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ABSTRACT

BEAMFORMING FOR ENERGY HARVESTING AND MULTI-USER
COMMUNICATIONS

Demir, Özlem Tuğfe

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

November 2018, 233 pages

In this thesis, several optimization problems are considered related to beamforming

for energy harvesting and multi-user communications. In multi-user communications

scenarios, physical layer multi-group multicasting systems are considered where there

are multiple groups of users who are interested in common information signals. In en-

ergy harvesting related scenarios, different protocols are investigated, namely power

splitting and self-energy recycling, respectively. In power splitting mode, the mobile

device has a power splitting device and some portion of the received radio frequency

power is used for energy harvesting while the remaining part is used for information

decoding. In self-energy recycling protocol, a separate receive antenna on the relay

uses the transmitted signal as an energy source. The contributions of this thesis can be

outlined as follows. First, efficient algorithms are proposed for antenna selection and

hybrid beamforming in multi-group multicasting systems. The users have a power

splitting device and the joint optimization of transmit beamformers and power split-

ting ratios is considered. Multi-group multicasting is also used for OFDM systems

where users harvest energy from some portion of the received signal. The difficult

combinatorial problem for the joint optimization of resource allocation and power

splitting ratios is solved effectively. In addition, several fast algorithms are proposed
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for full digital beamforming and two different hybrid beamforming structures with

per-antenna power constraints. Apart from multi-group multicasting, relay assisted

single user communications is also studied in this thesis. Several scenarios are investi-

gated for energy harvesting relays which use power splitting and self-energy recycling

protocols. Both amplify-and-forward and decode-and-forward relaying protocols are

considered. For most of the problems, optimum solutions are obtained while for the

others, efficient near-optimum solutions are presented.

Keywords: Multi-Group Multicast Beamforming, Antenna Selection, Hybrid Beam-

forming, Resource Allocation, Self-Energy Recyling, Simultaneous Wireless Infor-

mation and Power Transfer, Wireless-Powered Relaying, Power Splitting, Energy

Harvesting, Multi-Antenna Relaying
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ÖZ

ENERJİ HASATLI VE ÇOK KULLANICILI İLETİŞİM İÇİN HÜZME
ŞEKİLLENDİRME

Demir, Özlem Tuğfe

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin Tuncer

Kasım 2018 , 233 sayfa

Bu tezde, enerji hasatlı ve çok kullanıcılı iletişim için hüzme şekillendirmeye ilişkin

birçok optimizasyon problemi ele alınmaktadır. Çok kullanıcılı iletişim senaryola-

rında, ortak bilgi sinyallerine ilgili çoklu kullanıcı gruplarının olduğu fiziksel katman

çok gruplu çoğa gönderim sistemleri ele alınmaktadır. Enerji hasadına ilişkin senar-

yolarda, sırasıyla güç bölme ve öz-enerji geridöngüsü olarak adlandırılan farklı pro-

tokoller incelenmektedir. Güç bölme modunda, mobil cihaz bir güç bölücü cihazına

sahiptir ve alınan radyo frekans gücünün bir kısmı enerji hasadı için kullanılırken,

geri kalanı bilgi çözme için kullanılmaktadır. Öz-enerji geridöngüsü protokolünde,

röledeki ayrı bir alıcı anten iletilen sinyali enerji kaynağı olarak kullanmaktadır. Bu

tezdeki katkılar aşağıda belirtildiği şekilde özetlenebilir. Öncelikle, çok gruplu çoğa

gönderim sistemlerinde anten seçimi ve melez hüzme şekillendirme için verimli algo-

ritmalar önerilmektedir. Kullanıcılar bir güç bölme cihazına sahiptir ve verici hüzme

şekillendiricileri ve güç bölme oranlarının ortak optimizasyonu ele alınmaktadır. Çok

gruplu çoğa gönderim, kullanıcıların alınan sinyalin bir kısmından enerji hasadı yap-

tıkları OFDM sistemleri için de kullanılmaktadır. Kaynak paylaştırması ve güç bölme

oranlarının ortak optimizasyonu için zor kombinasyonal problem etkili bir şekilde

çözülmektedir. Ek olarak, anten başına güç kısıtları ile tam dijital ve iki farklı melez
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hüzme şekillendirme yapıları için birçok hızlı algoritma önerilmektedir. Çok gruplu

çoğa gönderimden ayrı olarak, bu tezde ayrıca röle destekli tek kullanıcılı iletişim

çalışılmaktadır. Güç bölme ve öz-enerji geridöngüsü protokollerini kullanan enerji

hasatlı röleler için birçok senaryo incelenmektedir. Hem yükselt-ve-ilet hem de çöz-

ve-ilet aktarma prokolleri ele alınmaktadır. Problemlerin çoğu için optimum çözümler

elde edilirken diğerleri için verimli optimuma yakın çözümler sunulmaktadır.

Anahtar Kelimeler: Çok Gruplu Çoğa Gönderim Hüzme Şekillendirme, Anten Se-

çimi, Melez Hüzme Şekillendirme, Kaynak Paylaştırması, Öz-Enerji Geridöngüsü,

Eşzamanlı Kablosuz Bilgi ve Güç İletimi, Kablosuz Güçlendirilmiş Aktarma, Güç

Bölme, Enerji Hasadı, Çok Antenli Aktarma

viii



To my dear parents and advisor...

ix



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Prof. T. Engin Tuncer

for his continued cooperation, guidance and support in every aspect of my Ph.D. life.

His excellent mentoring and invaluable encouragement provided me an unequaled

research atmosphere. Without his great patience and belief, this thesis would never

have been completed.

I would like also to give special thanks to Prof. Çağatay Candan and Prof. Tolga Mete
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Prof. Elif Uysal Bıyıkoğlu, and Assoc. Prof. Cenk Toker for their kindness in joining

my thesis committee and their helpful suggestions.

I would like to give special thanks to the Scientific and Technological Research Coun-
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kind friendship and moral support made my life more enjoyable.

I would like to thank my dear aunt Reyhan Bıyık and uncle İrfan Bıyık for their
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CHAPTER 1

INTRODUCTION

The material in this thesis consists of several papers which are published or submitted

for publication. Each chapter of the thesis is a separate research work in the context of

beamforming for energy harvesting and multi-user communications. The following

is a list of the publications related to Chapter 2-8:

• Chapter 2: O. T. Demir and T. E. Tuncer, “Antenna selection and hybrid beam-

forming for simultaneous wireless information and power transfer in multi-

group multicasting systems,” IEEE Transactions on Wireless Communications,

vol. 15, pp. 6948–6962, Oct 2016.

• Chapter 3: O. T. Demir and T. E. Tuncer, “Max–min fair resource allocation

for SWIPT in multi-group multicast OFDM systems,” IEEE Communications

Letters, vol. 21, pp. 2508–2511, Nov 2017.

• Chapter 4: O. T. Demir and T. E. Tuncer, “Optimum QoS-aware beamformer

design for full-duplex relay with self-energy recycling,” IEEE Wireless Com-

munications Letters, vol. 7, pp. 122–125, Feb 2018.

• Chapter 5: O. T. Demir and T. E. Tuncer, “Optimum closed-form beamformers

for self-energy recycling full-duplex relay with a new power splitting protocol.”

Manuscript to be submitted for publication, 2018.

• Chapter 6: O. T. Demir and T. E. Tuncer, “Joint source power allocation and

relay beamformer design for wireless-powered relaying with self-energy recy-

cling.” Manuscript to be submitted for publication, 2018.
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• Chapter 7: O. T. Demir and T. E. Tuncer, “Optimum and near-optimum beam-

formers for decode-and-forward full-duplex multi-antenna relay with self-energy

recycling.” Manuscript submitted for publication, 2018.

• Chapter 8: O. T. Demir and T. E. Tuncer, “Improved admm-based algorithms

for multi-group multicasting in large-scale antenna systems with extension to

hybrid beamforming.” Manuscript to be submitted for publication, 2018.

In modern wireless communications systems, energy consumption is high to satisfy

the demand for high data rates and ubiquitous services [1]. Usually, mobile devices

use a battery with a limited lifetime [2]. Replacing batteries manually or recharging

them is costly and sometimes impractical [2], [3], [4]. Recently energy harvesting has

attracted great interest from the research community as a solution to limited battery

problem as well as a green communication approach [1], [2], [3], [4], [5], [6], [7]. One

promising solution is the wireless power transfer (WPT) technology in this context to

have battery independent mobile devices as well as relays in communication systems

[3], [6], [7]. Up to now, several WPT methods have been developed such as inductive

and magnetic resonance coupling, RF energy transfer [3], etc. Among these, radiative

WPT which is based on RF energy transfer is the most suitable technique for wireless

networks by providing longer transmission range and more flexible deployment for

powering large number of devices [3], [7]. Hence, RF energy harvesting is expected

to be one of the key components in next generation wireless communications systems

including Internet of Things/Everything (IoT/IoE) [3], [6].

One of the application areas of WPT is the recently developed paradigm, simultane-

ous wireless information and power transfer (SWIPT) [5], [6]. SWIPT has become

a promising research area to improve the energy efficiency and battery duration [2],

[8], [9], [10]. In SWIPT, information carrying radio frequency (RF) signals are not

only used for information decoding (ID) but also for energy harvesting (EH) at the

receiver side. The idea of SWIPT was first introduced in [11] and initially consid-

ered for point-to-point single antenna systems [11], [12]. Multiple antennas at the

transmitter and/or receiver can be employed for increasing both power transfer effi-

ciency and channel capacity [2]. In particular, SWIPT is also considered for multi-

user multi-input single-output (MISO) systems in [8], [13], and [14]. SWIPT has also
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been considered for OFDM systems in several recent works [1], [15], [16], [17], [18].

SWIPT has attracted significant interest and been considered for a variety of scenar-

ios including multiple input multiple output (MIMO) broadcasting [2], multi-group

multicast beamforming [10], relaying protocols [19], [20], [21], secure beamforming

[22], non-orthogonal multiple access (NOMA) [23].

Two main practical receiver structures, namely time switching (TS) and power split-

ting (PS), are proposed in [2] for SWIPT. In the TS scheme, users either decode

information or harvest energy from the received RF signal in a prescribed time slot.

On the other hand, the received signal is split into two streams with different powers,

one for decoding information and the other for harvesting energy in PS scheme. PS

architecture has higher degrees of freedom due to the fact that TS is a special form of

PS with binary PS values [8]. In some of the problems in this thesis, PS based SWIPT

is considered.

An important application area of SWIPT is multicasting where common information

is sent to multiple users simultaneously [24], [25]. The mobile data traffic has been

growing in a rapid manner due to the widespread use of smartphones, tablets and data

hungry applications. A significant amount of this data is of simultaneous interest to

groups of users [26], [27], [28], [29], [30]. Live broadcast of sporting events, mobile

TV, news headlines, regular system updates, infotainment systems in airplanes, trains

and V2X are a few examples for common interest data applications. For an efficient

delivery of such data, group-oriented services such as multicasting and broadcasting

should be incorporated in future generation wireless systems [31]. In fact, the 3rd

Generation Partnership Project (3GPP) included the multimedia broadcast/multicast

service (MBMS) in the third and fourth generations of cellular networks [26], [32],

[33]. When there is a single group of users which are interested in a common data

stream, we call this data transmission mode single-group multicasting or broadcast-

ing [24]. When there are multiple groups of users where the desired data flow is

different for each group, this is known as multi-group multicasting [25]. In Chap-

ter 2 and 3, we consider SWIPT in multi-group multicasting systems. A base sta-

tion transmits more than one information signal to the single-antenna users equipped

with a PS device. In Chapter 2, we propose two low-cost alternatives to full digi-

tal beamforming, which are antenna selection and hybrid beamforming, respectively
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to reduce the hardware complexity. The joint optimization problem is converted to

a quadratically constrained quadratic programming (QCQP) problem by introducing

new variables for PS ratios. This enables us to adapt the state-of-the-art techniques in

the literature, namely alternating minimization (AM) [14], and feasible point pursuit-

successive convex approximation (FPP-SCA) [34].

As the antenna technology and fabrication techniques develop, antennas become

cheaper and antenna selection strategy is shown to be a good low-cost alternative

to increase spatial diversity [35], [36]. In antenna selection, only the selected anten-

nas become active and use the corresponding RF chains with the help of RF switches.

Hence, fewer RF chains are required in comparison to the number of antennas. An-

tenna subset selection is shown to be more power efficient compared to the fixed

antenna structures for the same number of RF chains [35], [36], [37]. In Chapter 2,

we formulate the joint SWIPT and multi-group multicast beamforming problem in

antenna selection scheme and propose an effective algorithm for the solution. To the

best of our knowledge, this is the first work which considers SWIPT and antenna

selection in a joint manner for multi-group multicasting.

Another low-cost alternative to the full digital beamforming is the hybrid structures

composed of analog and digital beamformers. Hybrid beamformers decrease hard-

ware cost while maintaining comparable performance to the full digital beamformer

[38], [39]. In Chapter 2, we propose the hybrid beamforming structure in Fig. 2.2.

Furthermore, two different algorithms are proposed for continuous-phase hybrid beam-

formers while the problem is investigated in depth for a variety of scenarios. To the

best of our knowledge, this is the first work which considers hybrid beamform-

ing in the context of multi-group multicasting. In this hybrid structure, there is a

smaller number of RF chains than antennas dedicated to each multicast stream. Each

RF chain is followed by several RF phase shifters. The existing hybrid beamformers

in the literature usually consider continuous-phase analog beamformer where phase

shifters have infinite-resolution [40], [41]. In Chapter 2, we design two algorithms

for continuous-phase hybrid beamformer where the phase shifts satisfy only the equal

gain constraint.
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While ideal continuous-phase beamformers have better performance, most practical

RF phase shifters have finite resolution and supply only discrete phase changes [39],

[42]. In Chapter 2, we propose a discrete-phase hybrid beamformer which uses two-

bit RF phase shifters for efficient, effective and low-cost implementation. The spe-

cial structure of the two-bit hybrid beamformer problem is exploited to convert the

combinatorial problem into a continuous formulation by introducing equivalent lin-

ear constraints. In the simulations, it is shown that it performs much better than the

quantized two-bit beamformer and has moderate degradation in comparison to the

continuous-phase hybrid beamformer.

In Chapter 3, we consider resource allocation for SWIPT in multi-group multicasting

OFDM systems where a subcarrier assigned to a multicast group serves all the users

in that group. In resource allocation, it is possible to have some users with relatively

poor channel conditions that may not be assigned with sufficient subcarriers. Hence,

enforcing fairness among the users is an important problem that should be addressed

[43], [44], [45]. Different from the conventional approach which considers the sum-

rate fairness, we maximize the minimum SNR for each subcarrier using the same

motivation in [46], [47]. In addition to per-subcarrier fairness, subcarrier need for

each multicast group is considered in the proposed design.

The joint optimization of resource allocation and PS ratios for multi-group multicas-

ting has not been considered in the literature before and it is a difficult combinatorial

problem. In Chapter 3, a novel approach based on maximizing the minimum SNR

among all subcarriers considering the request of each multicast group is proposed.

An effective solution is obtained by dividing the problem in two parts. In the first

part, subcarriers are assigned to each group based on the user requests. A fairness

based near-optimal algorithm is proposed for the solution. The problem for the power

allocation and PS ratios is cast as a convex optimization problem given the subcar-

rier assignments. Hence, optimum solution is guaranteed for the second stage. The

proposed approach is shown to perform very close to the joint optimum solution ob-

tained with exhaustive search (ES) while the computational complexity is decreased

significantly.
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In Chapter 4, 5, 6, and 7 wireless-powered relaying is investigated. Cooperative

communication involving wireless relays improves the system throughput, reliability

and network coverage [48], [49]. Hence, it is an important technology for the fifth

generation (5G) of wireless networks [49]. Mobile and remote relays usually have

limited battery lifetime. Hence, SWIPT also has been an appealing research topic

in the context of wireless-powered relaying (WPR) in order to improve the lifetime

of the relaying system. The works in [5], [20], [50] studied PS based SWIPT for

wireless relaying whereas TS protocol is considered in [20], [51]. All of these works

are based on half-duplex (HD) relaying, where in the first phase, information and

energy carrying RF signal is received and in the second phase, information signal

is forwarded to the destination. Although HD relaying does not suffer from self-

interference cancellation, it is inefficient in terms of spectral utilization compared to

full-duplex (FD) relaying [22], [52]. FD relaying has gained great popularity in the

context of SWIPT by using TS [53], [54], [55] and PS [23], [49], [52], [56], [57], [58]

protocols.

In the above studies on FD, self-interference is the main design challenge which is

handled by several analog, digital, and analog/digital self-interference cancellation

techniques [59], [60]. One interesting approach different from TS and PS protocols

is to take advantage of self-interference in self-energy recycling [59]. In [19], a two-

phase self-energy recycling protocol is proposed for FD WPR. In the first phase, the

source node transmits information signal to the relay. Then, the relay forwards the

amplified signal to the destination in the second phase. At the same time, source

transmits an energy-bearing signal to the relay and relay harvests energy from this

dedicated signal as well as its self-interference loop channel which is the channel

between the transmitting and receive antennas of the relay. Since information trans-

mission and energy reception occur during the same slot, this scheme is referred to as

FD. In this protocol, there are multiple-transmit antennas and a single receiving an-

tenna at the relay. The problem is to design the relay transmit beamformer such that

its transmission power does not exceed the harvested power. Later, this idea is used in

several works including [4], [21], [22], [61], [62]. In particular, signal-to-noise ratio

(SNR) maximization problem for this protocol is considered for a more general case

in which multiple receiving antennas are employed at the relay [4].
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In Chapter 4, we consider the two-phase amplify-and-forward (AF) protocol in [19]

as shown in Fig. 4.1. In the first phase, information signal is transmitted from the

source (S) to the relay (R). Then, R forwards its received signal to the destination

(D) and harvests energy by using both the dedicated energy signal sent from S and

self-recycling. Since information reception and forwarding occur in different slots,

no self-interference cancellation is required in this scheme. Note that in [19], only

one antenna is used at R for information reception while the remaining antennas are

not in use in the first phase. In Chapter 4, we modify the system such that all the

antennas of R are employed for better performance. In addition, we propose quality

of service (QoS)-aware design approach different from [19] which considers signal-

to-noise ratio (SNR) maximization. The design problem is cast to satisfy the SNR

requirement of the destination using the minimum amount of power from the relay’s

battery with the help of harvested energy.

In Chapter 4, the closed-form optimum solution is derived for the QoS-aware beam-

former design problem. In addition to finding the closed-form optimum solution, we

derive feasibility conditions for the source power and the relay’s maximum power

limit. Simulation results show that energy harvesting assists the relay by reducing the

dependency on the external power supply. For most of the scenarios, transmission

power is greater than the harvested power showing the strictness of the constraint in

[19] and the importance of the proposed approach.

In Chapter 5, three SWIPT protocols are investigated. While the first two of these pro-

tocols are known in the literature, the third protocol is proposed in the said chapter

in order to improve the energy efficiency and the SNR at the destination. It is shown

that this new protocol achieves up to 3 dB SNR gain in comparison to the previous

protocols. A major contribution of Chapter 5 is the derivation of the closed-form ex-

pressions for the optimum relay transmit beamformers. In addition, optimum power

splitting ratio is derived for the PS based protocols. While the optimum closed-form

solutions are presented for real-valued PS ratios, discrete optimum solutions are also

provided. Furthermore, the beamformer design problem is also considered for the

optimized energy-bearing signal for multiple-receive antenna relay by presenting the

closed-form solutions.
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In all the above works related to the self-energy recycling and similar ones in [4],

[22], [59], [62], it is assumed that equal power is used for information and energy

transfer at the source side. As a more power efficient approach, power allocation op-

timization can be realized [55], [63], [64] in addition to relay transmit beamformer. In

[63], power allocation between information and energy transfer phases is considered

for self-energy recycling assisted full-duplex relaying. In this work, beamforming op-

timization is not taken into account since there is only one transmitting antenna at the

relay. Furthermore, only SNR maximization is considered. In Chapter 6, we jointly

optimize the relay transmit beamformer and power division parameter for both SNR

maximization and QoS-aware design problem. The problem formulations for both of

the problems are simplified in an equivalent manner in order to obtain the optimum

solution. Karush Kuhn Tucker (KKT) conditions are obtained to better analyze the

problems via several lemmas. For the SNR maximization problem, the joint optimum

solution is derived. For the QoS-aware problem, an approximation is needed for some

of the KKT conditions and a near-optimum joint solution is found. Simulation results

verify the effectiveness of the proposed methods compared to equal power alloca-

tion scheme. The proposed method achieves 3 dB SNR improvement for the SNR

maximization problem. For the QoS-aware problem, the required power input from

the relay’s own battery is reduced to half. Furthermore, additional power savings are

achieved.

In [65], PS-based SWIPT with decode-and-forward FD relaying is considered for sin-

gle transmit and single receive antenna relay. Then in [49], this scenario is general-

ized by employing multiple transmit antennas at the relay. A sub-optimum solution is

presented for signal-to-interference-plus-noise ratio (SINR) maximization problem.

Unlike SINR maximization, the QoS-aware design problem is not considered in the

literature for the above mentioned system to the best of our knowledge. In Chapter 7,

we first study the QoS-aware design optimization and present the optimum solution.

In this problem, the aim is to minimize the transmission power used by the relay’s

own battery such that the effective SINR of the system is above a certain threshold.

The optimization variables are the relay transmit beamformer and power splitting

ratio. The joint optimum solution is found by reformulating the original problem to

obtain and equivalent but simple form. In the following part of Chapter 7, we revisit
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the SINR maximization problem whose sub-optimum solution is given in [49]. Using

bisection search over SINR threshold for QoS-aware problem, we obtain the optimum

solution for the SINR maximization as well. Simulation results indicate that the gap

between the optimum and sub-optimum solution in [49] can sometimes be large.

In the above problems, it is assumed that there are multiple transmit antennas whereas

there is a single receive antenna at the relay. There are several works in the literature

which prove the efficiency of multiple receive antennas in energy harvesting sys-

tems [66], [67]. In Chapter 7, we further study QoS-aware and SINR maximization

problems for the multiple-receive antenna case. Since the joint optimum solution is

difficult to obtain, we follow an alternating optimization approach for the design of

transmit and receive beamformers together with the power splitting factor. Then, us-

ing a bisection search similar to the single antenna case, we present a near-optimum

solution for the SINR maximization problem. Several simulations are performed and

it is shown that using multiple receive antennas increases the SINR and energy perfor-

mance of the system. As the number of antennas increases, the improvement becomes

more significant.

Chapter 8 considers per-antenna power constrained multi-group multicast beamform-

ing for large-scale antenna systems. Apart from SWIPT, multicast beamforming is ex-

tensively studied in the literature. In [68], a consensus alternating directions method

of multipliers (ADMM) algorithm is presented for efficient and fast solution of gen-

eral QCQP problems. Since, multi-group multicast beamforming can be formulated

as a QCQP problem, this algorithm is applicable for it. Later in [69], a more efficient

ADMM method is developed for multi-group multicast beamforming by reducing the

number of dual variables in the algorithm. This work is the current state of the art

algorithm for single base station multi-group multicast beamforming problem and we

will take it as our benchmark in Chapter 8.

The increasing mobile data traffic necessitates reducing the resulting severe inter-

ference in modern cellular systems. Using massive number of antennas at the base

station is a promising solution to mitigate the intracell interference and to provide

high energy, spectral efficiency and reliability [32], [70], [71], [72]. In large scale

antenna concept, massive MIMO technology is seen as one of the key technologies
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for the 5G cellular networks [26], [29], [32], [71]. Multicast beamforming is also

considered for large scale antenna systems for a more efficient system design [28],

[29], [32], [71], [72].

In Chapter 8, we consider multi-group multicast beamforming for large-scale antenna

systems. We adopt QoS-aware design approach also by including per-antenna power

constraints to the problem to be more practical as in the works [69], [73], and [74].

In the first part of the chapter, we consider full digital beamforming where each an-

tenna is connected to a separate RF chain. Full digital beamforming achieves higher

performance compared to analog and hybrid beamforming. This comes from the fact

that the elements of each beamformer weight vector can be chosen an arbitrary com-

plex number without any restriction except the per-antenna power constraints. For

full digital beamforming, we decompose each beamformer weight vector into two or-

thogonal subspaces. In this case, the SINR constraints becomes dependent only one

of the subspaces. When the number of antennas is very high compared to the rank of

overall channel matrix, which is a practical scenario for large-scale antenna systems,

the dimension of this subspace becomes significantly small compared to that of the

orthogonal subspace. Then, we present the optimum updates for the ADMM frame-

work and arrange the algorithm for a more memory efficient implementation. This

together with the proposed decomposition brings us a computational advantage com-

pared to the algorithm in [69] which uses the original problem formulation. Secondly,

we deal with the nonconvex original problem directly instead of applying two-layer

optimization as in [69]. The motivation behind this is the efficient use of ADMM

for nonconvex problems [75], [76], [77], [78], [79]. Since, we use one-layer iteration

sequence, our proposed algorithm shows better convergence and requires less time

to converge. In the second part of Chapter 8, we focus on two hybrid beamforming

systems and several extensive simulations are carried out to show the performance of

the proposed algorithms.

One of the important application areas of large scale antenna systems is millime-

ter wave communications which is among the keystones of 5G systems. Millimeter

wave communications is a promising technique in order to increase capacity of future

generation cellular systems by using the vast spectrum available in millimeter wave

bands [38], [80], [81], [82], [83], [84]. In comparison to current communications
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systems, millimeter wave communications suffers from higher propagation loss [80],

[81], [83], [84], [85], [86], [87]. However decreased bandwidth at these frequencies

enables packing a larger number of antenna elements into small physical size. Hence,

narrower and more directive beams can be constructed by compensating high path

loss [38], [80], [81], [83], [84], [85], [86], [87], [88], [89]. In conventional cellu-

lar frequency band, multiple antenna systems are realized by employing full digital

beamforming. In this scheme, each antenna is connected to a separate RF chain in-

cluding digital-to-analog / analog-to-digital converter, up/downconverter. In millime-

ter wave frequencies, a large portion of the total energy consumption is due to the RF

chains. Furthermore, large number of RF chains is highly costly [85], [86], [87], [89].

Hence, implementing beamforming at the analog side, i.e. analog beamforming, is

one of the solutions for reducing power loss and cost. This can be done using cost

efficient phase-shifters following a single RF-chain. However, hybrid analog/digital

beamforming systems are more efficient by taking advantage of digital beamformer

also. In these systems, there is more than one RF chain and each RF chain is followed

by multiple phase-shifters [38], [81], [82], [83], [84]. There are mainly two types of

structures, i.e. fully-connected and partially-connected. Although better performance

is expected for fully-connected structure, the hardware complexity is rather high in

this case [38], [81]. In Chapter 8, we will consider partially-connected structure for

hybrid beamforming due to its reduced complexity as in Chapter 2.

Hybrid beamforming design is considered for several scenarios including point-to-

point MIMO and multi-user MIMO systems [85], [86], [87], [89]. In our previous

work [10], a new partially-connected hybrid beamforming structure is proposed for

multi-group multicasting systems. In [10], semidefinite relaxation (SDR) and succes-

sive convex approximation (SCA) based algorithms are proposed for the considered

system. In Chapter 8, we propose an efficient ADMM based algorithm and solve

each subproblem of it optimally by adopting this system. In [81], an alternating

minimization algorithm based on ADMM is realized over two different optimiza-

tion problems each of which requires solving a two-layer optimization problem for a

partially-connected hybrid structure with vector modulators. Vector modulators are

used in place of the phase shifter and power amplifier. In Chapter 8, we formulate this

problem according to our proposed efficient ADMM form and tackle the nonconvex
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problem directly instead of a three-layer optimization framework as in [81]. Simula-

tion results show that our proposed algorithm performs significantly better in terms

of both base station transmission power and computational complexity.
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CHAPTER 2

ANTENNA SELECTION AND HYBRID BEAMFORMING FOR

SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER

IN MULTI-GROUP MULTICASTING SYSTEMS

In this chapter, low-cost alternatives to full digital beamforming, namely antenna se-

lection and hybrid beamforming, are proposed for simultaneous wireless information

and power transfer (SWIPT) in a multi-group multicasting scenario. Power split-

ting (PS) based SWIPT is considered. The joint problem can be outlined as the

design of beamformer weight vectors and PS ratios in order to satisfy both signal-

to-interference-plus-noise-ratio (SINR) and harvested power constraints at each user

with minimum transmission power. An efficient algorithm is developed for antenna

selection by converting the original mixed integer programming problem into a con-

tinuous one and adapting feasible point pursuit-successive convex approximation

(FPP-SCA). Secondly, a new hybrid beamforming structure is presented for multi-

group multicasting. Both continuous and discrete-phase hybrid beamformers are con-

sidered in this content. Two algorithms for continuous-phase case are developed by

employing two competing techniques. In addition, a special two-bit discrete-phase

hybrid beamformer design is considered for practical systems. The integer constraints

are converted into linear equality and inequalities for this specific structure and an ef-

ficient algorithm is designed. The proposed algorithms are compared for different

scenarios revealing some interesting characteristics of each technique.
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2.1 Related Works and Contributions

In [13], the joint design of beamformer weight vector and user PS ratios is studied for

single-group multicasting scenario. Unfortunately, the optimum solution is not guar-

anteed unless the number of users is less than or equal to 4. In fact, optimum multicast

beamforming problem even without SWIPT is NP-hard [25]. The joint multi-group

multicast beamforming and SWIPT is considered in [14] for the first time in the liter-

ature. In [14], digital beamforming is utilized similar to the previous works [8], [13],

[25]. Although the best performance can be achieved with digital beamforming, it

may not be the best choice regarding the hardware cost and complexity. Since digi-

tal beamforming is performed at the baseband, a separate RF chain for each antenna

is required, which results high power consumption [38]. In this chapter, we pro-

pose two low-cost alternatives, which are antenna selection and hybrid beamforming,

respectively to reduce the hardware complexity. The joint optimization problem is

converted to a quadratically constrained quadratic programming (QCQP) problem by

introducing new variables for PS ratios. This enables to adapt the state-of-the-art

techniques in the literature, namely alternating minimization (AM) [14], and feasible

point pursuit-successive convex approximation (FPP-SCA) [34].

Antenna selection is introduced in [35] for multi-group multicast beamforming. The

performance of this scheme is improved for the same scenario in [36]. In this chap-

ter, we formulate the joint SWIPT and multi-group multicast beamforming problem

in antenna selection scheme and propose an effective algorithm for the solution. To

the best of our knowledge, this is the first work which considers SWIPT and antenna

selection in a joint manner for multi-group multicasting. The resulting optimiza-

tion problem has a mixed binary nonlinear programming structure. In order to solve

the problem effectively, the idea in [36] is used to convert the binary constraints to

quadratic and linear constraints of continuous variables. Furthermore, the nonconvex

quadratic constraint is moved to the objective using absolute exact penalty function.

Different from [36], we design a new algorithm using FPP-SCA approach proposed

recently for QCQP problems [34]. This new algorithm has lower worst-case compu-

tational complexity than the one in [36] and simulation results show that it performs

much better than the random antenna selection scheme.
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Another low-cost alternative to the full digital beamforming is the hybrid structures

composed of analog and digital beamformers. Hybrid beamformers decrease hard-

ware cost while maintaining comparable performance to the full digital beamformer

[38], [39]. In [90], two-bit hybrid beamforming is considered for single group mul-

ticasting where analog phase shifters supply only four phase shift values. In this

chapter, we extend the problem for multi-group multicasting and propose the hybrid

beamforming structure in Fig. 2.2. Furthermore, two different algorithms are pro-

posed for continuous-phase hybrid beamformers while the problem is investigated in

depth for a variety of scenarios. To the best of our knowledge, this is the first work

which considers hybrid beamforming in the context of multi-group multicasting. In

this hybrid structure, there are less number of RF chains than antennas dedicated

to each multicast stream. Each RF chain is followed by several RF phase shifters.

The existing hybrid beamformers in the literature usually consider continuous-phase

analog beamformer where phase shifters have infinite-resolution [40], [41]. In this

chapter, we design two algorithms for continuous-phase hybrid beamformer where

the phase shifts satisfy only the equal gain constraint. The first algorithm is devel-

oped using the AM technique in [36]. As a second approach, the problem is modified

using some conversions and exact penalty function for the application of FPP-SCA.

While FPP-SCA has lower worst-case computational complexity, the problem formu-

lation for the proposed hybrid beamforming is more suitable for the AM technique

resulting better performance in certain cases. These two powerful techniques are

compared in multi-group multicasting with SWIPT showing the potential benefits of

each technique in certain scenarios.

While ideal continuous-phase beamformers have better performance, most practical

RF phase shifters have finite-resolution and supply only discrete phase changes [39],

[42]. In this chapter, we propose a discrete-phase hybrid beamformer which uses

two-bit RF phase shifters for efficient, effective and low-cost implementation. The

special structure of the two-bit hybrid beamformer problem is exploited to convert the

combinatorial problem into a continuous formulation by introducing equivalent linear

constraints. This conversion is possible only when AM technique is adapted. Hence,

a two-bit hybrid beamformer algorithm with AM is developed. In the simulations, it

is shown that it performs much better than the quantized two-bit beamformer and has
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moderate degradation in comparison to the continuous-phase hybrid beamformer.

2.2 System Model

Consider a wireless downlink comprising a base station equipped with M transmit

antennas and N users as shown in Fig. 2.1. Each user has a single antenna. Assume

that there are G multicast groups, {G1, ...,GG}, where Gk denotes the k th multicast

group of users. Each user listens to a single multicast, i.e., Gk
⋂

Gl = ∅ for k , l. A

narrowband block-fading channel model is adopted. The signal transmitted from the

antenna array is x =
∑G

k=1 wk sk where sk is the information signal for the users in Gk

and wk is the related M × 1 complex beamformer weight vector. It is assumed that

the information signals {sk}
G
k=1 are mutually uncorrelated each with zero mean and

unit variance, σ2
sk = 1. In this case, the total transmitted power is Ptot =

∑G
k=1 wH

k wk .

The received signal at the ith user is given as,

yi = hH
i x + nA,i, i = 1, ..., N (2.1)

where hH
i is the 1 × M complex channel vector for the ith user and nA,i is the ad-

ditive zero mean Gaussian noise at the ith user’s antenna with variance σ2
A,i. nA,i is

uncorrelated with the information signals.

As illustrated in Fig. 2.1, each user has the energy harvesting capability. The received

signal at the ith user is split to the energy harvester (EH) and the information decoder

(ID) with the aid of a PS device. PS is assumed to be ideal and does not induce any

noise. A portion of the signal power denoted by 0 < ρi < 1 is transferred to the ID

while the remaining 1− ρi portion is fed into the EH. The received signal at the ID of

the ith user can be expressed as,

yI,i =
√
ρi(hH

i x + nA,i) + nI,i, i = 1, ..., N (2.2)

where nI,i is the additional zero-mean Gaussian noise introduced by the ID of the ith

user. The variance of nI,i is σ2
I,i and it is independent of the information signals and

nA,i. Assuming that the ith user is in the k th multicast group, Gk , SINR for the ith user

is,

SINRi =
ρi |wH

k hi |
2

ρi(
∑

l,k |wH
l hi |

2 + σ2
A,i) + σ

2
I,i

. (2.3)
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Figure 2.1: SWIPT Multi-Group Multicasting System.

The signal fed into the EH of the ith user can be expressed as,

yE,i =
√

1 − ρi(hH
i x + nA,i), i = 1, ..., N . (2.4)

Then, the power harvested by the EH of the ith user is given as,

Pi = ξi(1 − ρi)(

G∑
k=1
|wH

k hi |
2 + σ2

A,i) (2.5)

where 0 < ξi ≤ 1 is the energy conversion efficiency at the ith user.

In this chapter, quality of service (QoS) together with energy harvesting for the users

are considered. QoS-aware joint SWIPT and multi-group multicast beamforming

problem is to minimize the total transmitted power subject to receive-SINR and har-

vested power constraints for each user, i.e.,

min
{wk }

G
k=1,{ρi}

N
i=1

G∑
k=1

wH
k wk (2.6a)

s.t.
ρiwH

k Riwk

ρi(
∑

l,k wH
l Riwl + σ

2
A,i) + σ

2
I,i

≥ γi (2.6b)

ξi(1 − ρi)(

G∑
k=1

wH
k Riwk + σ

2
A,i) ≥ µi (2.6c)

0 < ρi < 1, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.6d)
G∑

k=1
wH

k wk ≤ Pmax (2.6e)

where γi and µi are the SINR and harvested power thresholds respectively for the

ith user and Ri = hihH
i . Pmax is the maximum allowable power at the base station.
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The problem in (2.6) is not convex and hence should be handled appropriately for an

effective solution.

Let us express (2.6) in a simpler way by decoupling wk’s and ρi’s as follows,

min
{wk }

G
k=1,{ρi}

N
i=1

G∑
k=1

wH
k wk (2.7a)

s.t. wH
k Riwk − γi

∑
l,k

wH
l Riwl ≥

γiσ
2
I,i

ρi
+ γiσ

2
A,i (2.7b)

G∑
k=1

wH
k Riwk ≥

µi

ξi(1 − ρi)
− σ2

A,i (2.7c)

(2.6d-e) . (2.7d)

Although 1
ρi

and 1
1−ρi are convex functions of ρi for 0 < ρi < 1 [8], the problem in

(2.7) is still not convex since Ri is positive semidefinite, i = 1, ..., N . Note that the

problem in (2.7) is not always feasible due to both SINR constraints coupled by all the

multicast beamforming weight vectors and maximum power constraint in (2.6e). It is

not easy to analyze feasibility of such a problem even if we discard energy harvesting

constraints in (2.7c) except some special cases. In [8], a necessary and sufficient

condition is stated for the feasibility of a similar transmit power minimization with

QoS and energy harvesting constraints without maximum power limit as follows,
N∑

i=1

γi

1 + γi
≤ rank(H) (2.8)

where H = [ h1 h2 ... hN ]. Note that the condition in (2.8) is valid in downlink

beamforming scenario where a separate stream is transmitted to each user. In multi-

casting scenario, (2.8) is only a necessary condition since groups of users share the

same beamforming weight vector, hence the feasibility rate of (2.7) is obviously less

than that of downlink beamforming.

Another special case is single group multicast beamforming. In this scenario, there

is no interference on the users and power of a given beamforming weight vector can

be increased such that all the constraints are satisfied if there is no maximum power

constraint. Hence, if we discard (2.6e), the problem in (2.7) is always feasible for

single group multicasting.

The problem in (2.7) can be solved using two approaches, namely AM [36], and
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FPP-SCA [34], respectively. In the following parts of this chapter, these two methods

will be elaborated further. While FPP-SCA is an efficient iterative method for QCQP

problems, it cannot be applied directly for (2.7). In order to apply FPP-SCA, the

following theorem is presented to express (2.7b) and (2.7c) as quadratic constraints.

Theorem 2.1:: Let {{wkopt }
G
k=1, {υiopt, κiopt }

N
i=1} be an optimum solution of (2.9).

Then {{wkopt }
G
k=1, {ρiopt }

N
i=1} is an optimum solution of (2.7) where ρiopt =

κiopt
υiopt+κiopt

.

min
{wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

wH
k wk (2.9a)

s.t. wH
k Riwk − γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i (2.9b)

G∑
k=1

wH
k Riwk ≥

µi

ξi
κi − σ

2
A,i (2.9c)





υi − κi

2








2

≤ υi + κi − 2, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.9d)

G∑
k=1

wH
k wk ≤ Pmax . (2.9e)

Proof: In (2.9), 1
ρi

and 1
1−ρi are represented by υi and κi, respectively. The condition

in (2.9d) implies the following inequality,

υi + κi ≤ υiκi . (2.10)

Note that υi + κi ≥ 2 from (2.9d). This and (2.10) imply υiκi ≥ 0. If we divide (2.10)

by υiκi, we obtain the following inequality,

1
υi
+

1
κi
≤ 1. (2.11)

Let {{wkopt }
G
k=1, {υiopt, κiopt }

N
i=1} be a global optimum solution of (2.9) resulting min-

imum objective value among all the others. If (2.11) is satisfied with equality for all

pairs {υiopt, κiopt }, then {{wkopt }
G
k=1, {ρiopt }

N
i=1} (ρiopt =

κiopt
υiopt+κiopt

) is a global opti-

mum solution for (2.7) since the same problem is solved with a change of variables.

Otherwise, assume that (2.11) is not satisfied with equality for at least one of the pairs

{υiopt, κiopt }. Then, we can scale {υiopt, κiopt } by ( 1
υiopt
+ 1

κiopt
) such that (2.11) is satis-

fied with equality without violating SINR and harvested power constraints since scale
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factor is less than 1. Furthermore, we have the same objective value as before scaling

since the objective is only a function of {wk}
G
k=1. Hence, {{wkopt }

G
k=1, {υ̂iopt, κ̂iopt }

N
i=1}

is another global optimum solution of (2.9) where 1
υ̂iopt
+ 1

κ̂iopt
= 1. By the change

of variables, it is easily seen that ρiopt =
1

υ̂iopt
is an optimum PS ratio for the ith user.

Hence, the theorem is proved. �

The equivalent problem in (2.9) is now suitable for the application of FPP-SCA.

2.3 FPP-SCA Approach

The problem in (2.9) is convex except the quadratic constraints in (2.9b) and (2.9c).

The terms that destroy convexity are wH
k Riwk and

∑G
k=1 wH

k Riwk in (2.9b) and (2.9c),

respectively. In conventional successive convex approximation (SCA), linear ap-

proximation of these terms is used in the neighborhood of the solution found in

the previous iteration [91]. For any {zk}
G
k=1 where zk ∈ C

M , k = 1, ...,G, (wk −

zk)
HRi(wk − zk) ≥ 0. Expanding the left-hand side of the inequality, we obtain,

wH
k Riwk ≥ 2 Re{zH

k Riwk} − zH
k Rizk . SCA solves the problem in (2.9) iteratively by

approximating (2.9b-c) using this linear restriction around the previous iterant, i.e.,

{zk}
G
k=1. In this case, (2.9b-c) is replaced by the following constraints in the iterative

scheme, i.e.,

2 Re{zH
k Riwk} − zH

k Rizk − γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i (2.12a)

G∑
k=1
(2 Re{zH

k Riwk} − zH
k Rizk) ≥

µi

ξi
κi − σ

2
A,i . (2.12b)

A sequence of feasible points is obtained with decreasing objective values by solving

(2.9) iteratively [91]. Note that if (2.12a) and (2.12b) are satisfied at some iteration,

then (2.9b) and (2.9c) are also satisfied by the bound wH
k Riwk ≥ 2 Re{zH

k Riwk} −

zH
k Rizk . The drawback of this method is that it requires an initial feasible point. In

[34], the infeasibility problem is solved by adding slack variables and a slack penalty
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to the original problem as follows,

min
{wk }

G
k=1,{υi,κi,si,ri}

N
i=1

G∑
k=1

wH
k wk + α

N∑
i=1
(si + ri) (2.13a)

s.t . 2 Re{zk
HRiwk} − zk

HRizk − γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i − si (2.13b)

G∑
k=1
(2 Re{zk

HRiwk} − zk
HRizk) ≥

µi

ξi
κi − σ

2
A,i − ri (2.13c)

si ≥ 0, ri ≥ 0 (2.13d)

(2.9d-e). (2.13e)

The problem in (2.13) is always feasible at every iteration due to nonnegative slack

variables {si, ri}
N
i=1. However, these slack variables should be zero in order to obtain

a feasible solution to the original problem (2.9). If we choose α � 1 and the original

problem is feasible, the slack variables {si, ri}
N
i=1 tend to go to zero. Note that [34]

optimizes slack variables to reach a compromise, where the achieved solution min-

imizes the constraint violations even if the problem is infeasible. However, we use

the slack variables only to find a feasible starting point for the proposed algorithms

assuming that the original problem is feasible. In the following part, the details of the

FPP-SCA based algorithm will be presented within the context of antenna selection

scheme.

2.4 Multicasting Problem with Antenna Selection for SWIPT

While digital beamforming has the highest capacity, its hardware cost and complex-

ity necessitate alternative approaches for efficient system design. Antenna selection

scheme is a lower-cost and effective alternative to the full digital beamforming. In

this part, FPP-SCA will be used to solve the problem of multicast beamforming with

antenna selection. It is also possible to use AM approach for antenna selection [36].

It turns out that both of these techniques return similar performances. However, FPP-

SCA is known to be computationally more efficient and hence it is selected for the

implementation of antenna selection scheme.

Assume that L RF transmission chains are available, while there are M ≥ L antennas.

The problem is to select the best L out of M antennas and find the corresponding
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beamforming weight vectors and PS ratios to minimize the total transmitted power.

Let us define a M × 1 vector, b, whose elements are either 0 or 1. The mth element

of b, bm, is the antenna selection coefficient for the mth antenna. Hence, bm = 1 if

the mth antenna is selected, and it is zero otherwise. We can use big-M approach to

formulate the antenna selection problem with the aid of binary variables, bm [92]. If

there is an upper bound M on antenna power, then the constraint
∑G

k=1 |wkm |
2 ≤ Mbm

links bm’s and antennas. Here,
∑G

k=1 |wkm |
2 is the power transmitted from the mth

antenna. If bm = 0, then the power of the mth antenna should be zero indicating that

the mth antenna is not selected. Otherwise, since M is an upper bound, the antenna’s

power is not restricted. This approach is known as big-M in the literature [92]. The

upper bound M can be selected as the power limit of the base station, i.e., M = Pmax .

In this case the joint problem can be written as,

min
{wk }

G
k=1,b,{υi,κi}

N
i=1

G∑
k=1

wH
k wk (2.14a)

s.t .
G∑

k=1
|wkm |

2 ≤ Pmaxbm, m = 1, ..., M (2.14b)

M∑
m=1

bm = L (2.14c)

bm ∈ {0, 1}, m = 1, ..., M (2.14d)

wH
k Riwk − γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i (2.14e)

G∑
k=1

wH
k Riwk ≥

µi

ξi
κi − σ

2
A,i (2.14f)





υi − κi

2








2

≤ υi + κi − 2, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.14g)

G∑
k=1

wH
k wk ≤ Pmax . (2.14h)

In the above problem, (2.14d-f) are the only nonconvex constraints. A linear approxi-

mation in the neighborhood of the previous iterate can be used for (2.14e-f) in order to

express them as convex constraints as explained in the previous section. The problem

in (2.14) is a mixed integer nonlinear programming problem due to the binary vector,

b. In the following lemma, binary constraints are expressed in terms of continuous

variables. Hence, the computational complexity of (2.14) is decreased significantly.
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Lemma 2.1: (2.15a-b) with (2.14c) in terms of continuous variables, bm, are equiva-

lent to the binary constraints in (2.14d), i.e.,

M∑
m=1

b2
m = L (2.15a)

0 ≤ bm ≤ 1, m = 1, ..., M . (2.15b)

Proof : Consider the difference of (2.15a) and (2.14c), i.e.,

M∑
m=1

b2
m −

M∑
m=1

bm =

M∑
m=1

bm(bm − 1) = 0. (2.16)

Each term in the summation in (2.16) is nonpositive from (2.15b). (2.16) implies that

all the terms in the summation are equal to zero, i.e., bm ∈ {0, 1}. Hence, (2.14d) can

be replaced by (2.15a) and (2.15b). �

The constraint in (2.15a) is not convex. We can use exact penalty function to move

the constraint in (2.15a) to the objective function [93]. Exact penalty functions allow

us to transform a constrained optimization problem into an unconstrained one with

finite penalty parameters. The following lemma presents an equivalent problem by

moving only the nonconvex constraint in (2.15a) to the objective function.

Lemma 2.2: If an optimum solution of (2.14) where (2.14d) is replaced by (2.15a-b),

satisfies Karush-Kuhn-Tucker conditions, then it is also an optimum solution of the

following problem in (2.17) for ζ > ζ0 with ζ0 > 0 being a finite value.

min
{wk }

G
k=1,b,{υi,κi}

N
i=1

G∑
k=1

wH
k wk + ζ |L − bT b| (2.17a)

s.t. (2.14b-c), (2.14e-h), (2.15b). (2.17b)

Proof : Please refer to Appendix A.1. �

Note that absolute exact penalty term ζ |L − bT b| is equal to ζ(L − bT b) since bT b =∑M
m=1 b2

m ≤
∑M

m=1 bm = L. Now, we can solve (2.17) using FPP-SCA and alternating

b at each iteration. Random initial points can be generated for the algorithm. How-

ever, it is observed that semidefinite relaxation provides good initialization points in

accordance with [34]. For a starting point, let us define Wk = wkwH
k , k = 1, ...,G.

The problem in (2.14) where (2.14d) is replaced by (2.15a-b), can be expressed in
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terms of {Wk}
G
k=1 as follows,

min
{Wk }

G
k=1,b,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} (2.18a)

s.t.
G∑

k=1
Wk(m,m) ≤ Pmaxbm, m = 1, ..., M (2.18b)

Tr{RiWk} − γi

∑
l,k

Tr{RiWl} ≥ γiσ
2
I,iυi + γiσ

2
A,i (2.18c)

G∑
k=1

Tr{RiWk} ≥
µi

ξi
κi − σ

2
A,i (2.18d)





υi − κi

2








2

≤ υi + κi − 2, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.18e)

G∑
k=1

Tr{Wk} ≤ Pmax (2.18f)

Wk � 0 (2.18g)

rank(Wk) = 1, k = 1, ...,G (2.18h)

(2.14c), (2.15a-b). (2.18i)

The problem in (2.18) is not convex and it can be solved using semidefinite relaxation

(SDR) by dropping the rank constraint in (2.18h) [25] and (2.15a). In this case, we

obtain a convex problem whose solution gives a good starting point.

The steps of the proposed algorithm for the problem in (2.17) are given as follows.

Algorithm 2.1: Antenna Selection for SWIPT in Multi-Group Multicasting Sys-

tems Using FPP-SCA (AS-FPP)

Let λ1(W) and u1(W) denote the maximum eigenvalue and the corresponding eigen-

vector of the Hermitian symmetric matrix W, respectively.

Initialization: q = 0,

Set proper ζ > 0. Let {{W(0)k }
G
k=1, b

(0), {υ
(0)
i , κ

(0)
i }

N
i=1} denote the solution obtained by

SDR. Take the initial points as w(0)k =

√
λ1(W(0)k )u1(W(0)k ), k = 1, ...,G.
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Phase 1: Iterations (q→ q + 1)

1) Solve the following problem in (2.19) and denote the optimum solution as

{{w(q)k }
G
k=1, b

(q), {υ
(q)
i , κ

(q)
i }

N
i=1}.

min
{wk }

G
k=1,b,{υi,κi,si,ri}

N
i=1

G∑
k=1

wH
k wk − ζb(q−1)T b + α

N∑
i=1
(si + ri) (2.19a)

s.t . 2 Re{w(q−1)
k

H
Riwk} − w(q−1)

k

H
Riw(q−1)

k

− γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i − si (2.19b)

G∑
k=1
(2 Re{w(q−1)

k

H
Riwk} − w(q−1)

k

H
Riw(q−1)

k ) ≥
µi

ξi
κi − σ

2
A,i − ri (2.19c)

si ≥ 0, ri ≥ 0, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.19d)

(2.14b-c), (2.14g-h), (2.15b) . (2.19e)

2) If b(q)T b(q) = L or b(q)T b(q) ≥ βb(q−1)T b(q−1), (improved solution), where β > 1 is

a proper value (Ex: 1.2), keep the value of ζ same. Otherwise, increase ζ (Ex: ζ →

2ζ).

3) If the maximum iteration number for Phase 1 is reached, q = q1,max , or | |
∑G

k=1(w
(q)
k −

w(q−1)
k )| |2 ≤ ε for sufficiently small ε > 0, go to Phase 2.

Phase 2:

4) Select the antennas corresponding to the indices of the largest L values of b(q).

Repeat Phase 1 for the reduced-size problem with the selected antennas. In this case,

replace Ri and wk in (2.19) by R̃i = h̃ih̃
H
i and w̃k where h̃H

i is the 1 × L reduced-size

channel vector related to the selected antennas and w̃k ∈ C
L is the corresponding

reduced-size beamformer weight vector. Furthermore, the modified problem does not

include b.

5) Terminate if the maximum iteration number for Phase 2, q2,max , is reached or the

algorithm converges. Take the candidate beamforming weight vectors as {w̃′k}
G
k=1

and PS ratios as ρ′i =
κ′i

υ′i+κ
′
i
, i = 1, ..., N , where {{w̃′k}

G
k=1, {υ

′
i, κ
′
i }

N
i=1} is the obtained

solution at the end of the iterations.

If the algorithm stops by reaching the maximum number of iterations, the candidate

beamforming weight vectors {w̃′k}
G
k=1 may not satisfy the SINR and harvested power
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constraints in (2.14e) and (2.14f), respectively. In order to generate a feasible solu-

tion, an additional linear programming problem is solved for finding the appropriate

scale factors,
√

ck , k = 1, ...,G, for the candidate beamforming weight vectors sim-

ilar to [25]. Let us define ak,i = |w̃′
H

k h̃i |
2 and πk = | |w̃′k | |

2
2 . The following linear

programming problem is solved to generate a feasible solution from {w̃′k}
G
k=1:

min
{ck }Gk=1

G∑
k=1

πkck (2.20a)

s.t. ρ′iak,ick − γiρ
′
i

∑
l,k

al,icl − γiρ
′
iσ

2
A,i − γiσ

2
I,i ≥ 0 (2.20b)

ξi(1 − ρ′i)(
G∑

k=1
ak,ick + σ

2
A,i) − µi ≥ 0, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.20c)

G∑
k=1

πkck ≤ Pmax, ck ≥ 0 ∀ k ∈ {1, ...,G}. (2.20d)

After solving (2.20), we obtain the reduced-size beamforming weight vectors as
√ckopt w̃′k . Note that the remaining beamformer weights are zero since the corre-

sponding antennas are not used.

Selecting a good initial value for the penalty parameter ζ is not an easy task since it

is problem dependent. When the initial value of ζ is selected large, the solution is

forced to the feasible region in a fast manner. It may result high transmitted power

due to fast convergence. If the initial value of ζ is too small, then the required number

of iterations can increase. A reasonable value for the initial value of ζ can be one in

order to give equal weight to each term in the objective function.

The computational complexity of the proposed algorithm, AS-FPP, can be easily ex-

pressed by formulating the QCQP problem in (2.19) as a second order cone program-

ming form. The worst-case complexity of solving (2.19) is O([GM + M + 4N]3.5)

(the number of variables is GM + M + 4N) while it is O([GL + 4N]3.5) for Phase 2

of AS-FPP [34]. The worst case complexity of the linear programming problem in

(2.20) is O(
√

Glog(1/ε)) iterations where ε is the accuracy of the solution at termi-

nation, each requiring at most O(G3+ (2N +1)G) arithmetic operations using interior

point methods [25].

26



Figure 2.2: Hybrid Multi-Group Multicast Beamforming System.

2.5 Hybrid Beamforming

While antenna selection is an effective and low-cost approach, hybrid beamforming

presents new opportunities for better performance in certain cases. In this chapter,

hybrid beamformer structure as shown in Fig. 2.2 is considered for multi-group mul-

ticasting scenario. This hybrid structure consists of two stages, namely digital and

analog beamformer which should be jointly designed for effective power utilization.

This structure presents a trade-off between performance and the number of RF chains.

When the number of RF chains for each multicast stream is the same as the number

of antennas (full digital beamformer), the best performance is achieved. If it is less

than the number of antennas (i.e., hybrid beamformer), the system cost is decreased

while there is a certain performance loss. In Fig. 2.2, there are GK RF chains. Each

RF chain is followed by P RF phase shifters. The analog signals coming from phase

shifters of each multicast group are added up and the summed signal is fed into an

antenna. As can be seen in Fig. 2.2, the total number of antennas is KP.

The beamforming weight vector for the k th multicast group is KP×1 complex vector

wk = [ wk1,1 wk1,2 ... wk1,P wk2,1 ... wk2,P ... wkK,1 ... wkK,P ]
T where wkn,p = wkne jθkn,p .
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wkn is the digital beamformer coefficient corresponding to the nth RF chain for the k th

multicast stream. θkn,p is the phase shift introduced by the pth phase shifter following

the nth RF chain of the k th digital beamformer block. Hence, the elements of the

beamforming weight vectors, {wk}
G
k=1, are the phase shifted versions of the digital

weights {wk1,wk2, ...,wkK }
G
k=1. As a result, the amplitude of the complex weights in-

side each phase shifter group should be the same, i.e., |wkn | = |wkn,p | for p = 1, ..., P,

n = 1, ...,K and k = 1, ...,G where the phase shifters following RFk,n constitute the

phase shifter group (k, n). The first weight of the phase shifter group (k, n), wkn,1 , can

be chosen as wkn , i.e., wkn,1 = wkn for k = 1, ...,G and n = 1, ...,K without loss of

generality.

In this chapter, three different hybrid beamformer designs are considered. The first

two of these beamformers are continuous-phase. The third beamformer employs two-

bit discrete phase shifters while the weights of the beamformer are computed with-

out resorting to combinatorial optimization. This special beamformer is especially

valuable for practical implementations and its performance is close to its continuous

counterparts.

The continuous-phase beamformers are constructed using two competing schemes

namely AM and FPP-SCA, respectively. While FPP-SCA is theoretically more com-

putationally efficient, it is found that AM can perform better than FPP-SCA in certain

cases. This is due to the fact that the problem structure is more suitable for semidef-

inite programming resulting from matrix lifting (Wk = wkwH
k ). These points will be

further elaborated in Section 2.6.

In the following parts, these three beamformers are introduced in order.

2.5.1 Hybrid Beamforming with Continuous Phase Shifters

Phase shifts θkn,p can be continuous or discrete leading to continuous-phase and

discrete-phase beamformers, respectively. In this part, the hybrid beamformer design

problem is first constructed in its general form, namely in continuous form.

The QoS-aware SWIPT optimization problem for the hybrid structure with continu-
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ous phase shifters can be expressed as,

min
{wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

wH
k wk (2.21a)

s.t. |wkn,p | = |wkn,1 |, p = 2, ..., P, n = 1, ...,K, k = 1, ...,G (2.21b)

wH
k Riwk − γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i (2.21c)

G∑
k=1

wH
k Riwk ≥

µi

ξi
κi − σ

2
A,i (2.21d)





υi − κi

2








2

≤ υi + κi − 2, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.21e)

G∑
k=1

wH
k wk ≤ Pmax . (2.21f)

The above problem is not convex. By introducing Wk = wkwH
k this problem can be

written as,

min
{Wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} (2.22a)

s.t . Wkn,n(p, p) = Wkn,n(1, 1), p = 2, ..., P, n = 1, ...,K, k = 1, ...,G (2.22b)

Tr{RiWk} − γi

∑
l,k

Tr{RiWl} ≥ γiσ
2
I,iυi + γiσ

2
A,i (2.22c)

G∑
k=1

Tr{RiWk} ≥
µi

ξi
κi − σ

2
A,i (2.22d)





υi − κi

2








2

≤ υi + κi − 2, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.22e)

G∑
k=1

Tr{Wk} ≤ Pmax (2.22f)

Wk � 0 (2.22g)

rank(Wk) = 1, k = 1, ...,G (2.22h)

where Wkn1,n2
(p1, p2) denotes the (p1, p2)-th entry of the (n1, n2)-th P×P submatrix of

Wk . The optimization problem in (2.22) is still nonconvex due to the rank constraints

in (2.22h). The following theorem is used to express the rank constraint in a more

suitable way.
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Theorem 2.2: For a M × M Hermitian symmetric, positive semidefinite matrix W,

Tr{W2} is upper bounded by (Tr{W})2, i.e. Tr{W2} ≤ (Tr{W})2. This upper

bound is reached if and only if rank(W) = 1.

Proof: The proof of this theorem can be found in [94]. �

Corollary 2.1: For a Hermitian symmetric, positive semidefinite matrix W, the con-

dition (Tr{W})2 − Tr{W2} ≤ 0 implies that W has rank one.

We can use the condition given in Corollary 2.1 in place of the rank constraints in

(2.22h). This condition is nonconvex but quadratic, hence we can use absolute exact

penalty function to move it to the objective.

Lemma 2.3: If an optimum solution of (2.22) satisfies Karush-Kuhn-Tucker con-

ditions, then it is also an optimum solution of the following problem in (2.23) for

ζ1, ..., ζG > ζ0 with ζ0 > 0 being a finite value.

min
{Wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} +

G∑
k=1

ζk max{0, (Tr{Wk})
2 − Tr{W2

k}} (2.23a)

s.t. (2.22b-g) (2.23b)

Proof : Please refer to Appendix A.2. �

Note that max{0, (Tr{Wk})
2 − Tr{Wk

2}} = (Tr{Wk})
2 − Tr{Wk

2} from Theorem

2.2. Hence, AM can be used to solve (2.23) with convex optimization at each step

[36]. Furthermore, the second order cone constraints in (2.22e) can be expressed as

positive semidefinite cone constraints as follows,
υi − 1 1

1 κi − 1

 � 0, i = 1, ..., N . (2.24)

The condition in (2.24) implies the following inequalities from the determinant of the

matrix in (2.24) and the positivity of its diagonal elements,

υi ≥ 1, κi ≥ 1 (2.25a)

υiκi − υi − κi ≥ 0. (2.25b)

Hence, (2.24) can be used in place of (2.22e) and a semidefinite programming prob-
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lem is solved at the qth iteration of AM, i.e.,

min
{Wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} +

G∑
k=1

ζk(Tr{W(q−1)
k }Tr{Wk} − Tr{W(q−1)

k Wk})

(2.26a)

s.t. (2.22b-d), (2.22f-g), (2.24) . (2.26b)

Since the objective function in (2.26a) is lower bounded and a convex programming

problem is solved at each iteration, the objective function improves at each iteration

and the iterative approach is guaranteed to converge [95].

The steps of the proposed AM approach for the solution of (2.26) are given below.

Algorithm 2.2: Hybrid Beamforming for SWIPT in Multi-Group Multicasting

Systems with Continuous Phase Shifters Using AM (HB-CPS-AM)

Let λ1(W) and u1(W) denote the maximum eigenvalue and the corresponding eigen-

vector of the Hermitian symmetric matrix W, respectively.

Initialization: q = 0,

Set ζ1, ..., ζG > 0 and {W(0)k }
G
k=1 to zero.

Iterations: (q→ q + 1)

1) Solve (2.26) for {{W(q)k }
G
k=1, {υ

(q)
i , κ

(q)
i }

N
i=1} while fixing {W(q−1)

k }Gk=1.

2) for k = 1 : G

If rank(W(q)k ) = 1 or
λ1(W(q)k

)

Tr{W(q)
k
}
≥ βk

λ1(W(q−1)
k
)

Tr{W(q−1)
k
}

(improved solution),where βk > 1 is a

proper value (Ex: βk = 1.2), keep the value of ζk same. Otherwise, increase ζk (Ex:

ζk → 2ζk).

3) Terminate if the maximum iteration number is reached, q = qmax , or∑G
k=1(Tr{W(q)k })

2 − Tr{W(q)k

2
} ≤ ε for sufficiently small ε > 0.

End:

4) for k = 1 : G

If rank(W(q)k ) = 1, take the candidate beamformer weight vector for the k th multicast

group, w′k , as
√
λ1(W(q)k )u1(W(q)k ). Otherwise, select the elements of the candidate
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beamformer weight vector as,

w′kn,p =

√
W (q)kn,n

(1, 1)e j∠u1(W(q)k
)
P(n−1)+p, p = 1, ..., P, n = 1, ...,K (2.27)

where u1(W(q)k )P(n−1)+p denotes the (P(n − 1) + p)th element of u1(W(q)k ).

5) Take the PS ratios as ρ′i =
κ
(q)
i

υ
(q)
i +κ

(q)
i

, i = 1, ..., N .

6) Define ak,i = |w′k
Hhi |

2 and πk = | |w′k | |
2
2 . Solve (2.20) and obtain the beamforming

weight vectors as √ckoptw′k .

The worst case complexity of HB-CPS-AM at each iteration using interior point

methods is O(
√

GKP + 2Nlog(1/ε)) iterations where ε is the accuracy of the so-

lution at termination. Each iteration requires at most O((GK2P2 + 2N)3 + (GK2P2 +

2N)(2N + 1 + GK(P − 1))) arithmetic operations [25].

FPP-SCA Approach with Lower Complexity

While HB-CPS-AM algorithm is more suitable for hybrid beamforming problem,

FPP-SCA presents a computationally efficient alternative. Hence, FPP-SCA is also

implemented for the hybrid beamforming in order to characterize the advantages of

both techniques. Some nontrivial modifications for FPP-SCA can be easily imple-

mented to adapt this approach for the hybrid beamforming structure.

The hybrid beamforming problem in (2.21) can be expressed equivalently as follows,

min
{wk,tk }Gk=1,{υi,κi}

N
i=1

P
G∑

k=1
tT
k tk (2.28a)

s.t. |wkn,p | = tkn p = 1, ..., P, n = 1, ...,K, k = 1, ...,G (2.28b)

(2.21c-f) (2.28c)

where tk is a K × 1 real positive vector whose elements are the magnitudes of the

digital weights for the k th multicast beamforming weight vector. tkn denotes the nth
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element of tk . It is possible to express (2.28) in an alternative form, i.e.,

min
{wk,tk }Gk=1,{υi,κi}

N
i=1

P
G∑

k=1
tT
k tk (2.29a)

s.t. |wkn,p | ≤ tkn (2.29b)

|wkn,p | ≥ tkn, p = 1, ..., P, n = 1, ...,K, k = 1, ...,G (2.29c)

(2.21c-f) . (2.29d)

The constraints in (2.29c) are not convex. We can express the constraints in (2.29c)

as t2
kn
− |wkn,p |

2 ≤ 0 and use absolute exact penalty function to move them to the

objective function. Similar to Lemma 2.3, the following problem for a finite ζ > 0 is

equivalent to (2.29) in the sense that their optimum solutions are the same, i.e.,

min
{wk,tk }Gk=1,{υi,κi}

N
i=1

P
G∑

k=1
tT
k tk + ζ

G∑
k=1

K∑
n=1

P∑
p=1

max{0, t2
kn − |wkn,p |

2} (2.30a)

s.t. (2.21c-f), (2.29b) . (2.30b)

Note that the terms in exact penalty function satisfy max{0, t2
kn
− |wkn,p |

2} = t2
kn
−

|wkn,p |
2 by (2.29b) and exact penalty function can be written as ζ

∑G
k=1(PtT

k tk −

wH
k wk). In this case, the objective function is not convex due to −wH

k wk term. In

the following FPP-SCA based algorithm, we replace the nonconvex ζ
∑G

k=1(PtT
k tk −

wH
k wk) term by ζ

∑G
k=1(PtT

k tk − Re(w(q−1)
k

H
wk)) at the qth iteration where w(q−1)

k is

the previous iterant. The steps of the proposed algorithm are given as follows.

Algorithm 2.3: Hybrid Beamforming for SWIPT in Multi-Group Multicasting

Systems with Continuous Phase Shifters Using FPP-SCA (HB-CPS-FPP)

Let λ1(W) and u1(W) denote the maximum eigenvalue and the corresponding eigen-

vector of the Hermitian symmetric matrix W, respectively.

Initialization: q = 0,

Set ζ > 0 and solve (2.22) by dropping (2.22h). Let {{W(0)k }
G
k=1, {υ

(0)
i , κ

(0)
i }

N
i=1}

denote the solution of (2.22). Take the initial point as w(0)k =

√
λ1(W(0)k )u1(W(0)k ),

33



k = 1, ...,G. Set the elements of t(0)k as t(0)kn
= maxp |w

(0)
kn,p
|, n = 1, ...,K , k = 1, ...,G.

Iterations: (q→ q + 1)

1) Solve the following problem in (2.31) and denote the optimum solution as

{{w(q)k , t(q)k }
G
k=1, {υ

(q)
i , κ

(q)
i }

N
i=1}.

min
{wk,tk }Gk=1,{υi,κi,si,ri}

N
i=1

P
G∑

k=1
tT
k tk + ζ

G∑
k=1
(PtT

k tk − Re(w(q−1)
k

H
wk)) + α

N∑
i=1
(si + ri)

(2.31a)

s.t. 2 Re{w(q−1)
k

H
Riwk} − w(q−1)

k

H
Riw(q−1)

k

− γi

∑
l,k

wH
l Riwl ≥ γiσ

2
I,iυi + γiσ

2
A,i − si (2.31b)

G∑
k=1
(2 Re{w(q−1)

k

H
Riwk} − w(q−1)

k

H
Riw(q−1)

k ) ≥
µi

ξi
κi − σ

2
A,i − ri (2.31c)

si ≥ 0, ri ≥ 0, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.31d)

(2.21e-f), (2.29b). (2.31e)

2) If
∑G

k=1(Pt(q)k

T
t(q)k − w(q)k

H
w(q)k ) = 0 or

∑G
k=1(Pt(q)k

T
t(q)k − w(q)k

H
w(q)k ) ≤

β
∑G

k=1(Pt(q−1)
k

T
t(q−1)
k −w(q−1)

k

H
w(q−1)

k ), (improved solution), where β < 1 is a proper

value (Ex: 0.7), keep the value of ζ same. Otherwise, increase ζ (Ex: ζ → 2ζ).

3) Terminate if the maximum iteration number is reached, q = qmax , or | |
∑G

k=1(w
(q)
k −

w(q−1)
k )| |2 ≤ ε for sufficiently small ε > 0.

End:

4) for k = 1 : G

Select the elements of the candidate beamformer weight vector w′k as follows,

w′kn,p = t(q)kn
e j∠w(q)

kn,p , p = 1, ..., P, n = 1, ...,K . (2.32)

5) Take the PS ratios as ρ′i =
κ
(q)
i

υ
(q)
i +κ

(q)
i

, i = 1, ..., N .

6) Define ak,i = |w′k
Hhi |

2 and πk = | |w′k | |
2
2 . Solve (2.20) and obtain the beamforming

weight vectors as √ckoptw′k .

The worst-case complexity of solving (2.31) in second-order cone form is O([GKP+

GK+4N]3.5) [34]. Note that it is less than the worst-case complexity of the HB-CPS-

AM algorithm.
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2.5.2 Hybrid Beamforming with Two-Bit Phase Shifters

Practical RF phase shifters usually have discrete set of phase angles. Using small

number of bit values for the phase shifters is advantageous in terms of cost, hardware

complexity and accuracy. It turns out that the beamformer design has an important

simplification when two-bit RF phase shifters are used. This is due to the fact that

for two-bit case, the discrete constraints can be written in terms of continuous linear

equality and inequalities. This is unique to the two-bit case and may not be extended

to higher bits easily.

In two-bit phase system, there are four possible discrete phase angles for wkn,p/wkn,1 ,

p = 2, ..., P, n = 1, ...,K , k = 1, ...G, i.e., {1, j,−1,− j}.

The QoS-aware SWIPT optimization problem for this hybrid structure can be ex-

pressed as,

min
{wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

wH
k wk (2.33a)

s.t.
wkn,p

wkn,1
∈ {1, j,−1,− j}, p = 2, ..., P, n = 1, ...,K, k = 1, ...,G (2.33b)

(2.21c-f) . (2.33c)

The above problem is not convex. Furthermore, it has a combinatorial nature. By
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introducing Wk = wkwH
k , it can be written as,

min
{Wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} (2.34a)

s.t.
Wkn,n(p, 1)
Wkn,n(1, 1)

∈ {1, j,−1,− j}, p = 2, ..., P, n = 1, ...,K, k = 1, ...,G (2.34b)

Tr{RiWk} − γi

∑
l,k

Tr{RiWl} ≥ γiσ
2
I,iυi + γiσ

2
A,i (2.34c)

G∑
k=1

Tr{RiWk} ≥
µi

ξi
κi − σ

2
A,i (2.34d)


υi − 1 1

1 κi − 1

 � 0, ∀ i ∈ Gk, ∀ k, l ∈ {1, ...,G} (2.34e)

G∑
k=1

Tr{Wk} ≤ Pmax (2.34f)

Wk � 0 (2.34g)

rank(Wk) = 1, k = 1, ...,G. (2.34h)

The optimization problem in (2.34) is still nonconvex due to (2.34b) and (2.34h).

Lemma 2.4: The constraints in (2.34b) can be expressed as linear equality and in-

equalities as follows,

−Wkn,n(1, 1)
√

2
≤ Re(Wkn,n(p, 1)e

jπ/4) ≤
Wkn,n(1, 1)
√

2
(2.35a)

−Wkn,n(1, 1)
√

2
≤ Im(Wkn,n(p, 1)e

jπ/4) ≤
Wkn,n(1, 1)
√

2
(2.35b)

Wkn,n(p, p) = Wkn,n(1, 1), p = 2, ..., P, n = 1, ...,K, k = 1, ...,G. (2.35c)

Proof: |Wkn,n(p, 1)| = Wkn,n(p, p) = Wkn,n(1, 1) from the rank constraints in (2.34h)

and (2.35c). Hence, (Re(Wkn,n(p, 1)e jπ/4))2 + (Im(Wkn,n(p, 1)e jπ/4))2 = Wkn,n(1, 1)2.

In addition, (Re(Wkn,n(p, 1)e jπ/4))2 ≤ Wkn,n(1, 1)2/2 and (Im(Wkn,n(p, 1)e jπ/4))2 ≤

Wkn,n(1, 1)2/2 by (2.35a-b). It turns out that (2.35a-c) imply that Re(Wkn,n(p, 1)e jπ/4) =

±Wkn,n(1, 1)/
√

2 and Im(Wkn,n(p, 1)e jπ/4) = ±Wkn,n(1, 1)/
√

2. As a result,

Wkn,n(p, 1)/Wkn,n(1, 1) ∈ {1, j,−1,− j} which is the condition in (2.34b). �

When (2.34b) is replaced by (2.35a-c), the problem in (2.34) can be solved by iterative

semidefinite programming using the same approach in the previous section. Hence,
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AM algorithm is used for the two-bit hybrid beamformer design. At the qth iteration,

the following semidefinite programming problem is solved,

min
{Wk }

G
k=1,{υi,κi}

N
i=1

G∑
k=1

Tr{Wk} +

G∑
k=1

ζk(Tr{W(q−1)
k }Tr{Wk} − Tr{W(q−1)

k Wk})

(2.36a)

s.t. (2.34c-g), (2.35a-c) . (2.36b)

The steps for the proposed two-bit hybrid beamformer algorithm can be presented as

follows.

Algorithm 2.4: Hybrid Beamforming for SWIPT in Multi-Group Multicasting

Systems with Two-Bit Phase Shifters (HB-TBPS)

Let λ1(W) and u1(W) denote the maximum eigenvalue and the corresponding eigen-

vector of the Hermitian symmetric matrix W, respectively.

Initialization: q = 0,

Set ζ1, ..., ζG > 0 and {W(0)k }
G
k=1 to zero.

Iterations: (q→ q + 1)

1) Solve (2.36) for {{W(q)k }
G
k=1, {υ

(q)
i , κ

(q)
i }

N
i=1} while fixing {W(q−1)

k }Gk=1.

2) for k = 1 : G

If rank(W(q)k ) = 1 or
λ1(W(q)k

)

Tr{W(q)
k
}
≥ βk

λ1(W(q−1)
k
)

Tr{W(q−1)
k
}

(improved solution), where βk > 1 is a

proper value (Ex: βk = 1.2), keep the value of ζk same. Otherwise, increase ζk (Ex:

ζk → 2ζk).

3) Terminate if the maximum iteration number is reached, q = qmax , or∑G
k=1(Tr{W(q)k })

2 − Tr{W(q)k

2
} ≤ ε for sufficiently small ε > 0.

End:

4) for k = 1 : G

If rank(W(q)k ) = 1, take the candidate beamformer weight vector for the k th multicast

group, w′k , as
√
λ1(W(q)k )u1(W(q)k ). Otherwise, select the elements of the candidate
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beamformer weight vector as,

w′kn,1 =

√
W (q)kn,n

(1, 1)e j∠(W (q)
kn,1
(1,1)/W (q)

k1,1
(1,1))

(2.37a)

w′kn,p = w′kn,1 e j θ̂(W (q)
kn,n
(p,1)/W (q)

kn,n
(1,1))

, p = 2, ..., P, n = 1, ...,K (2.37b)

where θ̂(W (q)kn,n
(p, 1)/W (q)kn,n

(1, 1)) is the quantized angle such that

θ̂(W (q)kn,n
(p, 1)/W (q)kn,n

(1, 1)) ∈ {0, π/2, π, 3π/2}.

5) Take the PS ratios as ρ′i =
κ
(q)
i

υ
(q)
i +κ

(q)
i

, i = 1, ..., N .

6) Define ak,i = |w′k
Hhi |

2 and πk = | |w′k | |
2
2 . Solve (2.20) and obtain the beamforming

weight vectors as √ckoptw′k .

In the worst case, (2.36) requires O(
√

GKP + 2Nlog(1/ε)) iterations using interior

point methods where ε is the accuracy of the solution at termination. Each iteration

requires at most O((GK2P2+2N)3+ (GK2P2+2N)(2N+1+5GK(P−1))) arithmetic

operations [25].

2.6 Simulation Results

The proposed algorithms for antenna selection (AS-FPP) and hybrid beamforming

(HB-CPS-AM, HB-CPS-FPP, HB-TBPS) are implemented using convex program-

ming solver CVX [96]. In addition, full digital beamformer (FDB) which uses a

separate RF chain for each antenna is presented as a baseline scheme. Algorithm

2.1 without antenna selection is implemented to obtain FDB. The algorithms are

tested for different channel models and the results are obtained by averaging 100

feasible random channel realizations. The maximum allowable power at the base sta-

tion is Pmax = 3 W. Antenna and ID noise variances for each user are equal, i.e.,

σ2
A = σ2

I = −40 dBm. The signal attenuation from the base station to all users is

60 dB. The energy conversion efficiency at the EH of all users are selected as ξ = 1.

SINR and harvested power thresholds for each user are set to be the same, i.e., γi = γ

and µi = µ for i = 1, ..., N for simplicity.

The parameters of the proposed algorithms are selected as follows. Maximum itera-

tion number, qmax for each algorithm is taken as 30, where q1,max = q2,max = 15 for
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AS-FPP. Initial exact penalty coefficients, ζ , {ζk}
G
k=1 are set to 1. Penalty coefficient

for the slack variables, α, in FPP-SCA based algorithms (AS-FPP, HB-CPS-FPP) is

selected as 10 in accordance with [34].

2.6.1 Comparison of AS-FPP with Exhaustive Search and Random Antenna

Selection

In the first experiment, there are G = 2 multicast groups with two users in each

group, i.e., N = 4. The number of transmit antennas is M = 10. The SINR and

harvested power thresholds are γ = 0 dB and µ = −30 dBm, respectively. Rayleigh

fading channel model is assumed. Fig. 2.3 shows the transmitted power for AS-FPP,

FDB, exhaustive search (ES) which tries all antenna subset selections and random

antenna selection (RAS) for different number of selected antennas. In RAS method,

L antennas are randomly selected out of M = 10 antennas and Phase 2 of the AS-

FPP algorithm is implemented with the selected antennas. As it is seen in Fig. 2.3,

the search procedure introduced by the antenna selection coefficients, bm, in Phase

1 of AS-FPP is more effective in comparison to RAS. In fact, the proposed AS-FPP

introduces approximately 2 dBW power gain for L = 4. As the number of selected

antennas, L, increases, the performance gap decreases since the likelihood of having

good channels for random selection increases. In addition, the performance loss in

comparison to exhaustive search is less than 0.8 dB for all points.
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Figure 2.3: Transmitted power for FDB, AS-FPP, ES and RAS in two-group multi-

casting scenario.
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Figure 2.4: Transmitted power for FDB, AS-FPP and RAS in three-group multicast-

ing scenario.

In Fig. 2.4, there are M = 32 antennas for three-group multicasting scenario (G = 3)

with two users in each group, namely N = 6. Similar to Fig. 2.3, AS-FPP performs

much better than RAS. The required power for µ = −25 dBm is larger than that of

µ = −30 dBm as expected.

2.6.2 Comparison of Antenna Selection with the Hybrid Beamformers

In this part, the proposed beamforming methods, namely AS-FPP, HB-CPS-AM,

HB-CPS-FPP, HB-TBPS, and FDB are compared. The first three beamformers are

continuous-phase whereas HB-TBPS is a two-bit discrete-phase beamformer. Sev-

eral experiments are performed and some interesting characteristics of these methods

are presented in the following part.

Two-Group Multicasting Scenario: Two-group multicasting scenario, G = 2, is con-

sidered and there are two users in each multicast group, i.e., N = 4. The number of

RF chains per each multicast stream is set to K = 2 for hybrid beamformers. Hence,

the total number of RF chains is GK = 4. The same number of RF chains and anten-

nas are used for both antenna selection and hybrid beamforming schemes for a fair

comparison. In this case, the number of selected antennas is L = GK = 4 whereas the

total number of antennas is M = KP = 2P. Note that the total number of antennas is

the same for FDB.
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In Fig. 2.5, all the proposed algorithms are compared in terms of the transmitted

power for different number phase shifters per RF chain, P. The channel is assumed to

be Rayleigh fading. The SINR and harvested power thresholds of the users are kept

constant at γ = 10 dB and µ = −30 dBm. Except P = 4, the required transmitted

power for AS-FPP is the largest among the proposed schemes. As P increases, the

performance gap between AS-FPP and hybrid beamformer algorithms increases. This

is due to the fact that AS-FPP uses only GK = 4 antennas out of M = 2P antennas

whereas hybrid beamformers employ all the antennas. Specifically, continuous-phase

hybrid beamformers require approximately 6.5 dBW less power while the gap be-

tween two-bit hybrid beamformer and antenna selection is approximately 5 dBW for

P = 16.

Note that both HB-CPS-AM and HB-CPS-FPP perform almost the same and require

approximately 1 dBW additional transmitted power compared to FDB. Although the

order of worst-case computational complexity of HB-CPS-FPP is less than that of

HB-CPS-AM, it is observed that the required time is higher for some scenarios.

As shown Fig. 2.5, the power difference between continuous and two-bit discrete-

phase hybrid beamformers does not exceed 1.6 dBW for all P values showing the

effectiveness of the two-bit phase shifters in hybrid beamformers. In this part, the pro-

posed two-bit discrete-phase hybrid beamformer, HB-TBPS, is also compared with

the beamformer obtained from continuous-phase hybrid beamformer through quanti-

zation (QHB). The beamformer weight vector is obtained by HP-CPP-AM algorithm

and then the phase terms are quantized by two bits as in (2.37a-b). Note that the

maximum power of the quantized beamformer is taken as Pmax = 100 to prevent any

feasibility problem. As it is seen in Fig. 2.5, the trivial quantization method performs

worse than HB-TBPS showing the necessity of a separate design for discrete-phase

beamformers.

In Fig. 2.6, the same experiment in Fig. 2.5 is repeated for mmWave channel with

limited multipath components. The geometric channel model in [97] is adopted with

Np = 15 paths for a uniform linear array (ULA), i.e.,

hH
i =

√
M

PL Np

Np∑
np=1

αi
np

aH(φi
np
) (2.38)
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Figure 2.5: Comparison of antenna selection and hybrid beamformers for Rayleigh

fading channel with G = 2.

where PL and αi
np

denote the path loss and the strength associated with the nth
p path

seen by the ith user, respectively. αi
np

is selected from complex circularly symmetric

Gaussian distribution with unit variance. a(φi
np
) is the array response vector for ULA,

i.e., a(φ) = 1/
√

M[ 1 e
2π
λ dsin(φ) ... e

2π
λ (M−1)dsin(φ)]T where φ is the azimuth angle. d

is the antenna spacing and it is taken as λ/2. φi
np

is selected independently from a

uniform distribution over [0, 2π]. As shown in Fig. 2.6, a similar characteristics is

observed as in Fig. 2.5.

Three-Group Multicasting Scenario: In this part, there are G = 3 multicast groups

and 2 users in each group (N = 6). The number of RF chains per each multicast

stream is selected as K = 3 for hybrid beamformers resulting GK = 9 RF chains. The

number of selected antennas is L = GK = 9 for antenna selection. The number of

antennas available at the base station is M = KP = 3P for all methods.

In Fig. 2.7, we consider the same experiment in Fig. 2.5 for P between 4 and 12.

Similar to Fig. 2.5, as P increases, the performance of AS-FPP gets worse relative

to other algorithms. Different from Fig. 2.5, it performs better than HB-TBPS for

P = 4 and P = 6. Hence, the difference between AS-FPP and HB-TBPS gets smaller

as G increases since the number of digital weights that can be adjusted is GK in the

proposed hybrid beamformer structure while it is G2K in antenna selection system.

One advantage of AS-FPP is that there is no direct link between the number of RF

chains and multicast groups. On the contrary, hybrid beamformers require RF chains
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Figure 2.6: Comparison of antenna selection and hybrid beamformers for mmWave

channel with G = 2.

as an integer multiple of the number of multicast groups.

In Fig. 2.8, the mmWave channel model in (2.38) is used. A very similar performance

is obtained for all the algorithms. Furthermore, the power gap between FDB and

hybrid beamformers which use continuous phase shifters is approximately 1 dBW as

in Fig. 2.5 and 2.6.

Feasibility Rate: Table 2.1 shows the number of feasible instances in 100 Rayleigh

fading random channel trials for different scenarios. The SINR threshold is γ = 10

dB. In all cases, as harvested power threshold increases, feasibility rate decreases. As

it can be seen from Table 2.1, feasibility becomes an important issue for small number

of phase shifters per RF chain, P. An important observation is that the feasibility rate

of HB-CPS-AM is higher than HB-CPS-FPP for small values of P. Note that, as it is

pointed previously the problem structure for continuous-phase hybrid beamformer is

inherently more suitable for HB-CPS-AM. The constraints in (2.22b) are linear and

hence do not require any modification for HB-CPS-AM. However, the corresponding

constraints in (2.28b) are approximated in the neighborhood of the previous iterant in

HB-CPS-FPP algorithm (2.31a).
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Figure 2.7: Comparison of antenna selection and hybrid beamformers for Rayleigh

fading channel with G = 3.

Table 2.1: Number of Feasible Instances in 100 Random Trials

G = 2, N = 4, K = 2 G = 3, N = 6, K = 3

P = 4 P = 6 P = 8 P = 10 P = 12 P = 4 P = 6 P = 8 P = 10 P = 12

FDB
µ = −30 dBm 99 100 100 100 100 100 100 100 100 100

µ = −25 dBm 83 100 100 100 100 77 100 100 100 100

AS-FPP
µ = −30 dBm 73 83 88 89 90 97 100 100 100 100

µ = −25 dBm 15 43 54 56 57 50 87 95 99 100

HB-CPS-AM
µ = −30 dBm 93 100 100 100 100 92 100 100 100 100

µ = −25 dBm 46 100 100 100 100 28 99 100 100 100

HB-CPS-FPP
µ = −30 dBm 88 100 100 100 100 72 97 100 100 100

µ = −25 dBm 45 99 100 100 100 26 99 100 100 100

HB-TBPS
µ = −30 dBm 63 98 100 100 100 51 100 100 100 100

µ = −25 dBm 15 93 99 100 100 2 86 97 100 100

2.7 Conclusion

In this chapter, antenna selection and hybrid beamforming based transmitter struc-

tures are proposed for the joint problem of SWIPT and multi-group multicast beam-

forming. Several algorithms are developed using efficient QCQP techniques. First, an

efficient algorithm for antenna selection is presented by expressing binary constraints

in terms of continuous variables. Absolute exact penalty function and FPP-SCA are

used to deal with the nonconvex constraints. It is shown that the proposed algorithm

performs very well in comparison to the random antenna selection scheme. A novel
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Figure 2.8: Comparison of antenna selection and hybrid beamformers for mmWave

channel with G = 3.

hybrid beamforming method is proposed as an alternative to the antenna selection.

Two new continuous-phase beamformers are presented. In this respect, the formula-

tion of the problem is adapted for AM and FPP-SCA techniques, respectively. Al-

though both methods are shown to perform similarly, the hybrid beamformer which

uses the AM has better feasibility rate. A special two-bit discrete-phase hybrid beam-

former is designed by converting the integer constraints into simple linear equality

and inequalities. This formulation is possible if semidefinite programming with AM

is used. This two-bit beamformer performs much better than the quantized form of

the continuous-phase beamformer. Furthermore, it results only moderate amount of

power loss compared to its continuous-phase counterpart.

The comparison of two competing techniques, namely antenna selection and hybrid

beamforming, revealed some interesting results. For small number of phase-shifter

per RF chain, P, antenna selection performs better than two-bit hybrid beamforming.

As the number of antennas increases, hybrid beamformer performs better since it

employs all the antennas.

45



46



CHAPTER 3

MAX-MIN FAIR RESOURCE ALLOCATION FOR SWIPT IN

MULTI-GROUP MULTICAST OFDM SYSTEMS

Simultaneous wireless information and power transfer (SWIPT) is considered for

multi-group multicasting OFDM systems. Each user has the energy harvesting ca-

pability through a power splitter (PS). The power and subcarrier allocation at the base

station is done such that the minimum signal-to-noise ratio (SNR) among the users

for each subcarrier is maximized while user needs for harvested power are satisfied.

The optimization of PS ratios in addition to resource allocation is realized in a joint

manner. It is shown that the problem can be cast in a convex optimization form for the

given subcarrier sets. In order to determine the subcarrier sets, an efficient subcarrier

allocation algorithm is proposed. It is shown that the proposed method performs very

close to the exhaustive search which gives the optimum solution.

3.1 Related Works and Contributions

In this chapter, resource allocation for multi-group multicasting OFDM systems is

considered where a subcarrier assigned to a multicast group serves all the users in

that group. In resource allocation, it is possible to have some users with relatively

poor channel conditions that may not be assigned with sufficient subcarriers. Hence,

enforcing fairness among the users is an important problem that should be addressed

[43], [44], [45]. Different from the conventional approach which considers the sum-

rate fairness, we maximize the minimum SNR for each subcarrier using the same

motivation in [46], [47]. Unsatisfactory SNR values for some subcarriers degrade

the system efficiency [46] indicating the importance of balanced subcarrier SNRs.
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Per-subcarrier SNR fairness leads to a reliable communication with improved qual-

ity of service (QoS). In addition to per-subcarrier fairness, subcarrier need for each

multicast group is considered in the proposed design.

SWIPT has been considered for OFDM systems in several recent works [1], [15],

[16], [17], [18]. In this chapter, PS technique is considered where each user splits the

received OFDM signal into two, one for information decoding (ID) and the other for

energy harvesting (EH). This scheme has the advantage that all the subcarriers can be

used for EH [16]. For ID, only assigned subcarriers for each group are used.

The joint optimization of resource allocation and PS ratios for multi-group multicast-

ing is not considered in the literature before and it is a difficult combinatorial problem.

In this chapter, a novel approach based on maximizing the minimum SNR among all

subcarriers considering the request of each multicast group is proposed. An effective

solution is obtained by dividing the problem in two parts. In the first part, subcarriers

are assigned to each group based on the user requests. A fairness based near-optimal

algorithm is proposed for the solution. The problem for the power allocation and

PS ratios is cast as a convex optimization problem given the subcarrier assignments.

Hence, optimum solution is guaranteed for the second stage. The proposed approach

is shown to perform very close to the joint optimum solution obtained with exhaustive

search (ES) while the computational complexity is decreased significantly.

3.2 System Model and Problem Formulation

We consider a multi-group multicasting OFDM-based system with a base station (BS)

and K users. The BS and the users are equipped with a single antenna. Assume that

there are G multicast groups, {G1, ...,GG}, where Gg denotes the gth multicast group

of users. The users in each group are interested in the same data stream and each user

listens to a single multicast, i.e., Gg
⋂

Gg′ = ∅ for g , g′. The total bandwidth of the

system is equally divided into N subcarriers and the set of all subcarriers is denoted by

N = {1, ..., N}. The power allocated to the nth subcarrier is denoted by pn, n = 1, ..., N

and the total transmission power is limited by Pmax , i.e.,
∑N

n=1 pn ≤ Pmax .

Each user has the energy harvesting capability. The received signal at the k th user
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is split into the energy harvester (EH) and the information decoder (ID) with the aid

of a PS device. A portion of the signal power denoted by 0 < ρk < 1 is transferred

to the ID while the remaining 1 − ρk portion is fed into the EH. Each subcarrier

can be allocated to only one multicast group of users and the users in each multicast

group can decode information only on its assigned subcarriers. On the other hand,

all the subcarriers can be used for energy harvesting at each user. Let hk,n denote the

channel power gain of the k th user on the nth subcarrier. The received signal on the

nth subcarrier for the k th user is thus given by,

yk,n =
√

hk,npnsn + nA
k,n, k = 1, ...,K, n = 1, ..., N (3.1)

where sn is the information signal transmitted on the nth subcarrier and nA
k,n is the

additive complex zero mean Gaussian noise on the nth subcarrier at the k th user’s

antenna. It is assumed that all information signals {sn}
N
n=1 have unit variance. The

variance of nA
k,n is denoted by σ2

k,n. The received signal at the ID of the k th user on

the nth subcarrier can be expressed as,

yI
k,n =

√
ρk(

√
hk,npnsn + nA

k,n) + nI
k,n (3.2)

where nI
k,n is the additive complex zero mean Gaussian noise introduced by the ID of

the k th user on the nth subcarrier. Its variance is δ2
k,n and it is independent of nA

k,n and

sn. The SNR of the k th user on the nth subcarrier is given by,

SNRk,n =
ρk hk,npn

ρkσ
2
k,n + δ

2
k,n

. (3.3)

The signal fed into the EH of the k th user on the nth subcarrier can be expressed as,

yE
k,n =

√
1 − ρk(

√
hk,npnsn + nA

k,n) (3.4)

Then, the power harvested at the k th user is given as Pk = ξk(1 − ρk)
∑N

n=1(hk,npn +

σ2
k,n), where 0 < ξk ≤ 1 is the energy conversion efficiency at the k th user. In this

chapter, the joint max-min fair resource allocation and PS problem is considered.

Hence, our aim is to find the best subcarrier assignment and power allocation scheme

together with PS ratios of the users in order to maximize the minimum SNR among

all users on each assigned subcarrier. In addition, each user has a minimum power
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requirement, denoted by µk , k = 1, ...,K , for EH. Let Ng denote the set of subcarriers

assigned to the gth multicast group. Thus, the joint optimization problem can be

stated as

max
{pn}Nn=1,{ρk }

K
k=1,{Ng}

G
g=1,t

t (3.5a)

s.t .
ρk hk,npn

ρkσ
2
k,n + δ

2
k,n

≥ t, ∀k ∈ Gg, ∀n ∈ Ng, ∀g (3.5b)

ξk(1 − ρk)

N∑
n=1
(hk,npn + σ

2
k,n) ≥ µk, ∀k (3.5c)

0 < ρk < 1, ∀k (3.5d)

|Ng | ≥ Lg, ∀g (3.5e)

pn ≥ 0, ∀n,
N∑

n=1
pn ≤ Pmax (3.5f)

where |Ng | shows the cardinality of the set Ng and Lg is the minimum number of

subcarriers for the gth multicast group of users. The constraints in (3.5e) guarantee

that subcarriers are allocated in a fair way according to the need of each multicast

group. Therefore, (3.5e) prevents some multicast groups with relatively poor channel

conditions from being ignored.

Finding the optimum solution of the problem in (3.5) is not an easy task due to the

combinatorial nature of the problem. The trivial approach is computationally very

expensive and requires brute-force search for the assignment of subcarriers to the

multicast groups. In this chapter, we propose a two-step approach for an efficient

solution. In the following section, it will be shown that the joint power allocation and

PS problem can be cast as a second order cone programming (SOCP) problem given

the subcarrier sets {Ng}
G
g=1. Hence, optimum solution is guaranteed for the predeter-

mined subcarrier sets. In Section 3.4, a suboptimal simple algorithm is presented for

subcarrier assignment.

3.3 Optimum Solution for the Given Subcarrier Assignment

If we assume that the subcarrier sets, {Ng}
G
g=1, are determined by some method or

given as a priori information, the problem in (3.5) reduces to the following optimiza-
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tion problem for power allocation and PS, i.e.,

max
{pn}Nn=1,{ρk }

K
k=1,t

t (3.6a)

s.t. (3.5b-d), (3.5f) (3.6b)

where {Ng}
G
g=1 are no more variables and (3.5e) is removed. (3.6) is not a convex

optimization problem in its current form. We will transform (3.6) into an equivalent

problem in the sense that the optimum solutions of both problems are the same. This

new SOCP formulation will be obtained by defining additional variables and some

transformations.

Note that (3.5b) is the only nonconvex constraint in (3.6). (3.5c) is a hyperbolic

constraint and it can be expressed in second order cone form which is convex as

follows [98], 









1 − ρk∑N

n=1(hk,npn + σ
2
k,n)√

2µk
ξk











2

≤ 1 − ρk +

N∑
n=1
(hk,npn + σ

2
k,n). (3.7)

For (3.5b), consider the equivalent reformulation of (3.6) where (3.5b) is expressed

as a convex constraint in (3.8b), i.e.,

min
{pn}Nn=1,{ρk,υk }

K
k=1,t̄

t̄ (3.8a)

s.t. hk,npnt̄ ≥ σ2
k,n + δ

2
k,nυ

2
k, ∀k ∈ Gg, ∀n ∈ Ng, ∀g (3.8b)

(3.5d), (3.5f), (3.7) (3.8c)

υk =
1
√
ρk
, ∀k (3.8d)

where t̄ corresponds to t−1 in (3.6). In the above problem, (3.8b) can be written as a

SOCP constraint as follows [98],



[ pn t̄

√
2δ2

k,n

hk,n
υk

√
2σ2

k,n

hk,n

]T






2
≤ pn + t̄. (3.9)

(3.8d) destroys the convexity of the problem in (3.8) and Theorem 3.1 shows a way for

casting (3.8) as a SOCP problem in an equivalent manner by defining new variables

{ωk}
K
k=1.
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Theorem 3.1: Let {{p(10)
nopt }

N
n=1, {ρ

(10)
kopt

, υ
(10)
kopt

, ω
(10)
kopt
}Kk=1, t̄

(10)
opt } be the optimum solution

of (3.10). Then {{p(8)nopt }
N
n=1, {ρ

(8)
kopt

, υ
(8)
kopt
}Kk=1, t̄

(8)
opt} is an optimum solution of (3.8)

where p(8)nopt = p(10)
nopt , n = 1, ..., N , ρ(8)kopt

= ρ
(10)
kopt

, k = 1, ...,K , and t̄(8)opt = t̄(10)
opt .

min
{pn}Nn=1,{ρk,υk,ωk }

K
k=1,t̄

t̄ (3.10a)

s.t. (3.9), (3.5d), (3.5f), (3.7), (3.10b)

υkωk ≥ 1, ∀k (3.10c)

ω2
k ≤ ρk, ∀k . (3.10d)

Proof : By (3.10c) and (3.10d), the optimum solution of (3.10) satisfies (υ(10)
kopt
)2 ≥

1
/
(ω
(10)
kopt
)2 ≥ 1

/
ρ
(10)
kopt

. By this bound, all the constraints of (3.8) are satisfied by

{{p(10)
nopt }

N
n=1, {ρ

(10)
kopt
}Kk=1, t̄

(10)
opt } where υk in (3.8) is set as υk = 1/

√
ρ
(10)
kopt

. Suppose that

the optimum objective value of (3.8) is smaller than that of (3.10), i.e., t̄(10)
opt . In this

case, this objective value can also be attained by (3.10) where all the constraints in

(3.10c) and (3.10d) are satisfied with equality, which corresponds to (3.8d). Hence

{{p(10)
nopt }

N
n=1, {ρ

(10)
kopt
}Kk=1, t̄

(10)
opt } is also an optimum solution of (3.8). �

Note that the constraints in (3.10c-d) are convex and they can be written as second

order cone constraints similar to (3.7) and (3.9). In this case, (3.10) can be solved

to find the optimum solution of (3.8) and hence (3.6). The worst-case computational

complexity of solving (3.10) in SOCP form is O
(
(

√∑G
g=1 |Gg | |Ng | + 5K + N + 1)(N+

3K + 1)2(5
∑G

g=1 |Gg | |Ng | + 14K + N + 1)
)

[98].

3.4 Subcarrier Assignment

In this section, an algorithm based on max-min fairness among the multicast groups

is proposed for subcarrier assignments as shown in Algorithm 3.1. This algorithm

assigns subcarriers to the groups according to channel gains in order to maximize the

minimum SNR per subcarrier while the subcarrier need of each group is considered.

Similar to the previous works in [99], [100], the minimum channel gain among the

users of each multicast group is considered as in line 1. This is due to the fact that the

user with minimum channel gain in each multicast group determines the minimum

SNR for each subcarrier assigned to that group. In the initialization of Algorithm

52



3.1, a request set for subcarriers, {I′g}
G
g=1 is constructed in line 3 by taking the first

Lg subcarrier indices corresponding to the largest channel gains. In the procedure

between the lines 5-26, each subcarrier is checked whether it is assigned to a group

which has no more than Lg subcarriers. If this is the case, then nothing is done since

the group cannot lend any subcarrier. Otherwise, the set Fn is constructed for that

subcarrier, whose elements are the groups which still need subcarrier allocation and

includes that subcarrier in their request set (line 7). If Fn is empty (Part A of the

algorithm), then the set D is constructed with groups whose needs cannot be realized.

If this set is not empty, the subcarrier n is allocated to the group with the maximum

channel gain in D (line 11 and 24). Otherwise, the channels of all the groups are

considered (line 13 and 24). If there is only one group in Fn, then the subcarrier n

is allocated to this group (line 16 and 24). If there are more than one group (Part

B of the algorithm), then the set Tg is constructed using the channel gains for the

subcarriers other than n. Its elements correspond to the subcarriers which are either

idle or assigned to a group whose requirements are satisfied more than necessary (line

18). The worst case channel conditions are checked for each group using the elements

in Tg set in the event that the subcarrier n is not allocated to that group (line 19). The

subcarrier n is allocated to the group with the worst case condition (line 20 and 24).

For the other groups, the required number of subcarriers to satisfy (3.5e) are included

to their request sets (line 21). The procedure between the lines 5-26 are repeated until

(3.5e) is satisfied for each group. Note that Algorithm 3.1 is designed to obtain a

feasible solution by satisfying (3.5e) (lines 9-11).

The solution of (3.5) can be found in two steps. First, the subcarrier sets {Ng}
G
g=1

are found by implementing Algorithm 3.1. Then, the convex optimization problem in

(3.10) is solved for {{pn}
N
n=1, {ρk}

K
k=1}.

Sorting operation determines the worst case computational complexity in Algorithm

3.1. In the simulations, it is observed that only a few iterations for line 4-27 are

needed for the algorithm to terminate due to enforced fairness to satisfy (3.5e). Since

sorting in line 19 is realized for N times, the worst case computational complexity of

Algorithm 3.1 is given approximately as O(GN2 log N) [101].
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3.5 Simulation Results

The second step of the proposed method (PM) is implemented using convex program-

ming solver CVX [96]. The PM is tested for randomly generated Rayleigh fading

channels with -40 dB path loss. The maximum power at the base station is Pmax = 1

W. Antenna and ID noise variances for each user and subcarrier are set at -80 dB. The

energy conversion efficiency at the EH of all users is selected as ξ = 0.9. The har-

vested power threshold for each user is set to be the same, i.e., µi = µ for i = 1, ..., N

for simplicity.

In the first experiment, the PM is compared with the exhaustive search (ES) and

random selection (RS). In Table 3.1, minimum SNRs for small scale scenarios are

presented for single random realization due to the extremely high complexity of ES.

In ES, the convex optimization problem (3.10) for all possible combinations of sub-

carrier allocations is solved and the minimum SNR for the best case is noted. Hence,

ES gives the optimum solution of the problem in (3.5), but its complexity is very high.

Since solving (3.10) dominates the computational complexity of PM, the complexity

of ES is given at least
∏G

g=1
(N−

∑g−1
j=0 Lj

Lg

)
(where L0 = 0) times the order of PM. In RS

approach, the subcarriers are randomly assigned and (3.10) is solved for each random

selection. The best result of 10 random allocations where (3.5e) is satisfied are given

in Table 3.1. Hence, the computational complexity of RS is approximately 10 times

greater than PM. As shown in Table 3.1, PM performs very close to the ES due to

the effectiveness of the fairness based Algorithm 3.1. At some scenarios, PM gives

the optimum solution of (3.5). Moreover, PM always performs better than RS and the

gap between them increases as the problem size increases.

In the second experiment, the number of subcarriers is taken as N = 36 and the

minimum number of subcarriers for each group is set as Lg = 6 for all the cases. The

results of PM and RS are obtained by averaging 100 random channel realizations. In

Fig. 3.1, harvested power threshold is constant at µ = 10µW. PM results significantly

larger minimum SNR compared to RS, reaching 6 dB SNR gain as G increases. It is

observed that the minimum SNR increases as G increases. This pattern is expected

due to the increased diversity for the channel gains used in Algorithm 3.1 and occurs

with a trade-off for the reduced number of subcarriers assigned to each group. As
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shown in Fig. 3.1, SNR increase saturates for high G.

In Fig. 3.2, harvested power threshold, µ is varied in [10 − 50]µW while the number

of users in each group is set as K/G = 4. PM again performs significantly better than

RS reaching 6 dB SNR gain for G = 5 and 6. As µ increases, the minimum SNR

decreases where the decrease becomes sharper after 40µW.

Table 3.1: Minimum SNR (in dB) for ES, PM, and RS

K = 2G K = 6G

µ = 10µW µ = 50µW µ = 10µW µ = 50µW

G = 2, N = 12,

L1 = 4, L2 = 6

ES 22.9253 18.7824 17.7832 12.7114

PM 22.8402 18.7775 17.7832 12.0107

RS 22.0213 17.0060 17.0742 12.0077

G = 3, N = 10,

L1 = 2,

L2 = 3, L3 = 3

ES 21.3965 21.5973 20.4585 14.4606

PM 21.3965 21.3271 20.0951 13.7069

RS 16.4344 20.8998 17.4180 11.2356

G = 4, N = 8,

L1 = 1, L2 = 1

L3 = 2, L4 = 2

ES 27.7030 25.5907 21.4508 16.4895

PM 27.7030 25.0281 21.2298 15.0438

RS 23.6696 18.5454 17.7935 7.0994
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Figure 3.1: Minimum SNR for µ = 10µW.
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Figure 3.2: Minimum SNR for K/G = 4.

3.6 Conclusion

In this chapter, the joint design of resource allocation and PS ratios have been consid-

ered for multi-group multicast OFDM systems. The problem is solved in two parts.

An efficient algorithm is proposed for subcarrier allocation as a first step. In the sec-

ond stage, the optimum power allocation and PS ratios are found by expressing the

problem in a convex form. The minimum SNR obtained by the complete procedure

is very close to the optimum solution which has extremely high complexity. More-

over, the proposed method performs significantly better than the random selection

approach.
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Algorithm 3.1 Subcarrier Assignment for Multi-Group Multicasting (SA-MGM)

1: Let h̃g,n denote the minimum of channel power gain for the nth subcarrier among

the users in the gth multicast group, i.e., h̃g,n = mink∈Gg
hk,n, g = 1, ...,G, n =

1, ..., N .

2: Set Ng = ∅ for g = 1, ...,G.

3: Construct the set Hg = {h̃g,1, ..., h̃g,N } for g = 1, ...,G. Let Ig(i) denote the

subcarrier index of the ith greatest element of Hg, g = 1, ...,G. Construct the sets

I′g = {Ig(1), ..., Ig(Lg)}, g = 1, ...,G.

4: repeat

5: for n = 1, ..., N do

6: if n ∈ Ng′ for some g′ where |Ng′ | > Lg′ or n < Ng, ∀g ∈ {1, ...,G} then

7: Construct the set Fn = {g | n ∈ I′g and |Ng | < Lg}.

8: if Fn = ∅ then

9: Construct D = {g | |Ng | < Lg and ∀n′ ∈ I′g, n′ ∈

Nğ for some ğ s.t. |Nğ | ≤ Lğ}.

10: if D , ∅ then

11: Set ĝ = argmax
g∈D

h̃g,n.

12: else

13: Set ĝ = argmax
g∈{1,...,G}

h̃g,n.

14: end if

15: else if |Fn | = 1 then

16: Set ĝ to the only element of Fn.

17: else

18: • ∀g ∈ Fn set Tg = { h̃g,n̆ | n̆ , n, n̆ ∈ Nğ for some ğ s.t. |Nğ | >

Lğ or n̆ < Nğ ∀ğ = {1, ....,G}}.
19: • Let Tg(i) denote the ith greatest element of Tg, g ∈ Fn.

20: • Set ĝ = argmin
g∈Fn

Tg(Lg − |Ng |).

21: •Update I′g ← I′g∪{n̆} for n̆ such that Tg(i) = h̃g,n̆, i = 1, ..., Lg−

|Ng |, for g ∈ Fn \ {ĝ}.

22: end if

A

B
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23: Update the subcarrier set of (g′)th multicast group as Ng′ ← Ng′ \ {n}

if n ∈ Ng′ for some g′.

24: Update the subcarrier set of (ĝ)th multicast group as Nĝ ← Nĝ ∪ {n}.

25: end if

26: end for

27: until |Ng | ≥ Lg, ∀g = {1, ...,G}
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CHAPTER 4

OPTIMUM QOS-AWARE BEAMFORMER DESIGN FOR FULL-DUPLEX

RELAY WITH SELF-ENERGY RECYCLING

In this chapter, quality of service (QoS)-aware beamformer design is introduced for

full-duplex wireless-powered relay with self-energy recycling. In the first phase of

communication, information signal is transmitted from the source to the relay. In

the second phase, the relay forwards this signal using beamforming while it harvests

energy via self recycling and from the source. The aim is to satisfy signal-to-noise

ratio (SNR) requirement of the destination with minimum transmission power from

the relay’s own battery. A closed-form solution for the optimum relay beamformer

is derived and the feasibility conditions are obtained. The effects of different system

parameters on the relay’s performance are discussed in the simulation results.

4.1 Introduction

In [19], a two-phase protocol is proposed for full-duplex WPR without any time

switching (TS) or power splitting (PS) device which enables uninterrupted informa-

tion transmission. This self-energy recycling based protocol and similar ones are

studied for different scenarios [4], [22], [61].

In this chapter, we consider the two-phase amplify-and-forward (AF) protocol in [19]

as shown in Fig. 4.1. In the first phase, information signal is transmitted from the

source (S) to the relay (R). Then, R forwards its received signal to the destination

(D) and harvests energy by using both the dedicated energy signal sent from S and

self-recycling. Since information reception and forwarding occur in different slots,

no self-interference cancellation is required in this scheme. Note that in [19], only
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one antenna is used at R for information reception while the remaining antennas are

not in use in the first phase. In this chapter, we modify the system such that all the

antennas of R are employed for better performance. In addition, we propose QoS-

aware design approach different from [19] which considers SNR maximization. The

design problem is cast to satisfy the SNR requirement of the destination using the

minimum amount of power from the relay’s battery with the help of harvested energy.

The main contributions of this chapter can be outlined as follows. First, the closed-

form optimum solution is derived for the QoS-aware beamformer design problem.

Compared to the SNR maximization problem in [19], the proposed design has two

main advantages. The problem in [19] imposes the constraint that the transmission

power of the relay is less than the harvested power. However, this is a strict and

usually unrealizable condition when the desired SNR of the destination is greater

than the one that can be supplied by the harvested power. Unlike [19], we find the

optimum relay beamformer including the cases which require more power than the

harvested. Furthermore, the amount of power required for the relay’s own battery is

found. Secondly, transmission power limit of the relay is not considered in [19]. In

order to be more practical, we introduce maximum power constraint to the QoS-aware

optimization problem. In addition to finding the closed-form optimum solution, we

derive feasibility conditions for the source power and the relay’s maximum power

limit. Simulation results show that energy harvesting assists the relay by reducing

the external power supply need. For most of the scenarios, transmission power is

greater than the harvested power showing the strictness of the constraint in [19] and

the importance of the proposed approach.

Figure 4.1: System model.
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4.2 System Model and Problem Formulation

As shown in Fig. 4.1, S and R are equipped with M and N + 1 antennas, respectively

whereas D has a single antenna. In the first phase, information signal is transmitted

from S to R employing all the antennas at S and R. Let H ∈ CM×(N+1) be the baseband

equivalent channel from S to R. Assuming that H is known at S and R, the optimal

transmit and receive beamformers are the left and right singular vectors corresponding

to the largest singular value of H, i.e. λH , respectively. If Ps denotes the transmission

power of S, the received signal at R in the first phase is given by,

yr,1 =
√

PsλH xs,1 + nr,1, (4.1)

where xs,1 is the information symbol sent by S and it is assumed to be circularly-

symmetric complex Gaussian distributed with zero mean and unit variance, i.e., xs,1 ∼

CN(0, 1). nr,1 is the noise at R after receive beamforming and nr,1 ∼ CN(0, σ2
r ).

In the second phase, the received signal in (4.1) is amplified and forwarded to D by

N transmitting antennas shown on the top of R in Fig. 4.1 with relay beamforming

vector vr ∈ C
N×1. The transmitted signal is given in vector form as follows,

yt = vr yr,1 = vr(
√

PsλH xs,1 + nr,1). (4.2)

Assuming that nr,1 is independent from the information symbol xs,1, the transmission

power of R, i.e. Pr , is given by,

Pr = | |vr | |
2(Psλ

2
H + σ

2
r ). (4.3)

If g ∈ CN×1 denotes the channel from transmitting antennas of R to D, the received

signal at D in the second phase is given by,

yd = gHyt + nd = gHvr(
√

PsλH xs,1 + nr,1) + nd (4.4)

where nd ∼ CN(0, σ2
d ) is the noise at D. Assuming that it is independent from the

information symbol and nr,1, the received SNR at D is given by,

SNRd =
Psλ

2
H |g

Hvr |
2

σ2
r |gHvr |

2 + σ2
d

. (4.5)

In the second phase, energy harvesting is done at the remaining single antenna of R.

Note that using only one antenna for energy harvesting requires only one rectifier at
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R and maximum number of antennas can be employed for an effective beam steering

towards D and energy harvesting antenna. In this phase, an energy-bearing signal

is sent from S to R and yt is used as an energy source. Let h ∈ CM×1 denote the

channel from S to the energy harvesting antenna of R. In this case, the optimal source

beamforming vector is
√

Psh/| |h| |. If the self-recycling channel from N transmitting

antennas to the energy harvesting antenna is denoted by f ∈ CN×1, the received signal

at R in the second phase is expressed as,

yr,2 =
√

Ps | |h| |xs,2 + fHyt + nr,2

=
√

Ps(| |h| |xs,2 + λHfHvr xs,1) + fHvrnr,1 + nr,2 (4.6)

where xs,2 ∼ CN(0, 1) denotes the symbol sent from S for energy harvesting. Let us

neglect the harvested energy from the noise terms nr,1 and nr,2 in accordance with

[19]. As shown in [19], the harvested power is maximized when xs,2 = xs,1e j∠fHvr . In

this case, the harvested power at R can be given by,

Ph = ηPs(| |h| | + λH |fHvr |)
2 (4.7)

where 0 < η ≤ 1 denotes the energy harvesting efficiency at R.

In this chapter, we adopt QoS-aware design approach for the relay beamformer vec-

tor, vr . The goal is to minimize the relay transmission power used by the relay’s own

battery, i.e., Pr − Ph, such that SNR requirement of the destination is satisfied. Ad-

ditionally, Pr should not exceed both the transmission power limit of the relay, i.e.,

Pmax , and the power budget which is the sum of the harvested power, Ph, and a con-

ventional power supply Pc. The optimization of vr for this design objective can be

stated as follows,

min
vr
| |vr | |

2(Psλ
2
H + σ

2
r ) − ηPs(| |h| | + λH |fHvr |)

2 (4.8a)

s.t.
Psλ

2
H |g

Hvr |
2

σ2
r |gHvr |

2 + σ2
d

≥ γ, (4.8b)

| |vr | |
2(Psλ

2
H + σ

2
r ) ≤ Pmax, (4.8c)

| |vr | |
2(Psλ

2
H + σ

2
r ) − ηPs(| |h| | + λH |fHvr |)

2 ≤ Pc (4.8d)

where γ is the target SNR for D. Note that the left side of (4.8d) is minimized by

the optimum solution of the reduced problem (4.8a-c). Hence, the optimum solution
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of (4.8) is the same as that of (4.8a-c) if it satisfies (4.8d). The problem in (4.8) can

be solved by considering (4.8a-c) and then checking (4.8d) for feasibility. If (4.8d)

is satisfied, then optimum and feasible solution is found for (4.8). Otherwise, the

problem (4.8) is infeasible.

4.3 Closed-Form Optimum Solution of (4.8)

In the following, we will ignore (4.8d) and find the optimum solution of (4.8a-c).

Then, we will check the feasibility of the problem (4.8) using this optimum solution.

In order to simplify the Kuhn-Tucker conditions for (4.8a-c), let us express the relay

beamformer vector as vr =
∑N

i=1 βie jθiΦi where βi ≥ 0, i = 1, ..., N and {Φi}
N
i=1 is an

orthonormal basis for CN×1 such that Φ1 =
f
| |f | | and Φ2 =

g−Φ1ΦH
1 g

| |g−Φ1ΦH
1 g| | . Then, we have

the following result.

Lemma 4.1: The optimum relay beamformer vector for (4.8a-c) is given in the form

vr = β1Φ1 + β2e j∠gH fΦ2, where β1 ≥ 0 and β2 ≥ 0.

Proof: First, let us express the problem (4.8a-c) in terms of {Φi}
N
i=1 as follows,

min
{βi≥0,θi}Ni=1

(Psλ
2
H + σ

2
r )

N∑
i=1

β2
i − ηPs(| |h| | + λH | |f | |β1)

2 (4.9a)

s.t.

�����gHf
| |f | |

β1e jθ1 +
gHg − gHΦ1ΦH

1 g
| |g − Φ1ΦH

1 g| |
β2e jθ2

����� ≥ √
γ̃ (4.9b)

(Psλ
2
H + σ

2
r )

N∑
i=1

β2
i ≤ Pmax (4.9c)

where γ̃ = γσ2
d/(Psλ

2
H −γσ

2
r ). Note that {βi}

N
i=3 do not affect the constraint (4.9b). It

is obviously seen that for optimum vr , {βi}
N
i=3 should be zero. Suppose that this is not

the case for the optimum solution. In this case, {βi}
N
i=3 can be set to zero by improving

the objective function without violating (4.9b) and (4.9c). Note that θ1 can be selected

as 0 since any phase rotation of vr does not change the optimality. Now, we will

prove that optimum θ2 is ∠gHf by contradiction. Suppose that {β?1 , β
?
2 , θ

?
2 , ∠g

Hf} is

optimum for (4.9). In this case, the left side of (4.9b) is strictly less than the following
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expression

|gHf |
| |f | |

β?1 +
gHg − gHΦ1ΦH

1 g
| |g − Φ1ΦH

1 g| |
β?2 . (4.10)

Note that both terms in (4.10) are positive. Let us consider an alternative solution like

{β?1 , β
?
2 , θ2 = ∠gHf}. Note that this solution aligns the second term with the first term

in (4.9b) and (4.9b) becomes equal to (4.10). Since (4.10) is strictly greater than
√
γ̃,

β?2 can be decreased until (4.10) is equal to
√
γ̃ without violating (4.9b) and (4.9c) .

However, this results a solution which is better than the optimum which contradicts

the optimality of θ?2 , ∠g
Hf. �

Now, let us express (4.9) in terms of β1 and β2 as follows,

min
β1,β2

b1β
2
1 + b2β

2
2 + b3β1 (4.11a)

s.t . a1β1 + a2β2 ≥
√
γ̃ (4.11b)

b2β
2
1 + b2β

2
2 ≤ Pmax (4.11c)

where a1 = |gHf |/| |f | |, a2 = (gHg−gHΦ1ΦH
1 g)/| |g−Φ1ΦH

1 g| |, b1 = (1−η | |f | |2)Psλ
2
H+

σ2
r , b2 = Psλ

2
H+σ

2
r , b3 = −2ηPs | |h| |λH | |f | | and the constant term in (4.9a) is ignored.

It is easily seen that the optimum β1 and β2 should be nonnegative for (4.11) since

a1 ≥ 0, a2 ≥ 0 and b3 < 0. Hence, the constraints β1 ≥ 0 and β2 ≥ 0 are not included

for simplicity. The Kuhn-Tucker necessary conditions for the optimum solution of

(4.11) are given by,

2b1β1 + b3 = µ1a1 − 2µ2b2β1 (4.12a)

2b2β2 = µ1a2 − 2µ2b2β2 (4.12b)

µ1 ≥ 0, µ2 ≥ 0 (4.12c)

µ1(a1β1 + a2β2 −
√
γ̃) = 0 (4.12d)

µ2(b2β
2
1 + b2β

2
2 − Pmax) = 0 (4.12e)

(4.11b), (4.11c) (4.12f)

where µ1 and µ2 are the Lagrange multipliers corresponding to (4.11b) and (4.11c),

respectively. Now, let us consider different cases for the conditions in (4.12).

Case 1: µ1 = 0, µ2 = 0.
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In this case, β1 and β2 are obtained from (4.12a-b) as β1 = −b3/(2b1) and β2 = 0.

Note that they should satisfy (4.12f) to be a candidate optimum solution.

Case 2: µ1 > 0, µ2 = 0.

In this case, by taking the ratio of both sides of (4.12a-b) and using the fact that

(4.11b) is satisfied with equality, we obtain β1 and β2 as follows,

β1 =
2a1b2

√
γ̃ − a2

2b3

2(a2
1b2 + a2

2b1)
, β2 =

2a2b1
√
γ̃ + a1a2b3

2(a2
1b2 + a2

2b1)
. (4.13)

Note that in deriving (4.13) it is assumed that a1 > 0 and a2 > 0. However, it can

be easily shown that (4.13) is also valid for other cases of a1 and a2. β1 and β2 given

in (4.13) present a candidate optimum solution of (4.11) if they satisfy (4.11c) (They

already satisfy (4.11b) since µ1 > 0.)

Case 3: µ1 = 0, µ2 > 0.

In this case, β2 = 0 by (4.12b). Since µ2 > 0, (4.11c) is satisfied with equality, i.e.,

β1 =
√

Pmax/b2. If β1 and β2 also satisfy (4.11b), they represent a candidate optimum

solution for (4.11).

Case 4: µ1 > 0, µ2 > 0.

In this case, both (4.11b) and (4.11c) are satisfied with equality. Hence, β2 = (
√
γ̃ −

a1β1)/a2 if a2 > 0. (If a2 = 0, then we obtain β2 = 0. In this case, either Case 2 or

Case 3 is valid.) If we insert this β2 into the equality β2
1 + β

2
2 = Pmax/b2, we obtain a

quadratic equation of β1. If it exists, for each positive root of this equation, we obtain

a candidate optimum solution for (4.11).

Let us construct the set B whose elements are the candidate {β1, β2} pairs given

in Case 1-4. If B , ∅, the optimum solution of (4.11) is given by {β?1 , β
?
2 } =

argmin
{β1,β2}∈B

(b1β
2
1+b2β

2
2+b3β1) and the optimum relay beamformer vector vr for (4.8a-c)

is v?r = β?1 Φ1 + β
?
2 e j∠gH fΦ2. If v?r satisfies (4.8d), it is the optimum solution of (4.8).

If not, then the problem (4.8) is infeasible. For the considered design, the channel

H should be available both at S and R whereas f and g should be estimated only by

R. In practice, the channel state information (CSI) can be acquired by pilot-assisted

reverse link channel training [19]. In addition, the optimum xs,2 = xs,1e j∠fHv?r = xs,1
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by ∠fHv?r = 0 and there is no need to send the angle information to S.

4.4 Feasibility Conditions

In the following part, we investigate the feasibility conditions and find the bounds

for Pmax and Ps such that (4.8) is feasible. For the problem (4.8) to be feasible,

(4.8a-c) should be feasible and the optimum solution of (4.8a-c) should satisfy (4.8d).

Now, let us consider the feasibility conditions for the problem (4.8a-c). (4.8a-c) is

feasible if and only if there exist β1 ≥ 0 and β2 ≥ 0 such that (4.11b) and (4.11c) are

satisfied simultaneously. In order to check the existence of such β1 and β2, consider

the following optimization problem,

max
β1,β2

a1β1 + a2β2 (4.14a)

s.t. b2β
2
1 + b2β

2
2 ≤ Pmax . (4.14b)

Note that the optimum β1 and β2 for (4.14) should be nonnegative since a1 ≥ 0 and

a2 ≥ 0. Moreover, if the optimum objective value is greater than or equal to
√
γ̃, then

we conclude that the problem (4.11a-c) and hence (4.8a-c) is feasible. Otherwise,

they are infeasible since it is impossible to find other β1 and β2 which satisfy (4.14b)

with greater objective value. The optimum solution of (4.14), {β∗1, β
∗
2}, is given by,

β∗1 =

√
Pmax

b2(a2
1 + a2

2)
a1, β∗2 =

√
Pmax

b2(a2
1 + a2

2)
a2. (4.15)

The feasibility condition for (4.8a-c) can be expressed as a1β
∗
1 + a2β

∗
2 ≥
√
γ̃ which is

equivalent to,

Pmax(a2
1 + a2

2) ≥ b2γ̃. (4.16a)

We can use this condition to find Ps for a given target SNR, γ, and Pmax to make the

problem feasible. The first condition on Ps for a given γ is Ps > γσ2
r /λ

2
H to make

γ̃ positive. For the other condition, note that a2
1 + a2

2 = | |g| |
2 and the only terms in

(4.16a) that depend on Ps are b2 and γ̃. If we write (4.16a) in terms of Ps we obtain,

Pmax | |g| |2 ≥
(Psλ

2
H + σ

2
r )γσ

2
d

Psλ
2
H − γσ

2
r

. (4.16b)
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Since the denominator in (4.16b) is positive by the first condition (Ps > γσ2
r /λ

2
H), we

can rearrange (4.16b) as follows,

(Pmax | |g| |2 − γσ2
d )λ

2
H Ps ≥ γσ

2
r (Pmax | |g| |2 + σ2

d ). (4.16c)

As seen from (4.16c), Pmax | |g| |2 > γσ2
d is required for the feasibility. Hence, the

problem (4.8a-c) is feasible if and only if the following conditions are satisfied, i.e.,

Pmax >
γσ2

d

| |g| |2
, (4.17a)

Ps >
γσ2

r

λ2
H

, Ps ≥
γσ2

r (Pmax | |g| |2 + σ2
d )

(Pmax | |g| |2 − γσ2
d )λ

2
H

. (4.17b)

The complete problem (4.8a-d) is feasible if (4.17) is satisfied and Pc is at least the

objective value found by the optimum solution of (4.8a-c). Hence, a constant power

source with a value greater than optimum value of (4.8a) is required by the relay for

a feasible solution.

4.5 Simulation Results

In the simulations, we set M = 4, η = 0.8, σ2
r = σ2

d = −100 dBW, Pmax = 0.1

W. We assume Rayleigh fading for the channels H and g with 60 dB path loss.

The loop channel f is assumed to be line-of-sight (LOS) and is modeled as f =√
β−1

f [ 1 e jπ sin θ e j2π sin θ ... e j(N−1)π sin θ ]T where β f is the path loss for f. In the

following figures, each point presents the average of randomly generated 1000 chan-

nels where θ for f is uniformly distributed in [0, 2π). Unless otherwise stated, Ps = 0

dBW, N = 4, γ = 10 dB and β f = 10 dB.

In Fig. 4.2-5, the transmission power of R, Pr , harvested power, Ph, and their differ-

ence Pr − Ph which is the objective function of our design are plotted by changing

Ps, N , γ and β f , respectively. Pr − Ph shows the extra power required at R for a

feasible design. Note that for the considered scenarios, it is almost always greater

than zero showing the necessity of additional power supply. When Pr − Ph > 0, it

is concluded that the maximum SNR obtained by the design in [19] is less than the

target SNR for the QoS-aware design. Our proposed design enables us to find the

optimum beamformer and the additional power for a given target SNR. Moreover, we

reduce the power requirement of R as much as possible by minimizing Pr − Ph.
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In Fig. 4.2, as the source power increases, Pr has an increasing pattern in general.

However, the increase in Ps helps R to harvest more energy by decreasing Pr − Ph.

Hence, our objective improves as Ps increases. Similarly, increasing the number of

antennas at the transmitter of R enables more energy harvesting after N = 4 as shown

in Fig. 4.3. Although Pr and Ph do not have a monotonic pattern, the required

power at R, Pr − Ph, decreases significantly as N increases and becomes negative for

N = 12. This means that the harvested power is more than the transmitted power.

The reason of the sharp increase in Pr and Ph from N = 10 to N = 12 is to make the

objective, Pr − Ph, as negative as possible for more power saving. Fig. 4.4 shows that

increasing target SNR for D, γ, increases both Pr and Ph. However, the increase of Ph

is negligible compared to Pr which increases Pr−Ph. Hence the required power at R’s

battery has been increased. Similarly, increasing path loss for the loop channel results

in more required power at R as shown in Fig. 4.5. However, after some point, the

increase saturates. This is due to the fact that the effect of self-recycling diminishes

and the path loss does not affect Ph considerably leaving only energy signal sent from

S for harvesting.
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Figure 4.2: Pr , Ph and Pr − Ph versus Ps.
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Figure 4.3: Pr , Ph and Pr − Ph versus N .

4.6 Conclusion

In this chapter, the QoS-aware beamformer design is proposed for full-duplex WPR

system with self-energy recycling. The objective is to minimize the power used by

the relay’s own battery such that the target SNR at the destination is satisfied under

the transmission power limit of the relay. The closed-form optimum solution and the

bounds for the source and maximum relay power are derived. The performance and

the advantages of the proposed design are shown in the simulations. In summary,

improving loop channel by increasing the number of antennas at the relay or decreas-

ing the path loss decreases the power need of the relay. In fact, it is possible to save

energy at some scenarios. Similarly, increasing source power improves the design

objective by assisting the relay more. On the other hand, the increase in target SNR

requires more additional power at the relay.
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CHAPTER 5

OPTIMUM CLOSED-FORM BEAMFORMERS FOR SELF-ENERGY

RECYCLING FULL-DUPLEX RELAY WITH A NEW POWER SPLITTING

PROTOCOL

This chapter considers wireless-powered amplify-and-forward relaying where the re-

lay harvests energy from the source and self-energy recycling. Two well-known pro-

tocols based on self-energy recycling and power splitting are investigated to present

the closed-form optimum solutions. A new protocol combining self-energy recycling

and power splitting is proposed to improve the energy efficiency and the signal-to-

noise ratio at the destination. This new protocol provides up to 3 dB signal-to-noise

ratio improvement. The transmit beamformer design for the multiple antenna relay

is laid out as an optimization problem. The joint optimization for beamformer de-

sign and power splitting ratio is considered for the power splitting based protocols.

The optimum closed-form solutions are obtained through signal-to-noise ratio maxi-

mization under the constraint that the transmitted power cannot exceed the harvested

power. Energy harvesting is due to a dedicated energy signal from the source and

the recycled transmitted signal of the relay. Phase alignment for the energy-bearing

signal is considered which has a better performance in comparison to non-aligned

energy signal. Furthermore, the joint optimum solutions for the beamformer and dis-

crete power splitting ratio are presented for the two power splitting based protocols.

Several simulations are done and the performances of different protocols and schemes

are compared.
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5.1 Related Works and Contributions

Simultaneous wireless information and power transfer (SWIPT) has been an appeal-

ing research topic in the context of wireless-powered relaying (WPR) in order to

improve the lifetime of the relaying system. The works in [5], [20], [50] studied

power splitting (PS) based SWIPT for wireless relaying whereas time switching (TS)

protocol is considered in [20], [51]. All of these works are based on half-duplex (HD)

relaying, where in the first phase, information and energy carrying RF signal is re-

ceived and in the second phase, information signal is forwarded to the destination.

Although HD relaying does not suffer from self-interference cancellation, it is ineffi-

cient in terms of spectral utilization compared to full-duplex (FD) relaying [22], [52].

FD relaying has gained great popularity in the context of SWIPT by using TS [53],

[54], [55] and PS [23], [49], [52], [56], [57], [58] protocols.

In the above FD works, self-interference is the main design challenge which is han-

dled by several analog, digital, and analog/digital self-interference cancellation tech-

niques [59], [60]. One interesting approach different from TS and PS protocols is to

take advantage of self-interference in self-energy recycling [59]. In [19], a two-phase

self-energy recycling protocol is proposed for FD WPR. In the first phase, the source

node transmits information signal to the relay. Then, the relay forwards the ampli-

fied signal to the destination in the second phase. At the same time, source transmits

an energy-bearing signal to the relay and relay harvests energy from this dedicated

signal as well as its self-interference loop channel. Since information transmission

and energy reception occur at the same slot, FD name is used for this scheme. In this

protocol, there are multiple-transmit antennas and a single receiving antenna at the

relay. The problem is to design relay transmit beamformer such that its transmission

power does not exceed the harvested power. Later, this idea is used in several works

including [4], [21], [22], [61], [62]. In particular, signal-to-noise ratio (SNR) max-

imization problem for this protocol is considered for a more general case in which

multiple receiving antennas are employed at the relay [4].

In this chapter, three SWIPT protocols are investigated. While the first two of these

protocols are known in the literature, the third protocol is proposed in this chapter in

order to improve the energy efficiency and the SNR at the destination. It is shown
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that this new protocol achieves up to 3 dB SNR gain in comparison to the previous

protocols. An important contribution in this chapter is the derivation of the closed-

form expressions for the optimum relay transmit beamformers. In addition, optimum

power splitting ratio is derived for the PS based protocols. While the optimum closed-

form solutions are presented for real-valued PS ratios, discrete optimum solutions are

also provided. Furthermore, the beamformer design problem is also considered for

the optimized energy-bearing signal for multiple-receive antenna relay by presenting

the closed-form solutions.

In the first part, we consider the same scenario in [4] where multiple-transmit and

multiple-receive antenna relay assists the source-destination communication. In [4],

the optimum solution of SNR maximization is found by solving a semidefinite pro-

gramming (SDP) solver whose complexity increases by the number of transmit anten-

nas. Furthermore, the number of variables is squared by matrix lifting which further

increases the computational complexity. If the solution is not rank one, then a rank re-

duction iterative procedure is required in order to extract the solution. In this chapter,

we first find the conditions which make the problem bounded and derive the closed-

form optimum solution without resorting to any numerical solver. This single-line

optimum solution is obviously more efficient compared to the approach in [4]. As

a second contribution, we optimize the energy-bearing signal transmitted from the

source. Using the optimum energy signal to increase the energy harvesting capability

enables the relay to provide higher SNR at the destination. In this chapter, we derive

the optimum closed-form solution for the optimized energy signal which is shown to

perform significantly better compared to the non-optimized energy signal.

In [4], PS based beamformer design is also investigated as a benchmark and the joint

optimization of the transmit beamformer vector and PS ratio is considered. The op-

timum solution is found by a full search over a single variable and a SDP problem is

solved at each iteration. Hence, it is a computationally very expensive approach in

general. In this chapter, we also present the closed-form optimum solution for this

problem.

In addition to the existing protocols, we propose a novel unified framework for SWIPT.

This new protocol combines PS and self-energy recycling. In the first phase of this
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protocol, source node transmits the information signal to the relay. The relay splits

the RF signal into two for information decoding and energy harvesting as in the con-

ventional PS protocol. In the second phase, the amplified signal is forwarded to the

destination while the energy is harvested at the multiple-receive antennas of the relay

using the dedicated energy signal from the source as well as the self-energy recy-

cling. We formulate the SNR maximization problem for the joint solution of the

transmit beamformer vector and PS ratio. Both non-optimized and optimized en-

ergy signals are considered. For the former case, we derive the closed-form optimum

solution while a near-optimum solution is presented for the latter case. In obtaining

near-optimum solution, we ignore a relatively small term in the constraint of the prob-

lem and find the optimum solution of the approximate problem. Then, we update the

solution such that the constraint is satisfied with the best objective value leading to a

close-to-optimum solution.

In all the above PS based design problems, it is assumed that PS ratio can take any real

value between zero and one, i.e., from a continuous set of PS ratios. In practice, PS

ratios can take discrete levels [1]. In [1], the design of discrete PS ratios is also con-

sidered in addition to the continuous one. In this chapter, we also study the discrete

PS ratio optimization together with the transmit beamformer vector for conventional

PS and the proposed self-energy recycling assisted PS protocol. For both protocols,

we present the joint optimum solution. Simulation results show that one can obtain a

very close performance to the real-valued PS case even when four level discrete PS is

used.

5.2 System Model and Problem Formulation

A multiple-antenna relay operating in full-duplex mode is considered for the trans-

mission of a source signal to a destination using the amplify-and-forward scheme

similar to [4]. As shown in Fig. 5.1, the source (S) and destination (D) nodes have

both single antenna while the energy harvesting relay (R) has multiple transmit and

receive antennas. Let Nt and Nr denote the number of transmitting and receiving

antennas at R, respectively. S transmits message signal to D with the help of R.

Quasi-static block fading channel model with perfect channel state information at R
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is assumed in accordance with the related works [4], [19]. As shown in Fig. 5.1,

hr ∈ C
Nr×1 denotes the baseband equivalent channel vector from S to the receiv-

ing antennas of R. hd ∈ C
Nt×1 is the channel vector from transmitting antennas of

R to D and Hrr ∈ C
Nr×Nt is the self-energy recycling loop channel matrix from Nt

transmitting antennas to Nr receiving antennas.

Figure 5.1: System model for self-energy recycling WPR.

Figure 5.2: Self-energy recycling protocol for WPR.

As shown in Fig. 5.2, information signal is transmitted from S to R in the first phase

which takes half of the complete cycle, i.e., T/2. The optimum receive beamformer

is the maximal ratio combiner, i.e. wr = hr/| |hr | |. After the receive beamforming,

the received signal at R is given by,

yr,1 =
√

Ps | |hr | |xs + nr,1 + nb, (5.1)

where Ps is the transmission power of S and xs is the information symbol sent by

S. xs is assumed to have unit power, i.e. E(|xs |
2) = 1. nr,1 is the additive complex

Gaussian noise at R after receive beamforming and nr,1 ∼ CN(0, σ2
r,1). nb is the noise

resulting from RF to baseband conversion with nb ∼ CN(0, σ2
b ).

In the second phase, the received signal in (5.1) is amplified and forwarded to D by Nt
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transmitting antennas with relay transmit beamforming vector wt ∈ C
Nt×1 as shown

in Fig. 5.2. The transmitted signal, yt , in vector form can be expressed as follows,

yt = wt yr,1 = wt
(√

Ps | |hr | |xs + nr,1 + nb
)
. (5.2)

Assuming that nr,1 and nb are independent from each other and the information sym-

bol xs, the transmission power of R is given by,

Pr = | |wt | |
2 (Ps | |hr | |

2 + σ2
r,1 + σ

2
b
)
. (5.3)

The received signal at D in the second phase is given by,

yd = hH
d yt + nd = hH

d wt
(√

Ps | |hr | |xs + nr,1 + nb
)
+ nd (5.4)

where nd ∼ CN(0, σ2
d ) is the additive complex Gaussian noise at D. Assuming that it

is independent from the information symbol and the other noise terms, the SNR at D

is given by,

SNRd =
Ps | |hr | |

2 |hH
d wt |

2

(σ2
r,1 + σ

2
b )|h

H
d wt |

2 + σ2
d

. (5.5)

In the second phase, R harvests energy from the received RF signal at its receiving

antennas. In this phase, an energy-bearing signal, xe, is transmitted from S to R. The

received signal at R is given as

yr,2 =
√

Pshr xe +Hrryt + nr,2 =
√

Pshr xe +
√

Ps | |hr | |Hrrwt xs

+Hrrwtnr,1 +Hrrwtnb + nr,2 (5.6)

where nr,2 ∼ CN(0, σ2
r,2INr ) is the additive complex Gaussian noise at the receiv-

ing antennas of R. Energy signal sent from S is assumed to have unit power, i.e.

E(|xe |
2) = 1. In this case, the harvested power at R is

Ph =η

(
Ps | |hr | |

2 + Ps | |hr | |
2 | |Hrrwt | |

2 + (σ2
r,1 + σ

2
b )| |Hrrwt | |

2 + Nrσ
2
r,2

)
, (5.7)

where 0 < η ≤ 1 denotes the energy harvesting efficiency.

In this chapter, we first consider the optimization problem to maximize the achievable

rate at D under the transmission power constraint at R similar to [4]. The harvested

power in (5.7) is assumed to be the only energy source at R. Hence, the transmission

power of R, Pr , cannot exceed the harvested power, Ph. Furthermore, maximization

of the achievable rate is equivalent to maximizing SNR at D which is the expression
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in (5.5). Since the only optimization variable is the transmit beamforming vector wt

and SNR in (5.5) is an increasing function of |hH
d wt |, the optimization problem can

be expressed as follows,

max
wt

|hH
d wt | (5.8a)

s.t . | |wt | |
2 − η | |Hrrwt | |

2 ≤
ηPs | |hr | |

2 + ηNrσ
2
r,2

Ps | |hr | |
2 + σ2

r,1 + σ
2
b

. (5.8b)

The problem in (5.8) is solved using SDP relaxation by expressing it in terms of a

positive semidefinite matrix X , wtwH
t in [4]. Although optimum solution is guar-

anteed, the number of complex variables has been increased from Nt to N2
t /2 in the

SDP formulation. More importantly, a SDP solver is required which has growing

complexity as Nt increases. In the following section, we will show that there is no

need for a numerical solver by deriving the closed-form optimum solution for the

problem in (5.8).

5.3 Closed-Form Optimum Solution of (5.8)

Before deriving the closed-form solution for (5.8), the following lemma is presented

in order to obtain a bounded problem.

Lemma 5.1: The problem in (5.8) is bounded if the matrix INt − ηHH
rrHrr is positive

definite.

Proof: Please see Appendix B.1 for the proof. �

The matrix INt − ηHH
rrHrr is invertible since all of its eigenvalues are assumed to

be positive for a bounded solution. In this case, we can introduce the optimization

variable w̃t , (INt − ηHH
rrHrr)

1/2wt and express (5.8) in terms of it as follows,

max
w̃t

|h̃H
d w̃t | (5.9a)

s.t. | |w̃t | |
2 ≤ γ. (5.9b)

where h̃d , (INt − ηHH
rrHrr)

−1/2hd and γ is defined in Appendix B.1. The optimum

solution of (5.9) is easily found as

w̃?
t =

√
γ

| |h̃d | |
h̃d . (5.10)
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As a result, the optimum relay transmit beamformer vector for (5.8) is given as

w?
t =

√
γ

hH
d (INt − ηHH

rrHrr)
−1hd
(INt − ηHH

rrHrr)
−1hd (5.11)

In the next section, we will consider the same optimization problem by designing

dedicated energy-bearing signal xe in order to improve the energy efficiency.

5.4 Beamforming Optimization for the Optimum Energy-Bearing Signal

In [4], harvested power expression in (5.7) is obtained by assuming that the energy-

bearing signal xe is independent from the information signal xs. However, a power

efficient approach is to adjust the phase of xe to match it to xs such that the harvested

power is maximized for the given yr,2 expression in (5.6). Following an approach sim-

ilar to the one in [19], the power harvested from the term
√

Pshr xe+
√

Ps | |hr | |Hrrwt xs

in (5.6) is maximized when xe = xse j∠hH
r Hrrwt . In this case, the harvested power at R

is given by,

Ph =η

(
Ps | |hr | |

2 + Ps | |hr | |
2 | |Hrrwt | |

2 + 2Ps | |hr | | |hH
r Hrrwt |

+ (σ2
r,1 + σ

2
b )| |Hrrwt | |

2 + Nrσ
2
r,2

)
. (5.12)

Now, SNR maximization problem in (5.8) can be expressed using the updated Ph in

(5.12) as follows,

max
wt

|hH
d wt | (5.13a)

s.t. γ1
(
| |wt | |

2 − η | |Hrrwt | |
2) − 2ηPs | |hr | | |hH

r Hrrwt | ≤ γ2 (5.13b)

where γ1 , Ps | |hr | |
2 + σ2

r,1 + σ
2
b and γ2 , ηPs | |hr | |

2 + ηNrσ
2
r,2. In order to simplify

the optimization problem in (5.13), let us introduce w̃t , (INt − ηHH
rrHrr)

1/2wt as in

the previous section and reformulate (5.13) as follows,

max
w̃t

|h̃H
d w̃t | (5.14a)

s.t. γ1 | |w̃t | |
2 − 2ηPs | |hr | | |h̃H

r w̃t | ≤ γ2. (5.14b)

where h̃d is the same as in (5.9) and h̃r , (INt − ηHH
rrHrr)

−1/2HH
rrhr . In order to sim-

plify the Kuhn-Tucker conditions for (5.14), let us express w̃t as w̃t =
∑Nt

n=1 βne jθnΦn
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where βn ≥ 0, n = 1, ..., Nt and {Φn}
Nt

n=1 is an orthonormal basis for CNt×1 such

that Φ1 = h̃r/| |h̃r | | and Φ2 = (̃hd − Φ1ΦH
1 h̃d)/| |h̃d − Φ1ΦH

1 h̃d | |. Then, we have the

following result.

Lemma 5.2: The optimum relay beamformer vector for (5.14) is given as w̃t = β1Φ1+

β2e j∠h̃H
d

h̃r Φ2, where β1 ≥ 0 and β2 ≥ 0.

Proof: Please see Appendix B.2 for the proof. �

Now, let us express (5.14) in terms of β1 and β2 as follows,

max
β1,β2

a1β1 + a2β2 (5.15a)

s.t. γ1β
2
1 + γ1β

2
2 − 2ηPs | |hr | | | |h̃r | |β1 ≤ γ2 (5.15b)

where a1 = |h̃H
d h̃r |/| |h̃r | |, a2 = (̃hH

d h̃d − h̃H
d Φ1ΦH

1 h̃d)/| |h̃d − Φ1ΦH
1 h̃d | |. It is easily

seen that the optimum β1 and β2 should be nonnegative for (5.15) since a1 ≥ 0,

a2 ≥ 0 and −2ηPs | |hr | | | |h̃r | | < 0. Hence, the constraints β1 ≥ 0 and β2 ≥ 0 are

not included for simplicity. The Kuhn-Tucker necessary conditions for the optimum

solution of (5.15) are given by,

a1 = 2µγ1β1 − 2µηPs | |hr | | | |h̃r | |, (5.16a)

a2 = 2µγ1β2, (5.16b)

µ ≥ 0, µ(γ1β
2
1 + γ1β

2
2 − 2ηPs | |hr | | | |h̃r | |β1 − γ2) = 0 (5.16c)

γ1β
2
1 + γ1β

2
2 − 2ηPs | |hr | | | |h̃r | |β1 ≤ γ2 (5.16d)

where µ is the Lagrange multiplier corresponding to (5.15b). Note that there are

two cases for µ which are µ = 0 and µ > 0. First, assume that µ = 0 for the

optimum solution. This is impossible since both a1 = 0 and a2 = 0 cannot be zero

by a2
1 + a2

2 = | |h̃d | |
2. Hence, it is concluded that µ > 0 and (5.16d) is satisfied with

equality by (5.16c). By (5.16a-b), we obtain β1 = a1/(2γ1µ) + ηPs | |hr | | | |h̃r | |/γ1 and

β2 = a2/(2γ1µ). If we insert these into the equality γ1β
2
1+γ1β

2
2−2ηPs | |hr | | | |h̃r | |β1 =
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γ2, we obtain the optimum β1 and β2 as follows,

β?1 =
a1

√
η2P2

s | |hr | |
2 | |h̃r | |

2 + γ1γ2

γ1

√
a2

1 + a2
2

+
ηPs | |hr | | | |h̃r | |

γ1
(5.17a)

β?2 =
a2

√
η2P2

s | |hr | |
2 | |h̃r | |

2 + γ1γ2

γ1

√
a2

1 + a2
2

(5.17b)

Using (5.17a-b) and Lemma 5.2, the optimum relay transmit beamformer weight vec-

tor for (5.13) is given by

w?
t = (INt − ηHH

rrHrr)
−1/2(β?1 Φ1 + β

?
2 e j∠h̃H

d
h̃r Φ2). (5.18)

(5.11) and (5.18) are the optimum beamformers for non-optimized and optimized

energy-bearing signals for the first SWIPT protocol in Fig. 5.2. In the following sec-

tion, the closed-form optimum transmit beamformer is derived for the second SWIPT

protocol, namely, PS protocol.

5.5 Conventional Power Splitting Protocol

In [20], PS protocol is considered for a single antenna relay. This problem is gener-

alized for multiple transmit and receiving antenna case in [4]. In order to tackle the

joint optimization of the PS coefficient and relay transmit beamformer, full search is

performed with respect to the PS coefficient and a semidefinite programming problem

with Nt Nr × Nt Nr matrix variable is solved for each PS coefficient. This procedure

has a high computational complexity especially when Nt and Nr are relatively big.

In this section, we will derive the closed-form optimum solution for the PS protocol

considered in [4]. The conventional PS protocol is given in Fig. 5.3.

As shown in Fig. 5.3, there are two phases in each block. In the first phase of duration

T/2, source signal is sent from S to R. The received signal at the antennas of R is

given by

yr,1 =
√

Pshr xs + nr,1. (5.19)

The received signal yr,1 is split into two for information decoding and energy harvest-

ing. If 0 ≤ ρ < 1 denotes the fraction of power for energy harvesting, the signal at
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Figure 5.3: Conventional PS protocol for WPR.

the energy harvesting receiver is given by,

yE
r,1 =

√
ρ
(√

Pshr xs + nr,1
)
. (5.20)

In this case, the total harvested power at R in the first phase is given by

Ph,1 = ηρ
(
Ps | |hr | |

2 + Nrσ
2
r,1

)
. (5.21)

The received signal at the information decoder after optimum receive beamforming

by wr = hr/| |hr | | is,

yI
r,1 =

√
1 − ρ

(√
Ps | |hr | |xs + ñr,1

)
+ nb. (5.22)

Here, ñr,1 , wH
r nr,1 and it has the variance σ2

r,1. nb is the additive complex Gaussian

noise due to baseband conversion. In the second phase of duration T/2, information

signal yI
r,1 is amplified and forwarded to D by the transmit beamformer wt and the

transmitted signal is given as follows,

yt = wt y
I
r,1 = wt

(√
1 − ρ

(√
Ps | |hr | |xs + ñr,1

)
+ nb

)
. (5.23)

The transmission power of the relay is given as

Pr = | |wt | |
2
(
(1 − ρ)Ps | |hr | |

2 + (1 − ρ)σ2
r,1 + σ

2
b

)
. (5.24)

In the second phase, the received signal at D is given as follows,

yd = hH
d wt

(√
1 − ρ

(√
Ps | |hr | |xs + ñr,1

)
+ nb

)
+ nd . (5.25)
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Using (5.25), SNR at D is written as

SNRd =
Ps | |hr | |

2 |hH
d wt |

2

σ2
r,1 |h

H
d wt |

2 +
σ2
b
|hH

d
wt |

2+σ2
d

1−ρ

. (5.26)

The SNR maximization problem for the conventional PS is formulated as follows,

max
wt,ρ

Ps | |hr | |
2 |hH

d wt |
2

σ2
r,1 |h

H
d wt |

2 +
σ2
b
|hH

d
wt |

2+σ2
d

1−ρ

(5.27a)

s.t. | |wt | |
2
(
Ps | |hr | |

2 + σ2
r,1 +

σ2
b

1 − ρ

)
≤ η

ρ

1 − ρ
(
Ps | |hr | |

2 + Nrσ
2
r,1

)
(5.27b)

0 ≤ ρ < 1. (5.27c)

Let us express wt as wt =
∑Nt

n=1 βne jθnΨn where βn ≥ 0, n = 1, ..., Nt and {Ψn}
Nt

n=1

is an orthonormal basis for CNt×1 such that Ψ1 = hd/| |hd | |. Furthermore define

x ,
√

ρ
1−ρ in order to eliminate (5.27c) and simplify Kuhn-Tucker conditions. (5.27)

can be expressed in terms of {βn}
Nt

n=1 and x as follows,

max
{βn}

Nt
n=1,x

β2
1

δ1β
2
1 x2 + δ2β

2
1 + σ

2
d (x

2 + 1)
(5.28a)

s.t. σ2
b x2

Nt∑
n=1

β2
n + π1

Nt∑
n=1

β2
n − π2x2 ≤ 0. (5.28b)

where the following terms are defined for the ease of notation, i.e.,

δ1 = | |hd | |
2σ2

b, δ2 = | |hd | |
2(σ2

r,1 + σ
2
b ),

π1 = Ps | |hr | |
2 + σ2

r,1 + σ
2
b, π2 = η(Ps | |hr | |

2 + Nrσ
2
r,1) (5.29)

Note that 0 ≤ ρ < 1 region maps to 0 ≤ x < ∞ and the problem (5.28) is independent

of the sign of x. Hence, there is no constraint for the region of the introduced variable

x. The Kuhn-Tucker conditions necessitate the following constraints for the optimum

solution of (5.28), i.e.,

2σ2
d (x

2 + 1)β1

(δ1β
2
1 x2 + δ2β

2
1 + σ

2
d (x

2 + 1))2
= 2µ(σ2

b x2 + π1)β1 (5.30a)

2µ(σ2
b x2 + π1)βn = 0, n = 2, ..., Nt (5.30b)

µ ≥ 0, µ

(
σ2

b x2
Nt∑

n=1
β2

n + π1

Nt∑
n=1

β2
n − π2x2

)
= 0 (5.30c)
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where µ is the Lagrange multiplier corresponding to the inequality in (5.28b). Note

that µ should be strictly greater than zero for the optimum solution of (5.28). If µ = 0,

then β1 = 0 by (5.30a) and this results zero SNR as seen from (5.28a). Hence, µ > 0.

Using this fact and (5.30b), it is seen that βn = 0, n = 2, ..., Nt for the optimum

solution. Furthermore, the inequality in (5.28b) should be satisfied with equality by

(5.30c). Hence, σ2
b x2β2

1 + π1β
2
1 − π2x2 = 0. Using this, we obtain β2

1 =
π2 x2

σ2
b

x2+π1
. If we

insert this relation into (5.28a), the following unconstrained optimization problem is

obtained, i.e.,

max
x

x2

A4x4 + A2x2 + A0
(5.31)

where A4, A2, and A0 are defined as follows,

A4 = σ2
dσ

2
b + π2δ1, A2 = σ2

dσ
2
b + σ

2
dπ1 + π2δ2, A0 = σ2

dπ1 (5.32)

If we take the derivative of the objective function in (5.31) and equate it to zero, we

obtain the equation

A4x5 = A0x (5.33)

One of the critical points that satisfy (5.33) is x = 0 which corresponds to ρ = 0,

i.e., no energy harvesting. Hence, it results zero SNR as seen from (5.31). The other

critical point is the optimum solution and it is given as follows,

x? =
(

A0
A4

)1/4
(5.34)

Note that we are only interested in the range 0 ≤ x < ∞ for the critical points since

the objective in (5.31) is a function of x2 = ρ/(1− ρ). In this case, the optimum relay

transmit beamformer vector and PS ratio are given as follows,

w?
t = β

?
1 Ψ1 =

√
π2x?√

σ2
b (x

?)2 + π1 | |hd | |

hd, ρ? =
(x?)2

(x?)2 + 1
(5.35)

(5.35) gives the closed-form solution for the PS based protocol. In the following

section, a new SWIPT protocol is presented in order to improve the energy efficiency

as well as the SNR at the destination.
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Figure 5.4: Self-energy recycling assisted PS protocol for WPR.

5.6 Beamforming Optimization for the Self-Energy Recycling Assisted Power

Splitting Protocol

In this section, we propose a new protocol which is based on both conventional power

splitting relaying in [4], [20] and self-energy recycling. The motivation for this uni-

fied framework lies in the fact that the performance of conventional PS protocol falls

behind the self-energy recycling protocol considered in the previous section. In order

to improve PS protocol, we employ the receiving antennas of R in the second phase

different from the conventional protocol. In the conventional PS protocol in [4], R

harvests energy in the first phase only. In this section, we modify the conventional

PS protocol such that S sends an energy signal to R in the second phase as well and

self-energy recycling is taken into account in the design of the transmit beamformer

as shown in Fig. 5.4. In this case, the received signal at the receiving antennas of R

in the second phase is given by

yr,2 =
√

PshRxe +Hrryt + nr,2

=
√

Pshr xe +
√

1 − ρ
√

Ps | |hr | |Hrrwt xs +
√

1 − ρHrrwt ñr,1 +Hrrwtnb + nr,2.

(5.36)

In the following two subsections, we will consider the beamformer design for the

non-optimized and optimum energy-bearing signal, xe, respectively. Non-optimized

energy-bearing signal case leads to a simpler formulation and a single-line optimum

solution can be found. In case of optimized energy-bearing signal, a bisection search

is performed and a near-optimum solution is obtained. While the latter design is ex-

pected to perform better, it has an additional overhead and requires feedback signaling
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from R to S for phase alignment. Note that this overhead is small since it is required

to transfer only a single phase value as the channel varies.

5.6.1 Beamforming Design for the Non-Optimized Energy-Bearing Signal

In this part, we will assume that xe is independent from the information signal xs as

in Section 5.3. The harvested power at R in the second phase is given by

Ph,2 =η

(
Ps | |hr | |

2 + (1 − ρ)Ps | |hr | |
2 | |Hrrwt | |

2 + (1 − ρ)σ2
r,1 | |Hrrwt | |

2

+ σ2
b | |Hrrwt | |

2 + Nrσ
2
r,2

)
. (5.37)

The total available power for each transmission block is the summation of the har-

vested powers in the first and second phase, which is Ph,1 + Ph,2 where Ph,1 is given

in (5.21). Then the SNR maximization problem is formulated as follows,

max
wt,ρ

Ps | |hr | |
2 |hH

d wt |
2

σ2
r,1 |h

H
d wt |

2 +
σ2
b
|hH

d
wt |

2+σ2
d

1−ρ

(5.38a)

s.t.
(
| |wt | |

2 − η | |Hrrwt | |
2) (Ps | |hr | |

2 + σ2
r,1 +

σ2
b

1 − ρ

)
≤ η

ρ
(
Ps | |hr | |

2 + Nrσ
2
r,1

)
+ Ps | |hr | |

2 + Nrσ
2
r,2

1 − ρ
(5.38b)

0 ≤ ρ < 1. (5.38c)

Note that the second term in the numerator of (5.38b) is due to the energy signal

in the second phase as shown in Fig. 5.4. By introducing the optimization variable

w̃t , (INt − ηHH
rrHrr)

1/2wt and defining x ,
√

ρ
1−ρ as in the previous section, the

problem in (5.38) can be reformulated as follows,

max
w̃t,x

Ps | |hr | |
2 |h̃H

d w̃t |
2

σ2
r,1 |h̃

H
d w̃t |

2 + (σ2
b |h̃

H
d w̃t |

2 + σ2
d )(x

2 + 1)
(5.39a)

s.t. | |w̃t | |
2
(
Ps | |hr | |

2 + σ2
r,1 + σ

2
b (x

2 + 1)
)

≤ η
(
Ps | |hr | |

2 + Nrσ
2
r,1

)
x2 + η

(
Ps | |hr | |

2 + Nrσ
2
r,2

)
(x2 + 1) (5.39b)

where h̃d is as in (5.9). The problem in (5.39) is similar to the problem in (5.27).

Using the same argument in the previous section, the optimum w̃t is given in the
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form w̃t = β1h̃d/| |h̃d | | where β1 ≥ 0. Furthermore, (5.38b) should be satisfied with

equality for the optimum solution and thus β2
1 =

(π2+π3)x2+π3
σ2
b

x2+π1
, where π1, π2 are as in

(5.29) and π3 , η(Ps | |hr | |
2 + Nrσ

2
r,2). Then, we obtain the following unconstrained

optimization problem in terms of x, i.e.,

max
x

B2x2 + B0

C4x4 + C2x2 + C0
(5.40)

where B2, B0, C4, C2, and C0 are introduced for ease of notation as follows,

B2 =π2 + π3, B0 = π3 (5.41a)

C4 =σ2
dσ

2
b + (π2 + π3)| |h̃d | |

2σ2
b (5.41b)

C2 =σ2
dσ

2
b + σ

2
dπ1 + (π2 + π3)| |h̃d | |

2(σ2
r,1 + σ

2
b ) + π3 | |h̃d | |

2σ2
b (5.41c)

C0 =σ2
dπ1 + π3 | |h̃d | |

2(σ2
r,1 + σ

2
b ). (5.41d)

If we take the derivative of the function in (5.40) and equate it to zero, we obtain the

equation

B2C4x5 + 2B0C4x3 + (B0C2 − B2C0)x = 0 (5.42)

One of the critical points that satisfy (5.42) is x = 0 which corresponds to ρ =

0 and hence no energy harvesting in the first phase. This case corresponds to the

conventional self-energy recycling protocol without power splitting. The other critical

point is x =
√

r? where r? is the positive root of the second order polynomial B2C4r2+

2B0C4r + (B0C2−B2C0). The only positive root r? exists if (B0C2−B2C0) ≤ 0. Then,

the optimum solution of (5.40) is x = 0 or x =
√

r? which maximizes the objective

function in (5.40), i.e.,

x? = arg max
x∈{0,

√
r?}

B2x2 + B0

C4x4 + C2x2 + C0
(5.43)

In this case, the optimum relay transmit beamformer vector and the optimum power

splitting ratio are given as follows,

w?
t =

√
(π2 + π3)(x?)2 + π3

σ2
b (x

?)2 + π1

(INt − ηHH
rrHrr)

−1hd√
hH

d (INt − ηHH
rrHrr)

−1hd

, ρ? =
(x?)2

(x?)2 + 1
(5.44)

5.6.2 Beamforming Design for the Optimum Energy-Bearing Signal

In this part, we will consider the relay beamformer design for the optimum energy-

bearing signal which is xe = xse j∠hH
r Hrrwt . In this case, the harvested power in the
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second phase for R is given as

Ph,2 =η

(
Ps | |hr | |

2 + (1 − ρ)Ps | |hr | |
2 | |Hrrwt | |

2 + 2
√

1 − ρPs | |hr | | |hH
r Hrrwt |

+ (1 − ρ)σ2
r,1 | |Hrrwt | |

2 + σ2
b | |Hrrwt | |

2 + Nrσ
2
r,2

)
. (5.45)

SNR maximization problem in terms of w̃t = (INt − ηHH
rrHrr)

1/2wt and ρ can be

formulated as follows,

max
w̃t,ρ

Ps | |hr | |
2 |h̃H

d w̃t |
2

σ2
r,1 |h̃

H
d w̃t |

2 +
σ2
b
|h̃H

d
w̃t |

2+σ2
d

1−ρ

(5.46a)

s.t. | |w̃t | |
2
(
(Ps | |hr | |

2 + σ2
r,1)(1 − ρ) + σ

2
b

)
≤ η

(
Ps | |hr | |

2 + Nrσ
2
r,1

)
ρ + η

(
Ps | |hr | |

2 + Nrσ
2
r,2

)
+ 2ηPs | |hr | | |h̃H

r w̃t |
√

1 − ρ

(5.46b)

0 ≤ ρ < 1 (5.46c)

where h̃d and h̃r are as in (5.9) and (5.14), respectively. Let us express

w̃t =
∑Nt

n=1 βne jθnΨn where βn ≥ 0, n = 1, ..., Nt and {Ψn}
Nt

n=1 is an orthonormal basis

for CNt×1 such that Ψ1 = h̃d/| |h̃d | | and Ψ2 = (̃hr −Ψ1ΨH
1 h̃r)/| |h̃r −Ψ1ΨH

1 h̃r | |. Then

we have the following result.

Lemma 5.3: The optimum w̃t for (5.46) is given in the form w̃t = β1Ψ1+β2e j∠h̃H
r h̃dΨ2.

Proof: The proof is similar to the one for Lemma 5.2. �

Let us express (5.46) in terms of β1, β2 and ρ as follows,

max
β1,β2,ρ

Ps | |hr | |
2 | |h̃d | |

2β2
1

σ2
r,1 | |h̃d | |

2β2
1 +

σ2
b
| |h̃d | |

2β2
1+σ

2
d

1−ρ

(5.47a)

s.t. (β2
1 + β

2
2)

(
(Ps | |hr | |

2 + σ2
r,1)(1 − ρ) + σ

2
b

)
≤ η

(
Ps | |hr | |

2 + Nrσ
2
r,1

)
ρ + η

(
Ps | |hr | |

2 + Nrσ
2
r,2

)
+ (ã1β1 + ã2β2)

√
1 − ρ (5.47b)

0 ≤ ρ < 1 (5.47c)

where ã1 = 2ηPs | |hr | | |h̃H
r h̃d |/| |h̃d | |, ã2 = 2ηPs | |hr | |(̃hH

r h̃r − h̃H
r Ψ1ΨH

1 h̃r)/| |h̃r −

Ψ1ΨH
1 h̃r | |.

Note that the closed-form optimum solution of (5.47) is difficult to obtain in its current

form due to the highly coupled variables and the square root function in (5.47b). In the
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following part, we will define new optimization variables and obtain the closed-form

optimum solution for an approximate problem of (5.47). Let us define the following

set of variables for the reformulation of (5.47), i.e.,

β̃1 , β1
√

1 − ρ, β̃2 , β2
√

1 − ρ. (5.48)

Using the newly introduced variables in (5.48), the problem (5.47) can be expressed

as,

min
β̃1,β̃2,ρ

δ̃1
1 − ρ

+
δ̃2

β̃2
1

(5.49a)

s.t.
(
π̃1 +

σ2
b

1 − ρ

)
(β̃2

1 + β̃
2
2) ≤ π2ρ + π3 + ã1 β̃1 + ã2 β̃2 (5.49b)

0 ≤ ρ < 1 (5.49c)

where δ̃1 = σ
2
b/(Ps | |hr | |

2) and δ̃2 = σ
2
d/(Ps | |hr | |

2 | |h̃d | |
2). π2 = η(Ps | |hr | |

2 + Nrσ
2
r,1)

and π3 = η(Ps | |hr | |
2 + Nrσ

2
r,2) are as defined before. π̃1 = Ps | |hr | |

2 + σ2
r,1. In

(5.49a), we take the multiplicative inverse of the objective function in (5.47a) for

simplification. Note that it is difficult to obtain a closed-form solution due to the term

on the left side of (5.49b),
σ2
b

1−ρ . Since σ2
b � π̃1, it is a safe assumption to ignore this

term for a simpler problem. In this case, the problem in (5.49) can be rewritten after

some arrangements as follows,

min
β̃1,β̃2,ρ

δ̃1
1 − ρ

+
δ̃2

β̃2
1

(5.50a)

s.t.
(√
π̃1 β̃1 −

ã1

2
√
π̃1

)2
+

(√
π̃1 β̃2 −

ã2

2
√
π̃1

)2
≤ π2ρ + π3 +

ã2
1 + ã2

2
4π̃1

(5.50b)

0 ≤ ρ < 1. (5.50c)

It can be easily verified that the optimum solution of (5.50) should satisfy the inequal-

ity in (5.50b) with equality. If we assume that it is not the case, then, we can increase

the value of β̃1 until (5.50b) becomes an equality with an improved objective func-

tion. Hence, (5.50b) is an equality for the optimum solution. Furthermore, optimum

β̃2 should be β̃?2 =
ã2

2π̃1
. This value minimizes the second term on the left side of

(5.50b) and makes it zero. Note that β̃2 only appears in this term and the optimum

β̃2 should minimize this term. Otherwise, we can decrease this term and increase β̃1

without violating the constraint in (5.50b) with a decreased objective function which
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is a contradiction. After inserting optimum β̃?2 into (5.50b), we obtain the following

equality by (5.50b), i.e.,

ρ =

(√
π̃1
π2
β̃1 −

ã1

2
√
π̃1π2

)2
−

4π̃1π3 + ã2
1 + ã2

2
4π̃1π2

(5.51)

If we insert ρ in (5.51) into the objective function in (5.50a) we obtain the following

optimization problem in terms of β̃1 only, i.e.,

min
β̃1

δ̃1

−

(√
π̃1
π2
β̃1 −

ã1
2
√
π̃1π2

)2
+

4π̃1(π2+π3)+ã2
1+ã2

2
4π̃1π2

+
δ̃2

β̃2
1

(5.52a)

s.t. 0 ≤
(√

π̃1
π2
β̃1 −

ã1

2
√
π̃1π2

)2
−

4π̃1π3 + ã2
1 + ã2

2
4π̃1π2

< 1. (5.52b)

One of the critical points corresponds to ρ = 0 in (5.51). For this case, let us note

the objective value and the solution as a candidate. This solution will be used later

on for determining the final best solution. For other critical points, ρ , 0 and (5.52b)

becomes a strict inequality. Hence, Lagrange multiplier corresponding to (5.52b)

becomes 0 for the other critical points. In this case, we can simply take the derivative

of (5.52a) and equate it to zero. Firstly, define the following parameters for the ease

of notation, i.e.,

D1 ,

√
π̃1
π2
, D2 ,

ã1

2
√
π̃1π2

, D3 ,
4π̃1(π2 + π3) + ã2

1 + ã2
2

4π̃1π2
(5.53)

Now, if we take the derivative of (5.52a) and equate it to zero, we obtain

2δ̃1D1(D1 β̃1 − D2)(
(D1 β̃1 − D2)2 − D3

)2 =
2δ̃2

β̃3
1

(5.54)

If we rearrange (5.54), we can write (5.54) as quartic equation, i.e.,

E4 β̃
4
1 + E3 β̃

3
1 + E2 β̃

2
1 + E1 β̃1 + E0 = 0 (5.55)

where E4, E3, E2, E1 and E0 are given as follows,

E4 = δ̃1D2
1 − δ̃2D4

1, E3 = −δ̃1D1D2 + 4δ̃2D3
1D2, E2 = 2δ̃2D2

1(D3 − 3D2
2) (5.56a)

E1 = 4δ̃2D1D2(D2
2 − D3), E0 = −δ̃2(D2

2 − D3)
2 (5.56b)

Now, we will show that we need only one zero of the quartic equation given in (5.55).
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Lemma 5.4: The quartic function in (5.55) is monotonically increasing in the region

where 0 ≤ ρ < 1.

Proof: Please see Appendix B.3 for the proof. �

By Lemma 5.4, there is only one zero if it exists inside the feasible region of the

problem. Hence, there is no need to find the other roots of the polynomial in (5.55).

A simple bisection search is presented to find this root in Algorithm 5.1 given below.

In Algorithm 5.1, β̃(r)1 shows the value of β̃1 at the r th iteration and f (β̃1) , E4 β̃
4
1 +

E3 β̃
3
1 + E2 β̃

2
1 + E1 β̃1 + E0. Note that initial lower and upper bounds are selected such

that ρ in (5.51) is 0 and 1, respectively. If f (L(0)) > 0 or f (U(0)) < 0, the Algorithm

5.1 is not implemented since there is no zero of (5.55) inside the feasible region. In

this case, the only critical point is ρ = 0 as mentioned before and it is the optimum

solution. We will give the solution for ρ = 0 case later in this section.

Algorithm 5.1: Bisection Search for Finding the Root of (5.55)

Initialization: Set initial lower and upper bounds as L(0) = (
√

D3 − 1 + D2)/D1

and U(0) = (
√

D3 + D2)/D1, respectively. If f (L(0)) > 0 or f (U(0)) < 0, terminate.

Otherwise take the initial β̃1 as β̃(0)1 = (L
(0)+U(0))/2. Set the iteration number r ← 0.

Repeat

If f (β̃(r)1 ) < 0 , set L(r+1) = β̃
(r)
1 .

ElseIf f (β̃(r)1 ) > 0 , set U(r+1) = β̃
(r)
1 .

Else Terminate.

β̃
(r+1)
1 = (L(r+1) +U(r+1))/2

Set r ← r + 1.

Until convergence criterion is met.

Let β̃†1 denote the root of (5.55) inside the region 0 ≤ ρ < 1. In this case, we obtain
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ρ† by inserting β̃†1 into (5.51). At this point, we have obtained the candidate optimum

solution of the approximate problem given in (5.50) using {ρ†, β̃†1} . In order to obtain

a solution to the original problem in (5.47), we can keep ρ† constant and update β1

and β2, respectively. For a given ρ†, the problem in (5.47) can be reformulated in

terms of β1 and β2 as follows,

max
β1,β2

β2
1 (5.57a)

s.t. f1(ρ†)(β2
1 + β

2
2) − f2(ρ†)β1 − f3(ρ†)β2 ≤ f4(ρ†) (5.57b)

where f1(ρ), f2(ρ), f3(ρ), and f4(ρ) are the functions defined as follows,

f1(ρ) , (Ps | |hr | |
2 + σ2

r,1)(1 − ρ) + σ
2
b (5.58a)

f2(ρ) , ã1
√

1 − ρ, f3(ρ) , ã2
√

1 − ρ (5.58b)

f4(ρ) , η
(
Ps | |hr | |

2 + Nrσ
2
r,1

)
ρ + η

(
Ps | |hr | |

2 + Nrσ
2
r,2

)
(5.58c)

Similar to the problem in (5.50), optimum β2 minimizes the left side of (5.57b) and

(5.57b) is satisfied with equality. Hence, the optimum β1 and β2 are given by

β†1 =

√
4 f1(ρ†) f4(ρ†) + f 2

2 (ρ
†) + f 2

3 (ρ
†) + f2(ρ†)

2 f1(ρ†)
(5.59a)

β†2 =
f3(ρ†)

2 f1(ρ†)
(5.59b)

{ β̃†1, β̃
†

2, ρ
† , 0} is the one candidate solution. The other possible solution corresponds

to the other critical point ρ = 0. Overall, near-optimum solution of (5.47) is given by

ρ? = arg min
ρ∈{0,ρ†}

δ̃1
1 − ρ

+
δ̃2

(1 − ρ)
(√

4 f1(ρ) f4(ρ)+ f 2
2 (ρ)+ f 2

3 (ρ)+ f2(ρ)

2 f1(ρ)

)2 (5.60a)

β?1 =

√
4 f1(ρ?) f4(ρ?) + f 2

2 (ρ
?) + f 2

3 (ρ
?) + f2(ρ?)

2 f1(ρ?)
, β?2 =

f3(ρ?)
2 f1(ρ?)

(5.60b)

Using (5.60b), near-optimum relay transmit beamformer vector is given by

w?
t = (INt − ηHH

rrHrr)
−1/2(β?1 Ψ1 + β

?
2 e j∠h̃H

r h̃dΨ2). (5.61)

The performance of this near-optimum solution for optimized energy-bearing signal

is compared with the non-optimized case in the simulations in section 5.8. In the

following part, we will investigate the discrete PS ratio.
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5.7 Beamforming Optimization over Discrete Power Splitting Ratio Set

In the previous sections, power splitting ratio, ρ is assumed to be a continuous vari-

able. In practice, ρ can be chosen from a discrete set in order to simplify the system

hardware design. In this part, we consider conventional (Fig. 5.3) and the proposed

self-energy recycling assisted power splitting protocol (Fig. 5.4) for the discrete set

of power splitting ratios. We will consider both of the protocols in sequence. Note

that optimum solution is found for all the optimization problems in this section thanks

to the closed-form solutions derived in the previous sections.

5.7.1 Conventional Power Splitting Protocol

Consider the simplified unconstrained optimization problem in (5.31) in terms of x =√
ρ

1−ρ . In this case, optimum discrete PS ratio can be simply found as follows,

x? = arg max
x∈Px

x2

A4x4 + A2x2 + A0
(5.62a)

ρ? =
(x?)2

(x?)2 + 1
(5.62b)

where Px is the discrete set whose elements are the corresponding x =
√

ρ
1−ρ for the

discrete PS ratios, ρ. The optimum beamformer weight vector is obtained by (5.32)

and (5.35) using the optimum discrete x.

5.7.2 Self-Energy Recycling Assisted Power Splitting Protocol for the Non-Optimized

Energy-Bearing Signal

Consider the unconstrained optimization problem given in (5.40) in terms of x only.

Similar to the previous section, optimum discrete PS ratio can be simply found as

follows,

x? = arg max
x∈Px

B2x2 + B0

C4x4 + C2x2 + C0
(5.63a)

ρ? =
(x?)2

(x?)2 + 1
(5.63b)
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The optimum beamformer weight vector is obtained by (5.41) and (5.44) using the

optimum discrete x.

5.7.3 Self-Energy Recycling Assisted Power Splitting Protocol for the Opti-

mum Energy-Bearing Signal

Given the discrete PS ratio, we can solve (5.57a-b) and choose the best discrete ρ

which results the best objective function given in (5.60a). Hence, optimum discrete

PS ratio can be found as

ρ? = arg min
ρ∈Pρ

δ̃1
1 − ρ

+
δ̃2

(1 − ρ)
(√

4 f1(ρ) f4(ρ)+ f 2
2 (ρ)+ f 2

3 (ρ)+ f2(ρ)

2 f1(ρ)

)2 (5.64)

where Pρ is the set of discrete PS ratios. The optimum beamformer weight vector is

obtained by (5.60b) and (5.61) using the optimum discrete ρ. Note that the optimum

discrete PS ratios in (5.62), (5.63), and (5.64) can be found by only evaluating the

corresponding equations for a finite set of ρ ∈ Pρ values.

5.8 Simulation Results

In this section, the SNR performance of the proposed beamformers is evaluated for

the considered protocols. In the simulations, the parameters are selected as follows.

We set all the noise powers as σ2
r,1 = σ2

r,2 = σ2
b = σ2

d = −110 dBW. The energy

harvesting efficiency is η = 0.7. Rayleigh fading is assumed for all the channels, i.e.,

hr , Hrr , and hd . Unless otherwise stated, the number of transmitting and receiving

antennas of R are Nt = 4 and Nr = 4, respectively. Source power is Ps = 0 dBW. In

addition, the path loss, PL, for the channels hr (S-R), hd (R-D), and the loop channel

Hrr are PLhr = 60 dB, PLhd
= 60 dB, and PLHrr = 15 dB, respectively. In the figures,

each point represents the average of randomly generated 1000 channel realizations.

In order to obtain bounded solution, 1000 channels for which Q = INt − ηHH
rrHrr is

positive definite are considered. Note that if Q is not positive definite, unbounded

solution is also obtained for the SDP problem proposed in [4].

In the following figures, destination SNR, SNRd is presented for different system
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parameters. In the labels, SE-N stands for the optimum closed-form solution given in

(5.11) for the self-energy recycling problem in [4] and (5.8). Note that this protocol is

based on non-optimized energy-bearing signal. SE-N (SDP) is the solution obtained

by the numerical SDP solver as proposed in [4]. The performances of these two

methods are exactly the same in all the scenarios verifying that the relay beamformer

in (5.11) is the optimum solution of the problem in (5.8). The main advantage of

the proposed closed-form beamformer, SE-N, is that it does not require a numerical

solver to give the optimum result. SE-O corresponds to the closed-form solution

in (5.18) derived for the optimized energy-bearing signal. PS-CON is the optimum

solution for conventional power splitting protocol which is given in (5.35). PS-SE-

N and PS-SE-O are the solutions in (5.44) and (5.61), respectively corresponding to

the self-energy recycling assisted power splitting protocols with non-optimized and

optimized energy signals. The PS ratio sets for the discrete optimization problems in

Section 5.7 are taken as Pρ = {0, 1/R, 2/R, ..., 1 − 1/R} where R is the cardinality of

the set Pρ and the PS ratios are the endpoints of R uniform intervals of 0-1. In the

figures, R is given as the level number inside the parentheses.

In Fig. 5.5, SNRd is plotted in terms of the source power, Ps. As expected, SNR in-

creases with Ps for all the methods and SE-N and SE-N (SDP) give the same result. In

accordance with [4], PS-CON performs slightly worse, i.e, there is an approximately

0.5 dB gap between SE-N and PS-CON. When phase alignment is used to obtain op-

timum energy signal, harvested power is maximized and 1.6 dB SNR improvement

is obtained for SE-O in comparison to SE-N. When we look at the performance of

the newly proposed self-energy recycling assisted power splitting protocol, it is ob-

served that up to 3 dB and 2.4 dB SNR gain is possible for PS-SE-N and PS-SE-O

compared to SE-N and SE-O, respectively showing the effectiveness of this unified

framework. The reason for this can be easily explained as follows. Power splitting

option in the first phase allows for more energy harvesting compared to the conven-

tional self-energy recycling protocol. The special case ρ = 0 for PS-SE corresponds

to SE. This shows that the feasible region is enlarged by the new protocol.

In Fig. 5.6, the same results for PS-CON, PS-SE-N, and PS-SE-O are repeated with

their discrete counterparts. We use R = 4 and R = 8 levels for the discrete PS ratio

set. The difference between continuous and 4 level discrete case is 1.2 dB for PS-
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CON, and it is only about 0.5 dB for the PS-SE. When we increase R to 8, the gap

becomes smaller and this shows that choosing PS ratio from a finite set is a quite

effective approach.
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Figure 5.5: Destination SNR versus source power, Ps.

In Fig. 5.7, path loss for the self-energy recycling loop channel Hrr is changed from

10 dB to 20 dB in 2 dB steps. As expected, PS-CON is not affected by this change

since it does not consider loop channel in designing beamformer. As an important

observation, when path loss is 10 dB, both SE-O and PS-SE-O drastically outperform

the other methods. This is due to the fact that increase in the norm of Hrr boosts the

effect of phase-adjusted optimized energy-bearing signal. Since, loop channel is very

strong, energy need is met from self-energy recycling in PS-SE-O protocol and PS

coefficient ρ can be selected near 0 in order to amplify the information signal. In this

case, we expect PS-SE-O and SE-O perform nearly the same since the case ρ = 0

in PS-SE-O corresponds to SE-O. As path loss increases, this effect decreases and

the gap between the protocols with non-optimized and optimized energy signal also

decreases.

In Fig. 5.8, the same results for PS-CON and PS-SE-N and PS-SE-O are repeated

with their discrete counterparts. The results are similar to Fig. 5.6. The SNR gap

between continuous and discrete designs is higher for PS-CON in comparison to the
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Figure 5.6: Destination SNR versus source power, Ps for discrete PS ratio design.

others. When we increase R from 4 to 8, the performance of the discrete design

approaches to its continuous counterpart.

In Fig. 5.9, we vary the path loss for hr . As the path loss increases, SNR for all

the methods decreases accordingly. Similar to the previous scenarios, the proposed

PS-SE protocol outperforms the existing protocols.

In Fig. 5.10, we repeat the previous experiment by changing the path loss for hd .

As it can be seen from Fig. 5.10, we obtain a similar SNR characteristics with the

Fig. 5.9. SNR degrades nearly at the same proportion as the path loss increases.

Hence, we conclude that the channel between the source-relay and relay-destination

have similar effect on the performance.

In Fig. 5.11, the number of transmitting antennas at R, Nt , is varied while the other

parameters are kept constant. Increasing Nt enhances spatial diversity and as a result,

the performance of relay transmit beamformer improves yielding greater SNR. The

main difference in Fig. 5.11 in comparison to Fig. 5.5 is that SE-O outperforms PS-

SE-N for high values of Nt . This result is due to the fact that increasing the number of

transmitting antennas strengthens the loop channel Hrr and this leads to an increase in

energy harvesting as well as relay transmitted power. Note that the effect of optimized
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Figure 5.7: Destination SNR versus path loss for Hrr .

energy signal becomes more dominant. An important observation in Fig. 5.10 is the

SNR gain obtained by the PS-SE which reaches up to 3 dB in comparison to the other

protocols.

In Fig. 5.12, we vary the number of receiving antennas, Nr and obtain a slightly

different characteristics from Fig. 5.11. Now, SE-O always results less SNR com-

pared to PS-SE-N similar to Fig. 5.5 and different from Fig. 5.11. However, the

gap between them decreases as Nr increases verifying the boosting effect of the op-

timized energy signal. Different from Fig. 5.11, the performance gap between SE-N

and PS-CON increases significantly with increase in Nr , reaching 2.4 dB difference

at Nr = 16. This results from the fact that in PS-CON, only a portion of the source

signal received at the Nr antennas of R can be used whereas all the source energy

signal is harvested in SE. The gap between these two protocols become visible as the

number of energy harvesting units, i.e Nr , increases.

5.9 Conclusion

In this chapter, relay transmit beamformer design is considered in order to maximize

SNR at the destination node under the transmission power constraint for wireless-
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Figure 5.8: Destination SNR versus path loss for Hrr for discrete PS ratio design.

powered full-duplex relaying. The relay has multiple transmit and receive antennas.

Two conventional amplify-and-forward based WPR protocols are investigated and op-

timum closed-form solutions for the relay transmit beamformers as well as the power

splitting ratios are presented. Furthermore, a new protocol is proposed to improve

the efficiency and SNR performance. The first protocol is a self-energy recycling

protocol while the second one is a PS based protocol. The third protocol is both

a self-energy recycling and PS one which allows energy harvesting in two phases.

For the first protocol, the optimum closed-form solutions are derived for two beam-

former design problems. These two problems correspond to the non-optimized and

optimized energy-bearing signals from the source. It is shown that significant SNR

improvement can be achieved in case of optimized energy-bearing signal. Conven-

tional PS protocol is considered as a second protocol and the joint optimization of the

relay transmit beamformer and PS ratio is considered. The optimum closed-form so-

lution is derived. It is shown that self-energy recycling protocol performs better than

conventional PS protocol for the destination SNR. The third protocol considered in

this chapter unifies the self-energy recycling and PS protocols in order to improve effi-

ciency and destination SNR. This self-energy recycling assisted PS protocol achieves

significantly higher SNR reaching up to 3 dB in comparison to the previous two pro-

tocols. For the power splitting based protocols, the optimum solution is presented and
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Figure 5.9: Destination SNR versus path loss for hr .

the simulation results indicate that the performance of the discrete design is close to

the continuous one for most of the scenarios.
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Figure 5.10: Destination SNR versus path loss for hd .

2 4 6 8 10 12 14 16
NUMBER OF TRANSMITTING ANTENNAS, N

t

-4

-2

0

2

4

6

8

10

12

14

S
N

R
 (

d
B

)

SE-N
SE-N (SDP)
SE-O
PS-CON
PS-SE-N
PS-SE-O

Figure 5.11: Destination SNR versus the number of transmitting antennas, Nt .

100



2 4 6 8 10 12 14 16
NUMBER OF RECEIVING ANTENNAS, N

r

-4

-2

0

2

4

6

8

10

12

14

S
N

R
 (

d
B

)

SE-N
SE-N (SDP)
SE-O
PS-CON
PS-SE-N
PS-SE-O

Figure 5.12: Destination SNR versus the number of receiving antennas, Nr .
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CHAPTER 6

JOINT SOURCE POWER ALLOCATION AND RELAY BEAMFORMER

DESIGN FOR WIRELESS-POWERED RELAYING WITH SELF-ENERGY

RECYCLING

This chapter considers a wireless-powered relaying system where the multiple-antenna

relay amplifies and forwards the information signal of the source node to the desti-

nation. Relay uses both the dedicated energy signal sent from the source and its

own transmitted signal as an energy source. This self-energy recycling protocol is

investigated using equal power allocation between the information and energy trans-

mission phases of the source in the literature. In this chapter, we propose the joint

power allocation optimization with relay transmit beamformer in order to improve

the performance. Two optimization problems, namely signal-to-noise ratio (SNR)

maximization and quality-of-service (QoS)-aware design are considered. The joint

optimum solution for the former problem is presented while using an approximation,

a near-optimum joint solution is obtained for the latter problem. Simulation results

show that the proposed method achieves 3 dB higher SNR at the destination com-

pared to equal power allocation. For QoS-aware problem, the required power by the

relay’s own battery is decreased by 2 for the proposed method. An improvement by

2 is obtained for power saving in comparison to the equal power allocation strategy.

6.1 Related Works and Contributions

In [19], a new wireless powered relaying (WPR) protocol based on self-energy recy-

cling is proposed in order to take advantage of self-interference different from power

splitting (PS) and time swithcing (TS) protocols. In the first phase of this protocol,
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source node transmits the information symbol to the relay and relay amplifies and

forwards this signal to the destination in the second phase. For this purpose, it uses

beamforming with the help of multiple transmit antennas. In the second phase, source

sends an energy signal to assist the relay and relay also uses a part of its transmitted

signal as an energy source with its receiving antenna. Since information transfer and

energy reception occur in the same phase, this protocol belongs to full-duplex WPR.

In [19], the optimization problem in terms of relay transmit beamformer is formu-

lated to maximize destination signal-to-noise ratio (SNR) subject to the constraint

that transmission power of the relay cannot exceed its harvested power. In the first

phase, only the single receiving antenna is used for information reception while the

remaining antennas of the relay are idle. In [21] and [62], this system is modified such

that all antennas are used in the first phase for a more efficient system. Furthermore,

transmission power limit is not considered in [19]. [21] included this constraint for

the quality-of-service (QoS)-aware problem to be more practical. In SNR maximiza-

tion, the transmission power of the relay is constrained to be less than the harvested

power. However, this is a strict condition when the desired SNR of the destination

is greater than the one that can be supplied by the harvested power. In QoS-aware

design, the objective that is minimized is the difference between the transmitted and

the harvested power. Hence, the amount of the required power by the relay’s own

battery is minimized. This allows one to find solutions for cases which require more

power than the harvested and this becomes an important difference between the SNR

maximization and QoS-aware design problems.

In all the above works and similar ones in [4], [22], [59], [62], it is assumed that equal

power is used for information and energy transfer at the source side. As a more power

efficient approach, power allocation optimization can be realized [55], [63], [64] in

addition to relay transmit beamformer. In [63], power allocation between information

and energy transfer phases is considered for self-energy recycling assisted full-duplex

relaying. In this work, beamforming optimization is not taken into account since there

is only one transmitting antenna at the relay. Furthermore, only SNR maximization

is considered. In this chapter, we jointly optimize the relay transmit beamformer

and power division parameter for both SNR maximization and QoS-aware design

problem. The problem formulations for both of the problems are simplified in an
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equivalent manner in order to obtain the optimum solution. Karush Kuhn Tucker

(KKT) conditions are obtained to better analyze the problems via several lemmas.

For the SNR maximization problem, the joint optimum solution is derived. For the

QoS-aware problem, an approximation is needed for some of the KKT conditions and

a near-optimum joint solution is found. Simulation results verify the effectiveness of

the proposed methods compared to equal power allocation scheme. The proposed

method achieves 3 dB SNR improvement for the SNR maximization problem. For

the QoS-aware problem, the required power of the relay’s own battery is decreased

by 2. Furthermore, additional power savings are achieved.

6.2 System Model

Fig. 6.1 shows a wireless-powered relaying system where source node S transmits

information to the destination node D through the relay node R [19]. S and R are

equipped with M and N +1 antennas, respectively whereas D has a single antenna. In

[19], a two-phase amplify-and-forward (AF) protocol is proposed for this wireless-

powered relaying system. If T denotes the total transmission time, information signal

is transmitted from S to R in the first T/2 sec. In this phase, single receiving antenna

of R shown on the left side in Fig. 6.1 is used for information reception while all the

antennas of S are used for transmission. In [21] and [62] this protocol is improved

by employing all the antennas at R for information reception. In this chapter, we will

adapt this modified protocol.

In the second phase with duration T/2 sec., N transmitting antennas of R are used for

information forwarding to D while the remaining single antenna harvests energy from

the dedicated energy signal sent from S and self-energy recycling via loop channel f.

In the proposed protocol [19], equal power is allocated at S for both information

and power transfer. In this chapter, we generalize this protocol by introducing a

power division parameter, 0 < α ≤ 1, to be designed together with relay transmit

beamformer vector to increase the performance of the system. In this chapter, the

improved protocol and the joint design of power division parameter and the relay

transmit beamformer will be considered in detail.
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Figure 6.1: System model and self-energy recycling based wireless-powered relaying

protocol with power allocation.

Let H ∈ CM×(N+1) be the baseband equivalent channel from S to R. Assuming that

H is known at S and R, the optimum transmit and receive beamformers are the left

and right singular vectors corresponding to the largest singular value of H, i.e., λH ,

respectively. After receive beamforming, the information symbol received at R in the

first phase is given by

yr,1 =
√

PsαλH xs,1 + nr,1 (6.1)

where Ps denotes the total transmission power of S during two phases. 0 < α ≤ 1 is

the portion of Ps for the first phase as shown in Fig. 6.1. xs,1 is the information symbol

sent by S and it is assumed to have unit average power without loss of generality. nr,1

is circularly-symmetric complex Gaussian noise at the receiver of R in the first phase

with zero mean and σ2
r variance, i.e., nr,1 ∼ CN(0, σ2

r ).

In the second phase, the received signal in (6.1) is amplified and forwarded to D

by N transmitting antennas of R with beamforming relay vector vr ∈ C
N×1. The

transmitted signal from R is given in vector form as follows,

yt = vr yr,1 = vr(
√

PsαλH xs,1 + nr,1) (6.2)
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Assuming that nr,1 is independent from the information symbol xs,1, the transmission

power of R, i.e. Pr is given by,

Pr = | |vr | |
2(Psαλ

2
H + σ

2
r ) (6.3)

If g ∈ CN×1 denotes the channel from the transmitting antennas of R to D, the received

signal at D in the second phase is given by,

yd = gHyt + nd = gHvr(
√

PsαλH xs,1 + nr,1) + nd (6.4)

where nd ∼ CN(0, σ2
d ) is the circularly symmetric complex Gaussian noise at the

receiver of D. Assuming that nd is independent from the information symbol and

nr,1, the received signal-to-noise ratio (SNR) is given by,

SNRd =
Psλ

2
Hα |g

Hvr |
2

σ2
r |gHvr |

2 + σ2
d

(6.5)

While the information is being forwarded from the transmitting antennas of R to D,

energy harvesting is done at the single antenna of R in the second phase. For this

purpose, an energy-bearing signal is sent from S to R. In addition, a portion of yt

is used as an energy source due to self-energy recycling. Let h ∈ CM×1 denote the

channel from S to the energy harvesting antenna of R. In this case, the optimum

transmit beamformer vector is
√

Ps(1 − α)h/| |h| | [19]. If the channel between N

transmitting and energy harvesting antennas of R is denoted by f ∈ CN×1, the received

signal at R is expressed as,

yr,2 =
√

Ps(1 − α)| |h| |xs,2 + fHyt + nr,2

=
√

Ps

(
| |h| |
√

1 − αxs,2 + λH
√
αfHvr xs,1

)
+ fHvrnr,1 + nr,2 (6.6)

where xs,2 denotes the unit power symbol sent from S for energy harvesting. Let us

neglect the harvested energy from the noise terms nr,1 and nr,2 in accordance with

[19]. As shown in [19], the harvested power is maximized when xs,2 = xs,1e j∠fHvr . In

this case, the harvested power at R can be given by,

Ph = ηPs

(
| |h| |
√

1 − α + λH
√
α |fHvr |

)2
(6.7)

where 0 < η ≤ 1 denotes the energy harvesting efficiency at R. In [19], SNR maxi-

mization problem is considered where the aim is to maximize the received SNR at D
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under the constraint that transmission power is below the harvested power. In [21],

QoS-aware design problem is elaborated where the power used by the relay’s own

battery is minimized under SNR and transmission power limits constraints. In both

works, equal power allocation between two phases at S is assumed. In this chap-

ter, we will study both the SNR maximization and QoS-aware optimization problems

with the transmission power limit constraint for the joint power allocation and beam-

former design. Hence, in this chapter a more general outline is followed and solutions

are presented for the aforementioned problems.

6.3 SNR Maximization

As in [19], our target is to maximize the received SNR of D such that Pr does not ex-

ceed the harvested power at R for a given Ps. Note that we also include the constraint

for transmission power limit, Pmax at R which is a practical consideration different

from [19]. In addition to the design of relay beamformer, vr , in [19], we also con-

sider the optimization of power allocation at S between the two transmission phases

by keeping α as a variable. The optimization problem for this design objective can be

written as follows,

max
vr,α

α |gHvr |
2

σ2
r |gHvr |

2 + σ2
d

(6.8a)

s.t. | |vr | |
2(Psαλ

2
H + σ

2
r ) ≤ ηPs

(
| |h| |
√

1 − α + λH
√
α |fHvr |

)2
(6.8b)

| |vr | |
2(Psαλ

2
H + σ

2
r ) ≤ Pmax (6.8c)

0 < α ≤ 1 (6.8d)

where constant term Psλ
2
H is removed in the numerator of (6.8a) for simplicity. In

the following, we propose certain lemmas and transformations to solve the problem

in (6.8).

Let us express the relay beamformer vector as vr =
∑N

n=1 βne jθnΨn where βn ≥ 0,

n = 1, ..., N and {Ψn}
N
n=1 is an orthonormal basis for CN×1 such that Ψ1 =

g
| |g| | and

Ψ2 =
f−Ψ1ΨH

1 f
| |f−Ψ1ΨH

1 f | | . Then, the following Lemma presents the form of optimum relay

beamformer.
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Lemma 6.1: The optimum relay beamformer vector, v?r , for the problem (6.8) is given

by the form v?r = β1Ψ1 + β2e j∠fHgΨ2, where β1 ≥ 0 and β2 ≥ 0.

Proof : The proof is similar to the one in [21]. �

Using Lemma 6.1, the problem in (6.8) can be expressed in an equivalent manner in

terms of β1, β2 and α as follows,

max
β1,β2,α

α | |g| |2β2
1

σ2
r | |g| |2β2

1 + σ
2
d

(6.9a)

s.t. (β2
1 + β

2
2)(Psαλ

2
H + σ

2
r ) ≤ ηPs

(
| |h| |
√

1 − α + λH
√
α(c1β1 + c2β2)

)2
(6.9b)

(β2
1 + β

2
2)(Psαλ

2
H + σ

2
r ) ≤ Pmax (6.9c)

0 < α ≤ 1 (6.9d)

where c1 = |fHΨ1 | = |fHg|/| |g| | and c2 = fHΨ2 =
fH f−fHΨ1ΨH

1 f
| |f−Ψ1ΨH

1 f | | . Note that c1

and c2 are real and nonnegative. Hence, optimum β1 and β2 for (6.9) should be

nonnegative in order to maximize SNR in (6.9a). This result can be easily obtained

by contradiction. Assume that this case is not valid, i.e., at least one of β1 and β2 is

negative. In this case, the right side of (6.9b) can be increased by changing the sign

of β1 and β2 to positive. In this way, we enlarge the feasible region of the problem

and (6.9a) can possibly be increased. Hence, the optimum solution should satisfy

β1 ≥ 0 and β2 ≥ 0 for (6.9). This is the reason why we do not include nonnegativity

as separate constraints in (6.9) for simplicity.

For α, there are two main cases to be evaluated.

Case 1: Assume that the inequality in (6.9d) is satisfied with an equality, i.e., α = 1.

In this case, the problem in (6.9) can be reformulated as follows,

max
β1,β2

β1 (6.10a)

s.t. (Psλ
2
H + σ

2
r )(β

2
1 + β

2
2) ≤ ηPsλ

2
H(c1β1 + c2β2)

2 (6.10b)

(Psλ
2
H + σ

2
r )(β

2
1 + β

2
2) ≤ Pmax (6.10c)

The solution of this problem constitutes a candidate optimum solution for the problem

(6.9a-d). KKT necessary optimality conditions for the problem in (6.10a-c) are given
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by

1 = 2µ1

(
(Psλ

2
H + σ

2
r − Psλ

2
Hηc2

1)β1 − Psλ
2
Hηc1c2β2

)
+ 2µ2(Psλ

2
H + σ

2
r )β1 (6.11a)

0 = 2µ1

(
(Psλ

2
H + σ

2
r − Psλ

2
Hηc2

2)β2 − Psλ
2
Hηc1c2β1

)
+ 2µ2(Psλ

2
H + σ

2
r )β2 (6.11b)

µ1 ≥ 0, µ2 ≥ 0 (6.11c)

µ1

(
(Psλ

2
H + σ

2
r )(β

2
1 + β

2
2) − ηPsλ

2
H(c1β1 + c2β2)

2
)
= 0 (6.11d)

µ2

(
(Psλ

2
H + σ

2
r )(β

2
1 + β

2
2) − Pmax

)
= 0 (6.11e)

(6.10b)-(6.10c) (6.11f)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequality con-

straints in (6.10b) and (6.10c), respectively. Now, we will consider four sub-cases

according to the values of µ1 and µ2 in sequel.

Case 1a: µ1 = 0, µ2 = 0.

This case results a contradiction in (6.11a). Hence, this case cannot happen.

Case 1b: µ1 = 0, µ2 > 0.

In this case by (6.11b), we obtain, β2 = 0. Furthermore, (6.10c) should be satisfied

with equality by (6.11e). Hence, we obtain

β1 =

√
Pmax

Psλ
2
H + σ

2
r
, β2 = 0. (6.13)

If (6.13) satisfies the inequality in (6.10b), it constitutes a candidate optimum solution.

Case 1c: µ1 > 0, µ2 = 0.

In this case by (6.11b), we obtain

β2 =
Psλ

2
Hηc1c2

Psλ
2
H + σ

2
r − Psλ

2
Hηc2

2
β1. (6.14)

By (6.11d), (6.10b) is satisfied with equality for this solution. If we insert (6.14)

into the equality in (6.11d), we obtain β1 = 0 which results zero SNR. Hence, we

eliminate this case.

Case 1d: µ1 > 0, µ2 > 0.

In this case, both (6.10b) and (6.10c) are satisfied with equality. If c2 = 0, c1 cannot
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be zero since c1 = |fHΨ1 |, c2 = fHΨ2, and c2
1 + c2

2 = | |f | |
2. Hence, we obtain

β1 =
√

Pmax

ηc2
1 Psλ

2
H

and β2 =
√

Pmax

Psλ
2
H+σ

2
r
−

Pmax

ηc2
1 Psλ

2
H

by (6.11d-e). If ηc2
1Psλ

2
H ≥ Psλ

2
H + σ

2
r

this is a candidate solution for the case c2 = 0.

If c2 > 0, we obtain by (6.11d-e)

β2 =

√
Pmax

ηPsλ
2
Hc2

2
−

c1
c2
β1 (6.15)

If we insert (6.15) into the equality in (6.11e), we obtain the following quadratic

equation, i.e.,

(Psλ
2
H + σ

2
r )

c2
1 + c2

2

c2
2

β2
1 − (Psλ

2
H + σ

2
r )

2c1
c2

√
Pmax

ηPsλ
2
Hc2

2
β1

+(Psλ
2
H + σ

2
r )

Pmax

ηPsλ
2
Hc2

2
− Pmax = 0 (6.16)

Let βr1
1 and βr2

1 be the roots of the quadratic equation in (6.16). For each positive root,

we can find the corresponding β2 as in (6.15). If the resulting β2 < 0, we eliminate

that solution. Otherwise, it is a candidate optimum solution.

Now, let us consider the second main case where 0 < α < 1 in the following part.

Case 2: In this case, α < 1 and the Lagrange multiplier corresponding to the con-

straint in (6.9d) is zero by complementary slackness. The candidate solution corre-

sponding to this case can be found by solving (6.9a-c) and checking whether the solu-

tion satisfies (6.9d) or not. In order to simplify the problem, let us define β̃1 ,
√
αβ1,

β̃2 ,
√
αβ2, and x ,

√
1 − α. Then, (6.9a-c) can be reformulated as follows,

min
β̃1,β̃2,x

σ2
r

1 − x2 +
σ2

d

| |g| |2 β̃2
1

(6.17a)

s.t.
(
d1 +

σ2
r

1 − x2

)
(β̃2

1 + β̃
2
2) ≤ (d2x + d3 β̃1 + d4 β̃2)

2 (6.17b)(
d1 +

σ2
r

1 − x2

)
(β̃2

1 + β̃
2
2) ≤ Pmax (6.17c)

where we take the multiplicative inverse of (6.9a) and obtain a minimization problem.

d1 , Psλ
2
H , d2 ,

√
ηPs | |h| |, d3 ,

√
ηPsλHc1, and d4 ,

√
ηPsλHc2 are defined for
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ease of notation. KKT conditions for (6.17a-c) are given as follows,

2σ2
d

| |g| |2 β̃3
1
= 2µ1

( (
d1 +

σ2
r

1 − x2
)
β̃1 − d3(d2x + d3 β̃1 + d4 β̃2)

)
+ 2µ2

(
d1 +

σ2
r

1 − x2
)
β̃1

(6.18a)

0 = 2µ1

( (
d1 +

σ2
r

1 − x2
)
β̃2 − d4(d2x + d3 β̃1 + d4 β̃2)

)
+ 2µ2

(
d1 +

σ2
r

1 − x2
)
β̃2 (6.18b)

2σ2
r x

(1 − x2)2
= 2µ1d2(d2x + d3 β̃1 + d4 β̃2) − 2µ1

(β̃2
1 + β̃

2
2)σ

2
r x

(1 − x2)2
− 2µ2

(β̃2
1 + β̃

2
2)σ

2
r x

(1 − x2)2

(6.18c)

µ1 ≥ 0, µ2 ≥ 0 (6.18d)

µ1

( (
d1 +

σ2
r

1 − x2
)
(β̃2

1 + β̃
2
2) − (d2x + d3 β̃1 + d4 β̃2)

2
)
= 0 (6.18e)

µ2

( (
d1 +

σ2
r

1 − x2
)
(β̃2

1 + β̃
2
2) − Pmax

)
= 0 (6.18f)

(6.17b)-(6.17c) (6.18g)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequalities in

(6.17b) and (6.17c), respectively. According to the values of µ1 and µ2, we will

consider four sub-cases similar to the previous part.

Case 2a: µ1 = 0, µ2 = 0.

This case makes a contradiction for (6.18a) and thus it is not possible.

Case 2b: µ1 = 0, µ2 > 0.

In this case, we obtain x = 0 by (6.18c). x = 0 corresponds to α = 1 and this case is

considered in Case 1.

Case 2c: µ1 > 0, µ2 = 0.

Now, (6.17b) is satisfied with equality by (6.18e). In addition, if d4 > 0, we obtain

the following relation by (6.18b), i.e.,

d2x + d3 β̃1 + d4 β̃2 =
d1 +

σ2
r

1−x2

d4
β̃2. (6.19)

If we insert right side of (6.19) into the equality in (6.18e), we obtain

(
d1 +

σ2
r

1 − x2
)
(β̃2

1 + β̃
2
2) −

(
d1 +

σ2
r

1−x2

)2

d2
4

β̃2
2 = 0. (6.20)
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By (6.20), we obtain

β̃1 =

√
d1 − d2

4 +
σ2
r

1−x2

d4
β̃2. (6.21)

If we insert (6.21) into (6.19) we obtain

β̃2 =
d2d4

d1 − d2
4 +

σ2
r

1−x2 − d3

√
d1 − d2

4 +
σ2
r

1−x2

x. (6.22)

If we insert (6.21) and (6.22) into the objective function in (6.17a), we obtain the

following unconstrained optimization problem, i.e.,

min
0≤x<1

σ2
r

1 − x2 +

σ2
d

(√
d1 − d2

4 +
σ2
r

1−x2 − d3

)2

| |g| |2d2
2 x2

(6.23)

Let us find the minimizer of the function in (6.23) and check whether it satisfies

0 ≤ x < 1 or not. In order to simplify the derivative operation, let us define y ,√
d1 − d2

4 +
σ2
r

1−x2 and express (6.23) in terms of y as follows,

min
y

y2 +
σ2

d (y − d3)
2(y2 − d1 + d2

4 )

| |g| |2d2
2 (y

2 − d1 + d2
4 − σ

2
r )

(6.24)

If we equate the derivative of the function in (6.24) to zero, we obtain

2y +
σ2

d

| |g| |2d2
2

(
4y3 − 6d3y

2 + 2(d2
3 + d2

4 − d1)y + 2d3(d1 − d2
4 )

) (
y2 − d1 + d2

4 − σ
2
r
)

(y2 − d1 + d2
4 − σ

2
r )

2

−
σ2

d

| |g| |2d2
2

2y
(
y4 − 2d3y

3 + (d2
3 + d2

4 − d1)y
2 + 2d3(d1 − d2

4 )y + d2
3 (d

2
4 − d1)

)
(y2 − d1 + d2

4 − σ
2
r )

2
= 0

(6.25)

If we rearrange the terms in (6.25), we obtain the following fifth order polynomial,

i.e.,

A5y
5 + A4y

4 + A3y
3 + A2y

2 + A1y + A0 = 0 (6.26)
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where A5, A4, A3, A2, A1, and A0 are defined for ease of notation as follows

A5 = 1 +
σ2

d

| |g| |2d2
2
, A4 =

−d3σ
2
d

| |g| |2d2
2
, A3 = −2(d1 − d2

4 + σ
2
r ) −

2(d1 − d2
4 + σ

2
r )σ

2
d

| |g| |2d2
2

,

(6.27a)

A2 =

(
3d3(d1 − d2

4 + σ
2
r ) − d3(d1 − d2

4 )

)
σ2

d

| |g| |2d2
2

, (6.27b)

A1 = (d1 − d2
4 + σ

2
r )

2 +

(
d2

3 (d1 − d2
4 ) − (d

2
3 + d2

4 − d1)(d1 − d2
4 + σ

2
r )

)
σ2

d

| |g| |2d2
2

, (6.27c)

A0 =
−d3(d1 − d2

4 )(d1 − d2
4 + σ

2
r )σ

2
d

| |g| |2d2
2

. (6.27d)

After finding the positive roots of (6.26), we can determine each candidate x using

the relation x =
√

y2−d1+d2
4−σ

2
r

y2−d1+d2
4

. We note the corresponding solution as a candidate

for each positive root if it satisfies 0 ≤ x < 1, β̃2 ≥ 0 in (6.22) and the constraint in

(6.17c).

If d4 = 0, we obtain β̃2 = 0 by (6.18b). Then, we obtain β̃1 =
d2 x√

d1+
σ2
r

1−x2 −d3

by (6.18e).

If we insert this β̃1 into (6.17a), we obtain the same optimization problem in (6.23)

with d4 = 0. For each positive root of (6.26), we note the corresponding solution as a

candidate if it satisfies 0 ≤ x < 1, β̃1 =
d2 x√

d1+
σ2
r

1−x2 −d3

> 0 and the constraint in (6.17c).

Case 2d: µ1 > 0, µ2 > 0.

In this case, both (6.17b) and (6.17c) are satisfied with equality. Hence, by subtracting

one of the equalities from the other, we obtain

β̃2 =

√
Pmax − d2x − d3 β̃1

d4
(6.28)

Here, we have assumed that d4 > 0. If d4 = 0, β2 = 0 by (6.18b). Continuing with
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d4 > 0, if we insert (6.28) into the equality in (6.18f), we obtain,(
d1 +

σ2
r

1 − x2

) (
β̃2

1 +
(
√

Pmax − d2x − d3 β̃1)
2

d2
4

)
= Pmax (6.29a)(

d1 +
σ2

r

1 − x2

) (
(d2

3 + d2
4 )β̃

2
1 + 2d3(d2x −

√
Pmax)β̃1 + (d2x −

√
Pmax)

2
)

− Pmaxd2
4 = 0 (6.29b)

β̃2
1 +

2d3

d2
3 + d2

4
(d2x −

√
Pmax)β̃1 +

(d2x −
√

Pmax)
2

d2
3 + d2

4
−

Pmaxd2
4(

d1 +
σ2
r

1−x2

)
(d2

3 + d2
4 )

= 0

(6.29c)(
β̃1 +

d3

d2
3 + d2

4
(d2x −

√
Pmax)

)2
+

d2
4 (d2x −

√
Pmax)

2

(d2
3 + d2

4 )
2

−
Pmaxd2

4(
d1 +

σ2
r

1−x2

)
(d2

3 + d2
4 )

= 0

(6.29d)(
β̃1 + D1x − D2

)2
+ D3(D1x − D2)

2 −
D4

d1 +
σ2
r

1−x2

= 0 (6.29e)

where D1, D2, D3, D4 are defined for ease of notation, i.e.,

D1 ,
d2d3

d2
3 + d2

4
, D2 ,

√
Pmaxd3

d2
3 + d2

4
, D3 ,

d2
4

d2
3
, D4 ,

Pmaxd2
4

(d2
3 + d2

4 )
(6.30)

Note that (6.29e) is also valid for d4 = 0, i.e.,
√

Pmax − d2x − d3 β̃1 = 0 by (6.18e-f)

with β̃2 = 0. By (6.29e) we obtain β̃1 as follows,

β̃1 =

√√
D4

d1 +
σ2
r

1−x2

− D3(D1x − D2)2 − (D1x − D2) (6.31)

If we insert (6.31) into the objective function in (6.17a), we obtain the following

optimization problem in terms of x only as follows,

min
0≤x<1

σ2
r

1 − x2 +
σ2

d

| |g| |2
(√

D4

d1+
σ2
r

1−x2

− D3(D1x − D2)2 − (D1x − D2)

)2 (6.32)

First, let us find the minimizer of the above function in (6.32) ignoring 0 ≤ x < 1. If

the solution satisfies 0 ≤ x < 1, then it is the optimum solution of (6.32). Otherwise,

boundary point x = 0 should be considered which is already analyzed in Case 1. Let

us take the derivative of the function in (6.32) and equate it to zero, i.e.,

f (x) =
2σ2

r x
(1 − x2)2

−
2σ2

d f ′1(x)

| |g| |2 f 3
1 (x)

= 0 (6.33)
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where f1(x) ,
√

D4

d1+
σ2
r

1−x2

− D3(D1x − D2)2−(D1x−D2) is defined for ease of notation

and the derivative of it is given by

f ′1(x) =

−D4
σ2
r x

(1−x2)2(
d1+

σ2
r

1−x2

)2 − D1D3(D1x − D2)√
D4

d1+
σ2
r

1−x2

− D3(D1x − D2)2
− D1 (6.34)

Now, we will show that f (x) is monotonically increasing in the region of interest in

Lemma 6.2.

Lemma 6.2: f (x) is monotonically increasing in the region specified by β̃1 > 0 and

0 ≤ x < 1.

Proof: Proof can be found in Appendix C.1. �

By Lemma 6.2, we can find the zeros of f (x) inside the region of interest by using

bisection search as outlined in Algorithm 6.1. Note that D1x − D2 is negative inside

the region specified by β̃1 > 0 and β̃2 ≥ 0 by (6.28) using the definitions in (6.30).

Hence, upper bound for x is given as min
{
1, D2

D1

}
. When D1x − D2 ≤ 0, we see that

β̃1 is real and positive if D4

d1+
σ2
r

1−x2

− D3(D1x − D2)
2 ≥ 0 by (6.31). In order to find the

intervals in which this function is nonnegative, let us find its zeros, i.e.,

D4

d1 +
σ2
r

1−x2

− D3(D1x − D2)
2 = 0 (6.35)

If we rearrange the terms in (6.35), we obtain the following quartic equation, i.e.,

−D2
1D3d1x4 + 2D1D2D3d1x3 +

(
D12D3(d1 + σ

2
r ) − D2

2D3d1 + D4
)
x2

−2D1D2D3(d1 + σ
2
r )x + D2

2D3(d1 + σ
2
r ) − D4 = 0 (6.36)

At this point, the intervals, in which the function in (6.35) is nonnegative, are chosen

for bisection search in order to obtain candidate solutions by considering the sign of

f (x) at the end points of the intervals.

Algorithm 6.1: Bisection Search for Finding the Zeros of f (x)
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Initialization: Find the real and nonnegative roots of the quartic equation in (6.36)

which are less than min
{
1, D2

D1

}
. Choose the interval between the roots such that the

function in (6.35) is nonnegative and f (x) is nonpositive and nonnegative at the left

and right endpoints, respectively. If there is no such an interval, terminate. If it exists,

for each interval, set initial lower and upper bounds, L(0) and U(0), as the left and right

endpoints, respectively. Take the initial x as x(0) = (L(0) + U(0))/2. Set the iteration

number i ← 0.

Repeat

If f (x(i)) < 0 , set L(i+1) = x(i).

ElseIf f (x(i)) > 0 , set U(i+1) = x(i).

Else Terminate.

x(i+1) = (L(i+1) +U(i+1))/2

Set i ← i + 1.

Until convergence criterion is met.

Note the corresponding solutions as candidate for each zero found by Algorithm 6.1.

Let us construct the set S whose elements are the candidate {β1, β2, α} given in Case

(1a-1d) and Case (2a-2d). Note that β̃1, β̃2 and x found in Cases (2a-2d) are converted

β1, β2, and α in constructing the set S. If S , ∅, then the optimum solution of (6.9) is

obtained as follows,

{β?1 , β
?
2 , α

?} = arg max
{β1,β2,α}∈S

α | |g| |2β2
1

σ2
r | |g| |2β2

1 + σ
2
d

. (6.37)

Using (6.37), optimum beamformer v?r for the problem in (6.8) is obtained by Lemma

6.1 as v?r = β?1 Ψ1 + β
?
2 e j∠fHgΨ2.
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6.4 QoS-Aware Design Problem

QoS-aware design for the considered self-energy recycling protocol is considered

for the optimization of only relay beamformer in [21]. In this chapter, we consider

the joint design of power allocation and relay beamforming weight vector. In this

problem, the aim is to minimize the relay transmission power used by the relay’s

own battery, Pr − Ph, such that the SNR requirement at D and maximum power limit

constraint at R are satisfied. The addressed optimization problem can be written as

follows,

min
vr,α
| |vr | |

2(Psαλ
2
H + σ

2
r ) − ηPs

(
| |h| |
√

1 − α + λH
√
α |fHvr |

)2
(6.38a)

s.t.
Psλ

2
Hα |g

Hvr |
2

σ2
r |gHvr |

2 + σ2
d

≥ γ (6.38b)

| |vr | |
2(Psαλ

2
H + σ

2
r ) ≤ Pmax (6.38c)

0 < α ≤ 1 (6.38d)

where γ is the target SNR at D. Let us express the relay beamformer vector as vr =∑N
n=1 βne jθnΨn where βn ≥ 0, n = 1, ..., N and {Ψn}

N
n=1 is an orthonormal basis for

CN×1 such that Ψ1 =
g
| |g| | and Ψ2 =

f−Ψ1ΨH
1 f

| |f−Ψ1ΨH
1 f | | . Then, we have the following Lemma

similar to Lemma 6.1.

Lemma 6.3: The optimum beamformer relay vector, v?r , for the problem (6.38) is

given by the form v?r = β1Ψ1 + β2e j∠fHgΨ2, where β1 ≥ 0 and β2 ≥ 0.

Proof : A similar proof can be found in [21]. �

Using Lemma 6.3, the problem in (6.38) can be expressed in terms of β1, β2 and α as

follows,

min
β1,β2,α

(β2
1 + β

2
2)(Psαλ

2
H + σ

2
r ) − ηPs

(
| |h| |
√

1 − α + λH
√
α(c1β1 + c2β2)

)2
(6.39a)

s.t.
Psλ

2
Hα | |g| |

2β2
1

σ2
r | |g| |2β2

1 + σ
2
d

≥ γ (6.39b)

(β2
1 + β

2
2)(Psαλ

2
H + σ

2
r ) ≤ Pmax (6.39c)

0 < α ≤ 1 (6.39d)

where c1 = |fHΨ1 | = |fHg|/| |g| | and c2 = fHΨ2 =
fH f−fHΨ1ΨH

1 f
| |f−Ψ1ΨH

1 f | | are as defined before.
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Note that c1 and c2 are real and nonnegative. Hence, optimum β1 and β2 for (6.39)

should be nonnegative in order to maximize harvested power expression in (6.39a).

This is the reason why we do not include nonnegativity constraints in (6.39).

Now, there are two main cases to be evaluated as in the previous section.

Case 1: Assume α = 1. In this case, the problem in (6.39) can be reformulated as

follows,

min
β1,β2
(Psλ

2
H + σ

2
r )(β

2
1 + β

2
2) − ηPsλ

2
H(c1β1 + c2β2)

2 (6.40a)

s.t.
Psλ

2
H | |g| |

2β2
1

σ2
r | |g| |2β2

1 + σ
2
d

≥ γ (6.40b)

(Psλ
2
H + σ

2
r )(β

2
1 + β

2
2) ≤ Pmax (6.40c)

The solution of this problem constitutes a candidate optimum solution for the problem

(6.39a-d). KKT necessary optimality conditions for the problem in (6.40a-c) are given

by

2
(
(Psλ

2
H + σ

2
r )β1 − ηPsλ

2
Hc1(c1β1 + c2β2)

)
=

2µ1Psλ
2
H | |g| |

2σ2
d β1

(σ2
r | |g| |2β2

1 + σ
2
d )

2
− 2µ2(Psλ

2
H + σ

2
r )β1 (6.41a)

2
(
(Psλ

2
H + σ

2
r )β2 − ηPsλ

2
Hc2(c1β1 + c2β2)

)
= −2µ2(Psλ

2
H + σ

2
r )β2 (6.41b)

µ1 ≥ 0, µ2 ≥ 0 (6.41c)

µ1

(
Psλ

2
H | |g| |

2β2
1

σ2
r | |g| |2β2

1 + σ
2
d

− γ

)
= 0 (6.41d)

µ2

(
(Psλ

2
H + σ

2
r )(β

2
1 + β

2
2) − Pmax

)
= 0 (6.41e)

(6.40b)-(6.40c) (6.41f)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequality con-

straints in (6.40b) and (6.40c), respectively. Now, we will consider four sub-cases.

Case 1a: µ1 = 0, µ2 = 0.

If c1 = 0, β1 = 0 by (6.41a), and (6.40b) cannot be satisfied. Hence, if c1 = 0, we do
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not consider this case. Otherwise, we obtain the following relations by (6.41a-b), i.e.,

β2 =
c2
c1
β1 (6.42a)(

Psλ
2
H(1 − ηc2

1) + σ
2
r
)
β1 = Psλ

2
Hηc2

2β1 (6.42b)

If Psλ
2
H(1 − ηc2

1) + σ
2
r , Psλ

2
Hηc2

2 , this case results zero SNR by β1 = 0. Hence,

we eliminate this case. Otherwise if Psλ
2
H(1 − ηc2

1) + σ
2
r = Psλ

2
Hηc2

2 , then if we

multiply (6.41a) and (6.41b) by β1 and β2, respectively and add them up we obtain

the objective function as zero for any β1 and β2 as in (6.42a). In this case, we should

check other conditions. β1 should be at least
√

γσ2
d

(Psλ
2
H−γσ

2
r )| |g| |2

in order to satisfy

(6.40b). If this β1 and the corresponding β2 in (6.42a) also satisfy (6.40c), they are

noted as a candidate solution.

Case 1b: µ1 = 0, µ2 > 0.

Note that c1 and c2 cannot be zero at the same time since c1 = |fHΨ1 |, c2 = fHΨ2,

and c2
1 + c2

2 = | |f | |
2. If c1 = 0, we obtain β1 = 0 by (6.41a) which results zero

SNR. Hence, we do not consider this case if c1 = 0. If c2 = 0, we obtain β2 = 0 by

(6.41b) and β1 =
√

Pmax

Psλ
2
H+σ

2
r

by (6.41e). If they also satisfy (6.40b), they are noted as

a candidate solution. If c1 > 0 and c2 > 0, both β1 and β2 are nonzero by (6.41a-b)

and (6.41e). In this case, if we divide both sides of (6.41a) by (6.41b) and rearrange

the terms, we obtain

−ηc2
1β1β2 − ηc1c2β

2
2 = −ηc2

2β1β2 − ηc1c2β
2
1 (6.43)

We can divide both sides of (6.43) by ηc1c2 and obtain

β2
2 +
(c2

1 − c2
2)

c1c2
β1β2 − β

2
1 = 0 (6.44)

Let r be the only nonnegative root of the quadratic equation in (6.44), i.e., β2 = rβ1.

Note that (6.40c) is satisfied with equality by (6.41e) and if we insert this relation into

the equality in (6.41e), we obtain

β1 =

√
Pmax

(Psλ
2
H + σ

2
r )(1 + r2)

(6.45)

If this solution satisfies SNR constraint in (6.40b), it is a candidate solution.
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Case 1c: µ1 > 0, µ2 = 0.

Since µ1 > 0, (6.40b) is satisfied with equality. Hence, we obtain

β1 =

√√
γσ2

d

(Psλ
2
H − γσ

2
r )| |g| |2

(6.46)

If Psλ
2
H(1 − ηc2

2) + σ
2
r = 0 and c1 > 0, then we obtain β1 = 0 by (6.41b) which

contradicts with (6.46). Hence, we do not consider this case for Psλ
2
H(1−ηc2

2)+σ
2
r = 0

and c1 > 0. If Psλ
2
H(1 − ηc2

2) + σ
2
r = 0 and c1 = 0, then the objective function in

(6.40a) is independent of β2 and β2 = 0 with β1 in (6.46) is a candidate solution if

they also satisfy (6.40c). Otherwise if Psλ
2
H(1 − ηc2

2) + σ
2
r , 0, we obtain by (6.41b)

β2 =
ηc1c2Psλ

2
H

Psλ
2
H(1 − ηc2

2) + σ
2
r
β1. (6.47)

Note that for (6.46) and (6.47) to be a candidate solution, it is required that Psλ
2
H(1 −

ηc2
2) + σ

2
r > 0 and (6.40c) is satisfied.

Case 1d: µ1 > 0, µ2 > 0.

In this case, both (6.40b) and (6.40c) are satisfied with equality.Hence, we obtain

β1 =

√√
γσ2

d

(Psλ
2
H − γσ

2
r )| |g| |2

(6.48a)

β2 =

√√
Pmax

Psλ
2
H + σ

2
r
−

γσ2
d

(Psλ
2
H − γσ

2
r )| |g| |2

(6.48b)

If the term inside the square root function in (6.48b) is nonnegative, this constitutes a

candidate solution. Now, let us consider the other case where 0 < α < 1.

Case 2: In this case, we will solve (6.39a-c) and check whether the solution satisfies

(6.39d) or not. We will express (6.39a-c) in terms of β̃1 ,
√
αβ1, β̃2 ,

√
αβ2, and

x ,
√

1 − α as in the previous section. (6.39a-c) can be reformulated as follows,

min
β̃1,β̃2,x

(
d1 +

σ2
r

1 − x2

)
(β̃2

1 + β̃
2
2) − (d2x + d3 β̃1 + d4 β̃2)

2 (6.49a)

s.t.
Psλ

2
H | |g| |

2 β̃2
1

σ2
r | |g| |2

β̃2
1

1−x2 + σ
2
d

≥ γ (6.49b)(
d1 +

σ2
r

1 − x2

)
(β̃2

1 + β̃
2
2) ≤ Pmax (6.49c)
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where d1 , Psλ
2
H , d2 ,

√
ηPs | |h| |, d3 ,

√
ηPsλHc1, and d4 ,

√
ηPsλHc2 are as

defined before. KKT conditions for (6.49a-c) are given as follows,

2
(
d1 +

σ2
r

1 − x2

)
β̃1 − 2d3(d2x + d3 β̃1 + d4 β̃2)

= 2µ1
Psλ

2
H | |g| |

2σ2
d β̃1

(σ2
r | |g| |2

β̃2
1

1−x2 + σ
2
d )

2
− 2µ2

(
d1 +

σ2
r

1 − x2

)
β̃1 (6.50a)

2
(
d1 +

σ2
r

1 − x2

)
β̃2 − 2d4(d2x + d3 β̃1 + d4 β̃2) = −2µ2

(
d1 +

σ2
r

1 − x2

)
β̃2 (6.50b)

2
σ2

r x(β̃2
1 + β̃

2
2)

(1 − x2)2
− 2d2(d2x + d3 β̃1 + d4 β̃2)

= −2µ1
Psλ

2
H | |g| |

4σ2
r

β̃4
1 x

(1−x2)2

(σ2
r | |g| |2

β̃2
1

1−x2 + σ
2
d )

2
− 2µ2

σ2
r x(β̃2

1 + β̃
2
2)

(1 − x2)2
(6.50c)

µ1 ≥ 0, µ2 ≥ 0 (6.50d)

µ1

(
Psλ

2
H | |g| |

2 β̃2
1

σ2
r | |g| |2

β̃2
1

1−x2 + σ
2
d

− γ

)
= 0 (6.50e)

µ2

( (
d1 +

σ2
r

1 − x2
)
(β̃2

1 + β̃
2
2) − Pmax

)
= 0 (6.50f)

(6.49b)-(6.49c) (6.50g)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequalities in

(6.49b) and (6.49c), respectively. According to µ1 and µ2, we will consider 4 sub-

cases.

Case 2a: µ1 = 0, µ2 = 0.

If d3 = 0, we obtain β̃1 = 0 by (6.50a). In this case, the SNR constraint in (6.49b)

cannot be satisfied. Hence, we will not consider this case if d3 = 0. If d3 , 0, we

obtain by (6.50a-b)

β̃2 =
d4
d3
β̃1 (6.51)

If we insert (6.51) into (6.50a), we obtain the following relation, i.e.,

β̃1 =
d2d3

d1 − d2
3 − d2

4 +
σ2
r

1−x2

x (6.52)

By (6.50a) and (6.50c), we obtain

d3σ
2
r x(β̃2

1 + β̃
2
2)

(1 − x2)2
= d2

(
d1 +

σ2
r

1 − x2

)
β̃1 (6.53)
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If we insert (6.51) into (6.53), we obtain

β̃1 =
d2d3(1 − x2)

σ2
r x(d2

3 + d2
4 )

(
d1 + σ

2
r − d1x2) (6.54)

If we equate both sides of (6.52) and (6.54), we obtain

d2d3(1 − x2)x
d1 − d2

3 − d2
4 + σ

2
r − (d1 − d2

3 − d2
4 )x

2
=

d2d3(1 − x2)

σ2
r x(d2

3 + d2
4 )

(
d1 + σ

2
r − d1x2) (6.55)

By rearranging the terms in (6.55), we obtain the following quadratic polynomial of

x2, i.e.,

B2x4 + B1x2 + B0 = 0 (6.56)

where B2, B1, and B0 are defined as follows

B2 = d1(d1 − d2
3 − d2

4 ), (6.57a)

B1 = −d1(d1 − d2
3 − d2

4 + σ
2
r ) − (d1 + σ

2
r )(d1 − d2

3 − d2
4 ) − σ

2
r (d

2
3 + d2

4 ) (6.57b)

B0 = (d1 + σ
2
r )(d1 − d2

3 − d2
4 + σ

2
r ) (6.57c)

For each root of (6.56) such that 0 ≤ x < 1, we can find the corresponding β̃1 and

β̃2 by (6.52) and (6.51), respectively. We note each solution as candidate if it satisfies

the constraints in (6.49b) and (6.49c).

Case 2b: µ1 = 0, µ2 > 0.

If d3 = 0, we obtain β̃1 = 0. In this case, the SNR constraint in (6.49b) cannot be

satisfied. Hence, we will not consider this case if d3 = 0. If d3 , 0, we obtain (6.51)

by (6.50a-b). By dividing both sides of (6.50a) and (6.50c), we obtain the relation in

(6.54). Additionally, by (6.50f) and (6.51), we obtain

β̃1 =

√√√ Pmaxd2
3(

d1 +
σ2
r

1−x2

)
(d2

3 + d2
4 )

(6.58)

If we equate the right sides of (6.54) and (6.58), we obtain

Pmaxd2
3 (1 − x2)(

d1 + σ
2
r − d1x2)(d2

3 + d2
4 )
=

d2
2 d2

3 (1 − x2)2

σ4
r x2(d2

3 + d2
4 )

2

(
d1 + σ

2
r − d1x2)2 (6.59)

If we rearrange the terms in (6.59), we obtain the following quartic polynomial of x2,

i.e.,

C4x8 + C3x6 + C2x4 + C1x2 + C0 = 0 (6.60)
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where C4, C3, C2, C1, and C0 are given as follows

C4 = d3
1 d2

2, C3 = −3d2
1 d2

2 (d1 + σ
2
r ) − d3

1 d2
2, (6.61a)

C2 = 3d1d2
2 (d1 + σ

2
r )

2 + 3d2
1 d2

2 (d1 + σ
2
r ), (6.61b)

C1 = −3d1d2
2 (d1 + σ

2
r )

2 − d2
2 (d1 + σ

2
r )

3 − Pmaxσ
4
r (d

2
3 + d2

4 ), C0 = d2
2 (d1 + σ

2
r )

3

(6.61c)

For each root of (6.60) such that 0 ≤ x < 1, we can find the corresponding β̃1 and

β̃2 by (6.58) and (6.51), respectively. We note each solution as candidate if it satisfies

the constraint in (6.49b). In the following two sub-cases, we will ignore the term
σ2
r

1−x2 in (6.49a) and (6.49c) in order to simplify the problem. At the end, we will

include this term and update the solution for these two cases. Note that σ2
r

1−x2 term is

relatively small compared to Psλ
2
H term and we will obtain a near-optimum solution

of the problem in this way.

Case 2c: µ1 > 0, µ2 = 0.

If d1 − d2
4 ≤ 0, we obtain β̃1 ≤ 0 by (6.50b). Hence either β̃1 becomes negative or

SNR becomes zero. Hence, we do not consider this case for a candidate solution if

d1 − d2
4 ≤ 0. Otherwise by (6.50b), we obtain β̃2 as follows,

β̃2 =
d2d4

d1 − d2
4

x +
d3d4

d1 − d2
4
β̃1. (6.62)

By the equality in (6.50e), x is obtained in terms of β̃1 as follows,

x =

√√
(Psλ

2
H | |g| |2 − γσ

2
r | |g| |2)β̃2

1 − γσ
2
d

Psλ
2
H | |g| |2 β̃

2
1 − γσ

2
d

=

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

(6.63)

where E1 , Psλ
2
H | |g| |

2, E2 , γσ2
r | |g| |2, and E3 , γσ2

d are defined for ease of

notation. Note that E1, E2, and E3 are positive. If we insert (6.62) and (6.63) into

the objective function in (6.49a), we obtain the following unconstrained optimization
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problem, i.e.,

min
β̃1

d1 β̃
2
1 + d1

(
d2d4

d1 − d2
4

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

+
d3d4

d1 − d2
4
β̃1

)2

−

(
d1d2

d1 − d2
4

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

+
d1d3

d1 − d2
4
β̃1

)2
(6.64a)

min
β̃1

d1 β̃
2
1 −

d1

d1 − d2
4

(
d2

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

+ d3 β̃1

)2
(6.64b)

min
β̃1

d1(d1 − d2
3 − d2

4 )

d1 − d2
4

β̃2
1 −

2d1d2d3

d1 − d2
4
β̃1

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

−
d1d2

2

d1 − d2
4

(E1 − E2)β̃
2
1 − E3

E1 β̃
2
1 − E3

(6.64c)

Now, let us take the derivative of the function in (6.64c) and equate it to zero and

obtain

g(β̃1) =
2d1(d1 − d2

3 − d2
4 )

d1 − d2
4

β̃1 −
2d1d2d3

d1 − d2
4

√
g1(β̃1) −

d1d2d3

d1 − d2
4

β̃1g
′
1(β̃1)√

g1(β̃1)

−
d1d2

2

d1 − d2
4
g′1(β̃1) = 0 (6.65)

where g1(β̃1) ,
(E1−E2)β̃

2
1−E3

E1 β̃
2
1−E3

is defined for ease of notation and its derivative is given

by g′1(β̃1) =
2E2E3 β̃1
(E1 β̃

2
1−E3)2

.

Now, we will claim that g(β̃1) is monotonically increasing in the region of interest in

Lemma 6.4.

Lemma 6.4: g(β̃1) is monotonically increasing in the region specified by β̃1 > 0 and

0 ≤ x < 1.

Proof: Proof can be found in Appendix C.2. �

As shown in the proof of Lemma 6.4, it is required that d1 ≥ d2
3 + d2

4 for this case to

result a candidate solution. By Lemma 6.4, we can find the unique zero of g(β̃1) inside

the region of interest using a bisection search whose steps are outlined in Algorithm

6.2 if it exists. Note that (6.63) requires that lower bound of β̃1 is
√

E3
E1−E2

. g(β̃1)

goes to minus infinity when β̃1 approaches this lower bound from the right. Hence, if

g

(√
Pmax

d1

)
≥ 0, there is a unique zero inside the region of interest where

√
Pmax

d1
is the

125



upper bound for β̃1 by (6.49c). If there is no zero, then we do not consider this case

for a candidate solution.

Algorithm 6.2: Bisection Search for Finding the Unique Zero of g(β̃1)

Initialization: Set initial lower and upper bounds as L(0) =
√

E3
E1−E2

and U(0) =√
Pmax

d1
, respectively. If g(U(0)) < 0 or U(0) < L(0) terminate. Otherwise, take the

initial β̃1 as β̃(0)1 = (L
(0) +U(0))/2. Set iteration number i ← 0.

Repeat

If g(β̃1
(i)
) < 0 , set L(i+1) = β̃1

(i).

ElseIf g(β̃1
(i)
) > 0 , set U(i+1) = β̃1

(i).

Else Terminate.

β̃
(i+1)
1 = (L(i+1) +U(i+1))/2.

Set i ← i + 1.

Until convergence criterion is met.

The solution corresponding to the zero found by Algorithm 6.2 is noted as a candidate

if it satisfies (6.49c).

Case 2d: µ1 > 0, µ2 > 0.

In this case, both (6.49b) and (6.49c) are satisfied with equality. We again obtain x

as in (6.63) by the equality in (6.50e). Furthermore, β̃2 =
√

Pmax

d1
− β̃2

1. If d4 = 0, we

obtain β̃2 = 0 by (6.50b). Then, β̃1 =
√

Pmax

d1
. For d4 > 0 case, inserting β̃2 and (6.63)

into (6.49a), we obtain the following unconstrained optimization problem in terms of

β̃1, i.e.,

max
β̃1

d2

√√
(E1 − E2)β̃

2
1 − E3

E1 β̃
2
1 − E3

+ d3 β̃1 + d4

√
Pmax

d1
− β̃2

1 (6.66)
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Let us take the derivative of the objective function in (6.66) and equate it to zero, i.e.,

h(β̃1) = d2
g′1(β̃1)

2
√
g1(β̃1)

+ d3 −
d4 β̃1√

Pmax

d1
− β̃2

1

= 0 (6.67)

where g1(β̃1) =
(E1−E2)β̃

2
1−E3

E1 β̃
2
1−E3

is as defined in the previous part. Its derivative is given

by g′1(β̃1) =
2E2E3 β̃1
(E1 β̃

2
1−E3)2

. Now, we will claim that h(β̃1) is monotonically decreasing in

the region of interest in Lemma 6.5.

Lemma 6.5: h(β̃1) is monotonically decreasing in the region specified by β̃1 > 0,

β̃2 ≥ 0 and 0 ≤ x < 1.

Proof: Proof can be found in Appendix C.3. �

By Lemma 6.5, we can find the unique zero of h(β̃1) inside the region of interest using

a bisection search whose steps are outlined in Algorithm 6.3. Note that (6.63) requires

that lower bound of β̃1 is
√

E3
E1−E2

. h(β̃1) goes to plus infinity when β̃1 approaches this

lower bound from the right. Furthermore, h
(√

Pmax

d1

)
is minus infinity which shows

that there always exists a zero inside the region of interest.

Algorithm 6.3: Bisection Search for Finding the Unique Zero of h(β̃1)

Initialization: Set initial lower and upper bounds as L(0) =
√

E3
E1−E2

and U(0) =√
Pmax

d1
, respectively. If U(0) < L(0) terminate. Otherwise, take the initial β̃1 as β̃(0)1 =

(L(0) +U(0))/2. Set iteration number i ← 0.

Repeat

If h(β̃1
(i)
) > 0 , set L(i+1) = β̃1

(i).

ElseIf h(β̃1
(i)
) < 0 , set U(i+1) = β̃1

(i).

Else Terminate.

β̃
(i+1)
1 = (L(i+1) +U(i+1))/2.
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Set i ← i + 1.

Until convergence criterion is met.

For the Case 2c and Case 2d, we will keep x constant for each candidate solution

and include the ignored term σ2
r

1−x2 as in the original problem in (6.49). Then, we

will obtain a near-optimum candidate solution by solving (6.49). KKT conditions for

constant x is given as (6.50a-b), (6.50d-g). We will now briefly go over all cases.

Case 1: µ1 = 0, µ2 = 0.

If d3 = 0, we obtain β̃1 = 0 by (6.50a) which results zero SNR. Hence, we do not

consider this case if d3 = 0. Otherwise, we obtain

β̃2 =
d4
d3
β̃1 (6.68a)

d2x + d3 β̃1 + d4 β̃2 =
d1 +

σ2
r

1−x2

d3
β̃1 (6.68b)

If we insert (6.68a) into (6.68b), we obtain β̃1 and thus β̃2 from (6.68a). If they satisfy

(6.49b) and (6.49c), they are noted as a candidate solution.

Case 2: µ1 = 0, µ2 > 0.

If d3 = 0, we again obtain β̃1 = 0 which is not a candidate solution. For d3 > 0, by

(6.50a-b), we obtain (6.68a). In addition, (6.49c) should be satisfied with equality.

Hence, we obtain β̃1 as follows,

β̃1 =

√√√ Pmaxd2
3(

d1 +
σ2
r

1−x2

)
(d2

3 + d2
4 )
. (6.69)

If this solution satisfies also (6.49b), it is a candidate solution.

Case 3: µ1 > 0, µ2 = 0.

In this case, (6.49b) is satisfied with equality. Hence, we obtain

β̃1 =

√√√
γσ2

d

Psλ
2
H | |g| |2 −

γσ2
r | |g| |2

1−x2

. (6.70)

We can obtain β̃2 easily by (6.50b). For this solution to be candidate, it is required

that (6.49c) is satisfied.
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Case 4: µ1 > 0, µ2 > 0.

In this case, both (6.49b) and (6.49c) are satisfied with equality. In this case, β̃1 is

given in (6.70). And β̃2 is found by (6.50f).

Now, using these last four cases, we can construct Su whose elements are the corre-

sponding candidate pairs {β1, β2} which are obtained as β1 =
β̃1√
α

and β2 =
β̃2√
α

where

α = 1 − x2. In this case, we can update β1 and β2 as follows,

{β?1 , β
?
2 } = arg min

{β1,β2}∈Su
(β2

1 + β
2
2)(Psαλ

2
H + σ

2
r )

−ηPs

(
| |h| |
√

1 − α + λH
√
α(c1β1 + c2β2)

)2
. (6.71)

Let us construct the set S whose elements are the candidate {β1, β2, α} obtained from

Case (1a-1d) and Case (2a-2d). If S , ∅, then the near-optimum solution of (6.39) is

given as follows,

{β?1 , β
?
2 , α

?} = arg min
{β1,β2,α}∈S

(β2
1 + β

2
2)(Psαλ

2
H + σ

2
r )

−ηPs

(
| |h| |
√

1 − α + λH
√
α(c1β1 + c2β2)

)2
. (6.72)

Using (6.72), near-optimum beamformer v?r for the problem in (6.38) is obtained by

Lemma 6.3 as v?r = β?1 Ψ1 + β
?
2 e j∠fHgΨ2.

6.5 Simulation Results

In this section, the performance of the proposed joint power allocation and beam-

forming is evaluated for several scenarios. The simulation parameters are selected as

follows. There are M = 32 antennas at S. The variances of the R and D noises are set

as σ2
r = σ

2
d = −110 dBW. The energy harvesting efficiency and transmission power

limit of R are η = 0.2 and Pmax = −10 dBW, respectively. The target SNR at D is

γ = 10 dB for QoS-aware optimization problem. Rayleigh fading is assumed for the

all channels, i.e., H, h, g, and f. The path loss for the channels H, h, and g are 60

dB. Unless otherwise stated, the path loss for the self-energy recycling loop channel,
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f, is 10 dB. The number of transmit antennas of R is N = 8. The source power is

Ps = 0 dBW. In the following figures, each point represents the average of randomly

generated 1000 channel realizations.

In the first part of the simulations, SNR maximization problem is considered. In Fig.

6.2, destination SNR is plotted in terms of the source power, Ps and the performances

of several methods are compared. “PM for JPA-B” stands for the proposed method

for the joint power allocation and relay transmit beamforming which is presented in

Section 6.3. “EPA with TPC” is equal power allocation approach with transmission

power limit constraint included as in the proposed method. The result of this method

is obtained by taking α constant at 0.5 and solving the problem by using the KKT

conditions given in Section 6.3. The same procedure is applied for “EPA without

TPC” without including transmit power limit constraint. This method is equivalent

to the one in [19]. In the considered scenarios, these two methods give the same

result as expected. As shown in Fig. 6.2 , the proposed method provides 3 dB higher

SNR compared to the equal power division approach. In addition, EPA with TPC and

without TPC perform the same indicating the transmission power limit Pmax does not

restrict the optimization problem.

In Fig. 6.3, we compare the destination SNR for the above methods by varying path

loss for the loop channel. As expected, increase in path loss decreases SNR by lim-

iting energy harvested by self-energy recycling via loop channel f. Similarly, there

is a 3 dB SNR gain provided by the proposed method compared to its equal power

allocation counterpart.

In Fig. 6.4, we change the number of transmit antennas at R from N = 8 to N = 40.

For N less than 32, the SNR gain of the proposed method is 3 dB. As N increases,

the gain becomes smaller. From N = 8 until N = 32, EPA without TPC gives the

same result with EPA without TPC showing that transmission power limit constraint

does not affect the optimality of the optimization problem. However, EPA without

TPC results significantly higher SNR for N = 40 case. However, this is not a fair

comparison. In fact, the average transmission power for EPA without TPC is 0.3471

W which is 3.471 times of Pmax . Since there is no constraint for transmission power

limit in the method of [19], higher SNR is resulted. Our proposed method also takes
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Figure 6.2: Destination SNR versus source power, Ps.

into account the transmission power constraint and hence presents a more practical

solution.

In Fig. 6.5, 6.6, and 6.7 we consider QoS-aware optimization problem presented in

Section 6.4. We select the method in [21] as benchmark for our comparison. The

method in [21] assumes equal power allocation and includes transmission power con-

straint. EPA with TPC solves the same optimization problem by applying the KKT

conditions presented in this chapter. We verify that they are equal in the follow-

ing scenarios. In Fig. 6.5, we plot transmission power minus the harvested power,

Pr − Ph, which is the objective function of the QoS-aware optimization problem. The

PM always performs better and the difference between PM and EPA increases with

Ps. Pr − Ph is usually negative and this means that the harvested power is greater

compared to the transmitted power. Hence, power saving is possible for these scenar-

ios. As it can be seen from Fig. 6.5, the difference between harvested and transmitted

power is approximately two times greater for the proposed method showing its effi-

ciency in terms of power saving.

In Fig. 6.6, path loss for the loop channel f is varied. When path loss is 6 dB, power

saving is possible for the proposed method since harvested power is greater than the

transmitted power while the reverse is true for equal power allocation method. As the

path loss increases, the power required by the relay’s own battery increases for both
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Figure 6.3: Destination SNR versus path loss for loop channel, f.

methods. However, the extra power needed for PM is about two times less compared

to EPA.

In Fig. 6.7, we change the number of transmit antennas at R, N . As N increases, the

difference between the transmitted and harvested power decreases for both methods.

At N = 28, the difference becomes about 2.4 times more negative for PM compared

to EPA. When N becomes 32, power saving significantly increases due to strong self-

energy recycling channel between transmit and energy harvesting antennas at R.

6.6 Conclusion

In this chapter, the joint optimization of power allocation between information and

energy signals at the source side and the relay transmit beamformer is considered

for the self-energy recycling wireless-powered relaying. Two design approaches are

adopted. The first one aims at maximizing destination SNR subject to the constraint

that transmission power is less than the maximum power limit and the harvested

power. The joint optimum power division parameter and relay transmit beamformer

are derived for this problem. The second problem minimizes the difference of trans-

mitted and harvested power at the relay subject to the SNR and maximum power limit

constraints. A near-optimum joint solution is found for this QoS-aware design prob-
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Figure 6.4: Destination SNR versus number of transmit antennas at the relay, N .

lem. As shown in the simulations, the proposed method provides 3 dB higher SNR

for the SNR maximization problem compared to the equal power allocation whereas

it results two times less power by the relay’s own battery and two times more power

savings when the objective is negative valued.

133



-10 -5 0 5 10 15 20
SOURCE POWER, P

s
 (dBW)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

P
r-P

h
 (

W
)

×10-4

PM for JPA-B

EPA with TPC

[21]

Figure 6.5: Pr − Ph versus source power, Ps.
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Figure 6.6: Pr − Ph versus path loss for loop channel, f.
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CHAPTER 7

OPTIMUM AND NEAR-OPTIMUM BEAMFORMERS FOR

DECODE-AND-FORWARD FULL-DUPLEX MULTI-ANTENNA RELAY

WITH SELF-ENERGY RECYCLING

In this chapter, we consider the full-duplex decode-and-forward wireless-powered

relaying system which employs energy harvesting protocol with power splitting. The

joint optimum relay transmit beamformer and power splitting factor are obtained for

the quality of service (QoS)-aware problem for the first time in the literature. The

optimum solution is found by analyzing the Karush-Kuhn-Tucker conditions thanks

to the effective reformulation of the problem in an equivalent and simplified manner.

In addition, the signal-to-interference-plus-noise ratio (SINR) maximization problem

is investigated in order to find the joint optimum solution. Simulation results verify

the optimality of the proposed method compared to the sub-optimum one which is

presented in [49]. In the next part of the chapter, the considered system is generalized

by employing multiple receive antennas at the relay. Both QoS-aware and SINR

maximization problems are considered. The near-optimum relay transmit and receive

beamformers as well as power splitting factor are found by optimizing the variables

alternately. First, transmit beamformer and power splitting factor are found optimally

for a given initial receive beamformer. Then, the optimum receive beamformer is

obtained. Relay with multiple-receive antennas is shown to perform better than the

single receive antenna relay in terms of SINR and transmission power.
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7.1 Introduction

In [65], power splitting (PS)-based SWIPT with decode-and-forward full duplex (FD)

relaying is considered for single transmit and single receive antenna relay. Then in

[49], this scenario is generalized by employing multiple transmit antennas at the re-

lay. A sub-optimum solution is presented for signal-to-interference-plus-noise ratio

(SINR) maximization problem.

Unlike SINR maximization, quality-of-service (QoS)-aware design problem is not

considered in the literature for the above mentioned system to the best of authors’

knowledge. In this chapter, we first study the QoS-aware design optimization and

present the optimum solution. In this problem, the aim is to minimize the trans-

mission power used by the relay’s own battery such that the effective SINR of the

system is above a certain threshold. The optimization variables are the relay trans-

mit beamformer and power splitting ratio. The joint optimum solution is found by

reformulating the original problem to obtain and equivalent but simple form. Using

a proper basis for the transmit beamformer and reducing the dimension of the prob-

lem size enables us to analyze Karush-Kuhn-Tucker (KKT) conditions easily. In the

following part of the chapter, we revisit the SINR maximization problem whose sub-

optimum solution is given in [49]. Using bisection search over SINR threshold for

QoS-aware problem, we obtain the optimum solution for the SINR maximization as

well. In the simulation results, the proposed optimum solution always perform better

than the sub-optimum one in [49] and for some scenarios the performance difference

between the two methods becomes significantly large.

In the above problems, it is assumed that there are multiple transmit antennas whereas

there is a single receive antenna at the relay. There are several works in the literature

which prove the efficiency of multiple receive antennas in energy harvesting systems

[66], [67]. In this chapter, we further study QoS-aware and SINR maximization prob-

lems for multiple-receive antenna case. Since the joint optimum solution is difficult

to obtain, we follow an alternating optimization approach for the design of transmit

and receive beamformers together with power splitting factor. First, receive beam-

former is initialized properly and the joint optimum transmit beamformer and power

splitting factor are found by keeping the receive beamformer constant. Then, trans-
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mit beamformer and power splitting factor are kept constant and the optimum receive

beamformer is obtained. This procedure results a near-optimum solution to the QoS-

aware problem. Then, using a bisection search similar to the single antenna case, we

present a near-optimum solution for SINR maximization problem. Several simula-

tions are performed and it is shown that using multiple receive antennas increases the

SINR and energy performance of the system. As the number of antennas increases,

the improvement becomes more significant.

7.2 System Model

We consider the full-duplex relaying system shown in Fig. 7.1 where the relay node

R assists source node S for information transmission to the single-antenna destina-

tion, D. S and R have M and N transmitting antennas, respectively. In addition, R

has a single receive antenna. While S sends information signal to R, R harvests en-

ergy from some portion of its received signal. R uses the remaining portion of the

RF received signal for decode-and-forward (DF) protocol to transmit the information

to D. In this chapter, block fading channels and perfect channel state information

(CSI) are assumed in accordance with [49]. This will enable us to find the theoretical

performance limit of the considered system. Let s[i] denote the information symbol

Figure 7.1: System model.

to be transmitted at time instant i. s[i] is assumed to have unit average power, i.e.,

E{|s[i]|2} = 1. As in [49], we assume that the information symbol is correctly de-

coded at R. In this case, the forwarded symbol by R is given by s[i−τ]where τ ≥ 1 is

the processing delay introduced by R. Note that the optimum transmit beamformer for
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S is the maximal ratio combiner given by wS =
√

PSgSR/| |gSR | | where gSR ∈ C
M×1 is

the baseband equivalent channel from S to the single receiving antenna of R as shown

in Fig. 7.1. Let wR ∈ C
N×1 denote the relay transmit beamforming vector. In this

case, transmission power of R is given by PR = wH
R wR. The baseband equivalent

received signal at R is given by

yR[i] =
√

PS | |gSR | |s[i] + wH
R gRRs[i − τ] + nRA[i] (7.1)

where gRR ∈ C
N×1 is the loop interference channel between transmitting and receiv-

ing antennas of R. nRA[i] is the additive complex Gaussian noise at the receving

antenna of R, i.e., nRA[i] ∼ CN(0, σ2
RA). The received signal at D is given by

yD[i] = wH
R gRDs[i − τ] + nD[i] (7.2)

where gRD ∈ C
N×1 is the channel from R to D. Note that the direct link between

S and D is ignored as in [49] due to severe attenuation. nD[i] ∼ CN(0, σ2
D) is the

additive noise at the receiver of D.

A portion of the received signal yR[i] is used for energy harvesting while the remain-

ing part is used for information decoding. If we consider power splitting ratio as

0 ≤ α ≤ 1, the signal for energy harvesting is given by yE
R [i] =

√
αyR[i]. Neglecting

the noise power as in [49], the harvested power at R is expressed as

PH = ηα

(
PS | |gSR | |

2 +
��wH

R gRR
��2) (7.3)

where 0 < η < 1 denotes the energy conversion efficiency of the energy harvesting

circuit at R. In [49], a portion variable β is defined and the relation PR = ζ βPH is

enforced where PR is the transmission power of the relay and 0 < ζ < 1 is the energy

utilization efficiency. In this chapter, we will use the constraint PR = wH
R wR ≤ ζPH

instead of this relation in SINR maximization problem where β is not introduced as

a separate variable. Now, consider the remaining portion of the received relay signal

for information decoding as given by

yI
R[i] =

√
1 − αyR[i] + nRI[i] (7.4a)

=
√
(1 − α)PS | |gSR | |s[i] +

√
1 − αwH

R gRRs[i − τ] +
√

1 − αnRA[i] + nRI[i]

(7.4b)
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where nRI[i] ∼ CN(0, σ2
RI) is the additive noise introduced by the digital baseband

processor. In [49], antenna noise nRA is neglected since σ2
RA � σ2

RI in practical

systems [102]. Furthermore, ideal self-interference cancellation is not assumed in

[49]. Instead, the following model is used for the received signal at the information

decoder,

yI
R[i] =

√
(1 − α)PS | |gSR | |s[i] +

√
1 − αgLI s[i − τ] + nRI[i] (7.5)

where gLI denotes the estimation error of wH
R gRR and if µ denotes the residual self

interference level, gLI can be modeled as gLI ∼ CN(0, µ
��wH

R gRR
��2) [103]. In this case,

the signal-to-interference-plus-noise ratio (SINR) at the information decoder of R can

be expressed as

SINRR =
(1 − α)PS | |gSR | |

2

(1 − α)µ
��wH

R gRR
��2 + σ2

RI

. (7.6)

Similarly, signal-to-noise ratio (SNR) for D is given as follows,

SNRD =

��wH
R gRD

��2
σ2

D

. (7.7)

Note that the effective SINR of the system is determined by the minimum of SINRR

and SNRD, i.e., SINRe f f = min{SINRR, SNRD}. In the following section, we will

first consider QoS-aware power minimization in order to find the joint optimum so-

lution. Then, we will study the SINR maximization problem as in [49] and find the

optimum solution in order to compare it with the suboptimal solution in [49].

7.3 QoS-Aware Design Optimization

In QoS-aware problem, the aim is to satisfy the constraint that the effective SINR

is above some predetermined target threshold, γ. We will select the objective as to

minimize the relay transmission power used by the relay’s own battery, i.e., PR−ζPH .

The addressed optimization problem can be formulated as follows,

min
wR,α

wH
R wR − ζηα

(
PS | |gSR | |

2 +
��wH

R gRR
��2) (7.8a)

s.t. min{SINRR, SNRD} ≥ γ (7.8b)

0 ≤ α ≤ 1. (7.8c)
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Note that the constraint in (7.8b) can be reformulated as two constraints, i.e.,

min
wR,α

wH
R wR − ζηα

(
PS | |gSR | |

2 +
��wH

R gRR
��2) (7.9a)

s.t.
(1 − α)PS | |gSR | |

2

(1 − α)µ
��wH

R gRR
��2 + σ2

RI

≥ γ (7.9b)��wH
R gRD

��2
σ2

D

≥ γ (7.9c)

0 ≤ α ≤ 1. (7.9d)

In the following, we will first express (7.9) in a simple equivalent form and derive the

optimum closed-form solution. In order to simplify the problem, let us express the

relay beamformer vector as wR =
∑N

n=1 βne jθnΦn by adopting the procedure in [21].

Here βn ≥ 0, n = 1, ..., N and {Φn}
N
n=1 is an orthonormal basis for CN×1 such that

Φ1 =
gRR

| |gRR | |
and Φ2 =

gRD−Φ1ΦH
1 gRD

| |gRD−Φ1ΦH
1 gRD | |

. The remaining vectors are arbitrary. Then,

optimum beamformer vector is given as in Lemma 7.1.

Lemma 7.1: The optimum relay beamformer vector for (7.9) is given in the form

wR = β1Φ1 + β2e j∠(gH
RDgRR)Φ2, where β1 ≥ 0 and β2 ≥ 0.

Proof: Let us first express the problem (7.9) in terms of {βn, θn}
N
n=1 as follows,

min
{βn,θn}

N
n=1,α

N∑
n=1

β2
n − ζηα

(
PS | |gSR | |

2 + | |gRR | |
2β2

1

)
(7.10a)

s.t.
(1 − α)PS | |gSR | |

2

(1 − α)µ| |gRR | |
2β2

1 + σ
2
RI

≥ γ (7.10b)����β1e− jθ1
gH

RRgRD

| |gRR | |
+ β2e− jθ2

gH
RDgRD − gH

RDΦ1ΦH
1 gRD

| |gRD − Φ1ΦH
1 gRD | |

���� ≥ √
γσ2

D. (7.10c)

Note that any common phase rotation of {θn}
N
n=1 does not change the optimality of the

problem (7.10). Hence, θ1 can be selected as zero without loss of generality. Let us

first prove that optimum θ2 is given by θ2 = ∠gH
RDgRR. This angle aligns the phase of

the two terms inside the parentheses in (7.10c). Assume that the terms are not phase

aligned. In this case, by aligning their phases, (7.10c) can be made a strict inequality.

By this way, β2 can be decreased still satisfying (7.10c) and improving the objective

function. Hence, optimum θ2 should be ∠gH
RDgRR. Now, suppose that at least one of

βn for n = 3, ..., N is positive for the optimum solution. This βn can be made zero by

improving the objective function without violating any constraint. This contradicts
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with the optimality of positive βn for n = 3, ..., N . Hence, βn = 0, n = 3, ..., N for the

optimum solution. �

Now, let us express (7.10) in terms of β1, β2, and α as follows,

min
β1,β2,α

β2
1 + β

2
2 − ζηα

(
PS | |gSR | |

2 + | |gRR | |
2β2

1

)
(7.11a)

s.t.
(1 − α)PS | |gSR | |

2

(1 − α)µ| |gRR | |
2β2

1 + σ
2
RI

≥ γ (7.11b)

c1β1 + c2β2 ≥
√
γσ2

D (7.11c)

0 ≤ α ≤ 1 (7.11d)

where c1 ,

��gH
RRgRD

��
| |gRR | |

and c2 =
gH
RDgRD−gH

RDΦ1ΦH
1 gRD

| |gRD−Φ1ΦH
1 gRD | |

. Note that both c1 and c2 are

nonnegative and it can be easily seen that optimum β1 and β2 for (7.11) should be

nonnegative. Consider the contrary case where at least one of them is negative. Note

that if both are negative, then (7.11c) cannot be satisfied. If only β1 < 0, we can

change its sign and (7.11c) becomes a strict inequality without changing other con-

straints and the objective function. In this case, we can decrease β2 such that (7.11c)

is an equality with an improved objective function. Hence, this results a contradic-

tion. The other case when β2 < 0 is similar. As a result, we didn’t include extra

nonnegativity constraints for β1 and β2 for simplicity.

For the ease of notation, define also d1 , ζηPS | |gSR | |
2, d2 , ζη | |gRR | |

2, d3 ,
µ| |gRR | |

2

PS | |gSR | |2
, and d4 ,

σ2
RI

PS | |gSR | |2
. Using these parameters, Karush-Kuhn-Tucker (KKT)

143



necessary optimality conditions are given as follows,

2(1 − d2α)β1 = µ1
−2(1 − α)2d3β1(
(1 − α)d3β

2
1 + d4

)2 + µ2c1 (7.12a)

2β2 = µ2c2 (7.12b)

− d1 − d2β
2
1 = µ1

−d4(
(1 − α)d3β

2
1 + d4

)2 + µ3 − µ4 (7.12c)

µ1

(
1 − α

(1 − α)d3β
2
1 + d4

− γ

)
= 0 (7.12d)

µ2

(
c1β1 + c2β2 −

√
γσ2

D

)
= 0 (7.12e)

µ3α = 0, µ4(1 − α) = 0 (7.12f)

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0 (7.12g)

(7.11b)-(7.11d) (7.12h)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequalities in

(7.11b) and (7.11c), respectively. µ3 and µ4 are the Lagrange multipliers for 0 ≤ α

and α ≤ 1, respectively. Note that if α = 1, (7.11b) cannot be satisfied. Hence, α < 1.

This results µ4 = 0 by (7.12f). Now, we will consider two main cases by evaluating

the value of α.

Case 1: α = 0

Note that µ1 cannot be zero as seen from (7.12c) since the sign of two sides are

different in case µ1 = 0. Hence µ1 > 0 and (7.11b) is satisfied with equality by

(7.12d). Additionally, µ2 also cannot be zero. If it were zero, we would obtain β1 =

β2 = 0 by (7.12a-b) which cannot satisfy the SINR constraints. Hence, µ2 > 0 and

the inequality in (7.11c) is also an equality. By (7.12d) and (7.12e), we obtain,

β1 =

√
1
γd3
−

d4
d3
, (7.13a)

β2 =

√
γσ2

D

c2
−

c1
c2

√
1
γd3
−

d4
d3
. (7.13b)

If β1 and β2 given in (7.13a-b) are both real and nonnegative, we note them as a

candidate solution in order to use them later on.

Case 2: 0 < α < 1

In this case, both µ3 and µ4 are zero by (7.12f). µ1 still cannot be zero by (7.12c).
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Hence, (7.11b) is satisfied with equality. For the value of µ2, we will consider two

sub-cases as follows.

Case 2a: µ2 = 0

In this case, β2 = 0 by (7.12b). Hence, β1 should be positive in order to satisfy

(7.11c). If we divide both sides of (7.12a) and (7.12c), we obtain the following rela-

tion,

1 − d2α

−d1 − d2β
2
1
=
(1 − α)2d3

d4
. (7.14)

Furthermore, by the equality in (7.12d), we obtain

β2
1 =

1
d3γ
−

d4
d3(1 − α)

. (7.15)

If we insert the right side of (7.15) into (7.14) and rearrange the terms, we obtain the

following quadratic equation, i.e.,

e2α
2 + e1α + e0 = 0 (7.16)

where e2, e1, and e0 are defined as follows,

e2 = d1d3 +
d2
γ
, (7.17a)

e1 = −2d1d3 − 2
d2
γ
, (7.17b)

e0 = d4 + d1d3 +
d2
γ
− d2d4. (7.17c)

For each root of (7.16) which is between zero and one, we find β1 by (7.15). If β1

satisfies (7.11c) and it is real and nonnegative, we note the solution as a candidate.

Case 2b: µ2 > 0

In this case, (7.11c) is satisfied with equality by (7.12e). By the equalities in (7.12d)

and (7.12e), we obtain

α =
1 − γd4 − γd3β

2
1

1 − γd3β
2
1

(7.18a)

β2 =

√
γσ2

D

c2
−

c1
c2
β1. (7.18b)

Note that 0 < α < 1 if 1−γd4−γd3β
2
1 > 0. We will use this condition to determine the

candidate solutions in the following part. Now, if we insert (7.18a-b) into the objective
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function in (7.11a), we obtain the following unconstrained optimization problem

min
β1

β2
1 +

(√γσ2
D

c2
−

c1
c2
β1

)2
− (d1 + d2β

2
1)

1 − γd4 − γd3β
2
1

1 − γd3β
2
1

. (7.19)

Let us take the derivative of the objective function in (7.19) and equate it to zero, i.e.,

2β1 −
2c1
c2

(√γσ2
D

c2
−

c1
c2
β1

)
− 2d2β1

1 − γd4 − γd3β
2
1

1 − γd3β
2
1

+(d1 + d2β
2
1)

2γ2d3d4β1

(1 − γd3β
2
1)

2
= 0. (7.20)

By rearranging the terms in (7.20), we obtain the following fifth order polynomial,

i.e.,

f5β5
1 + f4β4

1 + f3β3
1 + f2β2

1 + f1β1 + f0 = 0 (7.21)

where f5, f4, f3, f2, f1, and f0 are given as follows,

f5 = γ2d2
3

(
1 +

c2
1

c2
2
− d2

)
, (7.22a)

f4 = −
γ2d2

3 c1

√
γσ2

D

c2
2

, (7.22b)

f3 = −2γd3

(
1 +

c2
1

c2
2

)
+ 2γd2d3, (7.22c)

f2 =
2γd3c1

√
γσ2

D

c2
2

, (7.22d)

f1 =
(
1 +

c2
1

c2
2

)
+ d2(γd4 − 1) + γ2d1d3d4, (7.22e)

f0 =
−c1

√
γσ2

D

c2
2

. (7.22f)

For each root of the polynomial in (7.21) check whether the condition 1 − γd4 −

γd3β
2
1 > 0, which ensures α to be in the 0 < α < 1 range, is satisfied or not. Also

check whether β2 ≥ 0 in (7.18b). If all the conditions are satisfied, then note the

solution as a candidate optimum.

Let us construct the set S whose elements are the candidate {β1, β2, α} sets given in

Case 1-3. If S , ∅, the optimum solution of (7.11) and the optimum relay transmit
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beamformer are given by

{β?1 , β
?
2 , α

?} = argmin
{β1,β2,α}∈S

β2
1 + β

2
2 − d1α − d2αβ

2
1, (7.23a)

w?
R = β

?
1 Φ1 + β

?
2 e j∠(gH

RDgRR)Φ2. (7.23b)

7.4 SINR Maximization

In SINR maximization problem, the aim is to maximize the effective SINR of the

system under the power constraint given by PR ≤ ζPH . The addressed optimization

problem in terms of wR and α can be formulated as follows,

max
wR,α

min{SINRR, SNRD} (7.24a)

s.t. wH
R wR ≤ ζηα

(
PS | |gSR | |

2 +
��wH

R gRR
��2) (7.24b)

0 ≤ α ≤ 1. (7.24c)

Similar to the previous part, let us express the relay beamformer vector as wR =∑N
n=1 βne jθnΦn where {Φn}

N
n=1 is the same orthonormal set as in the previous section.

Then, optimum beamformer can be expressed in the following Lemma.

Lemma 7.2: The optimum relay beamformer vector for (7.24) is given in the form

wR = β1Φ1 + β2e j∠(gH
RDgRR)Φ2, where β1 ≥ 0 and β2 ≥ 0.

Proof: The proof is similar to that of Lemma 7.1. �

Let us express the optimization problem in terms of β1, β2, and α as follows,

max
β1,β2,α

min
{

(1 − α)PS | |gSR | |
2

(1 − α)µ| |gRR | |
2β2

1 + σ
2
RI

,
(c1β1 + c2β2)

2

σ2
D

}
(7.25a)

s.t β2
1 + β

2
2 ≤ ζηα

(
PS | |gSR | |

2 + | |gRR | |
2β2

1

)
(7.25b)

0 ≤ α ≤ 1. (7.25c)
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The problem in (7.25) can be equivalently reformulated as follows,

max
β1,β2,α,t

t (7.26a)

s.t.
(1 − α)PS | |gSR | |

2

(1 − α)µ| |gRR | |
2β2

1 + σ
2
RI

≥ t (7.26b)

(c1β1 + c2β2)
2

σ2
D

≥ t (7.26c)

β2
1 + β

2
2 ≤ ζηα

(
PS | |gSR | |

2 + | |gRR | |
2β2

1

)
(7.26d)

0 ≤ α ≤ 1. (7.26e)

Now, consider the following problem for a fixed t = t0, i.e.,

min
β1,β2,α

β2
1 + β

2
2 − ζηα

(
PS | |gSR | |

2 + | |gRR | |
2β2

1

)
(7.27a)

s.t.
(1 − α)PS | |gSR | |

2

(1 − α)µ| |gRR | |
2β2

1 + σ
2
RI

≥ t0 (7.27b)

(c1β1 + c2β2)
2

σ2
D

≥ t0 (7.27c)

0 ≤ α ≤ 1. (7.27d)

If the optimum objective value in (7.27a) is less than zero, we can deduce that the

optimum value of (7.26a) is greater than or equal to t0. Using a bisection search over

t by solving (7.27) at each point, we can obtain the optimum solution of (7.26) nu-

merically. The steps of the proposed method are outlined in Algorithm 7.1. Note that

solving (7.27) for a fixed t is equivalent to solving QoS-aware optimization problem

in (7.11a-d) and the optimum solution at each iteration can be easily found.

Algorithm 7.1: Bisection Search for Finding the Optimum Solution of (7.26)

Initialization: Set initial lower bound as L(0) = 0 and a proper upper bound U(0).

Take the initial t as t(0) = (L(0) +U(0))/2. Set the iteration number r ← 0.

Repeat

If (7.27) for t0 = t(r) is feasible and the optimum objective value is less than 0,

set L(r+1) = t(r) and U(r+1) = 3t(r).
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Else Set U(r+1) = t(r).

t(r+1) = (L(r+1) +U(r+1))/2

Set r ← r + 1.

Until convergence criterion is met.

Now, consider the following Lemma.

Lemma 7.3: The bisection search presented in Algorithm 7.1 converges to the opti-

mum solution of (7.26).

Proof: In order to prove the Lemma, it is sufficient to show that if (7.27) is not feasible

or results positive objective value for any t0, the optimum objective value of (7.26a)

should be less than t0. We will prove this claim by contradiction. Suppose that (7.27)

is not feasible or results positive objective value for t0 = t1
0 . Suppose also the optimum

objective value of (7.26a) is t2
0 > t1

0 . In this case, (7.27) is feasible and has nonpositive

optimum objective value for t0 = t2
0 . By increasing α, we can make (7.27b) equal to

t1
0 . This increase improves the objective function. Hence, (7.27) is both feasible and

has nonpositive objective value for t0 = t1
0 which results a contradiction. �

7.5 Multiple Receive Antenna Case

In this section, we generalize the system in the previous section by employing mul-

tiple receive antennas at the relay. Multiple receive antennas at the relay increases

spatial diversity and improves performance at the expense of system complexity.

Let K denote the number of receive antennas at R as shown in Fig. 7.2. In addition, let

GSR ∈ C
M×K be the channel from S to R and wS be the source transmit beamformer

vector such that | |wS | | = 1. In this case, the received signal after receive beamforming

at R is given by,

yR[i] =
√

PSwH
S GSRzRs[i] + wH

R GRRzRs[i − τ] + nRA[i] (7.28)
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Figure 7.2: System model for multiple receive antenna case.

where GRR ∈ C
N×K is the loop interference channel between transmitting and receiv-

ing antennas of R. zR ∈ C
K×1 is the receive beamformer weight vector at R such

that | |zR | | = 1. nRA[i] is the effective additive complex Gaussian noise after receive

beamforming at R following nRA[i] ∼ CN(0, σ2
RA). The received signal at D is the

same as the previous section and is given by

yD[i] = wH
R gRDs[i − τ] + nD[t]. (7.29)

SNR for D is the same as in the previous section and given as follows,

SNRD =

��wH
R gRD

��2
σ2

D

. (7.30)

The received relay signal for information decoding is given by

yI
R[i] =

√
(1 − α)PSwH

S GSRzRs[i] +
√

1 − αwH
R GRRzRs[i − τ]

+
√

1 − αnRA[i] + nRI[i]. (7.31)

In this chapter, we will design relay transmit and receive beamformers in a joint man-

ner. Source transmit beamformer can be designed such that it enhances the desired

signal wH
S GSRzRs[i]. In order to simplify the design procedure, we will select source

beamformer wS as the left singular vector of GSR corresponding to the largest singu-

lar value. Let GSR = UΛVH be the singular value decomposition of GSR. Let λ1 be

the largest singular value and v1 be the corresponding right singular vector of GSR.

Using the same assumptions and residual self interference model as in the previous

section, the SINR at the information decoder of R is given by

SINRR =
(1 − α)PSλ

2
1 |v

H
1 zR |

2

(1 − α)µ
��wH

R GRRzR
��2 + σ2

RI

(7.32)
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where µ is the residual self interference level. The RF signal for energy harvesting is

yE
R [i] =

√
αyR[i] and the harvested power is given by

PH = ηα

(
PSλ

2
1 |v

H
1 zR |

2 + |wH
R GRRzR |

2
)

(7.33)

where η is the energy conversion efficiency.

In the following subsections, we will first analyze QoS-aware power minimization.

Then, SINR maximization problem will be considered. Near-optimum solutions for

both of these problems are presented in sequel.

7.5.1 QoS-Aware Optimization Problem

The QoS-aware design problem in terms of relay transmit and receive beamformers

for multiple receive antenna can be formulated as follows,

min
wR,zR,α

wH
R wR − ζηα

(
PSλ

2
1 |v

H
1 zR |

2 + |wH
R GRRzR |

2
)

(7.34a)

s.t.
(1 − α)PSλ

2
1 |v

H
1 zR |

2

(1 − α)µ
��wH

R GRRzR
��2 + σ2

RI

≥ γ (7.34b)��wH
R gRD

��2
σ2

D

≥ γ (7.34c)

0 ≤ α ≤ 1 (7.34d)

| |zR | | = 1. (7.34e)

The joint optimum solution for (7.34) is not easy to obtain due to highly coupled terms

of optimization variables. Instead, we will employ alternating optimization in order to

obtain a solution. We first find the optimum transmit beamformer and power splitting

ratio for a given receive beamformer. Then, we will update the receive beamformer

optimally using the previous transmit beamformer and power splitting ratio. A good

initial receive beamformer can be z0
R =

v1+βe j∠ṽ
H
1 v1 ṽ1

| |v1+βe j∠ṽ
H
1 v1 ṽ1 | |

where ṽ1 is the right singular

vector corresponding to the largest singular value of GRR. With this selection, v1 and

ṽ1 vectors are phase aligned and the objective value in (7.34a) is enhanced. β > 0

parameter is selected to be less than one since |wH
R GRRzR | term is to be minimized in
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(7.34b) unlike (7.34a). In this case, we obtain the following optimization problem,

min
wR,α

wH
R wR − ζηα

(
PSλ

2
1 |v

H
1 z0

R |
2 + |wH

R GRRz0
R |

2
)

(7.35a)

s.t.
(1 − α)PSλ

2
1 |v

H
1 z0

R |
2

(1 − α)µ
��wH

R GRRz0
R

��2 + σ2
RI

≥ γ (7.35b)��wH
R gRD

��2
σ2

D

≥ γ (7.35c)

0 ≤ α ≤ 1. (7.35d)

The above problem is similar to the one in (7.10) and the optimum solution can be

easily found by following the same steps in the previous section. Let w?
R and α?

denote the optimum transmit beamformer and power splitting ratio for (7.35), respec-

tively. In this case, the optimization of zR given w?
R and α? can be formulated as

follows,

min
zR
−PSλ

2
1 |v

H
1 zR |

2 − |(w?
R)

HGRRzR |
2 (7.36a)

s.t.
(1 − α?)PSλ

2
1 |v

H
1 zR |

2

(1 − α?)µ
��(w?

R)
HGRRzR

��2 + σ2
RI

≥ γ (7.36b)

| |zR | | = 1. (7.36c)

Let us express the relay beamformer vector as zR =
∑K

k=1 βk e jθkΨk . Here βk ≥ 0, k =

1, ...,K , and {Ψk}
K
k=1 is an orthonormal basis for CK×1 such that Ψ1 =

GH
RRw?R

| |GH
RRw?R | |

and

Ψ2 =
v1−Ψ1ΨH

1 v1

| |v1−Ψ1ΨH
1 v1 | |

. The following lemma is presented to characterize the optimum

solution.

Lemma 7.4: The optimum relay beamformer vector for (7.36) is given in the form

zR = β1Ψ1 + β2e j∠vH
1 GH

RRw?RΨ2.

Proof: Let us first express the problem (7.36) in terms of {βk, θk}
K
k=1 as follows,

min
{βk,θk }

K
k=1

−PSλ
2
1
��vH

1 Ψ1β1e jθ1 + vH
1 Ψ2β2e jθ2

��2 − ||GH
RRw?

R | |
2β2

1 (7.37a)

s.t. (1 − α?)PSλ
2
1 |v

H
1 Ψ1β1e jθ1 + vH

1 Ψ2β2e jθ2
��2

− γ(1 − α?)µ| |GH
RRw?

R | |
2β2

1 − γσ
2
RI ≥ 0 (7.37b)

K∑
k=1

β2
k = 1. (7.37c)
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Note that any common phase rotation of {θk}
K
k=1 does not change the optimality of

the problem (7.37). Hence, θ1 can be selected as zero without loss of generality. Let

us first prove that optimum θ2 is given by θ2 = ∠vH
1 GH

RRw?
R. This angle aligns the

phase of the two terms in vH
1 Ψ1β1e jθ1 + vH

1 Ψ2β2e jθ2 . Assume that the terms are not

phase aligned. In this case, by aligning their phases, objective function can be im-

proved without changing the constraints. Hence, optimum θ2 should be ∠vH
1 GH

RRw?
R.

Now, suppose that at least one of βk for k = 3, ...,K is positive for the optimum so-

lution. This βk can be made zero by increasing the value of β2 such that (7.37c) is

still satisfied. In this case, the constraint in (7.37b) is not violated and the objective

function improves which contradicts with the optimality. Hence, βk = 0 is found for

k = 3, ...,K for the optimum solution. �

Let us express (7.37) in a simpler way using Lemma 7.4, i.e.,

min
β1,β2

−(h1β1 + h2β2)
2 − h3β

2
1 (7.38a)

s.t. k1(h1β1 + h2β2)
2 − k2β

2
1 − k3 ≥ 0 (7.38b)

β2
1 + β

2
2 = 1 (7.38c)

where h1 ,
√

PSλ1 |vH
1 Ψ1 |, h2 ,

√
PSλ1vH

1 Ψ2, h3 = | |GH
RRw?

R | |
2, k1 = (1 − α?),

k2 = γ(1−α?)µ| |GH
RRw?

R | |
2, and k3 = γσ

2
RI are defined for the simplicity of notation.

It is obviously seen that the optimum β1 and β2 should be nonnegative for (7.38).

Hence, we did not include nonnegativity constraints for simplicity. KKT conditions

for the problem (7.38) are given as follows

− 2h1(h1β1 + h2β2) − 2h3β1 = 2µ1
(
k1h1(h1β1 + h2β2) − k2β1

)
− 2µ2β1 (7.39a)

− 2h2(h1β1 + h2β2) = 2µ1k1h2(h1β1 + h2β2) − 2µ2β2 (7.39b)

µ1 ≥ 0 (7.39c)

µ1

(
k1(h1β1 + h2β2)

2 − k2β
2
1 − k3

)
= 0 (7.39d)

(7.38b)-(7.38c) (7.39e)

where µ1 and µ2 are the Lagrange multipliers corresponding to the inequality and

equality in (7.38b) and (7.38c), respectively. Now, we will consider three different

cases for the candidate solutions.

Case 1: µ1 = 0, µ2 = 0
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In this case, we obtain β1 = β2 = 0 by (7.39a-b) which cannot satisfy the constraint

in (7.38b). Hence, we do not consider this case for a candidate.

Case 2: µ1 = 0, µ2 , 0

If we divide both sides of (7.39a) by (7.39b), we obtain

(h2
1 + h3)β1 + h1h2β2

h1h2β1 + h2
2β2

=
β1
β2
. (7.40)

If we rearrange the terms in (7.40) we obtain

h1h2β
2
1 + (−h2

1 + h2
2 − h3)β1β2 − h1h2β

2
2 = 0. (7.41)

Let r denote the only nonnegative root of the quadratic equation in (7.41), i.e., β1 =

rβ2. Then we obtain β1 =
r√

r2+1
and β2 =

1√
r2+1

by (7.38c). This solution is noted as

a candidate if it further satisfies (7.38b).

Case 3: µ1 > 0

In this case, the inequality in (7.38b) is satisfied with equality by the condition in

(7.39d). Together with (7.38c), we can determine candidate solutions. By (7.38c),

β2 =
√

1 − β2
1. If we insert this into (7.39d), we obtain

(k1h2
1 − k1h2

2 − k2)β
2
1 + k1h2

2 − k3

−2k1h1h2β1
=

√
1 − β2

1 . (7.42)

If we take the square of both sides we obtain(
(k1h2

1 − k1h2
2 − k2)β

2
1 + k1h2

2 − k3

)2

4k2
1 h2

1h2
2β

2
1

= 1 − β2
1 . (7.43)

After rearranging the terms in (7.43), we obtain the following quadratic equation of

β2
1, i.e.,

l2β4
1 + l1β2

1 + l0 = 0 (7.44)

where l2, l1, and l0 are given by

l2 = (k1h2
1 − k1h2

2 − k2)
2 + 4k2

1 h2
1h2

2, (7.45a)

l1 = 2(k1h2
1 − k1h2

2 − k2)(k1h2
2 − k3) − 4k2

1 h2
1h2

2, (7.45b)

l0 = (k1h2
2 − k3)

2. (7.45c)
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We can solve (7.44) easily to find the candidate β1. The roots of (7.44) should be

between zero and one in order to be a candidate. Then, β2 can be easily found by the

relation β2 =
√

1 − β2
1.

Let us construct the set S whose elements are the candidate {β1, β2} couples given in

Case 1-3 above. If S , ∅, the optimum solution of (7.38) is given by

{β?1 , β
?
2 } = argmin

{β1,β2}∈S
− (h1β1 + h2β2)

2 − h3β
2
1 . (7.46)

The optimum relay beamformer is then given as

z?R = β
?
1 Ψ1 + β

?
2 e j∠vH

1 GH
RRw?RΨ2. (7.47)

7.5.2 SINR Maximization Problem

This part is similar to the Section 7.4. We can use a similar algorithm like Algorithm

7.1 and the solution of QoS-aware design problem presented in (7.46-47) to find the

near-optimum solution of SINR maximization problem.

7.6 Simulation Results

In this section, several simulations are implemented in order to observe the perfor-

mance of the proposed methods for power-splitting based decode-and-forward full-

duplex relaying. In the simulations, PM-SA and PM-MA correspond to the proposed

method with single receive antenna and multiple receive antenna, respectively. Note

that PM-SA is a joint optimum method for both QoS-aware and SINR maximization

problems. PM-MA is a near-optimum solution for the same problems where the re-

lay has multiple receive antennas. For single receive antenna scenarios, we take the

sub-optimum solution in [49] as a benchmark for comparison with the proposed opti-

mum solution. The simulation parameters are selected as follows. There are M = 32

antennas at S. The variances of the R and D noises are set as σ2
RI = σ

2
D = −110 dBW.

The energy conversion and utilization efficiencies are both selected as η = ζ = 0.7.

Rayleigh fading is assumed for the all channels. The path loss from S to R and R to

D is 60 dB. Unless otherwise stated, the path loss for the loop interference channel
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is 10 dB. The number of transmit and receive antennas at R is N = 32 and K = 4,

respectively. The source power is PS = 0 dBW. The SINR threshold is γ = 10 dB

for QoS-aware design problems. In the following figures, each point represents the

average of randomly generated 100 channel realizations.
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Figure 7.3: The required power by the relay’s own battery, PR − ζPH , versus number

of transmit antennas at the relay, N , for RSIL=-10 dB and RSIL=-20 dB.

In the first four figures, i.e. Fig. 7.3-6, we evaluate the performance of the proposed

QoS-aware design problems for both single and multiple receive antenna scenarios. In

Fig. 7.3, the number of transmit antennas at the relay is varied from N = 4 to N = 32

and the required power by the relay’s own battery is plotted. The objective of the

QoS-aware problem is PR−ζPH and this is also the required power extracted from the

relay’s own battery. It can be positive or negative based on the system requirements.

When it is positive, additional transmit power is required in order to satisfy the SINR

need of the system. On the other hand, power saving is possible when it is negative.

Therefore, the transmit power is less than the harvested power. In Fig. 7.3, the results

of the proposed method for single, K = 1, and K = 4 receive antennas are shown for

two different residual self interference level (RSIL), µ. When the number of transmit

antennas at the relay is small, i.e., N = 4, relay battery should supply power in

addition to the harvested power. As N increases, the harvested power becomes more
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Figure 7.4: The required power by the relay’s own battery, PR − ζPH , versus RSIL.

than necessary to satisfy the SINR constraints. Furthermore, the required power is

significantly less for small RSIL values as expected. When it comes to comparing

single and multiple receive antenna scenarios, the performance improvement with

K = 4 is clearly seen for both RSIL levels. It is seen that PM-MA leads to significant

power savings even though PS-SA is the joint optimum solution.
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Figure 7.5: The required power by the relay’s own battery, PR − ζPH , versus SINR

threshold, γ, for RSIL=-10 dB and RSIL=-20 dB.
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Figure 7.6: The required power by the relay’s own battery, PR − ζPH , versus number

of receive antennas at the relay, K , for RSIL=-10 dB and RSIL=-20 dB.

In Fig. 7.4, we increase RSIL from -50 dB to 0 dB. Different number of receive an-

tennas are used, namely, K = 1, K = 4, and K = 8, respectively. The required power
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for all these cases are negative for small RSIL and increases as RSIL is increased.

The number of receive antennas is very important to improve the power savings. In

fact, K = 8 case leads to 2.44 times power saving in comparison to K = 1 case for

RSIL=-50 dB.

In Fig. 7.5, SINR threshold, γ is changed from 6 dB to 20 dB and the required power

is plotted for K = 1 and K = 4 receive antennas when we set RSIL=-10 dB and -20

dB, respectively. As γ increases, the required power increases for all the solutions and

become positive at γ = 20 dB for all the solutions except PM-MA with RSIL=-20 dB.

As the target SINR becomes more demanding, additional power is required in order

to satisfy the SINR constraint. Similar to the previous graphs, the required power is

significantly less for multiple receive antenna case.

Fig. 7.6 is presented in order to observe the effect of the receive antennas at the relay

in detail. As the number of receive antennas, K increases, the required power be-

comes more negative showing that more power savings from the energy harvesting is

possible with large number of receive antennas. Furthermore, RSIL has an important

effect determining the amount of power savings.

In the remaining figures, i.e., Fig. 7.7-10, we present the results for the proposed

optimum solution and the sub-optimum one in [49] for SINR maximization problem.

In addition, the proposed near-optimum solution is presented for the same problem

with multiple-receive antenna case. In Fig. 7.7, the effective SINR of the system

is plotted in terms of the number of transmit antennas at the relay, N . For differ-

ent RSIL values, the proposed optimum solution for single receive antenna always

performs better compared to the sub-optimum solution in [49]. As N increases, the

performance gap between two solutions becomes larger especially for RSIL=-20 dB.

Moreover, the proposed solution for multiple receive antenna provides higher SINR

than that for single antenna solutions.
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Figure 7.7: Effective SINR versus number of transmit antennas at the relay, N , for

RSIL=-10 dB and RSIL=-20 dB.
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Figure 7.8: Effective SINR versus source power, PS, for RSIL=-10 dB and RSIL=-20

dB.

In Fig. 7.8, source power, PS is varied and SINR performance of the three methods

are compared. Similar to the previous graph, the proposed optimum method always
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results higher SINR compared to the sub-optimum solution in [49] for both RSIL

values. Although the results for RSIL=-20 dB have higher effective SINR, the perfor-

mance gap between two RSIL values decreases as the source power increases. This

shows that supplying more source power compensates the adverse effect of high RSIL

after some point. Note that the difference between PM-SA and PM-MA remains al-

most the same as PS increases. Furthermore, employing more receive antennas at

the relay improves the SINR by increasing spatial diversity and energy harvesting

capability.

In Fig. 7.9, RSIL is increased from -50 dB to 0 dB and the effective SINR is plotted

for all the methods. There are two results for multiple receive antenna case, namely,

for K = 4 and K = 8, respectively. As RSIL increases, the effective SINR falls

as expected. However, it is possible to improve SINR by employing more receive

antennas at the relay for all the RSIL values.
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Figure 7.9: Effective SINR versus RSIL.

Finally, we increase the number of receive antennas at the relay, K , and plot the

effective SINR of the proposed method for two RSIL values in Fig. 7.10. Increasing

K from 4 to 32 provides up to 3.2 and 3.8 dB SINR improvement for RSIL=-20 dB

and RSIL=-10 dB, respectively. This shows that employing large number of receive

antennas improves the QoS of the system significantly.
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Figure 7.10: Effective SINR versus number of receive antennas at the relay, K , for

RSIL=-10 dB and RSIL=-20 dB.

7.7 Conclusion

This chapter considers the joint optimization of relay transmit beamformer and power

splitting factor for wireless-powered multi-antenna relay. The relay uses decode-and-

forward protocol and power splitting is used to harvest some part of the received RF

signal. Two different types of optimization problems are studied. The first one is the

QoS-aware design problem where the aim is to satisfy the effective SINR need of the

system by minimizing the transmission power used by the relay’s own battery. This

problem is solved optimally by reformulating it in an efficient form. Secondly, SINR

maximization problem is elaborated for which a sub-optimum solution exists in the

literature [49]. The optimum solution of this problem is also obtained in this chap-

ter by using a bisection search and employing the solution of QoS-aware problem at

each iteration. Simulation results show that the proposed optimum solution leads to

better performance in SINR and transmit power. As an another contribution of this

chapter, multiple-receive antenna relaying system is considered in addition to the sin-

gle receive antenna case. The joint near-optimum solution is presented for the relay

transmit and receive beamformers together with power splitting factor. First, optimum
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transmit beamformer and power splitting factor are found for a given receive beam-

former. Then, receive beamformer is optimally obtained by keeping other variables

constant. Due to the increase in spatial diversity, multiple-receive antenna approach

performs significantly better compared to the single antenna case. The performance

improvement increases with the number of receive antennas.
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CHAPTER 8

IMPROVED ADMM-BASED ALGORITHMS FOR MULTI-GROUP

MULTICASTING IN LARGE-SCALE ANTENNA SYSTEMS WITH

EXTENSION TO HYBRID BEAMFORMING

In this chapter, multi-group multicast beamforming is considered for full digital and

hybrid beamforming. The wireless system comprises of a multiple-antenna base sta-

tion and single-antenna users. Quality of service (QoS)-aware design is investigated

where the optimization objective is to minimize the total transmitted power subject

to signal-to-interference-plus-noise ratio (SINR) constraint at each user. In addition

to SINR constraints, per-antenna power constraint is included for each antenna of the

base station. The original optimization problem for full digital beamforming is trans-

formed into an equivalent form such that alternating direction method of multipliers

(ADMM) can be applied in an effective and computationally inexpensive manner for

large-scale antenna systems. In this new formulation, the beamformer weight vectors

are decomposed into two subspaces in order to decrease the number of dual variables

and multiplications. The optimum update equations are obtained for the proposed

ADMM algorithm. This new reformulation is used for two different hybrid beam-

forming structures employing phase shifters and vector modulators. Optimum up-

dates are derived for each system. The proposed algorithms decrease computational

complexity of the existing ADMM algorithms due to the effective reformulation as

well as the direct solution of the nonconvex problem. In the simulation results, it is

shown that the proposed methods have better convergence behavior and less compu-

tational time than the benchmark algorithms. Furthermore, the proposed method for

hybrid beamforming with vector modulators performs better than its counterpart in

the literature in terms of transmitted power.
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8.1 Related Works and Contributions

Single-group multicast beamforming problem is first proposed in [24] and then ex-

tended to multi-group multicast beamforming case in [25]. Both problems are shown

to be NP-hard and semidefinite relaxation (SDR) is applied in order to obtain a so-

lution. Unfortunately, the optimum solution is not guaranteed and the performance

of the SDR solution degrades as the size of problem increases. Secondly, SDR re-

quires lifting of the problem to a high dimension and it is computationally inefficient

for large-scale antenna and user systems [69]. In order to improve the performance

and computational complexity, feasible point pursuit and successive convex approx-

imation is developed in [34]. Then in [88] and [104], more efficient algorithms are

proposed for single-group multicast beamforming problem. In [68], a consensus al-

ternating directions method of multipliers (ADMM) algorithm is presented for effi-

cient and fast solution of general quadratically constrained quadratic programming

(QCQP) problems. Since, multi-group multicast beamforming can be formulated as

a QCQP problem, ADMM is a good candidate for this problem. In [69], a more

efficient ADMM method is developed for multi-group multicast beamforming by re-

ducing the number of dual variables in the algorithm. This work is the current state of

the art algorithm for single base station multi-group multicast beamforming problem

and we will take it as our benchmark in this chapter.

Multicast beamforming is also considered for large scale antenna systems for a more

efficient system design [71]. In [72], a conic quadratic programming approach is

developed for large scale antenna multicasting systems. In this work, single group

multicasting is considered. In [32], noncooperative multi-cell network is considered

for massive MIMO multicasting. [29] and [73] investigated max-min fair multicast

beamforming for large-scale arrays. [28] developed efficient algorithms for reducing

the complexity of multicasting in large scale antenna systems. In our benchmark [69],

ADMM-based fast algorithm is presented for large scale wireless systems. Finally in

[26], joint unicast and multicast transmission is elaborated in massive MIMO systems.

In this chapter, we consider multi-group multicast beamforming for large-scale an-

tenna systems. We adopt QoS-aware design approach also by including per-antenna

power constraints to the problem to be more practical as in the works [69], [73], and
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[74]. In the first part of the chapter, we consider full digital beamforming where

each antenna is connected to a separate RF chain. Full digital beamforming achieves

higher performance compared to analog and hybrid beamforming. This comes from

the fact that the elements of each beamformer weight vector can be chosen as an

arbitrary complex number without any restriction except the per-antenna power con-

straints. For full digital beamforming, we decompose each beamformer weight vector

into two orthogonal subspaces. In this case, the SINR constraints become dependent

only one of the subspaces. When the number of antennas is very high compared to

the rank of the overall channel matrix, which is a practical scenario for large-scale

antenna systems, the dimension of this subspace becomes significantly small com-

pared to that of the orthogonal complement subspace. Then, we present the optimum

updates for the ADMM framework and arrange the algorithm for a more memory

efficient implementation. This together with the proposed decomposition brings us

a computational advantage compared to the algorithm in [69] which uses the orig-

inal problem formulation. Secondly, we deal with the nonconvex original problem

directly instead of applying two-layer optimization as in [69]. The motivation behind

this is the efficient use of ADMM for nonconvex problems [75], [76], [77], [78], [79].

Since, we use one-layer iteration sequence, our proposed algorithm has a faster and

better convergence than the alternatives in the literature. In the second part of this

chapter, we focus on two hybrid beamforming systems.

Hybrid beamforming design is considered for several scenarios including point-to-

point MIMO and multi-user MIMO systems [85], [86], [87], [89]. In [88], [90],

[105], it is investigated for single group multicasting. [80] considered hybrid beam-

forming design for joint unicast and multicast transmission. [27] proposed a fully-

connected structure for multi-group multicasting. In this structure, two times more

phase shifters are used compared to its conventional counterpart. Max-min hybrid

beamforming design for multi-group multicasting is considered in [82]. In Chap-

ter 2 ([10]), a new partially-connected hybrid beamforming structure is proposed for

multi-group multicasting systems. In [10], SDR and successive convex approxima-

tion (SCA) based algorithms are proposed for the considered system. In this chapter,

we propose an efficient ADMM based algorithm and solve each subproblem of it

optimally by adopting this system. In [81], an alternating minimization algorithm
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based on ADMM is realized over two different optimization problems each of which

requires solving a two-layer optimization problem for a partially-connected hybrid

structure with vector modulators. Vector modulators are used in place of the phase

shifter and power amplifier. In this chapter, we formulate this problem according

to our proposed efficient ADMM form and tackle the nonconvex problem directly

instead of a three-layer optimization framework as in [81]. Simulation results show

that our proposed algorithm performs significantly better in terms of both base station

transmission power and computational complexity.

8.2 System Model

We consider a multicasting system comprising a base station (BS) equipped with N

transmit antennas and M multicast groups of single-antenna users. The BS transmits

a common multicast message to the users in each group. Let Gm denote the mth

multicast group of users for all m ∈ M = {1, ..., M} and assume that there are K users

in total. Each user is in only one multicast group, i.e., Gm
⋂

Gm′ = ∅ for m , m′.

Note that the special case M = 1 corresponds to single group multicasting scenario.

Narrowband block-fading channel is considered. The signal transmitted from the

antenna array of BS is x =
∑M

m=1 wmsm where sm is the information signal for the

users in Gm and wm is the corresponding N × 1 complex beamformer weight vector

for the mth multicast group. It is assumed that the information signals {sm}
M
m=1 are

mutually uncorrelated each with zero mean and unit variance, σ2
sm = 1. In this case,

the total average transmitted power is Ptot =
∑M

m=1 wH
mwm. The received signal at the

k th user is given as,

yk = hH
k x + nk, ∀k ∈ K (8.1)

where hk is the N × 1 complex channel vector between BS and the k th user. K =

{1, ...,K} is the index set of all the users. nk is the additive zero mean Gaussian noise

at the k th user’s antenna with variance σ2
k . nk is assumed to be uncorrelated with the

information signals. The received signal-to-interference-plus-noise ratio (SINR) of

the k th user is expressed as,

SINRk =
|hH

k wmk
|2∑

m′,mk
|hH

k wm′ |
2 + σ2

k

, ∀k ∈ K (8.2)
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where mk denotes the index of multicast group to which the k th user belongs. In

this chapter, we first consider quality-of-service (QoS)-aware full digital beamformer

design where the aim is to minimize the total average transmitted power subject to

receive-SINR and per-antenna power constraints.

8.3 QoS-Aware Beamformer Design

The OoS-aware design problem can be formulated as follows,

min
{wm}

M
m=1

M∑
m=1

wH
mwm (8.3a)

s.t.
|hH

k wmk
|2∑

m′,mk
|hH

k wm′ |
2 + σ2

k

≥ γk, ∀k ∈ K (8.3b)

M∑
m=1
|wm,n |

2 ≤ Pn, ∀n ∈ N (8.3c)

where γk is the minimum required SINR for the k th user and Pn is the maximum

allowable power at the nth transmit antenna of BS. wm,n is the nth element of the vector

wm and N = {1, ..., N} is the index set for all the transmit antennas. The problem in

(8.3) is not convex and hence should be handled appropriately for an effective and

fast solution. Note that (8.3b) can be rewritten as a quadratic constraint. The current

state-of-art methods for the QCQP problem (8.3) are the ADMM-based algorithms

proposed in [68] and [69]. In the following section, we will briefly go over these

algorithms before introducing our improved ADMM-based algorithm which results

less computational time.

8.3.1 Prior ADMM-Based Algorithms for (8.3)

Recently, an efficient ADMM-based algorithm is proposed for general QCQP prob-

lems by using consensus optimization and decomposing the original problem into

QCQP subproblems with only one constraint [68]. Later in [69], an improved tech-

nique is proposed for multi-group multicasting problem in (8.3). Let us mention these

algorithms in turn in the following subsections.
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8.3.1.1 Consensus-ADMM for General QCQP

In [68], consensus optimization is considered using ADMM for the following general

QCQP,

min
x

xHA0x − 2<{bH
0 x} (8.4a)

s.t. xHAix − 2<{bH
i x} ≤ ci, i = 1, ..., I . (8.4b)

First, (8.4) is transformed to the following consensus form by introducing auxiliary

variables {zi}
I
i=1 for each constraint, i.e.,

min
x,{zi}Ii=1

xHA0x − 2<{bH
0 x} (8.5a)

s.t. zH
i Aizi − 2<{bH

i zi} ≤ ci, i = 1, ..., I, (8.5b)

zi = x, i = 1, ..., I . (8.5c)

The steps of consensus-ADMM algorithm for (8.5) in scaled form [106] are given as

follows,

x← arg min
x

xHA0x − 2<{bH
0 x} + ρ

I∑
i=1
| |zi − x + ui | |

2 (8.6a)

zi ← arg min
zi
| |zi − x + ui | |

2

s.t. zH
i Aizi − 2<{bH

i zi} ≤ ci,

i = 1, ..., I (8.6b)

ui ← ui + zi − x, i = 1, ..., I (8.6c)

where ui is the scaled dual variable corresponding to the equality constraint zi = x in

(8.5c) for i = 1, ..., I. ρ > 0 is the penalty parameter used in augmented Lagrangian

[106]. In [68], the updates for (8.6b) are solved optimally. Moreover, a memory-

efficient implementation of the consensus-ADMM algorithm is presented for single

group multicast beamforming problem where M = 1 in (8.3) and there is no interfer-

ence in (8.3b).

The algorithmic framework in [68] summarized above can also be used for multi-

group multicast beamforming problem in (8.3). However, recently a more efficient

method is proposed for this specific problem in [69].
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8.3.1.2 Convex-Concave Procedure ADMM (CCP-ADMM) for Multi-Group

Multicast Beamforming

As stated in [69], one of the main disadvantages of consensus-ADMM algorithm is

that it requires a local copy of the optimization variables and a corresponding dual

vector variable for each constraint. In [69], a new ADMM framework which requires

less auxiliary variables is proposed by introducing {{Γk,m = hH
k wm}

K
k=1}

M
m=1 and ex-

pressing the SINR constraints in (8.3b) in terms of them. This new ADMM is applied

for a sequence of convex subproblems obtained by CCP. The method in [69] per-

forms significantly better compared to [68] with less computational complexity. In

this chapter, we reduce the computational complexity more by an effective reformu-

lation of the problem. Our new algorithm directly deals with the original problem

different than [69] which solves a sequence of subproblems and requires both inner

and outer loop iterations. It is shown that the performance is improved significantly

in terms of computational saving.

8.3.2 Improved ADMM-Based Algorithm for (8.3)

Note that all the ADMM updates are carried through N × 1 vectors for the algorithm

in [68]. Similarly, N ×1 vectors are used for the update of the main variables and per-

antenna power constraints in [69]. When the number of antennas, N , is very large,

these updates become extremely costly due to matrix inversions and multiplications.

In this chapter, we reduce the complexity of the ADMM iterations by decompos-

ing beamformer vectors into the subspace spanned by the channel vectors and its

nullspace. For this method to be efficient, it is required that the dimension of the

subspace of the channel vectors to be less than N . Let H denote the N × K matrix

which is formed by stacking all the channel vectors hk , ∀k ∈ K, as its columns, i.e.,

H = [h1 h2 ... hK]. If L denotes the dimension of the column space of H, there are

two possible cases for L < N . In case the number of antennas, N , is greater than

the number of users, K , L is always less than N . This is a very practical scenario in

modern wireless communications which involves massive antenna systems. For the

second case, i.e., N < K , L may not be less than N . However, it is possible for the

scenarios where some users are clustered in close groups. In such a case, the corre-
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sponding channel vectors are highly correlated and the rank of H gets smaller. Now,

let us consider the singular value decomposition of H as follows,

H =
[
UA UB

] 
ΣA 0

0 ΣB



VH

A

VH
B

 (8.7)

where ΣA and ΣB are the diagonal matrices whose elements are the positive and zero

singular values of H, respectively. Let us express {wm}
M
m=1 as wm = UAvA,m + vB,m

where vA,m ∈ C
L and vB,m ∈ C

N for m ∈ M are the newly introduced auxiliary

variables. vB,m is in the nullspace of UA, i.e., UH
A vB,m = 0. The optimization problem

in (8.3) can be reformulated as follows,

min
{wm,vA,m,vB,m}Mm=1

M∑
m=1

wH
mwm (8.8a)

s.t.
|(ΣAVH

A )
H
k vA,mk

|2∑
m′,mk

|(ΣAVH
A )

H
k vA,m′ |

2 + σ2
k

≥ γk, ∀k ∈ K (8.8b)

wm = UAvA,m + vB,m, ∀m ∈ M (8.8c)

UH
A vB,m = 0, ∀m ∈ M (8.8d)

M∑
m=1
|wm,n |

2 ≤ Pn, ∀n ∈ N (8.8e)

where (ΣAVH
A )k denotes the k th column of ΣAVH

A . In order to make the problem in

(8.8) appropriate for ADMM algorithm, we will define additional auxiliary variables

Γk,m , (ΣAVH
A )

H
k vA,m, ∀k ∈ K, ∀m ∈ M using the same approach in [69]. In addition,

we introduce ṽA,m , UAvA,m and ṽB,m , vB,m. These definitions will allow us to

obtain efficient and closed-form optimum ADMM updates. Using the new variables,
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the problem in (8.8) can be expressed as follows,

min{
vA,m,ṽA,m,vB,m,ṽB,m,

{Γk,m}
K
k=1

}M

m=1

M∑
m=1
(ṽH

A,mṽA,m + ṽH
B,mṽB,m) (8.9a)

s.t. Γk,m = (ΣAVH
A )

H
k vA,m, ∀k ∈ K, ∀m ∈ M (8.9b)

|Γk,mk
|2∑

m′,mk
|Γk,m′ |

2 + σ2
k

≥ γk, ∀k ∈ K (8.9c)

ṽA,m = UAvA,m, ∀m ∈ M (8.9d)

ṽB,m = vB,m, ∀m ∈ M (8.9e)

UH
A ṽB,m = 0, ∀m ∈ M (8.9f)

UH
B ṽA,m = 0, ∀m ∈ M (8.9g)

M∑
m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N. (8.9h)

Note that the constraint in (8.9g) is redundant. However, the inclusion of it will

simplify the updates in ADMM algorithm. Similar to [69], the variables in (8.9) can

be split into two blocks, {vA,m, vB,m}
M
m=1 and {{Γk,m}

K
k=1, ṽA,m, ṽB,m}

M
m=1 such that the

updates of ADMM algorithm are separable. Now, the steps of ADMM algorithm for
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the problem (8.9) in scaled-form [106] can be given as follows,

{Γk,m}
M
m=1 ← arg min

{Γk,m}
M
m=1

M∑
m=1
|Γk,m − (ΣAVH

A )
H
k vA,m + λk,m |

2

s.t. |Γk,mk
|2 ≥ γk

∑
m′,mk

|Γk,m′ |
2 + γkσ

2
k

∀k ∈ K (8.10a)

{ṽA,m, ṽB,m}
M
m=1 ← arg min

{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
ṽH

A,mṽA,m + ṽH
B,mṽB,m

+ ρ| |ṽA,m − UAvA,m + zA,m | |
2 + ρ| |ṽB,m − vB,m + zB,m | |

2
)

s.t.
M∑

m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈ M (8.10b)

vA,m ← arg min
vA,m

K∑
k=1
|Γk,m − (ΣAVH

A )
H
k vA,m + λk,m |

2

+ | |ṽA,m − UAvA,m + zA,m | |
2, ∀m ∈ M (8.10c)

vB,m ← arg min
vB,m

| |ṽB,m − vB,m + zB,m | |
2, ∀m ∈ M (8.10d)

λk,m ← λk,m + Γk,m − (ΣAVH
A )

H
k vA,m, ∀k ∈ K, ∀m ∈ M (8.10e)

zA,m ← zA,m + ṽA,m − UAvA,m, ∀m ∈ M (8.10f)

zB,m ← zB,m + ṽB,m − vB,m, ∀m ∈ M (8.10g)

where {{λk,m}
K
k=1}

M
m=1, {zA,m}

M
m=1 and {zB,m}

M
m=1 are the scaled dual variables corre-

sponding to the equality constraints in (8.9b), (8.9d), and (8.9e), respectively. ρ > 0

is the penalty parameter used in augmented Lagrangian [106]. In the following, we

will present the closed form expressions for the updates in (8.10a-d), respectively.

In [69], the solution of a similar optimization problem to (8.10a) is found. Here, we
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omit the details and give only the result as follows,

Γk,mk
←


ζk,mk

if φk(0) ≥ 0
ζk,mk

1−µ?
k

if φk(0) < 0
(8.11a)

Γk,m′ ←


ζk,m′ if φk(0) ≥ 0
ζk,m′

1+γk µ?k
if φk(0) < 0

, ∀m′ , mk, (8.11b)

∀k ∈ K

where ζk,m , (ΣAVH
A )

H
k vA,m − λk,m is defined for ease of notation. In (8.11a-b),

φk(µ) =
|ζk,mk

|2

(1−µ)2 −γk
∑

m′,mk

|ζk,m′ |
2

(1+γk µ)2
−γkσ

2
k and µ?k is the unique solution of φk(µ) = 0

in 0 < µ < 1 in case φk(0) < 0. Note that µ?k can easily be found by solving a quartic

equation.

Now, let us consider the optimization problem in (8.10b). In order to simplify (8.10b),

let us assume that zA,m and zB,m are initialized such that they lie in the column space of

UA and UB, respectively without loss of generality. Assume also that initial value of

vB,m is selected from the column space of UB in accordance with the constraints (8.9e-

f). Following (8.10d) and (8.10f-g), zA,m and zB,m continue to remain in the same

subspaces if they are initialized in this way. In this case, (8.10b) can be expressed as

follows,

min
{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
(ṽA,m + ṽB,m)

H(ṽA,m + ṽB,m)

+ ρ| |ṽA,m + ṽB,m − (UAvA,m − zA,m + vB,m − zB,m)| |
2
)

(8.12a)

s.t.
M∑

m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N (8.12b)

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈ M (8.12c)

Now, let us define w̃m , ṽA,m + ṽB,m. If we further define z̃m , UAvA,m − zA,m +

vB,m − zB,m for ease of notation, the objective function in (8.12a) can be expressed as

(1+ ρ)| |w̃m −
ρ

1+ρ z̃m | |
2+

ρ
1+ρ | |z̃m | |

2. The second term is constant and can be removed.

Note that ṽA,m and ṽB,m lie in the column space of UA and UB, respectively. Hence,

they can be expressed in terms of new variables as ṽA,m = UAυA,m and ṽB,m = UBυB,m.
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Using these variables, (8.12) can be reformulated as follows,

min
{w̃m,υA,m,υB,m}

M
m=1

M∑
m=1

����w̃m −
ρ

1 + ρ
z̃m

����2 (8.13a)

s.t .
M∑

m=1
|w̃m,n |

2 ≤ Pn, ∀n ∈ N (8.13b)

υA,m = UH
A w̃m, υB,m = UH

B w̃m, ∀m ∈ M (8.13c)

In the formulation (8.13), it is clearly seen that (8.13c) does not have any affect on

both the objective function and the other constraints in (8.13b). Hence, the opti-

mum solution is found by solving (8.13a-b). (8.13c) is used to obtain the optimum

{ṽA,m, ṽB,m}
M
m=1.

Note that the problem (8.13a-b) can be decomposed into N subproblems. If we define

ŵn , [ w̃1,n w̃2,n ... w̃M,n ]
T and ẑn , [ z̃1,n z̃2,n ... z̃M,n ]

T , ∀n ∈ N, the nth subproblem

is given as follows,

min
ŵn

����ŵn −
ρ

1 + ρ
ẑn

����2 (8.14a)

s.t. | |ŵn | |2 ≤ Pn. (8.14b)

Following [69], the optimum solution of (8.14) is given by ŵn = min
{ √

Pn

| |ẑn | |2 ,
ρ

1+ρ

}
ẑn.

Using this and (8.13c), the optimum update in (8.10b) is given as,

ŵn ← min

{ √
Pn

| |ẑn | |2
,

ρ

1 + ρ

}
ẑn, ∀n ∈ N (8.15a)

w̃m ← [ ŵ
1
m ŵ2

m ... ŵN
m ]

T, ∀m ∈ M (8.15b)

ṽA,m ← UAUH
A w̃m, ∀m ∈ M (8.15c)

ṽB,m ← UBUH
B w̃m, ∀m ∈ M (8.15d)

Note that defining auxiliary variables ṽA,m in (8.9d) and ṽB,m in (8.9e), ∀m ∈ M

resulted the Euclidean projection problem in (8.14) whose closed-form optimum so-

lution exists.

The update in (8.10c) can easily be expressed as follows,

vA,m ←

(
IL + Σ2

A

)−1 (
UH

A (ṽA,m + zA,m)

+

K∑
k=1
(ΣAVH

A )k(Γk,m + λk,m)

)
, ∀m ∈ M (8.16)
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Note that matrix inverse in (8.16) is computationally efficient since the matrix inside

the inverse operation is diagonal unlike its counterpart in [69]. Similarly, the update

in (8.10d) is given as follows,

vB,m ← ṽB,m + zB,m, ∀m ∈ M (8.17)

At this point, all the steps of ADMM algorithm are expressed in closed-form. In the

following part, we will arrange the algorithm variables in order to further reduce its

computational complexity.

First, let us consider the dual variable update in (8.10f). Here, zA,m is a N ×1 complex

vector. In fact, it is possible to carry out the update through a low dimensional dual

vector. Let us define um , UH
A zA,m ∀m ∈ M. Remember that zA,m lies in the column

space of UA if it is initialized properly. Hence, we can write zA,m = UAum, ∀m ∈ M.

Using this and (8.15c), the update in (8.10f) becomes

um ← um + UH
A w̃m − vA,m, ∀m ∈ M (8.18)

Using the newly introduced dual variable, the update in (8.16) can be expressed as

follows,

vA,m ←

(
IL + Σ2

A

)−1 (
UH

A w̃m + um

+

K∑
k=1
(ΣAVH

A )k(Γk,m + λk,m)

)
, ∀m ∈ M (8.19)

Now, we can easily see that there is no need to compute ṽA,m. Furthermore, as we

show in the following part, there is also no need for the dual variable zB,m in the

iterations. Suppose z0
B,m is the initial value of the dual variable zB,m. Then, we obtain

v1
B,m = ṽ1

B,m+z0
B,m in the first iteration by (8.17). After that, zB,m is updated by (8.10g)

as z1
B,m = z0

B,m+ ṽ1
B,m−v1

B,m = z0
B,m+ ṽ1

B,m−(ṽ
1
B,m+z0

B,m) = 0. In the first iteration, zB,m

becomes 0 and it continues in this way. Hence, we can omit this dual variable in the

algorithm. Now, the simplified steps of the ADMM algorithm are given below. Note

that neither vB,m nor ṽB,m are kept in memory. Instead, w̃ j
m−UAUH

A w̃ j
m is used in place

of v j
B,m in (8.20c). The number of dual complex variables in the counterpart algorithm

in [69] is M(N + K) whereas it is M(L + K) in the proposed one as can be seen in

(8.20f-g). Furthermore, in case N ≥ K , the number of complex multiplications is

O(MNK) per ADMM iteration in [69]. Here, it is O(MN L) which is always less than
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or equal to O(MNK) due to L ≤ min(N,K). Furthermore, the proposed algorithm

requires only one loop for iterations whereas the iterations in [69] are implemented

in two nested loops. This fact brings a huge computational advantage to the proposed

algorithm.

Algorithm 8.1: ADMM for QoS-Aware Design Problem

Initialization: Initialize w̃0
m ∼ CN(0, IN ), v0

A,m = UH
A w̃0

m, λ0
k,m ← 0, ∀k ∈ K, u0

m ←

0, ∀m ∈ M. Set the iteration number i ← 0 and the penalty parameter ρ.

Repeat

Γ
i+1
k,mk
←


ζ i

k,mk
if φi

k(0) ≥ 0
ζ i
k,mk

1−µ?
k

if φi
k(0) < 0

(8.20a)

Γ
i+1
k,m′ ←


ζ i

k,m′ if φi
k(0) ≥ 0

ζ i
k,m′

1+γk µ?k
if φi

k(0) < 0
, ∀m′ , mk, (8.20b)

∀k ∈ K

z̃i+1
m ← UA(vi

A,m − ui
m) + w̃i

m − UAUH
A w̃i

m, ∀m ∈ M (8.20c)

(ŵn)i+1 ← min

{ √
Pn

| |(ẑn)i+1 | |2
,

ρ

1 + ρ

}
(ẑn)i+1, ∀n ∈ N (8.20d)

vi+1
A,m ←

(
IL + Σ2

A

)−1 (
UH

A w̃i+1
m + ui

m

+

K∑
k=1
(ΣAVH

A )k(Γ
i+1
k,m + λ

i
k,m)

)
, ∀m ∈ M (8.20e)

λi+1
k,m ← λi

k,m + Γ
i+1
k,m − (ΣAVH

A )
H
k vi+1

A,m, ∀k ∈ K, ∀m ∈ M (8.20f)

ui+1
m ← ui

m + UH
A w̃i+1

m − vi+1
A,m, ∀m ∈ M (8.20g)

Set i ← i + 1.

Until stopping criterion is met.

178



8.4 Hybrid Beamforming with Phase Shifters

In this part, partially connected hybrid beamformer structure with phase shifters as

shown in Fig. 8.1 is considered for multi-group multicasting scenario. This structure

is used for a similar scenario in [10]. Here, we will consider ADMM algorithm and

derive update equations for this model.

Figure 8.1: Hybrid Structure with Phase Shifters.

The hybrid structure in Fig. 8.1 consists of two stages, namely digital and analog

beamformer which will be jointly designed. This structure presents a trade-off be-

tween performance and the number of RF chains. When the number of RF chains for

each multicast stream is the same as the number of antennas (full digital beamformer),

the best performance is achieved. If it is less than the number of antennas (i.e., hybrid

beamformer), the system cost is decreased while there is a certain performance loss

[10]. In Fig. 8.1, there are MP RF chains. Each RF chain is followed by R RF phase

shifters. The analog signals coming from phase shifters of each multicast group are

added up and the summed signal is fed into an antenna. As can be seen in Fig. 8.1,

the total number of antennas is N = PR.
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The beamforming weight vector for the mth multicast group is PR×1 complex vector

wm = [ w
1,1
m w1,2

m ... w1,R
m w2,1

m ... w2,R
m ... wP,1

m ... wP,R
m ]T where w

p,r
m = w

p
me jθp,rm .

Here, wp
m is the digital beamformer coefficient corresponding to the pth RF chain for

the mth multicast stream. θp,r
m is the phase shift introduced by the r th phase shifter

following the pth RF chain of the mth digital beamformer block. Hence, the elements

of beamforming weight vectors, {wm}
M
m=1, are the phase shifted versions of the digital

weights {w1
m,w

2
m, ...,w

P
m}

M
m=1. As a result, the amplitude of complex weights inside

each phase shifter group should be the same, i.e., |wp
m | = |w

p,r
m | for r = 1, ..., R,

p = 1, ..., P, and m = 1, ..., M where the phase shifters following RFm,p constitute the

phase shifter group (m, p). The first weight of the phase shifter group (m, p), wp,1
m , can

be chosen as w
p
m, i.e., wp,1

m = w
p
m for p = 1, ..., P and m = 1, ..., M without loss of

generality.

The QoS-aware hybrid beamforming design can be formulated as follows,

min
{wm}

M
m=1

M∑
m=1

wH
mwm (8.21a)

s.t .
|hH

k wmk
|2∑

m′,mk
|hH

k wm′ |
2 + σ2

k

≥ γk, ∀k ∈ K (8.21b)

M∑
m=1
|wm,n |

2 ≤ Pn, ∀n ∈ N (8.21c)

|w
p,r
m | = |w

p,1
m |, ∀r ∈ R \ {1}, ∀p ∈ P, ∀m ∈ M (8.21d)

where R = {1, ..., R} and P = {1, ..., P}. Similar to the previous part, (8.21) can be
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reformulated appropriately for ADMM algorithm as follows,

min{
vA,m,ṽA,m,vB,m,ṽB,m,

{Γk,m}
K
k=1

}M

m=1

M∑
m=1
(ṽH

A,mṽA,m + ṽH
B,mṽB,m) (8.22a)

s.t . Γk,m = (ΣAVH
A )

H
k vA,m, ∀k ∈ K, ∀m ∈ M (8.22b)

|Γk,mk
|2∑

m′,mk
|Γk,m′ |

2 + σ2
k

≥ γk, ∀k ∈ K (8.22c)

ṽA,m = UAvA,m, ∀m ∈ M (8.22d)

ṽB,m = vB,m, ∀m ∈ M (8.22e)

UH
A ṽB,m = 0, ∀m ∈ M (8.22f)

UH
B ṽA,m = 0, ∀m ∈ M (8.22g)

M∑
m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N (8.22h)

|ṽ
p,r
A,m + ṽ

p,r
B,m | = |ṽ

p,1
A,m + ṽ

p,1
B,m |, ∀r ∈ R \ {1}, ∀p ∈ P, ∀m ∈ M (8.22i)

As in the previous section, the variables in (8.22) can be split into two blocks,

{vA,m, vB,m}
M
m=1 and {{Γk,m}

K
k=1, ṽA,m, ṽB,m}

M
m=1 such that the updates of ADMM algo-

rithm are separable. Now, the steps of ADMM algorithm for the problem (8.22) in
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scaled-form [106] are given as follows,

{Γk,m}
M
m=1 ← arg min

{Γk,m}
M
m=1

M∑
m=1
|Γk,m − (ΣAVH

A )
H
k vA,m + λk,m |

2

s.t . |Γk,mk
|2 ≥ γk

∑
m′,mk

|Γk,m′ |
2 + γkσ

2
k

∀k ∈ K (8.23a)

{ṽA,m, ṽB,m}
M
m=1 ← arg min

{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
ṽH

A,mṽA,m + ṽH
B,mṽB,m

+ ρ| |ṽA,m − UAvA,m + zA,m | |
2 + ρ| |ṽB,m − vB,m + zB,m | |

2
)

s.t.
M∑

m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N

|ṽ
p,r
A,m + ṽ

p,r
B,m | = |ṽ

p,1
A,m + ṽ

p,1
B,m |, ∀r ∈ R \ {1}, ∀p ∈ P, ∀m ∈ M

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈ M (8.23b)

vA,m ← arg min
vA,m

K∑
k=1
|Γk,m − (ΣAVH

A )
H
k vA,m + λk,m |

2

+ | |ṽA,m − UAvA,m + zA,m | |
2, ∀m ∈ M (8.23c)

vB,m ← arg min
vB,m

| |ṽB,m − vB,m + zB,m | |
2, ∀m ∈ M (8.23d)

λk,m ← λk,m + Γk,m − (ΣAVH
A )

H
k vA,m, ∀k ∈ K, ∀m ∈ M (8.23e)

zA,m ← zA,m + ṽA,m − UAvA,m, ∀m ∈ M (8.23f)

zB,m ← zB,m + ṽB,m − vB,m, ∀m ∈ M (8.23g)

where {{λk,m}
K
k=1}

M
m=1, {zA,m}

M
m=1 and {zB,m}

M
m=1 are the scaled dual variables cor-

responding to the equality constraints in (8.22b), (8.22d), and (8.22e), respectively.

ρ > 0 is the penalty parameter used in augmented Lagrangian [106]. The optimum

updates of the ADMM algorithm in (8.23a-g) are derived except the one in (8.23b) in

the previous part.

Now, let us consider the optimization problem in (8.23b). In order to simplify (8.23b),

let us assume that zA,m and zB,m are initialized such that they lie in the column space

of UA and UB, respectively without loss of generality. Assume also that initial value

of vB,m is selected from the column space of UB in accordance with the constraints

(8.22e-f). In this case, following (8.23d) and (8.23f-g), zA,m and zB,m continue to
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remain in the same subspaces if they are initialized in this way. Under these assump-

tions, (8.23b) can be expressed as follows,

min
{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
(ṽA,m + ṽB,m)

H(ṽA,m + ṽB,m)

+ ρ| |ṽA,m + ṽB,m − (UAvA,m − zA,m + vB,m − zB,m)| |
2
)

(8.24a)

s.t.
M∑

m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N (8.24b)

|ṽ
p,r
A,m + ṽ

p,r
B,m | = |ṽ

p,1
A,m + ṽ

p,1
B,m |, ∀r ∈ R \ {1}, ∀p ∈ P, ∀m ∈ M (8.24c)

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈ M (8.24d)

Now, let us define w̃m , ṽA,m + ṽB,m. If we further define z̃m , UAvA,m − zA,m +

vB,m − zB,m for ease of notation, the objective function in (8.24a) can be expressed as

(1+ ρ)| |w̃m −
ρ

1+ρ z̃m | |
2+

ρ
1+ρ | |z̃m | |

2. The second term is constant and can be removed.

Note that ṽA,m and ṽB,m lie in the column space of UA and UB, respectively. Hence,

they can be expressed in terms of new variables as ṽA,m = UAυA,m and ṽB,m = UBυB,m.

Using these variables, (8.24) can be reformulated as follows,

min
{w̃m,υA,m,υB,m}

M
m=1

M∑
m=1
| |w̃m −

ρ

1 + ρ
z̃m | |

2 (8.25a)

s.t.
M∑

m=1
|w̃m,n |

2 ≤ Pn, ∀n ∈ N (8.25b)

|w̃
p,r
m | = |w̃

p,1
m |, ∀r ∈ R \ {1}, ∀p ∈ P, ∀m ∈ M (8.25c)

υA,m = UH
A w̃m, υB,m = UH

B w̃m, ∀m ∈ M (8.25d)

In the formulation (8.25), (8.25d) does not have any effect on both the objective func-

tion and the other constraints in (8.25b-c). Hence, the optimum solution is found by

solving (8.25a-c). Note that the problem (8.25a-c) can be decomposed into P sub-

problems. The pth subproblem is given as follows,

min
{{w̃

p,r
m }

R
r=1}

M
m=1

M∑
m=1

R∑
r=1
|w̃

p,r
m −

ρ

1 + ρ
z̃p,r

m |
2 (8.26a)

s.t.
M∑

m=1
|w̃

p,1
m |

2 ≤ Pp (8.26b)

|w̃
p,r
m | = |w̃

p,1
m |, ∀r ∈ R \ {1}, ∀m ∈ M (8.26c)
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where Pp is the minimum of power limits among the antennas connected to the pth

RF chains of digital beamformer blocks, i.e., Pp = min{Pn}
pR
n=(p−1)R+1. Now, express

the optimization variable w̃
p,r
m in terms of its amplitude and phase as w̃p,r

m = β
p
me jφp,rm

where β
p
m = |w̃

p,r
m | for ∀r ∈ R. Note that all the constraints are independent of

φ
p,r
m , and hence optimum φ

p,r
m is given by φp,r

m
?
= ∠ z̃p,r

m . Using this, the optimization

problem in (8.26) can be expressed in terms of {βp
m}

M
m=1 as follows,

min
{β

p
m}

M
m=1

M∑
m=1

(
β

p
m −

ρ

1 + ρ

∑R
r=1 | z̃

p,r
m |

R

)2

(8.27a)

s.t .
M∑

m=1
(β

p
m)

2 ≤ Pp. (8.27b)

The optimum solution of (8.27) can easily be obtained as

β
p
m
?
= min

{
R
√

Pp√∑M
m′=1(

∑R
r=1 | z̃

p,r
m′ |)

2
,

ρ

1 + ρ

}
×

∑R
r=1 | z̃

p,r
m |

R
(8.28)

Eventually, the optimum update for {ṽA,m, ṽB,m}
M
m=1 is given as follows,

w̃
p,r
m ← min

{
R
√

Pp√∑M
m′=1(

∑R
l=1 | z̃

p,l
m′ |)

2
,

ρ

1 + ρ

}
×

∑R
l=1 | z̃

p,l
m |

R
e j∠ z̃p,rm , ∀r ∈ R, ∀p ∈ P, ∀m ∈ M (8.29a)

ṽA,m ← UAUH
A w̃m, ∀m ∈ M (8.29b)

ṽB,m ← UBUH
B w̃m, ∀m ∈ M (8.29c)

The steps of the ADMM algorithm for digital beamforming in the previous part are

simplified for more memory and computational efficient update equations. Using

the same transformations and simplifications, the steps of the ADMM algorithm for

hybrid beamforming with phase shifters are outlined as follows.

Algorithm 8.2: ADMM for Hybrid Beamforming with Phase Shifters

Initialization: Initialize w̃0
m ∼ CN(0, IN ), v0

A,m = UH
A w̃0

m, λ0
k,m ← 0, ∀k ∈ K, u0

m ←

0, ∀m ∈ M. Set the iteration number i ← 0 and the penalty parameter ρ.
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Repeat

Γ
i+1
k,mk
←


ζ i

k,mk
if φi

k(0) ≥ 0
ζ i
k,mk

1−µ?
k

if φi
k(0) < 0

(8.30a)

Γ
i+1
k,m′ ←


ζ i

k,m′ if φi
k(0) ≥ 0

ζ i
k,m′

1+γk µ?k
if φi

k(0) < 0
, ∀m′ , mk, (8.30b)

∀k ∈ K

z̃i+1
m ← UA(vi

A,m − ui
m) + w̃i

m − UAUH
A w̃i

m, ∀m ∈ M (8.30c)

(w̃
p,r
m )

i+1 ← min

{
R
√

Pp√∑M
m′=1(

∑R
l=1 |(z̃

p,l
m′ )

i+1 |)2
,

ρ

1 + ρ

}
×

∑R
l=1 |(z̃

p,l
m )

i+1 |

R
e j∠(z̃p,rm )

i+1
, ∀r ∈ R, ∀p ∈ P, ∀m ∈ M (8.30d)

vi+1
A,m ←

(
IL + Σ2

A

)−1 (
UH

A w̃i+1
m + ui

m

+

K∑
k=1
(ΣAVH

A )k(Γ
i+1
k,m + λ

i
k,m)

)
, ∀m ∈ M (8.30e)

λi+1
k,m ← λi

k,m + Γ
i+1
k,m − (ΣAVH

A )
H
k vi+1

A,m, ∀k ∈ K, ∀m ∈ M (8.30f)

ui+1
m ← ui

m + UH
A w̃i+1

m − vi+1
A,m, ∀m ∈ M (8.30g)

Set i ← i + 1.

Until stopping criterion is met.

In Algorithm 8.2, ζ i
k,m , (ΣAVH

A )
H
k vi

A,m − λ
i
k,m and φi

k(µ) =
|ζ i
k,mk
|2

(1−µ)2 −

γk
∑

m′,mk

|ζ i
k,m′
|2

(1+γk µ)2
− γkσ

2
k . µ?k is the unique solution of φi

k(µ) = 0 in 0 < µ < 1 in

case φi
k(0) < 0. Note that µ?k can easily be found by a one dimensional search or

solving a quartic equation.

8.5 Hybrid Beamforming with Vector Modulators

In this part, partially connected hybrid beamformer structure as shown in Fig. 8.2

is considered for multi-group multicasting scenario. This structure is adopted for
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the same scenario in [81]. Note that the algorithm in [81] realizes an alternating

minimization over two different optimizations problems each of which consists of

two iteration layers. In this chapter, we will propose an ADMM algorithm which

directly solves the reformulated problem. This will bring us a high computational

advantage as shown in the simulations.

The hybrid structure in Fig. 8.2 consists of digital and analog beamformer stages sim-

ilar to the previous structure. There are P RF chains and each RF chain is connected

to R antennas through vector modulators which allows for varying both phase and

amplitude of RF signals in a continuous manner. In this system, a digitally weighted

sum of multicast symbols, i.e.,
∑M

m=1 w
p
msm, ∀p ∈ P, is sent to a separate RF chain.

Then, each analog RF signal is split into R vector modulators. The phase and ampli-

tude change of the r th vector modulator following the pth RF chain is denoted by the

complex scalar χp,r , ∀r ∈ R and ∀p ∈ P. In total, there are PR vector modulators and

hence PR antennas. The beamforming weight vector for the mth multicast group is

Figure 8.2: Hybrid Structure with Vector Modulators.

PR×1 complex vector wm = [ w
1,1
m w1,2

m ... w1,R
m w2,1

m ... w2,R
m ... wP,1

m ... wP,R
m ]T where
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w
p,r
m = w

p
m χp,r . Using this, the QoS-aware hybrid beamforming problem with vector

modulators can be expressed as follows,

min
{wm,{w

p
m}

P
p=1}

M
m=1,{{χp,r }

R
r=1}

P
p=1

M∑
m=1

wH
mwm (8.31a)

s.t.
|hH

k wmk
|2∑

m′,mk
|hH

k wm′ |
2 + σ2

k

≥ γk, ∀k ∈ K (8.31b)

M∑
m=1
|wm,n |

2 ≤ Pn, ∀n ∈ N (8.31c)

w
p,r
m = w

p
m χp,r, ∀r ∈ R, ∀p ∈ P, ∀m ∈ M. (8.31d)

As in the previous section, (8.31) can be reformulated appropriately for ADMM al-

gorithm as follows,

min{
vA,m,ṽA,m,vB,m,ṽB,m,

{Γk,m}
K
k=1,{w

p
m}

P
p=1

}M

m=1
,

{{χp,r }
R
r=1}

P
p=1

M∑
m=1
(ṽH

A,mṽA,m + ṽH
B,mṽB,m) (8.32a)

s.t. (8.22b-h) (8.32b)

ṽ
p,r
A,m + ṽ

p,r
B,m = w

p
m χp,r, ∀r ∈ R, ∀p ∈ P, ∀m ∈ M. (8.32c)

The steps of ADMM algorithm for the problem (8.32) are the same as those given

in (8.23a-g) except the one in (8.23b) due to the only different constraint in (8.32c).

In addition, the variables {{wp
m}

P
p=1}

M
m=1 and {{χp,r}

R
r=1}

P
p=1 should be updated in the

ADMM framework. The update for {ṽA,m, ṽB,m}
M
m=1 can be obtained by solving the

following problem, i.e.,

min
{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
(ṽA,m + ṽB,m)

H(ṽA,m + ṽB,m)

+ 2ρ
��������ṽA,m + ṽB,m −

UAvA,m − zA,m + vB,m − zB,m +
•vm −

•zm

2

��������2) (8.33a)

s.t.
M∑

m=1
|ṽA,m,n + ṽB,m,n |

2 ≤ Pn, ∀n ∈ N (8.33b)

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈ M (8.33c)

where
•vm −

•zm term is added due to the constraint in (8.32c). Here, the elements of
•vm are w

p
m χp,r such that

•vm = [ w
1
m χ1,1 w1

m χ1,2 ... w
1
m χ1,R w2

m χ2,1 ... w
2
m χ2,R
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... wP
m χP,1... w

P
m χP,R ]

T and
•zm is the corresponding scaled dual variable. Using the

transformations as in the previous parts, i.e., w̃m , ṽA,m + ṽB,m, ṽA,m = UAυA,m and

ṽB,m = UBυB,m, (8.33) can be reformulated as follows,

min
{w̃m,υA,m,υB,m}

M
m=1

M∑
m=1
| |w̃m −

ρ

1 + 2ρ
z̃m | |

2 (8.34a)

s.t .
M∑

m=1
|w̃m,n |

2 ≤ Pn, ∀n ∈ N (8.34b)

υA,m = UH
A w̃m, υB,m = UH

B w̃m, ∀m ∈ M (8.34c)

where z̃m , UAvA,m − zA,m + vB,m − zB,m +
•vm −

•zm. Similar to the previous sec-

tion, the optimum solution of (8.34) is found by solving (8.34a-b). Defining ŵn ,

[ w̃1,n w̃2,n ... w̃M,n ]
T and ẑn , [ z̃1,n z̃2,n ... z̃M,n ]

T , ∀n ∈ N, the optimum update is

given as follows,

ŵn ← min

{ √
Pn

| |ẑn | |2
,

ρ

1 + 2ρ

}
ẑn, ∀n ∈ N (8.35a)

w̃m ← [ ŵ
1
m ŵ2

m ... ŵN
m ]

T, ∀m ∈ M (8.35b)

ṽA,m ← UAUH
A w̃m, ∀m ∈ M (8.35c)

ṽB,m ← UBUH
B w̃m, ∀m ∈ M (8.35d)

Now, let us consider the update for {{wp
m}

P
p=1}

M
m=1 and {{χp,r}

R
r=1}

P
p=1. The optimiza-

tion problem for this can be expressed as follows,

min
{{w

p
m}

P
p=1}

M
m=1,{{χp,r }

R
r=1}

P
p=1

P∑
p=1

M∑
m=1

R∑
r=1

��wp
m χp,r − (ṽ

p,r
A,m + ṽ

p,r
B,m +

•zp,r
m )

��2. (8.36)

In order to obtain the optimum solution of (8.36), take the derivative of objective

function in (8.36) with respect to each variable and equate them to zero. In this case,

we obtain the following equations,

w
p
m =

∑R
r ′=1 χ

∗
p,r ′ε

p,r ′
m∑R

r ′=1 |χp,r ′ |
2
, ∀m ∈ M, ∀p ∈ P (8.37a)

χp,r =

∑M
m′=1 (w

p
m′)
∗
ε

p,r
m′∑M

m′=1 |w
p
m′ |

2
, ∀r ∈ R, ∀p ∈ P (8.37b)

where εp,r
m , ṽ

p,r
A,m + ṽ

p,r
B,m +

•zp,r
m , ∀r ∈ R, ∀p ∈ P, and ∀m ∈ M is used for ease of

notation. Now, let us express the problem in (8.36) and the necessary conditions in
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(8.37) in a more compact way by defining the following vectors and matrix,

χp ,
[
χp,1 χp,2 . . . χp,R

]T
, ∀p ∈ P (8.38a)

wp ,
[
w

p
1 w

p
2 . . . w

p
M

]T
, ∀p ∈ P (8.38b)

Ep ,



ε
p,1
1 ε

p,1
2 . . . ε

p,1
M

ε
p,2
1 ε

p,2
2 . . . ε

p,2
M

...
...

...

ε
p,R
1 ε

p,R
2 . . . ε

p,R
M


, ∀p ∈ P (8.38c)

Using (8.21a-c), the optimization problem in (8.36) can be expressed as follows,

min
{χp,wp}

P
p=1

P∑
p=1
| |χpw

T
p − Ep | |

2
F . (8.39)

Note that the Euclidean norm of χp can be chosen as unity ∀p ∈ P without loss of

generality for the optimum solution of (8.39). Under this condition, i.e., | |χp | |2 =

1, ∀p ∈ P, the necessary conditions for the optimum solution in (8.37a-b) can be

expressed as follows,

wp = ET
p χ
∗
p, ∀p ∈ P (8.40a)

χp =
Epw

∗
p

wH
p wp

, ∀p ∈ P (8.40b)

If we plug (8.40a) into (8.40b), we obtain

χp =
EpE

H
p χp

χH
p EpE

H
p χp

, ∀p ∈ P. (8.41)

It is seen that χp is an eigenvector of EpE
H
p with eigenvalue χH

p EpE
H
p χp. In order to

see which eigenvector with unit norm is the minimizer of objective function in (8.39),

insert (8.40a) into the objective function in (8.39), i.e.,
P∑

p=1
| |χpχ

H
p Ep − Ep | |

2
F =

P∑
p=1

Tr
(
(χpχ

H
p Ep − Ep)

H(χpχ
H
p Ep − Ep)

)
=

P∑
p=1

Tr
(
EH

p χpχ
H
p χpχ

H
p Ep − 2EH

p χpχ
H
p Ep + EH

p Ep

)
=

P∑
p=1

Tr
(
− EH

p χpχ
H
p Ep + EH

p Ep

)
=

P∑
p=1

(
− χH

p EpE
H
p χp + Tr(EH

p Ep)

)
(8.42)
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where χH
p χp = 1, ∀p ∈ P is used. It is seen that the optimum χp maximizes

χH
p EpE

H
p χp by (8.42). Hence, the optimum χp is the unit norm eigenvector cor-

responding to the largest eigenvalue of EpE
H
p . Then, the optimum wp is obtained

by the equation (8.40a). As a final step, the following update is done for the dual

variables {
•zm}

M
m=1 as follows,

•zm ←
•zm + w̃m −

•vm, ∀m ∈ M. (8.43)

Overall, the simplified steps of the proposed ADMM algorithm are outlined as fol-

lows.

Algorithm 8.3: ADMM for Hybrid Beamforming with Vector Modulators

Initialization: Initialize w̃0
m ∼ CN(0, IN ), (

•vm)
0 = w̃0

m, v0
A,m = UH

A w̃0
m, λ0

k,m ← 0,

∀k ∈ K, u0
m ← 0, (

•zm)
0 ← 0, ∀m ∈ M. Set the iteration number i ← 0 and the

penalty parameter ρ.
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Repeat

Γ
i+1
k,mk
←


ζ i

k,mk
if φi

k(0) ≥ 0
ζ i
k,mk

1−µ?
k

if φi
k(0) < 0

(8.44a)

Γ
i+1
k,m′ ←


ζ i

k,m′ if φi
k(0) ≥ 0

ζ i
k,m′

1+γk µ?k
if φi

k(0) < 0
, ∀m′ , mk, (8.44b)

∀k ∈ K

z̃i+1
m ← UA(vi

A,m − ui
m) + w̃i

m − UAUH
A w̃i

m + (
•vm)

i − (
•zm)

i, ∀m ∈ M (8.44c)

(ŵn)i+1 ← min

{ √
Pn

| |(ẑn)i+1 | |2
,

ρ

1 + 2ρ

}
(ẑn)i+1, ∀n ∈ N (8.44d)

χi+1
p ← unit norm eigenvector corresponding to

the largest eigenvalue of Ei
p(E

H
p )

i, ∀p ∈ P (8.44e)

wi+1
p = (ET

p )
i(χ∗p)

i+1, ∀p ∈ P (8.44f)

vi+1
A,m ←

(
IL + Σ2

A

)−1 (
UH

A w̃i+1
m + ui

m

+

K∑
k=1
(ΣAVH

A )k(Γ
i+1
k,m + λ

i
k,m)

)
, ∀m ∈ M (8.44g)

(
•zm)

i+1 ← (
•zm)

i + w̃i+1
m − (

•vm)
i+1, ∀m ∈ M (8.44h)

λi+1
k,m ← λi

k,m + Γ
i+1
k,m − (ΣAVH

A )
H
k vi+1

A,m, ∀k ∈ K, ∀m ∈ M (8.44i)

ui+1
m ← ui

m + UH
A w̃i+1

m − vi+1
A,m, ∀m ∈ M (8.44j)

Set i ← i + 1.

Until stopping criterion is met.

8.6 Simulation Results

In this section, the performance of the proposed algorithms is compared with the ex-

isting benchmarks in [69] and [81]. In the figures, FDB, HB-PS and HB-VM stand for

full digital beamforming, hybrid beamforming with phase shifters and hybrid beam-

forming with vector modulators, respectively. The work in [69] proposes a technique
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for full digital beamforming while the one in [81] considers hybrid beamforming with

vector modulators.

There are M = 3 multicast groups and 8 users in each group, i.e., K = M × 8 = 24

users in total. Per-antenna power limit is taken as Pn = 1/N Watts where N is the

number of antennas at the BS. The channel path loss to noise variance ratio for all

the users is set as 20 dB. The minimum required SINR is 10 dB for all the users.

Two most widely used multipath channel models are considered in accordance with

millimeter wave environment [107]. The first model assumes that the scatterers seen

by different users are independent. If we assume a uniform linear array (ULA) model

at the BS with antenna spacing equal to half of the carrier wavelength, the channel

for the k th user is given by

hk =

Sk∑
s=1

αk,s[ 1 e− jπ cos(θk,s) ... e− jπ(N−1)cos(θk,s) ]T (8.45)

where Sk is the number of scatterers seen by the k th user. αk,s ∼ CN(0, pk,s) is the

complex gain of the sth path with
∑Sk

s=1 pk,s = 1 [107]. θk,s is the angle of arrival

of the sth path for the k th user. In the simulations, pk,s for s = 1, ..., Sk , ∀k ∈ K

is generated randomly from a uniform random variable in [0,1] and normalized such

that
∑Sk

s=1 pk,s = 1 is satisfied. Similarly, θk,s for s = 1, ..., Sk , ∀k ∈ K is generated

randomly form a uniform random variable in [0,2π].

The second model we consider is the scatter-sharing multipath channel model where

the scatterers seen from all the users are common. Let S be the number of common

scatterers. In this case, the channel vector for the k th user can be expressed as

hk =

S∑
s=1

αk,s[ 1 e− jπ cos(θs) ... e− jπ(N−1)cos(θs) ]T (8.46)

where αk,s ∼ CN(0, pk,s) is the complex gain of the sth path with
∑Sk

s=1 pk,s = 1.

Note that in all the experiments, the number of antennas for all the methods are the

same, i.e. N = PR where P is the number of RF chains per multicast stream for

HB-PS whereas it is the number of total RF chains for HB-VM. R is the number of

phase shifters or vector modulators following each RF chain. Although the number

of antennas are the same, the number of RF chains is different for each method. The
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number of total RF chains is N , MP = 3P, and P for FDB, HB-PS, and HB-VM,

respectively.

First, we compare the convergence properties of our proposed algorithms with the

benchmarks in [69] and [81]. A single experiment is realized for all the algorithms for

P = 8 and R = 10. We consider independent multipath channel model given in (8.45)

with Sk = 12, ∀k ∈ K. Fig. 8.3 shows the transmitted power versus iteration number

for the proposed FDB and the one in [69]. The algorithm in [69] consists of both

outer and inner iteration loops and Fig. 8.3 denotes the inner loop iteration number

for it. For the same experiment, Fig. 8.4 denotes the indicator function for the SINR

constraints satisfaction. As shown in Fig. 8.4, the proposed method shows a more

stable characteristics in terms of satisfying SINR constraints during iterations. At the

197th and further iterations, all the SINR constraints are satisfied. The transmitted

power difference between this iteration and the last iteration is only 0.07 dBW as can

be seen from Fig. 8.3. Moreover, there is approximately 12 dB power gain compared

to the method in [69] at this iteration. From Fig. 8.3 and 8.4, it seems obvious that the

proposed method superior convergence behavior compared to the benchmark in [69].

Note that at the deep points for the method in [69] in Fig. 8.3, the SINR constraints

are not satisfied.
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Figure 8.3: Transmitted power versus iteration number for FDB, P = 8, R = 10, and

Sk = 12, ∀k ∈ K.

193



0 200 400 600 800 1000 1200 1400 1600 1800
ITERATION NUMBER

0

1

IN
D

IC
A

T
O

R
 F

O
R

 S
IN

R
 

C
O

N
S

T
R

A
IN

T
S

 S
A

T
IS

F
A

C
T

IO
N

FDB, Alg. 1 (proposed)
FDB in [69]X: 197

Y: 1

Figure 8.4: Indicator function for the SINR constraints satisfaction for FDB, P = 8,

R = 10, and Sk = 12, ∀k ∈ K.

For the same experiment, the convergence behavior of the proposed HB-PS is shown

in Fig. 8.5 and 8.6. Although there are some jumps in the indicator function, the

SINR constraints are satisfied for most of the iterations. They are satisfied for the

first time at the 510th iteration. At this point, the transmitted power is 0.85 dB more

compared to the last iteration. Both Fig. 8.5 and 8.6 show that the proposed algorithm

has a nice convergence behavior.
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Figure 8.5: Transmitted power versus iteration number for HB-PS, P = 8, R = 10,

and Sk = 12, ∀k ∈ K.
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Figure 8.6: Indicator function for the SINR constraints satisfaction for HB-PS, P = 8,

R = 10, and Sk = 12, ∀k ∈ K.

Fig. 8.7 and 8.8 show the transmitted power and indicator function for the SINR

constraints in terms of iteration number, respectively. Note that the algorithm in [81]

is an alternation minimization over two two-nested loops. Hence, its total number of

iterations is relatively large compared to the proposed method. As shown in Fig. 8.7,

there is a 1 dBW difference between two methods after convergence. Moreover, the

proposed method requires significantly less number of iterations. In a similar manner,

the proposed method has a more stable characteristics in satisfying SINR constraints

throughout the algorithm as can be seen in Fig. 8.8. Overall, all the figures 8.3-8

show that the proposed algorithms are more advantageous in terms of convergence

compared to its existing counterparts.
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Figure 8.7: Transmitted power versus iteration number for HB-VM, P = 8, R = 10,

and Sk = 12, ∀k ∈ K.
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Figure 8.8: Indicator function for the SINR constraints satisfaction for HB-VM, P =

8, R = 10, and Sk = 12, ∀k ∈ K.

In the following experiments, each point in the figures represent the average of 100

random channel realizations.

In the second experiment, we consider independent multipath channel model given

in (8.45) with Sk = 12, ∀k ∈ K. The number of RF chains per each multicast

stream for HB-PS and the number of total RF chains for HB-VM are taken as P =

8. R is varied from 4 to 12 and all the methods are compared in terms of average
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transmitted power in Fig. 8.9. As shown in Fig. 8.9, the proposed FDB and the

one in [69] perform nearly the same for all the scenarios. The difference between two

methods can be observed from Table 8.1 where average run time for each algorithm is

presented for each method. The proposed FDB results the same performance with less

computational time. When we come back to Fig. 8.9, we see that HB-PS performs

worse than FDB as expected since it uses 3P = 24 RF chains whereas FDB uses 8R

RF chains. Considering the high loss coming with each RF chain in millimeter wave

systems, this performance loss is expected to be overcompensated in a real setup.

Furthermore, HB-PS performs better than HB-VM for all the scenarios both in terms

of average transmitted power and run time. However, it should be taken into account

that HB-PS uses 3P = 24 RF chains while HB-VM needs P = 8 RF chains in total.
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Figure 8.9: Average transmitted power versus number of phase shifters / vector mod-

ulators per RF chain, R, for P = 8 and Sk = 12, ∀k ∈ K.

The proposed HB-VM results significant computational advantage compared to its

counterpart in [81] as can be seen in Table 8.1. Furthermore, Fig. 8.9 shows that it

requires also less transmitted power. This double advantage comes from the fact that

the proposed method directly tackles the original problem and uses the proposed com-

putationally effective reformulation. On the other hand , the method in [81] adopts

a three-layer optimization approach which increases computational burden signifi-

cantly.

Note that the average transmitted power for all the methods in Fig. 8.9 decreases with
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R since number of antennas increases without changing RF chain number. Hence, we

can obtain a desired performance by increasing the number of units following each

RF chain at the same time using small number of RF chains for a power efficient

system.

Table 8.1: Average Run Time (seconds), P = 8 and Sk = 12, ∀k ∈ K

R

4 6 8 10 12

FDB, Alg. 1 (proposed) 0.3040 0.4650 0.6822 0.9276 1.2189

FDB in [69] 1.2402 1.1971 1.3483 1.6829 1.8115

HB-PS, Alg. 2 (proposed) 1.9275 2.6339 2.9320 3.3200 3.4757

HB-VM, Alg. 3 (proposed) 2.5306 3.1970 3.4553 3.8923 4.2101

HB-VM in [81] 51.4124 42.8264 50.0095 62.9391 76.1756

Fig. 8.10 and Table 8.2 are for the third experiment where the same independent

multipath channel model in (8.45) is considered with Sk = 12. The number of phase

shifters or vector modulators following each RF chain is set as R = 10. In Fig. 8.10

we plot the average transmitted power versus P which is number of total RF chains

for HB-VM whereas number of RF chains per each multicast stream for HB-PS.

Note that x-axis of Fig. 8.10 is labeled “number of RF chains” for simplicity. Table

8.2 presents the average run time for the same experiment. Similar to the previous

experiment, the proposed FDB attains the same performance with less computational

complexity thanks to the improved-ADMM algorithm.
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Figure 8.10: Average transmitted power versus number of RF chains, P, for R = 10

and Sk = 12, ∀k ∈ K.

In a similar manner, the average transmitted power for HB-PS is more than that of

FDB and less than that of HB-VM. Except for P = 4 scenario, its computational

complexity is less than that of HB-VM. It is an advantageous method and uses simple

phase shifters instead of vector modulators. However, it requires M times more RF

chain for the same number of antennas. When we observe Table 8.2, we again see

the proposed HB-VM method need significantly less run time compared to the one

in [81]. In addition to its computational advantage, it performs better in terms of

transmitted power especially for smaller P values.

As a final comment to Fig. 8.10, all the methods requires less and less transmitted

power as P increases which is an expected result. In fact, both the number of antennas

and RF chains increases. The increase in RF chain for hybrid beamforming methods

enhances the digital beamforming capability and reduces the transmitted power.
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Table 8.2: Average Run Time (seconds), R = 10 and Sk = 12, ∀k ∈ K

P

4 6 8 10 12

FDB, Alg. 1 (proposed) 0.4217 0.6757 0.9510 1.2257 1.5083

FDB in [69] 1.2304 1.3535 1.7369 1.9342 2.1072

HB-PS, Alg. 2 (proposed) 2.3327 2.8243 3.2815 3.5152 3.6999

HB-VM, Alg. 3 (proposed) 2.0648 3.3493 3.9612 4.3124 4.5926

HB-VM in [81] 80.9398 46.2869 65.5294 79.6030 95.8791

In the last experiment, we consider the scatterer-sharing multipath channel model in

(8.46) with different number of scatterers, S. In Fig. 8.11 and its corresponding run

time Table 8.3, S is varied from 16 to 24. S being smaller results the rank of stacked

channel H be smaller. In fact, its rank is at most S. In this case, there is a severe inter-

user interference [107] and satisfying QoS-aware constraints becomes more difficult.

In this experiment, we set P = 8 and R = 10. It can be easily seen that transmitted

power levels for all the methods is higher compared to the counterpart scenarios in

Fig. 8.9 and 8.10. This is due to the fact that the independent scatterer channel model

in Fig. 8.9 and 8.10 provides a rich scattering environment.
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Figure 8.11: Average transmitted power versus number of shared scatterers, S, for

P = 8 and R = 10.
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In Fig. 8.11, we see that there is a power difference between the proposed HB-VM

and HB-VM in [81] similar to the previous scenarios. Besides that, the proposed

methods have significantly less computational complexity as shown in Table 8.3.

As a last comment, we observe that the increase in number of shared-scatterer S

results less transmitted power by generating a richer scatterer environment and in-

creasing the rank of stacked channel matrix.

Table 8.3: Average Run Time (seconds), P = 8, R = 10

S

16 18 20 22 24

FDB, Alg. 1 (proposed) 0.4981 0.6511 0.7555 0.8775 1.0288

FDB in [69] 2.1140 2.1643 2.2089 2.2695 2.3788

HB-PS, Alg. 2 (proposed) 2.2797 2.7534 2.7239 2.9790 3.1008

HB-VM, Alg. 3 (proposed) 3.2435 3.6081 3.8194 3.8645 3.8544

HB-VM in [81] 104.7051 63.9613 55.4497 50.5342 51.7101

8.7 Conclusion

QoS-aware multi-group multicasting problem with per-antenna power constraints is

considered. A new reformulation is obtained by using and efficient decomposition

of the optimization variables. First, full digital beamformer is considered and the

optimum update equations are presented for the ADMM algorithm. After some rear-

rangements, a memory-efficient implementation of the algorithm is obtained. Then,

two different hybrid beamforming structures are investigated by using our effective

decomposition method. All the ADMM updates in the beamforming structures are

solved optimally and effectively. The first hybrid beamforming system which em-

ploys analog phase shifters uses more number of RF chains for a given number of

antennas in comparison to the second structure. The second structure uses vector

modulators instead of phase shifters. Simulation results show that the first hybrid

beamforming system requires significantly less transmission power by taking advan-

tage of the additional RF chains. The proposed full digital beamformer performs
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nearly the same as its counterpart benchmark in terms of transmitted power with sig-

nificantly less computational time. All other proposed algorithms are shown to be

computationally more efficient and have better convergence properties compared to

the benchmarks in the literature. Furthermore, the proposed hybrid beamformer with

vector modulators attains less transmitted power compared to its counterpart for most

of the scenarios.
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CHAPTER 9

CONCLUSION

This thesis studies a broad range of optimization problems in energy harvesting and

multi-user communications area. Several papers are published from these studies and

a couple of them are submitted for publication. Each chapter investigates different

problems, effective solutions and methods for them in detail. Chapter 2, 3, and 8

consider several design problems in multi-group multicasting context. While Chap-

ter 2 and 3 include simultaneous wireless information and power transfer, Chapter 8

only deals with conventional multi-group multicast beamforming design. In Chapter

2, each user has a power splitting device and energy harvesting constraints are added

to the quality of service-aware design problem. Low-cost alternatives to full digi-

tal beamforming, namely antenna selection and hybrid beamforming are elaborated

and several effective algorithms are proposed. It is observed that the performance of

antenna selection degrades compared to the hybrid beamforming as the number of

antennas increases. This is due to the fact that hybrid beamforming takes advantage

of all the antennas.

In Chapter 3, different from other chapters which consider single-carrier systems,

max-min fair based resource allocation for OFDM based multi-group multicasting

systems is investigated. An efficient two-stage near-optimum technique is developed

using an effectively designed subcarrier allocation algorithm and convex optimization

problem solver for power splitting ratios. The minimum signal-to-noise ratio obtained

by the proposed method is very close to the optimum solution which is extremely

costly in terms of computation.

In Chapter 8, per-antenna power constraints are included to conventional quality-of-

service beamformer design problem in order to compare the proposed methods with
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the benchmarks in the literature. In this chapter, energy harvesting is not taken into

account and full digital beamforming together with hybrid beamforming with phase

shifters and vector modulators are considered. Alternating directions method of mul-

tipliers which is an efficient first order optimization method is used in order to solve

the effectively reformulated problem. In this reformulation, the beamformer weight

vectors are decomposed into two subspaces such that the steps of the alternating di-

rections method of multipliers algorithm become computationally efficient compared

to its alternatives in the literature. Simulation results show that the proposed algo-

rithms have better convergence properties and less computational time by performing

the same or better than the benchmarks in terms of transmitted power.

In Chapter 4, 5, 6, and 7 we consider wireless-powered relaying where a single user

exists in the system. Several important scenarios are investigated and the closed-form

optimum solutions are derived for most of the problems in these chapters. In Chapter

4, the relay harvests energy from the dedicated energy signal sent from the source and

self-energy recycling. The optimization objective is to determine the best transmit

relay beamformer which minimizes the transmitted power by the relay’s own battery

such that signal-to-noise ratio at the destination user is satisfied. This problem is first

investigated here and the closed-form optimum solution and feasibility conditions are

derived. Simulation results show that improving self-energy recycling loop channel

makes the system performance better by decreasing the required power by the relay’s

own battery.

In Chapter 5, we consider the same scenario in Chapter 4 by employing multiple

receive antennas at the relay. This time, signal-to-noise ratio maximization problem

is investigated. Two protocols which are self-energy recycling and power splitting

based ones are studied and the closed-form optimum solutions are derived for the first

time in the literature. Secondly, a new protocol is developed by combining self-energy

recycling and power splitting. A near-optimum solution for this protocol is developed.

Finally, discrete set of power splitting ratios is considered and the optimum solution

for this combinatorial problem is obtained.

Chapter 6 studies the same system in Chapter 4 for two optimization problems, i.e.

signal-to-noise ratio maximization and quality of service-aware design problems.
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Similar to Chapter 4 and 5, amplify-and-forward relaying protocol is adopted. Dif-

ferently, the joint source power allocation and relay transmit beamformer design are

considered unlike the previous chapters which assume equal power allocation at the

source during two phases. The joint optimum solution is derived for signal-to-noise

ratio maximization problem while a near-optimum solution is presented for the other

one. Simulation results show that inclusion of power allocation to the conventional

optimization problem brings about a huge advantage in terms of transmitted power

by the relay and signal-to-noise ratio at the user.

Finally, Chapter 7 studies both single and multiple receive antenna relaying for the

similar self-energy recycling protocol. Different from Chapter 4, 5, and 6, we adopt

decode-and-forward relaying protocol in this chapter. In the literature, a sub-optimum

solution exists for the signal-to-noise ratio maximization problem for single receive

antenna relay. In this chapter, we derive the optimum solution for both quality of

service-aware and signal-to-noise ratio maximization problems. Simulation results

show that the proposed method performs better than the sub-optimum one in the lit-

erature. In the second part of this chapter, we deal with the same optimization prob-

lems for multiple receive antenna relay by taking into the receive beamformer design

account. Although a near-optimum solution is found for the joint optimization prob-

lems, simulation results verify that the receive beamforming at the multiple antenna

relay improves the system performance significantly.
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APPENDIX A

PROOFS OF LEMMA 2.2 AND 2.3

A.1 Proof of Lemma 2.2

Consider the following constrained optimization problem given in [93],

min
x∈X

f (x) (A.1.1a)

s.t. gi(x) ≤ 0, i ∈ I = {1, ...m} (A.1.1b)

h j(x) = 0, j ∈ J = {1, ..., s} (A.1.1c)

where X is a nonempty subset of Rn and f : X → R, gi : X → R, i ∈ I and

h j : X → R, j ∈ J are locally Lipschitz functions on X. Let x̂ be a Karush-Kuhn-

Tucker point of (A.1.1) at which the Generalized Karush-Kuhn Tucker conditions are

satisfied with Lagrange multipliers {λ̂i}
m
i=1 and { µ̂ j}

s
j=1 corresponding to {gi(.)}

m
i=1

and {h j(.)}
s
j=1. Let J+ = { j ∈ J : µ̂ j > 0} and J− = { j ∈ J : µ̂ j < 0}. Theorem 6

in [93] states that if f , gi, i ∈ I, h j , j ∈ J+ are locally Lipschitz invex and h j , j ∈ J−

are locally Lipschitz incave at x̂ on X with respect to the same function, then x̂ is also

minimizer of the following penalized problem for a sufficiently large c, i.e.,

min
x∈X

f (x) + c
[∑

i∈I

max{0, gi(x)} +
∑
j∈J

|h j(x)|
]

(A.1.2)

We can express the problem in (2.14) where (2.14d) is replaced by (2.15a-b) in terms

of a real vector x = [ Re(w1)
T Im(w1)

T ... Re(wG)
T Im(wG)

T bT υ1 ... υN κ1 ...κN ]
T .

The problem can be written in form (A.1.1). Let X = {x : (2.14b-c),(2.14e-h),(2.15b)},

f (x) = xT Ax and h1(x) = xT Bx − L which is the only constraint except x ∈ X. f (x)

and h1(x) correspond to the functions in (2.14a),
∑G

k=1 wH
k wk , and (2.15a), bT b − L,

respectively. Note that both f and h1 are locally Lipschitz functions on X since they

are quadratic and x is bounded on X. Since the sign of Lagrange multiplier is not
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known, if we can show that f is locally Lipschitz invex function and h1 is both lo-

cally Lipschitz invex and incave function on X with respect to the same function, then

the proof is completed. For this, there should exist a vector-valued function η(x, u)

such that the following conditions are satisfied, (please see [93] for details),

xT Ax − uT Au ≥ 2uT Aη(x, u), (A.1.3a)

xT Bx − uT Bu = 2uT Bη(x, u), ∀x, u ∈ X. (A.1.3b)

We can choose η(x, u) = 1
2 (−u + 1bxTBx

L ) where 1b is the vector whose elements

corresponding to the indices of b in x are 1. Note that uT B1b = L by (2.14c), uT A1b =

0 for any u ∈ X and xT Ax ≥ 0 for any x. Hence (A.1.3a-b) is satisfied which

concludes the proof.

A.2 Proof of Lemma 2.3

Similar to the proof of Lemma 2.2, we can express the problem in (2.22) in terms of

a real vector variable x = [ Re(vec(W1))
T Im(vec(W1))

T ... Re(vec(WG))
T

Im(vec(WG))
T υ1 ... υN κ1 ...κN ]

T as in the same form (A.1.1). Let X = {x :

(2.22b-g)}. The objective function in (2.22a),
∑G

k=1 Tr{Wk}, and quadratic rank

constraints (Tr{Wk})
2 − Tr{W2

k} ≤ 0 can be expressed using f (x) = cT x and

gk(x) = xT Dkx, k = 1, ...,G. If we can show that f and gk , k = 1, ...,G are lo-

cally Lipschitz invex functions on X with respect to the same vector valued function

η(x, u), then the proof is completed [93]. For this, the following conditions should be

satisfied,

cT x − cT u ≥ cTη(x, u), (A.2.1a)

xT Dkx − uT Dku ≥ 2uT Dkη(x, u), k = 1, ...,G, ∀x, u ∈ X. (A.2.1b)

η(x, u) can be simply chosen as η(x, u) = −u. Since cT x ≥ 0 and xT Dkx ≥ 0,

k = 1, ...,G, for all x ∈ X by (2.22g) and Theorem 2.2, respectively, (A.2.1a-b) is

always satisfied for the given η(x, u). That completes the proof.
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APPENDIX B

PROOFS OF LEMMA 5.1, 5.2 AND 5.4

B.1 Proof of Lemma 5.1

We will explore the cases resulting unbounded solution by expressing the relay trans-

mit beamformer vector as wt =
∑Nt

n=1 βne jθnun where βn ≥ 0, n = 1, ..., Nt and

{un}
Nt

n=1 are the orthonormal eigenvectors of the matrix INt − ηHH
rrHrr . The problem

in (5.8) can be expressed in terms of {βn, θn}
Nt

n=1 as follows,

max
{βn≥0,θn}Nt

n=1

����� Nt∑
n=1

hH
d unβne jθn

����� (B.1.1a)

s.t.
Nt∑

n=1
λnβ

2
n ≤ γ, (B.1.1b)

where {λn}
Nt

n=1 are the eigenvalues of the matrix INt − ηHH
rrHrr corresponding to the

eigenvectors {un}
Nt

n=1. In (B.1.1b), γ ,
ηPs | |hr | |

2+ηNrσ
2
r,2

Ps | |hr | |
2+σ2

r,1+σ
2
b

is defined for ease of notation.

Note that (B.1.1b) which is the only constraint of the problem (B.1.1) is independent

of the optimization variables {θn}
Nt

n=1. Hence, the optimum {θn}
Nt

n=1 maximizes the

objective function in (B.1.1a). Since βn is nonnegative ∀n, the optimum {θn}
Nt

n=1 is

given as θ?n = ∠−hH
d un, n = 1, ..., Nt which make all the terms in (B.1.1a) aligned

in phase. If we insert these optimum values into (B.1.1), we obtain the following

optimization problem, i.e.,

max
{βn}

Nt
n=1

Nt∑
n=1
|hH

d un |βn (B.1.2a)

s.t.
Nt∑

n=1
λnβ

2
n ≤ γ. (B.1.2b)
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It is easily seen that the optimum {βn}
Nt

n=1 should be nonnegative for (B.1.2) since

|hH
d un | ≥ 0. Hence, the constraints βn ≥ 0, n = 1, ..., Nt are not included for simplic-

ity. At this point, consider two cases.

Case 1: At least one of the eigenvalues of the matrix INt − ηHH
rrHrr is zero. Denote

the index set of zero eigenvalues by N0, i.e. λn = 0 for n ∈ N0. In this case, {βn}n∈N0

can be chosen infinity without violating (B.1.2b). Furthermore, if at least one of

{|hH
d un |}n∈N0 is nonzero, then the objective in (B.1.2a) becomes infinity. This will

result an unbounded solution.

Case 2: At least one of the eigenvalues of the matrix INt−ηHH
rrHrr is negative. Denote

the index set of negative eigenvalues by N−, i.e. λn < 0 for n ∈ N−. In this case,

βn ∀n can be made arbitrarily large without violating (B.1.2b). Then the objective in

(B.1.2a) becomes infinity. This will result an unbounded solution.

If all the eigenvalues are positive, i.e., λn > 0, ∀n, then neither Case 1 nor Case 2

happen and we obtain a bounded problem by (B.1.2b) which completes the proof. �

B.2 Proof of Lemma 5.2

First, let us express the problem (5.14) in terms of {βn, θn}
Nt

n=1 as follows,

max
{βn≥0,θn}Nt

n=1

����� h̃H
d h̃r

| |h̃r | |
β1e jθ1 +

h̃H
d h̃d − h̃H

d Φ1ΦH
1 h̃d

| |h̃d − Φ1ΦH
1 h̃d | |

β2e jθ2

����� (B.2.1a)

s.t. γ1

Nt∑
n=1

β2
n − 2ηPs | |hr | | | |h̃r | |β1 ≤ γ2. (B.2.1b)

Note that any phase rotation of the function inside the brackets in (B.2.1a) does not

affect the optimality. Hence, θ1 can be chosen as θ1 = 0 without loss of generality.

Under this condition, it can easily be seen that the function in (B.2.1a) is maximized

by selecting θ2 = ∠h̃H
d h̃r for the other variables given. The following upper bound for

(B.2.1a) is achieved by aligning phases of both terms inside the brackets with this θ2,

i.e.,

|h̃H
d h̃r |

| |h̃r | |
β?1 +

h̃H
d h̃d − h̃H

d Φ1ΦH
1 h̃d

| |h̃d − Φ1ΦH
1 h̃d | |

β?2 (B.2.2)
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Note that both terms in (B.2.2) are positive.

Furthermore {βn}
Nt

n=3 do not affect the objective function in (B.2.1a). It is obviously

seen that for optimum w̃t , {βn}
Nt

n=3 should be zero. Suppose that this is not the case

for the optimum solution. In this case, {βn}
Nt

n=3 can be set to zero and β1 and β2 can

be increased without violating (B.2.1b). In this case, we obtain an improved objective

function which contradicts the optimality of nonzero {βn}
Nt

n=3. Hence, the claim of the

lemma is true. �

B.3 Proof of Lemma 5.4

The quartic function given in (5.55) is equal to the following one by (5.54), i.e.,

δ̃1D1(D1 β̃1 − D2)β̃
3
1 − δ̃2

(
(D1 β̃1 − D2)2 − D3

)2
. (B.3.1)

The derivative of (B.3.1) is given by

δ̃1D2
1 β̃

3
1 + 3δ̃1D1(D1 β̃1 − D2)β̃

2
1 − 4δ̃2D1

(
(D1 β̃1 − D2)2 − D3

)
(D1 β̃1 − D2)

(B.3.2)

Note that the first term in (B.3.2) is obviously positive. The second term is also

positive since (D1 β̃1 − D2) > 0 which is the term inside the parenthesis in (5.51). If

this term would be negative, then β1 can be increased such that the same ρ is obtained

with an improved objective function. Hence, (D1 β̃1 − D2) > 0. When it comes to the

last term in (B.3.2), it is seen that the term
(
(D1 β̃1 − D2)2 − D3

)
is equal to ρ − 1

which is negative. As a result, (B.3.2) is positive in the region 0 ≤ ρ < 1. This proves

that the quartic function in (5.55) is monotonically increasing inside the considered

interval. �
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APPENDIX C

PROOFS OF LEMMA 6.2, 6.4 AND 6.5

C.1 Proof of Lemma 6.2

Let us take the derivative of the function f (x) as follows,

f ′(x) =
2σ2

r (3x2 + 1)
(1 − x2)3

+
2σ2

d

| |g| |2
− f ′′1 (x) f

3
1 (x) + 3 f 2

1 (x)( f
′
1(x))

2

f 6
1 (x)

(C.1.1)

Note that in the region of interest, β̃1 > 0, thus f1(x) > 0. Hence, if f ′′1 (x) ≤ 0,

f ′(x) > 0 in the region specified by 0 ≤ x < 1 and β̃1 > 0. In order to show that

f ′′1 (x) ≤ 0, we express the function f1(x) as f1(x) =
√

f2(x) − (D1x − D2) where

f2(x) ,
D4

d1+
σ2
r

1−x2

− D3(D1x − D2)
2. Now, take the first and second derivative of f1(x)

as follows,

f ′1(x) =
f ′2(x)

2
√

f2(x)
− D1 (C.1.2a)

f ′′1 (x) =
2 f ′′2 (x)

√
f2(x) −

( f ′2 (x))
2

√
f2(x)

4 f2(x)
(C.1.2b)
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Let us show that f ′′2 (x) < 0 as follows

f ′2(x) =
−D4

2σ2
r x

(1−x2)2(
d1 +

σ2
r

1−x2

)2
− 2D1D3(D1x − D2) (C.1.3a)

f ′′2 (x) = D4
−

2σ2
r (3x2+1)
(1−x2)3

(
d1 +

σ2
r

1−x2

)2
+

4σ4
r x2

(1−x2)4
2
(
d1 +

σ2
r

1−x2

)(
d1 +

σ2
r

1−x2

)4
− 2D2

1D3 (C.1.3b)

f ′′2 (x) = D4
−2σ2

r (3x2 + 1)(1 − x2)
(
d1 +

σ2
r

1−x2

)
+ 8σ4

r x2(
d1 +

σ2
r

1−x2

)3
(1 − x2)4

− 2D2
1D3 (C.1.3c)

f ′′2 (x) = D4
−2σ2

r (1 − x2)2
(
d1 +

σ2
r

1−x2

)
− 2d1σ

2
r x2(1 − x2)(

d1 +
σ2
r

1−x2

)3
(1 − x2)4

− 2D2
1D3 (C.1.3d)

As it can be seen from (C.1.3d), f ′′2 (x) < 0 and thus f ′′1 (x) < 0. Hence, f ′(x) > 0 in

the region of interest showing that f (x) is monotonically increasing. �

C.2 Proof of Lemma 6.4

Let us take the derivative of the function g(β̃1) as follows,

g′(β̃1) =
2d1(d1 − d2

3 − d2
4 )

d1 − d2
4

−
2d1d2d3

d1 − d2
4

g′1(β̃1)√
g1(β̃1)

−
d1d2d3

d1 − d2
4

β̃1

(
g′′1 (β̃1)

√
g1(β̃1) −

(g′1(β̃1))
2

2
√
g1(β̃1)

)
g1(β̃1)

−
d1d2

2

d1 − d2
4
g′′1 (β̃1) (C.2.1a)

g′(β̃1) =
2d1(d1 − d2

3 − d2
4 )

d1 − d2
4

−
d1d2d3

d1 − d2
4

2g′1(β̃1) + β̃1g
′′
1 (β̃1)√

g1(β̃1)

+
d1d2d3

d1 − d2
4

β̃1(g
′
1(β̃1))

2

2(g1(β̃1))3/2
−

d1d2
2

d1 − d2
4
g′′1 (β̃1) (C.2.1b)

where g′1(β̃1) =
2E2E3 β̃1
(E1 β̃

2
1−E3)2

and g′′1 (β̃1) =
2E2E3(−3E1 β̃

2
1−E3)

(E1 β̃
2
1−E3)3

. We will now show that all

the terms in (C.2.1b) are nonnegative. Let us insert (6.62) into (6.50a) and obtain(
d1 − d2

3 −
d2

3 d2
4

d1 − d2
4

)
β̃1 −

(
d2d3 +

d2d3d2
4

d1 − d2
4

)
x ≥ 0 (C.2.2)

For β̃1 > 0, it is required that d1 − d2
3 −

d2
3 d2

4
d1−d2

4
≥ 0 which is equivalent to d1 ≥ d2

3 + d2
4 .

Hence, the first term in (C.2.1b) is nonnegative. The second term is also nonnegative,
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i.e.,

−
(
2g′1(β̃1) + β̃1g

′′
1 (β̃1)

)
= −

4E2E3 β̃1

(E1 β̃
2
1 − E3)2

−
2E2E3 β̃1(−3E1 β̃

2
1 − E3)

(E1 β̃
2
1 − E3)3

(C.2.3a)

=
2E2E3 β̃1(E1 β̃

2
1 + 3E3)

(E1 β̃
2
1 − E3)3

> 0 (C.2.3b)

It can easily be seen that other terms are positive. This shows that g(β̃1) is monotoni-

cally increasing in the region specified by β̃1 > 0 and 0 ≤ x < 1.

�

C.3 Proof of Lemma 6.5

Let us take the derivative of the function h(β̃1) as follows,

h′(β̃1) =

d2

(
2g′′1 (β̃1)

√
g1(β̃1) −

(
g′1(β̃1)

)2

√
g1(β̃1)

)
4g1(β̃1)

−
d4√

Pmax

d1
− β̃2

1

−
d4 β̃

2
1(

Pmax

d1
− β̃2

1

)3/2 (C.3.1)

where g′′1 (β̃1) =
2E2E3(−3E1 β̃

2
1−E3)

(E1 β̃
2
1−E3)3

< 0 and all the terms above in (C.3.1) are negative

in the region specified by β̃1 > 0, β̃2 ≥ 0, and 0 ≤ x =
√
(E1−E2)β̃

2
1−E3

E1 β̃
2
1−E3

< 1. Hence,

h(β̃1) is monotonically decreasing function in the region of interest. �
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