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ABSTRACT

A REMANUFACTURING SYSTEM WITH IMPERFECT SORTING:
DETERMINISTIC AND PROBABILISTIC MODELS

Tan, Merve
M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. İsmail Serdar Bakal

Co-Supervisor : Assist. Prof. Dr. Banu Yüksel Özkaya

November 2018, 139 pages

In this study, we focus on inaccurate sorting process with classification errors in a

reverse supply chain comprising a remanufacturer and a collector under deterministic

demand in a single time period. The collector acquires used items from end-users

and the remanufacturer reproduces them to serve the deterministic demand of re-

manufactured products. There are two sources of uncertainty: uncertain quality of

used items and uncertain quality of sorted items due to imperfect testing. Used items

are categorized into two quality states by imperfect inspection: remanufacturable or

non-remanufacturable and the actual condition of items is revealed after the remanu-

facturer’s disassembly process. Under this environment, firstly, we construct different

settings without incorporation of randomness in the inspection process and compare

their optimal solutions to assess the effects of pricing decisions, the change in the

agents’ roles and sorting location. We observe that the sorting location does not af-

fect the optimal collection quantity under deterministic market demand. However, the

optimal solution changes regarding to the change in the agent responsible for sorting

under the case where the demand and supply are price sensitive. We also show that
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the channel leadership does not affect the optimal solution when the transfer price

is exogenous. Secondly, we investigate the impact of ignoring randomness due to

sorting errors on the optimal solution and profits. The results show that disregarding

randomness hurts the collector more than the remanufacturer. Lastly, we conduct an

extensive computational study to analyze the effects of problem parameters on this

randomness impact.

Keywords: Remanufacturing, Quality Uncertainty, Imperfect Sorting
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ÖZ

HATALI SINIFLANDIRMA İÇEREN YENİDEN ÜRETİM SİSTEMİ:
DETERMİNİSTİK VE RASSAL MODELLER

Tan, Merve
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İsmail Serdar Bakal

Ortak Tez Yöneticisi : Dr. Öğr. Üyesi Banu Yüksel Özkaya

Kasım 2018 , 139 sayfa

Bu çalışmada, tek bir zaman periyodunda deterministik talep altında bir yeniden ima-

latçı ve bir toplaycıdan oluşan tersine tedarik zincirinde, sınıflandırma hataları içeren

kesin olmayan sınıflandırma prosesine odaklanıyoruz. Toplayıcı, kullanılmış ürünleri

son kullanıcılardan satın almakta ve yeniden üretici bu ürünleri yeniden imal edilen

ürünlerin deterministik talebini karşılamak için üretmektedir. Belirsizliğin iki kay-

nağı mevcuttur: kullanılmış ürünlerin belirsiz kalitesi ve hatalı test işlemi sebebiyle

sınıflandırılan ürünlerin belirsiz kalitesi. Kullanılmış ürünler hatalı denetimden sonra

yeniden üretilebilir ve yeniden üretilmez olmak üzere iki farklı kalite grubuna ayrıl-

maktadır, ve ürünlerin gerçek kalite bilgisi yeniden üreticinin demontaj işleminden

sonra açığa çıkmaktadır. Bu ortamda ilk önce denetim sürecindeki belirsizlik dahil

edilmeden, farklı modeller oluşturuluyor ve fiyatlandırma kararlarının, üyelerin rol-

lerindeki ve sınıflandırma yerindeki değişikliğin etkilerini belirlemek için modellerin

optimum çözümlerini karşılaştırıyoruz. Deterministik market talebi altında, sınıflan-

dırma yerindeki değişimin optimum toplama miktarını etkilemediğini gözlemliyoruz.

Fakat, fiyata duyarlı talep ve arz altında, optimum çözüm sınıflandırma sorumlusun-
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daki değişime bağlı olarak değişmektedir. Ayrıca, transfer fiyatı eksojen olduğunda,

kanal liderliğinin optimum çözümü etkilemediğini görüyoruz. İkinci olarak, sınıflan-

dırma hatalarından kaynaklı belirsizliğin göz ardı edilmesinin optimum çözüm ve kar

değerleri üzerine etkisini inceliyoruz. Sonuçlar; belirsizliğinin göz ardı edilmesinin,

yeniden üreticiye oranla toplayıcıya daha fazla zarar verdiğini göstermektedir. Son

olarak, bu etki üzerine problem parametrelerinin etkilerini analiz etmek için kapsamlı

bir sayısal çalışma yürütüyoruz.

Anahtar Kelimeler: Yeniden İmal Etme, Kalite Belirsizliği, Hatalı Sınıflandırma
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CHAPTER 1

INTRODUCTION

Because of increasing general awareness of the effect of environmental pollution and

the better understanding for its negative consequences, and some governmental ac-

tions to achieve a sustainable environment, the importance of the recovery processes

is increasingly being recognized and managing returns has become a very critical is-

sue for the firms. Remanufacturing is one of the recovery options in order to reduce

energy consumption and landfill space, and it also motivates the firms to use the parts

that are dismantled from the used products in order to decrease the purchasing cost of

the raw materials.

Remanufacturing is a series of activities in which a particular used product is cleaned,

disassembled to assess its current condition, inspected for deciding remanufacturable

or not, and reassembled to its original conditions and specifications. In many cases,

the remanufactured product can be used to satisfy the demand in the primary market

as good as the new product (Karvonen et al., 2004).

Remanufacturing activities not only serve both economical and ecological needs but

also result in a considerable decrease in the costs related to production compared to

manufacturing of the new items. Since remanufacturing processes mostly contribute

to the overall profitability of the firms, an increasing number of firms in many indus-

tries have been implementing remanufacturing and recycling activities and they try

to find the most effective way to maximize their profit under existing governmental

regulations and environmental issues. The main sectors involved in remanufactur-

ing operations are aerospace industry, consumer products, information technology

products, medical devices, machinery, motor vehicle parts, office furniture, electrical

apparatus and retreaded tires (United States International Trade Commission, 2012).
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Conditions of used products collected from end-users are not the same regarding to

some quality characteristics such as age of the return, degree of physical damage,

functional properties etc. For this reason, their operating costs and needed reman-

ufacturing activities are different. Some of them can be used for material recovery

or remanufacturing while some of them are not suitable for the remanufacturing op-

erations and they are disposed. Firms engaged in remanufacturing processes prefer

remanufacturing items in better quality condition in order to minimize cost. There-

fore, getting perfect quality is critical for them. However, perfect inspection requires

costly and complete product disassembly and so it also takes a lot of time. Thus,

the firms try to find a way in order to inspect items simply and quickly based on the

some quality characteristics without using expensive sorting techniques. However,

these quick and inexpensive sorting methods are most probably not exactly accurate

and the actual condition of items can be known after the disassembly process. In

the literature, there are lots of studies that have addressed perfect inspection in the

remanufacturing operations, but there is a little interest to fast but inaccurate sorting

methods.

In this thesis, we focus on the imperfect sorting process in a remanufacturing system

that comprises two independent agents: a collector that is responsible for the collec-

tion of used items from end-users, and a remanufacturer who remanufactures used

items to satisfy the demand in a single-time period setting. It is assumed that reman-

ufacturing is the single source for the remanufacturer in order to satisfy the demand.

Our study is based on the decentralized setting under deterministic demand case stud-

ied by Gu and Tagaras (2014). We call this setting as the base model in this thesis, and

we discuss its several extensions. We assume that the items are categorized into two

quality states imperfectly: remanufacturable and non-remanufacturable. Our main

objectives in this study are:

1. to generate different settings in order to analyze the effects of different sorting

locations, leadership, pricing decisions for remanufactured and supplied prod-

ucts on the optimal solution and both parties’ profits, and also compare the

results to the base model according to the optimal solutions,

2. to analyze the effects of disregarding randomness on the optimal solution and
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profits.

First of all, we discuss the base model in detail and then reformulate it by giving the

sorting responsibility to the remanufacturer. In this setting, the remanufacturer is the

single decision maker and he decides on the collection quantity. The observation says

that the optimal value of the collection quantity is the same as the base model, but the

price ranges in which the remanufacturer is willing to operate are different. Then, we

study the case where the remanufacturer takes the responsibility of sorting unlike the

base model and there is a price dependent deterministic supply and demand. Hence,

the remanufacturer and the collector have the power to set selling price and acquisition

price, respectively. Therefore, the remanufacturer can increase the demand of the

remanufactured products by offering a lower selling price, and also the collector can

affect the supply by changing the acquisition price. Under such settings, we assume

that there is exogenous transfer price. It is observed that the change in the roles of

agents results to change the sequence of events, but the optimal solution does not

change because of the exogenous transfer price. Lastly, we extend the base model to

study both price dependent demand and supply, where the collector is responsible for

sorting.

In order to assess the effect of disregarding randomness on the results, we reformulate

the base model by incorporating randomness in the collector’s inspection process. In

this setting, we are interested in (i) how much profit is overestimated when random-

ness is ignored, and (ii) what are the benefits from incorporating randomness, that is,

how much profit is lost by disregarding randomness. We also analyze the parameter

sensitivity in order to evaluate how much the impact of randomness is dependent on

the changes in the value of each parameter. It is observed that the collector is more

affected than the remanufacturer from disregarding randomness since for him, there

is a source of uncertainty in the sorted item quality due to the sorting errors in addi-

tion to uncertainty in the quality of collected used item. For the remanufacturer, on

the other hand, the only uncertainty is the quantity of actual remanufacturables sent.

Hence, the collector’s profit is highly overestimated when randomness is disregarded.

Another observation is that when randomness is incorporated, the percentage loss of

profit is small for both parties and so disregarding the uncertainty in the collector’s in-

spection process does not hurt the agents significantly for the selected parameter set.

3



However, the effects of disregarding randomness on the agents change with respect

to a change in the parameters.

The rest of the thesis organized as follows: in Chapter 2, we discuss the literature

related to closed-loop supply chains and remanufacturing systems focusing on our

basic topics. In Chapter 3, we define the problem environment in detail and introduce

our basic model assumptions and models. Seven models are constructed under dif-

ferent scenarios and these models are compared to the base model regarding to the

optimal solutions, analytically. In Chapter 4, the base model is reformulated by in-

corporating randomness in the inspection process and a detailed computational study

is performed. Lastly, our observations and main results are summarized and the study

is concluded in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

Closed-loop supply chain management has attracted attention in both academia and

industry. In the literature, there are lots of papers provide a study related to various

issues of closed loop supply chain concept. Gungor and Gupta (1999) present a re-

view of literature on environmentally conscious manufacturing and product recovery

(ECMPRO). They discuss the concept of ECMPRO which helps to decrease environ-

mental effects of the products by integrating environmental thinking into both design

consideration and production system. Topics that are studied in the paper are: the

assessment of the life cycle, design for environment of the product, review of the

recovery options, disassembly, collection and production planning issues of the used

products in recycling and remanufacturing.

Guide and Van Wassenhove (2001) present a framework based on economic value

added (EVA) concept that is an approach to assess potential profitability of reuse

activities. They mention about the importance of effective acquisition management

in EVA concept since it is a key issue to decide whether remanufacturing option is

profitable for the firms.

Guide and Van Wassenhove (2002) analyze different product groups that use reman-

ufacturing activities and, present critical and distinguishing properties of their supply

chains. They point out that while common reuse activities are used by all remanu-

facturing firms such as acquisition, inspection and grading, logistics activities, dis-

assembly, disposition, reworking and recycling operations, their supply chains have

different key characteristics and management issues in order to succeed in the sector.

Guide et al. (2003) provide an overview of challenging issues in closed loop supply
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chains. They mention about the main aspects which closed-loop supply chains differ

significantly from forward supply chains. The developed studies in the literature are

reviewed and the potential future challenges and topics the researchers should focus

on in the future are mentioned.

Blackburn et al. (2004) discuss key activities that must be performed in reverse supply

chains: product acquisition, reverse logistics, inspection and disposition, remanufac-

turing and marketing. They mention about two important supply chain structures:

cost efficient and responsive supply chain. If the objective is cost minimization then

the supply chain is designed as a centralized model. Each returned item is tested and

their actual condition are evaluated at central location. On the other hand, if the aim

is responsiveness, then the supply chain is designed as decentralized model. Early de-

tection of return condition is made at multiple collection sites before they are sent to

the central facility for reuse activities in order to minimize time delays. They present

main principles in order to increase efficiency of recovery processes: treat returns as

perishable assets, elevate the priority of the return process, make time the essential

performance metric, use time value to design the supply chain and use technology to

achieve speed at lower cost.

Guide and Van Wassenhove (2008) overview the evolution of the closed loop sup-

ply chains from a business perspective. They provide a simple understanding of the

evolution of the CLSC by introducing five phases based on conducted studies in the

literature: the golden age of remanufacturing as a technical problem, from remanufac-

turing to valuing the reverse logistics process, coordinating the reverse supply chain,

closing the loop, prices and markets. They have discussed the issue from a technical

focus on the individual activities to entire reverse chain, to finally considering CLSCs

as a interdisciplinary business process.

Akçalı and Çetinkaya (2011) provide a detailed review on quantitative models for in-

ventory and production planning for CLSC systems. They firstly classify the recently

studied models in the literature into deterministic and stochastic problems according

to the modelling of demand and return processes. They define the critical modelling

parameters which affect the complexity of the models and categorize the studies in

existing literature according to these parameters.
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Çorbacıoğlu and van der Laan (2013) provide a framework in order to analyze recov-

ery systems. The studied framework differs from other constructed schemas in the

literature since it has been basically developed from a quality point of view. They

have defined the quality as the main source of the variability in the CLSCs and have

pointed out the necessity to describe proper definition and all relevant dimensions of

the quality in the CLSCs. In order to manage variabilities due to quality issues, the

framework has been established. The presented quality framework provides the struc-

tural way to deal with possible problems and inefficiencies due to quality uncertainty.

The framework offers quality management approach can be used to prevent quality

based problems by analyzing potential quality bottlenecks in the early stages.

Kumar and Kumar (2013) provide a brief review on the issues related to CLSCs.

They focus on basically recently developed studies for Green Operations (Reverse

Logistics), Green Design, Green Manufacturing, Waste Management, and Product

Life Cycle Assessment. The paper also indicates main differences between CLSC

and traditional form of supply chain and basically mentions about the main aspects

which CLSC differs from forward SC.

Ketzenberg et al. (2006) study the value of information (VOI) related to uncertain

demand, return quantity and recovery yield rate for remanufacturing firms that serve

customer demand from both remanufactured and new manufactured products. When

one or more of these uncertainty issues are reduced, then the VOI of related uncer-

tainty is measured as amount of reduction in the total expected cost. Firstly, the case

where the value of information is given fully related to one or more sources of un-

certainty is considered in a single time period. Demand and supply of returns are

independent random variables and both are normally distributed. They compare the

VOIs to obtain which type of information is dominant. The results show that there is

no significant difference between VOI of three uncertainties and the combined effect

of more than one type of information is greater. Therefore, they suggest to use the

VOI obtained by reducing more than one source of uncertainties. They study also

multi-period model and assume that product return in each period is correlated with

realized demand in the previous periods. The value of partial information is also eval-

uated in the multi period context. Moreover, uniformly distributed demand and return

are also studied and the analysis shows that there is robustness in the results regarding
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to demand and return distributions.

We have constructed alternative settings under imperfect inspection in order to ana-

lyze the effects of price dependent demand and/or supply, the change in the agents’

roles and sorting location. Therefore, we restrict the literature review part with the

studies that are mostly related to the our work. We categorize the studies in our liter-

ature review with respect to the following topics:

• Value of sorting information (imperfect and perfect sorting),

• Effects of central/ decentralized sorting (sorting location),

• Pricing of returns and remanufactured products,

• Acquisition management for returns,

• Multiple quality groups.

A detailed comparison of the reviewed papers and our work is given in Table 2.1.
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2.1 Value of Sorting Information: Imperfect and Perfect Sorting

The uncertainty about the quality of the used products in reverse supply chains has

been addressed by many researchers in recent years. In order to decide whether a used

product is suitable for remanufacturing and assign it into the true category, the quality

classification of the used product is the important process for the remanufacturers.

When the sorting procedure is inaccurate, the actual quality state of a returned item

is not revealed until the disassembly process. Since waiting for the disassembly of

the used products to evaluate their actual quality state takes a lot of time and also

disassembly of every unit is expensive, remanufacturers focus on fast and not fully

accurate sorting methods based on some metrics and general quality characteristics.

We analyze and compare our settings to the decentralized model in Gu and Tagaras

(2014). This decentralized model is called throughout the thesis as the base model.

Gu and Tagaras (2014) study on two alternative settings: decentralized and central-

ized model. In both settings, there is a single type of used product and two quality

states are available: remanufacturable or non-remanufacturable. A two echelon re-

verse supply chain model with a remanufacturer and collector is considered in a sin-

gle period setting. The remanufacturer is a Stackelberg leader and decides his optimal

order quantity, the collector is a follower and seeks the optimal collection quantity for

profit maximization. The sorting activity is performed by the collector and there are

two classification errors in the sorting procedure: type I error and type II error. Re-

manufacturable used products can be misclassified as non-remanufacturable with α

probability (Type I error) and non-remanufacturables can be also misclassified as re-

manufacturable with β probability (Type II error). The important point is that they do

not take the uncertainty in the collector’s inspection process into account and assume

the number of items that are classified as remanufacturable by the inspection process

is equal to its expected value. The collector is responsible for the product acquisi-

tion from the market and after inspection process, (s)he delivers the remanufacturable

used products to the remanufacturer. Since the inspection is not perfectly accurate,

some of items tested as remanufacturable may be non-remanufacturable. Until the

disassembly process, actual remanufacturable items are not revealed. The remanu-

facturer dissembles all transported items and reveals their actual conditions. After
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disassembly, actual remanufacturable items are remanufactured to satisfy the reman-

ufacturer’s order quantity and non-remanufacturable items do not move into further

process and are disposed. Two settings are analyzed and compared in terms of their

optimal solutions under both deterministic and stochastic demand cases.

In the decentralized setting, for the deterministic demand, optimal solution shows that

the remanufacturer’s optimal order quantity should be equal to deterministic demand

and the collector collects items such as the expected number of actual remanufac-

turables sent is exactly equal to the demand. For stochastic demand case, the reman-

ufacturer’s optimal order quantity is a function of the parameters that affect his profit.

The collector similarly collects items such as the expected number of actual remanu-

facturables sent is exactly equal to the remanufacturer’s optimal order quantity. In the

centralized setting, for the deterministic demand case, the optimal order quantity is

again equal to the deterministic demand. However, for the stochastic case, the optimal

collection quantity in the centralized model is greater than in the decentralized model.

If demand variability increases, the difference between optimal collection quantities

in the centralized and decentralized models increases. Therefore, the result shows

that higher collection rates are obtained with centralized decision making approach.

Zikopoulos and Tagaras (2008) examine the effects of quick sorting with limited ac-

curacy before disassembly on the expected profit of the entire system in a single pe-

riod setting. They analyze two configurations: a system without sorting and a system

with inaccurate sorting of returned items at the remanufacturing facility. There are

two independent agents in the system: the remanufacturing facility and the collection

site. The demand of remanufactured products is a continuous random variable. At

the collection site, large numbers of returned products are available and the fraction

of remanufacturables is distributed continuously with known distribution function.

The collection facility collects the items and ordered quantity is transported to the

remanufacturing center. The items are classified imperfectly as remanufacturable or

non-remanufacturable. After the sorting is performed, the items that are classified

as remanufacturable are disassembled and inspected at the remanufacturing location,

and their exact conditions are revealed. The decision variables are the transporta-

tion quantity and the remanufacturing lot size. Regardless of the existence of sorting,

the optimal remanufacturing quantities are the same in both models. However, the

11



optimal procurement quantity changes according to the existence of sorting. In the

first step, the optimal remanufacturing quantity is determined in order to maximize

expected total profit for a given amount of available remanufacturables at the remanu-

facturing center. In the second step, the optimal transportation quantity is determined

by taking the relationship between the amount of available remanufacturables and the

optimal remanufacturing quantity into account. Optimality conditions are derived for

both settings. They show when the model with inaccurate sorting is economically

attractive. The main result of the study is that the model with imperfect testing be-

fore disassembly is preferable when the inspection, disposal and transportation cost

are low, the disassembly cost is high and fraction of the remanufacturables at the

collection site is low.

Tagaras and Zikopoulos (2008) study a supply chain that includes a remanufacturing

facility andN collection sites in an infinite time period setting. The items are grouped

imperfectly into two quality states: remanufacturable or non-remanufacturable. There

is a single type of used item and they assume that the demand of used products is

stochastic with stationary probability distribution. For each collection site, the frac-

tion of remanufacturables is known and the used item quantities are unlimited. The

remanufacturing facility continuously reviews its inventory, whenever the amount of

used product falls at the reorder level, then the remanufacturer places an order from

one or multiple collection sites. Transferred items from collection sites are disas-

sembled by the remanufacturing facility and then their actual conditions are revealed.

Three different channel structures are studied: no sorting, sorting at the remanufac-

turing facility, and sorting at the collection sites. There are two possible sorting er-

rors: misclassification of remanufacturables as non-remanufacturable with proportion

α (Type I error) and misclassification of non-remanufacturables as remanufacturable

with proportion β (Type II error). For all models, the remanufacturer pays a fixed set

up cost in every replenishment cycle and faces the same unit disassembly cost and

remanufacturing cost. In all settings, the optimal policy is to procure all used items

from the most preferred collection site that has the minimum ratio of cost to yield rate.

Regardless of the model selection and existence of sorting, the optimal reorder level

and the total procurement quantity are the same, but the most preferable collection

site may be different under different channel configurations.
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Van Wassenhove and Zikopoulos (2010) study the effects of misclassification of the

used products in a two-level supply chain with a remanufacturer and N independent

collectors under both deterministic and stochastic demand in a single time period.

The collectors supply items from the end-users and inspect them imperfectly based

on some quality specifications provided by the remanufacturer, and then group them

into M different quality classes. The collection sites can overestimate the quality of

an used item, but it is assumed that the condition of items is overestimated at most

by one class. The fraction of the available quantity of each quality class at the collec-

tion sites is random. The remanufacturer decides which suppliers send the returned

products and the supply quantities in each quality class. The returns are transported

to the remanufacturer with different acquisition prices and they are sorted by the re-

manufacturer, and then their actual grades are revealed. It is found that the optimal

procurement quantities depend on testing accuracy and the relationship between ac-

quisition costs of the sequential classes. If additional quality classes, which have

remanufacturing costs not larger than the costs of existing classes, are introduced to

the model, the effect of misclassification errors on the profit reduces since the variance

of classification accuracy decreases.

Zikopoulos and Tagaras (2007) analyze the impact of uncertain quality of the used

items on the entire system profit and they also discuss the impact of existence of a

correlation between uncertain yield rates at the two supply locations on the profits

and decision variables. They study a two level supply chain which includes a re-

furbishing site and two suppliers in a single period context. After supply sources

transport used items to the refurbishing facility, all of them are inspected by the re-

manufacturer. Sorting is error-free and each used item is graded as refurbishable

or non-refurbishable. The demand of returned product is stochastic. The problem

is examined in two decision stages and solved starting from the second stage. At

the second decision making stage, the optimal production lot size is determined by

assuming that the exact number of refurbishable items in the procurement quantity

from each suppliers are given. After the optimal production quantity is determined,

the optimal procurement quantities from the suppliers are determined in order to max-

imize the overall system profit. They derive optimality conditions for sourcing from

only one of the suppliers and from both suppliers. Their analysis shows that if there
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is any positive correlation between the suppliers’ yield rates, this correlation causes

to increase the difference between supply quantities. The optimal policy is sourcing

from fewer suppliers. Another important result is that if an identical collection site

is added to the system with a single sourcing, yield variance between the collection

sites decreases, and hence the system profit increases.

2.2 Effects of Sorting Location

Another important issue for the reverse supply chains is the decision of the sorting

location. Zikopoulos and Tagaras (2005) consider a reverse supply chain that consists

of one collection site and a central remanufacturing facility that faces uncertain de-

mand in a single period context. In the system, the quality of used products is also

uncertain. Used products are tested perfectly and they can be classified into two possi-

ble quality states: remanufacturable and non-remanufacturable. At the collection site,

used item capacity is assumed as unlimited and the fraction of remanufacturables is

a continuous random variable. There are two decision variables: transported quantity

from the collection site to the remanufacturer and the remanufacturer’s production

lot size. If the optimal production lot size is smaller than the demand, the penalty

cost is incurred per short item. On the contrary, if remanufactured item quantity ex-

ceeds the demand, this excess produced amount is disposed at the same cost with

non-remanufacturables.

Two alternative models are considered according to the location where inspection ac-

tivity takes place: sorting at the collection site and sorting at the remanufacturing fa-

cility. Sorting costs are different in the alternative settings. When the remanufacturer

sorts the used products, there will be two decision variables in the system: quantity

of the transported used items from the collection site to the center and the production

lot size at the remanufacturing facility. The optimization problem is analyzed in two

stages with the goal of the expected profit maximization of the entire system in each

problem stage. At the first stage, the optimal production lot size for the remanufac-

turer is determined under the assumption that the sorting process is completed and

remanufacturable item quantity in the transported lot is known. At the second stage,

the optimal transported quantity is determined by using optimal production size de-
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termined in the first stage. When the sorting activity is performed at the collection

site, the information about the quality state of the used items are identified before

transportation. Therefore, all transferred used items are remanufacturable and the

quantity is equal to the remanufacturer production order size. Thus, there is a sin-

gle decision variable in the model that is optimal production lot size. The results for

two different systems are analyzed analytically and computationally. The numerical

study shows that sorting at the collection facility is preferable when the proportion of

remanufacturables decreases and higher transportation cost is incurred.

2.3 Pricing of Returns and Remanufactured Products

Another topic addressed in the literature is to analyze the effects of the pricing deci-

sions of the remanufactured products and used items on the optimal solution under

both decentralized and centralized settings and to compare the results of the decentral-

ized models to the centralized model regarding to some cost and revenue parameters.

Guide et al. (2003) develop a framework for determining the optimal quality based

acquisition prices and the selling price in order to maximize the profit. There are

known price dependent demand and supply functions. Their suggested model in-

cludes a remanufacturing firm and intermediaries that grade used items perfectly into

N different discrete quality classes and transfer them from final users to the reman-

ufacturer in a single time period. It is assumed that all information about the quality

and acquisition prices of the returned products is commonly shared.

Karakayali et al. (2007) analyze the effect of channel selection on the pricing deci-

sions and optimal collection quantity in a single time period. The centralized setting,

where both collection and processing activities are performed by the remanufacturer,

and two different decentralized models, which are the collector driven channel and

remanufacturer driven channel, depending on who determines the wholesale price are

discussed. In their models, both the demand of remanufactured products and the sup-

ply of the used items have a linear price sensitive function. After the used items are

collected from the customers, they are perfectly sorted and grouped into m quality

classes by the collector in the decentralized channel setting and the remanufacturer in
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the centralized channel setting. The centralized and decentralized models are com-

pared according to their collection rates. They identify when outsourcing the collec-

tion activity can be preferable and under which conditions one of the decentralized

models is more profitable than the other. They also discuss how the collection rate

can be increased when it is smaller then the optimal value because of the impact of

environmental regulations.

Savaskan et al. (2004) illustrate the impact of different channel structures on the used

product return rate, the wholesale price and the profit of the system in a single period

context. They consider a hybrid system that consists of remanufacturing operations

as well as manufacturing operations, and there is no quality difference between man-

ufactured and remanufactured items. The system is modelled as a two-echelon supply

chain that includes a remanufacturer and a single retailer. Demand is modelled as a

linear price dependent function. It is assumed that manufacturing of a product by us-

ing new materials is more costly than remanufacturing a product from returned units.

In order to measure the supply chain performance, they define the return rate that is

the fraction of the quantity of remanufactured items to quantity of all produced items.

This rate shows the customers’ incentive to return their used items for remanufactur-

ing process. They study a centralized model and three types of decentralized models.

In all different channel structures, the remanufacturer is the Stackelberg leader and

tries to find the optimal wholesale price, and the retailer distributes the new produced

products to the market. Decentralized models differ in the responsibility for collec-

tion activity: manufacturer collecting, retailer collecting and third-party collecting.

They analyze these decentralized models and compare them to the centralized setting

in terms of the return rates, the wholesale and retail prices and the total system profits.

The centralized model has the highest return rate and lowest retail price. Among the

decentralized models, the retailer collecting model gives the highest return rate and

lowest retail price value. In terms of the total system profit, the retailer collecting

model provides the best value in the decentralized structures since the retailer con-

nects to the customers directly and affects the system profit by chancing the selling

price.

Atasu et al. (2013) analyze the combined effect of collection and investment cost

structures on the remanufacturer’s reverse channel choice. A hybrid system is con-
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sidered and undifferentiated manufactured and remanufactured items are used to sat-

isfy price dependent market demand. A two-echelon supply chain is studied with

a manufacturer and a retailer in a single period context. The remanufacturer is the

Stackelberg leader and determines the wholesale price. They assume that all returned

items are remanufacturable and the customer demand firstly is filled from remanu-

factured items since remanufacturing cost of a used item is smaller than manufactur-

ing cost of a new item. They define their models based on the channel structure in

Savaskan et al. (2004). Three decentralized models are discussed: the channel with

the remanufacturer undertaking collection of used items, the channel with the retailer

collecting of used items and the channel with the third party managing collection of

used items. The main difference from the model in Savaskan et al. (2004) is that

they incorporate collection cost component into the total cost function in addition to

rate dependent investment cost component. This cost component consists of scale

economies and diseconomies in the collection quantity. They compare the models

and observe which channel choice is more profitable for the remanufacturer. The

results show that both the manufacturer and retailer collecting options dominate the

third party-managed collection. When the collection cost displays scale economies

or the scale effect in the rate-dependent investment cost structure is high, the model

with the retailer-managed collection is optimal although the remanufacturer shares

his profit with the retailer. If the collection cost displays diseconomies of scale or

the scale effect in the investment cost is not enough strong, then the model with the

remanufacturer handling collection activity is optimal.

Ünal (2009) focuses on the model that includes a remanufacturer and a collector in a

single time period setting. She aims to show the impact of centralization on the opti-

mal prices and the profit of the system and examine the effects of knowing the quality

information of used items before pricing decisions. Centralized and decentralized

model structures are analyzed with respect to optimal prices and the system profit.

The demand of the remanufactured items is a linear function of the selling price and

the supply of the returned items is a deterministic linear function of the acquisition

price. The used items are classified into two quality groups: inferior and superior

quality class. The fraction of the items with superior quality level is unknown. In the

centralized model, the remanufacturer is a single decision maker and collection and
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inspection activities are performed by the remanufacturer. There are two different

centralized model configurations: simultaneous pricing model and sequential pricing

model. In the simultaneous pricing model, the remanufacturer sets selling price and

acquisition price before the sorting process. Therefore, the pricing decisions do not

affect the quality information. On the other hand, in the sequential pricing model,

the remanufacturer determines the acquisition price before the sorting operation and

sets the selling price after inspection by using quality information. In decentralized

models, there is a collector who is the Stackelberg leader and collects the used items

from the end users. She inspects returned items and then sends the sorted items to the

remanufacturer at a transfer cost that depends on the quality of the used items. She

considers two different decentralized settings regarding to the condition of the trans-

fer price: exogenous transfer prices and collector driven transfer prices. The collector

driven model has two different configurations in terms of the sequence of the pricing

decisions. If the collector determines the transfer prices for two quality classes before

the inspection, then the quality does not affect the pricing decisions. However, if the

collector sets the transfer prices after the sorting process, the quality knowledge is

used to determine optimal transfer prices. In the numerical analysis, the effects of the

centralization and postponing pricing decisions on the collection quantity, remanu-

facturing lot size and the expected profit in both centralized and decentralized models

are discussed.

2.4 Acquisition Management for Returns

For the remanufacturing firms, effective acquisition management helps to select an

appropriate method in order to maximize the gain from reuse activities. Galbreth and

Blackburn (2006) discuss the variability in the quality of the used items and define

the quality condition of returns in a continuous scale. They focus on a sorting policy

that specifies the rules about whether a returned product is to be remanufactured or

scrapped by incorporating the variability in returned product quality. They introduce a

model in a single period context comprising a remanufacturer and third party brokers

who supply used items to the remanufacturer. It is assumed that whenever used items

are needed, there is available stock at the collection site. After the used products are
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acquired, the remanufacturer sorts all items and groups them into two possible cat-

egories: remanufacturable or scrap. There are two important decisions which affect

each other and are made jointly: the optimal acquisition quantity of the used items

and the remanufacturing quantity. If the acquisition quantity is larger than the reman-

ufacturing quantity, then the remanufacturer is more selective. Only used items with

smaller remanufacturing costs are selected for remanufacturing. Therefore, the total

remanufacturing cost decreases due to selection of used product with better condition

while the acquisition cost increases. On the other hand, if the difference between

acquisition quantity and remanufacturing lot size is low, the remanufacturer is less

selective. Thus, the optimal sorting policy is driven by the excess amount of the re-

turns relative to the remanufacturing lot size. They formulate and analyze the model

with both deterministic and stochastic demand.

Galbreth and Blackburn (2010) discuss the impact of the variation in the quality con-

dition of the returned items on the remanufacturing and acquisition decisions and total

cost of the system. A remanufacturing facility can deal with this variation when the

collection quantity is greater than the demand and only the used items with higher

quality conditions are remanufactured. They model the problem to find the optimal

acquisition quantity in order to minimize total expected cost under deterministic de-

mand. They assume that there are continuous quality conditions and the distribution

of the acquired lot is uncertain. The remanufacturer firstly decides the acquisition

quantity that is generally beyond the demand in order to produce only the used items

of high quality. All acquired products are sorted perfectly by the remanufacturer and

the used items in the best conditions are remanufactured until the remanufacturing

quantity reaches the demand. The excess amount in the collected lot is scrapped at

the unit scrap cost. Galbreth and Blackburn (2006) also study with a continuous range

of returned item conditions, but they assume that the return condition in the collected

lot is distributed with known distribution function. On the other hand, the distribution

of used item condition is not known with certainty in this paper. Two simplifications

are made: the condition of each item in the acquired lot has uniform distribution and

there is a linear remanufacturing cost function. They also analyze the model with two

discrete quality classes. The used items are ranked as low cost and high cost and the

low cost items in the acquired lot follow binomial distribution. The simple policy is
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applied: the remanufacturer satisfies the demand from the low cost class first, if there

is short amount of demand then that is served from high cost items.

Ferrer (2003) and Bakal and Akcali (2006) assess the benefits of the early detection

of yield rate on the pricing decisions. They analyze different model settings in terms

of timing of yield realization in order to make pricing decisions.

Ferrer (2003) analyzes the value of early yield information and the impact of late

yield information on the optimal procurement and disassembly lot size decisions and

the total cost of the system in a single time period. The demand is deterministic and

the remanufacturer satisfies the demand from both new parts supplier and remanufac-

turing facility. The acquired product has a main part that can be recovered and has a

stochastic return yield with known probability distribution. The delivery lead time of

the order for both the external supplier and the remanufacturing center are assumed to

be deterministic. Four alternative scenarios are discussed. Firstly, yield information

is delayed and the decisions are made without the realization of the yield rate. The

amount of procurement quantity from external supplier and internal remanufacturing

quantity and also the number of items to be disassembled are determined. All dis-

assembled parts are inspected in the recovery process. There are two options for the

remanufacturer in order to recover the parts: the whole dissembled parts can be pro-

cessed or the needed parts are only processed to fulfill the demand. Secondly, during

the disassembly operation, the items that are recoverable are detected and nonrecover-

able parts are disposed. Therefore, yield rate is identified before the remanufacturing

process and only remanufacturable parts go into the recovery process. Under this

policy, the decision variables are again determined before the realization of the yield.

Thirdly, if the external supplier offers short lead times, then whenever the amount of

the recovered items are not sufficient to fill the demand, the supplier can place an ur-

gent order. Lastly, if the actual yield rate is known, the remanufacturer uses this yield

information to decide the optimal quantities by avoiding penalty and storage costs.

These scenarios are analyzed in a numerical experiment and compared in terms of

the total expected costs. The results show that when the yield variance is high, the

benefit of determining the yield rate before the recovery process is more than having

short lead time suppliers. Another observation is that when the shortage cost is high,

having short lead time suppliers is more cost effective than others. Lastly, when the
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holding cost, procurement cost or recovery cost increase, the model with early yield

information is economically attractive than others.

Bakal and Akcali (2006) examine the impact of the yield rate on the optimal acqui-

sition and selling prices and the profit of the system. They assume that the demand

of the recovered products is a deterministic decreasing linear function of the sell-

ing price and the supply of end-of-life vehicles is also deterministic increasing linear

function of the acquisition price. A remanufacturer who procures the vehicles from

end users, dismantles the main part from the body and inspects the dismantled parts

in order to decide they are recoverable or not. Nonrecoverable parts after the inspec-

tion process, and the remaining part of the body after the remanufacturable part is

dismantled, are salvaged at different salvage values, and recovered parts are sold to

satisfy the demand in the secondary market. The proportion of the remanufacturables

is defined as recovery yield rate and it depends on the acquisition price. The problem

is modelled in order to determine optimal acquisition and selling prices to achieve

profit maximization aim.

They introduced different model configurations to show the benefits of early detection

of the yield rate on the optimal decisions and the total profit of the firm. Four different

models are examined: deterministic pricing model, postponed pricing model, simul-

taneous pricing model and exogenous pricing model. In the deterministic pricing

model, there is a deterministic yield rate and the decisions are made taking into ac-

count this yield. In the postponed pricing model, the yield rate is stochastic and the

remanufacturer determines the selling price of the recovered parts after inspection

process is completed and the yield rate is specified. In third model, both the sell-

ing price and acquisition price are decided before the inspection process. In the last

model, the acquisition price or the selling price can be exogenous. If the acquisition

price is exogenous, the remanufacturer has no effect on the supply quantity of the

returned vehicles. If the selling price is exogenous, the demand is known and inde-

pendent from the remanufacturer’s decisions. The major conclusion of their study

is that having the yield information before the pricing decisions gives higher profit

value. This value increases when the yield rate decreases and the yield variance in-

creases.
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2.5 Multiple Quality Groups

In the literature, the value of quality categorization and its impact on the system prof-

itability for the remanufacturing firms are also studied with multiple discrete quality

groups by including the quality uncertainty in the model settings.

Ferguson et al. (2009) introduce a tactical production planning model in a finite

discrete time horizon context. The quality of returned items is a random variable and

the quality grade of each used item is continuously distributed with known probability

density function in each period. They assume that the remanufacturer categorizes the

returns into three usage options according to their quality conditions: the items for

salvaging for material recovery (0, q0), for salvaging for parts recovery (q0, q1), and

for remanufacturing (q1, 1). The remanufacturable items’ range is also divided into I

quality levels. In each time period, the demand of the used items is stochastic and if

the demand is not satisfied from the remanufactured items then the shortage amount

is backlogged at a unit penalty cost with λ probability and lost with 1−λ probability.

The remanufacturer takes into account the remanufacturing cost of the returns and

the holding cost of both the returns and remanufactured items, then faces a trade-off

for each quality grade between deciding of remanufacturing quantity in each period

and holding quantity for returned items and remanufactured items at the end of each

individual time period in order to maximize profit. The model is formulated as a

stochastic dynamic problem with no capacity constraints. They derive the optimal

solution under stochastic demand and returns, then provide a heuristic method to

solve the model under the deterministic demand and returns. They also examine the

effects of the value of categorization on the profit under the existence of a capacity

constraint on the quantity of returns that can be collected from the customers.

Denizel et al. (2010) also study a tactical production planning model in a multi-period

time context under a capacity constraint on the amount of the cores which can be re-

manufactured in each time period. The remanufacturer receives the cores (used items)

that are at the end of their lease and inspects them to classify into I quality groups.

However, all returned cores may not be inspected, some of them are inspected and

remanufactured to satisfy the demand or some amount of returns can be stocked to

be sorted in the future period. The graded core may not be used to remanufacture
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in the current period and they are held in inventory for possible remanufacturing in

the future periods. There is a single type of return and deterministic demand. Un-

met demand is backlogged at unit shortage cost. The problem is formulated by using

stochastic programming. Firstly, the quantity of the returns to be sorted is determined

and secondly, for each scenario, the remanufacturing, salvaging and holding quan-

tities are determined for each quality levels. After the formulation of the stochastic

problem, they analyze the model numerically and make a sensitivity analysis to show

the effects of the parameters on the optimal solution and the profit.

Teunter and Flapper (2011) investigate the impact of uncertainty in the quality of

cores under both deterministic and stochastic demand cases in a single time period

setting. After the cores are acquired from the collectors, all collected items are in-

spected and grouped intoK quality classes by the remanufacturer with error-free test-

ing. The quality of the cores has a multinomial distribution. The cost minimization

problem is formulated and solved in two stages: firstly, the optimal remanufacturing

lot size is determined, then the optimal collection quantity is determined. The uncer-

tainty impact on the optimal decisions is analyzed in the numerical study part. They

also examine how the optimal solutions and the total cost are affected by ignoring the

variability in the quality of the cores.

Aras et al. (2004) study the classification of the returned products according to their

quality and highlight the impact of this categorization on the total cost of the sys-

tem. They examine a hybrid remanufacturing center that remanufactures returned

items and also manufactures new items. The remanufactured and manufactured items

are assumed as perfect substitutes. The remanufacturing system includes three in-

ventory centers: the serviceable inventory consisting of remanufactured products and

the remanufacturable inventories consisting of two different types of returns. Demand

follows a Poisson process and it is firstly satisfied from the remanufactured items. Re-

turns arrive according to a poisson process and they are inspected and classified into

two quality classes: high and low quality. The remanufacturing time of the returns

follows an exponential distribution. After inspection process, some of returns may

be disposed because the capacity of the remanufacturable inventories of two quality

classes are limited by the disposal levels. The serviceable inventory is reviewed con-

tinuously and whenever the inventory level falls at the base level, then the returned
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items are pulled into the remanufacturing operation. There are two strategies accord-

ing to priority given to use the remanufacturable inventories: high class first and low

class first. They represent the model as a continuous-time Markov Chain and in or-

der to minimize the total cost for both strategies, they determine optimal values for

the decision variables: disposal levels for two quality groups and optimal base stock

level. For a comparison of the two strategies, they analyze the models under differ-

ent cost parameter values and conclude that if high class first strategy is selected, the

cost savings due to quality categorization is higher. They also analyze the system by

using a benchmark model to asses when the quality based classification of the returns

is cost effective. In this model, it is assumed that two class returns are stored in a

single inventory and there is a single disposal level to be reviewed. They provide a

numerical analysis and the result shows that the improvement in the system cost is

about ten percent by using quality information of the returns in the model.

We focus on the remanufacturing processes in which sorting process of returns is sub-

ject to classification errors and their actual conditions are revealed after the disassem-

bly operation. Although reverse supply chains with error-free inspection have been

studied in many papers recently, not much effort has been spent on imperfect sort-

ing process in the closed loop supply chains. Our work relates to previous studies in

the literature on the imperfect inspection by Gu and Tagaras (2014), Zikopoulos and

Tagaras (2008), Tagaras and Zikopoulos (2008) and Van Wassenhove and Zikopoulos

(2010). However, it differs from their studies in an important aspect. They take the

uncertainty regarding to return item quality into account but they do not incorporate

of the uncertainty in the inspection process and assume that the quantity of remanu-

facturables and non-remanufacturables determined by the inspection are exactly equal

to their expected values. In our study, however, randomness in the sorting process is

taken into account in addition to quality uncertainty in used items. Our study can be

divided into two parts. First of all, we formulate a number of different settings based

on the deterministic demand model in Gu and Tagaras (2014) under inaccurate sorting

procedure and analyze the effects of different leader and follower combinations, price

dependent demand and supply and sorting location on the optimal solution and the

profits. Secondly, we analyze the impact of disregarding randomness in the inspec-

tion process on the optimal solution and the profits. We reformulate the decentralized
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model in Gu and Tagaras (2014) by taking into account of randomness in the collec-

tor’s inspection process and characterize the optimal solution under imperfect testing.

We also discuss how the impact of randomness on the optimal solution and the profits

changes with respect to a change in the parameters’ values. To our knowledge, this

is the first study that formulates the model with incorporation of randomness related

to inaccurate sorting process and analyze the effects of ignoring randomness on the

results and also seeks the effects of parameters on randomness.
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CHAPTER 3

MODEL DESCRIPTION AND ANALYSIS

In this study, we consider a two-echelon supply chain consisting of a remanufacturer

and a collector in a single time period. The remanufacturer orders used items from the

collector, and after the remanufacturing process, he sells remanufactured products to

the customers in order to serve the deterministic demand in the market. The collector

acquires used products from the customers and sells them to the remanufacturer. In

the literature, there is a limited number of papers that deal with imperfect sorting in

reverse supply chains. The paper by Gu and Tagaras (2014) is mostly related to our

work since they study a reverse supply chain consisting of a remanufacturer and a

collector with deterministic demand and characterize the optimal solution under in-

accurate sorting procedure. They analyze both decentralized and centralized settings

under deterministic and stochastic demand cases. We only focus on their decentral-

ized setting under deterministic demand case, which is called as the base model. In

this chapter, we develop alternative settings to investigate the effects of price sensi-

tive demand and/or supply on the optimal decisions as well as sorting location and

channel leadership. We model price sensitive demand as D(pr) = a − bpr, where

a > 0 shows the potential market size and b > 0 shows the sensitivity of the demand

to the selling price. We also study the price dependent supply which is denoted as

S(f) = rf , where f is the acquisition price and r > 0 shows the supply price sen-

sitivity to the acquisition price f . Therefore, the collector can increase the supply by

increasing the acquisition price. In order to analyze the effects of the sorting loca-

tion, we compare the settings where the sorting activity is performed by the collector

versus remanufacturer. When the collector sorts, all collected items from end-users

are inspected and only the items classified as remanufacturables are transported to

the remanufacturer. When the remanufacturer sorts, all collected items are trans-
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ported by the collector to the remanufacturer and inspected before disassembly. In all

models, used items are inspected imperfectly and grouped into two quality states by

inspection: remanufacturable and non-remanufacturable. It is noted that imperfect in-

spection means that actual condition of used items may be estimated incorrectly. That

is, remanufacturable used products can be misclassified as non-remanufacturable or

non-remanufacturables can also be misclassified as remanufacturable.

The rest of this chapter is organized as follows: Section 3.1 revisits the model that is

studied in Gu and Tagaras (2014), that is the base model, and from Section 3.2 to 3.8

different extensions of the base model are discussed and their optimal solutions are

compared to the solution of the base model. In Section 3.9, a detailed comparison of

the models is performed and main differences from the base model are presented.

3.1 The Base Model

Gu and Tagaras (2014) analyze a recovery system that includes a single remanufac-

turer and collector in a single time period. Used products have two quality states:

remanufacturable or non-remanufacturable. The collector gets Q0 units of used items

from the market at a unit collection cost of co, imperfectly sorts them at the unit in-

spection cost of ci and transfers QC units, which are grouped as remanufacturable, to

the remanufacturer at a unit transportation cost of ct. It is assumed that the fraction

of the remanufacturables q within the collected quantity is known and items that are

sorted as non-remanufacturable are disposed of at a unit cost of cdC by the collector.

The sorting procedure is subject to two classification errors: type I error and type II

error with α and β probability, respectively. Remanufacturable used products can be

misclassified as non-remanufacturable with probability α and non-remanufacturables

can also be misclassified as remanufacturable with probability β. Upon the arrival

of the items at the remanufacturer’s site, all transported items are disassembled at a

unit cost of cdis. After the disassembly process, actual conditions of the used items

are revealed and remanufacturable used products are remanufactured at a per unit

cost of cr and sold in order to satisfy the deterministic market demand D and non-

remanufacturable items are disposed of at a unit cost of cdR by the remanufacturer.

The remanufacturer pays a unit transfer price of w to the collector for each remanu-
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facturable item up to QR, which is the remanufacturer’s order quantity. If the number

of remanufacturable units that is revealed after disassembly is less than QR, then the

collector has to pay a penalty b0 per unit short. Otherwise, the remanufacturer does

not pay to the collector for the extra remanufacturable units. If the quantity of re-

manufactured products is less than the demand, then the remanufacturer faces a unit

shortage cost of b for unsatisfied demand. In the decentralized setting, the collector

and remanufacturer are independent decision makers. The remanufacturer is the first

agent to act and decides the optimal order size QR. Then, the collector decides opti-

mal collection quantity Q0 in order to maximize his profit. The sequence of events in

the base model is summarized as follows:

1. The remanufacturer orders QR units,

2. The collector collects Q0 units,

3. The collector sorts imperfectly Q0 units and transports QC units to the reman-

ufacturer,

4. The remanufacturer disassembles and sorts actually QC units,

5. The remanufacturer remanufactures min {(1− α)qQ0, QR}.

Table 3.1 summarizes the notation used in the base model.

Since the remanufacturer is the Stackelberg leader, the collector’s problem is firstly

analyzed and the optimal collection quantity(Q0) is optimized in order to maximize

the collector’s profit. The collector sorts all collected items imperfectly and sends the

remanufacturable items to the remanufacturer. It is assumed that w > co + ci + ct,

otherwise collection of used item is not profitable for the collector. We also assume

that w > cdC , then selling of used item to the remanufacturer is more profitable for

the collector than salvaging of the unsold remanufacturable items in the secondary

market. Gu and Tagaras (2014) do not take the uncertainty in the collector’s in-

spection process into account and assume that the number of items that are clas-

sified as remanufacturable by the inspection process is equal to its expected value,

[(1−α)q+β(1− q)]Q0 denoted by QC . (1−α)qQ0 represents the quantity of actual

remanufacturables after the collector’s inspection process and β(1− q)Q0 represents
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Table 3.1: List of Notations for the Base Model

Notation Description

Q0 The collected quantity

QC The transported quantity(Items classified as remanufacturables by

the collector)

QR Target remanufacturable quantity(Remanufacturer’s order quantity)

Q Actual remanufacturable quantity after disassembly

D Deterministic market demand

co unit collection cost

ci unit inspection cost

ct unit transportation cost

cdR unit disposal cost of remanufacturer after disassembly

cR unit salvage value of remanufactured product if QR > D

cr unit remanufacturing cost

w unit price paid by the remanufacturer to per remanufacturable unit

up to QR(transfer price)

cdC unit disposal cost of collector after imperfect sorting

cdis unit disassembly cost

pr unit selling price

b0 unit penalty below QR paid by the collector

b unit penalty for unmet demand paid by the remanufacturer

q proportion of remanufacturables in the collected quantity

α proportion of remanufacturables which are incorrectly classified as

non-remanufacturable

β proportion of non-remanufacturables which are incorrectly classified

as remanufacturable
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the quantity of non-remanufacturables that are misclassified as remanufacturable. QC

units are transported from the collector to the remanufacturer and disassembled by the

remanufacturer. After the remanufacturer’s disassembly and actual sorting processes,

the actual quantity of remanufacturables Q = (1− α)qQ0, is revealed. Note that the

quantity of actual remanufacturables can either be smaller or larger than the remanu-

facturer’s order quantity. As a result, the collector’s expected profit can be expressed

as:

ΠC(Q0) =


ΠI
C(Q0) if Q0 ≤ QR

(1−α)q

ΠII
C (Q0) if Q0 >

QR
(1−α)q

where

ΠI
C(Q0) = w(1− α)qQ0 − c0Q0 − ciQ0 − cdC [αq + (1− β)(1− q)]Q0

−ct[(1− α)q + β(1− q)]Q0 − b0[QR − (1− α)qQ0]

and

ΠII
C (Q0) = wQR − c0Q0 − ciQ0 − cdC [αq + (1− β)(1− q)]Q0

−ct[(1− α)q + β(1− q)]Q0.

The revenue and cost items that are used in the collector’s profit function are given as

follows:

• Collection cost of used items: c0Q0;

• Collector’s inspection cost: ciQ0;

• Disposal cost of non-remanufacturables by the collector:

cdC [αq + (1− β)(1− q)]Q0

• Transportation cost of shipped items: ct[(1− α)q + β(1− q)]Q0

• Penalty cost paid by the collector:


b0[QR − (1− α)qQ0] if Q0 ≤ QR

(1−α)q

0 if Q0 >
QR

(1−α)q
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• Transfer payment by the remanufacturer:


w(1− α)qQ0 if Q0 ≤ QR

(1−α)q

wQR if Q0 >
QR

(1−α)q

Lemma 1. ΠC(Q0) is continuous, but not differentiable at Q0 = QR
(1−α)q

.

Proof. The proof is provided in Appendix A. �

Proposition 1. Given the remanufacturer’s order quantity,QR, the optimal collection

quantity under deterministic demand is characterized by:

Q∗0 =


QR

(1−α)q
if (w + b0)(1− α)q > A1

0 o/w

where A1 is given by:

A1 = (c0 + ci) + cdC [αq + (1− β)(1− q)] + ct[(1− α)q + β(1− q)].

Proof. The first derivatives of ΠI
C(Q0) and ΠII

C (Q0) with respect to Q0 are given as:

dΠI
C(Q0)

dQ0

= (w + b0)(1− α)q − (c0 + ci)− cdC [αq + (1− β)(1− q)]

−ct[(1− α)q + β(1− q)]

and

dΠII
C (Q0)

dQ0

= −(c0 + ci)− cdC [αq + (1− β)(1− q)]− ct[(1− α)q + β(1− q)].

When (w + b0)(1 − α)q > A1, dΠIC(Q0)

dQ0
> 0 and dΠIIC (Q0)

dQ0
< 0. Hence, Q∗0= QR

(1−α)q
.

Otherwise, dΠIC(Q0)

dQ0
< 0 and dΠIIC (Q0)

dQ0
< 0. Hence, Q∗0 = 0. �

WhenQ0 <
QR

(1−α)q
, A1 = (c0 +ci)+cdC [αq+(1−β)(1−q)]+ct[(1−α)q+β(1−q)]

represents the increase in the collector’s expected cost and (w+b0)(1−α)q shows the

increase in the collector’s expected revenue when the collection quantity increases by

one unit. Hence, if (w + b0)(1− α)q > A1, then collection of additional unit of used

item is profitable for the collector and he tries to collect as many units as possible.
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The remanufacturer disassembles all transported items at a per unit cost of cdis and ob-

serves the actual quantity of remanufacturables Q. If there is a non-remanufacturable

item, it is disposed at a unit cost of cdR. Since Q = (1 − α)qQ0 and Q∗0 = QR
(1−α)q

when A1 < (w + b0)(1− α)q, then Q = QR. When A1 > (w + b0)(1− α)q, Q∗0 = 0

and so Q = 0, then QR = 0. Hence, Q = QR.

We now consider the remanufacturer’s problem. The remanufacturer produces

min {Q,D} units and the unit remanufacturing cost of cr is incurred. After the re-

manufacturing process, remanufactured items are used to satisfy the deterministic

market demand D and they are sold at a unit selling price pr. It is assumed that

pr > cdis + cr + w in order to gain a revenue from remanufacturing. We also assume

pr + b > cR and pr − cr > cdR. That is, salvaging a remanufactured product and a

remanufacturable used item, respectively is less profitable than selling a remanufac-

tured product. If Q is smaller than D, unsatisfied demand is lost at a unit cost of b.

On the other hand, if Q is larger than D, the excess remanufacturables are disposed

at unit cost of cdR. It is also assumed that cR < (cdis + cr + w) + (cdis + cdR)β(1−q)
(1−α)q

,

that is, the salvage value for an excess remanufactured product is smaller than the

corresponding operational cost. Otherwise, the remanufacturer sets his order size as

large as possible regardless to the market demand since he always gains profit from

remanufacturing of the used item that exceeds the demand. The remanufacturer de-

termines the optimal order size by taking into consideration Q∗0 and Q = QR. As a

result, the expected profit of the remanufacturer can be expressed as:

ΠR(QR) =


ΠI
R(QR) if QR ≤ D

ΠII
R (QR) if QR > D

where

ΠI
R(QR) = prQR − cdis[(1− α)q + β(1− q)] QR

(1− α)q

−cdRβ(1− q) QR

(1− α)q
− crQR − wQR − b(D −QR)

and

ΠII
R (QR) = prD + cR(QR −D)− cdis[(1− α)q + β(1− q)] QR

(1− α)q

−cdRβ(1− q) QR

(1− α)q
− crQR − wQR.
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The revenue and cost items that are used in the remanufacturer’s profit function are:

• Disassembly cost: cdis[(1− α)q + β(1− q)] QR
(1−α)q

• Disposal cost of non-remanufacturables: cdRβ(1− q) QR
(1−α)q

• Total remanufacturing cost: crQR

• Total cost paid to the collector for remanufacturables due to the contract: wQR

• Revenue from remanufacturing : pr min {D,QR}

• Penalty cost for unsatisfied demand: bmax {0, D −QR}

• Salvage revenue from remanufactured items: cR max {0, QR −D}

Lemma 2. ΠR(QR) is continuous, but not differentiable at QR = D.

Proof. The proof is in Appendix B. �

Proposition 2. Under deterministic demand, the optimal order quantity for the re-

manufacturer is characterized by:

Q∗R =


D if (pr + b) > A2

0 o/w

where A2 = (cdis + cr + w) + (cdis + cdR)β(1−q)
(1−α)q

.

Proof. The first derivatives of ΠI
R(QR) and ΠII

R (QR) with respect to QR are given as:

dΠIR(QR)

dQR

= pr + b− (cdis + cr + w)− (cdis + cdR)β(1−q)
(1−α)q

dΠII
R (QR)

dQR

= cR − (cdis + cr + w)− (cdis + cdR)β(1−q)
(1−α)q

.

Since we assume cR < A2 for the remanufacturer, dΠIIR (QR)

dQR
< 0. When (pr+b) > A2,

dΠIR(QR)

dQR
> 0. Hence, Q∗R= D. Otherwise, dΠIR(QR)

dQR
< 0 and dΠIIR (QR)

dQR
< 0. Hence,

Q∗R = 0. �

34



In order to order one more additional unit, the remanufacturer compares the marginal

revenue to the related marginal cost. When QR ≤ D, A2 = (cdis + cr + w) +

(cdis + cdR)β(1−q)
(1−α)q

represents the increase in the remanufacturer’s cost while (pr + b)

represents the increase in the remanufacturer’s revenue when one more additional

unit is ordered by the remanufacturer. If (pr + b) > A2, the resulting increase in

the remanufacturer’s revenue dominates the related increase in the remanufacturer’s

cost. Therefore, ordering of one more unit is profitable for the remanufacturer. In this

case, ΠR(QR) is an increasing function of QR and Q∗R = D. Otherwise, ΠR(QR)

is a decreasing function of QR, hence QR = 0. When QR > D, A2 represents the

increase in the remanufacturer’s cost whereas cR shows the increase in his profit when

he orders one more unit. Since we assume cR < A2, then ΠR(QR) is a decreasing

function of QR. It means that the related margin loss outweighs the benefit from

ordering of one additional used item by the remanufacturer. Therefore, he sets the

order quantity QR such that QR = 0.

3.2 Model I-The Base Model with Remanufacturer Managing Inspection

In this model, we consider a different version of the base model. In this setting, the

remanufacturer is responsible for sorting the used items, whereas the collector sorts

collected items in the base model. We analyze the model under deterministic demand

and the problem includes only one decision variable: collection quantity. The ship-

ment size and actual number of remanufacturables are functions of this sole decision

variable. Hence, it actually corresponds to a centralized setting. The remanufacturer

is the single decision maker and tries to find the optimal collection quantity in order

to maximize his profit. The sequence of the events is given below:

1. The remanufacturer determines and orders Q0 units,

2. The collector collects and transports Q0 units to the remanufacturer,

3. The remanufacturer imperfectly sorts Q0 units,

4. The remanufacturer disassembles Q0 units, then remanufactures

min {(1− α)qQ0, D}.
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The remanufacturer’s profit is characterized as follows:

ΠR(Q0) = −ciQ0 − cdR[αq + (1− β)(1− q)]Q0 − cdis[(1− α)q + β(1− q)]Q0

−cdRβ(1− q)Q0 + (pr − cr) min {(1− α)qQ0, D}

−cdR max {0, (1− α)qQ0 −D} − wmin {(1− α)qQ0, D}

The revenue and cost items in the remanufacturer’s profit function are given below:

• Inspection cost: ciQ0;

• Disposal cost of non-remanufacturables after imperfect sorting:

cdR[αq + (1− β)(1− q)]Q0

• Disassembly cost: cdis[(1− α)q + β(1− q)]Q0

• Disposal cost of non-remanufacturables after disassembly: cdRβ(1− q)Q0

• Disposal cost of excess remanufacturables: cdR max {0, (1− α)qQ0 −D}

• Revenue from remanufacturing : pr min {(1− α)qQ0, D}

• Remanufacturing cost : cr min {(1− α)qQ0, D}

• Total cost paid to the collector for remanufacturables: wmin {(1− α)qQ0, D}

Lemma 3. The optimal number of actual remanufacturables cannot exceed demand,

e.g. (1− α)qQ∗0 ≤ D.

Proof. Consider a collection quantity, Q0 such that (1 − α)qQ∗0 > D. Define ε > 0

such that ε = (1− α)qQ∗0 −D. Then, the remanufacturer’s profit at Q0 = ε+D
(1−α)q

can

be expressed as:

ΠR

(
ε+D

(1− α)q

)
=
−(ε+D)

(1− α)q

 ci + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


+(pr − cr − w)D − cdRε
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When Q0 = D
(1−α)q

, the remanufacturer’s profit is expressed as follows:

ΠR

(
D

(1− α)q

)
=

−D
(1− α)q

 ci + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


+(pr − cr − w)D

Then,

ΠR

(
ε+D

(1− α)q

)
− ΠR

(
D

(1− α)q

)

=
−ε

(1− α)q

 ci + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


−cdRε < 0

Therefore, for any Q0 such that (1 − α)qQ0 > D, the remanufacturer’s profit is

smaller than ΠR

(
D

(1−α)q

)
. Hence, Q0 >

D
(1−α)q

can not be optimal.

�

Using Lemma 3, the remanufacturer’s maximization problem is rearranged as:

max ΠR(Q0) = −ciQ0 − cdR[αq + (1− β)(1− q)]Q0

− cdis[(1− α)q + β(1− q)]Q0 − cdRβ(1− q)Q0

+ (pr − cr − w)(1− α)qQ0

subject to Q0 ≤
D

(1− α)q
.

Proposition 3. Under deterministic demand, the optimal collection quantity is char-

acterized by:

Q∗0 =


D

(1−α)q
if pr(1− α)q > A3

0 o/w

where A3 = ci + cdR[αq + (1− β)(1− q)] + cdis[(1− α)q + β(1− q)]
+ cdRβ(1− q) + (cr + w)(1− α)q.
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Proof. The first derivative of ΠR(Q0) with respect to Q0 is:

dΠR(Q0)

dQ0

= −ci − cdR[αq + (1− β)(1− q)]− cdis[(1− α)q + β(1− q)]

−cdRβ(1− q) + (pr − cr − w)(1− α)q

When pr(1−α)q > A3, dΠR(Q0)
dQ0

> 0. Therefore,Q∗0= D
(1−α)q

. Otherwise, dΠR(Q0)
dQ0

< 0

and hence, Q∗0 = 0. �

pr(1−α)q represents the remanufacturer’s marginal revenue associated with ordering

one more additional unit of used item. The remanufacturer compares this marginal

revenue with the related marginal cost in order to decide whether to order one more

item is profitable or not. If pr(1−α)q > A3, ΠR(Q0) is an increasing function of Q0.

Therefore, ordering of one more additional item is profitable for the remanufacturer.

Hence, Q∗0 = D
(1−α)q

. Otherwise, ΠR(Q0) is a decreasing function of Q0. Therefore,

he sets Q0 at its lower bound, Q∗0 = 0.

Propositions 1 and 3 show that the expressions for the optimal collection quantity

are the same in the base model and Model I since the remanufacturer always sets

the quantity of exact remanufacturables equal to the deterministic market demand

after disassembly. However, the conditions that are used in order to decide whether

ordering one more additional unit of used item is profitable are different.

Corollary 1. The comparison of optimal collection quantity, Q∗0, in the base model

and Model I is given as follows:

a) If pr > (cdis + cr + w) + (cdis + cdR)β(1−q)
(1−α)q

+ ci+cdR[αq+(1−β)(1−q)]
(1−α)q

, then Q∗0 =

D
(1−α)q

in both Model I and the base model.

b) If (cdis + cr +w) + (cdis + cdR)β(1−q)
(1−α)q

− b < pr ≤


(cdis + cr + w)

+(cdis + cdR)β(1−q)
(1−α)q

+ ci+cdR[αq+(1−β)(1−q)]
(1−α)q

,

then Q∗0 = D
(1−α)q

in the base model and Q∗0 = 0 in Model I.

c) If pr ≤ (cdis + cr + w) + (cdis + cdR)β(1−q)
(1−α)q

− b, then Q∗0 = 0 in both Model I

and the base model.
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Proof. The proof directly follows from Proposition 1 and Proposition 3.

�

In order to illustrate the behavior of the optimal collection quantity, we define an

example parameter set given in Table 3.2.

Table 3.2: An example of parameter set

D co ci ct cdC cdis cdR cr w cR b0 b q α β

25 5 5 5 0 10 5 50 100 60 20 30 0.4 0.2 0.1

For any pr ε (163, 188], ordering one more additional unit of used item is profitable

for the remanufacturer in the base model, then Q∗R = 25 and Q∗0 = 78. However,

ordering one more additional unit of used item is not profitable for the remanufacturer

in Model I, then Q∗R = 0 and so, Q∗0 = 0. For any pr such that pr > 188, the optimal

collection quantity for the base model and the optimal order quantity for Model I are

both equal to 78. On the other hand, when pr ≤ 163, Q∗0 = 0 in both models.

Corollary 1 indicates that there is a price range in which the remanufacturer makes a

profit in the base model while he does not gain any profit in Model I. The remanufac-

turer is only responsible for disassembly and remanufacturing of used items that are

collected and sorted by the collector in the base model. On the other hand, the reman-

ufacturer takes responsibility of inspection process in addition to disassembly and

remanufacturing activities in Model I. Therefore, his total operation cost increases

regarding to additional inspection and disposal costs and hence, he should operate at

larger selling price values in order to gain profit from remanufacturing in Model I.

From the collector’s point of view, he collects the same amount of items when the

remanufacturer sorts. However, his total cost changes by ciQ0 + (cdC − ct)[αq+ (1−
β)(1− q)]Q0 units.
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3.3 Model II-Price Dependent Supply Case under Remanufacturer’s Lead

In this section, we extend the base model such that the supply of used items is deter-

ministic and price sensitive, denoted as S(f) = rf , where f > 0 and the collector

determines the acquisition price of f for collection of used items. Therefore, the sup-

ply quantity can be changed by changing the acquisition price. Another difference

from the base model is that the remanufacturer is responsible for sorting of the used

items in this model whereas the collector takes responsibility of the inspection process

in the base model. There are two decision variables: collection quantity determined

by the remanufacturer and the acquisition price f determined by the collector. We

assume that the transfer price is exogenous. The sequence of events in this model is

as follows:

1. The remanufacturer orders Q0 units,

2. The collector determines f and collects S(f) = rf ,

3. The collector delivers min {rf,Q0} to the remanufacturer at a unit transfer

price of w,

4. The remanufacturer sorts min {rf,Q0} and remanufactures

min {qmin {rf,Q0} (1− α), D}.

Since the remanufacturer is the leader, firstly the collector’s problem is analyzed,

then the remanufacturer’s problem is studied by using the optimal decision of the

collector’s problem. The collector’s profit maximization problem is formulated below

in order to find the optimal acquisition price given Q0:

max ΠC(f) = −f(rf) + wmin {rf,Q0}

subject to f ≥ 0.

Lemma 4. The optimal amount of supply cannot exceed the remanufacturer’s order

quantity, e.g. rf ∗ ≤ Q0.
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Proof. We will prove this lemma by contradiction. Assume that rf ∗ > Q0. Define

ε > 0 such that ε = rf ∗ − Q0. Then, the collector’s profit at f = ε+Q0

r
can be

expressed as:

ΠC

(
ε+Q0

r

)
=
−(ε+Q0)2

r
+ wQ0

For f = Q0

r
, the collector’s profit is expressed as follows:

ΠC

(
Q0

r

)
=
−(Q0)2

r
+ wQ0

Then,

ΠC

(
ε+Q0

r

)
− ΠC

(
Q0

r

)
=
−(2εQ0 + ε2)

r
< 0

Hence, f = ε+Q0

r
can not be optimal. �

Lemma 4 is rather intuitive. If the collector sends a larger quantity than the remanu-

facturer order size, the remanufacturer does not pay anything to the collector for the

excess amount. The excess supply only results in a decrease in the collector’s profit

by their total acquisition cost.

Using Lemma 4, the collector’s problem is rearranged as follows:

max ΠC(f) = −f(rf) + w(rf)

subject to rf ≤ Q0

f ≥ 0.

Lemma 5. ΠC(f) is a concave function in f .

Proof. The first derivative of ΠC(f) with respect to f is:

dΠC(f)

df
= −rf + r(w − f)
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and the second derivative of ΠC(f) with respect to f is:

d2ΠC(f)

df 2
= −2r < 0.

Hence, ΠC(f) is concave in f . �

Proposition 4. Given the remanufacturer’s order quantityQ0, the optimal acquisition

price is given by:

f ∗ =


w
2

if rw
2
≤ Q0

Q0

r
o/w

.

Proof. The first derivative of ΠC(f) with respect to f is:

dΠC(f)

df
= −rf + r(w − f)

The unconstrained maximizer of ΠC(f) is given by dΠC(f)
df

= 0, which is w
2

. If
rw
2
< Q0, it is the optimal solution. Hence, f ∗ = w

2
. Otherwise, the constraint is

binding and f ∗ = Q0

r
.

�

We now consider the remanufacturer’s problem. The profit function is characterized

as follows:

ΠR(Q0) = −(ci + w) min {rf ∗, Q0} − cdR min {rf ∗, Q0} [αq + (1− β)(1− q)]

− cdis min {rf ∗, Q0} [(1− α)q + β(1− q)]

−cdR min {rf ∗, Q0} β(1− q)

+ (pr − cr) min {min {rf ∗, Q0} (1− α)q,D}

− cdR max {0,min {rf ∗, Q0} (1− α)q −D}

The revenue and cost items that are used in the remanufacturer’s profit function are

given as follows:

• Inspection cost: ci min {rf ∗, Q0};
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• Transfer cost of shipped items: wmin {rf ∗, Q0};

• Disposal cost of non-remanufacturables after inspection:

cdR min {rf ∗, Q0} [αq + (1− β)(1− q)]

• Disassembly cost: cdis min {rf ∗, Q0} [(1− α)q + β(1− q)]

• Disposal cost of non-remanufacturables after disassembly:

cdR min {rf ∗, Q0} β(1− q)

• Disposal cost of excess remanufacturables:

cdR max {0,min {rf ∗, Q0} (1− α)q −D}

• Revenue from remanufacturing : pr min {min {rf ∗, Q0} (1− α)q,D}

• Remanufacturing cost : cr min {min {rf ∗, Q0} (1− α)q,D}

Lemma 6. There exists an optimal solution to the remanufacturer’s problem such

that Q∗0 ≤ rf ∗.

Proof. Consider an order quantity Q0 such that Q0 > rf ∗. Define ε > 0 such that

ε = Q0 − rf ∗. Then, the remanufacturer’s profit at Q0 = rf ∗ + ε can be expressed

as:

ΠR(rf ∗ + ε) = −(ci + w)rf ∗ − cdRrf ∗[αq + (1− β)(1− q)]

− cdisrf ∗[(1− α)q + β(1− q)]− cdRrf ∗β(1− q)

+(pr − cr) min {rf ∗(1− α)q,D}

−cdR max {0, rf ∗(1− α)q −D}

When Q0 = rf ∗, then the remanufacturer’s profit is expressed as follows:

ΠR(rf ∗) = −(ci + w)rf ∗ − cdRrf ∗[αq + (1− β)(1− q)]

− cdisrf ∗[(1− α)q + β(1− q)]− cdRrf ∗β(1− q)

+(pr − cr) min {rf ∗(1− α)q,D}

−cdR max {0, rf ∗(1− α)q −D}

Then,

ΠR(rf ∗ + ε)− ΠR(rf ∗) = 0.
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Any solution with Q0 > rf ∗, results the same profit for the remanufacturer. �

Intuitively, for any value of Q0 > rf ∗ results the same profit for the remanufac-

turer since the collector collects and delivers only rf ∗ units in order to maximize his

profit. Therefore, the remanufacturer’s optimal order quantity Q∗0 should be less than

or equal to rf ∗.

The remanufacturer’s problem is rearranged by using Lemma 6 as follows:

max ΠR(Q0) = −(ci + w)Q0 − cdRQ0[αq + (1− β)(1− q)]

− cdisQ0[(1− α)q + β(1− q)]− cdRQ0β(1− q)

+ (pr − cr) min {Q0(1− α)q,D}

− cdR max {0, Q0(1− α)q −D}

subject to Q0 ≤
rw

2
.

Lemma 7. In the optimal solution of the remanufacturer’s problem, the actual quan-

tity of remanufacturables is always less than or equal to the deterministic market

demand, i.e, Q∗0(1− α)q ≤ D.

Proof. Assume that Q∗0(1− α)q > D. Define ε > 0 such that ε = Q∗0(1− α)q −D.

Then, the remanufacturer’s profit at Q0 = ε+D
(1−α)q

can be expressed as:

ΠR

(
ε+D

(1− α)q

)
=
−(ε+D)

(1− α)q

(
ci + w + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

)

+(pr − cr)D + cdRε

Now, consider the remanufacturer’s profit at Q0 = D
(1−α)q

is expressed as follows:

ΠR

(
D

(1− α)q

)
=

−D
(1− α)q

(
ci + w + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

)

+(pr − cr)D
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Then,

ΠR

(
ε+D

(1− α)q

)
− ΠR

(
D

(1− α)q

)

=
−ε

(1− α)q

 ci + w + cdR[αq + (1− β)(1− q)] + cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)


−cdRε < 0

Therefore, for any ε > 0 such that ε = Q0(1 − α)q −D, the remanufacturer’s profit

at Q0 = ε+D
(1−α)q

is smaller than at Q0 = D
(1−α)q

. Hence, Q∗0(1− α)q ≤ D. �

Intuitively, after the disassembly process, if the number of remanufacturables exceeds

the demand, then the remanufacturer only processes D units. Q − D units are not

remanufactured and disposed of at a unit cost of cdR. Therefore, the remanufacturer’s

profit will decrease.

The remanufacturer’s problem is rearranged by using Lemma 7 as follows:

max ΠR(Q0) = −(ci + w)Q0 − cdR[αq + (1− β)(1− q)]Q0

− cdis[(1− α)q + β(1− q)]Q0 − cdR(1− q)βQ0

+ (pr − cr)q(1− α)Q0

subject to Q0 ≤ min

{
rw

2
,

D

(1− α)q

}
.

Proposition 5. The remanufacturer’s optimal order quantity under deterministic de-

mand case is characterized by:

Q∗0 =


min

{
rw
2
, D

(1−α)q

}
if pr(1− α)q > A4

0 o/w

where A4 is given by:

A4 = (ci + w) + cdR[αq + (1− β)(1− q)] + cdis[(1− α)q + β(1− q)]
+ cdRβ(1− q) + cr(1− α)q.
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Proof. The first derivative of ΠR(Q0) with respect to Q0 is:

dΠR(Q0)

dQ0

= − (ci + w)− cdR[αq + (1− q)]− cdis[(1− α)q + β(1− q)]

+(pr − cr)(1− α)q

When pr(1− α)q > A4, dΠR(Q0)
dQ0

> 0, that is, ΠR(Q0) is increasing for

0 ≤ Q0 ≤ min
{
rw
2
, D

(1−α)q

}
. Hence, Q∗0 = min

{
rw
2
, D

(1−α)q

}
. Otherwise,

dΠR(Q0)
dQ0

< 0, then Q∗0 = 0.

�

Note that pr(1−α)q present the marginal revenue from remanufacturing of additional

one more unit, and A4 = (ci +w) + cdR[αq+ (1−β)(1− q)] + cdis[(1−α)q+β(1−
q)] + cdRβ(1− q) + cr(1− α)q represents the related cost margin that is realized by

collection and remanufacturing of one more item. If pr(1− α)q > A4, then ΠR(Q0)

is an increasing function of Q0. Hence, the remanufacturer sets Q∗0 is equal to the

its upper bound such that Q∗0 = min
{
rw
2
, D

(1−α)q

}
. Otherwise, the remanufacturer is

better off not to order one more additional unit, hence Q∗0 = 0.

The results show that the optimal order quantity in this setting is similar to the optimal

collection quantity in the base model. Only difference is that the collector’s optimal

decision also affects the remanufacturer’s optimal order size. In the base model, the

remanufacturer sets his order quantity to be equal to the exact number of remanufac-

turables after disassembly, that is QR = D = Q0(1 − α)q, and the collector collects

Q0 = D
(1−α)q

units of used item to satisfy the remanufacturer’s order. In this setting,

however, if the amount of supply, rf ∗, is smaller than D
(1−α)q

, then the remanufac-

turer’s order quantity is as much as supply. Otherwise, he sets the order quantity such

that the actual quantity of remanufacturables to be exactly equal to the deterministic

demand like the base model. Moreover, the collector undertakes the responsibility of

sorting in the base model, but the inspection process is performed by the remanufac-

turer in this model. Because of the deterministic demand, the location of the sorting

does not affect the remanufacturer’s optimal order size.
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3.4 Model III-Price Dependent Supply under Collector’s Lead

This model is also generated as Stackelberg game and the remanufacturer is respon-

sible for sorting like the previous model, but in this model Stackelberg leader is the

collector and the remanufacturer is the follower. Hence, the difference from the base

model is the price dependent supply and the sorting location. Due to the change in the

roles of the agents in the game, the sequence of events also changes, which is given

as follows:

1. The collector determines f and collects S(f) = rf units,

2. The remanufacturer orders Q0 units,

3. The collector delivers min {rf,Q0} to the remanufacturer,

4. The remanufacturer sorts min {rf,Q0} and remanufactures

min {qmin {rf,Q0} (1− α), D}.

We assume that the transfer price is exogenous. The remanufacturer’s problem is

analyzed first. Given the acquisition price set by the collector, the remanufacturer

aims to maximize his expected profit which is given by:

max ΠR(Q0) = −(ci + w) min {rf,Q0}

−cdR min {rf,Q0} [αq + (1− β)(1− q)]

−cdis min {rf,Q0} [(1− α)q + β(1− q)]

−cdR min {rf,Q0} (1− q)β

+(pr − cr) min {min {rf,Q0} (1− α)q,D}

−cdR max {0,min {rf,Q0} (1− α)q −D}

The revenue and cost items that are used in the remanufacturer’s profit function are

explained below:

• Inspection cost: ci min {rf,Q0};

• Transfer cost of shipped items: wmin {rf,Q0};
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• Disposal cost of non-remanufacturables after inspection:

cdR min {rf,Q0} [αq + (1− β)(1− q)]

• Disassembly cost: cdis min {rf,Q0} [(1− α)q + β(1− q)]

• Disposal cost of non-remanufacturables after disassembly:

cdR min {rf,Q0} β(1− q)

• Disposal cost of excess remanufacturables:

cdR max {0,min {rf,Q0} (1− α)q −D}

• Revenue from remanufacturing : pr min {min {rf,Q0} (1− α)q,D}

• Remanufacturing cost : cr min {min {rf,Q0} (1− α)q,D}

Lemma 8. The remanufacturer’s optimal order quantity is less than or equal to the

amount of supply, that is Q∗0 ≤ rf .

Proof. This proof is similar to the proof of Lemma 6, hence it is omitted. �

Lemma 9. In the optimal solution to the remanufacturer’s problem, the actual quan-

tity of remanufacturables is always less than or equal to the deterministic market

demand such that Q∗0(1− α)q ≤ D.

Proof. This is omitted, since this proof is essentially the same as that of Lemma

7. �

The remanufacturer’s maximization problem is simplified by using Lemma 8 and

Lemma 9 as follows:

max ΠR(Q0) = −(ci + w)Q0 − cdR[αq + (1− β)(1− q)]Q0

− cdis[(1− α)q + β(1− q)]Q0 − cdRβ(1− q)Q0

+ (pr − cr)(1− α)qQ0

subject to Q0 ≤ min

{
rf,

D

(1− α)q

}
.
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Proposition 6. The remanufacturer’s optimal order quantity under deterministic de-

mand case is characterized by:

Q∗0 =


min

{
rf, D

(1−α)q

}
if pr(1− α)q > A4

0 o/w

where A4 is defined in Proposition 5 by:

A4 = (ci + w) + cdR[αq + (1− β)(1− q)] + cdis[(1− α)q + β(1− q)]
+ cdRβ(1− q) + cr(1− α)q.

Proof. The first derivative of ΠR(Q0) with respect to Q0 is:

dΠR(Q0)

dQ0

= −(ci + w)− cdR[αq + (1− β)(1− q)]

−cdis[(1− α)q + β(1− q)]

−cdRβ(1− q) + (pr − cr)q(1− α)

When pr(1− α)q > A4, dΠR(Q0)
dQ0

> 0, that is, ΠR(Q0) is increasing for

0 ≤ Q0 ≤ min
{
rf, D

(1−α)q

}
. Hence, Q∗0 = min

{
rf, D

(1−α)q

}
. Otherwise,

dΠR(Q0)
dQ0

< 0, then Q∗0 = 0.

�

Next, we consider the collector’s problem which is:

max ΠC(f) = −f(rf) + wmin {rf,Q∗0}

subject to f ≥ 0.

Lemma 10. In the optimal solution, the amount of supply cannot exceed remanufac-

turer’s order quantity, such that rf ∗ ≤ Q∗0.

Proof. This is omitted, since the proof is essentially the same as that of Lemma 4.

�
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Using Lemma 10, the collector’s constrained problem is rearranged as:

max ΠC(f) = −f(rf) + w(rf)

subject to rf ≤ D

(1− α)q

f ≥ 0.

Lemma 11. ΠC(f) is a concave function in f .

Proof. This is omitted, since the proof is essentially the same as that of Lemma 5. �

Proposition 7. Given the remanufacturer’s optimal order quantity Q∗0, the optimal

acquisition price is given by:

f ∗ =


w
2

if rw
2
≤ D

(1−α)q

D
(1−α)qr

o/w

.

Proof. The first derivative of ΠC(f) with respect to f is:

dΠC(f)

df
= −rf + r(w − f)

The unconstrained maximizer of ΠC(f) is given by dΠC(f)
df

= 0, which is w
2

. If
rw
2
< D

(1−α)q
, it is the optimal solution. Hence, f ∗ = w

2
. Otherwise, the constraint is

binding and f ∗ = D
(1−α)qr

. �

The optimal acquisition price and the remanufacturer’s order size in the third model

are the same as in the second model, since the wholesale price is exogenous. It

shows that change in the roles of the supply chain members as leader and follower

does not affect the optimal solution for the second and third model. On the other

hand, when the supply is price dependent, the optimal order quantity is similar to the

optimal collection quantity in the base model because of the deterministic demand.

The only difference is that the collector can affect the collection quantity by changing

the acquisition price after or before the remanufacturer makes an order. Therefore,

the optimal order quantity is not affected by changing the responsibility of the sorting

and the model setting.
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3.5 Model IV-Price Dependent Supply and Demand under Remanufacturer’s

Lead

In this model, the demand for remanufactured items is now price sensitive. That is,

the remanufacturer can increase the demand by decreasing the selling price pr of re-

manufactured products. We assume that in this model the transfer price is exogenous

like previous models. The sequence of events in this model is as follows:

1. The remanufacturer determines pr and soD(pr) = a−bpr, and ordersQ0 units,

2. The collector determines f and collects S(f) = rf ,

3. The collector delivers min {rf,Q0} to the remanufacturer at unit transfer price

of w,

4. The remanufacturer sorts min {rf,Q0} and remanufactures

min {min {rf,Q0} (1− α)q,D(pr)}.

The collector’s problem is exactly the same as the second model. Therefore, the

analysis of the second stage is omitted. Recall that the optimal acquisition price for

the collector is:

f ∗ =


w
2

if rw
2
≤ Q0

Q0

r
o/w

.

The remanufacturer optimizes the selling price pr and the order quantity Q0 given

that the optimal acquisition price f ∗. The remanufacturer’s profit function is:

ΠR(Q0, pr) = − (ci + w) min {rf ∗, Q0}

− cdR min {rf ∗, Q0} [αq + (1− β)(1− q)]

− cdis min {rf ∗, Q0} [(1− α)q + β(1− q)]

− cdR min {rf ∗, Q0} β(1− q)

+ (pr − cr) min {min {rf ∗, Q0} (1− α)q,D(pr)}

− cdR max {0,min {rf ∗, Q0} (1− α)q −D(pr)}
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The revenue and cost items that are used in the remanufacturer’s profit function are:

• Inspection cost: ci min {rf ∗, Q0};

• Transfer cost of shipped items: wmin {rf ∗, Q0};

• Disposal cost of non-remanufacturables after sorting:

cdR min {rf ∗, Q0} [αq + (1− β)(1− q)]

• Disassembly cost: cdis min {rf ∗, Q0} [(1− α)q + β(1− q)]

• Disposal cost of non-remanufacturables after disassembly:

cdR min {rf ∗, Q0} β(1− q)

• Disposal cost of excess remanufacturables:

cdR max {0, qmin {rf ∗, Q0} (1− α)−D(pr)}

• Revenue from remanufacturing : pmin {qmin {rf ∗, Q0} (1− α), D(pr)}

• Remanufacturing cost : cr min {qmin {rf ∗, Q0} (1− α), D(pr)}

Lemma 12. The remanufacturer’s optimal order quantity should be less than or equal

to the amount of supply, that is Q∗0 ≤ rf ∗.

Proof. This proof is the same as the proof of the Lemma 6. �

The remanufacturer’s problem is rearranged by using Lemma 12 as follows:

max ΠR(Q0, pr) = −(ci + w)Q0 − cdR[αq + (1− β)(1− q)]

− cdis[(1− α)q + β(1− q)]Q0 − cdRβ(1− q)Q0

+ (pr − cr) min {(1− α)qQ0, D(pr)}

− cdR max {0, (1− α)qQ0 −D(pr)}

subject to Q0 ≤ r
w

2
.

Lemma 13. In the optimal solution to the remanufacturer’s problem, the actual quan-

tity of remanufacturables should be equal to the price dependent deterministic de-

mand such that Q = D(pr).
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Proof. The proof is provided in Appendix C. �

Due to Lemma 13, in the optimal solution, we have Q∗0 = a−bpr
(1−α)q

and the remanufac-

turer’s problem is rearranged as follows:

max ΠR(pr) =
a− bpr

(1− α)q

(
−ci − w − cdR[αq + (1− β)(1− q)]
−cdis[(1− α)q + β(1− q)]− cdRβ(1− q)

)

+ (a− bpr)(pr − cr)

subject to
a− bpr

(1− α)q
≤ r

w

2
.

Lemma 14. ΠR(pr) is a concave in pr.

Proof. The first derivative of ΠR(pr) with respect to pr is:

dΠR(pr)

dpr
=

b

(1− α)q

 ci + w + cdR[αq + (1− β)(1− q)]
+ cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


+(a− 2bpr + crb)

The second derivative of ΠR(pr) with respect to pr is:

d2ΠR(pr)

dp2
r

= −2b < 0

Hence, ΠR(pr) is concave in pr. �

Proposition 8. Let p∗r denote the optimal selling price for the remanufacturer’s prob-

lem. Let p
′
r denote the solution to dΠR(pr)

dpr
= 0. Then,

p∗r =


p
′
r if a−bp′r

(1−α)q
≤ rw

2

1
b

{
a− rw

2
(1− α)q

}
o/w

.
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Proof. The first derivative of ΠR(pr) with respect to pr is:

dΠR(pr)

dpr
=

b

(1− α)q

(
ci + w + cdR[αq + (1− β)(1− q)]
+ cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

)

+(a− 2bpr + crb)

p
′
r is the solution to dΠR(pr)

dpr
= 0. Then,

p
′

r =
1

2(1− α)q

 (ci + w) + cdR[αq + (1− β)(1− q)]
+(cdis + cdR)β(1− q)


+

1

2
(
a

b
+ cr + cdis)

The unconstrained maximizer of ΠR(pr) is p′r. If a−bp′r
(1−α)q

< rw
2

, p′r is feasible and

hence, optimal. Otherwise, the constraint is binding and p∗r = 1
b

{
a− rw

2
(1− α)q

}
.

�

Intuitively, for p′r such that a−bp′r
(1−α)q

< rw
2

, the remanufacturer sets the optimal selling

price as p′r in order to maximize his profit. When a−bp′r
(1−α)q

≥ rw
2

, the price sensitive

demand a − bp′r is not fully satisfied and a − bp′r − (1 − α)qrw
2

units of demand is

lost. Hence, the remanufacturer sets the price to make the actual quantity of remanu-

facturables sent to be equal to price dependent demand.

In this setting, the remanufacturer can affect his order quantity by changing the sell-

ing price. Since the demand is price dependent, the remanufacturer always tries to set

the price dependent deterministic demand equal to the quantity of exact remanufac-

turables after the disassembly process. The optimal acquisition price expressions for

Model II and Model IV are similar, but the collector’s decision is affected by price

sensitive demand in this model.
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3.6 Model V-Price Dependent Supply and Demand under Collector’s Lead

In this model, Stackelberg’s leader is the collector and the remanufacturer is the fol-

lower unlike the previous model. Regarding to the change in the roles of the agents

in the game, the sequence of decision making also changes as follows:

1. The collector sets f and collects S(f) = rf units,

2. The remanufacturer determines pr and soD(pr) = a−bpr, and ordersQ0 units,

3. The collector delivers min {rf,Q0} to the remanufacturer at a unit transfer

price of w,

4. The remanufacturer sorts min {rf,Q0} and remanufactures

min {qmin {rf,Q0} (1− α), D(pr)}.

The remanufacturer optimizes the selling price pr and the order quantity Q0 given the

acquisition price f . The remanufacturer’s expected profit is defined as follows:

ΠR(Q0, pr) = − (ci + w) min {rf,Q0}

− cdR min {rf,Q0} [αq + (1− β)(1− q)]

− cdis min {rf,Q0} [(1− α)q + β(1− q)]

− cdR min {rf,Q0} β(1− q)

+ (pr − cr) min {qmin {rf,Q0} (1− α), D(pr)}

− cdR max {0, qmin {rf,Q0} (1− α)−D(pr)} .

The revenue and cost items that are used in the remanufacturer’s profit function are:

• Inspection cost: ci min {rf,Q0};

• Transfer cost of shipped items: wmin {rf,Q0};

• Disposal cost of non-remanufacturables after sorting:

cdR min {rf,Q0} [αq + (1− β)(1− q)]

• Disassembly cost: cdis min {rf,Q0} [(1− α)q + β(1− q)]
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• Disposal cost of non-remanufacturables after disassembly:

cdR min {rf,Q0} β(1− q)

• Disposal cost of excess remanufacturables:

cdR max {0,min {rf,Q0} (1− α)q −D(pr)}

• Revenue from remanufacturing : pr min {min {rf,Q0} (1− α)q,D(pr)}

• Remanufacturing cost : cr min {min {rf,Q0} (1− α)q,D(pr)}

Lemma 15. In the optimal solution, the remanufacturer’s order quantity should be

less than or equal to the amount of supply, that is Q∗0 ≤ rf .

Proof. The proof is omitted as it is similar to the proof of Lemma 6. �

Lemma 16. In the optimal solution to the remanufacturer’s problem, the actual quan-

tity of remanufacturables should be equal to the price dependent deterministic de-

mand such that Q = D(pr).

Proof. The proof is omitted since it is essentially the same as that of Lemma 13. �

Due to Lemma 16, in the optimal solution, we have Q∗0 = a−bpr
(1−α)q

and the remanufac-

turer’s problem is rearranged as follows:

max ΠR(pr) =
a− bpr

(1− α)q

(
−ci − w − cdR[αq + (1− β)(1− q)]
−cdis[(1− α)q + β(1− q)]− cdRβ(1− q)

)

+ (a− bpr)(pr − cr)

subject to
a− bpr

(1− α)q
≤ rf.

Lemma 17. ΠR(pr) is a concave function in pr.

Proof. This is omitted as it is essentially the same as the proof of Lemma 14. �
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Proposition 9. Let p∗r denote the optimal selling price for the remanufacturer’s prob-

lem, and p
′
r denote the solution to dΠR(pr)

dpr
= 0. Then,

p∗r =


p
′
r if a−bp′r

(1−α)q
≤ rf

1
b
{a− rf(1− α)q} o/w

.

Proof. The first derivative of ΠR(pr) with respect to pr is:

dΠR(pr)

dpr
=

b

(1− α)q

 ci + w + cdR[αq + (1− β)(1− q)]
+ cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


+(a− 2bpr + crb)

p
′
r is the solution to dΠR(pr)

dpr
= 0. Then,

p
′

r =
1

2(1− α)q

 (ci + w) + cdR[αq + (1− β)(1− q)]
+(cdis + cdR)β(1− q)


+

1

2
(
a

b
+ cr + cdis)

The unconstrained maximizer of ΠR(pr) is p′r. If a−bp′r
(1−α)q

< rf , p′r is feasible. Hence,

it is optimal. Otherwise, the constraint is binding and p∗r = 1
b
{a− rf(1− α)q}.

�

Next, we analyze the collector’s problem in order to find the optimal acquisition price.

The collector collects rf units of supply at a unit acquisition cost of f and the reman-

ufacturer ordersQ0 units of used items, then the collector sendsmin {rf,Q0} units to

the remanufacturer. The collector’s profit is derived taking into account of the optimal

selling price that is determined in the first decision making stage:

ΠC(f) = −f(rf) + wmin

{
rf,

a− bp∗r
(1− α)q

}
.

Lemma 18. In the optimal solution, the amount of supply cannot exceed remanufac-

turer’s order quantity, such that rf ∗ ≤ a−bp∗r
(1−α)q

.
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Proof. This is omitted, since the proof is essentially the same as that of Lemma 4. �

The collector’s problem is rearranged by using Lemma 18 as follows:

max ΠC(f) = −f(rf) + wrf

subject to rf ≤ a− bp∗r
(1− α)q

.

Lemma 19. ΠC(f) is a concave function in f .

Proof. This is omitted, since it is the same as the proof of Lemma 5. �

Proposition 10. Given the optimal selling price p∗r , the optimal acquisition price is

given by:

f ∗ =


w
2

if rw
2
≤ a−bp′r

(1−α)q

a−bp′r
(1−α)qr

o/w

.

Proof. The first derivative of ΠC(f) with respect to f is:

dΠC(f)

df
= −rf + r(w − f)

The unconstrained maximizer of ΠC(f) is given by dΠC(f)
df

= 0, which is w
2

. If
rw
2
< a−bp′r

(1−α)q
, it is the optimal solution. Hence, f ∗ = w

2
. Otherwise, the constraint is

binding and f ∗ = a−bp′r
(1−α)qr

. �

When rw
2
< a−bp′r

(1−α)q
, the collector sets the acquisition price to be equal to w

2
in order

to maximize his profit. Otherwise, rw
2
− a−bp′r

(1−α)q
units of supply is not used for reman-

ufacturing and the remanufacturer does not pay anything for this excess amount of

supply. Therefore, it only results in an increase in the collector’s cost and hence, the

collector sets the acquisition price such that rf ∗ = a−bp′r
(1−α)q

.

The optimal acquisition price and selling price are the same in Model IV and Model

V, since the wholesale price is exogenous. The results show that the change in the

roles of the supply chain members as leader and follower only affects the order of
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decision making, but it does not affect the optimal value of the collection quantity

and the remanufacturer’s order quantity. The optimal order quantity in Model IV and

Model V are similar to the base model and other three settings, the difference is that

the remanufacturer also affects the demand by changing the selling price.

3.7 Model VI-Base Model with Price Dependent Supply

In this model, we consider the base model with price dependent supply in a single

period context. The sequence of events and the responsibilities of the agents are

the same as the base model. The only difference from the base model is that the

acquisition price is also a decision variable. The remanufacturer decides the optimal

production lot size QR and the collector determines the optimal acquisition price f in

order to maximize his profit. The sequence of events in this model is as follows:

1. The remanufacturer orders QR units,

2. The collector determines f ,

3. The collector sorts imperfectly rf units and transports QC units, which is equal

to [(1− α)q + β(1− q)](rf), to the remanufacturer,

4. The remanufacturer disassembles and sorts actually QC units, then remanufac-

tures min {(1− α)qrf,QR}.

Since the remanufacturer is the Stackelber leader, the collector’s problem is firstly

analyzed and the optimal acquisition price f is determined in order to maximize the

collector’s profit. The collector’s profit is characterized taking into account the re-

lationship between the amount of actual remanufacturables and the remanufacturer’s

order size as follows:

ΠC(f) =


ΠI
C(f) if f ≤ QR

(1−α)qr

ΠII
C (f) if f > QR

(1−α)qr

where
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ΠI
C(f) = w(1− α)qrf − f(rf)− ci(rf)− cdC [αq + (1− β)(1− q)](rf)

−ct[(1− α)q + β(1− q)](rf)− b0[QR − (1− α)q(rf)]

and

ΠII
C (f) = wQR − f(rf)− ci(rf)− cdC [αq + (1− β)(1− q)](rf)

−ct[(1− α)q + β(1− q)](rf).

The revenue and cost items in the collector’s profit function are:

• Collection cost of used items: f(rf);

• Inspection cost: ci(rf);

• Disposal cost of non-remanufacturables:cdC [αq + (1− β)(1− q)](rf)

• Transportation cost of shipped items: ct[(1− α)q + β(1− q)](rf)

• Transfer payment by the remanufacturer:


w(1− α)qrf if f ≤ QR

(1−α)qr

wQR if f > QR
(1−α)qr

• Penalty cost paid by the collector:


b0[QR − (1− α)qrf ] if f ≤ QR

(1−α)qr

0 if f > QR
(1−α)qr

Lemma 20. ΠC(f) is continuous, but not differentiable at f = QR
(1−α)qr

.

Proof. The proof is provided in Appendix D. �

Lemma 21. ΠI
C(f) and ΠII

C (f) are concave functions in f .

Proof. The first derivatives of ΠI
C(f) and ΠII

C (f) with respect to f are given as:

dΠI
C(f)

df
= −2rf − cir − cdC [αq + (1− β)(1− q)]r

−ct[(1− α)q + β(1− q)]r + w(1− α)q r + b0(1− α)q r
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dΠII
C (f)

df
= −2rf − cir − cdC [αq + (1− β)(1− q)]r

−ct[(1− α)q + β(1− q)].

The second derivatives of ΠI
C(f) and ΠII

C (f) with respect to f are given as:

d2ΠI
C(f)

df 2
=

d2ΠII
C (f)

df 2
= −2r < 0

The second derivatives of ΠI
C(f) and ΠII

C (f) with respect to f are always less than

zero, so it is concluded that they are concave in f .

�

Proposition 11. Let f ∗ denote the optimal acquisition fee to the collector’s profit

function, and f
′

denote the solution to dΠIC(f)

df
= 0. Then, given the remanufacturer’s

order quantity QR, f ∗ is given by:

f ∗ =


f
′

if f
′ ≤ QR

(1−α)qr

QR
(1−α)qr

o/w

where f
′
= (w+b0)(1−α)q−ci−cdC [αq+(1−β)(1−q)]−ct[(1−α)q+β(1−q)]

2
.

Proof. If f ′ ≤ QR
(1−α)qr

, then dΠIC(f)

df
|
f=

QR
(1−α)qr

< 0. Hence, ΠI
C(f) is decreasing at

QR
(1−α)qr

. Since dΠIIC (f)

df
|
f=

QR
(1−α)qr

≤ 0, f ∗ = f
′ . If f ′ > QR

(1−α)qr
, then dΠIC(f)

df
|
f=

QR
(1−α)qr

>

0. Hence, ΠI
C(f) is increasing at QR

(1−α)qr
. Since dΠIIC (f)

df
|
f=

QR
(1−α)qr

≤ 0, f ∗ = QR
(1−α)qr

.

�

Proposition 11 is depicted in Figure 3.1. In the first graph, the case in which ΠI
C(f)

and ΠII
C (f) are decreasing at QR

(1−α)qr
is depicted. Hence, f ∗ = f

′ . In the second

graph, ΠI
C(f) is increasing and ΠII

C (f) is decreasing at QR
(1−α)qr

. Then, ΠC(f) takes

maximum value at QR
(1−α)qr

. Hence, f ∗ = QR
(1−α)qr

.
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(a) f∗ = f
′

(b) f∗ = QR
(1−α)qr

Figure 3.1: Collector’s Expected Profit for given f ∗
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The remanufacturer’s problem is formulated next. When f ′ ≤ QR
(1−α)qr

, then f ∗ = f
′

and (1 − α)qrf ∗ ≤ QR. On the other hand, if f ′ > QR
(1−α)qr

, then f ∗ = QR
(1−α)qr

and (1 − α)qrf ∗ = QR. Therefore, the actual quantity of remanufacturables that is

represented as Q = (1− α)qrf ∗ is always less than or equal to the remanufacturer’s

order size QR. If the remanufacturer sets QR such that QR ≤ D, then his expected

profit is expressed by:

ΠI
R(QR) = −cdis[(1− α)q + β(1− q)]rf ∗ − cdRβ(1− q)rf ∗

−w(1− α)qrf ∗ + b0(QR − (1− α)qrf ∗) + (pr − cr)(1− α)qrf ∗

−b(D − (1− α)qrf ∗)

Otherwise, if he sets QR such that QR > D, then his expected profit is expressed by:

ΠII
R (QR) = −cdis[(1− α)q + β(1− q)]rf ∗ − cdRβ(1− q)rf ∗

−w(1− α)qrf ∗ + b0(QR − (1− α)qrf ∗)− cr(1− α)qrf ∗

+prmin {D, (1− α)qrf ∗}

−bmax {D − (1− α)qrf ∗, 0}

+cRmax {(1− α)qrf ∗ −D, 0}

ΠI
R(QR) is rearranged by substituting f ∗ as follows:

ΠI
R(QR) =



−cdis[(1− α)q + β(1− q)]rf ′

−cdRβ(1− q)rf ′ − w(1− α)qrf
′

+b0(QR − (1− α)qrf
′
) if f

′
(1− α)qr ≤ QR,

+(pr − cr)(1− α)qrf
′

−b(D − (1− α)qrf
′
)

−cdis[(1− α)q + β(1− q)] QR
(1−α)q

−cdRβ(1− q) QR
(1−α)q

− wQR o/w

+(pr − cr)QR − b(D −QR)
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ΠII
R (QR) is rearranged by substituting f ∗ as follows:

ΠII
R (QR) =



−cdis[(1− α)q + β(1− q)]rf ′

−cdRβ(1− q)rf ′ − w(1− α)qrf
′

+b0(QR − (1− α)qrf
′
)

−cr(1− α)qrf
′ if f ′(1− α)qr ≤ QR,

+prmin
{
D, (1− α)qrf

′}
−bmax

{
D − (1− α)qrf

′
, 0
}

+cRmax
{

(1− α)qrf
′ −D, 0

}

−cdis[(1− α)q + β(1− q)] QR
(1−α)q

−cdRβ(1− q) QR
(1−α)q

− wQR o/w

−crQR + prD + cR(QR −D)

Then, the remanufacturer’s profit can be expressed as:

ΠR(QR) =


ΠI
R(QR) if QR ≤ D

ΠII
R (QR) if QR > D.

The revenue and cost items that are used in the remanufacturer’s profit function are:

• Disassembly cost: cdis[(1− α)q + β(1− q)]rf ∗

• Disposal cost of non-remanufacturables: cdRβ(1− q)rf ∗

• Total payment to the collector: w(1− α)qrf ∗

• Penalty cost for the collector: b0(QR − (1− α)qrf ∗)

• Total remanufacturing cost: cr(1− α)qrf ∗

• Revenue from remanufacturing:

 pr(1− α)qrf ∗ if QR ≤ D

prmin {D, (1− α)qrf ∗} o/w
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• Penalty cost for unsatisfied demand: b(D − (1− α)qrf ∗) if QR ≤ D

bmax {D − (1− α)qrf ∗, 0} o/w

• Salvage revenue from excess remanufactured items: 0 if QR ≤ D

cRmax {(1− α)qrf ∗ −D, 0} o/w

Lemma 22. ΠR(QR) is continuous, but not differentiable at QR = D.

Proof. The proof is provided in Appendix E. �

From the proof of Lemma 22, when f ′(1 − α)qr ≤ QR, dΠR(QR)

dQR
= b0 and if b0 >

0, ΠR(QR) is increasing function of QR. Thus, the remanufacturer can set Q∗R as

large as possible regardless to the demand. It means that when the actual number

of remanufacturables is smaller than QR, the remanufacturer always makes a profit

from ordering of one more additional unit of item. It does not make much sense

since his profit converges to infinity while the collector’s profit converges to minus

infinity. Therefore, we set b0, which is paid by the collector to the remanufacturer for

the remanufacturer’s unsatisfied order, as zero and characterize the optimal solution

for the remanufacturer by Proposition 12.

Proposition 12. The optimal remanufacturer’s order quantity is given by:

Q∗R =


D if pr + b > A2

0 o/w

A2 is defined in Proposition 2 such that A2 = (cdis + cr + w) + (cdis + cdR)β(1−q)
(1−α)q

.

Proof. When QR < D, the first derivative of ΠR(QR) with respect to QR is:

dΠI
R(QR)

dQR

=


0 if f

′
(1− α)qr ≤ QR

−cdis − (cr + w − pr − b)
−(cdis + cdR)β(1−q)

(1−α)q
o/w .
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When QR > D, the first derivative of ΠR(QR) with respect to QR is:

dΠII
R (QR)

dQR

=


0 if f

′
(1− α)qr ≤ QR

−cdis − (cr + w − cR)

−(cdis + cdR)β(1−q)
(1−α)q

o/w .

As we assume cR < A2 in Section 3.1, we have dΠIIR (QR)

dQR
≤ 0. If pr + b > A2 then,

dΠIR(QR)

dQR
≥ 0. Hence, Q∗R = D. Otherwise, dΠIR(QR)

dQR
≤ 0 and dΠIIR (QR)

dQR
≤ 0. Hence

Q∗R = 0.

�

The proof is explained in detail in Figure 3.2 and Figure 3.3. The profits are depicted

regarding to the relationship between f ′(1 − α)qr and D. (pr + b) represents the

marginal revenue associated with remanufacturing one more additional unit andA2 =

(cdis+cr+w)+(cdis+cdR)β(1−q)
(1−α)q

represents the related margin lost. When pr+b > A2,

remanufacturing of one more additional unit is profitable for the remanufacturer.

In part (a) of Figure 3.2, whenQR ≤ f
′
(1−α)qr ≤ D, ΠR(QR) increases with slope

pr+b−A2 untilQR = f
′
(1−α)qr. Hence, dΠIR(QR)

dQR
> 0. After this point, an increase

in QR does not affect the remanufacturer’s profit. Hence, dΠIR(QR)

dQR
= 0 between

f
′
(1−α)qr < QR ≤ D and dΠIIR (QR)

dQR
= 0 atQR > D. In part (b), when f ′(1−α)qr >

D, ΠR(QR) increases until QR reaches the demand with slope pr + b − A2. Hence,
dΠIR(QR)

dQR
> 0. After that, betweenD < QR ≤ f

′
(1−α)qr, the profit decreases with an

increase in QR. Hence, dΠIIR (QR)

dQR
< 0. When QR > f

′
(1−α)qr, the remanufacturer’s

profit does not change and dΠIIR (QR)

dQR
= 0. From the figure, ΠR(QR) takes maximum

value atQ∗R = D. Hence, when pr+b > A2 thenQ∗R = D. On the other hand, when

pr + b < A2 profits are depicted regarding to the relationship between f ′(1 − α)qr

and D in Figure 3.3. In part (a), when QR ≤ f
′
(1 − α)qr ≤ D, ΠR(QR) decreases

until QR = f
′
(1− α)qr. Hence, dΠIR(QR)

dQR
< 0. After that, the profit does not change,

and hence dΠR(QR)

dQR
= 0. In part (b), when f ′(1 − α)qr > D, the remanufacturer’s

profit decreases until QR = f
′
(1− α)qr. After this point, the remanufacturer’s profit

does not change and dΠIIR (QR)

dQR
= 0. Therefore, ΠR(QR) takes its maximum value at

Q∗R = 0. Hence, when pr + b < A2 then Q∗R = 0.
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(a) f
′
(1− α)qr ≤ D

(b) f
′
(1− α)qr > D

Figure 3.2: ΠR(QR) when pr + b > A2
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(a) f
′
(1− α)qr ≤ D

(b) f
′
(1− α)qr > D

Figure 3.3: ΠR(QR) when pr + b < A2
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The remanufacturer’s optimal order size is equal to the deterministic demand. The

result is the same as in the base model. The only difference from the base model is

that the collector can affect the collection quantity by changing the acquisition price.

However, the collector’s pricing decision does not affect the remanufacturer’s optimal

order size because of the deterministic demand.

3.8 Model VII-The Base Model with Price Dependent Supply and Demand

In this model, we consider the base model with price dependent supply and price

dependent demand in a single period context. The only difference from the previous

model is that the market demand has a deterministic price dependent linear function

such that D(pr) = a − b1pr, where a, b1 > 0. Therefore, the remanufacturer can

set the demand by changing the selling price. It is noted that we use parameter b1 to

denote the sensitivity of demand to selling price instead of b since b has been already

defined as unit penalty cost for unmet demand in the base model.

For this model, we assume that unit penalty cost b0 paid by the collector to the re-

manufacturer as zero like Model VI. Otherwise, the remanufacturer can order arbi-

trarily large quantity of remanufacturables is larger than the price sensitive demand

regardless to the actual quantity of remanufacturables sent by the collector. It is not

meaningful since the remanufacturer always makes a profit for unsatisfied unit of or-

der while the collector loses profit. When b0 = 0, the remanufacturer sets his order

quantity exactly equal to the price sensitive demand. There are two decision vari-

ables: the optimal selling price pr determined by the remanufacturer, and the optimal

acquisition price f set by the collector. The sequence of events in this model is as

follows:

1. The remanufacturer determines pr and D(pr) = a − b1pr, then orders D(pr)

units,

2. The collector determines f ,

3. The collector sorts imperfectly rf units and transports QC units, [(1 − α)q +

β(1− q)]rf , to the remanufacturer,
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4. The remanufacturer disassembles and sorts actually QC units,

5. The remanufacturer remanufactures min {(1− α)qrf,D(pr)}.

The collector’s problem is the same as in Model VI. The only difference is that the

order quantity for the remanufacturer is equal to price sensitive demand. Therefore,

the analysis of the second stage is omitted. The optimal acquisition price for the

collector is:

f ∗ =


f
′ if f ′ ≤ D(pr)

(1−α)qr

D(pr)
(1−α)qr

o/w

where f ′ = (w+b0)(1−α)q−ci−cdC [αq+(1−β)(1−q)]−ct[(1−α)q+β(1−q)]
2

.

The remanufacturer optimizes the selling price pr given that the optimal acquisition

price f ∗. Then, his expected profit is expressed by:

ΠR(pr) = −cdis[(1− α)q + β(1− q)]rf ∗ − cdRβ(1− q)rf ∗

− wmin {(1− α)qrf ∗, D(pr)}

+ (pr − cr) min {(1− α)qrf ∗, D(pr)}

− bmax {D(pr)− (1− α)qrf ∗, 0}

− cdRmax {(1− α)qrf ∗ −D(pr), 0}

The revenue and cost items that are used in the remanufacturer’s profit function are:

• Disassembly cost: cdis[(1− α)q + β(1− q)]rf ∗

• Disposal cost of non-remanufacturables: cdRβ(1− q)rf ∗

• Total payment to the collector: wmin {(1− α)qrf ∗, D(pr)}

• Total remanufacturing cost: cr min {(1− α)qrf ∗, D(pr)}

• Revenue from remanufacturing : pr min {(1− α)qrf ∗, D(pr)}

• Penalty cost for unsatisfied demand: bmax {D(pr)− (1− α)qrf ∗, 0}

• Disposal cost of excess remanufacturables: cdRmax {(1− α)qrf ∗ −D(pr), 0}
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Lemma 23. In the optimal solution, the price sensitive demand should be equal to

the actual quantity of remanufacturables sent by the collector, that is a − b1p
∗
r =

(1− α)qrf ∗.

Proof. We will prove this lemma by contradiction. Consider a selling price such that

a− b1pr > (1− α)qrf ∗. Define ε > 0 such that ε = a− b1pr − (1− α)qrf ∗. Then,

the remanufacturer’s profit at pr = a−(1−α)qrf∗−ε
b1

can be expressed as:

ΠR

(
a− (1− α)qrf ∗ − ε

b1

)
= −cdis[(1− α)q + β(1− q)]rf ∗ − cdRβ(1− q)rf ∗

−w(1− α)qrf ∗ + (pr − cr)(1− α)qrf ∗

−bε

When a − b1pr = (1 − α)qrf ∗, then the remanufacturer’s profit at pr = a−(1−α)qrf∗

b1

is expressed as follows:

ΠR

(
a− (1− α)qrf ∗

b1

)
= −cdis[(1− α)q + β(1− q)]rf ∗ − cdRβ(1− q)rf ∗

−w(1− α)qrf ∗ + (pr − cr)(1− α)qrf ∗

Then,

ΠR

(
a− (1− α)qrf ∗ − ε

b1

)
− ΠR

(
a− (1− α)qrf ∗

b1

)
= −bε < 0

Therefore, for any ε > 0, the remanufacturer’s profit at pr = a−(1−α)qrf∗−ε
b1

is smaller

than at pr = a−(1−α)qrf∗

b1
. Hence, a− b1pr = (1− α)qrf ∗ is optimal.

�

If the remanufacturer sets the demand to be larger than the actual quantity of reman-

ufacturables after disassembly, the excess amount of demand is not satisfied from

the collector because he collects and sends only rf ∗ units in order to maximize his

profit. Therefore, the remanufacturer’s profit decreases by unit shortage cost of b for

unsatisfied demand.
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The remanufacturer’s profit is rearranged by using Lemma 23 as follows:

max ΠR(pr) = −cdis[(1− α)q + β(1− q)]
(
a− b1pr
(1− α)q

)
− cdRβ(1− q)

(
a− b1pr
(1− α)q

)
− w(a− b1pr)

+ (pr − cr)(a− b1pr)

subject to

a− b1pr = (1− α)qrf ∗.

Lemma 24. ΠR(pr) is a concave function in pr.

Proof. The first derivative of ΠR(pr) with respect to pr is:

dΠR(pr)

dpr
= b1

β(1− q)
(1− α)q

(cdis + cdR)− 2b1pr + a+ b1(w + cr + cdis)

The second derivative of ΠR(pr) with respect to pr is:

d2ΠR(pr)

dp2
r

= −2b1 < 0.

Hence, ΠR(pr) is concave in pr. �

Proposition 13. Let p∗r denote the optimal selling price for the remanufacturer’s prob-

lem and p
′
r denote the solution to dΠR(pr)

dpr
= 0. Then, p∗r is:

p∗r =


p
′
r if D(p

′
r)

(1−α)qr
≤ f ′

1
b
{a− (1− α)qrf ′} o/w

.

Proof. The first derivative of ΠR(pr) with respect to pr is:

dΠR(pr)

dpr
= b1

β(1− q)
(1− α)q

(cdis + cdR)− 2b1pr + a+ b1(w + cr + cdis)
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Let p′r denote the solution to dΠR(pr)
dpr

= 0. Then, p′r is:

p
′

r =
1

2

(
β(1− q)
(1− α)q

(cdis + cdR) +
a

b1

+ (w + cr + cdis)

)

The unconstrained maximizer of ΠR(pr) is p′r. If D(pr)
(1−α)qr

< f ′, p′r is feasible. Hence, it

is optimal. Otherwise, the constraint is binding and p∗r = 1
b1
{a− (1− α)qrf ′}. �

When the price sensitive demand, D(p
′
r) is larger than the actual quantity of remanu-

facturables sent by the collector, the remanufacturer loses D(p
′
r)− (1− α)qrf ′ units

of demand. Therefore, he sets his selling price such that p∗r = 1
b1
{a− (1− α)qrf ′}.

Hence, the constraint is satisfied. Otherwise, D(p
′
r) is smaller than or equal to the ac-

tual quantity of remanufacturables sent, and hence, the remanufacturer sets the price

to be equal to p′r in order maximize his profit. From the collector’s point of view,

f ′ is feasible when D(p
′
r) is larger than (1 − α)qrf ′. Otherwise, the remanufacturer

does not pay for extra (1 − α)qrf ′ − D(p
′
r) units of remanufacturables. Therefore,

the collector sets his acquisition fee to make the actual quantity of remanufacturables

sent equal to D(p
′
r). Hence, a− b1p

∗
r = (1− α)qrf ∗ is satisfied.

In this model, the remanufacturer can affect the order quantity by changing the selling

price. The remanufacturer tries to set the price dependent deterministic demand equal

to the quantity of exact remanufacturables after the disassembly process like model

IV and model V. The optimal selling prices in the model IV and model V are similar

to the selling price in this model. However, there are some differences in the selling

price expressions because of the different sorting locations. In this model the sorting

activity is performed by the collector, but the remanufacturer is responsible for sorting

in the model IV and model V.

3.9 Detailed Comparison of the Models

In Table 3.3, the models are compared and main results are summarized. Note that

the expressions for the selling prices and acquisition fees are given under the table.

Based on these results, we present our observations below by comparing the models

with each other and the based model.
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• Model I differs from the base model regarding to the location of sorting. In the

base model, the collector is responsible for sorting and the remanufacturer takes

the responsibility of the disassembly and remanufacturing processes. In Model

I, on the other hand, the collected items are sorted at the remanufacturer’s site

in addition to disassembly and remanufacturing operations. Therefore, the re-

manufacturer is a single decision maker in Model I, and it corresponds to the

centralized setting of the base model.

Given that pr is large enough, the optimal collection quantity for the base model

and Model I are the same. That is, the location of the sorting does not affect the

optimal value of the collection quantity under the deterministic market demand,

since the remanufacturer always gives an order to make the exact quantity of

remanufacturables equal to the deterministic demand. However, it is observed

that there is a critical range of pr such that it is profitable to operate in the

base model whereas it is not in Model I. Since the remanufacturer’s total cost is

higher in Model I than the base model due to additional inspection and disposal

costs, he needs to operate at larger selling price values to offset the amount

of increase in his total cost. Hence, there is a selling price range in which

the remanufacturer operates in the base model whereas he does not operate in

Model I.

• In Model II, the sorting activity is performed by the remanufacturer unlike the

base model and the supply of used items has a deterministic and price sensitive

function such that S(f) = rf . The optimal remanufacturer’s order quantity

of the second model is similar to the optimal collection quantity of the base

model and the first model. Only difference is that the collector can manipulate

the collection quantity by changing the acquisition price. It is observed that in

Model II, the remanufacturer sets his order quantity as min
{
rf, D

(1−α)q

}
(1 −

α)q whereas in the base model, the remanufacturer adjusts his order quantity

as the exact number of remanufacturables after disassembly to be equal to the

deterministic demand such thatQ∗0 = D
(1−α)q

. Therefore, the collector’s decision

affects the remanufacturer’s decision in Model II.

• In Model III, the supply is price dependent as in Model II, and hence the col-

lector can affect the collection quantity by changing the acquisition price after
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the remanufacturer’s decision. The optimal acquisition prices for the collector

are the same for Model II and Model III since they are considered under the

case with exogenous wholesale price. Moreover, the optimal order quantity

for the remanufacturer also are the same for both models because of the de-

terministic market demand. Therefore, in these settings, changing the roles of

the supply chain members in the Stackelberg game does not affect the optimal

solutions under the case where wholesale price is exogenous and the demand is

deterministic.

• In Model IV, the deterministic market demand is also modelled as a function

of the selling price of remanufactured items. The remanufacturer sets the price

sensitive market demand equal to the quantity of exact remanufacturables after

the disassembly process like the base model. The optimal acquisition price ex-

pressions for Model II and Model IV are similar, but the remanufacturer optimal

pricing decision affects the collector’s decision in Model IV because of price

sensitive demand. On the other hand, the remanufacturer’s optimal order quan-

tity in Model IV is different from Model II. In Model IV, the remanufacturer

equates the price dependent demand to the exact number of remanufacturables

after disassembly. However, in Model II, the remanufacturer’s optimal order

quantity is affected from the collector’s decision and when the amount of sup-

ply, rf , is less than D
(1−α)q

, the remanufacturer sets his order quantity equal to

the supply, rf . As a result, the remanufacturer adjusts the selling price to sat-

isfy all demand and so there is no unsatisfied demand in Model IV. On the other

hand, in Model II, there can be unsatisfied demand if the supply amount is less

than D
(1−α)q

.

• Model V differs from Model IV regarding to the change in the agent’s roles.

In Model V, the collector sets the acquisition fee after the remanufacturer’s

decision whereas the acquisition price is determined before the selling price

in Model IV. The optimal acquisition price for the collector and the selling

price for the remanufacturer are the same for Model IV and Model V since the

transfer price is exogenous and the demand is deterministic. In Model V, the

remanufacturer’s order quantity is different from the second and third model.

Since the demand is price dependent in Model V, the remanufacturer can adjust
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the selling price in order to equate the actual quantity of remanufacturables after

disassembly to the price sensitive deterministic demand. Thus, all demand is

satisfied from the supply like Model IV. In Model II and III, on the other hand,

the demand is not fully served when the quantity of supply is less than D
(1−α)q

.

• The base model is reformulated with the price dependent supply in Model VI.

The collector sets the acquisition price so as to maximize his profit. The results

show that in the optimal solution, the expected number of remanufacturables

sent by the collector, that is (1 − α)qrf , should be less than or equal to the

remanufacturer’s order size. Therefore, the collector does not collect excess

number of items than his optimal supply quantity to satisfy the remanufac-

turer’s order. For the remanufacturer’s point of view, he sets his order quantity

to be equal to the deterministic demand like the base model. Therefore, the

collector’s pricing decision does not affect the remanufacturer’s optimal order

size because of the deterministic demand. However, the remanufacturer’s order

quantity, D, is not always satisfied by the collector because the collector can

send the actual quantity of remanufacturables less than the deterministic market

demand to maximize his profit. Thus, the remanufacturer can face the shortage

cost for unsatisfied demand.

• In Model VII, we consider the base model with the price dependent supply and

the price dependent demand. The optimal pricing decision for the collector is

the same as in the sixth model. The remanufacturer sets the price dependent

deterministic demand equal to the quantity of exact remanufacturables after the

disassembly process like Model IV and Model V. However, in Model VII, in-

spection is performed by the collector unlike Model IV and Model V, hence

there are some differences between the selling price expressions. The term
1
2

(
β(1−q)
(1−α)q

(cdis+cdR)+ a
b
+cr+cdis

)
is common in both unconstrained maximiz-

ers (p
′
r) of the remanufacturer’s profit. However, p′r for Model IV and Model V,

is larger than p′r for Model VII, by 1
2

(
(ci+w)
(1−α)q

− w + cdR[αq+(1−β)(1−q)]
(1−α)q

)
units.

In Model IV and Model V, the remanufacturer is responsible for sorting whereas

the collector takes the responsibility of sorting in Model VII. Therefore, the re-

manufacturer’s total expected cost in Model IV and Model V is larger than

Model VII due to additional inspection and disposal costs. Hence, he sets p′r
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in Model IV and Model V to be larger than in Model VII in order to maximize

his profit from remanufacturing. From the collector’s point of view, his pricing

decision is affected from the remanufacturer’s optimal selling price decision in

Model IV, V and VII. Moreover, the remanufacturer sets the selling price of

remanufactured products in order to maximize his profit and there is no unsat-

isfied demand in Model VII. On the other hand, in Model VI, the deterministic

demand D, may not be fully satisfied and the remanufacturer can face some

penalty cost for unsatisfied demand.

77



Ta
bl

e
3.

3:
C

om
pa

ri
so

n
of

th
e

M
od

el
s

M
od

el
D

ec
is

io
n

V
ar

ia
bl

e(
s)

O
pt

im
al

C
ol

le
ct

io
n

Q
ua

nt
ity

O
pt

im
al

O
rd

er

Q
ua

nt
ity

Pr
od

uc
tio

n

L
ot

Si
ze

So
rt

in
g

L
oc

at
io

n

L
ea

de
r/

Fo
llo

w
er

D
em

an
d

Su
pp

ly

T
he

B
as

e

M
od

el

Q
0

(C
)

Q
R

(R
)

D
(1
−
α
)q

D
D

C
R

/C
C

on
st

an
t

D
ec

is
.

V
ar

i.

M
od

el
I

Q
0

(R
)

D
(1
−
α
)q

D
(1
−
α
)q

D
R

R
/C

C
on

st
an

t
D

ec
is

.

V
ar

i.

M
od

el
II

Q
0

(R
)

f
(C

)
r
f
∗ (1
)

m
in
{ rw 2

,
D

(1
−
α
)q

}
m

in
{ rw 2

,
D

(1
−
α
)q

} (1
−
α

)q
R

R
/C

C
on

st
an

t
Pr

ic
e

D
ep

.

M
od

el
II

I
Q

0
(R

)

f
(C

)
r
f
∗ (1
)

m
in
{ rw 2

,
D

(1
−
α
)q

}
m

in
{ rw 2

,
D

(1
−
α
)q

} (1
−
α

)q
R

C
/R

C
on

st
an

t
Pr

ic
e

D
ep

.

M
od

el
IV

f
(C

)

p
r

(R
)

r
f
∗ (2
)

a
−
b
p
r
∗
(
1
)

(1
−
α
)q

D
(p
r
∗
(1

)
)

R
R

/C
Pr

ic
e

D
ep

.
Pr

ic
e

D
ep

.

M
od

el
V

f
(C

)

p
r

(R
)

r
f
∗ (2
)

a
−
b
p
r
∗
(
1
)

(1
−
α
)q

D
(p
r
∗
(1

)
)

R
C

/R
Pr

ic
e

D
ep

.
Pr

ic
e

D
ep

.

M
od

el
V

I
f

(C
)

Q
R

(R
)

r
f
∗ (3
)
≤

D
(1
−
α
)q

D
D

C
R

/C
C

on
st

an
t

Pr
ic

e

D
ep

.

M
od

el
V

II
f

(C
)

p
r

(R
)

r
f
∗ (4
)

=
D

(p
r
∗
(
2
)
)

(1
−
α
)q

D
(p
r
∗
(2

)
)

D
(p
r
∗
(2

)
)

C
R

/C
Pr

ic
e

D
ep

.
Pr

ic
e

D
ep

.

R
:R

em
an

uf
ac

tu
re

r,
C

:C
ol

le
ct

or

78



f ∗(1) =


w
2

if rw
2
≤ D

(1−α)q

D
(1−α)qr

o/w

.

f ∗(2) =


w
2

if rw
2
≤ a−bp∗r(1)

(1−α)q

a−bp∗r(1)
(1−α)qr

o/w

.

f ∗(3) =


f
′ if f ′ ≤ D

(1−α)qr

D
(1−α)qr

o/w

where f ′ = (w+b0)(1−α)q−ci−cdC [αq+(1−β)(1−q)]−ct[(1−α)q+β(1−q)]
2

.

f ∗(4) =


f
′ if f ′ ≤ a−b1p∗r(2)

(1−α)qr

a−b1p∗r(2)
(1−α)qr

if o/w

where f ′ = (w+b0)(1−α)q−ci−cdC [αq+(1−β)(1−q)]−ct[(1−α)q+β(1−q)]
2

.

p∗r(1) =


p
′
r if a−bp′r

(1−α)q
≤ rw

2

1
b

{
a− rw

2
(1− α)q

}
o/w

.

p
′

r =
1

2(1− α)q

 (ci + w) + cdR[αq + (1− β)(1− q)]
+(cdis + cdR)β(1− q)


+

1

2
(
a

b
+ cr + cdis)
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p∗r(2) =


p
′
r if D(p

′
r)

(1−α)qr
≤ f ′

1
b
{a− (1− α)qrf ′} o/w

.

p
′

r =
1

2

(
β(1− q)
(1− α)q

(cdis + cdR) +
a

b1

+ (w + cr + cdis)

)

80



CHAPTER 4

ANALYSIS OF THE BASE MODEL WITH INCORPORATION OF

RANDOMNESS: NUMERICAL STUDY AND INSIGHTS

In Chapter 3, we revisited the recovery system analyzed by Gu and Tagaras (2014)

that includes a single remanufacturer and collector in a single time period under de-

terministic demand case, and we introduced several extensions of it. In all of the

settings we considered so far, the uncertainty in the collector’s inspection process is

disregarded and the number of items that are classified as remanufacturable by in-

spection is assumed to be equal to its expected value. Now, our aim is to analyze the

base model with incorporation of randomness and evaluate the effects of disregarding

randomness on the optimal solution and profits. For this reason, in this chapter, we

firstly reformulate the base model by taking randomness in the sorting process into

account. After that, we discuss the effects of randomness on the optimal collection

quantity and profits numerically and quantify which of the agent’s profit is more sen-

sitive to randomness. Then, a detailed sensitivity analysis on the problem parameters

is also conducted to observe how the impact of randomness changes with respect to a

change in each parameter and to answer the following questions:

1. When the firm operates ignoring randomness, how does its corresponding ex-

pected profit compare to the profit calculated disregarding randomness?

2. When the firm operates taking randomness into account, how does the optimal

collection quantity differ from the quantity found by solving the base model

without incorporation of randomness, and how do the corresponding expected

profits compare?

The rest of this chapter is organized as follows: in Section 4.1, the base model is
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reformulated by incorporating randomness. In Section 4.2, our research questions

are stated explicitly and performance measures to answer these questions are given.

In Section 4.3, the results of the base model with incorporation of randomness are

analyzed for a selected parameter set and the comparison of the expected and true

profits are made numerically. Next, we conduct a sensitivity analysis in order to

show the impact of changes in values of individual parameters on the supply chain

members’ profits and the system profit, and to analyze how the randomness effect

changes with respect to a change in each parameter. The optimal values of collection

quantities, which are calculated with and without incorporation of randomness into

the base model respectively, are compared and then how the related true profits deviate

from the expected values is represented.

4.1 Base Model with Incorporation of Randomness

In Section 3.1, the deterministic demand model studied by Gu and Tagaras (2014),

which ignores the random nature of the sorting process, was discussed in detail. Now,

we incorporate the uncertainty in the inspection process and reformulate the base

model in order to analyze the impact of disregarding randomness on the results. In the

base model, recall that the remanufacturer is the Stackelberg leader and determines

the order quantity QR and the collector is the follower and determines the optimal

collection quantity Q0. Note that each collected item is remanufacturable with prob-

ability q independent of others. Hence, the total number of remanufacturable items,

which we represent by X , has a binomial distribution with parameters Q0 and q. The

collected items are inspected and all items that are sorted as remanufacturable are sent

to the remanufacturer by the collector. There is an imperfect sorting procedure that is

subject to two classification errors. Each remanufacturable item is classified as non-

remanufacturable and discarded before disassembly with probability α. LetX1 repre-

sent the quantity of remanufacturables that is sorted actually as remanufacturable by

inspection. Each item is sorted actually as remanufacturable with probability (1−α).

Then, for a given value of X = x, X1 has a binomial distribution with parameters x

and 1 − α. Similarly, let X2 represent the number of non-remanufacturables that are

misclassified as remanufacturable in Q0 − X items (Q0 − X is the quantity of non-
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remanufacturables that are collected). Each non-remanufacturable item is wrongly

classified as remanufacturable with probability β, hence for a given value of X = x,

X2 has a binomial distribution with parameters Q0 − x and β. As a result, the proba-

bility distributions of X , X1 and X2 are expressed as follows:

P (X = x) =

(
Q0

x

)
qx(1− q)(Q0−x) x = 0, 1, 2, ..., Q0

P (X1 = x1|X = x) =

(
x

x1

)
(1− α)x1α(x−x1) x1 = 0, 1, 2, ..., x

P (X2 = x2|X = x) =

(
Q0 − x
x2

)
βx2(1− β)(Q0−x−x2) x2 = 0, 1, 2, ..., Q0 − x

The probability of occurrence of a realization (X = x,X1 = x1, X2 = x2) for

0 ≤ x ≤ Q0; 0 ≤ x1 ≤ x and 0 ≤ x2 ≤ Q0 − x is given as follows:

P (X = x,X1 = x1, X2 = x2) = P (X = x)P (X1 = x1, X2 = x2|X = x)

= P (X = x)P (X1 = x1|X = x)P (X2 = x2|X = x)

=

(
Q0

x

)
qx(1− q)(Q0−x)

(
x

x1

)
(1− α)x1α(x−x1)

(
Q0 − x
x2

)
βx2(1− β)(Q0−x−x2)

We start our analysis with the collector’s profit function. The collector sorts Q0

units of used item imperfectly, then delivers x1 remanufacturable units and x2 non-

remanufacturable units that are wrongly classified as remanufacturable to the reman-

ufacturer. Since the remanufacturer’s order quantity is equal to the deterministic de-

mand, the collector’s expected profit for (X = x,X1 = x1, X2 = x2) is expressed by

taking the relationship between the quantity of actual remanufacturables after disas-

sembly and the deterministic demand into account as follows:
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ΠC(Q0|X = x,X1 = x1, X2 = x2) =



−c0Q0 − ciQ0

−cdC(Q0 − x1 − x2) if x1 ≤ D

−ct(x1 + x2) + wx1

−b0(D − x1)

−c0Q0 − ciQ0

−cdC(Q0 − x1 − x2) if x1 > D

−ct(x1 + x2) + wD

The revenue and cost items in the collector’s profit function are:

• Collection cost of used items: c0Q0;

• Collector’s inspection cost: ciQ0;

• Collector’s disposal cost: cdC [(x− x1) + (Q0− x− x2)] = cdC(Q0− x1− x2)

• Transportation cost of shipped items: ct(x1 + x2)

• Transfer payment by the remanufacturer:


wx1 if x1 ≤ D

wD if x1 > D

• Penalty cost paid by the collector:


b0(D − x1) if x1 ≤ D

0 if x1 > D

Then, the collector’s expected profit is expressed as:

E[ΠC(Q0)] =

Q0∑
x=0

x∑
x1=0

Q0−x∑
x2=0

ΠC(Q0|X = x,X1 = x1, X2 = x2)P (X = x,X1 = x1, X2 = x2)

Next, we consider the remanufacturer’s profit. The remanufacturer receives (x1 +x2)

units and reveals their actual conditions after the disassembly process. x2 units of

non-remanufacturables and excess remanufacturables after disassembly are disposed
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at a unit cost of cdR. After the remanufacturing process, if there is unmet demand, it

is lost at a unit cost of b. The remanufacturer’s profit for (X = x,X1 = x1, X2 = x2)

is formulated as:

ΠR(Q0|X = x,X1 = x1, X2 = x2) =

−cdis(x1 + x2)− cdRx2 + (pr − cr − w) min {x1, D} − cdR max {0, x1 −D}

+(b0 − b) max {0, D − x1}

The revenue and cost items that are used in the remanufacturer’s profit function are:

• Disassembly cost: cdis(x1 + x2)

• Disposal cost of non-remanufacturables: cdRx2

• Disposal cost of excess remanufacturables:cdR max {0, x1 −D}

• Total remanufacturing cost: cr min {x1, D}

• Total cost paid to the collector for remanufacturables: wmin {x1, D}

• Penalty cost for unsatisfied demand paid by the collector: b0 max {0, D − x1}

• Revenue from remanufacturing : pr min {x1, D}

• Penalty cost for unsatisfied demand paid by the remanufacturer:

bmax {0, D − x1}

Then, the remanufacturer’s expected profit is expressed as:

E[ΠR(X,X1, X2)] =

Q0∑
x=0

x∑
x1=0

Q0−x∑
x2=0

ΠR(Q0|X = x,X1 = x1, X2 = x2)P (X = x,X1 = x1, X2 = x2)

Now, we can find the optimal collection quantity by complete enumeration and com-

pare the results calculated with and without incorporation of randomness in order to

analyze the effects of ignoring randomness for both parties and the system.
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4.2 Main Research Questions and Related Performance Measures

In this section, we summarize main research questions that we are interested in. We

use some performance measures in order to find answers for these questions and the

notation used to express the performance measures throughout the analysis are given

below:

• QA: Optimal collection quantity that is determined by solving the base model

with randomness,

• QD: Optimal collection quantity for the base model that is determined by dis-

regarding randomness (Note that this quantity is the same as Q∗0)

• πCA(Qi): The collector’s accurately calculated expected profit with incorpora-

tion of randomness by using Qi for i = A and D

• πRA(Qi): The remanufacturer’s accurately calculated expected profit with incor-

poration of randomness by using Qi for i = A and D

• πTA(Qi): The expected system profit that is calculated with incorporation of

randomness by using Qi for i = A and D

• πCD(QD): The collector’s expected profit that is found without incorporation of

randomness by using QD

• πRD(QD): The remanufacturer’s expected profit that is found without incorpo-

ration of randomness by using QD

• πTD(QD): The expected value of system profit that is found without incorpora-

tion of randomness by using QD

The questions that we try to address and corresponding performance measures are

given as follows:

1. We aim to investigate the impact of disregarding randomness for both parties

and the supply chain. For this purpose, we consider the case where the col-

lection quantity is determined by disregarding randomness, that is QD, and we
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compare the profits that are calculated with and without incorporating random-

ness, that are πiA(QD) and πiD(QD). We calculate the error caused by disregard-

ing randomness as4i
D =

(πiD(QD)−πiA(QD))

πiA(QD)
100% for i = C,R and T . This error

provides an insight in order to show how much accurate profit is overestimated

on the average by using QD with disregarding randomness.

2. We will compare the optimal collection quantity that is calculated by incorpo-

rating randomness, QA to QD. We also investigate how true profits πiA(QA)

that are calculated by incorporating randomness differ from πiA(QD)? For this

purpose, we calculate the percentage difference as4i
A =

(πiA(QA)−πiA(QD))

πiA(QA)
100%

for i = C,R and T . This difference shows that how much accurate profit is lost

on the average by using QD instead of QA.

3. What are the effects of the problem parameters on the collection quantity and

profits? Which parameter(s) is/are more effective on the results? The sensitiv-

ity analysis is conducted and the results are discussed to show how collection

quantitiesQA andQD, respectively and the corrsponding profits are affected by

the changes in parameter values.

The first and second questions are related to the effect of randomness on the collection

quantity and the profits. The third question’s answer will show how the profits and the

collection quantity are sensitive to parameters and which parameter is the most effec-

tive on the profits. In order to answer these questions, we use the optimal collection

quantities and the percentage changes in the profits as performance measures.

4.3 Computational Analysis

In order to compare results for the base model with incorporating randomness to

disregarding randomness, a numerical study is performed. We start our analysis with

a base parameter set given in Table 4.1 and discuss the results. We then perform a

thorough sensitivity analysis.

For the base parameter set, the optimal order quantity is Q∗R = D = 25 and the opti-

mal collection quantity ignoring randomness is equal to
[

D
(1−α)q

]
= 78 units. For the

87



Table 4.1: Base Parameter Set

D co ci ct cdC cdis cdR cR cr w pr b0 b q α β

25 5 5 5 0 10 0 0 50 100 500 20 0 0.4 0.2 0.1

selected parameter set, expected profits and the related error rates are summarized in

Table 4.2. The result shows that the expected profits calculated with disregarding ran-

domness deviate highly from the accurate results. It means that the expected profits

that are calculated ignoring randomness do not provide a good approximation about

the supply chain members’ profits. More specifically, maximum percentage change

is observed in the collector’s profit. Since the sorting activity is performed by the

collector imperfectly and subject to sorting errors, there is uncertainty in the sorted

item quality in addition to the uncertainty in the quality of collected used items. This

variability results in highly overestimated collector profit value. For the remanufac-

turer’s profit, the uncertainty is only the amount of remanufacturables in the shipped

quantity, so deviation from the accurate remanufacturer’s profit that is found by taking

randomness into account is smaller than the collector’s profit.

Table 4.2: Comparison of Profits with and without Incorporation of Randomness

πiD(78) πiA(78) πiA(84) 4i
D 4i

A

Collector(C) 1567.0 1372.9 1390.9 14.1 1.3

Remanufacturer(R) 8453.6 7906.6 8129.7 6.9 2.7

System(T) 10020.6 9279.5 9520.7 8.0 2.5

If the value of any cost item related to the collector’s profit in the base parameter set

increases while other parameters are kept constant, the effect of randomness on the

collector’s profit also increases. For example, if cdC is set as 10 instead of 0, then

πCD(78) is 1083.4 and πCA(78) is 889.3 and 4C
D is 21.8%. If the value of any cost

items related to the collector profit decreases, then the effect of randomness on the

collector’s profit also decreases. For example, if co is set as 2 instead of 5, then πCD(78)

is 1801.0 and πCA(78) is 1606.9 and4C
D is 12.1%. If the value of any parameter related
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to the remanufacturer profit changes, its effect on the remanufacturer’s profit is small

since we set the unit penalty b for unmet demand as zero. For instance, if pr is set

as 300 while others are constant, then 4R
D is 6.7%. If it is set as 200, then 4R

D is

5.5%. For another example, when cdis is increased from 10 to 30, then 4R
D is 7.5%.

When the value of b is set different from zero, the percentage change might be high.

For example, if b is set as 25 and other parameters are kept constant, then the error is

7.5%. If pr is set as 200, then4R
D is 10.6%. As a result, the collector’s profit is more

affected from randomness and more sensitive due to changes in values of parameters

related to his profit since his inspection process includes uncertainty regarding to

sorting errors.

Next, our objective is to assess the effects of incorporating randomness on the collec-

tion quantity and to investigate how true profits that are calculated by incorporating

randomness, πiA(QA), differ from πiA(QD). For the base parameter set, we obtain QA

as 84 units, and the related accurate profits are also given in Table 4.2. The results

show that ignoring randomness does not hurt the supply chain members significantly

for the selected base parameter set. If the value of any parameter, which does not

affect QD, related to the collector’s profit changes, then QA and the profit differences

between πiA(78) and πiA(QA) also change. For example, if w is increased to 150,

then QA is 88 units. As for to the percentage losses between profits, 4C
A is 2.4%

and 4R
A is 3.7%. As another example, when cdC is increased to 10, then QA is also

calculated as 78 units and the percentage losses between profits are zero. As a result,

the value of QA and related accurate profits can change if any parameter, which af-

fects the collector optimal decision, changes. If the value of any parameter affects the

remanufacturer’s profit, but does not affect QA changes, the remanufacturer’s profit

changes in slight manner while the collector’s profit remains constant. For example,

if cdis is increased from 10 to 30, then πRA(78) is 7313.8 and πRA(84) is 7491.3 and4R
A

decreases from 2.7% to 2.4%. For another example, when pr is set as 300, then 4R
A

is 2.2%. If it is set as 200, then 4R
A is 0.0%. However, when the unit penalty b for

unmet demand is set different from zero, the change in any parameter related to the

remanufacturer’s profit results in higher percentage loss of profit. For example, when

b is 45 and others are kept constant, the percentage loss of profit,4R
A, is 3.2%. When

b is 45 and pr is set as 200,4R
A is 3.8%. If b is set as 80,4R

A is 3.5% and 7.1% when
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pr is 500 and 200, respectively.

We continue our analysis with a thorough sensitivity analysis in order to show the

effects of the system parameters on the optimal collection quantities and the profits.

For both base model representation with and without incorporation of randomness,

the optimal collection quantities and profits are determined by changing values of

each parameter while the other values are kept constant.

We start to assess the impact of inspection accuracy on the collection quantity and

profits. The inspection accuracy is related to two classification errors, type I and type

II with α and β probabilities, respectively. It is intuitively known that larger error rates

have a negative impact on profits, but we try to answer how much individual profits

of the supply chain’s members change by changing these error probabilities and how

the collection quantities of the model with and without incorporation randomness are

affected from these changes in error probabilities.

Firstly, the effect of α is analyzed. Note that α is the probability that a remanufac-

turable used product is misclassified as non-remanufacturable. The optimal collection

quantity for the base model, QD, is a function of α; QD = Q∗0 = QR
(1−α)q

. In our anal-

ysis, we increase the value of α from 0 to 0.75 with a stepsize of 0.05 and a subset

of results are provided in Table 4.3 for the case where the collection quantities are

determined disregarding the uncertainty in the sorting process. Our findings are sum-

marized below:

• For both parties, the errors in profit calculations caused by ignoring random-

ness, 4C
D and 4R

D increase in α. Since the uncertainty in the quality of the

sorted item increases in α and the collector’s decision also changes, he highly

overestimates profit by disregarding randomness. For the remanufacturer, on

the other hand, the uncertainty in the quality of items sent increases, but his op-

timal decision does not change and so, the increase in the error4R
D is relatively

small comparing to4C
D. As a result, the impact of ignoring randomness on the

collector increases significantly in α while it does not hurt the remanufacturer

considerably.

• When randomness is disregarded, the collector is willing to operate until α
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Table 4.3: Comparison of Profits with and without Incorporation of Randomness

when α Increases

α QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 63 1749.1 8460.2 10209.3 1551.6 7983.0 9534.5 12.7 6.0 7.1

0.1 69 1645.9 8460.2 10106.1 1465.2 7910.3 9375.5 12.3 7.0 7.8

0.2 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

0.4 104 1299.2 8438.0 9737.2 1093.8 7859.9 8953.7 18.8 7.4 8.8

0.5 125 1087.5 8425.0 9512.5 874.2 7838.3 8712.5 24.4 7.5 9.2

0.6 156 763.6 8406.8 9170.4 547.5 7799.3 8346.8 39.5 7.8 9.9

0.7 208 228.0 8375.6 8603.6 6.7 7753.9 7760.7 3285.5 8.0 10.9

0.71 216 156.6 8369.8 8526.5 −71.2 7761.7 7690.5 − − −

0.72 223 75.3 8366.4 8441.8 −148.0 7744.5 7596.5 − − −

0.73 231 −10.3 8361.9 8351.6 −232.3 7734.2 7501.9 − − −

reaches to 0.73 as he assumes positive profits. However, his accurately calcu-

lated expected profit starts to take negative values at α = 0.71 and he actually

incurs a loss after this point and is not willing to operate at all.

• Table 4.4 summarizes the computations for the case where randomness is in-

corporated. Both QA and QD increase as α increases in order to compensate

for actual remanufacturables wrongly disposed due to imperfect sorting. Obvi-

ously, πCA(QA) is larger than πCA(QD) at any value of α since he selects QA in

order to maximize his profit by incorporating randomness into the model which

is not the case for the remanufacturer. When α > 0.5, QA is smaller than QD

which hurts the remanufacturer.

Table 4.4: Optimal Collection Quantities and Related Accurate Profits when α In-

creases

α QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 68 1575.7 8195.4 9771.1 63 1551.6 7983.0 9534.5 1.5 2.6 2.4

0.1 75 1492.6 8160.2 9652.8 69 1465.2 7910.3 9375.5 1.8 3.1 2.9

0.2 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

0.4 108 1097.8 7985.3 9083.1 104 1093.8 7859.9 8953.7 0.4 1.6 1.4

0.5 125 874.2 7838.3 8712.5 125 874.2 7838.3 8712.5 0.0 0.0 0.0

0.55 136 729.8 7744.4 8474.3 139 728.3 7825.5 8553.8 0.2 −1.0 −0.9

0.6 149 554.5 7620.3 8174.8 156 547.5 7799.3 8346.8 1.3 −2.3 −2.1

0.7 180 62.1 7117.2 7179.2 208 6.7 7753.9 7760.7 89.1 −8.9 −8.1

0.71 183 −1.7 7079.3 7077.4 216 −71.2 7761.7 7690.5 − − −
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• When α < 0.5, for both the collector and the remanufacturer the percentage

loss of accurate profit, 4C
A and 4R

A, change slightly. After α = 0.5, 4C
A in-

creases, but4R
A decreases below zero. It means that when α > 0.5, the amount

of loss for the collector increases, while the remanufacturer makes more profit

without incorporation of randomness.

• Both accurately calculated collector profits πCA(QD) and πCA(QA), take a neg-

ative value at α = 0.71. It means that the collector loses some profit if he

operates after this point by using both QD and QA.

We next discuss the effects of β on the optimal collection quantities and profits. Note

that β is the probability that a non-remanufacturable used product is misclassified

as remanufacturable. The value of β is changed from 0 to 1 with a stepsize of 0.05

and a subset of results are summarized in Table 4.5 which leads to the following

observations:

• Recall that QD does not change with respect to a change in β. Since higher

β value results an increase in the quantity of non-remanufacturables sorted as

remanufacturable, total transportation cost for the collector and total disassem-

bly cost for the remanufacturer increase. Since the unit transportation cost ct is

larger than unit disassembly cost cdis in the base parameter set, any change in

β affects the collector more than the remanufacturer. Both expected profits cal-

culated with and without incorporation of randomness, πiD(QD) and πiA(QD),

decrease linearly in β.

• 4C
D is larger than 4R

D at any value of β which is reasonable since the collec-

tor’s profit is more sensitive to randomness due to uncertainty in his inspection

process regarding to sorting errors. The impact of a change in β on the profits,

πiD(QD) and πiA(QD), and the percentage differences, 4i
D, for i = C,R and

T , are small for the base parameter set and so, the effect of randomness on

both collector’s and the remanufacturer’s profits are not highly dependent on a

change in β.

Table 4.6 summarizes the correct expected profits when β changes with both QA and

QD. Our observations follow:
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Table 4.5: Comparison of Profits with and without Incorporation of Randomness

when β Increases

β QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 78 1590.4 8500.4 10090.8 1396.3 7953.4 9349.7 13.9 6.9 7.9

0.1 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

0.2 78 1543.6 8406.8 9950.4 1349.5 7859.8 9209.3 14.4 7.0 8.0

0.4 78 1496.8 8313.2 9810.0 1302.7 7766.2 9068.9 14.9 7.0 8.2

0.6 78 1450.0 8219.6 9669.6 1255.9 7672.6 8928.5 15.5 7.1 8.3

0.8 78 1403.2 8126.0 9529.2 1209.1 7579.0 8788.1 16.1 7.2 8.4

1 78 1356.4 8032.4 9388.8 1162.3 7485.4 8647.7 16.7 7.3 8.6

• When β increases, the quantity of non-remanufacturables wrongly classified

as remanufacturable increases. As a result, the collector collects less items in

order to offset the increase in the transportation cost. However, QA changes in

small quantities with an increase in β since any decrease in QA also results to

a loss of expected payment received from the remanufacturer for the collector.

This profit loss is larger than the decrease in the total cost for the base parameter

set. Therefore, the collector’s accurately calculated profit πCA(QA) decreases as

β increases.

Table 4.6: Optimal Collection Quantities and Related Accurate Profits when β In-

creases

β QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 84 1416.1 8180.1 9596.3 78 1396.3 7953.4 9349.7 1.4 2.8 2.6

0.1 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

0.2 84 1365.7 8079.3 9445.0 78 1349.5 7859.8 9209.3 1.2 2.7 2.5

0.4 83 1315.9 7950.6 9266.5 78 1302.7 7766.2 9068.9 1.0 2.3 2.1

0.6 82 1266.3 7821.4 9087.6 78 1255.9 7672.6 8928.5 0.8 1.9 1.8

0.8 82 1217.1 7723.0 8940.0 78 1209.1 7579.0 8788.1 0.7 1.9 1.7

1 81 1168.2 7594.4 8762.6 78 1162.3 7485.4 8647.7 0.5 1.4 1.3

• The collector selects QA in order to maximize his profit by incorporating ran-

domness into the model, so πCA(QA) is larger than πCA(QD) for any β. For the

remanufacturer, larger collected quantity results an increase in both expected

disassembly cost and expected revenue from remanufacturing. However, the

increase in the expected profit from remanufacturing is larger than in the total
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disassembly cost. Therefore, both parties incur a loss by using QD instead of

QA, but the deviation is small between the profits for the selected parameter set

and it decreases in β. Hence, ignoring randomness hurts less both parties and

the system when β increases.

We next consider the effects of returns quality on the collection quantities and profits.

The fraction of remanufacturables in the collected lot, that is q, can be used as a mea-

sure of the returns quality. Therefore, larger q values imply that an item is more likely

to be remanufacturable. Hence, smaller collection quantity is enough to satisfy the

demand. In the model that disregards randomness, recall that the optimal collection

quantity, QD, is a decreasing function of q; Q∗0 = QD = D
(1−α)q

. The value of q is

increased from 0 to 1 with a stepsize of 0.05 and a subset of the results is presented in

Table 4.7 when the order quantities, profits and percentage differences are determined

ignoring uncertainty in the inspection process. Our findings are listed according to a

change in value of q below:

• QD decreases in smaller rates in q since the expected number of remanufac-

turables in the collected lot, qQD, closes to the collection quantity QD and the

expected number of non-remanufacturables closes to zero.

Table 4.7: Comparison of Profits with and without Incorporation of Randomness

when q Increases

q QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0.13 240 −134.0 8291.6 8157.6 −357.3 7664.3 7307.1 − − −

0.14 223 46.4 8308.5 8354.8 −176.9 7686.5 7509.6 − − −

0.15 208 202.0 8323.6 8525.6 −19.3 7701.9 7682.7 − − −

0.16 195 338.5 8336.6 8675.1 118.3 7717.7 7836.0 186.2 8.0 10.7

0.2 156 748.0 8375.6 9123.6 531.9 7768.1 8300.0 40.6 7.8 9.9

0.4 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

0.6 52 1840.0 8479.6 10319.6 1670.7 8001.0 9671.7 10.1 6.0 6.7

0.8 39 1976.5 8492.6 10469.1 1836.4 8094.2 9930.7 7.6 4.9 5.4

1 31 2042.0 8502.0 10544.0 1948.9 8180.0 10128.8 4.8 3.9 4.1

• The collector’s expected profit, πCD(QD), increases in q. The increase is espe-

cially significant at smaller values of q. The remanufacturer’s profit, πRD(QD),
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also increases regarding to the decrease in the disassembly cost, but it is not

highly affected from an increase in q. Since the collector always sends the

amount of actual remanufacturables to be exactly equal to the demand, the

quantity of actual remanufacturables sent does not change by an increase in

q.

• The collector starts to operate at threshold value of q = 0.14. However, his

accurately calculated expected profit πCA(QD) still takes a negative value with

an increase in q from 0.14 to 0.16. It means that the collector expects to gain

profit after this threshold value of q by disregarding randomness, but actually

he incurs a loss and collection of used items is not profitable for him until

q = 0.16.

• Since the collector’s profit is more sensitive due to randomness because of the

imperfect sorting, the error caused by disregarding randomness for the collector

4C
D is larger than for the remanufacturer 4R

D at any q. It is observed that the

effect of randomness is highly dependent on a change in value of q especially

for the collector, and its effect decreases in q.

Table 4.8 shows a subset of the results under the case where randomness is taken into

account. Our observations are given below:

• For any value of q, πCA(QA) is larger than πCA(QD) since the collector sets QA

to maximize his profit. On the other hand, for the remanufacturer, higher col-

lection quantity results an increase in both the expected revenue from reman-

ufacturing and the expected disassembly cost. However, the gain from reman-

ufacturing is higher than the loss due to the increase in the disassembly cost.

Therefore, he makes larger profit by using larger collected quantity.

• Until q = 0.25, the collector maximizes his profit by using smaller collected

quantity with incorporation of randomness than disregarding randomness. The

percentage loss of accurate profit, 4C
A, is high at smaller values of q regarding

to larger difference between QD and QA and it decreases in q. After q = 0.25,

4C
A increases in slight manner. For the remanufacturer, 4R

A is negative up to

point of q = 0.25. After this point, the remanufacturer makes larger profit by
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Table 4.8: Optimal Collection Quantities and the Related Accurate Profits when q

Increases

q QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0.14 185 −92.9 6844.3 6751.4 223 −176.9 7686.5 7509.6 − − −

0.15 179 39.6 7044.1 7083.7 208 −19.3 7701.9 7682.7 148.6 −9.3 −8.5

0.16 173 159.6 7208.8 7368.4 195 118.3 7717.7 7836.0 25.9 −7.1 −6.3

0.2 148 539.6 7562.1 8101.8 156 531.9 7768.1 8300.0 1.4 −2.7 −2.4

0.25 125 864.8 7819.6 8684.3 125 864.8 7819.6 8684.3 0.0 0.0 0.0

0.4 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

0.6 58 1709.8 8285.1 9995.0 52 1670.7 8001.0 9671.7 2.3 3.4 3.2

0.8 43 1882.3 8340.2 10222.5 39 1836.4 8094.2 9930.7 2.4 2.9 2.9

1 34 1996.2 8401.7 10397.9 31 1948.9 8180.0 10128.8 2.4 2.6 2.6

using QA and 4R
A is positive. It means that the remanufacturer actually gains

more profit when randomness is disregarded until q = 0.25. However, he can

increase his accurate profit by using QA instead of QD when q > 0.25. As a

result, the effect of ignoring randomness on the collection quantity is high at

smaller values of q and it causes the collector to lose high profit while it does

not hurt the remanufacturer until q = 0.25.

• The collector starts to make a profit at q = 0.15 by using QA while he incurs a

loss at this point whenQD is used. Although both profits, πCA(QA) and πCA(QD)

are calculated with incorporation of randomness, QD is very high compared to

QA at this point and it results to the collector incur high collection, inspection

and transportation cost by using QD. His revenue is smaller than the related

cost and hence, he actually incurs a loss by using QD at q = 0.15.

We next consider the effects of changes in the deterministic demand D on the col-

lection quantities and profits. When randomness is disregarded, recall that QD is

linearly dependent on D such that QD = D
(1−α)q

. D is changed between 0 and 100

with a stepsize of 5 and the computations are summarized in Table 4.9 for some val-

ues of D when the collection quantities are determined by disregarding randomness.

Observations are provided below:

• Both collector’s profits πCD(QD) and πCA(QD) increase with an increase in D.

The increase in πCD(QD) is larger than in πCA(QD). When randomness is disre-

garded, it is assumed that the quantity of actual remanufacturables sent is equal
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to demand and so, there is no penalty cost. On the other hand, when random-

ness is taken into account, it can be less than the demand. Therefore, for the

collector, the expected value of total revenue received from the remanufacturer

decreases and the expected total cost also increases regarding to an increase in

the expected penalty cost for unsatisfied demand with incorporation of random-

ness.

Table 4.9: Comparison of Profits with and without Incorporation of Randomness

when D Increases

D QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 0 0.0 0.0 0.0 0.0 0.0 0.0 - - -

10 31 621.5 3382.2 4003.7 503.0 3030.0 3533.0 23.6 11.6 13.3

20 62 1243.0 6764.4 8007.4 1077.3 6256.0 7333.3 15.4 8.1 9.2

25 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

40 125 2512.5 13525.0 16037.5 2263.4 12840.0 15103.5 11.0 5.3 6.2

60 187 3755.5 20289.4 24044.9 3460.0 19424.1 22884.1 8.5 4.5 5.1

80 250 5025.0 27050.0 32075.0 4672.3 26080.2 30752.5 7.5 3.7 4.3

100 312 6268.0 33814.4 40082.4 5883.4 32703.9 38587.3 6.5 3.4 3.9

• The related errors caused by disregarding randomness,4i
D, for i = C,R and T ,

decrease with an increase in D. The result shows that the effect of randomness

on both collector and remanufacturer’s profit is higher at smaller values of D,

but its effect decreases and it hurts less both parties and system as D increases.

Table 4.10 gives some of the results for the case where the uncertainty in the inspec-

tion process is incorporated. Our findings are listed below:

• QA takes larger values than QD at any value of D since the collector needs to

collect more items to handle the effect of randomness and satisfy the demand.

• Both πCA(QA) and πRA(QA) increase in D. It is observed that when QD is used

instead of QA, the profit losses for both parties are small at any values of D for

the base parameter set and the amount of loss decreases in D slightly.

Next, we analyze the effects of changes in the transfer price w on the collection quan-

tities and profits. w is changed between 0 and 200 with step size of 10 and a subset of
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Table 4.10: Optimal Collection Quantities and the Related Accurate Profits when D

Increases

D QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 - - -

10 35 513.4 3174.1 3687.5 31 503.0 3030.0 3533.0 2.0 4.5 4.2

20 68 1095.3 6479.0 7574.2 62 1077.3 6256.0 7333.3 1.6 3.4 3.2

25 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

40 132 2286.6 13106.3 15392.9 125 2263.4 12840.0 15103.5 1.0 2.0 1.9

60 197 3493.1 19804.3 23297.5 187 3460.0 19424.1 22884.1 0.9 1.9 1.8

80 261 4707.1 26522.7 31229.8 250 4672.3 26080.2 30752.5 0.7 1.7 1.5

100 325 5926.8 33199.3 39126.1 312 5883.4 32703.9 38587.3 0.7 1.5 1.4

the results are given in Table 4.11 under the case where the collection quantities are

calculated by ignoring randomness. We summarize our findings as follows:

• It is obvious that both collector profits πCD(QD) and πCA(QD) increase and both

remanufacturer profits πRD(QD) and πRA(QD) decrease while w increases. Since

an increase in the remanufacturer’s profit is equal to a decrease in the collec-

tor’s profit for both models with and without incorporation of randomness, the

expected total profits πTD(QD) and πTA(QD) remain constant. The increase in

πCD(QD) is larger than in πCA(QD) as the actual number of remanufacturables

sent may be smaller than the demand when randomness is incorporated and

some of demand may not be satisfied. The decrease in πRD(QD) is also larger

than in πRA(QD) for the same reason.

Table 4.11: Comparison of Profits with and without Incorporation of Randomness

when w Increases

w QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

37 78 −8.0 10208.6 10020.6 −261.1 9540.6 9279.5 − − −

38 78 17.0 10003.6 10020.6 −74.3 9353.8 9279.5 − − −

41 78 92.0 9928.6 10020.6 −4.3 9283.8 9279.5 − − −

42 78 117.0 9903.6 10020.6 19.0 9260.5 9279.5 514.8 6.9 8.0

50 78 317.0 9703.6 10020.6 205.8 9073.7 9279.5 54.1 6.9 8.0

80 78 1067.0 8953.6 10020.6 906.0 8373.5 9279.5 17.8 6.9 8.0

100 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

150 78 2817.0 7203.6 10020.6 2540.0 6739.5 9279.5 10.9 6.9 8.0

200 78 4067.0 5953.6 10020.6 3707.1 5572.4 9279.5 9.7 6.8 8.0
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• At smaller values of w, the percentage difference between the collector prof-

its, 4C
D, is high and it changes significantly with respect to an increase in w.

Therefore, the effect of randomness on the collector’s profit is highly dependent

on a change in the value of w and its effect decreases when w takes larger val-

ues. On the other hand, the percentage differences between the remanufacturer

profits, 4R
D, and total profits, 4T

D, do not change. It means that the impact of

randomness on the remanufacturer and the system is not affected from a change

in w.

• When randomness is disregarded, the collector does not operate until w is equal

to 38. At this point, collector starts to make a profit and collects used items from

the market. However, his accurate profit, πCA(QD), takes negative values up to

w = 42. Therefore, if w is between 38 and 42, he expects to make a profit by

disregarding randomness, but actually he incurs a loss until the threshold value

of w = 42.

The accurately calculated expected profits by using both QA and QD are summarized

in Table 4.12. Our observations are given below:

• Intuitively, the collector collects higher QA with respect to an increase in w and

the remanufacturer prefers a larger collected quantity. When w is smaller than

60, the remanufacturer makes more profit without incorporation of randomness.

After that, disregarding randomness causes the remanufacturer to lose some

profit. For the collector, at any value of w, πCA(QA) is larger than πCA(QD).

Up to point of w = 60, for the collector the percentage loss of profit, 4C
A,

decreases significantly and after this point4C
A increases slightly. It shows that

the change in w highly affects the percentage loss of accurate profit caused by

using QD instead of QA for the collector, but its effect on the remanufacturer

and the system is small and ignoring randomness affects the remanufacturer

and system positively before w = 60.

• When randomness is taken into account, the collector starts to operate at w =

41 if QA is used, but he loses profit at this point if QD is used. However, the

profit is only 1.2 by using QA, and the profit loss, that is 4.3, is not high by
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Table 4.12: Optimal Collection Quantities and the Related Accurate Profits when w

Increases

w QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

40 73 −21.4 8979.8 8958.4 78 −27.7 9307.2 9279.5 − − −

41 74 1.2 9030.5 9031.6 78 −4.3 9283.8 9279.5 − − −

42 74 23.8 9007.8 9031.6 78 19.0 9260.5 9279.5 20.1 −2.8 −2.7

50 76 206.8 8957.8 9164.6 78 205.8 9073.7 9279.5 0.5 −1.3 −1.3

60 78 439.2 8840.3 9279.5 78 439.2 8840.3 9279.5 0.0 0.0 0.0

80 82 911.8 8544.9 9456.6 78 906.0 8373.5 9279.5 0.6 2.0 1.9

100 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

150 88 2603.7 7002.3 9606.0 78 2540.0 6739.5 9279.5 2.4 3.8 3.4

200 90 3827.9 5802.3 9630.2 78 3707.1 5572.4 9279.5 3.2 4.0 3.6

using QD at this point. Therefore, he can make a profit by using QA instead of

QD at w = 41, but his gain is not high and he may prefer not to operate at this

point.

When randomness is disregarded, it is assumed that the collector sends the amount of

actual remanufacturables that is exactly equal to the deterministic demand. Therefore,

the collector does not incur any shortage cost due to unsatisfied demand. Hence,

a change in the unit penalty cost b0 does not affect the expected results. On the

other hand, for the model with incorporation of randomness, the amount of actual

remanufacturables sent may be less or more than the demand. Therefore, a change

in b0 affects the optimal collection quantity QA and the related accurate profits. In

order to observe the effects of changes in b0 on the results, it is increased from 0 to

100 with a stepsize of 5 and a subset of the results are given in Table 4.13 for the case

where the expected profits and percentage differences determined by using QD. Our

findings with respect to an increase in b0 are provided below:

• When randomness is disregarded, the collector can operate by using QD until

b0 = 849. After that, he actually incurs a lose while he expects to gain 1567

units of profit without incorporation of randomness.

• The error due to disregarding randomness for the collector,4C
D increases while

the error for the remanufacturer, 4R
D, decreases in b0. Both collector’s and the

remanufacturer’s profits change by the same amount with an increase in b0, but

the effect of randomness on the collector’s profit is changed much strongly than
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Table 4.13: Comparison of Profits with and without Incorporation of Randomness

when b0 Increases

b0 QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 78 1567.0 8453.6 10020.6 1406.0 7873.5 9279.5 11.4 7.4 8.0

5 78 1567.0 8453.6 10020.6 1397.8 7881.7 9279.5 12.1 7.3 8.0

10 78 1567.0 8453.6 10020.6 1389.5 7890.0 9279.5 12.8 7.1 8.0

20 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

35 78 1567.0 8453.6 10020.6 1348.0 7931.5 9279.5 16.2 6.6 8.0

50 78 1567.0 8453.6 10020.6 1323.2 7956.3 9279.5 18.4 6.2 8.0

75 78 1567.0 8453.6 10020.6 1281.7 7997.8 9279.5 22.3 5.7 8.0

90 78 1567.0 8453.6 10020.6 1256.9 8022.6 9279.5 24.7 5.4 8.0

100 78 1567.0 8453.6 10020.6 1240.3 8039.2 9279.5 26.3 5.2 8.0

848 78 1567.0 8453.6 10020.6 0.4 9279.1 9279.5 − − −

849 78 1567.0 8453.6 10020.6 −1.2 9280.7 9279.5 − − −

its effect on the remanufacturer’s profit.

Table 4.14 shows the results for the case where randomness is taken into account. We

summarize our observations as follows:

• For the collector, the expected shortage cost for unsatisfied remanufacturer’s

order increases in b0. Then, he collects more items in order to diminish the

effect of the increase in the expected shortage cost. However, the increase in

QA is not high since the expected collection, inspection and transportation costs

also increase as QA increases while the effect of b0 decreases.

Table 4.14: Optimal Collection Quantities and the Related Accurate Profits when b0

Increases

b0 QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 82 1411.8 8044.9 9456.6 78 1406.0 7873.5 9279.5 0.4 2.1 1.9

5 82 1406.1 8050.5 9456.6 78 1397.8 7881.7 9279.5 0.6 2.1 1.9

10 83 1400.8 8089.8 9490.6 78 1389.5 7890.0 9279.5 0.8 2.5 2.2

20 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

35 85 1378.0 8129.7 9547.1 78 1348.0 7931.5 9279.5 2.2 2.9 2.8

50 86 1367.7 8203.3 9570.0 78 1323.2 7956.3 9279.5 3.2 3.0 3.0

75 88 1350.7 8255.2 9606.0 78 1281.7 7997.8 9279.5 5.1 3.1 3.4

90 89 1342.4 8277.0 9619.4 78 1256.9 8022.6 9279.5 6.4 3.1 3.5

100 89 1337.2 8282.2 9619.4 78 1240.3 8039.2 9279.5 7.3 2.9 3.5
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• For both the collector and the remanufacturer, accurate profits calculated by

using QA are larger than by using QD. For the collector, obviously QA gives

larger profit as he sets the order quantity in order to maximize his profit and the

remanufacturer makes more profit with larger collected quantity since higher

collection quantity results to higher increase in expected revenue from reman-

ufacturing than the expected disassembly cost. The percentage loss of profit

for the collector, 4C
A, is high especially at higher values of b0. On the other

hand, for the remanufacturer 4R
A increases slightly. As a result, for smaller

values of b0, disregarding randomness does not hurt both parties and the system

considerably, but its effect on the collector increases highly as b0 increases.

A change in the remanufacturer’s unit penalty cost of b for unmet demand does not

affect the results of the base model without incorporation of randomness as the col-

lector sets the actual amount of remanufacturables exactly equal to the deterministic

demand. On the other hand, when randomness is taken into account, the demand may

not be satisfied and a change in the value of b affects the remanufacturer’s accurately

calculated profits, πRA(QD) and πRA(QA), but does not affect the optimal collection

quantity QA and the collector’s accurate profits, πCA(QD) and πCA(QA). The effects

of b on the remanufacturer’s profits and the percentage differences are analyzed by

increasing its value from 0 to 100 and from 0 to 2000 with a stepsize of 5 and 100,

respectively. A subset of the computations is summarized in Table 4.15 and it leads

to observed results below:

• It is clear that both the remanufacturer’s profits πRA(QD) and πRA(QA) decrease

with an increase in b. When QA = 84 is used instead of QD = 78, the remanu-

facturer’s expected revenue from remanufacturing and the related disassembly

cost and the cost paid to the collector increase while the total expected short-

age cost paid to the customers for unsatisfied demand decreases. Since his gain

outweighs the related cost increase, his expected profit is larger by using QA

rather than QD.

• The error caused by disregarding randomness,4R
D, increases as b increases and

the remanufacturer highly overestimates the expected profit at larger values of

b. The percentage loss of profit, 4R
A, also increases in b. Unless b takes very
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Table 4.15: Comparison of The Remanufacturer’s Profits for QD = 78 and QA = 84

when b Increases

b πRD(QD) πRA(QD) πRA(QA) 4RD 4RA

0 8453.6 7906.6 8129.7 6.9 2.7

5 8453.6 7898.3 8125.2 7.0 2.8

10 8453.6 7890.0 8120.6 7.1 2.8

50 8453.6 7823.7 8084.1 8.1 3.2

100 8453.6 7740.8 8038.5 9.2 3.7

200 8453.6 7575.1 7947.3 11.6 4.7

500 8453.6 7077.8 7673.6 19.4 7.8

1000 8453.6 6249.0 7217.4 35.3 13.4

2000 8453.6 4591.5 6305.1 84.1 27.2

high values, the remanufacturer can operate and disregarding of randomness

does not hurt him significantly.

Any change in the unit selling price pr, unit disassembly cost cdis, unit disposal cost

of the remanufacturer cdR and unit remanufacturing cost cr only affect the remanufac-

turer’s profit for both models with and without incorporation of randomness. Since

the collection quantities QA and QD do not change with respect a change in values of

these parameters, expected collector profits πCD(QD) , πCA(QD) and πCA(QA) remain

the same. Therefore, we only analyze the effects of these parameters on the remanu-

facturer’s profit and the percentage differences. First of all, the effects of an increase

in value of the selling price are analyzed by increasing its value from 0 to 1000 with

a stepsize of 25 and for a subset of the results, Table 4.16 shows the remanufacturer’s

expected profits and the related percentage differences. Our observations from the

results are listed below:

• Both πRD(QD) and actually calculated expected profit πRA(QD) are negative un-

til pr is equal to 162. The important point is that until pr = 170, the re-

manufacturer’s expected profit calculated without incorporation of randomness,

πRD(QD), is smaller than his accurately calculated expected profit, πRA(QD).

Hence, actually he makes higher profit than he expects to gain. After this point,

the remanufacturer’s gain is less than he expects and 4R
D gets higher with an
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increase in pr.

Table 4.16: Comparison of The Remanufacturer’s Profits for QD = 78 and QA = 84

when pr Increases

pr πRD(QD) πRA(QD) πRA(QA) 4RD 4RA

100 −1546.4 −1430.4 −1505.3 − −

161 −21.4 −6.5 −36.0 − −

162 3.6 16.9 −11.9 −78.6 −

163 28.6 40.2 12.2 −28.9 −229.9

169 178.6 180.3 156.7 −0.9 −15.0

170 203.6 203.6 180.8 0.0 −12.6

171 228.6 226.9 204.9 0.7 −10.8

200 953.6 903.9 903.9 5.5 0.0

201 978.6 927.2 927.5 5.5 0.0

300 3453.6 3238.1 3312.2 6.7 2.2

500 8453.6 7906.6 8129.7 6.9 2.7

800 15953.6 14909.3 15356.0 7.0 2.9

1000 20953.6 19577.8 20173.6 7.0 3.0

• When randomness is incorporated into the model, the remanufacturer starts to

make a profit from remanufacturing at pr = 163, whereas he starts to operate

at pr = 162 disregarding randomness. Before pr = 200, πRA(QD) is larger than

πRA(QA). It means that ignoring randomness does not hurt the remanufacturer.

After pr = 200, the remanufacturer can improve his profit with incorporation

of randomness. Therefore, the percentage difference,4R
A, increases below zero

until pr = 200 and after that, it increases when pr increases.

• The important result is that when pr is between 170 and 200, the remanufac-

turer makes less profit than he expects without incorporation of randomness,

that is πRD(QD) > πRA(QD). On the other hand, his accurate profit πRA(QD) is

higher than πRA(QA) in this range of pr. This implies that although his expected

profit πRD(QD) overestimates the accurate profit πRA(QD), but his profit actually

improves when randomness ignored.

The effects of a change in the unit remanufacturing cost, cr, on the remanufacturer’s

profit are discussed by changing its value from 0 to 500 with a stepsize of 25. For
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some values of cr, the computations are summarized in Table 4.17 and the findings

with respect to an increase in cr are given below:

• When randomness is not taken into account, the remanufacturer makes less

profit than he expects until cr = 380. When cr > 380, πRA(QD) is larger than

πRD(QD) and hence, he gains more profit than he expects.

Table 4.17: Comparison of The Remanufacturer’s Profits for QD = 78 and QA = 84

when cr Increases

cr πRD(QD) πRA(QD) πRA(QA) 4RD 4RA

0 9703.6 9073.7 9334.1 6.9 2.8

25 9078.6 8490.2 8731.9 6.9 2.8

50 8453.6 7906.6 8129.7 6.9 2.7

100 7203.6 6739.5 6925.4 6.9 2.7

200 4703.6 4405.2 4516.6 6.8 2.5

275 2828.6 2654.6 2710.0 6.6 2.0

349 978.6 927.2 927.5 5.5 0.0

350 953.6 903.9 903.9 5.5 0.0

375 328.6 320.3 301.2 2.6 −6.3

380 203.6 203.6 180.8 0.0 −12.6

381 178.6 180.3 156.7 −0.9 −15.0

387 28.6 40.2 16.2 −28.9 −229.9

388 3.6 12.9 −11.9 −78.6 −

389 −21.4 −6.5 −36.0 − −

400 −296.4 −263.3 −301.0 − −

• The remanufacturer operates until cr = 388 when the collector sets the collec-

tion quantity with incorporation of randomness. At cr = 388, the remanufac-

turer actually makes 12.9 units of profit by using QD = 78 while he loses 11.9

units of profit by using QA = 84 with incorporation of randomness. Therefore,

at this point, the remanufacturer actually could make a profit when the system

operates by disregarding randomness.

• When randomness is disregarded, the error, 4R
D, decreases when cr increases

until 380. When cr is equal to 380, both profits are equal and there is no error

regarding to randomness. At cr > 380, πRA(QD) is larger than πRD(QD). That

is, the remanufacturer makes more profit than he expects. Therefore, the effect
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of randomness is high at small values of cr on the remanufacturer, but his profit

is also high.

• When cr < 350, πRA(QA) is larger than πRA(QD). After that, the remanufac-

turer’s accurate profit is higher by using QD = 78 than QA = 84 and actually,

he can make more profit without incorporation of randomness. Note that when

cr is between 350 and 380, πRD(QD) is larger than πRA(QD) and πRA(QD) is also

higher than his accurately calculated profit πRA(QA). This shows that although

he overestimates accurate profit by using QD = 78 without incorporation of

randomness, he actually gets more profit than by using QA = 84 with incorpo-

ration of randomness.

Next, the impact of disassembly cost, cdis, on the remanufacturer’s profit is analyzed

by changing its value from 0 to 300 with a stepsize of 10. In Table 4.18, the re-

manufacturer’s profits, πRD(QD), πRA(QD) and πRA(QA) and the related percentage dif-

ferences, 4R
D and 4R

A, are given for a subset of the results as cdis increases. Our

observations are summarized below:

• When randomness is not incorporated, the remanufacturer expects to make a

profit from remanufacturing until cdis = 296. However, he actually incurs a

loss when cdis is between 276 and 296.

• The remanufacturer is not willing to operate after cdis = 264 when randomness

is incorporated. When cdis is between 264 and 277, he actually makes profit by

using QD = 78, but he loses profit by using QA = 84 with incorporation of

randomness. Therefore, in this range of cdis, disregarding randomness does not

hurt the remanufacturer and he can make a profit by using QD = 78.

• Another observation says that when cdis < 108, πRA(QA) is larger than πRA(QD).

Hence, he actually makes more profit by using QA = 84 instead of QD = 78.

When cdis > 108, incorporation of randomness into the model results smaller

profit for the remanufacturer by using QA = 84. Therefore, the percentage

difference, 4R
A, decreases until cdis = 108 and after that, it decreases below

zero.
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Table 4.18: Comparison of The Remanufacturer’s Profits for QD = 78 and QA = 84

when cdis Increases

cdis πRD(QD) πRA(QD) πRA(QA) 4RD 4RA

0 8750.0 8203.0 8448.9 6.7 2.9

10 8453.6 7906.6 8129.7 6.9 2.7

50 7268.0 6721.0 6852.9 8.1 1.9

100 5786.0 5239.0 5256.9 10.4 0.3

108 5548.9 5001.9 5001.6 10.9 0.0

150 4304.0 3757.0 3660.9 14.6 −2.6

200 2822.0 2275.0 2064.9 24.0 −10.2

250 1340.0 793.0 468.9 69.0 −69.1

264 925.0 378.04 22.1 144.7 −1614.2

265 895.4 348.4 −9.9 157.0 −

276 569.4 22.35 −361.0 2447.5 −

277 539.7 −7.3 −392.9 − −

295 6.2 −540.8 −967.5 − −

296 −23.4 −570.4 −999.4 − −

• The error caused by ignoring randomness, 4R
D, increases significantly when

cdis increases.

For the remanufacturer, lastly the effects of a change in the value of remanufacturer’s

unit disposal cost, cdR, are analyzed by increasing its value from 0 to 2000 with a

stepsize of 50. We summarize the results in Table 4.19 and it leads to following

findings:

• When randomness is disregarded, it is assumed that the actual quantity of re-

manufacturable items is exactly equal to the demand. Therefore, the remanu-

facturer only disposes of non-remanufacturables that are sorted wrongly as re-

manufacturable after the disassembly process. On the other hand, the quantity

of remanufacturables sent can be larger than the demand with incorporation of

randomness into the model, then the remanufacturer disposes of excess number

of remanufacturables in addition to the non-remanufacturables. Hence, the de-

crease in πRA(QD) is larger than πRD(QD) regarding to higher expected disposal

cost as cdR increases.

• When randomness is incorporated, the remanufacturer can make higher profit
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Table 4.19: Comparison of The Remanufacturer’s Profits for QD = 78 and QA = 84

when cdR Increases

cdR πRD(QD) πRA(QD) πRA(QA) 4RD 4RA

0 8453.6 7906.6 8129.7 6.9 2.7

50 8221.6 7591.7 7738.1 8.3 1.9

100 7989.6 7276.8 7346.5 9.8 0.9

145 7780.8 6993.5 6994.1 11.3 0.0

146 7776.2 6987.2 6986.2 11.3 0.0

250 7293.6 6332.2 6171.7 15.2 −2.6

400 6597.6 5387.6 4996.8 22.5 −7.8

750 4973.6 3183.4 2255.5 56.2 −41.1

1000 3813.6 1609.0 297.4 137.0 −441.0

1037 3641.9 1376.0 7.6 164.7 −17965.0

1038 3637.2 1369.7 −0.2 165.5 −

1255 2630.4 3.1 −1699.8 83644.0 −

1256 2625.7 −3.2 −1707.7 − −

1821 4.2 −3561.3 −6132.9 − −

1822 −0.5 −3567.6 −6140.8 − −

with QA = 84 instead of QD = 78 until cdR reaches to 145. After that, disre-

garding randomness results more profit for him by using QD = 78. Therefore,

percentage difference between accurately calculated profits,4R
A, decreases.

• When randomness is incorporated into the model, the remanufacturer oper-

ates until cdR = 1038. It is important that when cdR changes between 1038

and 1256, the remanufacturer actually makes a profit without incorporation

of randomness while he loses profit with incorporation of randomness where

QA = 84 is used. Therefore, for this range of cdR, the remanufacturer could

make profit disregarding randomness although the error4R
D is high.

• When randomness is disregarded, the remanufacturer does not operate when

cdR > 1821. On the other hand, his accurately calculated profit, πRA(QD),

takes negative values after cdR = 1255. Therefore, the remanufacturer expects

to make a profit while he actually loses profit when cdR is between 1255 and

1822.

• The error by ignoring randomness, 4R
D, increases significantly until cdR =

1256 where the accurately calculated expected profit, πRA(QD), takes a negative
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value. After cdR > 1256, disregarding randomness causes the remanufacturer

to incur a loss and 4R
D decreases. However, it is still very high regarding to

the significant effect of a change in cdR on randomness. As a result, the effect

of randomness on the remanufacturer is strongly affected from a change in the

value of cdR.

Next, we analyze the effects of cost parameters that affect directly collector’s profit

for both models with and without incorporation of randomness, but affect only re-

manufacturer’s profit that is calculated with incorporation of randomness. These pa-

rameters are the unit collection cost co, unit inspection cost, ci, unit disposal cost of

the collector, cdC , and unit transportation cost, ct. When randomness is disregarded, a

change in any of these parameters does not affect the collection quantity, QD and, the

remanufacturer’s profits, πRD(QD) and πRA(QD) remain constant. On the other hand,

when randomness is taken into account, the optimal collection quantity, QA changes

and the related remanufacturer’s profit, πRA(QA), also changes with an increase in

these parameters. The impact of these parameters on both parties’ and the system,

and the percentage differences are analyzed separately.

Firstly, the effects of an increase in the unit collection cost co, and unit inspection

cost, ci, are analyzed together. The collector sorts all collected items before he sends

the items sorted as remanufacturable to the remanufacturer. Therefore, he charges

both unit collection cost and unit inspection cost for any item collected. We analyse

the effects of a change in co on the profits and the percentage differences, but the

analysis for ci is omitted since the results for co are also valid for ci. The value of co

is increased from 0 to 100 with a stepsize of 5 and a subset of the results is given in

Table 4.20 which shows the computations for the case where the collection quantities

are determined by ignoring randomness. Findings with respect to an increase in co

are summarized below:

• The collector operates until co is equal to 26 by disregarding randomness. How-

ever, his accurately calculated expected profit by using QD = 78 takes negative

values after co = 22. It shows that when the value of c0 is between 22 and 26,

he expects to make a profit by ignoring randomness, but he actually incurs a

loss.
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Table 4.20: Comparison of Profits with and without Incorporation of Randomness

when co Increases

co QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 78 1957.0 8453.6 10410.6 1762.9 7906.6 9669.5 11.0 6.9 7.7

5 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

10 78 1177.0 8453.6 9630.6 982.9 7906.6 8889.5 19.7 6.9 8.3

20 78 397.0 8453.6 8850.6 202.9 7906.6 8109.5 95.7 6.9 9.1

22 78 241.0 8453.6 8694.6 46.9 7906.6 7953.5 414.0 6.9 9.3

23 78 163.0 8453.6 8616.6 −31.1 7906.6 7875.5 − − −

25 78 7.0 8453.6 8460.6 −187.1 7906.6 7719.5 − − −

26 78 −71.0 8453.6 8382.6 −265.1 7906.6 7641.5 − − −

• The error caused by ignoring randomness for the collector, 4C
D, is highly de-

pendent on a change in co. After co > 10, he highly overestimates the accurate

profit without incorporation of randomness. On the other hand, the error for

the remanufacturer remains constant since both πRD(QD) and πRA(QD) are not

dependent on co.

Table 4.21 summarizes the accurate results as co increases. Observations are listed

below:

• The collected quantity, QA, determined with incorporation of randomness de-

creases in order to reduce the effect of the increase in co. Until co = 11, the per-

centage loss of profit for the collector,4C
A, decreases, and after that it increases

significantly. Especially, when c0 is larger than 22, the percentage difference,

4C
A, is higher than fifty percent. For the remanufacturer and the system, the

percentage differences decrease up to co = 11. After that, they decreases below

zero. It means that the remanufacturer and system actually make higher profit

without incorporation of randomness when co > 11.

• The collector’s accurate profit, πCA(QA), calculated by using QA = 68 is pos-

itive at co = 23 whereas πCA(QD), calculated by using QD = 78 is negative.

Therefore, he makes a profit by incorporating randomness, but he actually in-

curs a loss by disregarding randomness at this point.
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Table 4.21: Optimal Collection Quantities and the Related Accurate Profits when co

Increases

co QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 90 1823.8 8256.3 10080.2 78 1762.9 7906.6 9669.5 3.3 4.2 4.1

5 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

10 79 983.7 7951.5 8935.2 78 982.9 7906.6 8889.5 0.1 0.6 0.5

11 78 904.9 7906.6 8811.5 78 904.9 7906.6 8811.5 0.0 0.0 0.0

20 71 233.7 7499.9 7733.6 78 202.9 7906.6 8109.5 13.2 −5.4 −4.9

22 69 93.9 7354.9 7448.9 78 46.9 7906.6 7953.5 50.1 −7.5 −6.8

23 68 25.5 7278.1 7303.6 78 −31.1 7906.6 7875.5 − − −

24 67 −41.9 7198.4 7156.5 78 −109.1 7906.6 7797.5 − − −

We next discuss the effects of a change in the value of unit transportation cost, ct

on the results. The value of ct is increased from 0 to 100 with a stepsize of 5 and

Table 4.22 provides a subset of the results for the case where the order quantities are

determined without incorporation of randomness. Our observations follow:

• The collector expects to make a profit until ct reaches to 58 by disregarding

randomness, but he actually incurs a loss when ct is between 51 and 58. The er-

ror caused by ignoring randomness,4C
D, changes significantly in ct and hence,

the randomness impact on the collector very sensitive to a change in the unit

transportation cost.

Table 4.22: Comparison of Profits with and without Incorporation of Randomness

when ct Increases

ct QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 78 1715.2 8453.6 10168.8 1521.1 7906.6 9427.7 12.8 6.9 7.9

5 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

10 78 1418.8 8453.6 9872.4 1224.7 7906.6 9131.3 15.8 6.9 8.1

20 78 1122.4 8453.6 9576.0 928.3 7906.6 8834.9 20.9 6.9 8.4

35 78 677.8 8453.6 9131.4 483.7 7906.6 8390.3 40.1 6.9 8.8

50 78 233.2 8453.6 8686.8 39.1 7906.6 7945.7 496.6 6.9 9.3

51 78 203.6 8453.6 8657.2 9.5 7906.6 7916.1 2053.8 6.9 9.4

52 78 173.9 8453.6 8627.5 −20.2 7906.6 7886.4 − − −

57 78 25.7 8453.6 8479.3 −168.4 7906.6 7738.2 − − −

58 78 −3.9 8453.6 8382.6 −198.0 7906.6 7708.6 − − −

• Since the collection quantity, QD, does not change, the related expected re-
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manufacturer’s profits, πRD(QD) and πRA(QD), also do not change. Therefore,

the difference between πRD(QD) and πRA(QD) remains constant and the percent-

age difference,4R
D, is the same at any value of ct. For the system, both πTD(QD)

and πTA(QD) decrease since the related collector’s profits decrease and the error,

4T
D, increases in slight manner.

Table 4.23 shows accurately calculated profits, πiA(QD) and πiA(QA), when ct in-

creases with both QA and QD. We list our findings as follows:

• The collector collects less items in order to diminish the effect of the increase in

the transportation cost. Until ct = 23, the collection quantity determined with

incorporation randomness QA is larger than QD, and so πRA(QA), is larger than

πRA(QD). Therefore, the remanufacturer makes more profit with incorporation

of randomness by usingQA instead ofQD. After that, disregarding randomness

does not hurt the remanufacturer. For the collector, the percentage loss of profit,

4C
A, changes significantly and it is very high at larger values of ct.

Table 4.23: Optimal Collection Quantities and the Related Accurate Profits when ct

Increases

ct QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 86 1552.0 8181.3 9733.4 78 1521.1 7906.6 9427.7 2.0 3.4 3.1

5 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

10 82 1233.5 8067.4 9300.8 78 1224.7 7906.6 9131.3 0.7 2.0 1.8

20 79 928.4 7951.5 8879.9 78 928.3 7906.6 8834.9 0.0 0.6 0.5

23 78 839.4 7906.6 8746.0 78 839.4 7906.6 8746.0 0.0 0.0 0.0

35 74 494.1 7694.0 8188.0 78 483.7 7906.6 8390.3 2.1 −2.8 −2.5

50 69 87.1 7355.0 7442.0 78 39.1 7906.6 7945.7 55.1 −7.5 −6.8

51 68 60.9 7278.1 7338.9 78 9.5 7906.6 7916.1 84.5 −8.6 −7.9

52 68 35.0 7278.1 7313.1 78 −20.2 7906.6 7886.4 − − −

53 68 9.2 7278.1 7287.3 78 −49.8 7906.6 7856.8 − − −

54 67 −16.5 7198.4 7182.0 78 −79.5 7906.6 7827.1 − − −

• It is also observed that the collector’s accurate profit, πCA(QA), is positive until

ct = 54, but πCA(QD) is positive until ct = 52. It says that when the collector

operates at ct = 52 and ct = 53, he incurs a loss without incorporation of ran-

domness. However, he can make some profit with incorporation of randomness

into the model at these values of ct.

112



Lastly, the effects of a change in the value of collector’s unit disposal cost, cdC , on

the expected profits and percentage differences are analyzed. Its value is increased

from 0 to 50 with a stepsize of 5. For the selected range of cdC , the computations are

provided in Table 4.24 and Table 4.25. We present our observations regarding to an

increase in cdC as follows:

• The expected number of items sorted as non-remanufacturable by the collec-

tor are equal for both models with and without incorporation of randomness.

Therefore, the expected disposal cost for the collector in both models are equal.

The collector assumes to gain until cdC = 33, but actually he loses some profit

when cdC is between 28 and 33 by disregarding randomness. It is observed that

4C
D, changes significantly. Hence, the impact of randomness on the collector is

highly affected from a change in cdC . Moreover, the percentage difference for

the remanufacturer, 4R
D, remains the same and the error for the system, 4T

D,

decreases in slight manner regarding to a decrease in the collector’s profit.

Table 4.24: Comparison of Profits with and without Incorporation of Randomness

when cdC Increases

cdC QD πCD(QD) πRD(QD) πTD(QD) πCA(QD) πRA(QD) πTA(QD) 4CD 4RD 4TD

0 78 1567.0 8453.6 10020.6 1372.9 7906.6 9279.5 14.1 6.9 8.0

5 78 1325.2 8453.6 9778.8 1131.1 7906.6 9037.7 17.2 6.9 8.2

10 78 1083.4 8453.6 9537.0 889.3 7906.6 8795.9 21.8 6.9 8.4

20 78 599.8 8453.6 9053.4 405.7 7906.6 8312.3 47.8 6.9 8.9

28 78 212.9 8453.6 8666.5 18.8 7906.6 7925.4 1031.9 6.9 9.4

29 78 164.6 8453.6 8618.2 −29.6 7906.6 7877.1 − − −

30 78 116.2 8453.6 8569.8 −77.9 7906.6 7828.7 − − −

32 78 19.5 8453.6 8473.1 −174.6 7906.6 7732.0 − − −

33 78 −28.9 8453.6 8424.7 −223.0 7906.6 7683.6 − − −

• For the collector the percentage loss of profit,4C
A, is small by usingQD instead

of QA at small values of cdC . However, it increases significantly in cdC , and he

can gain much more profit when randomness is incorporated into the model at

higher values of cdC . For the remanufacturer, when cdC < 10, he losses some

profit by using QD rather than QA, but after this point he makes more profit

when randomness is disregarded.
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Table 4.25: Optimal Collection Quantities and the Related Accurate Profits when cdC

Increases

cdC QA πC
A(QA) πR

A(QA) πT
A(QA) QD πC

A(QD) πR
A(QD) πT

A(QD) 4C
A 4R

A 4T
A

0 84 1390.9 8129.7 9520.7 78 1372.9 7906.6 9279.5 1.3 2.7 2.5

5 81 1135.8 8031.8 9167.6 78 1131.1 7906.6 9037.7 0.4 1.6 1.4

10 78 889.3 7906.6 8795.9 78 889.3 7906.6 8795.9 0.0 0.0 0.0

20 73 420.6 7632.6 8053.2 78 405.7 7906.6 8312.3 3.6 −3.6 −3.2

28 69 69.1 7355.0 7424.1 78 18.8 7906.6 7925.4 72.8 −7.5 −6.8

29 68 26.9 7278.1 7304.9 78 −29.5 7906.6 7877.1 − − −

30 67 −15.1 7198.4 7183.3 78 −77.9 7906.6 7828.7 − − −

• The collector operates until cdC is equal to 30 with incorporation of random-

ness. On the other hand, he actually loses profit by disregarding randomness

after cdC = 28. Therefore, when he operates at cdC = 29, he can make a profit

by using QA while he loses some profit by using QD.
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As a conclusion, we present the behaviors of the collection quantities and expected

profits with respect to an increase in each parameter in Table 4.26. The plus sign,

’+’, shows an increase in the related performance measure while the sign ’−’ shows a

decrease in the related performance measure. Moreover, if any performance measure

is not affected from an increase in the value of the related parameter, the effect is

represented with the symbol ’←→’.

115



Ta
bl

e
4.

26
:E

ff
ec

ts
of

Pa
ra

m
et

er
s

on
th

e
C

ol
le

ct
io

n
Q

ua
nt

iti
es

an
d

E
xp

ec
te

d
Pr

ofi
ts

D
c o

c i
c t

c d
C

c d
is

c d
R

c r
w

p
r

b 0
b

q
α

β

Q
D

+
←
→

←
→

←
→

←
→

←
→

←
→

←
→

←
→

←
→

←
→

←
→

−
−

←
→

Q
A

+
−

−
−

−
←
→

←
→

←
→

+
←
→

+
←
→

−
−

−

π
C D
(Q

D
)

+
−

−
−

−
←
→

←
→

←
→

+
←
→

←
→

←
→

+
−

−

π
R D
(Q

D
)

+
←
→

←
→

←
→

←
→

−
−

−
−

+
←
→

←
→

+
−

−

π
T D
(Q

D
)

+
−

−
−

−
−

−
−

←
→

+
←
→

←
→

+
−

−

π
C A
(Q

D
)

+
−

−
−

−
←
→

←
→

←
→

+
←
→

−
←
→

+
−

−

π
R A
(Q

D
)

+
←
→

←
→

←
→

←
→

−
−

−
−

+
+

−
+

−
−

π
T A
(Q

D
)

+
−

−
−

−
−

−
−

←
→

+
←
→

−
+

−
−

π
C A
(Q

A
)

+
−

−
−

−
←
→

←
→

←
→

+
←
→

−
←
→

+
−

−

π
R A
(Q

A
)

+
−

−
−

−
−

−
−

−
+

+
−

+
−

−

π
T A
(Q

A
)

+
−

−
−

−
−

−
−

+
+

+
−

+
−

−

116



In Table 4.27, we also summarize how the impact of randomness on both parties’ and

the system are affected by the changes in each parameter while others are kept con-

stant. Note that we use4D to measure the error caused by disregarding randomness

and4A to present the percentage loss of accurate profit resulted by using QD instead

of QA. If the amount of change in the errors is smaller than or equal to 5.0%, we

assume that the impact of randomness is low. If the amount of change in the errors

is between 5.0% and 15.0%, than its impact is assumed as moderate. Otherwise, its

impact on the profits is assumed to be high.
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CHAPTER 5

CONCLUSION

In remanufacturing systems, items collected from the end-users have uncertain qual-

ity and they need to be inspected in order to determine the appropriated recovery

options and to decide whether they are suitable for remanufacturing. This uncertain

quality results a difference in related operating costs and remanufacturing operation

times, and hence it affects the pricing decisions, optimal collection and remanufactur-

ing quantities and so the agents’ and system profits. Therefore, sorting of used items

and categorizing them in true categories regarding to some quality based metrics are

the key issues to achieve a successful product recovery for remanufacturing firms.

However, accurate sorting methods require high technology and complete disassem-

bly of all collected items, and thus they are expensive and time consuming. For this

reason, the firms have focused on fast and not accurate sorting techniques without

complete disassembly process. These inaccurate methods, however, might result in

some classification errors. The quality of items can be either overestimated or un-

derestimated and items may be misclassified in better or lower quality classes. In the

literature, perfect sorting processes have been recently addressed by many papers, but

there is little attention on the imperfect sorting methods with classification errors.

In this study, we have considered a supply chain that includes two independent agents:

a remanufacturer and a collector under deterministic market demand in a single pe-

riod context. The collector acquires used items from end-users and the remanufac-

turer is responsible for disassembly and remanufacturing processes. The fraction

of remanufacturables in the collected lot is known with certainty and the demand

is only served from remanufactured products. It is supposed that items are sorted

imperfectly before disassembly and there are two types of item category: reman-
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ufacturables which are disassembled and move into further remanufacturing oper-

ation and non-remanufacturables which are disposed before remanufacturing pro-

cess. Because of inaccurate inspection, the items sorted as remanufacturable can be

non-remanufacturable, and items sorted as non-remanufacturable can be remanufac-

turable. These errors occur with α and β probability, respectively. The decentralized

setting with deterministic demand under inaccurate inspection by Gu and Tagaras

(2014) is highly related to our work. However, there is an important aspect that our

study differs from their work. They discuss only the effects of randomness in the

collected item quality while randomness in the inspection process is disregarded. On

the other hand, we focus on the uncertainty in the inspection process related with the

classification errors in addition to the uncertainty in used item quality, and analyze the

impact of disregarding randomness in the sorting process on the optimal solution and

profits of both parties and the system. We also evaluate how this randomness effect

depends on problem parameters. To our knowledge, this is the first study that studies

randomness in the inspection process and the effects of ignoring it on the results are

analyzed.

Our analysis has two important aspects. First of all, we developed different settings

based on the decentralized model under deterministic demand provided in Gu and

Tagaras (2014). We call this model as the base model in this study. In the base model

the remanufacturer is the leader and the collector is responsible for inspection pro-

cess. There are two different decision variables which are the collector’s collection

quantity and the remanufacturer’s order size. Firstly, we analyzed the base model by

discussing their results in detail. Then, we developed seven different models based

on their setting. In the first setting, remanufacturer takes the responsibility of sort-

ing and there is one decision variable: the remanufacturer’s order quantity. This is

actually centralized version of the base model. In Model II and Model III, price sen-

sitive supply version of the base model was considered where the remanufacturer is

responsible for sorting unlike the base model. In these two models, the transfer price

is assumed to be exogenous. The impact of central sorting and the change in the roles

of the agents on the optimal solution were discussed. In Model IV and V, the price

dependent demand of remanufactured products was also incorporated into Model II

and Model III. Lastly, both price sensitive demand and the supply were incorporated
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into the base model in Model VI and Model VII. All models were compared with

each other and the base model, and our findings were presented. The observations are

summarized below:

• In Model I, the sorting activity is performed by the remanufacturer centrally

unlike the base model. When the selling price large enough to operate for both

the base model and Model I, the optimal value of the collection quantity does

not change due to the deterministic demand. For the remanufacturer, however,

the expected marginal cost for ordering one more additional unit in the base

model is smaller than Model I. Hence, he can make a profit at smaller values of

selling price in the base model while he does not make any profit in Model I.

• When comparing Model II and Model III where the remanufacturer versus the

collector is leader, respectively incorporation of the price sensitive supply does

not affect the remanufacturer’s decision since the demand is constant. The

optimal value of acquisition price also are the same for Model II and Model

III as they are modelled under exogenous transfer price.

• Model IV and Model V were constructed by incorporating price sensitive de-

mand into Model II and Model III, respectively. The optimal values of acqui-

sition fee and selling price are the same for Model IV and Model V. Moreover,

the acquisition price in these models is the same as in Model II and Model III,

but the remanufacturer’s optimal order quantity is different from Model II and

Model III. In Model IV and Model V, the remanufacturer can manipulate the

demand by changing the value of selling price and he exactly makes the price

dependent demand to be equal to the actual number of remanufacturables sent

by the collector to him.

• In Model VI, the base model was reconstructed under price sensitive supply

case and we observed that the remanufacturer’s decision is the same as the base

model because of deterministic demand. Lastly Model VII was modelled as

an extension of the sixth model by introducing the price sensitive demand. The

remanufacturer sets the price sensitive demand to be equal to the actual quantity

of remanufacturables sent by the collector.

121



In the second part of our study, we reformulated the base model by taking randomness

into account and the related optimal collection quantity and profits were calculated.

The effects of disregarding randomness in the collector’s inspection process for the

base model were detected by comparing the expected and accurate results. We also

studied on how the impact of disregarding randomness on the collection quantity

and the profits depend on changes in the problem parameters. The observations via

extensive computational study are presented as follows:

• When randomness is disregarded, the expected profits overestimate accurately

calculated profits as expected. The collector faces the uncertainty in the sorted

item quality because of the classification errors in the sorting process in addition

to the uncertain quality of used items. The remanufacturer, on the other hand,

only faces the uncertainty regarding to the quality of items transported by the

collector. Hence, ignoring randomness in the collector’s inspection process has

more impact on the collector than the remanufacturer.

• The error caused by disregarding randomness for the collector depends on a

change in the demand, unit collection cost, unit inspection cost, unit transporta-

tion cost, unit disposal cost of the collector, transfer price, the fraction of the

remanufacturables in the collected lot and the value of α. On the other hand,

any change in the unit shortage cost, which the collector charges if the reman-

ufacturer’s order is not satisfied, and β do not result in significant deviation for

the collector’s profit. Moreover, a change in the value of unit disassembly cost,

unit disposal cost for the remanufacturer, remanufacturing cost, selling price

and the unit penalty cost for unsatisfied demand do not affect both collector’s

profits calculated with and without incorporation of randomness by using the

optimal collection quantity found disregarding randomness.

• For the remanufacturer and the system, the errors result from disregarding ran-

domness are highly affected from a change in values of unit disassembly cost,

unit disposal cost of the remanufacturer and the unit penalty cost for an unsat-

isfied demand.

• We also investigated how much accurate profit is lost by using the optimal col-

lection quantity determined disregarding randomness rather than incorporating

122



randomness. For the collector, the profit loss gets higher with respect to an in-

crease in the unit collection cost, unit inspection cost, unit transportation cost,

unit disposal cost and α. The important point is that the error caused by dis-

regarding randomness significantly changes in demand, unit transfer price and

the fraction of the remanufacturables in the collected lot while the percentage

loss of accurate profit is not highly affected with respect to an increase in these

parameters. This shows that when any of these parameters increases, the col-

lector highly overestimates his accurate profit by ignoring randomness in the

sorting process. However, the increase in accurate profit determined ignoring

randomness is small when randomness is taken into account.

• For the remanufacturer, the percentage loss between accurately calculated prof-

its changes importantly regarding to an increase in values of unit disassembly

cost and unit disposal cost. This observation says that high values of the unit

penalty cost for unsatisfied demand result for the remanufacturer highly over-

estimated profits when randomness is ignored. However, the percentage loss

of profit between accurately calculated remanufacturer profits does not change

considerably with an increase in the unit penalty cost. Thus, he does not in-

crease his accurate profit so much by using the optimal collection quantity cal-

culated with taking randomness into account.

In this study, we have developed and analyzed models under different scenarios in

order to discuss the effects of channel’s leadership, local and central sorting, price

sensitive demand and supply on the optimal solution with inaccurate inspection. We

have also made a detailed analysis to assess the impact of disregarding randomness

on the profits and the optimal collection quantity. An interesting extension would be

the analysis of these systems under stochastic demand with imperfect inspection and

then to solve and compare the settings regarding to the optimal solutions and detect

the effect of randomness on the results. Another area for future research may be

to work with stochastic fraction of remanufacturable items in the collected lot. For

future studies, our work can also be extended with the consideration of more than

two quality classes of the used items and also multiple usage options for items after

disassembly can be considered such as remanufacturing, selling for part or material

recovery, using for recycling processes, repairing etc. In all models, transfer price
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was assumed to be exogenous and it can be relaxed to be a decision variable, and

the cases where the transfer price is set by the collector versus remanufacturer can

also be compared. The effects of the uncertainty in the transfer price and the change

in the decision maker on the results may lead to interesting extensions of our work.

In our study, we searched the collection quantity which maximizes the collector’s

profit, and analyzed the parameter sensitivity in order to observe the behaviors of this

collection quantity and related profits. Our work can be also extended in a case where

the collection quantity which maximizes the remanufacturer’s profit is determined

and the behaviours of the related profits and randomness impact on both parties and

the system can be observed with respect to changes in the parameters.
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APPENDIX A

DETAILED PROOF OF LEMMA 1

For ΠC(Q0) to be a continuous function at Q0 = QR
(1−α)q

,

lim
Q0→

(
QR

(1−α)q

)−ΠC(Q0) = lim
Q0→

(
QR

(1−α)q

)+ ΠC(Q0) = ΠC

(
QR

(1− α)q

)
should hold.

lim
Q0→

(
QR

(1−α)q

)−ΠC(Q0) = ΠI
C

(
QR

(1− α)q

)

= wQR −
QR

(1− α)q


c0 + ci

+cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



lim
Q0→

(
QR

(1−α)q

)+ ΠC(Q0) = lim
Q0→

(
QR

(1−α)q

)+ ΠII
C (Q0)

= wQR −
QR

(1− α)q


c0 + ci

+cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



ΠC

(
QR

(1− α)q

)
= wQR −

QR

(1− α)q

 c0 + ci + cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



lim
Q0→

(
QR

(1−α)q

)−ΠC(Q0) = lim
Q0→

(
QR

(1−α)q

)+ ΠC(Q0) = ΠC

(
QR

(1− α)q

)
holds.
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Hence, ΠC(Q0) is continuous at Q0 = QR
(1−α)q

.

For ΠC(Q0) to be differentiable at Q0 = QR
(1−α)q

, the following left-hand and right-

hand limits should exist and should be equal to each other.

lim
h→0−

ΠC

(
QR

(1−α)q
+ h

)
− ΠC

(
QR

(1−α)q

)
h

= h

 (w + b0 − ct)(1− α)q + (cdC − ct)β(1− q)− cdC [αq + (1− q)]
−(c0 + ci)


h

= (w + b0 − ct)(1− α)q + (cdC − ct)β(1− q)− cdC [αq + (1− q)]

−(c0 + ci)

lim
h→0+

ΠC

(
QR

(1−α)q
+ h

)
− ΠC

(
QR

(1−α)q

)
h

= h

(
− c0 − ci − cdC [αq + (1− β)(1− q)]− ct[(1− α)q + β(1− q)]

)
h

= (−ct)(1− α)q + (cdC − ct)β(1− q)− cdC [αq + (1− q)]− (c0 + ci)

Left- and right-hand limits exist, but they are not equal unless w + b0 = 0. Hence,

ΠC(Q0) is not differentiable at Q0 = QR
(1−α)q

.
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APPENDIX B

DETAILED PROOF OF LEMMA 2

For ΠR(QR) to be continuous at QR = D,

lim
QR→D−

ΠR(QR) = lim
QR→D+

ΠR(QR) = ΠR(D) should hold.

lim
QR→D−

ΠR(QR) = ΠI
R(D)

= (pr − cr − w)D − D

(1− α)q

 cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)



lim
QR→D+

ΠR(QR) = lim
QR→D+

ΠII
R (D)

= (pr − cr − w)D − D

(1− α)q

 cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)



ΠR(D) = (pr − cr − w)D − D

(1− α)q

 cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)



lim
QR→D−

ΠR(QR) = lim
QR→D+

ΠR(QR) = ΠR(D) holds. Hence, ΠR(QR) is

continuous at QR = D.

To check differentiability of ΠR(QR) at QR = D, the following left- and right-hand

limits should exist and should be equal to each other.
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lim
h→0−

ΠR(D + h)− ΠR(D)

h

= h

(
pr − cr − w − 1

(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

}
+ b

)
h

= pr + b− cr − w − 1
(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

}

lim
h→0+

ΠR(D + h)− ΠR(D)

h

= h

(
cR − cr − w − 1

(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

})
h

= cR − cr − w − 1
(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

}
Left- and right-hand limits exist, but they are not equal unless pr+b−cR = 0. Hence,

ΠR(QR) is not differentiable at QR = D.
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APPENDIX C

DETAILED PROOF OF LEMMA 13

The remanufacturer’s profit at (1− α)qQ0 = a− bpr is:

ΠR

(
a− bpr

(1− α)q
, pr

)
=
−(a− bpr)
(1− α)q


ci + w + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)


+(pr − cr)(a− bpr)

Now, consider any solution with (1−α)qQ0 > a−bpr. Let ε = (1−α)qQ0−(a−bpr).

Then, the remanufacturer’s profit at this solution is:

ΠR

(
a− bpr + ε

(1− α)q
, pr

)
=
−(a− bpr + ε)

(1− α)q


ci + w

+cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)
+cdRβ(1− q)


+(pr − cr)(a− bpr)− cdRε

Then,

ΠR

(
a− bpr + ε

(1− α)q
, pr

)
− ΠR

(
a− bpr

(1− α)q
, pr

)

=
−ε

(1− α)q

 ci + w + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

− cdRε < 0
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Therefore, for any ε > 0 such that ε = (1− α)qQ0 − (a− bpr), the remanufacturer’s

profit ΠR

(
a−bpr+ε
(1−α)q

, pr

)
is smaller than ΠR

(
a−bpr
(1−α)q

, pr

)
. Hence, (1−α)qQ0 > a−bpr

can not be optimal.

Now, consider (1 − α)qQ0 < a − bpr. Let ε = a − bpr − (1 − α)qQ0. Then the

remanufacturer’s profit can be expressed as:

ΠR

(
a− bpr − ε
(1− α)q

, pr

)
=
−(a− bpr − ε)

(1− α)q


ci + w

+cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)]
+cdRβ(1− q)


+(pr − cr)(a− pr)− (pr − cr)ε

Then,

ΠR

(
a− bpr − ε
(1− α)q

, pr

)
− ΠR

(
a− bpr

(1− α)q
, pr

)

=
ε

(1− α)q

 ci + w + cdR[αq + (1− β)(1− q)]
+cdis[(1− α)q + β(1− q)] + cdRβ(1− q)


−(pr − cr)ε < 0

Since, ΠR

(
a−bpr−ε
(1−α)q

, pr

)
− ΠR

(
a−bpr
(1−α)q

, pr

)
< 0, we deduce that a solution with

(1− α)qQ0 < a− bpr can not be optimal.

It is concluded that any solution different from (1−α)qQ0 = a−bpr results a decrease

in the remanufacturer’s profit. Hence, (1− α)qQ0 = a− bpr is optimal.
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APPENDIX D

DETAILED PROOF OF LEMMA 20

For ΠC(Q0) to be continuous at f = QR
(1−α)qr

,

lim
f→

(
QR

(1−α)qr

)−ΠC(f) = lim
f→

(
QR

(1−α)qr

)+ ΠC(f) = ΠC

(
QR

(1− α)qr

)
should hold.

lim
f→

(
QR

(1−α)qr

)−ΠC(f) = ΠI
C

(
QR

(1− α)qr

)

= wQR −
QR

(1− α)q


QR

(1−α)qr
+ ci

+cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



lim
f→

(
QR

(1−α)qr

)+ ΠC(f) = lim
f→

(
QR

(1−α)qr

)+ ΠII
C (f)

= wQR −
QR

(1− α)q


QR

(1−α)qr
+ ci

+cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



ΠC

(
QR

(1− α)qr

)
= wQR −

QR

(1− α)q


QR

(1−α)qr
+ ci

+cdC [αq + (1− β)(1− q)]
+ct[(1− α)q + β(1− q)]



lim
f→

(
QR

(1−α)qr

)−ΠC(f) = lim
f→

(
QR

(1−α)qr

)+ ΠC(f) = ΠC

(
QR

(1− α)qr

)
. Hence,
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ΠC(Q0) is continuous at f = QR
(1−α)qr

.

For ΠC(f) to be differentiable at f = QR
(1−α)qr

, the following left- and right-hand limits

should exist and should be equal to each other.

lim
h→0−

ΠC

(
QR

(1−α)qr
+ h

)
− ΠC

(
QR

(1−α)qr

)
h

= lim
h→0−

rh

h

 w(1− α)q −
(
h+ 2QR

(1−α)qr

)
− ci − cdC [αq + (1− β)(1− q)]

−ct[(1− α)q + β(1− q)] + b0(1− α)q



= r

(
(w + b0 − ct)(1− α)q − (ct − cdC)β(1− q)− cdC [αq + (1− q)]− ci

)
− 2QR

(1− α)q

lim
h→0+

ΠC

(
QR

(1−α)qr
+ h

)
− ΠC

(
QR

(1−α)qr

)
h

= lim
h→0+

rh

h

 −
(
h+ 2QR

(1−α)qr

)
− ci − cdC [αq + (1− β)(1− q)]

−ct[(1− α)q + β(1− q)]



= r
(
−ct(1− α)q − (ct − cdC)β(1− q)− cdC [αq + (1− q)]− ci

)
− 2QR

(1− α)q

Left- and right-hand limits exist, but they are not equal unless w + b0 = 0. Hence,

ΠC(Q0) is not differentiable at Q0 = QR
(1−α)q

.
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APPENDIX E

DETAILED PROOF OF LEMMA 22

For ΠR(QR) to be a continuous function at QR = D,

lim
QR→D−

ΠR(QR) = lim
QR→D+

ΠR(QR) = ΠR(D) should hold.

lim
QR→D−

ΠR(QR) =



−cdis[(1− α)q + β(1− q)]rf ′

−cdRβ(1− q)rf ′ − w(1− α)qrf
′

+b0(D − (1− α)qrf
′
) if f

′
(1− α)qr ≤ QR,

+(pr − cr)(1− α)qrf
′

−b(D − (1− α)qrf
′
)

−cdis[(1− α)q + β(1− q)] D
(1−α)q

−cdRβ(1− q) D
(1−α)q

− wD o/w

+(pr − cr)D

lim
QR→D+

ΠR(QR) =



−cdis[(1− α)q + β(1− q)]rf ′

−cdRβ(1− q)rf ′ − w(1− α)qrf
′

+b0(D − (1− α)qrf
′
) if f ′(1− α)qr ≤ QR,

+(pr − cr)(1− α)qrf
′

−b(D − (1− α)qrf
′
)

−cdis[(1− α)q + β(1− q)] D
(1−α)q

−cdRβ(1− q) D
(1−α)q

− cD o/w

+(pr − cr)D
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ΠR(D) =



−cdis[(1− α)q + β(1− q)]rf ′

−cdRβ(1− q)rf ′ − w(1− α)qrf
′

+b0(D − (1− α)qrf
′
) if f ′(1− α)qr ≤ QR,

+(pr − cr)(1− α)qrf
′

−b(D − (1− α)qrf
′
)

−cdis[(1− α)q + β(1− q)] D
(1−α)q

o/w

−cdRβ(1− q) D
(1−α)q

− wD
+(pr − cr)D

lim
QR→D−

ΠR(QR) = lim
QR→D+

ΠR(QR) = ΠR(D) holds. Hence, ΠR(QR) is

continuous at QR = D.

To check differentiability of ΠR(QR) at QR = D, the following left- and right-hand

limits should exist and should be equal to each other. When f ′(1 − α)qr ≤ QR,

the optimal acquisition price is independent from QR. Then the left- and right-hand

limits can be expressed as follows:

lim
h→0−

ΠR(D + h)− ΠR(D)

h
= h

b0

h

= b0

lim
h→0+

ΠR(D + h)− ΠR(D)

h
= h

b0

h

= b0

When f ′(1 − α)qr > QR, the optimal acquisition price is a function of QR. Then

left- and right-hand limits can be expressed as follows:
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lim
h→0−

ΠR(D + h)− ΠR(D)

h

= h

(
pr + b− w − cr − 1

(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

})
h

= pr + b− w − cr −
1

(1− α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

}

lim
h→0+

ΠR(D + h)− ΠR(D)

h

= h

(
cR − w − cr − 1

(1−α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

})
h

= cR − w − cr −
1

(1− α)q

{
cdis[(1− α)q + β(1− q)] + cdRβ(1− q)

}

When f ′(1 − α)qr ≤ QR, the left- and right-hand limits exist and they are equal.

When f ′(1 − α)qr > QR, the left- and right-hand limits exist but they are not equal

unless pr + b− cR = 0. Hence, ΠR(QR) is not differentiable at QR = D.
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