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ABSTRACT 

 

 

A MODEL BASED APPROACH FOR AIRCRAFT SENSOR FAULT 

DETECTION 

 

 

Serçekman, Ömür 

M.S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Ali Turker Kutay 

 

September 2018, 111 Pages 

 

 

 

This thesis presents a reformative approach to a model-based fault detection and 

diagnosis (FDD) method that improves the capability of aircraft flight control systems 

and acquires low complexity and computational requirements. The main objective of 

the FDD techniques that are extensively applied in industrial systems is to increase the 

sensitivity of fault detection scheme with respect to additional noise, uncertainty or 

disturbances.  

 

The designed fault detection model is integrated to a civil aircraft model of Boeing 

747. The developed system mainly consists of a nonlinear closed-loop aircraft model 

to verify the effectiveness of sensor fault detection technique, an observer to estimate 

states of the aircraft during steady state flight, a fault indicator to propagate faulty 

responses to the system and a reconfigurator to identify flight condition if it is faulty 

or fault-free by comparing the states which are achieved from sensors in real-time. 

Fault detection is accomplished by using mainly a Kalman filter as a linear observer 

design.  
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The scheme presented based on Kalman filter decreases the effect of model uncertainty 

extensions, constitutes a residual sensitive to stuck faults and maintains a reliable fault 

detection approach incorporating the rejection of false alarm that is required for system 

reliability. The monitoring progression of the state estimation permits to observe any 

off-nominal system attitude and detects faults. The developed method is a viable 

solution for earlier detection of sensor stuck to lower threshold amplitude under multi-

simulation tests performed in MATLAB Simulink. 

 

 

 

Keywords: electronic flight control systems, sensor fault detection, state estimation, 

kalman filter, state-space models 
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ÖZ 

 

 

UÇAK SENSOR HATA TESPİTLERİNE YÖNELİK MODEL TABANLI 

YAKLAŞIM 

 

 

Serçekman, Ömür 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Asst. Prof. Dr. Ali Türker Kutay 

 

Eylül 2018, 111 Sayfa 

 

 

 

Bu tez, uçağın uçuş kontrol sistemleri yeteneğini geliştirerek ve düşük karmaşıklıkta 

sayısal gereksinimler elde ederek model tabanlı hata algılama ve tanılama çözümlerine 

düzeltici bir yaklaşım sunmaktadır. Geniş ölçüde endüstriyel sistemlere uygulanan 

model tabanlı hata algılama ve tanılama tekniklerinin başlıca amacı, gürültü, 

belirsizlik ya da bozulmalara göre hata algılama taslağının hassasiyetini arttırmaktır.  

 

Tasarlanan hata algılama modeli bir Boeing 747 yolcu uçağı modeline entegre 

edilmiştir. Geliştirilen sistem alt sistemler bakımından temel olarak, sensör hata 

algılama tekniğinin etkinliğini doğrulamak için nonlineer kapalı döngü uçak 

modelinden, düz uçuş modunda uçağın durumlarını tahmin etmek için gözlemciden, 

sisteme hatalı cevapları geçirmek için hata göstericiden ve gerçek zamanlı olarak 

sensörden edinilen uçuş durumlarını karşılaştırarak hatalı ya da hatasız olduğunu 

tanımlamak için yeniden derleyiciden oluşmaktadır. Başlıca lineer gözlemci olarak 

Kalman filtre tasarımı kullanılarak hata algılaması başarıyla tamamlanmıştır.  
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Kalman filtresi taslağı model belirsizliği yayılmalarını azaltarak ani hatalara karşı 

hassas rezidüel meydana getirmekte ve sistem güvenilirliği için gerekli olan hata 

uyarısı reddini birleştirerek güvenilir hata algılaması yaklaşımını sürdürmektedir. 

Durum tahmininin görüntüleme devamlılığı nominal olmayan sistem davranışının 

gözlemlenmesine ve hatanın algılanmasına izin vermektedir. Geliştirilen metot, 

MATLAB Simulink’te yürütülen çoklu senaryo testlerine göre eşik değeri 

büyüklüğünü düşürerek daha erken kontrol yüzeyi sıkışması algılanması için 

uygulanabilir bir çözümdür. 

 

 

 

Anahtar Kelimeler: elektronik uçuş kontrol sistemleri, sensör hata tespiti, durum 

tahmincisi, kalman filtresi, durum uzayı modelleri 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 Background and Motivation 

 

The aviation industry generates new and high-tech solutions which presents use of a 

smarter and more sustainable aircraft in the near future. The most important factor that 

affects flight sustainability is the weight load that aircraft exposed. For increasing the 

stability of the aircraft and minimizing the structural loads, it is aimed to improve the 

capability of the electronic flight control systems (EFCS). Aircraft design optimization 

has been developed to maximize the fault detection capabilities and restrict the flight 

control system failures. Detecting such failures in an earlier stage of occurrence has an 

undeniable advantage limiting the unstable condition and raising the flight 

performance. To accommodate a realistic resolution to diminish the overall weight 

problem, several techniques are developed via the revolution of the EFCS which 

replace the functions of the old fashioned mechanical interfaces from the pilot input to 

the related actuators of the control surfaces. After redundant loads are reduced in the 

aircraft, some improvements are provided in certain outputs such as the amount of fuel, 

noise, range etc. Industrial practices are run with redundancy-based techniques so that 

reliable results are acquired. Recent model-based diagnosis approaches are considered 

to be an appealing research field. [1] 

 

EFCS is a reputed system implementation to control the movement of the airplane and 

a momentous part to supply both of the flight performance and safety of the airplane. 

When the sensors that measure the attitude, speed, altitude etc. are imposed due to the 

faults, the influenced signals transmitted from those sensors can impact both the flying 

and processing properties of the airplane. However, EFCS are expected to process 
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regularly even in such faulty conditions. 

 

The motivation why Kalman filter is used particularly for state estimation of a civil 

aircraft in this study is because, it is considered to be one of the most optimum observer 

when noise effects that are received from sensor and model are Gaussian. Kalman filter 

also exposes an adaptive approach in relation to the estimation theory. 

 

There are many similar research and studies that are revealed in the scope of 

longitudinal stability of the several types of aircrafts in the literature. On the other 

hand, surveys which focus on lateral stability take part on the sources lesser. 

Considering this differentiation, it is aimed to make contribution to lateral stability of 

a civil aircraft as a coverage of this paper. 

 

 Objective 

 

In state estimation problems, the convenient measured data is utilized by means of 

prior knowledge of the physical event and the measurement equipments to generate 

estimates of the requested dynamic variables respectively. The aim is achieved in such 

a way that the error is diminished statistically. Those problems handle with the 

association of the model estimation and the measurements to provide more proper 

estimates of the system variables. [2] 

 

State estimation issues are resolved with the Bayesian filters. According to this 

approach, an effort is managed to use the entire convenient data to decrease the 

proportion of uncertainty available in an apparently or decision-making issue. As 

incoming data is acquired, it is incorporated with former data to generate the principal 

for statistical processes. [3] 
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Kalman filter is a popular filtering methodology in linear systems with Gaussian 

noises. Expansions of Kalman filter were improved for lesser restricting conditions by 

applying linearization methods. Kalman filters can be a very constructive solution for 

applications to the complex systems with Gaussian noises among the entire techniques. 

[4] 

 

In this study, Kalman filter is applied for estimating lateral states of the model of 

Boeing 747 in several steady state flight cases including errors in sensor 

measurements. Similarly, Kalman filter in the model has a function of filtering the 

noise on the sensors and providing outputs of the exact values of lateral states 

continuously throughout the simulation. The algorithms of Kalman filtering is 

separately integrated to the complex civil aircraft model. Linear state estimation 

performances are examined with a zero mean and unit covariance matrix Gaussian 

white noise. Performance effectiveness of Kalman filter is assorted mainly in the 

system after performing several flight simulation cases. 

 

 Contribution of the Thesis 

 

The fundamental contribution of the paper is to suggest a supplement observer-based 

approach for sensor fault detection of a Boeing 747 as a civil airplane. This study 

points out that a conformable implementation of a model based approach to an aircraft 

model can effectively indicate the performance of flight control computer (FCC) with 

different types of observers that is critical for pilot to take action in any faulty condition 

for providing the safety of the flight. Apparent variations between Kalman filter and 

Luenberger observer based solutions in rapidity of the fault detection capability, 

amplitude response with respect to the assigned threshold level and rejection of false 

alarms take place in several simulation cases inside the paper. 
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The high-level performance of the Kalman filter as a linear observer for estimating the 

states of a Boeing 747 in a steady-state flight condition is indicated with performing 

several simulation cases. Also, the better efficiency in state estimation of Kalman-

based approach is proven against Luenberger-based solution as a former study that can 

be found in the literature as in [5]. 

 

 Organization of the Thesis 

 

The presence of the paper is organised as below: 

 

In Chapter 2, the literature review regarding the thesis is given mainly outlining the 

aircraft flight control systems, theoretical background of FDD, fault classification and 

types of observers. 

 

In Chapter 3, the methodology of the study is presented with data analysis of Boeing 

747, mathematical modelling of the aircraft, proposed fault detection methodology 

with introducing Kalman filter based algorithm and also Luenberger observer based 

algorithm. 

 

In Chapter 4, simulation cases are described, implementation of the designed Kalman 

filter and Luenberger observer methods to Boeing 747 model are presented and 

simulation results based on the observer-based methods are clarified. 

 

In Chapter 5, comments about the function of the suggested fault detection method is 

drawn attaching the future research aspects as a conclusion of the study. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 Development of Aircraft Flight Control Systems 

 

EFCS was initially introduced by Wright brothers in 1902. The very first design 

stimulated the basis of the modern EFCS with reformative changes. By 1950’s, analog 

FCC is released to enable artificial change of the aircraft handling properties and the 

fundamental autopilot stabilization functions. The Canadian Avro CF-105 Arrow 

interceptor equipped with an analog FCC demonstrated impressive performance 

capabilities. Subsequently, digital fly-by-wire technology was presented to take place 

of analog FCC. In 1972, the technology was possessed by an F-8 Crusader in flight 

tests administered by NASA. In 1987, Airbus A320 was the preliminary commercial 

aircraft used the fly-by-wire control systems on basic control surfaces in the civil 

aviation domain. Modern aircrafts contain various automatic control system that 

facilitates flight administration. The number and kind of aerodynamic surfaces for 

control regulation alters with the aircraft category [6]. 

 

Conventional mechanical control systems, as currently used in small aircrafts 

nowadays, have been increasingly developed to the mechanical hydraulic systems. 

Those hydraulic systems propagate actuator forces to move the control surfaces. 

Although the hydraulic system enables large forces on the control surfaces, it adds 

extra complexity to the already highly complex system. The fly-by-wire EFCS bring 

a revolutionary solution by eliminating these old-fashioned systems. The signals that 

are received and sent by digital FCC allow a simpler control application, thus a better 

handling quality. Digital fly-by-wire technology increases the flight safety, aircraft 

maneuverability and fuel efficiency in the means of cost [6]. 
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EFCS failure cases can be separated to runaway and jamming with respect to the 

airplane moving surfaces. First definition is the moving surface deviation as its 

position undesirably changes. It is originated due to the FCC decomposition, electronic 

device deficiency or mechanical breakdown. A residual is eventuated after checking 

the signals. The aircraft reacts to this situation making a control surface maneuver or 

unwanted loads are generated. If these loads are excessive, supplemental structural 

reinforcement could be needed, concluded with a weighty airplane. Otherwise, in the 

jamming condition the moving surface stuck constantly at its present location 

generating a failure [1]. 

 

Mathematical models or algorithms are integrated with FCC instead of redundant 

hardware implementation on the aircraft.  FCC architecture of a civil aircraft contains 

monitoring signal and command signal channels that operate interactively by 

monitoring each. While command channel’s function is to guide the basic functions 

from the computer, monitoring channel assures the real time tracking of the command 

signals also the entire EFCS equipments. Detection is verified when the variation 

among the signals exceeds the devoted threshold. Monitoring technique development 

process is a critical matter due to detect the fault in a shorter time and reduce the 

detectable location of the moving surface. When a fault arises, it is informed to both 

autopilot and pilot to take required actions.  In the status of pilot eases autopilot modes, 

the autopilot should be designed to satisfy characterizations on flight error and 

disturbance declination with less consideration on dynamic replication. An effective 

FDD method can diminish pilot’s workload instantly in the critical time and raise 

flying safety. 

 

One of the primary functions devoted to the FCC is the Flight Control Laws (FCL) 

computing that constitutes a command to servo control of the control surfaces. The 

comparison between pilot command and the state is utilized in FCL computing. Plant 

state is measured through a sensor set revealing the inertial measuring which 

modificate aircraft altitude, speed and attitude. Information is achieved applying an 

acquirement model generated by various devoted redundant units. This particular data 
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fusion procedure contains two joint steps: firstly, the computation of a singular state 

through valid sources and secondly, monitor the detached sources to allocate any faulty 

one [7]. 

 

The faults of state vector constituent, abnormous measuring, abrupt shift in 

measurement channel and the other complications, for instance, decline in the 

implement straightness or augmentation in the background noise influence the feature 

of standardized innovation sequence upon altering the noise [8]. A timely response to 

fault detection can reduce any terrific consequences with a slighter control surface 

deviation so that the flight performance will approach to a better level. 

 

 History of Fault Detection Methodology 

 

Many studies about different FDI methods have been executed since 1970’s and listed 

in the literature in detail. The success of the recommended approaches are verified and 

validated with real flight tests in research centers like scientific laboratories or with 

the help of the simulation environment. It is obvious to mention that innovative 

methods expose better results for recognizing the faults in some critical flight cases, 

however, there are still applications in which classical methods are preferred to use for 

proven robustness of several flight operations. The study is handled based on the 

accomplished studies that could be followed in the references part. Even though, these 

studies combine the same subject about fault detection, isolation and diagnosis at top-

level, they are separated pointing out distinct approaches in circumstances. On the 

basis of the historical ranking, some of those studies formed for the development of 

the thesis can be summarized with their fundamental perspectives as below: 

 

M. Bonfe et al. [9] express the issue of designing a set of residual generators for FDI 

affecting sensor states of a general aircraft. A multinomial approachment to design 

residual generator is proposed for realizing overall diagnosis scheme. Constitutional 

properties of a certain number of dynamic filters are examined for achieving decoupled 

disturbance, sensitivity optimization of residuals, stability of the system in relation to 
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noise and error. For small aircraft systems, analytical redundancy is easier to achieve, 

less costly and less complex to sustain so that hardware redundancy is not preferred as 

a primary model-based method. In the simulation, a PIPER PA30 aircraft model is 

used in different flight conditions, the faulty behavior is observed through a non linear 

flight simulation instrument imposed to the MATLAB tool. The mathematical 

definition of monitored airplane are determined by means of models of airplane sensor 

states. The aircraft is characterized by the nonlinear model in addition of the wind gust, 

turbulence and measurement error. It is specified that the advantage of the proposed 

method is clarified when its results are compared with other FDI methodologies 

founded upon unknown input observer, Kalman filter, non linear differential geometric 

methods or neural networks approaches. The cases cover sensor stuck faults at certain 

periods and healthy behavior of the sensors are considered. 

 

S. Seema and T. Murthy [10] deal with the fault detection in an aircraft based on 

Knowledge based Neural Network approach. The method utilizes gradient decline 

back reproduction training algorithm of neural network. C-Star controller of F8 aircraft 

model is used to improve the handling qualities and detect sensor with fault for the 

investigation of the proposed approach in MATLAB Simulink. A normal acceleration 

sensor failure is considered rather than the one in either lateral or longitudinal axis due 

its importance in C-Star controller. 

 

A. Gheorghe et al. [1] consider faults presented in servo-control-loop of control surface 

of an airplane, from FCC to control surface. Application of a smooth approach is 

significant for certifying the aircraft algorithms from an industrial perspective. Several 

FDD algorithms could not be admitted because of tuning complication and computing 

load. The model based approach to increase monitoring performance shows how the 

approach could advance FDD, meanwhile limiting those difficulties to manage the 

trade-off. It is stated that as a threshold-based approach, usage of a Kalman filter is a 

technologically viable solution for earlier fault detection in a control surface at 

minimum amplitude. The approach is also claimed to meet strict requirements with 

low computing cost. Kalman filter is implemented as a part of FCC Software of Airbus 
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A380. The technique is validated not only with several simulations upon simulators at 

Airbus test plant but also with real flight tests. 

 

S. Singh and T. V. R. Murthy [11] examine the design of optimum control laws for a 

yawing damper of a linear model of an airplane to operate with a minimal cost and 

provide performance at an advanced level. It is presented that LQR controller 

elaborates in particular of rolling mode that is a related with lateral dynamic of an 

airplane and principally controlled on behalf of rudder, whereas aileron deflection 

produces rolling angle and rolling rate on airplane movement. A yaw damper executes 

sending commands from autopilot system to rudder to adjust the coupling effects of 

yaw and roll modes of flight dynamics. The movement is well-damped in a number of 

lightweight airplanes, yet simply yaw damper assures the reliability for certification 

rules. Yawing control is tested with respect to the impulse response to define the 

control strategy. A Boeing 747 model is used in MATLAB Simulink for the 

simulation. 

 

Another study of S. Singh and T.V. R. Murthy [5] focuses on observer-based approach 

for analytical redundancy of the lateral dynamics model of an aircraft. A modular 

approach to the sensor failure detection and accommodation in EFCS is developed of 

a Boeing 747 jet aircraft model. The reconstructed or estimated states are derived with 

the observer for the feedback of the loop. It is stated that system at top-level could be 

analyzed for interaction of its various subsystems. The number of subsystem levels 

increases with system’s complexity. The aircraft states are simulated for the stuck fault 

scenarios in MATLAB Simulink. It is attached that the faults could be detected by 

which uses Canberra metric as a signature of the proposed method. It is concluded that 

the procedure described could be useful to researchers who like to simulate any 

engineering state-space model for fault detection and for validation or implementation 

on DSP processors by using hardware in the loop simulation. 
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 Fault Detection and Diagnosis Approach 

 

A standard civil aircraft includes multi FCC and power supplies (both hydraulic and 

electric) for activation of control surfaces. There are several methods to observe fault 

diagnosis as built-in tests, cross checks and consistency checks. Monitoring and 

command channels are attached to the actuator positions or control surfaces with 

related sensors so that fault detection is determined with the consistence checks among 

two redundant signals calculated in two FCC channels. Whereas computing the 

identical signal with different channels, it is feasible to distinguish the contrariety 

because of a channel, sensor, FCC input etc. Each of the control surfaces in a civil 

aircraft is controlled by double actuators as actual and substitute actuators to supply 

the safety in the failure cases. When there is a decomposition in the actual actuator, it 

is switched to passive mode and the role is transposed to the substitute actuator. False 

alarm rate causes a handover between two actuators when triggered which means the 

proper actuator is out of function instead of the faulty actuator and the control of the 

surfaces and results with the degraded flight control as an undesired condition. Similar 

approaches can be appeared for sensors, whereas not as critical as the actuator faults. 

A fault in one of the sensors, if undetected, might cause position and attitude errors of 

estimation. Reconfiguration in those conditions generally depends on isolation of 

faulty sensor with another sensors to obtain the most desirable estimate of altitude, 

speed and attitude. In general, fault detection and isolation (FDI) techniques are 

categorised in to two classes: hardware and analytical redundancy management [1]. 

 

In multi engined aircraft where the engines exist apart from the center line, the rudder 

might be utilized to satisfy yaw because of the failure of the side force propagated by 

the rudder input associates with the asymmetric thrust vector to generate a resultant 

force that leads the aircraft to spoil sideways, for instance in the incident of engine 

failure. In addition, the rudder is used to arrange the aircraft with the runaway 

meanwhile take off and crosswind landing especially on large civil aircrafts. 

 

The task of the decision system is to specify if the residuals diverge dramatically from 
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the pattern of zero and non zero residuals and to designate which fault is the most 

probable to be presented, if any. The decision making for the EFCS failure cases meets 

a threshold-based method as in Figure 2.1. The alarms are initiated when the signal 

disparity goes beyond a given threshold on a given time window as they are not equal 

for each of the failure detection type. A trade-off must be met among detection 

performance and false alarm rate. Although in a low threshold level there is a false 

alarm risk, faults can not be identified at minor amplitudes in a high threshold level 

[1]. 

 

High level fault detection methods improve the safety of the flight considered by the 

civil aircraft certification process and suppress the false alarms and superior loads on 

the aircraft. Nevertheless, certain EFCS failure conditions may affect structural loads, 

for instance, loss of limitations, loss of an EFCS or deterioration of a deflection rate. 

To achieve such faults earlier with smaller magnitudes permits a designer to keep away 

from strengthening the structure and save weight for supporting aircraft to accomplish 

sustainability purposes such as fuel burning, noise, range and influence on 

environment. Structure of an aircraft to be met with the aircraft certification 

adjustments is an unchangeable rule for the global aviation laws. 

 

Error Signal

(Residual)
>

Threshold

Confirmation 

Time
Fault Detection

 

 

Figure 2.1 Threshold-based Approach for Decision Making 

 

 Hardware Redundancy 

 

In the hardware redundancy, multiple sensors are managed for cross-monitoring, thus 

it is ordinarily sophisticated. The usage of dozens of sensors that makes additional 

hardware augmentation causes a weighty airplane with an expensive method. An extra 

 



12 
 

domain requires to relocate equipments inside restricted environment of an airplane. 

Application of hardware redundancy for detecting system failures and faulty actuators 

is generally not manageable due to repeating of constituents out of sensors is not 

reasonable. Hence, applicability of hardware redundancy related FDI is growingly 

problematical on peripheral friendlier airplane of the future. The problem correlated 

upon hardware redundancy prompted identification of notion of analytical redundancy 

related FDI. [12] 

 

 Analytical Redundancy 

 

Analytical redundancy approach compares the actual plant attitude to that expected on 

the principal of numerical model of monitoring procedure and it is implied to model 

based approachment for FDI as presented in Figure 2.2. The techniques depending 

upon analytic redundancy are practiced with diverse estimation theories. These 

methods operate with parameter estimation applications, parity equations and 

observers. The approachments that are performed with observers designate fault 

detection based on actuators and comprise the fault detection filter, unknown input and 

adaptive observer methodologies [13]. A typical model-based FDI system is created 

of residual generator, residual evaluator and threshold computation with decision 

making. FDI unit ensures data concerning initiation, position and intensity of the fault. 

Residual generation reconfigures the sensor/actuator set for fault isolation and adapts 

the controller to associate fault impacts with respect to system inputs and outputs 

jointly upon failure decision data of FDI. Analytical redundancy concerns should be 

coherent in shortage of a fault. Thus, it can be applied for residual generation. Residual 

evaluation meets the object to make a correct decision for fault detection whether a 

fault is present or not. 
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Figure 2.2 General Architecture of an FDI Unit of a Boeing 747 

 

 Fault Detection and Diagnosis for Control Techniques 

 

The aircraft sensor signals usually display three basic characteristics: stochasticity 

(randomness), nonstationarity and serial (dynamic) dependency. Among those 

characteristics, stochasticity is basically because of the occurrence of noise, 

uncertainties, atmospheric effects (wind gusts, atmospheric turbulence etc.), and also 

the pilot commands. Defects in the model and measurement noises can be indicated 

by stochastic processes emerging as additional inputs. Stochasticity method requires 

to be accounted to acquire appropriate decision making under uncertainty. Variances 

in operating situations results in variance of aerodynamic coefficients which lead to 

diversity in flight dynamics. The redundant techniques employ state estimation, 

adaptive filtering, statistical theory, Kalman filters in a stochastic setting and 

Luenberger observers in a deterministic setting are very popular for generating the 
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signals for analytical redundancy purposes. 

 

From the control point of view, it is approved that there is always difference between 

the system model and the actual system, i.e. there exists uncertainty in system model. 

A robust control regards this uncertainty in the synthesis of controller. There is a trade-

off with performance depending on how the model could be simplified. For some sort 

of faults (e.g. partial loss fault), a robust control method is able to tolerate them in a 

particular rate, whereas, in nature, faults are coincidentally conditions for the system 

and they are distinct from the system model uncertainty, i.e. it is unknown even in 

statistical scale. These random conditions alter the system dynamics largely therefore, 

there is a lack of priori information on the faults for the controller. In every situation, 

the aircraft system is expected to operate regularly all the time when encountered the 

faults. Theory and practice are developed from not only to decline disturbance and 

suppress noise but also to be robust to parameter uncertainty and even more to be 

tolerant with changing dynamics because of the coincidentally incidents, e.g. faults 

and failures in sensors, actuators or system structure.  

 

Control reconfiguration is needful afterwards rigid faults are taken place that lead to 

important structural alterations of the plant dynamics. Sensor failures are naturally 

simpler for detecting than actuator failures. While sensor failures interrupt the data 

link between the plant and the controller and make the plant partially unobservable, 

actuator failures distort the probabilities to affect the plant and make the plant partially 

uncontrollable. Under nominal situations, the measurements track estimative norms, 

within a tolerance specified by the amount of uncertainties presented by random 

system disturbances and measurement noise in the sensors. FDI assignments are 

generally achieved by observing the output of a failed sensor when it diverges from its 

estimated norm. 

 

The principal goal of an FDD system is early detection of faults, isolation of their 

location and diagnosis of their reasons, facilitating correction of the faults prior to 

additional damage to the system or loss of service occurs. Abnormal conditions arise 
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when processes diverge dramatically from their normal regime while in online 

operation. The malfunctions can take place in the single unit of the plants, sensors, 

actuators or other devices and influence the attitude of the system disadvantageously. 

Usually, the basic requirable properties of an FDD system are:  

 

 Early detection and diagnosis, i.e. detection delay is required to be minimized. 

 Good competency to distinguish between distinct failures (isolability).  

 Good robustness to several noise and uncertainty sources and their 

propagations via the system. 

 High sensitivity and performance, i.e. high detection rate and low false alarm 

rate [7]. 

 

 Fault Tolerant Control 

 

The industrial and academia have developed techniques to detect such contingent 

events in systems in the past 40 years. The information about these contingent events 

is used to activate an emergence response system. Such emergence response system 

mostly is monitored or processed by human being. To process these events in time and 

properly in complicated systems, such as aircrafts, satellite, nuclear power plants and 

robotic systems, is beyond the reaction capability of human being. In this kind of 

situation, considering these events in the controller design becomes more and more 

important, which is the newly emerging control architecture: fault-tolerant control. 

The fundamental purpose of fault tolerance is to avoid errors from spreading and 

causing to a dangerous, hazardous or abnormal system attitude. Owing to the steadily 

incrementing system automation, integration and complexity degrees, industrial 

operations are ordinarily nonlinear. Improving fault detection and fault tolerant control 

techniques for nonlinear systems belong certainly to the most striking and challenging 

issues. 

 

A control system that can establish faults within system components spontaneously 

while providing system steadiness throughout with a demanded level of entire 
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performance in the circumstance of system component malfunctions is presented as a 

fault-tolerant control system (FTCS). In the FTCS, the executable system performance 

is subject to the presence of redundancies in the control system in addition to the design 

approaches applied in the synthesis of fault-tolerant controllers. Depending on the 

utilization of the redundancies, FTCS is categorized into two titles, entitled, active 

FTCS and passive FTCS. These two methods utilize distinct design methodologies for 

the identical control objective. Although, the fundamental control objectives are same 

and indicate alike results, each method could conclude in some distinctive properties 

due to the margin in design approaches [14]. 

 

 Active Fault Tolerant Control 

 

Active FTCS deals with many types of faults and failures theoretically, however, it is 

costly due to the complex architecture of the combination with FDD and the 

reconfiguration of controller in practice. The primary restriction of the active FTCS 

method is the time delay from the faults existence along the FDI method and then the 

reconfiguration of controller based on the fault knowledge. In this process, the system 

is in danger of control loss because of the inconsistency of controller and system 

dynamics. The controller-system mismatch could also disable the FDD which may not 

acquire the accurate data for constructing the faulty system model if it is out of control. 

It shows that a sort of controller must operate for stabilizing the system during time 

delay. 

 

 Passive Fault Tolerant Control 

 

Passive FTCS is generally a kind of robust control which establishes pre-assigned 

faults. It could solely deal with partial loss fault, i.e. H∞ and sliding mode control 

(SMC) method in FTC. domain. It sacrifices the ordinary controller performance to 

obtain robustness to uncertainties in the system dynamics, whereas SMC’s design 

methodology makes it feasible to be robust to uncertainties without sacrificing 

excessive performance of the ordinary controller. Even more, the reaching attractor in 
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SMC is broaden to sliding manifold from the equilibrium in different methodologies 

that means there is a dynamic subsystem that sense the dynamic alteration because of 

the disturbances and faults [15]. 

 

 Diagnostic Algorithm 

 

The diagnostic steps of the FTC are separated using distinct names with respect to their 

function. They can be summarized as below: 

 

 Fault detection step decides if fault is arised or not and identifies the time at 

which the system is subject to the fault.  

 Fault isolation step determines in which component a fault is occurred, 

identifies the location of the fault and separates one fault from other. 

 Fault identification and fault estimation steps determine the type of fault and 

also estimate its severity. 

 

Common characteristics of the diagnostic algorithms can be clarified as below: 

 

 The act of a dynamical system does not solely based on the input but also the 

initial state. In the case of the initial state of the system is immeasurable, each 

diagnostic problem consists of a type of state observation problem. 

 The disturbance that affects the plant is generally immeasurable. As long as it 

affects the act of the plant, it must be considered in the consistency check [16]. 

 

Several criteria are utilized to evaluate the performance of an FDI algorithm, yet the 

most important are: 

 

 Rapidity of fault detection 

 Sensitivity to slowly improving faults 

 False alarm rate 

 Missed failure detection 
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 Inaccurate fault isolation [17]. 

 

 An Aircraft Control Surface: Rudder 

 

The rudder is a directional control surface of an aircraft. It is ordinarily connected to 

the fin or vertical stabilizer which authorizes the pilot controlling yaw related the 

vertical axis, for instance, the horizontal direction is replaced in which the nose 

indicates. The rudder enables the plane rotating on its vertical axis while it is controlled 

by actuators. The vertical axis runs through the top and bottom of the aircraft, 

intersecting the two axes. Rotation about this axis is checked by the rudder which 

induces the nose to move left and right that is entitled yaw [18]. 

 

As a control surface in a civil aircraft, rudder consists of three distinct hydraulic 

actuators running from seperate channels which indicates that the rudder carries 

multiple redundancy as a single control surface. There are also secondary control 

surfaces that could be utilized in an emergency condition which serves the same 

function as the primary control surface does [19]. 

 

As known the aircraft control surfaces, rudder and aileron control inputs are drived to 

rotate an aircraft in practice. While rudder yields yawing and satisfies an incident 

called adverse yawing, ailerons yield rolling. A rudder rotates a traditional fixed-wing 

aircraft itself as fast as possible provided that ailerons are also used in conjugation. 

The usage of rudder and ailerons in common generates coordinated rotations, in which 

the longitudinal axis of the aircraft is in alignment with the arc of the rotation, neither 

slipping (under-ruddered), nor skidding (over-ruddered). Favorably rotations of rudder 

at low velocities constitute a spin that could constitute a risk at low altitudes. 

 

Pilots seldom actuate both rudder and ailerons in reverse directions in a maneuver 

called slip deliberately to get over the crosswinds and retain the fuselage in line with 

the runway or to lose altitude by raising drag. For instance, the pilots of Air Canada 

Flight 143 performed an alike technique to land the aircraft due to it was too high 
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above the glideslope. 

 

One of the primary occasions ruling the loss of control of aircraft is the operational 

failure in the actuators, the control surfaces, such as elevators, ailerons and rudders. 

Aircraft rudders are subject to significant forces which specifies its position over a 

force or torque balance equation. In extreme conditions, these forces or torques might 

cause to loss of rudder controllability or even devastation of the rudder. The case of 

American Airlines Flight 587 on November 12, 2001 is one of the most devastating 

example in the flight history with the total fatality of 260 people. Another air crash due 

to the failure in rudder occured on September 8, 1994, in which a fault caused the kill 

of 133 people on board of USAir Flight 427 with Boeing 737. A McDonnell Douglas 

DC-8-71F lost its pitch control on takeoff, ending up with a crash and destruction of 

the airplane and death of three flight crew members on February 16, 2000. Another air 

crash due to failure in elevator occured on January 8, 2003, which killed all 19 

passengers and 2 pilots aboard on an airplane Beechcraft 1900D working for US 

Airways Express Flight 5481. Flight simulation systems have been keeping records of 

faults and failures occurred in the EFCS since 1970’s, many of which are caused by 

faults and failures in the control surfaces. 

 

 Faults Classification 

 

Faults occur at different locations of a system and are classified according to the 

location of their occurrence. Faults occur in sensors, actuators and the system itself. 

 

 Sensor Faults 

 

A system with sensor faults causes an incorrect measurement signal 𝑦(𝑡) that is 

implemented in the filter design. Some prominent and characteristic sorts of sensor 

faults demonstrated in Figure 2.3. Modern aircraft systems are highly instrumented 

with multiple redundant sensors measuring directly or indirectly all of the system state 

variables. Sensor faults might take place because of the breakdown in the sensor unit, 
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loss of accuracy and loose mounting of the sensors. The sensor faults might cause a 

flight control upset and contribute to the extreme behavior of the aircraft [20]. 

 

Bias refers to these faults which is a steady offset or error between the actual and 

measured signals. 

 

Drift is a condition by means of the measurement errors rise over time originated from 

the loss of sensor sensitivity. 

 

Loss of Accuracy happens in the condition in which the measurements do not reflect 

true values of the measured quantities. 

 

Freezing of sensor signals is concluded with obtaining a steady value instead of the 

true value. 

 

 

 

Figure 2.3 Typical Types of Sensor Faults [20] 

 

 Actuator Faults 

 

Actuators are the other components in the control-action application and participate in 

delivering the required power to manage the controlled variable. The majority of the 

actuators in modern aircraft systems are hydraulic systems. Because of their power 

delivering capacity, actuators are mostly enormous and heavy component which limit 

the capability of having multiple redundant actuators to control the identical variable 
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in the aircraft system. Figure 2.4 represents some characteristic sorts of actuator faults 

in an aircraft system with respect to the time [20]. 

 

 

 

Figure 2.4 Typical Types of Actuator Faults [20] 

 

Abrupt faults are rough faults and have a great effect on the control action. They 

usually emerge because of the electric short circuits or instantaneous damage of control 

surface with the impact of environmental agents. This type of actuator faults are easy 

for detection upon occurrence. Sudden and unexpected actuator struck is an ordinary 

sort of abrupt fault. 

 

Incipient faults are smooth faults and have a significant influence on the control-

action in the prolonged run. They usually emerge because of the leaks in hydraulic 

systems. This type of actuator faults are difficult for detection because of their slow 

change in the magnitude. When incipient faults are not concentrated for a long term, 

it is obvious that the performance of the aircraft is dropped off and enormous failures 

might be encountered in the flight circumstance. 

 

 System Component Faults 

 

System component faults usually modify the elements of system matrices and 

aerodynamic coefficients. Component faults are difficult for detection and 

identification because of the spread structure of components in large-scale systems as 

aircraft systems. Detection of these kind of faults is considerable in high-performance 
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aircrafts, e.g. warplanes due permanent structural loss. 

 

 Perspective of Observers and Their General Applicability 

 

The most commonly used technique to constitute a residual signal is observers. The 

main concept of the observer-based FDD includes estimating the outputs of the system 

from the measurement utilizing an observer and afterwards establishing residuals over 

directly weighted output estimation errors. In an aircraft plant, faults could happen 

either in the main processing component (alteration in process parameters) or in the 

auxiliary component (bias or drift in sensors, controller outputs, actuators, etc.). In the 

condition of actuator faults, the ability for controlling the system is lost across one of 

the actuators. Sensor faults decrease the reliability of the measurement knowledge. 

When there is a loss of a sensor, the system behaves less observable, whereas a fault 

in the process component modifies the behavior of the overall plant. 

 

In the notion of high-rate dynamic systems, the state estimator requires to be fast and 

robust against extensive uncertainties, non-stationarities and heavy disturbances and 

unmodeled dynamics. State estimation of a dynamic state-space model is a significant 

factor of model-based approaches (e.g. performance monitoring, optimization, and 

process control). Therefore, it is a necessary practice by the time desired states could 

not be immediately measured. The research field was pioneered by Wiener, that 

conducted to Kalman’s effort. Additionally, progresses in estimation and control 

theory enabled the evolution of observers with fast convergence characteristics 

together with computer science. Those observers have the potency to bring out smarter 

and safer systems competent to respond to real-time incidents. A high-rate estimator 

must also be competent to manage those matters which diversify high-rate dynamic 

systems from other systems. In the event of simplicity towards complexity of the 

estimators is referred, i.e. for computation, properties, implementation, simplicity 

associates to more rapid convergence rates. Nevertheless, the performance of 

observers is changeable with respect to the applications and the indications are subject 

to the kind of the scenarios [21]. 
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Stereotype estimators quickly strike out estimating states in the case noise and 

uncertainties are available. In serviceable implementations, noise can originate from 

sensor measurements, algorithm application, spoiling estimation values, etc. A filter 

could be applied to compress noise if the noise function is properly established into its 

architecture. This noise compression forms with attached computational costs. For 

decreasing the convergence time, the observer gain can be augmented. Nevertheless, 

this may adversely affect the certainty of the estimation as the noise may be enhanced. 

Uncertainty is another frequent matter for several feasible implementations. A variety 

of techniques have been investigated to cope with system uncertainties. Generally, 

statistical methods could determine faults ahead probabilistic measure and can be 

utilized to direct prognosis by assessing the probability of faults, yet they request 

knowledge of probability distribution functions. The statistical features are ordinarily 

computed from a great number of tests, that is hard to accomplish for high-rate 

systems. Those methods work well when previous data is convenient to generate a 

great understanding of the statistical characteristics of the system’s attitude. Data-

driven methods could maintain proper estimations on the basis of sample identification 

and categorization. As an alternative, those methods request certain patterns and 

extended training upon convenient data set. Because of the spontaneous existence of 

high-rate incidents, minor cognition is assured in the exterior loads and system 

modifications. Those observers are favorable in case of the complicacy of a system 

does not permit for a proper physical representation. Model-driven methods are 

advantageous for supplying certain measures of damage because of the existence of 

models, thus making situation evaluation and system prognosis possible. Those 

observers generate rapid and proper estimations for systems with well specified 

models. Nevertheless, those observers request information of the physical model, that 

is a difficult assignment for real-world systems. In addition, high-rate systems can 

encounter modifications in the structure demanding distinct model parameters than 

primarily defined [21]. 

 

Filters and observers display dissimilar sensitivity properties according to the different 

failure modes such as system, actuator, control surface and sensor failures. The ability 
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to differentiate the failure effects from other signal such as noise, gust and control 

inputs is a significant characteristic of the filter. To give examples of some 

filters/observers; Kalman filter, as an optimum estimator, is sensitive to each of the 

failures, Insensitive observer is only sensitive to sensor failures, Robust Kalman filter 

is sensitive to system, actuator, unstable control surface and sensor failures, Failure 

Mode Sensitive observers are merely sensitive to specific failure modes. Therefore, 

the mentioned filters and observers could be run meanwhile in the FDI algorithm, and 

they could be considered for distinct functions [22]. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

 Overview 

 

The paper is actualized to improve and demonstrate the applicability of FDD 

algorithms for a civil aircraft plant. It is aimed to propose an alternative analytical 

solution for the advancement of fault detection performance proceeding a better flight 

profile and diagnose the sensor measurement errors of civil aircraft’s specific control 

surface in a shorter confirmation time with a slighter detection threshold level which 

are originated from the closed-loop of the deterministic aircraft model and improve the 

responses of fault detection to prevent the extra structural loading as an undesirable 

condition. It is also aimed to simulate an aircraft flight control system that feeds 

reliable data to the pilot interface with respect to the dedicated nonlinear configurations 

while maintaining a steady state flight. In the simulation environment, scenarios are 

generated and the analysis of the system's reactions is investigated for several cases. 

The approach points out to a stable flight mode and presents a fast and sensitive 

reaction to the undesirable sensor faults. Sensor faults are related with sensors which 

has a function of measuring states of the system and might directly influence the 

procedure only in the case of measured outputs are utilized for the feed back control. 

In airplane control, overall states are less convenient for feed back objective than 

measured outputs. Exerting modern control theory, when measured outputs acquire 

sufficient data related system dynamic, it is feasible to apply data for estimation and 

observation of the overall states. Thereafter, those state estimates can be utilized for 

feed back objectives. 

 

For the study, a nonlinear fixed-wing aircraft model is practiced with a proper tuning 

in MATLAB Simulink that computes non linear dynamics and control. An optimum 
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method of EFCS for a fixed wing airplane EFCS includes the flight moving surfaces, 

 

each are controlled from the cockpit, connecting linkages and the necessary functions 

to control the plant.  

 

The mathematical model for movement of an airplane is fairly complex and consists 

of the set of six nonlinear coupled differential as known six degrees of freedom (6 

DOF) rigid body formulations which eventuate as an outcome of implemented forces 

and moments such as aerodynamic, thrust and gravitational. Under specific 

assumptions, these equations can be decoupled and linearized into the lateral and 

longitudinal dynamics equations. A set of regional approximates for those forces is 

scheduled related to the values considered by true airspeed, altitude and flight path. 

An aircraft has a number of varied control surfaces which are the main flight controls, 

i.e. roll, pitch and yaw control, originally acquired by deflection of ailerons, elevators 

and rudder and also the combinations of them as a coupling effect. Lateral control 

receives lateral stick pilot inputs and supplies anti-symmetric control requests to inner 

and outer control surfaces. The pilot moves the rudder sideways which controls yaw 

and the required yaw angle. In this paper, the control system design for yaw control is 

presented. Some of the states of the fully nonlinear dynamics aircraft model include 

the inertial position displacements, altitude, airspeed and control inputs. 

 

The sensor fault detection model is developed at the same time and accurate links are 

settled with the nonlinear civil aircraft model. As a control surface, mainly rudder is 

considered to have a significant contribution to determine the lateral dynamics during 

flight stage. Lateral oriented equations of motion (EOM) include side force, yawing 

and rolling moment of aircraft movement. By subtracting estimated and monitored 

channel (the error signal) instantly, the residual is generated. Residual signal 

demonstrates fault emergence according to whether its value is higher or not than a 

threshold and decides which sensor is failed. Residual of faulty sensor exceeds 

threshold value, whereas residual of healthy sensor stands under threshold. Threshold 

value depends on residual error quantity because of the measurement errors, model 
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approximates and disturbance signals which are not exactly decoupled. The measured 

states are observed and compared with and without the faulty conditions. The proposed 

 

FDI scheme operates with the approximation that only one sensor is in the faulty 

condition at a time instant, that is an acceptable approximation in practice. The 

decision making law could be managed for failure detection that influences the 

innovation sequence.  

 

The loss of control effectiveness and sensor stuck are estimated upon the filter. If fault 

has not been originated, estimated states will be identical to those of the measurements. 

On the other hand, if fault has been originated in the system, the estimates derived 

from the filter will point out a value different from the measurements. In the 

circumstance of airplane moving surface stuck fault, it is quite hard to assure FDI 

scheme due to the bias effect which initiates the stuck surface that could be emerged 

by diverse combinations of the control surfaces. For instance, if right horizontal 

stabilizer stuck at 0.087 radians, impact causes stuck moving surface is nearly identical 

with impact causes left horizontal stabilizer stuck at -0.087 radians [13]. 

 

EFCS include intense coupling. Their sub-systems are intensely coupled as well and 

due to this condition, there are lacking of measured state variables. For achieving 

isolation procedure for those systems, application of analytical redundancy is required. 

For example, sensor fault detection model coupled with high fidelity aircraft model 

can accomplish the detection capability of bias, drift or augmented noise of 

nonredundant sensor in real time by means of setting analytical redundancy. The use 

of sensor measurements in the feedback loop of a control system makes sensors 

significant components in EFCS. Multiple physical redundancies have been operated 

in many high performance civil aircrafts, whereas analytical sensor redundancies are 

more appealing as it counters with higher simplicity, lower cost and weight with 

respect to the model accuracy. 

 

The analytical redundancy for sensors related to the lateral dynamics model of civil 
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aircraft is focused. Stuck faults where sensor becomes stuck at specific ranges and 

erroneously yields outputs are detected by the fault indicator scope of the model. 

Reconfiguration with observer estimation for the failed sensor state is done as soon as 

 

fault is detected. Reconfiguration process maintains the estimated signal from 

mathematical model rather than faulty sensor signal in feed back loop. The process 

detects fault by comparing the output of aircraft sensor value of aircraft lateral 

dynamics with the one obtained from the observer estimate. It also switches over to 

observer estimate of the output instead of faulty sensor output in shortly after fault is 

indicated. Reconfigurator performs the task of correcting faulty state vector in case of 

fault, otherwise it continues to keep aircraft sensor output in the feedback loop. 

 

After focusing on modeling, creating algorithms, analyzing and visualizing 

simulations, customizing the simulation environment and introducing parameters, the 

whole deterministic civil aircraft model could be visualized. The subsystems 

composing the whole civil aircraft model are configured together in main simulation 

model to indicate accomplished detection and reconfiguration of sensor fault in the 

aircraft. Main simulation model could be examined at an advanced rate and then every 

subsystem block could be chosen to view ascending rates of model in detail. The 

approachment assures a comprehension of model organization and interaction of the 

system parts. System at top-level can be analyzed for interaction of its various 

subsystems. The number of levels increases with system’s complexity. 

 

A safe steady state flight at fixed altitude and airspeed is considered to be simulated 

via MATLAB Simulink. Therefore, thrust, drag, weight and lift forces balance each 

other in 𝑥-axis and 𝑦-axis such that an alteration in yaw and roll angle do not modify 

airspeed airplane under any conditions. Parameters of the simulation covering altitude, 

angular rates, positions and time are assigned to be compatible with the zero flight path 

angle during the steady level flight. An accurate determination of parameters allows 

to maximize reliability of responses accordingly the measuring noise or model errors, 

whereas maintaining fault sensitiveness features. The cruise flight case is determined 
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to map the input/output trim manifold independently when single fault occurs. 

 

The navigation sensors of an aircraft identify the plant’s position by measuring the 

acceleration and rotation changes and integrating them to speed and direction variables 

 

and then feed the data to the pilot even during flight. Due to small inaccuracies in the 

measurements, the position errors grow over time. The sensor faults are expected to 

be the major element rather than the faults originated from wind, turbulence or severe 

temperature changes. The sensor noise (e.g. bias or white noise) can influence the FDI 

scheme severely. Due to faulty signal has alike characteristic with sensor noise, it is 

not easy to separate these signals. 

 

Concerning the implementation scope of common aviation airplanes, the detection 

delay values, reported in Table 3.1 and  

Table 3.2 are estimated in terms of time obtained by slowest residual to surpass the 

established threshold as worst case outcomes of a PIPER PA30 aircraft [9]. Moreover, 

the fault sizes are relative to the condition in which the fault occurrence is detected 

and isolated at the earliest. 

 

Table 3.1 Minimum Detectable Step Input Sensor Faults 

 

Input sensor Fault magnitude Detection delay 

Rudder deflection 4° 8 s 

Aileron deflection 3° 6 s 

Elevator deflection 2° 18 s 

Throttle aperture %2 15 s 
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Table 3.2 Minimum Detectable Step Output Sensor Faults 

 

Output sensor Fault magnitude Detection delay 

Roll rate 2°/s 24 s 

Yaw rate 3°/s 29 s 

Roll angle  5° 5 s 

Yaw angle  6° 20 s 

 

The main criteria handled to remark the variables with respect to their severity is 

subject to dynamic of parameters that are monitored. Particularly, time scale of the 

altered parameter is quicker means the violence of the correlated fault is significantly 

superior. On the other hand, faults on the angular rate are less critic, although their 

time scales are not the slowest.  In terms of parameters on tables above, comparatively 

reliable filters are applied to the FDI method to increase the critical sensor estimations. 

 

 Boeing 747 Data Analyses 

 

The aircraft model examined in this study is a Boeing 747 which is an inter continental 

wide body transportation via four turbofan engines which makes it an excellent 

representative for any of the civil aircrafts serving nowadays thereby, provides a 

conformable test bed with versatile of modeling and design techniques. It has a range 

of greater than 11,000 kilometers, a cruise airspeed more than 965 km/h and an attitude 

of 13,716 m. [23]. The diversity with other Boeing aircrafts are generally relevant with 

developments in the structure and payload. 

 

The center of the study is about lateral tendency of an aircraft. The precise equations 

leading the motion of an aircraft are lateral and nonlinear. Lateral oriented dynamics 

are decoupled of longitudinal dynamic, whereas they are coupled with lateral 

directional dynamics. Due to the numerical model of airplane covers decoupled small 

perturbations, transfer functions related longitudinal input parameters to lateral output 
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parameters are not presented. A movable rudder with a single component and an 

engine thrust could be used to manage the lateral axis motion [24]. 

 

On the contrary to the longitudinal dynamic, explication of lateral oriented dynamic is 

not very simple due to stability means are not quite different. It generally causes a 

considerably larger magnitude of coupling [25]. 

 

Nonlinear model of Boeing 747 introduces entire aerodynamics nonlinearity. Yawing 

control could be acquired by changing the lift on the rudder. Deflection of a control 

surface not only alters the angular rate but also alters moment of center of gravity (𝑔). 

 

Aircraft reference frame is indicated in Figure 3.1 with respect to the body-fixed frame 

𝐹𝐸. 𝐹𝑂 represents origin at 𝑔 of the aircraft, 𝐹𝑊 represents wind axes reference frame, 

𝐹𝑆 represents stability axes reference frame and 𝐹𝐵 represents boxy fixed reference 

frame. Angular rate alteration affects the sideslip and roll angle immediately. In 

addition, coupling effects on moving surfaces presents within aircraft. For instance, 

yaw rate (𝑟) could be shifted due to the deflection of partial/entire of the control 

surfaces. 

 

 

 

 

Figure 3.1 Aircraft Reference Frame [6] 
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The linear time-invariant (LTI) systems of Boeing 747 are introduced for linear 

estimation method. LTI systems are utilized in the design phase, whereas superior 

constancy non linear model is utilized in the closed loop experiments. LTI models are 

assured by means of linearization of non linear aircraft on trim points at true airspeed 

0.44 Mach and altitude 20,000 ft. The parameters represent less severe faults at trim 

points. 

 

Aircraft trim analysis is significant process to assess the aircraft attitude. As a part of 

the analysis, the trim routine is utilized to meet an equilibrium point of the plant under 

a given set of constraints. The purpose of the trim routine is to solve the aircraft 

nonlinear EOM (first-order differential equations) to receive state and control vectors 

that assure the time derivatives of state variables are equal zero or remain constant. In 

some cases, equilibrium points may not be unique. 

 

The trim analysis restores the deflection inputs and other states of the airplane based 

on a motion case in which time derivatives of angular velocities are all equal to zero. 

There are different alternatives for trimming of the aircraft. They can be summarized 

as steady level, level turn, push-over/pullover, beta trim, thrust-stabilized turn and 

specific power turn. Each situation demands distinct limitations and detached 

variables, i.e. mainly flight controls, aircraft and engine states [6]. 

 

The modification of dynamic and kinematic parameters of Boeing 747 is applied upon 

the deterministic aircraft model in MATLAB Simulink. Boeing 747 aircraft model is 

obtained specially in the steady state level flight of 0.44 Mach true airspeed and 

altitude of 20,000 ft. The nonlinear model is linearized around this flight condition as 

the trim and linearization routines. Trim values, lateral oriented mass distribution and 

aerodynamic stability characteristics of Boeing 747 at initial flight condition is given 

in Table 3.3 [24]. The physical parameters such as mass and inertia are stable to their 

nominal values. A fault is regarded non compensable when flight trajectory of the 

airplane passes to a non-trimmable region.  
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Table 3.3 Trim Values, Lateral Oriented Mass Properties and Aerodynamic Stability 

Derivatives of Boeing 747 at Initial Flight Condition 

 

Initial Flight Condition of Boeing 747  Cruise (low) 

State and Control Value 

VT 

α 

β 

p 

q 

r 

φ 

θ 

∅ 

xe 

ye 

he 

δth 

δa 

δe 

δr 

492 ft/s 

0.0436 rad 

0 rad 

0 rad/s 

0 rad/s 

0 rad/s 

0 rad 

0.0436rad 

0 rad 

0 ft 

0 ft 

20,000 ft 

0.75 rad 

0 rad 

0 rad 

0 rad 

  



34 
 

 

Table 3.3 (continued) 

 

Geometry and Intertias Value 

S 

b 

m  

Ixx 

Izz 

Ixz 

5500 ft2 

196 ft 

636,636 lbs 

18.2 × 106 slug-ft2 

43.1 × 106 slug-ft2 

0.97 × 106 slug-ft2 

Lateral Directional 

aerodynamic stability derivatives 
Value 

clβ : rolling moment due to sideslip angle derivative 

clp : rolling moment due to roll rate derivative 

clr : rolling moment due to yaw rate derivative 

clδa : rolling moment due to aileron deflection derivative 

clδr : rolling moment due to rudder deflection derivative 

cnβ : yawing moment due to sideslip angle derivative 

cnp : yawing moment due to roll rate derivative 

cnr : yawing moment due to yaw rate derivative 

cnδa : yawing moment due to aileron deflection derivative 

cnδr : yawing moment due to rudder deflection derivative 

cyβ : side force due to the side slip derivative 

cyp : side force due to roll rate derivative 

cyr : side force due to yaw rate derivative 

cyδa : side force due to aileron deflection derivative 

cyδr : Side force due to rudder deflection derivative 

-0.160 

-0.340 

0.130 

-0.013 

0.008 

0.160 

-0.026 

-0.280 

-0.001 

-0.100 

-0.900 

0 

0 

0 

0.120 
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To solve the equations defining lateral directional aircraft motions, all the coefficients 

should be estimated for the derivatives of 𝐿, 𝑁 and 𝑌 with respect to the appropriate 

independent variables 𝑣, 𝑝 and 𝑟. 

 

𝑐𝑙𝛽
 (dihedral effect) is a measure of the preliminary inclination of an airplane to roll 

when disturbed in 𝛽. It has a significant role in determining the lateral static stability 

of the airplane. However, it is hard to quantify since it depends on many elements 

including wing dihedral, wing sweep and wing/fuselage/fin geometry. 

 

𝑐𝑙𝑝 (roll damping) is mainly originated by the wings and tail. As the aircraft rolls, the 

impact on one wing is increased which constitutes more lift and the impact on the other 

wing is decreased which generates less lift. The identical effect occurs when the 

aircraft yaws, but 𝑐𝑙𝑟 is much smaller in magnitude than 𝑐𝑙𝑝. Positive values for 𝑐𝑙𝑝 

cause the system to roll uncontrollably and diverge. 

 

𝑐𝑙𝑟 (cross-coupling) is primarily contributed by two sources as the wings and vertical 

tail from the fact that, when the airplane is yawed, 𝛼 is changed and the lift force is 

propagated. 

 

𝑐𝑙𝛿𝑟
 (roll due to rudder) is negative whether, the center of pressure (cp) of the vertical 

tail is above the center of gravity (cg), as with a conventional vertical tail. 

 

𝑐𝑙𝛿𝑎
 (lateral control power) has a great significance since it represents the effect of 

deflecting the ailerons which is the main roll control mechanism. A rolling moment 

can also be constituted by deflecting the rudder as an outcome of the alteration of the 

lift distribution, but this effect is much smaller in magnitude than the aileron effect. 

 

𝑐𝑛𝛽
 (static directional stability/ weathercock stability) is described as the preliminary 

inclination of an airplane to return to or depart from its equilibrium 𝛽 (normally equal 

to zero) when disturbed. It is principally responsible for the aircraft directional 
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dynamic stability. The total value of 𝑐𝑛𝛽
, at any 𝛽, is specified by contributions from 

the vertical tail, fuselage and wing. 

 

𝑐𝑛𝑝
 is another potentially significant moment which is originated from the differential 

drag constituted by the wings as they roll. 

 

𝑐𝑛𝑟
 provides weathercock damping analogous to 𝑐𝑚𝑞

 in pitch.  

 

𝑐𝑛𝛿𝑟
(rudder power) is of major importance since it represents the impact of deflecting 

the rudder. It is the main yaw control mechanism, but there is a potential for aileron 

deflection to constitute a yawing moment which comes from the differential drag 

between the left and right ailerons when they are deflected. 

 

 Mathematical Modelling of Aircraft 

 

 Rigid Body Equations of Motion 

 

A number of assumptions must be established to derive the EOM. These assumptions 

could be summarized as below: 

 

 The aircraft is a rigid body 

 The earth is flat and non-rotating 

 The aircraft mass characteristics are stationary and any mass variety is 

inconsiderable 

 The aircraft has a plan of symmetry in the 𝑋𝐵𝑍𝐵 plan which denotes that 

moment of inertia 𝐼𝑥𝑦 and 𝐼𝑦𝑧 are equal to zero. This assumption is eligible for 

an undamaged aircraft. In the case of the aircraft is influenced from asymmetric 

damage, the assumption does not work anymore.  

 

Aircraft EOM could be derived from Newtons Second Law. The external forces 
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consist of thrust forces, gravity forces, aerodynamic forces and the external moments 

consist of the engine moments and the aerodynamic moments. The external forces 

could be derived in Eq. (1), Eq. (2), Eq. (3) and the external moments could be derived 

in Eq. (4), Eq. (5) and Eq. (6) with respect to [6] in terms of aerodynamic coefficients. 

 

𝐹𝑥 = 
1

2
𝜌𝑉𝑡

2𝑆(−𝑐𝐷 cos 𝛼 + 𝑐𝐿 sin 𝛼) + 𝐹𝑇𝑥
− 𝑚𝑔 sin 𝜃 

 (1) 

 

𝐹𝑦 = 
1

2
𝜌𝑉𝑡

2𝑆𝑐𝑌 + 𝐹𝑇𝑦
− 𝑚𝑔 cos 𝜃 sin∅ 

 (2) 

 

𝐹𝑧 = 
1

2
𝜌𝑉𝑡

2𝑆(−𝑐𝐷 sin 𝛼 − 𝑐𝐿 cos 𝛼) + 𝐹𝑇𝑧
− 𝑚𝑔 cos 𝜃 cos∅ 

 (3) 

 

 

 

𝑀𝑥 = 
1

2
𝜌𝑉𝑡

2𝑆𝑏𝑐𝑙𝑏 + 𝑀𝑒𝑛𝑔𝑥 
 (4) 

 

𝑀𝑦 = 
1

2
𝜌𝑉𝑡

2𝑆𝑐̅𝑐𝑚𝑏 + 𝑀𝑒𝑛𝑔𝑦 
 (5) 

 

𝑀𝑧 = 
1

2
𝜌𝑉𝑡

2𝑆𝑏𝑐𝑛𝑏 + 𝑀𝑒𝑛𝑔𝑧 
 (6) 

 

 Nonlinearity and Linearity Conversion 

 

The primary concept of linearization is to convert a non linear model into an exactly 

or partially linear model firstly and apply common linearization design techniques for 

completing control design subsequently. This attempt is utilized to solve numerous 

feasible non linear flight control issues. It can be implemented to significant classes of 

nonlinear systems, i.e. so-called input state linearization or minimal phase models 

requiring complete state measuring [26]. 
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The EOM of a rigid airplane are non linear. It is a form of 12 non linear first order 

normal differential equations. Within 12 equations, 6 equations are dynamic and other 

6 equations are kinematic. Dynamic equations originate from 3 force and 3 moment 

equations, whereas kinematic equations originate from 3 navigation equations and 3 

Euler angles equations. Navigation equations are decoupled with other nine equations, 

in this way the other 9 equations could be taken as a set and the navigation equations 

could be taken independently. 

 

Among the resulting nine nonlinear equations, lateral dynamics equations that is 

investigated in this study, including the set of aerodynamic coefficients, is linearized 

around steady state trim point and then used in the simulations to evaluate the sensor 

fault detection performance of the Kalman filter. Linearization is acceptable in such 

flight scenarios covering a climb, level cruise, coordinated turn, power approach or 

even in a pull up, in which the aircraft functions mostly near around the equilibrium 

point. Whatever the case is, proposed FDI scheme manages the flight parameters that 

is utilized for fault identification. In case of FDI scheme detects a failure when any 

parameter is out of identified gap, FDI scheme notifies an error. However, it must 

affirm the fault notice following warnings when flight parameters are in identified gap. 

 

Nonlinear equations can be linearized by means of small-disturbance theory. In 

accordance with the theory, each variable in these equations is changed with a 

reference value and also a disturbance or perturbation. Technically, robustness is 

referred to how the system can struggle with the perturbations of the system model, 

meanwhile releases disturbance and measurement noise to other properties such as 

stability and sensitivity. For simplicity, the reference flight situation is considered to 

be symmetrical and pushing forces are considered to stand stable. Entire structure of 

airplane is concerned with the sensor faults.  A sum of the differential nonlinear 

equations of Boeing 747 for the lateral motion are extracted from [6] and given as in 

Eq. (7), Eq. (8), Eq. (9), Eq. (10). 
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�̇� =
1

𝑚𝑉𝑡
(−𝐹𝑥 cos 𝛼 sin 𝛽 + 𝐹𝑦 cos 𝛽 − 𝐹𝑧 sin 𝛼 sin 𝛽

− 𝑚𝑉𝑡(−𝑝 sin 𝛼 + 𝑟 cos𝛼)) 

 (7) 

 

�̇� = (
(𝐼 𝑥𝑥 − 𝐼 𝑦𝑦) 𝐼 𝑥𝑥 + 𝐼 𝑥𝑧

 2

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑝 −

(𝐼 𝑥𝑥 − 𝐼 𝑦𝑦 + 𝐼 𝑧𝑧) 𝐼 𝑥𝑧

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑟)𝑞

+
𝐼 𝑥𝑧

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑀𝑥 +

𝐼 𝑥𝑥

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑀𝑧 

 (8) 

 

�̇� = (
(𝐼 𝑦𝑦 − 𝐼 𝑧𝑧) 𝐼 𝑧𝑧 + 𝐼 𝑧𝑧

 2

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑟 −

(𝐼 𝑥𝑥 − 𝐼 𝑦𝑦 + 𝐼 𝑧𝑧) 𝐼 𝑥𝑧

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑝) 𝑞

+
𝐼 𝑧𝑧

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑀𝑥 +

𝐼 𝑥𝑧

𝐼 𝑥𝑥 𝐼 𝑧𝑧 − 𝐼 𝑥𝑧
 2 𝑀𝑧 

 (9) 

 

∅̇ = 𝑝 + tan𝜃 (𝑞 sin∅ + 𝑟 cos ∅)  (10) 

 

The equations above could be approximated to partially linear systems as an outcome 

of the nonlinear functions transformed to linear functions using small-disturbance 

theory. The assumption covers the motion of the aircraft includes small deviations 

about a steady flight condition. The model will be defined as nonlinear if the primary 

variables are subject to the state or control. Conversely, the model is linear when the 

primary variables are free from the state and control. The system matrices of the 

aircraft can be computed according to the specified flight cases in the scenarios with 

the following equations as in Eq. (11), Eq. (12), Eq. (13), Eq. (14), Eq. (15) [27]. 

Basically, a transformation is linear if its output is proportional to its input which 

means the linear relationships between variables are maintained. On the other hand, if 

a transformation does not satisfy this characteristic, it is termed as nonlinear as 

correlation between the variables are changed. The aircraft model used in this study 

consists of many complex nonlinear equations identifying force, moment and motion 

of the platform. Considering the state estimators also used for the comparison approach 

are both linear estimators, so the linear transformation is required specific to the lateral 
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states. Eq. (11) is the matrix representation of partial derivatives of the lateral states 

and figures out the linear transformation that takes a small change in the input of a 

function to the corresponding small change in the output supplied that several partial 

derivatives exist and deal adequately well. 

  

[

𝐷𝛽
𝐷�̂�
𝐷�̂�
𝐷∅

] =

[
 
 
 
 
 
 
 
 𝑐𝑦𝛽

2𝜇

𝑐𝑦𝑝

2𝜇

𝑐𝑦𝑟
− 2

𝜇
𝐴

2𝜇

𝑐𝑤𝑒
𝑐𝑜𝑠𝛾𝑒

2𝜇
𝑐𝑙𝛽

𝐼 ′𝑥
+ 𝐼 ′𝑧𝑥𝑐𝑛𝛽

𝑐𝑙𝑝

 𝐼 ′𝑥
+ 𝐼′𝑧𝑥𝑐𝑛𝑝

𝑐𝑙𝑟

𝐼′𝑥
+ 𝐼′𝑧𝑥𝑐𝑛𝑟

0

𝐼 ′𝑧𝑥𝑐𝑙𝛽
+

𝑐𝑛𝛽

𝐼 ′𝑧
𝐼 ′𝑧𝑥𝑐𝑙𝑝 +

𝑐𝑛𝑝

𝐼 ′𝑧
𝐼′𝑧𝑥𝑐𝑙𝑟 +

𝑐𝑛𝑟

𝐼 ′𝑧
0

0
1

𝐴

1

𝐴
𝑡𝑎𝑛𝛾𝑒 0 ]

 
 
 
 
 
 
 
 

[

𝛽
�̂�
�̂�
∅

]

+

[
 
 
 
 
 
 
 

∆𝑐𝑦𝑐

2𝜇
∆𝑐𝑙𝑐

𝐼 ′𝑥
+ 𝐼 ′𝑧𝑥∆𝑐𝑛𝑐

𝐼 ′𝑧𝑥∆𝑐𝑙𝑐+

∆𝑐𝑛𝑐

𝐼 ′𝑧
0 ]

 
 
 
 
 
 
 

 

 (11) 

 

𝐼′𝑥 = 𝐴( 𝐼𝑥𝐼𝑧 − 𝐼𝑧𝑥
 2
 ) /𝐼𝑧  (12) 

 

𝐼′𝑧 = 𝐴 ( 𝐼𝑥𝐼𝑧 − 𝐼𝑧𝑥
 2
 ) /𝐼𝑥  (13) 

 

𝐼′𝑧𝑥 = 𝐼𝑧𝑥 / 𝐴( 𝐼𝑥𝐼𝑧 − 𝐼𝑧𝑥
 2
 )  (14) 

 

[

∆𝑐𝑦𝑐

∆𝑐𝑙𝑐

∆𝑐𝑛𝑐

] = [

𝑐𝑦𝛿𝑟
0

𝑐𝑙𝛿𝑟
𝑐𝑙𝛿𝑎

𝑐𝑛𝛿𝑟
𝑐𝑛𝛿𝑎

] [
𝛿𝑟

𝛿𝑎
] 

 (15) 

 

 Fault Detection Method 

 

A simplified trim model of the lateral axis LTI Boeing 747 model in a cruise flight 
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used in the simulation has mainly four states (𝑥) which consist of sideslip angle (𝛽), 

yaw rate (𝑟), roll rate (𝑝) and roll angle (Ø) as given in Eq. (16) and two inputs (𝑢) 

which consist of the rudder deflection (𝛿𝑟) and aileron deflection (𝛿𝑎) as given in Eq. 

(17) [11]. The main states of the aircraft can be summarized mainly in the true airspeed 

(𝑉𝑇), angle of attack (𝛼), sideslip angle (𝛽),  angular rates (𝑝, 𝑞, 𝑟), Euler angles 

(𝜑, 𝜃, ∅), positions in earth-fixed reference frame (𝑥𝑒, 𝑦𝑒) and altitude (ℎ𝑒). For the 

study, 𝛽 is accepted as faulty sensor state, whereas other states are healthy. Therefore, 

the lateral dynamic effect of the sideslip angle is represented efficiently.  

 

Controller and pilot commands associated with the autopilot system separately carry 

signals to the feed the required inputs to the actuator dynamics system. Sensors are 

accepted to be optimal, thus inputs of aircraft body form a feedback straightly to 

observer design. In other words, the controller within the autopilot model is disrupted 

by noise in the sensors during simulation. Detecting the error in sideslip is critical 

because it augments parasite drag due to the efficient frontal cross-section area of the 

plant is augmented and it leads to a decrease in lift due to the blanking impact of the 

fuselage. Related to the sideslip angle, errors can be divided to two groups as 

calibration error influencing the sensors and additional white noise modeling the 

sensor defectiveness. 

 

𝑥 =  [𝛽, 𝑟, 𝑝, Ø]𝑇  (16) 

 

𝑢 =  [𝛿𝑟 , 𝛿𝑎]𝑇  (17) 

 

In this study, the steady state function is designed and tested with different simulation 

cases. For carrying out the design, a linearized model is developed in an equilibrium 

point. The cruise flight is proceeded at altitude of 20,000 ft and Mach 0.44. The lateral 

dynamic approachment of the airplane is used to design observer as a model-based 

FDD. The linear state-space equations are given in Eq. (18) and Eq. (19). Here, as the 

linearization purpose, state-space equation demonstrates that system model does not 

change over time which means system matrices A and B remain constant. On the other 
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hand, the nonlinearity of the aircraft model of Boeing 747 is not affected with this 

conversion. The lateral attitude of the aircraft is examined with the fault effects on the 

lateral states. 

 

�̇� = 𝐴𝑥 + 𝐵𝑢   (18) 

 

𝑦 = 𝐶𝑥 + 𝐷𝑢   (19) 

 

 Method for Linearization 

 

For the study, linear analysis tool of MATLAB is used to find the system matrices as 

the state matrix (𝐴), input matrix (𝐵), output distribution matrix (𝐶), feed forward 

matrix (𝐷), given as Eq. (20), Eq. (21), Eq. (22), Eq. (23) are matched for the plant’s 

trim values in a steady state flight at 20,000 ft altitude and 0.44 Mach true airspeed. 

After adding input perturbation to deflections and open loop output to any of the lateral 

states of the aircraft model in Simulink and run the complete model, those system 

matrices are correctly found. 

 

𝐴 = [

−0.1345 −1.0040 0.0459 0.0653
0.9460 −0.3314 −0.0559 −0.0006

−2.7057 0.4002 −1.1620 0.0018
0.0267 0.0428 1.0117 0

] 

 (20) 

 

𝐵 = [

−0.0001 0.0132
−0.0157 −0.6222
−0.2241 0.1070
0.0023 −0.0008

] 

 (21) 

 

𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 (22) 
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𝐷 = [

0 0
0 0
0 0
0 0

] 

 (23) 

 

To prove that the acquired system matrices conform with the nonlinear aircraft model 

of Boeing 747, the states of measurements can be compared with the state-space of the 

system. The results of lateral states are demonstrated as in Figure 3.2, Figure 3.3, 

Figure 3.4 and Figure 3.5. 

 

 

Figure 3.2 Sideslip Angle vs. Time 

 

 

Figure 3.3 Yaw Rate vs. Time 
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Figure 3.4 Roll Rate vs. Time 

 

 

Figure 3.5 Roll Angle vs. Time 

 

When rudder input 𝛿𝑟 = 0.01 rad, the identical states of state-space model are 

observed to converge with the sensor measurements. This condition verifies that the 

system model is linearized accurately and can be used with linear observers 

effectively. 

 

The alterations in the platform parameters at any flight situation are regarded as a fault 

that should be detected with state estimation. For instance, if it is not corrected, a 

sensor failure will lead to false estimation of variation in parameters of 𝐴 matrix or an 
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actuator failure will lead to false interpretation in parameters of 𝐵 matrix. With another 

example, plant variation because of the loss of the aircraft structure could lead to false 

values of system matrices 𝐴, 𝐵, 𝐶, 𝐷. [28]. 

 

 Poles of the System Matrix 

 

Eigen values of the system matrix 𝐴 is solved to find the modes of the system and also 

the poles of the transfer function. The poles of the system are calculated in MATLAB 

after determining the system matrix A. The poles reveal that the system is stable as 

they exist in the left side of the y-axis. The poles are listed as below: 

 

Dutch roll (oscillatory): −0.1843 + 1.0749𝑖 , −0.1843 − 1.0749𝑖 

 

Roll damping (fast real): −1.2390 + 0.0000𝑖 

 

Spiral mode (slow mode): −0.0203 + 0.0000𝑖 

 

 Gain Matrix of the Linear Observer 

 

The gain matrix of Luenberger observer is also calculated in MATLAB. Luenberger 

gain matrix (𝐿) is chosen such that (𝐴 − 𝐿𝐶) has stable eigen values placed further 

away (negatively) from the eigen values of system matrix 𝐴. As a well-known method 

of Modern Control, Pole Placement technique is used to find the observer gain matrix. 

The poles in the closed-loop transfer function may be placed in desired locations to 

assure satisfactory transient response. They are accepted approximately 4-5 times 

greater for faster estimation by the observer. Pole matrix used for gain matrix 

calculation can be seen in Eq. (24). With the change of gain, the system poles and 

zeros move around the S-plane. Root-locus allows to graph the locations of the poles 

and zeros for every value of gain. 𝐿 is found by 𝑝𝑙𝑎𝑐𝑒 command in MATLAB as in 

Eq. (25). 
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𝑝 = [−5 −1 + 𝑖 −1 − 𝑖 −0.1]  (24) 

 

𝐿 = [

0.8655 1.9460 −2.7057 0.0267
−2.0040 0.6686 0.4002 0.0428
0.0459 −0.0559 3.8380 1.0117
0.0653 −0.0006 0.0018 0.1000

] 

 (25) 

 

 Design of Subsystems in Simulink 

 

Diverse analysis processes are used attached to the methods applied to propagate the 

residual. A well-established n process to analyze residual propagated by devoted 

observers for identifying failures is threshold sense. A basic threshold logic to analyze 

the residual signal is: 

 

{
‖𝑡𝑖(𝑡)‖ < 𝑡;           healthy case
‖𝑡𝑖(𝑡)‖ ≥ 𝑡;          faulty case

} 

 

that 𝑡𝑖(𝑡) represents instant time while 𝑡 represents the detection time given in Eq. (26) 

that can be confirmed within the MATLAB Simulink blocks while performing the 

simulation cases. 

 

𝑡 =  𝑁 𝑥 𝑑𝑡  (26) 

 

Fault indicator subsystem is applied to reveal stuck fault of sideslip angle (𝛽) sensor. 

Sideslip angle (𝛽) is taken out from other states using Demux so as to fault indication. 

β sensor signal is transferred through fault introducer and faulty signal β is multiplexed 

with other three healthy sensor states using Mux in Fault indicator subsystem to form 

𝑥𝐹𝑎𝑢𝑙𝑡𝑦 as a faulty state vector. The architecture of the overall model also meets the 

task of reconfiguring corrected 𝛽 (𝛽𝑜𝑢𝑡) that is applied to correct faulty state vector 

𝑥𝐹𝑎𝑢𝑙𝑡𝑦 in case of fault. Reconfigured or corrected 𝛽 (𝛽𝑜𝑢𝑡) is multiplexed with the 

other three states of 𝑥𝐹𝑎𝑢𝑙𝑡𝑦 and also other thirty-six auxiliary healthy states to form 

corrected state vector, which is then fed back to nonlinear Boeing 747 aircraft 
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subsystem model. Block diagram representation of Discrete Time Boeing 747 model 

is shown in Figure 3.6. β sensor state from xFaulty is terminated with the use of 

 

Terminator block [5]. Block diagram representation of Fault Indicator subsystem is 

shown in Figure 3.7. 

 

Discrete Time 
Boeing 747 

model

Longitudinal
stick

Lateral
stick

Throttle

Pedal

Deflections

Sensor
outputs

 

Figure 3.6 Block Diagram Representation of Discrete Time Boeing 747 Model 

 

Fault Indicator 
subsystem

Measured 
states with 

Gaussian noise

Sideslip angle 
with stuck 

fault

 

Figure 3.7 Block Diagram Representation of Fault Indicator Subsystem 

 

Fault introducer is performed by means of 𝑁-Sample Switch as a Simulink block. 

Sample Switch 𝑁 is assigned to 100 in the model. Stuck fault is introduced at 𝑡 = 2 𝑠, 

i.e. (𝑁𝑥𝑑𝑡) of the faulty cases in the model. It is expressed with if-else condition. If 

𝑡 < 2 s, output = healthy signal else if 𝑡 ≥ 2 s, output = stuck signal. 𝑁 Sample Switch 
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block generates the signal connected to the healthy signal gate. 𝑁 is indicated in Switch 

count variable [10]. 

 

Threshold value for the sensor fault signal is determined when the fault indicator signal 

is emerged instantly in the detection time. The fault indicator signal could be used as 

control signal for reconfiguration operation. The simplest approach will be the usage 

of correction signals when estimation of fault surpasses a prior determined threshold 

value. The selected threshold value needs to be greater than the normal variations in 

fault estimation signals for avoiding false alarms, yet not too great that can cause 

missing the faults. In the simulation stage of the study, the threshold value is decided 

to assign to ‘0.8’. This identification establishes a minimal that is well-overcomed 

while analyzing the proposed filter algorithm in fault schemes [10]. 

 

Reconfiguration block maintains the estimated sensor signal (from mathematical 

model) rather than faulty sensor signal in the feedback loop. This is modeled by 

Reconfiguration subsystem which is managed for two goals: First objective is to detect 

and demonstrate fault in Fault Indicator. This is done by comparing aircraft sensor 

output 𝛽  with observer estimate 𝛽𝑒 in Reconfiguration subsystem. The second 

objective is to switch over to observer estimate 𝛽𝑒  rather than faulty sensor output 𝛽 

when fault is indicated. Block diagram representation of Reconfiguration subsystem 

for Luenberger observer approach is shown in Figure 3.8. On the other side, switch 

occurs between the estimated lateral states of Kalman filter1 and Kalman filter2 

according to the threshold value ’0.8’ for Kalman filter approach which is 

demonstrated in Figure 3.9. Detailed information can be followed in the explanation 

section of the simulation cases in Chapter 4. 
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Reconfiguration 
subsystem

Estimated 
lateral states 
from Kalman 

filter1
Lateral statesEstimated 

lateral states 
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filter2

Sideslip angle 
with stuck 

fault

Fault Indicator

 

Figure 3.8 Block Diagram Representation of Reconfiguration Subsystem for Kalman 

filter approach 

 

Reconfiguration 
subsystem

Estimated lateral 
states from 
Luenberger 

observer

Lateral states

Fault IndicatorSideslip angle 
with stuck fault

 

Figure 3.9 Block Diagram Representation of Reconfiguration Subsystem for 

Luenberger observer approach 

 

The fault detection and reconfiguration is accomplished with the application of an 

observer to the system model and additionally using Canberra metric in the 

Reconfiguration subsystem. Fault detection model detects the stuck fault that utilizes 

Canberra metric. Canberra is a distance metric and useful for similarity or dissimilarity 

comparison. The generalized equation is given in the form of Eq. (27). The nominator 

in the metric equation specifies the difference and the denominator normalizes the 

difference. 
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𝐶𝑎𝑛𝑏𝑒𝑟𝑟𝑎 𝑀𝑒𝑡𝑟𝑖𝑐 =
|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| + |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|
 

 

  (27) 

Canberra metric compares 𝛽 signal from Fault Indicator subsystem and 𝛽𝑒 signal from 

Observer subsystem and generates signal ‘𝑆’ as a part of the reconfiguration process. 

It enables to observe how much 𝛽 signal differs from the 𝛽𝑒 signal. Signal ‘𝑆’ creates 

an input to the transfer function block of Simulink which treats as a filter so that it is 

smoothened. The mathematical phrase of Canberra metric with respect to the sideslip 

angle 𝛽 is indicated in Eq. (28) [5]. 

 

Canberra metric has only one singularity condition that it is both 𝛽 and 𝛽𝑒 is equal to 

0. In this condition, the singularity in the algorithm is overcomed with equalizing 

Canberra metric to 0. 

 

𝑆(𝑡) =  
|𝛽(𝑡) − 𝛽𝑒(𝑡)|

|𝛽(𝑡)| + |𝛽𝑒(𝑡)|
 

  (28) 

    

Eq. (28) is simulated along with 𝑆𝑤𝑖𝑡𝑐ℎ and 𝐴𝑏𝑠 blocks in MATLAB Simulink to 

form Reconfiguration subsystem. 𝐴𝑏𝑠 block smooths Signal ‘𝑆’ and outputs the 

absolute value of the input in Reconfiguration subsystem. Threshold value which is 

equal or higher than ‘0.8’ of this block demonstrates the fault incident. The fault 

indicator signal is also applied as control signal for reconfiguration in switch. This 

control signal of Switch is the output of 𝐴𝑏𝑠 block. Switch operates the following 

equation [5]. 

 

𝛽𝑜𝑢𝑡 = {
𝛽,     |𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙| < 0.8   

𝛽𝑒,     |𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙| ≥ 0.8  
} 

 

It is actualized with the subsequent if-else statement of Switch block in Simulink. 

 

If |𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙| ≥ 0.8,  𝛽𝑜𝑢𝑡 = 𝛽𝑒, else 𝛽𝑜𝑢𝑡 = 𝛽; Reconfiguration is done as 
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soon as fault is detected by switching over to estimated 𝛽𝑒 from the proposed observer 

subsystem.  

 

Observer subsystem consists of both Kalman filter and Luenberger observer 

respectively. It estimates the sensor states of sideslip angle (𝛽), yaw rate (𝑟), roll 

rate (𝑝) and roll angle (Ø). It also uses healthy sensor outputs from the nonlinear 

closed-loop aircraft model for estimating the sensor states. Block diagram 

representation of Kalman filters are shown in Figure 3.11 and Figure 3.11, while, block 

diagram representation of Luenberger observer is demonstrated in Figure 3.12 

 

Kalman filter
1

Sideslip angle 
with stuck 

fault

4 estimated 
lateral states

4 measured 
lateral states 
with Gaussian 

noise

Deflections

Estimated 
sideslip angle

Estimate error 
propagated in 
each time-step

Initial estimate 
error 

propagated in 
each time-step

4 initial states 
propagated in 
each time-step

 

Figure 3.10 Block Diagram Representation of Kalman Filter 1 
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Kalman filter
2

Sideslip angle 
with stuck 

fault

4 estimated 
lateral states

3 measured 
lateral states 
with Gaussian 

noise

Deflections

Estimate error 
propagated in 
each time-step

Initial estimate 
error 

propagated in 
each time-step

3 initial states 
propagated in 
each time-step

 

Figure 3.11 Block Diagram Representation of Kalman Filter 2 

 

Luenberger 
observer
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Estimated 
lateral states

Measured 
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noise
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Estimate error 
propagated in 
each time-step

Initial states 
propagated in 
each time-step

 

Figure 3.12 Block Diagram Representation of Luenberger Observer 
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Associating the subsystems above, the entire system architecture of the closed-loop 

aircraft model covering the fault detection and observer-based state estimation models 

in MATLAB Simulink is indicated in Figure 3.13 for Kalman filter and in Figure 3.14 

for Luenberger observer. 

 

Discrete Time 
Boeing 747 

model

Throttle
Longitudinal 

stick
Lateral stick

Pedal

(measured states)

Fault Indicator 
subsystem

Gaussian 
noise block

(with stuck fault)

𝒙𝟔 = [𝜷] 

Kalman filter
1

(estimatedstates)

Estimate error

Reconfiguration
Subsystem

(estimated state)

Kalman filter
2

𝒙𝟒=[𝜷] 

Gaussian 
noise block

(estimated states)

Estimate error

Fault
Indicator

Other sensor 
outputs

Mux block

Constant block 
(constant 
value=0)

Mux block

Mux block

AutopilotDeflections

(measured states)

𝒙𝟏 = [𝜷, 𝒓, 𝒑, ∅] 

 

𝒙𝟐 = [𝒓, 𝒑, ∅] 

𝒙𝟕 = [𝜷, 𝒓, 𝒑, ∅] 

𝒙𝟑 = [𝜷, 𝒓, 𝒑, ∅] 

𝒙𝟓 = [𝜷, 𝒓, 𝒑, ∅] 

 

Figure 3.13 The Entire System Architecture of the Closed-Loop Model for Kalman 

filter 
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Figure 3.14 The Entire System Architecture of the Closed-Loop Model for 

Luenberger observer 

 

 Residual Generation 

 

The observer-based approach can be applied for only online measurement processes 

unlike other approaches yield more design freedom. The aim of the observer-based 

fault detection technique is to specify a residual. The usage of an observer for 

specifying residual can be followed in Figure 3.15. 
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Figure 3.15 Usage of an Observer for Constituting Residual [29] 

 

 Kalman Filtering 

 

Kalman filter is a notable methodology as a well-known observer type. The Kalman 

filter was originated in the 1960’s by R. Kalman. The filter achieved popularity by its 

implementation of the spacecraft navigation for well-known NASA Apollo 

programme. Subsequently, Kalman filter was applied in various engineering systems 

and fields covering navigation, computer vision, image processing, radar, 

manufacturing, neural network or fuzzy logic [19]. 

 

As an optimum observer-based on indirect, inaccurate and uncertain observations 

thanks to minimizing the mean square error of the estimated states coming from the 

Gaussian noise. Kalman filters not only ensure fairly accurate results because of its 

structure and optimality but also have a recursive property which enables new 

measurements to be processed as they reach for real-time digital processing. Kalman 

filter treat like an estimator and thus it is utilized for fault detection by generating 

residuals by checking real and estimated outputs. 

 

Kalman filter’s main objective is estimating the variables which can not be measured 
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directly. The algorithm usually occurs in prediction and correction steps and due to 

algorithm's repetitive structure, the algorithm could be practiced in real time operations 

applying current measuring, formerly computed variables and their uncertainty 

matrices. Prediction uses a preceding knowledge of how the system thrives over time, 

i.e. the further variable values are approximated to outcome their current variable 

values by multiplying them with particular system matrices. The matrices are specified 

according to the designed system model. When the result of subsequent measure is 

considered, the predicted values are updated with the help of a weighted average. 

Further weight being given to the estimated values causes higher certainty in the 

model. Correction uses existing measurements. After identifying how the 

measurements are involved with the estimated variables, the actual measurements 

could be compared to the predicted measurements. The residual of the measurements 

is multiplied by a Kalman gain matrix and the acquired values are added to the 

predicted values to straighten them. Supposing that the designed system model is 

roughly reasonable up to certain additive Gaussian noise with known variance, then 

the Kalman filter convergence to the steady state regardless of the initial conditions 

could be proven. This verifies the particular interest is concentrated on the estimation 

of the noise variance, in other words, variance matrices and covariance matrices belong 

to the state model and the measurement model. 

 

The advantage that Kalman filters get ahead against other observers is that Kalman 

gain matrix is computed in an optimal way. The standard Kalman filter is not adaptive 

which means that it does not spontaneously regulate Kalman gain matrix by actual 

error statistics compromised in the designed model. Kalman filter is charming due to 

it is the one which minimizes the estimation error variance beside all other possible 

filters. Kalman filter is generally applied to control systems due to the fact that proper 

estimations of the process variables are primarily requested in a control operation. 

 

There is variety of Kalman filters based on the characteristic of the model linearity, 

type of assumed distribution and magnitude of the computational cost as given in Table 

3.4 
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Table 3.4 Variety of Kalman filters 

 

State Estimator Model Assumed 

Distribution 

Computational cost 

Kalman filter Linear Gaussian Low 

Extended Kalman 

filter 

Locally Linear Gaussian Low (if Jacobians need 

to be computed 

analytically) 

Unscented 

Kalman filter 

Nonlinear Gaussian Medium 

 

A state-space model of the linear system is simply defined in subsequent expression 

in Eq. (29). Accounting the measurement uncertainty that results from the inaccuracy 

of the model or inaccuracy of the input values, a zero mean and unit covariance matrix 

Gaussian white noise is introduced to model as given in Eq. (30). State equation can 

be indicated as in Eq. (30) and Eq. (31) and output equation can be indicated as in Eq. 

(31). 

 

𝑥 𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘  (29) 

 

   

𝑥 𝑘+1 = A𝑥 𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘  (30) 

 

   

 𝑦 𝑘+1 = 𝐶𝑥𝑘+1 + 𝑧𝑘 (31) 

 

where 𝑘 represents the time index, 𝐴 implies state transition matrix that concerns the 

state from former time step, 𝐵 implies input matrix that links the control input 𝑢 with 

𝑥. 𝑥 implies state, 𝑢 implies  known input, 𝑦 implies measurement output, 𝑤 implies 
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process noise, 𝑧 implies measurement noise. All quantitatives are vectors in general, 

 

thus, each of them comprises at least two elements. State (𝑥) comprises entire data 

over system’s current value, but it is not possible to measure 𝑥 can not be measured 

straightly. Instead, the measurement output (𝑦)is measured and disrupted by 

measurement noise (𝑧). The measurement output (𝑦) helps for gain estimation for 

state (𝑥), however, the information can not be taken from measurement output (𝑦) due 

it is affected by noise. Process noise (𝑤) is presumed as a zero mean and unit 

covariance matrix Gaussian white noise. In practice, the value of the variance is 

unknown and it must have been estimated. The measurement noise (𝑧) is introduced 

by the means of measurements and also assumed to be modeled with a zero mean and 

unit covariance matrix Gaussian white noise. 

 

The conventional Kalman filter could be accepted to be perfectly tuned due to the 

residual of actual states and estimated states. Generally, complexity reduction of 

modeling is invoked because of the fact that there are various unknown parameters in 

a model. Hence, in real applications, the certain noise covariances 𝑅 and 𝑄 are not 

known. On the other hand, all variables are presumed to be known within the study. 

When the residuals in Kalman filter does not conform with the actual process with 

respect to the nature of noise parameter, the filter diverges or converges to an extensive 

boundary [30]. 

 

 Kalman Filtering Theory and Formulation 

 

An estimator should satisfy two criteria: First requirement is to make sure of the 

equality between the average value of state estimation and real state instead of being 

deviated in any way. Numerically, the expected value of estimation must be identical 

to the one of state. Secondary requirement is to make sure of the minimum 

convergence of state estimation from real state. Numerically, estimator with minimum 

possible error variance is expected to be found. 
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The Kalman filter is a state estimator that satisfies the criteria mentioned above. The 

filter is used in the condition where the dynamics of a system being estimated and 

 

modelled as linear and time-invariant. The basic outline is pointed out in Figure 3.16. 

However, Kalman filter solution is merely applicable when precise assumptions about 

the noise are satisfied which influences the system model. Process noise covariance 

matrix (𝑄) and measurement noise covariance matrix (𝑅)  are described in Eq. (32) 

and Eq. (33). 

 

Observation Predict Stage Update Stage
Output Current 

Estimate

System 

Characteristics

Simple Kalman Filter

 

 

Figure 3.16 Basic Operation of a Simple Kalman Filter 

 

𝑄 =  𝐸(𝑤𝑘𝑤𝑘
𝑇)  (32) 

 

𝑅 =  𝐸(𝑧𝑘𝑧𝑘
𝑇)  (33) 

 

that 𝑤𝑇  and 𝑧𝑇  demonstrate the transpose operation of noise matrices 𝑤 and 𝑧 and 𝐸 

illustrates expected value. Kalman filter mainly consists of prediction and correction 

stages.  

 

For prediction stage, observer states are predicted as well as the covariance matrix. A 
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covariance matrix could be considered as an indication of how well the estimation is 

or as an estimation error. 𝐾 implies Kalman gain matrix while 𝑃 implies the estimate 

error covariance. Prediction stage is illustrated by following equations as followed in 

 

Eq. (34), Eq. (35) and Eq. (36). 

  

�̂� 𝑘+1 = ( 𝐴�̂�𝑘 + 𝐵𝑢𝑘  )   (34) 

   

𝑃 𝑘+1 =  𝐴𝑃𝑘𝐴
𝑇 + 𝑄  (35) 

 

𝐾𝑘 = 𝑃𝑘+1𝐶
𝑇( 𝐶𝑃𝑘+1𝐶

𝑇 + 𝑅 ) −1  (36) 

 

in which −1, 𝑇, ̂  superscripts show inversion, transposition, estimate value, 

respectively. State estimate (�̂�𝑘) is quite intuitive and reproduces with time.  

Correction function implies the quantity in which to straighten reproduced state 

estimation because of the measure. In Eq. (36), Kalman gain matrix (𝐾) indicates that 

covariance of the noise will increase simultaneously with measurement noise 

therefore, Kalman gain matrix (𝐾) will decrease while sufficient reliability could not 

be supplied to the measured output (𝑦) in step of computing the next state �̂�.  

 

The measurement residual can be demonstrated as in Eq. (37). 

 

residual =  𝑦𝑘+1 − 𝐶�̂�𝑘+1  (37) 

 

For the correction stage, the updated state estimate of the observer and covariance 

matrix are determined in Eq. (38) and Eq. (39) for a stochastic system. 

 

�̂� 𝑘+1 = �̂� 𝑘+1 +  𝐾𝑘(𝑦𝑘+1 − 𝐶�̂�𝑘+1)  (38) 

 

�̂� 𝑘+1 = 𝑃 𝑘+1 − (𝐾𝑘𝐶𝑃𝑘+1)  (39) 
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The flow chart representation of Kalman filter algorithm is shown in Figure 3.17. 

 

 

Figure 3.17 Flow Chart Representation of Kalman Filter Algorithm 

 

The dynamic model and the stochastic data ensured to the Kalman filter must be 

correct for actualizing a high performance from the filter. Hence, it is efficient to settle 

the stochastic model for locating the changes in aircraft dynamics and environmental 

conditions. Unlike other types of filters, Kalman filter requires to be maintained with 
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a correct initial state and initial covariance of the civil aircraft. If this precondition can 

not be provided, it is inevitable that Kalman filter will fail during the steady state flight 

of the aircraft. 

 

 Practical Problems and Extensions 

 

Systems with multi states could exceed the computational effort which is correlated 

upon matrix inversion is in proportion with 𝑛 3 (n represents matrix size) which implies 

when count of states in the filter triples, computation effort will increase to twenty-

seven times. Kalman filter maintains high performance in estimation and decreases 

computational effort. 𝐾𝑘  matrix and 𝑃𝑘 matrix are stable in steady-state Kalman filter. 

In real time operations, equations that include additional steps should be applied. 

 

The fact that nearly overall engineering operations are nonlinear was acknowledged 

for Kalman filters and cause the improvement of Extended Kalman Filter as an 

expansion of conventional Kalman filter to the nonlinearity. State estimation is 

discussed for a civil aircraft system in the study through the states could be simply 

approximated by a linear system.  

 

Kalman Filter could estimate a state not only in a time step but also along an overall 

time history, e.g. the trajectory reconstruction of the aircraft in a steady state flight is 

illustrated within this study. The Kalman filter proceeds a smoother estimate of the 

system behavior. 

 

Kalman filter is a theoretically attractive observer by minimizing the variance of the 

estimate error. The formulation depends on a prior knowledge for available noise 

statistics and requires the covariances of noise 𝑅 and 𝑄 to be known. Kalman gain 

matrix (𝐾) could be taken out from output signals, yet the covariance of the state error 

could not have judged without any information of covariances of measurement noise 

(𝑅) and process noise (𝑄). The covariance function of the innovations from any steady 

filter and the output measurements have attracted most in accordance with the linear 
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relations between the matrices within the techniques that have been improved to the 

noise covariances 𝑄 and 𝑅 from measurements. 

 

 Luenberger Observer 

 

The theory of Luenberger observer is originated in the middle of the 1960’s. According 

to Luenberger, any system driven by the output of the dedicated system can serve as 

an observer for that system. [31] 

 

General class of compartmental systems are defined in Eq (40). 

 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑥(0) ≥ 0 

 (40) 

 

The state observation of dynamic systems using a classical Luenberger observer 

contains the integration of the linear differential equations, beginning from equal initial 

cases of the following dynamic system in Eq. (41). 

 

𝑑𝛩

𝑑𝑡
= (𝐴 − 𝐿𝐶)𝛩(𝑡) + 𝐿𝑦(𝑡) 

 (41) 

 

The observer design is based on choosing a matrix 𝐿 that gives a closed-loop stability 

and performance. This design is ordinarily based on placing the eigen values of the 

matrix 𝐴 − 𝐿𝐶 in desired positions. Once 𝐿 is chosen, it is only required to integrate 

Eq. (41), beginning from equal initial cases to obtain estimations that converge to the 

real state. This simpliness of concept and implementation has made Luenberger 

observers favorable for those practical applications where the system can be definetely 

defined by a dynamical system. [32] 
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 Luenberger Observer Theory and Formulation 

 

The steps of Luenberger observer formulation can be followed as below [31]: 

 

 Correcting the estimation equation with a feedback from the estimation error 

𝑦(𝑘) − �̂�(𝑘) 

 

�̂�(𝑘 + 1) = 𝐴�̂�(𝑘) + 𝐵𝑢(𝑘) + 𝐿(𝑦(𝑘) − 𝐶�̂�(𝑘))  (42) 

 

where 𝐿 ∈ 𝑅𝑛×𝑝 is the observer gain and 𝐿(𝑦(𝑘) − 𝐶�̂�(𝑘)) is feedback on 

estimation error 

 

 The dynamics of the state estimation �̃�(𝑘) = 𝑥(𝑘) − �̂�(𝑘) is 

 

�̃�(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) − 𝐴�̂�(𝑘) − 𝐵𝑢(𝑘) − 𝐿[𝑦(𝑘)

− 𝐶�̂�(𝑘)] 

 (43) 

 

�̃�(𝑘 + 1) = (𝐴 − 𝐿𝐶)�̃�(𝑘)   

 

and then              �̃�(𝑘) = (𝐴 − 𝐿𝐶)𝑘(𝑥(0) − �̂�(0)) 

 

 Applying the identical notion for continuous-time systems �̇�(𝑡) = 𝐴𝑥(𝑡) +

𝐵𝑢(𝑡) 

 

𝑑�̂�(𝑡)

𝑑𝑡
= 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + 𝐿[𝑦(𝑡) − 𝐶�̂�(𝑡)] 

 

 (44) 

The dynamics of the state estimation error are  

 

𝑑�̃�(𝑡)

𝑑𝑡
= (𝐴 − 𝐿𝐶)�̃�(𝑡) 

 (45) 
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 Practical Problems and Extensions 

 

Luenberger observer in Eq. (41) does not take into account the fact that the system in 

Eq. (40) is compartmental, so nonrealistic outcomes could be obtained for some of the 

states. 

 

 

Furthermore, it is significant to assure higher and/or lower bounds on the real states in 

many applications, yet conventional Luenberger observers do not assure that the 

estimated states converge from above or below to the real states.  

 

Another problem of classical observers is that the initial state or the uncertainty in the 

system parameters might not be easily incorporated into the observer. [32] 
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CHAPTER 4 

 

SIMULATION AND RESULTS 

 

 

Design and Development Environment Tool 

 

MATLAB, abbreviation of Matrix Laboratory, is an open and expanded software 

environment ordinarily used for engineering or academic purposes and distributed 

worldwide. It simplifies the calculations for various kinds of algorithms, particularly 

in terms of matrix manipulation and obtains helpful methods to display data applying 

the matrix being a core object, the vector as a particular case. This feature makes 

MATLAB especially practical as a modelling tool, as a means of processing data and 

by means of its graphical facilities, a particularly good visualisation package. Simulink 

is a front-end for MATLAB that authorizes complicated algorithms and systems to be 

demonstrated diagrammatically. As well as helping the design of systems, it 

corresponds for simulating and analysing the systems [33]. Owing to these features, 

MATLAB Simulink is chosen to develop the simulation environment expressed in this 

chapter of the study. 

 

Test Bed: A Boeing 747 

 

Modelling and simulation software takes a significant part in the development of 

sensor fault detection in EFCS. Hence, an insight to sensor EFCS system using 

MATLAB Simulink for a civil aircraft is submitted. For compensating the requirement 

to generate a closed-loop aircraft and maintaining its compatibility with the fault 

detection model, a reliable electronic source, Airlib, is benefited from modeling and 

simulation and accepted to obtain a completely accurate civil aircraft model. Airlib is 

a wide airplane model library generated in MATLAB. It consists of multi blocks for 

application of continuous and discrete time nonlinear common airplane models. [34] 
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The aircraft model of Boeing 747 is improved to maintain the nonlinear system to the 

decentralized data fusion. The preliminary idea is choosing the appropriate 

environment in which sensors can extract their data to model sensors for data fusion. 

In the frame of autonomous control, this requires a sufficiently complicated model of 

an actual system therefore, sufficient data flows are ensured for an environment where 

sensors are operated. A Boeing 747 aircraft model is chosen for this aim due to it is 

known that many models have been developed in Simulink, thus it would keep a 

diverse collection of data sources for a sensing system. 

 

Figure 4.1 demonstrates the main structure for a Simulink model of Boeing 747 

obtained by the Airlib toolbox. The model receives several modifications including 

input parameters to steer the aircraft in a desired steady state flight. This condition is 

assigned to sustain a more common sort of motion that would be experienced in flight.  

 

 

 

Figure 4.1 Top-Level Model of Boeing 747 Aircraft in Simulink [34] 

 

In this section, further step is taken to qualify proposed filtering algorithm in order to 

consider the estimation performance for the stuck faults traced by the sensors. The 
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effectiveness of the filtering algorithm and the accuracy of the design paradigm 

submitted in earlier sections are revealed in this section by means of several simulation 

cases. The effectiveness of the observer in the closed-loop setting and the reliability of 

the nonlinear state-feedback control method is evaluated. 

 

As a scope of the validation of the proposed observer-based fault detection approach, 

a number of simulations were performed utilizing a nonlinear Boeing 747 model in 

MATLAB Simulink. Following the model design, the residuals, also considered as 

errors, are propagated by transferring the input data through the observer. The 

thresholds for the FDD are adjusted by evaluating the highest values attained by the 

residuals upon a sequence of tests. In the case of residual value surpasses an exact 

threshold, it initiates a fault alarm. Fault parameterization in the simulation model of 

the filters intents to receive the angle at which the extension of the control effectiveness 

is lost. The plant orientation modifies wind constituents [35]. The wind effect and 

turbulence impact are assumed to be zero as ineffective components in the simulation 

cases run of the study. 

 

For revealing the performance and examining the reliability of suggested FDD 

methodology, three flight scenarios are introduced with distinctness in the states. 

Flight cases are examined in a steady-state phase. For each combination of the flight 

and aircraft parameters, uncertainties are also incorporated. 

 

Case I.  Fault-free (nominal) case 

Case II. Stuck fault of the sensor case at t = 2 s with an initial β = 0.2  rad 

Case III. Stuck fault of the sensor case at t = 2 s with a rudder input as a square wave 

𝛿𝑟 = 0.25  rad for 10 s 

 

The simulations are carried out for the nominal and faulty conditions where all regions 

are trimmable. All of the experiments are performed considered as a steady state flight 

of a Boeing 747 aircraft at 20,000 ft altitude and 0.44 Mach true airspeed. Also, the 

simulation period is arranged to 20 seconds for the simulation cases. The sampling 

 



70 
 

time (𝑑𝑡) is arranged to 0.02 seconds for all of the cases of the simulations. For each 

run of the simulation cases, a number of seven graphics of the results are plotted. In 

Appendix A, the behavior and rate of changes of the other Boeing 747 states apart 

from the lateral states (𝛽, 𝑟, 𝑝, ∅) are introduced, respectively. 

 

The feedback controller that is processed for the several cases acquires the value of 

sideslip angle (𝛽) in each iteration. The primary sources of noise in the aircraft are 

sensors. The wind disturbance and turbulence impact are omitted instantly of the flight. 

The various values which are regulated for measurement noise (𝑧) belong to the sensor 

noise. When sensor fault is detected, the controller directs a dominant rudder deflection 

immediately that alternately propagates high tips in 𝜑 and 𝑟 states. The measurement 

noise (𝑧) is attached to measured sideslip angle that is obtained of the nonlinear aircraft 

model and transferred to the observer model. 

 

CASE I. Fault-free case (Nominal) case: 

 

The fault-free performance of the Kalman filter and Luenberger observer are indicated 

when there is no fault in the system. The initial value of 𝛽 is assigned to 0.2 radians. 

The demonstrations are followed in order of the separately computed lateral states β, 

r, p, ∅ respectively as  Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5 for Kalman 

filter and Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 for Luenberger observer. 

Red curve represents measurement of state with noise, blue curve represents estimate 

of state, magenda curve represents measurement of state with stuck fault and green 

curve represents true state. 

 

The sample switch (𝑁) is assigned to be 100,000 as quite a large value to slide the 

fault to the preliminar instant of the simulation which means that there is no fault 

triggered at all. Gaussian noise in sensors are applied using a Simulink block of white 

noise in MATLAB with a mean zero, noise power 5𝑥10−6 and sample time 0.02 

seconds. The noise power is given by the variance of the noise. The noise variance is 

calculated as in Eq. (46). 
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𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑠𝑞𝑟𝑡(𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟/𝑆𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑚𝑒) 

 

 (46) 

𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1.5 × 10−2 (deg²) (for angles) 

 

𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1.5 × 10−2 (deg/s)² (for angular rates) 

 

  

Considering that there is no relation between the noise covariance matrices, the process 

noise (𝑤), the measurement noise (𝑧) and estimate error covariance (𝑃) are set to the 

optimum levels as given in Table 4.1 after a couple of simulation experiments on 

MATLAB. It is important to underline that the larger value of the measurement noise 

(𝑧) imposes filter to rely on the model itself, whereas lower value of the measurement 

noise (𝑧) imposes filter to rely on the measurements. When measurement noise 

covariance matrix (𝑅) approaches to zero (0), the designed filter relies more on the 

state measurements. The process noise covariance matrix (𝑄) is chosen more 

approximate to measurement noise covariance matrix (𝑅) to also rely on the 

measurements.  
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Table 4.1 The Values of Process Noise, Measurement Noise and Estimate Error 

Covariance for Fault-free Case 

 

Noise Mean Covariance Matrix 

Process Noise 

(w) 

0 

[

5𝑥10−7 0 0 0
0 5𝑥10−7 0 0
0 0 5𝑥10−7 0
0 0 0 5𝑥10−7

] 

Measurement 

Noise (z) 

0 

[

1.5 × 10−2 0 0 0
0 1.5 × 10−2 0 0
0 0 1.5 × 10−2 0
0 0 0 1.5 × 10−2

] 

Estimate Error 

Covariance (P) 

0 

[

5𝑥10−6 0 0 0
0 5𝑥10−6 0 0
0 0 5𝑥10−6 0
0 0 0 5𝑥10−6

] 

 

Results of Kalman-based Approach: 

 

True state of β converges to the estimated state of β carried from the observer model 

as in Figure 4.2. The actual β has a rise time of less than 3 seconds. By considering a 

sample set of values of initial β as 0.2 radians as a reference, then actual β does not 

surpass almost 0.2 radians. Actual β decreases gradually from 0.2 radians to −0.08 

radians and increases gradually over -0.08 radians to 0.01 radians. β settles between 

0.2 and −0.08 radians within 3 seconds in the steady cruise flight. 

 

The distinction of residuals are not required to be precisely zero because of the 

existence of Gaussian noise on sensors that measure β, r, p, ∅  and also the errors in 

the filter design parameters. As observed from Figure 4.2, Figure 4.3, Figure 4.4 and 

Figure 4.5, residuals are minor in the nominal case. 

 

It can be observed from Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5 that Kalman 

filter assumes the fault is not detected due to estimated states approximately converge 
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to the measured states at t = 10 s as the normal fault-free condition. The estimation 

error is minor since the actual value of the engine thrust. The error norm remains in 

the no-fault region and false alarms are avoided. 

 

 

Figure 4.2 Sideslip Angle Residual vs. Time 

 

 

Figure 4.3 Yaw Rate Residual vs. Time 
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Figure 4.4 Roll Rate Residual vs. Time 

 

  

Figure 4.5 Roll Angle Residual vs. Time 

 

Results of Luenberger-based Approach: 

 

For the same uncertainty conditions, measured states of 𝛽 and ∅ converge to their 

estimations in Figure 4.6 and Figure 4.9 while, measured states of r and p display a 

similar attitude as in Figure 4.7 and Figure 4.8. In Figure 4.6 and Figure 4.7, the 

residuals between the actual and estimated sideslip angle curves are seen clearly before 

𝑡 = 3 s. 
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Figure 4.6 Sideslip Angle Residual vs. Time 

 

 

Figure 4.7 Yaw Rate Residual vs. Time 
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Figure 4.8 Roll Rate Residual vs. Time 

 

  

Figure 4.9 Roll Angle Residual vs. Time 

 

CASE II.  Sensor stuck fault case at 𝐭 = 𝟐 s with an initial 𝛃 = 𝟎. 𝟐 rad 

 

The performances of the Kalman filter and Luenberger observer in the faulty case are 

pointed out when there is stuck fault in the system. The initial value of 𝛽 is assigned 

to 0.2 radians. The demonstrations are followed in order of the separately computed 

lateral states β, r, p, ∅ respectively as Figure 4.10, Figure 4.11, Figure 4.12 and Figure 

4.13 for Kalman filter and Figure 4.15, Figure 4.16, Figure 4.17 and Figure 4.18 for 
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Luenberger observer. Red curve represents measurement of state with noise, blue 

curve represents estimate of state with all sensor measurements included, purple 

dashed curve represents estimate of state except sideslip angle sensor measurement, 

magenda curve represents measurement of state with stuck fault and green curve 

represents true state. The fault indicator response of the faulty scenario could be traced 

in Figure 4.14 for Kalman filter and Figure 4.19 Luenberger observer. 

 

Stuck fault is modelled in the Fault Indicator block and applied to the measurement 

states regarded as a fault input. The sample switch (𝑁) is assigned to be 100, thus 𝛽 

sensor is observed to be stuck at 𝑡 = 2 s, mathematically. Gaussian noise in sensors 

are applied using a Simulink block of white noise in MATLAB with a mean zero, noise 

variance 1.5 × 10−2 radians and sample time 0.02 seconds. 

 

Unlike the nominal case, two Kalman filters are modelled for the observer subsystem 

in faulty case which provides a distinct point of view to the observer objectives: 

 

First Kalman filter is identical with the one used in Case I. as there are four inputs that 

consist of the measurements of lateral states β, r, p, ∅ and the outputs are the 

estimations of those lateral states. Once β sensor is stuck, other states estimate the 

signal of faulty sensor β. 

 

On the other hand, second Kalman filter has three inputs that consist of the 

measurements of the same lateral states except β, which means there is no any input 

signal from the β sensor, then other three states support the estimation of β with their 

measurement data assuming there is no β sensor in the system. 

 

As a result of this approach, the lateral states β, r, p, ∅ which are the outputs of the 

Reconfiguration subsystem feeding back to the autopilot system are flexible between 

two discrete Kalman filters with respect to the threshold approach. 

 

Considering that there is no relation between the noise covariance matrices, the process 
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noise (𝑤), the measurement noise (𝑧) and estimate error covariance (𝑃) are set to the 

optimum levels as given in Table 4.2 after a couple of simulation experiments on 

MATLAB. Comparing to the covariance matrices in the fault-free case, it is considered 

a 100 times decline in the magnitude of process noise covariance matrix (𝑄) which 

means the designed filter relies on the system model itself on a noisy environment 

instead of the state measurements. 

 

Table 4.2 The Values of Process Noise, Measurement Noise and Estimate Error 

Covariance for Faulty Cases 

 

Noise Mean Covariance Matrix 

Process Noise 

(w) 

0 

[

5𝑥10−9 0 0 0
0 5𝑥10−9 0 0
0 0 5𝑥10−9 0
0 0 0 5𝑥10−9

] 

Measurement 

Noise (z) 

0 

[

1.5 × 10−2 0 0 0
0 1.5 × 10−2 0 0
0 0 1.5 × 10−2 0
0 0 0 1.5 × 10−2

] 

Estimate Error 

Covariance 

(P) 

0 

[

5𝑥10−8 0 0 0
0 5𝑥10−8 0 0
0 0 5𝑥10−8 0
0 0 0 5𝑥10−8

] 

 

Results of Kalman-based Approach: 

 

Although, sideslip angle (𝛽) can not be measured accurately after stuck fault and 

continuously feedbacks faulty responses as 0 rad as in Figure 4.10, true state of 𝛽 

converges to the estimated state of 𝛽 carried from the filter model. It can be seen that 

the actual 𝛽 has a rise time of less than 3 seconds. By considering an initial sample 

value of 𝛽 as 0.2 radians as a reference, then actual 𝛽 does not surpass almost 0.2 

radians. Actual 𝛽 decreases gradually from 0.2 radians to −0.07 radians and increases 

gradually over −0.07 radians to 0 radians. 𝛽 settles between 0.2 and −0.07 radians  
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within 5 s in steady cruise flight. 

 

It can be observed from Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13 that the 

overall lateral states are estimated properly before and after the existence of the stuck 

fault of 𝛽 sensor. The error norm does not scale up to critical level owing to the 

detection performance of Kalman filter and tracks the faulty behavior through the 

simulation period. The measured states oscillate for a while and converge to their 

estimations approximately at t = 10 s and reach to the trim values. The estimation 

error is minor since the actual value of the engine thrust. Hence, it is reasonable within 

the considered stuck magnitude. 

 

 

Figure 4.10 Sideslip Angle Residual vs. Time 
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Figure 4.11 Yaw Rate Residual vs. Time 

 

 

Figure 4.12 Roll Rate Residual vs. Time 
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Figure 4.13 Roll Angle Residual vs. Time 

 

In Figure 4.14, fault indicator threshold value on y-axis as ‘1’ shows the fault is at its 

maximum while, its value as ‘0’ shows that there is no fault. When the threshold value 

exceeds ‘0.8’, then it is accepted to point out the value as ‘1’ on y-axis as a design 

decision which refers the fault is not able to be eliminated from that point. In other 

words, it indicates that 𝛽 sensor can not measure any signal within the faulty region.  

 

The same figure illustrates that fault indicator signal exceeds the threshold magnitude 

value of ‘0.8’ due to the uncertainty and fault effect on 𝛽 sensor. Accomplished fault 

reconfiguration is directly considered in existence of stuck fault as there is no shift in 

𝛽 signal as the corresponding control channel after 𝑡 = 2  s following the fault 

indicator response. Thereafter, the control designation is implemented which affirms 

that the sensor is failed at 𝑡 = 2 s. 
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Figure 4.14 Fault Indicator Threshold vs. Time 

 

Results of Luenberger-based Approach: 

 

For the same uncertainty conditions, it is observed that actual state of 𝛽 can not 

converge to its estimation and there is a considerable difference in residual as in Figure 

4.15 while, measured states of r, p and ∅  display an opposite attitude since getting 

accurate measurements as in Figure 4.16, Figure 4.17 Figure 4.18. 

 

 

Figure 4.15 Sideslip Angle Residual vs. Time 
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Figure 4.16 Yaw Rate Residual vs. Time 

 

 

Figure 4.17 Roll Rate Residual vs. Time 
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Figure 4.18 Roll Angle Residual vs. Time 

 

Figure 4.19 points out that the fault indicator signal also exceeds the threshold 

magnitude value of 0.8. However, a false alarm is observed before 𝑡 = 2 s due to the 

rigid uncertainty condition. Fault reconfiguration is directly considered in existence of 

stuck fault as there is no shift in 𝛽 signal as the corresponding control channel after 

𝑡 = 2 s following the fault indicator response. 

 

 

Figure 4.19 Fault Indicator Threshold vs. Time 
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CASE III. Stuck fault of the sensor case at 𝐭 = 𝟐 s with a rudder input as a square 

wave 𝜹𝒓 = 𝟎. 𝟐𝟓  rad for 10 s 

 

The secondary faulty case compensates to the sensor stuck fault at the same test 

circumstances with Case II. However, there is an additional rudder deflection effect as 

a square wave with a magnitude of 0.25 rad for 10 s. After that time, the value of the 

rudder input turns back to 0 rad. 

 

The performances of the Kalman filter and Luenberger observer in the faulty case are 

pointed out when there is both a stuck fault and rudder input in the system. The initial 

value of 𝛽 is assigned to 0.2 radians. The demonstrations are followed in order of the 

separately computed lateral states β, r, p, ∅ respectively as Figure 4.20, Figure 4.21, 

Figure 4.22 and Figure 4.23 for Kalman filter and Figure 4.25, Figure 4.26, Figure 

4.27 and Figure 4.28 for Luenberger observer. Red curve represents measurement of 

state with noise, blue curve represents estimate of state with all sensor measurements 

included, purple dashed curve represents estimate of state except sideslip angle sensor 

measurement, magenda curve represents measurement of state with stuck fault and 

green curve represents true state. The fault indicator response of the faulty scenario 

could be traced in Figure 4.24 for Kalman filter and Figure 4.29 for Luenberger 

observer. 

 

The sample switch (𝑁) is also assigned to be 100, thus 𝛽 sensor is observed to be stuck 

at 𝑡 = 2 s, mathematically. Gaussian noise in sensors are applied with a mean zero, 

noise variance 1.5 × 10−2 radians and sample time 0.02 seconds. The process noise 

(𝑤) and the measurement noise (𝑧) are set to the same values as given in Table 4.2. 

 

In Case III, the same method of dual Kalman filters is used for the simulation as in 

Case II. 
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Results of Kalman-based Approach: 

 

Although, sideslip angle (𝛽) can not be measured accurately after stuck fault and 

continuously feedbacks faulty responses as 0 rad as in Figure 4.20, true state of 𝛽 

converges to the estimated state of 𝛽 carried from the filter model. It can be seen that 

the actual 𝛽 has a rise time of less than 3 seconds. By considering an initial sample 

value of 𝛽 as 0.2 radians as a reference, then actual 𝛽 does not surpass almost 0.2 

radians. Actual 𝛽 decreases gradually from 0.2 radians to −0.08 radians and increases 

gradually over −0.08 radians to 0 radians. 𝛽 settles between 0.2 and −0.08 radians 

within 5 seconds in steady cruise flight.  

 

The actual 𝛽 and estimate of 𝛽 are damped to 0 rad until 10 s and when the effect of 

rudder deflection angle is removed from the autopilot system, the attitude of actual 𝛽 

and estimate of 𝛽 change to an oscillation status in less than 8 s to adapt the stabilized 

flight condition. 

 

It can be observed from Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23 that the 

overall lateral states are estimated properly before and after the existence of the stuck 

fault of 𝛽 sensor. The error norm does not scale up to critical level owing to the 

detection performance of Kalman filter and tracks the faulty behavior through the 

simulation period. The measured states oscillate for a while and converge to their 

estimations approximately at 𝑡 = 7 s until the effect of rudder input ceases and reach 

to the trim values. The estimation error is minor since the actual value of the engine 

thrust. Hence, it is reasonable within the considered stuck magnitude. 
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Figure 4.20 Sideslip Angle Residual vs. Time 

 

 

Figure 4.21 Yaw Rate Residual vs. Time 
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Figure 4.22 Roll Rate Residual vs. Time 

 

 

Figure 4.23 Roll Angle Residual vs. Time 

 

As illustrated in Figure 4.24, fault indicator signal exceeds the threshold magnitude 

value of 0.8 due to the uncertainty and fault effect on 𝛽 sensor. Accomplished fault 

reconfiguration is directly considered in existence of stuck fault as there is no shift in 

𝛽 signal as the corresponding control channel after 𝑡 = 2 s following the fault indicator 

response. Thereafter, the control designation is implemented which affirms that the 

sensor is failed at 𝑡 = 2 s. 
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Figure 4.24 Fault Indicator Threshold vs. Time 

 

Results of Luenberger-based Approach: 

 

For the same uncertainty conditions, it is observed that actual state of 𝛽 can not 

converge to its estimation and there is a considerable difference in residual as in Figure 

4.25 while, measured states of r, p and ∅  display an opposite attitude since getting 

accurate measurements as in Figure 4.26, Figure 4.27 and Figure 4.28. 

 

 

Figure 4.25 Sideslip Angle Residual vs. Time 
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Figure 4.26 Yaw Rate Residual vs. Time 

 

 

Figure 4.27 Roll Rate Residual vs. Time 
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Figure 4.28 Roll Angle Residual vs. Time 

 

Figure 4.29 points out that the fault indicator signal also exceeds the threshold 

magnitude value of 0.8. However, a false alarm is observed before 𝑡 = 2 s due to the 

rigid uncertainty condition. Fault reconfiguration is directly considered in existence of 

stuck fault as there is no shift in 𝛽 signal as the corresponding control channel after 

𝑡 = 2 s following the fault indicator response. 

 

 

Figure 4.29 Fault Indicator Threshold vs. Time 

 

To summarize the simulation results, a conventional Kalman filter and Luenberger 

observer were used to estimate the magnitude of stuck faults for a Boeing 747 aircraft 
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model. The simulation cases were performed to estimate the lateral states of a civil 

aircraft during a cruise flight. Kalman filter successfully detects the magnitude of the 

fault even it is set to quite small magnitudes. Kalman filter was indicated to be stable 

under certain situations. Then, it was observed that it does not only minimize the 

expected value, but it also minimizes the estimation variance in noisy environments. 

Kalman filter displayed a more remarkable estimation performance than Luenberger 

observer on the simulation cases that are introduced by means of faster convergence 

and trim rates with smaller error norms upon the states of the aircraft. 

 

Including a white Gaussian noise effect to the aircraft model causes an uncertainty 

case that increases the false alarm in the system. As a control surface reaction, state 

measurements showed that the rudder may become extremely effective against the 

faults. However, high performance estimation of Kalman filter against the noise 

effects, the false alarm was limited. 

 

The deflection inputs were supplied such that the loss of effectiveness and the 

estimation of fault magnitudes could be succeed for a limited region. It was clearly 

observed that the trim point remains stable fairly soon assuring the plant stability until 

the end of the observations. Hence, the controller was not required to be redesigned to 

take care of uncertainty. 

 

Kalman filter has modelled a zero mean and unit covariance matrix Gaussian white 

noise accurately. If the aircraft model was not integrated in exact accuracy level due 

to any inaccuracy in the system matrices 𝐴 and 𝐵, this condition would give incorrect 

results in different flight scenarios such as a coordinated turn, a power approach or 

even in a pull up. Kalman filter is said to be an effective observer for performing the 

function of estimation on the faulty sensor measuring the sideslip angle (𝛽) with the 

information carried from other accurate state measurement channels. 

 

After regulating several parameters and variables on the entire MATLAB Simulink 

model, it is achieved to get prominent results with respect to the figures that are 
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discussed above on similar scales. The proposed method is proven to offset the stuck 

faults immediately after they emerge and limit the variation between the state 

measurements and state estimations. The improvement in handling the faults in a 

slighter detection threshold level, shorter confirmation time, better false alarm rate 

elimination or getting a better flight performance of the aircraft is presented as the 

main purpose of the study. 
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CHAPTER 5 

 

CONCLUSION 

 

 

This study presents the concept and results of a FDD method based on state estimations 

of a stochastic observer model in the continuous-time framework. The introduced 

design framework covers a flight control law to struggle with undesired faulty 

conditions of the sensors of a civil aircraft. The sensor fault detection application was 

supported to verify with multi simulation tests and the control effectiveness of a 

complex dynamic systems was confirmed with several faulty and fault-free cases. The 

parameters were optimized to the relevant values for different flight cases. Stuck faults 

were introduced in a certain time by the fault indicator. Stuck fault arised from the 

faulty sensor signal was investigated by presenting several faulty schemes additionally 

a nominal (no fault) scheme and carried out sequentially. It can be observed that stuck 

fault in sensor that measures sideslip angle also affects the sensor measures roll angle 

as a coupling effect. This is owing to faulty state vector in feedback loop through 

controller. For achieving realistic simulation results, the simulation model of the 

aircraft should consist of straight stability derivatives. The principle is separated to two 

different approaches to evaluate the performance of the designed FDD scheme with a 

Luenberger observer and a Kalman filter as a more conventional estimator. The 

simulation results pointed out that the aircraft maintains the trim conditions of 

airspeed, altitude and Euler angles. The observer performances of the schemes were 

considered for comparison objectives in the same flight conditions. 

 

As the basic stage of the study using Kalman filter, the linearization of the nonlinear 

lateral states was introduced. An FDI scheme was improved for analytical redundancy 

for mainly the sideslip angle (𝛽) sensor of lateral dynamics model of Boeing 747 civil 

aircraft. The subsystems were designed and connected appropriately in the simulation 
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model to indicate the overall architecture of the system. The proposed FDI system can 

operate for stuck faults at any time instant. It is important to consider that the 

nonlinearity of the aircraft should be straightly integrated to the observer design to 

allow correct state estimations including more severe faulty cases. 

 

In the Kalman filter approach, it can be clearly seen that the resultant state estimator 

is unbiased, stable and minimum variance in exact assumptions. The Kalman filter 

algorithm is said to be pretty good in estimating the states successfully and also 

detecting stuck faults in the system. The simulation result for fault-free case is also 

successful since the filter tunes for no fault condition. Although this study covers a 

representation for Boeing 747 aircraft, the overall FDD process can be implemented 

for other kinds of civil and military aircrafts and also for the platforms that operate on 

space services. The performance of the Kalman filter analytically shows that the 

approach is effective in predicting the states of the system quite accurately. As a 

theoretical point of view, this can be explained as observer gain matrix is adaptive for 

Kalman filter. Kalman filter is considered to be an optimum observer in the case of 

noise that are received from sensor and model are Gaussian [36]. 

 

The figures shown in the previous sections are representative results of numerical 

simulation samples for those stuck fault and fault-free cases. The residual generated 

for the stuck fault case is originated with respect to the variation between the 

measurement and estimation channels. The magnitude of the residual was reduced and 

fault detection at a small magnitude was detected. The detection delay limitation is 

clearly observed for the comparison objective. Furthermore, in the fault-free situation 

for a specified threshold and confirmation time, the method gave no false alarms. 

 

As an outcome, the proposed Kalman filtering methodology is very sensitive to the 

faults and has a good performance with respect to the slight detection threshold level, 

short confirmation time and good false alarm rate limitation. The model could quickly 
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detect even slight changes in the measurement channel and is suitable for real-time 

fault detection. The residuals are monitored to be limited in a restricted gap for the 

developed fault detection method. If detection of fault and reconfiguration does not 

take place, aircraft will cross the limits of safe operation. This explains that sensor 

fault detection must be diagnosed in time. Otherwise, it could lead to closed-loop 

instability and unrecoverable flight conditions. Likewise, the results of the experiment 

demonstrate that the proposed filter ensured a significant profit and safety in estimation 

performance with small computational effort to measurement uncertainties in a certain 

scale of the study. The facility of generating similar estimation features of the Kalman 

filter can be verified in extensive applications virtually with the results of this 

combined study in aircraft sensor fault detection approaches. From the industrial case, 

a realistic solution was considered worthy by improving the performance level of the 

aircraft.  

 

Future research could focus on the integration of an interactive multiple model (IMM) 

ensemble Kalman filter instead of a single Kalman filter model to the FDI scheme to 

get more accurate state estimation. IMM Kalman filter is originated from a dual 

Kalman model that uses the equations of the filter. It decides which one to use by 

computing the probability and weight accounts upon the measurement data 

considering the model. Therefore, the need for calibrating the ideal values of 

covariances will be set by the filter automatically. 

 

The significance of the study could contribute to the real-time flight incidents as a 

noticeable augmentation to the aircraft performance that is evaluated with the fuel 

consumption, noise level reduction and raise of range respectively. The educational 

and research objectives were also considered in aircraft flight control systems that 

operates MATLAB Simulink to run the observer-based fault detection scheme under 

several simulation tests that is proposed in the paper. 
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APPENDIX A 

 

AIRCRAFT STATES PLOTS 

 

 

The States of Boeing 747 

 

This chapter introduces the behavior and rate of changes for some of the other Boeing 

747 states apart from the lateral states (𝛽, 𝑟, 𝑞, ∅) that are mainly analyzed in the study 

for the simulation cases, respectively. The simulation period for Case II. is arranged 

to 20 seconds to get the trim observation. As can be seen in the figures below, in both 

Kalman filter and Luenberger observer methodologies, all of the states converge to 

trim values. However, particularly for yaw angle and altitude outputs of the aircraft 

with respect to time, it can be observed that Kalman filter has shown approximately 6 

s faster response in trim than Luenberger observer. The aircraft sustains the steady 

state flight with excellent regularity, showing some transitional dynamics, however, 

this attitude is expected as an outcome of the nonlinearity nature in the aircraft. When 

it occurs while tracking a plot, an amplification is allowed to display that they are 

slight, hence they do not lead any problem. 
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Results of Kalman-based Approach: 

 

 

Figure A.1 Airspeed vs. Time 

 

  

Figure A.2 Angle of Attack vs. Time 
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Figure A.3 Pitch Rate vs. Time 

 

 

Figure A.4 Yaw Angle vs. Time 
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Figure A.5 Pitch Angle vs. Time 

 

 

Figure A.6 Aircraft Position in X-Axis vs.Time 
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Figure A.7 Aircraft Position in Y-Axis vs. Time 

 

 

Figure A.8 Altitude vs. Time 
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Results of Luenberger-based Approach: 

 

  

Figure A.9 Airspeed vs. Time 

 

 

Figure A.10 Angle of Attack vs. Time 
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Figure A.11 Pitch Rate vs. Time 

 

 

Figure A.12 Yaw Angle vs. Time 
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Figure A.13 Pitch Angle vs. Time 

 

 

Figure A.14 Aircraft Position in X-Axis vs.Time 
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Figure A.15 Aircraft Position in Y-Axis vs. Time 

 

 

Figure A.16 Altitude vs. Time 


