, online purchase orders need to be generated and emailed to the

supplier with the current lowest price.

The old system used by the company has been used for stock control for many years. They are

very comfortable with the actions of recording the use of ingredients as pizzas are cooked and

of ordering new ingredients. They are much more uncomfortable with the web-based ordering

facility. They don’t know how it should look or exactly how to match the end user ‘ordering

experience’ with their image of classy, but simple food. They want the system to support up to

100 people ordering concurrently.

104

APPENDIX C

POST-TEST SCENARIO

105

POST-TEST SCENARIO

You are hired as a software engineer from a very fast growing company called Elma, Inc. Elma

was founded by John Hopkins who worked as a system engineer for Dublin City University for

more than ten years. Later, he decided to start a company, which has grown rapidly and is now

doing 10M Euros per year in sales of school automation systems primarily to universities

throughout the European Union. The company now has 25 employees: 3 in management, 5 in

marketing and sales, 5 in maintenance, and 12 in development. The web automation system mainly

consists of two modules: (i) an instructor module similar to an electronic version of a grade-book

which is basically has a function of adding/removing grades for students’ exams, (ii) a student

module which is primarily for students to see their exam grades from the web.

You joined Elma 5 days ago and you have been told that you would be working as a Java

programmer. However, the management now says: “During your interview, people from

management found you capable of handling challenging tasks, we immediately start on a new

features for our school automation soft- ware, so our project manager wants you to assist him in

some of his software quality management activities. Perhaps, you may start with some basic

requirement analysis. Next, we should be working on design and implementation of quality of our

subsystem, and I hope you are a quick learner because we need to use your skills on a little bit of

software testing. I am sure you will be delighted to work on the updates for our project charter and

maybe later you need to do a little bit work on configuration management.”

The next day, Marie Currie, who is the head of engineering management, calls you into her office.

She says, “Our market research team consisting of all departments finished their study”. Team

suggested that we need to develop a new release which leverages the market advantage of our

product. As an urgent matter, several of our customers demand that a new release should have

features like a dial-up interfaces. For example: a student shall be able to dial up school phone and

learn his or her grades. Mrs. Currie also tells, a competitor claims that their new product will

support mobile devices for accessing grades. However, management decided to implement a phone

interface alternative to mobile logins first. Any of the students are able to phone school shall be

able to browse their exam results. Moreover, it shall be possible for students to get an email from

the system when their exam results are ready for viewing. For some security reasons, all grading

shall be done from a web-interface which is accessible only from university campus and can be

altered only by both instructors and system administrators.

106

The next day Marie Currie calls you again for a new part of the project. She says, “As you might

know, in several campus based accommodation in many universities are now using (disposable)

key cards for dormitory doors (both for doors of individuals and for buildings). These cards and

card-locks are usually more preferred than traditional keys because they are easier to maintain. In

particular, it is a cheap and effective solution to deal with students who usually lost their keys. The

notion behind this re-codeable cards is that the card codes the lock, for example if a card is lost or

stolen the newly obtained card recodes the card-lock. After that, old key cards will not work

anymore with the lock....”

She continues, “A card-lock unit usually works with battery which is under complete isolation, i.e.

no network or any other connections with a computer. Nevertheless, it has an ability for storing a

copy of code for the (current) key. That is the code which is also stored in the active key card. A

special type of hardware which is connected to computer is usually needed for creating several sets

of pseudo-random numbers which are operated as key for these locks. These card locks, however,

can only be unlock by the current key code or otherwise with its successor key-code. The key codes

are specifically generated by a special hardware as a sequence of pseudo-random numbers.

Consequently, if someone loses a card, the next key-code number is generated and loaded in a new

card. Whenever this card is used on the key-lock, the old card-code will be disabled automatically.

One of the main benefits of this mechanism is that there is no connection required in between

information services and locks in campuses unless the lock hardware and keys initially

synchronized by using the same pseudo-random generator....”

For example in one form of a typical scenario, a student lost his or her key- card walks to IT services

to get a new card which should have the next key for his or her room. As soon as the student walks

to the room and uses his or her new card, the lock will be opened with the updated key-code and

all previous key-cards will be disabled.

107

108

APPENDIX D

T-TABLE

109

110

APPENDIX E

PRESENCE QUESTIONNAIRE

111

PRESENCE QUESTIONNAIRE
(Witmer & Singer, Vs. 3.0, Nov. 1994)*

Revised by the UQO Cyberpsychology Lab (2004)

Characterize your experience in the environment, by marking an "X" in the appropriate

box of the 7-point scale, in accordance with the question content and descriptive labels.

Please consider the entire scale when making your responses, as the intermediate levels

may apply. Answer the questions independently in the order that they appear. Do not

skip questions or return to a previous question to change your answer.

WITH REGARD TO THE EXPERIENCED ENVIRONMENT

1. How much were you able to control events?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

2. How responsive was the environment to actions that you initiated (or performed)?

|________|________|________|________|________|________|________|

NOT MODERATELY COMPLETELY

RESPONSIVE RESPONSIVE RESPONSIVE

3. How natural did your interactions with the environment seem?

|________|________|________|________|________|________|________|

EXTREMELY BORDERLINE COMPLETELY

ARTIFICIAL NATURAL

4. How much did the visual aspects of the environment involve you?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

5. How natural was the mechanism which controlled movement through the

environment?

|________|________|________|________|________|________|________|

EXTREMELY BORDERLINE COMPLETELY

ARTIFICIAL NATURAL

112

6. How compelling was your sense of objects moving through space?

|________|________|________|________|________|________|________|

NOT AT ALL MODERATELY VERY

 COMPELLING COMPELLING

7. How much did your experiences in the virtual environment seem consistent with your

real world experiences?

|________|________|________|________|________|________|________|

NOT MODERATELY VERY

CONSISTENT CONSISTENT CONSISTENT

8. Were you able to anticipate what would happen next in response to the actions that

you performed?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

9. How completely were you able to actively survey or search the environment using

vision?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

10. How compelling was your sense of moving around inside the virtual environment?

|________|________|________|________|________|________|________|

NOT MODERATELY VERY

COMPELLING COMPELLING COMPELLING

11. How closely were you able to examine objects?

|________|________|________|________|________|________|________|

NOT AT ALL PRETTY VERY

 CLOSELY CLOSELY

12. How well could you examine objects from multiple viewpoints?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT EXTENSIVELY

113

13. How involved were you in the virtual environment experience?

|________|________|________|________|________|________|________|

NOT MILDLY COMPLETELY

INVOLVED INVOLVED ENGROSSED

14. How much delay did you experience between your actions and expected outcomes?

|________|________|________|________|________|________|________|

NO DELAYS MODERATE LONG

 DELAYS DELAYS

15. How quickly did you adjust to the virtual environment experience?

|________|________|________|________|________|________|________|

NOT AT ALL SLOWLY LESS THAN

 ONE MINUTE

16. How proficient in moving and interacting with the virtual environment did you feel at

the end of the experience?

|________|________|________|________|________|________|________|

NOT REASONABLY VERY

PROFICIENT PROFICIENT PROFICIENT

17. How much did the visual display quality interfere or distract you from performing

assigned tasks or required activities?

|________|________|________|________|________|________|________|

NOT AT ALL INTERFERED PREVENTED

 SOMEWHAT TASK PERFORMANCE

18. How much did the control devices interfere with the performance of assigned tasks or

with other activities?

|________|________|________|________|________|________|________|

NOT AT ALL INTERFERED INTERFERED

 SOMEWHAT GREATLY

19. How well could you concentrate on the assigned tasks or required activities rather

than on the mechanisms used to perform those tasks or activities?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

114

IF THE VIRTUAL ENVIRONMENT INCLUDED SOUNDS:

20. How much did the auditory aspects of the environment involve you?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

21. How well could you identify sounds?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

22. How well could you localize sounds?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

IF THE VIRTUAL ENVIRONMENT INCLUDED HAPTIC (SENSE OF TOUCH):

23. How well could you actively survey or search the virtual environment using touch?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT COMPLETELY

24. How well could you move or manipulate objects in the virtual environment?

|________|________|________|________|________|________|________|

NOT AT ALL SOMEWHAT EXTENSIVELY

Last version : March 2013

*Original version : Witmer, B.G. & Singer. M.J. (1998). Measuring presence in virtual environments: A

presence questionnaire. Presence : Teleoperators and Virtual Environments, 7(3), 225-240. Revised factor

structure: Witmer, B.J., Jerome, C.J., & Singer, M.J. (2005). The factor structure of the Presence

Questionnaire. Presence, 14(3) 298-312.

115

116

APPENDIX F

IMMERSIVE TENDENCIES QUESTIONNAIRE

117

IMMERSIVE TENDENCIES QUESTIONNAIRE

(Witmer & Singer, Version 3.01, September 1996)*

Revised by the UQO Cyberpsychology Lab (2004)

Indicate your preferred answer by marking an "X" in the appropriate box of the seven point

scale. Please consider the entire scale when making your responses, as the intermediate

levels may apply. For example, if your response is once or twice, the second box from the

left should be marked. If your response is many times but not extremely often, then the sixth

(or second box from the right) should be marked.

1. Do you easily become deeply involved in movies or tv dramas?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

2. Do you ever become so involved in a television program or book that people have

problems getting your attention?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

3. How mentally alert do you feel at the present time?

|________|________|________|________|________|________|________|

NOT ALERT MODERATELY FULLY ALERT

4. Do you ever become so involved in a movie that you are not aware of things

happening around you?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

5. How frequently do you find yourself closely identifying with the characters in a story

line?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

6. Do you ever become so involved in a video game that it is as if you are inside the

game rather than moving a joystick and watching the screen?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

118

7. How physically fit do you feel today?

|________|________|________|________|________|________|________|

NOT FIT MODERATELY EXTREMELY

FIT FIT

8. How good are you at blocking out external distractions when you are involved in

something?

|________|________|________|________|________|________|________|

NOT VERY SOMEWHAT VERY GOOD

GOOD GOOD

9. When watching sports, do you ever become so involved in the game that you react as

if you were one of the players?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

10. Do you ever become so involved in a daydream that you are not aware of things

happening around you?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

11. Do you ever have dreams that are so real that you feel disoriented when you awake?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

12. When playing sports, do you become so involved in the game that you lose track of

time?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

13. How well do you concentrate on enjoyable activities?

|________|________|________|________|________|________|________|

NOT AT ALL MODERATELY VERY WELL

 WELL

119

14. How often do you play arcade or video games? (OFTEN should be taken to mean

every day or every two days, on average.)

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

15. Have you ever gotten excited during a chase or fight scene on TV or in the movies?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

16. Have you ever gotten scared by something happening on a TV show or in a movie?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

17. Have you ever remained apprehensive or fearful long after watching a scary movie?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

18. Do you ever become so involved in doing something that you lose all track of time?

|________|________|________|________|________|________|________|

NEVER OCCASIONALLY OFTEN

Last version: March 2013

Original version : Witmer, B.G. & Singer. M.J. (1998). Measuring presence in virtual environments: A presence

questionnaire. Presence : Teleoperators and Virtual Environments, 7(3), 225-240.

120

APPENDIX G

GRADING POLICY

121

GRADING POLICY

122

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Güleç, Ulaş

Nationality: Turkish (T.C.)

Date and Place of Birth: 21.10.1989, Balıkesir

Marital Status: Married

Phone: 0 312 2331354

Fax: 0 312 2331024

EDUCATION

Degree Institution Year of Graduation

M.S. Department of Computer Engineering, Çankaya University 2015

B.S. Department of Industrial Engineering, Çankaya University 2012

B.S. Department of Computer Engineering, Çankaya University 2012

High School Çankaya Anadolu Lisesi 2007

PROFESSIONAL EXPERIENCE

Year Place Enrollment

Sep 2012 - Mar 2013 Çankaya Teknoloji Developer

Mar 2013 - Present Department of Computer Engineering, Çankaya University Lecturer

123

PUBLICATIONS

Articles Published in the International Journals (SCI, SCI-EXPANDED, SSCI)

1- M. Yilmaz, F. S. Tasel, U. Gulec, and U. Sopaoglu (2018). Towards a Process

Management Life-Cycle Model for Graduation Projects in Computer Engineering,

PlosOne (Accepted).

2- U. Gulec, M. Yilmaz, V. Isler, R. V. O’Connor and P. Clarke (2018). A 3D Virtual

Environment to Standardize Training Methods of Soccer Referees, Computer Stan-

dards & Interfaces (Accepted).

3- M. Denizci Nazligul, M. Yilmaz, U. Gulec, A. E. Yilmaz, V. Isler, R. V. O’Connor,

P. Clarke and M. A. Gozcu (2018). An Interactive 3D Virtual Environment to Reduce

the Public Speaking Anxiety Levels of Novice Software Engineers, IET Software

(Accepted).

4- Ulas Gulec, Murat Yilmaz and Veysi Isler (2017). A Literature Survey: Is it

Necessary to Develop a New Software Development Methodology for Virtual Reality

Projects, Journal of Universal Computer Science, 23 (8), pp. 725-754.

5- Ulas Gulec and Murat Yilmaz (2016). A Serious Game for Improving the Decision

Making Skills and Knowledge Levels of Turkish Football Referees according to the

Laws of the Game, SpringerPlus, 5:622.

International Conference Publications

1- U. Gulec, M. Yilmaz, V. Isler, R. V. O’Connor and P. Clarke (2018). Adopting Vir-

tual Reality as a Medium for Software Development Process Education, International

Conference on Software System Process (ICSSP 2018), 26-27 May 2018, Gothen-

burg, Sweden.

2- M. Denizci Nazligul, M. Yilmaz, U. Gulec, M. A. Gozcu, R. V. O’Connor and P.

Clarke (2017). Overcoming Public Speaking Anxiety of Software Engineers Using

Virtual Reality Exposure Therapy, Proceedings of the 24th European and Asian Con-

124

ference on Systems, Software and Services Process Improvement (EuroSPI 2017),

6-8 September 2017, Ostrava, Czech Republic.

3- Saran, M. and Güleç, U. (2014). Contribution of Intelligent Repeat Engine in Mo-

bile Learning for Enhancing Students’ Learning in Industrial Engineering Education,

2014 SOLSTICE eLearning and CLT Conference, Edge Hill University, Ormskirk,

UK.

National Conference Publications

1- U. Gulec, M. Yilmaz ve V. Isler (2018). Yazılım Geliştirme Süreçlerini Eğitmek

Amacıyla Tasarlanan Sanal Ofis Ortamında Ortamın Gerçekliğini Arttıran Etmenler,

2018 Ulusal Yazılım Mühendisliği Sempozyumu (UYMS), Sabancı Üniversitesi, İs-

tanbul, Türkiye.

2- U. Gulec, M. A. Gozcu, S. Dogan, N. Mesurhan, M. Yilmaz, V. Isler ve M.

Dinc (2018). Simulacrum: Savaş Koşullarında Acil Tıbbi Müdahele ve İlk Yardım

Simülasyonu, 2018 Ulusal Yazılım Mühendisliği Sempozyumu (UYMS), Sabancı

Üniversitesi, İstanbul, Türkiye. (Best Paper Award)

3- M. Yilmaz ve U. Gulec (2018). Yazılım Mühendisliği Dersi için Geliştirilmiş

Ders Akış Modeli ve İlgili Alan Saha Çalışması, 2018 Ulusal Yazılım Mühendisliği

Sempozyumu (UYMS), Sabancı Üniversitesi, İstanbul, Türkiye.

4- U. Gulec, M. Yilmaz ve M. A. Gozcu (2017). Bireylerin Programlama Yetenek-

lerini ve Bilgi Seviyelerini Arttırmak Amacıyla Düşünülmüş Ciddi Oyun Tabanlı

Öğrenme Çatısı – CENGO, 2017 Ulusal Yazılım Mühendisliği Sempozyumu (UYMS),

Alanya Hamdullah Emin Paşa Üniversitesi, Alanya, Türkiye.

5- M. Yilmaz, U. Gulec, R. V. O’Connor, P. Clarke ve E. Tüzün (2017). İşe Alıştırma

(Onboarding) Süreçlerinin İyileştirilmesi için Düşünülmüş Bir Endüstriyel Vaka Çalış-

ması, 2017 Ulusal Yazılım Mühendisliği Sempozyumu (UYMS), Alanya Hamdullah

Emin Paşa Üniversitesi, Alanya, Türkiye.

6- U. Gulec, M. Yilmaz ve M. A. Gozcu (2016). Futbol Hakemlerinin Eğitimi

Amacıyla Tasarlanan Futbol Simülasyonunda Maçın Dinamizmini Sağlayan Etmen-

125

ler, 2016 Ulusal Yazılım Mühendisliği Sempozyumu (UYMS), Çanakkale 18 Mart

Üniversitesi, Çanakkale, Türkiye.

7- M. Yilmaz, S. Tasel, U. Gulec ve U. Sopaoglu (2016). Bilgisayar Mühendisliği

Bitirme Projeleri için Düşünülmüş Bir Süreç Yönetim Modeli, 2016 Ulusal Yazılım

Mühendisliği Sempozyumu (UYMS), Çanakkale 18 Mart Üniversitesi, Çanakkale,

Türkiye.

8- U. Gulec ve M. Yilmaz (2015). Futbol Hakemlerinin Karar Verme Yetenek-

lerini Geliştirmek İçin Düşünülmüş Ciddi Oyun Tabanlı Öğrenme Çatısı, 2015 Ulusal

Yazılım Mühendisliği Sempozyumu (UYMS), Yaşar Üniversitesi, İzmir, Türkiye.

126

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND AND RELATED WORKS
	Definitions of Software, Software Development and Software Engineering
	Software Development Methodologies
	Importance of Using Virtual Reality Applications in Education
	Tools Used in Software Engineering Training and Simulations
	Summary

	PROPOSED VR TRAINING ENVIRONMENT
	Scenario Generator
	Virtual Office Environment

	TEST AND EVALUATION METHODOLOGY
	Qualitative Research Methodology
	Quantitative Research Methodology
	Mixed Research Methodology
	Overall Research Design
	Mechanism of the System
	Participants
	Threats to Validity

	ANALYSIS AND TEST RESULTS
	Pre-Test
	Post-Test
	Comparison Between Pre-Test and Post-Test Results
	PQ and ITQ
	Validation Interviews

	CONCLUSIONS AND FUTURE WORKS
	Discussion
	Validation of the Proposed Training Environment
	Limitations
	Revisiting the Research Questions
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	Training Program Scenarios
	Pre-Test Scenario
	Post-Test Scenario
	t-Table
	Presence Questionnaire
	Immersive Tendencies Questionnaire
	Grading Policy
	CURRICULUM VITAE

