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ABSTRACT 

 

DYNAMIC FRICTIONAL CONTACT PROBLEMS INVOLVING 

FUNCTIONALLY GRADED MATERIALS 

 

 

Balci, Mehmet Nurullah 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Serkan Dağ 

October 2018, 317 pages 

 

The main aim of this study is to analyze the dynamic frictional contact problem of 

layered and functionally graded materials. Investigating contact problems including 

dynamic effects has a significant importance in mechanical engineering applications 

since many contact problems arise between moving structures. In moving contact 

problems, speed of the punch may not be so small to ignore dynamic effects. Hence, 

contact problem should be examined using elastodynamics theory. In this study, both 

frictional moving contact problems of homogenous elastic coatings and functionally 

graded coatings pressed by a moving rigid punch with various punch profiles are 

considered. The rigid punch is pressed against the coating and it moves at a constant 

subsonic speed. Governing partial differential equations are solved analytically using 

Galilean and Fourier transformation techniques. Displacement fields in both coating 

and the substrate are found by applying boundary and interface continuity conditions. 

Equations for the mixed boundary value problem is reduced to a singular integral 

equation of the second kind including unknown normal contact stress. The singular 

integral equation is solved numerically using a suitable expansion-collocation 

technique and normal contact stress is found. A verification study for elastostatic 

contact analysis is carried out using computational results generated by the use of 

finite element method.  A verification study for elastodynamic contact analysis is 

conducted by utilizing available results in the literature. Consequently, the influences 
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of punch profile, punch sliding speed, material inhomogeneity, coefficient of friction 

and coating thickness on contact stresses and punch stress intensity factors are 

investigated. 

Keywords: Dynamic Contact Mechanics, Moving Rigid Punch, Friction, 

Functionally Graded Coatings, Contact Stresses, Stress Intensity Factors, Singular 

Integral Equation. 
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ÖZ 

 

FONKSİYONEL DERECELENDİRİLMİŞ MALZEMELER İÇEREN 

DİNAMİK SÜRTÜNMELİ TEMAS PROBLEMLERİ 

 

 

Balci, Mehmet Nurullah 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

Ekim 2018, 317 sayfa 

 

Bu çalışmanın temel amacı katmanlı ve fonksiyonel derecelendirilmiş malzemeler 

içeren dinamik sürtünmeli temas problemini analiz etmektir. Makine mühendisliği 

uygulamalarında temas probleminin dinamik etkiler katılarak incelenmesi büyük 

önem taşımaktadır çünkü birçok temas hareketli yapılarda meydana gelmektedir. 

Hareketli temas problemlerinde, zımba hızı dinamik etkileri ihmal edecek kadar 

küçük olmayabilir. Bu yüzden, temas problemi elastodinamik teori kullanılarak 

incelenmelidir. Bu çalışmada, farklı profillere sahip hareketli rijit bir zımba 

tarafından bastırılan hem homojen elastik kaplama hem de fonksiyonel 

derecelendirilmiş kaplamaların sürtünmeli ve hareketli temas problemi ele alınmıştır. 

Rijit zımba kaplamaya bastırılmakta ve sabit ses altı bir hızda hareket etmektedir. 

Yürütücü kısmi diferansiyel denklemler Galilean ve Fourier dönüşümü tekniği 

kullanılarak analitik olarak çözülmüştür. Kaplama ve alt katman için yer-değiştirme 

alanları sınır ve ara-yüzey devamlılık koşulları uygulanarak bulunmuştur. Karma 

sınır değer problemi için denklemler içerisinde bilinmeyen normal temas gerilmesi 

içeren ikinci tip tekil integral denkleme indirgenmiştir. Tekil integral denklemi 

uygun bir açılım-düzenleme tekniği ile sayısal olarak çözülmüş ve normal temas 

gerilmesi bulunmuştur. Elastostatik temas analizi için doğrulama çalışması sonlu 

elemanlar metodu kullanılarak üretilen hesaplamalı sonuçlar ile yapılmıştır. 

Elastodinamik temas analizi için doğrulama çalışması literatürde mevcut olan 
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sonuçlar kullanılarak yapılmıştır. Sonuç olarak, zımba profili, zımba kayma hızı, 

malzeme homojensizliği, sürtünme katsayısı ve kaplama kalınlığının temas 

gerilmeleri ve zımba gerilme şiddeti çarpanına olan etkileri araştırılmıştır. 

Anahtar Kelimeler: Dinamik Temas Mekaniği, Hareketli Rijit Zımba, Sürtünme, 

Fonksiyonel Derecelendirilmiş Kaplamalar, Temas Gerilmeleri, Gerilme Şiddeti 

Çarpanları, Tekil İntegral Denklemi. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

The main aim of this study is to develop an analytical method to investigate dynamic 

frictional contact problems involving layered structures and functionally graded 

coatings. A moving rigid punch slides at a constant subsonic speed over the 

functionally graded coating which is bonded perfectly to the homogenous substrate. 

The speed of the sliding rigid punch is not assumed be so small hence, dynamic 

effects are taken into account in this study. Main interest is to examine dynamic 

effects and influences of geometrical and material properties on contact stresses and 

contact related results. This study covers both elastodynamic contact mechanics of 

homogenous elastic coatings and functionally graded coatings. Current chapter 

consists of four parts. First part describes the concept of functionally graded material 

and its development, second part gives some information about tribology and 

tribological applications, third part is the literature survey and fourth part is scope of 

this study. 

1.1 Functionally Graded Materials 

Development of technology enables the invention of new and innovative materials 

which are able to withstand the conditions of advanced environments. Generally, in 

engineering applications, two types of advanced composite materials are used. First 

is the advanced composites with very high strength and stiffness that are used in a 
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broad range of industry such as automobiles, aircraft, space vehicles, offshore 

structures, containers, piping, electronics, etc., Agarwal [1]. Second is the bonded or 

coating type composite materials. In many engineering applications, protective 

coatings are designed to withstand wear, thermal loadings and the corrosion, and 

substrates are designed for toughness and strength. New coating and treatment 

methods are being developed. For instance, devices and bearing systems which 

operate under near-vacuum conditions as in space mechanisms or satellites or engine 

components operating under hot corrosive and erosive conditions as in aero gas 

turbines could not function without advanced tribological coatings. Hard coatings 

such as titanium nitride, titanium carbide and aluminium oxide are commonly used 

on cutting tools in the manufacturing industry. Chromium nitride and molybdenum 

disulphide coatings are used on metal forming tools. Very hard but also low friction 

diamond like carbon coatings are deposited for wear protection on magnetic storage 

devices produced for computers. Various carbon based coatings are used in 

automotive industry to reduce energy consumption (Holmberg and Matthews [2]).  

Thermal barrier coatings (TBCs) are used on combustors and blades of aircraft 

engines (Parks et al. [3]). Y2O3 stabilized ZrO2 is the most commonly used ceramic 

layer with a low thermal conductivity and it has a capability to keep metallic substrate 

from high thermal gradients. Various types of coatings in many applications such as 

sandwich coatings, graded coatings, duplex coatings, multilayer, superlattice, etc. are 

described in the work conducted by Hogmark [4]. Manufacturing of coatings on 

substrates are generally accomplished by deposition techniques which are mainly 

categorized as gaseous state process, solution state process, molten state process and 

solid state process. Solid state process is used to produce thicker coatings (Rickerby 

and Matthews [5]). Thickness of the coating and the deposition temperature are two 

important parameters to produce coatings. Typical coating thickness may vary from 

0.1 𝜇𝑚 to 10𝑚𝑚. Some recent research is examining the possibility of using much 

thinner coatings such as 1-3 𝑛𝑚 for tribological purposes (Wang et al. [6]). Gaseous 
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state process includes chemical vapor deposition (CVD), ion implantation (II), and 

physical vapor deposition techniques (PVD). Solution state consists of chemical 

solution deposition, electrochemical deposition, and sol-gel techniques. Molten state 

process involves plasma variants techniques such as laser, thermal spraying and 

welding. 

Although homogenous coatings are used to keep the metallic substrate from harsh 

surface environments (combinations of excessive wear, high thermal gradients and 

temperatures), these ceramic based layers have some shortcomings. Ceramic based 

coatings are vulnerable due to poor bonding strength, high residual stress, and the 

brittle nature of the ceramic layer. Use of metal/ceramic functionally graded coatings 

instead of conventional ceramic based coatings can be reasonable to eliminate these 

shortcomings. 

Functionally graded material (FGM) concept was initially proposed in 1987 by 

material scientists in Sendai area in Japan during space plane research and 

development [7]. The objective was to develop a thermal barrier material which can 

withstand 2000 K temperature difference during operation. Test samples which were 

manufactured by chemical vapor deposition (CVD) and physical vapor deposition 

(PVD) and low pressure plasma spray methods were respectively Si-C, Ti-C and 

ZrO2-NiCr functionally graded layers. It was concluded that FGMs had a great 

potential to reduce the thermal stress due to the mismatch of thermal expansion 

coefficients (Niino and Maeda [8]). 

Functionally graded materials (FGMs) are a kind of advanced composites involving 

two or more constituent phases with a gradual and functionally variable composition 

of microstructure and material properties. In Figure 1.1, a particulate FGM which is 

graded in the thickness direction is shown [9]. Generally, metal and ceramic are the 

constituent phases of FGMs, and there is a smooth variation in volume fractions of 

constituent phases across the thickness direction. While one surface consists of 100% 
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ceramic, the other surface consists of 100% metal. The primary objective of using 

FGMs as protective coatings and interfacial zones is to reduce residual stress 

resulting from thermomechanical mismatch, overcome delamination or spallation 

problems due to poor bonding strength and provide toughness.  

 

Figure 1.1: A particulate FGM with the volume fractions of constituent phases  

1.2 Tribological Applications 

Tribology is a field of science and technology which concerns contacting surfaces in 

relative motion. The major purpose is to reduce and control friction and wear in order 

to extend the lifetime of machine components and correspondingly increase 

efficiency. There are various type tribological components in engineering 

applications. Some tribological components are sliding and rolling contact bearings, 

gears, cams, sealings, piston rings and cutting tools. These components are utilized 

in industrial applications such as internal combustion engines in automotive, gas 

turbines in turbomachinery, railroad in transportation, magnetic storage devices in 

informatics industries. In tribological applications, many factors have to be 

considered for design process of contacting components. Selection of bulk materials 

is the most important design factor among them. Materials such as cast irons, 

stainless steels, high temperature alloys, ceramics, solid lubricants and polymers are 

utilized in many tribological applications. Main aim is to reduce friction and 

Phase-A (100%) 

Phase-B (100%) 
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correspondingly wear by selecting appropriate materials. Thus, mechanical 

components have enhanced durability and prolonged machine life. Descriptions 

depending on different perspectives of tribology are provided in the books by 

Bhushan [10] and Suh [11].  

In recent years, the utilization of surface coatings is increasing trend in tribological 

applications. Coatings are mainly categorized as hard coatings and soft coatings. 

Hard coatings are considered for high wear resistance and moderate friction while 

soft coatings or solid lubricant coatings are considered with low friction. Ceramics, 

Steel, Ni or Co based intermetallic alloys and some metals like Ni, Cr, Mo are used 

as hard coatings. Soft metals such as Au, Ag, Pb, polymers and some materials such 

as MoS2 and graphite are used as soft coatings. It is reported that the most successful 

tribological application of thin surface coatings is seen in cutting tool industry, [10]. 

Generally, ceramics based hard coating material is deposited on the tool surface as a 

hard coating and cutting tools have lower friction and wear and correspondingly they 

have extended tool life. Thin hard coatings made of nitrides and carbides such as 

TiN, TiC, ZrC, ZrN and TiAlN are used successfully in industry. In cutting tools, 

coatings made of oxide ceramics such as single crystal alumina (sapphire), 

polycrystalline Al2O3 and ZrO2 are also utilized.  

Roller bearings are utilized in various engineering components such as wheels, 

pistons, camshafts in automotive, aerospace and wind turbine industry [12]. The 

contact pressures may vary from 0.5 up to 3 GPa, depending on the application [2, 

13]. The deposition of a protective low friction coating on the surface of rollers 

extends the lifetime of the component [13-15]. 

Abradable seals are used in aircraft gas turbine engines. They are used in blade-stator 

interface in the compressor and blade-shroud interface in the turbine to minimize the 

clearance without catastrophic failure [16].  
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Contact fatigue damage is a common mode of gear failure. Alanou et al. [17] 

experimentally showed that thin hard coatings may enhance the scuffing and micro-

pitting performance of gears since they exhibit very high levels of surface hardness 

combined with a low traction against dry steel. However, they found poor adherence 

under some cases.  

The failure mechanism resulting from surface cracking in brittle surfaces subject to 

severe contact stresses is investigated by many researchers. In practice, fracture 

behavior of the hard and brittle coatings is examined using indentation or scratch 

tests [18-19]. Indentation tests were conducted by Page and Knight [18] on a CVD 

coated TiN-steel composite structure. Radial cracks emerge across the surface of the 

coating from the corners of the Vicker’s indenter at relatively high normal loads. 

These radial cracks are vertical half-penny shaped cracks which are one of the crack 

systems observed in brittle materials during indentation tests by a Vicker’s indenter 

[20]. When blunt indenter is loaded normally on a thick elastic specimen, Hertzian 

cone crack system forms [21]. In Hertzian cone crack system, crack initiates at the 

surface and propagates in the form of a truncated cone into the material. If the blunt 

indenter (for example sphere) is translated laterally across the surface, tensile lateral 

stress increases at the trailing end of the contact zone due to friction. This is known 

as scratch test. Spallation of the coating from the substrate, Hertzian cracking and 

tensile cracking are reported as the three major failure modes under contact loading 

(Bull [19]). 

Functionally graded materials (FGMs) have been used as either bulk materials or 

protective coatings to improve the structural resistance of machine components. 

Functionally graded materials (FGMs) have great potential in trobological 

applications. Suresh et al. [22] carried out experimental and computational studies 

and results of these studies showed that contolled gradients in elastic modulus alone 

can result in a pronounced enhancement in the resistance of a surface to frictional 
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sliding contact. Cho and Park [23] investigated the thermoelastic chararacteristics of 

functionally graded lathe cutting tools composed of Cr-Mo steel shank and ceramic 

tip in order to explore thermomechanical superiority.  According to the results, the 

peak effective stress is reduced to almost by two and half times by inserting FGM 

cutting bite. Therefore, thermomechanical stress concentration was relaxed 

significantly. ZrO2 based functionally ceramic coatings are developed as abradable 

seals in turbine parts of aircraft engines that seals with controlled ceramic 

microstructure exhibited reduced thermal cracking and better spallation resistance 

[24].  

1.3 Literature Survey 

Contact problems have been very known topic of interest within the theory of 

elasticity for over hundred years. The semi-infinite elastic solid under the 

compressive load of a rigid body was first analyzed by Boussinesq and the main aim 

was to find the stress distribution in a semi-infinite solid. Hence, this problem was 

called as Boussinessq problem. General description of the Boussinessq problem can 

be found in the study conducted by Hertz [25].  

The foundation of the contact mechanics analysis is based on Hertz assumption. If 

the contact area is small compared to the geometry of the contacting bodies and if 

the contact area is far removed from other surfaces, then the contacting bodies may 

be approximated as semi-infinite planes. The Hertz assumption pioneered to analyze 

contact problems for half-planes. 

Either the integral transformation approach or the finite element method may be used 

to examine the contact mechanics of solids. Analytical solutions to contact problems 

have significant applications in aerospace, automotive, manufacturing and marine 

industries. Since the knowledge of the contact stress distribution gives an idea of 

regions where potential damage may occur, determination of contact stresses on any 

machine element under contact loads is crucial. 
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Solutions to many plane and axisymmetric problems may be found in the work of 

Galin. [26]. The general method of solving frictionless plane contact problems was 

given by Muskhelishvili [27]. Analytical solutions where elastic half-planes were 

loaded by different type of tractions were presented by Johnson [28]. The numerical 

methods such as finite element method and boundary element method were used to 

obtain solutions for contact problems with complicated geometry and material 

properties [29]. Studies conducted by Kikuchi and Oden [30] and Khludnev and 

Sokolowski [31] proposed various finite element treatments for contact problems. 

Ratwani and Erdoğan [32] considered the frictionless plane contact problem for an 

elastic layer lying on an elastic half-space. Contact problems of a rigid punch on a 

non-homogenous medium were solved for small values of the inhomogeneity 

parameter by Bakirtas [33].  

Contact mechanics analysis of a layered elastic solid pressed by an elastic cylinder 

was examined by Gupta and Walowit [34] in the state of plane strain. The 

formulation of the contact problem was reduced to an integral equation using Green 

functions. Results were obtained for both rigid and elastic punch models in order to 

see the practical applications of the study.  Gupta et al. [35] examined the mechanical 

behavior of coated materials for bearings. Stress distribution in layered structure was 

provided by Fourier transforms of Airy stress function. Hence, the possibility of 

surface fracture caused by high stresses were investigated. Three dimensional contact 

analysis of layered solids was conducted by Chiu and Hartnett [36]. Numerical 

solutions were obtained to simulate the contact of a steel rolling component with a 

steel bearing supported by aluminum housing. Komvopoulos [37] performed finite 

element analysis to solve the contact problem between a layered elastic semi-infinite 

solid and a rigid surface. Stiff coating lying on a substrate was considered and 

solutions for the subsurface stress and deformation fields were presented for 

relatively thin, intermediate and thick layers. Contact stresses on stiff coatings 
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subjected to sliding contact were found by Kulchytsky-Zhyhailo and Rogowski [38]. 

The contact problem of elastic substrate coated by an elastic layer in contact with a 

rigid cylindrical indenter was considered. Solutions were obtained for various values 

of the stiffness ratio and the coefficient of friction and obtained results were 

compared to those obtained from Hertz solution.  

Giannakopulos and Pallot [39] proposed closed form analytical solutions for two 

dimensional isothermal contact of rigid cylinders on functionally graded substrates 

whose elastic property was expressed by power law. Giannakopulos and Suresh [40] 

carried out analytical work for point force indentation of the gradient materials and 

the elastic modulus varied according to both exponential and power law functions. 

In their study, flat ended and cylindrical punches were considered. Giannakopulos 

and Suresh [41] used both analytical and computational approaches to obtain stress 

and deformation fields in a graded half plane in contact with a rigid axisymmetric 

indenter. Suresh et al. [42] compared the computational results to those obtained 

from experimental studies for a spherical indenter. Barber [43] studied contact 

problems of thin layers on a rigid foundation indented by a frictionless punch. Guler 

[44] solved the quasi-static frictional contact problem for the stiffening medium. 

Frictional contact problem between a rigid punch and a functionally graded coating 

was investigated and the influences of punch profile, coefficient of friction, material 

inhomogeneity and length parameters on contact stresses were determined by Guler 

[45] and results were presented in manuscripts by Guler and Erdogan [46-47]. 

Analytical solutions to the coupled surface crack and contact problem in functionally 

graded half-plane were developed and contact stresses and the stress intensity factors 

at the tip of a surface crack were presented by Dag and Erdogan [48].  

Ke and Wang [49] investigated two dimensional frictionless contact mechanics of 

functionally graded coatings with arbitrary spatial variations of elastic properties. In 

the plane stress deformation, functionally graded coating was made up a series of 
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layers with elastic modulus varying linearly in each. However, friction on the contact 

surface was not considered. Moreover, Ke and Wang [50] considered the same 

contact problem in frictional case and contact stress results were presented with 

respect to various parameters. Liu and Wang [51] examined the contact problem of 

functionally graded coatings without friction in axisymmetric condition. In their 

study, elastic modulus of the functionally graded layer was defined by exponential 

function. 

Frictional contact problem between a rigid flat punch and a functionally graded 

coating which involves an interface crack was analyzed by Choi and Paulino [52]. In 

their study, the effect of the interface crack on contact stress and stress intensity 

factors were examined for different loading conditions. Choi and Paulino [53] carried 

out a research on the frictional contact problem with heat generation for coating, 

graded interlayer and the substrate system and thermal effects were added to the 

frictional contact problem. In their study, contact stresses with respect to various 

mechanical and thermal loading were presented. Balci et al. [54] conducted a study 

on the investigation of subsurface stresses in graded coatings subjected to frictional 

contact with heat generation. Subsurface stresses were presented for various 

thermoelastic and geometric parameters. Dag et al. [55] carried out a research on the 

frictional contact problem between a rigid punch and a laterally graded elastic 

medium. In their study, both flat and triangular punch profiles were considered and 

results obtained by analytical method were compared to those generated by finite 

element analysis. The influence of lateral gradation on contact stress distributions 

was shown. Dag [56] considered the spatial variation of coefficient of friction for 

laterally graded materials subjected to sliding contact by a rigid flat punch. Contact 

stresses were presented to reveal the effect of the spatial variation of the coefficient 

of friction in laterally graded materials. Dag et al. [57] examined the contact problem 

in the presence of a surface crack in a functionally graded coating subjected to a 
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sliding frictional contact. Stress intensity factors at the crack tip with respect to 

various elastic and geometric parameters were presented. Chen and Chen [58] 

analyzed contact behavior between a rigid punch and a homogenous half-space 

coated with linear graded layer. It was shown that the gradation law of material 

property and thickness of the surface layer have significant influences on the stress 

intensity factors and contact stress distributions. 

Guler et al. [59] carried out a research on the tractive rolling contact mechanics of 

functionally graded coatings.  The infleunce of the gradation of the material property 

on the contact stress field was examined by Alinia et al. [60] and contour plots of 

contact stresses in the contacting medium were provided. 

Contact problems mentioned in the foregoing paragraphs are quasi-static or static 

type contact problems. In practical applications of many engineering problems, the 

speed of the one of the contacting bodies may be relatively quite high with respect 

to the other body. Hence, dynamic contributions may be significant in such contact 

problems.  

The steady motion of a line load on the surface of the isotropic half plane was 

examined by Sneddon [61] and later by Cole and Huth [62]. The problem of a moving 

heavy cylinder rolling over the surface of an isotropic elastic half-space for sub-

Rayleigh and supersonic moving speeds was conducted by Craggs and Roberts [63]. 

They extended the Sneddon’s method to examine the mixed boundary value problem. 

The main aim was to discuss the limitations of the previous studies and to explore 

the anomalies that happen at high speeds close to Rayleigh wave speed. Georgidas 

and Barber [64] examined the elastodynamic super-Rayleigh/subseismic indentation 

paradox. They provided conclusions on separation of the contact associated with the 

punch speed. Barber and Comninou [65] studied the problem of an elastic cylinder 

rolling with friction on an elastic half-space with constant velocity which is 

supersonic with respect to the speed of wave propagation in materials of the 
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contacting bodies. Zhou et al. [66] analyzed the influences of the punch speed and 

material property variations on frictionless contact problem between an orthotropic 

material and a rigid moving punch, and they provided contact stress results for 

various elastic properties. Furthermore, Zhou et al. [67] investigated the same 

dynamic contact problem in frictional case and effects of punch speed, coefficient of 

friction and orthotropic constants on contact stresses were presented. Zhou and Lee 

[68] carried out a study on dynamic contact mechanics of anisotropic half-plane 

loaded by both moving rigid flat and cylindrical punches. In their study, it was 

concluded that the coefficient of friction and the speed of the punch have significant 

effects on contact stresses. Contact stresses on the surface of piezomagnetic materials 

subjected to frictional contact by a moving rigid flat punch were determined by Zhou 

and Kim [69] and influences found for various values of punch speed, coefficient of 

friction and magnetic induction were shown. Comez [70] solved the frictionless 

contact problem between a moving rigid cylindrical indenter and a functionally 

graded layer by an analytical method. 

Examination of the literature survey indicates that, there is no previous work related 

to the dynamic contact mechanics problems involving homogenous elastic coatings 

and functionally graded coatings. In the current study, we put forward an analytical 

method based on singular integral equation technique to solve the dynamic frictional 

contact problem between a moving punch and a coating made of either homogenous 

elastic material or functionally graded material. The coating is perfectly bonded to a 

substrate material. Governing partial differential equations are derived by means of 

putting stress displacement relations into the equations of motion. Obtained partial 

differential equations of elastodynamics are solved analytically utilizing Galilean 

and Fourier transformation techniques. Equations of elastodynamics for the contact 

problem is then reduced to a singular integral equation of the second kind which 

involves Cauchy singularity and Fredholm kernels. The singular integral equation of 
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the contact problem is solved numerically by a suitable expansion-collocation 

technique. Developed analytical procedure is verified through comparisons made to 

the results available in the literature and those generated by means of the finite 

element method. Presented numerical results clearly show the influences of punch 

speed, coefficient of friction, material and geometric properties upon the normal and 

lateral contact stresses and punch stress intensity factors. It is shown that there is 

significant difference between contact stresses computed considering elastodynamic 

and elastostatic theories. Hence, especially for contact problems involving punches 

sliding with relatively higher speeds, elastodynamic contact model is necessary for 

accurate and realistic computation of contact stresses and other contact related 

quantities such as punch stress intensity factors. 

1.4 Scope of the Study 

This study puts forward an analytical method to investigate dynamic frictional 

contact mechanics of functionally graded coatings indented by various type of rigid 

punches. There are many studies in the literature concerning static or quasi-static 

contact mechanics of functionally graded coatings. Although there are few studies 

associated with the dynamic contact mechanics of homogenous half-planes or 

anisotropic substrates, there has not been any work related to the dynamic contact 

mechanics of functionally graded coatings. Section 1.1 gives brief information about 

functionally graded material concept and its history. Section 1.2 describes tribology, 

tribological applications and potential usage of functionally graded coatings. Section 

1.3 is the literature survey, which includes previous studies related to the contact 

mechanics of functionally graded materials and dynamic problems. As also described 

in literature survey, there is not any previous study investigating dynamic contact 

mechanics of functionally graded coatings.  

In Chapter 2, problem statement is described and analytical formulation is performed 

to develop solutions for dynamic contact mechanics of functionally graded coatings. 
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Dynamic contact mechanics of homogenous elastic coatings is also examined by 

changing the inhomogeneity constant in general formulation. Therefore, we are 

aimed to solve two different problems which are: 

 Dynamic frictional contact problem between a rigid moving punch and a  

homogenous elastic coating, 

 Dynamic frictional contact problem between a rigid moving punch and a 

functionally graded coating. 

Formulation of the problem is made considering general theory of elastodynamics. 

Governing partial differential equations are solved analytically using Galilean and 

Fourier transformation techniques. Punch sliding speed is normalized using the shear 

wave propagation speed in solids. Displacement fields are written in terms of 

unknown functions and these unknown functions are determined through imposing 

interface continuity and boundary conditions. Then, displacement gradients on the 

contact surface are written and contact problem is reduced to a singular integral 

equation of the second kind which has Cauchy singularity and Fredholm kernels. 

Asymptotic analysis is performed to extract the singularities from the kernels of the 

integral equation. Thus, influential parameters which determine the powers of stress 

singularities are found.  

For both homogenous elastic coating and functionally graded coating contact 

problems, four different punch profiles are considered. Flat, triangular, semi-circular 

and cylindrical punch profiles are utilized for solutions. Solution techniques of 

singular integral equation are mentioned in Chapter 3. Basically, singular integral 

equations can be solved by a function theoretic method or numerical methods.  In 

this study, we use numerical methods (expansion - collocation technique) to solve 

the singular integral equation. Normalization procedures and solution techniques for 

each punch profile are provided. 
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Singular integral equation is solved for unknown normal contact stress. Using 

formulation shown in Section 2.4, lateral contact stress distribution on the contact 

surface is found. Moreover, contact related parameters such as normalized punch 

load and normalized stress intensity factors are also presented. Numerical results for 

dynamic frictional contact problems between a rigid moving punch and homogenous 

elastic coatings are presented in Chapter 4. Obtained results based on present 

analytical method are compared to those generated using finite element analysis in 

elastostatic case. Comparison of the results show that obtained results are in excellent 

agreement with those found by finite element analysis. One more comparison study 

is carried out for elastodynamic contact stresses. Elastodynamic contact stresses 

generated by frictionless moving punch on homogenous half-plane are compared to 

those available in the literature and it is seen that an excellent agreement is also 

achieved. Hence, verification of the present analytical method is accomplished. 

Elastodynamic contact stress results for the moving rigid flat, triangular, semi-

circular and cylindrical punches are provided in sections 4.2, 4.3, 4,4 and 4.5, 

respectively. The influences of various elastodynamic and geometrical parameters 

(punch speed, mass density ratio, coefficient of friction, relative contact length and 

Poisson’s ratio) on contact stress results are shown.  

Numerical results for dynamic frictional contact problem between a rigid moving 

punch and functionally graded coatings are presented in Chapter 5. Contact stresses 

and other contact related results in elastostatic case are compared with those available 

in the literature. Comparisons show that results of the present analytical study are in 

very good agreement with available results in the literature. Numerical results are 

presented for rigid flat, triangular, semi-circular and cylindrical punches and they are 

provided in sections 5.1, 5.2, 5.3 and 5.4, respectively. Contact stresses and other 

contact related results are persented for various values of punch speed, coefficient of 
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friction, stiffness ratio (or material inhomogeneity), coating thickness and relative 

contact length parameters. 

In Chapter 6, we summarize the concluding remarks obtained in this study and give 

some recommendations and new ideas for future work. 
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CHAPTER 2     

 

 

PROBLEM STATEMENT AND FORMULATION 

 

 

 

There are several causes of failure in mechanical structures. Fracture and fatigue are 

the most common causes of these failure mechanisms. Crack initiation and 

propagation may happen in the regions of high stress. Investigation of contact 

problems has a great importance since contact regions are responsible for 

development of high stress and wear. In many mechanical elements such as gears, 

cams, cutting tools, turbine blades etc. contacts are moving rather than stationary. 

Generally, contact problems may be mainly categorized as deformable-deformable, 

rigid-deformable, frictionless, frictional, static and dynamic. In deformable-

deformable contacts, two contacting bodies have similar stiffness values so they can 

be modeled as elastic bodies whereas in rigid-deformable contacts, one of the 

contacting bodies has much greater stiffness value than the other body. Hence, a 

contacting body which has a much greater stiffness may be modeled as a rigid punch. 

Contact mechanics solutions where friction is neglected may be a good 

approximation of well lubricated machine component contacts. Frictionless contact 

modeling of these type of problems is applicable and considerably simplifies the 

solution. However, many of the contact problems involve frictional surfaces where 

friction effect cannot be neglected. In this study, the frictional rigid punch slides over 

the coating at a constant subsonic speed and dynamic effects are considered. The 

speed of the sliding punch has a significant effect on contact stresses and stress 

intensity factors. Generally, in contact mechanics, if yyxy    a rigid stick occurs, 
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if  yyxy    a relative slip would take place between contacting bodies, if 

yyxy   normal and tangential (frictional) forces are developed according to 

Coulomb’s law. 

where   denotes the coefficient of friction. For example, gas turbine blade and the 

sealing section may be represented by a rigid punch and a ceramic rich graded 

metal/low density ceramic layer. In the present work, the stiffness of the punch is 

assumed to be much greater than those of the coating and the substrate. Hence, 

contact problem is considered as a rigid deformable contact. In the analytical 

solution, the homogenous isotropic substrate is considered as an elastic half-plane. It 

is assumed that the rigid punch and the coated medium are in relative motion and 

dynamic effects exist. Since coefficient of friction is assumed constant along the 

contact surface, the tangential force ,Q P  is generated according to Coulomb’s 

law. General schematic of the dynamic contact problems involving homogenous 

elastic coatings and FGM coatings are shown in Fig. 2.1. 

 

 

 

 

 

 

 



19 

 

 

 

Figure 2.1: A dynamic contact problem between a coating and a rigid punch of an 

arbitrary profile (a) homogenous coating (b) FGM coating 

A coating layer of thickness 1h  is perfectly bonded to the homogenous isotropic 

substrate. The shear modulus of the functionally graded coating is defined by an 

exponential function defined by 1

1 10( )
yy e  , where 10  is the shear modulus of 

FGM coating on the contact surface. Gradation of the coating is in the thickness 
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direction. The Poisson’s ratio of the coating and the substrate are 1 and 2 , 

respectively. The Poisson’s ratio is assumed to be constant for both FGM coating 

and the substrate. FGM coating and homogenous substrate are labeled as Medium 1 

and Medium 2, respectively. Two elastic constants of the homogenous isotropic 

substrate are defined by 2  and 2  where 2  is the shear modulus and 2  is the 

Kolosov’s constant. The inhomogeneity constant of FGM coating is denoted by 1 . 

Hence, 1( )y  expresses the smooth behavior of the shear modulus along the 

thickness of the graded coating.  

1

1 10( ) ,
yy e

     1 0,h y                                                                                (2.1) 

At the interface surface 1,y h   the shear modulus of the graded coating equals to 

20   which denotes the shear modulus of the FGM coating at the interface between 

the coating and the substrate. In this study, 2  may not be equal to 20 . Hence general 

formulations are derived to cover the mismatch on material properties at the 

interface. 

1 1

20 10 ,
he   

                                                                                                       (2.2) 

1 1 1ln ,h                                                                                                           (2.3) 

The shear modulus ratio between the interface and the contact surface of the graded 

coating is defined by 1  . Hence, 1  relatively controls the gradient of the coating 

depend on the shear moduli of the constituent materials. 

20
1

10

,



                                                                                                                (2.4) 
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Another parameter 1  is introduced to express the mismatch on material properties 

at the interface. It is the ratio between the shear modulus of FGM coating at the 

interface and that of the homogenous substrate as written below.  

20
1

2

,





                                                                                                               (2.5) 

 When 
1 1.0,   continuity on material properties at the interface between the 

coating and the substrate is satisfied. Dynamic contact mechanics analysis of 

functionally graded coatings are carried out by equating 
1 to 1.0.  

 When 1 1.0,   continuity on material porperties at the interface between the 

coating and the substrate is not satisfied. Dynamic contact mechanics analysis 

of homogenous elastic coatings are carried out by equating 
1 not to 1.0.  

 

Figure 2.2: Rigid punch in stationary and moving coordinates 

For the plane elastic contact problem, Hooke’s law can be written for the FGM 

coating in the stationary coordinate system as follows: 
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For the homogenous substrate we have, 
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3 4 plane strain

3
plane stress
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In planar elastodynamics, governing equations for the dynamic frictional contact 

problem in the absence of body force can be written as follows: 

,, uFijji
    .2,1, ji                                                                                  (2.14) 

When equation (2.14) is expanded, for FGM coating, we may write the following 

equations: 
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For the homogenous substrate, the governing equations are, 
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where t  is time and   represents the mass density. Along the graded coating, since 

the gradation is only in thickness direction, the mass density of the graded coating 

along the thickness direction is expressed by, 

1

1 10( ) .
yy e                                                                                                    (2.19) 

When stresses expressed by equations (2.6) - (2.11) are substituted into governing 

equilibrium equations, we obtain governing PDEs. Equations of motion for the FGM 

coating are, 
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Equations of motion for the homogenous substrate are, 
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In order to make the time dependent contact problem tractable, the “Galilean 

Transformation” is introduced. As it can be seen from Figure 2.2 that motion is only 

in the 𝑥-direction. Stationary coordinate system is denoted by  ,x y  whereas moving 

coordinate system is defined by  ,X Y  and moving coordinate system is attached to 

the rigid punch. Between the stationary and moving coordines, one can write the 

following identities: 

,VtXx                                                                                                           (2.24) 

.y Y                                                                                                                  (2.25) 

where + sign indicates that the direction of movement towards the right. In the 

analytical formulation steps, we use the translating coordinate system ( , ).X Y  

Displacement components are ( , )u x y and ( , )v x y  which can be rewritten as: 

( , ),u x Vt Y                                                                                                          (2.26) 

( , ).v x Vt Y                                                                                                          (2.27) 

In moving coordinate system, V  is the punch sliding speed. In analytical formulation 

and due to the requirement of the parametric studies, dimensionless punch speed is 

introduced. Dimensionless punch speed in FGM coating and homogenous substrate 

are expressed as: 
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where sc  is the shear wave propagation speed in solids. Shear wave propagation 

speed in FGM coating and homogenous substrate are expressed by, 
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Note that in this study, the material non-homogeneity constant for the mass density 

should be equal to that for the shear modulus of the functionally graded material. 

Therefore, dimensionless speed is defined by using the properties of FGM coating 

on the contact surface. This assumption may be regarded as a limitation of this study. 

The shear wave propagation speed for the homogenous substrate is expressed as 

follows: 

2
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2

.sc
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
                                                                                                           (2.31) 

where 2  is the shear modulus of the homogenous substrate and it is constant. When 

we substitute equations (2.28) - (2.29) into equations (2.20) - (2.23) and making 

further arrangements, we obtain the final form of the PDEs for the dynamic contact 

problem of FGM coating and the substrate. In order to solve governing partial 

differential equations analytically, Fourier transformation technique is used. The 

Fourier transformations of the displacement components for the FGM coating and 

the homogenous substate can be written as follows:  

,),(),( 11 dXeYXuYF Xi 
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,),(),( 11 dXeYXvYG Xi 
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2 2( , ) ( , ) .i XG Y v X Y e dX
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                                                                           (2.35) 

where   is the Fourier transform variable. Displacement components for the FGM 

coating are shown by 1( , ),u X Y 1( , )v X Y  and displacement components for the 

homogenous substrate are shown by 2 ( , ),u X Y 2 ( , )v X Y  and they are given by the 

following inverse Fourier transforms. 
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Displacement components shown by (2.36) - (2.39) are substituted into the governing 

partial differential equations given by (2.20) - (2.23). We obtain a system of partial 

differential equations for the graded coating and the homogenous substrate as 

follows: 
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Assume solutions for 1( , )F Y  and 1( , )G Y  as follows: 
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Displacement components in the FGM coating can be written using inverse Fourier 

transformation as shown below. 
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When we substitute equations (2.46) and (2.47) and their required derivatives into 

the governing partial differential equations (2.40) and (2.41), the following equations 

are obtained: 
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This equation system can be clearly expressed by the following matrix form. 
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Characteristic equation of the dynamic contact problem of graded coatings is 

obtained as follows: 
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The roots of the characteristic equation of the dynamic contact problem can be 

expressed as follows: 
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Assume solutions for 2 ( , )G Y and 2( , )F Y  of the form, 

2 1 2 3 4( , ) ( ) ( ) ,
Y Y

G Y R Y R e R Y R e
 




                                                         (2.56) 

2 5 6 7 8( , ) ( ) ( ) .
Y Y

F Y R Y R e R Y R e
 




                                                         (2.57) 

Constants 1,R 2 ,R 5 ,R 6R should be equal to zero due to the regularity/radiation 

boundary condition. Regularity boundary condition states that displacement fields in 

the homogenous substrate 2 ( , )u X Y  and 2 ( , )v X Y  vanish as Y . Therefore, 
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where 3 ,R 4 ,R 7 ,R 8R  are unknown functions of  . In the final form, displacement 

components for the homogenous substrate can be written as follows: 
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Displacement components in the homogenous coating are found. We can write their 

required derivatives as:  

,)(
2

),( )(

43
2 



 
deYRR

i

X

YXv XiY 




 



                                                         (2.62) 

,)(
2

),( )(

43

2

2

2

2




 
deYRR

X

YXv XiY




 



                                                     (2.63) 

,)(
2

),( )(

87
2 



 
deYRR

i

X

YXu XiY 




 



                                                        (2.64) 

2
( )2

8 7 8

( , )
( ) ,

2

Y i Xu X Y i
R R YR e d

X Y

 
  









  

                                           (2.65) 

,)(
2

1),( )(

434
2 




deYRRR

Y

YXv XiY 




 



                                          (2.66) 

2
2 2 ( )2

3 4 42

( , ) 1
( 2 ) .

2

Y i Xv X Y
R R YR e d

Y

 
   









  

                                (2.67) 



31 

 

When equations (2.62) - (2.67) are substituted into the governing partial differential 

equations (2.42) - (2.43), the relations between unknown functions appear in the 

displacement components 3 ,R 4 ,R 7R and 8R are found. These relations can be written 

explicitly as follows: 

1

8 4 ,
2

i
R R






                                                                                                    (2.68) 

1 2

7 3 4 ,
2 2

i i
R R R

 

 

 
                                                                                  (2.69) 

),1)(1()1(
2

2221 c                                                                             (2.70) 

2

2 2 2 2( 1) ( 1)(1 ).c                                                                                   (2.71) 

After rearranging displacement fields for the functionally graded coating and the 

homogenous substrate, displacement field for FGM coating and the homogenous 

substrate become: 
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Hence displacement expressions for the homogenous substrate are, 
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2.1 Interface Continuity and Boundary Conditions 

The unknown functions appear in the displacement components of dynamic contact 

problem are determined from interface matching conditions and boundary conditions 

along the contact surface. The unknwon functions appear in the displacement 

equations are jM ( 1,..., 4)j  and kR ( 3,4)k  . Therefore, six unknown functions 

must be determined. Contact problem has four interface continuity conditions and 

two boundary conditions. These conditions are clearly described in this section. In 

the following subsections, we determine these unknown functions through utilizing 

continuity and boundary conditions. Since dynamic contact problem is analyzed in 

moving coordinate system, we need to determine the derivatives of the displacement 

fields in moving coordinates. Between the stationary and moving coordinate systems, 

partial derivatives of displacement fields with respect to the space variables can be 

written as follows: 

Remember that y Y  and .x X Vt    
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Stress and displacement relations are written in the moving coordinate system as 

follows: 
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Formulation of the contact problem is made considering the generality. The 

generalized problem is the FGM coating/homogenous substrate problem. Following 

statements indicate the generality of the problem. 

 Formulations are derived for functionally graded coating and the homogenous 

substrate structure. However, setting the material inhomogeneity constant 1   to 

zero, addressed contact problem becomes homogenous elastic coating and 

homogenous substrate or homogenous half-plane problems. 

Homogenous coating problem is obtained by the following change of parameters: 

1 0.0,    20
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Homogenous half-plane is obtained by the following change of variables: 
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Functionally graded coating problem is obtained by the following change of 

variables: 
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 The shear modulus at the interface of the functionally graded coating is 

calculated by 1 1

20 10 ,
he   

  and this shear modulus may not be equal to the 

shear modulus of homogenous substrate defined by 2.   

 Poisson’s ratio of the functionally graded coating is denoted by 1  and variation 

of the Poisson’s ratio along the thickness of the coating is ignored since it has 

very small effect on contact stresses [46]. On the other hand, the Poisson’s ratio 
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of the functionally graded coating 1  may not be equal to the Poisson’s ratio of 

the homogenous substrate which is defined by 2.   

2.1.1 Continuity Conditions along the Interface 

Lateral and normal displacement components in the functionally graded coating were 

defined by 1( , )u X Y and 1( , ).v X Y  Lateral and normal displacement components in 

the homogenous substrate were defined by 2 ( , )u X Y  and 2( , ).v X Y   

First interface matching condition states that the lateral displacment component in 

the FGM coating must be equal to the lateral displacement component in the 

homogenous substrate and this condition can be explicity written as follows: 
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Second interface matching condition states that the normal displacement component 

in the FGM coating must be equal to the normal displacement component in the 

homogenous substrate. This condition can be clearly written as follows: 

),,(),( 1211 hXvhXv                                                                                        (2.91) 

4
( )( )

3 4

1

( ) ( ) 0.js hh
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R hR e M e







                                                                 (2.92) 

In addition to these conditions, normal and shear stress components must be equal at 

the interface.  
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The following equation indicates that the normal stress component in the FGM 

coating must be equal to the normal stress component in the homogenous coating at 

the interface,  

1 1 2 1( , ) ( , ).YY YYX h X h                                                                                   (2.93) 

By substituting displacement components into the normal stress expressions shown 

by equation (2.84) - (2.87), normal stress for the FGM coating and the homogenous 

substrate can be given by, 
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(2.95) 

The shear stress in the FGM coating must be equal to the shear stress in the 

homogenous substrate at the interface. This equaility can be shown by the following 

equation: 

1 1 2 1( , ) ( , ),XY XYX h X h                                                                                  (2.96) 

By substituting displacement components into the shear stress expression shown by 

equation (2.85) - (2.88), shear stress for the FGM coating and the homogenous 

substrate can be given by, 
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Remind that unknown functions appear in displacement fields are 1,M 2 ,M 3,M  

4 ,M 3R and 4.R Thus, six unknown functions must be determined in total. Four of 

them are determined from the prescribed continuity conditions along the coating 

interface. The remaining two unknown functions are determined from the boundary 

conditions. 

Let’s define new parameters such as:  

*

3 1 3exp( ) ,R h R                                                                                            (2.99) 

*

4 1 4exp( ) ,R h R                                                                                          (2.100) 

*

1exp( ) ,j j j j jM N s h M N                                                                                (2.101) 

*

1exp( ) .j j jM s h M                                                                                         (2.102) 

When lateral displacement continuity condition shown by equation (2.89) is 

imposed, the following equation is obtained: 

1 2 1 1* * * * * *

3 4 1 1 2 2 3 3 4 4 .
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i i i h
R R N M N M N M N M
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   
                  (2.103) 
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When normal displacement continuity condition shown by (2.91) is imposed, the 

following equation is obtained: 

* * * * * *

3 1 4 1 2 3 4 .R h R M M M M                                                                     (2.104) 

Equations found from displacement continuity conditions can be written in matrix 

form as follows:  
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It is required to find *

3R and *

4R  . Let’s define the coefficient matrix of the linear 

system as follows:  
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Then, 1,b 2 ,b 3b and 4b  can be found from the matrix inversion. 
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In compact form equations (2.109)-(2.112) can be written as follows: 
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i
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              1,..., 4.j                                                    (2.113) 

Two of unknown functions denoted by *

3R  and *

4R  can be written explicitly by the 

following equations: 

* * * * *

3 1 1 1 1 2 2 1 3 3 1 4 4(1 ) (1 ) (1 ) (1 ) ,R h b M h b M h b M h b M                             (2.114) 

* * * * *

4 1 1 2 2 3 3 4 4 .R b M b M b M b M                                                                   (2.115) 

The normal stress component in the FGM coating at the interface can be expressed 

by, 
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         (2.116) 

The normal stress component in the homogenous coating at the interface can be 

expressed by, 



40 

 

  1 2 12
2 1 2 3 4 1 4

2

1

2 4 3 1 4 1

( , ) 3
1 2 2 2 2

exp( )

1
( 1) ( )exp( ) .

2

YY

i i ii
X h R R h R

h i X d

R R h R h i X d

   
 

    

  

     






      
             

  

 
       

 


(2.117) 

The shear modulus of FGM coating at the interface surface can be calculated by the 

following equation: 

1 1

10 20 ,
he  
                                                                                                   (2.118) 

Note that 20 shows the shear modulus of the FGM coating at the interface surface. 

The shear modulus of the FGM coating at the interface may not be equal to that of 

homogenous substrate. The ratio between the shear modulus of FGM coating and the 

homogenous substrate at the interface is defined by, 
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                                                                                                           (2.119) 

In this study, 1  is taken as 1.0  for functionally graded coating contact problem and 

1   is assumed to be different from1.0  for homogenous coating contact problem.  

When normal stress continuity condition imposed, the following equation is 

obtained: 
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Substituting equations (2.116) and (2.117) into the normal stress continuity condition 

expressed by equation (2.93) and after performing lengthy mathematical 

manipulations, we have found the coefficients of unknown functions *
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and *

4M . 
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where  

2 2 2

1 2 2 2( 1)(1 ) ( 1) .c                                                                             (2.125) 

The mathematical procedure which was done for the normal stress continuity 

condition is also performed for the shear stress continuity at the interface.  

1 1

4

1 1 10 1

1

4

1

1

1
( , ) ( ) exp( )

2

exp( ) ,
2

h

XY j j j j

j

j j

j

X h e s M N s h i X d

i
M s h i X d

   



 













 
     

 

 
    

 





            (2.126) 

1 12
2 1 2 3 4 1 4

1

4

3 1 4 1

1

1
( , )

2 2 2 2

exp( )

1
( )exp( ) .

2

XY

j

i ii
X h R R h R

Y

h i X d

R h R h i X d
X

 
 

   

  

  






     
           

  

 
     
  



                 (2.127) 

When shear stress continuity condition is imposed, the coefficients of *

1 ,M *

2 ,M *

3M  

and *

4M  are found as follows: 
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where 

2 2 2

2 2 2 22( 1) ( 1) (1 ).c                                                                           (2.132) 

Normal and shear stress continuity conditions at the interface can be written in a 

more compact form as follows: 

* * * *

1 2 2 4 1 1 2 3 ,q M q M w M w M                                                                      (2.133) 
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* * * *

3 2 4 4 3 1 4 3 ,q M q M w M w M                                                                     (2.134) 
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[ (3 ) ( 3)] 2( 1)

1 1
( 1)

1

2( 1)(1 )
,

q i N s

c


   
 

  





 
       
   

  
  

  
   

     (2.136) 

2
2 1 1 2 2

1 2
2 4 1 1 4

2 1

2 2

2 2

2

1
[ (3 ) ( 3)] 2( 1)

1 1
( 1)

1

2( 1)(1 )
,

q i N s

c


   
 

  





 
       
   

  
  

  
   

     (2.137) 

22 2 2
2 2 2 2 1

1 2 2

3

2 2

2
1 2 2

1

1
( 1) (1 ) 2( 1

1 2( 1)

2

1
,

1

i c
N

q

s N


  

  







   
          

    
 






  (2.138) 

22 2 2
2 2 2 2 1

1 2 4

4

2 2

2
1 4 4

1

1
( 1) (1 ) 2( 1

1 2( 1)

2

1
,

1

i c
N

q

s N


  

  







   
          

    
 






  (2.139) 
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2
2 1 1 2 2

1 2
1 1 1 1 1

2 1

2 2

2 2

2

1
(3 ) (3 ) 2( 1)

1 1
( 1)

1

2( 1)(1 )
,

w i N s

c


   
 

  





  
        

     
  
 
  

  
   

 (2.140) 

2
2 1 1 2 2

1 2
2 3 1 1 4

2 1

2 2

2 2

2

1
[ (3 ) (3 )] 2( 1)

1 1
( 1)

1

2( 1)(1 )
,

w i N s

c


   
 

  





 
        
   

  
  

  
   

  (2.141) 

22 2 2
2 2 2 2 1

1 2 1

3

2 2

2
1 1 1

1

1
( 1) (1 ) 2 1

1 2( 1)

2

1
,

1

i c
N

w

s N


  

  







  
         

    
 






       (2.142) 

22 2 2
2 2 2 2 1

1 2 3

4

2 2

2
1 3 3

1

1
( 1) (1 ) 2 1

1 2( 1)

2

1
.

1

i c
N

w

s N


  

  







   
         

    
 






     (2.143) 

In order to solve this linear algebraic equation system for *

2M  and *

4M , we need to 

find the inverse of matrix  .q   

**

12

**

34

[ ] [ ] ,
MM

q w
MM

  
   

   
                                                                                   (2.144) 
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**

1 12

**

34

[ ] [ ] ,
MM

q w
MM


  

   
   

                                                                                (2.145) 

where 

4 21

3 11 4 2 3

1
[ ] .

q q
q

q qq q q q


 

  
  

                                                                        (2.146) 

Let’s define 1  as: 

.32411 qqqq                                                                                                (2.147) 

**
4 2 1 2 12

**
3 1 3 41 34

1
,

q q w w MM

q q w w MM

       
      

       
                                                     (2.148) 

**
4 1 2 3 4 2 2 4 12

**
3 1 1 3 3 2 1 41 34

1
,

q w q w q w q w MM

q w q w q w q w MM

      
    

        
                                        (2.149) 

In the final form, *

2M  and *

4M  can be rewritten below, 

**
1 2 12

**
3 41 34

1
,

r r MM

r r MM

    
    
     

                                                                            (2.150) 

where   

1 4 1 2 3,r q w q w                                                                                                  (2.151) 

2 4 2 2 4 ,r q w q w                                                                                                 (2.152) 

3 3 1 1 3,r q w q w                                                                                                 (2.153) 

4 3 2 1 4 ,r q w q w                                                                                                (2.154) 

1 1 4 2 3.q q q q                                                                                                   (2.155) 
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Consequently, using the interface continuity conditions (displacement continuity 

conditions and the stress continuity conditions), *

2 ,M  *

4 ,M  *

3R  and *

4R   are 

determined. In conclusion, *

2 ,M  *

4 ,M  *

3R  and *

4R are given as follows: 

* * * * *

3 1 1 1 1 2 2 1 3 3 1 4 4(1 ) (1 ) (1 ) (1 ) ,R h b M h b M h b M h b M                             (2.156) 

* * * * *

4 1 1 2 2 3 3 4 4 ,R b M b M b M b M                                                                   (2.157) 

**
1 2 12

**
3 41 34

1
.

r r MM

r r MM

    
    
     

                                                                             (2.158) 

*

1M  and *

3M  are already unknown functions and they are determined from the 

boundary conditions. 

2.1.2 Boundary Conditions 

Normal and shear stress outside the contact region must be zero since outside the 

contact surface is stress free. In the contact region, stress components can be 

described as: 

1 1( ,0) ( ,0) 0,YY XYX X       andX a      ,b X                       (2.159) 

1 ( ,0) ( ),YY X X                    ,a X b                                                        (2.160) 

1 ( ,0) ( ),XY X X                 ,a X b                                                        (2.161) 

The two remaining unknown functions (i.e. *

1M  and *

3M ) for the dynamic contact 

problem are determined using the boundary conditions on the contact surface. *

1M  

and *

3M  come from the tractions along the contact surface. Remember normal and 

shear stress expressions for the graded coating as provided below. 
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 
1 4

10
1 1

11

4

1

1

( , ) 3 exp( )
1 2

1
( 1) ( ) exp( ) ,

2

Y

YY j j j

j

j j j

j

e i
X Y M N s Y i X d

s M s Y i X d

 
   

 

  










  
     

   

 
    

 





             (2.162) 

1

4

1 10

1

4

1

1
( , ) ( ) exp( )

2

exp( ) ,
2

Y

XY j j j j

j

j j

j

X Y e s M N s Y i X d

i
M s Y i X d

   



 











 
   

 

 
   

 





                    (2.163) 

When we take inverse Fourier transform of equations (2.162) and (2.163), we found 

following expressions: 

   

 

4 4

1 1

1 1

1

1

10 1

3 ( ) ( )exp( ) 1 ( )exp( )

1
( , )exp( ) ,

exp( )

j j j j j j

j j

YY

i M N s Y s M s Y

t Y i t dt
Y

     


 

 

 





   


 

 



             (2.164) 

4 4

1 1

1

10 1

( ) ( )exp( ) ( )exp( )

1
( , )exp( ) .

exp( )

j j j j j j

j j

XY

s M N s Y i M s Y

t Y i t dt
Y

   

 
 

 





 

 

 



                                      (2.165) 

Since contact surface is at 0Y   plane, the normal and shear stress components on 

the contact surface can be written as follows: 

1 ( ,0) ( ) ( ,0) ( ),YY YYX X t t                                                                    (2.166) 

1 1( ,0) ( ) ( ,0) ( ).XY XYX X t t                                                            (2.167) 

Introducing new parameters such as: 
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( ) ( ) exp( ) ,P t i t dt  




                                                                                (2.168) 

( ) ( )exp( ) .Q t i t dt  




                                                                             (2.169) 

Out of the contact region, normal and shear stresses should be zero. Since normal 

and shear stresses are defined in the interval ,a X b    we can write ( )P   and 

( )Q   as follows: 

( ) ( ) exp( ) ,

b

a

P t i t dt  


                                                                                (2.170) 

Since coefficient of friction is constant on the contact surface,   may go out the 

integral. 

( ) ( ) exp( ) .

b

a

Q t i t dt   


                                                                              (2.171) 

Taking the limit of equations (2.164) and (2.165) while 0,Y   

1

1 1 2 2 3 3 4 4 1 1 1 2 2 3 3 4 4

1

10

(3 )

[ ] ( 1)[ ]

1
( ),

i

N M N M N M N M s M s M s M s M

P

 








 

         




    (2.172) 

1 1 1 2 2 2 3 3 3 4 4 4 1 2 3 4

10

] [ ]

1
( ).

s N M s N M s N M s N M i M M M M

Q






      


                   (2.173) 

These equations can be rewritten in a more compact form as follows: 
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1

11 12 13 14 2 1

21 22 23 24 3 10

4

( 1) ( )1
,

( )

M

z z z z M P

z z z z M Q

M

 



 
 

    
    

    
  

                                           (2.174) 

where 

11 1 1 1 1(3 ) ( 1) ,z i N s                                                                                (2.175)

12 1 2 1 2(3 ) ( 1) ,z i N s                                                                                (2.176)

13 1 3 1 3(3 ) ( 1) ,z i N s                                                                                (2.177)

14 1 4 1 4(3 ) ( 1) ,z i N s                                                                                (2.178)

21 1 1 ,z s N i                                                                                                    (2.179)

22 2 2 ,z s N i                                                                                                   (2.180)

23 3 3 ,z s N i                                                                                                    (2.181)

24 4 4 .z s N i                                                                                                    (2.182) 

Remember *

2M  and *

4M :  

**
1 2 12

**
3 41 34

1
.

r r MM

r r MM

    
    
     

                                                                             (2.183) 

Rewrite equation (2.183) as follows:  

**
11 21 12

**
31 41 34

,
r r MM

r r MM

    
    
    

                                                                               (2.184) 

where  

,
1

1
11




r
r                                                                                                            (2.185) 
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,
1

2
21




r
r                                                                                                            (2.186) 

,
1

3
31




r
r                                                                                                            (2.187) 

4
41

1

.
r

r 


                                                                                                            (2.188) 

When equations (2.184) are written explicity for *

2M  and *

4M , we can find the 

following relations: 

* * *

2 11 1 21 3 ,M r M r M                                                                                        (2.189) 

* * *

4 31 1 41 3 ,M r M r M                                                                                        (2.190) 

After determination of *

2M  and *

4M , we can write 2M  and 4M  as follows: 

2 11 1 2 1 1 21 3 2 3 1exp(( ) ) exp(( ) ),M r M s s h r M s s h                                            (2.191) 

4 31 1 4 1 1 41 3 4 3 1exp(( ) ) exp(( ) ),M r M s s h r M s s h                                             (2.192) 

When equations (2.191) and (2.192) are substituted into equations (2.172) and 

(2.173), the following set of equations are found: 

 

1 1 1 2 11 2 1 1 1 4 31 4 1 1

1 1 1 2 2 1 1 1 4 31 2 1 1

1 2 21 2 3 1 1 3

1 4 41 4 3 1 1 2 21

{(3 ) (3 ) exp( ) (3 ) exp( )

( 1) ( 1) exp( ) ( 1) exp( )}

{(3 ) exp( ) (3 )

(3 ) exp( ) ( 1) exp

i N i N r s s h i N r s s h

s s s s h s r s s M

i N r s s h i N

i N r s s h s r

     

  

   

  

       

        

     

     2 3 1

1
1 3 1 4 41 4 3 1 3

10

( )

1
( 1) ( 1) exp( ) } ( ),

s s h

s s r s s h M P


  


 


     

(2.193) 
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1 1 2 2 11 2 1 1 4 4 31 4 1 1

11 2 1 1 31 4 1 1 1

2 2 21 2 3 1 3 3 4 4 41 4 3 1

21 2 3 41 4 3 1 3

10

{ exp( ) exp( )

exp( ) exp( ) }

{ exp( ) exp( )

exp( ) exp( ) }

1
( ).

s N s N r s s h s N r s s h

i i r s s h i r s s h M

s N r s s h s N s N r s s h

i r s s i i r s s h M

Q

  

  




   

    

    

    



                                     (2.194) 

Equations (2.193) and (2.194) can be represented in matrix form as follows: 

51 61 1 1

71 81 3 10

( 1) ( )1
,

( )

r r M P

r r M Q

 



     
    

    
                                                            (2.195) 

where 

51 1 1 2 11 2 1 1 4 31 4 1 1

1 1 1 2 11 2 1 1 1 4 31 4 1 1

(3 ) [ exp( ) exp( ) ]

( 1) ( 1) exp( ) ( 1) exp( ) ,

r i N N r s s h N r s s h

s s r s s h s r s s h

 

  

     

       
          (2.196)

61 1 2 21 2 3 1 3 4 41 4 3 1

1 3 1 2 21 2 3 1 1 4 41 4 3 1

(3 ) [ exp( ) exp( ) ]

( 1) ( 1) exp( ) ( 1) exp( ) ,

r i N r s s h N N r s s h

s s r s s h s r s s h

 

  

     

       
        (2.197)

71 1 1 2 2 11 2 1 1 4 4 31 4 1 1

11 2 1 1 31 4 1 1

exp( ) exp( )

(1 exp( ) exp( ) ),

r s N s N r s s h s N r s s h

i r s s h r s s h

    

    
                                          (2.198)

81 2 2 21 2 3 1 3 3 4 4 41 4 3 1

21 2 3 1 41 4 3 1

exp( ) exp( )

(1 exp( ) exp( ) ),

r s N r s s h s N s N r s s h

i r s s h r s s h

    

    
                                 (2.199) 

We can write expressions 51,r  61,r  71r  and 81r  as follows: 

51 11 12 11 2 1 1 14 31 4 1 1exp( ) exp( ) ,r z z r s s h z r s s h                                                        (2.200)

61 13 12 21 2 3 1 14 41 4 3 1exp( ) exp( ) ,r z z r s s h z r s s h                                                       (2.201)

71 21 22 11 2 1 1 24 31 4 1 1exp( ) exp( ) ,r z z r s s h z r s s h                                               (2.202)

81 23 22 21 2 3 1 24 41 4 3 1exp( ) exp( ) .r z z r s s h z r s s h                                              (2.203) 
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The unknown functions 1M  and 3M  are determined from the following linear 

algebraic equation system: 

51 61 1 1

71 81 3 10

( 1) ( )1
,

( )

r r M P

r r M Q

 



     
    

    
                                                            (2.204) 

81 611

71 5151 81 61 71

1
[ ] ,

r r
r

r rr r r r


 

  
  

                                                                      (2.205) 

1 81 61 1

3 71 5110 21

( 1) ( )1
,

( )

M r r P

M r r Q

 



      
    

     
                                                   (2.206) 

21 51 81 61 71.r r r r                                                                                                (2.207) 

Hence, six unknown functions appear in the displacement components for the coating 

and the substrate },,,,,{ 434321 RRMMMM  are determined at the end. They are given 

explicitly below. 

1 81 1 61

21 10

1
[ ( 1) ( ) ( )],M r P r Q  


  


                                                            (2.208) 

2 11 1 2 1 1 21 3 2 3 1[ exp( ) exp( ) ],M r M s s h r M s s h                                                         (2.209) 

3 71 1 51

21 10

1
[ ( 1) ( ) ( )],M r P r Q  


   


                                                         (2.210) 

4 31 1 4 1 1 41 3 4 3 1[ exp( ) exp( ) ],M r M s s h r M s s h                                                         (2.211) 

3 1 1 1 1 2 2 1 3 3 1 4 4(1 ) (1 ) (1 ) (1 ) ,R hb M hb M hb M hb M                                  (2.212) 

4 1 1 2 2 3 3 4 4.R b M b M b M b M                                                                        (2.213) 
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2.2 Singular integral equation of the problem 

We have found all the unknown functions to determine displacement components in 

the FGM coating  1 , ,u X Y  1 ,v X Y and homogenous substrate  2 , ,u X Y  

 2 ,v X Y  in Fourier domain. Since displacement vector of the contact problem is 

specified on some part of the contact surface and the traction vector is specified on 

the remainder part, the problem is a mixed Boundary Value Problem (B.V.P).   

Input to the contact problem is the gradient of the vertical displacement component 

on the contact surface which is shown by  )0,(1 XvX . Normal and shear stress 

components on the contact surface are expressed by )()0,(1 XXYY    and 

).()0,(1 XXXY    

It is required to write displacement gradients on the contact surface by taking the 

derivatives of displacement expressions as described below. 

4

1
0 0

1

1
lim ( , ) lim exp( ) ,

2
j j j

Y Y
j

u X Y i M N s Y i X d
X

  




 



 


                          (2.214) 

4

1
0 0

1

1
lim ( , ) lim exp( ) .

2
j j

Y Y
j

v X Y i M s Y i X d
X

  




 



 


                               (2.215) 

The right hand side of equations (2.214) and (2.215) can be written explicitly as 

follows: 
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 81 1 61 1 1
0

21 10

11 81 1 61 2 1 1

21 10

2 2

21 71 1 51 2 3 1

21 10

21 10

1 1
lim ( 1) ( ) ( ) exp( )

2

1
[ ( 1) ( ) ( ) exp( )

exp( )
1

[ ( 1) ( ) ( ) exp( )

1

Y
i r P r Q N s Y i X

r r P r Q s s h

N s Y i X

r r P r Q s s h

    
 

  




  










   



  
    

  
 
  
      
   






 71 1 51 3 3

31 81 1 61 4 1 1

21 10

4 4

41 71 1 51 4 3 1

21 10

( 1) ( ) ( ) exp( )

1
[ ( 1) ( ) ( )] exp( )

exp( )} ,
1

[ ( 1) ( ) ( ) exp( )

r P r Q N s Y i X

r r P r Q s s h

N s i X d

r r P r Q s s h

   

  


 

  


   

  
    

  
 
  
      
   

 

(2.216) 

 81 1 61 1
0

21 10

11 81 1 61 2 1 1 2

21 10

21 71 1 51 2 3 1 2

21 10

21 10

1 1
lim ( 1) ( ) ( ) exp( )

2

1
[ ( 1) ( ) ( ) exp( ) exp( )

1
[ ( 1) ( ) ( ) exp( ) exp( )

1
[

Y
i r P r Q s Y i X

r r P r Q s s h s Y i X

r r P r Q s s h s Y i X

    
 

   


   










  



  
      

  

 
      

 








71 1 51 3

31 81 1 61 4 1 1 4

21 10

41 71 1 51 4 3 4

21 10

( 1) ( ) ( ) exp( )

1
[ ( 1) ( ) ( )] exp( ) exp( )

1
[ ( 1) ( ) ( ) exp( ) exp( ) ,

r P r Q s Y i X

r r P r Q s s h s Y i X

r r P r Q s s h s Y i X d

   

   


    


 
    

 

 
     

 

 
      

 

       

(2.217) 
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These displacement gradient equations given by equations (2.216) and (2.217) can 

be expressed in a more compact form using following integral equations:  

10 1 11 12
0

lim2 ( , ) ( , , ) ( ) ( , , ) ( ) ,
Y

v X Y K X Y t t dt K X Y t t dt
X

    
 


 


 

            (2.218) 

10 1 21 22
0

lim2 ( , ) ( , , ) ( ) ( , , ) ( ) .
Y

u X Y K X Y t t dt K X Y t t dt
X

    
 


 


 

           (2.219) 

The kernels of the integral equations are written below. 

11 11
0

( , , ) lim ( , )exp( ( )) ,
Y

K X Y t h Y i t X d  





                                               (2.220) 

12 12
0

( , , ) lim ( , )exp( ( )) ,
Y

K X Y t h Y i t X d  





                                               (2.221) 

21 21
0

( , , ) lim ( , )exp( ( )) ,
Y

K X Y t h Y i t X d  





                                               (2.222) 

22 22
0

( , , ) lim ( , )exp( ( )) ,
Y

K X Y t h Y i t X d  





                                              (2.223) 

1
11 81 5 71 6

21

( 1)
( , ) { },

i
h Y r d r d

 



 


                                                                  (2.224)

12 51 7 61 8

21

( , ) { },
i

h Y r d r d


  


                                                                           (2.225)

21 61 3 51 4

21

( , ) { },
i

h Y r d r d


  


                                                                           (2.226)

1
22 81 1 71 2

21

( 1)
( , ) { },

i
h Y r d r d

 



 


                                                                  (2.227) 

where 
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1 1 1 11 2 1 1 2 2 31 4 1 1 4 4exp( ) exp(( ) ) exp(( ) ) ,d s Y N r s s h s Y N r s s h s Y N            (2.228) 

2 3 3 21 2 3 1 2 2 41 4 3 1 4 4exp( ) exp(( ) ) exp(( ) ) ,d s Y N r s s h s Y N r s s h s Y N        (2.229) 

3 1 1 11 2 1 1 2 2 31 4 1 1 4 4exp( ) exp(( ) ) exp(( ) ) ,d s Y N r s s h s Y N r s s h s Y N          (2.230) 

4 3 3 21 2 3 1 2 2 41 4 3 1 4 4exp( ) exp(( ) ) exp(( ) ) ,d s Y N r s s h s Y N r s s h s Y N          (2.231) 

5 1 11 2 1 1 2 31 4 1 1 4exp( ) exp(( ) ) exp(( ) ),d s Y r s s h s Y r s s h s Y                         (2.232) 

6 3 21 2 3 1 2 41 4 3 1 4exp( ) exp(( ) ) exp(( ) ),d s Y r s s h s Y r s s h s Y                      (2.233) 

7 3 21 2 3 1 2 41 4 3 1 4exp( ) exp(( ) ) exp(( ) ),d s Y r s s h s Y r s s h s Y                        (2.234) 

8 1 11 2 1 1 2 31 4 1 1 4exp( ) exp(( ) ) exp(( ) ).d s Y r s s h s Y r s s h s Y                        (2.235) 

The next step is to find the asymptotic values of the kernels of the integral equations. 

First terms of asymptotic expansions are given in Appendix-A. Analyzing the 

asymptotic behavior of the kernels of the integral equations are important because of 

two reasons. First reason is that the singular behavior of the integral equation and 

that of its solution comes from the leading term in the large   expansion. The second 

reason is to allow computational efficiency when singular integral equation is solved 

numerically. To do so, MATLAB’s MuPad software is used to extract the asymptotic 

terms. After analyzing the asymptotic behavior of the integrands as  , 

following equations are found: 

2 3 10

1 1 1 1
11 1 10 11 12 13 110

2 3 10

1 1 1 1
2 20 21 22 23 210

( , ) exp( ) ...

exp( ) ... ,

h Y i Y e e e e e

i Y e e e e e

   
  

    

   
 

    

  
       

  

  
      

  

(2.236) 
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2 3 10

1 1 1 1
12 1 10 11 12 13 110

2 3 10

1 1 1 1
2 20 21 22 23 210

( , ) exp( ) ...

exp( ) ... ,

h Y Y f f f f f

Y f f f f f
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  

   

   
 

   

  
       

  

  
      

  

   (2.237) 

2 3 10

1 1 1 1
21 1 10 11 12 13 110

2 3 10

1 1 1 1
2 20 21 22 23 210

( , ) exp( ) ...

exp( ) ... ,

h Y i Y g g g g g

i Y g g g g g
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  

    
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 

    

  
       

  

  
      

  

 

(2.238) 

  

2 3 10

1 1 1 1
22 1 10 11 12 13 110

2 3 10

1 1 1 1
2 20 21 22 23 210

( , ) exp( ) ...

exp( ) ... .

h Y Y h h h h h

Y h h h h h

   
  

   

   
 

   

  
       

  

  
      

  

   (2.239) 

In a more compact form, asymptotic terms of the integrands are expressed below. 

1
11 1 10 11 2

1
2 20 21 2

1
( , ) exp( )

1
exp( ) ,

h Y i Y e e O

i Y e e O


  

  


 

  

  
     

  

  
    
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                                     (2.240) 

1
12 1 10 11 2

1
2 20 21 2

1
( , ) exp( )

1
exp( ) ,

h Y Y f f O

Y f f O


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 


 

 

  
     

  

  
    
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                                           (2.241) 
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1
21 1 10 11 2

1
2 20 21 2

1
( , ) exp( )

1
exp( ) ,

h Y i Y g g O

i Y g g O


  

  


 

  

  
     

  

  
    
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                                   (2.242) 

1
22 1 10 11 2

1
2 20 21 2

1
( , ) exp( )

1
exp( ) .

h Y Y h h O

Y h h O


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 


 

 

  
     

  

  
    

  

                                           (2.243) 

The singular behavior in the kernels of the integral equation is determined by 

performing asymptotic analysis. Hence, singular terms are extracted while  . 

The behavior of the integrands are given below. 

11 10 1 20 2( , ) exp( ) exp( ),h Y i e Y i e Y
 

    
 

                                         (2.244) 

12 10 1 20 2( , ) exp( ) exp( ),h Y f Y f Y                                                         (2.245) 

21 10 1 20 2( , ) exp( ) exp( ),h Y i g Y i g Y
 

    
 

                                       (2.246) 

22 10 1 20 2( , ) exp( ) exp( ).h Y h Y h Y                                                         (2.247) 

where  

2

1 11 ,c                                                                                                        (2.248) 

 
2 2

1 1 1
2

1

(1 ) (1 )
.

1

c c




  



                                                                              (2.249) 
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                 (2.251) 

Asymptotic values of the kernels of the integral equations while  are given 

below.  

11 10 1
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( , , ) sgn( )exp( )exp( ( ))
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                       (2.252) 
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22 10 1

20 2

( , , ) exp( ) exp( ( ))

exp( )exp( ( )) .

K X Y t h Y i t X d

h Y i t X d

   

   











   

  





                                   (2.255) 

The relationship between exponential and trigonometric functions can be written by 

using Euler’s formula such that, 

exp( ( )) cos( ( )) sin( ( )),i t X t X i t X                                                    (2.256) 

0

sgn( )exp( )exp( ( )) 2 exp( )sin( ( )) ,i Y i t X d Y t X d      
 



               (2.257) 

0

exp( )exp( ( )) 2 exp( )cos( ( )) .Y i t X d Y t X d     
 



                            (2.258) 

The results of the following integrals are calculated analytically using the integration 

rules given in Abramowitz and Stegun [71]. 

,)sin(
0

22







ba

b
dxbxe ax

                                                                                (2.259)    

,)cos(
0

22







ba

a
dxbxe ax                                                                                 (2.260) 

Using equations given by (2.259) and (2.260), following expressions are obtained: 

2 2

0

2( )
2 exp( )sin( ( )) ,

( )

t X
Y t X d

Y t X
  




 
                                                    (2.261) 
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2 2

0

2
2 exp( )cos( ( )) ,

( )

Y
Y t X d

t X Y
  




 
                                                    (2.262) 

Therefore, equations involving  ,  integrals are reduced to  0, integrals and 

using integration rules provided by [71], the following expressions are obtained: 

1 2 2

1

2
exp( )exp( ( ))

( ) ( )

Y
Y i t X d

t X Y
  








  

   ,    0,Y                       (2.263) 

2 2 2

2

2
exp( )exp( ( ))

( ) ( )

Y
Y i t X d

t X Y
  








  

  ,    0.Y                        (2.264) 

Asymptotic values of the kernels can be written in the following form, 

10 20
11 2 2 2 2

1 2

2 ( ) 2 ( )
( , , ) ,

( ) ( ) ( ) ( )

e t X e t X
K X Y t

t X Y t X Y 


 
 

   
                                     (2.265) 

10 1 20 2
12 2 2 2 2

1 2

2 2
( , , ) ,

( ) ( ) ( ) ( )

f Y f Y
K X Y t

t X Y t X Y

 

 
   

   
                                  (2.266) 

10 20
21 2 2 2 2

1 2

2 ( ) 2 ( )
( , , ) ,

( ) ( ) ( ) ( )

g t X g t X
K X Y t

t X Y t X Y 


 
 

   
                                     (2.267) 

10 1 20 2
22 2 2 2 2

1 2

2 2
( , , ) .

( ) ( ) ( ) ( )

h Y h Y
K X Y t

t X Y t X Y

 

 
   

   
                                  (2.268) 

Note that the following limit calculations are used while taking the limit as 
 0Y : 

2 2
0

1

( ) 1
lim ,

( ) ( ) ( )Y

t X

t X Y t X




  
                                                                      (2.269) 

2 2
0

2

( ) 1
lim ,

( ) ( ) ( )Y

t X

t X Y t X




  
                                                                      (2.270) 

1

2 2
0

1

lim ( ),
( ) ( )Y

Y
t X

t X Y





  

 
                                                               (2.271) 
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2

2 2
0

2

lim ( ).
( ) ( )Y

Y
t X

t X Y





  

 
                                                               (2.272) 

Therefore, while taking the limit of equations (2.265) – (2.268) as 
 0Y , 

asymptotic values 11 ,K  12 ,K  21K  and 22K   can be written as follows: 

 10 20
11 10 20

0

2 2 2
lim ,

( ) ( ) ( )Y

e e
K e e

t X t X t X 


   
  

                                            (2.273) 

   

 

12 10 20
0

10 20

lim 2 ( ) 2 ( )

2 ( ) ,

Y
K f t X f t X

t X f f

 

 

 


   

  
                                               (2.274) 

 10 20
21 10 20

0

2 2 2
lim ,

( ) ( ) ( )Y

g g
K g g

t X t X t X 


   
  

                                          (2.275) 

   

 

22 10 20
0

10 20

lim 2 ( ) 2 ( )

2 ( ) .

Y
K h t X h t X

t X h h

 

 

 


   

  
                                               (2.276) 

We have found all the asymptotic values 11 ,K   12 ,K  21K  and 22K   as 
 0Y . 

When we substitute these terms into the integral equations, we obtain following 

couple of equations: 

10 1
0

10 20
11 2 2 2 2

0
1 2

10 20
12 2 2 2 2

0
1 2

lim 2 ( , )

2 ( ) 2 ( )
lim ( , , ) ( )

( ) ( ) ( ) ( )

2 ( ) 2 ( )
lim ( , , ) ( )

( ) ( ) ( ) ( )

2

(

Y

Y

Y

v X Y
X

e t X e t X
K X Y t t dt

t X Y t X Y

f Y f Y
K X Y t t dt

t X Y t X Y

t




 


 
























   
     

     

   
     

     







 

 

10 20

10 20

( )
)

2 ( ) ( ) ,

e e t dt
X

f f t X t dt



  









 


  





(2.277) 
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10 1
0

10 20
21 2 2 2 2

0
1 2

10 20
22 2 2 2 2

0
1 2

lim 2 ( , )

2 ( ) 2 ( )
lim ( , , ) ( )

( ) ( ) ( ) ( )

2 ( ) 2 ( )
lim ( , , ) ( )

( ) ( ) ( ) ( )

2

(

Y

Y

Y

u X Y
X

g t X g t X
K X Y t t dt

t X Y t X Y

h Y h Y
K X Y t t dt

t X Y t X Y

t




 


 
























   
     

     

   
     

     







 

 

10 20

10 20

( )
)

2 ( ) ( ) .

g g t dt
X

h h t X t dt



  









 


  





(2.278) 

After performing lengthy mathematical manipulations on the right hand side of 

integral equations (2.277) and (2.278), we can write the following equations: 

   

10 1

1

11 12

1 1

10 20 10 20

1 1

4
( ,0)

( 1)

2 2
( ) ( , ) ( ) ( , )

( 1) ( 1)

4 4( )
( ),

( 1) ( ) ( 1)

v X
X

t J t X dt t J t X dt

e e f ft
dt X

t X





 

   




  

 

 








 

  
 

 
 

  

 



              (2.279) 

   

10 1

1

21 22

1 1

10 20 10 20

1 1

4
( ,0)

( 1)

2 2
( ) ( , ) ( ) ( , )

( 1) ( 1)

4 4( )
( ).

( 1) ( ) ( 1)

u X
X

t J t X dt t J t X dt

g g h ht
dt X

t X





 

   

 


  

 

 








 

  
 

 
 

  

 



             (2.280) 

where  
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 11 11 10 20( , ) ( ,0) exp( ( )) ,
i

J t X h e e i t X d


  






  
     

  
                             (2.281)

  12 12 10 20( , ) ( ,0) exp( ( )) ,J t X h f f i t X d  




                                     (2.282) 

 21 21 10 20( , ) ( ,0) exp( ( )) ,
i

J t X h g g i t X d


  






  
     

  
                          (2.283) 

  22 22 10 20( , ) ( ,0) exp( ( )) .J t X h h h i t X d  




                                     (2.284) 

Define new parameters 
1
,

2
,

3
  and 

4
  such as: 

 10 20

1

1

4
,

( 1)

e e


 





                                                                                             (2.285) 

 10 20

2

1

4
,

( 1)

f f








                                                                                            (2.286) 

 10 20

3

1

4
,

( 1)

g g


 





                                                                                           (2.287) 

 10 20

4

1

4
.

( 1)

h h








                                                                                             (2.288) 

10
1 11

1 1

12

1

1 2

4 2
( ,0) ( ) ( , )

( 1) ( 1)

2
( ) ( , )

( 1)

( )
( ),

v X t J t X dt
X

t J t X dt

t
dt X

t X




  




 


  














 

  

 


 








                                        (2.289) 
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10
1 21

1 1

22

1

3 4

4 2
( ,0) ( ) ( , )

( 1) ( 1)

2
( ) ( , )

( 1)

( )
( ).

u X t J t X dt
X

t J t X dt

t
dt X

t X

 


  


 


   














 

  

 


 








                                       (2.290) 

Mathematical manipulations are made and kernels of the integral equations ,11J   ,12J

21J  and 22J  can be expressed using the relations described in Ref. [45].  

( )

11 11 11

0 0

( , ) 2 ( ) 2 ( )sin( ( )) ,i t XJ t X i e d t X d      
 

                           (2.291) 

( )

12 11 12

0 0

( , ) 2 ( ) 2 ( )cos( ( )) ,i t XJ t X e d t X d      
 

                           (2.292) 

( )

21 21 21

0 0

( , ) 2 ( ) 2 ( )sin( ( )) ,i t XJ t X i e d t X d      
 

                          (2.293) 

( )

22 22 22

0 0

( , ) 2 ( ) 2 ( )cos( ( )) .i t XJ t X e d t X d      
 

                           (2.294) 

where 

   1
11 81 5 71 6 10 20

21

( 1)
( ) ,r d r d e e

 
 

 
   


                                                (2.295) 

   12 51 7 61 8 10 20

21

( ) ,
i

r d r d f f


     


                                                          (2.296) 

   21 61 3 51 4 10 20

21

( ) ,r d r d g g


 


   


                                                         (2.297) 
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   1
22 81 1 71 2 10 20

21

( 1)
( ) .

i
r d r d h h

 
 


   


                                                 (2.298) 

When 11, 12 , 21 and 22  are substituted into equations (2.291) - (2.294) the 

following relations are obtained: 

   1
11 81 5 71 6 10 20

210

( 1)
( , ) 2 sin( ( )) ,J t X r d r d e e t X d

 
 

   
     

 
            (2.299) 

   12 51 7 61 8 10 20

210

( , ) 2 cos( ( )) ,
i

J t X r d r d f f t X d


 
  

     
 

                     (2.300) 

   21 61 3 51 4 10 20

210

( , ) 2 sin( ( )) ,J t X r d r d g g t X d


 
  

     
 

                     (2.301) 

   1
22 81 1 71 2 10 20

210

( 1)
( , ) 2 cos( ( )) .

i
J t X r d r d h h t X d

 
 

  
     

 
             (2.302) 

Finally, integral equations given by (2.289) and (2.290) are expressed in a more 

compact form as follows: 

1

2 11 12

10 1

1

1 1
( ) ( , ) ( ) ( , ) ( )

4 ( ,0)
,

( 1)

X k t X t dt k t X t dt
t X

v X

X


    

 





 

 

 
     

 




 

 
     (2.303) 

3

4 21 22

10 1

1

1 1
( ) ( , ) ( ) ( , ) ( )

4 ( ,0)
.

( 1)

X k t X t dt k t X t dt
t X

u X

X


   

 





 

 

 
    

 




 

 
             (2.304) 

11 11

1 0

4
( , ) ( )sin( ( )) ,

1
k t X t X d   






 
                                                         (2.305) 



68 

 

12 12

1 0

4
( , ) ( ) cos( ( )) ,

1
k t X t X d   






 
                                                        (2.306) 

21 21

1 0

4
( , ) ( )sin( ( )) ,

1
k t X t X d   






 
                                                         (2.307) 

22 22

1 0

4
( , ) ( ) cos( ( )) .

1
k t X t X d   






 
                                                        (2.308) 

The singular integral equation given by equation (2.303) is solved for the unknown 

normal contact stress. Other integral equation provided by equation (2.304) is useful 

to calculate the lateral contact stress. In this study, lateral contact stress is presented 

since lateral contact stress plays an important role on surface related damages like 

surface cracking or propagation of the previously occurred cracks. 

Recall the boundary conditions along the contact surface: 

1 ( ,0) ( ) 0,YY X X          a X b                                                              (2.309) 

1 ( ,0) ( ) 0,YY X X          ,X a     X b                                                   (2.310) 

Shear stress on the contact surface is related to the normal contact stress by a 

coefficient of friction according to the Coulomb’s law and the shear stress on the 

contact surface is expressed by the following equation:                                                                

1 ( ,0) ( ) ( ),XY X X X                                                                                (2.311) 

In singular integral equations (2.303) and (2.304), ( )X is the normal contact stress 

and it is unknown priori. Utilizing definitions given by equations (2.309) – (2.311), 

the limits of the singular integral equation are modified as follows: 
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3

4 21 22

10 1

1

1 1
( ) ( , ) ( ) ( , ) ( )

4 ( ,0)
.

( 1)

b b

a a

X k t X t dt k t X t dt
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             (2.313) 

The integration limits a  andb in (2.312) and (2.313) show the contact length and 

these limits depend on the punch profile. Equilibrium equation simply means that the 

summation of the contact pressure must be equal to the force applied by the rigid 

punch and this condition is given by, 

( ) .

b

a

t dt P


                                                                                                    (2.314) 

where P is the prescribed compressive load per unit depth applied by the rigid punch. 

2.3 The derivation of the lateral contact stress on the contact surface 

If normal stress 1 ( ,0)YY X   and shear stress 1 ( ,0)XY X on the contact surface are 

found, we are able to determine the lateral contact stress 1 ( ,0)XX X  on the surface 

of the coating. Firstly, we need to remember the elastic strain-stress field relations in 

three dimensional space. In the plane strain state, we can write strains in ,X  Y  and 

Z  axes as follows: 

 1 1 1 1 1

1

1
( ) ,XX XX YY ZZ

E
                                                                           (2.315) 

 1 1 1 1 1

1

1
( ) ,YY YY XX ZZv

E
                                                                           (2.316) 
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 1 1 1 1 1

1

1
( ) .ZZ ZZ XX YYv

E
                                                                           (2.317) 

Since plane strain state is considered, the strain in Z  direction must be zero, hence

1 0ZZ  . Therefore, the normal stress in Z  direction can be expressed by the 

following relation: 

1 1 1 1( ),zz XX YY                                                                                           (2.318) 

Strain component in Y  axis can be written as follows: 

 1 1 1 1 1 1 1

1

1
( ( )) ,YY YY XX XX YY

E
                                                              (2.319) 

2

1 1 1
1 1 1

1 1

1 (1 )
( , ) ( , ),YY YY XXX Y X Y

E E

  
  

 
                                                 (2.320) 

Since plane strain state is considered, the Kolosov’s constant for the coating can be 

written as: 

1 13 4 ,                                                                                                          (2.321) 

1
1

3

4





                                                                                                         (2.322) 

Elastic modulus on the contact surface can be written as functions of shear modulus 

and Kolosov’s constant. 

1
10 10 1 10

3
2 (1 ) 2 1 ,

4
E


  

 
    

 
                                                               (2.323) 

1
10 10

7
.

2
E





                                                                                                 (2.324) 

Some required terms for the derivation of lateral contact stress are obtained using the 

following mathematical manipulations: 
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1 1
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                                                                                                   (2.326) 

1 1
1 1

(3 ) (7 )
(1 ) ,

16

 
 

 
                                                                               (2.327) 

1 1 1

10 10

(1 ) 3
.

8E

  



 
                                                                                             (2.328) 

When we substitute equations (2.325) - (2.328) into the equation (2.320), we found 

the following equations: 

1 1 1
1 1 1

10 10

( ,0) 1 3
( ,0) ( ,0) ( ,0),

8 8
YY YY XX

v X
X X X

Y

 
  
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  
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
                         (2.329) 
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                                            (2.330) 

Remember the lateral contact stress in terms of displacement components such that, 

   
1

10 1 1
1 1 1

1

( , ) ( , )
( , ) 1 3 ,

1

Y

XX

e u X Y v X Y
X Y

X Y


  



  
       

                       (2.331) 

In order to derive the formula for the lateral contact stress, we need to use the right 

hand side of the singular integral equation given by (2.313). 

3
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(2.333) 
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By taking the limit of equation (2.334) as 0 ,Y  and performing some 

mathematical manipulations, we obtain the lateral contact stress as follows: 

 

31
1 4

1

21 22

3 2
( ,0) 2 ( ) ( )

1

2
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b
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X X t dt
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k t X k t X t dt

  
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





 
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 
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                                (2.335) 

 2010 gg   and  2010 hh  are the leading terms of the asymptotic expansion and they 

are lengthy functions of 1  and 1c .The explicit forms of these terms are provided in 

Appendix-A. Integration limits may take different forms depending on the punch 

profile. 
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CHAPTER 3  

 

 

NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION 

 

 

 

In this chapter, we focus on developing solutions for the governing singular integral 

equation of the problem. Singular integral equation can be solved using function 

theoretical methods or numerical methods. In what follows below, we describe the 

numerical solution methodologies for each punch profile. 

3.1 Flat punch problem 

The geometry of the flat punch contact problem is shown in Figure 3.1. The same 

numerical solution methodologies are applied for homogenous elastic coating and 

functionally graded coating contact problems. A coating of thickness 1h   is perfectly 

bonded to the substrate. The right hand side of the singular integral equation involves 

the displacement gradient on the contact surface. Note that, for the rigid flat punch 

contact problem, normal displacement beneath the punch is constant, and 

correspondingly the displacement gradient on the contact surface becomes zero.  

 

 



74 

 

 

Figure 3.1: The moving rigid flat punch on (a) homogenous elastic coating (b) 

functionally graded coating 
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.)( Pdtt

a

a




                                                                                                       (3.4) 

Equilibrium equation for the flat punch contact problem is given by equation (3.4). 

The summation of the normal contact stress under the flat punch equals to the applied 

load per depth by the flat punch. In order to solve the singular integral equation (3.3), 

it is required to normalize the interval from  ,a a  to  1,1 .This normalization 

procedure is done by the following change of variables: 

,l a                                                                                                                      (3.5) 

,arX           ,aXa        ,11  r                                                                                   (3.6) 
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,ast           ,ata         ,11  s                                                                 (3.7) 

  *

11 11 11

1 1
( , ) , ( , ),k t X k as ar k s r

l a
                                                                     (3.8) 

  *

12 12 12

1 1
( , ) , ( , ),k t X k as ar k s r

l a
                                                                     (3.9) 

  *

21 21 21

1 1
( , ) , ( , ),k t X k as ar k s r

l a
                                                                   (3.10) 

  *

22 22 22

1 1
( , ) , ( , ),k t X k as ar k s r

l a
                                                                  (3.11) 

1
,

a
                                                                                                                (3.12) 

*

11 11 11( ) ( ),
a


    

 
  

 
                                                                                    (3.13) 

*

12 12 12( ) ( ),
a


    

 
  

 
                                                                                   (3.14) 

*

21 21 21( ) ( ),
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
    

 
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 
                                                                                  (3.15) 

*

22 22 22( ) ( ),
a


    

 
  

 
                                                                                  (3.16) 

*

1 1

1
,

a
                                                                                                              (3.17) 

  ),()( r
a

P
arX       ( ) ( ).

P
t as s

a
                                          (3.18) 

When we substitute normalized quantities into the singular integral equation (3.3), 

the following integral equation is obtained: 
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After rearranging and simplifying, we obtain the normalized singular integral 

equation and normalized equilibrium equation of the form, 

1

* *1
2 11 12

1

1
( ) ( , ) ( , ) ( ) 0,r k s r k s r s ds

s r


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


 
      

 
                                (3.20) 

1

1

( ) 1.s ds


                                                                                                         (3.21) 

Terms shown with the sign *, the inhomogeneity constant 1  is replaced by *

1 . Note 

that for the homogenous elastic coating problem 1 0  , hence *

1 0  .   

Kernels of the singular integral equation using normalized variables can be written 

as follows: 

* * *

11 11 11 11

1 0

4
( , ) ( , ) ( , ) ( )sin( ( )) ,

1
k s r a k t X k s r s r d   






   
                (3.22) 
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4
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1
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
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              (3.25) 

where 
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Since normal contact stress ( )X  has integrative singularities at the ends of the flat 

punch, both powers of stress singularities must be negative. The index of the singular 

integral equation is 0 1.0.   Determination of the index of the singular integral 

equation depends on the physics of the problem (Erdogan et al. [73]). The powers of 

the stress singularities   and   are calculated by, 

If :0  

1

2

1 1
1 tan ,

  

    1

2

1 1
tan .

  

                                                     (3.30) 

If :0  

1

2

1 1
tan ,

  

    
1

2

1 1
1 tan .

  

                                                     (3.31) 

Powers of the stress singularities   and    are functions of 2  and  . 2  involves 

10 20f f  term where 10 20f f  is a lengthy function of 1  and 1c . Hence, powers of 

the stress singularities depend on coefficient of friction  , dimensionless punch 

speed 1c   and Poisson’s ratio 1 . Explicit form of 10 20f f  is given in Appendix-A. 
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Some numerical values for the powers of the stress singularities with respect to 

various coefficient of friction and punch speed are given in Table 3.1. The Poisson’s 

ratio along the graded coating is assumed constant since the variation of Poisson’s 

ratio along the graded coating has a small effect on contact stresses [46].  

Generally, the solution of the singular integral equations can be done by either 

function theoretical method or numerical methods. Function theoretical method for 

the solutions of singular integral equations is given in the study conducted by 

Muskhelishvili [72]. In the present study, we use numerical methods for the solutions 

of singular integral equations. By numerical methods, we try to obtain an 

approximate solution rather than a closed form solution. In this technique, using 

Jacobi orthogonal polynomials, the singular integral equation is reduced to an infinite 

number of linear algebraic equation set. The numerical solution for the singular 

integral equation consisting of infinite series and Jacobi polynomials can be 

expressed by, 

,)()()(
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
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nn sPsWcs                                                                                 (3.32) 
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Recall that the terms consisting of Fredholm kernels are, 
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When numerical solution given by (3.32) is substituted into the normalized singular 

integral equation (3.20), the following expression is obtained: 
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                                  (3.37) 

For the rigid flat punch contact problem, the index of the singular integral equation 

is
0 1.0.   Using the orthogonality property of Jacobi polynomials described in 

Appendix-C, governing singular integral equation of the problem is reduced to the 

following linear algebraic equation set: 
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,       1 1.r                                    (3.38) 

Governing equation of the contact problem is reduced to a system of linear algebraic 

equation set with undetermined coefficients nc .These undetermined coefficients can 

be found using the suitable expansion-collocation technique. The accuracy of the 

numerical solution is highly dependent on the selection of the collocation points kr . 

The collocation points kr  are selected as the roots of the Jacobi polynomial. If the 

density of the collocation points is increased near the ends of integration, we will 

obtain more accurate results. Collocation points kr  are determined by, 

 1, 1

1 ( ) 0, 1,..., .N kP r k N
  

                                                                           (3.39) 

Truncating the infinite series at n N , equation (3.38) is reduced to N number of 

algebraic equations in nc by expanding both sides into series of Jacobi polynomials

( , )

1 ( ),nP r  

 1,2,...,n N . Hence, N  equations are generated using equation (3.38) 
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and these equations involves 1N   unknown constants
0 1, ,..., Nc c c . The additional 

equation for a unique solution is provided by the equilibrium condition. 

1

( , )

0 1

( ) ( ) 1.
N

n n

n

c W s P s ds 

 

                                                                                (3.40) 

Using the orthogonality condition discussed in Appendix-C, equation (3.40) is 

reduced to the following equation: 

1

( , ) ( , )

0 0 0

1

( ) ( ) ( ) 1,c P s P s W s ds   



                                                                      (3.41) 

 0 ( , )

0

1
.c

 
                                                                                                         (3.42) 

Therefore, using equilibrium equation, we found the first unknown constant. Once 

we have found the unknown constants  0 1, ,..., Nc c c  by solving linear algebraic 

equation system, we can determine the normal contact stress distribution in 

normalized coordinates.  

( , )

0

( ) ( ) ( ) ( ).
N

n n

n

P P
ar r W r c P r

a a

 


                                                          (3.43) 

The normal and shear stresses on the contact surface in spatial coordinates are 

expressed by, 
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( ,0)
2 1 1 ,

( / 2 )

N
YY

n n

n

X X X X
c P

P a a a a

 
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

     
       

     
                                        (3.44) 

( , )1

0

( ,0)
2 1 1 ,
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X X X X
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



     
       

     
                                     (3.45) 

Recall that the lateral contact stress expressed by equation (2.335): 
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Recall that )()( s
a

P
t  . In spatial coordinates, the lateral contact stress can be 

written as follows: 

1
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                               (3.47) 

The following equations are useful for the calculation of the punch stress intensity 

factors. At the ends of the rigid flat punch, mode-I stress intensity factors can be 

calculated by [45], 
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In a non-dimensional form, the normalized stress intensity factors are calculated by, 
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a
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
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a
K a k a c P
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Powers of the stress singularities at the ends of the rigid flat punch are computed for 

various values of coefficient of friction   and dimensionless punch speed 1c . 
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Numerical values are presented in Table 3.1. In frictionless case, the powers of the 

stress singularities remain the same value as -0.5 although punch speed is increased. 

On the other hand, in frictional cases, dimensionless punch speed begins to become 

effective and it significantly changes the powers of the stress singularities. The 

maximum variation of the powers of the stress singularities with respect to punch 

speed occurs at cases involving higher coefficient of friction values as it can be seen 

in Table 3.1.  

Table 3.1: The powers of stress singularity for a flat punch 1 0.25.    

  
1c      

0.0 

0.0 -0.500000 -0.500000 

0.4 -0.500000 -0.500000 

0.6 -0.500000 -0.500000 

0.8 -0.500000 -0.500000 

0.3 

0.0 -0.531725 -0.468274 

0.4 -0.539476 -0.460523 

0.6 -0.556115 -0.443884 

0.8 -0.627597 -0.372402 

0.5 

0.0 -0.552568 -0.447431 

0.4 -0.565206 -0.434793 

0.6 -0.591867 -0.408132 

0.8 -0.695751 -0.304248 

0.7 

 

 

 

0.0 -0.572966 -0.427033 

0.4 -0.590101 -0.409898 

0.6 -0.625392 -0.374607 

0.8 -0.748221 -0.251778 
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3.2 Triangular punch problem 

The geometry of the triangular punch contact problem is shown in Figure 3.2. A 

coating of thickness 
1h  is perfectly bonded to the substrate. The right hand side of 

the singular integral equation involves the displacement gradient on the contact 

surface. Note that, for the rigid triangular punch contact problem, normal 

displacement beneath the punch is a linear function due to the punch profile, and 

correspondingly the displacement gradient on the contact surface becomes constant. 

In Figure 3.2,  denotes the inclination angle of the triangular punch. 

 

Figure 3.2: The moving rigid triangular punch on (a) homogenous elastic coating 

(b) functionally graded coating 

,tan)0,( 01 XvXv                                                                                      (3.52) 
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The integration limits of singular integral equation and equilibrium equation are 

modified as  0,b for triangular punch contact problem. In order to solve the singular 

integral equation, it is required to normalize the interval from  0,b  to  1,1 .This 

normalization procedure is done by the following change of variables: 

,
2

b
l                                                                                                                   (3.56) 

,
22

b
r

b
X           bX 0 ,     1 1,r                                                         (3.57) 
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22

b
s

b
t              ,0 bt         1 1,s                                                        (3.58) 
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                                                 (3.59) 
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When we substitute normalized quantities into the singular integral equation (3.54), 

the following equation is obtained: 
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                         (3.70) 

When equation (3.70) is simplified and rearranged, the following singular integral 

equation is derived: 

1

* *1
2 11 12

1

1
( ) ( , ) ( , ) ( ) 1,r k s r k s r s ds
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
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


 
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                                (3.71) 

The equilibrium equation for the triangular punch contact problem is written using 

normalized variables as follows: 
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Terms shown with the sign *, the inhomogeneity constant 1  is replaced by *

1 . Note 

that for the homogenous elastic coating problem 1 0  , hence *

1 0  .   

Kernels of the singular integral equation using normalized variables can be written 

as follows: 

* * *
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The triangular punch has a sharp corner at trailing end 0,X   and there is a smooth 

contact point between the punch and the coating at X b . The index of the singular 

integral equation is 0 0  , which requires that   must be positive and   must be 

negative. Determination of the index of the singular integral equation depends on the 

physics of the problem as described in the work conducted by Erdogan et al. [73]. 

The powers of the stress singularities   and   are calculated by, 

If :0  

1

2

1 1
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  

   1

2

1 1
tan .

  

                                                            (3.81) 

If :0  
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1 1
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  

    1

2

1 1
1 tan .

  

                                                   (3.82) 

Powers of the stress singularities   and   are functions of 2  and  . 2  involves 

10 20f f  term where 10 20f f  is a lengthy function of 1   and 1c  . Explicit form of 

10 20f f  is given in Appendix-A. The Poisson’s ratio along the graded coating is 

assumed to be constant since the variation of the Poisson’s ratio along the graded 

coating has a very small effect on contact stresses [46].  

In frictional dynamic contact problems, consequently, the powers of stress 

singularity   and   depend on the coefficient of friction ,  the Poisson’s ratio 1  

and the dimensionless punch speed 1c .  

The governing singular integral equation for the dynamic contact problem has been 

derived. This integral equation is a second type which involves a Cauchy kernel and 

Fredholm kernels. Generally, the solution of the singular integral equations can be 

done by either function theoretical method or numerical methods. In the present 



88 

 

study, we use numerical methods to solve the singular integral equation. Using Jacobi 

orthogonal polynomials, the singular integral equation is reduced to an infinite 

number of linear algebraic equation set. The numerical solution of the singular 

integral equation consisting of infinite series and Jacobi polynomials can be 

expressed by, 

( , )

0

( ) ( ) ( ),n n

n

s c W s P s 




                                                                                 (3.83) 

    .11)(

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where nc are the undetermined coefficients ( 0,1, 2,... )n N . Substituting (3.83) into 

singular integral equation (3.71) yields the following equation: 
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For neatness, terms consisting of equation (3.85) can be grouped as follows:  
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1 2( ) ( ) ( ).n n nK r Z r Z r                                                                                        (3.88) 

Using orthogonality property of Jacobi polynomials described in Appendix-C, 

governing singular integral equation of the problem is reduced to the following set 

of linear algebraic equations: 



89 

 

( , )1

0

( ) ( ) 1,
sin

n n n

n

c P r K r  




 



 
  

 
       1 1.r                                           (3.89) 

Governing equation of the contact problem is reduced to a system of linear algebraic 

equation set with undetermined coefficients
nc .These undetermined coefficients can 

be found using the suitable expansion-collocation technique. The accuracy of the 

numerical solution is highly dependent on the selection of the collocation points kr . 

The collocation points kr  are selected as the roots of the Jacobi polynomial. If the 

density of the collocation points is increased near the ends of integration, we will 

obtain more accurate results. Collocation points are determined by, 
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The relationship between the applied load by the punch and the contact length can 

be determined by using equilibrium equation. 
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where 0  can be calculated by, 
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Triangular punch contact problem is an incomplete contact problem since there is a 

relation between the contact length and the load applied by the rigid triangular punch. 

The normalized load for a triangular punch can be calculated by the following 

formulation: 
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In normalized coordinates, the solution can be written as follows: 
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In spatial coordinates, the normal and shear stresses on the contact surface can be 

expressed as follows: 
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The lateral contact stress on the contact surface is expressed by the following 

equation: 
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The mode-I stress intensity factor at the sharp end of the triangular punch can be 

calculated by the following formula [45]: 
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In a non-dimensional form, the normalized stress intensity factor can be calculated 

by, 
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The powers of the stress singularities are calculated for the triangular punch and some 

numerical values are presented with respect to various coefficient of friction   and 

dimensionless punch speed 
1c   in Table 3.2. In frictionless contacts, although punch 

speed is increased, the powers of stress singularities remain the same value. 

However, in frictional contacts, both powers of the stress singularities begin to 

change. The higher coefficient of friction value we take, the greater variation in the 

powers of stress singularities we observe. 

Table 3.2: The powers of stress singularity for a triangular punch 
1 0.25.         

  
1c      

0.0 

0.0 0.500000 -0.500000 

0.4 0.500000 -0.500000 

0.7 0.500000 -0.500000 

0.8 0.500000 -0.500000 

0.3 

0.0 0.468274 -0.468274 

0.4 0.460523 -0.460523 

0.6 0.443885 -0.443885 

0.8 0.372402 -0.372402 

0.5 

0.0 0.447432 -0.447432 

0.4 0.434794 -0.434794 

0.6 0.408132 -0.408132 

0.8 0.304248 -0.304248 

0.7 

0.0 0.427033 -0.427033 

0.4 0.409898 -0.409898 

0.6 0.374607 -0.374607 

0.8 0.251779 -0.251779 
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3.3 Semi-circular punch problem 

The geometry of the semi-circular punch contact problem is shown in Figure 3.3. A 

coating of thickness 1h  is perfectly bonded to the substrate. The right hand side of 

the singular integral equation involves the displacement gradient on the contact 

surface. Note that, for the rigid semi-circular punch contact problem, normal 

displacement beneath the punch is a quadratic function due to the semi-circular 

profile, and correspondingly the displacement gradient on the contact surface 

becomes a linear function. 1R  denotes the radius of the semi-circular punch. 

 

Figure 3.3: The moving rigid semi-circular punch on (a) homogenous elastic 

coating (b) functionally graded coating 
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The equilibrium equation for the semi-circular punch contact problem is shown by 

equation (3.104). In order to solve the singular integral equation, normalization 

procedure is needed. The normalization procedure for semi-circular punch contact 

problem is performed in two parts. First part is carried out as follows: 
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The second normalization step is conducted to normalize the interval from  0,b to

 1,1 . This normalization procedure is performed by the following change of 

variables: 
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After rearranging and simplification of equation (3.124), we found the normalized 

singular integral equation for the semi-circular punch contact problem. 
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The equilibrium equation for the semi-circular punch contact problem in normalized 

form can be written as follows: 
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Terms denoted with the sign *, the inhomogeneity constant 1  is replaced by *

1 . 

Note that for the homogenous elastic coating problem 1 0  , hence
*

1 0  .   
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Kernels of the singular integral equation using normalized variables can be written 

as follows: 

*
* * * *
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Singular behavior of the unknown normal contact stress can be determined through 

the function-theoretic analysis as described by Erdogan [73].  Since normal contact 

stress is unbounded at the sharp end and bounded at the smooth contact point, the 

powers of the stress singularities should be 0,   0  .The index of the integral 
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equation should be
0 0  . Powers of stress singularities   and   are calculated by 

the following formulations: 

If :0  
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1 1
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1 1
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Powers of the stress singularites    and   are functions of 
2  and  . 

2  involves

10 20f f where 10 20f f  is a lengthy function of 1   and 1c  . Explicit form of 10 20f f  

is given in Appendix-A. The Poisson’s ratio along the graded coating is assumed to 

be constant since the variation of Poisson’s ratio along the graded coating has a small 

effect on contact stresses [46].  

In frictional dynamic contact problems, the powers of stress singularity   and   

depend on the coefficient of friction  , the Poisson’s ratio 1  and dimensionless 

punch speed 1.c  

The governing singular integral equation of the dynamic contact problem is obtained. 

This integral equation is a second type equation involving a Cauchy kernel and 

Fredholm kernels. Generally, the solution of the singular integral equations can be 

done by either function theoretical method or numerical methods. In present study, 

we use numerical methods to solve the singular integral equation. Using Jacobi 

orthogonal polynomials, the singular integral equation is reduced to an infinite 

number of linear algebraic equation set. The numerical solution of the singular 
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integral equation consisting of infinite series and Jacobi polynomials can be 

expressed by, 

( , )
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where nc are the undetermined coefficients ),...2,1,0( Nn  . Substituting (3.141) into 

(3.125) yields the following equation: 
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For neatness, equation (3.143) can be divided into minor parts as follows: 
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Using the orthogonality property of Jacobi polynomials described in Appendix-C, 

governing singular integral equation is reduced to the following set of linear 

algebraic equations with undetermined coefficients nc . 
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These undetermined coefficients can be found using the suitable expansion-

collocation technique. The accuracy of the numerical solution is highly dependent 

on the selection of the collocation points
kr . The collocation points are selected as the 

roots of the Jacobi polynomial. If the density of the collocation points 
kr  is increased 

near the ends of integration, we will obtain more accurate results. Collocation points 

are determined by, 

   1, 1

1 0, 1,..., 1.N kP r k N
  
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The relationship between the punch load and the contact length is found using 

equilibrium equation and this equation is given by the following formula: 
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where 0  can be calculated from the following equation: 
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Semi-circular punch contact problem is an incomplete contact problem since there is 

a relation between the contact length and the load applied by the rigid semi-circular 

punch. The normalized load applied by the semi-circular punch can be calculated 

using the following equation: 
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The normal contact stress beneath the semi-circular punch in normalized coordinates 

is calculated by the following equation: 
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In spatial coordinates, the normal and shear contact stresses can be expressed as 

follows: 
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The lateral contact stress distribution is expressed by the following equation: 
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In normalized coordinates, the lateral contact stress distribution is written as follows: 
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The following equation is useful to calculate the mode-I stress intensity factor at the 

sharp end of the semi-circular punch [45]:  
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In a non-dimensional form, the normalized mode-I stress intensity factor at the sharp 

end is defined by, 
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The powers of the stress singularities  and   are calculated for various values of 

coefficient of friction   and dimensionless punch speed 1c . Table 3.3 tabulates the 

powers of the stress singularities. Since physics of the problem is similar to that of 

triangular punch contact problem, results are the same. In frictionless contacts, 

and  remain the same value although punch speed is increased from 0.0 to 0.8. 

Nevertheless, variations begin with respect to punch speed for frictional cases and 

the highest variation of the powers of the stress singularity occur when friction 

coefficient is taken as 0.7  .   
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Table 3.3: The powers of stress singularity for a semi-circular punch 
1 0.25.         

  
1c      

0.0 

0.0 0.500000 -0.500000 

0.4 0.500000 -0.500000 

0.7 0.500000 -0.500000 

0.8 0.500000 -0.500000 

0.3 

0.0 0.468274 -0.468274 

0.4 0.460523 -0.460523 

0.6 0.443885 -0.443885 

0.8 0.372402 -0.372402 

0.5 

0.0 0.447432 -0.447432 

0.4 0.434794 -0.434794 

0.6 0.408132 -0.408132 

0.8 0.304248 -0.304248 

0.7 

0.0 0.427033 -0.427033 

0.4 0.409898 -0.409898 

0.6 0.374607 -0.374607 

0.8 0.251779 -0.251779 
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3.4 Cylindrical punch problem 

The geometry of the cylindrical punch contact problem is shown in Figure 3.4. A 

coating of thickness 
1h  is perfectly bonded to the substrate. The contact area  b a  

is assumed much smaller than the radius of the punch 
1R . The right hand side of the 

singular integral equation involves the displacement gradient on the contact surface. 

Note that, for the rigid cylindrical punch contact problem, normal displacement 

beneath the punch is a quadratic function due to the cylindrical profile, and 

correspondingly the displacement gradient on the contact surface becomes a linear 

function.  

 

Figure 3.4: The moving rigid cylindrical punch on (a) homogenous elastic coating 

(b) functionally graded coating 
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.)( Pdtt

b

a




                                                                                                   (3.162) 

The equilibrium equation is given by equation (3.162) and it simply indicates that 

the summation of the normal contact stress on the contact zone equals to the applied 

load by the rigid cylindrical punch. The integration limits for the cylindrical punch 

contact problem are a andb . For the cylindrical punch contact problem, the 

normalization procedure should be carried out in two steps. In the first step, the 

following definitions are required: 

,1

* Rtt                                                                                                             (3.163) 

,1

* RXX                                                                                                         (3.164) 

,1

* Raa                                                                                                            (3.165) 

,1

* Rbb                                                                                                            (3.166) 

),,(
1

),( ***

11

1

11 Xtk
R

Xtk                                                                                  (3.167) 

),,(
1

),( ***

12

1

12 Xtk
R

Xtk                                                                                  (3.168) 

),,(
1

),( ***

21

1

21 Xtk
R

Xtk                                                                                  (3.169) 

),,(
1

),( ***

22

1

22 Xtk
R

Xtk                                                                                  (3.170) 

).()( ** tt                                                                                                      (3.171) 

Using variables shown by * at the end of the first normalization step, the singular 

integral equation and the equilibrium equation are written as follows: 
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* * * * * * * * *1
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 
   




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

 
      
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
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             (3.172) 

.)(
1
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*

* R

P
dtt

b

a




                                                                                           (3.173) 

In the second normalization step, in order to solve the singular integral equation 

numerically, it is required to normalize the interval from  * *,a b to  1,1 . This 

normalization procedure is performed by the following change of variables: 

,
2

** ab
l


                                                                                                        (3.174) 

,
22

****
* ab

r
ab

X





             ,*** bXa       1 1,r                         (3.175) 

,
22

****
* ab

s
ab

t





                 ,*** bta        1 1,s                         (3.176) 

* * * * * * * *
* * * *

11 11

11* *

1
( , ) ,

2 2 2 2

2
( , ),

b a b a b a b a
k t X k s r

l

k s r
b a

    
    

 




                          (3.177) 

* * * * * * * *
* * * *

12 12

12* *

1
( , ) ,

2 2 2 2

2
( , ),

b a b a b a b a
k t X k s r

l

k s r
b a

    
    

 




                          (3.178) 
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* * * * * * * *
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 




                          (3.179) 

* * * * * * * *
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1
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2
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    
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                          (3.180) 
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1

10** st 






                                                                                       (3.181) 

Using normalized quantities, the integral equation and the equilibrium equation can 

be written as follows: 

1

1
2 11 12

1

* * * *

1
( ) ( , ) ( , ) ( )
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r k s r k s r s ds
s r
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.
1

)(
110

**

1

1

1
R

P

ab
dss












                                                                                (3.183) 

*

11 11 11* *

2
( ) ( ),

b a


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 
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                                                                         (3.184) 
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12 12 12* *
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b a


    

 
  
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                                                                        (3.185) 
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21 21 21* *
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( ) ( ),

b a


    

 
  

 
                                                                        (3.186) 
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22 22 22* *
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( ) ( ),

b a


    

 
  

 
                                                                        (3.187) 
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*

1
1 * *

2
.

b a


 


                                                                                                     (3.188) 

Terms denoted with the sign *, the inhomogeneity constant 1   is replaced by *

1 . 

Note that for the homogenous elastic coating problem 1 0  , hence *

1 0  .   

Kernels of the singular integral equation using normalized variables can be written 

as follows: 

* *
* * * *

11 11 11 11

1 0

4
( , ) ( , ) ( , ) ( )sin( ( )) ,

2 1

b a
k s r k t X k s r s r d   




 

   
        (3.189) 
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


 

   
       (3.190) 
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 
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
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Singular behavior of the unknown normal contact stress can be determined through 

the function-theoretic analysis as described by Erdogan [73].  Since normal contact 

stress is bounded at trailing and leading ends of the cylindrical punch, the powers of 

the stress singularities should be 0,   0  . The index of the integral equation 

should be 
0 1.    Powers of stress singularities   and   are calculated by the 

following formulations: 

If :0  

1

2

1 1
tan ,

  

   1

2

1 1
1 tan .

  

                                                         (3.197) 

If :0  

1

2

1 1
1 tan ,

  

    1

2

1 1
tan .

  

                                                       (3.198) 

Powers of stress singularities   and   are functions of 
2  and  . 

2   involves 

10 20f f  where 10 20f f  is a lengthy function of 1  and 1c . Explicit form of 10 20f f  

is provided in Appendix-A. The Poisson’s ratio along the graded coating is assumed 

to be constant since the variation of Poisson’s ratio along the graded coating has a 

small effect on contact stresses [46].  

In frictional dynamic contact problems, consequently, the powers of stress 

singularities   and   depend on the coefficient of friction  , the Poisson’s ratio 

1  and the normalized punch speed 1c .  

The governing singular integral equation for the dynamic contact problem has been 

obtained in normalized form. This equation is a second type singular integral 

equation involving a Cauchy kernel and the Fredholm kernels. Generally, the 

solution of the singular integral equations can be done by either function theoretical 
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method or numerical methods. In present study, we use numerical methods to solve 

the singular integral equation. Using Jacobi orthogonal polynomials, the singular 

integral equation is reduced to an infinite number of linear algebraic equations. The 

numerical solution of the singular integral equation consisting of infinite series and 

Jacobi polynomials can be expressed by, 

),()()(
),(

0

sPsWcs n

n

n








                                                                            (3.199) 

    ,11)(


sssW                                                                                       (3.200) 

( )W s  is the corresponding weight function for numerical solution given by equation 

(3.199). We need one more normalization step. Quantities involving  symbol are 

written as described in Ref. [45]. 
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n                                                                                                          (3.202) 
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a                                                                                                           (3.203) 

,
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*

P

b
b                                                                                                            (3.204) 

,
*

*

P

X
X                                                                                                          (3.205) 

Using the orthogonality property of the Jacobi polynomials described in Appendix-

C, and truncating the series expansion to ,1N the singular integral equation can be 

expressed by the following linear algebraic equation. 



110 

 

 
1

( , )1
1

0

2
( ) ( ) 1 ( 1) ,

sin

N

n n n

n

c P r K r r b r a 









 
     

 
                                      (3.206) 

),()()( 21 rZrZrK nnn                                                                                     (3.207) 

,)()(),(
1

)( ),(

1

1

111 dssPsWrskrZ nn



 


                                                             (3.208) 

.)()(),(
1 ),(

1

1

122 dssPsWrskZ nn


 



                                                              (3.209) 

Using the orthogonality property of the Jacobi polynomials, equilibrium equation for 

the cylindrical punch contact problem can be written as follows: 

.
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)1(2
00







c                                                                                            (3.210) 

The index of the singular integral equation is ,10   and the consistency condition 

for the cylindrical punch contact problem is given by, 
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Using the normalized singular integral equation, we can write the following equation: 

   
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
  







                             (3.212) 

When numerical solution is put into the singular integral equation, the following 

linear algebraic equation set is obtained. 



111 

 

1 ( , )
( , ) 1

2

0 1

( , )1
1

0

( ) ( )1
( ) ( )

2
( ).

sin

n
n n

n

n n

n

W s P s
c W r P r ds

s r

c P r

 
 

 

 
 









 


 





 
  

 



 



                              (3.213) 

We obtain the following expression by integrating equation (3.213).  
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The consistency condition is satisfied. If equation (3.206) is examined, this equation 

system involves 2N  unknowns ,( 0c ,1c ,2c …, ,a )b . However, this equation 

produces 1N equations for 
kr ( 1,..., 1)k N  . The functional equation for the 

cylindrical contact problem can be written in the following form, 
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The collocation points kr  are the roots of the Jacobi polynomial and they are 

determined by, 

 1, 1

1 ( ) 0, 1,..., 1.N kP r k N
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In matrix form, the linear algebraic equation system is written as follows: 
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The above system is solved iteratively for 1N  unknowns ,( 0c ,1c ,2c …, )b . In 

order to solve this system iteratively, the following algorithm is used [45]. 

Algorithm: 

1- Initialize the parameter .a  

2- Solve this matrix system for 1N  unknowns ,( 0c ,1c ,2c …, )b . 

3- Using obtained 0c and ,b calculate the new a  parameter by the following 

equation: 

.
1

00

1 b
c

a 






                                                  (3.218) 

4- Do iterations until absolute percent relative error between new a  and previously 

obtained a  value is below a certasin limit. (In present study, this certain limit is 

specified as %1.0s )  

100
1







j

jj

a
a

aa
                                           (3.219) 

After solution process is completed, the normal and shear stress components on the 

contact surface are calculated from the following equations. 
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Cylindrical punch contact problem is an incomplete contact problem since there is a 

relation between the contact length and the load applied by the rigid cylindrical 

punch. The normalized load applied by the cylindrical punch can be calculated by 

the following equation. 

.
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where ,*a
*b and nc  are obtained from the back transformation as follows: 

,** Paa                                                                                                         (3.224) 

,** Pbb                                                                                                         (3.225) 

.*Pcc nn                                                                                                         (3.226) 

The lateral contact stress on the contact surface is calculated using the following 

equation: 
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In normalized form, the lateral contact stress is written by, 
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Table 3.4 tabulates the powers of stress singularities   and   with respect to 

various values of coefficient of friction    and dimensionless punch speed 
1c . In 

frictionless elastodynamic contacts, the powers of the stress singularities remain the 

same value as 0.5 although punch speed is increased. However, in fricitonal 

elastodynamic contacts, powers of the stress singularities significantly change with 

respect to punch speed and the highest change occurs when coefficient of friction is 

taken as 0.7  .  

Table 3.4: The powers of stress singularity for a cylindrical punch 1 0.25.    

  
1c      

0.0 

0.0 0.500000 0.500000 

0.4 0.500000 0.500000 

0.7 0.500000 0.500000 

0.8 0.500000 0.500000 

0.3 

0.0 0.468274 0.531726 

0.4 0.460523 0.539477 

0.6 0.443885 0.556115 

0.8 0.372402 0.627598 

0.5 

0.0 0.447432 0.552568 

0.4 0.434794 0.565206 

0.6 0.408132 0.591868 

0.8 0.304248 0.695752 

0.7 

0.0 0.427033 0.572967 

0.4 0.409898 0.590102 

0.6 0.374607 0.625393 

0.8 0.251779 0.748221 
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CHAPTER 4  

 

 

NUMERICAL RESULTS FOR THE HOMOGENOUS ELASTIC COATING 

AND THE SUBSTRATE SYSTEM 

 

 

 

In this chapter, dynamic contact mechanics of homogenous elastic coatings is 

investigated. The main results in this chapter are normal contact stress 1 ( ,0)YY X , 

lateral contact stress 1 ( ,0)XX X  and normalized stress intensity factors 
IK  at sharp 

ends of the rigid punch. Required contact load applied by the punch is also computed 

for incomplete contact problems consisting of triangular, semi-circular and 

cylindrical punch profiles. Computer codes are developed for the implementation of 

the numerical procedures described in Appendix-B, C and D. Numerical results of 

the present analytical procedure is compared with those obtained by computational 

methods. ANSYS Mechanical APDL [74] is used to generate the computational 

results. Verification of our results corresponding to elastostatic contact is satisfied 

by ANSYS Mechanical APDL [74]. For the verification study of the elastodynamic 

solution procedure, results of the present study are compared to those provided by 

Eringen and Suhubi [75] for a homogenus half-plane. In this section, numerical 

results are presented to show the infleunces of mass density ratio, dimensionless 

punch speed, coefficient of friction, relative contact length, and Poisson’s ratio on 

elastodynamic contact stresses and stress intensity factors. In Chapter 2, general 

analytical formulations were derived for elastodynamic contact problem of FGM 
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coatings. However, we investigate elastodynamic contact problem of homogenous 

elastic coatings by applying the following assumptions in the general formulation.  

,0.1
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20
1 




                                                                                                      (4.1) 
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20
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
                                                                                                      (4.2) 

,i ,i i  1,2i   show the shear modulus, the Poisson’s ratio and the mass density 

of homogenous coating and the substrate, respectively. Homogenous coating is 

perfectly bonded to the substrate. Governing partial differential equations (PDEs) for 

the homogenous elastic coating are given below. 
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Governing partial differential equations (PDEs) for the homogenous substrate are, 
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Roots of the characteristic equation for the dynamic contact problem of homogenous 

elastic coatings are obtained as follows: 
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Dimensionless punch speeds for homogenous elastic coating and homogenous 

substrate can be calculated by, 
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For homogenous elastic coating contact problem, function appears in the horizontal 

displacement component 1( , )u X Y becomes: 
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Detailed investigations for the influence of mass density ratio on dynamic contact 

mechanics of less stiff and stiffer coatings are made and obtained results and 

discussions are provided in Appendix-E.  

4.1 Finite Element Analysis Study 

Verification of the developed analytical method is provided by utilizing the 

computational results for elastostatic contacts generated through the general purpose 

finite element analysis software ANSYS Mechanical APDL [74]. Fig. 4.1 illustrates 

the computational model constructed to calculate contact stresses for the elastostatic 

problem. The finite element mesh involves a total of 97536 quadrilateral finite 

elements. Fig. 4.1(a) displays the quadrilateral finite elements used in analyses. 

In Fig. 4.1(b), the dimensions ,pl  ,ml  1,h  and 2h  respectively denote punch width, 

substrate width, coating thickness, and substrate thickness.  Homogenous substrate 

dimensions are kept large since it is modeled as an half-plane in the analytical 

solution. Theroefore, in the constructed model, dimensional ratios are determined as 

3 40,p ml l   and 2 3 24.pl h   Fig. 4.1(c) illustrates a close-up view of the contact 

region. In discretization of the contact zone, line contact elements are employed as it 

can be seen in Fig. 4.1(c). A total of 300 line contact elements and 597 contact nodes 

exist in the finite element model. The contact between the rigid punch and the coating 

is defined by CONTA169 and TARGE172 elements available in ANSYS 

Mechanical APDL [74]. Deformable coating surface is modelled by 298 CONTA169 

elements, whereas 2 TARGE172 elements are used for the rigid punch. Each 

CONTA169 element has three nodes. Hence, a total of 597 contact nodes are created. 

The density of the finite element mesh around the contact zone is refined in order to 

capture the sharp variations in the contact stresses. Implicit integration scheme is 

employed in the finite element simulations.  
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Figure 4.1: Constructed finite element model: (a) Quadrilateral finite element and 

its 8-noded triangular option; (b) Dimensions in the finite element mesh; (c) close-

up view of the contact zone 
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4.2 Numerical Results for the Rigid Flat Punch 

General schematic for the contact problem between a rigid flat punch and a 

homogenous elastic coating is depicted in Figure 4.2. Homogenous elastic coating of 

thickness 
1h  is perfectly bonded to a homogenous substrate, and the rigid flat punch 

slides over the coating at a speed of .V  

 

Figure 4.2: General schematic for the contact between a homogenous elastic 

coating and a rigid flat punch 

Our results corresponding to elastostatic contact are verified by ANSYS Mechanical 

APDL [74]. In the verification study of the elastodynamic solution procedure, we 

compare our findings to those provided by Eringen and Suhubi [75] for a 

homogenous half-plane. Good agreement is observed in elastostatic and 

elastodynamic verification studies. However, sufficiently accurate results for 

elastodynamic contact could not be generated by ANSYS Mechanical APDL [74] 

and the finite element method. The main reason for this problem lies in the modeling 

difficulty of the half-plane geometry. In analytical modeling, the coating-substrate 

structure is assumed to constitute a half-plane thus there is no reflection of stress 
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waves back from surrounding boundaries. Unboundedness of the domain cannot be 

incorporated into finite element model. This causes reflections in finite element 

simulations from the boundaries. As a result, mismatches occur between analytically 

and computationally found contact stresses. The difference becomes significant 

especially for higher punch speeds.  

Figures 4.3 - 4.5 show a comparison of contact stresses computed by the analytical 

method to those generated via finite element analysis for the case of elastostatic 

contact. The results are calculated by assuming 0V  and using four different values 

of the stiffness ratio 1 2  . Coefficient of friction is assumed to be equal to 0.3. It 

can be seen that contact stresses evaluated by the analytical technique developed are 

in excellent agreement with those found by finite element analysis. 

A verification study for elastodynamic contact analysis is conducted by utilizing the 

analytical results of Eringen and Suhubi [75]. The results given in Ref. [75] are 

applicable for a homogenous half-plane. Figure 4.6 displays a comparison of our 

results to those available in Ref. [75]. Half-plane geometry and material homogeneity 

are accounted for by taking 1 0.001a h  and 1 2 1   . The contact is assumed to be 

frictionless. Figures 4.6(a)-(b) indicate that the results are in perfect agreement. It is 

seen that normal contact stress is not affected by dimensionless punch speed 1c  in 

this type of contact. Magnitude of dimensionless lateral contact stress in the contact 

zone however increases as 1c is increased from 0 to 0.8.  

In parametric analyses presented below for coating-substrate systems, we provide 

contact stresses computed for different values of shear modulus ratio 1 2  and 

density ratio 1 2  . As one of these ratios is varied while the other is fixed, 

dimensionless speed ratio 1 2c c also changes. Table 4.1 tabulates 1 2c c  ratios 
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computed for different values of density ratio
1 2  . Note that these results follow 

from the relation: 

1 2
2 1

2 1

.c c
 

 
                                                                                                    (4.16) 

Table 4.1: Dimensionless punch speed ratios 
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1



  1

2

1

10




  

 
1 2c c  

1 2c c  
1 2c c  

1 2c c  

1 2 1/10    10 7.071 3.163 1 

1 2 10    1 0.707 0.316 0.1 

 

Figures 4.7 – 4.8 show elastodynamic contact stress distributions for less stiff and 

stiffer coatings for which modulus ratio 1 2  is respectively defined as 1/10 and 

10. The contact is assumed to be frictional and coefficient of friction   is taken as 

0.3. It is interesting to note that density ratio 1 2  has almost no effect on contact 

stresses for a less stiff coating. However, density ratio affect is found to be highly 

significant for the stiffer coating. Figure 4.8 illustrates the effect of density ratio 

1 2  on normal and lateral contact stress distributions for the stiffer coating. 

Figures 4.9 - 4.12 show the effect of dimensionless punch speed 1c  on contact 

stresses for less stiff and stiffer coatings, respectively. Analyses are carried out in 
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frictional conditions and coefficient of friction   is taken as 0.3. Two different 

relative contact length parameter are utilized (
1 0.1,a h  1 0.4a h  ).  

Contact stresses are in general sensitive to the change in punch speed. Normal contact 

stress  tends to be more compressive near the trailing end, and less compressive near 

the leading end of the contact zone, hence normal contact stresses become skewed 

curve formations. Tensile lateral contact stresses are formed behind the trailing end 

of the contact zone. Increase in the punch speed intensify the tensile behavior of the 

lateral contact stress. It should also be noted that the lateral contact stress reaches 

slightly positive values ahead of the contact zone and this behavior can be seen in 

Figures 4.9(b) and 4.11(b).  

The influence of coefficient of friction   on elastodynamic contact stresses is 

examined in Figures 4.13 - 4.14. It should be noted that generated lateral contact 

stresses in a stiffer coating are more compressive than those generated in a less stiff 

coating, and general trend in the variation of the contact stresses with respect to 

coefficient of friction is similar for less stiff and stiffer coatings. Increase in the 

coefficient of friction leads to more compressive lateral contact stresses ahead of the 

contact. In all cases, larger coefficient of friction leads to a larger tensile peak at the 

trailing end of contact zone. Thus, in elastodynamic contacts with friction, trailing 

end of the contact zone is a possible site for cracking type failure. This finding is in 

line with experimental results observed in scratch tests. Adjustment of the coefficient 

of friction and modulus ratio could be possible ways of avoiding such fracture related 

failures. For both less stiff and stiffer coatings, and all values of coefficient of 

friction, normal contact stress tends to slant towards the leading end of the contact 

zone. 

Figures 4.15 - 4.16 show the elastodynamic contact stresses as functions of the 

relative contact length which is denoted by ratio 1a h . The variation of both normal 
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and lateral contact stresses with respect to increasing 
1a h is quite different for the 

less stiff and stiffer coatings. Normal contact stress tends to be more compressive as 

1a h is increased from 0.01 to 0.8. However, normal contact stress becomes less 

compressive around the trailing end and more compressive around the leading end 

of the contact zone. When lateral contact stresses are examined, increase in the ratio 

1a h  leads to less compressive stresses for the less stiff coating and more 

compressive stresses for the stiffer coating throughout the contact.  

In Figures 4.17 - 4.18, we present elastodynamic contact stresses as functions of 

1 2 .  1   and 
2  being Poisson’s ratios of the coating and substrate, respectively. It 

can be inferred from Figure 4.17(a) and Figure 4.18(a) that the impact of 
1 2  on 

normal contact stress is minimal. Increase in the ratio 
1 2  leads to different 

influences on lateral contact stress distributions. As the ratio 1 2  is increased from 

0.6 to 1.2, lateral contact stress in the contact zone decreases for the less stiff coating 

and increases for the stiffer coating.  

Normalized stress intensity factors evaluated at the ends of the moving flat punch are 

provided in Tables 4.2 - 4.6. Table 4.2 shows the normalized stress intensity factors 

for different values of 1a h  in elastostatic case. Coefficient of friction is taken as 0.0, 

results are generated and provided in this table. Hence, the effect of 1a h  and 1 2   

on normalized stress intensity factors is merely observed. For the less stiff coating, 

as 1a h  ratio is increased, the normalized stress intensity factors at both ends 

decrease. However, reverse trend is observed for the stiffer coating. Tables 4.3 and 

4.4 tabulate the normalized stress intensity factors at the trailing and leading ends of 

the moving flat punch for various values of the modulus ratio 1 2  and 

dimensionless punch speed 1c . Coefficient of friction is assumed to be 0.3 in these 

tables. The form of dependence of IK  on the dimensionless punch speed 1c  is a 
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function of many parameters including relative contact length 
1 ,a h  modulus ratio 

1 2 ,  density ratio 
1 2 ,   coefficient of friction ,  and punch profile. For 

example, from Table 4.3 it is seen that the mode I SIF at the flat punch end X a  

first increases and then decreases as 
1c  gets larger when 

1 2 1/10   and 

1 2 10   . However, mode I SIF results are equal at both ends of the flat punch for 

the half-plane and gradual decrease is seen when 
1 2 1   . For example, from Table 

4.4 it is seen that the mode I SIF at both ends of the flat punch is a decreasing function 

of the dimensionless punch speed 1c . It clearly shows us that the variation of the 

mode I SIF depends on various dynamic, geometric and elastic parameters. Tables 

4.5 - 4.6 display the normalized stress intensity factors with respect to various 

coefficient of friction for a less stiff (
1 2 1/ 5   ) and a stiffer coating  1 2 5 .  

Stress intensity factors for the stiffer coating is greater than those for the less stiff 

coating. In frictionless case, the mode I SIF at trailing and leading ends of the rigid 

flat punch are equal, however, in frictional case, they are not equal. As dimensionless 

punch speed 1c  is increased, a decreasing trend is observed for mode I SIF at both 

ends of the flat punch for the less stiff coating. When Table 4.6 is investigated, the 

values of mode I SIF decrease suddenly at a punch speed of 1 0.4c  , and then 

increase at 1 0.6c  , then decrease again. 

Tables 4.7- 4.10 tabulate the results of normal and lateral contact stresses calculated 

based on elastostatic and elastodynamic theories. In these tables, percent differences 

are given between contact stresses computed considering elastostatic and 

elastodynamic conditions. Contact stresses are calculated for four different values of 

dimensionless punch speed 1c . The case 1 0.0c    corresponds to elastostatic contact. 

The contacts for which 1 0c  are elastodynamic. The percent difference %  in each 

case is computed with respect to contact stress evaluated at 1 0.0.c   Tables 4.7 and 
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4.8 show respectively normal and lateral contact stresses for the less stiff coating 

 1 2 1/10   . The differences found for the normal contact stress 
1 ( ,0)YY X  are 

in general significant. Larger deviations from the stresses obtained for the elastostatic 

case occur near the sharp ends. Table 4.8 indicates that percent differences between 

lateral contact stresses generated in elastostatic and elastodynamic contacts are even 

larger. Difference is larger especially behind the trailing end of the contact and it 

reaches up to 426% for 
1 0.8.c   Tables 4.9 and 4.10 display contact stress results 

computed for stiffer coatings (
1 2 10   ) based on elastostatic and elastodynamic 

theories. Again the difference between elastostatic and elastodynamic contact 

stresses are highly considerable. The most difference between elastodynamic and 

elastostatic normal contact stresses occur around the sharp ends of the flat punch (see 

Table 4.9). The value of percent difference gradually increases as punch speed is 

increased. For stiffer coatings ( 1 2 10   ), again the value of percent difference is 

much greater around trailing end of the flat punch. It should also be noted that the 

orders of the percent difference generally greater for less stiff coatings. It can be 

concluded that less stiff coatings are more sensitive to dynamic influences when 

compared to stiffer coatings.  

Hence, determination of elastodynamic contact stresses is highly critical for contact 

problems involving moving punches. 
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Figure 4.3: Normal and lateral contact stress distribution on the homogenous coating 

indented by a flat punch for different stiffness ratio of the coating and the substrate 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

1/ 0.1,a h  ,3.0
1 0.0.c   

 

  

Figure 4.4: Normal and lateral contact stress distribution on the homogenous coating 

indented by a flat punch for different stiffness ratio of the coating and the substrate 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

1/ 0.25,a h  ,3.0
1 0.0.c   
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Figure 4.5: Normal and lateral contact stress distribution on the homogenous coating 

indented by a flat punch for different stiffness ratio of the coating and the substrate 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

1/ 0.5,a h  ,3.0
1 0.0.c   

 

  

Figure 4.6: Normal and lateral contact stress distribution on the half-plane indented 

by frictionless moving punch for various punch speed .0.0  (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution. 
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Figure 4.7: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various mass density ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,10/1/ 21 

,2.0/ 1 ha ,6.01 c ,3.0 .8.0/ 21    

 

 

Figure 4.8: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various mass density ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,10/ 21 

,2.0/ 1 ha ,6.01 c ,3.0 .8.0/ 21    
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Figure 4.9: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21    

 

 

Figure 4.10: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21    
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Figure 4.11: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,4.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21    

 

 

Figure 4.12: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,4.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21    
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Figure 4.13: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,4.0/ 1 ha ,4.01 c ,8/1/ 21  .8.0/ 21    

 

 

Figure 4.14: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,4.0/ 1 ha ,4.01 c ,8/1/ 21  .8.0/ 21    
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Figure 4.15: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/1/ 21  ,4.01 c ,3.0 ,8/1/ 21  .8.0/ 21   

 

 

Figure 4.16: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/ 21  ,4.01 c ,3.0 ,8/1/ 21  .8.0/ 21   
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Figure 4.17: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of Poisson’s ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,5.0/ 1 ha ,6.01 c ,3.0 ,8/1/ 21  .8.0/ 21   

 

 

Figure 4.18: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving flat punch for various values of Poisson’s ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,10/ 21 

,5.0/ 1 ha ,6.01 c ,3.0 ,8/1/ 21  .8.0/ 21   
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Table 4.2: Normalized stress intensity factors for the moving flat punch
1 0.0,c    

0.0,  1 2/ 0.8.    

 
1 0.1a h   

1 0.2a h   
1 0.3a h   

1 0.4a h   

1 2   ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  

1/10 0.3165 0.3165 0.3113 0.3113 0.2941 0.2941 0.2555 0.2555 

1/5 0.3167 0.3167 0.3122 0.3122 0.2972 0.2972 0.2636 0.2636 

1 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 

10 0.3256 0.3256 0.3468 0.3468 0.4204 0.4204 0.5919 0.5919 

 

Table 4.3: Normalized stress intensity factors for the moving flat punch ,1.0/ 1 ha

,3.0 ,8/1/ 21  .8.0/ 21   

 0.01 c  4.01 c  6.01 c  7.01 c  

1 2   ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  

1/10 0.3103 0.3102 0.3085 0.3198 0.3044 0.3179 0.2991 0.3140 

1/5 0.3111 0.3197 0.3097 0.3190 0.3067 0.3165 0.3028 0.3116 

1 0.3167 0.3167 0.3159 0.3159 0.3134 0.3134 0.3092 0.3092 

10 0.3399 0.3060 0.3103 0.3228 0.3069 0.3202 0.3008 0.3165 

 

Table 4.4: Normalized stress intensity factors for the moving flat punch ,4.0/ 1 ha  

,3.0 ,8/1/ 21  .8.0/ 21   

 0.01 c  4.01 c  6.01 c  7.01 c  

1 2   ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  

1/10 0.2795 0.3074 0.2743 0.3029 0.2658 0.2910 0.2591 0.2725 

1/5 0.2844 0.3085 0.2814 0.3042 0.2777 0.2937 0.2773 0.2797 

1 0.3167 0.3167 0.3159 0.3159 0.3134 0.3134 0.3092 0.3092 

10 0.4472 0.3862 0.2945 0.3437 0.2850 0.3305 0.2708 0.3105 
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Table 4.5: Normalized stress intensity factors for the moving flat punch ,4.0/ 1 ha

,5/1/ 21  1 2/ 1/ 8,   .8.0/ 21   

 0.01 c  4.01 c  6.01 c  7.01 c  

  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  

0.0 0.2972 0.2972 0.2942 0.2942 0.2892 0.2892 0.2862 0.2862 

0.3 0.2844 0.3085 0.2814 0.3042 0.2777 0.2937 0.2773 0.2797 

0.5 0.2753 0.3150 0.2717 0.3091 0.2666 0.2928 0.2698 0.2928 

0.7 0.2659 0.2648 0.2613 0.3126 0.2542 0.2894 0.2474 0.2552 

 

Table 4.6: Normalized stress intensity factors for the moving flat punch ,4.0/ 1 ha

,5/ 21  1 2/ 1/ 8,   .8.0/ 21   

 0.01 c  4.01 c  6.01 c  7.01 c  

  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  ( )IK a  

0.0 0.3774 0.3774 0.2913 0.2913 0.2921 0.2921 0.2817 0.2817 

0.3 0.3941 0.3549 0.2572 0.3264 0.2652 0.3157 0.2578 0.2959 

0.5 0.4017 0.3371 0.2358 0.3495 0.2467 0.3284 0.2387 0.2994 

0.7 0.4065 0.3176 0.2159 0.3718 0.2287 0.3385 0.2191 0.2991 
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Table 4.7: Percent difference between elastostatic and elastodynamic normal contact 

stresses ,10/1/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.8c   

aX /  
1 ( ,0)

/ (2 )

YY X

P a


 1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

-0.90 -1.58576 -1.61436 1.80 -1.67613 5.70 -1.93012 21.72 

-0.82 -1.18923 -1.20545 1.36 -1.23985 4.26 -1.36946 15.15 

-0.73 -0.96813 -0.97815 1.04 -0.99895 3.18 -1.06852 10.37 

-0.61 -0.83246 -0.83888 0.77 -0.85180 2.32 -0.88723 6.58 

-0.41 -0.71430 -0.71746 0.44 -0.72321 1.25 -0.72787 1.90 

-0.19 -0.65578 -0.65673 0.14 -0.65761 0.28 -0.64115 2.23 

-0.04 -0.63943 -0.63908 0.06 -0.63709 0.37 -0.60807 4.90 

0.19 -0.64363 -0.64122 0.37 -0.63468 1.39 -0.58576 8.99 

0.41 -0.68435 -0.67930 0.74 -0.66698 2.54 -0.59309 13.33 

0.61 -0.77525 -0.76623 1.16 -0.74528 3.87 -0.63507 18.08 

0.73 -0.88106 -0.86787 1.50 -0.83794 4.89 -0.69098 21.57 

0.82 -1.05196 -1.03207 1.89 -0.98786 6.09 -0.78404 25.47 

0.90 -1.35150 -1.31933 2.38 -1.24925 7.57 -0.94585 30.02 

 

Table 4.8: Percent difference between elastostatic and elastodynamic lateral contact 

stresses ,10/1/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.8c   

aX /  
1 ( ,0)

/ (2 )

XX X

P a


 1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

-1.22 0.62893 0.70554 12.18 0.87105 38.50 1.69584 169.64 

-0.99 -5.98980 -7.30696 21.99 -10.49468 75.21 -31.51114 426.08 

-0.82 -1.25235 -1.48411 18.51 -2.00951 60.46 -4.77932 281.63 

-0.67 -0.92008 -1.08166 17.56 -1.44118 56.64 -3.21739 249.69 

-0.41 -0.72068 -0.84023 16.59 -1.10049 52.70 -2.28728 217.38 

-0.27 -0.67161 -0.78037 16.19 -1.01472 51.09 -2.04134 203.95 

-0.04 -0.63755 -0.73764 15.70 -0.95008 49.02 -1.82513 186.27 

0.27 -0.65331 -0.75254 15.19 -0.95907 46.80 -1.74032 166.38 

0.41 -0.68913 -0.79237 14.98 -1.00518 45.86 -1.77570 157.67 

0.67 -0.84443 -0.96780 14.61 -1.21710 44.13 -2.04083 141.68 

0.82 -1.10252 -1.26016 14.30 -1.57322 42.69 -2.52963 129.44 

0.99 -4.37889 -4.92702 12.52 -5.93114 35.45 -8.03705 83.54 

1.22 -0.42393 -0.42834 1.04 -0.41972 0.99 -0.22919 45.94 

 



138 

 

Table 4.9: Percent difference between elastostatic and elastodynamic normal contact 

stresses ,10/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.8c   

aX /  
1 ( ,0)

/ (2 )

YY X

P a


 1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

-0.90 -1.70845 -1.61968 5.20 -1.68472 1.39 -1.93127 13.04 

-0.82 -1.26532 -1.20712 4.60 -1.24358 1.72 -1.36869 8.17 

-0.73 -1.01482 -0.97743 3.68 -0.99956 1.50 -1.06658 5.10 

-0.61 -0.85839 -0.83647 2.55 -0.85025 0.95 -0.88455 3.05 

-0.41 -0.71815 -0.71344 0.66 -0.71957 0.20 -0.72465 0.91 

-0.19 -0.64417 -0.65197 1.21 -0.65289 1.35 -0.63794 0.97 

0.04 -0.61432 -0.63137 2.78 -0.62769 2.18 -0.59457 3.21 

0.19 -0.61517 -0.63701 3.55 -0.63005 2.42 -0.58367 5.12 

0.41 -0.64898 -0.67649 4.24 -0.66344 2.23 -0.59231 8.73 

0.61 -0.73367 -0.76568 4.36 -0.74360 1.35 -0.63607 13.30 

0.73 -0.83464 -0.86944 4.17 -0.83800 0.40 -0.69348 16.91 

0.82 -0.99861 -1.03647 3.79 -0.99020 0.84 -0.78843 21.05 

0.90 -1.28613 -1.32781 3.24 -1.25474 2.44 -0.95277 25.92 

 

Table 4.10: Percent difference between elastostatic and elastodynamic lateral contact 

stresses ,10/ 21  ,1.0/ 1 ha ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

aX /  
1 ( ,0)

/ (2 )

XX X

P a


 1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

-1.22 0.33412 0.48381 44.80 0.55140 65.03 1.26996 280.09 

-0.99 -6.92933 -7.57922 9.38 -10.90958 57.44 -32.01416 362.01 

-0.82 -1.70689 -1.71629 0.55 -2.34813 37.57 -5.21374 205.45 

-0.67 -1.32742 -1.30940 1.36 -1.77242 33.52 -3.64640 174.70 

-0.41 -1.08927 -1.06450 2.27 -1.42628 30.94 -2.71361 149.12 

-0.27 -1.02600 -1.00360 2.18 -1.33890 30.50 -2.46757 140.50 

-0.04 -0.97458 -0.96002 1.49 -1.27289 30.61 -2.25241 131.12 

0.27 -0.97232 -0.97513 0.29 -1.28180 31.83 -2.17103 123.28 

0.41 -1.00054 -1.01569 1.51 -1.32862 32.79 -2.20901 120.78 

0.67 -1.14138 -1.19415 4.62 -1.54371 35.25 -2.48162 117.42 

0.82 -1.38569 -1.49089 7.59 -1.90439 37.43 -2.97921 115.00 

0.99 -4.51852 -5.19684 15.01 -6.29930 39.41 -8.54844 89.19 

1.22 -0.74239 -0.65993 11.11 -0.75212 1.31 -0.66820 9.99 
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4.3 Numerical Results for the Rigid Triangular Punch 

General schematic for the contact problem between a rigid triangular punch and a 

homogenous elastic coating is illustrated in Figure 4.19. Homogenous elastic coating 

of thickness 1h  is perfectly bonded to a homogenous substrate, and the rigid 

triangular punch slides over the coating at a speed of .V  

 

Figure 4.19: General schematic for the contact between a homogenous elastic 

coating and a rigid triangular punch 

Figures 4.20 - 4.21 show the influence of mass density ratio on elastodynamic contact 

stresses for the triangular punch contact problem. For the less stiff coating, although 

the mass density ratio is changed, both normal and lateral contact stresses almost 

remain the same value. Hence, the effect of mass density ratio on contact stresses for 

the less stiff coating is minimal. However, the variation of the mass density ratio 

significantly changes the contact stresses as can be seen in Fig. 4.21. As mass density 

ratio 1 2   is increased, the magnitude of normal contact stress increases and the 

magnitude of lateral contact stress decreases in the contact zone. Increase in the mass 
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density ratio enhances the tensile behavior of the lateral contact stress behind the 

trailing end of the contact zone.  

Figures 4.22 - 4.25 show the effect of dimensionless punch speed 1c  on 

elastodynamic contact stresses due to a triangular punch. Normal contact stress is 

unbounded at the sharp end. Influence of the dimensionless punch speed on normal 

contact stress is found to be significant. Normal contact stress becomes less 

compressive as the dimensionless punch speed is increased from 0.0 to 0.8. Although 

the curves generated for the normalized lateral contact stress are generally close to 

each other, there is a notable increase in the tensile stress around the trailing end at 

larger punch speeds. For both less stiff and stiffer coatings, lateral contact stress tends 

to become less compressive near the leading end of the contact zone. 

Figures 4.26 - 4.27 present the effect of coefficient of friction   on elastodynamic 

contact stresses generated by a moving triangular punch. Normal contact stresses in 

the contact zone slightly change due to the friction. However, change in the lateral 

contact stress is rather significant. The impact of the coefficient of friction especially 

on the tensile stress is important. A rise in the coefficient of friction again causes an 

increase in the tensile stresses behind the trailing end of the triangular punch. Lateral 

contact stresses in the contact zone and ahead of the leading end are compressive.  

Figures 4.28 - 4.29 depict the effect of relative contact length 1b h  on elastodynamic 

contact stresses. Increase in the ratio 1b h  influences contact stresses generated on 

the less stiff and stiffer coatings in different ways. Figure 4.28 shows contact stress 

distributions for the less stiff coating. As the ratio 1b h is increased from 0.1 to 1.2, 

normal contact stress tends to be compressive whereas lateral contact stress becomes 

less compressive throughout the contact. Tensile behavior of the lateral contact 

stresses behind the trailing end of the triangular punch is enhanced for larger 1b h  

ratios. Hence, behind locations of the triangular punch is more critical for surface 
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related failures in the less stiff coating especially at higher 1b h ratios. The reverse 

trend is observed for the stiffer coating. As the ratio 1b h is increased, less 

compressive normal contact stresses are formed. Lateral contact stress tends to 

become compressive along the contact surface for higher values of 
1b h . 

Figure 4.30 - 4.31 illustrate normal and lateral contact stress variations with respect 

to different values of the ratio 1 2  . Normal contact stress curves calculated for 

different values of the ratio 1 2  are rather close to each other hence the effect is 

minimal. A considerable change in the lateral contact stress however can be seen 

with the corresponding change in the ratio 1 2  . Lateral contact stress in the contact 

zone decreases as 1 2  is increased from 0.6 to 1.2 for a less stiff coating. In the 

case of the stiffer coating however, lateral contact stress throughout the contact tends 

to be compressive. 

Triangular punch contact problem is a type of the incomplete contact problems. 

There is a relationship between the required load applied by the punch and the contact 

length. In this study, for the solutions of the triangular punch contact problem, we 

have assigned a contact length 1b h initially. The normalized applied load by the 

triangular punch is computed by using the equilibrium equation after solution is 

completed. Tables 4.11 - 4.15 show the normalized applied load by the triangular 

punch for various parameters. Table 4.11 depicts the normalized load for various 

relative contact length 1b h in elastostatic case. The normalized load for the less stiff 

coating ( 1 2 1 10   ) is always greater than that for the stiffer coating 

 1 2 10 ,   and the normalized load is an increasing function of 1b h for all type 

of coatings.  Tables 4.12 - 4.15 show the normalized load for different values of 

modulus ratio 1 2  and punch speed 1c . When Tables 4.12 and 4.13 are examined, 
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the values of the normalized load for
1 0.2b h   is less than those calculated for

1 0.4b h  . In both situations, the normalized load is a decreasing function of 

dimensionless punch speed 1c . Tables 4.14 and 4.15 show the normalized load for 

different values of coefficient of friction and dimensionless punch speed for the less 

stiff and stiffer coatings. In all cases, the normalized load is a decreasing function of 

the dimensionless punch speed. When Tables 4.14 and 4.15 are investigated, the 

amount of decrease in the normalized load for the less stiff coating is greater than 

that for the stiffer coating in frictionless case. Nevertheless, the amount of decrease 

in the normalized load for the stiffer coating is greater than that for the less stiff 

coating at highly frictional situation.  

Tables 4.16 – 4.20 tabulate the normalized stress intensity factor at the sharp corner 

of the triangular punch. Table 4.16 shows the normalized stress intensity factors for 

different values of modulus ratio 1 2   and relative contact length 1b h  in 

elastostatic case. The mode I SIF denoted by (0)IK is an increasing function of the 

ratio 1b h for the less stiff coating whereas it is a decreasing function of the ratio 1b h

for the stiffer coating. Tables 4.17 – 4.18 show the normalized stress intensity factor 

for various values of modulus ratio 1 2  and dimensionless punch speed 1c . In all 

cases, as punch speed is increased, the mode I SIF decreases. Tables 4.19 – 4.20 

provide the normalized stress intensity factors for various values of coefficient of 

friction   and dimensionless punch speed 1c . The amount of fall in the mode I SIF 

with respect to punch speed is greater for the less stiff coating in the frictionless case. 

However, in highly frictional cases, the amount of fall in the mode I SIF is greater 

for stiffer coatings. 

Tables 4.21 - 4.24 provide results on percent differences between contact stresses 

computed considering elastostatic and elastodynamic conditions. Such a comparison 
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is critical in assessment of influence of punch dynamics on the contact stress 

distributions. Contact stresses are calculated for four different values of 

dimensionless punch speed 1.c The case 1 0c  corresponds to elastostatic contact. 

The contacts for which 1 0c   are elastodynamic. The percent difference %  in each 

case is computed with respect to contact stress evaluated for 1 0c  . Tables 4.21 and 

4.22 show respectively normal and lateral contact stresses induced by the moving 

frictional flat punch for the less stiff coating ( 1 2 1/10   ). The difference found 

for the normal contact stresses  1 ,0YY X  are significant. When we investigate 

Table 4.21, the difference values in all the contact points gradually increase as punch 

speed is increased from 0.0 to 0.8. The orders of the percent difference are greater at 

positions near the leading end of the contact zone, and percent difference reaches up 

to 89% at that locations. Percent differences for the lateral contact stress are also 

remarkable. The value of percent differences gradually increase as punch speed is 

increased. The highest difference is observed at the trailing end (sharp corner) of the 

triangular punch. Moreover, the percent difference values gradually increase ahead 

of the contact zone.  

Tables 4.23 – 4.24 tabulate elastostatic and elastodynamic contact stresses and 

percent difference values evaluated at several contact points for the stiffer coating 

 1 2 10 .    The percent difference values for the normal contact stress are 

significant. For all contact points, the percent differences gradually increase as punch 

speed is increased and it reaches up to 88.6%. The values of the percent difference 

between elastostatic and elastodynamic results for the lateral contact stresses are 

provided in Table 4.24. Values of the percent difference for the lateral contact stress 

are also remarkable. The highest difference is seen around trailing end (sharp corner) 

of the triangular punch. 
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Figure 4.20: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/1/ 21  ,4.0/ 1 hb  ,6.01 c ,3.0 .8.0/ 21   

 

 

Figure 4.21: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,4.0/ 1 hb  ,6.01 c ,3.0 .8.0/ 21   



145 

 

 

Figure 4.22: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21   .8.0/ 21   

 

 

Figure 4.23: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21   .8.0/ 21   
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Figure 4.24: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,5.0/ 1 hb ,3.0 ,8/1/ 21   .8.0/ 21   

 

 

Figure 4.25: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,5.0/ 1 hb ,3.0 ,8/1/ 21   .8.0/ 21   
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Figure 4.26: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of coefficient of 

friction (a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,2.0/ 1 hb ,4.01 c ,8/1/ 21   .8.0/ 21   

 

 

Figure 4.27: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of coefficient of 

friction (a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,2.0/ 1 hb ,4.01 c ,8/1/ 21   .8.0/ 21   
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Figure 4.28: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/1/ 21  ,4.01 c ,3.0 ,8/1/ 21   .8.0/ 21   

 

 

Figure 4.29: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/ 21  ,4.01 c ,3.0 ,8/1/ 21   .8.0/ 21   
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Figure 4.30: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of Poisson’s ratio 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/1/ 21  ,2.0/ 1 hb ,6.01 c ,3.0 .8/1/ 21    

 

 

Figure 4.31: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving triangular punch for various values of Poisson’s ratio 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/ 21  ,2.0/ 1 hb ,6.01 c ,3.0 .8/1/ 21   
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Table 4.11: The normalized load for homogenous coating indented by a moving 

triangular punch ,01 c ,0.0 .8.0/ 21   

 1/ 0.2b h   1/ 0.4b h   1/ 0.8b h   1/ 1.2b h   

1 2   
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/10 0.421671 0.870991 1.945252 3.357045 

1/5 0.421049 0.866031 1.906162 3.217368 

1 0.416952 0.833905 1.667809 2.501214 

10 0.398958 0.705983 0.969333 0.999572 

 

Table 4.12: The normalized load for homogenous coating indented by a moving 

triangular punch ,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/10 0.440287 0.389985 0.318719 0.265112 0.191240 

1/5 0.440530 0.390444 0.319456 0.266068 0.193229 

1 0.442468 0.391993 0.320205 0.265859 0.189928 

10 0.447603 0.383546 0.314108 0.261359 0.188564 

 

Table 4.13: The normalized load for homogenous coating indented by a moving 

triangular punch ,4.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/10 0.897830 0.799932 0.662422 0.560996 0.427338 

1/5 0.896008 0.798068 0.659417 0.555144 0.403873 

1 0.884936 0.783985 0.640410 0.531718 0.379855 

10 0.816886 0.749701 0.622156 0.528455 0.403790 
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Table 4.14: The normalized load for homogenous coating indented by a moving 

triangular punch ,4.0/ 1 hb ,5/1/ 21  ,8/1/ 21  .8.0/ 21    

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

0.0 0.866031 0.761991 0.611807 0.495656 0.319328 

0.3 0.896008 0.798068 0.659417 0.555144 0.403873 

0.5 0.912833 0.817897 0.684410 0.584566 0.442670 

0.7 0.926917 0.833968 0.703111 0.604097 0.463034 

 

Table 4.15: The normalized load for homogenous coating indented by a moving 

triangular punch ,4.0/ 1 hb ,5/ 21  ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

0.0 0.754082 0.765176 0.607343 0.499091 0.349693 

0.3 0.843994 0.771813 0.636854 0.540387 0.413025 

0.5 0.911643 0.771194 0.648633 0.555646 0.427282 

0.7 0.986265 0.766940 0.654174 0.561238 0.422749 

 

Table 4.16: Normalized stress intensity factors for a moving triangular punch 

,01 c ,0.0 .8.0/ 21    

 1/ 0.2b h   1/ 0.4b h   1/ 0.8b h   1/ 1.2b h   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  

1/10 1.3345 1.3558 1.4311 1.5328 

1/5 1.3336 1.3520 1.4169 1.5013 

1 1.3272 1.3272 1.3272 1.3272 

10 1.2988 1.2231 1.0165 0.8447 
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Table 4.17: Normalized stress intensity factors for a moving triangular punch 

,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/10 1.3043 1.1342 0.8902 0.7032 0.4397 

1/5 1.3060 1.1368 0.8941 0.7084 0.4504 

1 1.3183 1.1482 0.9030 0.7141 0.4449 

10 1.3640 1.1240 0.8841 0.6979 0.4358 

 

Table 4.18: Normalized stress intensity factors for a moving triangular punch 

,4.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/10 1.3076 1.1395 0.8998 0.7181 0.4670 

1/5 1.3088 1.1419 0.9031 0.7212 0.4648 

1 1.3183 1.1482 0.9030 0.7141 0.4449 

10 1.3259 1.1000 0.8706 0.6940 0.4495 

 

Table 4.19: Normalized stress intensity factors for a moving triangular punch 

,4.0/ 1 hb ,5/1/ 21  ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 1.3520 1.1854 0.9461 0.7631 0.4985 

0.3 1.3088 1.1419 0.9031 0.7212 0.4648 

0.5 1.2721 1.1024 0.8584 0.6712 0.4105 

0.7 1.2302 1.0565 0.8052 0.6117 0.3504 
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Table 4.20: Normalized stress intensity factors for a moving triangular punch 

,4.0/ 1 hb 1 2/ 5,   ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 1.2633 1.1878 0.9428 0.7656 0.5212 

0.3 1.3244 1.1016 0.8753 0.6993 0.4549 

0.5 1.3656 1.0367 0.8162 0.6353 0.3806 

0.7 1.4077 0.9687 0.7514 0.5658 0.3085 

 

Table 4.21: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/1/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( , 0)

tan

YY X

 
 1

1

( , 0)

tan

YY X

 
 %  

1

1

( , 0)

tan

YY X

 
 %  

1

1

( , 0)

tan

YY X

 
 %  

-0.94 -8.09109 -7.22887 10.66 -6.01239 25.69 -3.81489 52.85 

-0.82 -4.49617 -3.98267 11.42 -3.25150 27.68 -1.90101 57.72 

-0.70 -3.30291 -2.91371 11.78 -2.35793 28.61 -1.32838 59.78 

-0.61 -2.78459 -2.45156 11.96 -1.97551 29.06 -1.09428 60.70 

-0.50 -2.38210 -2.09320 12.13 -1.67982 29.48 -0.91430 61.62 

-0.22 -1.65577 -1.44745 12.58 -1.14839 30.64 -0.59229 64.23 

-0.03 -1.36163 -1.18782 12.77 -0.93819 31.10 -0.47553 65.08 

0.22 -1.05313 -0.91611 13.01 -0.71918 31.71 -0.35502 66.29 

0.50 -0.72074 -0.62287 13.58 -0.48176 33.16 -0.21988 69.49 

0.61 -0.61739 -0.53266 13.72 -0.41058 33.50 -0.18513 70.01 

0.70 -0.52645 -0.45368 13.82 -0.34892 33.72 -0.15663 70.25 

0.82 -0.38378 -0.32881 14.32 -0.24953 34.98 -0.10347 73.04 

0.94 -0.17124 -0.14193 17.12 -0.09914 42.11 -0.01829 89.32 
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Table 4.22: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/1/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( ,0)

tan

XX X

 
 1

1

( ,0)

tan

XX X

 
 %  1

1

( ,0)

tan

XX X

 
 %  1

1

( ,0)

tan

XX X

 
 %  

-1.50 1.19013 1.17838 0.99 1.17981 0.87 1.32734 11.53 

-1.22 1.99647 1.95841 1.91 1.92717 3.47 2.07416 3.89 

-0.99 -32.75225 -34.99146 6.84 -40.11392 22.48 -65.63974 100.41 

-0.82 -5.66980 -5.81109 2.49 -6.13882 8.27 -7.42274 30.92 

-0.50 -3.29464 -3.30953 0.45 -3.36489 2.13 -3.57637 8.55 

-0.22 -2.48513 -2.46158 0.95 -2.43514 2.01 -2.33812 5.92 

-0.03 -2.14979 -2.11303 1.71 -2.05925 4.21 -1.87567 12.75 

0.22 -1.81241 -1.76294 2.73 -1.68343 7.12 -1.42394 21.43 

0.50 -1.44067 -1.37706 4.42 -1.26813 11.98 -0.90854 36.94 

0.82 -1.07204 -0.99833 6.88 -0.87036 18.81 -0.47589 55.61 

0.99 -0.63663 -0.55560 12.73 -0.41377 35.01 -0.00076 99.88 

1.22 -0.38802 -0.32756 15.58 -0.22180 42.84 0.08116 120.92 

1.50 -0.28556 -0.23169 18.86 -0.13658 52.17 0.13916 148.73 

 

Table 4.23: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( , 0)

tan

YY X

 
 1

1

( , 0)

tan

YY X

 
 %  1

1

( , 0)

tan

YY X

 
 %  1

1

( , 0)

tan

YY X

 
 %  

-0.94 -8.42655 -7.15457 15.09 -5.96314 29.23 -3.77606 55.19 

-0.82 -4.65217 -3.93530 15.41 -3.21933 30.80 -1.87935 59.60 

-0.70 -3.39285 -2.87332 15.31 -2.32970 31.34 -1.31104 61.36 

-0.61 -2.84365 -2.41343 15.13 -1.94835 31.48 -1.07841 62.08 

-0.50 -2.41716 -2.05695 14.90 -1.65362 31.59 -0.89973 62.78 

-0.22 -1.65113 -1.41613 14.23 -1.12528 31.85 -0.58092 64.82 

-0.03 -1.34217 -1.15846 13.69 -0.91628 31.73 -0.46522 65.34 

0.22 -1.02208 -0.88968 12.95 -0.69931 31.58 -0.34621 66.13 

0.50 -0.68655 -0.60244 12.25 -0.46645 32.06 -0.21382 68.86 

0.61 -0.58422 -0.51428 11.97 -0.39680 32.08 -0.17979 69.23 

0.70 -0.49539 -0.43722 11.74 -0.33660 32.05 -0.15191 69.33 

0.82 -0.35825 -0.31632 11.70 -0.24028 32.93 -0.10024 72.02 

0.94 -0.15671 -0.13686 12.67 -0.09562 38.98 -0.01781 88.64 
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Table 4.24: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/ 21  ,2.0/ 1 hb ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( ,0)

tan

XX X

 
 1

1

( ,0)

tan

XX X

 
 %  1

1

( ,0)

tan

XX X

 
 %  1

1

( ,0)

tan

XX X

 
 %  

-1.50 0.51088 0.73231 43.34 0.65836 28.87 0.90972 78.07 

-1.22 1.33995 1.50015 11.96 1.39484 4.10 1.64469 22.74 

-0.99 -35.01885 -35.12308 0.30 -40.36371 15.26 -65.45765 86.92 

-0.82 -6.64605 -6.19195 6.83 -6.60705 0.59 -7.75646 16.71 

-0.50 -4.12521 -3.70401 10.21 -3.84306 6.84 -3.93820 4.53 

-0.22 -3.26050 -2.86046 12.27 -2.91691 10.54 -2.71112 16.85 

-0.03 -2.90134 -2.51333 13.37 -2.54207 12.38 -2.25220 22.37 

0.22 -2.54022 -2.16433 14.80 -2.16711 14.69 -1.80398 28.98 

0.50 -2.15167 -1.78314 17.13 -1.75648 18.37 -1.29623 39.76 

0.82 -1.77674 -1.41033 20.62 -1.36456 23.20 -0.87010 51.03 

0.99 -1.35774 -0.98299 27.60 -0.92295 32.02 -0.40785 69.96 

1.22 -1.12111 -0.76047 32.17 -0.73468 34.47 -0.32488 71.02 

1.50 -1.01764 -0.66542 34.61 -0.64910 36.21 -0.26465 73.99 
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4.4 Numerical Results for the Rigid Semi-circular Punch 

General schematic for the contact problem between a rigid semi-circular punch and 

a homogenous elastic coating is shown in Figure 4.32. Homogenous elastic coating 

of thickness 
1h  is perfectly bonded to a homogenous substrate, and the rigid semi-

circular punch slides over the coating at a speed of .V  

 

Figure 4.32: General schematic for the contact between a homogenous elastic 

coating and a rigid triangular punch 

Figures 4.33 - 4.34 show elastodynamic contact stress distributions for less stiff and 

stiffer coatings for which modulus ratio 1 2   is respectively defined as 1/10 and 

10. The contact is assumed to be frictional and coefficient of friction   is taken as 

0.3. It is interesting to note that the mass density ratio 1 2  does not considerably 

affect the contact stress distribution for a less stiff coating. However, density ratio 

1 2  significantly affect the contact stress distribution for the stiffer coating.  

Figures 4.35 – 4.38 display the effect of dimensionless punch speed 1c  on contact 

stress induced frictional contacts of less stiff and stiffer coatings for two different 
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relative contact lengths defined by the ratio 1b R . The ratio 1 1R h  is kept constant as 

20 in these figures. Figure 4.35 - 4.36 respectively show elastodynamic contact 

stresses on the less stiff and stiffer coatings for different values of the dimensionless 

punch speed 1c   at the ratio 1 0.01b R  . Contact stresses are in general sensitive to 

the change in punch speed and normal contact stresses become less compressive as 

punch speed is increased (see Figures 4.35(a) and 4.36(a)). For both less stiff and 

stiffer coatings, lateral contact stress increases near the trailing end and decreases 

near the leading end of the contact zone and skewed lateral contact stress curves are 

formed. Figures 4.37 – 4.38 show the elastodynamic contact stresses for different 

values of dimensionless punch speed at the ratio 1 0.05b R  . Figure 4.37 shows 

elastodynamic contact stresses for the less stiff coating ( 1 2 1/10   ). The general 

trend in the variation of the normal and lateral contact stresses is similar to that 

observed in Figure 4.35. Figure 4.38 illustrates elastodynamic contact stresses for the 

stiffer coating ( 1 2 10   ). However, the behavior of normal and lateral contact 

stresses are different from that observed in Figure 4.36. Both normal and lateral 

contact stresses decrease as punch speed 1c  is increased. The change in the ratio 1b R

leads to different elastodynamic contact stresses. 

The influence of coefficient of friction   on elastodynamic contact stresses is 

examined in Figures 4.39 - 4.40. Figures 4.39(a) and 4.40(a) illustrate the effect of 

the coefficient of friction on normal contact stresses for the less stiff and stiffer 

coatings, respectively. It can be seen that increase in the coefficient of friction 

influences the normal contact stresses in a similar way for both coating types. Normal 

contact stresses slightly increase near the trailing end (sharp corner) and decrease 

near the leading end (smooth contact) of the semi-circular punch, hence skewed 

stress curves are formed. When Figures 4.39(b) and 4.40(b) are examined, in all 

cases, larger coefficient of friction leads to a larger tensile peak at the trailing end of 



158 

 

the contact zone. Thus, in elastodynamic contacts with friction, trailing end of the 

contact zone is a possible site for cracking type failure. Ahead of the leading end of 

the contact zone however, lateral contact stress is compressive. 

Figures 4.41 – 4.42 show respectively the elastodynamic contact stresses for the less 

stiff and stiffer coatings as functions of the ratio 1 1R h . The magnitude of normal 

contact stress for the less stiff coating ( 1 2 1/10   ) increases as the ratio 1 1R h is 

increased from 5 to 60. The magnitude of lateral contact stress slightly decreases in 

the contact zone and ahead of the leading end. However, tensile behavior of the 

lateral contact stress is intensified behind the trailing end. The reverse trend is 

observed on the variations of elastodynamic contact stresses for the stiffer coating. 

Increase in the ratio 1 1R h leads to slightly less compressive normal contact stresses 

on the contact zone and more compressive lateral contact stresses throughout the 

contact. 

In Figures 4.43 - 4.44, we present elastodynamic contact stresses as functions of

1 2  . 1  and 2 being Poisson’s ratios of the coating and the substrate, respectively. 

It can be inferred from Figures 4.43(a) and 4.44(a) that the impact of 1 2  on normal 

contact stress in the contact zone is minimal. The magnitude of lateral contact stress 

in the contact zone decreases for the less stiff coating and increases for the stiffer 

coating as 1 2  is increased from 0.6 to 1.2. 

The contact problem of a semi-circular punch is a type of incomplete contact 

problems since there is a relationship between the contact length and required load 

applied by the punch. Normalized applied load by the semi-circular punch for 

different values of the relative contact length is calculated and results are provided 

in Tables 4.25 – 4.29. Table 4.25 shows the values of normalized punch load for 

different modulus ratio 1 2  and relative contact length 1b R in elastostatic case.  
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The normalized punch load for the less stiff coatings is greater than that for the stiffer 

coatings. Moreover, the normalized punch load is an increasing function of 1b R . 

Tables 4.26 - 4.27 show the normalized punch load in elastodynamic case for 

different modulus ratio 1 2    and dimensionless punch speed 1c .  The values of the 

normalized punch load given in Table 4.26 and 4.27 are computed at length ratios 

1 0.01b R  and 1 0.04b R  , respectively. When Table 4.26 is examined, the 

normalized punch loads in all cases decrease as dimensionless punch speed is 

increased from 0.0 to 0.8. When Table 4.27 is examined, the normalized punch load 

is a decreasing function of punch speed 1c  for 1 2 1/10   - 1 2 1   . However, 

the normalized punch load first increases and then decreases as punch speed is 

increased from 0.0 to 0.8 for the stiffer coating ( 1 2 10   ). Tables 4.28 and 4.29 

demonstrate the normalized punch load for different values of coefficient of friction 

and dimensionless punch speed for a less stiff    ( 1 2 1/ 5   ) and stiffer coatings 

( 1 2 5   ), respectively. Again, the normalized punch load is a decreasing function 

of punch speed 1c  and values are always greater at highly frictional cases.  

Tables 4.30 - 4.34 show the normalized stress intensity factors at the sharp corner of 

the semi-circular punch. Table 4.30 provides mode I SIFs in elastostatic case for 

different values of modulus ratio 1 2   and relative contact length 1b R . Mode I 

SIFs are always greater for the less stiff coating than those found for the stiffening 

coating. Moreover, as the ratio 1b R  is increased, the values of mode I SIF increases 

for the less stiff coating and decreases for the stiffer coating and remain the same 

value for homogenous half-plane. The influences of punch speed and modulus ratio 

on mode I SIF are shown in Tables 4.31 and 4.32. In all cases, the mode I SIF is a 

decreasing function of the punch speed 1c .  Tables 4.33 and 4.34 illustrate the 

normalized stress intensity factors for different values of coefficient of friction and 
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dimensionless punch speed for the less stiff  1 2 1/ 5    and stiffer coatings (

1 2 5   ), respectively. Again, the values of normalized stress intensity factors 

decrease as punch speed is increased. The amount of fall in the mode I SIF is greater 

at highly frictional conditions.  

Tables 4.35 - 4.38 tabulate numerical results based on percent differences between 

contact stresses computed considering elastostatic and elastodynamic conditions. 

Such a comparison is important in evaluation of the effect of punch dynamics on 

contact stresses. Contact stresses are calculated for four different values of 

dimensionless punch speed 1.c  The case 1 0.0c  corresponds to elastostatic contact 

and contacts for which 1 0c   are elastodynamic. The percent difference is computed 

based on elastostatic results.  Table 4.35 - 4.36 show elastostatic and elastodynamic 

contact stress results involving percent differences for the less stiff coatings. The 

percent differences betweeen elastodynamic and elastostatic normal contact stresses 

gradually increase as punch speed 1c  is increased from 0.0 to 0.8. It reaches 

considerable values such as 86.72% near the leading end of the contact zone. Results 

for the lateral contact stress are given in Table 4.36. Percent differences between 

elastodynamic and elastostatic lateral contact stresses are also significant. Percent 

difference is relatively high at the trailing end of the contact zone. Moreover, ahead 

of the leading end is also critical since percent difference at that location reaches up 

to 142.11%. 

Tables 4.37 - 4.38 show percent differences between elastostatic and elastodynamic 

contact stresses for the stiffer coating ( 1 2 10   ). Percent differences gradually 

increase as punch speed is increased from 0.0 to 0.8. The values of percent difference 

reach up to 86.08% near the leading end of the contact zone. The values of percent 

difference for the lateral contact stress are also remarkable. Critical locations for the 
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lateral contact stress are the out of the contact zone since the values of percent 

difference are relatively high at those locations. 

 

Figure 4.33: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,025.0/ 1 Rb ,20/ 11 hR ,6.01 c ,3.0 1 2/ 0.8.    

 

 

Figure 4.34: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,025.0/ 1 Rb ,20/ 11 hR ,6.01 c ,3.0
1 2/ 0.8.    
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Figure 4.35: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  1 2/ 0.8.    

 

 

Figure 4.36: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  1 2/ 0.8.    
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Figure 4.37: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,05.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  1 2/ 0.8.      

 

 

Figure 4.38: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,05.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  1 2/ 0.8.    
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Figure 4.39: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of coefficient 

of friction (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/1/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,4.01 c ,8/1/ 21 

1 2/ 0.8.    

 

 

Figure 4.40: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of coefficient 

of friction (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,4.01 c ,8/1/ 21 

1 2/ 0.8.    
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Figure 4.41: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of relative 

coating thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,10/1/ 21  ,025.0/ 1 Rb ,4.01 c ,3.0 ,8/1/ 21 

1 2/ 0.8.    

 

 

Figure 4.42: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of relative 

coating thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution,  ,10/ 21  ,025.0/ 1 Rb ,4.01 c ,3.0 ,8/1/ 21 

1 2/ 0.8.    
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Figure 4.43: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of Poisson’s 

ratio (a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,05.0/ 1 Rb ,6.01 c ,3.0 .8/1/ 21   

 

 

Figure 4.44: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving semi-circular punch for various values of Poisson’s 

ratio (a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/ 21  ,05.0/ 1 Rb ,6.01 c ,3.0 .8/1/ 21    
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Table 4.25: The normalized load for homogenous coating indented by a moving 

semi-circular punch ,01 c ,20/ 11 hR ,0.0 .8.0/ 21   

 1/ 0.01b R   
1/ 0.025b R   1/ 0.04b R   1/ 0.05b R   

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 1.576e-4 1.032e-3 2.846e-3 4.726e-3 

1/5 1.574e-4 1.024e-3 2.798e-3 4.600e-3 

1 1.561e-4 9.757e-4 2.498e-3 3.902e-3 

10 1.503e-4 7.908e-4 1.577e-3 2.091e-3 

 

Table 4.26: The normalized load for homogenous coating indented by a moving 

semi-circular punch ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 1.679e-4 1.494e-4 1.233e-4 1.037e-4 7.696e-5 

1/5 1.681e-4 1.496e-4 1.237e-4 1.042e-4 7.811e-5 

1 1.691e-4 1.505e-4 1.243e-4 1.044e-4 7.691e-5 

10 1.726e-4 1.473e-4 1.218e-4 1.025e-4 7.601e-5 

 

Table 4.27: The normalized load for homogenous coating indented by a moving 

semi-circular punch ,04.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 2.941e-3 2.678e-3 2.328e-3 2.102e-3 1.942e-3 

1/5 2.910e-3 2.639e-3 2.262e-3 1.979e-3 1.425e-3 

1 2.705e-3 2.409e-3 1.988e-3 1.671e-3 1.231e-3 

10 1.851e-3 2.211e-3 1.922e-3 1.750e-3 1.615e-3 
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Table 4.28: The normalized load for homogenous coating indented by a moving 

semi-circular punch ,01.0/ 1 Rb ,20/ 11 hR ,5/1/ 21  ,8/1/ 21 

.8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

0.0 1.574e-4 1.377e-4 1.096e-4 8.820e-5 5.808e-5 

0.3 1.681e-4 1.497e-4 1.237e-4 1.042e-4 7.811e-5 

0.5 1.748e-4 1.571e-4 1.322e-4 1.135e-4 8.810e-5 

0.7 1.812e-4 1.640e-4 1.396e-3 1.210e-4 9.410e-5 

    

Table 4.29: The normalized load for homogenous coating indented by a moving 

semi-circular punch ,01.0/ 1 Rb ,20/ 11 hR ,5/ 21  ,8/1/ 21 

.8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

  
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

0.0 1.526e-4 1.379e-4 1.094e-4 8.830e-5 5.924e-5 

0.3 1.712e-4 1.470e-4 1.218e-4 1.026e-4 7.620e-5 

0.5 1.847e-4 1.523e-4 1.290e-4 1.103e-4 8.311e-5 

0.7 1.991e-4 1.568e-4 1.350e-4 1.161e-4 8.614e-5 

 

Table 4.30: Normalized stress intensity factors for a moving semi-circular punch 

,01 c ,20/ 11 hR ,0.0 .8.0/ 21   

 1/ 0.01b R   
1/ 0.025b R   1/ 0.04b R   1/ 0.05b R   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  

1/10 0.6641 0.6822 0.7112 0.7355 

1/5 0.6637 0.6791 0.7044 0.7244 

1 0.6605 0.6605 0.6605 0.6605 

10 0.6463 0.5848 0.5054 0.4594 
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Table 4.31: Normalized stress intensity factors for a moving semi-circular punch 

,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/10 0.6844 0.6030 0.4867 0.3977 0.2699 

1/5 0.6859 0.6053 0.4902 0.4025 0.2801 

1 0.6971 0.6158 0.4989 0.4085 0.2763 

10 0.7423 0.5974 0.4838 0.3948 0.2673 

 

Table 4.32: Normalized stress intensity factors for a moving semi-circular punch 

,04.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/10 0.6974 0.6218 0.5188 0.4447 0.3744 

1/5 0.6979 0.6230 0.5194 0.4431 0.3157 

1 0.6971 0.6158 0.4989 0.4085 0.2763 

10 0.6143 0.5466 0.4567 0.3917 0.3191 

 

Table 4.33: Normalized stress intensity factors for a moving semi-circular punch 

,01.0/ 1 Rb ,20/ 11 hR ,5/1/ 21  ,8/1/ 21  .8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 0.6637 0.5804 0.4613 0.3709 0.2448 

0.3 0.6859 0.6053 0.4902 0.4025 0.2801 

0.5 0.6952 0.6143 0.4970 0.4047 0.2697 

0.7 0.6998 0.6171 0.4941 0.3937 0.2441 
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Table 4.34: Normalized stress intensity factors for a moving semi-circular punch 

,01.0/ 1 Rb ,20/ 11 hR ,5/ 21  ,8/1/ 21  .8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 0.6519 0.5806 0.4609 0.3712 0.2476 

0.3 0.7242 0.5892 0.4806 0.3933 0.2672 

0.5 0.7713 0.5872 0.4813 0.3893 0.2478 

0.7 0.8169 0.5795 0.4728 0.3734 0.2173 

 

Table 4.35: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/1/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( ,0)YY X


 1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

-0.96 -0.05548 -0.05040 9.15 -0.04344 21.69 -0.03200 42.32 

-0.82 -0.02790 -0.02502 10.33 -0.02097 24.86 -0.01363 51.15 

-0.73 -0.02316 -0.02067 10.72 -0.01716 25.89 -0.01071 53.73 

-0.61 -0.02029 -0.01806 11.02 -0.01488 26.67 -0.00902 55.57 

-0.48 -0.01823 -0.01616 11.34 -0.01322 27.50 -0.00776 57.45 

-0.20 -0.01506 -0.01326 11.93 -0.01069 29.03 -0.00587 61.03 

-0.04 -0.01387 -0.01218 12.15 -0.00977 29.57 -0.00525 62.12 

0.20 -0.01217 -0.01065 12.46 -0.00847 30.37 -0.00441 63.76 

0.48 -0.00948 -0.00824 13.08 -0.00645 31.94 -0.00311 67.22 

0.61 -0.00821 -0.00711 13.32 -0.00554 32.51 -0.00261 68.23 

0.73 -0.00694 -0.00601 13.53 -0.00465 33.02 -0.00215 69.06 

0.82 -0.00547 -0.00471 13.99 -0.00360 34.17 -0.00156 71.52 

0.96 -0.00210 -0.00175 16.79 -0.00123 41.21 -0.00028 86.72 
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Table 4.36: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/1/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.8c   

2X b

b


 1

1

( ,0)XX X


 1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

-1.58 0.00751 0.00752 0.13 0.00770 2.55 0.00935 24.52 

-1.22 0.01289 0.01277 0.91 0.01283 0.42 0.01492 15.78 

-0.99 -0.13325 -0.14412 8.16 -0.16938 27.12 -0.30419 128.29 

-0.82 -0.03069 -0.03215 4.75 -0.03538 15.30 -0.04907 59.90 

-0.48 -0.02117 -0.02170 2.53 -0.02291 8.25 -0.02738 29.36 

-0.20 -0.01878 -0.01898 1.03 -0.01947 3.64 -0.02088 11.18 

-0.04 -0.01802 -0.01809 0.37 -0.01833 1.69 -0.01883 4.51 

0.20 -0.01710 -0.01700 0.60 -0.01690 1.15 -0.01629 4.72 

0.48 -0.01528 -0.01494 2.21 -0.01438 5.88 -0.01213 20.58 

0.82 -0.01223 -0.01164 4.80 -0.01062 13.16 -0.00720 41.13 

0.99 -0.00729 -0.00654 10.28 -0.00522 28.38 -0.00123 83.11 

1.22 -0.00365 -0.00315 13.52 -0.00229 37.31 0.00027 107.29 

1.58 -0.00240 -0.00198 17.37 -0.00124 48.44 0.00101 142.11 

Table 4.37: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.8c   

2X b

b


 1

1

( ,0)YY X


 1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

-0.96 -0.05986 -0.04984 16.74 -0.04304 28.11 -0.03139 47.56 

-0.82 -0.02959 -0.02472 16.46 -0.02074 29.89 -0.01340 54.72 

-0.73 -0.02428 -0.02040 15.97 -0.01696 30.15 -0.01054 56.59 

-0.61 -0.02104 -0.01780 15.39 -0.01469 30.18 -0.00888 57.81 

-0.48 -0.01867 -0.01593 14.67 -0.01305 30.09 -0.00766 58.99 

-0.20 -0.01513 -0.01305 13.76 -0.01053 30.41 -0.00579 61.77 

-0.04 -0.01383 -0.01198 13.36 -0.00962 30.46 -0.00518 62.57 

0.20 -0.01201 -0.01046 12.92 -0.00833 30.66 -0.00434 63.87 

0.48 -0.00927 -0.00809 12.67 -0.00634 31.57 -0.00306 66.97 

0.61 -0.00799 -0.00698 12.62 -0.00544 31.93 -0.00257 67.88 

0.73 -0.00675 -0.00589 12.66 -0.00457 32.31 -0.00211 68.65 

0.82 -0.00530 -0.00462 12.88 -0.00354 33.29 -0.00154 71.05 

0.96 -0.00201 -0.00172 14.28 -0.00122 39.40 -0.00028 86.08 
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Table 4.38: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/ 21  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.8c   

2X b

b


 1

1

( ,0)XX X


 1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

-1.58 0.00221 0.00414 87.85 0.00371 68.13 0.00603 173.34 

-1.22 0.00783 0.00929 18.66 0.00875 11.70 0.01149 46.68 

-0.99 -0.15086 -0.14617 3.11 -0.17239 14.27 -0.30455 101.87 

-0.82 -0.03892 -0.03518 9.62 -0.03914 0.54 -0.05186 33.24 

-0.48 -0.02799 -0.02480 11.40 -0.02669 4.64 -0.03036 8.47 

-0.20 -0.02512 -0.02209 12.06 -0.02326 7.42 -0.02394 4.71 

-0.04 -0.02418 -0.02121 12.30 -0.02212 8.54 -0.02190 9.42 

0.20 -0.02306 -0.02012 12.76 -0.02070 10.26 -0.01939 15.94 

0.48 -0.02107 -0.01809 14.13 -0.01820 13.61 -0.01528 27.46 

0.82 -0.01794 -0.01483 17.30 -0.01448 19.26 -0.01040 42.00 

0.99 -0.01308 -0.00985 24.74 -0.00919 29.72 -0.00454 65.32 

1.22 -0.00953 -0.00650 31.82 -0.00628 34.05 -0.00303 68.22 

1.58 -0.00827 -0.00533 35.48 -0.00523 36.71 -0.00226 72.64 
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4.5 Numerical Results for the Rigid Cylindrical Punch 

General schematic for the contact problem between a rigid cylindrical punch and a 

homogenous elastic coating is depicted in Figure 4.45. Homogenous elastic coating 

of thickness 
1h  is perfectly bonded to a homogenous substrate, and the rigid 

cylindrical punch slides over the coating at a speed of .V  

 

Figure 4.45: General schematic for the contact between a homogenous elastic 

coating and a rigid cylindrical punch 

Figures 4.46 and 4.47 depict the influence of mass density ratio on contact stress 

distributions for the less stiff and stiffer coatings, respectively. It is interesting to note 

that the mass density ratio 1 2   has almost no effect on contact stresses for the less 

stiff coating (see Figure 4.46). However, the mass density ratio significantly affect 

the contact stress distributions for the stiffer coating as can be seen from Figure 4.47.  

Figure 4.48 shows the influence of dimensionless punch speed 1c   on elastodynamic 

contact stress distributions in frictionless contacts for the less stiff coating

 1 2 1/10 .    As punch speed is increased from 0.0 to 0.7, the normal contact 
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stress becomes less compressive in the contact zone and the magnitude of tensile 

lateral contact stress increases at the ends of the cylindrical punch. Normal and lateral 

elastodynamic contact stresses are generated for the frictionless contacts of the half-

plane ( 1 2 1   ). Again, normal contact stress becomes less compressive in the 

contact zone as shown in Figure 4.49(a). When lateral contact stress is examined, 

surface outside the contact zone is stress free although dimensionless punch speed is 

increased. However, lateral contact stress becomes more compressive in the contact 

zone. The influence of punch speed on elastodynamic contact stresses for the stiffer 

coating ( 1 2 10   ) is shown in Figure 4.50. Normal contact stress increases 

suddenly and then decrease gradually in the contact zone. The magnitude of the 

lateral contact stress also increases in the contact zone. The slope of the lateral 

contact stress outside the contact zone decreases and lateral contact stress tends to 

become compressive there. Figure 4.51 shows the elastodynamic contact stresses in 

frictional case for the less stiff coating ( 1 2 1/10   ). Normal and lateral contact 

stresses become less compressive in the contact zone. Due to the friction, tensile 

lateral contact stresses are generated around the trailing end of the contact zone. The 

magnitude of tensile stresses slightly increases at higher punch speeds. Moreover, 

the lateral contact stresses become slightly tensile around the leading end. Figure 

4.52 shows elastodynamic contact stress distributions on a half-plane in a frictional 

case. As punch speed is increased, normal contact stresses become less compressive 

in the contact zone, and normal contact stress distribution is not symmetric due to 

the friction. The variation of the lateral contact stress with respect to punch speed is 

observed in Figure 4.52(b). Elastodynamic contact stresses for the stiffer coating 

 1 2 10    in frictional case is depicted in Figure 4.53. As dimensionless punch 

speed is increased, firstly the normal contact stress increases suddenly and then 

decreases in the contact zone. The lateral contact stress in the contact zone increases 
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at higher punch speeds. The magnitude of tensile lateral contact stresses at the trailing 

end increases at higher punch speeds. 

The influence of coefficient of friction  on elastodynamic contact stresses is 

examined in Figure 4.54 – 4.55.  Variations of normal contact stresses with respect 

to are more pronounced for a stiffer coating ( 1 2 5   ). This conclusion can be 

drawn by examining Figures 4.54(a) and 4.55(a). In all cases, larger coefficient of 

friction leads to a larger tensile peak at the trailing end of the contact zone. Thus, in 

elastodynamic contacts with friction, trailing end of the contact zone is a possible 

site for cracking type failure. Adjustment of the coefficient of friction   and modulus 

ratio 1 2   could be possible ways of avoiding such fracture related failures. 

Figures 4.56 – 4.57 show the elastodynamic contact stresses as functions of the ratio

1 1 .R h  As the ratio 1 1R h is increased from 20 to 150, the magnitude of normal contact 

stress increases in the contact zone for both less stiff and stiffer coatings. However, 

the variations on the lateral contact stresses with respect to varios 1 1R h ratio are quite 

different for less stiff and stiffer coatings. Lateral contact stresses become slightly 

less compressive around the trailing end and ahead of the contact zone for a less stiff 

coating however, lateral stresses become more compressive throughout the contact 

for a stiffer coating.  

In Figures 4.58 – 4.59, we present elastodynamic contact stresses as functions of 

1 2 .  1  and 2 being Poisson’s ratios of the coating and the substrate, respectively. 

It can be inferred from Figure 4.58(a) that the impact of 1 2  on normal contact 

stress in minimal for a less stiff coating ( 1 2 1/10   ). For a stiffer coating 

 1 2 10    however, the effect of the ratio 1 2   on normal contact stress can be 

seen from Figure 4.59(a). When lateral contact stress distributions are examined, the 
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influence of the ratio 1 2  on contact stresses generated for the less stiff and stiffer 

coatings is quite different. For a less stiff coating, as 1 2  is increased from 0.6 to 

1.2, lateral contact stress tends to become less compressive in the contact zone and 

there is no considerable change outside the contact zone. Nevertheless, lateral contact 

stresses are compressive throughout the contact for a stiffer coating (see Figure 

4.59(b)). 

Table 4.39 shows the normalized load applied by the cylindrical punch for various 

values of the modulus ratio 1 2  and relative contact length   1b a R in 

elastostatic case. The normalized punch load is always greater for the less stiff 

coatings. In all cases, as relative contact length   1b a R  is increased, the values of 

the normalized punch load increase. Tables 4.40 - 4.41 tabulate normalized punch 

loads for two different relative contact length specified by   1 0.01b a R  and

  1 0.05b a R  . For less stiff coatings 1 2 1   and half-planes 1 2 1   , the 

normalized punch load decreases as punch speed 1c  is increased. For stiffer coatings 

1 2 10    however, the trend of change is different. The normalized punch load 

increases first ( 1 0.4c  ), and then gradually decreases for higher punch speeds. 

Table 4.42 shows the normalized punch load generated on a less stiff coating for 

different values of coefficient of friction   and dimensionless punch speed 1c . In all 

cases, normalized punch load gradually decreases as dimensionless punch speed is 

increased. Table 4.43 tabulates the normalized punch load generated on a stiffer 

coating for different values of coefficient of friction and dimensionless punch speed. 

The trend of the change in the normalized punch load is different from that observed 

in a less stiff coating. The normalized punch load increases first ( 1 0.4c  ) and then 

gradually decreases with respect to the increasing punch speed.  



177 

 

Tables 4.44 and 4.45 show elastostatic and elastodynamic normal and lateral contact 

stresses for a less stiff coating ( 1 2 1/10   ). The percent difference between 

elastodynamic and elastostatic results are calculated at several contact points and it 

is denoted by % .  As dimensionless punch speed is increased, the difference 

between elastodynamic and elastostatic normal contact stresses increases and larger 

values of percent difference are observed towards the leading end of the contact zone. 

The values of percent difference reaches up to 50.42% (see Table 4.44). Percent 

differences between elastodynamic and elastostatic lateral contact stresses are 

provided in Table 4.45. Percent differences gradually increase as punch speed is 

increased. Higher values of the percent difference are observed ahead of the leading 

end of the contact zone.  

Table 4.46 and 4.47 depict elastostatic and elastodynamic normal and lateral contact 

stresses for a stiffer coating ( 1 2 10   ). The general trend of change with respect 

to punch speed is different from that observed for a less stiff coating. For the stiffer 

coating, as punch speed is increased from 0.0 to 0.4, a sudden increase in normal 

contact stress occurs in the contact zone and normal stress gradually decreases as 

punch speed is increased from 0.4 to 0.8. Normal contact stress again starts to come 

close to the elastostatic normal stress curve at higher punch speeds. This behavior 

can be inferred from Figure 4.46 and 4.49. Therefore, percent difference between 

elastodynamic and elastostatic normal contact stress has larger values at punch speed

1 0.4c  . As punch speed is increased from 0.4 to 0.7, percent difference value 

becomes smaller. Table 4.47 depicts elastostatic and elastodynamic lateral contact 

stresses for a stiffer coating ( 1 2 10   ), at some of the contacting points the percent 

difference increases whereas at some of them it decreases. Thus, in this case, general 

conclusion regarding dependence of percent difference %   on 1c  can not be made.  
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Figure 4.46: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/1/ 21  ,02.0/)( 1  Rab ,100/ 11 hR ,6.01 c ,3.0 .8.0/ 21   

 

 

Figure 4.47: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various mass density ratios (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/1/ 21  ,02.0/)( 1  Rab ,100/ 11 hR ,6.01 c ,3.0 .8.0/ 21   
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Figure 4.48: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,0.0 ,8/1/ 21  .8.0/ 21   

 

 

Figure 4.49: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,0.0 ,8/1/ 21  .0.1/ 21   
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Figure 4.50: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,0.0 ,8/1/ 21  .8.0/ 21   

 

 

Figure 4.51: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   
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Figure 4.52: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21  .0.1/ 21   

 

 

Figure 4.53: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of punch speed 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,10/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21  .8.0/ 21   
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Figure 4.54: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of coefficient of 

friction (a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,5/1/ 21  ,02.0/)( 1  Rab ,100/ 11 hR ,4.01 c ,8/1/ 21  .8.0/ 21   

 

 

Figure 4.55: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of coefficient of 

friction (a) Normal contact stress distribution; (b) Lateral contact stress distribution,

1 2/ 5,   ,02.0/)( 1  Rab ,100/ 11 hR ,4.01 c ,8/1/ 21  .8.0/ 21   
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Figure 4.56: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,5/1/ 21  ,02.0/)( 1  Rab ,4.01 c ,3.0 ,8/1/ 21 

.8.0/ 21   

 

 

Figure 4.57: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,5/ 21  ,02.0/)( 1  Rab ,4.01 c ,3.0 ,8/1/ 21 

.8.0/ 21   
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Figure 4.58: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of Poisson’s ratio 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/1/ 21  ,02.0/)( 1  Rab ,100/ 11 hR ,6.01 c ,3.0 .8/1/ 21   

 

 

Figure 4.59: Normal and lateral elastodynamic contact stresses on homogenous 

coating indented by a moving cylindrical punch for various values of Poisson’s ratio 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,10/ 21  ,02.0/)( 1  Rab ,100/ 11 hR ,6.01 c ,3.0 .8/1/ 21   
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Table 4.39: The normalized load for homogenous coating indented by a moving 

cylindrical punch ,01 c ,100/ 11 hR ,0.0 .0.1/ 21    

 

1

( )
0.01

b a

R


  

1

( )
0.02

b a

R


  

1

( )
0.03

b a

R


  

1

( )
0.05

b a

R


  

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 5.9e-5 2.9e-4 8.3e-4 3.1e-3 

1/5 5.8e-5 2.8e-4 7.6e-4 2.7e-3 

1 5.2e-5 2.1e-4 4.7e-4 1.3e-3 

10 3.3e-5 8.1e-5 1.3e-4 2.7e-4 

 

Table 4.40: The normalized load for homogenous coating indented by a moving 

cylindrical punch ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 5.9e-5 5.3e-5 4.4e-5 3.7e-5 2.6e-5 

1/5 5.8e-5 5.2e-5 4.2e-5 3.4e-5 1.9e-5 

1 5.2e-5 4.5e-5 3.6e-5 2.8e-5 1.8e-5 

10 3.5e-5 4.5e-5 3.7e-5 3.2e-5 2.3e-5 

 

Table 4.41: The normalized load for homogenous coating indented by a moving 

cylindrical punch ,05.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   1 0.8c   

1 2   
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1/10 3.122e-3 2.950e-3 2.680e-3 2.4e-3 1.494e-3 

1/5 2.683e-3 2.398e-3 1.898e-3 1.4e-3 4.660e-4 

1 1.307e-3 1.134e-3 8.980e-4 7.1e-4 4.520e-4 

10 2.750e-4 1.218e-3 1.216e-3 1.3e-3 1.151e-3 
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Table 4.42: The normalized load for homogenous coating indented by a moving 

cylindrical punch ,01.0/)( 1  Rab ,100/ 11 hR ,5/1/ 21  ,8/1/ 21 

.8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

0.0 5.828e-5 5.188e-5 4.224e-5 3.452e-5 2.078e-5 

0.3 5.834e-5 5.172e-5 4.171e-5 3.382e-5 1.939e-5 

0.5 5.796e-5 5.116e-5 4.095e-5 3.238e-5 1.747e-5 

0.7 5.736e-5 5.013e-5 3.956e-5 2.225e-4 1.537e-5 

 

Table 4.43: The normalized load for homogenous coating indented by a moving 

cylindrical punch ,01.0/)( 1  Rab ,100/ 11 hR ,5/ 21  ,8/1/ 21 

.8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

1 0.8c   

  
1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

1 1

P

R
 

0.0 4.029e-5 5.269e-5 4.157e-5 3.452e-5 2.707e-5 

0.3 4.014e-5 5.258e-5 4.106e-5 3.469e-5 2.484e-5 

0.5 4.001e-5 5.205e-5 4.020e-5 3.316e-5 2.197e-5 

0.7 3.957e-5 5.128e-5 3.915e-5 3.146e-5 1.903e-5 
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Table 4.44: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2 ( )

( )

X b a

b a

 


 1

1

( ,0)YY X


 1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

-0.97 -0.00190 -0.00175 8.11 -0.00153 19.51 -0.00139 26.94 

-0.89 -0.00377 -0.00342 9.12 -0.00293 22.27 -0.00258 31.47 

-0.65 -0.00600 -0.00541 9.81 -0.00455 24.12 -0.00393 34.45 

-0.43 -0.00699 -0.00629 10.10 -0.00525 24.89 -0.00450 35.69 

-0.32 -0.00732 -0.00657 10.23 -0.00547 25.24 -0.00466 36.27 

-0.19 -0.00752 -0.00674 10.37 -0.00559 25.61 -0.00475 36.87 

-0.06 -0.00759 -0.00680 10.52 -0.00562 26.00 -0.00475 37.51 

0.19 -0.00736 -0.00656 10.86 -0.00538 26.93 -0.00449 38.99 

0.32 -0.00705 -0.00627 11.07 -0.00512 27.47 -0.00424 39.85 

0.43 -0.00663 -0.00588 11.29 -0.00477 28.06 -0.00393 40.78 

0.65 -0.00548 -0.00484 11.81 -0.00387 29.41 -0.00314 42.84 

0.89 -0.00319 -0.00278 12.82 -0.00217 31.96 -0.00170 46.61 

0.97 -0.00146 -0.00126 13.92 -0.00096 34.65 -0.00072 50.42 

Table 4.45: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/1/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2 ( )

( )

X b a

b a

 


 1

1

( ,0)XX X


 1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

-2.05 0.00161 0.00157 2.35 0.00147 8.45 0.00136 15.53 

-1.62 0.00237 0.00239 0.94 0.00240 1.57 0.00242 2.07 

-0.94 0.00277 0.00267 3.49 0.00247 10.68 0.00226 18.44 

-0.74 -0.00070 -0.00085 21.82 -0.00116 66.61 -0.00154 120.64 

-0.55 -0.00277 -0.00290 4.78 -0.00317 14.63 -0.00352 27.13 

-0.19 -0.00525 -0.00530 0.83 -0.00539 2.69 -0.00556 5.78 

-0.06 -0.00587 -0.00587 0.06 -0.00589 0.37 -0.00597 1.68 

0.19 -0.00673 -0.00665 1.30 -0.00649 3.64 -0.00637 5.33 

0.55 -0.00700 -0.00676 3.40 -0.00632 9.67 -0.00591 15.55 

0.74 -0.00648 -0.00614 5.22 -0.00552 14.78 -0.00493 23.94 

0.94 -0.00473 -0.00426 9.91 -0.00342 27.66 -0.00262 44.54 

1.62 -0.00016 0.00006 137.90 0.00040 346.78 0.00065 503.21 

2.05 -0.00011 0.00001 108.17 0.00017 245.60 0.00025 314.48 
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Table 4.46: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,10/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2 ( )

( )

X b a

b a

 


 1

1

( ,0)YY X


 1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

1

1

( ,0)YY X


 %  

-0.97 -0.00116 -0.00153 31.31 -0.00134 15.21 -0.00123 6.05 

-0.89 -0.00228 -0.00298 30.65 -0.00255 11.87 -0.00228 0.04 

-0.65 -0.00354 -0.00466 31.59 -0.00392 10.72 -0.00344 2.92 

-0.43 -0.00405 -0.00537 32.65 -0.00449 10.75 -0.00390 3.69 

-0.32 -0.00421 -0.00560 33.13 -0.00466 10.77 -0.00404 4.04 

-0.19 -0.00429 -0.00573 33.52 -0.00475 10.70 -0.00410 4.48 

-0.06 -0.00431 -0.00577 33.77 -0.00476 10.51 -0.00409 5.07 

0.19 -0.00416 -0.00556 33.76 -0.00456 9.61 -0.00387 6.82 

0.32 -0.00399 -0.00533 33.49 -0.00434 8.88 -0.00367 8.01 

0.43 -0.00376 -0.00500 33.05 -0.00406 7.97 -0.00341 9.41 

0.65 -0.00314 -0.00413 31.78 -0.00332 5.70 -0.00274 12.71 

0.89 -0.00185 -0.00240 29.30 -0.00188 1.31 -0.00150 18.87 

0.97 -0.00086 -0.00109 27.21 -0.00083 2.97 -0.00064 24.87 

Table 4.47: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,10/ 21  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 ,8/1/ 21 

.8.0/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

2 ( )

( )

X b a

b a

 


 1

1

( ,0)XX X


 1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

1

1

( ,0)XX X


 %  

-2.05 -0.00127 -0.00145 13.67 -0.00212 66.38 -0.00216 70.06 

-1.62 -0.00170 -0.00126 26.10 -0.00189 11.44 -0.00179 5.13 

-0.94 -0.00285 -0.00198 30.53 -0.00297 4.11 -0.00305 7.15 

-0.74 -0.00520 -0.00528 1.44 -0.00640 23.16 -0.00668 28.46 

-0.55 -0.00664 -0.00722 8.71 -0.00835 25.66 -0.00862 29.80 

-0.19 -0.00836 -0.00949 13.58 -0.01050 25.68 -0.01065 27.44 

-0.06 -0.00877 -0.01003 14.39 -0.01098 25.21 -0.01106 26.12 

0.19 -0.00930 -0.01072 15.17 -0.01151 23.74 -0.01143 22.88 

0.55 -0.00940 -0.01075 14.40 -0.01128 20.00 -0.01092 16.23 

0.74 -0.00902 -0.01013 12.36 -0.01047 16.14 -0.00993 10.16 

0.94 -0.00791 -0.00839 6.10 -0.00849 7.40 -0.00772 2.35 

1.62 -0.00423 -0.00394 6.87 -0.00429 1.30 -0.00391 7.75 

2.05 -0.00342 -0.00353 3.17 -0.00395 15.47 -0.00375 9.55 
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CHAPTER 5  

 

 

NUMERICAL RESULTS FOR THE FUNCTIONALLY GRADED 

COATING AND THE SUBSTRATE SYSTEM 

 

 

 

In this chapter, dynamic contact mechanics of functionally graded coatings is 

investigated. The main results in this chapter are normal contact stress 1 ( ,0)YY X , 

lateral contact stress 1 ( ,0)XX X  and normalized stress intensity factors IK  at sharp 

ends of the punch. Required contact load applied by the punch is also computed for 

incomplete contact problems which are triangular punch, semi-circular punch and 

cylindrical punch contact problems. Computer programs are developed for the 

implementation of the numerical procedures described in Appendix-B, C and D. 

Numerical results of the present analytical method are compared with those available 

in the literature. In this section, numerical results are presented to show the infleunces 

of dimensionless punch speed, coefficient of friction, material inhomogeneity and 

relative contact length on elastodynamic contact stresses and stress intensity factors. 

In Chapter 2, general analytical formulations were derived for the dynamic contact 

problem of FGM coatings. Therefore, these formulations and procedures are utilized.  

The shear modulus of FGM coating is expressed by 1

1 10 ,
Ye  where 1  is the 

inhomogeneity constant, and it controls the gradient of shear modulus of the coating. 

The relation between stiffness ratio and inhomogeneity constant can be denoted as
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 1 1 1ln h   .  It is useful to define following parameters for FGM coating contact 

problem. 

20
1 1 1

10

1.0, 0, softening FGM coating,h





                                           (5.1) 

20
1 1 1

10

1.0, 0, homogenous half-plane,h





                                            (5.2) 

20
1 1 1

10

1.0, 0, stiffening FGM coating.h





                                            (5.3) 

Equations (5.1) - (5.3) depict the stiffness ratio of the materials. When softer material 

is used at the interface, the stiffness ratio becomes 1 1  , and it means FGM coating 

is softening through the thickness. When stiffness of the ingredient materials are 

equal, it means the material is homogenous half-plane, and finally when stiffer 

material is used at the interface, the stiffness ratio becomes 1 1  , and it means FGM 

coating is stiffening through the thickness. 

For FGM coating problem, the shear modulus ratio between the interface material 

and the homogenous substrate is defined by, 

20
1

2

1.0.





                                                                                                        (5.4) 

It means that the continuity on the material property at the interface is satisfied for 

FGM coating problem. 
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5.1 Numerical Results for the Rigid Flat Punch 

The general schematic of the rigid flat punch contact problem is depicted in Figure 

5.1. An FGM coating of thickness 1h  is perfectly bonded to a homogenous substrate. 

The rigid flat punch slides over the FGM coating at a speed of .V  

 

Figure 5.1: The schematic of the flat punch on the surface of the FGM coating 

bonded to a homogenous substrate 

In order to be able verify the developed formulations, elastostatic contact stress 

results obtained for the rigid flat punch contact problem are compared to those 

provided by Guler [45]. Figures 5.2 - 5.5 show normal and lateral contact stress 

distributions for various values of the stiffness ratio of the FGM coating.  In Figures 

5.4 – 5.5, the frictional force is reversed since the frictional force is taken towards 

left in Guler [45]. It can be inferred from Figures 5.2 – 5.5 that results of the present 

study are in excellent agreement between those provided by Guler [45].  

Figures 5.6 – 5.7 show elastodynamic contact stress distributions for homogenous 

half-planes for which stiffness ratio 1 2 10   is defined as 1. In frictionless case, 

the normal contact stress distribution remain the same although dimensionless punch 



192 

 

speed 1c   is increased. When Figure 5.6(b) is examined, the magnitude of lateral 

contact stress increases in the contact zone. The surface outside the contact zone is 

stress free. Figure 5.7 indicates the normal and lateral elastodynamic contact stresses 

in frictional case. When dimensionless punch speed 1c   is increased from 0.0 to 0.8, 

normal contact stress slants towards the leading end of the contact zone. Lateral 

elastodynamic contact stress gradually increases when punch speed 
1c  is increased. 

The tensile behavior of the lateral elastodynamic contact stress at trailing end is 

enhanced at higher punch speeds. 

Figures 5.8 – 5.13 show elastodynamic contact stress distributions for softening 

 1 1/ 6   and stiffening coatings ( 1 6  ) for different relative contact lengths 

adjusted as 1 0.05,a h   1 0.1a h  and 1 0.2a h  , respectively.  The influence of 

dimensionless punch speed 1c  on elastodynamic contact stress distributions is 

different for softening and stiffening coatings as it can be inferred from Figures 5.8 

and 5.9. Normal contact stresses become less compressive in the contact zone for the 

softening coating ( 1 1 6  ). However, normal contact stresses become more 

compressive towards the trailing end, and become less compressive around the 

leading end of the contact zone for the stiffening coating ( 1 6  ). Hence, skeweed 

normal stress curves are formed for the stiffening coating. The influence of 

dimensionless punch speed on lateral contact stress can be seen from Figures 5.8(b) 

and 5.9(b). As dimensionless punch speed is increased, compressive elastodynamic 

lateral contact stresses are formed in the contact zone.  However, behind the trailing 

end of the contact, lateral elastodynamic contact stresses become more compressive 

for the softening coating whereas, lateral elastodynamic contact stresses increase in 

tensile way for the stiffening coating. For a softening coating ( 1 1/ 6  ), tensile 

lateral contact stresses behind the trailing end of the contact tend to be compressive 
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especially at higher punch speeds. Nevertheless, for a stiffening coatings (
1 6  ), 

the tensile behavior of the lateral contact stress is enhanced behind the trailing end. 

Trailing end of the contact for the stiffening coatings is more critical for cracking 

type failures due to the formations of high tensile lateral contact stresses. The effect 

of dimensionless punch speed on contact stress distributions for 
1 0.1a h   and 

1 0.2a h  are similar to those obtained in Figures 5.8 - 5.9. However, the difference 

between curves generated for elastodynamic contact stresses are greater at higher 

values of 
1a h . This behavior can easily be inferred from Figure 5.8 and 5.12.  It 

should also be noted that contact stresses for softening coatings ( 1 1/ 6  ) are 

relatively more sensitive to the change in punch speed when compared to stiffening 

coatings (
1 6  ). 

The influence of coefficient of friction   on elastodynamic contact stresses is 

examined in Figures 5.14 – 5.15. The general trend of variations of normal and lateral 

elastodynamic contact stresses observed for softening and a stiffening coatings is 

similar. For both softening and stiffening coatings, and all values of coefficient of 

friction, normal contact stress slant towards the leading end of the contact zone. 

Morover, in all cases, larger coefficient of friction leads to a larger tensile peak at the 

trailing end of the contact. Thus, the trailing end of the contact is a possible site for 

cracking type failure. This finding is in line with experimental results observed in 

scratch tests. The magnitude of elastodynamic contact stresses are different for 

softening and stiffening coatings. Hence, adjustment of the coefficient of friction and 

stiffness ratio could be possible methods for avoiding surface related failures. Ahead 

of the leading end of the contact, lateral contact stress is compressive for both 

softening and stiffening coatings.  

Figures 5.16 – 5.17 illustrate the effect of stiffness ratio 1  on elastodynamic normal 

and lateral contact stresses. The contact is assumed to be frictional, hence 0.3  . 
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The results are provided for different relative contact length parameters such as 

1 0.1a h  and
1 0.4a h  . Normalized contact stresses are seen to be quite sensitive 

to the change in stiffness ratio. Normal contact stress in softening coatings is less 

compressive than that found for the stiffening coating. As stiffness ratio 
1 is 

increased from 1/6 to 6, elastodynamic lateral contact stress comes close to the zero 

stress line as observed in Figures 5.16 and 5.17.  

Figures 5.18 – 5.19 show the elastodynamic contact stresses as functions of the 

relative contact length denoted by the ratio 1a h . Variations of the contact stresses 

with respect to 
1a h are more pronounced for the softening coating (

1 1/ 6  ). 

Increase in the ratio 
1a h leads to less compressive normal stresses in the case of a 

softening coating however, it leads to more compressive normal stresses in the case 

of a stiffening coating. Lateral contact stress within the contact zone becomes more 

compressive as 
1a h is increased from 0.01 to 0.4 in the case of a softening coating. 

However, the reverse trend is seen to be valid for a stiffening coating ( 1 6  ).  

Normalized stress intensity factors evaluated at the sharp end points of the flat punch 

are provided in Tables 5.1 – 5.7. Table 5.1 shows the normalized stress intensity 

factors at the trailing and leading ends of the flat punch for various values of stiffness 

ratio and coefficient of friction in elastostatic case. Results obtained in this study are 

compared to those found by Guler [45] for the verification purpose. It can be inferred 

from Table 5.1 that a very good agreement is achieved. Table 5.2 shows the 

elastostatic normalized stress intensity factors for various values of stiffness ratio 1  

and relative contact length 1a h . The mode I SIF is an increasing function of 1a h for 

softening coatings however, the mode I SIF is a decreasing function of 1a h for 

stiffening coatings, in elastostatic case. Elastodynamic mode I SIFs generated for 

different values of stiffness ratio and dimensionless punch speed is presented in 
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Tables 5.3 – 5.5. The mode I SIFs are presented in these tables for 
1 0.1,a h   

1 0.25a h   and 
1 0.4a h  , respectively. Coefficient of friction is assumed to be 

0.3  .  In all cases, the mode I SIF at the trailing end of the punch ( )IK a  for the 

softening coating is greater than the mode I SIF at the trailing end ( )IK a  for the 

stiffening coating. As punch speed 
1c   is increased from 0.0 to 0.7, the mode SIF at 

the leading end ( )IK a  gradually increases in the case of a softening coating. 

However, the reverse trend is observed in the case of a stiffening coating. The 

normalized stress intensity factor at the leading end ( )IK a  is a decreasing function 

of punch speed 1c . In Table 5.3, the same behavior is observed for the variation of 

the mode I SIF at the trailing end ( )IK a . However, this behavior is slightly changed 

when the ratio 1a h is adjusted as 0.25 and 0.4. The mode I SIF at the trailing end 

( )IK a decreases when punch speed is increased from 0.0 to 0.6, and then slightly 

increases when punch speed is 1 0.7c  . For the half-plane contact problem 1 1  , the 

mode I SIF at both ends are equal and they are decreasing functions of punch speed

1.c Tables 5.6 and 5.7 show the mode I SIF for various values of coefficient of friction 

and dimensionless punch speed. In the case of a softening coating 1 1/ 6  , the mode 

I SIF at both ends are increasing functions of punch speed between 0.0   and

0.5.   However, when coefficient of friction is adjusted as 0.7  , ( )IK a slightly 

decreases with respect to increasing punch speed. Moreover, the mode I SIF at the 

trailing end ( )IK a is greater than the mode I SIF at the leading end ( )IK a .   

Table 5.7 shows the normalized stress intensity factors in the case of a stiffening 

coating 1 6   . In all cases, the mode I SIF at both ends are decreasing functions of 

punch speed 1c . Although the difference between the normalized stress intensity 
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factors ( )IK a  and ( )IK a  are considerable in fricitonal elastostatic case, this 

difference starts to diminish at higher punch speeds. In general, the mode-I SIF at the 

leading end ( )IK a is greater than the mode-I SIF at the trailing end ( )IK a  however, 

at a punch speed of 
1 0.7c  , ( )IK a becomes greater than ( )IK a .  

Tables 5.8 - 5.11 provide tabulated results on percent differences between contact 

stresses computed considering elastostatic and elastodynamic conditions. Such a 

comparison is critical in assessment of the influence of punch dynamics on contact 

stresses. Contact stresses are calculated for four different values of dimensionless 

punch speed 1c . When punch speed is adjusted as 1 0.0c  , it corresponds to 

elastostatic contact, and contacts for which 1 0c   are elastodynamic.  Percent 

differences %  are computed based on elastostatic results. Tables 5.8 – 5.9 show 

results for the softening coating ( 1 1/ 6  ). Percent differences between 

elastodynamic and elastostatic normal contact stress increase as punch speed is 

increased from 0.0 to 0.7. The values of percent difference are relatively high towards 

the leading end of the contact zone. The values of percent difference between 

elastodynamic and elastostatic lateral contact stresses are also considerable. Again, 

percent differences gradually increase as punch speed is increased from 0.0 to 0.7. 

Relatively high percent difference values are observed behind the trailing end of the 

contact and percent difference reaches up to 858.7% at those locations.  

Tables 5.10 - 5.11 show percent differences between elastodynamic and elastostatic 

contact stresses for the stiffening coating ( 1 6  ). The percent differences for the 

normal contact stress increase as punch speed 1c  is increased, and larger differences 

are observed near the ends of the contact. When Table 4.11 is examined, the percent 

differences for the lateral contact stress increase as the punch speed is increased. 

Higher values of percent difference are observed especially near the trailing end of 
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the contact. When Tables 5.9 and 5.11 are compared, it can also be noted that values 

of the percent difference are quite high for softening coatings.  

 

Figure 5.2: Normal and lateral contact stress distribution on FGM coating indented 

by a flat punch for different stiffness ratio of the coating (a) Normal contact stress 

distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha  ,/ 1021  ,0.0

.0.01 c   

 

 

Figure 5.3: Normal and lateral contact stress distribution on FGM coating indented 

by a flat punch for different stiffness ratio of the coating (a) Normal contact stress 

distribution; (b) Lateral contact stress distribution, ,5.0/ 1 ha  ,/ 1021  ,0.0

.0.01 c  
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Figure 5.4: Normal and lateral contact stress distribution on FGM coating indented 

by a flat punch for different stiffness ratio of the coating (a) Normal contact stress 

distribution; (b) Lateral contact stress distribution, ,05.0/ 1 ha  ,/ 1021 

,3.0 .0.01 c  

 

 

Figure 5.5: Normal and lateral contact stress distribution on FGM coating indented 

by a flat punch for different stiffness ratio of the coating (a) Normal contact stress 

distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha  ,/ 1021  ,5.0

.0.01 c  



199 

 

 

Figure 5.6: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha ,11 

,0.0 .1/ 21   

 

 

Figure 5.7:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha ,11 

,3.0 .1/ 21   
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Figure 5.8:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, 1/ 0.05,a h 

1 1/ 6,  ,3.0 .1/ 21   

 

 

Figure 5.9:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, 1/ 0.05,a h  1 6, 

,3.0 .1/ 21   
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Figure 5.10:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha

,6/11  ,3.0 .1/ 21   

 

 

Figure 5.11:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha ,61 

,3.0 .1/ 21   
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Figure 5.12: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,2.0/ 1 ha

,6/11  ,3.0 .1/ 21   

 

 

Figure 5.13:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,2.0/ 1 ha ,61 

,3.0 .1/ 21   
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Figure 5.14:  Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of coefficient of friction (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha

,6/11  ,4.01 c .1/ 21   

 

 

Figure 5.15: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of coefficient of friction (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha

,61  ,4.01 c .1/ 21   
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Figure 5.16: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of stiffness ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 ha

,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.17: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of stiffness ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,4.0/ 1 ha ,4.01 c

,3.0 .1/ 21   
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Figure 5.18: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of relative coating thickness  (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,6/11 

,6.01 c ,3.0 .1/ 21   

 

 

Figure 5.19: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving flat punch for various values of relative coating thickness  (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,61 

,6.01 c ,3.0 .1/ 21   
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Table 5.1: Normalized stress intensity factors for the contact between a rigid flat 

punch and an FGM coating ,1.0/ 1 ha .0.01 c  

 0.0   0.3   0.5   

1  ( )IK a  *( )IK a  ( )IK a  ( )IK a  *( )IK a  *( )IK a  ( )IK a  ( )IK a  *( )IK a  *( )IK a  

1/8 0.3822 0.3813 0.4028 0.3567 0.3933 0.3673 0.4137 0.3376 0.3999 0.3572 

1/2 0.3358 0.3355 0.3402 0.3285 0.3382 0.3305 0.3414 0.3220 0.3386 0.3261 

1 0.3183 0.3183 0.3171 0.3171 0.3171 0.3171 0.3151 0.3151 0.3151 0.3151 

2 0.3034 0.3038 0.2981 0.3061 0.2991 0.3060 0.2937 0.3081 0.2949 0.3062 

8 0.2790 0.2802 0.2686 0.2883 0.2696 0.2885 0.2612 0.2938 0.2615 0.2926 

Note that *

IK value shows the normalized stress intensity factor presented by Guler 

[45]. 

Table 5.2: Normalized stress intensity factors for the moving rigid flat punch 

,0.01 c  ,0.0  .1/ 21   

 
1/ 0.1a h   1/ 0.2a h   1/ 0.3a h   1/ 0.4a h   

1   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

1/6 0.3688 0.3688 0.4208 0.4208 0.4678 0.4678 0.5075 0.5075 

1/2 0.3351 0.3351 0.3506 0.3506 0.3639 0.3639 0.3751 0.3751 

1 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 

2 0.3039 0.3039 0.2925 0.2925 0.2832 0.2832 0.2756 0.2756 

6 0.2847 0.2847 0.2608 0.2608 0.2423 0.2423 0.2275 0.2275 

Table 5.3: Normalized stress intensity factors for the moving rigid flat punch 

,1.0/ 1 ha ,3.0 .1/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.7c   

1   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

1/6 0.3840 0.3479 0.3951 0.3538 0.4211 0.3707 0.4813 0.4058 

1/2 0.3388 0.3275 0.3410 0.3286 0.3442 0.3313 0.3455 0.3355 

1 0.3167 0.3167 0.3159 0.3159 0.3134 0.3134 0.3092 0.3092 

2 0.2984 0.3069 0.2961 0.3039 0.2917 0.2965 0.2870 0.2854 

6 0.2752 0.2925 0.2712 0.2872 0.2652 0.2741 0.2610 0.2549 
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Table 5.4: Normalized stress intensity factors for the moving rigid flat punch 

,25.0/ 1 ha ,3.0 .1/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.7c   

1   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

1/6 0.4607 0.4235 0.4844 0.4504 0.5433 0.5342 0.6932 0.7719 

1/2 0.3620 0.3488 0.3671 0.3543 0.3752 0.3686 0.3812 0.3917 

1 0.3167 0.3167 0.3159 0.3159 0.3134 0.3134 0.3092 0.3092 

2 0.2812 0.2917 0.2785 0.2863 0.2746 0.2734 0.2718 0.2557 

6 0.2395 0.2613 0.2350 0.2514 0.2306 0.2282 0.2318 0.1968 

    

Table 5.5: Normalized stress intensity factors for the moving rigid flat punch 

,4.0/ 1 ha ,3.0 .1/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.7c   

1   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

1/6 0.5182 0.4908 0.5495 0.5338 0.6287 0.6676 0.8384 1.0539 

1/2 0.3788 0.3673 0.3855 0.3762 0.3962 0.3995 0.4045 0.4371 

1 0.3167 0.3167 0.3159 0.3159 0.3134 0.3134 0.3092 0.3092 

2 0.2693 0.2796 0.2671 0.2727 0.2647 0.2571 0.2644 0.2369 

6 0.2161 0.2378 0.2123 0.2251 0.2108 0.1962 0.2174 0.1592 

 

Table 5.6: Normalized stress intensity factors for the rigid flat punch ,1.0/ 1 ha

,6/11  .1/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.7c   

   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

0.0 0.3688 0.3688 0.3790 0.3790 0.4057 0.4057 0.4664 0.4664 

0.3 0.3840 0.3479 0.3951 0.3538 0.4211 0.3707 0.4813 0.4058 

0.5 0.3907 0.3313 0.4005 0.3329 0.4208 0.3382 0.4700 0.3446 

0.7 0.3947 0.3130 0.4019 0.3094 0.4135 0.3011 0.4475 0.2748 
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Table 5.7: Normalized stress intensity factors for the moving rigid flat punch 

,1.0/ 1 ha ,61  .1/ 21   

 
1 0.0c   1 0.4c   1 0.6c   1 0.7c   

   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a   ( )IK a  ( )IK a  

0.0 0.2847 0.2847 0.2808 0.2808 0.2731 0.2731 0.2647 0.2647 

0.3 0.2752 0.2925 0.2712 0.2872 0.2652 0.2741 0.2610 0.2549 

0.5 0.2680 0.2966 0.2635 0.2897 0.2565 0.2713 0.2509 0.2438 

0.7 0.2602 0.2997 0.2548 0.2908 0.2458 0.2665 0.2368 0.2314 

 

Table 5.8:  Percent difference between elastostatic and elastodynamic normal 

contact stresses ,6/11  ,1.0/ 1 ha ,3.0 .1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

aX /  
1 ( ,0)

/ (2 )

YY X

P a


 1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

-0.90 -1.81344 -1.88383 3.88 -2.04431 12.73 -2.34655 29.40 

-0.82 -1.29816 -1.33123 2.55 -1.40144 7.96 -1.52575 17.53 

-0.73 -1.00533 -1.01788 1.25 -1.03893 3.34 -1.06515 5.95 

-0.61 -0.82172 -0.82159 0.02 -0.81263 1.11 -0.77863 5.24 

-0.41 -0.65900 -0.64790 1.68 -0.61367 6.88 -0.52909 19.71 

-0.19 -0.57597 -0.55915 2.92 -0.51264 10.99 -0.40467 29.74 

-0.04 -0.55067 -0.53169 3.45 -0.48112 12.63 -0.36671 33.41 

0.19 -0.55144 -0.53105 3.70 -0.47913 13.11 -0.36602 33.63 

0.41 -0.59894 -0.57851 3.41 -0.52906 11.67 -0.42725 28.67 

0.61 -0.70781 -0.68804 2.79 -0.64352 9.08 -0.56119 20.71 

0.73 -0.83404 -0.81472 2.32 -0.77421 7.17 -0.70918 14.97 

0.82 -1.03406 -1.01421 1.92 -0.97652 5.56 -0.93069 10.00 

0.90 -1.37765 -1.35424 1.70 -1.31438 4.59 -1.28681 6.59 
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Table 5.9:  Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,6/11  ,1.0/ 1 ha ,3.0 .1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

aX /  
1 ( ,0)

/ (2 )

XX X

P a


 1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

-1.22 0.26832 0.17771 33.77 -0.24508 191.34 -2.03592 858.77 

-0.99 -7.65534 -9.73231 27.13 -15.40241 101.20 -27.17313 254.96 

-0.82 -1.94587 -2.46846 26.86 -3.93597 102.27 -7.47159 283.97 

-0.67 -1.50501 -1.91009 26.91 -3.06378 103.57 -5.97327 296.89 

-0.41 -1.21643 -1.54271 26.82 -2.48498 104.29 -4.96107 307.84 

-0.27 -1.13690 -1.44048 26.70 -2.32137 104.18 -4.66824 310.61 

-0.04 -1.06804 -1.35013 26.41 -2.17229 103.39 -4.39281 311.30 

0.27 -1.05583 -1.32838 25.81 -2.12267 101.04 -4.27742 305.13 

0.41 -1.08411 -1.35932 25.39 -2.15866 99.12 -4.31804 298.30 

0.67 -1.23846 -1.53786 24.18 -2.39361 93.27 -4.64700 275.22 

0.82 -1.51072 -1.85468 22.77 -2.81342 86.23 -5.23502 246.53 

0.99 -4.93542 -5.76238 16.76 -7.74267 56.88 -11.57837 134.60 

1.22 -0.91562 -1.11367 21.63 -1.75204 91.35 -3.80532 315.60 

 

Table 5.10:  Percent difference between elastostatic and elastodynamic normal 

contact stresses ,61  ,1.0/ 1 ha ,3.0 .1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

aX /  
1 ( ,0)

/ (2 )

YY X

P a


 1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

1 ( ,0)

/ (2 )

YY X

P a


 %  

-0.90 -1.49033 -1.51546 1.69 -1.58115 6.09 -1.67963 12.70 

-0.82 -1.15084 -1.16883 1.56 -1.21456 5.54 -1.28096 11.31 

-0.73 -0.96408 -0.97860 1.51 -1.01394 5.17 -1.06281 10.24 

-0.61 -0.85130 -0.86375 1.46 -0.89248 4.84 -0.92976 9.22 

-0.41 -0.75370 -0.76366 1.32 -0.78457 4.10 -0.80823 7.24 

-0.19 -0.70543 -0.71286 1.05 -0.72637 2.97 -0.73784 4.59 

0.04 -0.68979 -0.69424 0.65 -0.69980 1.45 -0.69915 1.36 

0.19 -0.69443 -0.69638 0.28 -0.69573 0.19 -0.68628 1.17 

0.41 -0.72697 -0.72413 0.39 -0.71219 2.03 -0.68773 5.40 

0.61 -0.80175 -0.79198 1.22 -0.76464 4.63 -0.72101 10.07 

0.73 -0.89031 -0.87370 1.87 -0.83165 6.59 -0.77044 13.46 

0.82 -1.03666 -1.00987 2.58 -0.94630 8.72 -0.85998 17.04 

0.90 -1.29819 -1.25414 3.39 -1.15463 11.06 -1.02724 20.87 
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Table 5.11:  Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,61  ,1.0/ 1 ha ,3.0 .1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

aX /  
1 ( ,0)

/ (2 )

XX X

P a


 1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

1 ( ,0)

/ (2 )

XX X

P a


 %  

-1.22 0.64722 0.73496 13.56 0.92832 43.43 1.18326 82.82 

-0.99 -4.83975 -5.81532 20.16 -8.20338 69.50 -11.78561 143.52 

-0.82 -0.95157 -1.10148 15.75 -1.44733 52.10 -1.92422 102.21 

-0.67 -0.69634 -0.79743 14.52 -1.02590 47.33 -1.33082 91.12 

-0.41 -0.55248 -0.62593 13.29 -0.78657 42.37 -0.98939 79.08 

-0.27 -0.51988 -0.58643 12.80 -0.72915 40.25 -0.90318 73.73 

-0.04 -0.50194 -0.56319 12.20 -0.69017 37.50 -0.83586 66.53 

0.27 -0.52434 -0.58491 11.55 -0.70406 34.28 -0.82770 57.86 

0.41 -0.55747 -0.62047 11.30 -0.74109 32.94 -0.85952 54.18 

0.67 -0.69090 -0.76625 10.91 -0.90275 30.66 -1.02171 47.88 

0.82 -0.90804 -1.00513 10.69 -1.17449 29.34 -1.30966 44.23 

0.99 -3.70072 -4.05950 9.69 -4.62106 24.87 -4.95856 33.99 

1.22 0.64722 0.73496 13.56 0.92832 43.43 1.18326 82.82 
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5.2 Numerical Results for the Rigid Triangular Punch 

The general schematic of the rigid triangular punch contact problem is illustrated in 

Figure 5.20. An FGM coating of thickness 1h  is perfectly bonded to a homogenous 

substrate. The rigid triangular punch slides over the FGM coating at a speed of V  

and   denotes the inclination angle of the triangular punch. 

 

Figure 5.20: The schematic of the triangular punch on the surface of the FGM 

coating bonded to a homogenous substrate 

Our results depicted in Figures 5.21 – 5.24 corresponding to elastostatic contact are 

verified by those presented by Guler [45]. It can be inferred from Figures 5.21 - 5.24 

that an excellent agreement is achieved.  

Figure 5.25 shows the effect of dimensionless punch speed 1c  on elastodynamic 

contact stresses due to a triangular punch for the half-plane problem. Normal contact 

stress is unbounded at the sharp trailing end, and zero at the leading end where there 

is a smooth contact. Figure 5.26 illustrates the effect of dimensionless punch speed 

1c  on elastodynamic contact stresses for the half-plane in a frictional case. It can be 

inferred from Figures 5.25 - 5.26 that the influence of dimensionless punch speed on 
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normal contact stress is found to be significant. Normal contact stress tends to be less 

compressive as punch speed is increased. Increase in the punch speed slightly 

changes the lateral contact stress distribution as observed in Figure 5.25(b) and 

5.26(b). 

Figure 5.27 shows the effect of dimensionless punch speed 1c  on elastodynamic 

contact stresses for a softening coating ( 1 1/ 6  ). As punch speed is increased, the 

normal contact stress in the contact zone becomes less compressive and lateral 

contact stress becomes more compressive throughout the contact. Figure 5.28 depicts 

the effect of dimensionless punch speed on elastodynamic contact stresses for a 

stiffening coating ( 1 6  ). Higher punch speeds leads to less compressive normal 

contact stresses in the contact zone. The variation of the lateral contact stress with 

respect to punch speed is minimal. Slightly less compressive lateral stresses are 

formed around the leading end and lateral tensile stresses are slightly increased at the 

trailing end. Figures 5.29 – 5.32 illustrate the effect of dimensionless punch speed 1c  

on elastodynamic contact stresses for different values of relative contact length 

shown by 1 0.2,b h  1 0.4b h  . Although, the variation of the relative contact length 

influences elastodynamic contact stresses, the general trend of change with respect 

to punch speed is similar. 

Figures 5.33 – 5.34 present the effect of coefficient of friction   on elastodynamic 

contact stresses in the case of softening and stiffening coatings, respectively. In both 

situations, normal elastodynamic contact stress in the contact zone tends to slant 

towards the trailing end due to the friction. The major influence of the coefficient of 

friction on lateral elastodynamic contact stress is the formation of high tensile 

stresses at the trailing end of the contact zone. Lateral contact stresses ahead of the 

contact zone is compressive. Thus, trailing end of the contact zone is critical for 

possible occurrence of cracking failure due to high lateral tensile stresses. 
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Representative results on the influence of the stiffness ratio 1 on normal and lateral 

elastodynamic contact stresses are shown in Figures 5.35 – 5.36. As stiffness ratio 

1 is increased from 1/6 to 6, more compressive normal contact stresses are formed 

in the contact zone. Increase in the stiffness ratio leads to greater tensile lateral 

stresses behind the trailing end of the contact zone. 

Figures 5.37 – 5.38 show the elastodynamic contact stresses as functions of 1b h for 

softening and stiffening coatings. In the case of a softening coating ( 1 1 6  ), as the 

ratio 1b h is increased from 0.1 to 0.5, normal contact stress becomes less 

compressive. Lateral contact stress also tends to become less compressive in the 

contact zone and more compressive around the trailing end of the contact. In the case 

of a stiffening coating ( 1 6  ) however, as the ratio 1b h is increased from 0.1 to 

0.5, normal contact stress tends to be more compressive. The lateral contact stress 

becomes more compressive in the contact zone. Slightly greater lateral stresses are 

observed behind the trailing end.  

Table 5.12 shows the normalized punch load for different values of the stiffness ratio 

1   and relative contact length 1b h in elastostatic case. In all cases, the normalized 

punch load increases gradually as 1b h is increased. Tables 5.13 – 5.15 show the 

normalized punch load for different values of stiffness ratio 1 and dimensionless 

punch speed 1c . It can be seen in tables that normalized punch load gradually 

decreases as punch speed 1c  is increased from 0.0 to 0.7. Tables 5.16 – 5.17 tabulate 

the normalized punch load for various values of coefficient of friction   and 

dimensionless punch speed 1c . It can be seen in these tables that normalized punch 

load is greater for a stiffening coating than that generated for a softening coating. 

Moreover, the normalized load computed at higher coefficient of friction is greater 
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than that computed at frictionless case. In all cases, the normalized load gradually 

decreases as punch speed is increased from 0.0 to 0.7. 

Table 5.18 tabulates the elastostatic normalized stress intensity factors computed for 

various values of stiffness ratio 1  and coefficient of friction  . Results obtained in 

this study are in a very good agreement with those provided by Guler [45].  

Table 5.19 show the normalized stress intensity factor (0)IK evaluated at the sharp 

corner of the triangular punch for various values of stiffness ratio 1  and relative 

contact length 1b h in elastostatic case. Normalized stress intensity factors for the 

softening coating decreases as 1b h is increased, however normalized stress intensity 

factor for the stiffening coating increases as 1b h is increased. Tables 5.20 and 5.21 

show normalized elastodynamic stress intensity factors for different values of 

stiffness ratio 1  and dimensionless punch speed 1c . In all cases, the mode I SIF is a 

decreasing function of the punch speed 1c . Tables 5.22 and 5.23 show the mode I 

SIFs for various values of coefficient of friction    and dimensionless punch speed

1c . Again, in all cases, the mode I SIF is a decreasing function of dimensionless 

punch speed 1c .  

Tables 5.24 – 5.27 provide tabulated results on percent differences between contact 

stresses computed considering elastostatic and elastodynamic conditions. Contact 

stresses are calculated for four different values of dimensionless punch speed 1c . The

1 0c  condition indicates elastostatic contact whereas 1 0c   condition indicates 

elastodynamic contact. Percent difference %  is calculated based on elastostatic 

contact stress results. Tables 5.24 – 5.25 show percent differences between 

elastodynamic and elastostatic normal and lateral contact stresses in the case of a 

softening coating ( 1 1/ 6  ). As punch speed 1c  is increased, percent differences 
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gradually increase. The largest difference in the normal contact stress distribution is 

observed near the leading end of the contact. However, the largest difference in the 

lateral contact stress is observed behind the trailing end of the contact. Tables 5.26 - 

5.27 show percent differences in the case of a stiffening coating ( 1 6  ). Percent 

differences for the normal and lateral contact stresses gradually increase as punch 

speed is increased from 0.0 to 0.7. The largest difference in the normal contact stress 

is observed around the leading end of the contact. However, the largest difference in 

the lateral contact stress is observed ahead of the contact. 
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Figure 5.21: Normal and lateral contact stress distribution on FGM coating indented 

by a triangular punch for different stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, 1/ 0.2,b h  0.0, 

1 0.0.c   

 

  

Figure 5.22: Normal and lateral contact stress distribution on FGM coating indented 

by a triangular punch for different stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, 1/ 0.5,b h  0.0, 

1 0.0.c   
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Figure 5.23: Normal and lateral contact stress distribution on FGM coating indented 

by a frictional triangular punch for different stiffness ratio of the coating (a) Normal 

contact stress distribution; (b) Lateral contacta stress distribution, 1/ 0.2,b h 

0.3,  1 0.0.c   

 

  

Figure 5.24: Normal and lateral contact stress distribution on FGM coating indented 

by a frictional triangular punch for different stiffness ratio of the coating (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, 1/ 0.2,b h 

0.5, 
1 0.0.c   
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Figure 5.25: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 hb ,11 

,0.0 .1/ 21   

 

  

Figure 5.26: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 hb ,11 

,3.0 .1/ 21   
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Figure 5.27: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,1.0/ 1 hb

,6/11  ,3.0 .1/ 21   

 

  

Figure 5.28: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution,  ,1.0/ 1 hb ,61 

,3.0 .1/ 21      
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Figure 5.29: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,2.0/ 1 hb

,6/11  ,3.0 .1/ 21   

 

 

Figure 5.30: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,2.0/ 1 hb ,61 

,3.0 .1/ 21   
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Figure 5.31: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,4.0/ 1 hb

,6/11  ,3.0 .1/ 21   

 

 

Figure 5.32: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,4.0/ 1 hb ,61 

,3.0 .1/ 21   
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Figure 5.33: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,2.0/ 1 hb ,6/11  ,4.01 c .1/ 21   

 

 

Figure 5.34: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,2.0/ 1 hb ,61  ,4.01 c .1/ 21   
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Figure 5.35: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of stiffness ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,2.0/ 1 hb ,3.0

,4.01 c .1/ 21   

 

 

Figure 5.36: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of stiffness ratio (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,4.0/ 1 hb ,3.0

,4.01 c .1/ 21   
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Figure 5.37: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,6/11  ,3.0 ,4.01 c .1/ 21   

 

  

Figure 5.38: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving triangular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,61  ,3.0 ,4.01 c .1/ 21   
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Table 5.12: The normalized load for FGM coating indented by a moving triangular 

punch ,01 c ,0.0 .0.1/ 21   

 1/ 0.1b h   1/ 0.2b h   1/ 0.3b h   1/ 0.4b h   

1  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/6 0.181066 0.313938 0.411790 0.485992 

1/2 0.198217 0.377717 0.541621 0.692910 

1 0.208467 0.416952 0.625428 0.883905 

2 0.218419 0.455422 0.709475 0.979108 

6 0.233716 0.515125 0.842102 1.213105 

 

Table 5.13: The normalized load for FGM coating indented by a moving triangular 

punch 1/ 0.2,b h   0.3,   1 2/ 1.     

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/6 0.349818 0.337109 0.296464 0.216059 0.143286 

1/2 0.407394 0.395100 0.356197 0.282155 0.224397 

1 0.442468 0.430300 0.391993 0.320205 0.265858 

2 0.477110 0.465168 0.427734 0.358484 0.307449 

6 0.531803 0.520139 0.483884 0.418673 0.373801 

 

Table 5.14: The normalized load for FGM coating indented by a moving triangular 

punch 1/ 0.4,b h   0.3,   1 2/ 1.      

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

1  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/6 0.538183 0.512978 0.432209 0.272091 0.128836 

1/2 0.747916 0.723165 0.644545 0.493407 0.373639 

1 0.884936 0.860600 0.783986 0.640411 0.531718 

2 1.023374 0.999804 0.926129 0.791055 0.693514 

6 1.244415 1.222238 1.154484 1.040316 0.976631 

 

 



226 

 

Table 5.15: The normalized load for FGM coating indented by a moving triangular 

punch ,4.0/ 1 hb ,3.0 .0.1/ 21   

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1/6 0.599161 0.568709 0.471517 0.281768 0.119851 

1/2 0.899356 0.868485 0.770338 0.581381 0.431607 

1 1.106170 1.075750 0.979982 0.800513 0.664647 

2 1.320054 1.290668 1.198876 1.030899 0.910100 

6 1.666611 1.639630 1.558066 1.426529 1.365757 

 

Table 5.16: The normalized load for FGM coating indented by a moving triangular 

punch ,2.0/ 1 hb ,6/11  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

0.0 0.313938 0.301066 0.260152 0.180692 0.110262 

0.3 0.349818 0.337109 0.296464 0.216590 0.143286 

0.5 0.376502 0.364048 0.324115 0.244719 0.174903 

0.7 0.405628 0.393574 0.354898 0.278460 0.219114 

 

Table 5.17: The normalized load for FGM coating indented by a moving triangular 

punch ,2.0/ 1 hb ,61  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

  
1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

1 tan( )

P

 
 

0.0 0.515125 0.502385 0.462175 0.386338 0.328552 

0.3 0.531803 0.520140 0.483884 0.418674 0.373801 

0.5 0.541026 0.529920 0.495650 0.435226 0.394724 

0.7 0.548607 0.537903 0.504979 0.446951 0.406343 
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Table 5.18: Normalized stress intensity factors for the moving rigid triangular punch 

,2.0/ 1 hb .0.01 c              

 0.0   0.1   0.3   0.5   

1  (0)IK  * (0)IK  (0)IK  * (0)IK  (0)IK  * (0)IK  (0)IK  * (0)IK  

1/8 1.1976 1.1912 1.1740 1.1677 1.1283 1.1224 1.0844 1.0789 

1/2 1.3530 1.3550 1.3452 1.3467 1.3270 1.3279 1.3058 1.3063 

1 1.4220 1.4286 1.4218 1.4280 1.4183 1.4234 1.4100 1.4142 

2 1.4862 1.4976 1.4933 1.5041 1.5033 1.5128 1.5076 1.5160 

8 1.6029 1.6247 1.6219 1.6430 1.6554 1.6751 1.6823 1.7005 

Note that 
*

IK  value shows the normalized stress intensity factor presented by Guler 

[45]. 

Table 5.19: Normalized stress intensity factors for the moving triangular punch 

,01 c ,0.0 .0.1/ 21       

 1/ 0.1b h   1/ 0.2b h   1/ 0.3b h   1/ 0.4b h   

1  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 1.2396 1.1563 1.0831 1.0204 

1/2 1.2952 1.2652 1.2379 1.2134 

1 1.3272 1.3272 1.3272 1.3272 

2 1.3574 1.3848 1.4101 1.4336 

6 1.4023 1.4689 1.5301 1.5867 

 

Table 5.20: Normalized stress intensity factors for the moving triangular punch 

,2.0/ 1 hb ,3.0 .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

1  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 1.2114 1.1696 1.0360 0.7742 0.5549 

1/2 1.2796 1.2386 1.1084 0.8579 0.6629 

1 1.3183 1.2775 1.1482 0.9030 0.7141 

2 1.3557 1.3153 1.1880 0.9488 0.7676 

6 1.4132 1.3733 1.2480 1.0166 0.8481 
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Table 5.21: Normalized stress intensity factors for the moving triangular punch 

,4.0/ 1 hb ,3.0 .0.1/ 21   

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 1.0665 1.0233 0.8839 0.6042 0.3511 

1/2 1.2300 1.1887 1.0570 0.8022 0.5995 

1 1.3183 1.2775 1.1482 0.9030 0.7141 

2 1.3978 1.3578 1.2322 0.9977 0.8226 

6 1.5106 1.4716 1.3501 1.1334 0.9897 

 

Table 5.22: Normalized stress intensity factors for the moving triangular punch 

,2.0/ 1 hb ,6/11  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   
  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 1.1563 1.1152 0.9846 0.7320 0.5135 

0.3 1.2114 1.1696 1.0360 0.7742 0.5549 

0.5 1.2476 1.2052 1.0690 0.8006 0.5890 

0.7 1.2835 1.2405 1.1016 0.8281 0.6387 

 

Table 5.23: Normalized stress intensity factors for the moving triangular punch 

,2.0/ 1 hb ,61  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   
  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 1.4689 1.4282 1.2997 1.0572 0.8722 

0.3 1.4132 1.3733 1.2480 1.0166 0.8481 

0.5 1.3681 1.3280 1.2022 0.9699 0.7993 

0.7 1.3180 1.2773 1.1495 0.9117 0.7326 
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Table 5.24: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,6/11  ,2.0/ 1 hb ,3.0 .0.1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2X b

b


 1

10

( ,0)

tan

YY X

 
 1

10

( ,0)

tan

YY X

 
 %  

1

10

( ,0)

tan

YY X

 
 %  

1

10

( ,0)

tan

YY X

 
 %  

-0.94 -7.18099 -6.25644 12.88 -4.85800 32.35 -3.61439 49.67 

-0.82 -3.78496 -3.23764 14.46 -2.41106 36.30 -1.68226 55.55 

-0.70 -2.65689 -2.24294 15.58 -1.61797 39.10 -1.06442 59.94 

-0.61 -2.16614 -1.81207 16.35 -1.27724 41.04 -0.79995 63.07 

-0.50 -1.79277 -1.48615 17.10 -1.02293 42.94 -0.60670 66.16 

-0.22 -1.16276 -0.94407 18.81 -0.61444 47.16 -0.31468 72.94 

-0.03 -0.91985 -0.73799 19.77 -0.46359 49.60 -0.21003 77.17 

0.22 -0.67989 -0.53719 20.99 -0.32151 52.71 -0.11795 82.65 

0.50 -0.45428 -0.35399 22.08 -0.20295 55.32 -0.05922 86.96 

0.61 -0.38547 -0.29879 22.49 -0.16812 56.39 -0.04255 88.96 

0.70 -0.32473 -0.25023 22.94 -0.13769 57.60 -0.02834 91.27 

0.82 -0.23608 -0.18053 23.53 -0.09707 58.88 -0.01655 92.99 

0.94 -0.11627 -0.08899 23.46 -0.04991 57.08 -0.01671 85.62 

 

Table 5.25: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,6/11  ,2.0/ 1 hb ,3.0 .0.1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2X b

b


 1

10

( ,0)

tan

XX X

 
 1

10

( ,0)

tan

XX X

 
 %  

1

10

( ,0)

tan

XX X

 
 %  

1

10

( ,0)

tan

XX X

 
 %  

-1.50 0.26384 0.05659 78.55 -0.47514 280.09 -1.67926 736.47 

-1.22 0.85837 0.58393 31.97 -0.07559 108.81 -1.42666 266.20 

-0.99 -19.36992 -20.30565 4.83 -22.19170 14.57 -24.09914 24.42 

-0.82 -5.93585 -6.14285 3.49 -6.62583 11.62 -7.49011 26.18 

-0.50 -3.64327 -3.74640 2.83 -4.03917 10.87 -4.75911 30.63 

-0.22 -2.84994 -2.92070 2.48 -3.15821 10.82 -3.84480 34.91 

-0.03 -2.51961 -2.57789 2.31 -2.79393 10.89 -3.46550 37.54 

0.22 -2.18247 -2.22757 2.07 -2.42109 10.93 -3.07740 41.01 

0.50 -1.85202 -1.89042 2.07 -2.07840 12.22 -2.75531 48.77 

0.82 -1.53457 -1.56993 2.30 -1.76014 14.70 -2.47017 60.97 

0.99 -1.27760 -1.32842 3.98 -1.56337 22.37 -2.37897 86.21 

1.22 -1.03518 -1.10335 6.58 -1.36657 32.01 -2.21758 114.22 

1.50 -0.92149 -0.98893 7.32 -1.24699 35.32 -2.09137 126.95 
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Table 5.26: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,61  ,2.0/ 1 hb ,3.0 .0.1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2X b

b


 1

10

( ,0)

tan

YY X

 
 1

10

( ,0)

tan

YY X

 
 %  

1

10

( ,0)

tan

YY X

 
 %  

1

10

( ,0)

tan

YY X

 
 %  

-0.94 -9.10464 -8.30622 8.77 -7.25190 20.35 -6.57716  27.76 

-0.82 -5.26412 -4.78574 9.09 -4.14130 21.33 -3.70735 29.57 

-0.70 -3.98568 -3.62135 9.14 -3.12596 21.57 -2.78468 30.13 

-0.61 -3.42934 -3.11652 9.12 -2.68907 21.59 -2.39101 30.28 

-0.50 -2.98896 -2.71613 9.13 -2.34100 21.68 -2.07549 30.56 

-0.22 -2.14841 -1.94694 9.38 -1.66383 22.56 -1.45367 32.34 

-0.03 -1.79313 -1.62261 9.51 -1.38064 23.00 -1.19754 33.22 

0.22 -1.40523 -1.26795 9.77 -1.07057 23.81 -0.91761 34.70 

0.50 -0.95852 -0.85687 10.61 -0.70752 26.19 -0.58754 38.70 

0.61 -0.81920 -0.73034 10.85 -0.59937 26.83 -0.49380 39.72 

0.70 -0.69789 -0.62104 11.01 -0.50764 27.26 -0.41628 40.35 

0.82 -0.50435 -0.44517 11.73 -0.35699 29.22 -0.28494 43.50 

0.94 -0.20946 -0.17570 16.12 -0.12333 41.12 -0.07790 62.81 

 

Table 5.27: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,61  ,2.0/ 1 hb ,3.0 .0.1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2X b

b


 1

10

( ,0)

tan

XX X

 
 1

10

( ,0)

tan

XX X

 
 %  

1

10

( ,0)

tan

XX X

 
 %  

1

10

( ,0)

tan

XX X

 
 %  

-1.50 1.49612 1.53738 2.76 1.65124 10.37 1.82493 21.98 

-1.22 2.52700 2.58613 2.34 2.77076 9.65 3.07694 21.76 

-0.99 -20.37155 -21.74252 6.73 -25.13117 23.36 -30.05751 47.55 

-0.82 -5.49769 -5.64149 2.62 -6.04219 9.90 -6.64494 20.87 

-0.50 -3.24140 -3.25329 0.37 -3.33471 2.88 -3.48834 7.62 

-0.22 -2.47861 -2.45020 1.15 -2.43186 1.89 -2.44348 1.42 

-0.03 -2.16136 -2.11985 1.92 -2.06929 4.26 -2.03684 5.76 

0.22 -1.84749 -1.79474 2.86 -1.71678 7.07 -1.64818 10.79 

0.50 -1.46660 -1.39626 4.80 -1.27633 12.97 -1.15229 21.43 

0.82 -1.08769 -1.00694 7.42 -0.86564 20.42 -0.72148 33.67 

0.99 -0.60606 -0.50543 16.60 -0.32198 46.87 -0.13030 78.50 

1.22 -0.31137 -0.24334 21.85 -0.12619 59.47 -0.01527 95.10 

1.50 -0.22307 -0.16836 24.53 -0.07612 65.88 0.00833 103.74 
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5.3 Numerical Results for the Rigid Semi-circular Punch 

The general schematic of the rigid semi-circular punch contact problem is illustrated 

in Figure 5.39. An FGM coating of thickness 
1h  is perfectly bonded to a homogenous 

substrate. The rigid semi-circular punch slides over the FGM coating at a speed of 

.V 1R  shows the radius of the semi-circular punch. 

 

Figure 5.39: The schematic of the semi-circular punch on the surface of the FGM 

coating bonded to a homogenous substrate  

Figures 5.40 – 5.41 illustrate the comparison of contact stresses computed by the 

present analytical method to those provided by Guler [45] for the case of elastostatic 

contact. The results are calculated by assuming 0V  and using three different values 

of the stiffness ratio 1 . It can be seen that contact stresses evaluated by the present 

analytical method are in excellent agreement with those provided by Guler [45].  

Figures 5.42 and 5.43 show frictionless and frictional elastodynamic contact stresses 

for different values of dimensionless punch speed 1c  in half-plane contacts 

respectively. For both cases, as punch speed 1c   is increased, less compressive normal 
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contact stress is obtained in the contact zone. When elastodynamic lateral contact 

stresses are examined, the magnitude of lateral contact stress increases in the contact 

zone and surface outside the contact zone is stress free. However, tensile spike in 

lateral contact stress forms at the trailing end in the case of frictional contact. Figures 

5.44 – 5.45 show the influence of punch speed 1c   on contact stresses for softening 

 1 1/ 6   and stiffening coatings ( 1 6  ), respectively. The influence of punch 

speed on elastodynamic contact stresses is very similar to those obtained for 

triangular punch contact problem. Normal contact stress becomes less compressive 

for both softening ( 1 1/ 6  ) and stiffening coatings ( 1 6  ). However, the 

variation of lateral contact stress with respect to punch speed is different for softening 

and stiffening coatings. As punch speed is increased, the magnitude of lateral contact 

stress increases throughout the contact for a softening coating. In the case of a 

stiffening coating, the change in the lateral contact stress is minimal. The tensile 

behavior of the lateral stress at the trailing end is slightly enhanced and slightly less 

compressive lateral stresses are formed around the leading end of the contact. Figures 

5.46 – 5.49 depict elastodynamic contact stresses with respect to dimensionless 

punch speed for different values of relative contact length denoted by the ratio 1b R . 

Although some minor differences are observed due to the length parameters, 

obtained results are similar to those presented in Figures 5.44 - 5.45. In the case of a 

softening coating ( 1 1/ 6  ), the magnitude of the compressive lateral contact stress 

at trailing end increases as the ratio 1b R is increased, and lateral contact stresses 

become slightly less compressive in the contact zone. 

The influence of coefficient of friction   on elastodynamic contact stresses is 

examined in Figures 5.50 – 5.51. Normal contact stress in the contact zone slants 

towards the trailing end as coefficient of friction is increased from 0.0 to 0.7. Normal 

contact stresses evaluated for the softening coating ( 1 1/ 6  ) are less compressive 
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when compared to stiffening coating ( 1 6  ). In all cases, larger coefficient of 

friction leads to a larger tensile peak at the trailing end of the contact. Thus, in 

elastodynamic contacts with friction, trailing end of the contact is a possible site for 

cracking type failure. 

Figures 5.52 – 5.53 depict the elastodynamic contact stresses with respect to different 

values of stiffness ratio 1 . As 1  is increased from 1/6 to 6, the magnitude of the 

normal contact stress increases in the contact zone. However, slightly less 

compressive lateral contact stresses are generated in the contact zone and tensile 

behavior of the lateral stress behind the trailing end is enhanced at greater values of

1 .  

Figures 5.54 – 5.55 show respectively the elastodynamic contact stresses for 

softening and stiffening coatings as functions of the ratio 1 1R h . As the ratio 1 1R h is 

increased from 5 to 40, normal contact stress tends to be less compressive in the case 

of a softening coating whereas more compressive in the case of a stiffening coating. 

The effect of the ratio 1 1R h on elastodynamic lateral contact stress distributions 

generated for softening and stiffening coatings are quite different. Lateral contact 

stress in the contact zone becomes less compressive for a softening coating while it 

becomes more compressive for a stiffening coating.  

Figures 5.56 - 5.57 show the elastodynamic contact stresses for softening and 

stiffening coatings as functions of relative contact length 1b R . Increase in the ratio 

1b R leads to more compressive normal stresses in the contact zone. The variation of 

the normal contact stress with respect to the ratio 1b R  is significant for the stiffening 

coating when compared to the softening coating. The magnitude of lateral 

elastodynamic contact stress in the contact zone increases at higher values of 1b R .  



234 

 

Table 5.28 shows the normalized punch load applied by the rigid semi-circular punch 

for different values of stiffness ratio 1  and relative contact length 1b R in elastostatic 

case. The values computed for the stiffening coating is greater than those computed 

for the softening coating. In all cases, the normalized punch load is an increasing 

function of 1b R . Table 5.29 - 5.31 show the normalized punch load for different 

values of stiffness ratio 1  and dimensionless punch speed 1c  . In all cases, the 

normalized punch load is a decreasing function of punch speed 1c . Tables 5.32 – 5.33 

show normalized punch loads for various values of coefficient of friction   and 

dimensionless punch speed 1c . We obtain higher values of the normalized punch load 

at cases in which higher values of coefficient of friction is used. The normalized 

punch load is again a decresing function of dimensionless punch speed 1c  as observed 

in these tables. 

Table 5.34 tabulates the normalized stress intensity factors evaluated at the sharp end 

of the semi-circular punch. Results of present analytical study and those generated 

by Guler [45] are presented together in the same table. It can be inferred from Table 

5.34 that a very good agreement is achieved. Table 5.35 shows the normalized stress 

intensity factor for different values of stiffness ratio 1  and relative contact length 

1b R in elastostatic case. As the ratio 1b R is increased from 0.01 to 0.04, the values 

of mode I SIF at the sharp end (0)IK decrease for softening coatings while they 

increase for stiffening coatings. 

Tables 5.36 - 5.38 show elastodynamic mode I SIFs calculated at different stiffness 

ratio 1  and dimensionless punch speed 1c  at several relative contact lengths such as 

1 0.01,b R   1 0.02b R   and 1 0.04b R  . The mode I SIFs calculated for the 
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stiffening coatings are greater than those calculated for the softening coatings. In all 

cases, the mode I SIF is a decresing function of punch speed 1c .  

Tables 5.39 - 5.40 show the normalized stress intensity factors for different values of 

coefficient of friction    and dimensionless punch speed 1c . In all cases, the mode I 

SIF is a decreasing function of punch speed 1c . 

Tables 5.41 - 5.44 provide tabulated results on percent differences between contact 

stresses computed considering elastostatic and elastodynamic conditions. Such a 

comparison is important since it provides assessment of the effect of punch dynamics 

on contact stresses. Contact stresses are calculated for four different values of 

dimensionless punch speed 1c . The case 1 0c   corresponds to elastostatic contact 

while contacts for which 1 0c   are elastodynamic. The percent difference %  in 

each case is computed with respect to elastostatic results.  Tables 5.41 - 5.42 show a 

comparison for a softening coating ( 1 1/ 6  ) while Tables 5.43 - 5.44 indicate a 

comparison for a stiffening coating ( 1 6  ). When Table 5.41 is investigated, 

percent differences for the normal contact stress increase as punch speed is increased 

from 0.0 to 0.7. The values of percent difference is greater around the leading end 

(smooth contact point). Percent differences for the lateral contact stress again 

increase as punch speed is increased and they reach great values behind the trailing 

end of the contact. In the case of a stiffening coating, percent differences between 

elastodynamic and elastostatic normal contact stress are also considerable.  The 

values of percent difference gradually increase as punch speed 1c  is increased from 

0.0 to 0.7. The percent differences for the lateral contact stress are provided in Table 

5.44.  Percent difference values reach up to 100% ahead of the leading end of the 

contact zone.  



236 

 

 

Figure 5.40: Normal and lateral contact stress distribution on FGM coating indented 

by a frictional semi-circular punch for different stiffness ratio of the coating (a) 

Normal contact stress disitribution; (b) Lateral contact stress distribution, 

,/ 1021  ,0.0 ,01.0/ 1 Rb .20/ 11 hR   

 

 

Figure 5.41: Normal and lateral contact stress distribution on FGM coating indented 

by a frictional semi-circular punch for different stiffness ratio of the coating (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,/ 1021  ,0.0 ,05.0/ 1 Rb .20/ 11 hR   
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Figure 5.42: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,01.0/ 1 Rb ,20/ 11 hR ,11  0.0,   .1/ 21   

 

 

Figure 5.43: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch  speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,01.0/ 1 Rb ,20/ 11 hR ,11  ,3.0  .1/ 21   
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Figure 5.44: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch  speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,01.0/ 1 Rb ,20/ 11 hR ,6/11  ,3.0  .1/ 21   

 

 

Figure 5.45: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,01.0/ 1 Rb ,20/ 11 hR ,61  ,3.0  .1/ 21   
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Figure 5.46: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/ 1 Rb ,20/ 11 hR 1 1/ 6,  ,3.0  .1/ 21   

 

 

Figure 5.47: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/ 1 Rb ,20/ 11 hR ,61  ,3.0  .1/ 21   
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Figure 5.48: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,04.0/ 1 Rb ,20/ 11 hR ,6/11  ,3.0  .1/ 21   

 

 

Figure 5.49: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch speed (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,04.0/ 1 Rb ,20/ 11 hR ,61  ,3.0  .1/ 21   
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Figure 5.50: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/ 1 Rb ,20/ 11 hR ,6/11  ,4.01 c  .1/ 21   

 

 

Figure 5.51: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/ 1 Rb ,20/ 11 hR ,61  ,4.01 c  .1/ 21   
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Figure 5.52: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of stiffness ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution,

,01.0/ 1 Rb ,20/ 11 hR ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.53: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of stiffness ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/ 1 Rb ,20/ 11 hR ,4.01 c ,3.0 .1/ 21   
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Figure 5.54: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,02.0/ 1 Rb ,6/11  ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.55: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,02.0/ 1 Rb ,61  ,4.01 c ,3.0 .1/ 21   
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Figure 5.56: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch radius (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,6/11 

,20/ 11 hR ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.57: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving semi-circular punch for various values of punch radius (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, ,61 

,20/ 11 hR ,4.01 c ,3.0 .1/ 21   
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Table 5.28: The normalized load for FGM coating indented by a moving semi-

circular punch ,01 c ,0.0 ,20/ 11 hR .0.1/ 21   

 1/ 0.01b R   
1/ 0.02b R   

1/ 0.03b R   1/ 0.04b R   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 0.00012143 0.00038692 0.00072335 0.00111056 

1/2 0.00014293 0.00052895 0.00111482 0.00187796 

1 0.00015612 0.00062446 0.00140505 0.00249786 

2 0.00016903 0.00072233 0.00171867 0.00320342 

6 0.00018906 0.00087941 0.00224378 0.00443774 

 

Table 5.29: The normalized load for FGM coating indented by a moving semi-

circular punch ,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 0.00013835 0.00013365 0.00011860 0.00008884 0.00006211 

1/2 0.00015745 0.00015291 0.00013857 0.00011129 0.00008998 

1 0.00016908 0.00016461 0.00015053 0.00012425 0.00010445 

2 0.00018061 0.00017624 0.00016256 0.00013745 0.00011923 

6 0.00019889 0.00019464 0.00018151 0.00015826 0.00014289 

 

Table 5.30: The normalized load for FGM coating indented by a moving semi-

circular punch ,02.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 0.00043874 0.00041967 0.00035838 0.00023557 0.00012302 

1/2 0.00058344 0.00056508 0.00050674 0.00039433 0.00030460 

1 0.00067634 0.00065843 0.00060213 0.00049699 0.00041781 

2 0.00076958 0.00075243 0.00069902 0.00060238 0.00053456 

6 0.00091807 0.00090216 0.00085404 0.00077598 0.00073855 
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Table 5.31: The normalized load for FGM coating indented by a moving semi-

circular punch ,04.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 0.00122894 0.00116237 0.00095131 0.00054837 0.00022405 

1/2 0.00206032 0.00198775 0.00175651 0.00130980 0.00095456 

1 0.00270536 0.00263371 0.00240851 0.00198798 0.00167123 

2 0.00341564 0.00334766 0.00313657 0.00275680 0.00249289 

6 0.00462066 0.00456601 0.00441130 0.00423572 0.00432052 

 

Table 5.32: The normalized load for FGM coating indented by a moving semi-

circular punch ,02.0/ 1 Rb ,20/ 11 hR ,6/11  .0.1/ 21    

 1
0.0c   

1
0.2c   

1
0.4c   

1
0.6c   

1
0.7c   

  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

0.0 0.00038692 0.00036847 0.00031000 0.00019747 0.00010065 

0.3 0.00043874 0.00041967 0.00035838 0.00023557 0.00012302 

0.5 0.00047717 0.00045775 0.00039470 0.00026484 0.00014127 

0.7 0.00051893 0.00049922 0.00043453 0.00029766 0.00016317 

 

Table 5.33: The normalized load for FGM coating indented by a moving semi-

circular punch ,02.0/ 1 Rb ,20/ 11 hR ,61  .0.1/ 21   

 1
0.0c   

1
0.2c   

1
0.4c   

1
0.6c   

1
0.7c   

  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

0.0 0.00087941 0.00086013 0.00079923 0.00068399 0.00059573 

0.3 0.00091807 0.00090216 0.00085404 0.00077598 0.00073855 

0.5 0.00094055 0.00092662 0.00088590 0.00082867 0.00081638 

0.7 0.00096003 0.00094776 0.00091309 0.00087077 0.00086878 
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Table 5.34: Normalized stress intensity factors for the moving rigid semi-circular 

punch ,025.0/ 1 Rb ,20/ 11 hR .0.01 c  

 0.0   0.1   0.3   0.5   

1  (0)IK  * (0)IK  (0)IK  * (0)IK  (0)IK  * (0)IK  (0)IK  * (0)IK  

1/8 0.4800 0.4725 0.4570 0.4501 0.4124 0.4066 0.3702 0.3653 

1/2 0.6335 0.6342 0.6152 0.6157 0.5782 0.5783 0.5409 0.5408 

1 0.7077 0.7143 0.6950 0.7010 0.6679 0.6729 0.6390 0.6342 

2 0.7778 0.7914 0.7719 0.7847 0.7574 0.7688 0.7399 0.7500 

8 0.9027 0.9336 0.9108 0.9411 0.9239 0.9528 0.9327 0.9603 

Note that 
*

IK value shows the normalized stress intensity factor presented by Guler 

[45]. 

Table 5.35: Normalized stress intensity factor for the moving semi-circular punch 

,0.01 c ,0.0 ,20/ 11 hR .0.1/ 21   

 1/ 0.01b R   
1/ 0.02b R   

1/ 0.03b R   1/ 0.04b R   

1  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 0.5763 0.5093 0.4612 0.4271 

1/2 0.6300 0.6045 0.5841 0.5682 

1 0.6605 0.6605 0.6605 0.6605 

2 0.6889 0.7129 0.7333 0.7506 

6 0.7303 0.7882 0.8381 0.8812 

 

Table 5.36: Normalized stress intensity factor for the moving semi-circular punch 

,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 0.01 c  2.01 c  4.01 c  6.01 c  7.01 c  

1  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 0.6604 0.6403 0.5758 0.4483 0.3429 

1/2 0.6834 0.6637 0.6012 0.4807 0.3844 

1 0.6971 0.6775 0.6158 0.4989 0.4085 

2 0.7111 0.6920 0.6321 0.5207 0.4377 

6 0.7344 0.7157 0.6579 0.5539 0.4827 
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Table 5.37: Normalized stress intensity factor for the moving semi-circular punch 

,02.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 0.01 c  2.01 c  4.01 c  6.01 c  7.01 c  

1  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 0.5847 0.5632 0.4932 0.3490 0.2127 

1/2 0.6588 0.6388 0.5749 0.4495 0.3468 

1 0.6971 0.6775 0.6158 0.4989 0.4085 

2 0.7312 0.7125 0.6544 0.5479 0.4712 

6 0.7800 0.7623 0.7084 0.6184 0.5699 

 

Table 5.38: Normalized stress intensity facrtor for the moving semi-circular punch 

,04.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 0.01 c  2.01 c  4.01 c  6.01 c  7.01 c  

1  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

1/6 0.4769 0.4557 0.3869 0.2481 0.1262 

1/2 0.6166 0.5964 0.5313 0.4022 0.2957 

1 0.6971 0.6675 0.6158 0.4989 0.4085 

2 0.7681 0.7501 0.6942 0.5938 0.5241 

6 0.8619 0.8461 0.8001 0.7399 0.7447 

 

Table 5.39: Normalized stress intensity factor for the moving semi-circular punch 

,02.0/ 1 Rb ,20/ 11 hR ,6/11  .0.1/ 21      

 0.01 c  2.01 c  4.01 c  6.01 c  7.01 c  

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 0.5093 0.4889 0.4241 0.2972 0.1826 

0.3 0.5847 0.5632 0.4932 0.3490 0.2127 

0.5 0.6359 0.6133 0.5388 0.3799 0.2281 

0.7 0.6874 0.6635 0.5834 0.4078 0.2413 
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Table 5.40: Normalized stress intensity factor for the moving semi-circular punch 

,02.0/ 1 Rb ,20/ 11 hR ,61  .0.1/ 21   

 0.01 c  2.01 c  4.01 c  6.01 c  7.01 c  

  (0)IK  (0)IK  (0)IK  (0)IK  (0)IK  

0.0 0.7882 0.7675 0.7022 0.5781 0.4825 

0.3 0.7800 0.7623 0.7084 0.6184 0.5699 

0.5 0.7685 0.7522 0.7034 0.6275 0.5944 

0.7 0.7527 0.7372 0.6915 0.6218 0.5876 

 

Table 5.41: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,6/11  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21    

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2X b

b

  1

10

( ,0)YY X


 1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

-0.96 -0.05075 -0.04527 10.80 -0.03698 27.13 -0.02975 41.37 

-0.82 -0.02408 -0.02095 12.98 -0.01620 32.72 -0.01199 50.20 

-0.70 -0.01866 -0.01604 14.08 -0.01204 35.51 -0.00845 54.73 

-0.61 -0.01642 -0.01399 14.76 -0.01031 37.23 -0.00697 57.57 

-0.50 -0.01471 -0.01245 15.37 -0.00901 38.76 -0.00588 60.05 

-0.22 -0.01168 -0.00975 16.53 -0.00683 41.53 -0.00417 64.33 

-0.03 -0.01042 -0.00864 17.04 -0.00596 42.75 -0.00351 66.32 

0.22 -0.00893 -0.00736 17.56 -0.00500 44.00 -0.00283 68.32 

0.50 -0.00698 -0.00573 17.96 -0.00385 44.81 -0.00215 69.27 

0.61 -0.00624 -0.00511 18.10 -0.00342 45.12 -0.00189 69.76 

0.70 -0.00549 -0.00449 18.26 -0.00299 45.51 -0.00162 70.42 

0.82 -0.00423 -0.00345 18.54 -0.00228 46.07 -0.00123 70.94 

0.96 -0.00180 -0.00145 19.04 -0.00097 46.25 -0.00057 68.03 
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Table 5.42: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,6/11  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2X b

b

  1

10

( ,0)XX X


 1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

-1.51 0.00152 0.00001 99.51 -0.00410 370.39 -0.01444 1052.52 

-1.22 0.00510 0.00320 37.17 -0.00167 132.78 -0.01296 354.22 

-0.99 -0.10492 -0.11283 7.55 -0.13004 23.95 -0.15371 46.51 

-0.82 -0.03486 -0.03727 6.93 -0.04298 23.30 -0.05390 54.63 

-0.50 -0.02529 -0.02680 5.94 -0.03066 21.21 -0.03937 55.68 

-0.22 -0.02252 -0.02366 5.05 -0.02682 19.12 -0.03478 54.47 

-0.03 -0.02142 -0.02239 4.51 -0.02524 17.81 -0.03285 53.33 

0.22 -0.02025 -0.02101 3.77 -0.02348 15.99 -0.03070 51.65 

0.50 -0.01857 -0.01915 3.12 -0.02133 14.89 -0.02843 53.10 

0.82 -0.01611 -0.01652 2.53 -0.01846 14.56 -0.02556 58.60 

0.99 -0.01268 -0.01312 3.50 -0.01527 20.46 -0.02312 82.32 

1.22 -0.00911 -0.00977 7.29 -0.01229 34.92 -0.02056 125.80 

1.51 -0.00791 -0.00857 8.34 -0.01104 39.51 -0.01923 143.04 

 

Table 5.43: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,61  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2X b

b

  1

10

( ,0)YY X


 1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

-0.96 -0.06036 -0.05592 7.35 -0.05058 16.20 -0.04804 20.42 

-0.82 -0.03199 -0.02941 8.06 -0.02611 18.38 -0.02416 24.47 

-0.70 -0.02646 -0.02426 8.30 -0.02139 19.15 -0.01958 25.98 

-0.61 -0.02426 -0.02222 8.41 -0.01952 19.55 -0.01777 26.78 

-0.50 -0.02253 -0.02060 8.57 -0.01801 20.05 -0.01628 27.75 

-0.22 -0.01884 -0.01712 9.15 -0.01473 21.84 -0.01300 31.01 

-0.03 -0.01713 -0.01551 9.46 -0.01324 22.74 -0.01155 32.60 

0.22 -0.01485 -0.01338 9.92 -0.01128 24.06 -0.00967 34.86 

0.50 -0.01134 -0.01011 10.86 -0.00832 26.65 -0.00691 39.10 

0.61 -0.01004 -0.00892 11.16 -0.00729 27.42 -0.00599 40.28 

0.70 -0.00878 -0.00778 11.40 -0.00632 28.04 -0.00516 41.20 

0.82 -0.00661 -0.00581 12.11 -0.00464 29.91 -0.00369 44.13 

0.96 -0.00237 -0.00198 16.44 -0.00139 41.40 -0.00090 62.31 
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Table 5.44: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,61  ,01.0/ 1 Rb ,20/ 11 hR ,3.0 .0.1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2X b

b

  1

10

( ,0)XX X


 1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

-1.51 0.00999 0.01033 3.41 0.01126 12.65 0.01268 26.87 

-1.22 0.01617 0.01669 3.22 0.01821 12.66 0.02071 28.10 

-0.99 -0.10202 -0.11091 8.71 -0.13348 30.83 -0.16787 64.54 

-0.82 -0.02846 -0.02982 4.77 -0.03337 17.24 -0.03865 35.82 

-0.50 -0.02028 -0.02076 2.34 -0.02213 9.09 -0.02419 19.24 

-0.22 -0.01821 -0.01832 0.63 -0.01883 3.43 -0.01966 7.96 

-0.03 -0.01746 -0.01743 0.19 -0.01760 0.79 -0.01796 2.89 

0.22 -0.01673 -0.01652 1.20 -0.01633 2.37 -0.01623 2.96 

0.50 -0.01489 -0.01443 3.07 -0.01368 8.14 -0.01288 13.52 

0.82 -0.01209 -0.01140 5.66 -0.01020 15.57 -0.00895 25.92 

0.99 -0.00687 -0.00594 13.63 -0.00422 38.54 -0.00242 64.78 

1.22 -0.00288 -0.00229 20.36 -0.00127 55.73 -0.00029 89.81 

1.51 -0.00196 -0.00150 23.46 -0.00072 63.45 0.00002 100.81 
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5.4 Numerical Results for the Rigid Cylindrical Punch 

The general schematic of the rigid cylindrical punch contact problem is illustrated in 

Figure 5.58. An FGM coating of thickness 
1h  is perfectly bonded to a homogenous 

substrate. The rigid cylindrical punch slides over the FGM coating at a speed of .V

It is assumed that contact area  b a  is much smaller than the radius of the 

cylindrical punch
1R .  

 

Figure 5.58: The schematic of the cylindrical punch on the surface of the FGM 

coating bonded to a homogenous substrate 

Figures 5.59 – 5.62 show the elastostatic contact stress results obtained by present 

analytical study with those obtained by Guler [45] for different values of stiffness 

ratio 1  . Comparisons are made for both frictionless and frictional contacts. It can 

be seen in Figures 5.59 – 5.62 that a very good agreement is achieved.  

The influence of dimensionless punch speed 1c   on contact stresses generated on the 

half-plane is depicted in Figure 5.63 and 5.64. Figure 5.63 illustrates normal and 

lateral elastodynamic contact stress distributions in frictionless case. As punch speed 
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is increased, less compressive elastodynamic normal contact stresses are observed in 

the contact zone. However, the compressive behavior of the lateral elastodynamic 

contact stress is strengthen in the contact zone. The surface outside of the contact 

zone is stress free as seen in Figure 5.63(b). In frictional case, normal elastodynamic 

contact stress becomes less compressive as observed in Figure 5.64(a). The results 

presented in Figure 5.64(b) indicate that a tensile spike in lateral stress forms at the 

trailing end of the contact. It can also be noted that the variation of the normal contact 

stress with respect to punch speed is greater than that of the lateral contact stress.  

Figures 5.65 – 5.70 show the effect of dimensionless punch speed on elastodynamic 

contact stresses for softening ( 1 1/ 6  ) and stiffening coatings ( 1 6  ). Results are 

provided for three different relative contact lengths such as 1( ) 0.01,b a R 

1( ) 0.02b a R  and 1( ) 0.04.b a R   When Figures 5.65(a) – 5.70(a) are 

examined, the magnitude of normal contact stress is different because of utilizing 

different geometric and elastic parameters, however, the general trend in the 

variation of the normal contact stress with respect to punch speed is very similar. As 

punch speed 1c   is increased, less compressive normal contact stresses are formed in 

the contact zone. Lateral elastodynamic contact stress distributions are presented in 

Figures 5.65(b) – 5.70(b). In all cases, at the same value of   1b a R , the magnitude 

of tensile lateral contact stress at the trailing end is greater for stiffening coating when 

compared to softening coating. Moreover, tensile lateral contact stresses are formed 

outside the contact zone in the case of softening coating especially at higher punch 

speeds.  

Figures 5.71 – 5.72 illustrate the influence of coefficient of friction    on 

elastodynamic contact stresses generated by a moving cylindrical punch. The 

magnitude of normal elastodynamic contact stress for the stiffening coating is greater 

than that for the softening coating. As punch speed 1c   is increased, normal 
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elastodynamic stress slants towards the trailing end of the contact. The impact of the 

coefficient of friction on tensile lateral stress is highly significant. A rise in the 

coefficient of friction causes an increase in the tensile stresses behind the trailing 

end. In the case of a stiffening coating, tensile lateral contact stresses are greater at 

those locations.  

Figures 5.73 – 5.74 illustrate the effect of stiffness ratio 
1 on elastodynamic normal 

and lateral contact stresses. As stiffness ratio 1 is increased from 1/6 to 6, the 

magnitude of normal and lateral contact stresses increase in the contact zone. It 

should also be noted that the tensile behivor of the lateral stress at the trailing end is 

enhanced as 1 is increased from 1/6 to 6. 

Represantative results on the influence of the ratio 1 1R h  on normal and lateral 

elastodynamic contact stresses on the surface of softening and stiffening coatings are 

provided in Figures 5.75 – 5.76. As the ratio 1 1R h is increased from 50 to 200, less 

compressive normal stresses are formed in the contact zone for the softening coating 

( 1 1/ 6  ). However, normal contact stresses become more compressive in the 

contact zone for the stiffening coating ( 1 6  ). The variation of the lateral contact 

stresses in the contact zone is quite different for softening and stiffening coatings. 

Lateral contact stress becomes less compressive for the softening coating whereas it 

tends to be more compressive for the stiffening coating. 

The effect of the relative contact length   1b a R  on normal and lateral 

elastodynamic contact stresses is illustared in Figures 5.77 and 5.78. The variation 

of normal and lateral contact stresses with respect to the ratio   1b a R are very 

similar for softening ( 1 1/ 6  ) and stiffening coatings ( 1 6  ). As the ratio 

  1b a R is increased from 0.01 to 0.04, the magnitude of normal and lateral contact 
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stress increase in the contact zone. Tensile lateral elastodynamic contact stress tends 

to increase especially at higher values of   1b a R . 

Table 5.45 tabulates the normalized load applied by the cylindrical punch for various 

values of stiffness ratio 
1   and relative contact length   1b a R in elastostatic case. 

The values of the normalized load is greater for stiffening coatings when compared 

to softening coatings.  Increase in the relative contact length   1b a R leads to 

greater values of normalized punch loads.  

Tables 5.46 – 5.48 show the normalized punch load for various values of stiffness 

ratio 1  and dimensionless punch speed 1c . In all cases, the values of normalized load 

gradually decreases as punch speed is increased.  

Tables 5.49 and 5.50 indicate the normalized punch load for various values of 

coefficient of friction   and dimensionless punch speed 1c . In all cases, again the 

normalized punch load is a decreasing function of punch speed 1c .  

Dynamic effect on normal and lateral contact stress distributions is provided 

quantitatively in Tables 5.51 – 5.54. Contact stresses are computed considering both 

elastostatic and elastodynamic theories. Contacts for which 1 0c   corresponds to 

elastostatic contact whereas contacts for which 1 0c   corresponds to elastodynamic. 

Elastodynamic contact stresses are computed for four different values of 

dimensionless punch speed. In each case, the percent difference %  is computed 

based on elastostatic contact stresses. Tables 5.51 and 5.52 illustrate dynamic effect 

for a softening coating ( 1 1/ 6  ). As punch speed is increased, percent differences 

for the normal contact stress gradually increase, and they reach up to 82.6%. Percent 

differences for the lateral contact stress are also considerable. The largest change 



256 

 

occurs around the trailing end of the contact. Percent differences reach up to 172% 

at those locations.  

Tables 5.53 – 5.54 show percent difference between elastodynamic and elastostatic 

contact stress results for a stiffening coating ( 1 6  ). When Table 5.53 is examined, 

percent differences gradually increase as punch speed is increased. The largest 

difference in the normal contact stress is observed around the leading end of the 

contact. This difference reaches up to 52% at that location. When percent difference 

for the lateral contact stress is examined, larger values of difference are seen 

especially at higher punch speeds. The values of percent difference reach up to 335% 

around the trailing end of the contact zone.  
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Figure 5.59: Normal and lateral contact stress distribution on FGM coating indented 

by a cylindrical punch for different stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, ,/ 1021 

,01.0/)( 1  Rab ,100/ 11 hR ,0.0 .0.01 c   

 

 

Figure 5.60: Normal and lateral contact stress distribution on FGM coating indented 

by a cylindrical punch for different stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, ,/ 1021 

,03.0/)( 1  Rab ,100/ 11 hR ,0.0 .0.01 c   
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Figure 5.61: Normal and lateral contact stress distribution on FGM coating indented 

by a cylindrical punch for different stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, ,/ 1021 

,02.0/)( 1  Rab ,50/ 11 hR ,3.0 .0.01 c   

 

 

Figure 5.62: Normal and lateral contact stress distribution on FGM coating indented 

by a cylindrical punch for differnet stiffness ratio of the coating (a) Normal contact 

stress distribution; (b) Lateral contact stress distribution, ,/ 1021 

,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.01 c   
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Figure 5.63: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,01.0/)( 1  Rab

,100/ 11 hR ,11  ,0.0 .1/ 21   

 

 

Figure 5.64: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,01.0/)( 1  Rab

,100/ 11 hR ,11  ,3.0 .1/ 21   
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Figure 5.65: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,01.0/)( 1  Rab

,100/ 11 hR ,6/11  ,3.0 .1/ 21   

 

 

Figure 5.66: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,01.0/)( 1  Rab

,100/ 11 hR ,61  ,3.0 .1/ 21   
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Figure 5.67: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,02.0/)( 1  Rab

,100/ 11 hR ,6/11  ,3.0 .1/ 21   

 

 

Figure 5.68: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,02.0/)( 1  Rab

,100/ 11 hR ,61  ,3.0 .1/ 21   
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Figure 5.69: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,04.0/)( 1  Rab

,100/ 11 hR ,6/11  ,3.0 .1/ 21   

 

 

Figure 5.70: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of punch speed (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,04.0/)( 1  Rab

,100/ 11 hR ,61  ,3.0 .1/ 21   
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Figure 5.71: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution, 

,01.0/)( 1  Rab ,100/ 11 hR ,6/11  ,4.01 c .1/ 21   

 

 

Figure 5.72: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of coefficient of friction 

(a) Normal contact stress distribution; (b) Lateral contact stress distribution,

,01.0/)( 1  Rab ,100/ 11 hR ,61  ,4.01 c .1/ 21   
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Figure 5.73: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of stiffness ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,02.0/)( 1  Rab ,100/ 11 hR ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.74: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of stiffness ratio (a) 

Normal contact stress distribution; (b) Lateral contact stress distribution, 

,04.0/)( 1  Rab ,100/ 11 hR ,4.01 c ,3.0 .1/ 21   
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Figure 5.75: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,02.0/)( 1  Rab ,6/11  ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.76: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of relative coating 

thickness (a) Normal contact stress distribution; (b) Lateral contact stress 

distribution, ,02.0/)( 1  Rab ,61  ,4.01 c ,3.0 .1/ 21   
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Figure 5.77: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of 1/)( Rab   (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,100/ 11 hR

,6/11  ,4.01 c ,3.0 .1/ 21   

 

 

Figure 5.78: Normal and lateral elastodynamic contact stresses on FGM coating 

indented by a moving cylindircal punch for various values of 1/)( Rab   (a) Normal 

contact stress distribution; (b) Lateral contact stress distribution, ,100/ 11 hR

,61  ,4.01 c ,3.0 .1/ 21   
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Table 5.45: The normalized load for FGM coating indented by a moving cylindrical 

punch ,01 c ,0.0 ,100/ 11 hR .0.1/ 21   

 1( ) / 0.01b a R   
1( ) / 0.02b a R   

1( ) / 0.03b a R   
1( ) / 0.04b a R   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 2.433e-5 6.953e-5 1.328e-4 2.146e-4 

1/2 3.978e-5 1.395e-4 2.933e-4 5.008e-4 

1 5.230e-5 2.092e-4 4.707e-4 8.369e-4 

2 6.648e-5 3.017e-4 7.295e-4 1.358e-3 

6 9.174e-5 4.962e-4 1.347e-3 2.729e-3 

 

Table 5.46: The normalized load for FGM coating indented by a moving cylindrical 

punch ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21                   

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 2.423e-5 2.301e-5 1.881e-5 1.093e-5 4.790e-6 

1/2 3.963e-5 3.808e-5 3.388e-5 2.419e-5 1.722e-5 

1 5.227e-5 5.065e-5 4.534e-5 3.594e-5 2.840e-5 

2 6.656e-5 6.483e-5 5.938e-5 4.860e-5 4.034e-5 

6 9.142e-5 8.970e-5 8.461e-5 7.355e-5 6.370e-5 

 

Table 5.47: The normalized load for FGM coating indented by a moving cylindrical 

punch ,02.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 6.962e-5 6.552e-5 5.247e-5 2.927e-5 1.185e-5 

1/2 1.390e-4 1.339e-4 1.152e-4 8.216e-5 5.696e-5 

1 2.091e-4 2.026e-4 1.814e-4 1.438e-4 1.136e-4 

2 3.020e-4 2.942e-4 2.692e-4 2.194e-4 1.787e-4 

6 4.945e-4 4.860e-4 4.588e-4 4.026e-4 3.449e-4 
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Table 5.48: The normalized load for FGM coating indented by a moving cylindrical 

punch ,04.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.7c   

1  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

1/6 2.141e-4 2.019e-4 1.641e-4 9.563e-5 4.426e-5 

1/2 5.016e-4 4.787e-4 4.142e-4 2.971e-4 2.099e-4 

1 8.363e-4 8.104e-4 7.255e-4 5.750e-4 4.544e-4 

2 1.358e-3 1.320e-3 1.198e-3 9.600e-4 7.710e-4 

6 2.716e-3 2.664e-3 2.500e-3 2.140e-3 1.743e-3 

 

Table 5.49: The normalized load for FGM coating indented by a moving cylindrical 

punch ,04.0/)( 1  Rab ,100/ 11 hR ,6/11  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

0.0 2.146e-4 2.026e-4 1.647e-4 9.610e-5 4.442e-5 

0.3 2.141e-4 2.019e-4 1.641e-4 9.563e-5 4.426e-5 

0.5 2.130e-4 2.001e-4 1.628e-4 9.469e-5 4.364e-5 

0.7 2.114e-4 1.988e-4 1.614e-4 9.324e-5 4.277e-5 

 

Table 5.50: The normalized load for FGM coating indented by a moving cylindrical 

punch ,04.0/)( 1  Rab ,100/ 11 hR ,61  .0.1/ 21   

 1 0.0c   1 0.2c   1 0.4c   1 0.6c   1 0.7c   

  
10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

10 1

P

R
 

0.0 2.723e-3 2.678e-3 2.531e-3 2.241e-3 2.004e-3 

0.3 2.716e-3 2.664e-3 2.500e-3 2.140e-3 1.743e-3 

0.5 2.694e-3 2.641e-3 2.466e-3 1.981e-3 1.460e-3 

0.7 2.670e-3 2.622e-3 2.389e-3 1.803e-3 1.220e-3 
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Table 5.51: Percent difference between elastostatic and elastodynamic normal 

contact stresses ,6/11  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 
1 0.0c   

1 0.4c   
1 0.6c   

1 0.7c   

2 ( )

( )

X b a

b a

 


 1

10

( ,0)YY X


 1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

-0.97 -0.00100 -0.00083 16.76 -0.00056 43.72 -0.00031 68.55 

-0.89 -0.00183 -0.00149 18.74 -0.00096 47.85 -0.00050 72.97 

-0.65 -0.00258 -0.00203 21.17 -0.00122 52.75 -0.00056 78.26 

-0.43 -0.00281 -0.00218 22.38 -0.00126 55.17 -0.00054 80.84 

-0.32 -0.00287 -0.00221 22.84 -0.00126 56.05 -0.00052 81.76 

-0.19 -0.00289 -0.00222 23.17 -0.00125 56.68 -0.00051 82.40 

-0.06 -0.00289 -0.00222 23.39 -0.00124 57.07 -0.00050 82.75 

0.19 -0.00281 -0.00215 23.48 -0.00121 57.10 -0.00049 82.61 

0.32 -0.00273 -0.00209 23.36 -0.00118 56.77 -0.00049 82.15 

0.43 -0.00262 -0.00202 23.15 -0.00115 56.26 -0.00049 81.48 

0.65 -0.00230 -0.00178 22.54 -0.00104 54.87 -0.00047 79.71 

0.89 -0.00150 -0.00117 21.65 -0.00071 52.83 -0.00034 77.09 

0.97 -0.00073 -0.00058 21.69 -0.00035 52.78 -0.00017 76.74 

 

Table 5.52: Percent difference between elastostatic and elastodynamic lateral 

contact stresses ,6/11  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   1 0.4c   1 0.6c   1 0.7c   

2 ( )

( )

X b a

b a

 


 1

10

( ,0)XX X


 1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

-2.05 0.00036 0.00046 26.22 0.00063 73.57 0.00074 104.67 

-1.62 0.00018 0.00017 2.62 0.00009 49.78 -0.00037 310.45 

-0.94 -0.00138 -0.00176 27.67 -0.00252 83.11 -0.00376 172.73 

-0.74 -0.00356 -0.00386 8.45 -0.00441 23.94 -0.00530 48.73 

-0.55 -0.00482 -0.00505 4.73 -0.00545 13.06 -0.00615 27.41 

-0.19 -0.00624 -0.00633 1.58 -0.00651 4.32 -0.00697 11.72 

-0.06 -0.00656 -0.00661 0.79 -0.00671 2.23 -0.00710 8.28 

0.19 -0.00697 -0.00693 0.61 -0.00688 1.37 -0.00717 2.74 

0.55 -0.00702 -0.00685 2.49 -0.00661 5.96 -0.00678 3.50 

0.74 -0.00669 -0.00645 3.65 -0.00612 8.65 -0.00626 6.45 

0.94 -0.00572 -0.00543 5.18 -0.00505 11.70 -0.00528 7.80 

1.62 -0.00217 -0.00190 12.43 -0.00155 28.82 -0.00169 22.35 

2.05 -0.00160 -0.00127 20.72 -0.00073 54.24 -0.00041 74.27 
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Table 5.53: Percent difference between elastostatic and elastodynamic normal 

contact stresses 
1

6,  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

2 ( )

( )

X b a

b a

 


 1

10

( ,0)YY X


 1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

1

10

( ,0)YY X


 %  

-0.97 -0.00246 -0.00232 5.86 -0.00213 13.29 -0.00203 17.43 

-0.89 -0.00516 -0.00484 6.25 -0.00440 14.80 -0.00410 20.47 

-0.65 -0.00895 -0.00839 6.24 -0.00757 15.47 -0.00693 22.53 

-0.43 -0.01089 -0.01020 6.35 -0.00913 16.20 -0.00823 24.42 

-0.32 -0.01157 -0.01082 6.48 -0.00963 16.74 -0.00860 25.63 

-0.19 -0.01201 -0.01121 6.66 -0.00992 17.41 -0.00876 27.02 

-0.06 -0.01219 -0.01135 6.89 -0.00997 18.21 -0.00871 28.57 

0.19 -0.01177 -0.01089 7.52 -0.00940 20.17 -0.00799 32.08 

0.32 -0.01118 -0.01030 7.91 -0.00880 21.32 -0.00738 34.00 

0.43 -0.01038 -0.00951 8.35 -0.00804 22.56 -0.00664 36.00 

0.65 -0.00825 -0.00748 9.39 -0.00616 25.34 -0.00493 40.23 

0.89 -0.00443 -0.00393 11.33 -0.00309 30.22 -0.00234 47.11 

0.97 -0.00193 -0.00167 13.05 -0.00127 34.31 -0.00091 52.55 

 

Table 5.54: Percent difference between elastostatic and elastodynamic lateral 

contact stresses 
1

6,  ,01.0/)( 1  Rab ,100/ 11 hR ,3.0 .0.1/ 21   

 1 0.0c   
1 0.4c   

1 0.6c   
1 0.7c   

2 ( )

( )

X b a

b a

 


 1

10

( ,0)XX X


 1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

1

10

( ,0)XX X


 %  

-2.05 0.00101 0.00100 1.07 0.00099 2.85 0.00097 4.48 

-1.62 0.00173 0.00172 0.54 0.00169 2.42 0.00164 5.24 

-0.94 0.00355 0.00352 0.73 0.00337 5.08 0.00309 13.01 

-0.74 -0.00032 -0.00045 39.06 -0.00082 155.82 -0.00140 335.43 

-0.55 -0.00281 -0.00295 4.96 -0.00334 18.92 -0.00392 39.54 

-0.19 -0.00603 -0.00612 1.50 -0.00635 5.46 -0.00666 10.60 

-0.06 -0.00687 -0.00692 0.81 -0.00706 2.89 -0.00722 5.22 

0.19 -0.00807 -0.00803 0.45 -0.00794 1.64 -0.00775 3.89 

0.55 -0.00851 -0.00830 2.42 -0.00782 8.08 -0.00717 15.76 

0.74 -0.00789 -0.00758 3.99 -0.00689 12.72 -0.00604 23.44 

0.94 -0.00581 -0.00537 7.56 -0.00451 22.35 -0.00361 37.86 

1.62 -0.00082 -0.00072 11.58 -0.00059 28.35 -0.00049 40.43 

2.05 -0.00066 -0.00060 9.02 -0.00050 23.59 -0.00041 36.79 
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CHAPTER 6  

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

6.1 Concluding Remarks 

Graded materials, also known as functionally graded materials (FGMs) are a kind of 

advanced composites involving two or more constituent phases with gradual and 

functionally variable composition of microstructure and material properties. They 

are used as protective coatings and interfacial zones in engineering applications. 

FGM coatings have significant advantages over conventional homogenous elastic 

coatings. They reduce stresses resulting from the material property mismatch, 

increase the bonding strength and improve material durability for the surface wear 

and abrasion. This study presents a general theory of dynamic frictional contact 

mechanics of homogenous elastic coatings and FGM coatings pressed by a rigid 

punch which moves at constant subsonic speed. Chapter 1 is the introduction part 

which consists of subsections regarding general knowledge about FGMs, tribological 

applications, literature survey and the scope of the research. 

In Chapter 2, the problem definition is proposed and formulations regarding dynamic 

frictional contact mechanics of functionally graded materials (FGMs) are made. 

Stress displacement relations are expressed in plane strain state. Stresses obtained by 

means of theory of elasticity is substituted into the equations of elastodynamics. The 

relation between stationary and moving coordinates are determined by the use of 

Galilean transformation and time dependent problem becomes tractable. Governing 
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partial differential equations (PDEs) for the elastodynamic contact problem are 

solved analytically by utilizing Fourier transformation technique. Displacement 

expressions for the functionally graded coating and the homogenous substrate have 

six unknown functions in total. Then, these six unknown functions appearing in 

displacement fields are determined through imposing interface continuity and 

boundary conditions. The surface displacement gradients are derived in order to get 

the singular integral equation of the contact problem. In the derivation part, we have 

derived two singular integral equations, one of which is solved for the unknown 

normal contact stress. The other singular integral equation is utilized in the dervation 

of lateral contact stress distribution. Asymptotic analysis is performed in order to 

extract the Cauchy singularity of the integral equations. Asymptotic analysis is 

performed because of two reasons. First reason is to see the singular behavior of the 

integral equation and that of its solution comes from the leading term in the large 

expansion of the kernels of the integral equations. The second reason is to allow the 

computational efficiency when singular integral equation is solved numerically. 

Terms of asymptotic expansion are calculated by using a symbolic processor and 

singular integral equations of the second kind are obtained.  

In Chapter 3, the numerical solution techniques of the singular integral equations are 

described. Firstly, different normalization procedures are conducted for four 

different punch profiles, and boundaries of the integration are changed to  1,1  in 

order to solve the integral equations numerically. Computing the Fredholm kernels 

in integral equations is important. Calculation procedure on how to evaluate 0 to 

integrals are described in Appendix-B. Numerical evaluation of the Fredholm kernels 

are important to get accurate results. Details on the numerical computation of 

Fredholm kernels are given in Appendix-D. As described in Appendix-B, right hand 

sides of the singular integral equations are treated separately which compromise from 

evaluation of bounded integrals and evaluation of unbounded integrals. For each 
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punch profile, formulations for normal contact stress, lateral contact stress and 

normalized punch stress intensity factors are provided. For incomplete contact 

problems such as, triangular, semi-circular and cylindrical punch profiles, the 

formulation for the normalized required load applied by the punch is also provided. 

Formulation and solution procedures of dynamic frictional contact problem are 

completed.  Computer programs are developed for the implementation of the 

numerical procedures. In Chapter 4, numerical results obtained for homogenous 

elastic coatings are presented. The effects of mass density ratio 1 2  , dimensionless 

punch speed 1c , coefficient of friction  , shear modulus ratio 1 2   and length 

parameters are examined. Results obtained for homogenous elastic coatings are 

compared to those found by finite element analysis using ANSYS Mechanical APDL 

[74] in elastostatic case. It can be seen that results of the present analytical study are 

in excellent agreement with those of finite element analysis. Results obtained for 

elastodynamic contact problem of homogenous half-planes are compared those 

presented by Eringen and Suhubi [75]. Again, an excellent agreement is achieved. 

Thus, verification of the present analytical method is provided. Results obtained for 

the flat, triangular, semi-circular and cylindrical profiles are presented in subsections 

of Chapter 4. 

The basic conclusions obtained for elastodynamic contact mechanics of homogenous 

elastic coatings can be summarized as follows: 

(i) Powers of stress singularities depend on material properties , friction 

coefficient  ,  and the dimensionless punch speed 1c .  

(ii) Although change in the mass density ratio 1 2   does not influence 

elastodynamic contact stresses for a less stif coating ( 1 2 1/10   ), it 

significantly affects the contact stress distribution for a stiffer coating

 1 2 10 .   Appendix-E describes the effect of mass density ratio on 
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contact stresses and punch stress intensity factors in detail. (see Figures 

4.7, 4.8, 4.20, 4.21, 4.33, 4.34, 4.46, 4.47). 

(iii) The influence of the dimensionless punch speed 1c  on contact stress 

distributions for the less stiff coating, stiffer coating and the half-plane is 

examined. In frictional case, normal contact stress tends to slant towards 

the leading end and skewed stress curves are formed in the contact zone. 

Lateral contact stress increases in the contact zone, and the magnitude of 

tensile peak generated at the trailing end increases. Thus, increase in the 

punch speed may be critical for cracking type failure at trailing end of the 

contact. (see Figures 4.9, 4.10,4.11, 4.12, 4.22, 4.23, 4.24, 4.25, 4.35, 

4.36, 4.37,4.38, 4.48, 4.49, 4.50, 4.51, 4.52, 4.53). 

(iv) The effect of the coefficient of friction   on elastodynamic contact 

stresses generated on the less stiff ( 1 2 1/10   ) and stiffer 

 1 2 10    coatings are presented. In all cases, larger coefficient of 

friction leads to a larger tensile peak at the trailing end of the contact. 

Thus, in elastodynamic contacts with friction, trailing end of the contact 

is a possible site for surface cracking type failures. This finding is in line 

with experimental results observed in scratch tests. (see Figures 4.13, 

4.14, 4.26, 4.27, 4.39, 4.40, 4.54, 4.55). 

(v) Representative results on the effect of geometric parameters on contact 

stress distributions are examined. Geometric parameters utilized in 

analyses are 1a h  for the flat punch, 1b h  for the triangular punch, 1 1R h

for the semi-circular and cylindrical punches. Results of geometric 

parameters on elastodynamic contact stresses are quite different for the 

less stiff and stiffer coatings. For example, increase in the ratio 1a h for 

the less stiff coating leads to the increase in the normal contact stress and 
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decrease in the lateral stress in the contact zone. However, increase in the 

ratio 1a h for the stiffer coating leads to the formation of skewed normal 

contact stresses, and it leads to formation of more compressive lateral 

contact stresses in the contact zone. The effects of geometric parameters 

on contact problems for flat, triangular, semi-circular and cylindrical 

punches can be seen in Figures 4.15, 4.16, 4.28, 4.29, 4.41, 4.42, 4.56, 

4.57.  

(vi) The influence of the Poisson’s ratio of the coating and the substrate 

material 1 2   on elastodynamic contact stresses is investigated. For the 

flat punch contact problem, although the effect on normal contact stress 

is seen to be minimal, a notable change is observed in the lateral stress 

variation. As the ratio 1 2  is increased from 0.6 to 1.2, less compressive 

lateral stresses are observed in the contact zone for the less stiff coating. 

The magnitude of the lateral contact stress increases throughout the 

contact for the stiffer coating. Effect of the ratio 1 2  on contact stresses 

for the flat, triangular, semi-circular and cylindrical punches can be seen 

in Figures 4.17, 4.18, 4.30, 4.31, 4.43, 4.44, 4.58, 4.59. 

(vii) Normalized stress intensity factors at sharp end of the flat, triangular and 

semi-circular punches are computed and they are presented as a series of 

tables. Tables are provided for different elastodynamic parameters 

however, the main parameter is the dimensionless punch speed 1c . In the 

case of half-plane contact with a flat punch, the normalized mode I SIF 

gradually decreases as punch speed is increased. The mode I SIF at the 

trailing end of the flat punch ( )IK a  gradually decreases for all the shear 

modulus ratios 1 2   however, ( )IK a  first increases and then decreases 

in some cases. Hence, the conclusion regarding dependence of ( )IK a  on 
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1c  can not be made because many parameters such as 1a h , 1 2    are 

also influential. The normalized stress intensity factor at the trailing end 

(sharp corner) of the triangular and semi-circular punch is shown by

(0)IK . In all cases, values of the mode I SIF gradually decrease as punch 

speed is increased. (see Tables 4.2, 4.3. 4.4, 4.5, 4.6, 4.16, 4.17, 4.18, 

4.19, 4.204.30, 4.31, 4.32, 4.33, 4.34) 

(viii) For incomplete contact problems (triangular, semi-circular and 

cylindrical) there is a relationship between required load applied by the 

punch and the contact length. Applied punch load is normalized and 

presented in tables. In elastostatic case, as the relative contact length is 

increased, the normalized punch load increases for all the shear modulus 

ratio of the coating. Numerical values obtained for stiffer coatings are 

greater than those obtained for less stiff coatings. Normalized punch load 

in less stiff coatings is a decreasing function of dimensionless punch 

speed. However, general conclusion regarding dependency of the 

normalized load for the stiffer coatings can not be made. Normalized 

punch load increases first and then decrease however in some cases 

normalized punch load gradually decreases since relative contact length 

is also influential. 

(ix) The influence of punch dynamics on contact mechanics of homogenous 

elastic coatings is investigated. Tabulated results based on percent 

differences between contact stresses computed considering elastostatic 

and elastodynamic conditions are provided. Therefore, assessment of the 

effect of punch dynamics on the contact stresses is made by 

quantitatively. Contact stresses are calculated for four different 

dimensionless punch speed 1c . The case 1 0c   corresponds to elastostatic 

contact whereas contacts for which 1 0c   are elastodynamic. Percent 
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difference %  in each case is computed with respect to the elastostatic 

contact stress results. Results are presented for four different punch 

profiles. See Tables 4.7, 4.8, 4.9, 4.10, 4.21, 4.22, 4.23, 4.24, 4.35, 4.36, 

4.37, 4.38, 4.44, 4.45, 4.46, 4.47 for further investigation. It can be 

observed in these tables that influence of the punch dynamics on contact 

stress distributions for all type of coatings is significant. Percent 

difference reaches great values especially at higher punch speeds. 

 

In Chapter 5, elastodynamic frictional contact problem of functionally graded 

coatings is investigated. The graded coating has a thickness of 1h  and it is assumed 

to have an exponential variation in shear modulus. Poisson’s ratio is assumed to be 

constant in the coating. Numerical results are provided for different parameters such 

as dimensionless puch speed 1c , coefficient of friction , stiffness ratio 1  and related 

geometric parameters. Geometric parameters can be simply expressed by 1a h for the 

flat punch, 1b h for the triangular punch, 1b R  and 1 1R h  for semi-circular punch, 

  1b a R and 1 1R h for the cylindrical punch. The main trends concerning these 

elastodynamic and geometric parameters can be summarized as follows: 

(i) Powers of stress singularities depend on material properties  , friction 

coefficient    and the dimensionless punch speed 1c .  

(ii) The influence of dimensionless punch speed 1c   on elastodynamic contact 

stresses for softening coatings, stiffening coatings and half-planes are 

investigated. It is interesting that in half-plane contacts without friction, 

the normal contact stress does not change although dimensionless punch 

speed is increased. The magnitude of the lateral contact stress tends to 

increase in the contact zone. In a frictional case, normal contact stress 

slants towards the leading end of the contact zone. The tensile behavior 
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of the lateral contact stress at the trailing end is enhanced, and lateral 

stress tends to be compressive ahead of the contact. For a softening 

coating ( 1 1/ 6  ), normal contact stress tends to be less compressive at 

higher speeds, however normal contact stress become slanted stress curve 

formations for a stiffening coating ( 1 6  ). Thus, punch speed has 

different influences on contact stresses generated for the softening and 

stiffening coatings. The effect of dimensionless punch speed on contact 

stresses obtained by flat, triangular, semi-circular and cylindrical punches 

can be seen in Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.25, 5.26, 

5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48, 

5.49, 5.63, 5.64, 5.65, 5.66, 5.67, 5.68, 5.69, 5.70. 

(iii) The influence of coefficient of friction   on normal and lateral 

elastodynamic contact stresses generated by a moving punch for the 

softening and stiffening coatings are investigated. The impact of the 

coefficient of friction especially on the tensile lateral stress is highly 

important. A rise in the coefficient of friction causes an increase in the 

tensile stresses behind the trailing end of the contact. The trailing end of 

the contact is a likely location of crack initiation due to the formations of 

high tensile lateral stresses and stress concentrations. Lateral 

elastodynamic contact stresses ahead of the leading end is compressive 

for both softening and stiffening coatings. The effect of coefficient of 

friction on contact stresses generated by flat, triangular, semi-circular and 

cylindrical punches can be seen in Figures 5.14, 5.15, 5.33, 5.34, 5.50, 

5.51, 5.71, 5.72. 

(iv) The stiffness ratio 1  of the graded coating has a significant effect on 

elastodynamic contact stresses. As stiffness ratio 1 is increased from 1/6 

to 6, normal contact stress increases in the contact zone. However, less 
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compressive lateral contact stresses are generated in the contact zone. 

Lateral stress ahead of the contact zone tends to be less compressive. 

Increase in the stiffness ratio 1 leads to the enhancement of tensile lateral 

stress at the trailing end. Elastodynamic contact stresses obtained on 

graded coating by different punch profiles such as flat, triangular, semi-

circular and cylindrical are illustrated in Figures 5.16, 5.17, 5.35, 5.36, 

5.52, 5.53, 5.73, 5.74. 

(v) The effects of geometric parameters on elastodynamic contact stresses are 

examined. Relative contact length for the flat punch contact problem is 

defined by the ratio 1a h  where 1h  shows the coating thickness. The ratio 

1a h has different influences on contact stresses generated for softening 

and stiffening coatings. In the case of a softening coating ( 1 1/ 6  ), as 

the ratio 1a h is increased, less compressive normal contact stresses are 

generated. However, lateral stress throughout the contact tends to be 

compressive. The reverse trend is seen for a stiffening coating ( 1 6  ). 

As the ratio 1a h is increased, normal contact stress tends to increase, and 

lateral contact stress throughout the contact decreases. For a triangular 

punch contact problem, the similar variation trend is observed for the 

contact stresses with respect to different 1b h  ratio. Geometric parameters 

for the semi-cylindrical punch contact problem are 1 1R h and 1b R . In the 

case of a softening coating ( 1 1/ 6  ), as the ratio 1 1R h is increased, less 

compressive normal stresses are formed in the contact zone. The reverse 

trend is observed for a stiffening coating ( 1 6  ). The variations of the 

lateral contact stresses generated for softening and stiffening coatings 

with respect to 1 1R h  are rather different. Increase in the relative contact 
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length 1b R leads to the increase in the normal contact stress. Lateral 

contact stress obtained for softening and stiffening coatings increases as 

the ratio 1b R is increased. The amount of change with respect to the 

increase in the ratio 1b R is greater for stiffening coating ( 1 6  ) when 

compared to the softening coating ( 1 1 6  ). The influences of 

geometric parameters 1 1R h  and   1b a R  on elastodynamic contact 

stresses generated for softening and stiffening coatings pressed by a 

moving cylindrical punch are also examined. The variation of the normal 

and lateral contact stresses is similar to those described for the semi-

circular punch contact problem. Details on how geometric factors affect 

elastodynamic contact stresses can be seen in Figures 5.18, 5.19, 5.37, 

5.38, 5.54, 5.55, 5.56, 5.57, 5.75, 5.76, 5.77. 5.78. 

(vi) Normalized stress intensity factors at sharp ends of the punch are 

calculated and results are presented as a series of tables. Normalized 

stress intensity factors obtained by the present analytical method are 

compared to those available in the literature and a very good agreement 

is achieved. In elastostatic case, as the relative contact length 1a h is 

increased, the mode I SIF for softening coatings gradually increases 

however, the mode I SIF for stiffening coating gradually decreases. In 

elastodynamic case, as punch speed 1c is increased, the mode I SIF at 

trailing and leading ends shown by ( )IK a  and ( )IK a are equal and they 

gradually decrease in the case of a half-plane contact. In elastodynamic 

case, the mode I SIF at trailing end ( )IK a is generally greater than the 

mode I SIF at the leading end ( )IK a  for softening coatings. However, the 

reverse trend is observed in stiffening coatings. As punch speed 1c  is 
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increased, ( )IK a  and ( )IK a  for softening coatings increase however, 

( )IK a  and ( )IK a  for stiffening coatings decrease. Normalized stress 

intensity factors calculated for flat, triangular and semi-circular punch 

contact problems are provided in Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 

5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.34, 5.35, 5.36, 5.37, 5.38, 5.39, 5.40. 

(vii) Triangular, semi-circular and cylindrical punch contact problems are a 

kind of incomplete contact problems since there is a relationship between 

the contact length and required punch load. The required punch load is 

normalized using contact related parameters and results are presented in 

tables. For a triangular punch contact problem, the normalized punch load 

is an increasing function of relative contact length 1b h . Normalized 

punch loads calculated for stiffening coatings are greater than those 

calculated for softening coatings. In all cases, the normalized punch load 

is a decreasing function of dimensionless punch speed 1c . Normalized 

punch loads calculated for triangular, semi-circular and cylindrical punch 

contact problems are provided in Tables 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 

5.28, 5.29, 5.30, 5.31, 5.32, 5.33, 5.45, 5.46, 5.47, 5.48, 5.49, 5.50. 

(viii) The influence of punch dynamics on contact mechanics of functionally 

graded coatings is investigated. Tabulated results based on percent 

differences between contact stresses computed considering elastostatic 

and elastodynamic conditions are provided. Contact stress results at 

punch speed 1 0c   are elastostatic and contact stress results for which 

1 0c   are elastodynamic. Percent difference %  in each case is 

computed based on elastostatic stress results. For all punch profiles (flat, 

triangular, semi-circular and cylindrical), percent difference between 

elastodynamic and elastostatic contact stresses are presented. See Tables 
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5.8, 5.9, 5.10, 5.11, 5.24, 5.25, 5.26, 5.27, 5.41, 5.42, 5.43, 5.44, 5.51, 

5.52, 5.53, 5.54. It can be inferred from these tables that punch speed 

significantly affect the contact stresses generated for functionally graded 

coatings. Therefore, punch dynamics must be taken into account in 

frictional sliding contact problems involving sliding punches with 

relatively high speeds. 

6.2 Future work 

In this study, elstodynamic contact mechanics of the homogenous elastic coatings 

and functionally graded coatings are examined and contact stresses and stress 

intensity factors are presented. The following topics may be considered as a further 

research of the present study:  

 In the present study, the stiffness of the punch is much greater than that of the 

contacting material, hence punch is assumed to be rigid. A future study can be 

conducted to examine the contact mechanics of deformable elastic punch and the 

coating in elastodynamic case. Results of that study will be interesting since it 

clearly shows the influences of elastic properties of the punch on elastodynamic 

contact problem.  

 The speed of the rigid punch is less than the shear wave propagation speed of the 

elastic solid  1
1.0 .c   As a further research, the behavior of the contact (stresses, 

and stress intensity factors) may be examined at higher punch speeds, i.e. for 

shear wave propagation speed and for the super shear wave speeds of the punch. 

Rayleigh wave speed is very critical for elastodynamic boundary value problems. 

Moreover, investigation of contact stresses at Rayleigh and super Rayleigh 

speeds will be interesting. 

 Subsurface stresses in FGM coatings under frictional elastodynamic contact 

conditions will be studied as a further research. 
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 Dynamic contact mechanics of layered structures and substrates coated with 

functionally graded materials can be examined considering the damping ratio of 

the coating and the substrate material.  

 Due to the friction, frictional heat may be influential and this effect may be added 

to the dynamic contact mechanics of solids. Generated frictional heat will be 

important for contact problems involving sliding punches especially at higher 

speeds.  

 Porous FGMs have a great importance in sensor electronics and biomedical 

applications. Contact mechanics problems involving porous FGMs may take an 

attention.  

 Surface crack problem subjected to the elastodynamic contact conditions will be 

analyzed and contribution of the dynamic influences on the stress intensity 

factors at the tip of a surface crack will be proposed. 
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APPENDICES 

 

APPENDIX-A FIRST TERMS OF ASYMPTOTIC EXPRESSIONS  

First terms of the asymptotic expansion are given as follows: 
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APPENDIX-B METHOD TO CALCULATE INDEFINITE INTEGRALS 

We need to calculate following integrals that appear in the problem. 
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Recall that sine and cosine integrals can be written as the following form, 
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where 0 is the Euler number and 05772156649.00  . We can express the integrals 

such that:  
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We may call the indefinite integrals such that, 
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Then the required formulation for higher order terms can be obtained by integration 

by parts and they are expressed as the following recursive formulation: 
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APPENDIX-C USEFUL PROPERTIES OF JACOBI POLYNOMIALS 

For the index )1,0,1(0  , the following relations can be written (see Guler [45], 

Tricomi [76], Szegö [77]). 
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where 

 11  x , 1)(    and ( ) 1    0   and ,...)2,1,0()(    

The relation between Jacobi polynomials and hypergeometric function can be 

expressed as follows:  

0

( , ) 0
0

0

( 1) 1
( ) 1, ,1 , .

( 1) (1 ) 2
n

n x
P x F n n

n

 



 
 

 

 



     
     
      

                      (C.2) 

By substituting )(0   into (C.1), we found the following equation: 
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                              (C.3) 

By substituting (C.2) into (C.1), we found the following equation: 
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Integral equation for the contact problem can be written as follows: 

0

0

1 ( , )
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for 11  r , 1)(    and 1)(    , and ,...)2,1,0()(    

The orthogonality condition states that: 
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where  
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Rodrigues formula states that the following formula: 
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The recurrence relation on Jacobi polynomials is given by, 
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where  
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APPENDIX-D THE METHOD OF EVALUATION OF THE FREDHOLM 

KERNELS 

Numerical evaluation of Fredholm Kernels in the singular integral equations is 

highly important and the accuracy of the results depend on the correct evaluation of 

the Fredholm kernels. These Fredholm kernels contain improper integrals with upper 

limit of  . In this part, it is required to calculate these indefinite integrals as accurate 

as possible.  First of all, we need to separate these indefinite integrals into three main 

parts as shown in equations (D.1) – (D.4). 
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(D.4) 

*

11,A  *

12 ,A *

21A  and *

22A  are the integration cut-off points. They are used to calculate the 

integrals numerically from zero to ijA   using Gauss-Quadrature rule and *

ij ijA A l  

for , 1,2.i j   Large values of *

ijA   increases the numerical effort for the computation 

of the second term in the right hand side of equations (D.1) - (D.4). On the other 

hand, choosing lower values of integration cut off points 
*

ijA   leads to a combination 

of right hand side equations with higher order of asymptotic expansions and it brings 

complexity of the asymptotic expansions. Instead, we have chosen large values of 

*

ijA  and we may assume that these terms will go to zero and hence it provides less 

computational effort. Consequently, second terms in the right hand side of the 

equations (D.1) - (D.4) will tend to zero so only first and third terms are considered. 
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D.1. Evaluation of bounded Fredholm kernels  

First integrals in equations (D.1) - (D.4) are bounded and they can be evaluated 

numerically using the Gaussian Quadrature Rule. Hence, we apply the Gauss-

Quadrature integration scheme for zero to *

ijA  part. Selection of integration cut off 

points *

ijA    has no significant importance on total integral evaluation of the kernels 

but we try to select *

ijA so that * *

1 ijA  is small. If higher values of integration cut off 

points are used, more computing effort is observed and correspondingly so much 

computation time is needed. 
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We need to change the variables in order to make the integration limits from  ,a b  

to  1,1 . Hence the following change of variable is applied: 
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kw  are the Gauss weights and k  are the roots of the Legendre functions   .kP   

Actually, the integration interval is divided into 100 parts. For each part, the Gaussian 

Quadrature integration scheme is applied.  

Consequently, we have found ),(11 srI , ),(12 srI , ),(21 srI and ),(22 srI  for 0 to
*

ijA  

 , 1,2i j   interval. 
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D.2. Evaluation of unbounded Fredholm kernels 

The third terms of the equations (D.1) - (D.4) consist of unbounded integrals and 

they can be expressed as the following form: 
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For *

ijA  to    part, the integrands *
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21 and *

22 are asymptotically expanded. 
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 On the contact surface, asymptotic expansions can be written as the following form: 
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Therefore, when these expressions are substituted 
*

ijA  to    part integral equations, 

the following relations are obtained: 
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 1 2 ,k ke e   1 2 ,k kf f  1 2k kg g  and  1 2 ,k kh h 1,2,...,10k   are found and first 

terms of the asymptotic expansion are given in Appendix-A. We can calculate the 

indefinite integrals 211,I 212 ,I 221I and 222I  in closed form using the procedure 

explained in Appendix-B. 
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APPENDIX-E THE EFFECT OF MASS DENSITY RATIO ON DYNAMIC 

CONTACT MECHANICS OF HOMOGENOUS ELASTIC COATINGS 

Governing partial differential equations for the contact problem of homogenous 

elastic coating and the homogenous substrate are derived as: 
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Roots of the characteristic equation for the dynamic contact problem of homogenous 

elastic coatings are obtained as follows: 

2 42
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Dimensionless punch speeds for homogenous elastic coating and homogenous 

substrate can be calculated by, 

1

1

,
s

V
c

c
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,
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V
c

c
                                                                                           (E.9) 

where  

1
1

1

,sc



  2

2
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,sc



                                                                                        (E.10) 

,1 1  denote the shear modulus and mass density of the coating material while ,2

2  denote the shear modulus and mass density of the substrate material. Using 

expressions described above, the relationship between dimensionless punch speeds 

1c and 2c can be expressed as follows: 

1

2

2

1
12








cc                                                                                                     (E.11) 

In this part, the effect of mass density ratio on elastodynamic contact mechanics of 

less stiff and stiffer coatings is examined.  

 Dynamic contact mechanics analysis for the less stiff coating ,10/1/ 21   

1/ 0.5,a h  ,6.01 c 0.3.   

1

2
12 31623.0




cc                      
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Table E. 1. Dimensionless punch speeds and normalized punch stress intensity 

factors for various values of mass density ratio 

1 2/    
1 0.6c   

2c  ( )IK a  ( )IK a  

1/10  0.6 0.2543 0.2763 

1/5  0.424 0.2528 0.2760 

1  0.190 0.2518 0.2759 

3.6  0.167 0.2517 0.2759 

5  0.085 0.2517 0.2759 

10  0.060 0.2517 0.2759 

 

Fig. E.1 Normal elastodynamic contact stresses for various values of the mass 

density ratio ,10/1/ 21   1/ 0.5,a h   0.3,  ,6.01 c .0.1/ 21     
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 Dynamic contact mechanics analysis for the stiffer coating ,10/ 21   

1/ 0.5,a h  ,6.01 c 0.3.   

1

2
12 1623.3




cc                                                                                                 

Table E.2. Dimensionless punch speeds and normalized punch stress intensity 

factors for various values of mass density ratio 

1 2/    
1 0.6c   

2c  ( )IK a  ( )IK a  

1/10  6.000 0.2677 0.3156 

1/5  4.243 0.2845 0.3372 

1  1.897 0.1578 0.2761 

3.6  1.000 0.3404 0.3836 

5  0.849 0.3808 0.4476 

10  0.600 1.3005 1.3036 

 

Fig. E.2 Normal elastodynamic contact stresses for various values of the density 

ratio ,10/ 21   1/ 0.5,a h   0.3,  ,6.01 c .0.1/ 21   

 Investigation of the normalized punch stress intensity factors for different type 

coatings .2/1/ 21     

2

1
12 4142.1




cc                                                                                                
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Table E.3. Numerical relations between 1c  and 2c , .2/1/ 21      
 

1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.8c   

1 2   
2c  2c  2c  2c  2c  

1/10 0.0 0.089 0.179 0.268 0.358 

1/5 0.0 0.127 0.253 0.380 0.506 

1 0.0 0.283 0.566 0.849 1.131 

5 0.0 0.633 1.265 1.897 2.530 

10 0.0 0.895 1.789 2.683 3.578 

 

Table E.4. Normalized stress intensity factors for the rigid flat punch, ,1.0/ 1 ha

,3.0 ,2/1/ 21   .1/ 21   

 

1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.8c   

1 2    IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a  

1/10 0.3103 0.3201 0.3099 0.3201 0.3084 0.3198 0.3042 0.3180 0.2821 0.2967 

1/5 0.3113 0.3196 0.3109 0.3195 0.3094 0.3192 0.3053 0.3175 0.2829 0.2965 

1 0.3167 0.3167 0.3166 0.3166 0.3159 0.3159 0.3134 0.3134 0.2931 0.2931 

5 0.3310 0.3098 0.3389 0.3039 0.2155 0.3837 0.2941 0.3255 0.2811 0.3002 

10 0.3409 0.3050 0.3847 0.2723 0.2772 0.3350 0.3058 0.3217 0.2867 0.3012 

 

 Investigation of the normalized punch stress intensity factors for different 

type coatings .2/ 21     

2

1
12 7071.0




cc       

Table E. 5. Numerical relations between 1c  and 2c , .2/ 21   
 

1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.8c   

1 2   
2c  

2c  
2c  

2c  
2c  

1/10 0.0 0.0447 0.0894 0.134 0.179 

1/5 0.0 0.0633 0.127 0.189 0.253 

1 0.0 0.1414 0.283 0.424 0.566 

5 0.0 0.3162 0.632 0.949 1.265 

10 0.0 0.4472 0.894 1.342 1.789 
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Table E.6. Normalized stress intensity factors for the rigid flat punch, ,1.0/ 1 ha

,3.0 ,2/ 21   .1/ 21   
 

1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.8c   

1 2    IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a  

1/10 0.3103 0.3201 0.3099 0.3201 0.3084 0.3198 0.3042 0.3180 0.2820 0.2967 

1/5 0.3113 0.3196 0.3108 0.3196 0.3093 0.3193 0.3051 0.3176 0.2826 0.2966 

1 0.3167 0.3167 0.3166 0.3166 0.3159 0.3159 0.3134 0.3134 0.2931 0.2931 

5 0.3310 0.3098 0.3329 0.3084 0.3436 0.3007 0.6886 0.2327 0.3161 0.3519 

10 0.3409 0.3050 0.3468 0.3010 0.5797 0.1586 0.2919 0.3384 0.2714 0.2986 

 

 Investigation of the normalized punch stress intensity factors for different type 

coatings .8/1/ 21     

2

1
12 8284.2




cc   

Table E.7. Numerical relations between 1c  and 2c , .8/1/ 21   

 
1 0.0c   

1 0.2c   
1 0.4c   

1 0.6c   
1 0.8c   

1 2   
2c  

2c  
2c  

2c  
2c  

1/10 0.0 0.179 0.358 0.537 0.716 

1/5 0.0 0.253 0.506 0.759 1.012 

1 0.0 0.566 1.131 1.697 2.263 

5 0.0 1.265 2.530 3.795 5.060 

10 0.0 1.789 3.578 5.367 7.155 

 

Table E.8. Normalized stress intensity factors for the rigid flat punch, ,1.0/ 1 ha

,3.0 ,8/1/ 21   .1/ 21   
 

1 0.0c   
1 0.2c   

1 0.4c   
1 0.6c   

1 0.8c   

1 2    IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a   IK a  

1/10 0.3103 0.3201 0.3100 0.3200 0.3085 0.3197 0.3045 0.3178 0.2824 0.2965 

1/5 0.3113 0.3196 0.3110 0.3195 0.3099 0.3189 0.3068 0.3164 0.2900 0.2919 

1 0.3167 0.3167 0.3166 0.3166 0.3159 0.3159 0.3134 0.3134 0.2931 0.2931 

5 0.3310 0.3098 0.4035 0.2865 0.3053 0.3243 0.3036 0.3208 0.2813 0.2987 

10 0.3409 0.3050 0.2668 0.3386 0.3112 0.3219 0.3065 0.3199 0.2820 0.2988 

 

Results show that the mass density ratio of the coating and the substrate material does 

not significantly affect the normal elastodynamic contact stress and the punch stress 



314 

 

intensity factors in the case of a less stiff coating. However, mass density ratio 

significantly affects the normal elastodynamic contact stress and accordingly punch 

stress intensity factors for the stiffer coating. Hence, selection of the mass density 

ratio plays an important role on dynamic contact behavior of stiffer coatings.  

Normalized punch stress intensity factors depend on various parameters including 

dimensionless punch speed, coefficient of friction, Poisson’s ratio, mass density 

ratio, coating thickness and shear modulus ratio. Performed analyses show that when

2c close to 1.0, a sudden change is observed for the values of normalized punch stress 

intensity factors for the stiffer coatings. 
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APPENDIX-F SOLUTION OF DYNAMIC CONTACT PROBLEM 

BETWEEN A RIGID PUNCH AND A HALF PLANE BY COMPLEX 

FUNCTIONS 

The contact problem between a moving punch and the half-plane is analyzed by 

Eringen and Suhubi [75] and they developed analytical method by means of complex 

functions. In this study, a rigid punch moves steadily at a constant subsonic speed on 

the contact surface and there is no friction between the rigid punch and the contact 

surface. When the applied vertical force is increased thoroughly indents the half-

plane, general stress singularities are occurred at the punch corners. The vertical 

displacement component is known priori which depends on the punch profile. Figure 

F.1 illustrates the general description of the moving flat punch on a half plane. 

 

Figure F.1: Schematic of the moving flat punch sliding over the half plane 

For the contact of a rigid flat punch, the indentation depth is denoted as d  and it is 

constant.  

1 ,x Ut     2.x                                                                                               (F.1) 

Normal and lateral elastodynamic contact stresses over the the half plane are given 

by, 
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where 22t  and  11t  and denote the surface normal and lateral contact stresses, 

respectively. 

 
1/2

2

1 11 ,M           
1/2

2

2 21 ,M                                                                   (F.4) 

1

1

,
U

M
c

                    2

2

,
U

M
c

                                                                             (F.5) 

1M  and 2M are Mach numbers of the moving source relative to the dilatational and 

equivoluminal (shear) waves, respectively.  
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