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ABSTRACT

LEARNING TO RANK WEB DATA USING MULTIVARIATE ADAPTIVE
REGRESSION SPLINES

Altınok, Gülşah

M.S., Department of Statistics

Supervisor : Prof. Dr. İnci BATMAZ

Co-Supervisor : Prof. Dr. Pınar KARAGÖZ

September 2018, 97 pages

A new trend, called learning to rank, has recently come to light in a wide variety of

applications in Information Retrieval (IR), Natural Language Processing (NLP), and

Data Mining (DM), to utilize machine learning techniques to automatically build the

ranking models. Typical applications are document retrieval, expert search, definition

search, collaborative filtering, question answering, and machine translation. In IR,

there are three approaches used for ranking. The one is traditional model approaches

such as Boolean Model (BM), Vector Space Model (VSM) and classical Probabilistic

Model (classical PM). The second approach is called Language Model (LM). Such

models are n-gram Model, Query Likelihood Model (QLM). The final method is

namely system model including Support Vector Model (SVM) and Artificial Neural

Network (ANN). In this study, we adopted the system model approach and compared

the performance measures of those widely used models, SVM and ANN with those

Multivariate Adaptive Regression Splines (MARS) and its variant Conic Multivari-

ate Adaptive Regression Splines (CMARS). Results indicate that MARS performs
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slightly better than the others considered in this study.

Keywords: Learning to rank, Information Retrieval, Data Mining, Multivariate Adap-

tive Regression Splines
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ÖZ

ÇOK DEĞİŞKENLİ UYARLANABİLİR REGRESYON EĞRİLERİ İLE WEB
VERİLERİNİ SIRALAMAYI ÖĞRENME

Altınok, Gülşah

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Prof. Dr. İnci BATMAZ

Ortak Tez Yöneticisi : Prof. Dr. Pınar KARAGÖZ

Eylül 2018 , 97 sayfa

Son zamanlarda sıralama öğrenme adında yeni bir yaklaşım, Bilgi Edinme (BE), Do-

ğal Dil İşleme (DDİ) ve Veri Madenciliği (VM) uygulamaları gibi geniş bir yelpazede

otomatik olarak sıralama modeli oluşturmak amacıyla makine öğrenme teknikleri

kullanmak için ortaya çıkmıştır. Bu tekniğin tipik uygulama alanları arasında belge

alma, uzman arama, tanımlama arama, işbirlikçi filtreleme, soru yanıtlama ve ma-

kine çevirisi gibi pratikler mevcuttur. Bilgi edinme alanında, sıralama için kullanılan

üç yaklaşım vardır. Bu yaklaşımlardan biri, Boole Modeli (BM), Vektör Uzay Mo-

deli (VUM) ve klasik Olasılık Modeli (klasik OM) gibi geleneksel modelleri kapsa-

yan bir yaklaşımdır. Bilgi edinmede kullanılan bir diğer yaklaşım, doğal Dil Modeli

(doğal DM) olarak adlandırılır. Bu yaklaşım n-gram Modelleri ve Sorgu Olabilir-

lik Modellerini (SOM) kapsamaktadır. Üçüncü yaklaşım ise, Destek Vektör Modeli

(DVM) ve Yapay Sinir Ağı (YSA) gibi makine öğrenim yöntemlerini içeren sistem

modeli yaklaşımıdır. Bu çalışmada, sistem modeli yaklaşımının benimsenmiş ve yay-
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gın olarak kullanılan bu modellerinin, DVM ve YSA’nın, performans ölçümlerinin,

Çok-değişkenli Uyarlanabilir Regresyon Eğrileri (ÇURE) modelinin ve Konik ÇURE

modelinin (KÇURE) performans değerleri ile karşılaştırması çalışılmıştır. Sonuçlar

ÇURE modelin bu çalışmada göz önüne alınan diğerler modellerden biraz daha iyi

olduğunu göstermektedir.

Anahtar Kelimeler: Sıralama Öğrenme, Veri Madenciliği, Çok Değişkenli Uyarlana-

bilir Regresyon Eğrileri
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CHAPTER 1

INTRODUCTION

In 1989, Tim Berners-Lee invented a tool that becomes an indispensable part of our

lives, World Wide Web (WWW). Even though this event has been one of milestones of

the Information Age, in early years, to get the required information is like looking for

a needle in a haystack. Thus, people were frustrated of web search. Link analysis ap-

peared in 1998 and saved the WWW. Later, Web search made a significant progress.

This, domino effect finally leads a discipline to find material and get an information

need from within large collections. This discipline is called web information retrieval

(web IR) (Langville and Meyer, 2011).

IR deals with retrieving of a piece of information from immense and complex sources

on the internet. In other words, there exists a database of documents such that

C = {D1, D2, ..., DN}, and the elements of it are ranked from the most relevant

to irrelevant with respect to the given query, Q. In IR, relevance denotes how well

a retrieved document or set of documents meets the information need of the user.

Moreover, ranking is one of the significant tasks for many applications in IR. To

score documents for ranking, retrieval function, s, is used such that s(Q, Di) ∈ R,

and it is also called similarity degree. In ranking, word order is important to get right

documents.

The search result ranking evaluation is done either by actual users’ datasets or by

developing and testing a system. To put it more explicitly, there are two major cat-

egories to challenge the ranking problems in IR: one is the traditional non-learning

approaches and the other one is the learning to rank approach (LETOR) (Li, Wu and

Burges, 2007). The main difference between the two approaches is that in learning

to rank, machine can automatically learn the parameters of the ranking function. In
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other words ranking parameters are learnt via the training dataset. On the other hand,

the traditional method usually determines the parameters heuristically. Moreover, it

has the disadvantage that if a user search a query in system A first, then s/he be-

comes familiar with the documents and do a bias search in system B. Thus, the

learning to rank approach is more appropriate especially in academic research (Zhai,

2008).

The contributions of this thesis work can be summarized as follows:

• To show that MARS and CMARS can be used as alternative to baseline models.

• To see how effective MARS and CMARS are on high-dimensional datasets.

• To see whether MARS and CMARS have effect on different sizes of a dataset.

In Chapter 2, a background information is given about three known IR model types;

traditional models, language Models (LMs) and system models (Ceri et al., 2013).

The ranking process of traditional models are based on a user decision. Boolean Mod-

els (BMs), Vector Space Models (VSMs) and classical Probabilistic Models (classical

PMs) are well-known traditional IR models. BMs provides precise match according

to the given query, Q (Allan, 2006). In VSMs, a similarity value is calculated for

each (D, Q) pair. Then, the documents are sorted by this value (Ceri et al., 2013). On

the other hand, classical PMs represent probability of relevance (Ceri et al., 2013).

Another common studies on traditional approach is language Models (LMs). The

LMs usually aim to generate a word sequence according to a given query. Thus, it

is widely used in linguistic research such as speech recognition, machine translation

(Li, 2014). There are two models in this category. One is N-gram models used for

word prediction and Query Likelihood Models (QLMs) for (D, Q) pairs (Chen et al.,

1998). The system models, also known as learning to rank models, aim to provide

a ranking model by teaching a machine. In IR, Support Vector Machine (SVM) and

Artificial Neural Network (ANN) are two widely known system models. In addition,

some related studies about learning to rank approaches are discussed in this chapter.

Chapter 3 describes the four methods used in this thesis. Two of them, SVM and

ANN are widely used models while the other two, Multivariate Adaptive Regression

Splines (MARS) and Conic MARS (CMARS), are novel methods in this field. SVM
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is the most frequent approach used in IR. Since SVM is a supervised learning tech-

nique, it is used for classification, ranking based on a training dataset of observations.

In this technique, given a set of instances belonging to two classes as Vectors in a di-

mensional space, an optimal hyperplane separating the two classes is found. Because

of this feature, SVM is an extremely efficient technique for supervised classification

due to their convergence properties and this makes the SVM applicable for ranking

(Joachims, 2002). In ANN model, the network of the model is 3-layered; queries

(Q), terms (T), documents (D). Q’s are connected to T’s to D’s asymmetrically and

these connections work only forward directions, feed-forward ANN. Ranking a set of

objects by an ANN model, that are sorted with respect to a given criterion, is based

on its relevancy measure. The main objective of an ANN model is to contribute an

ideal ranking document pool with respect to queries (Kwok, 1989). MARS and its

variant CMARS are considered in this study due to the success in modelling high-

dimensional large datasets. MARS model, developed by Friedman (1991), is formed

by basis functions (BFs) and to get the best model, two stages are applied to the

model. Those are the forward stage which shapes the BF pairs and the backward

stage which eliminates the terms with minimum effect. CMARS, on the other hand,

deals the process as an optimization problem and use Tikhonov regularization instead

of the backward stage (Weber et al., 2012). This chapter also defines the performance

measures in order to compare those four models and repeated measure ANOVA (RA-

NOVA) method to test if there exists a significant difference between these measures.

In Chapter 4, two datasets used in this thesis, Microsoft Bing Data and LETOR 4.0 are

introduced. Tools and its related packages that used to construct the models, are also

stated. Moreover, the experimental results for five folds of each datasets are discussed

in this chapter. The results indicates that MARS method outperforms the others while

ANN is the second best with respect to accuracy criterion. ANN, on the other hand,

is more stable and also has the most robust stability. Besides, all methods are almost

performing the same with respect to the robustness criterion. So, it can be concluded

that MARS and ANN are two prominent methods in learning to rank applications.

This thesis organized as follows: Part 2 provides a background information about IR

and three basic models used in IR. Part 3 provides a brief description about methods

used in this study. Part 4 gives information about datasets, tools used in this study

and the experimental results. Finally, the last part concludes the thesis.
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CHAPTER 2

BACKGROUND AND RELATED STUDIES

In this chapter, we explain basic IR models- traditional models, language models- as

background info (Ceri et al., 2013). In addition, we summarize similar works for the

system model that we are working on in the thesis.

2.1 Traditional Models (Actual Users’ Models)

There are three traditional IR models; Boolean, Vector Space, Probability. These

models provide the basics for query evaluation, the process that retrieves the relevant

documents, Di(i = 1, ..., N) from a document collection, C={D1, D2, ..., DN}, upon

a user’s query, Q. The three models represent documents and compute their relevance

to the user’s query in very different ways (Ceri et al., 2013).

2.1.1 Boolean Model

BM is the most basic model which provides exact matching. The fact that a query

must specify a Boolean condition is a must for this model. In other words, queries

must be Boolean expressions, involving {AND, OR, and NOT} of keywords. For a

given query, all the matched documents have the same degree but term satisfaction

may differ (Allan, 2006). Thus, in BM, ranking is not provided via calculated score.

Instead, it is obtained by users’ interest. An example is given as follows:

Suppose that there is a set of documents, Di, with some specific terms, Ti. The
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number of T’s that the documents includes is given Table 2.11.

Table2.1: Document - Query table of the BM example

nuclear nonproliferation treaty Iran
D1 0 0 0 0
D2 1 0 0 1
D3 0 0 1 0
D4 0 0 1 1
D5 1 1 0 0
D6 0 0 1 1
D7 1 0 1 0
D8 0 1 1 1

From the Table 2.1, we would like to retrieve best documents through the given query,

Q=(nuclear AND treaty) OR ((NOT treaty) AND (nonproliferation OR Iran)). The

solution set for each Boolean expression is as follows:

• (nuclear AND treaty)⇒ {D7}

• (NOT treaty)⇒ {D1, D2, D5}

• (nonproliferation OR Iran)⇒ {D2, D4, D5, D6, D8}

Thus, the algebra becomes Q= {D7} OR ({D1, D2, D5} AND {D2, D4, D5, D6,

D8}). After simplification, the retrieved documents are {D7, D5, D2}.

2.1.2 Vector Space Model

In the VSM, documents and queries are two terms in a high-dimensional space. It

is based on similarity degree. The output documents are ranked according to this

similarity value. VSM is more flexible than Boolean. The importance is reflected

by binary weights (w), that is 1 if the term occurs in the document and 0 if it does

not. Besides that, frequency has also an effective role; the more frequent terms in

1 Following example is retrieved from the website, http://www.ccs.neu.edu/home/jaa/CSG339.06F/Lectures/boolean.pdf
on August 8th, 2018.
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a document are more important. Therefore weights are usually calculated by using

tf-idf (term frequency- inverse document frequency) weighting. For this method,

three basic factors, "local frequency in a doc/query", "global frequency of term in

collection" and "document’s length", are essential.

Let fij be the frequency of the term Ti in the document Dj for a given query, Q. We

can normalize the term frequency (tf) through the whole body as given in Eq. (2.1).

tfij =
fij

max{fij}
. (2.1)

Let Dfi be the number of documents containing the term Ti and let idfi be the idf of

the term Ti as given in Eq. (2.2).

idfi = log(
N

Dfi
), (2.2)

where N is the number of documents. Finally, the typical weighting formula for the

document, Dj , is given in Eq. (2.3).

wij = tfij.idfi =
fij

max{fij}
.log(

N

dfi
). (2.3)

Note that the weight of the query, Q, is also computed by the same formula. Addition-

ally, the similarity degree between the documentDj and the query Q can be computed

as the vector inner product, sim( ~Dj , ~Q) = ~Dj • ~Q. However, the inner product mea-

sures how many terms are matched but not how many terms are not matched. The

cosine similarity, normalized by the length of the documents, Dj , and the length of

the query, Q, is a better option because cosine measures the angles between the two

vectors. It is calculated by Eq. (2.4) given below:

cosSim( ~Dj , ~Q) =
~Dj • ~Q
~|Dj| • ~|Q|

=

∑t
i=1wijwiq√∑t

i=1w
2
ij

∑t
i=1w

2
iq

. (2.4)

VSM has some positive aspects as well as negative ones (Ceri et al., 2013):

• It is simple

• It considers existence frequencies

• It is used for partial matching and ranking

• It allows efficient implementation
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• It is more flexible than Boolean

Its disadvantages are also itemized as follows:

• It is weak for semantic and synthetic information

• It has weak control on frequencies of two or more query

As an example, consider a very small collection, C, that consists of the following

three documents (Manning et al., 2008)2:

D1: “new york times”

D2: “new york post”

D3: “los angeles times”

For all documents, tf scores tables, calculated by Eq. (2.1), are given as follows:

Table2.2: Document - Query table of the VSM example

angeles los new post times york
D1 0 0 1 0 1 1
D2 0 0 1 1 0 1
D3 1 1 0 0 1 0

Total number of documents is N=3 and idf scores obtained from Eq. (2.2) are as

follows:
• angeles log(3/1) = 1.584 • post log(3/1) = 1.584

• los log(3/1) = 1.584 • times log(3/2) = 0.584

• new log(3/2) = 0.584 • york log(3/2) = 0.584

Now calculate the weights of ith terms in jth document, wij , by using the formula

given in Eq. (2.3). Results are indicated in Table 2.3.

2 Following example retrieved from http://www.site.uottawa.ca/~diana/csi4107/ on August 8th, 2018.
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Table2.3: The weights table of (D, Q) pair

angeles los new post times york
D1 0 0 0.584 0 0.584 0.584
D2 0 0 0.584 1.584 0 0.584
D3 1.584 1.584 0 0 0.584 0

For the following query, Q= “new new times”, we calculate the tf-idf vector, and

compute the score for each document in C relative to this query, using Eq. (2.4). The

weight of Q, calculated by using Eq. (2.3), is as follows:

Q 0 0 0.584 0 0.292 0

and lengths of documents and query are calculated as follows:

Length(D1) =
√

0.5842 + 0.5842 + 0.5842 = 1.011

Length(D2) =
√

0.5842 + 1.5842 + 0.5842 = 1.786

Length(D3) =
√

1.5842 + 1.5842 + 0.5842 = 2.316

Length(Q) =
√

0.5842 + 0.2922 = 0.652

Once the lengths are calculated, the cosine similarities are evaluated by using Eq.

(2.4). The results are as follows:

cosSim(D1, Q) = (0∗0+0∗0+0.584∗0.584+0∗0+0.584∗0.292+0.584∗0)
(1.011∗0.652) = 0.776

cosSim(D2, Q) = (0∗0+0∗0+0.584∗0.584+1.584∗0+0∗0.292+0.584∗0)
(1.786∗0.652) = 0.292

cosSim(D3, Q) = (1.584∗0+1.584∗0+0∗0.584+0∗0+0.584∗0.292+0∗0)
(2.316∗0.652) = 0.112

According to the similarity values, the ranks of the documents present as a result of

the query will be, D1, D2, D3.

2.1.3 Classical Probabilistic Models

Probabilistic models (PMs) attempt to represent the probability of relevance by com-

puting similarity coefficient between the query and the document (Ceri et. al, 2013).

To generate preliminary probability for ideal results, bootstrapping is an important

issue. Relevance feedback that is similarity degree, is important. It can improve the

ranking by giving better term probability estimates. Moreover, the Probability Rank-
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ing Principle (PRP) justifies ranks in descending order of probability of relevance.

Two well-known PMs are given below (Soboroff, 2001):

• Binary Independence PM: It is a classical PM. It has traditionally been used

with PRP. Binary relevance is assumed. Terms are independent of each other.

• Okapi (BM25) PM: It is a PM that incorporates term frequency. For modern

full-text search collections, a model should pay attention to term frequency and

document length. "BM" is for short catalogue, Okapi is more sensitive to these

quantities. It has been succesfully applied on TREC3 tasks.

Classical PMs have some difficulties; evidence is based on an unwell representation

and computing the term probabilities exactly according to the model is intractable.

Term probabilities (weights) are computed by using the idf. To construct a model by

this probabilities, two assumptions must be satisfied:

1. P (Ti|R), where R is the known relevant of Dj , is constant (usually 0.5)

2. P (Ti| R) is approximated by the distribution of term, Ti

The probabilistic model (weight) formula without similarity degree is as given in Eq.

(2.5).

wT = P (T |R) = log(
N − n+ 0.5

n+ 0.5
). (2.5)

Once similarity degree is got from the users, final model is constructed by Eq. (2.6).

wi = log(
(r + 0.5)(N −R− n+ r + 0.5)

(n− r + 0.5)(R− r + 0.5)
), (2.6)

where N is the total number of documents, R is "the known relevant", ni documents

containing term i, ri is relevant.

As an example, consider a collection C of documents with the following terms (Sobo-

roff, 2001)4:

3 For detail information about Text REtrieval Conference (TREC), please refer to the website https://trec.
nist.gov/

4 Following example retrieved from https://www.csee.umbc.edu/~ian/ on November 10th, 2015.

10

https://trec.nist.gov/
https://trec.nist.gov/
 https://www.csee.umbc.edu/~ian/


Table2.4: Document - Query table of the PM example

col day eat hot lot nin old pea por pot
D1 1 1 1 1
D2 1 1 1
D3 1 1 1
D4 1 1 1
D5 1 1
D6 1 1

The weights of Di obtained from Eq. (2.5) is given as follows:

wT 0.26 0.56 0.56 0.26 0.56 0.56 0.56 0.0 0.0 0.56

q1 = eat, q2 = porridge, q3 = hot porridge, q4 = eat nine day old porridge

For q3= hot porridge, weights are given below with known relevant, R=1:

Table2.5: Document - Query table of the PM example

col day eat hot lot nin old pea por pot
D1 1 1 1 1
D2 1 1 1
D3 1 1 1
D4 1 1 1
D5 1 1
D6 1 1

wT -0.33 0.0 0.0 -0.33 0.0 0.0 0.0 0.62 0.62 0.95

For known parameters that are N=6 and R=1, binary relevant value, r, for each term,

and number of documents containing term, n, are determined. Later, the weight are

calculated by using Eq. (2.6). The terms with positive weights are “pea”, “por”,

“pot” and the only D2 has all of them. Thus, the relevant document, D2 with positive

weights, is highlighted for q3.
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2.2 Language Models

Current language models (LMs) extend classical PMs by considering specific repre-

sentations of documents and queries. LMs aim to predict the next word (wd) or rank

of the document, D, related with given query, Q. Such models are vigorous for tasks

like speech recognition, spelling correction, and machine translation, where the prob-

ability of a term conditioned on surrounding context is needed. In this model, it is

assumed that the word sequence is generated by independent words (“bag of words”).

Thus, the word sequence distribution computed as a multiplication of each word’s

pdf. Parameters are estimated by maximum likelihood estimation (MLE). The proba-

bility of a sequence of words is equal to the product of the probability of each words.

The LM has significant relations to traditional tf-idf models (like VSM). Query like-

lihood retrieval models- scoring documents models- are the basic LM approaches.

The simplest models are N-gram models. Hidden Markov Model (HMM) is also

considered in today’s researches. In an HMM, the state is not directly visible, while

state-dependent output is visible. Each state is associated with an “initial” probability.

2.2.1 N-gram Models

The simplest form of the LM simply throws away all conditioning context and esti-

mates each term independently by their frequency in the collection (Li, 2014). Such

a model is called a unigram language model and the simple equation with "k" words

is represented in Eq. (2.7) as follows:

Puni(wd1wd2wd3wd4. . . wdk) = P (wd1)P (wd2)P (wd3)P (wd4). . . P (wdk). (2.7)

There are many more complex kinds of LMs, such as bigram language models which

condition on the previous term such that the formulation states as given in Eq. (2.8).

Pbi(wd1wd2wd3wd4. . . wdk) = P (wd1)P (wd2|wd1)P (wd3|wd2). . . P (wdk|wdk−1).
(2.8)
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2.2.2 Query Likelihood Models

QLM is the first generation of LMs in IR (Li, 2014). The basic idea is computing

the query likelihood score from estimated language model in order to give score a

document.

Let Q be a query, D be a document and θD be an estimated LM (e.g. multinomial

model, multiple Bernoulli model, multiple Poisson model) based on the document D.

The score of document D with respect to the query Q is then defined as the conditional

probability p(Q|θD). Estimating query model, θD, retrieval performance changes in

terms of the model chosen. In other words, different models have different retrieval

behaviour. Up to now, the most popular and the most successful model is the unigram

multinomial LM for θD. Yet, Bernoulli and Poisson models are other QLMs used

recently. These three models make different assumptions about the word frequencies.

The multinomial model assumes that existence of each word is independent, includ-

ing the multiple occurrences of the same word. The assumption of multiple Bernoulli

model is that different words occur independently. In the multiple Poisson model,

each word is modelled through an independent model with a flexibility in estimating

the parameters for different words in different ways. In comparison of those mod-

els, multiple Bernoulli model is weaker than the multinomial model in independency

statement. Additionally, the Poisson model has a positive aspect over Bernoulli in

capturing the term occurrences.

In multinomial model, since it is assumed that the word occurrences are independent,

θD have the same number of parameters as the number of words in our vocabulary

set, V. Let Q = q1. . . qm, the likelihood model would be as given in Eq. (2.9).

P (Q|θD) =
m∏
i=1

p(qi|θD) =
∏
wd∈V

p(wd|θD)c(wd,Q), (2.9)

where c(wd, Q) is the count of word, wd, in the query, Q.

In multiple Bernoulli model, for each word wdi, a binary random variable, X, is de-

fined, and the presence (Xi = 1) or absence (Xi = 0) of every word is assumed

to the independent of each other. That means, the number of parameters is equal to

the number of words in the vocabulary. Multiple Bernoulli model is able to devise

both presence and absence of words in the query. Thus, likelihood model would be
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as shown in Eq. (2.10).

P (Q|θD) =
∏
wdi∈Q

p(Xi = 1|θD)
∏

wdj∈Q

p(Xj = 0|θD). (2.10)

In multiple Poisson model, a Poisson random variable, Xi, is defined for every word,

wdi, and is modelled every frequency of wdi, independently. The multiple Poisson

model with λi - the mean rate of a Poisson process corresponding to Xi- also has

the same number of parameters as the number of words in our vocabulary. To build a

model for the counts of a word in the query, the query length, m, is taken as the length

of the time period. Hence, the query likelihood becomes as in Eq. (2.11).

P (Q|θD) =
∏
wdi∈V

e−λim(λim)c(wdi,Q)

c(wdi, Q)!
. (2.11)

To estimate θD, the MLE method is used under the assumption that D is a sample of

θD. After parameter estimation, the probability of the counts of a word in the query

is calculated as the score of the document.

2.3 System Models (Learning to Rank Models)

Another approach that is within the consideration of this study is learning to rank.

As Lim (2016) states occurring recently, a noticeable approach to solving the ranking

problem has appeared, called learning to rank, in which machine learning methods

are made use of learning predictive models that can generate satisfactory rankings.

Briefly stated, it is a machine learning approach in IR for ranking any material. Dis-

tinctive areas, where learning to rank approach is used, are document retrieval, expert

search, collaborative filtering, question answering, document outlining and machine

translation.

In learning to rank, datasets usually consist of pair of items such as query-document,

query-URL etc. The target in this technique is to teach machine so as to construct

ordering models. This order can be numerical score (e.g. 5 out of 10), ordinal score

(e.g. irrelevant-mostly relevant- relevant-perfectly relevant) or binary (e.g. relevant

or irrelevant). Model construction task is carried out as follows: First, the training

data including a set of features for documents with relevance judgement are formed.

Then a ranking model is constructed. In retrieval (i.e., testing) phase, given a new
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query, -we call it test data- the ranking model is used to create a ranked list for the

documents associated with the query. The process is visualized in Figure 2.1 (adapted

from Liu, 2009).

Figure 2.1: Learning to Rank process

In learning to rank, the studies are gathered around three approaches; pairwise ap-

proach, listwise approach and pointwise approach. This section introduces related

work in those three methods in learning to rank.

2.3.1 The pairwise approach

The pairwise approach shapes the learning task as classification of item pairs into

true and false rank. Learning to rank, particularly the pairwise approach, has been

successively applied to IR. For instance, Joachims (2002) applied Ranking SVM to

document retrieval. He developed a method for deriving document pairs for training

from clicks-through data of users. Cao et al. (2006) adapted Ranking SVM to doc-

ument retrieval by modifying the loss function. Furthermore, Burges et al. (2005)

applied RankNet to large scale web search by using ANN as model, and the gradi-

ent descent to optimize the cross-entropy loss. Cao et al. (2007) has used fidelity loss

function in parallel background of RankNet and constructed the FRank method.

Additionally, Freund et al. (2003) has developed RankBoost, constructed by expo-

nential loss function given initial distribution for document pairs. Unlike the common
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application in pairwise method, Cao et al. (2006) have focused query-level normal-

ization to the pairwise loss function to get rid of document pair distribution skewness.

In other words, they performed IR-SVM. As a result, major improvement has been

observed by using the query-level normalizer.

2.3.2 The listwise approach

The listwise method proposes ranking lists in both learning stage and prediction stage.

It has two significant branches. One is direct optimization of information retrieval

measures and the other one is listwise loss minimization. This is all to say that in

order to study listwise ranking, some needs to either try to optimize IR evaluation

measures or else something correlated to the measures, or make a loss function stated

permutations by considering the properties of ranking for IR and reduce to the small-

est possible degree.

At the optimization concept, Taylor et al. (2008) has soften (approximate) the eval-

uation measure so as to make it smooth and differentiable. First, they construct a

score distribution and map it to rank distribution. Later, they computed smooth and

differentiable expected Normalized Discounted Cumulative Gain (NDCG), and fi-

nally optimize it by the gradient descent method. The method is called SoftRank.

Moreover, Yue et al. (2007) use structural SVM context for optimization in their

study, called SVM-MAP. At first, they optimize a model by using just training data

constraint. Later, learning model constructed by optimization is engaged to catch vi-

olated constraints. In the meantime, most violated constraint is found. In order to

do that, task is carried out as follows: relevant and irrelevant documents are sorted

and rank is used to get optimal sort lists. When the documents are sorted by their

scores in descending order, the second term will be maximized. If the constraint got

by optimization model is more violated than the most violated constraint in the train-

ing set, it is added to the working set. Other studies at this concept are AdaRank

of Xu and Li (2007), which is developed by training weak learner with larger weight

from the initial distributions of each query and the RankGP model built by Yeh et al.

(2007) by using single-population GP to optimize non-smoothing non-differentiable

objectives.

At the minimization concept, listwise loss functions are defined depending on the in-
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terpretation of the distinctive ranking properties of IR. There are two representative

algorithms: ListNet and ListMLE. Cao et al. (2007) has studied the listwise ap-

proach in which lists of objects are used as instances in learning. Loss function is

created by Kullback–Leibler divergence (KL-divergence) between two permutation

probability distributions and the model is built by ANN through the gradient descent

algorithm. The study is called ListNet. However the complexity of algorithm is

high. Xia et al. (2008) has solved this limitation by computing the likelihood of

a ground truth permutation, and maximize it to learn the model parameter. Thus,

ListMLE algorithm has been constructed.

2.3.3 The pointwise approach

The pointwise approach has the following concept: a single document is viewed as

input in learning, and it describes its loss function based on individual documents. Li

et al. (2007) defined the ranking problem as a multiple classification, called McRank.

Later, they conducted another study on multiple ordinal classification, which brings

about computationally manageable learning algorithms for ranking in web search

with regard to relevancy. Wu et al. (2006) consider a standard quality measure in

IR, the discounted cumulative gain (DCG) criterion, in their study. The fact that per-

fect DCG scores and the DCG errors are bounded by classification errors make good

classification. As it can be seen that even though the models learned with all the ap-

proaches are evaluated by IR measures, the methods in those three approaches use

different loss functions.

Recently, LETOR method has been used in various fields. Li (2014) presents com-

prehensive explanations on learning for ranking on language process in his book.

Furthermore, Ibrahim and Murshed (2016) make a contribution to have a vast under-

standing of LETOR systems and its evolution from and relation to the traditional IR

methods. Bhowmik and Ghosh (2017) aggregate a set of expert opinion rank order

lists by studying on unsupervised rank aggregation problem and get a notable refine-

ment in performance on the subject of rank aggregation methods with the datasets,

MQ2008, MQ2007 and OHSUMED.

Dammak et al. (2015) proposed a new active learning to rank algorithm based on

boosting for active ranking functions. In order to test the algorithm, they choose
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three algorithms of boosting from the pairwise approach: RankBoost, AdaRank

and LambdaMART from the listwise approach. Later, those models are compared in

terms of the performance measures, Mean Average Precision (MAP) and Normalized

Discounted Cumulative Gain (NDCG), using the benchmark LETOR 4.0 dataset. For

more detail about those measures, please refer to "Active Learning to Rank Method

for Documents Retrieval" (Dammak et al., 2015).

Previous research on learning to rank is usually SVM and ANN. This study has

demonstrated two recently developed technique that have not been exercised in IR.

They are non-parametric models called MARS and CMARS. In this study, we con-

sider MARS as well as CMARS, an improved version of MARS, to implement learn-

ing to rank approach. Besides, their performances are compared with those of SVM

and ANN. For this thesis, we adopted pairwise approach for SVM and ANN tech-

niques to classify document pair and get the learning technique Since MARS is a

regression based algorithm, it can be categorized as pointwise approach. Detailed

information about these models is given in Chapter 3.
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CHAPTER 3

METHODS

In this chapter, we present the techniques that we use for learning to rank on web data.

The SVM and ANN are the techniques from the literature for comparison purposes.

MARS and CMARS are implemented for the first time in this thesis.

3.1 Support Vector Machine (SVM)

SVM is one of the most recurrent approach used in IR. It has proven applicable for

ranking and to solve certain ranking problems (via learning to rank), a variant algo-

rithm called Ranking SVM is adapted (Joachims, 2002). Detailed information about

this algorithm is given in Section 3.1.2. SVMs are supervised learning techniques.

Therefore, it is used for classification and ranking based on a training dataset of ob-

servations. In this technique, given a set of instances belonging to two classes as

vectors in a d-dimensional space, an optimal hyperplane separating the two classes

is found. SVM is an effective technique for supervised classification due to their

convergence properties.

3.1.1 Methods of SVM

There are two main SVM methods: linear SVM and non-linear SVM. Linearly sep-

arable set of instances of data points {xi = (x1, x2, .., xk)|xi ∈ X} related to labels,

yi=-1 or 1 (i.e. SVM model can assign either positive label y = +1 or negative la-

bel y = -1 to any x), express an optimal hyperplane by determining weight vectors,
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w. Constructing the SVM model is equivalent to solving the Quadratic Optimization

problem. The optimization for the maximum margin of hyperplane is obtained from

the constraint definition as given in Eq. (3.1).

minimize 〈~w, ~w〉+ γ

k∑
i=1

ξi

subject to yi(〈~w, xi〉+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, ..., k, (3.1)

where γ is a parameter to be tuned during training, b is optimized bias value and ξ is

the slack variable.

In many cases, observations of real-life datasets are not linear. Thus, association

of inputs are applied by using a non-linear mapping function such that φ : X → F,

where X represents input points space while F is the feature space. In addition to this,

hyperplane can be denoted as in Eq. (3.2).

f(x, α?, b?) =
∑
i∈SV

yiα
?
i 〈φ(xi).φ(x)〉+ b?, (3.2)

where α?i is an optimized value set of the ith point for misclassified xi. Note that the

inner product 〈φ(xi).φ(x)〉 is known as a kernel function, written K(xi,x).

3.1.2 Ranking SVMs

Joachims (2002) improved the ranking SVM algorithm, called RankNet, which is a

variant of SVM model proposed by Herbrich (1999). The algorithm rates exemplars,

instead of classifying them. Given a training dataset of observations where category

is annotated by users, M∗ and a document, di is preferred over another one, dj , i.e.

di > dj , {di, dj} ∈ M∗. When a linear learning function, f(d) = ~w.d is applied, the

followings holds:

di > dj ⇒ f(di) > f(dj)

f(di) > f(dj)⇔ ~w.di > ~w.dj ,
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and the vector can be gotten by the same SVM method given in Eq. (3.1).

minimize 〈~w, ~w〉+ γ
∑

i,j∈|M |

ξi,j

subject to ∀(di, dj) ∈M∗ : ~w.di ≥ ~w.dj + 1− ξi,j

∀i, j : ξi,j ≥ 0. (3.3)

Thus, the vector for the hyperplane, called ranking vectors, is obtained in a different

way from the ranking SVM generalization. That is to say, for ranking vectors, the data

is assumed as linear and vectors are points, closest to each other on the hyperplane.

However, generalization is realized by computing the weight, w, to make the distance

between these nearest points as large as possible.

3.2 Artificial Neural Network (ANN)

In the early years, many studies have been conducted to overcome the challenging

artificial intelligence (AI) problems such as IR. For this purpose, an approach that

imitates the structure and operations of the brain on machines to solve conventional

AI complications has been enquired. Since it is inspired by biological neural networks

(NN), it is called ANN or NN.

One of the first studies about NN approach to IR has carried out by Kwok (1989).

He aimed to develop an ANN model to supply an ideal ranking document pool with

respect to queries. The network of Kwok’s model is 3-layered; Queries (Q), Terms

(T), Documents (D). Queries are connected to terms to documents asymmetrically. In

addition, these connections work in two directions. A representation of Kwok’s NN

design is shown in Fig. 3.1.
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Figure 3.1: 3-Layer Network Connection for IR.

To develop neural information retrieval system, input layer (set of queries) is created

of N input neurons q1, ..., qN , and each neuron represents one character of a query. Set

of terms is considered as hidden layer with M neurons such that y1, ..., yM . Finally,

output layer (set of documents) is created by L neurons d1, ..., dL.

Let yj be in a sigmoid transition function such that:

yj =
1

1 + e−ϕyj
(3.4)

where ϕ is hidden layer based on the following formula:

ϕyj =
N∑
i=1

wijqi(t) + ϑyj , j = 1, ...,M (3.5)

3.2.1 Feed-forward Neural Networks

Feedforward NNs are the first invented type of ANN, and they are more basic than

their counterparts.

As it can be seen from Fig. 3.2 (McGonagle, 2018), the connections between units

proceed forward in the network, therefore there is no loop. They go through output

nodes from inputs in a one way (left to right or right to left).

As in this study, the feed-forward method is used for supervised learning. To put it

another way, the feedforward NN build a model/function with a set of independent

variables such that y ≈ f(x) for training pairs (x,y).
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Figure 3.2: A feedforward neural network example

3.2.2 SortNet

As stated in Section 2.1, ranking a set of objects, that are sorted with respect to a

given criterion, is based on its relevancy measure. On the other hand, in some cases,

such as personalized retrieval systems, different users have different relevance criteria

which may be undefined. Rigutini et al. (2011) present a learning to rank approach

called SortNet by using ANN application. SortNet is a study which aims to

get the most useful patterns form the training set. In order to improve the ranking

performance, a comparative ANN is used. A preference function is implemented as a

standard into a typical ranking algorithm for comparison. By this way, it provides an

overall ranking of a set of objects.

3.3 Multivariate Adaptive Regression Splines (MARS)

MARS, made known by Friedman (1991), is a technique to find a solution to regression-

type problems. Its goal is to estimate what will be the point of a dependent variable

from a group of independent variables. MARS algorithm is a methodology developed

by Friedman as a non-parametric method for multiple regression. It uses adaptively

selected spline functions. Due to the fact that MARS is adaptable, it is often used

in constructing model where functions represent high variation in one region of the
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predictor space and are smoother in other parts. In other words, MARS produces

continuous models for high-dimensional data that can have multiple partitions and

predictor variable interactions.

Due to the fact that MARS does not suppose or enforce any presumption, it is con-

sidered useful technique in DM. In addition to this, it does not take on or impose any

specific type or class of relationship such as logistic, linear etc., between predictor

and outcome data. As an alternative, suitable models (i.e., models that yield accurate

predictions) can be derived even in situations where the relationship between the pre-

dictors and the dependent variable is non-monotone and difficult to approximate with

parametric models. Thus, being a flexible regression model for high-dimensional

data, MARS has many positive aspects. As Nisbet et al. (2009) states, MARS is an

easy technique to apply classification problems due to the fact that it can handle mul-

tiple dependent variables. Furthermore, it is appropriate to use for modelling large

datasets. Another advantage of this fresh methodology is that MARS can cope with

categorical data as well as continuous data.

3.3.1 Theory of MARS

Let y be the target dependent variable and x = (x1, . . . , xz)
T be a multiple z input

vectors. Then, it is assumed the data are generated based on an unknown "true"

model. To get the response values, the model would be as in Eq. (3.6).

y = f(x) + ε, (3.6)

in which ε is the fitting error with zero mean and finite variance and f, represented by

a linear combination, is the MARS model built from basis functions (BFs) given in

Eq. (3.7).

ŷ = f̂(x) = c0 +
k∑
i=1

ciBi(x). (3.7)

MARS model formula is demonstrated as an approximation of recursive partitioning

regression in the shape of augmented set of BFs. ci is the coefficient of the BF that

is calculated cooperatively to get the best fit of data or the constant one (i = 0), and

Bi(x) is the BF with the two-sided truncated form that is piecewise linear function,
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and it is demonstrated as:

max(0, x− t) =

 x-t, if x>t

0, otherwise.
(3.8)

Figure 3.3: The basis functions of (x− t)+ and (t− x)+ by MARS

In Eq. (3.8), and Fig. 3.3 (Hastie, et al., 2009, Figure 9.9), parameter t is the knot

point of the BFs. Knot values define the "pieces" of the piecewise linear regression

as given in Eq. (3.9), and they are determined from the data.

c+(x; t) = [+(x− t)]+; c−(x; t) = [−(x− t)]+ (3.9)

By the algorithm, all knot values, all BFs and their combinations, i.e interactions, are

obtained from the observations. Due to the fact that algorithm determined a massive

amount of entity, it needs to be trimmed. The process is achieved by least square

estimation method (LSE).

3.3.2 Algorithm of MARS

Friedman (1991) states that the MARS method for estimating the "true model" con-

sists of forward and backward stepwise algorithms. In the forward part, MARS starts

with a model consisting of the mean of the response values as the intercept terms.

Then, it adds BF in pairs to the model. After every BF addition, it determines the

pair of BFs that gives the maximum reduction in the sum of squares residual error

(SSE). This process of adding terms continues until the change in SSE is too small to
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continue or until the pre-specified maximum number of terms is reached. Once the

forward process is done, the backward part runs. It is the phase where reduction is ap-

plied on the model. Thus, the model gets simpler. The backward pass removes terms

one by one, deleting the least effective term at each step until it finds the best sub-

model. Model subsets are compared using the generalized cross validation (GCV)

criterion

GCV =
1
m

∑m
j=1[yj − f̂(xj)]2

[1− Ẽ
m

]2
, (3.10)

where Ẽ is the effective number of parameters of m measurements in the model. The

model with the smallest GCV value is accepted to be the best fitted model. Here

note that GCV criterion provides a form of regularization by trading off the model

goodness-of-fit against its complexity.

The MARS method and its algorithm have also been proposed to cope with classi-

fication problems. Stone et al. (1997) developed a model called PolyMARS, and it

is intended to be used as a solution for classification problem, especially. It uses the

multiple logistic framework, and runs the model in a forward step phase like MARS.

However, unlike MARS, a quadratic approximation is utilized to search for the next

BF pair at each stage usage. Once reached, the model is fit by the MLE, and the

process is repeated.

3.4 Conic Multivariate Adaptive Regression Splines (CMARS)

As stated in Section 3.3, the MARS method is performed in two phases: forward and

backward steps. By these algorithms the method aims to achieve getting a good-fitted

simple model. In CMARS, an alternative to backward algorithm is adapted by Weber

et al. (2012). That is, a penalized residual sum of squares (PRSS) for MARS shown

in Eq. (3.11) is treated as a Tikhonov regularization problem, and carried on this

with continuous optimization technique, conic quadratic programming (CQP). The

process is as given in Eq. (3.11).

PRSS =
N∑
i=1

(yi − f(x̃i))2 +
Mmax∑
m=1

λm

2∑
|α|=1

∑
τ<s

c2m

∫
[Dα

τ,sBm(tm)]2dtm, (3.11)

for α = (α1, α2), α1, α2 ∈ {0, 1} and τ , s∈ Vm, where Vm is the independent vari-

ables associated with mth BF, Bm(tm). Furthermore, the integration part of the Eq.
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(3.11) (adapted from Weber et al., 2012) is represented in Eq. (3.12).

Dα
τ,sBm(tm) =

∂|α|Bm

∂α1tmτ ∂
α2tms

(tm). (3.12)

3.4.1 Tikhonov Regularization

Tikhonov Regularization (or Tikhonov-Phillips regularization) is a common way to

handle linear ill-posed problems. Regularization makes ill-posed problems stable

by providing accurate approximate solutions. The formulation is shown in the Eq.

(3.13) to construct the model that calculates the minimum-norm least squares (Kaipio,

2005).

minx∈X‖Tx− y‖γ2 + ρ‖x‖2X , (3.13)

where ρ > 0 is a given constant. In order to solve the problem given in Eq. (3.11),

PRSS is adapted to Tikhonov regularization problem, by Eq. (3.13) and describes as

in Eq. (3.14).

PRSS ≈ ‖y− B(d̃)c‖22 + λ‖Lc‖22 (3.14)

3.4.2 Conic Quadratic Optimization (CQP)

CQP, also known as second-order cone optimization, is a straightforward generaliza-

tion of linear optimization. Many convex sets can be modelled using conic quadratic

formulations. Here, Euclidean norm defined in Eq. (3.15) (MOSEK Modelling Cook-

book 3.0, 2018) is used:

‖x‖22 � t⇐⇒ (1/2, x, t) ∈ Qn+1. (3.15)

Finally, Weber et al. (2012) reformulated Eq. (3.14) as a CQP given in Eq. (3.16).

min
t,c

t,

subject to ‖y− B(d̃)c‖2 � t,

‖Lc‖2 �
√
M̃. (3.16)

Once the optimization problem given in Eq. (3.16) is solved by the optimization

software MOSEK, CMARS has risen as a new approach to MARS.
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3.5 Performance Measures

To evaluate the performance of an IR system, one needs to measure how far down the

ranked list of results are related to some or all of documents that a user needs. Several

numerical evaluation measures can be computed for each query. As a common prac-

tice in supervised learning, a confusion matrix is constructed in order to summarize

the accuracy performance of the model, as shown in Table 3.1.

Table3.1: Confusion Matrix

True Condition

Condition positive Condition negative

Predicted
condition

Predicted condition
positive

True Positive (TP) False Positive (FP)

Predicted condition
negative

False Negative (FN) True Negative (TN)

If the documents which are relevant are retrieved, they are called true positives (TP),

and those that are not retrieved are named false negatives (FN). On the other hand,

non-relevant documents which are retrieved are called false positives (FP), and those

not retrieved are called true negatives (TN).

Following is the list of measures that are used for comparing the performances of the

models developed in this study (Sokolova et al., 2009). The definition of the measures

in the IR framework and their formulas are presented below.

Precision. Precision (P) measures the ability to retrieve top-ranked documents that

are mostly relevant. In other words, it is a measure of how many selected items are

relevant (Ceri et al., 2010). It is calculated by using the set of retrieved document that

are relevant to a given complete set of document, i.e, true positive results, TP and the

set of false positives, FP, that are not relevant to documents. The formulation is as

given in Eq. (3.17).

P =
|TP |

|TP |+ |FP |
. (3.17)

In web search, high precision value is generally considered more essential. Thus, the

more the fraction in Eq. (3.17) gets close to 1, the better the ranking is.
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Recall (Sensitivity). Recall (Rc) measures the ability of the search to find all of the

relevant items in the search. That means, it is a measure of how many relevant items

are selected (Ceri et al., 2010). The difference from precision formula is that the

denominator is the summation of true positive results, TP, and false negative results,

FN, which is the set of documents that are related but not retrieved. The formula is

given in Eq. (3.18).

Rc =
|TP |

|TP |+ |FN |
. (3.18)

The advantage of having both precision and recall values is that one is more important

than the other in many circumstances.

F-measure. The more documents that are retrieved mean the more relevant docu-

ments which rises the recall measure. Conversely, precision value decreases because

results are weakened by non-relevant documents. Likewise, fewer documents cause

higher P and lower Rc value. Since both values are significant for a system, an effec-

tive measure, called F-score, may satisfy the need. It is defined as the harmonic mean

of P and Rc represented in Eq. (3.19).

F = 2× P ×Rc
P +Rc

. (3.19)

G-measure (Fowlkes–Mallows index). It is the geometric mean of P and RC. The

higher values indicates the greater similarity in document classification.

G =
√
P ×Rc. (3.20)

ROC. A graphical plot that illustrates the performance of a binary classifier system as

its discrimination threshold is varied.In ROC curve, the TP rate is plotted in function

of the FP rate for different cut-off points. Each point on the ROC curve represents

a TP rate/FP rate pair corresponding to a particular decision threshold. A test with

perfect discrimination has a ROC curve that passes through the upper left corner.

Therefore the closer the ROC curve is to the upper left corner, the higher the overall

accuracy of the test (Zweig and Campbell, 1993).

AUC. The area under the ROC curve (AUC) is the accuracy of the model. It is a
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statistics used in the model comparison. It is calculated by

AUC =

−∞∫
∞

TP (x)FP (x) dx, (3.21)

where TP is the true positive rate and FP is the false positive rate of the minimum

value, x, of the observations. It is related with the accuracy. A test with no better

accuracy than chance has an AUC of 0.5, a test with perfect accuracy has an AUC of

1.

Specificity. Specificity, also called TN rate, is the proportion of negative observations

that are correctly identified. Therefore, in specificity, the smaller measure gives better

solutions.

TNrate = specificity =
TP

TN + FP
. (3.22)

Youden’s J statistic (Informedness). It is a metric that evaluates performance in

classification. It gets value between -1 and -1. If J statistic is greater than zero, the

classification method works. Zero of J statistic means that the classification method

has a 50% chance to predict an instance with positive class correctly, and a 50%

chance to predict an instance with positive class incorrectly. The classification method

works perfectly if J statistic is 1 since its sensitivity is 1 and the specificity is also 1.

The J score is calculated by Eq. (3.23).

J = sensitivitiy + specificity − 1. (3.23)

Fall-out. It is the proportion of non-relevant documents that are retrieved. It can be

interpreted as the probability that a non-relevant document is retrieved by the query.

Thus, the small fall-out values denotes a better model. In binary classification, fall-out

is closely related to specificity as given in Eq. (3.24).

fall − out =
FP

TN + FP
. (3.24)

Accuracy. Accuracy is the measure of how well a binary classification test correctly

identifies or excludes a condition. It is the proportion of the true results. The formula

is given in Eq. (3.25).

ACC =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
, (3.25)
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In practice, if we have high accuracy then our has a good prediction performance.

Even though accuracy is a useful measure, the statement is valid only when you have

symmetric datasets where values of FP and FN are almost the same. Therefore, accu-

racy must be considered together with other parameters to evaluate the performance

of the model.

Stability. Stability compares the performance of a model in training (MTr) and test-

ing (MTe) data with respect to a measure M (Osei-Bryson, 2004). S value that is

closer to 1 indicates a more stable model. The formula is as given in Eq. (3.26).

S = min[
MT r

MT e
,
MT e

MT r
]. (3.26)

3.6 Repeated Measure ANOVA (RANOVA)

RANOVA is used for comparing three or more group means. Here, each group of data

must be picked from the same elements. It occurs within-subject variables. Similar to

the other ANOVA tests, the fundamental technique is a partitioning of the total sum

of squares, SS, into components related to the effects used in the model. In a repeated

measures design, the variability can be split into between-treatments variability and

within-treatments variability. The within-treatments variability SSw can be further

partitioned into between-subjects variability (individual differences), SSb and error,

SSerror In addition, RANOVA also uses F-statistic as test statistic. The calculation of

the F-statistic is as given in Eq. (3.27).

F =
MSsubject
MSerror

=
SScondition/(k− 1)

SSerror/(nς − 1)
, (3.27)

where k is number of conditions and nς is total number of cases. The SScondition

is calculated as between-groups variability, SSb, in an independent ANOVA, by Eq.

(3.28).

SScondition = SSb =
k∑
i−1

ni(x̄i − x̄)2. (3.28)

Since, with a repeated measure ANOVA, the same subjects in each group is used,

and the variability caused by the individual differences between subjects, SSsubjects,

is removed from the within-groups variability, SSw, the SSerror is calculated as given
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in Eq. (3.29).

SSsubject = k.
∑

(x̄i − x̄)2

SSw =
∑
1

(x̄i1 − x̄1)2 +
∑
2

(x̄i2 − x̄2)2 + ...+
∑
k

(x̄ik − x̄k)2

SSerror = SSw − SSsubject (3.29)

When the sum of squares are calculated from Eq. (3.28) and Eq. (3.29), the outcomes

are divided by their corresponding degrees of freedom as seen in Eq. (3.27) to get an

F-statistic.

Much the same as other ANOVA applications, in order for the test to be valid, some

assumptions need to be met. These assumptions are as follows:

Normality Like the other ANOVA tests, each level of the independent variable needs to

be distributed approximately normal. In order to check it, some Normality test,

such as Shapiro Wilk, can be applied.

Sphericity The variance differences between all related group combinations have to be

equal. To inspect this feature, the outcome of Mauchly’s test of Sphericity is

enough. For significant result, p-value must be greater than prespecificated α

value which is assumed to be 0.05 as default.

In the case of failure of the assumptions, for the Normality assumption, the non-

parametric Friedman test can be used instead. Moreover, the Mauchly’s test has an al-

ternative that is the p-value from the Greenhouse-Geisser correction row in the ‘Tests

of Within-Subjects Effects’ ANOVA table.

In this study, RANOVA is used for testing whether there exists any differences be-

tween related means of the performance measures that belong to five folds among

the four models. Thus, folds are treated as elements while models are predictors and

performance measures are dependent variables. When RANOVA gives a significant

result, we compare models in pairs to judge which of each model is preferred.
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CHAPTER 4

EXPERIMENTAL EVALUATION

In this section, datasets and tools that used in the experiments are introduced. Addi-

tionally, the results of experimental analysis are discussed.

4.1 Datasets

Datasets used in this study are extracted from LETOR website1. It includes various

datasets that are used for learning to rank approach. LETOR contains a benchmark

collection in order to facilitate research in learning to rank easier. The collections

are released by Microsoft Research Asia. Besides datasets, many information, docu-

ments, papers about learning to rank approach can be found in the website.

The website contains four datasets: Microsoft Learning to Rank dataset, Yahoo!

Learning to Rank Challenge dataset, LETOR 3.0 dataset and LETOR 4.0 dataset.

Two of these collections are used in this research. The first one is Microsoft Bing

Web Search (2015) data with 136-feature2, and the other one is called LETOR 4.0

(2015) data with 46-feature3. Each datasets have common specifications. These are:

• They hold in 5-folds for cross-validation approach.

• Observations are presented as in SVM light4 format.

• Each fold contains three subsets for learning:
1 http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx
2 Downloaded from http://research.microsoft.com/en-us/projects/mslr/
3 Download from http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx, released

in 2009
4 http://svmlight.joachims.org/
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– Training set: It is used to build learning model for ranking,

– Test set: It is used to measure the performance of models,

– Validation set: It is used to adjust the free parameters.

Furthermore, LETOR gives not only the collection but also describes how the doc-

ument corpora and query sets in LETOR are selected, and how the documents are

sampled. In addition, the method that the learning features and meta information are

extracted, and the way that the datasets are partitioned for comprehensive evaluation

can be found on the site. It shows how datasets can be used in different kinds of

research, and there exists many papers of those research.

Liu et al. (2010) also published a paper called "LETOR: A benchmark collection for

research on learning to rank for information retrieval" to give more details about the

datasets and their collection processes.

4.1.1 Microsoft Bing Data

This dataset is a collection of Bing data search results, in which queries and associated

URLs are represented by IDs. The dataset consists of feature vectors extracted from

query-URL pairs along with relevancy judgement.

1. The relevancy judgements are obtained from a retrieved labelling set of a com-

mercial web search engine (Microsoft Bing), which takes on five values from 0

(irrelevant) to 4 (perfectly relevant),

2. The features are mostly extracted by Microsoft researchers.

In the data files, each row corresponds to a query-URL pair. The first column is

relevance label of the pair, the second column is the query id, and the following

columns are the features. The larger value the relevance label has, the more relevant

the query-URL pair is. A query-URL pair is represented by a 136-dimensional feature

vector.

Each query-URL pair is represented by a 136-dimensional vector. The feature list of

Microsoft Learning to Rank Datasets is given in Appendix B.2. Below are sample

rows from the dataset:
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==============================

0 qid:1 1:3 2:0 3:2 4:2 . . . 135:0 136:0

4 qid:1 1:2 2:1 3:2 4:4 . . . 135:0 136:1

. . .

3 qid:4 1:3 2:3 3:0 4:0 . . . 135:0 136:0

==============================

The data is divided into five partitions with equal sizes, marked as S1, S2, S3, S4 and

S5 for 5-fold cross-validation. Folds are given in Table 4.1.

Table4.1: 5-fold cross validation table

Folds Training Set Testing Set Validation Set

1 S1, S2, S3 S4 S5
2 S2, S3, S4 S5 S1
3 S3, S4, S5 S1 S2
4 S4, S5, S1 S2 S3
5 S5, S1, S2 S3 S4

Sampling. R v.3.2.3 uses the PC memory for keeping all objects. This is a prob-

lem when the data gets bigger. To overcome this problem, representative samples

are taken from those datasets used in this study. By the package called “Balanced-

Sampling”, balanced and spatially balanced probability samples in multi-dimensional

spaces are selected with prescribed inclusion probabilities by using the cube method

(Brus, 2015). It is an efficient implementation method in sampling. In order to get

a fixed sample size, the inclusion probabilities, which are sum to a positive integer,

are chosen as a balancing variable. Table 4.2 gives the proportion of relevancy judge-

ments of both the population and the sample.
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Table4.2: Inclusion probability results

Relevancy Judgements

0 1 2 3 4

Data 0.52 0.32 0.13 0.02 0.01
Sample 0.51 0.35 0.13 0.01 1e-12

After applying these proportion, representative sample is obtained using the cube

sampling method. The proportion results are shown in Fig. 4.2.

Figure 4.1: An example for a representative sample obtained by the cube method

Note that sampling is only applied to Microsoft Bing Data. Because, in LETOR 4.0,

the data has fewer features than Microsoft Bing Data and its size is smaller; hence, R

v.3.2.3 can perform the analysis by using all of the data without sampling. In Section

4.3, Microsoft Bing Data results both with sampling and with the original data are

presented.
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4.1.2 LETOR 4.0

This dataset is extracted from Million Query Track and the Gov2 web page collection.

Queries are allied by documents. In this dataset, rows include observations in the form

of query-document pairs.

The first column is the relevance label of this pair. Labels vary from 0 (irrelevant)

to 2 (relevant). The second column is the query id of query-document pairs, and the

following columns are the features, and at the end of the row, comment about the pair

takes place, including id of the document. A query-document pair is denoted by a

46-dimensional feature vector. An extract from the data is given below:

================================================

2 qid:10032 1:0.056537 2:0.000000 . . . 45:0.000000 46:0.076923

2 qid:10032 1:0.060000 2:0.000000 . . . 45:0.33333 46:0.069273

. . .

0 qid:10032 1:0.279152 2:0.000000 . . . 45:0.250000 46:1.000000

=================================================

The features have been standardized into [0, 1]. According to LETOR benchmark

report written by Microsoft Asia group, normalization is done by using the following

formula in Eq. (4.1).

x̂ij,k =
xij,k − average1,. . . ,N i(xir,k)

maxr=1,...,N i(xir,k)
(4.1)

whereN i is the size of documents, dij related to ith query, qi, and x̂ij,k is the normalized

kth feature corresponding from xij,k variable of the document.

4.2 Tools

In this study, to evaluate a learning to rank model, a statistical programming tool, R

v.3.2.3 (2015-12-10) – "Wooden Christmas-Tree" –, is used. During analysis, many

packages are installed. These are listed in Appendix C.1. Furthermore, in order to

construct the CMARS model, MATLAB R2015a version is used. However, due to the

fact that the sizes of datasets used in this study are big, that are ∼3.7G for Microsoft
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Bing Dataset and ∼15M for LETOR 4.0 Dataset, Paralell Computing Toolbox5 is

used in order to construct CMARS models. The toolbox carries out many calcu-

lations simultaneously by splitting large sets into smaller ones, then solves them at

the same time. Optimization is handled through using MOSEK v.8.0.0.52 Toolbox6.

Moreover, for RANOVA, IBM SPSS Statistics 23.0, is used. To carry out the RA-

NOVA, "Analyse→ General Linear Model→ Repeated Measures" path is utilized.

Then, default configurations are applied7.

4.3 Experiments

In the experiments conducted on Microsoft Bing Data sample and LETOR 4.0, the

ANN, SVM, MARS and CMARS ranking models are developed by using the training

data from each fold. Besides, in order to compare how models are affected as sample

size grows, the whole Microsoft Bing Data is also analyzed. Associated validation

datasets are utilized where necessary to fine tune hyper-parameters. Then, perfor-

mances of the developed models are evaluated using the test dataset with respect to

the performance measures.

Note that LETOR 4.0 and Microsoft Bing Data Sample experiments in the study

are carried out on Samsung Ultrabook with 4.00 GB RAM, 64-bit operating system,

quad-core processor using the open source statistical software R (2005). The original

Microsoft Bing Data, on the other hand, is run on the MSI Computer with 8.00 GB

RAM, 64-bit operating system, intel core i5.

ANN models are constructed by using the nnet package in R v.3.2.3 (Ripley, 2014).

For this purpose, feed-forward networks with a single hidden layer is utilized. Since

the response of interest is a factor, an appropriate classification network, which has

one output and entropy fit and a conditional MLE is constructed. For developing

the SVM ranking models, the RSofia package is installed to R program (King et al.,

2015). The package is used for adjustment of a sofia-ml, which is a fast incremental

algorithm for machine learning that can be used for training models for classification

5 Free trial of the toolbox is downloaded from the website, https://www.mathworks.com/campaigns/
products/trials.html?prodcode=DM on September 8th, 2016

6 Downloaded from the website, https://www.mosek.com/resources/downloads on September 4th, 2016
7 Free trial of the software is downloaded from the website, https://www-01.ibm.com/support/docview.wss?

uid=swg24038592
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or ranking. On the other side, MARS ranking models are constructed by using the

earth package developed by Milborrow (2009). Since the response variable is ordi-

nal categorical, the function treats factors with three or more levels in the response

as multiple responses. Thus, for every relevancy judgement in both datasets, there

are five models with the same basis functions with different coefficients. Minimum

GCV value has been reached at different degree of interaction for each fold. Math-

Works R2017a v.9.2.0.538062 performs CMARS, and MOSEK Optimization Tool-

box is used to construct the model.

Note here that since datasets are in SVM light format, they should be turned into a com-

mon data frame format. For that purpose, datasets are red by using read.svm()

function in RSofia and then exported as a regular data format to ".txt" document.

Moreover, to conduct a model for categorical data, the dependent variable is identi-

fied as factor by using as.factor() function while the dataset is imported to R

v.3.2.3. Finally, model analysis is established via those data.

4.3.1 Microsoft Bing Data

4.3.1.1 Models

ANN models for all folds are built by using the maximum conditional likelihood fit-

ting and SVM models have pegasos learner type which is an application of a stochas-

tic sub-gradient method for SVM (Shalev-Shwartz et al. 2010). The only different

configuration is done for building MARS and CMARS models due to the need for

finding the smallest GCV criterion.

Initially, the models are computed on the sample data. All folds, except the 2nd one,

have the minimum GCV at 6th degree. In Fold 2, it is resulted in at 4th degree. How-

ever, even though Fold 1, Fold 3, Fold 4, and Fold 5 are modelled with same degree

of interaction, the maximum number of terms created by the forward pass is different.

The maximum term number for Fold 1 and Fold 4 is 200; where as it is 300 for the

others.

The MARS models built based on the training datasets are resulted in different num-

bers of BFs:
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• Fold 1 has 177 terms with 56 features

• Fold 2 has 49 basis functions, and 20 of 136 predictors

• Fold 3 chooses 174 terms generated from 58 dependent variables

• Fold 4 selects 100 functions with 39 features by backward pass

• Fold 5 is modelled by 236 terms constructed 74 predictors out of 136.

On the other hand, for the original data, when the size of dataset grows, MARS mod-

els become more stable. All folds get the minimum GCV in 2nd degree of interaction

with 100 term number. The BFs are resulted as follows:

• Fold 1 has 25 terms with 10 features

• Fold 2 has 31 basis functions, and 13 of 136 predictors

• Fold 3 chooses 31 terms generated from 14 dependent variables

• Fold 4 selects 25 functions with 11 features by backward pass

• Fold 5 is modelled by 21 terms constructed 9 predictors out of 136.

4.3.1.2 Performance Measures

Performances of the models developed for 5-fold by using Eq. (3.17) - Eq. (3.25) are

presented in Table A.1 for the sample data and in Table A.2 for the original data.

Results indicate that MARS model performance is better than CMARS and SVM

even though MARS and ANN have close measures in testing data. Moreover, while

the Recall and F-measure of MARS are more stable, AUC shows a better stability in

the ANN model.

In addition, ROC curves are plotted in order to illustrate the performance of a binary

classifier system as its discrimination threshold is varied. Here, the 0 and 1 relevance

judgements are classified as irrelevant while the rest are classified as relevant. Results

shows that the MARS and ANN models are more accurate models than the SVM and

CMARS models. The figures that show all four models’ ROC curves for each folds
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of the sample data and the original data are given below in Fig. 4.2 - Fig. 4.9, respec-

tively.

For the sample data, Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5 represent the ROC

Curves for MARS, ANN, SVM, and CMARS for five folds constructed from Mi-

crosoft Bing Data sample training (right) and test (left) datasets, respectively.

Figure 4.2: MARS Model for Sample Microsoft Bing Data

Figure 4.3: ANN Model for Sample Microsoft Bing Data
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Figure 4.4: SVM Model for Sample Microsoft Bing Data

Figure 4.5: CMARS Model for Sample Microsoft Bing Data
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For the original data, Fig. 4.6 - Fig. 4.9 represent the ROC Curves for MARS (1st

row), ANN (2nd row), SVM (3rd row)and CMARS (4th) for five folds constructed

from Microsoft Bing Data training (right) and test (left) datasets.

Figure 4.6: MARS Model for Microsoft Bing Data

Figure 4.7: ANN Model for Microsoft Bing Data
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Figure 4.8: SVM Model for Microsoft Bing Data

Figure 4.9: CMARS Model for Microsoft Bing Data
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4.3.1.3 Repeated measures ANOVA

In order to test if there are statistically significant difference between the compared

methods, repeated analysis of variance (RANOVA), described in Section 3.6 is per-

formed for each measures with the following hypotheses:

H0 : µANN = µSVM = µMARS = µCMARS

vs.

H1 : At least one is different.

After the assumptions are satisfied, the means of performance measures are computed

by SPSS. The results are in Table 4.3 and in Table 4.4 for the original data while Table

4.5 and Table 4.6 show the outcomes for the sample data. Note here that RANOVA

is applied on training and testing datasets as well as stabilities separately; p-values

of significant test results are indicated within the parentheses while the greater mean

results are indicated by "*". The best performances without p-value mean that test

outcome is not significant. The original data outcomes are as follows:

• For training dataset:

– ANN performs better with respect to Rc, f-measure and g-measure

– MARS performs better with respect to P, accuracy, AUC and J

– MARS model gives more accurate result in both training and testing datasets

– SVM and CMARS are better only with respect to fall-out and specificity,

respectively

– ANN and MARS methods are more robust than the others with respect to

standard deviations of the measures

• For testing dataset:

– MARS outperforms with respect to the most of the performance measures

(six out of nine measures).

– SVM performs better with respect to P and fall-out

45



– MARS and CMARS seem to be more robust methods than the baseline

methods, SVM and ANN, according to the standard deviation of five mea-

sure out of nine ones.

• For stability:

– MARS model has the most stable measures with respect to means and the

standard deviations

– CMARS is more stable than ANN and SVM regarding means of P, f-

measure and accuracy

– The standard deviations of P, f-measure, g-measure and J, calculated for

ANN model, are more stable than the MARS model and the SVM model.

The outcomes of the sample data is given as follows:

• For training dataset:

– SVM gives better result with respect to f-measure, g-measure and accu-

racy

– CMARS is better than the other models considering P, specificity and

AUC

– MARS is only better with respect to J measure

– ANN is the most robust method with respect to the standard deviations of

the most of the performance measures (six out of nine ones)

– CMARS is more robust than the MARS model and the SVM model re-

garding the standard deviations of specificity, AUC and fall-out.

• For testing dataset:

– ANN outperforms according to four performance measures out of nine

ones.

– CMARS is better considering specificity, AUC and J

– SVM and MARS perform better only for accuracy and P, respectively

– ANN is the most stable model because five measures out of nine ones of

it have minimum standard deviations.
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– SVM shows robustness for only P measure.

• For stability:

– ANN and CMARS models are more stable than SVM model and MARS

model

– SVM model is more stable than the other models with respect to the stan-

dard deviations of performance measures.

– MARS is second better model with respect to the standard deviations.
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4.3.1.4 Repeated measures ANOVA for size effect

Due to the fact that the Microsoft Bing Data has been studied for different size in this

thesis, we analyze if there exist a size effect on the performance measures of those

four methods. The null hypothesis is as follows:

H0 : µoriginal = µsample

vs.

H1 : µoriginal 6= µsample

The analysis indicates that the 5% level of significance, the null hypothesis is failed

to reject with p-value 0.3. That means, there is no difference between original dataset

and sample dataset. Therefore, the size of the dataset has no effect on the performance

measure analysis.

4.3.2 LETOR 4.0

4.3.2.1 Models

In this data analysis, ANN and SVM models are constructed by using the same con-

figurations with Microsoft Bing Data (original data). In other words, an SVM model

with primal estimated sub-gradient solver (pegasos) and ANN by the maximum like-

lihood fitting are constructed.

MARS model, on the other hand, shows a different characteristics than the other

dataset. All folds have six degree of interaction and 200 forward pass terms when

they reach the lowest GCV. However, as for Microsoft Bing Data, models are com-

puted with different number of BFs consisting of different features.

• Fold 1 has 133 terms and 34 features.

• Fold 2 has 114 BFs constructed by using 31 predictors out of 46.

• Fold 3 picks 113 terms with 33 independent variables.

• Fold 4 selects 134 functions with 36 features by backward pass.
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• Fold 5 is modelled by the largest BF number which contains 163 terms and 33

of 46 predictors.

4.3.2.2 Performance Measures

Evaluated measures for both training and testing data of 5-fold and their stabilities

are given in the Table A.3. Table A.3 states the following results:

• In fold 1, training dataset comparison states that the MARS model has the high-

est precision score. In order words, the MARS model has the highest number

of correctly predicted positive elements with respect to the total predicted pos-

itive observations. Besides, the model is 83% and 81% accurate for ANN and

SVM, respectively. G-measure which is higher for the MARS model indicates

a greater similarity between the partitions. However, the fact that having J score

closer to 0 makes the ANN a weak model. On the other hand, SVM has a higher

J value. In the ranking of positive test score, MARS model and CMARS model

takes third and second places. As for the evaluation on test datasets, MARS

again has the highest positive prediction score. However, when the other mea-

surements are considered, the MARS model turns out to be the second while

ANN model gets better behaviour.

• SVM and CMARS again perform worse than the other two techniques.

• MARS model’s accuracy is also 83% for the datasets that belong to Fold 2, and

Fold 3.

• Training data performances show that MARS has better prediction performance

than the other models according to the other performance measures.

• Unlike first three folds of datasets, the MARS model has the best scores within

all measures except recall and fall-out in last two datasets.

Therefore, it can be concluded that the MARS model suits well to this datasets. More-

over, ROC curves of MARS (1st row), ANN (2nd row), SVM (3rd row) and CMARS

(4th) constructed from LETOR 4.0 training data (right) and test data (left) are given

in Fig. 4.10, Fig. 4.11, Fig. 4.12, and Fig. 4.13.
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Figure 4.10: MARS Model for LETOR 4.0 Data

Figure 4.11: ANN Model for LETOR 4.0 Data
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Figure 4.12: SVM Model for LETOR 4.0 Data

Figure 4.13: CMARS Model for LETOR 4.0 Data
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4.3.2.3 Repeated measures ANOVA

For those models with several measures, RANOVA is applied again to test the fol-

lowing hypothesis:

H0 : µANN = µSVM = µMARS = µCMARS

vs.

H1 : At least one is different

Means of the performance measures used for RANOVA test are given in Table 4.7.

The outcome of the tests is as follows:

• For training dataset:

– MARS outperforms with respect to four performance measures out of nine

– ANN is better according to g-measure and AUC

– SVM is better considering Rc and fall-out

– CMARS is only better with respect to specificity

– ANN, MARS and SVM are the robust models with respect to the standard

deviations

• For testing dataset:

– ANN outperforms according to five performance measures out of nine.

– MARS is better considering precision, P and J score

– SVM and CMARS perform better only for fall-out and specificity, respec-

tively

– ANN, MARS and SVM are the robust models with respect to the standard

deviations.

• For stability:

– ANN and SVM are more stable than novel methods regarding the perfor-

mance measures.
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– SVM model is the most stable than the other models with respect to the

standard deviations of performance measures.
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CHAPTER 5

CONCLUSION

With the usage of WWW, IR has got a great significance in computer science. Rank-

ing is one of the imported problems in this field. Building a model for ranking can

be considered in three categories, which are traditional models, LMs, and the system

models. The traditional models usually are applications of heuristics, learning from

practical experience. In other respects, the LMs are studied for specific representa-

tion such as speech recognition, machine translation. The last category, on the other

hand, aims to build machine learning models to get “true” rank. In this study, widely

known models of the third category, namely ANN and SVM, are compared to two

new approach, MARS and CMARS.

The objective of this thesis work is to investigate how MARS and CMARS models

are adequate on learning to rank problem under IR and how it is affected by different

sizes of data. The abovementioned models are applied two different large datasets,

Bing Data and LETOR 4.0. The first argument that is whether MARS and CMARS

model can fit for ranking in IR is discussed by evaluating the performance measures

on the aforementioned datasets. In order to analyze the effect of the data set on the

ranking models, we compared the performances for the original Microsoft Bing Data

and the sample extracted from it. A balanced sample from Bing data is selected with

prescribed inclusion probabilities.

Both datasets, Microsoft Bing Data and LETOR 4.0, have five different folds in which

training dataset and testing dataset are included. In addition, four models of each

dataset, which belongs to those collections and Microsoft Bing sample, are studied in

this thesis. In other words, totally 120 models are built. What’s more, nine perfor-

mance measures, described in Chapter 3 are calculated for those models, please refer
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to Table A.1, Table A.2 and Table A.3 for the results.

Once all models are created and their performance measures are calculated, RANOVA

are applied to test if there exists a significant difference between models with respect

to performance measures.

Results of both collections show that although performance scores are close to each

other, the MARS model has better behaviour. It gives highly promising results for

prediction. However, AUC and ROC curves present a better performance for ANN

models. Another striking point is that the SVM model has the highest recall and fall-

out scores in all folds. Specificity score is the highest for the CMARS model. Yet,

the score has negative aspect, it can be said that among all comparisons, CMARS

may not give the expected performance in this study. The backward stage eliminates

few basis functions in MARS models. For this reason, the CMARS model may be

over-fitted and not perform as the MARS does. Furthermore, analyses of repeated

measures states that in Microsoft Bing Data, both µANN has significant difference

among others regarding many measures while in LETOR 4.0, the MARS model gives

outstanding results with its mean value, µMARS .

In conclusion, the MARS model has been shown an effective result in ranking ap-

proach. The system performs promisingly on both Microsoft Bing and LETOR 4.0

data. Even though give different performance on differently sized retrieval sets, size

does not affect on performances of models. Yet, it can be said that MARS can be used

in many field of IR. Conversely, CMARS performance is overcome by the others, es-

pecially MARS. The fact that backward pass may have strong effect on CMARS in IR

analysis could be the explanation for this. However, a different regularization method

may be used as a potential method. Besides, the pace of learning should also be in-

vestigated by modelling different rank-learning techniques. In other respects, another

study to increase the speed of learning should also be investigated.
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APPENDIX A

PERFORMANCE MEASURE TABLES

The performance measure tables of Microsoft Bing Data (sample data and original

data) are given in App. A.1 and the performance measure table of LETOR 4.0 is

given in App. A.2, respectively:

A.1 Microsoft Bing Data
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APPENDIX B

FEATURE TABLES FOR DATASETS

B.1 LETOR 4.0

TableB.1: Feature List of LETOR 4.0 Learning to Rank

Datasets

feature id feature description

1 TF of body

2 TF of anchor

3 TF of title

4 TF of URL

5 TF of whole document

6 IDF of body

7 IDF of anchor

8 IDF of title

9 IDF of URL

10 IDF of whole document

11 TF*IDF of body

12 TF*IDF of anchor

13 TF*IDF of title

14 TF*IDF of URL

15 TF*IDF of whole document

16 DL of body

17 DL of anchor

83



Table B.1 continued from previous page

feature id feature description

18 DL of title

19 DL of URL

20 DL of whole document

21 BM25 of body

22 BM25 of anchor

23 BM25 of title

24 BM25 of URL

25 BM25 of whole document

26 LMIR.ABS of body

27 LMIR.ABS of anchor

28 LMIR.ABS of title

29 LMIR.ABS of URL

30 LMIR.ABS of whole document

31 LMIR.DIR of body

32 LMIR.DIR of anchor

33 LMIR.DIR of title

34 LMIR.DIR of URL

35 LMIR.DIR of whole document

36 LMIR.JM of body

37 LMIR.JM of anchor

38 LMIR.JM of title

39 LMIR.JM of URL

40 LMIR.JM of whole document

41 PageRank

42 inlink number

43 outlink number

44 number of slash in URL

45 length of URL

46 number of child page
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B.2 Microsoft Bing
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APPENDIX C

[R] PACKAGES

C.1 R Libraries

The packages that are used during analysis are given as follows:

• BalancedSampling: To get representative sample from datasets. Retrieved

from https://cran.r-project.org/web/packages/BalancedSampling/index.html

• nnet: To get feedforward neural network (NN) model. Retrieved from https:

//cran.r-project.org/web/packages/nnet/index.html

• ROSE: To calculate performance measures for comparison. Retrieved from

https://cran.r-project.org/web/packages/ROSE/index.html

• earth: To get multivariate adaptive regression splines (MARS) model. Re-

trieved from https://cran.r-project.org/web/packages/earth/index.html

• RSofia: To get support vector machine (SVM) model. Retrieved from https:

//cran.r-project.org/web/packages/RSofia/index.html

• data.table: To have common data frame for sampling. Retrieved from

https://cran.r-project.org/web/packages/data.table/index.html

• xlsx: To write data in xlsx format.Retrieved from https://cran.r-project.org/

web/packages/xlsx/index.html Note that Java must be the updated on your PC.
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