

EXACT DECOMPOSITION ALGORITHMS FOR NONLINEAR LOCATION

AND HUB LOCATION PROBLEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMİNE GÜNDOĞDU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

INDUSTRIAL ENGINEERING

NOVEMBER 2018

Approval of the thesis:

EXACT DECOMPOSITION ALGORITHMS FOR NONLINEAR

LOCATION AND HUB LOCATION PROBLEMS

submitted by EMİNE GÜNDOĞDU in partial fulfillment of the requirement for the

degree of Doctor of Philosophy in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin

Head of Department, Industrial Engineering

Prof. Dr. Sinan Gürel

Supervisor, Industrial Engineering Dept., METU

Examining Committee Members

Prof. Dr. Haldun Süral

Industrial Engineering Dept., METU

Prof. Dr. Sinan Gürel

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Ayşegül Altın Kayhan

Industrial Engineering Dept., TOBB ETU

Assist. Prof. Dr. Sakine Batun

Industrial Engineering Dept., METU

Assist. Prof. Dr. Vedat Bayram

Industrial Engineering Dept., TEDU

 Date:

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Emine GÜNDOĞDU

Signature :

v

ABSTRACT

EXACT DECOMPOSITION ALGORITHMS FOR NONLINEAR LOCATION AND

HUB LOCATION PROBLEMS

Gündoğdu, Emine

Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Sinan Gürel

November 2018, 172 pages

Developing exact solution algorithms to solve difficult optimization problems is one of the most

important subjects in the operations research literature. In this dissertation, we develop Benders

decomposition based exact solution algorithms (BDTAs) for handling nonlinearity in three

selected nonlinear integer location/hub location problems. The first and second problem include

nonlinear capacity constraints, while in the last problem, both objective function and the

capacity constraints are nonlinear. In our decomposition algorithms, we used problem specific,

logic based feasibility and optimality cuts. In addition to BDTAs, we propose a MISOCP

reformulation for solving the nonlinear integer model, which arises in wireless local area

networks, to optimality by using commercial solvers. Our computational study demonstrates

that the performance of MISOCP is better than that of Benders decomposition based algorithms.

This reformulation is general for any convex objective function as long as the constraints have

the same structure as those in the first problem that we studied in this dissertation. The second

problem includes nonlinear constraints in which product of binary variables exist and we

develop a branch-and-check algorithm with several enhancement steps. In the last problem,

nonlinear terms in the objective function and constraints are handled in Benders decomposition

scheme. Our computational study demonstrates that the performance of Benders decomposition

type algorithm is better than that of commercial solvers for especially difficult instances.

Key words: Benders Decomposition, Mixed Integer Second Order Cone Programming, Branch-

and-Check Algorithm, Nonlinear Location and Hub Location Problems

vi

ÖZ

DOĞRUSAL OLMAYAN YER SEÇİMİ VE ANA DAĞITIM ÜSSÜ SEÇİMİ

PROBLEMLERİ İÇİN KESİN AYRIŞTIRMA ALGORİTMALARI

Gündoğdu, Emine

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Gürel

Kasım 2018, 172 sayfa

Zor optimizasyon problemlerini çözmek için kesin çözüm algoritmaları geliştirmek, yöneylem

araştırması literatüründe önemli konulardan biridir. Bu tez kapsamında, seçilen doğrusal

olmayan yer seçimi ve ana dağıtım üssü seçimi problemleri için Benders ayrıştırma

algoritmasına dayanan kesin çözüm yöntemleri geliştirdik. Son ele alınan problemde, hem amaç

fonksiyonu hem de kısıtlar doğrusal değil iken, ilk ve ikinci problem sadece doğrusal olmayan

kısıtlar içermektedir. Önerdiğimiz ayrıştırma algoritmalarında, problemlere özgü olurluluk ve

optimallik kesileri türettik. Benders ayrıştırma algoritmasına ek olarak, kablosuz yerel ağ

tasarım problemi için karma tamsayılı ikinci dereceden konik bir formulasyon önerdik.

Deneysel çalışmalarımızda, konik formulasyonun performansının Benders ayrıştırma

algoritması temelli algoritmaların performansından daha iyi olduğunu gösterdik. Bu önerilen

formulasyon, ele alınan kısıtların yapısı aynı kaldığı sürece tüm konveks amaç fonksiyonlarının

bulunduğu modeller için geçerlidir. İkinci problem, (0-1) karar değişkenlerinin birbirleriyle

çarpılmasından oluşan doğrusal olmayan kapasite kısıtları içermektedir. Bu problem için,

içinde çeşitli iyileştirme algoritmalarının kullanıldığı dal-kontrol algoritması önerdik.

Son problemde hem doğrusal olmayan amaç fonksiyonunu hem de doğrusal olmayan kısıtları

Benders ayrıştırma algoritması içerisinde çözdük. İkinci ve son problem için önerdiğimiz

Benders ayrıştırma algoritması temelli çözüm yaklaşımlarının performansının ticari

çözücülerden daha iyi olduğunu gösterdik.

vii

Anahtar kelimeler: Benders Ayrıştırma Algoritması, Karma Tamsayılı İkinci Dereceden Konik

Programlama, Dal ve Kontrol Algoritması, Doğrusal Olmayan Yer Seçimi ve Ana Dağıtım

Üssü Problemleri

viii

To my mother Selvihan, my father Nevzat and my brother Çağlar…

ix

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof.Dr. Sinan Gürel for all his help,

guidance and patience during five tough years. For especially more stressful periods in PhD

education, he spent time to understand and help me.

I would like to sincerely thank to Assoc. Prof. Dr. Hakan Gültekin for his guidance,

encouragement and being a really good friend to me for the last seven years. He always believes

that I will be a good academician in the future. This is one of the most important motivations

in my academic career.

In this dissertation, I inspired from the research ideas that I learned from Stochastic

Programming course. I would like to thank to Assist. Prof.Dr. Sakine Batun for giving this

course and valuable comments during my thesis as a committee member. I would also like to

acknowledge Prof.Dr. Haldun Süral, Assoc. Prof. Dr. Ayşegül Altın Kayhan and Assist.

Prof.Dr. Vedat Bayram for being a committee member of my dissertation and their valuable

suggestions. I would like to thank to Prof. Dr. Murat Köksalan, Prof.Dr. Meral Azizoğlu, Assoc.

Prof. Dr. Sedef Meral and Assist. Prof.Dr. Melih Çelik for their encouragements throughout

my PhD education.

I’m indebted to my mother Selvihan and my brother Çağlar for their never-ending love, patience

and encouragements throughout this study. Without my mother and brother, this dissertation

could not be possible.

I continue to my academic career as a postdoctoral fellow at CIRRELT, which is one of the

dreams of my life. I would like to sincerely thank to Assist. Prof.Dr. Sibel Alumur Alev and

Assist. Prof.Dr. Duygu Taş Küten for their valuable suggestions and help during the application

process for postdoctoral positions.

For the years between 2013-2017, this study was financially supported by TÜBİTAK under the

program, 2211E. I would like to thank to TÜBİTAK for this financial support.

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGEMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xviii

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 9

2.1 Location/Hub Location Problems 9

2.1.1 Nonlinear Location/Hub Location Problems 10

2.2 Exact Solution Approaches for Single Allocation Hub Loca-
tion Problems . 14

2.3 Benders Decomposition Approaches for Hub Location Prob-
lems . 15

2.4 Logic Based Benders Decomposition (LBBD) 17

2.5 Branch and Check Algorithms (B&Check) 19

2.6 Integer L-shaped Algorithm (ILS) 20

2.7 Mixed Integer Second Order Cone Programming (MISOCP) . 21

x

3 A NONLINEAR WIRELESS LOCAL AREA NETWORK DESIGN
PROBLEM (WLANDP) . 25

3.1 Problem Definition and Mathematical Formulation 27

3.2 MISOCP Reformulation of the Problem (WLANDP1 and WLANDP2) 30

3.3 A Benders Decomposition Type Algorithm (BDTA) 31

3.3.1 A Benders Decomposition Type Algorithm for WLANDP1
(BDTA1) . 32

3.3.2 Benders Decomposition Type Algorithm for WLANDP2
(BDTA2) . 35

3.3.3 Branch and Benders Cut Algorithm for WLANDP2
(BBC) . 35

3.4 Computational Study . 38

3.4.1 Comparison of MISOCP and BDTA1 for WLANDP1 40

3.4.2 Comparison of MISOCP, BDTA2 and BBC for
WLANDP2 . 46

3.4.3 The effects of Lift and Project Cuts(LPC) for Solv-
ing MISOCPs . 49

3.5 Conclusion . 49

4 QUADRATIC CAPACITATED CONCENTRATOR LOCATION PROB-
LEM WITH SINGLE ASSIGNMENT (QCCLP) 53

4.1 Problem Definition and Mathematical Formulation 53

4.2 A Branch and Check Algorithm for QCCLP 57

4.2.1 Master Problem & Subproblem 58

4.2.2 Valid Inequalities for the Master Problem 63

4.2.3 Nogoods cuts . 65

4.2.4 Multiple feasibility cuts (MFC) 65

4.2.5 Extended feasibility cuts (EFC) 69

xi

4.3 Computational Results . 71

4.3.1 Description of Instances 73

4.3.2 Comparison of MIQCP in CPLEX and Branch-
and-Check Algorithms 73

4.3.3 Analysis of Enhancement Steps on Branch-and-
Check Algorithm 81

4.3.3.1 Effects of feasibility cuts 88

4.4 Comparison of Branch-and-check algorithm with Automatic
Benders Implementation in IBM CPLEX 12.7.1 89

4.5 Conclusion and Future Research 90

5 QUADRATIC CAPACITATED HUB LOCATION PROBLEM (QCHLP) 93

5.1 Problem Definition and Mathematical Formulation 95

5.2 A Benders Decomposition Type Algorithm (BDTA) for the
QCHLP . 97

5.2.1 Master Problem 100

5.2.2 Subproblem and Solution Approach 100

5.2.3 Traffic Bound Based Optimality Cuts (TBB Opti-
mality Cuts) . 101

5.2.3.1 Laporte & Louveaux Inequalities(LL
cuts) 105

5.3 Computational Results for QCHLP 109

5.3.1 Computational Results for the instances with (γ =
0.75) . 110

5.3.2 Computational Results for the instances with (γ =
0.50) . 120

5.3.3 Linear Capacitated Quadratic Hub Location Problem131

5.3.3.1 Benders Decomposition Type Algo-
rithm for LCQHLP 132

xii

5.4 Conclusion . 137

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 139

6.1 Main Contributions of the Dissertation 139

6.2 Future Research Directions 142

REFERENCES . 145

APPENDICES

A MIQCP IN CPLEX 12.7.1 . 151

2 APPENDIX B . 161

CURRICULUM VITAE . 171

xiii

LIST OF TABLES

TABLES

Table 3.1 Comparison of solution methods for WLANDP1 in the literature

and our work . 39

Table 3.2 Comparison of solution methods for WLANDP2 in the literature

and our work . 39

Table 3.3 Factors and their levels in the computational study 40

Table 3.4 Computational Results for MISOCP and BDTA1 for WLANDP1 . . 45

Table 3.5 Computational Results for MISOCP, BDTA2 and BBC for WLANDP2 48

Table 3.6 Comparison results obtained with/without lift-and-project cuts on

MISOCP for WLANDP1 . 51

Table 4.1 Comparison results of MIQCP and BV1TIPFMF for 20 nodes 77

Table 4.2 Comparison results of MIQCP and BV1TIPFMF for 25 nodes in-

stances . 78

Table 4.3 Comparison ofMIQCP &BV2TLPFEF andMIQCP &BV1TIPFEF

for 40 nodes instances . 79

Table 4.4 Comparison of MIQCP & BV2TLPFMF for 50 nodes instances . . 80

Table 4.5 Computational Results of BV2TLPFEF for 100 nodes 81

Table 4.6 Impact of adding valid inequalities to the master problem (MP) . . . 83

xiv

Table 4.7 Comparison Results of VI(1) and VI(2) for different number of

nodes in the network . 84

Table 4.8 Computational comparison of different branch-and-check alterna-

tives and MIQCP for 40 nodes and 50 nodes instances in terms of CPU

time . 86

Table 4.9 Comparison of using the strategy TIP or TLP in VI(1) for 40 and 50

nodes instances . 88

Table 4.10 Comparison of using the strategy TIP or TLP in VI(2) for 40 and 50

nodes instances . 88

Table 4.11 Comparison Results of BV2TLPFEF and BV2TLPFMF in terms

computational time and feasibility cuts for 40 nodes instances 89

Table 4.12 Comparison of Automatic Benders and branch-and-check algorithm

for a subset of instances . 90

Table 5.1 Benders decomposition implementations for hub location problems . 95

Table 5.2 Comparing the Decomposition Algorithms for QCCLP and QCHLP 99

Table 5.3 Summary computational results for 20, 25 and 40 nodes with γ = 0.75113

Table 5.4 Computational Results of MIQCP and BDTA with TBB optimality

cuts for the instances with 20 nodes with γ = 0.75 114

Table 5.5 Computational Results of MIQCP and BDTA with TBB optimality

cuts for the instances for 25 nodes with γ = 0.75 115

Table 5.6 Computational Results of MIQCP and BDTA with TBB optimality

cuts for the instances with 40 nodes (γ = 0.75) 116

Table 5.7 Computational Results of BDTA with TBB cuts and BDTA with LL

cuts for 20 nodes for γ = 0.75 . 117

Table 5.8 Computational Results of BDTA with TBB cuts and BDTA with LL

cuts for 25 nodes (γ = 0.75) . 118

xv

Table 5.9 Computational Results of BDTA with TBB cuts and BDTA with LL

cuts for 40 nodes-instances with γ = 0.75 119

Table 5.10 Computational Results of MIQCP and BDTA with TBB cuts for 20

nodes instances (γ = 0.50) . 123

Table 5.11 Computational Results of MIQCP and BDTA with TBB cuts for 25

instances (γ = 0.50) . 124

Table 5.12 Comparison results of BDTA with TBB cuts and BDTA with LL

cuts for 20 nodes instances with γ = 0.50 125

Table 5.13 Comparison Results of BDTA with TBB cuts and BDTA with LL

cuts for 25 nodes with γ = 0.50 . 126

Table 5.14 Comparison of BDTA with TBB cuts and BDTA with LL cuts for

40 nodes with γ = 0.5 . 127

Table 5.15 Comparison of MIQCP, BDTA with TBB cuts and BDTA with LL

cuts in terms of CPU time and no of instances solved to optimum 128

Table 5.16 Computational Results of BDTA and AutoBend implementation in

CPLEX for 20 nodes instances γ = 0.50 129

Table 5.17 Computational results of BDTA with TBB cuts and AutoBend im-

plementation in CPLEX for 25 nodes instances γ = 0.50 130

Table 5.18 Computational results of LL optimality cuts and TBB optimality

cuts on LCQHLP for 20 nodes and 25 nodes 135

Table 5.19 Computational results of LL optimality cuts and TBB optimality

cuts on LCQHLP for 40 nodes . 136

Table A.1 Mathematical Model Types with different objective and constraints . 151

Table A.2 Comparison of MIQCP, BV2TIPFMF and BV1TIPFMF Results for

20 & 25 Nodes . 156

xvi

Table A.3 Comparison of MIQCP , BV1TIPFMF and BV2TIPFMF Results

for 40 Nodes & 50 Nodes . 157

Table A.4 Results of BV1TLPFEF for 40 nodes 158

Table A.5 Results of BV1TLPFEF for 50 Nodes instances 159

Table A.6 Results of BV2TIPFEF for 40 nodes instances 160

Table 2.1 Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr1

to Pr5) . 162

Table 2.2 Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr6

to Pr10) . 163

Table 2.3 Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr11

to Pr15) . 164

Table 2.4 Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr16

to Pr20) . 165

Table 2.5 Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr21

to Pr24) . 166

Table 2.6 Detailed results of MISOCP, BDTA2 and BBC for WLANDP2

(from Pr1 to Pr8) . 167

Table 2.7 Detailed results of MISOCP, ILS2 and BBC for GWLANP2 (from

Pr9 to Pr16) . 168

Table 2.8 Detailed results of MISOCP, ILS2 and BBC for GWLANP2 (from

Pr17 to Pr24) . 169

xvii

LIST OF FIGURES

FIGURES

Figure 3.1 Flowchart of BDTA1 for WLANDP1 43

Figure 3.2 Flowchart of Branch-and-Benders cut (BBC) for WLANDP2 . . . 44

Figure 4.1 An example network with access and backbone networks for QCCLP 54

Figure 4.2 A Branch and Check Algorithm for QCCLP 62

Figure 5.1 A Benders Decomposition Type Algorithm for Quadratic Capaci-

tated Hub Location Problem . 108

Figure 5.2 Flowchart of Branch-and-check for LCQHLP 134

xviii

CHAPTER 1

INTRODUCTION

Location problems such as set covering, maximum coverage, the p-median, facility

location and hub location problems have a significant place in operations research

literature. These problems include strategic and/or tactical level location decisions

made in different sectors. They have been often solved by using mathematical pro-

gramming methods.

The network structure that occurs in location/ hub location problems can be seen in

large-scale transportation, telecommunication, and cargo delivery systems. In these

networks, some nodes could be specialized as hubs, and using them provides signif-

icant benefits to reduce the overall cost in the network. As mentioned in [19], the

aims of using hubs are to reduce costs related to satisfying the demand, increase the

efficiency of the service provided and cope with uncertainities.

Although most of the studies in the literature consider linear location/hub location

problems, real life applications usually involve nonlinearities. Nonlinear functions

may be necessary to model congestion or delay in the network, amount of backbone

traffic, cost, technological restrictions, etc.

These nonlinear location problems can be formulated as mixed integer nonlinear pro-

grams (MINLP). Such kind of formulations are usually more difficult to solve than

the linear counterparts. MINLPs combine discrete decisions and nonlinear functions.

Generally, MINLPs cannot be solved as fast as MILPs, yet.

Some forms of convex functions and convex sets can be represented via second order

conic programming constraints. This helps to reformulate some MINLPs as mixed

1

integer second order cone programs (MISOCP). In Chapter 3, we consider a nonlinear

wireless network design problem and show that the problem can be reformulated as

an MISOCP. So that, the problem can be solved by using commercial branch and

bound solvers.

An alternative exact solution approach for discrete optimization is to use Benders

decomposition. Benders decomposition was first proposed by [11] to solve mixed

integer linear programs. In this decomposition, the overall model is decomposed

into two parts: master problem and subproblem. Master problem includes a subset

of decision variables (integer or binary variables) in the original problem. These

variables are usually called complicating variables. The subproblem includes the

remaining continuous variables and a given solution to the master problem. When

the subproblem is a linear programming problem, the algorithm is called classical

Benders decompositon.

In classical Benders decomposition method, the cuts which are added to the master

problem for convergence, are generated by using the dual of the subproblem. These

cuts could be either feasibility or optimality cuts depending on the status of the sub-

problem. The Benders decomposition can be implemented in either iterative way,

where the master problem is resolved from scratch, or in a branch-and-cut framework.

Solving the master problem only once in a branch-and-cut decreases computational

time which is shown in several studies in the literature.

Although Benders decomposition is initially developed to solve MILPs, it has been

extented to solve nonlinear programs (NLPs), integer programs (IPs), multistage

problems and stochastic integer programs (SIPs). In these cases, subproblem can be a

feasibility check, an integer programming problem or a mixed integer linear program-

ming problem. We refer the reader to [65] for an extensive literature review on Ben-

ders decomposition algorithm, its relationship with other decomposition algorithms

and improvement steps for the algorithm. In the literature, Benders decomposition

algorithm can be improved by making several enhancements such as adding valid in-

equalities to the master problem, developing efficient solution strategies for solving

master problem and subproblem, and using modified master problem in which some

variables of the subproblem are included.

2

In the case where the subproblem includes binary or integer variables, which will be

the case in those location problems considered in this dissertation, generating cuts by

using duality may not be possible. If the master problem in a Benders Decomposition

(BD) of a problem includes only binary variables, the optimality cuts in [54] can be

used. These cuts can be employed for any problem as long as its subproblem can

be solved for a given master problem solution. In the study [54], there are two main

assumptions:

1. The master problem must only include binary variables.

2. The subproblem has complete recourse property. This means that the subprob-

lem is always feasible for a given master problem’s solution. Therefore, in the

study [54], only generic optimality cuts are proposed.

When the master problem only includes binary variables and the subproblem is just

a feasibility problem, only feasibility cuts are generated. To generate general feasi-

bility cuts which are valid for the master problem including only binary variables,

the feasibility cuts proposed by [20] can be used. These cuts are generally known as

combinatorial Benders cuts.

The aim of adding feasibility cuts to the master problem is to cut off the current

solution from the feasible region of the master problem. In this dissertation, we pro-

pose valid inequalities to improve the master problems for quadratic capacitated con-

centrator location problem (QCCLP) and quadratic capacitated hub location problem

(QCHLP). We develop problem specific feasibility cuts for both QCCLP and QCHLP.

For QCHLP, we also propose problem specific optimality cuts and compare its com-

putational performance against general purpose optimality cuts.

By using lazyconstraint callback function in commercial solvers (e.g., IBM ILOG

CPLEX), implementing Benders decomposition type algorithms in a branch-and-

cut (B&C) has become widespread. In this dissertation, we develop exact Benders

decomposition type algorithms for three nonlinear integer facility and hub location

problems.

In Chapter 3, we study a nonlinear wireless local area network design problem with

two variants (WLANDP1,WLANDP2). This problem was first studied by [42]. In

3

this problem, we are given a set of access points (facilities), a set of user terminals

(customers) with demands and power levels that can be installed on given access

points. The problem is to choose which access points to open at which power level

and to assign each user terminal to an access point while capacity constraints are

satisfied. This problem can be seen as a single assignment capacitated facility lo-

cation problem in which the capacities of the facilities are also determined by the

decision maker. Due to the technical constraints in wireless communication, capac-

ity constraints for access points are nonlinear. The mathematical formulation of this

problem includes binary variables and nonlinear constraints, so these properties make

the problem difficult to solve.

Both variants (WLANDP1 and WLANDP2) of the problem have the same constraints.

The only difference is that the objective function of WLANDP2 only includes the cost

of installing power, while the objective function of WLANDP1 includes the cost of

installing power on access points and the cost of assigning user terminals to the access

points.

We show that the nonlinear capacity constraints can be expressed via second or-

der conic inequalities. Therefore, both variants of the problem (WLANDP1 and

WLANDP2) can be solved as MISOCP problems. MISOCP reformulations make

it possible to solve WLANDP1 and WLANDP2 by using commercial solvers such

as IBM ILOG CPLEX. To the best of our knowledge, this reformulation is the first

closed form formulation which can be solved by existing mathematical programming

solvers for WLANDP1 and WLANDP2. As long as the constraints remain the same,

this MISOCP formulation is applicable for any problem with a convex objective func-

tion.

Furthermore, for WLANDP1, we propose an exact Benders type decomposition al-

gorithm which is quite similar to the Integer L-shaped algorithm (ILS). ILS is a well

known decomposition method for two stage stochastic integer programms. Our pro-

posed algorithm can be seen as one version of ILS algorithm where the number of

scenarios is one. The aim of developing a Benders type decomposition algorithm is

to deal with the assignment cost term in the objective function and the nonlinear ca-

pacity constraints. In the master problem, we determine the selected power levels on

4

each access point. In the subproblem, we determine the assignments of user termi-

nals to access points. Since the subproblem includes binary variables, we don’t use

the linear programming duality for the subproblem. We used feasibility cuts proposed

by [42] and optimality cuts proposed by [54].

For WLANDP2, we propose a Benders decomposition type algorithm which is a spe-

cial case of the algorithm proposed for WLANDP1. In this problem, the decomposi-

tion does not include optimality cuts since in this case the subproblem is a feasibility

check problem. We used the same feasibility cuts as in WLANDP1 case.

For WLANDP1, we evaluate the performance of our proposed Benders type decom-

position and MISOCP formulation. Computational study demonstrates that in the

average solving MISOCP reformulation requires shorter CPU times than the Ben-

ders type decompositon algorithm. Also, for a given CPU time limit, MISOCP could

solve more instances to optimum than Benders decomposition type algorithms. We

also observed that MISOCP has a better performance than Benders decomposition for

the difficult instances.

For WLANDP2, we compared the computational performance of MISOCP, Benders

type decomposition algorithm and branch-and-Benders cut algorithm within the given

time limit. MISOCP finds the optimal solutions for most of the instances. One of

the important results conducted from computational study is that average number of

feasibility cuts in the branch-and-Benders cut method is less than the number of cuts

in the Benders type decomposition due to the strong feasibility cuts in branch-and-

Benders cut method.

In Chapter 4, we consider a quadratic capacitated concentrator location problem (QC-

CLP) which arises in telecommunication network design. A concentrator or multi-

plixer is a device aggregating, compressing, forwarding and transfering data in the

system. Concentrators can be seen as hubs or facilities in the facility/hub location

problems in the literature. Similar to hubs, concentrators provide advantages in terms

of cost in telecommunication systems. The QCCLP was first studied by [53]. In

QCCLP, we are given a set of nodes and a traffic matrix between the nodes. The

problem is to determine a subset of nodes as hubs and the assignments of non-hub

nodes to hub nodes. To satisfy the demand of each origin-destination pair, at least

5

one of the hub locations must be visited. The objective function to minimize is the

cost of installing hubs and traffic routing between non-hub nodes and hub nodes. The

problem has nonlinear capacity constraints since the backbone traffic (traffic between

concentrator pairs) is expressed by nonlinear terms.

When the capacity constraints are linear, QCCLP is reduced to a linear capacitated

concentrator location problem (LCCLP). The LCCLP is a capacitated single assign-

ment facility location problem and it is NP-hard. Therefore, QCCLP is NP-hard.

For QCCLP, we propose a Benders decomposition type algorithm in which we de-

velop problem specific feasibility cuts. We implement the decompositon in a branch-

and-cut (B&C) framework. So, we call our method the branch-and-check algorithm

(B&Ch).

As in classical Benders decomposition, we decompose the problem into two parts:

master and subproblem. Master problem determines which nodes are selected as

hubs, and the assignment of non-hub nodes to hub nodes. Master problem includes

a linear relaxation of the nonlinear capacity constraints. Given a feasible solution

for the master problem, in the subproblem phase we check if the nonlinear capacity

constraints in QCCLP are feasible for this solution.

As the subproblem does not have any objective function, only the feasibility cuts are

added to the master problem, when they are necessary. We propose two feasibility

cuts called multiple feasibility cuts and extended feasibility cuts. To strengthen the

master problem formulation, we also propose two alternative valid inequalities. Using

alternative feasibility cuts and valid inequalities resulted in alternative branch and

check algorithms.

For QCCLP, we compared the computational performance of our branch-and-check

algorithms with MIQCP solver of IBM ILOG CPLEX. We observed that branch-

and-check algorithms require shorter CPU times than CPLEX. Moreover, for given

time limit it solves more instances than CPLEX. By using the branch-and-check algo-

rithms, more instances are solved to optimum in shorter computational time. Branch-

and-check can solve 100-node instances to optimum while MIQCP solver cannot find

integer feasible solutions in given time limit. We also explored the effects of enhance-

ment steps on the computational performance of branch-and-check algorithms. We

6

observed that adding valid inequalities to the master problem has significant effect

on computational performance of the algorithm. For the instances where capacity

constraints are tight, the effect of using valid inequalities in the master problem is

higher.

In Chapter 5, we consider a quadratic capacitated hub location problem (QCHLP)

which is a general variant of QCCLP. The problem has the same assumptions and

constraints as QCCLP except that the QCHLP has backbone traffic cost in its ob-

jective function. So QCHLP has nonlinear terms in both its objective function and

constraints.

For QCHLP, we propose a Benders decomposition type algorithm in which the prob-

lem is decomposed into master and subproblem. The master problem of this decom-

position is the same as the master problem in the branch-and-check algorithm for

QCCLP except that in the objective function, it includes auxiliary variables that rep-

resent the nonlinear backbone traffic cost terms. Different than the branch-and-check

algorithm proposed for QCCLP, in the branch and check algorithm for QCHLP, opti-

mality cuts must be included to the master problem when they are neccessary.

Implementation of a Benders decomposition type algorithm (BDTA) is the same as

the branch-and-check algorithm except that when the subproblem is feasible we add

optimality cuts to the MP. We propose a problem specific combinatorial optimality

cut. As an alternative, we also used the optimality cut given by [54]. To the best of

our knowledge, branch-and-check algorithm is the first Benders decompositon type

solution approach developed for QCCLP. Similarly, integer Benders decomposition

is the first Benders type decomposition for QCHLP.

We give the related literature review in Chapter 2. We give MISOCP reformula-

tion, Benders decomposition type algorithm for WLANDP1 and WLANDP2 and

their computational comparison results in Chapter 3. In Chapter 4, we develop a

branch-and-check algorithm with several enhancement steps for QCCLP and give

comparison results with MIQCP solver of CPLEX. We also discuss the effects of

each enhancement step on the performance of the branch-and-check algorithm in this

chapter. In Chapter 5, we develop an exact Benders decomposition type algorithm for

QCHLP. We give concluding remarks and future research directions in Chapter 6.

7

8

CHAPTER 2

LITERATURE REVIEW

In this dissertation, we studied exact solution methods for solving WLANDP, QC-

CLP and QCHLP which are all nonlinear integer optimization problems. Since the

problems that we consider in this dissertation are nonlinear location and hub location

problems, we first give the related literature review on location/hub location prob-

lems. Although the literature on hub location problem is too wide, we give the most

relevant studies in which single allocation is considered and nonlinear terms occur in

the objective functions or constraints of the models.

The algorithms that we develop in this dissertation are based on Benders decomposi-

tion in which the subproblem is not an LP. Therefore, we give some studies consid-

ering Integer L-shaped algorithm, logic-based Benders decomposition, and branch-

and-check algorithm to give necessary background for the Benders decomposition

algorithm with integer subproblems. In addition to decomposition algorithms, we

develop a MISOCP reformulation for the problem discussed in Chapter 3. In this

chapter, we also give the review of the recent studies related to the implementations

of MISOCP on different problems.

2.1 Location/Hub Location Problems

As mentioned in [19], hub location problems have distinguishing features that can be

summarized as follows:

• Demand values are defined between any origin-destination pair.

9

• Some nodes are selected as hubs in the network.

• Flows can pass through the hubs.

• Transferring flows by using hubs provides benefit in terms of cost.

• Most of the studies in the literature consider minimizing cost such as cost of

opening hubs and routing cost in the network.

A general hub location problem can be defined as follows: we are given a complete

graph that is G = (V,E). In this representation, V denotes the set of all nodes, while

edges are described by E. Distance between any nodes and the flow that must be sent

from one node to another node are given parameters. Most of the studies in the liter-

ature consider Euclidean distance between the node pairs. The main decisions in this

general hub location problem definition, are to determine the hubs and assignments of

non-hub nodes to hub nodes to satisfy the demand of each node pair. When additional

properties related to the problem are added to the definition, some different decisions

may also be considered in the problem. These decisions could be determining the

type or/and capacity of the hubs when multiple choices on capacity values exist.

Hub location problems can be classified by using several criteria such as assignment

type (multiple & single) of non-hub nodes to hub nodes, capacitated/uncapacitated

version of the hub, number of hubs that should be opened in the network. Different

types of hub location problems have been extensively studied in the literature. We

refer the readers to the surveys ([5], [15], [17], [38], [49], [63]) and a book chapter

([21]) for hub location problems and their solution methods.

Three problems that we studied in this dissertation are in the class of nonlinear inte-

ger optimization problems, we give related literature on nonlinear location and hub

location problems in the Section 2.1.1.

2.1.1 Nonlinear Location/Hub Location Problems

The problems that we study in Chapter 3 and Chapter 4 include nonlinear terms in

the objective function of their mathematical models. The nonlinearity consists of

10

multiplication of binary variables. The first study considering such kind of objec-

tive function for hub location problem is related to uncapacitated variant. The first

model for the uncapacitated p-median hub location problem was proposed by [62].

The assumption in this problem is that completely interconnected hub links may ex-

ist. The developed model is very similar to the classical p-median problem with a

different objective function including quadratic terms. Due to the complexity of han-

dling quadratic terms in the objective function, most of the studies focus on heuristic

algorithms in the literature. [62] gives two heuristics which are based on enumera-

tion to solve the quadratic model. In one heuristic, each demand point is assigned

to the nearest hub location while the other heuristic considers first or second nearest

hub. The first heuristic finds the optimal solution for the special case where there

is no nonlinear objective function term in the model. [48] considers heuristic algo-

rithms: Tabu search and GRASP. Another tabu search algorithm is used in the study

([74]). Lower bounds for the objective function on quadratic hub location problems

are considered in the study ([61]).

[67] consider the uncapacitated single allocation p-hub median problem in which no

fixed cost exists in the objective function. They propose two procedures to find lower

bounds for uncapacitated single allocation p-hub median problem. The first lower

bounding method depends on Gilmore-Lawyer bound proposed for the quadratic as-

signment problem. The other method is based on developing a new MILP formulation

and solve it by using Lagrangian relaxation.

In [18], an MILP formulation is proposed to solve uncapacitated single allocation p-

hub median problem exactly. A new variable to linearize the quadratic terms in the

objective function is introduced. The formulation is linear, however when the num-

ber of nodes in the network increases, it becomes difficult to solve this mathematical

formulation. The reason is that the number of variables and constraints increases ex-

ponentially. In [37], a linear programming formulation in which fewer variables and

constraints exist is proposed to solve the problem exactly. They also develop an effi-

cient heuristic to solve the problems in reasonable amount of time. [75] consider the

uncapacitated p-median hub location problem with two variants: multiple allocation

and single allocation and propose a mixed integer linear programming formulation

whose linear programming relaxations is tight. By using this approach, they are able

11

to solve some problem instances which are not solved to optimum before.

To find a lower bound for the objective function, the continuous relaxation of the

model in [75] could be used. The bound obtained from this relaxation is better than

the bound of the LP relaxation of the model proposed in [37]. The formulation devel-

oped by [37] includes three-index formulation. However, the mathematical formula-

tion proposed by [75] require higher computational time.

Recently, [57] consider five different variants of single allocation hub location prob-

lems: uncapacitated single allocation p-hub median problem, uncapacitated single

allocation hub location problem, linear capacitated problem and single allocation

hub location problem with congestion. All models have nonlinear terms in their ob-

jective functions. To handle these nonlinearity issues, several linearization techniques

are used. As the number of nodes increases, linearization methods result in huge num-

ber of variables in the models. The main assumption behind the method given in [57]

is that the distance between any node pair is Euclidean. This property provides to

construct a new linearization and row generation procedure. By taking the advantage

of this method, they can solve large size instances such as 200 nodes to optimum .

All the problems that we consider in this dissertation are in the class of single alloca-

tion location and hub location problems, so that we give studies on single assignment

hub location problems. As the decomposition algorithms include special variant of

the single allocation hub location problem in the master problem, they have a signifi-

cant place.

Although the uncapacitated variant of single allocation hub location problem is widely

studied in the literature, studies on its capacitated counterpart appear relatively rare.

[18] give the first linear integer programming formulation in which the variables are

four-indexed for capacitated single allocation problem. To obtain a lower bound, in

[8], a branch-and-bound method which is based on lagrangean relaxation is given.

In [8], two heuristic algorithms are developed to obtain upper bounds. The similar

problem is also considered in [9]. The difference is that the number of hubs that must

be open is a given parameter in [9].

[53] consider several capacitated single allocation hub location problems in which the

12

hub capacity is used for both inflow & outflow and backbone traffic associated with

the hub. Due to the amount of backbone traffic, the model proposed in [53] includes

nonlinear constraints. They propose a nonlinear integer mathematical model in which

a two indexed decision variable definition is used. Although the number of variables

is fewer, the number of constraints is exponential. They study the polyhedral structure

of the problems. They propose an exact branch-and-cut algorithm for the problems

and seperate the exponential number of constraints in the branch-and-cut algorithm.

They give the computational results for the instances up to 50 nodes. For QCCLP

and QCHLP that are discussed in [53], we propose Benders decompositon type algo-

rithms. To the best of our knowledge, our Benders decomposition algorithms are the

first exact decomposition type algorithms that are implemented for both problems. We

handle the nonlinear constraints (in QCCLP and QCHLP) and the nonlinear objective

function (in QCHLP) within a Benders decomposition type approach. We demon-

strate that our decomposition approach enables solving large size instances and also

difficult instances to optimum.

[25] consider the capacitated hub location problem with single assignment. They

show that using a Lagrangean relaxation technique, the problem can be decomposed

into smaller subproblems which can be solved efficiently. In their lagrangean relax-

ation, the model does not have the integrality property, lower bound obtained from

this relaxation is better than the LP-relaxation bound. In their algorithm, both lower

and upper bounds are proposed.

[36] consider a capacitated single allocation hub location problem and give the for-

mulations with fewer variables and constraints than the formulations in the literature.

They develop two simple heuristics to obtain an upper bound. One of the heuristics

is based on simulated annealing and the other one is based on random descent. They

found the optimal solutions by solving a branch-and-bound algorithm and use upper

bound in heuristics for a capacitated single allocation hub location problem. [24] de-

velop a branch-and-price algorithm for CSAHLP and solve the instances optimally

up to 200 nodes.

One variant to the QCHLP which is called hub location problem with modular link

capacity, was studied by [79]. In this study, they consider a capacitated single alloca-

13

tion hub location problem that arises in telecommunication networks. Although the

objective function of the proposed model is linear, the capacity constraints include

nonlinear terms. As in QCHLP, the nonlinear terms are the multiplications of the

binary variables. These terms are used for not allowing double counting in capacity

constraints. They develop an exact and a heuristic method for modular link hub loca-

tion problem. For the same problem, [26] propose a metaheuristic and compare the

computational performance of the algorithm with the results given in [79].

For all problems in this dissertation, we handle nonlinear terms in a Benders decom-

position framework. In addition to nonlinearity, the other difficulty in these problems

is that single assignment is taken into consideration. Therefore, we give the related

literature on exact solution approaches for single allocation hub location problem in

Section 2.2.

2.2 Exact Solution Approaches for Single Allocation Hub Location Problems

Although many studies consider heuristic algorithms for single allocation hub loca-

tion problems, exact algorithms are relatively rare in the literature.

In [30], a capacitated single allocation hub location problem is considered with two

objective functions. They propose a bi-criteria model which handles the limitations

that can occur in classical capacitated hub location problem. If some amount of flow

exceeds the capacity of the hubs, excessive flow is rejected in the classical capacitated

hub location problem. However, such a situation is not possible when an emergency

service is considered. To model the problem as a bicriteria approach, the capacity

constraints are considered as soft constraints. They develop bi-criteria approaches for

single allocation hub location problem and find the nondominated solutions by using

an interactive method. They give the solutions for 40-nodes instances.

In [29], hub capacities are determined by the decision maker in addition to the as-

sumptions in classical CSAHLP. They propose several MILP formulations for the

problem and compare the LP-relaxation bounds.

[51] also considers capacitated hub location problems and they used modified MILP

14

formulations. This reformulation include fewer number of variables and constraints

rather than the formulations in literature. Two evolutionary algorithms are proposed

for the problem and they could solve large size instances to optimum.

2.3 Benders Decomposition Approaches for Hub Location Problems

As solving uncapacitated variant of the hub location problems are easier than solving

the capacitated versions, Benders decomposition algorithms are firstly implemented

for uncapacitated hub location problems.

In [32], they implement different Benders decomposition variants for UMAHLP. The

first exact method is a classical Benders decomposition implementation in which sin-

gle cut is added to the master problem (MP) in each iteration of the algorithm. They

also generate cuts for each origin-destination pair and add multiple cuts to the master

problem. The last variant they use is that they stop the algorithm when an ε opti-

mal solution is found. These three algorithms are implemented in an iterative way

where master problem is resolved after adding new constraints to the MP through the

iterations.

For a large scale uncapacitated multiple allocation hub location problem, a Benders

decomposition algorithm is implemented in [22]. They implement Benders decom-

position for the strong path based formulation. In order to generate strong optimality

cuts, they use pareto optimal cuts. They generate multiple cuts for each candidate hub

location. They could solve very large size of instances with 500 nodes optimally.

In the classical hub location problems, large discount factors for small amount of flow

between interhub connections are used. In the study [34], a piecewise linear concave

cost function between two hub locations is considered. They solve the problem by

using Benders decomposition.

There are also studies in which Benders decompositon is applied for stochastic hub

location problems. In the study [58], they propose MILP formulations for multiple al-

location p-hub median problem. They consider hose and hybrid demand uncertainty.

They develop exact solution methods based on Benders decomposition. In their com-

15

putational study, the performance of the decomposition algorithms is better than the

commercial solvers. By using the decomposition algorithms, the instances that are

not solved to optimum by using commercial solvers can be solved.

Capacitated multiple allocation hub location problem with hose demand uncertainty

is introduced in [59]. They develop MIP formulation for the problem and two Ben-

ders decomposition algorithms are developed to solve the problem optimally. They

implement their Benders decomposition algorithms in a single branch-and-bound tree

of the master problem.

In [27], an integrated logistics network design problem, in which locations, capaci-

ties, mode selections for transportation decisions are made, is considered. They pro-

pose two approaches to solve the problem: a simplex-based branch and bound and

a Benders decomposition approach. They conclude that Benders decomposition’s

performance is better than that of the other approach for difficult instances.

When the small number of hubs is considered in the network, congestion occurs in

these hubs due to the amount of flow that is assigned to these hubs. [31] study a single

allocation hub location problem under congestion. The aim is to minimize the total

cost in the network. The objective function includes three terms: installation of the

hubs, congestion at hub nodes and routing cost. They propose two MINLP formu-

lations and a generalized Benders decomposition is used to solve these formulations

exactly.

The Benders decompositon algorithms mentioned so far are classical Benders de-

composition where the subproblem is an LP. To the best of our knowledge, there is

only one study where an Integer L-shaped algorithm is implemented for a hub loca-

tion problem. In [68], they study a single allocation hub location problem with hub

breakdown. It is assumed that hubs cannot be available due to several reasons. For

such a case, the amount of flow that is assigned to this hub can be assigned to backup

hub. The mathematical model includes nonlinear objective function and they develop

a branch-and-cut approach based on Benders decomposition, which is an Integer L-

shaped algorithm.

16

2.4 Logic Based Benders Decomposition (LBBD)

In the BDT algorithm proposed in this dissertation, we develop problem specific fea-

sibility and optimality cuts for the problems. The algorithms which use problem

specific cuts are in the class of logic based Benders decomposition.

Logic based Benders decomposition was first developed by [45]. It is stated that the

dual information (inference dual) must be obtained from any type of subproblems.

If the subproblems are linear programs, the decomposition method is called classical

Benders decomposition.

Logic based Benders decomposition can be seen as the general version of the classical

Benders decomposition since the subproblem could be any optimization problem.

One of the main differences between LBBD and classical Benders decomposition

method is that no standard way exists to generate cuts in LBBD. Each feasibility and

optimality cut generated is problem specific. LBBD is an iterative approach in which

master problem is resolved after adding necessary cuts.

As stated in [10], the implementation of LBBD has three challenges defined as below.

• Adding valid inequalities which includes the information of subproblem

• Determining the time when subproblems are solved (e.g., solving the subprob-

lems for each integer feasible solution or for an only optimal solution to the

MP)

• Generating strong Benders cut (e.g., feasibility or optimality cuts)

LBBD is mainly used for scheduling problems in the literature. [28] consider the

scheduling and routing of AGVs in the flexible manufacturing systems. In the prob-

lem, assignment and scheduling decisions are made simultaneously. They develop a

hybrid decomposition algorithm to solve the problem, in which logic cuts are obtained

from the subproblem.

In [46], a scheduling problem is considered. In this problem, each task must be

assigned to a facility. Each task has a release and due date. They consider the problem

17

with different objective functions: cost, makespan and total tardiness. Assigning the

tasks to the facilities are done using MILP and then they are scheduled by using CP.

Therefore, they combine two approaches in logic based Benders decomposition.

In addition to scheduling problems, LBBD is also implemented for a location- alloca-

tion problem. In [39], they consider a location-allocation problem where the problem

is to determine the locations of the facilities, assignments of the customers to the fa-

cilities without exceeding the capacities of facilities. In this problem, customers are

assigned to the trucks at the facilities and each truck has a travel distance limit. Inte-

ger programming and constraint programming are used in a hybrid algorithm for this

location-allocation problem.

There are also some studies in which nonlinearity is handled with logic based Ben-

ders decomposition. In [42], a wireless local area network design problem with two

variants is proposed and a branch-and-Benders decomposition algorithm is imple-

mented for both variants. They generate combinatorial feasibility cuts which use the

special structure of the problem. Since generation of the cuts does not depend on the

duality of the subproblem, valid cuts are generated logically. They give the compu-

tational comparison of Benders decomposition which is an iterative procedure and

branch-and-Benders decomposition for the special case of two variants.

In Chapter 3, we consider this WLANDP with both variants and develop Benders de-

composition type algorithms. In these decomposition algorithms, we used the prob-

lem specific feasibility cuts proposed in [42]. When optimality cuts are necessary for

the convergence, we employed the logic behind Integer L-shaped algorithm whose

definition will be given in Section 2.6.

Another example, where LBBD is used for dealing with nonlinearity of the con-

straints is given in [77]. They consider an integrated inventory-location problem with

stochastic service constraints. A nonlinear mixed integer linear program is developed

for this problem. Due to the structure of the decisions, the mathematical model only

includes binary variables. Since the service requirement constraints are nonlinear,

implementation of classical Benders decomposition is not posssible. They obtain a

MP by removing the nonlinear service requirements. After solving the MP without

considering the nonlinear constraints, they calculate the service level for each part

18

for the given master problem solution. If the subproblem is infeasible for the master

problem’s solution, they generate problem specific valid feasibility cuts and add them

to the MP. They implement this LBBD algorithm in an iterative way.

2.5 Branch and Check Algorithms (B&Check)

Branch-and-check algorithm, which is a generalized variant of logic based Benders

decomposition, was proposed by [76]. In LBBD, subproblem is solved after the op-

timal solution to master problem (MP) is found. However, the subproblem is solved

for each feasible solution of the master problem in branch-and-check algorithm. The

key difference between these two methods is that LBBD is implemented in an itera-

tive way, while branch-and-check algorithm is implemented within a branch-and-cut

scheme.

[10] gives the first comparison between LBBD and branch-and-check algorithm. In

the paper, it is stated that the performance of the LBBD or branch-and-check algo-

rithm depends on the difficulty of solving master and subproblem. When subprob-

lems are more difficult to solve rather than MP, the performance of branch-and-check

(B&check) algorithm could be weak.

Since MP is not resolved from scratch in branch-and-check algorithm, the perfor-

mance of branch-and-check algorithm is generally better than an iterative approach.[76]

give the name, branch-and-check to this algorithm and implement it on a planning and

scheduling problem. A significant reduction on computational time is obtained when

compared to the LBBD model proposed by [47].

In the study ([13]), subproblems are solved more often since the cuts are added to

each node found in the branch-and-bound tree of master problem. They compare its

approach with the one proposed by [47] and it’s computational performance is better

than the approach in [47].

The assignments of the jobs to the unrelated parallel machines under the cost mini-

mization objective function is studied in the paper [70]. Each job has a release date

and deadline that must be met in this problem setting. They implement seven different

19

branch-and-cut approaches which differ from each other in terms of formulation and

master problem. In their implementation, the MP that they use in one branch-and-cut

algorithm is tighter than the one given in [47]. In this paper, the efficiency of the

computational performance of the algorithms that are not dominated comes from a

tighter integer programming.

Branch-and-check algorithms differs from the logic based Benders decomposition

in terms of implementation. In the decomposition algorithm that we propose for

QCCLP, subproblem is just a feasibility check. Feasibility cuts are added to MP

in the its branch and bound tree when they are neccesary. Therefore, we call our

proposed Benders decomposition type algorithm branch-and-check algorithm in this

dissertation.

2.6 Integer L-shaped Algorithm (ILS)

Integer L-shaped algorithm is a Benders decomposition algorithm which is widely

used for two stage stochastic integer programs. This algorithm was proposed by [54].

Although the ILS algorithm was developed for two stage stochastic integer programs,

this algorithm is applicable for any type of MIP formulations when the master prob-

lem has certain properties. MP must include only binary variables and subproblems

could be every kind of optimization problems. ILS algorithm in [54] includes only

optimality cuts due to the structure of the subproblems they assume. Generating fea-

sibility cuts is not necessary for such kind of a subproblem since the subproblems are

always feasible for a given master problem’s solution. The optimality cuts which are

generated in [54] are also known as LL cuts. However, as mentioned in ([71]), the

same algorithm can be extented for the case in which both optimality and feasibility

cuts must be generated. For the last problem in this dissertation, QCHLP, we used

LL cuts to evaluate the performance of problem specific cuts. Although this kind of

cut is proposed for the stochastic integer programs, we could use this general purpose

optimality cut for WLANDP1 and QCHLP.

ILS algorithm has been used to solve many stochastic optimization problems opti-

mally. In [55], they consider a capacitated vehicle routing problem where the demand

20

of some customers are stochastic. When the demand of a customer is not satisfied,

this occurs a failure and the vehicle must go back to the depot. They implement an

exact ILS method for the problem and show that some instances with 100 customers

could be solved optimally. Some other implementations of Benders decomposition

can be seen in several studies ([44],[60]).

2.7 Mixed Integer Second Order Cone Programming (MISOCP)

As given in [12], MISOCPs can be described as:

min cTx

(MISOCP) s.t. ‖Aix+ bi‖ ≤ atoix+ boi ∀i ∈ 1, ...,m. (2.1)

where x represents the decision variable vector with n dimension and ‖Aix+ bi‖
denotes a Euclidean norm. x can include integer, binary or continuous variables.

The constraints that can be expressed in this form define second order cone or Lorentz

cone. When the formulation (MISOCP) does not have any integer or binary variables,

MISOCP is reduced to SOCP which are convex optimization problems. Several prob-

lem types can be formulated as SOCP (e.g., linear programs, quadratic programs with

convexity, quadratically constrained convex programming).

A SOCP can be described as follows by dropping the integrality restrictions of the

decision variables.

min cTx

(SOCP) s.t. Ax = b (2.2)

x ∈ K. (2.3)

In this formulation, K is a closed convex cone.

As SOCP is a special form of semidefinite programming (SDP), SOCP is the problem

type which is between LP, quadratic programming and SDP. We refer the reader to

[3] for the theory of SOCP, applications of it and algorithms that solve SOCP.

21

Interior point methods can be implementable for any type of constrainted optimiza-

tion problems. Therefore, these methods are extended to solve SOCP problems in

polynomial time. In each iteration of the algorithm, SOCP requires more computa-

tional time than linear programming and quadratic programs but less computational

effort when compared to semidefinite programming. In other words, SOCP is the

extensions of LP, while it is a specialized case of nonlinear programming. Several

problems in the literature have been formulated as SOCP.

The interior point algorithms for NLPs could be used for solving MISOCP. But there

is an assumption behind these algorithms is that the objective function and constraints

should be twice differentiable.

Branch-and-bound algorithm to solve MISOCP is an algorithm where at each node

an interior point algorithm, which is special for SOCP, is solved.

[3] give the functions that can be representable as SOCPs. We consider a WLANDP

in which nonlinear capacity constraints exist in Chapter 3. The nonlinear function in

the problem can be classified into one of the classes which is summarized in [3]. We

have inequalities in which sum of linear fractions exist and these inequalities can be

expressed as second-order cone inequalities. As our proposed reformulation includes

binary variables, the resulting model is in the class of MISOCP.

Interior point methods for SOCP and its implementations for some applied problems

and their reformulations are second order cone programming are given in [52].

In the literature, SOCPs and MISOCPs have a wide range of applications. Net-

work design problems, portfolio optimization, scheduling, assembly line balancing,

stochastic programs with chance constraints are some of these applications. Availabil-

ity of SOCP solvers within off the shelf branch-and-bound software have supported

the use of MISOCP formulations. [3] summarize several different conic representable

sets and functions. [2] consider a machine-job assignment problem in which process-

ing times are decision variables and manufacturing costs are nonlinear functions of

processing times. They give a strengthened conic reformulation for the problem. [43]

considers a network flow problem with congestion costs and shows that by using sec-

ond order conic inequalities, the problem can be reformulated as a MISOCP. [12]

22

summarize several other MISOCP applications in the literature. To the best of our

knowledge, our study whose results are given in Chapter 3 is the first reformulating

the nonlinear capacity constraints in WLANDP1 and WLANDP2.

In [7], they study joint facility location and inventory management problems with

different variants depending on the capacity of the facilities, retailer demand and lead

time stochasticity. They reformulate all versions by using conic quadratic MILPs. To

improve the performance of the formulations, they use valid inequalities. Using these

valid inequalities strengthens the formulations.

In [50], a lot sizing problem where the processing time of the jobs are controlled by

using extra cost. They add a novelty to the lot sizing problem as in classical lot sizing

problem, jobs’ times are constant parameters. The problem has nonlinear cost terms

in its objective function. Instead of using a heuristic algorithm to solve the problem,

they give a SOCP reformulation that can be solved by a commercial solver. They

conclude that large size instances could be solved optimally by using this approach.

In [4], a stochastic disassembly line balancing problem in which task times are nor-

mally distributed is studied. The aim is to minimize the number of open stations.

Each task must be assigned to exactly one work station. Due to the stochasticity of

the tasks, the mathematical model includes chance constraints. In the study, these

constraints are rewritten as second order cone inequalities. They propose seven for-

mulations two of which are SOCPs. The remaining formulations are piecewise linear

mixed integer programs. They compare alternative formulations in a computational

study.

23

24

CHAPTER 3

A NONLINEAR WIRELESS LOCAL AREA NETWORK

DESIGN PROBLEM (WLANDP)

In this chapter, we consider a nonlinear wireless local area network design problem

with two variants. In this wireless network design problem, we are given a set of

access points, power transmission levels applicable on the access points and user

terminals with given demands. In the problem, two decisions should be made simul-

taneously. The first decision is which access points to open at which power (capacity)

levels. The second decision is to assign each user terminal to an open access point.

The solution should guarantee that the demand of each user terminal is satisfied and

the capacity of the link defined between the access points and the user terminals is

not exceeded. The objective function to minimize is the total power consumption at

the opened access points.

The problem has similar properties with single assignment capacitated facility loca-

tion problem. In WLANDP, while access points can be seen as the facilities, user

terminals can be considered as the customers in a classical facility location problem.

Selecting power levels in each access point can be seen as determining the capacity

levels of the facilities in a facility location problem. Different than the similar prob-

lems in the literature in WLANDP, capacity constraint for each access point include

nonlinear expressions.

We consider two variants which will be called WLANDP1 and WLANDP2. The

difference between the two variants of the problem is that in the objective function,

WLANDP1 includes an additional cost term for user terminal-access point assign-

ments.

25

[40] handle nonlinear constraints for WLANDP2 by Benders decomposition, which

is an iterative approach, while [42] implement a branch-and-Benders cut method for

solving WLANDP1 and WLANDP2. We give three exact alternative methods for

WLANDP2 and two alternative approaches for WLANDP1. For both WLANDP1

and WLANDP2, we compare the computational performance of the proposed solu-

tion methods.

Integer L-shaped algorithm (ILS) is one of the well-known exact algorithms to solve

two-stage stochastic integer programs. ILS algorithm is a branch-and-cut approach

based on Benders decomposition. Since the dual information cannot be extracted

from the subproblem including binary or integer variables, the cuts in ILS algorithm

does not depend on LP duality of the subproblem. As mentioned in [65], if Benders

decomposition type algorithms are used to solve stochastic problems, they are called

L-shaped algorithms.

ILS algorithm was introduced by [54]. In their paper, the main assumption is that

master problem includes only binary variables and the subproblem has complete re-

course property. In stochastic programming literature, if the subproblem is always

feasible for a given master problem solution, it is said that the problem has complete

recourse property. In the decomposition algorithms proposed to solve such kind of

problems with complete recourse property, feasibility cuts are not generated.

[72] states that ILS algorithm is used for the problems in which the master problem

only includes binary variables and the subproblem does not have complete recourse

property. [54] develop general optimality cuts. In this study, we observe that the

structure of the WLANDP (e.g. integer MP and integer subproblem) permits the use

of an Integer L-shaped algorithm. As mentioned in [6], the Integer L-shaped method

can be used for any mixed-integer programming problem if the objective function of

the second stage (or subproblem) is calculated for a given binary solution for master

problem. In the literature, Integer L-shaped algorithm was used as an exact solution

method for several problems. Some examples can be seen in [56] and [60].

The computational study conducted for WLANDP1 demonstrates that MISOCP dom-

inates the Benders decomposition type algorithm (e.g., ILS algorithm with only one

scenario) in terms of CPU time and the number of instances solved optimally. For

26

WLANDP2, computational study shows that most of the instances are solved to op-

timum by using MISOCP. When the optimal solution is not found by any method,

MISOCP gives a better integer solution. The aim of implementing a branch-and-

Benders cut (B&BC) for WLANDP2 is to reduce the average number of feasibility

cuts by using stronger cuts. We observe that the average number of feasibility cuts

in B&BC is less than the number of feasibility cuts in Benders decomposition type

algorithm (BDTA2).

This chapter is organized as follows. We give problem definition in Section 3.1. Exact

solution techniques to solve WLANDP1 and WLANDP2 are given in Section 3.2 and

Section 3.3. In Section 3.4, we give the computational study. We give concluding

remarks in Section 3.5.

3.1 Problem Definition and Mathematical Formulation

The sets and parameters used in the mathematical formulation are as follows:

I : Set of user terminals.

J : Set of access points (APs).

K : Set of power levels in each access point.

p0 : Fixed power consumption when an AP is powered on.

pk : Power consumed when any AP at location k ∈ K is used.

wi : Demand of user terminal i ∈ I .

αij : The loss function parameter between i and j, where 0 ≤ αij ≤ 1.

µj : The power cost parameter related to each access point j ∈ J .

Below, we define two sets of decision variables in the problem.

xij =

 1, if the user terminal i is assigned to access point j

0, otherwise

yjk =

 1, if the power level k is selected at access point j

0, otherwise

27

Here, we give the mathematical formulation of the problem proposed by [42].

min
∑
j∈J

∑
k∈K

(p0 + pk)yjk +
∑
i∈I

∑
j∈J

µjwixij

(WLANDP1) s.t.
∑
j∈J

xij = 1 ∀i ∈ I (3.1)

∑
k∈K

yjk ≤ 1 ∀j ∈ J (3.2)

xij ≤
∑
k∈K

yjk ∀i ∈ I, j ∈ J (3.3)

∑
i∈I

wixij
rij(πj)

≤ 1 ∀j ∈ J. : rij(π(j)) > 0 (3.4)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.5)

yjk ∈ {0, 1} ∀j ∈ J, k ∈ K (3.6)

When a power level k is selected on any access point j, the corresponding variable

yjk will be one. Then, we can calculate the radiated power level denoted by πj for

each access point j as below:

πj =
∑
k∈K

pkyjk.

If πj is less than or equal to the given threshold value (γij) for a user terminal-access

point pair i-j, xij must be zero. If πj is strictly greater than γij , then xij could be

either 1 or 0. In this formula, rmax is a maximum limit for the radiated power that can

be sent to user terminals.

rij(πj) = min{rmax, πjαij} = min{rmax, αij
∑
k∈K

pkyjk}.

To sum up, the rij(πj) function is described as follows:

rij(πj) =

 0, if πj ≤ γij
min{αij · πj, rmax}, otherwise

In this formulation, constraint set (3.1) ensure that each user terminal must be as-

signed to exactly one access point. Constraint set (3.2) guarantee that at most one

power level is selected at each access point j. Constraint set (3.3) satisfy logic rela-

tion between variables yjk and xij . If no power level is selected at location j ∈ J , no

xij variable can take value 1 for this specific location j ∈ J .

28

In Constraint (3.4), each term in the summation gives the ratio of capacity usage of

a user terminal on each connection between user terminal i and access point j. The

right hand side of this constraint is one in order to satisfy the capacity restrictions of

the access point.

Lastly, constraints (3.5) and (3.6) are the binary restrictions.

To clarify the capacity constraints, we give the following example.

Example 3.1.1. Consider a network with two open access points and four user ter-

minals. Assume that user terminals 1 and 2 are assigned to an access point 1 and the

remaining terminals 3 and 4 are assigned to the access point 2.

The threshold values (γij) on each connection between i and j are given as follows:

γ11 = γ12 = 40000, γ21 = γ22 = 45000, γ31 = γ32 = 60000, γ41 = γ42 = 55000. In

this example, rmax value is set to 12000 and αij = 0.5 for each i and j pair.

Assume that π1 = 50000 and π2 = 70000. Consider a feasible assignment x:

x11 = 1, x21 = 1,x32 = 1, x42 = 1. For this solution, we have the following inequality

from Constraint set 3.4 for access point 1. The demand values of the user terminals

are given by w1 = 100 and w2 = 150.

w1 · x11
r11(π1)

+
w2 · x21
r21(π1)

≤ 1.

In this inequality, r11(π1) = min{αijπ1, rmax} = min{50000(0.5), 12000} = 12000

and, r21(π1) = 12000.

By plugging these values in the inequality, we have:

100 · 1
12000

+
150 · 1
12000

≤ 1.

The objective function includes two terms. The first term is total installation or power

level selection costs at access points. The second term is the total power consumption

incurred due to the amount of demand satisfied by an access point. If the parameter

denoted by µj for each access point is equal for all access points or if there is no cost

29

term related to the the assignments of user terminals, the second part of the objective

function can be removed, which gives WLANDP2.

3.2 MISOCP Reformulation of the Problem (WLANDP1 and WLANDP2)

In this section, we show that nonlinear capacity constraints (3.4) can be represented

via second order conic inequalities. This helps to represent both problems (WLANDP1,

WLANDP2) as MISOCP problems. We first introduce an auxiliary continuous vari-

able (tij) to replace each term in constraint set (3.4).

After introducing tij , we can reformulate constraint (3.4) by the following two con-

straints (3.7) and (3.8).

wixij
rij(πj)

≤ tij ∀i ∈ I, j ∈ J. (3.7)

∑
i∈I

tij ≤ 1 ∀j ∈ J. (3.8)

By using the definition of the function rij(πj), we can replace constraint set (3.7) with

the following two constraints.

wixij
rmax

≤ tij ∀i ∈ I, j ∈ J (3.9)

wixij∑
k∈K yjkpkαij

≤ tij ∀i ∈ I, j ∈ J (3.10)

In other words, constraint set (3.4) is replaced with the constraints given in (3.8), (3.9)

and (3.10). We define another parameter, βij = wi

αij
, then constraint set (3.10) can be

rewritten as follows:

βijxij ≤ tijπj, ∀i ∈ I, j ∈ J. (3.11)

When we take square of xij , the sign of the inequality does not change and we have

the following set of constraints instead of constraint set (3.10).

βijx
2
ij ≤ tijπj, ∀i ∈ I, j ∈ J. (3.12)

30

After reformulation of the constraints representing capacity of each access point, it

is easy to see that constraint set (3.12) is in the class of hyperbolic constraints. By

using this property, we can reformulate the constraints (3.12) as a second order conic

inequality as below:

4 · βij · x2ij + (tij − πj)2 ≤ (tij + πj)
2, ∀i ∈ I, j ∈ J.

Given the conic reformulation of capacity constraints, an MISOCP reformulation of

GWLANP2 is given below:

min
∑
j∈J

∑
k∈K

(p0 + pk)yjk +
∑
i∈I

∑
j∈J

µj wixij

(MISOCP) s.t. (3.1), (3.2), (3.3), (3.5), (3.6)∑
i∈I

tij ≤ 1 ∀j ∈ J (3.13)

∑
k∈K

pkyjk = πj ∀j ∈ J (3.14)

4 · βij · x2ij + (tij − πj)2 ≤ (tij + πj)
2 ∀i ∈ I, j ∈ J (3.15)

wi · xij ≤ tij · rmax, ∀i ∈ I, j ∈ J (3.16)

yjk + xij ≤ 1, ∀i ∈ I, j ∈ J, k ∈ K : pk < γij (3.17)

tij ≥ 0, ∀i ∈ I, j ∈ J (3.18)

πj ≥ 0, ∀j ∈ J (3.19)

MISOCP can be solved by using off-the-shelf optimization packages such as CPLEX.

For WLANDP1 and WLANDP2, it is the first closed form formulation that can be

solved by a solver. It is easy to implement compared to decomposition based ap-

proaches.

3.3 A Benders Decomposition Type Algorithm (BDTA)

In this section, we implement a Benders decomposition type algorithm which is

mostly used to solve stochastic integer programming problems in the literature. The

algorithm can be used to find optimal solutions for both problems (WLANDP1 and

WLANDP2) with a slight difference. The relaxed version of the original nonlinear

31

model is the master problem in this decomposition. This relaxed problem is tightened

by feasibility and optimality cuts when necessary. In WLANDP1, we need to con-

sider both feasibility and optimality cuts, as the subproblem can be infeasible for a

given master problem solution. We name the algorithms as BDTA1 for WLANDP1

and BDTA2 for WLANDP2. Note that, BDTA1 includes both feasibility and optimal-

ity cuts while BDTA2 contains only feasibility cuts. This algorithm is implemented

in a single branch-and-bound tree of the MP.

3.3.1 A Benders Decomposition Type Algorithm for WLANDP1 (BDTA1)

• Master Problem in BDTA1 (MBDTA1
y)

The master problem of this decomposition includes only the power level selec-

tion decisions (yjk) and omits the capacity constraint set (3.4). Therefore, all

the constraints in the master problem are linear. Also, the second term in the

objective function of the original model is replaced with θ, which is an approx-

imation term for the subproblem’s objective function.

z(MBDTA1
y) = min

∑
j∈J

∑
k∈K

(p0 + pk) · yjk + θ

s.t.
∑
k∈K

yjk ≤ 1, ∀j ∈ J. (3.20)

∑
j∈J

∑
k∈K

yjk · pk · αij ≥ wi , ∀i ∈ I. (3.21)

yjk ∈ {0, 1}, ∀j ∈ J, k ∈ K. (3.22)

θ ≥ 0. (3.23)

Constraints (3.21) guarantee that at least
∑

k∈K yjkpkαij amount of power should

be radiated to satisfy the demand of the user terminal i. By adding these con-

straints, we avert the situation in which all yjk values are 0. The valid inequality

(3.21) given in [42] is added to the (MBDTA1
y) to improve the performance of

the algorithm.

MBDTA1
y is solved in a branch-and-cut framework. If an integer feasible solu-

tion is found in B&B node, then the subproblem is solved. If required, feasi-

32

bility and optimality cuts are added to the current B&B node. In other words,

we interrupt the branch and bound algorithm when we find an integer feasible

solution for MBDTA1
y and solve the subproblem at that node.

We refer the reader to [69] for the rationale behind the implementation of Ben-

ders decomposition algorithm in a branch-and-cut framework by using callback

functions available in commercial solvers.

• Subproblem in BDTA1 (S1(y))

Suppose that an integer feasible solution y = {yjk| ∀j, k} is found forMBDTA1
y .

Then the following subproblem is solved:

z(S1(y)) = min
∑
i∈I

∑
j∈J

µj · wi · xij

S1(y) s.t.
∑
j∈J

xij = 1, ∀i ∈ I. (3.24)

xij ≤
∑
k∈K

yjk ∀i ∈ I, j ∈ J. (3.25)

∑
i∈I

wi · xij
min{πj · αij, rmax}

≤ 1 ∀j ∈ J : πj > 0. (3.26)

xij = 0, ∀i ∈ I, j ∈ J, k ∈ K : pk < γij. (3.27)

xij = 0, ∀i ∈ I, j ∈ J, k ∈ K : πj = 0. (3.28)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (3.29)

S1(y) determines the assignments (xij) of user terminals to access points in

solution y.

Constraint (3.25) satisfy that a user terminal can be assigned to an access point

when the access point is open or a power level is selected at this access point.

Constraint (3.26) is linear, since the value of πj ·αij is determined in M ILS1
y for

all i and j. If the selected power level is less than the threshold value between

user terminal i and j, the corresponding assignment variables (xij) are set zero

by Constraint set (3.27). Moreover, constraint (3.28) ensure that if no power

level is selected for an access point j ∈ J (e.g., the total power level is zero),

then no user terminal is assigned to this AP.

• Feasibility and Optimality Cuts

33

When S(y) is solved at a B&B node, two cases can occur:

CASE 1: Subproblem is infeasible: Assume that we find an integer feasible

solution for MBDTA1
y . In the subproblem, infeasibility can occur due to the

capacity and single source assignment constraints. y must be cut off from the

feasible region of MBDTA1
y which can be done by adding the following cuts

proposed by [42] to the MBDTA1
y :

∑
j∈J :Y j=0

∑
k∈K

yjk +
∑

j∈J :Y j=1

∑
k∈K:pk>πj

yjk ≥ 1. (3.30)

where Y j is defined as follows: Y j =
∑

k∈K yjk, ∀j ∈ J.

Inequality (3.30) makes sure that power level on at least one AP is changed.

CASE 2: Subproblem is solved to optimum: Consider that in the subproblem,

we find a feasible assignment for y. In order to close the gap between the θ

value and the objective function value of the subproblem z(S(y)), we need to

add optimality cut to MBDTA1
y .

These cuts use y and the objective function value of the subproblem. The gen-

eral purpose optimality cuts proposed by [54] are given below:

Let’s define two sets, S and S as follows:

S = {(j, k) : yjk = 1} and S = {(j, k) : yjk = 0}

θ ≥ (θ(y)− L){
∑
j∈J

∑
k∈K:yjk=1

yjk −
∑
j∈J

∑
k∈K:yjk=0

yjk − |S|+ 1}+ L (3.31)

where L is a lower bound for θ.

An L value can be calculated by considering a solution in which each user ter-

minal is assigned to the cheapest (minimum µj) access point. Then, we obtain

L = minj∈J{µj}
∑

i∈I wi. In the optimality cut 3.31, θ(y) is z(S(y)), which is

the objective function value of S(y). Moreover, in order to clarify, the flowchart of

the overall BDTA1 algorithm is given in Figure 3.1. Note that, we give this figure for

the problems where we can find an integer feasible solution from MP.

34

3.3.2 Benders Decomposition Type Algorithm for WLANDP2 (BDTA2)

We implement a Benders Decomposition Type Algorithm (BDTA2) for WLANDP2

and this algorithm is a simplified version of BDTA1 where there is no optimality cut

generated. The reason is that we do not have any objective function in the subproblem

of BDTA2. For a given master problem solution, if the subproblem is infeasible, we

generate the cuts proposed by [42] and add these cuts to the master problem.

3.3.3 Branch and Benders Cut Algorithm for WLANDP2 (BBC)

So far, we have discussed two solution methods, namely BDTA2 and MISOCP for

WLANDP2. In this section, we present an alternative Benders decomposition type

algorithm for the problem.

The master problem of BBC is given below:

z(MBBC
x,y) = min

∑
j∈J

∑
k∈K

(p0 + pk) · yjk

s.t.
∑
k∈K

yjk ≤ 1, ∀j ∈ J. (3.32)

∑
j∈J

xij = 1, ∀i ∈ I. (3.33)

xij ≤
∑
k∈K

yjk, ∀i ∈ I, j ∈ J. (3.34)

∑
i∈I

wi · xij
αij

≤
∑
k∈K

pk · yjk, ∀j ∈ J. (3.35)

yjk ∈ {0, 1}, ∀j ∈ J, k ∈ K. (3.36)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (3.37)

The master problem in branch-and-Benders cut decomposition (BBC) is a relaxation

of the original model for WLANDP2. Constraint set (3.35) is obtained by relaxing

the capacity constraints (3.4). In order to replace rij(πj) function in Constraint (3.4),

we can use the upper bound for this function given in [42].

ruij(πj) = αij
∑
k∈K

pkyjk.

35

When this upper bound is used, a valid inequality that is obtained from the capacity

constraints (3.4) is given as below:∑
i∈I

wixij
αijπj

≤ 1 ∀j ∈ J.

When πj =
∑

k∈K pk · yjk is plugged in the inequality, we have a valid inequality as:∑
i∈I

wixij
αij

≤
∑
k∈K

pkyjk, ∀j ∈ J.

Therefore, the relaxed version of the Constraint set (3.4) is added to the MBBC
x,y . The

aim of adding Constraint (3.35) to the master problem is to obtain better solutions

from MBBC
x,y . The subproblem of this decomposition is given as follows:

z(S2(y)) = min 0 (3.38)

S1(y) s.t.
∑
j∈J

xij = 1, ∀i ∈ I. (3.39)

xij ≤
∑
k∈K

yjk ∀i ∈ I, j ∈ J. (3.40)

∑
i∈I

wi · xij
min{πj · αij, rmax}

≤ 1 ∀j ∈ J : πj > 0. (3.41)

xij = 0, ∀i ∈ I, j ∈ J, k ∈ K : pk < γij. (3.42)

xij = 0, ∀i ∈ I, j ∈ J, k ∈ K : πj = 0. (3.43)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (3.44)

Similar to BDTA2 algorithm, the master problem MBBC
x,y is solved by using the B&B

algorithm. Once an integer feasible solution is obtained at B&B node, a subproblem

S2(y) is solved. S2(y) is the same problem as S1(y) except that S2(y) has no objective

function to minimize and it is just a problem of checking the feasibility of solving

vector y.

Depending on the solution status of the subproblem, we have two cases:

• Case 1: S1(y) detects a feasible solution, then an integer feasible solution is

found for WLANDP2.

• Case 2: S1(y) is infeasible, we solve the subproblem, S2(ỹ). ỹ is a solution

vector obtained from y as given below:

36

ỹjk =

 1, if k = kmax and
∑

l∈K yjl = 1

0, otherwise

After solving S2(ỹ), two cases can occur:

• Case 2.1: If the S2(ỹ) is feasible, it means we can find a feasible assignment

vector, xij for ỹ which is obtained by increasing the power levels of opened

access points in y. Then, the following feasibility cuts can be added to MBBC
x,y .∑

j∈J :Y j=1

∑
k∈K:pk>πj

yjk ≥ 1. (3.45)

• Case 2.2: If the S(ỹ) is infeasible, then at least one of the access points which

is not opened in y must be opened.

To satisfy this, the following cut can be added to MBBC
x,y :

∑
j∈J :Y j=0

∑
k∈K

yjk ≥ 1. (3.46)

Both BBC and BDTA2 algorithms are Benders type decomposition algorithms.

They are both implemented in a branch-and-cut framework. However, they

have differences in their master problems and feasibility cut generation pro-

cedure. BDTA2 algorithm only includes yjk variables in the master problem,

while BBC includes both decision variables. In terms of the master problems

in the decomposition algorithm BBC and BDTA2, the master problem in BBC

gives a better solution with respect to the solution in BDTA2. The reason is that

MBBC
x,y includes decision variables of the subproblem. Both BBC and BDTA2

include the same feasibility cuts proposed in [42].

This algorithm is inspired by the one in [42]. However, they relax the integrality

restriction on assignment variables (xij). It is expected that total number of

feasibility cuts in this approach is less than those in BDTA2, since the master

problem includes the decision variables of the subproblem. In other words,

master problem in BBC includes more information than MP of BDTA2. The

flow chart of BBC is given in Figure 3.2 in Page 44.

37

Previous work in the literature: The problem in this study was first presented

by [42]. There are also two previous studies [40] and [41] of that paper. In

[40], they only consider a specific version of the problem called as without

user terminal cost (we call this problem as WLANDP2 in this paper). They

implemented a Benders decomposition where feasibility cuts are combinatorial

cuts. This implementation does not have optimality cuts, since the subproblem

is just a feasibility problem. They take an iterative approach to solve the prob-

lem, where the master problem (MP) is resolved after adding feasibility cuts.

The strategy for partitioning the variables is the same as the classical Benders

approach. In other words, the variables of the subproblem are not included in

the subproblem.

For more general version of the problem with user terminal costs, WLANDP1,

they proposed a Branch-and-Benders cut approach. They decompose the model

in a different way from the classical Benders decomposition. MP includes both

master and subproblem’s variables. They also relax the integrality of the sub-

problem’s variables (allocating of user terminals to access points) in the master

problem. Since the capacity relation of access points is nonlinear, they relax

these constraints by using an upper bound for power consumption. The other

main difference from classical Benders decomposition techniques is that they

solve an auxiliary subproblem to determine the feasibility cuts that must be

added to the master problem. This step is for strengthening the feasibility cuts

and reduce the total number of cuts until convergence. In this implementation,

the optimality cuts that are added to the current node, when the subproblem is

feasible, do not depend on the objective function value of the subproblem.

The differences of the algorithms proposed by [42] and our methods are given in

Tables 3.1 and 3.2.

3.4 Computational Study

In this chapter, we propose two exact solution methods: MISOCP and BDTA1 for

WLANDP1 and three exact solution methods: MISOCP, BDTA2 and BBC for WLANDP2.

38

Table 3.1: Comparison of solution methods for WLANDP1 in the literature and our
work

WLANDP1
Decomposition Closed form formulation

Gendron et. al[42] BBC
(MP- xij and yjk) —

Two IP subproblems
MP:(0 ≤ xij ≤ 1)

This study BDTA1 MISOCP
MP (yjk) ; SP (xij)
MP and SP’s are IP

Feasibility cuts (3.30)
Optimality cuts (3.31)

Table 3.2: Comparison of solution methods for WLANDP2 in the literature and our
work

WLANDP2
Decomposition Closed form formulation

Gendron et.al [42] BBC in Table 3.1 —
Iterative Approach: [40]

Multiple master problem solutions
This study BDTA2 with feasibility cuts (3.30) MISOCP

BBC (Master and subproblems:IP)

We give computational comparison of proposed methods for each problem.

In Table 3.3, we give the experimental factors and their levels used in our computa-

tional study for WLANDP1 and WLANDP2.

We have generated problem instances with different levels of number of user termi-

nals (|I|), number of candidate access points (|J |), maximum power limit on each

node pair (rmax) as given in Table 3.3. Demand values of user terminals (wi) are

randomly generated from the interval given in Table 3.3 as low and high. γ and µ are

randomly generated from the intervals given in Table 3.3, so there are 24 treatment

combinations. For each combination, five random instances were generated.

In our experiments, we assumed that four power levels are available on each access

point. The parameter values for p0 and pk, ∀k = 1, .., 4 are randomly generated from

the intervals given in Table 3.3.

We conduct our experimental runs on a 64-bit machine @ 1.60 GHz and 4 GB of

Ram. All methods are coded in IBM CPLEX 12.6.2 using C++ Concert technology.

39

Table 3.3: Factors and their levels in the computational study

Factors Levels

|I| 150 (L)
200 (H)

|J | 10 (L)
15 (H)

w
U[100,150] kbps (L)
U[200,250] kbps (H)

γ U[40,000,60,000]
µ U[30,50]

rmax

8,000 (L)
12,000 (M)
20,000 (H)

p0 U[100,000,600,000]
p1 U[10,000,30,000]
p2 U[30,000,50,000]
p3 U[50,000, 70,000]
p4 U[70,000,90,000]

To implement BDTAs, we need to construct a single tree for the master problem and

solve subproblem at each node of that tree. So, we use Ilolazyconstraint callback

function that is available in IBM ILOG CPLEX.

3.4.1 Comparison of MISOCP and BDTA1 for WLANDP1

We first test the computational performance of MISOCP and BDTA1 for WLANDP1.

One of the performance measures is the solution time in CPU seconds. We set a time

limit of 3600 CPU seconds for each method. We give the computational comparison

results of MISOCP and BDTA1 in Table 3.4.

In this table, the ’CPU’ columns give the average CPU times obtained from five ran-

dom instances for each setting. The average CPU time also includes the CPU time of

the instance, which is not solved to optimum in given time limit.

In Table 3.4, ’Nodes’ column under the tab of MISOCP represents the average num-

ber of nodes opened in the branch and bound tree. Similarly, the ’Nodes’ column

in BDTA1 shows the average number of opened nodes in branch and bound tree of

master problem (MBDTA1
y).

40

The ’gap1’ column under MISOCP method is calculated as

gap1 = 100 · (ZMISOCP
obj − ZMISOCP

best)/ZMISOCP
best ,

whereZMISOCP
obj is the best lower bound achieved at the end of time limit andZMISOCP

best

is the objective function value of the best integer solution found in the branch and

bound tree.

The ’gap2’ column under BDTA1 is defined as

gap2 = 100 · (ZBDTA1
obj − ZMISOCP

obj)/ZMISOCP
obj ,

where ZBDTA1
obj is the objective function value of the master problem at termination

due to time limit.

In Table 3.4,we also report the number of APs opened in the optimal solutions. We

obtain the number of APs opened in the solution from one of the algorithms that

finds the optimal solution. If the solution is not optimal at the end of time limit, we

report the number of current open APs in the best solution. In Table 3.4,’Opt’ column

under each method represents the number of instances solved to optimum within the

time limit. The last two columns of Table 3.4 give the total number of cuts and the

percentage of feasibility cuts in total number of cuts. The last column (Feas (%)) is

calculated as (the number of feasibility cuts/ total number of feasibility and optimality

cuts)×100.

When we compare the performance of BDTA1 and MISOCP in terms of CPU times,

we can see that MISOCP outperforms BDTA1. Even though, there are some instances

in which BDTA1 solves faster, MISOCP is always better on the average CPU time

for five instances.

Over 120 instances, MISOCP solves 97 instances to optimum while BDTA1 solves

55 instances to optimum. We can say that MISOCP outweighs BDTA1 in terms of

number of optimally solved instances as well. Detailed results given in Tables 2.1,

2.2 and 2.3 of Appendix B show that there is no setting where BDTA1 can solve the

problems that are not solved to optimum by MISOCP.

Except the setting (treatment combination) 18, all gap2 values are non-negative. This

41

means that in almost all instances where both methods failed to find an optimal solu-

tion, MISOCP found better integer feasible solutions.

Since rij(πj) function value decreases with respect to rmax, the capacity usage of

a user terminal on the open APs increases. As a result of this, smaller number of

user terminals can be assigned to the same AP. In the WLANDP, all demand of user

terminals must be met. To satisfy this requirement, the number of APs opened is high

when rmax value becomes smaller. This implies that adding more feasibility cuts in

BDTA1 is necessary. As the number of cuts increases, the required computation time

of the BDTA1 increases. The instances where rmax value is small are difficult to

solve optimally by BDTA. Moreover, the number of instances solved to optimum is

less than the one in MISOCP when rmax value is small.

The value of rmax also has an impact on the MISOCP reformulation. Since the

instances become more difficult when rmax value decreases, the number of nodes

opened in the B&B tree of MISOCP increases. As can be seen in Table 3.4, the high-

est value on the number of nodes occur in the setting with rmax = 8000. Maximum

gap1 value achieved by MISOCP is (8.7%).

42

Figure 3.1: Flowchart of BDTA1 for WLANDP1

43

Figure 3.2: Flowchart of Branch-and-Benders cut (BBC) for WLANDP2

44

Table 3.4: Computational Results for MISOCP and BDTA1 for WLANDP1

MISOCP BDTA1

Comb |I| |J | wi rmax CPU (sec) Nodes gap1(%) Opt CPU (sec) Nodes gap2(%) Opt Aps Cuts feas (%)

1 20,000 114.8 2,157 0 5 200.7 448 0 5 2 795 79.0
2 200 10 (100;150) 12,000 1,438.4 146,905 2.4 4 1,573.5 2,771 0 5 3 1,494 84.8
3 8,000 2,566.0 183,652 2.7 3 3,601.7 3,704 1.7 0 4 2,329 94.8

4 20,000 1,315.4 112,548 0 5 2,457.1 3,307 1.3 2 3 1,998 86.8
5 200 10 (200;250) 12,000 1,883.2 216,637 0 5 3,601.4 4,119 3.9 0 4 2,387 92.2
6 8,000 2,989.2 315,518 0.6 4 3,606.8 1,152 0.1 0 6 2,251 99.2

7 20,000 196.3 960 0 5 939.5 1,606 0.01 4 2 819 78.8
8 200 15 (100;150) 12,000 3,535.6 141,364 8.7 1 3,601.3 43,883 4.4 0 3 1,992 92.4
9 8,000 2,845.0 143,081 5.6 4 3,603.8 2,454 2.6 0 4 1,909 97.8

10 20,000 2,114.9 69,967 1.3 4 3,601.9 3,413 2.4 0 3 1,921 85.6
11 200 15 (200;250) 12,000 343.9 22,824 0 5 3,603.7 2,319 10.7 0 4 1,941 96.8
12 8,000 2,983.0 175,697 1.3 4 3,600.8 1,114 72.01 0 6 2,001 99.3

13 20,000 1.1 0 0 5 3.7 35 0 5 1 97 59.6
14 150 10 (100;150) 12,000 46.4 908,4 0 5 381.5 533 0 5 2 1,240 70.8
15 8,000 1,009.8 32,883 1.7 4 2,444.8 3,873 0 4 3 2,719 80.2

16 20,000 26.9 1,562 0 5 911.6 1,941 0 5 2 1,548 75.0
17 150 10 (200;250) 12,000 107.4 15,749 0 5 3,350.3 5,326 0.7 1 3 2,528 81.6
18 8,000 2,650.7 186,273 2.1 2 3,600.4 2,123 -0.47 0 5 2,288 96.2

19 20,000 2.1 0 0 5 11 113 0 5 1 167 60.1
20 150 15 (100;150) 12,000 48.1 290 0 5 619.3 1,269 0 5 2 956 76.8
21 8,000 2,122.2 92,387 2.0 3 2,441.7 3,059 1.8 3 3 1,838 92.2

22 20,000 28.5 698 0 5 773.8 2,676 0.03 4 2 680 75.0
23 150 15 (200;250) 12,000 844.4 43,863 0.3 4 3,223.6 4,724 0.9 2 3 2,120 86.9
24 8,000 3,601.0 240,979 2.1 0 3,647.9 2,066 15.8 0 5 1,758 96.6

Opt 97 55
Average 1,367.3 2,517.6

45

3.4.2 Comparison of MISOCP, BDTA2 and BBC for WLANDP2

All instances are the same as the instances solved for WLANDP1, but we now assume

that µ = 0. The computational results of MISOCP, BDTA2, and BBC for WLANDP2

are given in Table 3.5. Except the ’cuts’ columns, the definitions of the remaining

columns are the same as those in Table 3.4. In Table 3.5, the ’Cuts’ column gives

the average number of feasibility cuts added to master problem. If we have some

instances whose solution status is ’OptTol’, we include these instances to calculate

the total number of instances solved to optimum.

When we compare the average CPU time over all instances, MISOCP outperforms

the Benders decomposition type methods: BDTA2 and BBC. The average required

time for MISOCP is 780.2, while the computational time for ILS2 is 1,218.5 and

BBC requires 865.04 CPU seconds on the average. For each treatment combination,

the best CPU time is given in bold. Instances become more difficult when demand

is increased or rmax value is decreased. One important result that can be inferred

from Table 3.4 is that the average CPU time in MISOCP is smaller than the one in

BDTAs in difficult instances, where the demand of user terminals is high and rmax

value is small. For these instances, the performance of BBC and BDTA2 algorithms

gets worse. For example, in treatment combination 6 and 12, no instance could be

solved to optimum by using BDTA2 and BBC while these instances could be solved

optimally through MISOCP.

When compared to the methods in terms of the number of instances solved to op-

timum, BBC solves two more instances than MISOCP. We can conclude that the

performance of BBC and MISOCP is similar in terms of the number of optimally

solved instances.

In addition to the feasibility cut generation procedure in WLANDP2, optimality cuts

must be generated in WLANDP1. This results in longer computation time com-

pared to WLANDP2, which is a special case of WLANDP1. Therefore, the num-

ber of instances solved to optimum by BDTA is higher in WLANDP2 compared to

WLANDP1.

When rmax value decreases, the average computation time for BDTA2 increases sig-

46

nificantly. The highest computational time occurs in the treatment combination where

rmax value is 8000. When rmax value decreases, the number of instances solved to

optimum does not increase. Similarly, in BBC algorithm, average CPU time increases

with respect to rmax value except in the treatment combinations 9 and 24 in Table 3.5.

When compared the computational performance of the algorithms (BDTA2 and BBC),

we show that BBC solves more instances to optimum with small CPU time. The rea-

son is that BBC requires less number of feasibility cuts. It is an expected result since

a more advanced procedure is used to generate feasibility cuts in BBC.

In Table 3.5 , the number of APs is high when rmax is small and demand value of

user terminals are high. This is a similar result that we observed in Table 3.4 for

WLANDP1. The reason is also the same, which we mentioned before. When the

problem includes tighter capacity constraints, the number of APs in the optimal solu-

tion is high. Tighter capacity constraints can be obtained with low level of rmax and

high level of demands of user terminals.

47

Table 3.5: Computational Results for MISOCP, BDTA2 and BBC for WLANDP2

MISOCP BDTA2 BBC

Comb CPU Nodes gap (%) Opt CPU Nodes Opt APs Cuts CPU Nodes Opt Cuts

1 25.8 69 0 5 16.4 33 5 2 248 31.6 68 5 218
2 2,190.7 166,471 6.8 2 272.7 293 5 3 899 290.5 793 5 381
3 1,143 60,071 3.3 4 1,769.5 1,466 4 4 1,814 893.2 2,954 5 1,690

4 909.3 72,939 0.8 4 184 339 5 3 635 360.7 760 5 495
5 31.1 604 0.02 5 1,624.3 1,373 4 4 1,812 1,153.4 7,126 5 1,988
6 311,1 5,858 0.1 5 3,600.1 1,236 0 6 2,819 3,604.9 36,746 0 1,525

7 91.7 827 0 5 66.8 0 5 2 405 685.7 9,431 5 433
8 2,181 73,922 0 3 1,047.7 0 4 3 1,085 2,475.9 29,207 3 857
9 1,548.7 33,138 8.6 3 3,601.3 0 0 4 2,170 603.2 18,613 2 496

10 1,482.4 49,001 4.4 4 800.5 810 5 3 916 685.7 9,432 5 433
11 205.8 5,689 0.02 5 3,601.3 2,257 0 4 2,231 2,475.9 29,208 3 857
12 910.1 15,078 0.04 5 3,601.7 81 0 6 840 3,600.1 6,500 0 1,130

13 1.5 0 0 5 0.4 0 5 1 18 0.6 1 5 6
14 16.2 178.8 0 5 14.5 38.8 5 2 85 35.3 76 5 78
15 935.5 83,380.2 4 4 107.7 447.6 5 3 513 138.2 2,190 5 159

16 11.1 70 0 5 14.4 41 5 2 85.2 16.6 63 5 50
17 734.7 41,954 0.9 4 335.3 363 5 3 1,295 375.2 86.3 5 729
18 2,171.4 92,269 6.7 2 3601.4 1,848 0 5 2,491 1,987.2 16,368 4 1,446

19 1.9 0 0 5 0.4 0 5 1 6.8 1.1 1 5 76
20 27.8 133 0 5 54.2 90 5 2 221 98.8 102 5 106.8
21 1,510.2 69,517 7.6 3 568 985.4 5 3 1,127.2 231.6 1,655 5 331.2

22 77.4 1,405 0 5 217.4 518 5 2 596 121.2 1,196 5 292.4
23 739,1 30,470 1 4 542.3 735 5 3 826 618.7 2,173 5 624.8
24 1,468 37,691 15 3 3,601.5 1,838 0 5 2,528 275.6 3,086 5 440

Opt 100 87 102
Av. 780.2 1,218.5 1,069.4 865.04 618.4

48

3.4.3 The effects of Lift and Project Cuts(LPC) for Solving MISOCPs

When solving MISOCP for both versions of the problem, we set up IBM ILOG

CPLEX to add LPCs aggressively by setting LiftProj parameter of IBM ILOG CPLEX

to 2. Adding these cuts to mixed integer convex programs is a relatively new issue.

The cuts generated in MILPs are extended to the mixed integer nonlinear programs.

In Table 3.6, we give solution times, number of open nodes in the (B&B) tree, gap

and the number of instances solved to optimum in each five replications with aggres-

sive use of LPCs and default use of the same cuts. We give the smaller CPU time in

bold in Table 3.6. We refer the reader to [14] for the details about the effects of LPCs

in mixed integer convex programs.

3.5 Conclusion

In this chapter, we considered a nonlinear facility location problem, which occurred in

wireless local area network design. The problem has two versions depending on the

objective functions. We develop two exact solution procedures (BDTA1 and MIS-

OCP) for WLANDP1 and three exact methods (BDTA2, MISOCP, and BBC) for

WLANDP2. We evaluate the performance of the methods on randomly generated

instances.

To the best of our knowledge, MISOCP is the first formulation that can be solved by

commercial solvers. This reformulation is easy to implement compared to Benders

type algorithms. For WLANDP1, in all settings BDTA1 requires more computational

time than MISOCP. We can conclude that MISOCP has better computational perfor-

mance. For WLANDP2, we cannot mention a method to be significantly superior to

other methods. As long as the objective function is convex, the MISOCP formulation

can be applicable for stochastic version of the problem, where uncertain parameter

values are generated from a discrete number of scenarios.

In addition to MISOCP reformulation for WLANDP1 and WLANDP2, we propose

a Benders type decomposition algorithms for two variants of the problem in order

to handle nonlinearities in the model. This decomposition frame is very similar to

49

Integer L-shaped algorithm that is widely used for two-stage stochastic integer prob-

lems. The main advantage of this algorithm is that it can be used for both variants of

WLANDP independent of the objective function.

BD algorithm, which is an iterative approach ([40]) and implemented for WLANDP2,

is not applicable for the more general variant, WLANDP1. The reason is that the

subproblem should be a feasibility problem to implement BD algorithm. Since the

objective function of WLANDP1 includes two terms, implementation of BD given

in [40] is not possible. However, our proposed BDTA can be implemented for both

variants. Note that, both feasibility and optimality cuts are generated in BDTA1 while

BDTA2 requires only feasibility cuts.

In recent years, by taking the advantage of callback functions in commercial solvers,

implementing Benders decomposition type algorithms in a single branch-and-bound

tree becomes easier. In this study, we also use lazyconstraint callback function in

IBM ILOG CPLEX so that we could add feasibility or optimality cuts when they are

necessary by interrupting the branch-and-bound tree of the master problem.

In the computational study, we observe that the performance of Benders type algo-

rithms becomes worse for the instances with small rmax value. By using Benders

type decomposition algorithms, optimal solutions can be found for easy instances,

where the number of open APs is small, in reasonable CPU time. However, for diffi-

cult instances in which high number of APs needs to be opened, the performance of

MISOCP is better than the one of Benders type decomposition algorithms.

In the decomposition frame for the WLANDP1 and WLANDP2, the lazyconstraint

callback function is invoked when an integer feasible solution from MP is found.

However, it is also possible that adding optimality cuts to the MP when y values are

not integer. Implementing such a decomposition algorithm could be a future research.

We also observe that for some instances, the performance of BBC algorithm is better

than the performance of MISOCP. In order to improve the performance of MISOCP,

we can implement a decomposition algorithm for this reformulation. In this decom-

position, MP includes the variables xij and yjk and the subproblem will be just a

feasibility problem where the conic constraints’ feasibility are checked. In this case,

50

the decomposition will include only feasibility cuts since there is no objective func-

tion in the subproblem.

Table 3.6: Comparison results obtained with/without lift-and-project cuts on MIS-
OCP for WLANDP1

MISOCP (with parameter 2) MISOCP (default)
Pr CPU (sec) nodes gap Opt CPU (sec) nodes gap Opt
1 114.8 2157.6 0 5 159.1 7771.2 0 5
2 1438.4 146905.2 2.37 4 2688.1 203281.2 8.8 2
3 2498.6 235550.2 3.49 4 3600.1 188324.8 12.1 0
4 1313.5 112548.4 0 5 3545.4 205317.4 5.95 1
5 1883.2 216637.6 0 5 2525.9 147051.6 1.31 3
6 2989.2 315518.8 0.61 4 3532.3 251868 9.53 1
7 196.3 960.2 0 5 177.6 2127.2 0 5
8 3535.7 141364.8 8.67 1 3600.2 120062 13.13 0
9 2844.9 143081.6 5.6 4 3600.2 94608.2 28.8 0

10 2114.8 69967.8 0 4 3600.2 105296 9.25 0
11 343.9 22824.4 0 5 3600.2 82160.2 10.34 0
12 2983.1 175697.6 1.94 4 3600.5 102187.8 17.63 0
13 1.1 0 0 5 0.85 0 0 5
14 46.5 908.4 0 5 60.2 3160 0 5
15 1009.8 32882.6 1.7 4 3241.8 283841 9.54 1
16 26.9 1562.4 0 5 68.5 4887 0 5
17 107.5 15749 0 5 2513.6 241234.2 3.51 2
18 2650.7 148966 2.53 2 3600.1 263259.4 10.98 0
19 2.1 0 0 5 1.8 0 0 5
20 48.1 290.6 0 5 102.1 3971.4 0 5
21 2122.2 92387.4 2 3 3600.4 192701 12.36 0
22 28.5 698.4 0 5 84.7 2588.4 1.2 5
23 844.4 43863.6 0.29 4 2452.2 77986.8 3.63 2
24 3601.0 240979.4 2.1 0 3600.1 174134.2 21.13 0

Total 98 52
Average 2239.4 2231.5

51

52

CHAPTER 4

QUADRATIC CAPACITATED CONCENTRATOR LOCATION

PROBLEM WITH SINGLE ASSIGNMENT (QCCLP)

In this chapter, we study a quadratic capacitated concentrator location problem, which

arises in telecommunication network systems. The aim is to determine the locations

of the concentrators (hubs) and assignments of non-hub nodes (terminals) to hub

nodes under cost minimization objective. The objective function consists of two cost

terms: the fixed cost of opening hubs (concentrators) and the routing cost. The prob-

lem was first studied by [53]. For QCCLP, we propose an exact Benders type decom-

position algorithm, which we call the branch-and-check algorithm. In Section 4.1,

we give the problem definition and mathematical formulation for QCCLP. Then, we

explain our proposed decomposition algorithm and discuss some enhancement steps

in Section 4.2. Next, in Section 4.3, we provide computational results. Then, we give

the computational results for comparing branch-and-check algorithm and automatic

Benders decomposition in Section 4.4. Finally, we conclude the chapter and give

future research directions in Section 4.5.

4.1 Problem Definition and Mathematical Formulation

53

Figure 4.1: An example network with access and backbone networks for QCCLP

54

In telecommunication network systems, a large number of terminals (user points)

exists. Terminals can be seen as users which have traffic demand. In these systems,

there are electronic devices that are called as concentrators, hubs, or multiplexers. As

the system has many users, roles of concentrators are to compress traffic, combine

multiple signals from different users (terminals), and forward combined demand to

the relevant destination points.

In order to meet the demand of a terminal, each terminal is assigned to a concentrator.

In some telecommunication network systems, concentrators can also be connected to

a central node. On the other hand, there can be direct links between any concentrator

pair which results in a complete network. Constructing such a system where all con-

centrators are connected with each other by direct link could be costly. To overcome

this issue, concentrators can be connected to a single central node by a ring.

Due to the existence of the concentrators in the system, telecommunication networks

generally have multi-layer structure. The network between the terminals (non-hub

nodes) and concentrators can be seen as the lower level of this structure. Aggregated

traffic at the lower level is send to the upper level of the system. As mentioned in

[78], telecommunication networks have many levels. In general, lower level network

is less dense than the upper level [78].

The problem that we considered in this chapter includes two levels. These levels

are backbone network and access network. Both backbone and access network can

have several structures: ring, complete, star, tree, etc. The structure in QCCLP is star

access network and complete backbone traffic.

We give an example network representing the environment of the QCCLP. In Figure

4.1, Nodes 9, 10, and 11 are hub nodes and the remaining nodes are non-hub nodes.

Bold arcs are backbone arcs, while the arcs between non-hub nodes and hub nodes

are called access arcs. One of the assumptions of the QCCLP is that at least one hub

location must be visited to satisfy the demand of each origin-destination pair.

In Figure 4.1, if there exists positive demand between the nodes (terminals) 1 and 2,

the concentrator location 9 must be visited. The path of the flow is Node 1- Node

9- Node 2 to send the flow from Node 1 to Node 2. This amount of flow does not

55

contribute to backbone traffic since both nodes (1 and 2) are assigned to the same

concentrator.

When two non-hub nodes are assigned to different hub nodes (e.g., nodes 1 and 5),

the path of the flow from Node 1 to Node 5 is Node 1-Node 9-Node 10- Node 5. In

other words, no direct shipment between two terminal nodes is allowed in QCCLP. In

this example, two concentrators must be used to send the flow between two different

non-hub nodes.

We are given a set of nodes I . Let tim be the demand or flow to be sent from node i

to node m. There is a corresponding fixed cost fi incurred if node i is selected as a

hub. dij represents the distance between nodes i and j. In QCCLP, each hub has the

same capacity M . In the objective function (4.1), α and β represent collection and

distribution unit parameters, respectively.

QCCLP can be defined as follows. A subset of node set I is chosen as hub loca-

tions and the remaining nodes are assigned to these hub locations. The objective to

minimize is the sum of fixed cost of opening hubs and routing cost between non-hub

nodes and hub nodes. To transfer flow from node i to node m, at least one hub lo-

cation must be visited. As each non-hub node (terminal) must be assigned to exactly

one concentrator, QCCLP is in the class of single allocation hub location problems

(SAHLP).

xij represents the 0-1 decision to assign node i to node j. If node j is selected as a

hub, then xjj = 1, otherwise xjj = 0. By using these parameters and the decision

variables, the mathematical model given by [53] is below:

56

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij

(∑
m∈I

αtim + βtmi

)
(4.1)

(QCCLP) s.t.
∑
j∈J

xij = 1, ∀i ∈ I. (4.2)

xij ≤ xjj, ∀i, j ∈ I, i 6= j. (4.3)∑
i∈I

∑
m∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij(1− xmj) ≤Mxjj,∀j ∈ I.

(4.4)

xij ∈ {0, 1} ∀i, j ∈ I. (4.5)

In this formulation, the objective function (4.1) minimizes total cost of opening hubs

and routing cost of assigning non-hub nodes to hub nodes. The second term in the

objective function
∑

i∈I
∑

j∈I:i 6=j dijxij(
∑

m∈I αtim) is the total cost related to col-

lection of data. Lastly, the term
∑

i∈I
∑

j∈I:i 6=j dijxij(
∑

m∈I βtmi) is the total cost

related to distribution of data.

Constraints (4.2) guarantee that each node is assigned to exactly one hub. Constraints

(4.3) ensure that node i can be assigned to node j only if j is a hub. Constraints

(4.4) ensure that total flow that uses the capacity of hub j cannot exceed the capacity

M . In Constraints (4.4),
∑

i∈I
∑

m∈I(tim + tmi)xij is the total flow of nodes that are

assigned to hub j and
∑

i∈I
∑

m∈I(tim + tmi)xij(1 − xmj) is the flow occurred on

backbone links. Constraints (4.5) are the sign restrictions on the decision variables.

We will give the branch and check algorithm for this nonlinear integer formulation of

QCCLP in Section 4.2.

4.2 A Branch and Check Algorithm for QCCLP

We propose an exact branch-and-check algorithm, which is an implementation of the

logic based Benders decomposition in a single branch-and-cut tree of the master prob-

lem. We propose different variants of this algorithm by making some enhancements

on the master problem and cut generation phases.

A single allocation linear capacitated hub location problem, where the capacity con-

57

straints are linear, is NP-hard and QCCLP is a general variant of SAHLP by replacing

the linear constraints with nonlinear constraints. Therefore, QCCLP is an NP-hard

problem. One source of difficulty in solving this problem is the nonlinearity in the

capacity constraints. Also, the problem has a combinatorial nature which is another

source of difficulty. In QCCLP, the capacity constraints (4.4) include multiplication

of binary variables.

The feasibility check of each hub and adding necessary feasibility cuts can be done

in the IloLazyconstraint callback function of CPLEX. Using lazy constraint function

in the implementation of Benders decomposition can also be seen in several studies

(e.g., [35], [60]).

4.2.1 Master Problem & Subproblem

For the QCCLP, we remove the Constraints (4.4) and obtain an uncapacitated single

allocation facility location model as MP given below:

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij

(∑
m∈I

(αtim + βtmi)

)
(MP) s.t.

(4.2), (4.3), (4.5)∑
i∈I

µlixi ≥ µl0 ∀l ∈ ωfeas (4.6)

The master problem is NP-hard. In MP of this decomposition, Constraint (4.6) repre-

sent the feasibility cuts. Given a feasible or an integer solution to the MP (x), in the

subproblem phase, we check whether Constraints (4.4) are satisfied or not. Therefore,

the subproblem phase is just a feasibility check. If a solution (x) to MP turns out to be

infeasible for the original problem (QCCLP), then we add feasibility cuts to the MP.

Therefore, (x) can be eliminated from the solution space of MP. Such kind of cuts

are also used in logic based Benders decomposition (e.g., [45]) and combinatorial

Benders cut (e.g., [20]).

In the case of infeasibility, we know that at least one of the xij variables must take

a value different than the current solution (x). To satisfy this, we use three variants

58

of feasibility cuts (i) nogoods cuts, (ii) multiple feasibility cuts, and (iii) extended

feasibility cuts.

Our overall Branch & Check algorithm is given in Algorithm 1. Moreover, in order

to make the algorithm clear for the readers, we give a flow chart of the algorithm in

Figure 4.2.

Algorithm 1 Branch and Check Algorithm for QCCLP
1: Solve the MP and find an integer feasible solution (x)

2: For each hub in opened location j in solution x:

3: if
∑

i∈I
∑

m∈I(tim+ tmi)xij+
∑

i∈I
∑

m∈I(tim+ tmi)xij(1−xmj) ≤Mxjj then

4: if The current solution is the best solution so far for the QCCLP then

5: Update the incumbent solution of MP

6: end if

7: else

8: Add one of the feasibility cuts given in Inequality (4.11) and Inequality (4.14)

to the MP.

9: end if

After finding the integer feasible solution (x) to the MP, the nodes that are selected

as concentrators and the assignments of non-hub nodes to these concentrators are

known. However, MP includes the relaxation of the nonlinear constraints. Therefore,

the solution (x) may not satisfy the hub capacities. To check the hubs whose capacity

is exceeded by assigned demand, we evaluate Inequality (4.7) by using x for each

open hub j.∑
i∈I

∑
m∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij(1− xmj) ≤Mxjj (4.7)

In this inequality,
∑

i∈I
∑

m∈I(tim + tmi)xij gives the total amount of assigned de-

mand to the hub location j in solution x. The term,
∑

i∈I
∑

m∈I(tim+tmi)xij(1−xmj)
represents the current backbone traffic between hub location j and other hubs in x.

After evaluating Inequality (4.7) for each open hub j, we have two cases:

• Case 1: When Inequality (4.7) is satisfied for each open hub location j, an

integer feasible solution for QCCLP is found. This corresponds to the Step 3

59

of Algorithm 1.

• Case 2: If there exists a hub j which does not satisfy Inequality (4.7), then the

solution x is not a feasible solution for QCCLP. In this case, one of the possible

feasibility cuts (multiple feasibility cut and extended feasibility cut) is added to

the current node of MP.

Evaluating whether the capacity of the hubs is satisfied or not, and adding feasibility

cuts to the MP constitute the subproblem phase in the branch-and-check algorithm.

Note that, the subproblem phase does not have any model including decision vari-

ables.

Master problem (MP) finds the assignments of non-hub nodes to hub nodes and se-

lections of hubs among all nodes by only considering hub opening cost and routing

cost between non-hub nodes to hub nodes. In order to obtain better solutions in mas-

ter problem stage, we add valid inequalities to the MP at the beginning. The detailed

discussion on valid inequalities for the master problem is given in Section 4.2.2.

Figure 4.2 demonstrates the flow of the branch-and-check algorithm that is applied

for QCCLP. As can be seen from this figure, the algorithm starts with obtaining an

integer feasible solution to the relaxed IP problem which is MP in the branch-and-

check (B&Ch). In addition to MP that we explained in Section 4.2.1, MP includes

relaxed version of nonlinear capacity constraints. These inequalities include two main

parts: total amount of assigned demand to the hub j and estimated backbone traffic

between concentrators.

If the MP does not give a feasible solution, this means that QCCLP is infeasible.

When an integer feasible solution is found in the MP phase, the capacity constraints of

the hubs are evaluated (the decision node in Figure 4.2). After checking the feasibility

of hub capacities, there are two options in this figure. When the algorithm proceeds

to the ’feasible’ side, it implies that we might have found an incumbent solution. If

the status of the decision node in the figure is infeasible, the hubs whose capacity

constraints are not satisfied by the master problem solution x are found. For these

hubs, feasibility cuts are added to the MP.

After finding the feasible solution to MP, all remaining steps given in Figure 4.2 are

60

made in the branch-and-bound node of MP. To interrupt the branch-and-and bound

tree of the MP, we use lazycallback function that is available in commercial solvers

(e.g., IBM ILOG CPLEX). In branch-and-check algorithm, the MP is solved only

once. Therefore, it has similarities with the general branch-and-cut algorithm. In

Figure 4.2, k represents the counter of lazycallback functions invoked. In each lazy-

callback function, we add multiple feasibility cuts since the number of infeasible hubs

is more than one. Moreover, the set of hubs at which capacity constraints are not sat-

isfied may change. Ikj represents the set of hubs whose capacity constraints are not

met in lazycounter.

61

Figure 4.2: A Branch and Check Algorithm for QCCLP

62

4.2.2 Valid Inequalities for the Master Problem

In order to strengthen the formulation of MP, we use two variants of valid inequalities.

To generate these inequalities, we use the algorithm which was referred to traffic

bound algorithm in [53]. They propose an algorithm to find a lower bound on the

optimal amount of backbone traffic on backbone links by solving knapsack problems.

Steps of the algorithm are given in Algorithm 2.

By using the lower bound values obtained from Algorithm 2, we add Inequality (4.8)

to the MP as valid inequalities. These valid inequalities are called as VI1 in this study.

V I1 :
∑
i∈I

∑
m∈I

(tim + tmi)xij + Tjxjj ≤Mxjj ∀j ∈ I. (4.8)

In Inequality (4.8), Tj represent the minimum amount of backbone traffic that would

occur if node j is selected as a hub location. In each iteration of the traffic bound

algorithm, the knapsack problem given in the third step of the Algorithm 2 is solved.

As described by [53], a similar algorithm as Algorithm 2 can be used to find lower

bound on backbone traffic (Tij) that would occur if node i were assigned to node j.

Therefore, another valid inequality (VI2) that could be added to the MP is given

below:

V I2 :
∑
i∈I

∑
m∈I

(tim + tmi)xij + Tjxjj +
∑

i∈I:i 6=j

Tijxij ≤Mxjj ∀j ∈ I. (4.9)

Generating the valid inequality given in (4.9) requires solving O(n2+n) integer knap-

sack problems, where n represents the number of nodes in the network. Therefore, it

might be costly to compute all Tij values for large size instances.

In Algorithm 2, all decision variables in the knapsack problems are binary. In our

computational study, we observe that solving the integer knapsack problems for large

size instances may require too much computational time. In order to handle this draw-

back, we also solve the LP relaxations of the knapsack problems for finding valid

lower bounds on the amount of backbone traffic. We observe that solving the knap-

sack problems by using an LP relaxation requires significantly smaller CPU times

than solving them as IPs. On the other hand, the objective function values of the

63

knapsack problems in LP relaxation are smaller than the values in IPs. Therefore,

there is a tradeoff between obtaining a strong lower bound on the backbone flow and

the required time to obtain this bound.

Algorithm 2 Traffic Bound Algorithm for QCCLP
1: counter ← 1 and di =

∑
m∈I(tim + tmi) for each node i.

2: For each node i, solve the following IP knapsack problem.

3: Let ai be
∑

m∈I Tim =
∑

m∈I(tim + tmi).

Ti = min
∑

m∈I:m 6=i

Tim(1− um)

(Traffic Bound 1) s.t. ∑
m∈I:m 6=i

dmum ≤M − di

um ∈ {0, 1} ∀m ∈ I \ {i}.

4: if ai + Ti > di, then

5: di ← (ai+Ti) & counter ← (counter+1) go to step (3) and solve the same

IP model with updated di values.

6: else

7: STOP, use Ti values for each node i to generate valid inequalities that are

added to the master problem.

8: end if

In Inequality (4.9), Tij values are calculated by solving the knapsack problems which

are modified version of the model given in the third. step of Algorithm 2. The modi-

fied version of the knapsack problem to find a lower bound on the amount of backbone

flow is below:

Tij = min
∑

m∈I:m 6=i,j

Tim · (1− um)

(Traffic Bound 2) s.t. ∑
m∈I:m 6=i

dm · um ≤M − di − dj

um ∈ {0, 1} ∀m ∈ I \ {i, j}.

As the capacity of the hub is used by both hub node i and non-hub node j, right hand

64

side of the capacity constraints is updated as M − di − dj in this formulation to find

Tij values.

4.2.3 Nogoods cuts

Assume that we have a solution vector x in any step of solving master problem. Then,

set S(x) = {(i, j) : xij = 1} and the complement of this set S(x) = {(i, j) : xij =
0}.

By using these sets, the general feasibility cut or nogood cut in the literature of

branch-and-check algorithm can be generated as:∑
(i,j)∈S(x)

(1− xij) +
∑

(i,j)∈S(x)

xij ≥ 1. (4.10)

This cut (4.10) is also known as combinatorial cut in combinatorial Benders decom-

position ([20]). The main disadvantage of "no-good cuts" is that they are generally

weak. This type of cuts only cut off the current solution from the region. Therefore,

the number of iterations required for convergence is usually high. However, prob-

lem specific cuts can remove the points which are similar with the current infeasible

solution.

4.2.4 Multiple feasibility cuts (MFC)

If there are hubs whose capacities are not satisfied by the solution (x), we also propose

a stronger cut, which is problem specific, than no-good cuts. In no-goods cuts, we

add only one cut to exclude the infeasible solution. In order to detect the source of

infeasibility in the solution x in more detail, we generate a feasibility cut for each

hub whose capacity is not satisfied. Therefore, we call feasibility cuts as multiple

feasibility cut (MFC).

In the representation of the cut, k represents the counter for lazyconstraintcallback

function used in the algorithm.

Ikj : the set of nodes assigned to hub j in lazycounter k.

65

Ikinf : the set of hubs whose capacity constraints are not satisfied by MP solution x in

lazycounter iteration k.

Throughout the study, we call the hubs whose capacity constraints are not satisfied by

the current MP solution as infeasible hubs.

∑
i∈Ikj

xij ≤
∣∣Ikj ∣∣− 1,∀j ∈ Ikinf ∀k = 1, 2..., k − 1. (4.11)

When x gives an infeasible solution in the subproblem phase, at least one of the nodes

that are assigned to an infeasible hub must be removed. By using this inequality

(4.11), we satisfy this requirement for each hub whose capacity is exceeded. To

clarify the MFCs and the difference between no-goods cuts, we give the following

example.

Example 4.2.1. Assume a network with 7 nodes and in the MP’s solution, we have

the following assignments: x11 = x31 = x41 = 1 and x22 = x52 = 1. In this example,

nodes 1 and 2 are the hubs. We will explain the multiple feasibility cut and no-good

cut under the assumption that both hubs are infeasible. In that case, no-good cut

which is given in Inequality (4.10) is below:

(1−x11)+(1−x22)+(1−x31)+(1−x41)+(1−x52)+x12+x13+x14+x15+x21+x23+x24+x25+

x32 + x33 + x34 + x35 + x42 + x43 + x44 + x45 + x51 + x53 + x54 + x55 ≥ 1.

To find a better cut, we can use a minimal subset of items which still returns an

infeasible solution. In MFC, we obtain the following cuts, as there are two infeasible

hubs in this example.

• For hub location 1;

(1− x11) + (1− x31) + (1− x41) ≥ 1.

• For hub location 2;

(1− x22) + (1− x52) ≥ 1.

66

The no-good cut includes 25 terms, while the MFCs include at most 5 terms. As

the number of items in MFCs are less than the number of items in no-good cuts,

MFCs are stronger than no-good cuts. In our computational study, we observe that

computational time required to solve the MP with high number of feasibility cuts is

not huge.

Proposition 4.2.2. For a given integer solution x to MP, if constraint (4.4) is not

satisfied for location j, then

∑
i∈I:xij=1

(1− xij) ≥ 1. (4.12)

is a feasibility cut for MP.

Proof. The key idea behind this feasibility cut is that we cannot obtain a feasible

solution satisfying capacity constraints without removing at least one node from hub

location j. In order to prove this observation, we need to show that if we assign an

additional node to the infeasible hub, total amount of change on the flow of the hub

is positive. In this proof, we will use the following notation:

• j : a specific hub location whose capacity is exceeded by the flows that are

assigned in solution x.

• ai : total inflow and outflow related to node i.

• xij : the solution values that are obtained from master problem. These values

are used as parameters in the subproblem.

• zjl : backbone flow from hub location j to hub location l.

Let Ij denote the set which includes the nodes that are assigned to j. The non-hub

nodes for this set can be represented as i1, i2, ..., in. As j is a hub, j is included in this

set. Therefore, we have Ij= {i1, i2, j, ...in}.

For j, Inequality (4.13) holds.

67

∑
i∈I

ai · xij +
∑
l∈I:l 6=j

(zjl + zlj) > M. (4.13)

In this inequality
∑

i∈I ai · xij is the total demand that is assigned to hub location, zjl
denotes backbone traffic from hub j to hub l. Lastly, zlj represents backbone traffic

from hub l to hub j.

In Inequality (4.13):

∑
i∈I

ai · xij =
∑
i∈Ij

∑
m∈I:m6=i

(tim + tmi).

Assume that we have k other hubs different than j in the network. In order to express

total backbone traffic between the hubs j and the other hubs (l1, l2,..., lk), we divide

the calculations into two parts such as zjli and zlij .

zjl1 + zjl2 + ...+ zjlk =
∑
I∈Ij

∑
m∈I\Ij

tim.

zl1j + zl2j + ...+ zlkj =
∑
i∈I\Ij

∑
m∈Ij

tim =
∑

m∈I\Ij

∑
i∈Ij

tmi.

We can arbitrarily choose a node b which is a non-hub node not assigned to hub j.

Since any node i is assigned to the hub j, total inflow to the node b1 and total outflow

from that node b will use the capacity of j. If the node b is assigned to the hub j, the

increase on the amount of traffic assigned will be:

∑
m∈I:m6=b1

(tbm + tmb).

As b is assigned to hub j from its previous set I \ Ij , the amount of change on

zjl is
∑

m∈I\Ij
tbm −

∑
m∈Ij

tmb on zjl. Similarly, the amount of change on zlj is∑
m∈I\Ij

tmb −
∑

m∈Ij
tbm.

68

Therefore, total change on the capacity usage of the hub j is as:

���
���

��∑
m∈Ij

(tbm + tmb) +
∑

m∈I\Ij

(tbm + tmb) +
∑

m∈I\Ij

tbm +
∑

m∈I\Ij

tmb−

�
�
�

��∑
m∈Ij

tmb −

�
�

�
��∑

m∈Ij

tbm

To sum up, total change is

2
∑

m∈I\Ij

(tbm + tmb).

Since demand between two nodes are positive values, total change is strictly greater

than zero. This concludes that in order to satisfy capacity constraints for j, at least

one node in Ij must be removed from j.

4.2.5 Extended feasibility cuts (EFC)

In the previous section, we discussed MFCs in which the feasibility cuts are added

for each hub. In this type of cut, we did not consider nodes which are not assigned

to hub j in solution x. However, in extended feasibility cuts, we restrict the nodes p

whose effect on the capacity usage of the hub is higher than the maximum reduction

of a node removal from this hub. In this case, even if we remove the node which gives

the highest amount of reduction on the hub capacity usage, we cannot find a feasible

solution for the hub j by adding this node p.

Lemma 4.2.3. For a given integer solution x to MP, if constraint (4.4) is not satisfied

for location j, then ∑
i∈Ikj

xij +
∑
i∈Ikj

xij ≤
∣∣Ikj ∣∣− 1 ∀j ∈ Ikinf (4.14)

is a valid feasibility cut for the master problem, where the set I
k

j is defined as follows:

I
k

j =

{
p :
∑
m∈I

(tmp + tpm) ≥ max
i∈I:xij=1

(
2 ·
∑
m∈I

(tim + tmi)

)
and xpj = 0

}

Proof. Assume that W items are assigned to hub location j. In the current solution,

x1j = x2j = ... = xwj = 1. If total flow (adjacent traffic & backbone traffic) of these

nodes (1,2. . . , w) are greater than the capacity of hub, M ,

69

x1j + x2j + . . .+ xwj ≤ W − 1

is a valid feasibility cut.

In order to determine which nodes are included in the set I
k

j , we compare two quan-

tities as follows:

• Maximum reduction: When an assigned node (i) is removed from the hub j,

maximum possible reduction on the usage of capacity of the hub due to the

node i is

2 ·
∑
m∈I

(tim + tmi).

To calculate the maximum possible reduction due to the removal of a node, we

use the following idea.

Consider the capacity constraints 4.4. In this constraint, the first term is in-

curred if a node i is assigned to the hub location j. The second term represents

the total amount of backbone traffic between hub j and different hubs.

– If a node i is removed from the hub j, the first term in 4.4 is decreased by∑
m∈I(tim + tmi).

– For the second term in 4.4, we can use an upper bound on the amount of

backbone traffic. If all the remaining nodes except i and j are assigned to

different hubs, total amount of backbone flow related to j is
∑

m∈I(tim +

tmi).

By using this assumption, we can conclude that the maximum possible reduc-

tion is 2 ·
∑

m∈I(tim + tmi) for node i.

• Minimum increase: In this case, we consider the node p which is not assigned

to hub location j in the current master problem’s solution (e.g., xpj = 0. The

minimum increase on the usage of the capacity is
∑

m∈I(tmp + tpm). This

amount of quantity is the first part of the nonlinear constraints 4.4 due to the

xpj = 1 in the new solution.

70

When two quantities are compared (maximum reduction & minimum increase), if

minimum increase due to the assignment of node p to hub location j is greater than

equal to maximum reduction occurred due to the removal of node i, the node p is

included in the set I
k

j .

In this case, we try to show that we cannot assign node p to this hub besides the nodes

that are currently assigned to hub j. This fact will be proved by contradiction.

Assume that ∑
i∈Ikj

xij +
∑
i∈Ikj

xij ≤
∣∣Ikj ∣∣− 1 ∀j ∈ Ikinf

is not a valid feasibility cut.

If this cut is not a valid cut, then there exists a cut in which W nodes are selected

from Ikj ∪ {p}. W items which have the smallest weights are (1, 2, ..., w), since∑
m∈I(tmp + tpm) ≥ maxi∈I:xij=1{2 ·

∑
m∈I(tim + tmi)}.

Since x1j + x2j + ... + xwj ≤
∣∣Ikj ∣∣− 1 is a valid feasibility cut, we cannot find a cut

such that x1j + x2j + ...+ xwj + xpj >
∣∣Ikj ∣∣− 1. This contradicts the assumption that

we make in the beginning of the proof.

4.3 Computational Results

In this study, we propose different variants of branch-and-check algorithm by making

enhancement on the following parts:

• Initial valid inequalities added to the MP

– VI(1): Inequality (4.8).

– VI(2): Inequality (4.9).

• Feasibility cuts generated from the subproblem (SP)

– Multiple Feasibility Cut: Inequality (4.11).

– Extended Feasibility Cut: Inequality (4.14).

• The strategy for traffic bound calculations to find the backbone links

71

– Solving knapsack problems given in Algorithm 2 as IP or LP.

By taking into consideration all enhancement steps in the branch-and-check algo-

rithm, we obtain eight variants of it. In order to see the effects of each improvement

steps, we give the comparison results of these branch-and-check variants in this sec-

tion. We use the notation (BVxTyFz) to describe each decomposition alternative.

In BVxTyFz notation:

• Vx : represents the type of valid inequality that is added to the MP at the begin-

ning. If x = 1, VI(1) is used, while x = 2, VI(2) is used. If we do not use any

valid inequality in the master problem, then x = 0.

• Ty denotes the strategy of solving knapsack problems in traffic bound algorithm

(2). If y = LP , linear programming relaxations of knapsack problems are used

to find a lower bound on backbone traffic. On the other hand when y = IP ,

knapsack problems in Algorithm 2 are solved as IP.

• Fz : represents the type of feasibility cuts. When z = MF , MFC are added to

the MP. If z = EF , EFC are used as feasibility cuts in the branch-and-check

algorithm.

We compared different variants of Benders decomposition algorithm with MIQCP

solver of IBM CPLEX. Different variants of Benders decompositions are also com-

pared with each other to evaluate the effects of enhancement steps and find the best

method for each instance. We conduct our experimental setting on a 64-bit machine

@ 3.10 GHz and 16 GB of Ram. All methods are coded in IBM CPLEX 12.7.1 using

C++ Concert technology. To implement our branch-and-check algorithm, we need

to construct a single tree for the master problem and solve subproblem at each node

of that tree. So, we use Ilolazyconstraint callback function that is available in IBM

CPLEX. The summary results of the algorithms are given in this section.

72

4.3.1 Description of Instances

We use the well known AP data set from [1]. In the AP data set, each instance includes

the number of nodes in the network, x and y coordinates of nodes, strictly positive

flow between any pairs of nodes, capacity of hubs and their fixed costs. There are two

levels for both capacity of hubs and fixed cost of them as loose (L) and tight (T). In

our computational study, the cost multipliers for each unit flow are taken as α = 3

and β = 2 for collection and distribution, respectively.

In the problem setting (QCCLP), demand of a node to itself is 0 (e.g., tii = 0). We

use the same fixed cost values as AP data set. However, we use a single value for hub

capacity which is given as M in the study. In order to see the effect of capacity on

the performances of the solution methods, we determine two capacity levels such as

3000 and 4000 for tight (T) and loose (L) levels, respectively.

4.3.2 Comparison of MIQCP in CPLEX and Branch-and-Check Algorithms

We solved QCCLP formulation given in Section 4.1 by using MIQCP solver of

CPLEX with default settings. Then, we evaluate the performances of our branch-

and-check algorithm alternatives with MIQCP solver.

Table 4.1 gives the computational results for MIQCP solver and BV1TIPFMF on 20

nodes instances. Both methods solved all instances to optimum within given CPU

time limit. Average CPU time required in BV1TIPFMF is less than the CPU time re-

quired by MIQCP. Moreover, average number of nodes opened in branch-and-bound

tree of master problem is less than the branch-and-bound nodes in MIQCP. As we

expected, the maximum number of feasibility cuts occurs in the setting where the hub

capacities are small and fixed cost of opening them are high.

Table 4.2 gives the computational results of MIQCP solver and BV1TIPFMF for 25

nodes instances. BV1TIPFMF performs better than MIQCP in terms of CPU time

in 12 out of 20 instances. When we look at the average CPU times of MIQCP and

BV1TIPFMF , MIQCP is slightly better than BV1TIPFMF . This result is mostly due

to the setting where the hub capacities are 3000 and fixed cost is set to tight values.

73

Therefore, we focus on these instances.

Instance 6 in Table 4.2 is solved optimally in 618.63 sec. and 1,133.33 sec. by

MIQCP and BV1TIPFMF , respectively. The reason for a larger solution time with

BV1TIPFMF when compared with MIQCP is increased number of feasibility cut.

In order to reduce the number of feasibility cuts and computational time, we can use

BV2TIPFMF . When VI(2) is added to the MP, the required time for solving the model

in BV2TIPFMF is 37.11 sec. As CPU time for calculating traffic bound is 97.17 sec.,

total CPU time for instance 6 is 135.6 sec. This implies that there is a significant effect

of using VI(2) in the MP on overall CPU time. Both methods solve 19 instances to

optimum. For instance 8 in Table 4.2 which is not optimally solved by MIQCP and

BV1TIPFMF , both methods finds the same solution when time limit is reached.

In 40 nodes instances, we selectBV1TIPFEF andBV2TLPFEF to compare the perfor-

mance of MIQCP for large and small size capacities, respectively. The computational

results of MIQCP and branch-and-check alternatives are given in Table 4.3. We divide

the analysis of computational study into two parts for 40 nodes instances.

When we look at the instances with small capacities, average CPU time inBV2TLPFEF

is slightly better than the average CPU time in MIQCP. While MIQCP solves four in-

stances to optimum, BV2TLPFEF solved eight instances optimally. Two instances

(Instance 6 and Instance 8) in Table 4.3 are not solved optimally by any of the both

methods BV2TLPFEF finds a better solution for instance 6. However, MIQCP finds a

better solution for instance 8.

For the instances with high capacities, the average CPU time in BV1TIPFEF is

slightly better than the average CPU time in MIQCP. The number of optimally solved

instances for this treatment combination ,where the capacity values are 4000 and fixed

costs are set to tight values, is the same in both methods. Therefore, we cannot con-

clude that one method outperforms the other. Any of both methods cannot solve the

three instances (Instances 16, 17 and 18) optimally. While BV1TIPFEF finds a better

solution than the solution found in MIQCP for instances 17 and 18, MIQCP finds a

better solution for instance 16 in Table 4.3.

For 50 nodes instances, we select BV2TLPFMF variant to compare with MIQCP

74

and computational results are given in Table 4.4. For both high and low capaci-

ties, the performance of BV2TLPFMF is better than the performance of MIQCP in

terms of average CPU time. For the instances with small capacity values, MIQCP

and BV2TLPFMF solve seven instances optimally. When the results are compared in

more detail, any method cannot find the optimal solution for instance 6 and 8 within

given time limit. When compared the objective function values of the master problem

at the time limit, BV2TLPFMF finds a better solution than MIQCP. While instance 7

cannot be solved optimally by MIOCP within given time limit, BV2TLPFMF finds

the optimal solution for this instance. On the other hand, instance 9 is not solved by

BV2TIPFMF while MIQCP solves this instance optimally.

One observation that can be concluded from 4.4, for small capacity values, the in-

stances with tight fixed costs are more difficult than the instances with low fixed

costs. As we expected, the average number of feasibility cuts that are added to the

MP is higher in the settings with small capacity values and tight fixed cost values.

In order to show that we can solve large size instances to optimum by branch-and-

check algorithm, we test our proposed algorithm on 100 nodes instances. The lin-

earizations that are given in A and MIQCP solver cannot find an integer feasible

solution within given time limit (2 hours) for 100 nodes instances. We think that the

main reason behind this result is huge number of decision variables and constraints.

Therefore, we only report the results of BV2TLPFEF in Table 4.5. Over 24 instances

given in Table 4.5, 15 instances are solved to optimum by BV2TLPFEF . Over these

instances which could not be solved to optimum, maximum relative gap is 9% and

average gap is 4%.

In our computational study, we observe that the instances with small capacity and high

fixed costs are difficult instances. They require high number of feasibility cuts for the

convergence. Therefore, the highest CPU time in the branch-and-check algorithm

variant occurs in the treatment combination where the capacity is 3000 and fixed cost

of concentrators are set to tight values.

When demand values of the terminals decrease, smaller number of concentrators

(hubs) are opened in the optimal solution. As a result of this, the number of fea-

sibility cuts decreases and overall CPU time of the branch-and-check algorithms also

75

decreases. When the demand values are low and the hub capacities are loose, we show

that the instances cannot be solved optimally at the root node of the master problem

in branch-and-check alternatives.

From our computational study, we observed that the instances with tight fixed costs

are difficult to be solved optimally by any method (MIQCP and Branch-and-check

Algorithms).

One of the most important results from our computational study is that when the num-

ber of nodes in the network increases, the performance of MIQCP becomes worse.

The reason is that the number of decision variables in branch-and-check algorithms

are less than the number of linearizations of the original model. As we generate the

problem specific feasibility cuts and improved version of the master problem, branch-

and-check can solve large size instances.

76

Table 4.1: Comparison results of MIQCP and BV1TIPFMF for 20 nodes

MIQCP BV1TIPFMF Traffic Bound BV1TIPFMF

Ins Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti(time) Tij(time) Total (CPU)

1

20 3000 L

243,550 10.2 1,528 0 3,9;11;14;19 243,550 1.4 751 0 3;9;11;14;19 451 0.47 47.22 1.85
2 211,700 14.6 2,776 0 3;11;13;14 211,700 2.1 2,124 0 3;11;13;14 694 0.63 52.53 2.71
3 201,947 35.5 15,309 0 3;9;11;14 201,947 5.1 4,483 0 3;9;11;14 1,341 2.28 63.64 7.36
4 184,475 5.9 487 0 6;11;14 184,475 1.9 1,340 0 6;11;14 466 0.56 69.23 2.44
5 173,226 8.7 1,588 0 3;11;14 173,226 3.7 3,021 0 3;11;14 1,062 0.86 66.61 4.53

6

20 3000 T

292,451 14.1 2,244 0 1;8;10;11;18 292,451 3.1 1,987 0 1;8;10;11;18 1,093 0.47 47.22 3.55
7 236,912 13.0 3,297 0 7;9;11;18 236,912 5.7 4,913 0 7;9;11;18 1,579 0.63 52.53 6.32
8 221,316 20.8 8,571 0 1;7;11;18 221,316 9.4 6,764 0 1;7;11;18 1,941 2.28 63.64 11.69
9 198,834 3.8 161 0 7;11;18 198,834 0.6 380 0 7;11;18 119 0.56 69.23 1.20

10 188,071 4.1 81 0 7;11;18 188,071 1.3 500 0 7;11;18 289 0.86 66.61 2.13

11

20 4000 L

223,990 3.9 132 0 3;9;11;14 223,990 0.6 571 0 3;9;11;14 172 0.64 68.05 1.27
12 193,755 5.1 326 0 6;11;14 193,755 0.7 575 0 6;11;14 216 0.97 65.64 1.67
13 181,317 4.7 900 0 3;11;14 181,317 0.4 135 0 3;11;14 112 0.50 60.13 0.91
14 162,588 0.1 0 0 7;14 162,588 0.0 0 0 7;14 1 0.27 64.31 0.29
15 155,237 0.1 0 0 7;14 155,237 0.0 0 0 7;14 0 0.48 56.25 0.50

16

20 4000 T

248,725 4.6 498 0 7;11;18 248,725 0.9 519 0 7;11;18 247 0.64 68.05 1.53
17 214,325 1.2 86 0 7;11;18 214,325 0.4 136 0 7;11;18 112 0.97 65.64 1.35
18 201,150 3.3 170 0 1;11;18 201,150 0.2 23 0 1;11;18 34 0.50 60.13 0.66
19 184,240 0.1 0 0 7;18 184,240 0.0 0 0 7;18 0 0.27 64.31 0.29
20 175,956 0.3 0 0 7;18 175,956 0.0 0 0 7;18 0 0.48 56.25 0.51

Average 8 1,908 0 1,411 0 496 3

77

Table 4.2: Comparison results of MIQCP and BV1TIPFMF for 25 nodes instances

MIQCP BV1TIPFMF Traffic Bound BV1TIPFMF

Ins Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti (time) Tij (time) Total (CPU)
1

25 3000 L

242,304 22.32 5,000 0 3;11;14;18;24 242,304 3.58 3,111 0 3;11;14;18;24 725 1.38 97.17 4.96
2 204,369 17.02 2,095 0 3;14;16;24 204,369 2.97 1,808 0 3;14;16;24 671 1.42 141.23 4.39
3 195,595 13.50 1,628 0 3;14;16;24 195,595 4.59 4,657 0 3;14;16;24 594 0.88 122.47 5.47
4 180,858 11.50 1,278 0 9;11;24 180,858 5.20 4,954 0 9;11;24 1,058 0.7 113.14 5.90
5 130,111 0.17 0 0 8;24 130,011 0.02 0 0 8;24 0 0.86 99.4 0.88

6

25 3000 T

338,719 618.63 103,607 0 3;9;11;14;24 338,719 1,133.33 168,179 0 3;9;11;14;24 20,804 1.38 97.17 1,134.71
7 273,172 45.36 7,095 0 9;11;14;24 273,172 101.48 42,058 0 9;11;14;24 4,693 1.42 141.23 102.90
8 264,053 7,200.17 430,819 0.007 9;11;14;24 264,053 7,200.06 510,456 0.03 9;11;14;24 58,994 0.88 122.47 7,200.94
9 229,511 9.25 88 0 11;14;24 229,511 34.45 2,631 0 11;14;24 1,148 0.7 113.14 35.15
10 220,571 22.25 6,048 0 9;11;24 220,571 20.86 8,583 0 9;11;24 3,445 0.86 99.4 21.72

11

25 4000 L

222,479 5.05 144 0 3;9;16;18 222,479 0.64 136 0 3;9;16;18 81 0.28 102.81 0.92
12 191,488 4.34 36 0 9;11;18 191,488 0.64 274 0 9;11;18 106 0.64 111.41 1.28
13 181,654 7.44 472 0 9;11;18 181,654 0.81 249 0 9;11;18 158 0.8 120 1.61
14 168,549 1.69 17 0 8;18 168,549 0.19 1 0 8;18 9 0.44 122.78 0.63
15 130,011 0.19 0 0 8;24 130,011 0.03 0 0 8;24 0 0.16 6.55 0.19

16

25 4000 T

284,844 13.52 2,477 0 11,14;24 284,844 3.88 1,283 0 11;14;24 924 0.28 102.81 4.16
17 242,948 0.88 11 0 9;11;24 242,948 1.08 313 0 9;11;24 321 0.64 111.41 1.72
18 232,736 13.75 3,137 0 9;11;24 232,736 1.52 660 0 9;11;24 372 0.8 120 2.32
19 210,573 0.05 0 0 9;24 210,573 0.05 0 0 9;24 0 0.44 122.78 0.49
20 202,214 8.67 0 0 9;24 202,214 0.16 0 0 9;24 1 0.16 6.55 0.32

Average 401 0 0 4705 427

78

Table 4.3: Comparison of MIQCP & BV2TLPFEF and MIQCP & BV1TIPFEF for 40 nodes instances

MIQCP BV2TLPFEF Traffic Bound BV2TLPFEF

Ins Demand Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti (time) Tij (time) Total (CPU)
1 D 40 254,209 7,205.48 410,163 0.01 6;17;22;28;29 254,001 2,081.17 581,464 0 6;17;22;28;37 6,349 0.58 25.94 2,107.69
2 D/1.2 40 3000 L 214,462 7,200.30 2,279 0.02 14;15;29 214,462 1,554.94 123,538 0 6;22;25;28 309 0.45 29.66 1,585.05
3 D/1.3 40 203,248 7,057.31 459,181 0 6;22;25;28 203,248 451.97 73,667 0 6;22;25;28 7,310 0.41 20.28 472.66
4 D/1.4 40 187,990 446.41 51,133 0 10;22;28 187,990 29.13 6,654 0 10;22;28 1,312 0.41 30.94 60.48
5 D/1.5 40 175,597 67.34 2,836 0 14;25;29 175,597 8.27 832 0 14;25;29 261 0.41 28.06 36.74

6 D 40 353,868 7,205.83 271,761 0.08 6;14;19;22;35 345,786 7,200.02 2,865,600 0.03 6;14;19;22;35 1,565 0.58 25.94 7,226.54
7 D/1.2 40 3000 T 288,997 7,214.70 409,752 0.05 14;19;22;38 288,997 266.94 156,292 0 14;19;22;38 207 0.45 29.66 297.05
8 D/1.3 40 274,866 7,205.09 208,781 0.06 1;14;22;35 276,052 7,200.06 259,046 0.06 14;19;22;38 58,643 0.41 20.28 7,220.75
9 D/1.4 40 242,629 7,200.08 963,939 0.00 14;22;35 242,629 5.00 623 0 14;22;35 180 0.41 30.94 36.35

10 D/1.5 40 231,000 7,202.66 612,988 0 14;19;22 231,000 14.39 4,930 0 14;19;22 161 0.41 28.06 42.86

Average 5,800.52 339,281.30 0.02 407,264.60 0.01 7,629.70 1,908.6

MIQCP BV1TIPFEF Traffic Bound BV1TIPFEF

Ins Demand Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti (time) Tij (time) Total (CPU)

11 D 40 232,679 98.98 6,266 0 11;22;28;35 232,679 36.08 4,368 0 11;22;28;35 2,237 0.39 32.5 36.47
12 D/1.2 40 4000 L 198,607 44.98 2,238 0 11;22;38 198,607 59.27 13,619 0 11;22;28 2,635 0.56 29.66 59.83
13 D/1.3 40 185,104 51.13 2,892 0 11;22;28 185,104 28.34 4,303 0 11;22;28 1,908 0.38 20.28 28.72
14 D/1.4 40 171,534 14.22 186 0 14;28 171,534 1.70 26 0 14;28 86 0.38 28.95 2.08
15 D/1.5 40 161,281 1.11 0 0 14;28 161,281 0.09 0 0 14;28 0 0.42 29.27 0.51

16 D 40 307,782 7,205.90 266,568 0.03 1;14;19;38 317,359 7,200.05 364,837 0.07 14;22;35;38 47,768 0.39 32.5 7,200.44
17 D/1.2 40 4000 T 263,294 7,205.19 384,223 0.04 14;22;35 261,551 7,200.25 113,144 0.06 14;19;38 61,224 0.56 29.66 7,200.81
18 D/1.3 40 251,187 7,200.13 231,646 0.06 14;19;38 250,137 7,200.05 108,567 0.07 14;19;38 59,974 0.38 20.28 7,220.71
19 D/1.4 40 217,699 7.27 36 0 14;38 217,699 12.83 299 0 14;38 845 0.38 28.95 13.21
20 D/1.5 40 207,989 26.09 1,826 0 14;19 207,989 5.75 414 0 14;19 356 0.42 29.27 6.17

Average 2,185.50 89,588.10 0.01 60,957.70 0.02 17,703.30 2,174.8

79

Table 4.4: Comparison of MIQCP & BV2TLPFMF for 50 nodes instances

MIQCP BV2TLPFMF Traffic Bound BV2TLPFMF

Ins Demand Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti (time) Tij (time) Total (CPU)
1 D 50 238,958 2,337.83 114,050 0 3;22;27;45;48 238,958 76.95 26,969 0 3;22;27;45;48 623 0.78 47.25 124.98
2 D/1.2 50 3000 L 205,671 415.72 22,492 0 3;27;33;48 205,671 6.92 303 0 3;27;33;48 103 0.52 45.92 53.36
3 D/1.3 50 193,248 636.89 39,631 0 3;22;27;48 193,248 7.22 525 0 3;22;27;48 121 0.63 25.34 33.19
4 D/1.4 50 180,876 323.45 11,356 0 17;22;48 180,876 9.45 337 0 17;22;48 167 0.39 42.92 52.76
5 D/1.5 50 168,983 70.81 997 0 17;22;48 168,983 4.31 124 0 17;22;48 54 0.25 36.39 40.95

6 D 50 369,636 7,207.86 0.06 3;22;27;45;48 367,627 7,200.03 646,000 0.0027 3;21;27;45;48 19960 0.78 47.25 7,248.06
7 D/1.2 50 3000 T 303,995 7,206.11 172,373 0.03 3;22;27;48 303,645 189.34 52,099 0 3;22;27;48 753 0.52 45.92 235.78
8 D/1.3 50 290,846 7,208.38 0.06 3;21;27;48 287,790 7,200.09 208,000 0.05 3;21;27;48 30336 0.63 25.34 7,226.06
9 D/1.4 50 260,197 2,420.75 49,957 0 17;21;48 260,965 7,200.06 311,287 0.012 21;27;48 37019 0.39 42.92 7,243.37
10 D/1.5 50 246,105 3,338.11 97,261 0 17;21;48 246,105 398.78 18,058 0 17;21;48 39903 0.25 36.39 435.42

Average 3,116.59 63,514.63 0.02 2,229.32 126,370.20 0.01 8,953.50 2,269.39

MIQCP BV2TLPFMF Traffic Bound BV2TLPFMF

Ins Demand Nodes Cap FC Obj CPU Nodes Rgap Hubs Obj CPU Nodes Rgap Hubs # of Fcuts Ti (time) Tij (time) Total (CPU)

11 D 50 223,098 70.25 1,165 0 3;27;32;48 223,098 5.77 148 0 3;27;32;48 97 0.77 45.17 51.71
12 D/1.2 50 4000 L 192,416 39.69 380 0 17;22;48 192,416 10.84 247 0 17;22;48 228 0.53 49.08 60.45
13 D/1.3 50 180,760 29.56 275 0 17;22;48 180,760 2.63 41 0 17;22;48 9 0.61 41.94 45.18
14 D/1.4 50 171,012 120.41 5,647 0 15;48 171,012 22.2 645 0 15;48 519 0.39 42.92 65.51
15 D/1.5 50 159,790 10.47 37 0 15;48 159,790 2.53 11 0 15;48 20 0.25 36.39 39.17

16 D 50 321,400 7,205.33 156,865 0.05 3,21;27;48 320,478 7200.03 384859 0.03 3;21;27;48 27463 0.77 45.17 7,245.97
17 D/1.2 50 4000 T 269,261 7,204.02 364,499 0.04 17;21;48 268,726 54.17 10103 0 3;27;48 984 0.53 49.08 103.78
18 D/1.3 50 256,362 7,204.92 179,987 0.06 17;21;48 256,362 7200.03 103505 0.02 17;21;48 55618 0.61 41.94 7,242.58
19 D/1.4 50 226,257 138.73 5,152 0 17;48 226,257 18.02 440 0 17;48 394 0.39 42.92 61.33
20 D/1.5 50 214,552 21.02 116 0 17;48 214,552 43.91 813 0 17;48 1119 0.25 36.39 80.55

Average 2,204.44 71,412.30 0.02 1,456.01 50,081.20 0.025 8,645.10 1,499.62

80

Table 4.5: Computational Results of BV2TLPFEF for 100 nodes

BV2TLPFEF Traffic Bound

Nodes Demand Cap FC Obj Value CPU (sec) Nodes Rgap FeasCut Hubs T(i) T(ij) Tot(CPU)

100

D

3000 L

256,413 7,200.10 155,546 0.01 13,601 5;34;64;76;91 1 92.92 7,294.02
D/1.5 182,478 82.1 450 0 165 34;44;96 0.73 102.7 185.53
D/2 144,014 7,200.50 7,504 0.0117 13,692 29;73 0.47 87.16 7,288.13

D/2.5 123,846 11.2 0 0 0 29;73 0.34 95.45 106.99
D/2.75 116,940 6.3 0 0 0 34;91 0.3 20.27 26.87

D/3 110,151 3.2 0 0 0 73 0.7 90.36 94.26

100

D

3000 T

441,074 7,200.20 198,989 0.03 14,295 5;19;44;52;95 1 92.92 7,294.12
D/1.5 296,490 7,200.60 54,494 0.06 19,634 5;52;86 0.73 102.7 7,304.03
D/2 209,708 7,200.60 9,838 0.08 13,809 5;52 0.47 87.16 7,288.23

D/2.5 156,071 8.5 9 0 1 5;52 0.34 95.45 104.29
D/2.75 133,765 2.9 0 0 0 52 20.27 23.46 46.63

D/3 64,331 3.2 0 0 0 52 0.7 90.36 94.26

100

D

4000 L

243,877 7,200.30 49,370 0.0012 16,780 5;35;64;96 0.98 94.25 7,295.53
D/1.5 175,400 7,200.50 0 0.013 13,459 29;73 0.7 91.36 7,292.56
D/2 142,361 2.8 0 0 0 29;73 0.31 20.11 23.22

D/2.5 124,496 82.1 450 0 165 34;44;96 0.25 17.98 100.33
D/2.75 110,693 2.9 0 0 0 73 0.28 18 21.18

D/3 110,693 2.9 0 0 0 73 0.2 17.42 20.52

100

D

4000 T

399,844 7,200.60 70,053 0.09 18,753 5;39;52;95 0.98 94.25 7,295.83
D/1.5 261,389 7,200.50 12,770 0.09 13,270 5;52 0.7 91.36 7,292.56
D/2 172,067 2.9 0 0 0 52 0.31 20.11 23.32

D/2.5 144,411 3 0 0 0 52 17.98 21.25 42.23
D/2.75 125,973 2.9 0 0 0 52 0.28 18 21.18

D/3 125,973 3.1 0 0 0 52 0.2 17.42 20.72

4.3.3 Analysis of Enhancement Steps on Branch-and-Check Algorithm

In this section, we analyze the effects of valid inequalities added to the master prob-

lem, the strategy of finding traffic bound values and different variants of feasibility

cuts on computational time of the algorithm.

• Effects of valid inequalities

In our computational study, we develop two problem specific valid inequalities

and add one of them to the MP at the beginning. When we add valid inequal-

ities to the MP, the feasible region of the master problem (MP) is reduced and

it converges to the feasible region of the original nonlinear integer model (QC-

CLP). We compare computational performance of BV0FEC and BV2TIPFEC

to show the effects of using valid inequalities on the solution time of the algo-

rithms. In BV0FEC , we do not add any valid inequalities to the MP. Therefore,

in this branch-and-check variant, traffic bound algorithms are not used.

As can be seen in Table 4.6, using VI(2) to the master problem reduces the av-

erage CPU time from 5,421.29 sec.to 2,329.35 sec. over ten instances. As

81

expected, average number of feasibility cuts is reduced significantly by us-

ing master problem with valid inequalities. In BV2TIPFEC , average number

of feasibility cuts is 14,640, while the average number of cuts in BV0FEC is

40,483.20.

Next, we compare the computational performances of using either VI(1) and us-

ing VI(2). The summary results of this comparison is given in Table 4.7. When

the number of nodes increases in the network, total required time to calculate

Tij increases significantly. In Table 4.7, average CPU time gives the total time

required in branch-and-check variants without adding the time for calculating

lower bounds on the backbone traffic. BV2TIPFMF solves more instances to

optimum for large size instances within given time limit for 25, 40 and 50

nodes. Moreover, the number of feasibility cuts for the convergence of the al-

gorithm is less in BV2TIPFMF . There is only one setting where BV1TIPFMF

gives smaller CPU time. Because, computing Tij values does not pay off. As a

result of this, BV2TIPFMF outperforms BV1TIPFMF in terms of average CPU

time.

82

Table 4.6: Impact of adding valid inequalities to the master problem (MP)

BV2TIPFEC BV0FEC

Ins Nodes Demand Cap FC Obj CPU Nodes R.Gap Hubs F.Cuts Obj CPU Nodes R.Gap Hubs F.Cuts

1

25

D

3000 T

338,719 1,133.33 168 0 3;9;11;14;24 20,804 338,719 3,672.39 263,690 0 3;9;11;14;24 37,838
2 D/1.2 273,172 101.48 42 0 9;11;14;24 4,693 273,172 7,200.13 172,857 0.013 9;11;14;24 74,438
3 D/1.3 264,053 7,200.06 510 0.03 9;11;14;24 58,994 264,629 7,200.03 214,452 0.029 3;11;14;24 58,575
4 D/1.4 229,511 34.45 2,631 0 11;14;24 1,148 229,511 117.09 3,303 0 11;14;24 1,820
5 D/1.5 220,571 0.63 84 0 9;11;24 5 220,571 24.84 8,255 0 9;11;24 3,914

6

40

D

3000 T

345,786 7,226.54 2,865,000 0.03 6;14;19;22;35 1,565 368,207 7,200.09 153,854 0.2 14;19;21;22;38 74,743
7 D/1.2 288,997 297.05 156,292 0 14;19;22;38 207 291,963 7,200.20 120,730 0.14 14;19;22;35 47,076
8 D/1.3 276,052 7,220.75 259,046 0.06 14;19;22;38 58,643 298,984 7,200.19 51,409 0.22 6;14;19;25 41,236
9 D/1.4 242,629 36.35 623 0 14;22;35 180 245,240 7,200.47 100,956 0.1 14;19;38 34,407
10 D/1.5 231,000 42.86 4,930 0 14;19;22 161 233,842 7,200.47 32,370 0.11 14;19;38 30,785

Average 2,329.35 328,932.67 0.01 14,640.00 5,421.59 112,187.60 0.08 40,483.2083

Table 4.7: Comparison Results of VI(1) and VI(2) for different number of nodes in
the network

Nodes Performance Measures BV2TIPFMF BV1TIPFMF

20

of instances solved to optimum 20/20 20/20
Average CPU time 2.88 1.87
Average time for Ti 0.77 0.77
Average time for Tij 61.36 -
Average Rel. Gap 0 0
Average # of feasibility cuts 149.4 496.5

25

of instances solved to optimum 20/20 19/20
Average CPU time 134.5 426.9
Average time for Ti 0.8 0.8
Average time for Tij 103.7 -
Average Rel. Gap 0 0.03
Average # of feasibility cuts 531.15 4,751.40

40

of instances solved to optimum 16/20 8/20
Average CPU time 1,662.7 4,626
Average time for Ti 1.4 1.4
Average time for Tij 455.3 -
Average Rel. Gap 0.04 0.07
Average # of feasibility cuts 7,970.1 29,493.0

50

of instances solved to optimum 15/20 7/20
Average CPU time 1,989.9 4,803.7
Average time for Ti 1.7 1.7
Average time for Tij 803.8 -
Average Rel. Gap 0.03 0.1
Average # of feasibility cuts 6,701.3 29,552.6

A detailed comparison of MIQCP , BV1TIPFMF and BV2TIPFMF are given

in Tables A.2 and A.3.

Table 4.8 gives computational comparison of different branch-and-check alter-

natives and MIQCP for 40 and 50 nodes. In the last column of this table, we

report the best method for each instance. Over 40 instances,BV2TLPFMF gives

the smallest CPU time or finds the best solution within given two hours time

limit. For 18 instances, we can conclude that BV2TLPFMF outperforms the

other variants of branch-and-check algorithm and MIQCP. The reason is that

in BV2TLPFMF has stronger valid inequalities (VI(2)) which are added to the

master problem. As the number of nodes in the network is high, solving the

knapsack problems in traffic bound algorithms as linear programs is advanta-

geous in order to reduce required time for calculating backbone traffic. For

84

92.5 % of the instances given in Table 4.8, the branch-and-check variant is the

best method, so it is concluded that solving QCCLP by a branch-and-check

algorithm is advantageous.

85

Table 4.8: Computational comparison of different branch-and-check alternatives and MIQCP for 40 nodes and 50 nodes instances in terms
of CPU time

Inst Demand Cap FC Nodes BV1TIPFMF BV2TIPFEF BV2TLPFEF BV1TIPFEF BV1TLPFEF BV2TLPFMF MIQCP Best Method

1 D

4000 L

40 49.9 366.9 46.4 37.2 41.2 44.3 99.0 BV1TIPFEF
2 D/1.2 40 31.0 383.9 34.7 60.7 16.9 33.8 45.0 BV1TLPFEF
3 D/1.3 40 25.7 487.6 30.8 29.5 26.1 44.5 51.1 BV1TIPFMF

4 D/1.4 40 4.6 477.8 30.8 4.3 1.7 32.0 14.2 BV1TLPFEF
5 D/1.5 40 1.1 625.1 29.8 1.1 0.5 29.8 1.1 BV1TLPFEF

6 D

4000 T

40 7201.2 7556.0 7233.0 7201.6 7200.1 7232.9 7205.9 BV2TLPFEF
7 D/1.2 40 7201.5 387.3 35.8 7201.3 7200.6 7230.3 7205.2 BV2TLPFEF
8 D/1.3 40 7201.4 7671.6 7220.8 7201.1 7200.7 7220.8 7200.1 BV1TIPFMF

9 D/1.4 40 143.6 476.1 29.7 13.5 12.2 166.1 7.3 MIQCP
10 D/1.5 40 62.2 630.8 38.1 7.6 5.5 95.1 26.1 BV1TLPFEF

11 D

3000 T

40 7201.5 7563.7 7226.5 7201.3 7200.8 7226.6 7205.8 BV1TIPFMF

12 D/1.2 40 7201.3 670.7 297.1 7201.3 7200.5 7230.2 7214.7 BV2TIPFEF
13 D/1.3 40 7201.2 7622.6 7220.8 7201.2 7200.5 7220.8 7205.1 MIQCP
14 D/1.4 40 7201.3 461.5 36.4 7201.2 7200.5 7231.4 7200.1 BV2TLPFEF
15 D/1.5 40 7202.0 631.6 42.9 7202.1 7200.5 7228.8 7202.7 BV2TLPFEF

16 D

3000 L

40 7201.3 2574.7 2107.7 7202.0 7200.7 1946.2 7205.5 BV2TLPFMF

17 D/1.2 40 7201.3 583.6 1585.1 7200.8 7200.7 164.3 7200.3 BV2TLPFMF

18 D/1.3 40 7201.3 886.1 472.7 4765.0 7200.5 436.3 7057.3 BV2TLPFMF

19 D/1.4 40 5798.2 480.1 60.5 2719.5 4300.5 56.2 446.4 BV2TLPFMF

20 D/1.5 40 7202.0 632.2 36.7 7203.4 7200.4 33.7 67.3 BV2TLPFMF

21 D

4000 L

50 371.9 710.1 51.6 434.5 723.3 6.5 70.3 BV2TLPFMF

22 D/1.2 50 1276.3 796.0 61.6 629.5 248.7 11.4 39.7 BV2TLPFMF

23 D/1.3 50 119.6 1000.8 44.3 158.2 65.7 3.2 29.6 BV2TLPFMF

24 D/1.4 50 68.8 859.1 64.5 67.7 27.2 22.6 120.4 BV2TLPFMF

25 D/1.5 50 4.7 914.8 38.4 4.7 1.8 2.8 10.5 BV2TLPFMF

26 D

4000 T

50 7201.7 7991.6 7246.1 7201.8 7200.9 7200.8 7205.3 BV2TLPFMF

27 D/1.2 50 7201.0 848.9 96.9 7201.1 7200.7 54.7 7204.0 BV2TLPFMF

28 D/1.3 50 7201.9 8199.2 7242.9 7201.7 7200.8 7200.6 7204.9 BV1TIPFEF
29 D/1.4 50 491.8 952.6 61.4 76.5 1227.7 18.4 138.7 BV2TLPFEF
30 D/1.5 50 116.7 801.6 80.7 16.9 21.9 44.2 21.0 BV1TIPFEF

31 D

3000 T

50 7202.1 7999.6 7248.1 7201.7 7200.9 7200.8 7207.9 BV1TIPFEF
32 D/1.2 50 7202.8 1091.5 600.5 7201.6 7200.6 189.9 7206.1 BV2TLPFMF

33 D/1.3 50 7201.8 8133.1 7226.0 7201.4 7200.7 7200.7 7208.4 BV1TIPFEF
34 D/1.4 50 7201.7 8000.1 7243.4 7201.4 7200.5 7200.5 2420.8 MIQCP
35 D/1.5 50 7201.4 1180.9 374.3 7201.5 7200.3 399.0 3338.1 BV2TLPFEF

36 D

3000 L

50 7202.0 730.5 152.1 7201.9 7200.8 77.7 2337.8 BV2TLPFMF

37 D/1.2 50 7202.9 771.2 53.4 7203.2 7200.6 7.4 415.7 BV2TLPFMF

38 D/1.3 50 7201.8 917.7 32.8 7201.8 7201.0 7.9 636.9 BV2TLPFMF

39 D/1.4 50 7202.0 766.3 53.1 7201.9 7200.6 9.8 323.5 BV2TLPFMF

40 D/1.5 50 7201.1 740.4 40.6 7201.1 7200.5 4.6 70.8 BV2TLPFMF

86

• Effects of the strategy of finding traffic bound

We will analyze the effects of strategy of finding traffic bound on overall perfor-

mance of the branch-and-check algorithm into two parts such as either adding

VI(1) to the MP or adding VI(2) to the MP.

– Adding VI(1) to the MP

In order to generate VI(1), we can solve the knapsack problems in Algo-

rithm (2) by using two approaches such as using LP or IP. When we use

EF in the algorithm, solving the knapsack problems as IP reduces average

computational time calculated over 20 instances. In Table 4.9, average

CPU time is decreased from 4540.6 to 4342.7 for 40 nodes. Similar result

is also valid for 50 nodes instances. We cannot see any difference on the

number of instances solved to optimality due to using different strategies

for finding backbone traffic in the algorithm. One of the conclusions that

can be obtained from the Table 4.9 is if we add VI(1) to master problem,

solving the knapsack problems to find traffic bound as LP or IP does not

have significant effect on computational time of the algorithms.

– Adding VI(2) to the MP

In the case where we add VI(2) to the MP, solving the linear programming

relaxations of knapsack models in the traffic bound algorithm is advanta-

geous. This result is expected, since total requires time to calculate traffic

bound values for VI(2) is high for large size instances (e.g., 40 and 50

nodes instances). From Table 4.10, it is clear that BV2TLPFEF outper-

forms its counterpart BV2TIPFEF in terms of average computational time

and the number of optimally solved instances. We give the detailed re-

sults of BV1TLPFEF for 40 nodes and 50 nodes instances in Tables A.4

and A.5, respectively. For more detailed results of BV2TIPFEF , we refer

the reader to Table A.6 for 40 nodes instances.

When four different Benders variants (BV1TIPFEF ,BV1TLPFEF ,BV2TLPFEF

andBV2TLPFEF) are compared with each other, the best alternative isBV2TLPFEF

in terms of average CPU time and number of optimally solved instances for

both 40-nodes and 50-nodes. It is concluded that for the difficult instances with

87

Table 4.9: Comparison of using the strategy TIP or TLP in VI(1) for 40 and 50 nodes
instances

Instances Performance Measures BV1TIPFEF BV1TLPFEF

40 Nodes
of instances solved to optimum 8/20 8/20

Average CPU time (sec) 4,327.7 4,540.6
Average no of feas cut 32,621.3 29,944.4

50 Nodes
of instances solved to optimum 7/20 7/20

Average CPU time (sec) 4,750.5 4,796.3
Average no of feas cut 30,589.3 30,032.2

Table 4.10: Comparison of using the strategy TIP or TLP in VI(2) for 40 and 50 nodes
instances

Instances Performance Measures BV2TIPFEF BV2TLPFEF

40 Nodes
of instances solved to optimum 16/20 16/20

Average CPU time (sec) 2,058.5 1,690.7
Average no of feas cut 8,802.0 9,078.1

50 Nodes
of instances solved to optimum 15/20 15/20

Average CPU time (sec) 2,667.6 1,905.6
Average no of feas cut 8,656.3 5,959.3

high demand and low capacity values, adding strong valid inequalities to the

MP increases the convergence speed of the algorithm.

4.3.3.1 Effects of feasibility cuts

In this section, we compare the computational performances of BV2TLPFEC

and BV2TLPFMF in order to evaluate the effects of using different feasibility

cuts. In the previous section, we show that BV2TLPFEF requires the smallest

cpu time over four compared branch-and-check alternatives. Therefore, we test

the performances of using either EF or MF on BV2TLP variant.

In Table 4.11, we give computational results of BV2TLPFEF and BV2TLPFMF

for 40 and 50 nodes instances. We can solve 16 instances and 12 instances

to optimum by using BV2TLPFEF and BV2TLPFMF , respectively. Moreover,

when two branch-and-check algorithms are compared in terms of average CPU

time and the number of average feasibility cuts, using EF is better than using

MF. Therefore, we can conclude that the performance of BV2TLPFEF is better

than the one ofBV2TLPFMF . This result implies that using extended feasibility

88

cuts has significant effect on the branch-and-check algorithms.

Table 4.11: Comparison Results of BV2TLPFEF and BV2TLPFMF in terms compu-
tational time and feasibility cuts for 40 nodes instances

Instances BV2TLPFEF BV2TLPFMF

Cap FCost Total CPU (sec) F.Cuts Total CPU (sec) F.Cuts

4000 L

46.44 753 44.33 684
34.7 143 33.75 148

30.83 408 44.52 1320
30.83 62 32.02 66
29.77 0 29.83 0

4000 T

7,231.17 49,957 7,231.09 51,342
35.73 38 7,230.27 52,890

7,220.9 53,515 7,220.86 42,745
28.77 10 165.21 724
35.13 378 92.12 299

3000 L

2,125.12 6,349 1,963.67 4,869
1,583.58 309 162.83 325
472.96 7,310 436.6 8,841
64.68 1,312 60.36 862
36.43 261 33.35 174

3000 T

7,226.54 1,565 7,226.57 75,969
297.05 207 7,230.16 44,245

7,220.75 58,643 7,220.77 42,219
36.35 180 7,231.41 38,124
42.86 161 7,228.78 39,119

Average 1,691.5 9,078.05 3,045.93 20,248.25

4.4 Comparison of Branch-and-check algorithm with Automatic Benders

Implementation in IBM CPLEX 12.7.1

It is also possible to implement automatic Benders decomposition which is

available in IBM CPLEX 12.7.1 after the linearizations of QCCLP. We se-

lect LSAHLP-1 and use automatic Benders decomposition (AutoBEND) tool

in CPLEX. In Table 4.12, we give the computational results of AutoBEND

and one variant of branch-and-check algorithm for 20 instances. While only

6 instances are solved to optimality by using automatic Benders decomposi-

tion, we can solve 16 instances to optimality by a branch-and-check alterna-

tive. When no method cannot find the optimal solution within time limit, the

bound obtained from the branch-and-check algorithm is better than the bound

of LSAHLP-1 with automatic Benders except the Ins 3 in Table 4.12. The rea-

89

son behind this result could be that we use feasibility cuts that are specific for

the problem and adding strong valid inequalities to the MP improves the ini-

tial solution obtained from it. From these results, we can conclude that the

performance of AutoBEND is not promising even for small instances.

Table 4.12: Comparison of Automatic Benders and branch-and-check algorithm for
a subset of instances

LSAHLP1 (Auto BEND) BV1TIPFEF

Ins Nodes Demand Cap FC Obj CPU R.Gap Obj CPU R.Gap

1

25

D

3000 T

387,952 7,200.3 0.24 338,719 1,134.7 0
2 D/1.2 273,172 7,201.5 0.03 273,172 102.9 0
3 D/1.3 266,163 7,202.2 0.08 264,053 7,200.1 0.083
4 D/1.4 229,511 426.8 0 229,511 35.2 0
5 D/1.5 220,571 880.7 0 220,571 21.7 0

6

25

D

3000 L

246,807 7,200.9 0.07 242,304 4.96 0
7 D/1.2 204,369 1,314.1 0 204,369 4.39 0
8 D/1.3 195,595 4.468.9 0 195,595 5.37 0
9 D/1.4 180,858 653.6 0 180,858 5.90 0

10 D/1.5 130,011 122.5 0 130,011 0.02 0

LSAHLP1 (Auto BEND) BV2TIPFMF

Ins Nodes Demand Cap FC Obj CPU R.Gap Obj CPU R.Gap

1

40

D

3000 T

3,135,060 7,200.6 0.9 345,622 7,563.7 0.03
2 D/1.2 3,135,060 7,221.6 0.92 288,997 1,553.1 0
3 D/1.3 2,381,290 7,216.9 0.9 275,337 7,623.0 0.06
4 D/1.4 1,030,000 7,227.0 0.78 242,629 466.25 0
5 D/1.5 N.A N.A N.A 231,000 658.47 0

6

40

D

3000 L

538,027 7,217.1 0.58 254,001 2,461.9 0
7 D/1.2 223,345 7,262.7 0.12 214,462 538,94 0
8 D/1.3 803,13 7,217.0 0.77 203,248 1,225.08 0
9 D/1.4 914,55 7,218.4 0.81 187,99 541,6 0

10 D/1.5 197,311 7,216.3 0.16 175,597 647,6 0

4.5 Conclusion and Future Research

In this chapter, we study a quadratic capacitated concentrator location prob-

lem (QCCLP) where only capacity constraints of the hubs are nonlinear. The

problem was proposed and developed a branch and cut algorithm for that prob-

lem by [53]. The novelty of our solution method comes from the fact that

we handle nonlinearities within a decomposition based algorithm. By taking

advantage of this decomposition, neither master problem nor the subproblem

includes nonlinear terms. To the best of our knowledge, our study is the first

where a Benders type decomposition algorithm (e.g., a branch-and-check al-

gorithm) is applied for QCCLP. The computational study shows that adding

strong valid inequalities to the master problem improves the solution obtained

90

from master problem. As generating strong valid inequalities may require huge

amount of computational time for large size of instances, we should solve knap-

sack problems in traffic bound calculations as linear programs. After making

enhancements on Benders decomposition, in only three instances, MIQCP’s

performance is better than the performance of branch-and-check alternatives

over 40-node and 50-node instances. We can conclude that BV2TIPFEF and

BV2TLPFFC are good alternatives in terms of several criteria such as number

of optimally solved instances, CPU time, and relative gap. Moreover, we show

that we can solve 100-node instances to optimality by using the decomposi-

tion algorithm, while MIQCP solver of CPLEX or linearizations result in out

of memory error.

91

92

CHAPTER 5

QUADRATIC CAPACITATED HUB LOCATION PROBLEM

(QCHLP)

In this chapter, we consider a quadratic capacitated hub location problem (QCHLP)

where both objective function and constraints include nonlinear terms. The problem

was first studied by [53]. QCHLP is an extension of QCCLP given in Chapter 4. The

constraint sets are the same in both problems, QCCLP and QCHLP. In QCHLP, we

are given a set of nodes and a traffic matrix in which the amount of traffic between

any node pair is given. As in QCCLP, the decisions to be made are to select a subset

of nodes as hubs and assign the remaining nodes to selected hubs in order to satisfy

the demand of each origin-destination pair. The objective to minimize is the total

cost consisting of three parts: hub location cost, traffic routing cost between non-hub

nodes and hub nodes and backbone traffic cost.

Both problems (QCCLP, QCHLP) are in the class of single allocation hub location

problems. When routing cost parameters are zero, QCHLP is reduced to QCCLP.

As mentioned in Chapter 4, QCCLP is NP-hard. Since the simplified variant of the

QCHLP is NP-hard, it is concluded that QCHLP is NP-hard, as well. Including non-

linear terms in the objective function of the model makes the problem more difficult

to solve optimally within reasonable time limit.

In order to handle nonlinearities in the capacity constraints of QCCLP, we developed

a branch-and-check algorithm in Chapter 4. For QCHLP, we propose a Benders de-

composition type algorithm in order to cope with both nonlinear objective function

and constraints. In this decomposition algorithm, the strategy to overcome nonlieari-

ties in the constraints is the same as the strategy in QCCLP. To converge an optimal

93

solution, the algorithm must include the steps to handle nonlinear terms in the objec-

tive function.

The master problem of the decomposition algorithm in QCHLP is the same as the MP

in the branch-and-check algorithm for QCCLP, except the MP of QCHLP includes an

additional auxiliary variable in the objective function. This auxilary variable is used

to converge the backbone traffic cost in the optimal solution.

The subproblems for both Benders decomposition algorithms for QCCLP and QCHLP

include feasibility check for hub capacity constraints. If the solution obtained from

master problem is found to be infeasible in the subproblem stage, (e.g., at least one

hub’s capacity is exceeded), feasibility cuts are added to the master problem.

In branch-and-check algorithm for QCCLP, the subproblem does not include evaluat-

ing the backbone traffic cost for a given master problem’s solution. However, we need

to evaluate the current backbone traffic cost in the subproblem of the Benders decom-

position algorithm for QCHLP. When two Benders decomposition type algorithms

(BDTAs) are evaluated in terms of the terminology in classical Benders decompo-

sition techniques, BDTA for QCHLP includes both optimality and feasibility cuts.

However, the branch-and-check algorithm for QCCLP includes only feasibility cuts.

Although Benders decomposition has been widely used to solve many different prob-

lems to optimum, its implementation on hub location problems is relatively rare. Es-

pecially for the problems in which hubs have capacity and single allocation is consid-

ered, Benders decomposition was not considered. We give the summary of the studies

on the implementation of Benders decomposition for hub location problems in Table

5.1 to emphasize the our contribution to the literature.

Integer L-shaped algorithm was proposed by [54] for two stage stochastic programs in

which first stage variables are binary and the subproblem could be a general problem.

As in our decomposition method, all decision variables are binary, this method is

applicable for QCHLP.

To the best of our knowledge, for QCHLP, the only exact solution algorithm which is

a branch-and-cut algorithm was developed by [53].

94

Table 5.1: Benders decomposition implementations for hub location problems

Pr. Environment Solution Strategy Capacity Restrictions Multiple Allocation Single Allocation

Deterministic

Iterative

Capacitated
[66]
[23]

Uncapacitated

[33]
[22] [16]

Branch and Benders cut
Capacitated

QCCLP
QCHLP

Uncapacitated

Stochastic

Iterative
Capacitated [22] [68]

Uncapacitated

Branch and Benders cut
Capacitated [59]

Uncapacitated [58]

In this chapter, our contributions can be summarized as follows:

• We develop an exact decomposition method for QCHLP. This decomposition

approach is based on Benders decomposition.

• We propose problem specific feasibility and optimality cuts.

• In our decomposition algorithm, we don’t use any linearizations for the nonlin-

ear terms in the objective function and constraints.

• The performance of the optimality cuts which are specific for QCHLP is com-

pared to that of MIQCP solver of IBM ILOG CPLEX.

In Section 5.1, we give problem definition and mathematical formulation for QCHLP.

Then, we discuss our proposed decomposition algorithm which is based on Benders

decomposition in Section 5.2. Next, we give the details of different optimality cuts

used in the decomposition algorithm in Sections 5.2.3 and 5.2.3.1. Then, we give the

computational results in Section 5.3.

5.1 Problem Definition and Mathematical Formulation

We are given a set of nodes I . Let tim be the demand or flow sent from node i to

node m. There is a corresponding fixed cost fi incurred if node i is selected as a hub

95

location. dij represents the distance between nodes i and j. In QCHLP, each hub

has the same capacity, M . In the objective function, α and β represent collection and

distribution unit parameters, respectively as in QCCLP. In addition to the parameters

given for QCCLP, there is an additional parameter Rjl which is a routing cost of one

unit backbone flow transferred between different hubs j and l in QCHLP.

QCHLP can be defined as follows. A subset of node set nodes I to be chosen as hub

locations and the remaining nodes are assigned to these hub locations. The objective

to minimize is the sum of fixed cost of opening hubs, routing cost between terminal

nodes & hub nodes and backbone traffic cost. Each node must be assigned to exactly

one hub location.

xij represents the 0-1 decision to assign node i to node j. If node j is selected as a

hub, then xjj = 1, otherwise xjj = 0. By using these parameters and the decision

variables, we give the mathematical model [53] below:

(QCHLP)

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij(
∑
m∈I

(αtim + βtmi))+ (5.1)

∑
i∈I

∑
j∈I

∑
m∈I

∑
l∈I:j 6=l

Rjltimxijxml

s.t.∑
j∈J

xij = 1, ∀i ∈ I. (5.2)

xij ≤ xjj, ∀i, j ∈ I, i 6= j. (5.3)∑
i∈I

∑
m∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij(1− xmj) ≤Mxjj,∀j ∈ I.

(5.4)

xij ∈ {0, 1} ∀i, j ∈ I. (5.5)

In this formulation, the objective function includes three terms: fixed cost of select-

ing the nodes as hubs, routing cost between non-hub nodes and hub nodes and the

cost of backbone traffic. Constraints (5.2) guarantee that each node is assigned to

exactly one hub. Constraints (5.3) ensure that node i can be assigned to node j only

if j is a hub. Constraints (5.4) ensure that total flow that uses the capacity of hub

96

j cannot exceed the capacity of hub which is defined as M . In Constraints (5.4),∑
i∈I
∑

m∈I(tim + tmi) is the total flow of nodes that are assigned to hub j and∑
i∈I
∑

m∈I(tim + tmi)xij(1 − xmj) is the flow occurred on backbone links. Con-

straints (5.5) are the sign restrictions on decision variables.

Regardless of the objective function, if the model includes quadratic constraints, this

resulting model is a mixed integer quadratically constrainted programming (MIQCP).

We will give the Benders decomposition type algorithm for this nonlinear integer

formulation of QCCLP in the Section 5.2.

5.2 A Benders Decomposition Type Algorithm (BDTA) for the QCHLP

We develop a Benders decomposition method to cope with both nonlinear objective

function and constraints without using any linearizations. Nonlinearities in this for-

mulation (QCHLP) are due to the multiplications of binary variables. More specifi-

cally, in the objective function of the (QCHLP), there are nonlinear terms: xij · xml.
Similarly, in the capacity constraints, the amount of backbone traffic between hub j

and different hub l is calculated by the multiplications of binary variables as (xij ·
(1− xmj)).

The idea behind the decomposition algorithm can be summarized as follows:

We remove the nonlinear capacity constraints and nonlinear objective function com-

ponent from QCHLP. To replace the nonlinear term in the objective function, we

add auxilary variable, θ. Similarly, we replace the nonlinear terms in the capacity

constraints with a lower bound on the amount of backbone traffic. Therefore, the re-

sulting model, namely the MP, is a relaxation of QCHLP. After finding the values of

decision variables (xij , xjj), we can evaluate two following items:

• Evaluating the current backbone traffic cost as:

∑
i∈I

∑
m∈I

∑
j∈I

∑
l∈I:j 6=l

Rjltimxijxml

97

• Evaluating the amount of flow that uses the hub capacity as:∑
i∈I

∑
m∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij(1− xmj) ≤Mxjj.

The feasibility cut generation step is the same as branch-and-check algorithm for

QCCLP. In addition to this step, we generate optimality cuts and add them to the MP

by comparing the value ∑
i∈I

∑
m∈I

∑
j∈I

∑
l∈I:j 6=l

Rjltimxijxml

and auxilary variable, θ.

To sum up, we develop a Benders decomposition type algorithm in which both feasi-

bility and optimality cuts are generated for QCHLP. The differences and similarities

between decomposition algorithms proposed for QCCLP in Chapter 4 and QCHLP

in this chapter are summarized in Table 5.2.

98

Table 5.2: Comparing the Decomposition Algorithms for QCCLP and QCHLP

Problem1 Method 2 Feas Cut (When?) 3 Feas Cut (How?) 4 Opt Cut (When?)5 Opt Cut (How?)6

QCCLP Branch-and-check algorithm ∃ j : Constraint (5.4) is not satisfied for x
∑

i∈Ikj
xij ≤

∣∣Ikj ∣∣− 1,∀j ∈ Ikinf ∀k = 1, 2..., k − 1. No No

QCHLP Benders Decomposition Type Algorithm ∃ j : Constraint (5.4) is not satisfied for x
∑

i∈Ikj
xij ≤

∣∣Ikj ∣∣− 1,∀j ∈ Ikinf ∀k = 1, 2..., k − 1. θ <
∑

i∈I
∑

m∈I
∑

j∈I
∑

l∈I Rjltimxijxml Traffic Bound Based Cuts or LL optimality Cuts

(1): Gives the problem type

(2): Defines the decomposition method for QCCLP and QCHLP.

(3): Defines the time when feasibility cuts are added to the master problem.

(4): Gives the type of the feasibility cuts used in the decomposition algorithm. Note that, MFC are given as examples, EFC could be used to

replace MFC. In the computational study, we used EFC.

(5): Defines the time where optimality cuts are added to the master problem. Since the subproblem phase in the decomposition algorithm

for QCCLP doesn’t include backbone traffic cost, no optimality cuts are added to the master problem.

(6): Defines the time when optimality cuts are added to the master problem. In order to close the gap between the values of θ and current

backbone traffic cost, we add optimality cuts in the decomposition algorithm for QCHLP.

99

5.2.1 Master Problem

When the nonlinear constraints and the objective function are removed from QCHLP,

we end up with a relax version of the QCHLP. This problem is the MP of BDTA.

The master problem that we consider in this decomposition algorithm is as follows:

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij(
∑
m∈I

(αtim + βtmi)) + θ

(MP) s.t.

(5.2), (5.3), (5.5)

θ ≥ ηl0 −
∑
i∈I

ηlixi ∀l ∈ ωopt. (5.6)

∑
i∈I

µlixi ≥ µl0 ∀l ∈ ωfeas. (5.7)

θ ≥ 0. (5.8)

In this formulation, ωopt is the set of optimality cuts generated. Similarly, ωfeas is the

set of feasibility cuts. η- and µ- values are coefficients used in the cuts. In the first

step of the algorithm, MP is solved without adding any feasibility and optimality cut.

The decisions in the MP are to determine the nodes which are selected as hubs and

the assignments of the terminal nodes (non-hub nodes) to hub nodes. However, VI(1)

and VI(2) which are given for QCCLP in Chapter 4 are also valid for QCHLP. Traffic

Bound algorithms to obtain lower bounds on backbone links are also the same as

QCCLP.

5.2.2 Subproblem and Solution Approach

For a given integer master problem’s solution vector (x), we check the feasibility of

the following inequality for each opened hub:∑
m∈I

∑
i∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij(1− xmj) ≤Mxjj ∀j ∈ I : xjj = 1.

(5.9)

After checking the inequality, two cases exist that we encounter:

100

• Case 1: x is an infeasible solution in terms of capacity constraints:

If inequality (5.9) is not satisfied for an open hub j in solution x, we need to

add feasibility cuts to cut off this current solution. In this case, we have two

alternative feasibility cuts. These cuts are the same as the cuts given in Chapter

4 for QCCLP.

MFC: ∑
i∈Ikj

xij ≤
∣∣Ikj ∣∣− 1,∀j ∈ Ikinf ∀k = 1, 2..., k − 1. (5.10)

EFC: ∑
i∈Ikj

xij +
∑
i∈Ikj

xij ≤
∣∣Ikj ∣∣− 1 ∀j ∈ Ikinf ∀k = 1, 2..., k − 1. (5.11)

• Case 2: x is a feasible solution:

If inequality (5.9) is satisfied for each hub, we evaluate backbone traffic cost

given in Equation (5.12) by using the values of solution vector x:

θr(x) =
∑
i∈I

∑
j∈I

∑
m∈I

∑
l∈I:j 6=l

Rjltimxijxml. (5.12)

If θ < θr(x), then we add optimality cuts to the MP. Optimality cuts are used

to converge the exact value of the backbone traffic cost. In this decomposition

algorithm for QCHLP, we propose an optimality cut which is problem specific

and uses the lower bound values on backbone links. We call this specific opti-

mality cut traffic bound based cuts. We give the details of specific optimality

cuts in Section 5.2.3.

5.2.3 Traffic Bound Based Optimality Cuts (TBB Optimality Cuts)

When we find an integer feasible solution (x) which satisfies the capacity constraints

for each hub, we can calculate the value of current backbone traffic cost. This value

is denoted by θr(x) in the optimality cut 5.13. When a value in the solution vector x

changes (e.g., from zero to one or one to zero), the amount of reduction and increase

on the objective function value can be calculated. This special optimality cut that

101

we propose for QCHLP is based on this idea. The general structure of the special

optimality cut is given as:

θ ≥ θr(x)−
∑
i∈I

∑
j∈I:xij=1

Aij(1− xij) +
∑
i∈I

∑
j∈I:xij=0

Bijxij (5.13)

In Inequality (5.13), Aij and Bij are non-negative coefficients. The second term in

5.13 gives the maximum reduction on the current backbone traffic cost (θr(x)). Last

term represents the minimum amount of increase on the current backbone traffic cost

(θr(x)). If one of the values of xij vector changes from one to zero, the cost coefficient

for this change is Aij in the optimality cut. This coefficient defines the one-unit

reduction on the value of current backbone traffic cost (θr(x)) by changing the value

of xij from one to zero. On the contrary, if a node i is not assigned to a hub j

in the current solution and this node will be assigned to this hub after changing the

solution, the cost coefficient for the amount of increase on the objective function value

isBij . To estimateAij andBij values in the optimality cut, we focus on the maximum

amount of decrease and the minimum amount of increase on (θr(x)). We will give

the detail derivations of these coefficients in Proposition 5.2.1 and Proposition 5.2.3.

Calculations of Aij are given in Proposition 5.2.1, while Bij calculations are given in

Proposition 5.2.3.

Proposition 5.2.1. Suppose that xij = 1 in a solution x to QCHLP. Assume that the

solution is perturbed to value xij = 0. Then the maximum possible reduction on

backbone traffic cost (θr(x)) due to the change in the value of xij is:∑
i∈I

∑
j∈I:xij=1

∑
m∈I

max
l∈I
{Rjl}(tim + tmi)(1− xij)

Proof. Consider the nodes that are assigned to the hub j (e.g., xij = 1) in the given

MP’s solution. Assume that we remove this node from the hub by adding optimality

cuts.

If this node is not assigned to hub j in the new solution, maximum total traffic that

pass through the hub locations j and the other hubs is
∑

m∈I(tim + tmi). In this case,

we assume that the remaining nodes except the node i are assigned to different hubs

rather than hub j. Therefore, all traffic from node i to other nodes and from all nodes

to this node i will use the backbone links. As we try to find the maximum reduction

102

due to the range of x values from 1 to 0 on θ(x), we multiply the total flow with the

maximum routing cost between j and the remaining hub nodes maxl∈L {Rjl} If the

current solution x is not changed, there will be no cost reduction on the value of θ(x).

Therefore, we obtain the following part for the maximum reduction on the objective

function value of the subproblem.∑
i∈I

∑
j∈I:xij=1

∑
m∈I

max
l∈I
{Rjl}(tim + tmi)(1− xij).

Example 5.2.2. Consider a network with 9 nodes. Nodes are given as 1,2,3,4,5 and

j, l1, l2 and l3. In this example, j, l1, l2, l3 are hubs and the nodes that are assigned to

these hubs are given with the following sets:

Ij = {1, j}, Il1 = {2, 3, l1}, Il2 = {l2, 4} and Il3 = {l3, 5}.

To write the backbone traffic, we need to consider the second part of the Inequality

(5.9).

The amount of flow on backbone traffic occurred between hub j and the remaining

hubs l1, l2 and l3, Aj is:

Aj =(tl11 + t1l1) + (t12 + t21) + (t13 + t31) + (t1l2 + tl21) + (t14 + t41)+

(t1l3 + tl31) + (t15 + t51)

When we multiply this quantity with the maximum routing cost which is the maximum

of max{Rjl1 , Rjl2 , Rjl3} = Rj(max), we obtain AjRj(max) as the amount of cost

reduction occurring on θr(x).

Proposition 5.2.3. Suppose that xij = 0 in a given MP solution (x). When this

solution is perturbed to value xij = 1, the minimum increase on the backbone traffic

traffic cost θr(x) due to the change in the value of xij is:∑
i∈I

∑
j∈I:xij=0

min
l∈I
{Rjl}Tijxij.

Proof. In this part of the proof, we will consider the nodes which are not assigned to

hub j (xij = 0). When the optimality cuts are added to the MP, assume that the value

103

of xij changes zero to one. This implies, the node (i) is assigned to the hub node (j)

in the new solution different than x. We need to estimate the minimum amount of

traffic increase on the backbone links due to this change in the solution vector x.

To find a lower bound on the backbone links, we can use Tij values. Remember the

discussion about obtaining Tij given in Traffic Bound Algorithm in Chapter 4. Tij

values are the lower bound values between hub j and the remaning hubs, when node

i is assigned to hub j. If we multiply this amount of increase on the backbone traffic

with minimum routing cost value, minimum amount of increase on θr(x) is calculated

as ∑
i∈I

∑
j∈I:xij=0

min
l∈I
{Rjl}Tijxij.

By using Propositions (5.2.1) and (5.2.3), we find αij and βij values as:

Aij =
∑
m∈I

max
l∈I
{Rjl}(tim + tmi).

Bij = min
l∈I
{Rjl}Tij.

When plugging αij and βij values in Inequality 5.13, we obtain the optimality cut as

follows:

θ ≥ θr(x)−
∑
i,m∈I

∑
j∈I:xij=1

max
l∈I
{Rjl}(tim + tmi)(1− xij) +

∑
i∈I

∑
j∈I:xij=0

min
l∈I
{Rjl}Tijxij

(5.14)

Such kind of cuts that are specific for the problem can also be seen in some studies

([64] and [77]) in the literature. In the study ([64]), they consider a stochastic facility

location problem in which uncertainty comes from discrete scenarios. As classical

Benders decomposition implementation is not suitable for the problem due to the

fact that the second stage problem includes integer variables, they propose an integer

decomposition. In this decomposition algorithm, they develop special optimality cuts

for the problem and compare its performance with the general cuts proposed by ([54]).

104

5.2.3.1 Laporte & Louveaux Inequalities(LL cuts)

In the literature, a decomposition method which is called Integer L-shaped algorithm

was proposed by [54]. As mentioned before, this algorithm is firstly developed to

solve two stage stochastic integer problems. They develop general purpose optimal-

ity cuts that are valid for any problem with a pure binary master problem. Due to

the generality of this cut, the performance of the cut could generally be weak in the

implementations. To apply an integer L-shaped algorithm for a problem, the sub-

problem should be solved for a given master problem’s solution. After solving the

subproblem, obtained objective function value is used in optimality cut. The general

optimality cut which is also known as Laporte and Louveaux’s cut (LL cut) is given

as:

θ ≥ (θr(x)− L) · {
∑
i∈S(x)

xi −
∑
i/∈S(x)

xi − |S|+ 1}+ L. (5.15)

In this optimality cut given in Inequality (5.15), S(x) = {(i, j) : xij = 1} and the

complement of this set S(x) = {(i, j) : xij = 0}. L is a global lower bound for the

objective function value of the subproblem.

There can be two cases after adding the optimality cut 5.15 to the MP. This cut either

changes the current solution or enforce θ value to take the subproblem’s objective

function value (θr). When the solution is enforced to change by adding this cut, θ

value will be equal to L. Therefore, the performance of the inequality 5.15 depends

on the L value. This optimality cut is also used for several problems (e.g., [60], [64]

and [56]).

Finding a lower bound (L) on the cost of backbone traffic

In order to find a lower bound (L) on the cost of backbone traffic, we consider a subset

of constraints in the original model (QCHLP) and we don’t use any linearizations for

the nonlinear capacity constraints. The capacity relation between amount of flow and

hubs is considered in traffic bound algorithms. These algorithms whose details are

given in Chapter 4 are used to obtain lower bound on the amount of flow on backbone

links. Tj and Tij values obtained from traffic bound algorithms are used as parameters

in the following mathematical formulation (LBP).

105

min
∑
i∈I

∑
j∈I:j 6=i

TijxijR
min
j +

∑
j∈I

TjxjjR
min
j

(LBP) s.t.∑
i∈I

xij = 1, ∀j ∈ I. (5.16)

xij ≤ xjj, ∀i, j ∈ I. (5.17)

xij ∈ {0, 1}, ∀i, j ∈ I. (5.18)

The objective function in LBP is to minimize total backbone traffic routing cost in

the network. Since we assume that all backbone traffic is routed on the backbone link

with a smallest routing cost Rmin
j = minl∈L{Rjl}, we multiply the minimum amount

of backbone traffic on backbone links with Rmin
j . The second term in the objective

function is incurred if a node j is a hub. Constraints (5.2) are single assignment

constraints. Constraints (5.17) gives a logic relation between the assignment decisions

and hub location decisions. Lastly, Constraints (5.18) are binary sign restrictions.

It is easy to see that the model has totally unimodular property. Therefore, we can

relax the integrality restrictions of the decision variables. As can be concluded from

the calculations of lower bounds in Traffic Bound algorithms, Tij ≥ Tj for each i and

j pair. Since the model includes single assignment constraints, the model is enforced

to select each node as a hub node to minimize the objective function.

106

Algorithm 3 A Benders Decomposition Type Algorithm (BDTA) for QCHLP
1: Solve the MP and find an integer feasible solution (x)

2: For each opened hub location j in solution x:

3: if
∑

i∈I
∑

m∈I(tim+ tmi)xij+
∑

i∈I
∑

m∈I(tim+ tmi)xij(1−xmj) ≤Mxjj then

4: if θ < θr(x) then

5: Add one of the optimality cuts given in (5.14) and (5.15).

6: end if

7: if The current solution is the best solution so far for the QCHLP then

8: Update the incumbent solution.

9: end if

10: else

11: Add one of the feasibility cuts given in Inequality (4.11) and Inequality (4.14)

to the MP and continue solving MP.

12: end if

107

Figure 5.1: A Benders Decomposition Type Algorithm for Quadratic Capacitated Hub Location Problem

108

5.3 Computational Results for QCHLP

In this chapter, we develop an exact Benders decomposition type algorithm (BDTA)

for QCHLP. In this decomposition algorithm, both feasibility and optimality cuts are

generated to reach the optimal solution. Due to the structure of the problem, imple-

mentation of classical Benders decomposition is not possible. Therefore, we handle

nonlinearities in both objective function and constraints without using any lineariza-

tions and LP duality theory. Our algorithm is based on logic based Benders decom-

position in which generating cuts depends on the problem’s structure.

In terms of the feasibility cuts, we propose two alternatives: MFC and EFC. As the

relative performance of EFC is better than the one of MFC for QCCLP, we used EFC

in our computational study. Similarly, there are two options for optimality cuts. In

this section, the one that we proposed for QCHLP is compared with general purpose

(regular optimality cuts) developed by Laporte and Louveaux (LL cuts.)

In the implementation of our Benders decomposition type algorithm, we used VI(2)

as initial valid inequalities added to the MP. For obtaining lower bound values on the

backbone links, the knapsack problems given in TB algorithm are solved as IP.

As QCHLP includes multiplications of binary variables in both objective function

and constraints, it is also possible to solve it to optimum by using MIQCP solver of

CPLEX. To find an optimal solution for such kind of problems, there are restrictions

on the type of objective function and constraints. We refer the reader to A for more

detailed information about solving mixed integer nonconvex problems optimally in

IBM ILOG CPLEX.

By using the current advances in CPLEX, implementing automatic Benders for mixed

integer linear programs is possible. To evaluate performance of BDTA with different

optimality cuts, we compare decomposition algorithm with both MIQCP solver of

CPLEX and automatic Benders implementation in IBM ILOG CPLEX 12.7.1.

In our computational study, we generated problem instances by using the AP data

set in the literature. Except hub capacity values, all remaining parameters are set to

the same values used for QCCLP. Since QCHLP includes additional routing cost in

109

the objective function, we generate new parameters, Rjl. In our study, Rjl values

are determined as Rjl = djl · γ, where γ represents the discount factor for one unit

flow transferred between hub locations j and l. γ is the same in each hub link (j and

l). In the AP data set, γ is given as 0.75. In order to see the effects of γ on overall

performance of BDTA, we set two values for γ as 0.5 and 0.75.

To solve the QCHLP with MIQCP solver of CPLEX, we used default parameters.

As done in Chapter 4, we conduct our experimental setting on a 64-bit machine @

3.10 GHz and 16 GB of Ram. All methods are coded in IBM CPLEX 12.7.1 using

C++ Concert technology.

5.3.1 Computational Results for the instances with (γ = 0.75)

In this section, we first give computational results of our proposed Benders decom-

position algorithm with MIQCP solver of CPLEX. Then in order to evaluate the per-

formance of TBB cuts that we propose for QCHLP, we compare TBB optimality cuts

with the general purpose optimality cuts (LL cuts).

• Comparison with MIQCP solver in CPLEX and BDTA with TBB cuts

To solve the compact nonlinear integer program for QCHLP in CPLEX, we set

the parameter for solving MIQCPs as (IloCplex:Param:MIP:Strategy:MIQCPStrat,

2). All remaining parameters except the lift and project cuts in CPLEX are in

their default values. For lift and project cuts, we used the following parameter

setting (MIP::Cuts::LiftProj:2).

We give computational results for MIQCP solver of CPLEX and BDTA with

TBB optimality cuts for 20 nodes in Table 5.4. The column ’Demand’ describes

the tim values used in the models. In order to generate five instances, we divide

the original demand values in AP data set by 2,3,4 and 5. For each experimental

setting, in the first instance, demand values are set to original demand value in

the literature. We may sometimes end up with infeasible instances. Therefore,

we remove such kind of instances from analysis. For each alternative method,

’Obj’ column gives the objective function value of the best integer solution

110

when time limit reached. When the method finds the optimal solution, these

values reported in this column are the objective function values of the optimal

solution. ’B& B’ column for MIQCP gives the total number of open nodes

in the branch-and-bound tree of the QCHLP. ’B&B’ nodes column under the

decomposition algorithm gives the number of nodes in B&B tree of the MP.

The ’CPU’ column for BDTA gives the total time including required time for

calculating lower bound values on backbone traffic. In the ’Opt’ row of the

Table 5.4 gives the total number of instances that are solved to optimum by

each method for given time limit, 7200 CPU seconds.

From Table 5.4, the first performance measure that we use to compare two

methods (MIQCP and BDTA with TBB optimality cuts) is the average CPU

time. Over 18 instances for 20-nodes, the average CPU time in MIQCP is

4,333.4 sec. while average CPU time is 1,692.9 sec. for BDTA. We could solve

14 instances to optimum over 18 instances, while MIQCP solver of CPLEX can

solve 8 instances to optimum. When compared to the number of instances that

are not solved to optimum by each method, BDTA gives a better solution than

the solution of MIQCP. There are also instances (e.g, Instances 2,3,6,7,10 and

15 in Table 5.4) which are not optimally solved by MIQCP, while they could be

solved to optimum by BDTA within given time limit. These results shows that

BDTA is superior to the MIQCP solver for 20 nodes instances.

In Table 5.5, we give computational results for 25 nodes instances. CPLEX

could solve MIQCP formulation to optimum in only one instance out of 16

instances. However, 12 instances are solved to optimum by using BDTA. One

important result that can be seen in Table 5.5 is that the performance of MIQCP

is not promising even for moderate size problems. Average relative gap for four

instances which are not solved to optimum is 3 % in the BDTA. It is concluded

that the performance of BDTA is better than the one of MIQCP. We can observe

that solving 25 nodes instances is more difficult than the instances with 20

nodes. The performance of MIQCP solver becomes worse when the number of

nodes in the network increases.

We give computational results for 40 nodes instances in Table 5.6. As can

be seen from the results in Table 5.6, all generated instances for 40 nodes are

111

very challenging for CPLEX MIQCP solver. No instance over 18 instances is

solved to optimum by CPLEX. However, BDTA could solve seven instances to

optimum. When we look at the relative gap values in MIQCP, these values are

high. The reason is that the lower bound in MIQCP is not good when time limit

is reached. In CPU column of BDTA, we report CPU times higher than time

limit. This result is due to adding the required time to calculate traffic bound

values to the CPU time of BDTA. Note that, there are only two instances (Ins

17 and 18 From Table 5.6) for which MIQCP solver finds the optimal solution.

However, the optimality is not proven within given time limit.

• Comparison with BDTA with TBB optimality cuts and BDTA with LL optimality

cuts

In order to see whether there is a significant difference between the optimality

cuts (TBB optimality cuts vs LL optimality cuts), we compare BDTAs under

different optimality cuts. Firstly, we will discuss the comparison results for the

instances with γ = 0.75.

We give computational results of comparing BDTA with TBB cuts and BDTA

with LL cuts in Table 5.7. In terms of average CPU time over 18 instances,

BDTA with TBB cuts gives smaller time than BDTA with LL cuts. BDTA,

in which TBB cuts are used, is slightly better than the BDTA with LL cuts

method in terms of optimally solved instances. BDTA with TBB cuts algorithm

solves 14 instances to optimum, while BDTA with LL cuts solves 12 instances

optimally. BDTA with LL cuts requires less number of feasibility cuts than

BDTA with TBB cuts. However, average number of optimality cuts is higher

in BDTA with LL cuts.

In Table 5.8, the relative performance of BDTA with TBB cuts and BDTA with

LL cuts is given. By using TBB cuts, we can solve more instances to optimum.

Average CPU time in BDTA with TBB cuts is smaller than time in BDTA

with LL cuts. From Table 5.8, BDTA with TBB cuts requires less number of

optimality cuts. This implies problem specific optimality cuts demonstrates a

better performance than general purpose optimality cuts (LL cuts).

We give computational results of comparing BDTA by using two different op-

112

timality cuts for 40 nodes in Table 5.9. We generate 20 instances for 40 nodes.

Since two instances are infeasible, we remove them from the analysis. Over 18

instances, both methods cannot solve most of the instances to optimum within

given time limit. The reason is that the most challenging instances occur in

40-nodes. When compared the objective function values of the instances that

are not solved to optimum by any method, BDTA with LL cuts finds a better

solution in eight instances. This implies that when the optimal solution is not

found within given time limit, BDTA with LL cuts demonstrates a better perfor-

mance. However, in Table 5.9, there is one instance which is solved optimally

by BDTA with TBB cuts, while it is solved to optimum by BDTA with LL cuts.

In this section, we compared a Benders decomposition algorithm with two dif-

ferent cuts and MIQCP solver of CPLEX with each other for 20, 25 and 40

nodes instances. We give summary results of the comparison of alternative

methods in Table 5.3. We report average CPU time and the number of opti-

mally solved instances in Table 5.3. From this survey table, it is concluded that

BDTA with TBB cuts is significantly better than the remaining two methods in

terms of average CPU time and the number of optimally solved instances for

20 and 25 nodes.

Table 5.3: Summary computational results for 20, 25 and 40 nodes with γ = 0.75

MIQCP BDTA with TBB cuts BDTA with LL cuts

Nodes Av. CPU # Opt Av. CPU # Opt Av. CPU # Opt

20 4,333.4 8/18 1,692.9 14/18 2,480.7 12/16
25 6,814.6 1/16 1,902.5 12/16 3,576.5 9/16
40 7,200.9 0/18 5,266.0 7/18 5,541.6 6/18

113

Table 5.4: Computational Results of MIQCP and BDTA with TBB optimality cuts for the instances with 20 nodes with γ = 0.75

MIQCP BDTA with TBB Cuts

Inst Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut
1 D/2

20 T L

227,267 7,200.2 14,451 0.59 10;11;13;14;20 206,460 7,234.8 891,908 0.07 1;7;11;14;18 7451 7909 3247
2 D/3 139,790 7,200.2 13,192 0.47 10;11;14 133,262 992.3 472,624 0 7;11;18 2310 2575 610
3 D/4 99,938 7,204.3 39,860 0.24 11;18 99,689 62.9 2,523 0 11;14 419 192 227
4 D/5 69,526 229.2 1,543 0 11 69,526 0.5 0 0 11 2 0 2

5 D/2

20 T T

267,738 7,200.1 13,978 0.54 1;7;8;10;11 233,100 7,234.8 2,675,694 0.04 7;8;10;11;18 3354 5879 701
6 D/3 145,954 7,234.8 26,258 0.27 10;11;18 144,245 280.5 76,984 0 7;11;18 3135 2971 839
7 D/4 105,254 7,200.1 86,248 0.04 11;18 105,173 56.5 2,228 0 10;11 522 284 238
8 D/5 71,117 62.8 224 0 11 71,117 0.5 0 0 11 2 0 2

9 D

20 L L

284,236 7,200.1 14,041 0.67 6;8;13;14;20 261,695 7,234.2 378,174 0.03 6;11;14;15 12349 6777 6232
10 D/2 143,768 7,200.4 27,668 0.66 7;15 140,665 37.1 566 0 7;14 74 0 74
11 D/3 100,072 3,275.5 42,012 0 10 100,072 0.1 0 0 10 2 0 2
12 D/4 81,408 1,489.7 12,058 0 10 81,408 27.9 0 0 10 2 0 2
13 D/5 69,526 186.6 1,646 0 11 69,526 0.5 0 0 11 2 0 2

14 D

20 L T

336,930 7,200.3 8,750 0.66 5;8;10;17;18 303,999 7,234.2 564,857 0.014 7;11;18;19 17211 15884 2791
15 D/2 157,911 7,200.2 41,035 0.1 11;18 157,911 45.1 3,123 0 11;18 311 71 240
16 D/3 103,093 587.2 4,810 0 10 103,093 0.5 0 0 10 2 0 2
17 D/4 83,130 99.1 558 0 11 83,130 27.9 0 0 11 2 0 2
18 D/5 71,117 64.9 229 0 11 71,117 0.5 0 0 11 2 0 2

Average 4,333.4 19,364.5 0.2 1,692.9 281,593.4 0.009 2,363.4 845.3

OPT 8 14

114

Table 5.5: Computational Results of MIQCP and BDTA with TBB optimality cuts for the instances for 25 nodes with γ = 0.75

MIQCP BDTA with TBB Cuts

Ins Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

1 D/2

25 T L

238,246 7,202.1 4,991 0.90 1;12;13;16;23 202,626 7,264.2 521,049 0.11 8;11;14;23;24 10209 8908 4575
2 D/3 107,610 7,200.2 7,803 0.73 2;25 105,078 7,283.4 474,000 0.04 8;23;25 21667 38211 5993
3 D/4 101,257 7,200.1 4,067 0.74 9;18 96,823 104.1 3,584 0 9;24 394 124 270
4 D/5 70,785 7,200.2 12,342 0.42 13 70,785 27.6 0 0 13 2 0 2

5 D/2

25 T T

350,577 7,200.2 5,607 0.71 6;14;15;21 281,475 7,264.2 824,593 0.12 9;10;11;14;24 9315 10993 2548
6 D/3 112,306 7,200.1 7,551 0.45 8;25 131,417 7,283.4 357,944 0.15 13;20;25 1714 20817 1533
7 D/4 123,227 7,200.2 6,115 0.38 11;14 123,227 119.9 6,341 0 11;24 1074 987 87
8 D/5 99,547 7,200.5 3,470 1.44 6;39 84,076 27.4 0 0 14 2 0 2

9 D/2

25 L L

147,580 7,200.2 4,824 0.78 14;18 143,779 514.3 15,016 0 9;18 502 16 486
10 D/3 97,108 7,200.2 4,887 0.74 13;25 91,430 11.4 4,040 0 8;25 299 0 299
11 D/4 82,528 7,200.2 6,510 0.63 13 82,528 1.0 0 0 13 2 0 2
12 D/5 70,785 7,200.1 9,302 0.38 13 70,785 0.8 0 0 13 2 0 2
13 D/2

25 L T

189,475 7,200.2 5,447 0.65 9;13 183,058 535.2 10,927 0 14;24 1103 615 488
14 D/3 94,393 7,200.2 11,427 0.25 25 94,393 1.0 0 0 25 2 0 2
15 D/4 97,422 7,200.2 12,388 0.03 14 97,422 1.0 0 0 14 2 0 2
16 D/5 84,076 1,028.2 2,189 0 14 84,076 0.7 0 0 14 2 0 2

Average 6,814.6 6,807.5 0.6 1,902.5 138,593.4 0.026 5,041.9 1,018.3

OPT 1 12

115

Table 5.6: Computational Results of MIQCP and BDTA with TBB optimality cuts for the instances with 40 nodes (γ = 0.75)

MIQCP BDTA with TBB Cuts

Inst Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

1 D/2

40 T L

267,832 7,200.6 358 1.01 2;7;11;22;27 207,196 9,029.1 260800 0.14 6;19;22;25;29 7903 15788 1243
2 D/3 163,176 7,200.7 7979 1.08 2;14;36;38 135,033 9,588.8 195500 0.09 14;19;28 16922 22704 924
3 D/4 113,649 7,201.1 4208 1.03 14;35 98,211 7,225.0 130992 0.02 14;29 15850 14798 1052
4 D/5 93,899 7,200.4 347 0.83 14;35 86,712 2,243.0 61124 0 14;19 1834 2 1832

5 D/2

40 T T

367,126 7,200.5 1252 0.81 1;22;24;25;35;38 281,618 9,029.1 397566 0.13 14;19;21;22;35 6437 9540 889
6 D/3 179,296 7,201.2 3923 0.71 14;22;35 166,670 9,588.8 171009 0.02 14;19;22 16621 14674 3004
7 D/4 151,913 7,200.6 536 0.71 1;19;22 119,503 7,225.2 94520 0.012 14;22 17373 14963 2410
8 D/5 109,359 7,200.4 2684 0.66 14;19 106,025 7,202.2 90541 0.008 14;22 6512 2 6510

9 D

40 L L

321,941 7,201.4 14456 1.62 2;24;28;34;38 269,922 8,732.4 215931 0.09 11;22;28;36 18281 25659 1441
10 D/2 152,633 7,201.9 5054 1.37 6;37 143,442 8,087.3 122022 0.02 14;19 4512 872 3640
11 D/3 155,294 7,201.4 4666 1.65 16;35;38 102,702 2.9 0 0 19 2 0 2
12 D/4 105,301 7,200.7 3809 0.99 6;27 82,543 3.2 0 0 19 2 0 2
13 D/5 77,400 7,200.7 382 0.8 29 70,447 3.0 0 0 19 2 0 2

14 D

40 L T

466,146 7,200.6 11397 1.22 1;14;16;17;35;38 350,196 8732.4 308115 0.06 14;19;22;38 20587 30854 693
15 D/2 192,866 7,200.8 4881 1.05 19;22 175,242 8087.2 126432 0.015 14;19 15104 12776 2328
16 D/3 121,848 7,200.5 333 1.19 22 118,465 2.9 0 0 19 2 0 2
17 D/4 98,306 7,201.6 754 1.05 19 98,306 3.2 0 0 19 2 0 2
18 D/5 84,696 7,200.8 5048 0.99 22 84,696.4 3.0 0 0 22 2 0 2

Average 7,200.9 4,003.7 1.0 5,266.0 120,808.4 0.03 9,035.1 1,443.2

OPT 0 7

116

Table 5.7: Computational Results of BDTA with TBB cuts and BDTA with LL cuts for 20 nodes for γ = 0.75

BDTA with TBB Cuts BDTA with LL Cuts

Inst Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut
1 D/2

20 T L

206,460 7,234.8 891908 0.07 1;7;11;14;18 7451 7909 3247 200,895 7,234.8 931805 0.05 1;7;11;14;18 6688 5727 3953
2 D/3 133,262 992.3 472624 0 7;11;18 2310 2575 610 133,262 7,242.2 336552 0.025 7;11;18 14142 3086 11506
3 D/4 99,689 62.9 2523 0 11;14 419 192 227 99,689 550.6 17294 0 11;14 4320 799 3521
4 D/5 69,526 0.5 0 0 11 2 0 2 69,526 0.6 0 0 11 2 0 2

5 D/2

20 T T

233,100 7,234.8 2675694 0.04 7;8;10;11;18 3354 5879 701 232,904 7,234.8 642307 0.06 1;8;10;11;18 8916 4873 5799
6 D/3 144,245 280.5 76984 0 7;11;18 3135 2971 839 144,245 7,242.2 114096 0.02 7;11;18 20332 4182 16413
7 D/4 105,173 56.5 2228 0 10;11 522 284 238 105,173 140.3 6572 0 10;11 1960 446 1514
8 D/5 71,117 0.5 0 0 11 2 0 2 71,117 0.5 0 0 11 2 0 2

9 D

20 L L

261,695 7,234.2 378174 0.03 6;11;14;15 12349 6777 6232 261,695 7,234.3 152560 0.06 6;11;14;15 21656 4578 17316
10 D/2 140,665 37.1 566 0 7;14 74 0 74 140,665 166.7 13230 0 7;14 1990 22 1968
11 D/3 100,072 0.5 0 0 10 2 0 2 100,072 0.5 0 0 10 2 0 2
12 D/4 81,408 27.9 0 0 10 2 0 2 81,408 27.9 0 0 10 2 0 2
13 D/5 69,526 0.5 0 0 11 2 0 2 69,526 0.5 0 0 11 2 0 2

14 D

20 L T

303,999 7,234.2 564857 0.014 7;11;18;19 17211 15884 2791 303,999 7,234.3 188972 0.05 7;11;18;19 22464 9416 13815
15 D/2 157,911 45.1 3123 0 11;18 311 71 240 157,911 313.0 16755 0 11;18 2852 104 2748
16 D/3 103,093 0.5 0 0 10 2 0 2 103,093 0.5 0 0 10 2 0 2
17 D/4 83,130 27.9 0 0 11 2 0 2 83,130 27.9 0 0 11 2 0 2
18 D/5 71,117 0.5 0 0 11 2 0 2 71,117 0.5 0 0 11 2 0 2

Average 1,692.9 281,593.4 0.009 2,363.4 845.3 2,480.7 134,452.4 0.015 1,846.3 4,364.9

OPT 14 12

117

Table 5.8: Computational Results of BDTA with TBB cuts and BDTA with LL cuts for 25 nodes (γ = 0.75)

BDTA with TBB Cuts BDTA with LL Cuts

Ins Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

1 D/2

25 T L

202,626 7,264.2 521049 0.11 8;11;14;23;24 10209 8908 4575 203,830 7,264.2 265196 0.12 8;14;16;18;24 13737 5856 9529
2 D/3 105,078 7,283.4 474000 0.04 8;23;25 21667 38211 5993 104,967 7,283.6 161172 0.05 8;23;25 14485 9007 8712
3 D/4 96,823 104.1 3584 0.00 9;24 394 124 270 96,823 4,421.6 48873 0.00 9;24 9667 1755 7912
4 D/5 70,785 27.6 0 0.00 13 2 0 2 70,785 27.4 0 0.00 13 2 0 2

5 D/2

25 T T

281,475 7,264.2 824593 0.12 9;10;11;14;24 9315 10993 2548 279,109 7,264.2 320505 0.12 9;11;14;21;24 14051 7514 8365
6 D/3 131,417 7,283.4 357944 0.15 13;20;25 1714 20817 1533 129,304 7,283.4 317710 0.14 13;20;25 14650 16408 2519
7 D/4 123,227 119.9 6341 0.00 11;24 1074 987 87 123,227 1,121.5 17199 0.00 11;14 5813 2310 3503
8 D/5 84,076 27.4 0 0.00 14 2 0 2 84,076 27.4 0 0.00 14 2 0 2

9 D/2

25 L L

143,779 514.3 15016 0.00 9;18 502 16 486 143,779 7,662.3 165292 0.03 9;18 11541 150 11391
10 D/3 91,430 11.4 4040 0.00 8;25 299 0 299 91,430 7,201.2 98707 0.03 8;25 11192 0 11192
11 D/4 82,528 1.0 0 0.00 13 2 0 2 82,528 1.0 0 0.00 13 2 0 2
12 D/5 70,785 0.8 0 0.00 13 2 0 2 70,785 0.7 0 0.00 13 2 0 2

13 D/2

25 L T

183,058 535.2 10927 0.00 14;24 1103 615 488 183,058 7,662.4 105591 0.02 14;24 12059 1078 10981
14 D/3 94,393 1.0 0 0.00 25 2 0 2 94,393 1.0 0 0.00 25 2 0 2
15 D/4 97,422 1.0 0 0.00 14 2 0 2 97,422 1.0 0 0.00 14 2 0 2
16 D/5 84,076 0.7 0 0.00 14 2 0 2 84,076 0.7 0 0.00 14 2 0 2

Average 1,902.5 138,593.4 0.0 2,893.2 5,041.9 1,018.3 3,576.5 93,765.3 0.0 6,700.6 2,754.9 4,632.4

OPT 12 9

118

Table 5.9: Computational Results of BDTA with TBB cuts and BDTA with LL cuts for 40 nodes-instances with γ = 0.75

BDTA with TBB Cuts BDTA with LL Cuts

Ins Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

1 D/2

40 T L

207,196 9,029.1 260800 0.14 6;19;22;25;29 7903 15788 1243 208,975 9,029.4 126799 0.157 6;22;25;28;38 9951 8967 4686
2 D/3 135,033 9,588.8 195500 0.09 14;19;28 16922 22704 924 201,428 9,588.9 159600 0.127 6;19;22;25;29 6272 7714 2702
3 D/4 98,211 7,225.0 130992 0.02 14;29 15850 14798 1052 98,211 7,225.3 60523 0.03 14;29 9667 5025 4642
4 D/5 86,712 2,243.0 61124 0 14;19 1834 2 1832 87,480 7,201.8 93895 0.02 14;19 5875 1 5874

5 D/2

40 T T

281,618 9,029.1 397566 0.13 14;19;21;22;35 6437 9540 889 277,360 9,029.1 313700 0.12 14;19;21;22;35 3485 3134 1507
6 D/3 166,670 9,588.8 171009 0.02 14;19;22 16621 14674 3004 164,996 9,588.9 52814 0.015 14;19;22 13527 7696 6049
7 D/4 119,503 7,225.2 94520 0.012 14;22 17373 14963 2410 118,841 7,225.1 48995 0.007 14;22 15317 11241 4076
8 D/5 106,025 7,202.2 90541 0.008 14;22 6512 2 6510 105,573 7,202.9 87411 0.005 14;22 6381 3 6378

9 D

40 L L

269,922 8,732.4 215931 0.09 11;22;28;36 18281 25659 1441 259,748 8,732.5 123600 0.06 11;22;29;36 13910 16480 2109
10 D/2 143,442 8,087.3 122022 0.02 14;19 4512 872 3640 140,604 8,087.8 69757 0.03 14;29 6712 297 6415
11 D/3 102,702 2.9 0 0 19 2 0 2 102,702 2.9 0 0 19 2 0 2
12 D/4 82,543 3.2 0 0 19 2 0 2 82,543 3.2 0 0 19 2 0 2
13 D/5 70,447 3.0 0 0 19 2 0 2 70,447 3.0 0 0 19 2 0 2

14 D

40 L T

350,196 8,732.4 308115 0.06 14;19;22;38 20587 30854 693 341,578 8,732.4 99313 0.05 14;19;22;35 19787 21468 2810
15 D/2 175,242 8,087.2 126432 0.015 14;19 15104 12776 2328 173,290 8,087.4 71427 0.01 14;19 9846 4137 5709
16 D/3 118,465 2.9 0 0 19 2 0 2 118,465 2.9 0 0 19 2 0 2
17 D/4 98,306 3.2 0 0 19 2 0 2 98,306 3.2 0 0 19 2 0 2
18 D/5 84,696.4 3.0 0 0 22 2 0 2 84,696 3.0 0 0 22 2 0 2

Average 5,266.0 120,808.4 0.0 9,035.1 1,443.2 5,541.6 72,657.4 0.0 4,786.8 2,942.7

OPT 7 6

119

5.3.2 Computational Results for the instances with (γ = 0.50)

In this section, we first compare the relative performance of BDTA in which

TBB cuts are used with MIQCP solver of CPLEX for 20, 25 and 40 nodes.

We give computational results of MIQCP and BDTA with TBB cuts for 20

nodes instances where γ = 0.50 in Table 5.10. BDTA solved 17 instances

over 18 instances to optimum. In the instance that is not solved optimally by

BDTA, the relative gap is 3%. However, the solutions found in MIQCP are

worse than the solutions in BDTA with TBB cuts. For MIQCP, there are some

instances in which the optimal hub locations and the assignments are chosen but

the optimality is not proven within given time limit. These instances (2,3,10,11

and 14) are given in 5.10. From this table, we conclude that BDTA is better than

MIQCP solver in terms of average CPU time. Even for the instances where the

optimal number of hubs is one, MIQCP solver requires much time than BDTA.

In Table 5.11, we give computational results of comparing MIQCP and BDTA

with TBB cuts for 25 nodes. We can conclude that BDTA is significantly better

than MIQCP solver in CPLEX in terms of number of optimally solved instances

and average CPU time. BDTA solves eight more instances to optimum, while

they are not solved by using MIQCP. For the instance 5, which is not optimally

solved by any method, BDTA found a better solution than MIQCP.

Table 5.12 gives the comparison results of BDTA with different optimality cuts:

TBB cuts and LL cuts. By using TBB cuts, BDTA requires less amount of

computational time than BDTA with LL cuts. As we expected, average number

of optimality cuts in BDTA with TBB is less than the average number of cuts

in BDTA with LL cuts. Since more instances are solved to optimum by using

BDTA with TBB cuts, we can say that the performance of BDTA with TBB

cuts is better than the one of BDTA with LL cuts.

As no instance in 40 nodes could be solved to optimality by using MIQCP

solver of CPLEX, we only report the results for BDTA with TBB cuts and

BDTA with LL cuts in Table 5.14. Most of the instances couldn’t be solved to

optimum by using any method. However, in Table 5.14, there are instances that

are not optimally solved within given time limit by using BDTA with LL cuts.

For these instances, BDTA with TBB cuts finds the optimal solutions. On the

120

other hand, BDTA with LL cuts can find a better solution than the algorithm

using TBB cuts for the instances (Ins 5,8,11,12) that are not solved to optimum

within 7200 CPU seconds time limit.

In Table 5.15, we report the summary results of comparing MIQCP, BDTA

with TBB cuts and BDTA with LL cuts for different number of nodes in the

network under two discount factor values between hubs: 0.75 and 0.5. When

we decrease the discount factor from 0.75 to 0.5, it is concluded that average

CPU time decreases and the number of instances solved to optimum increases

in each alternative method for 20 and 25 nodes. In the last row of Table 5.15,

we report % reduction in CPU time when γ is decreased from 0.75 to 0.5.

The maximum CPU time reduction by changing the discount factor value is

observed in 20-nodes instances by using the BDTA with TBB cuts.

In this section, we also compare the relative performance of automatic Benders

decomposition (AutoBEND) implementation with the one of BDTA. To apply

automatic Benders decomposition algorithm, we first linearize the nonlinear in-

teger model of QCHLP. Then, the default configuration for this implementation

is chosen in IBM ILOG CPLEX and fullAutomatic Benders decomposition is

employed.

As AutoBEND decomposition cannot find an integer feasible solution for 40

nodes instances, we only give the computational comparison of branch-and-

check and AutoBEND for 20 and 25 nodes. The reason why AutoBEND cannot

find an integer feasible solution is that when the number of nodes in the net-

works is high, the required number of decision variables in the linearization

increases dramatically.

We give computational results of comparing BDTA with automatic Benders

decomposition in Tables 5.16 and 5.17 for 20 nodes and 25 nodes, respec-

tively. From Table 5.16, we conclude that BDTA with TBB cuts outperforms

the AutoBend implementation in CPLEX. All instances are solved to optimum

by BDTA. However, four instances couldn’t be solved optimally by AutoBend

within given time limit. For each instance given in Table 5.16, BDTA requires

less computational time than AutoBend. Moreover, when demand values are

high, the solutions found by AutoBend are worse than those in BDTA.

121

From Table 5.17, we can observe that when the number of nodes increases

from 20 to 25, the performance of AutoBend implementation becomes better

for some outlier instances. Consider the instance 2 given in Table 5.17. This

instance can be solved by implementing AutoBend in CPLEX after linearizing

the QCHLP. However, BDTA with TBB cuts reaches the time limit without

finding the optimal solution for this instance. In Table 5.17, there are two in-

stances (Ins 1 and Ins 5) which are not solved to optimum by any alternative

method within given time limit. For these instances, the solutions found in Au-

toBend implementation is worse than those obtained in BDTA. This result can

also be observed from the relative gap values in Table 5.17. One observation

that can be conducted from Table 5.17 is AutoBend implementation can require

higher CPU times for the instances that can be solved by BDTA at the root

node.

Average CPU time in AutoBend implementation is less than the time required

for BDTA. We believe that this result is due to the fact that total required time

to calculate lower bounds for traffic bound is high for 25 nodes instances. To

increase the convergence speed of BDTA, the strategy that is solving knapsack

problems as LP could be used.

122

Table 5.10: Computational Results of MIQCP and BDTA with TBB cuts for 20 nodes instances (γ = 0.50)

MIQCP BDTA with TBB cuts

Demand Ins Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

D/2 1

20 T L

210,072 7,235 17315 0,43 9;10;11;14;19 200,895 7,234.8 2714588 0,03 1;7;11;14;18 3521 6898 549
D/3 2 130,367 7,242 22550 0,26 7;11;18 130,367 182.0 177823 0 7;11;18 475 623 97
D/4 3 98,023 5,212 36808 0 11;18 98,023 50.2 572 0 11;18 131 52 79
D/5 4 69,526 57 190 0 11 69,526 0.6 0 0 11 2 0 2

D/2 5

20 T T

241,485 7,235 20658 0,35 1;8;10;11;18 226,298 2,850.6 2211710 0 1;8;10;11;18 1779 4020 201
D/3 6 142,046 7,242 30501 0,18 1;11;18 141,351 74.5 8790 0 7;11;18 423 445 108
D/4 7 103,579 829 13010 0 11;18 103,579 45.6 151 0 11;18 44 11 33
D/5 8 71,117 30 84 0 11 71,117 0.6 0 0 11 2 0 2

D 9

20 L L

277,379 7,234 18684 0,42 2;9;11;14;15 253,629 331.8 66121 0 6;11;14;19 2343 1626 999
D/2 10 137,507 7,237 35180 0,38 7;14 137,507 36.6 101 0 7;14 28 0 28
D/3 11 100,072 7,200 65213 0,19 10 100,072 0.5 0 0 10 2 0 2
D/4 12 81,408 2,262 36801 0 10 81,408 28.0 0 0 10 2 0 2
D/5 13 69,526 142 2483 0 10 69,526 0.6 0 0 10 2 0 2

D 14

20 L T

295,168 7,234 211161 0,01 7;11;18;19 295,168 931.9 137479 0 7;11;18;19 7996 7844 1020
D/2 15 154,560 1,632 12296 0 11;18 154,560 38.2 303 0 11;18 54 6 48
D/3 16 103,093 71 153 0 10 103,093 0.5 0 0 10 2 0 2
D/4 17 83,130 111 897 0 11 83,130 28.0 0 0 11 2 0 2
D/5 18 71,117 27 140 0 11 71,117 0.6 0 0 11 2 0 2

Average 3,791 29,118 0,12 658 295,424 0,002 1,196 177

Opt 10 17

123

Table 5.11: Computational Results of MIQCP and BDTA with TBB cuts for 25 instances (γ = 0.50)

MIQCP BDTA with TBB cuts

Demand Ins Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

D/2 1

25 T L

216,877 7,264.5 4418 0.64 10;11;13;24 197,389 7,264.2 1109000 0.08 8;11;14;23;24 4848 6648 1782
D/3 2 96,768 7,283.8 19728 0.49 4;25 102,249 7,283.4 450143 0.05 8;23;25 25102 49705 136
D/4 3 97,642 7,285.3 4660 0.5 14;24 95,014.3 96.5 553 0 9;24 85 31 54
D/5 4 70,785 7,227.7 28583 0.22 13 70,785 27.6 0 0 13 2 0 2

D/2 5
25 T T

325,411 7,264.3 7097 0.55 9;12;14;15;21 272,151 7,264.2 1497971 0.09 4;9;11;14;21;24 5606 8787 993
D/4 6 121,241 7,285.3 9056 0.14 11;14 121,241 108.8 721 0 11;14 188 163 25
D/5 7 84,076 237.4 868 0 14 84,076 27.6 0 0 14 2 0 2
D/2 8

25 L L

141,431 7,662.7 22983 0.64 8;18 140,701 482.9 1028 0 9;18 159 0 159
D/3 9 88,882 7,202.2 20649 0.54 8;25 88,882 8.2 442 0 8;25 61 0 61
D/4 10 82,528 7,201.1 12864 0.16 13 82,528 1.2 0 0 13 2 0 2
D/5 11 70,785 7,200.8 29100 0.22 13 70,785 0.9 0 0 13 2 0 2

D/2 12

25 L T

185,452 7,662.5 15630 0.43 11;13 179,606 486.6 1101 0 11;14 185 74 111
D/3 13 141,948 7,203.3 22889 0.64 8;18 140,701 20.2 1028 0 9,18 60 0 60
D/4 14 97,422 180.1 201 0 14 97,422 1.0 0 0 14 2 0 2
D/5 15 84,076 248.2 960 0 14 84,076 0.9 0 0 14 2 0 2

Average 5,894 13,312 0.34 1,538 204,132 0 4,361 226

Opt 3 12

124

Table 5.12: Comparison results of BDTA with TBB cuts and BDTA with LL cuts for 20 nodes instances with γ = 0.50

BDTA with TBB cuts BDTA with LL cuts

Ins Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut
1 D/3

20 T L
130,367 182.0 177823 0 7;11;18 475 623 97 130,367 1,450.5 168070 0 7;11;18 5532 1230 4513

2 D/4 98,023 50.2 572 0 11;18 131 52 79 98,023 69.9 4280 0 11;18 865 142 723
3 D/5 69,526 0.6 0 0 11 2 0 2 69,526 0.5 0 0 11 2 0 2

4 D/2

20 T T

226,298 2,850.6 2211710 0 1;8;10;11;18 1,779 4020 201 226,298 7,234.8 1046051 0.02 1;8;10;11;18 6436 3701 4546
5 D/3 141,351 74.5 8790 0 7;11;18 423 445 108 141,351 932.6 27933 0 7;11;18 6779 1487 5439
6 D/4 103,579 45.6 151 0 11;18 44 11 33 103,579 50.0 1222 0 11;18 330 46 284
7 D/5 71,117 0.6 0 0 11 2 0 2 71,117 0.6 0 0 11 2 0 2

8 D

20 L L

253,629 331.8 66121 0 6;11;14;19 2,343 1626 999 253,629 7,234.4 204941 0.02 6;11;14;19 18335 2684 15795
9 D/2 137,507 36.6 101 0 7;14 28 0 28 137,507 43.1 2215 0 7;14 383 1 382
10 D/3 100,072 0.5 0 0 10 2 0 2 100,072 0.5 0 0 10 2 0 2
11 D/4 81,408 28.0 0 0 10 2 0 2 81,408 27.9 0 0 10 2 0 2
12 D/5 69,526 0.6 0 0 10 2 0 2 69,526 0.6 0 0 10 2 0 2

13 D/2

20 L T

154,560 38.2 303 0 11;18 54 6 48 154,560 50.4 3509 0 11;18 536 7 529
14 D/3 103,093 0.5 0 0 10 2 0 2 103,093 0.5 0 0 10 2 0 2
15 D/4 82,130 28.0 0 0 10 2 0 2 82,130 27.9 0 0 10 2 0 2
16 D/5 71,117 0.6 0 0 10 2 0 2 71,117 0.5 0 0 10 2 0 2

Average 229.3 0 330.8 423.9 100.6 1,070.3 0.0 2,450.8 581.1 2,014.2

Opt 16 14

125

Table 5.13: Comparison Results of BDTA with TBB cuts and BDTA with LL cuts for 25 nodes with γ = 0.50

BDTA with TBB cuts BDTA with LL cuts

Ins Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes Sts R.Gap Hubs Lazy Fcut OptCut

1 D/2

25 T L

197,389 7,264.2 1109000 0.08 8;11;14;23;24 4848 6648 1782 197,389 7,264.2 531686 ATL 0.09 8;11;14;23;24 8597 5667 5565
2 D/3 102,249 7,283.4 450143 0.05 8;23;25 25102 49705 136 102,249 7,283.4 486064 ATL 0.05 8;23;25 25196 48985 525
3 D/4 95,014 96.5 553 0 9;24 85 31 54 95,104 234.0 7251 Opt 0 9;24 1721 365 1356
4 D/5 70,785 27.6 0 0 13 2 0 2 70,785 27.4 0 Opt 0 13 2 0 2

5 D/2
25 T T

272,151 7,264.2 1497971 0.09 4;9;11;14;21;24 5606 8787 993 272,151 7,264.2 519924 ATL 0.09 4;9;11;14;21;24 7302 5102 4120
6 D/4 121,241 108.8 721 0 11;14 188 163 25 121,241 118.4 2575 Opt 0 11;14 805 389 416
7 D/5 84,076 27.6 0 0 14 2 0 2 84,076 27.4 0 Opt 0 14 2 0 2

8 D/2

25 L L

140,701 482.9 1028 0 9;18 159 0 159 140,701 4,258.8 93154 OptTol 0 9;18 6803 40 6763
9 D/3 88,882 8.2 442 0 8;25 61 0 61 88,882 958.5 24145 Opt 0 8;25 3821 0 3821
10 D/4 82,528 1.2 0 0 13 2 0 2 82,528 1.0 0 Opt 0 13 2 0 2
11 D/5 70,785 0.9 0 0 13 2 0 2 70,785 0.7 0 Opt 0 13 2 0 2

12 D

25 L T

179,606 24.5 1101 0 11;14 185 74 111 179,606 732.1 20281 Opt 0 11;14 3500 296 3204
13 D/2 140,701 482.8 1028 0 14 159 0 159 - - - - - - - - -
15 D/5 84,076 0.2 0 0 14 2 0 2 84,076 0.1 0 Opt 0 14 2 0 2

Average 1,648.1 218,713.4 0.0 2,600.2 4,672.0 249.3 2,166.9 129,621.5 4,442.7 4,680.3 1,983.1

Opt 11 10

126

Table 5.14: Comparison of BDTA with TBB cuts and BDTA with LL cuts for 40 nodes with γ = 0.5

BDTA with TBB Cuts BDTA with LL Cuts

Inst Demand Nodes Cap FC Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut Obj CPU B & B Nodes R.Gap Hubs Lazy Fcut OptCut

1 D/2

40 T L

200,295 9,029.1 364260 0.11 6;19;22;29;35 6789 14686 951 201,428 9,029.0 317807 0.12 6;19;22;25;29 6626 11050 2345
2 D/3 131,182 9,588.8 317930 0.05 14;19;29 9734 12905 453 132,386 9,588.8 131495 0.07 14;19;38 10133 10678 1905
3 D/4 96,726 968.8 52452 0 14;29 7851 7527 324 96,726 7,225.2 70600 0.02 14,29 9935 5329 4606
4 D/5 86,712 2,059.4 61124 0 14;19 1834 2 1832 86,712 7,201.8 72584 0.01 14;19 5967 2 5965

5 D/2

40 T T

274,368 9,029.1 1512400 0.09 6;14;19;22;35 3347 6297 274 265,710 9,029.1 417710 0.06 1;14;19;22;35 13958 23657 1074
6 D/3 164,996 9,588.9 246237 0.01 14;19;22 17152 15079 3210 164,996 9,588.8 80114 0.02 14;19;22 12346 6149 6378
7 D/5 105,573 7,201.9 116977 0.00 14;22 5735 2 5733 105,573 7,201.8 87006 0.01 14;22 6360 3 6357

8 D/2
40 L L

260,216 8,087.3 265161 0.05 11;22;28;36 19560 26228 1547 259,748 8,087.3 145700 0.06 11;22;29;36 16048 17859 2523
9 D/3 140,604 664.4 26127 0 14;29 1324 294 1030 140,604 7,203.4 65670 0.03 14;29 6419 250 6169

10 D/4 102,702 3.0 0 0 19 2 0 2 102,702 3.2 0 0 19 2 0 2

11 D/2
40 L T

342,796 8,087.2 259410 0.05 14;19;22;35 25799 37523 848 341,578 8,087.2 95666 0.05 14;19,22;35 19568 21600 2613
12 D/3 342,976 7,202.6 262824 0.05 14;19;22;35 25691 37724 866 341,578 7,202.6 95666 0.05 14;19,22;35 19568 21600 2613
13 D/4 118,465 3.0 0 0 19 2 0 2 118,465 3.2 0 0 19 2 0 2

Average 5,624.2 257,812.2 0.0 12,463.3 1,411.6 6,880.9 121,539.8 0.0 9,090.5 3,273.2

Opt 5 2

127

Table 5.15: Comparison of MIQCP, BDTA with TBB cuts and BDTA with LL cuts in terms of CPU time and no of instances solved to
optimum

Discount factor
Methods MIQCP BDTA with TBB cuts BDTA with LL cuts

Performance Meas. 20 Nodes 25 Nodes 40 Nodes 20 Nodes 25 Nodes 40 Nodes 20 Nodes 25 Nodes 40 Nodes

0.75
CPU time 4,333.39 6,814.57 7,200.87 1,668.52 1,811.9 4,524.71 2,177.3 3,485.9 4,800.31
No of inst. solved 8/18 1/16 0/18 14 /18 12 /16 7/18 12 /18 9/16 6/18

0.5
CPU time 3,337.17 6,204.6 7,200 206.23 550.57 5,624.2 1,047.22 2,097.6 6,880.9
No of inst. solved 10/18 2 /16 0/13 16/18 12/16 5/13 15/18 10/16 2/13

% Reduction in CPU time 22.99 8.95 87.64 69.61 51.9 39.83

128

Table 5.16: Computational Results of BDTA and AutoBend implementation in CPLEX for 20 nodes instances γ = 0.50

BDTA with TBB cuts Linearization + AutoBend

Ins Demand Nodes Cap FC Obj CPU B&B Nodes R.Gap Obj CPU B&B Nodes R.Gap

1 D/3
20 T L

130,367 182.0 177823 0 130,367 7,200.7 91376 0.07
2 D/4 98,023 50.2 572 0 98,023 95.3 325 0
3 D/5 69,526 0.6 0 0 69,526 42.8 0 0

4 D/2

20 T T

226,298 2,850.6 2211710 0 266,554 7,201.0 27586 0.34
5 D/3 141,351 74.5 8790 0 141,351 7,200.8 171540 0.06
6 D/4 103,579 45.6 151 0 103,579 77.2 61 0
7 D/5 71,117 0.6 0 0 71,117 41.1 0 0

8 D

20 L L

253,629 331.8 66121 0 263,553 7,200.7 57763 0.09
9 D/2 137,507 36.6 101 0 137,507 55.6 19 0

10 D/3 100,072 0.5 0 0 100,072 41.4 0 0
11 D/4 81,408 28.0 0 0 81,408 42.0 0 0
12 D/5 69,526 0.6 0 0 69,526 40.5 0 0

13 D/2

20 L T

154,560 38.2 303 0 154,560 90.9 112 0
14 D/3 103,093 0.5 0 0 103,093 42.3 0 0
15 D/4 82,130 28.0 0 0 82,130 38.8 0 0
16 D/5 71,117 0.6 0 0 71,117 39.6 0 0

Average 229.3 0 1,840.7 0.04

Sum 16 12

129

Table 5.17: Computational results of BDTA with TBB cuts and AutoBend implementation in CPLEX for 25 nodes instances γ = 0.50

BDTA with TBB cuts Linearizations + AutoBEND

Ins Demand Nodes Cap FC Obj CPU B&B Nodes R.Gap Obj CPU B&B Nodes R.Gap

1 D/2

25 T L

197,389 7,264.2 1,109,000 0.08 227,381 7,203.2 13,885 0.32
2 D/3 102,249 7,283.4 450,143 0.05 88,967 184.64 9 0
3 D/4 95,104 96.5 553 0 95,104 241.78 176 0
4 D/5 70,785 27.6 0 0 70,785 120.67 0 0

5 D/2
25 T L

272,151 7,264.2 1,497,971 0.09 534,942 7,202.7 10,528 0.63
6 D/4 121,241 27.6 721 0 121,241 272.77 109 0
7 D/5 84,709 0.25 0 0 84,709 122.59 0 0

8 D/2

25 L L

140,701 482.9 1028 0 140,701 152.34 32 0
9 D/3 88,882 8.2 442 0 88,882 164.66 13 0

10 D/4 82,528 1.2 0 0 82,528 115.13 0 0
11 D/5 70,785 0.9 0 0 70,785 120.92 0 0

12 D
25 L T

179,606 24.5 1101 0 179,606 201.16 96 0
13 D/2 140,401 482.8 1028 0 140,701 156.91 32 0
14 D/5 84,076 0.23 0 0 84,076 122.79 0 0

Average 1,640.3 218,713.4 0.02 1,172.7 1,177.1 0.07

Opt 11 12

130

5.3.3 Linear Capacitated Quadratic Hub Location Problem

So far, we evaluated the performance of our proposed Benders decomposition

type algorithm for QCHLP. Note that, the decomposition algorithm for QCHLP

includes both feasibility and optimality cuts. When compared BDTA under dif-

ferent optimality cuts (TBB cuts and LL cuts), we cannot observe the effect of

using problem specific optimality cuts explicitly due to the existence of feasi-

bility cuts.

In order to assess the effects of using problem specific optimality cuts rather

than LL cuts, we consider a linear capacitated quadratic hub location problem

(LCQHLP). This problem is also mentioned in [53], which is a special case

of QCHLP. The nonlinear capacity constraints in QCHLP are replaced with

linear constraints. The mathematical model for this problem ([53]) is given as

follows:

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij(
∑
m∈I

(αtim + βtmi))+∑
i∈I

∑
j∈I

∑
m∈I

∑
l∈I:j 6=l

Rjltimxijxml (5.19)

(LCQLP) s.t.

(5.2), (5.3), (5.5)∑
i∈I

∑
m∈I

(tim + tmi)xij ≤Mxjj,∀j ∈ I. (5.20)

Although routing cost related to backbone traffic in the objective function of

LCHLP, backbone traffic does not use the capacity of the hubs. All remaining

constraints (assignment (5.2), logic relation (5.3), and sign restrictions (5.5))

are the same as the constraints in QCHLP.

It is also possible to solve LCQHLP to optimum by using commercial solvers

(e.g., CPLEX). As the objective function is nonlinear and the capacity con-

straints are linear, LCQHLP is in the class of quadratic programming. To solve

such kind of optimization problems to optimum in CPLEX, we use quadratic

programming solver of CPLEX with related parameters.

131

In the following section, we give Benders decomposition algorithm for LCQHLP,

which is a special case of the decomposition algorithm for QCHLP.

5.3.3.1 Benders Decomposition Type Algorithm for LCQHLP

The same idea behind the decomposition that we used for QCHLP is also valid

for LCQHLP. In the master problem of the decomposition for LCQHLP, we

include linear capacity constraints. Therefore, the solution obtained from MP

satisfies the capacity restrictions on the hubs and we do not generate any feasi-

bility cut in this case. It is obvious that solving the MP with capacity constraints

is more difficult than solving uncapacitated version. However, it enables us to

obtain a decomposition algorithm where no feasibility cut is generated.

The master problem of BDTA can be given as:

min
∑
j∈I

fjxjj +
∑
i∈I

∑
j∈I:i 6=j

dijxij(
∑
m∈I

(αtim + βtmi)) + θ

(MP) s.t.

(5.2), (5.3), (5.5)

θ ≥ ηl0 −
∑
i∈I

ηlixi ∀l ∈ ωopt. (5.21)

θ ≥ 0. (5.22)

The definition of the auxilary variable θ and optimality cuts are the same as

used in the decomposition algorithm for QCHLP.

To generate optimality cuts in this case, we use two options: LL cuts used in

Integer L-shaped algorithm and problem specific optimality cuts (TBB cuts).

In LCQHLP, we can only use the maximum amount of decrease on the current

backbone traffic cost by changing the value of a variable from 1 to 0.

As the capacity constraints are linear in LCQHLP, we don’t use the traffic bound

algorithm in this case. Therefore, optimality cut is generated by only consider-

ing maximum reduction on θr value.

In BDTA for LCQHLP, we use the following inequality as optimality cuts:

132

θ ≥ θr(x)−
∑
i∈I

∑
j∈I:xij=1

∑
m∈I

max
l∈I
{Rjl}(tim + tmi)(1− xij) (5.23)

where θr(x) is the current backbone traffic cost calculated for a given master

problem solution, x. In the subproblem phase, we evaluate the current back-

bone traffic cost with a given master problem’s solution, x, and add optimality

cuts when they are necessary (e.g, θ < θ(x)). The flowchart for the overall

BDTA for LCQHLP is given in Figure 5.2.

We give computational results of BDTA with TBB cuts and BDTA with LL cuts

for LCQHLP in Tables 5.18 and 5.19. Average CPU time over 45 instances is

1,216.7 sec. and 4,912.1 sec for BDTA with TBB cuts and BDTA with LL

cuts, respectively. In terms of average CPU time, using TBB cuts in the decom-

position algorithm is superior to using LL cuts. Moreover, for each instance

which is solved optimally, BDTA with TBB cuts requires less computational

time than BDTA with LL cuts. Except the instances (Ins 31 and Ins 35) in Ta-

ble 5.19, BDTA with TBB cuts finds a better solution than BDTA with LL cuts.

For each instance, the number of optimality cuts used in BDTA with TBB cuts

is less than the one in the method using LL cuts.

133

Figure 5.2: Flowchart of Branch-and-check for LCQHLP

134

Table 5.18: Computational results of LL optimality cuts and TBB optimality cuts on LCQHLP for 20 nodes and 25 nodes

BDTA with TBB cuts BDTA with LL cuts

Ins Cap Nodes FC Obj CPU B & B Nodes R.Gap Hubs OptCut Obj CPU Nodes Sts R.Gap Hubs OptCut
1

1500 20 L
160,671 8.78 11420 0 7;11;14 208 160,671 7200.55 208970 ATL 0.04 7;11;14 11876

2 99,689 3 1332 0 11;14 123 99,689 1555.11 28685 OptTol 0 11;14 5184
3 70,515 0.02 0 0 11 0 70,515 0.02 0 Opt 0 11 2

4

1500 20 T

486,423 37.34 36917 0 7;10;11,14;18 535 486,423 7200.45 217,212 ATL 0.04 7;10;11;14;18 12294
5 174,840 2.53 2109 0 7;11;18 78 174,840 7200.61 94,227 ATL 0.03 7;11;18 14366
6 122,807 0.98 425 0 11;18 67 122,807 179.02 8,783 OptTol 0 11;18 1899
7 104,814 1.81 488 0 10;11 101 104,814 219,75 8,948 Opt 0 10;11 1878
8 71,117 0.02 0 0 11 2 71,117 0.02 0 Opt 0 11 2

9
3270 20 T

266,627 2.78 2706 0 7;11;18 175 266,627 7200.53 133001 ATL 0.06 7;11;18 14048
10 157,911 1.39 508 0 11;18 93 157,911 456.68 18114 Opt 0 11;18 2946
11 103,093 0.02 0 0 10 2 103,093 0.03 0 Opt 0 10 2

12
3270 20 L

234,008 7.43 6775 0 6;11,14 188 234,008 7200.25 125219 ATL 0.05 6;11;14 15422
13 140,665 0.44 134 0 7;14 21 140,665 202.031 14965 Opt 0 7;14 1993
14 100,072 0 0 0 10 2 100,072 0.06 0 Opt 0 10 2
15

1500 25 L

289,152 7200.1 997834 0.06 3;8;14;16;18;24 9492 289,152 7200.59 122170 ATL 0.11 3;8;14;16;18,24 12619
16 161,361 192.44 65236 0 12;14;24 912 161,917 7200.81 125170 ATL 0.07 9;16,24 10457
17 91,430 0.5 109 0 8;25 28 91,430 7201.44 72942 ATL 0.03 8;25 9176
18 96,823 3.39 628 0 9,24 49 96,823 7200.89 49399 ATL 0.02 9;24 9086
19 70,785 0.03 0 0 13 2 70,785 0.04 0 0 0 13 2

20
1500 25 T

383982 1633 652885 0 9;11;13;14;24 2071 383,982 7200.42 396069 ATL 0.06 9;11;13;14;24 5613
21 208,008 53.48 27924 0 11;14;24 202 208,008 7200.77 52806 ATL 0.05 11;14;24 11786
22 94,393 0.05 0 0 25 2 94,393 0.03 0 Opt 0 25 2
23

3270 25 T
301,164 12.33 12454 0 9,11;24 221 301,164 7201 74514 ATL 0.07 9;11;24 12211

24 183,027 3.25 769 0 11;13 88 183,027 7200.6 74324 ATL 0.02 11;13 9084
25 94,393 0.03 0 0 25 2 94,393 0.02 0 Opt 0 25 2

26

3270 25 L

241,410 214.44 130597 0 8;14;18 1497 241,817 7200.73 116683 ATL 0.09 7;14;18 12607
27 143,779 1.53 370 0 9;18 70 143,779 7200.53 271390 ATL 0.04 9;18 6901
28 91,430 0.56 87 0 8,25 29 91,430 7200.81 70766 ATL 0.03 8;25 8605
29 82,528 0.06 0 0 13 2 82,528 0.016 0 Opt 0 13 2

135

Table 5.19: Computational results of LL optimality cuts and TBB optimality cuts on LCQHLP for 40 nodes

BDTA with TBB cuts BDTA with LL cuts

Ins Cap Nodes FC Obj CPU B & B Nodes R.Gap Hubs OptCut Obj CPU Nodes Sts R.Gap Hubs OptCut

30

1500 40 L

296,896 7206.2 376900 0.11 6;11;22;25;28,29 4395 296,896 7,201 117251 ATL 0.12 6;11;22;25,28;29 4752
31 162,709 7201.6 383717 0.02 14;19;29 7343 162,383 7,200 170363 ATL 0.07 14;19;29 4186
32 113,418 16.83 1527 0 14,29 94 113,418 7,200 124399 ATL 0.04 14;29 3434
33 98,017 38.09 3907 0 14;29 345 98,017 7,202 48847 ATL 0.04 14;29 5476
34 87,480 95.64 36143 0 14;19 480 87,481 7201.33 53116 ATL 0.02 14;19 5024

35

1500 40 T

402,667 7206.1 2150401 0.09 14;19;22;35;38 980 402,443 7200.83 259851 ATL 0.11 19;22;35;38 2983
36 203,798 7200.1 412096 0.007 14;19;22 7318 203,798 7200.31 55913 ATL 0.03 14;19;22 7322
37 139,354 67.67 12823 0 14;19 460 139,354 7201.34 49101 ATL 2 14;19 5992
38 118,916 369.56 58980 0 14;22 2119 118,981 7200.77 34625 ATL 0.02 14;22 5123
39 106,025 352.92 74462 0 14;22 1867 106,025 7202.19 41453 ATL 0.01 14;22 5699

40
3270 40 T

312,435 7200.1 524951 0.006 14;19;22 6390 312,435 7202.03 52907 ATL 0.07 14,19;22 7123
41 174,975 18.86 2070 0 14;19 199 174,975 7203.53 50038 ATL 0.02 14;19 6358
42 118,645 0.13 0 0 19 2 118,465 0.13 0 Opt 0 19 2

43
3270 40 L

242,828 7200.1 984437 0.02 11;22;28 3933 242,828 7200.91 92526 ATL 0.09 11;22;28 6436
44 143,442 15.23 1545 0 14;29 156 143,442 7201.09 54867 ATL 0.05 14,29 5643
45 102,702 0.17 0 0 19 2 102,072 0.08 102702 Opt 0 19 2

136

5.4 Conclusion

In this chapter, we consider the exact solution methods for solving QCHLP

which is a variant of single allocation hub location problem. This problem

includes both nonlinear objective function and capacity constraints. Nonlin-

ear terms in the objective function represents total backbone traffic cost, while

nonlinear capacity constraints are due to the amount of backbone traffic. In

the literature, the only exact solution method for QCHLP is a branch-and-cut

method proposed by [53]. In their algorithm, they use a two-index variable

but exponential number of constraints exist to be seperated in the algorithm.

Different than this approach, we employed the idea behind logic based Ben-

ders decomposition in which generating cuts does not depend on the LP duality

theory.

To the best of our knowledge, BDTA that we proposed for QCHLP is the first

Benders decomposition implementation. We don’t use any linearizations for

the objective function and the capacity constraints. Therefore, this decompo-

sition methods provide us to use only two-indexed variables in the model. By

using the problem structure, we generate problem specific optimality cuts in ad-

dition to the feasibility cuts generated for QCHLP in Chapter 4. To increase the

convergence speed of the algorithm, we implement this algorithm in a single

branch-and-bound tree of the MP as done in branch-and-Benders cut or branch

and check algorithms.

In this chapter, we demonstrate that BDTA outperforms the MIQCP solver

of CPLEX for especially large size instances or difficult instances. By using

BDTA, we could solve the instances that are not solved to optimum within rea-

sonable CPU time in MIQCP. In the computational study, we observe that the

performance of the problem specific cuts is better than the one of regular opti-

mality cuts (LL cuts) in ILS algorithm for most of the instances. The reason is

that BDTA with TBB cuts requires less number of optimality cuts on average

than using LL cuts.

As the master problem includes both decision variables (hub location and the

assignment), we could evaluate the amount of backbone traffic and backbone

137

traffic cost for a MP solution. The decomposition algorithm that we propose

for QCHLP is based on this idea. Therefore, nonlinear integer problems which

have similar structure with QCHLP, could be solved to optimum by using the

idea behind BDTA.

138

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this chapter, firstly, we summarize the main contributions of each chapter of

this dissertation in Section 6.1. Then, we give possible research directions in

Section 6.2.

6.1 Main Contributions of the Dissertation

In this dissertation, we have studied three discrete location and hub location

problems in which the objective function and/or the constraints include non-

linear terms. Although most of the studies in location theory consider linear

problems, nonlinearity is a common issue that can be encountered in real life

applications. The problems that we considered in Chapter 3 and 4 include non-

linear constraints. In the last problem given in Chapter 5, the mathematical

model has both nonlinear objective function and nonlinear constraints. All

problems are in the class of nonlinear integer programs which are known as

very challenging problems. Therefore, solving these problems to optimality by

using efficient algorithms is one of the main contributions of this dissertation.

The common property for the proposed algorithms is that decomposition algo-

rithms are based on Benders decomposition and cut generation procedure relies

on the problems’ structures.

In Chapter 3, we consider a nonliear wireless local area network design prob-

lem with two different linear objective functions. Due to technical restrictions

139

in the system, the mathematical model includes nonlinear capacity constraints.

For both variants of the problem (WLANDP1 and WLANDP2), we proposed a

MISOCP reformulation. This reformulation provides us to solve the model by

using a commercial solver. One of the advantages of using this formulation is

that we can use this reformulation regardless of the objective function. How-

ever, in the literature, the algorithms developed for solving this model depends

on the objective function.

For WLANDP1, we also propose a Benders decomposition type algorithm. In

the algorithm for WLANDP1, problem specific feasibility and general purpose

optimality cuts are used. The algorithm is implemented in a branch-and-bound

tree of the MP. Adding feasibility and optimality cuts in a single branch and

bound tree of the MP increases convergence speed of the algorithm. However,

MISOCP demonstrates a better performance than BDTA1 in our computational

study.

For WLANDP2, we develop a branch-and-Benders decomposition approach in

which feasibility cuts are generated in a more advanced procedure. As we ex-

pected, the relative performance of branch-and-Benders cut approach is better

than that of BDTA2. As the subproblem doesn’t have any objective function,

only feasibility cuts were added to the MP in this case. From our computational

study, we conclude that the performance of BDTAs becomes worse when more

feasibility cuts are necessary.

Another nonlinear integer problem is considered in Chapter 4. The problem can

arise in telecommunication network systems and called quadratic capacitated

concentrator location problem. QCCLP includes a linear objective function

and nonlinear capacity constraints. The same logic behind the decomposition

algorithms applied for WLANDPs is also used for QCCLP.

In Chapter 4, without using any linearizations of nonlinear capacity constraints,

we develop an exact Benders decomposition based algorithm. In the problem,

MP is a relaxation of the original problem and the subproblem is a feasibility

check. For the branch-and-check algorithm for QCCLP, we used several en-

hancement steps and evaluated the effects of these steps on the performance of

140

the algorithm. We generated valid inequalities by using the problem’s struc-

ture. We observed that adding valid inequalities to the MP is one of the most

important steps in terms of convergence speed of the algorithm.

One of the most important results that can be inferred from our computational

study is that strong valid inequalities and feasibility cuts must be generated

for difficult instances. We test the performance of branch-and-check algorithm

with MIQCP solver of CPLEX. We demonstrate that we can solve large size in-

stances to optimality by using a variant of branch-and-check alternative, while

they couldn’t be solved optimally by MIQCP solver.

The last problem in this dissertation is QCHLP which is a general version of

QCCLP. We give our results for QCHLP in Chapter 5. The decomposition

algorithm that we develop for QCHLP is an extension of the branch-and-check

method for QCCLP. As optimality cuts, we develop problem specific optimality

cuts. To evaluate the performance of this optimality cut, we used LL optimality

cuts. In the computational study, there are instances in which BDTA with TBB

cuts gives better solutions than BDTA with LL cuts. On the other hand, these

two alternative cuts can have similar performance on some subset of instances.

To observe if there exists a significant difference between two cuts, we test

them on LCQHLP which is a special case of QCHLP.

From the computational results, we conclude that BDTA with TBB cuts is su-

perior to the other alternative (BDTA with LL cuts) in terms of average CPU

time. As we expected, BDTA with TBB cuts requires less number of optimality

cuts.

To sum up, we develop the first MISOCP reformulation of the nonlinear con-

straints for WLANDP1 and WLANDP2. Both branch-and-check algorithm

and BDTAs are the first Benders decomposition based algorithms for QCCLP

and QCHLP, respectively. When compared the relative performance of BD-

TAs with that of automatic Benders decomposition, we observed that adding

problem specific cuts demonstrates a better performance than automatic imple-

mentation for QCCLP.

141

6.2 Future Research Directions

In this dissertation, we studied nonlinear integer location and hub location prob-

lems in which all parameters are deterministic. Although the problems are in

the class of deterministic optimization problems, we used the logic behind the

decomposition algorithms which are widely used for two stage stochastic pro-

grams. Adding stochasticity to nonlinear integer problems will increase the

complexity of the problems. Therefore, solving such kind of problems to opti-

mum will be more challenging within reasonable time limit.

For both variants of the problem studied in Chapter 3, we developed BDTAs.

As a future research, demand of the user terminals could be generated from a

finite set of alternatives. In this case, power level selection decisions can be

determined in the first stage. After uncertain demand values are realized, de-

termining the assignments of user terminals to access points will be decision

variables in the second stage. Resulting extensive model will be in the class of

nonlinear stochastic integer programs. Proposed BDTAs can be used to solve

this problem to optimum. Because, in Chapter 3, we develop the algorithm

by assuming that we have only one scenario for each parameter. However,

when the number of scenarios increases, it is neccessary to find efficient algo-

rithms to solve integer subproblems. On the other hand, MISOCP reformula-

tion that we develop for deterministic problem is also valid for stochastic vari-

ant of WLANDPs. In this case, the resulting model will include high number of

decision variables and constraints. To overcome this drawback, decomposition

algorithms in which subproblems can include conic constraints could be used.

In WLANDPs studied in this dissertation, the objective functions are linear. As

a future research, nonlinear objective functions could be taken into considera-

tion. Including nonlinear objective function to the model makes the problem

more challenging to solve. Efficient decomposition algorithms or reformula-

tions, which can be applied for the objective function could be implemented.

We studied QCCLP and developed an exact solution method based on Ben-

ders decomposition for this problem in Chapter 4. We assume a star network

142

between the terminal nodes and hub (concentrator) nodes is complete. As a fu-

ture research, different network structures could be studied. Different structures

have been widely studied in the hub location literature. When the structure of

the network changes, objective function and constraints may include nonlinear

terms. They can be handled by using the similar logic behind the proposed

decomposition algorithms for QCCLP.

For QCCLP, we assume that all demand values are known. It is possible that

there are finite set of scenarios from which demand values are generated. In

this case, we could study a two stage stochastic integer program for the result-

ing problem. In the literature, different type of uncertainities (e.g., polyhedral

uncertainty, hose demand uncertainty) are defined for the problems arising in

telecommunication networks. When this type of uncertainities are added to

the model, we may end up with nonlinear models. As an alternative for a fu-

ture research, developing exact decomposition algorithms without using any

linearizations can be studied. One other alternative study in the future could be

considering the p-median variant of this problem.

In the hub location literature, there are similar problems with QCCLP. Modular

link capacitated hub location model also has nonlinear terms in the capacity

constraints. As in QCCLP, proposed nonlinear terms exists due to the mul-

tiplications of binary variables. The idea behind generating problem specific

feasibility and optimality cuts could be used in the decomposition algorithms

for modular link capacitated problem.

The last problem we studied in this dissertation is QCHLP which includes both

nonlinear objective function and the capacity constraints. As an alternative for a

future research, different types of network structures, different nonlinear terms

and stochastic variants of the problem could be studied.

143

144

REFERENCES

[1] AP data set. http://users.monash.edu/~andrease/
Downloads.htm. [Online; accessed 26-February-2018].

[2] M. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic refor-
mulation for machine-job assignment with controllable processing times.
Operations Research Letters, 37(3):187 – 191, 2009.

[3] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathe-
matical Programming, 95:3–51, 2001.

[4] F. T. Altekin. A comparison of piecewise linear programming formula-
tions for stochastic disassembly line balancing. International Journal of
Production Research, 55(24):7412–7434, 2017.

[5] S. Alumur and B. Y. Kara. Network hub location problems: The state of
the art. European Journal of Operational Research, 190(1):1 – 21, 2008.

[6] G. Angulo, S. Ahmed, and S. S. Dey. Improving the integer l-shaped
method. Informs Journal on Computing, 28(3):483 – 499, 2016.

[7] A. Atamtürk, G. Berenguer, and Z.-J. M. Shen. A conic integer program-
ming approach to stochastic joint location-inventory problems. Opera-
tions Research, 60(2):366–381, 2012.

[8] T. Aykin. Lagrangian relaxation based approaches to capacitated hub-
and-spoke network design problem. European Journal of Operational
Research, 79(3):501 – 523, 1994.

[9] T. Aykin. Networking policies for hub-and-spoke systems with applica-
tion to the air transportation system. Transportation Science, 29(3):201–
221, 1995.

[10] J. C. Beck. Checking-up on branch-and-check. 2010.
[11] J. F. Benders. Partitioning procedures for solving mixed-variables pro-

gramming problems. Numer. Math., 4(1):238–252, 1962.
[12] H. Y. Benson and Ümit Sağlam. Mixed-Integer Second-Order Cone Pro-

gramming: A Survey, chapter Chapter 2, pages 13–36.
[13] A. Bockmayr and N. Pisaruk. Detecting infeasibility and generating cuts

for mixed integer programming using constraint programming. Comput-
ers and Operations Research, 33(10):2777 – 2786, 2006.

[14] P. Bonami, M. Kılınç, and J. Linderoth. Algorithms and software for con-
vex mixed integer nonlinear programs. In J. Lee and S. Leyffer, editors,
Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes
in Mathematics and its Applications, pages 1–39. Springer New York,
2012.

[15] D. L. Bryan and M. E. O’Kelly. Hub-and-spoke networks in air trans-
portation: An analytical review. Journal of Regional Science, 39(2):275–
295, 1999.

145

http://users.monash.edu/~andrease/Downloads.htm
http://users.monash.edu/~andrease/Downloads.htm

[16] R. S. d. Camargo and G. d. Miranda Jr. Addressing congestion on single
allocation hub-and-spoke networks. Pesquisa Operacional, pages 465 –
496, 2012.

[17] J. Campbell. A survey of network hub location. 6:31–49, 01 1994.
[18] J. F. Campbell. Integer programming formulations of discrete hub loca-

tion problems. European Journal of Operational Research, 72(2):387 –
405, 1994.

[19] J. F. Campbell and M. E. O’Kelly. Twenty-five years of hub location
research. Transportation Science, 46(2):153–169, 2012.

[20] G. Codato and M. Fischetti. Combinatorial benders’ cuts for mixed-
integer linear programming. Operations Research, 54(4):756–766, 2006.

[21] I. Contreras. Hub Location Problems, pages 311–344. Springer Interna-
tional Publishing, 2015.

[22] I. Contreras, J.-F. Cordeau, and G. Laporte. Benders decomposi-
tion for large-scale uncapacitated hub location. Operations Research,
59(6):1477–1490, 2011.

[23] I. Contreras, J.-F. Cordeau, and G. Laporte. Exact solution of large-scale
hub location problems with multiple capacity levels. Transportation Sci-
ence, 46(4):439–459, 2012.

[24] I. Contreras, J. A. Díaz, and E. Fernández. Branch and price for large-
scale capacitated hub location problems with single assignment. IN-
FORMS Journal on Computing, 23(1):41–55, 2011.

[25] I. Contreras, J. A. Díaz, and E. Fernández. Lagrangean relaxation for the
capacitated hub location problem with single assignment. OR Spectrum,
2009.

[26] Á. Corberán, J. Peiró, V. Campos, F. Glover, and R. Martí. Strategic
oscillation for the capacitated hub location problem with modular links.
Journal of Heuristics, 22(2):221–244, 2016.

[27] J.-F. Cordeau, F. Pasin, and M. M. Solomon. An integrated model for
logistics network design. Annals of Operations Research, 144(1), 2006.

[28] A. I. Corréa, A. Langevin, and L.-M. Rousseau. Scheduling and rout-
ing of automated guided vehicles: A hybrid approach. Computers and
Operations Research, 34(6):1688 – 1707, 2007.

[29] I. Correia, S. Nickel, and F. S. da Gama. Single-assignment hub location
problems with multiple capacity levels. Transportation Research Part B:
Methodological, 44(8):1047 – 1066, 2010.

[30] M. da Graça Costa, M. E. Captivo, and J. Clímaco. Capacitated single
allocation hub location problem—a bi-criteria approach. Computers and
Operations Research, 35(11):3671 – 3695, 2008.

[31] R. de Camargo and G. Miranda. Single allocation hub location problem
under congestion: Network owner and user perspectives. Expert Systems
with Applications, 39(3):3385 – 3391, 2012.

[32] R. de Camargo, G. Miranda, and H. Luna. Benders decomposition for the
uncapacitated multiple allocation hub location problem. Computers and
Operations Research, 35(4):1047 – 1064, 2008.

146

[33] R. de Camargo, G. Miranda, and H. Luna. Benders decomposition for
the uncapacitated multiple allocation hub location problem. Computers
& Operations Research, 35(4):1047 – 1064, 2008.

[34] R. S. de Camargo, G. de Miranda, and H. P. L. Luna. Benders decompo-
sition for hub location problems with economies of scale. Transportation
Science, 43(1):86–97, 2009.

[35] H. Şen and K. Bülbül. A strong preemptive relaxation for weighted tar-
diness and earliness/tardiness problems on unrelated parallel machines.
INFORMS Journal on Computing, 27(1):135–150, 2015.

[36] A. Ernst and M. Krishnamoorthy. Solution algorithms for the capacitated
single allocation hub location problem. Annals of Operations Research,
pages 141–159, 1999.

[37] A. T. Ernst and M. Krishnamoorthy. Efficient algorithms for the uncapaci-
tated single allocation p-hub median problem. Location Science, 4(3):139
– 154, 1996.

[38] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. Hub lo-
cation problems: A review of models, classification, solution techniques,
and applications. Computers and Industrial Engineering, 64(4):1096 –
1109, 2013.

[39] M. M. Fazel-Zarandi and J. C. Beck. Solving a location-allocation prob-
lem with logic-based benders’ decomposition. In CP, 2009.

[40] B. Gendron, R. Garroppo, G. Nencioni, M. Scutellà, and L. Tavanti. Ben-
ders decomposition for a location-design problem in green wireless local
area networks. Electronic Notes in Discrete Mathematics, 41:367 – 374,
2013.

[41] B. Gendron, R. Garroppo, G. Nencioni, M. Scutellà, and L. Tavanti. A
branch and benders-cut method for nonlinear power design in green wire-
less local area networks. CIRRELT, Technical Report, 2014.

[42] B. Gendron, M. G. Scutellà, R. G. Garroppo, G. Nencioni, and L. Tavanti.
A branch-and-benders-cut method for nonlinear power design in green
wireless local area networks. European Journal of Operational Research,
255(1):151 – 162, 2016.

[43] S. Gürel. A conic quadratic formulation for a class of convex congestion
functions in network flow problems. European Journal of Operational
Research, 211(2):252 – 262, 2011.

[44] G. Heilporn, J.-F. Cordeau, and G. Laporte. An integer l-shaped algorithm
for the dial-a-ride problem with stochastic customer delays. Discrete Ap-
plied Mathematics, 159(9):883 – 895, 2011.

[45] J. Hooker and G. Ottosson. Logic-based benders decomposition. Mathe-
matical Programming, 96:33–60, 2003.

[46] J. N. Hooker. Planning and scheduling by logic-based benders decompo-
sition. Operations Research, 55(3):588–602, 2007.

[47] V. Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for
a class of optimization problems. INFORMS Journal on Computing,
13(4):258–276, 2001.

147

[48] J. G. Klincewicz. Avoiding local optima in thep-hub location problem
using tabu search and grasp. Annals of Operations Research, 40(1):283–
302, 1992.

[49] J. G. Klincewicz. Hub location in backbone/tributary network design: a
review. 6:307 – 335, 1998.

[50] E. Koca, H. Yaman, and M. S. Aktürk. Stochastic lot sizing problem with
controllable processing times. Omega, 53:1 – 10, 2015.

[51] J. Kratica, M. Milanović, Z. Stanimirović, and D. Tošić. An evolutionary-
based approach for solving a capacitated hub location problem. Applied
Soft Computing, 11(2):1858 – 1866, 2011.

[52] Y.-J. Kuo and H. D. Mittelmann. Interior point methods for second-order
cone programming and or applications. Computational Optimization and
Applications, 28(3):255–285, 2004.

[53] M. Labbé, H. Yaman, and E. Gourdin. A branch and cut algorithm for hub
location problems with single assignment. Mathematical Programming,
102(2):371–405, Mar 2005.

[54] G. Laporte and F. V. Louveaux. The integer l-shaped method for stochas-
tic integer programs with complete recourse. Operations Research Let-
ters, 13(3):133 – 142, 1993.

[55] G. Laporte, F. V. Louveaux, and L. van Hamme. An integer l -shaped
algorithm for the capacitated vehicle routing problem with stochastic de-
mands. Operations Research, 50(3):415–423, 2002.

[56] G. Laporte, F. V. Louveaux, and L. van Hamme. An integer l-shaped
algorithm for the capacitated vehicle routing problem with stochastic de-
mands. Operations Research, 50(3):415–423, 2002.

[57] J. F. Meier and U. Clausen. Solving single allocation hub location prob-
lems on euclidean data. Transportation Science, 0(0):null, 0.

[58] M. Meraklı and H. Yaman. Robust intermodal hub location under polyhe-
dral demand uncertainty. Transportation Research Part B: Methodologi-
cal, 86:66 – 85, 2016.

[59] M. Meraklı and H. Yaman. A capacitated hub location problem under
hose demand uncertainty. Computers and Operations Research, 88:58 –
70, 2017.

[60] N. Noyan, B. Balcik, and S. Atakan. A stochastic optimization model for
designing last mile relief networks. Transportation Science, 50(3):1092–
1113, 2016.

[61] M. O’Kelly, D. Skorin-Kapov, and J. Skorin-Kapov. Lower bounds for
the hub location problem. Management Science, 41(4):713–721, 1995.

[62] M. E. O’Kelly. A quadratic integer program for the location of interacting
hub facilities. European Journal of Operational Research, 32(3):393 –
404, 1987.

[63] M. E. O’Kelly and H. J. Miller. The hub network design problem: A
review and synthesis. Journal of Transport Geography, 2(1):31 – 40,
1994.

148

[64] J. Penuel, J. C. Smith, and Y. Yuan. An integer decomposition algorithm
for solving a two-stage facility location problem with second-stage acti-
vation costs. Naval Research Logistics (NRL), 57(5):391–402, 2010.

[65] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The benders
decomposition algorithm: A literature review. European Journal of Op-
erational Research, 259(3):801 – 817, 2017.

[66] I. Rodríguez-Martín and J. J. Salazar-González. Solving a capacitated
hub location problem. European Journal of Operational Research,
184(2):468 – 479, 2008.

[67] B. Rostami, C. Buchheim, J. F. Meier, and U. Clausen. Lower bound-
ing procedures for the single allocation hub location problem. Electronic
Notes in Discrete Mathematics, 52:69 – 76, 2016.

[68] B. Rostami, N. Kämmerling, C. Buchheim, and U. Clausen. Reliable
single allocation hub location problem under hub breakdowns. Computers
and Operations Research, 96:15 – 29, 2018.

[69] P. Rubin. Benders Decomposition Then and Now. https:
//orinanobworld.blogspot.com.tr/2011/10/
benders-decomposition-then-and-now.html, 2011.
[Online; accessed 26-February-2018].

[70] R. Sadykov and L. A. Wolsey. Integer programming and constraint
programming in solving a multimachine assignment scheduling prob-
lem with deadlines and release dates. INFORMS Journal on Computing,
18(2):209–217, 2006.

[71] S. Sen. Algorithms for stochastic mixed-integer programming models. In
K. Aardal, G. Nemhauser, and R. Weismantel, editors, Discrete Optimiza-
tion, volume 12 of Handbooks in Operations Research and Management
Science, pages 515 – 558. Elsevier, 2005.

[72] S. Sen and L. J. Higle. The c3 theorem and a d2 algorithm for large scale
stochastic mixed-integer programming: Set convexification. Mathemati-
cal Programming, 104(1):1–20, 2005.

[73] H. D. Sherali and J. C. Smith. An improved linearization strategy for zero-
one quadratic programming problems. Optimization Letters, 1(1):33–47,
2007.

[74] D. Skorin-Kapov and J. Skorin-Kapov. On tabu search for the location
of interacting hub facilities. European Journal of Operational Research,
73(3):502 – 509, 1994.

[75] D. Skorin-Kapov, J. Skorin-Kapov, and M. O’Kelly. Tight linear pro-
gramming relaxations of uncapacitated p-hub median problems. Euro-
pean Journal of Operational Research, 94(3):582 – 593, 1996.

[76] E. S. Thorsteinsson. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. 2001.

[77] D. Wheatley, F. Gzara, and E. Jewkes. Logic-based benders decomposi-
tion for an inventory-location problem with service constraints. Omega,
55:10 – 23, 2015.

[78] H. Yaman. Concentrator location in telecommunications networks. Com-
binatorial Optimization, 2005.

149

https://orinanobworld.blogspot.com.tr/2011/10/benders-decomposition-then-and-now.html
https://orinanobworld.blogspot.com.tr/2011/10/benders-decomposition-then-and-now.html
https://orinanobworld.blogspot.com.tr/2011/10/benders-decomposition-then-and-now.html

[79] H. Yaman and G. Carello. Solving the hub location problem with mod-
ular link capacities. Computers and Operations Research, 32(12):3227 –
3245, 2005.

150

APPENDIX A

MIQCP IN CPLEX 12.7.1

Table A.1: Mathematical Model Types with different objective and constraints

Obj /Const Linear const. Nonlinear const.

Linear obj MILP MIQCP
Nonlinear obj MIQP MIQCP

Table A.1 gives the suitable method depending on type of the objective function

and constraints in any model.

As we compare the performance of MIQCP solver and decomposition algo-

rithms, we give a brief background on MIQCPs in this part. IBM CPLEX can

solve MIQCPs, if constraints and objective function have certain conditions.

MIQCP with a linear objective function is solved by CPLEX MIQCP solver.

When the objective function of the model includes quadratic terms and the

terms are convex, CPLEX solves the model to optimum. On the other hand,

if the objective function includes a multiplication of binary variables, it is also

solved through CPLEX. This situation implies that the objective function could

be a non-convex function.

There are also two conditions on the constraints of MIQCP.

– If the nonlinear constraints can be reformulated as second order cone pro-

grams, MIQCP solves such kind of models to optimum.

– The nonlinear constraints could be non-convex. However, in this case, the

only condition is that nonlinear terms include multiplications of binary

variables.

151

As the mathematical model of QCCLP considered in this paper has a linear

objective function and nonlinear constraints, the suitable solver for our problem

is MIQCP.

Through solving MIQCPs in CPLEX, there is a parameter in which the strat-

egy of solving MIQCPs is selected. If the user does not determine the related

parameter, CPLEX will choose the strategy automatically. There are other two

options of this strategy. QCP relaxation is solved at each node of the model,

when the parameter is set to value of 1. If the parameter 2 is selected, LP re-

laxation is solved at each node instead of QCP relaxation. The performance of

selected strategy depends on the problem’s structure under consideration. To

determine the best strategy to solve MIQCPs, two possible options should be

examined on the model.

In this study, we chose the parameter 2 in which LP relaxation is solved at each

node, since the performance of parameter 2 is better than the performance of

parameter 1 for all instances in computational study.

In this study, we consider a capacitated concentrator location problem in which

the objective function is linear and the constraints defining capacity restrictions

between non-hub nodes and hubs are nonlinear. The novelty of the problem

comes from capacity usage of hubs. The capacity of the hubs is also used for

backbone traffic that occurs between hub locations.

• Linearization of quadratic terms on the constraints

By using standard linearization techniques for multiplications of binary vari-

ables, we give two linearized models to solve the problem quadratic capacitated

concentrator location problem (QCCLP) in an extensive form. One of the lin-

earization techniques was developed by (Dantzig, 1959) and the other one was

given in the study of [75]. In the literature, the quadratic term can be seen in

various areas such as telecommunication problems, quadratic assignment and

quadratic knapsack problem.

Lets first give a linearization for the objective function’s last term including

multiplication of binary variables.

152

By defining zjl ≥
∑

i∈I
∑

m∈I tim · xij · xml, ∀j, l ∈ I . We can write the last

term on the objective function as
∑

j∈I
∑

l∈I:j 6=lRjl · zjl, where zjl define the

total traffic on backbone link from j to l. Lets define xijml = xij · xml.

xijml ≥ xij + xml − 1, ∀i, j,m, l ∈ I.

xijml ≤ xij, ∀i, j,m, l ∈ I.

xijml ≤ xml, ∀i, j,m, l ∈ I.

zjl ≥
∑
i∈I

∑
m∈I

tim · xijml, ∀j, l ∈ I.

By using the constraints defined above, we need to write O(n4) constraints.

Using variable zjl, we can linearize the capacity constraints. The steps traced

for linearization are given in [79].

As mentioned in ([73]) for general zero one quadratic program and ([79]) for

modular link capacitated hub location problem, constraints (xijml ≤ xij) and

(xijml ≤ xml) are redundant due to the fact that Rjl values are nonnegative.

For each j,

∑
l∈I:l 6=j

zjl =
∑
l∈I:l 6=j

∑
i∈I

∑
m∈I

timxijxml =
∑
i∈I

∑
m∈I

tim · xij
∑
l∈I:l 6=j

xml

.

Since
∑

l∈I:l 6=j xml + xmj = 1 from constraints (5.2), we have
∑

l∈I:l 6=j zjl =∑
i∈I
∑

m∈I tim · xij · (1− xmj).

Similarly, zlj can be rewritten as,

∑
l∈I:l 6=j

zlj =
∑
l∈I:l 6=j

∑
i∈I

∑
m∈I

tmi · xij · xml =
∑
i∈I

∑
m∈I

tmi · xij
∑
l∈I:l 6=j

xml

∑
l∈I:l 6=j

(zjl + zlj) =
∑
i∈I

∑
m∈I

{tim · xij · (1− xmj) + tmi · xij · (1− xmj)}

(A.1)

153

By using (A.1), we can rewrite Constraints (5.4) in a linear form.

∑
i∈I

∑
m∈I

(tim + tmi) · xij +
∑
l∈I:l 6=j

(zjl + zlj) ≤ Qh(j) · xjj, ∀j ∈ I. (A.2)

After linearizing the constraints (5.4), we obtain the following linearized model

which is called Linearization 1 (LSAHLP-1) in this paper.

This linearized formulation has (n4 + 2 · n2) variables of which (n4 + n2)

are binary and it includes (3 · n4 + 2 · n2 + 2 · n) linear constraints. Since

all assignment and hub location decisions are binary, (xij ∈ {0, 1}), there is

no need to define xijml as binary variables. Therefore, we can use continuous

variables (0 ≤ xijml ≤ 1) for multiplications of binary variables.

In the formulation LSAHLP-2, we can use the following constraints and obtain

another MILP model for the problem QSAHLP.∑
l∈I

xijml = xij, ∀i, j,m ∈ I. (A.3)

∑
j∈I

xijml = xml, ∀i, l,m ∈ I. (A.4)

Constraints (A.3) ensure that if a non-hub node i is assigned to a hub node j,

(e.g. xij = 1), the demand from node i to m should pass through another hub

l to which node m is assigned. Similarly, if xml is 1, the flow between i and m

should pass through the hub j. This is satisfied by constraints (A.4).

When the number of nodes in the network increases, the resulting linearized

models (LSAHLP-1 & LSAHLP-2) are large scale mixed integer models. There-

fore, they cannot be solved to optimum within reasonable CPU time, even if we

have moderate size problems. Decomposition algorithms could be used in order

to eliminate this difficulty. The main idea behind using decomposition structure

is to handle nonlinearities in the capacity constraints without defining any new

variable as done in linearizations.

For each instance, we report the following items in Tables A.2 and A.3:

154

– Objective function value: If the instance is solved to optimality, objective

function gives the optimal solution’s value.

– CPU time for MIQCP: As we do not use any specific cuts through solving

the model in an extensive form, CPU time gives the overall computational

time.

– R.gap: For each method, R.Gap is calculated the relative difference be-

tween the objective function value of the instance when the algorithm

stops and best integer solution found.

– T(i): This column gives the total computational time to find traffic bound

values for backbone traffic under the assumption of being node i is a hub.

– T(i)(j): Total required time spent to find minimum amount of backbone

flow between any pair i and j in the network.

– B1(cpu): This column gives total CPU time of BV2T2F1 algorithm by

adding traffic bound calculations’ time. In other words, B1(cpu)= cpu(

under B1 method)+ T (i)+ T (i)(j). Similarly, B8(cpu)= cpu(under B8

method)+ T (i).

– Fcuts: As the Benders decomposition algorithm includes feasibility cuts,

these columns give total number of feasibility cuts added to the MP during

the algorithm.

– Best Method: This column gives the method whose CPU time is the best

over these methods. When an instance is not solved to optimum, we report

the method in which a better bound (objective function value) is found.

155

Table A.2: Comparison of MIQCP, BV2TIPFMF and BV1TIPFMF Results for 20 & 25 Nodes

MIQCP BV2TIPFMF BV1TIPFMFTB (IP)

Ins Demand Cap FC Nodes Obj CPU R.Gap Hubs Obj CPU R.Gap Hubs F.cut T(i) T(ij) Tot (CPU) Obj CPU R.Gap Hubs F.cut Tot(CPU) Best Method

1 D 20 243,550 10.19 0 3,9;11;14;19 243,550 0.94 0 3;9;11;14;19 66 0.47 47.22 48.63 243,550 1.38 0 3;9;11;14;19 451 1.85 BV1TIPFEF
2 D/1.2 3000 L 20 211,700 14.58 0 3;11;13;14 211,700 2.63 0 3;11;13;14 218 0.63 52.53 55.79 211,700 2.08 0 3;11;13;14 694 2.71 BV1TIPFEF
3 D/1.3 20 201,947 35.45 0 3;9;11;14 201,947 13.89 0 3;9;11;14 662 2.28 63.64 79.81 201,947 5.08 0 3;9;11;14 1341 7.36 BV1TIPFEF
4 D/1.4 20 184,475 5.86 0 6;11;14 184,475 3.19 0 6;11;14 102 0.56 69.23 72.98 184,475 1.88 0 6;11;14 466 2.44 BV1TIPFEF
5 D/1.5 20 173,226 8.74 0 3;11;14 173,226 0.88 0 3;11;14 45 0.86 66.61 68.35 173,226 3.67 0 3;11;14 1062 4.53 BV1TIPFEF

6 D 20 292,451 14.06 0 1;8;10;11;18 292,451 0.31 0 1;8;10;11;18 17 0.47 47.22 48.00 292,451 3.08 0 1;8;10;11;18 1093 3.55 BV1TIPFEF
7 D/1.2 3000 T 20 236,912 12.98 0 7;9;11;18 236,912 1.23 0 7;9;11,18 17 0.63 52.53 54.39 236,912 5.69 0 7;9;11;18 1579 6.32 BV1TIPFEF
8 D/1.3 20 221,316 20.83 0 1;7;11;18 221,316 26.71 0 1;7;11;18 1431 2.28 63.64 92.63 221,316 9.41 0 1;7;11;18 1941 11.69 BV1TIPFEF
9 D/1.4 20 198,834 3.8 0 7;11;18 198,834 0.28 0 7;11;18 1 0.56 69.23 70.07 198,834 0.64 0 7;11;18 119 1.20 BV1TIPFEF

10 D/1.5 20 188,071 4.14 0 7;11;18 188,071 0.66 0 7;11;18 7 0.86 66.61 68.13 188,071 1.27 0 7;11;18 289 2.13 BV1TIPFEF

11 D 20 223,990 3.89 0 3;9;11;14 223,990 0.8 0 3;9;11,14 61 0.64 68.05 69.49 223,990 0.63 0 3;9;11;14 172 1.27 BV1TIPFEF
12 D/1.2 4000 L 20 193,755 5.08 0 6;11;14 193,755 0.92 0 6;11;14 53 0.97 65.64 67.53 193,755 0.7 0 6;11;14 216 1.67 BV1TIPFEF
13 D/1.3 20 181,317 4.69 0 3;11;14 181,317 2.28 0 3;11;14 99 0.50 60.13 62.91 181,317 0.41 0 3;11;14 112 0.91 BV1TIPFEF
14 D/1.4 20 162,588 0.08 0 7;14 162,588 0.09 0 7;14 1 0.27 64.31 64.67 162,588 0.02 0 7;14 1 0.29 MIQCP
15 D/1.5 20 155,237 0.13 0 7;14 155,237 0.05 0 7;14 0 0.48 56.25 56.78 155,237 0.02 0 7;14 0 0.50 MIQCP

16 D 20 248,725 4.56 0 7;11;18 248,725 0.44 0 7;11;18 18 0.64 68.05 69.13 248,725 0.89 0 7;11;18 247 1.53 BV1TIPFEF
17 D/1.2 4000 T 20 214,325 1.2 0 7;11;18 214,325 0.34 0 7;11;18 8 0.97 65.64 66.95 214,325 0.38 0 7;11;18 112 1.35 MIQCP
18 D/1.3 20 201,150 3.28 0 1;11;18 201,150 1.89 0 1;11;18 77 0.50 60.13 62.52 201,150 0.16 0 1;11;18 34 0.66 BV1TIPFEF
19 D/1.4 20 184,240 0.06 0 7;18 184,240 0.09 0 7;18 0 0.27 64.31 64.67 184,240 0.02 0 7;18 0 0.29 MIQCP
20 D/1.5 20 175,956 0.09 0 7;18 175,956 0.05 0 7;18 0 0.48 56.25 56.78 175,956 0.03 0 7;18 0 0.51 MIQCP

21 D 25 242,304 22.32 0 3;11;14;18;24 242,304 1.19 0 3;11;14;18;24 45 1.38 97.17 99.74 242,304 3.58 0 3;11;14;18;24 725 4.96 BV1TIPFEF
22 D/1.2 3000 L 25 204,369 17.02 0 3;14;16;24 204,369 1.2 0 3;14;16;24 16 1.42 141.23 143.85 204,369 2.97 0 3;14;16;24 671 4.39 BV1TIPFEF
23 D/1.3 25 195,595 13.5 0 3;14;16;24 195,595 3.73 0 3;14;16;24 72 0.88 122.47 127.08 195,595 4.59 0 3;14,16;24 594 5.47 BV1TIPFEF
24 D/1.4 25 180,858 11.5 0 9;11;24 180,858 0.78 0 9;11;24 15 0.7 113.14 114.62 180,858 5.2 0 9;11;24 1058 5.9 BV1TIPFEF
25 D/1.5 25 130,011 0.17 0 8;24 130,111 0.09 0 8;24 0 0.86 99.4 100.3 130,011 0.015 0 8;24 0 0.88 MIQCP

26 D 25 338,719 618.63 0 3;9;11;14;24 338,719 37.11 0 3;9;11;14;24 222 1.38 97.17 135.66 338,719 1133.33 0 3;9;11;14;24 20804 1134.71 BV2TIPFEF
27 D/1.2 3000 T 25 273,172 45.36 0 9;11;14;24 273,172 1.47 0 9;11;14;24 12 1.42 141.23 144.12 273,172 101.48 0 9;11;14;24 4693 102.90 MIQCP
28 D/1.3 25 264,053 7200.17 0,0067 9;11;14;24 263,548 540.33 0 9;11;14;24 9584 0.88 122.47 663.68 264,053 7200.06 0.83 9;11;14;24 58994 7200.94 BV2TIPFEF
29 D/1.4 25 229,511 9,25 0 11;14;24 229,511 0,72 0 11;14;24 3 0.7 113.14 114.56 229,511 34.45 0 11;14;24 1148 35.15 MIQCP
30 D/1.5 25 220,571 22.25 0 9;11;24 220,571 0.63 0 9;11;24 5 0,86 99,4 100.89 220,571 20,86 0 9;11;24 3445 21,72 BV1TIPFEF

31 D 25 222,479 5.05 0 3;9;16;18 222,479 0.59 0 3;9;16;18 11 0,28 102,81 103.68 222,479 0.64 0 3;9;16;18 81 0.92 BV1TIPFEF
32 D/1.2 4000 L 25 191,488 4.34 0 9;11;18 191,488 0.55 0 9;11;18 16 0.64 111.41 112.6 191,488 0.64 0 9;11;18 106 1.28 BV1TIPFEF
33 D/1.3 25 181,654 7.44 0 9;11;18 181,654 4.13 0 9;11;18 101 0.8 120 124.93 181,654 0.81 0 9;11;18 158 0.81 BV1TIPFEF
34 D/1.4 25 168,549 1.69 0 8;18 168,549 0.39 0 8;18 8 0.44 122.78 123.61 168,549 0.19 0 8;18 9 0.63 BV1TIPFEF
35 D/1.5 25 130,011 0.19 0 8;24 130,011 0.06 0 8;24 0 0.16 6.66 6.88 130,011 0.03 0 8;24 0 0.22 MIQCP

36 D 25 284,844 13,52 0 11,14;24 284,844 2.7 0 11;14;24 158 0.28 102.81 105.79 284,844 3.88 0 11;14;24 924 4.16 BV1TIPFEF
37 D/1.2 4000 T 25 242,948 0.88 0 9;11;24 242,948 0.88 0 9;11;24 6 0.64 111.41 112.93 242,948 1.08 0 9;11;24 321 1.72 MIQCP
38 D/1.3 25 232,736 13.75 0 9;11;24 232,736 4.59 0 9;11;24 349 0.8 120 125,39 232,736 1.52 0 9;11;24 372 2.32 BV1TIPFEF
39 D/1.4 25 210,573 0.05 0 9;24 210,573 0.05 0 9;24 0 0.44 122.78 123.27 210,573 0.05 0 9;24 0 0.49 MIQCP
40 D/1.5 25 202,214 8,67 0 9;24 202,214 0.016 0 9;24 0 0.16 6.66 6.84 202,214 0.16 0 9;24 1 0.32 BV1TIPFEF

156

Table A.3: Comparison of MIQCP , BV1TIPFMF and BV2TIPFMF Results for 40 Nodes & 50 Nodes

MIQCP BV2TIPFMF BV1TIPFMFTB (IP)

Ins Demand Cap FC Nodes Obj CPU R.Gap Hubs Obj CPU R.Gap Hubs Fcut T(i) T(ij) Tot(CPU) Obj CPU R.Gap Hubs F.cut Tot (CPU) Best Method

41 D 40 254,209 7205.5 0.01 6;17;22;28;29 254,001 2097.23 0 6;17;22;28;37 4,869 1.22 362.41 2460.9 254,209 7200.03 0.006 6;17;22;28;29 30,797 7201.25 BV2TIPFEF
42 D/1.2 3000 L 40 214,462 7200.3 0.02 14;15;29 214,462 150.92 0 6;22;25;28 325 1.22 386.8 538.94 215,025 7200.03 0.01 11;22;28;35 51,028 7201.25 BV2TIPFEF
43 D/1.3 40 203,248 7057.3 0 6;22;25;28 203,248 802.58 0 6;22;25;28 8,841 1.17 421.33 1,225.08 203,804 7200.11 0.01 11;22;29;35 43,834 7201.28 BV2TIPFEF
44 D/1.4 40 187,990 446.41 0 10;22;28 187,990 82.94 0 10; 22;28 862 1.14 457.52 541.6 187,990 5797.06 0 10;22;28 26,212 5798.2 MIQCP
45 D/1.5 40 175,597 67.34 0 14;25;29 175,597 21.38 0 14;25;29 174 1.95 624.27 647.6 175,597 7200.06 0.02 14;25;29 40,269 7202.01 MIQCP

46 D 40 353,868 7205.8 0.08 6;14;19;22;35 345,622 7200.08 0.03 6;14;19;22;35 608 1.22 362.41 7,563.7 349,249 7200.25 0.12 14;19;22;35;38 77,000 7201.47 BV2TIPFEF
47 D/1.2 3000 T 40 288,997 7214.7 0.05 14;19;22;38 288,997 1165.05 0 14;19;22;38 271 1.22 386.8 1,553.07 291,639 7200.11 0.1 14;19;22;35 42,744 7201.33 BV2TIPFEF
48 D/1.3 40 274,866 7205.1 0.06 1;14;22;35 275,337 7200.25 0.06 1;14;22;35 43,508 1.17 421.33 7,623 277,843 7200.05 0.14 6;19;22;35 42,343 7201.22 MIQCP
49 D/1.4 40 242,629 7200.1 0.002 14;22;35 242,629 7.59 0 14;22;35 66 1.14 457.52 466.25 243,781 7200.16 0.09 14;19;38 40,332 7201.3 BV2TIPFEF
50 D/1.5 40 231,000 7202.7 0 14;19;22 231,000 32.25 0 14;19;22 249 1.95 624.27 658.47 231,739 7200.08 0.09 14;19;22 42,482 7202.03 BV2TIPFEF

51 D 40 232,679 98.98 0 11;22;28;35 232,679 12.05 0 11;22;28;35 684 1.11 354.88 368.04 232,679 48.8 0 11;22;28;35 2,645 49.91 BV1TIPFEF
52 D/1.2 4000 L 40 198,607 44.98 0 11;22;38 198,607 4.27 0 11;22;28 148 1.41 379.03 384.71 198,607 29.55 0 11;22;28 1,665 30.96 BV1TIPFEF
53 D/1.3 40 185,104 51.13 0 11;22;28 185,104 20.2 0 11;22;28 1,320 1.13 470.25 491.58 185,104 24.58 0 11;22;28 1,392 25.71 BV1TIPFEF
54 D/1.4 40 171,534 14.22 0 14;28 171,534 1.64 0 14;28 66 2.63 473 477.27 171,534 1.95 0 14;28 86 4.58 BV1TIPFEF
55 D/1.5 40 161,281 1.11 0 14;28 161,281 0.11 0 14;28 0 1 623.95 625.06 161,281 0.11 0 14;28 0 1.11 BV1TIPFEF

56 D 40 307,782 7205.9 0.03 1;14;19;38 308,617 7200.03 0.03 1;14;19;38 44,471 1.11 354.88 7,556 317,953 7200.06 0.08 14;19;22;38 48,274 7201.17 MIQCP
57 D/1.2 4000 T 40 263,294 7205.2 0.04 14;22;35 261,551 10.98 0 14;19;38 28 1.41 379.03 391.4 261,699 7200.06 0.06 14;19;38 53,157 7201.47 BV2TIPFEF
58 D/1.3 40 251,187 7200.1 0.06 14;19;38 248,652 7200.11 0.05 14;19;22 52,550 1.13 470.25 7,671.5 249,747 7200.23 0.07 14;19;38 44,407 7201.36 BV2TIPFEF
59 D/1.4 40 217,699 7.27 0 14;38 217,699 1.69 0 14;38 10 2.63 473 477.3 217,699 140.97 0 14;38 837 143.6 MIQCP
60 D/1.5 40 207,989 26.09 0 14;19 207,989 42.67 0 14;19 352 1 623.95 667.6 207,989 61.16 0 14;19 356 62.16 MIQCP
61 D 50 238,958 2337.83 0 3;22;27;45;48 238,958 141.31 0 3;22;27;45;48 582 1.83 645.1 788.2 238,958 7200.16 0.015 3;22;37;45;48 49,073 7,202 BV2T2F1

62 D/1.2 3000 L 50 205,671 415.719 0 3;27;33;48 205,671 17.75 0 3;27;33;48 71 2.79 764.1 784.62 207,272 7200.14 0.04 3;27;33;48 48,807 7,203 MIQCP
63 D/1.3 50 193,248 636.89 0 3;22;27;48 193,248 41.58 0 3;22;27;48 257 1.73 903.1 946.42 193,248 7200.05 0.02 3;22;27;48 39,892 7,202 MIQCP
64 D/1.4 50 180,876 323.45 0 17;22;48 180,876 30.97 0 17;22;48 125 1.64 756.9 789.53 185,861 7200.36 0.05 15;34;48 27,670 7,202 MIQCP
65 D/1.5 50 168,983 70.81 0 17;22;48 168,983 15.81 0 17;22;48 49 1.06 735.3 752.17 171,986 7200.08 0.05 17;22;48 29,874 7,201 MIQCP

66 D 50 369,636 7207.86 0.06 3;22;27;45;48 367,544 7200.08 0.003 3;20;22;27;48 12,887 1.83 645.1 7847.01 370,150 7200.3 0.18 3;21;27;45;48 65,388 7,202 BV1TIPFEF
67 D/1.2 3000 T 50 303,995 7206.11 0.03 3;22;27;48 303,645 888.7 0 3;22;27;48 506 2.79 764.1 1655.59 310,311 7200.05 0.14 3;22;27;48 53,116 7,201 BV2T2F1

68 D/1.3 50 290,846 7208.38 0.06 3;21;27;48 287,790 7200.39 0.05 3;21;27;48 20,928 1.73 903.1 8105.2 312,562 7200.06 0.21 17;27;41;48 43,279 7,201 BV1TIPFEF
69 D/1.4 50 260,197 2420.75 0 17;21;48 261,570 7200.13 0.02 21;27;48 27,931 1.64 756.9 7958.7 266,497 7200.05 0.14 17;24;48 37,999 7,201 MIQCP
70 D/1.5 50 246,105 3338.11 0 17;21;48 246,105 1777.09 0 17;21;48 10,030 1.06 735.3 2513.5 255,736 7200.33 0.15 17;24;48 36,704 7,201 BV2T2F1

71 D 50 223,098 70.25 0 3;27;32;48 223,098 13.58 0 3;27;32;48 40 1.64 704.8 720.05 223,098 370.25 0 3;27;32;48 8,085 371.89 MIQCP
72 D/1.2 4000 L 50 192,416 39.69 0 17;22;48 192,416 13.89 0 17;22;48 46 0.95 792 806.87 192,416 1275.33 0 17;22;48 16,436 1,276.28 MIQCP
73 D/1.3 50 180,760 29.56 0 17;22;48 180,760 3.75 0 17;22;48 8 1.63 997.4 1002.8 180,760 117.97 0 17;22;48 1,951 119.6 MIQCP
74 D/1.4 50 171,012 120.41 0 15;48 171,012 199.63 0 15;48 742 1.98 828.2 1029.8 171,012 66.84 0 15;48 955 68.82 BV1TIPFEF
75 D/1.5 50 159,790 10.47 0 15;48 159,790 8.06 0 15;48 19 1.97 910.6 920.6 159,790 2.77 0 15;48 17 4.74 BV1TIPFEF

76 D 50 321,400 7205.33 0.05 3,21;27;48 320,478 7200.05 0.03 3;21;27;48 25,307 1.64 704.8 7906.5 333,864 7200.05 0.13 17;21;27;48 52,264 7,202 BV2T2F1

77 D/1.2 4000 T 50 269,261 7204.02 0.04 17;21;48 268,726 349.23 0 3;27;48 1,030 0.95 792 1142.2 268,971 7200.09 0.07 17;21;48 46,095 7,201 BV2T2F1

78 D/1.3 50 256,362 7204.92 0.06 17;21;48 256,325 7200.42 0.06 17;21;48 32,396 1.63 997.4 8199.48 256,325 7200.3 0.07 17;21;48 30,814 7,202 BV1TIPFEF
79 D/1.4 50 226,257 138.73 0 17;48 226,257 106.75 0 17;48 396 1.98 828.2 936.93 226,257 489.8 0 17;48 2,132 491.78 MIQCP
80 D/1.5 50 214,552 21.02 0 17;48 214,552 189.45 0 17;48 676 1.97 910.6 1102.0 214,552 114.7 0 17;48 500 116.67 MIQCP

157

Table A.4: Results of BV1TLPFEF for 40 nodes

Instance Demand Cap FC Obj CPU B&B Nodes R.Gap Hubs F.Cut BV1TLPFEF

1 D

4000 L

232,679 40.85 5,271 0 11;22;28;35 2,425 41.24
2 D/1.2 198,607 16.36 2,136 0 11;22;28 979 16.29
3 D/1.3 185,104 25.73 2,276 0 11;22;28 1,429 26.11
4 D/1.4 171,534 1.27 22 0 14;28 59 1.65
5 D/1.5 161,287 0.08 0 0 14;28 0 0.5

6 D

4000 T

315,864 7200,08 404,8 0.07 14;22;25;38 47,5 7,200.1
7 D/1.2 261,551 7,200,09 89,199 0.06 14;19;38 48,731 7,200.61
8 D/1.3 249,747 7,200,22 69,201 0.07 14;19;38 38145 7,200.67
9 D/1.4 217,699 11,64 761 0 14;38 724 12.16

10 D/1.5 207,989 5,09 315 0 14;19 299 5.53

11 D

3000 L

254,001 7,200.11 523,443 0.005 6;17;22;28;37 30,737 7,200.72
12 D/1.2 214,742 7,200.05 205,547 0.014 11;22;25;28 47,643 7,200.65
13 D/1.3 204,093 7,200.08 179,351 0.017 6;22;25;28 38,427 7,200.52
14 D/1.4 187,990 4,299.98 360,048 0 10;22;28 27,151 4,300.53
15 D/1.5 175,597 7,200.06 291,389 0.03 14;25;29 40,720 7,200.44

16 D

3000 T

355,784 7,200.25 181,621 0.13 14;19;22;35;38 70,159 7,200.83
17 D/1.2 290,029 7,200.08 163,27 0.1 14;19;22;35 45,069 7,200.53
18 D/1.3 277,056 7,200.06 271,929 0.13 14;19;22;35 52,422 7,200.47
19 D/1.4 242,629 7,200.09 279,821 0.08 14;22;35 53,156 7,200.5
20 D/1.5 236,297 7,200.11 77,618 0.11 14;19;22 53,113 7,200.52

158

Table A.5: Results of BV1TLPFEF for 50 Nodes instances

Instance Demand Cap FC Obj CPU B&B Nodes R.Gap Hubs F.Cut BV1TLPFEF

1 D

4000 L

223,098 722.53 30,342 0 3;27;32;48 11,248 723.3
2 D/1.2 192,416 248.203 10,441 0 17;22;48 4,307 248.73
3 D/1.3 180,760 65.05 1891 0 17;22;48 2,056 65.66
4 D/1.4 171,012 26.81 411 0 15;48 780 27.2
5 D/1.5 159,790 1.55 17 0 15;48 19 1.8

6 D

4000 T

339,017 7,200.11 123,329 0.14 17;21;27;48 49,921 7,200.88
7 D/1.2 272,955 7,200.09 91,656 0.09 17;22;48 42,019 7,200.72
8 D/1.3 255,965 7,200.2 47,405 0.07 3;27,48 47,750 7,200.81
9 D/1.4 226,257 1,227.27 5,990 0 17;48 7,019 1,227.66

10 D/1.5 214,552 21.69 236 0 17,48 620 21.94

11 D

3000 L

238,958 7,200.06 271,557 0.015 3;22;27;45;48 44,239 7,200.84
12 D/1.2 208,783 7200.11 77,793 0.05 3;27;45;48 45,359 7,200.63
13 D/1.3 195,037 7,200.41 52,506 0.03 3;22;27;48 31,958 7,201.04
14 D/1.4 185,861 7,200.16 201,917 0.05 15;34;48 21,373 7,200.55
15 D/1.5 168,983 7,200.25 281,031 0.03 17;22;48 41,328 7,200.5

16 D

3000 T

386,566 7,200.08 130,167 0.21 17;21;27;45,48 59,315 7,200.86
17 D/1.2 317,743 7,200.08 89,664 0.16 3;27;45,48 46,592 7,200.6
18 D/1.3 321,061 7,200.05 98,990 0.23 17;21,26;48 41,413 7,200.68
19 D/1.4 266,045 7,200.11 115,445 0.13 17;24,48 52,069 7,200.5
20 D/1.5 253,778 7,200.08 146,261 0.13 17,22,48 51,259 7,200.33

159

Table A.6: Results of BV2TIPFEF for 40 nodes instances

Ins Demand Cap FC Obj CPU B&B Nodes R.Gap Hubs F.Cut BV2TLPFEF

1 D

4000 L

232,679 36.08 4,368 0 11;22;28;35 2,237 37.19
2 D/1.2 198,607 59.27 13,619 0 11;22;28 2,635 60.68
3 D/1.3 185,104 28.34 4,303 0 11;22;28 1,908 29.47
4 D/1.4 171,534 1.7 26 0 14;28 86 4.33
5 D/1.5 161,281 0.09 0 0 14;28 0 1.09

6 D

4000 T

317,359 7,200.1 364,837 0.07 14;22;35;38 47,768 7,201.6
7 D/1.2 261,551 7,200.3 113,144 0.06 14;19;38 61,224 7,201.3
8 D/1.3 250,137 7,200.1 108,567 0.07 14;19;38 59,974 7,201.1
9 D/1.4 217,699 12.8 299 0 14;38 845 13.5

10 D/1.5 207,989 5.8 414 0 14;19 356 7.6

11 D

3000 L

254,001 7,200.0 502,018 0.005 6;17;22;28;37 31,872 7,202.0
12 D/1.2 214,462 7,200.1 256,978 0.013 6;22;25;28 49,907 7,200.8
13 D/1.3 203,248 4,764.1 162,629 0 6;22;25;28 42,552 4,765.0
14 D/1.4 187,990 2,718.4 290,834 0 10;22;28 19,638 2,719.5
15 D/1.5 175,597 7,200.1 307,300 0.013 14;25;29 50,698 7,203.4

16 D

3000 T

351,518 7,200.1 161,312 0.129 14;19;22;35;38 71,872 7,201.3
17 D/1.2 289,186 7,200.1 307,097 0.09 14;19;22;38 40,955 7,201.3
18 D/1.3 286,974 7,200.1 289,267 0.16 14;19;22;38 57,815 7,201.2
19 D/1.4 244,190 7,200.1 387,418 0.08 14;19;38 48,535 7,201.2
20 D/1.5 233,922 7,200.1 156,051 0.1 14;19;22 61,550 7,202.1

160

CHAPTER 2

APPENDIX B

161

Table 2.1: Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr1 to Pr5)

MISOCP BDTA1
Pr CPU Nodes gap Status CPU Nodes Status APs callbacks no of feas no of opt % feas

1 (1) 19.9 25 0 Opt 12.7 139 Opt 2 126 106 20 85
1 (2) 288.5 5068 0 Opt 85.7 365 Opt 2 406 316 90 78
1 (3) 111.1 2495 0 Opt 338.7 1142 Opt 2 886 670 216 76
1 (4) 98.5 2563 0 Opt 335 440 Opt 2 1193 915 278 77
1 (5) 56.1 637 0 Opt 231.6 157 Opt 2 1367 1067 300 79
2 (1) 534.6 39771 0 Opt 153.1 469 Opt 3 499 422 77 85
2 (2) 3600.1 394635 11.8 Feas 2456.8 2555 Opt 3 1970 1748 222 89
2 (3) 2462.1 252066 0 Opt 2384.2 5346 Opt 3 2060 1313 747 64
2 (4) 435.1 40181 0 Opt 2471.7 4459 Opt 3 2144 1983 161 93
2 (5) 160.4 7873 0 Opt 402 1027 Opt 3 795 733 62 93
3 (1) 3600.1 83183 9.1 Feas 3601.8 4543 ATL 4 2603 2452 151 95
3 (2) 1873.9 254304 0 Opt 3602.2 3047 ATL 4 2216 2135 81 97
3 (3) 3600.1 92816 4.3 Feas 3602.5 4644 ATL 4 2135 1796 339 85
3 (4) 495.8 54400 0 Opt 3601.6 2098 ATL 4 2521 2479 42 99
3 (5) 3260.4 433558 0 Opt 3600.6 4188 ATL 4 2170 2122 48 98
4 (1) 3257.9 328738 0 Opt 369.8 1321 Opt 3 765 612 153 80
4 (2) 961.6 82901 0 Opt 3602.3 3545 ATL 3 2671 2196 475 83
4 (3) 1519.3 69818 0 Opt 3601.7 4033 ATL 3 2565 1859 706 73
4 (4) 312.5 25127 0 Opt 3603 5058 ATL 3 2589 2387 202 93
4 (5) 516.2 56158 0 Opt 1108,9 2579 Opt 3 1398 1221 177 88
5 (1) 3275.7 250566 0 Opt 3602.6 5800 ATL 4 2391 2069 322 87
5 (2) 1599.4 213649 0 Opt 3600.2 4359 ATL 4 2337 2145 192 92
5 (3) 484.9 49450 0 Opt 3601.4 4351 ATL 4 2283 1992 291 88
5 (4) 3256.8 472892 0 Opt 3601.8 2723 ATL 4 2407 2342 65 98
5 (5) 799.5 96631 0 Opt 3601.3 3362 ATL 4 2515 2413 102 96

162

Table 2.2: Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr6 to Pr10)

MISOCP BDTA1
Pr CPU Nodes gap Status CPU Nodes Status APs callbacks no of feas no of opt % feas

6 (1) 3266.1 342159 0 Opt 3601.5 1489 ATL 6 2338 2304 34 98.6
6 (2) 3277.8 479018 0 Opt 3602.1 1046 ATL 6 2321 2312 9 99.7
6 (3) 3600.1 36205 3,04 Feas 3620.9 780 ATL 6 1987 1975 12 99.4
6 (4) 3363.9 523503 0 Opt - - NS - - - - -
6 (5) 1438.1 196709 0 Opt 3602.7 1294 ATL 6 2360 2342 18 99.3
7 (1) 206.2 1372 0 Opt 3604.3 4615 ATL 2 1962 1408 554 72
7 (2) 310 957 0 Opt 232.4 685 Opt 2 480 386 94 81
7 (3) 335.2 775 0 Opt 306.9 877 Opt 2 559 425 134 77
7 (4) 67.9 848 0 Opt 458.6 1184 Opt 2 760 641 119 85
7 (5) 62.2 849 0 Opt 95.1 671 Opt 2 336 265 71 79
8 (1) 3600.1 119286 9,15 Feas 3601.9 3224 ATL 3 1937 1633 340 85
8 (2) 3277.9 142681 0 Opt 3601.2 2790 ATL 3 2095 2046 49 98
8 (3) 3600.1 139021 12,32 Feas 3600.5 3894 ATL 3 2052 1708 344 84
8 (4) 3600.2 99380 14,44 Feas 3600.7 3054 ATL 3 1925 1879 46 98
8 (5) 3600.1 206456 7,41 Feas 3602.3 206456 ATL 3 1951 1876 75 97
9 (1) 3600.2 180365 9.2 Feas 3603.9 2126 ATL 4 1828 1756 72 97
9 (2) 3268.1 125121 9.4 Opt 3601.4 - ATL 4 1870 1839 31 99
9 (3) 3274.5 124935 0 Opt 3606.5 2748 ATL 4 1937 1857 80 96
9 (4) 1155.8 70551 0 Opt 3602.9 2704 ATL 4 1913 1889 24 99
9 (5) 2926.5 214436 9.4 Opt 3604.2 2238 ATL 4 1995 1945 50 98

10 (1) 3600.2 68558 6,65 Feas 3600.2 3332 ATL 3 2054 1684 370 82
10 (2) 2359.3 76918 0 Opt 3603.8 2297 ATL 3 1919 1650 269 86
10 (3) 1413.6 43809 0 Opt 3601.5 5484 ATL 3 1858 1466 392 79
10 (4) 1388 59289 0 Opt 3600.9 1921 ATL 3 1921 1762 159 92
10 (5) 1813.4 101265 0 Opt 3603.5 4034 ATL 3 1855 1643 212 89

163

Table 2.3: Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr11 to Pr15)

MISOCP BDTA1
Pr CPU Nodes gap Status CPU Nodes Status APs callbacks no of feas no of opt % feas

11 (1) 728.2 43971 0 Opt 3609.4 2557 ATL 4 1852 1781 71 97
11 (2) 209.7 11963 0 Opt 3600.4 2106 ATL 4 2042 1990 52 98
11 (3) 177.4 13254 0 Opt 3602 2344 ATL 4 1999 1916 83 96
11 (4) 120.9 5055 0 Opt 3603.1 2453 ATL 4 1850 1760 90 96
11 (5) 483.5 39879 0 Opt 3603.6 2137 ATL 4 1964 1889 75 97
12 (1) 3286.7 155369 0 Opt 3600.8 1114 ATL 6 2001 1986 15 99.3
12 (2) 3249.0 316418 0 Opt - - NS - - - - -
12 (3) 3600.2 34402 1.6 Feas - - NS - - - - -
12 (4) 3305.6 241153 0 Opt - - NS - - - - -
12 (5) 1474.0 131146 5 Opt - - NS - - - - -
13 (1) 0.95 0 0 Opt 1.8 53 Opt 1 40 22 18 55
13 (2) 1.1 0 0 Opt 0.8 1 Opt 1 47 27 20 58
13 (3) 1.2 0 0 Opt 7.2 74 Opt 1 113 67 46 60
13 (4) 0.97 0 0 Opt 0.8 1 Opt 1 118 69 49 59
13 (5) 1.31 0 0 Opt 8.1 46 Opt 1 167 104 63 63
14 (1) 42.1 2657 0 Opt 143.0 646 Opt 2 530 378 152 72
14 (2) 14.6 472 0 Opt 260.1 578 Opt 2 879 575 304 66
14 (3) 129.6 416 0 Opt 451.2 621 Opt 2 1286 895 391 70
14 (4) 13.0 15 0 Opt 348.8 229 Opt 2 1552 1111 441 72
14 (5) 33.2 982 0 Opt 704.5 592 Opt 2 1955 1439 516 74
15 (1) 87.2 8544 0 Opt 2586.9 6224 Opt 3 2331 2022 309 86.8
15 (2) 3600.2 3112 8.5 Feas 3600.1 3112 ATL 3 3604 2995 609 83.2
15 (3) 280.7 32505 0 Opt 3504.3 7298 Opt 3 2842 2095 747 73.8
15 (4) 756.5 95281 0 Opt 1745.0 910 Opt 3 3554 2743 811 77.2
15 (5) 324.7 24971 0 Opt 787.8 1823 Opt 3 1264 1013 251 80.2

164

Table 2.4: Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr16 to Pr20)

MISOCP BDTA1
Pr CPU Nodes gap Status CPU Nodes Status APs callbacks no of feas no of opt % feas

16 (1) 27.6 1500 0 Opt 601.6 1899 Opt 2 1109 821 288 75
16 (2) 45.0 4658 0 Opt 1031 2427 Opt 2 1840 1202 638 66
16 (3) 13.5 19 0 Opt 586.9 2137 Opt 2 1072 844 228 79
16 (4) 23.7 1219 0 Opt 376.7 414 Opt 2 1372 1072 300 79
16 (5) 25.0 416 0 Opt 1961.8 2828 Opt 2 2346 1761 585 76
17 (1) 14.7 346 0 Opt 3600.1 3497 ATL 3 2609 2323 286 90
17 (2) 60.9 9382 0 Opt 3600.7 6464 ATL 3 2138 1482 656 70
17 (3) 190.0 30165 0 Opt 3600.3 6440 ATL 3 2846 2262 584 80
17 (4) 27.7 2689 0 Opt 2349.7 3770 Opt 3 2260 1922 338 86
17 (5) 243.9 36163 0 Opt 3600.6 6462 ATL 3 2788 2321 467 84
18 (1) 3600.1 231155 8.84 Feas 5460.1 1261 ATL 5 1625 1577 47 97.1
18 (2) 3600.1 195988 7.57 Feas 3600.2 1194 ATL 5 2594 2487 106 95.9
18 (3) 2088.4 91310 0 Opt 3601.4 3752 ATL 5 2478 2298 180 92.8
18 (4) 365 52520 0 Opt 3600.1 1159 ATL 5 2302 2292 10 99.6
18 (5) 3600.1 360393 5.07 Feas 3600.5 3253 ATL 5 2440 2341 99 96.0
19 (1) 1.9 0 0 Opt 0.3 0 Opt 1 4 2 2 50
19 (2) 2 0 0 Opt 27.4 501 Opt 1 177 114 63 64.5
19 (3) 2.1 0 0 Opt 2.2 1 Opt 1 183 118 65 64.5
19 (4) 2.2 0 0 Opt 12.8 53 Opt 1 221 132 89 59.8
19 (5) 2.5 0 0 Opt 12.8 14 Opt 1 251 155 96 61.8
20 (1) 23.4 47 0 Opt 38.5 215 Opt 2 201 177 24 88.1
20 (2) 23.4 43 0 Opt 1726.8 5133 Opt 2 1519 934 585 61.5
20 (3) 76.8 454 0 Opt 1007.3 307 Opt 2 1926 1305 621 67.8
20 (4) 97.1 758 0 Opt 199.9 538 Opt 2 498 416 82 83.6
20 (5) 20 151 0 Opt 124 154 Opt 2 638 530 108 83.1

165

Table 2.5: Detailed results of MISOCP and BDTA1 for WLANDP1 (from Pr21 to Pr24)

MISOCP BDTA1
Pr CPU Nodes gap Status CPU Nodes Status APs callbacks no of feas no of opt % feas

21 (1) 3600.2 186364 0.004 Feas 2274 2312 Opt 3 1796 1703 93 94.9
21 (2) 3600.2 97284 9.95 Feas 3600.2 6790 ATL 3 2371 2047 324 86.4
21 (3) 2334.6 121780 0 Opt 2084.9 2021 Opt 3 1637 1512 125 92.4
21 (4) 530.7 32713 0 Opt 3600.6 2845 ATL 3 2452 2365 87 96.5
21 (5) 545.7 23796 0 Opt 649.1 1331 Opt 3 936 851 85 91.0
22 (1) 17.2 70 0 Opt 51.7 483 Opt 2 279 223 56 80.0
22 (2) 36.6 1857 0 Opt 3601.6 11973 ATL 2 2259 1075 1184 47.6
22 (3) 66.3 1447 0 Opt 31.0 127 Opt 2 205 177 28 86.4
22 (4) 11 25 0 Opt 164.5 686 Opt 2 507 407 100 80.3
22 (5) 11.6 93 0 Opt 20.4 115 Opt 2 153 124 29 81.1
23 (1) 322.9 34471 0 Opt 3600.4 4508 ATL 3 2259 2046 213 90.6
23 (2) 3600.1 175701 1.42 Feas 3600.1 9866 ATL 3 2377 1732 645 72.9
23 (3) 17.5 78 0 Opt 2659.4 3331 Opt 3 2115 1905 210 90.1
23 (4) 125.4 634 0 Opt 3601.9 3848 ATL 3 2343 2156 187 92.1
23 (5) 156.2 8434 0 Opt 2656.3 2071 Opt 3 1504 1340 164 89.1
24 (1) 3600.2 352242 0.004 Feas 3600 2470 ATL 5 2353 2334 19 99.2
24 (2) 3600.1 105695 5.82 Feas 3600.6 2139 ATL 5 1267 1191 76 94.1
24 (3) 3600.2 63954 4.6 Feas 3601.2 3096 ATL 5 2237 2105 132 94.1
24 (4) 3600.1 376348 0.0002 Feas 3601.3 1725 ATL 5 2308 2299 9 99.7
24 (5) 3604.6 306658 0.03 Feas 3836.4 900 ATL 5 626 600 26 95.9

166

Table 2.6: Detailed results of MISOCP, BDTA2 and BBC for WLANDP2 (from Pr1
to Pr8)

MISOCP (BDTA2) Branch and Benders Cut (BBC)
Pr CPU Nodes gap (%) Status CPU Nodes Status Aps Cuts CPU Nodes Status Cuts

1 (1) 17.8 198 0 Opt 3.8 18 Opt 2 67 8.1 29 Opt 63
1 (2) 36.8 17 0 Opt 12.4 33 Opt 2 96 40.1 139 Opt 117
1 (3) 29.4 88 0 Opt 26.1 46 Opt 2 114 27.1 16 Opt 51
1 (4) 25.1 24 0 Opt 19 41 Opt 2 60 29.3 83 Opt 41
1 (5) 19.8 21 0 Opt 20.7 26 Opt 2 57 53.1 71 Opt 71
2 (1) 3600 254045 19.1 Feas 21 158 Opt 3 192 20.3 281 Opt 101
2 (2) 83.4 491 0 Opt 90.2 238 Opt 3 471 54.6 1060 Opt 215
2 (3) 3600 267335 8.9 Feas 171 229 Opt 3 778 188.9 1374 Opt 420
2 (4) 3600 309925 5.7 Feas 527 567 Opt 3 1324 1123.1 620 Opt 981
2 (5) 70 560 0 Opt 555 271 Opt 3 1732 65.6 632 Opt 186
3 (1) 3600 237628 16.4 Feas 328 689 Opt 4 842 79.2 4820 Opt 4820
3 (2) 71.8 630 0 Opt 1697 1413 OptTol 4 1859 557.9 67.43 OptTol 611
3 (3) 651.8 34522 0.1 Opt 958 1929 Opt 4 1162 1210.6 5115 Opt 978
3 (4) 45.5 278 0 Opt 3602 1394 ATL 4 3039 1356.2 3186 OptTol 799
3 (5) 1346 27301 0 Opt 2262 1906 OptTol 4 2166 1262.2 1583 Opt 1242
4 (1) 729 35336 0 Opt 20.1 158 Opt 3 192 31.1 598 Opt 112
4 (2) 83.8 355 0 Opt 90.7 471 Opt 3 471 441.4 438 Opt 564
4 (3) 3600 328460 4.2 Feas 169 229 Opt 3 778 445.2 920 Opt 703
4 (4) 58.5 337 0 Opt 519 567 Opt 3 1324 828.7 284 OptTol 957
4 (5) 75.1 209 0 Opt 122 271 Opt 3 408 57 1559 Opt 139
5 (1) 80.3 2534 0 Opt 368 664 Opt 4 874 472.7 1582 Opt 577
5 (2) 17.1 30 0 Opt 1269 1413 OptTol 4 1891 2345.7 1164 OptTol 7292
5 (3) 27.5 420 0 Opt 648 1624 Opt 4 1191 180.7 4623 Opt 332
5 (4) 14.1 16 0 Opt 3605 1258 ATL 4 2939 1756.1 19055 OptTol 957
5 (5) 16.2 20 0 Opt 2232 1906 OptTol 4 2166 1011.5 9207 Opt 786
6 (1) 24.6 897 0 Opt 3601 1099 ATL 6 2910 3602.3 7379 ATL 1600
6 (2) 32.6 1096 0 Opt 3601 1204 ATL 6 2684 3610.9 53040 ATL 1594
6 (3) 1455 26434 0.1 Opt 3601 1494 ATL 6 2808 3600.1 89423 ATL 1422
6 (4) 17.7 279 0 Opt - - NS 6 - 3603.3 29461 ATL 1534
6 (5) 25.6 585 0 Opt 3601 1148 ATL 6 2877 3607.9 4425 ATL 1473
7 (1) 37.5 87 0 Opt 30.3 0 Opt 2 183 176.2 5275 Opt 233
7 (2) 147.3 2312 0 Opt 67.8 0 Opt 2 338 1473.5 18331 OptTol 774
7 (3) 49.8 18 0 Opt 34.8 0 Opt 2 390 75.4 4272 Opt 118
7 (4) 161.5 1592 0 Opt 97.1 0 OptTol 2 511 1228.3 14439 OptTol 646
7 (5) 62.2 124 0 Opt 104 0 Opt 2 604 474.9 4841 OptTol 393
8 (1) 3600 141660 0 Feas 254 0 Opt 3 559 740.2 21690 OptTol 525
8 (2) 3600 149626 0 Feas 1509 0 Opt 3 1500 2884.7 15972 OptTol 827
8 (3) 2356 60084 0 Opt - - NS 3 - 1524.5 90378 OptTol 606
8 (4) 1184 17887 0 Opt 2240 0 OptTol 3 1773 3610.4 7156 ATL 1163
8 (5) 165.1 352 0 Opt 189 0 Opt 3 506 3619.6 10843 ATL 1162

167

Table 2.7: Detailed results of MISOCP, ILS2 and BBC for GWLANP2 (from Pr9 to
Pr16)

MISOCP1 Integer L-shaped (ILS2) Branch and Benders Cut (BBC)
Pr CPU Nodes gap (%) Status CPU Nodes Status Aps Cuts CPU Nodes Status Cuts

9 (1) 3600.2 45284 18.4 Feas - - NS 4 - 924.7 6968 OptTol 670
9 (2) 193.5 866 0 Opt 3600.5 - ATL 4 2175 0 NS -
9 (3) 3600.1 116770 24.3 Feas 3600.5 - ATL 4 2217 281.7 30259 OptTol 321
9 (4) 150.3 1295 0 Opt 3602.7 - ATL 4 2117 - - NS -
9 (5) 199.3 1477 0 Opt - - NS - - - - NS -

10 (1) 3600.2 131185 22,1 Feas 249.7 503 Opt 3 559 176.2 5275 Opt 233
10 (2) 254.6 2235 0 Opt 1360.3 778 Opt 3 1500 1473.5 18331 OptTol 774
10 (3) 3175.5 109900 0,1 Opt 46.8 260 Opt 3 242 75.4 4272 Opt 118
10 (4) 218.4 1194 0 Opt 2171.3 2027 OptTol 3 1773 1228.3 14439 OptTol 646
10 (5) 162.9 492 0 Opt 174.1 482 Opt 3 506 474.9 4841 OptTol 393
11 (1) 495.9 21161 0.1 Opt 3600.8 2068 ATL 4 2187 740.2 21690 OptTol 525
11 (2) 52.2 247 0 Opt 3600.8 2322 ATL 4 2159 2884.7 15972 OptTol 827
11 (3) 341 6645 0 Opt 3602.4 2956 ATL 4 2298 1524.5 90378 OptTol 606
11 (4) 59.9 168 0 Opt 3601.7 2015 ATL 4 2246 3610.4 7156 ATL 1163
11 (5) 79.6 224 0 Opt 3600.7 1926 ATL 4 2267 3619.6 10843 ATL 1162
12 (1) 3446.4 56944 0,1 Opt - - NS 6 - - - NS -
12 (2) 252.1 6225 0 Opt - - NS 6 - - NS -
12 (3) 562.5 4800 0.1 Opt 3600.8 - ATL 6 - 3600.1 6500 ATL 1130
12 (4) 125.8 1783 0 Opt - - NS 6 - - - NS -
12 (5) 163.5 5640 0 Opt 3602.5 - ATL 6 840 - - NS -
13 (1) 1.3 0 0 Opt 0.1 0 Opt 1 4 0.4 1 Opt 6
13 (2) 1.5 0 0 Opt 0.3 0 Opt 1 8 0.5 0 Opt 7
13 (3) 1.5 0 0 Opt 0.4 0 Opt 1 7 0,4 0 Opt 4
13 (4) 1.3 0 0 Opt 0.3 0 Opt 1 4 0.3 0 Opt 3
13 (5) 1.9 0 0 Opt 0.8 0 Opt 1 8 1.3 1 Opt 10
14 (1) 11.2 122 0 Opt 7.6 43 Opt 2 117 5.3 126 Opt 42
14 (2) 15.2 79 0 Opt 6.6 33 Opt 2 54 11.2 40 Opt 58
14 (3) 24.7 319 0 Opt 11.3 38 Opt 2 75 93.5 162 Opt 207
14 (4) 17.7 319 0 Opt 24.4 50 Opt 2 75 21.7 25 Opt 31
14 (5) 12 55 0 Opt 22.6 30 Opt 2 77 44.8 27 Opt 53
15 (1) 12.4 37 0 Opt 60.1 215 Opt 3 396 69.9 7593 Opt 166
15 (2) 3600.1 317983 19.7 Feas 83.8 428 Opt 3 787 118.1 567 Opt 139
15 (3) 372.4 37073 0 Opt 111.9 400 Opt 3 561 259.4 780 OptTol 246
15 (4) 27.7 301 0 Opt 187.5 733 Opt 3 727 127.5 439 Opt 115
15 (5) 665.0 61507 0 Opt 95.4 462 Opt 3 95.4 116 1569 Opt 129
16 (1) 9.1 10 0 Opt 7.4 43 Opt 2 117 7.2 96 Opt 43
16 (2) 13 166 0 Opt 6.3 33 Opt 2 54 5.8 50 Opt 31
16 (3) 15.3 145 0 Opt 13.3 38 Opt 2 75 36.8 116 Opt 117
16 (4) 9 18 0 Opt 22.6 50 Opt 2 103 16.5 34 Opt 32
16 (5) 9 13 0 Opt 22.6 39 Opt 2 77 16.7 21 Opt 27

168

Table 2.8: Detailed results of MISOCP, ILS2 and BBC for GWLANP2 (from Pr17 to
Pr24)

MISOCP1 Integer L-shaped (ILS2) Branch and Benders Cut (BBC)
Pr CPU Nodes gap (%) Status CPU Nodes Status Aps Cuts CPU Nodes Status Cuts

17 (1) 10.5 52 0 Opt 61.2 226 Opt 3 402 56.2 478 Opt 216
17 (2) 3600 207949 4.5 Feas 157.2 368 Opt 3 793 100.9 845 Opt 373
17 (3) 15.6 56 0 Opt 366.9 419 Opt 3 1268 362.9 1338 Opt 697
17 (4) 8.9 21 0 Opt 593.2 430 Opt 3 1816 645.6 849 Opt 1036
17 (5) 38.2 1694 0 Opt 497.8 370 Opt 3 2195 710.1 806 Opt 1323
18 (1) 15.8 83 0 Opt 3600.8 2094 ATL 5 3163 941.6 8918 Opt 957
18 (2) 3600 183813 11.4 Feas 3601 1394 ATL 5 3209 1403 5626 Opt 1522
18 (3) 3600 17541 15.1 Feas 3601.9 1471 ATL 5 330 1094.6 16836 Opt 1019
18 (4) 40.7 1070 0 Opt 3601.7 1745 ATL 5 3220 3600.8 1903 ATL 2042
18 (5) 3600 258836 7 Feas 3601.5 2535 ATL 5 2535 2896 48558 OptTol 1692
19 (1) 1.8 0 0 Opt 0.2 0 Opt 1 4 0.6 1 Opt 7
19 (2) 1.9 0 0 Opt 0.4 0 Opt 1 8 0.6 0 Opt 7
19 (3) 1.8 0 0 Opt 0.4 0 Opt 1 7 1.1 1 Opt 8
19 (4) 2 0 0 Opt 0.3 0 Opt 1 4 0.9 1 Opt 5
19 (5) 1.9 0 0 Opt 0.9 0 Opt 1 11 2.1 1 Opt 11
20 (1) 17.9 49 0 Opt 10.1 72 Opt 2 123 23.1 112 Opt 90
20 (2) 21.2 22 0 Opt 29 77 Opt 2 139 49.4 93 Opt 93
20 (3) 55.2 609 0 Opt 54.2 121 Opt 2 147 182.3 129 Opt 183
20 (4) 19.2 30 0 Opt 121.5 138 Opt 2 168 45.4 73 Opt 38
20 (5) 23.9 25 0 Opt 56.2 42 Opt 2 528 193.5 105 Opt 130
21 (1) 27.7 301 0 Opt 187.5 733 Opt 3 727 127.5 439 Opt 115
21 (2) 3600 168322 28.5 Feas 213.2 677 OptTol 3 658 154.5 1789 Opt 265
21 (3) 215.7 6125 0 Opt 1188.4 929 Opt 3 2062 619.2 3004 OptTol 745
21 (4) 107.6 743 0 Opt 795.9 1466 Opt 3 1269 183.2 2395 Opt 327
21 (5) 3600 172096 9.7 Feas 455.0 1122 Opt 3 920 73.8 650 Opt 204
22 (1) 14.1 10 0 Opt 10.3 72 Opt 2 123 29.1 127 Opt 102
22 (2) 28.4 77 0 Opt 29.5 77 Opt 2 262 55 363 Opt 206
22 (3) 199.8 6125 0 Opt 200.5 934 Opt 3 632 222.7 3004 OptTol 314
22 (4) 107.6 743 0 Opt 795.9 1466 Opt 3 1269 183.2 2395 Opt 327
22 (5) 37.1 74 0 Opt 50.9 42 Opt 2 696 115.8 93 Opt 513
23 (1) 23.1 52 0 Opt 413.2 910 Opt 3 898 253.5 902 Opt 401
23 (2) 3600 152060 4.9 Feas 858.6 626 OptTol 3 626 512.2 2654 Opt 701
23 (3) 34.4 160 0 Opt 220.2 996 Opt 3 640 1124.4 3103 Opt 795
23 (4) 17.2 29 0 Opt 1149.2 810 Opt 3 1618 1167.3 3664 Opt 1113
23 (5) 20.8 51 0 Opt 70 335 Opt 3 350 30.9 541 Opt 114
24 (1) 30.9 72 0 Opt 3600.4 2034 ATL 5 2546 69,9 7593 Opt 166
24 (2) 3600 151947 15.1 Feas 3602,6 1850 ATL 5 2607 253.2 1789 Opt 431
24 (3) 3600 34833 14 Feas 3600.8 2145 ATL 5 2488 619.2 3004 OptTol 745
24 (4) 42.2 282 0 Opt 3600.7 1136 ATL 5 2462 172 2395 Opt 327
24 (5) 66.9 1321 0 Opt 3602.8 2023 ATL 5 2536 263.9 650 Opt 531

169

170

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: GÜNDOĞDU, Emine

Nationality: Turkish (TC)

Date and Place of Birth: 06.12.1987, Konya

Marital Status: Single

Email: emineegundogdu@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.S. TOBB University of Economics and Technology, 2013

Industrial Engineering

B.S. Dokuz Eylül University, 2010

Industrial Engineering

High School Samsun Huriye Süer Anatolian High School 2005

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2014-1018 METU, Industrial Engineering Department Research & Teaching Assistant

2011-2013 TOBB ETU,Industrial Engineering Department Research & Teaching Assistant

171

PUBLICATIONS

E.Gundogdu, H. Gultekin. Scheduling in two-machine robotic cells with a self-

buffered robot. IIE Transactions, 2016 doi:10.1080/0740817X.2015.1047475

172

