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ABSTRACT

SOURCE-AGGREGATED-POISSON WITH APPLICATIONS TO
GROUPWISE SHAPE ANALYSIS AND MESH SEGMENTATION

Gençtav, Murat

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Sibel Tarı

September 2018, 148 pages

By computing multiple solutions to Poisson’s equation with varying source functions

within the shape and aggregating those solutions, we obtain a novel function for shape

analysis, which we call Source-Aggregated-Poisson, or SAP. Despite the local com-

putations, by means of specially designed source functions, our model mimics the

part-coding behavior of a previous nonlocal model. We show that SAP is robust un-

der geometric transformations and nuisance factors including topological distortions,

pose changes, and occlusions. Using SAP, we address shape analysis problems in

two and three dimensions. Toward this end, firstly, we exploit the evolution of its

level curves and extract a probabilistic representation of shape decomposition hierar-

chy. Then, in the context of a groupwise shape analysis task, we demonstrate how

such a probabilistic structure enables us to select the task-dependent optimum from

the set of possible hierarchies. Finally, we devise an unsupervised mesh segmentation

algorithm which utilizes SAP after projecting it to the surface mesh. Benchmark eval-

uation shows that the algorithm performs the best among the unsupervised algorithms

and even performs comparable to supervised and groupwise segmentation methods.
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ÖZ

DEĞİŞEN KAYNAKLI BİRLEŞİK POISSON VE ŞEKİL GRUPLARININ
ANALİZİ İLE YÜZEY AĞLARININ BÖLÜTLENMESİNE UYGULANMASI

Gençtav, Murat

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sibel Tarı

Eylül 2018 , 148 sayfa

Bu çalışmada Poisson denkleminin değişen kaynak fonksiyonlarıyla elde edilen çö-

zümleri bir araya getirilerek şekil analizi için değişen kaynaklı birleşik Poisson adını

verdiğimiz bir fonksiyon önerilmiştir. Temel hesaplama modelimiz yerel olmakla bir-

likte özel olarak dizayn edilmiş kaynak fonksiyonları sayesinde daha eski yerel ol-

mayan bir modelin parça kodlama davranışını taklit edebilmektedir. Önerilen fonksi-

yon geometrik dönüşümler ile topolojik bozulmalar, poz değişimi ve kapatmalar gibi

faktörlere karşı güvenilirdir. Fonksiyon iki ve üç boyutta şekil analizi problemlerinde

kullanılmıştır. Bu doğrultuda, önce, fonksiyonun seviye eğrilerinin evriminden fayda-

lanılarak şekil bölünme hiyerarşisinin olasılıksal bir temsili çıkarılmıştır. Sonrasında,

şekillerin grup halinde analizi uygulamasında, çıkarılan bu olasılıksal gösterimin olası

hiyerarşiler kümesinden uygulamaya en uygun olanı seçmeyi mümkün kılması göste-

rilmiştir. Son olarak, fonksiyonu tanımlı olduğu şekil alanından şekil çevresine yansı-

tarak kullanan güdümsüz yüzey ağı bölütleme algoritması geliştirilmiş ve kıyaslamalı

değerlendirmede aynı türdeki algoritmalar arasında en iyi ve hatta güdümlü ve grup

bölütleme algoritmalarına yakın başarım elde edilmiştir.
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CHAPTER 1

INTRODUCTION

Shape is generally defined as the form or appearance of an object produced by its

outline or external boundary excluding the effects of other visual stimuli such as the

object’s color, texture and material composition. Throughout this thesis, by using

the term shape, we will refer to the volume enclosed by the external boundary of an

object. Then, we define shape analysis as processing shapes of objects for the purpose

of extracting simplified representations that capture the most significant information

and facilitate storage and further processing as required by the application context. In

this chapter, we will motivate research on generic shape analysis first from perception

point of view and then giving interesting examples of applications.

1.1 Shape and Perception

Vision research has shown that shape plays a critical role in perception. Indeed, we

can effortlessly recognize numerous objects just looking at their silhouettes despite

different viewing angles and object poses, even when they are partially occluded by

other objects.

Neurophysiological findings reveal that encoding of shape information undergoes

transformation through different stages of visual pathway from complex and implicit

representations at early levels of processing to simple and compact explicit represen-

tations that facilitate storage and recognition. Mainly the structural representations

are supported where shape parts and their relations are captured. Additionally, there

are evidence in favor of some feedback mechanisms that support the bottom-up pro-

cessing with contextual information and prior knowledge.
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1.2 Goal and Scope of the Study

In this study, we propose shape analysis techniques to produce representations of

shapes for different levels of visual processing that are robust under several visual

transformations and occlusions. To this end, we first solve Poisson partial differential

equation (PDE) inside the shape with specially designed source functions to explore

the shape volume yielding multiple part-coding functions. We show that the proposed

model is capable of capturing nonlocal interactions among shape locations, although

the computations remain local. Then, we aggregate the rich information provided by

those solutions into a single function defined on the shape domain. Using this func-

tion, we extract shape decomposition hierarchies as high level structural representa-

tions of shapes. Furthermore, we devise a groupwise shape analysis scheme that treats

the task of extracting structural representations within the context of similar shapes.

The method employs a probabilistic structural reorganization process together with a

feedback mechanism to improve representational consistency within the group. We

also utilize the function in the context of a mesh segmentation application after pro-

jecting it onto the shape boundary.

1.3 Motivating Applications of Shape Analysis

The information age and the accompanying digital revolution have made a tremen-

dous amount of visual data available publicly in digital forms such as photos, videos

and 3D models as new imaging and manufacturing technologies are entering our lives

virtually every day – the cameras on our cell phones, 3D scanners/printers just to

name a few. Such a rapid growth in the available data also raises the need for the

development of techniques to transform that data into knowledge through which we

can understand and change the world for the better.

Extraction of knowledge starts with image understanding where the digital image of a

real-world scene is analyzed by discriminating and identifying objects of interest and

their relations within the background clutter in order to reveal a high-level semantical

interpretation of that scene. At this point, the shape shines out as the most prominent

characteristic that can reveal the identity of an object. In order to reveal that potential,
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one needs to develop a shape analysis method that yields effective representations of

shape.

Understanding part semantics via shape analysis helps robots when interacting with

their environment autonomously. For example, it can move an object by recognizing

graspable object parts, which requires analyzing object shape and associating func-

tionalities with its parts. Besides this, object tracking is another important function

of the robot vision system. In order to track an object, the system should match its

shape across sequential frames.

As part of the aforementioned developments, new medical imaging technologies –

e.g. magnetic resonance imaging, computed tomography and positron emission to-

mography scans – revolutionized medicine by enabling visualization and inspection

of anatomic structures inside the human body for diagnosis and treatment purposes.

Here, shape analysis tools are being developed that are assisting physicians in local-

izing and tracking of deformations in shapes of anatomic structures for the purpose

of inspecting the presence of a disease and its progress.

A big part of the entertainment industry revolves around manipulating shapes. Pro-

duction of realistic games and impressive animated movies requires the development

of effective shape representations accompanied by interpolation and morphing tech-

niques.

Additive manufacturing becomes ubiquitous as the 3D printers get cheaper. However,

the technology is relatively new and has its own issues that need solutions. Most of

the times, the 3D objects have to be decomposed into parts because of the practical

limitations brought by the printing environment. This problem requires the develop-

ment of automatic shape decomposition tools capable of generating feasible solutions

satisfying various constraints related to size, aesthetics, ease of assembly, structural

health, etc.

1.4 Contributions and Thesis Organization

This thesis study makes the following contributions:
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• A Poisson PDE based local and linear computational model for shape analysis

is proposed which can mimic a previous nonlocal model and is even superior

in terms of computational efficiency and part-coding capability.

• The rich information gathered by exploring the parameter space of the pro-

posed model is further aggregated into a single function, which we call Source-

Aggregated-Poisson (SAP), defined on the shape and can be projected onto its

boundary when necessary. SAP is shown to be robust under various visual

transformations and nuisance factors including pose changes, occlusions and

topological distortions.

• A hierarchical shape decomposition method is proposed that exploits part cod-

ing behavior of SAP.

• A groupwise analysis method is proposed for simultaneous decomposition of

shape groups with the objective of improving within group representational

consistency. To this end, a probabilistic tree reorganization method is employed

that enables generation of multiple interpretations of decomposition hierarchies

and helps with the selection of optimum individual hierarchies from those in-

terpretations.

• An unsupervised mesh segmentation algorithm is developed that utilizes SAP

projected onto the surface mesh. According to benchmark results, the algo-

rithm performs best among unsupervised methods, and even comparable to su-

pervised and groupwise segmentation methods.

In Chapter 2, we define our Poisson PDE based local and linear computational model

and compare it to the previous nonlocal model we are inpired by. Then, in Chapter 3,

we devise a pooling scheme that further explores the parameter space of the proposed

model and aggregates the outcomes into SAP. We describe our hierarchical shape de-

composition method together with the stochastic reorganization process in Chapter 4,

and further develop a groupwise analysis method in Chapter 5. Finally, we explain

our unsupervised mesh segmentation algorithm in Chapter 6 and conclude the thesis

in Chapter 7.
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CHAPTER 2

A LOCAL ALTERNATIVE TO A PREVIOUS NONLOCAL MODEL FOR

SHAPE ANALYSIS

In this chapter, we propose a screened Poisson PDE based computationally advanta-

geous local alternative to a previous nonlocal model for shape analysis [66]. Firstly,

we review the previous model. We discuss how nonlocal interactions incorporated in

their energy minimization formulation result in part-coding behavior. Then, we show

how we manage to mimic that part-coding behavior without a global term in the for-

mulation of the energy minimization. Finally, we demonstrate superiority of our local

model in terms of the computational efficiency and the flexibility in part-coding capa-

bility. In the following chapter, we will extend the new model by exploring the entire

shape via multiple biases (modeled as sources and sinks in the Poisson equation), and

integrating the outcomes of those explorations into a generic parameter-free tool for

volumetric analysis, namely Source-Aggregated-Poisson (SAP).

2.1 Review of the Previous Model [66]

Let Ω ⊂ Rn be an open set denoting a shape in arbitrary dimensions with boundary

∂Ω. In the discrete setting, function u is computed by solving a dense linear system:(
L− 1

(ρΩ)2
I − β 1

|Ω|
J

)
u = −EDTΩ (2.1)

where L denotes the matrix representation of the Laplace operator defined on the

shape domain (Ω) subject to homogeneous Dirichlet conditions on the boundary, ρΩ

is the maximal radius, I is the identity matrix, J is the matrix of ones (denoting

a global summation), β is a scalar, and EDTΩ is the Euclidean distance transform

computed within Ω.
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Roughly speaking, it can be thought as a solution to the following nonlocal energy:

arg min
u

∫
Ω

[
|∇u|2 +

1

(ρΩ)2

(
(u(.)− EDTΩ(.)

)2 ]
dω

+ β

∫
Ω

1

|Ω|

(∫
Ω

u(.) dω

)2

dω (2.2)

with u
∣∣∣∣
∂Ω

= 0

The last term of the energy involves double integration. The inner integration repre-

sents the computation of the global sum and the outer accounts for its contribution to

the energy at any shape point.

The energy form makes it explicit that the solution u is the best approximation of

EDTΩ subject to two conflicting constraints: being smooth and being oscillatory.

In order to be able to stay close to EDTΩ, the solution can not be uniformly zero.

Hence, u must take both negative and positive values which cancel each other. This is

the only viable way of keeping the third term of the energy (2.2) small. The positive

values and negative values tend to cluster due to the imposed regularity by the first

term in the energy. The data term in the energy helps too. Positive locus appear

in the central part whereas the negative locus in the periphery. This is because the

negative values if observed in the central regions (where the value of the EDTΩ is

higher) cause a higher residual. This causes an increase in the second term of the

energy. The balance among the three competing terms gives rise to an emergent

sign change locus inside Ω. This sign change locus splits Ω into coarse central and

peripheral structures, and further exploitation of the saddle points enables extracting

a hierarchical decomposition of Ω.

In the formulation, nonlocal effects are incorporated via two terms, one accounting for

boundary based interactions and the other for region based interactions. The region

based interaction is modeled as an aggregation over the domain (see the last term

in (2.2)). For the boundary based interaction, an indirect approach is adopted. It is

incorporated to the model via the second term in (2.2) containing the usual distance

transform, as the distance transform codes long distance interactions between pair of

boundary points. The choice of these terms in the model is merely for computational

reasons; it makes the resulting energy to be minimized a quadratic one [67].
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2.2 Mimicking the Previous Nonlocal Model Via Local Computations

We envision an oscillatory behavior that mimics part-coding properties of the pre-

vious model by computing a suitably regularized approximation to a non-monotone

source function f : Ω → R. For this purpose, we consider the following regulariza-

tion problem:

arg min
Φ

∫
Ω

[
|∇Φ|2 + α (Φ(.)− f(.))2

]
dω (2.3)

with Φ

∣∣∣∣
∂Ω

= 0.

That is, we induce nonlocality with the help of an external function rather than a

nonlocal component, such as J in (2.1), in the system matrix. The minimizer Φ for

(2.3) is a smooth approximation of the source function f where the smoothing level

is inversely determined by the positive scalar α. Its Euler-Lagrange equation is the

following screened Poisson PDE:

(∆− α) Φ = −αf (2.4)

with Φ

∣∣∣∣
∂Ω

= 0.

That is, Φ is a solution to a biased diffusion with the bias being introduced by the

scalar α.

The next question is how to choose the scalar α and the initial value f . First, we

discuss α. Rewriting (2.4) as (
Φ− f
1/α

)
= ∆Φ,

Φ could be interpreted as the solution to the usual linear diffusion equation at time

T = 1/α. Hence,

Φ(. ,
1

α
) =

1

[2π(1/α)]n/2
exp

(
− ||.||

2
2

2(1/α)

)
∗ f

That is, the solution is the convolution of the initial function with a Gaussian of width√
1
α

, implying that the quantity described by Φ diffuses over a range of order
√

1
α

.
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To ensure that the process reaches to the innermost parts of the shape,
√

1
α

should be

on the order of the domain’s maximal radius. In order to obtain an absolute behavior,

we fix
√
α on the order of 1/ρΩ. A simpler decision is to set

√
α = 1

|Ω| .

The choice of α also affects the range of Φ. Nevertheless, the range of Φ is irrelevant

in terms of modeling, thus, can be normalized. To simplify the discussions, we elim-

inate the effect of α on the range by scaling the right-hand side. This only scales the

range leaving the geometry of the level curves intact, yielding

(∆− 1

|Ω|2
) Φ = −f (2.5)

with Φ

∣∣∣∣
∂Ω

= 0.

Next, we discuss selection of f . The key point is to choose f such that it is positive

inside a putative central structure Ωc ⊂ Ω, while being negative on the complement.

One possibility is to consider the signed EDT of a central circle as f . That is the gross

structure of the shape is approximated by a circle. Then, the peripheral detail – what

remains as the complement of the gross structure – is a deviation from a circle. This

approach may have a practical disadvantage: the gross shape is forced to resemble a

circle even for elongated, significantly protruded, and bended shapes. Therefore, we

adopt a strategy where the shape itself induces some control on the choice of f . We

compute a normalized approximate distance transform of Ω, d̃ : Ω→ (0, 1], and then

compute fr as

f(x)r =

 1 if d̃(x) > r

− 1 if d̃(x) ≤ r
(2.6)

where r ∈ (0, 1] is a putative radius and the normalization is performed by dividing

the raw distances to their maximum value. Note that, one who is committed to using

local and linear computational models may utilize the following approximation [69]

of the EDT:

d̃ = −ρ log(1− v) (2.7)

where ρ is a positive small scalar and v satisfies the following screened Poisson PDE:

(∆− 1

ρ2
) v = − 1

ρ2
(2.8)

with v
∣∣∣∣
∂Ω

= 0.
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Figure 2.1: Mimicking the previous model via repeated application of screened Pois-

son PDE.

In Figure 2.1, we summarized our two phased computational scheme. In this scheme,

screened Poisson PDE is employed in two phases of computation repeatedly; firstly

to approximate EDT, and secondly to compute Φr.

In Figure 2.2, Φr at r = 0.4 is compared to solution u of the previous nonlocal model

both computed for a snowflake shape. In order to facilitate visual comparison, we

separately normalized the positive and the negative set to the unit interval. We also

partitioned the shape simply using the watershed algorithm exploiting the locus of

sign change and saddle points. Indeed, the two functions and the associated partition-

ings look quite similar, though not identical. A subtle difference is that the inner level

curves of Φr better reflects the sixfold nature of the snowflake, i.e. early level curves

have hexagonal shape rather than being circular.

More examples from the family Φr are given in Figure 2.3. The figure demonstrates

that rather than sticking to a partitioning that result from a single solution, by explor-

ing the whole range of r, we can obtain partitionings with different granularities.

Then, we can also choose the value of the parameter r purposefully to capture the

solution Φr whose sign change locus (the boundary that separates the positive and
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Figure 2.2: The solution Φr to our local model at r = 0.4 (first row) versus solution u

of the previous nonlocal model (second row). Within each box, from left to right: The

functions, their level curves, shape parts implied by deviations from monotonicity, i.e,

sign change and saddle points.

Figure 2.3: Solutions Φr at varying values of r (first row) and corresponding

segmentations (second row). The associated values of r from left to right are

0.2, 0.25, 0.37, 0.4, 0.56. The midmost example (r = 0.37) demonstrates the case

where the boundary between the positive and the negative sets just touches the shape

boundary.
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Figure 2.4: Sample image input: Incomplete snowflake edge map placed in image

frames of different sizes, and a crowded image context with junctions as well as

missing edges.

the negative sets) just reaches the shape boundary (∂Ω) (see the midmost example in

Figure 2.3). Our experiments suggest that targeting such a contact between these two

contours enables us to effectively find a solution that is analogous to function u when

required. A simple means to spot the right value r∗ that results in such a particular

solution is using a binary search like algorithm. Beginning with the solutions at r = 0

and r = 1, at each step the range between the two selections is halved after checking

the solutions Φr. Then, the iterations are stopped at a point where the range becomes

sufficiently narrow. With the precision of ε, this method finds the target value r∗ in

dlog2(1/ε)e iterations.

The proposed local model is computationally advantageous, since it reduces into solv-

ing a simple sparse linear system unlike the previous nonlocal model, which requires

solving a dense linear system. Computational aspects of solving such problems are

detailed in Section 2.3.

Another important advantage over the previous nonlocal model emerges in applica-

bility. In an ordinary image application, the shape is first extracted in the form of dis-

connected edge fragments where the object interior/exterior distinction is not readily

available. In order to evaluate the performances of both models, we prepared a sim-

ple test input: an incomplete edge map of an isolated snowflake shape that is placed

in two image frames with different sizes (see Figure 2.4). Results for the previous

model and the proposed alternative are depicted in Figures 2.5 and 2.6, respectively.

Sample negative level curves are shown in the top rows, whereas the sample positive
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sample negative level curves

sample positive level curves

Figure 2.5: Sensitivity of the previous model with respect to the size of the image

context in which the edge map resides. The zeros of the solutions (the edge map

and the sign change locus) are marked in thick black line. When the frame size is

increased, the sign change locus in the interior disappears. The six dendrites of the

snowflake can no longer be partitioned.
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sample negative level curves

sample positive level curves

Figure 2.6: Robustness of the proposed model with respect to the size of the image

context in which the edge map resides. The zeros of the solutions (the edge map

and the sign change locus) are marked in thick black line. Even when the frame

size changes, the local behaviour of the level curves remain intact. The sign change

locus completes the missing boundary fragments. The six dendrites are similarly

partitioned in both situations.
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level curves in the bottom rows. The zeros (the edge maps and the sign change locus)

are marked as thick black lines.

The results show that the previous model is severely sensitive to the size of the image

frame in which the edge map resides. The increase in the frame size breaks the non-

monotonicity of the solution u inside the shape, i.e. the distance attains negative

values throughout the shape domain and the central structure disappears. This means

that, there will not be an interior sign change locus that would have otherwise readily

split the shape. Such a behavioral deviation is because of the increase in the number of

otherwise irrelevant pixels that contributes to the global average term in (2.1). These

irrelevant pixels which are far from the edge map tend to attain positive values pulling

the global average towards more positive. Thus, more pixels from inside the shape

get negative values in order to level the global average downto zero.

As the sole reason of the sensitivity is the global averaging term, it should not be

observed in local models like ours. Indeed, as can be observed in Figure 2.6, the

proposed local model is not sensitive to the size of the image context. Moreover, the

sign change locus completes the missing boundary sections and the six dendrites are

similarly partitioned in both cases.

In Figure 2.7, we go one step further and demonstrate the robustness of our model

by embedding the fragmented snowflake shape contours in a crowded image context.

Observe that the part of the computed solution covering the snowflake is quite con-

sistent: the level curves describing both the stellar dendrites and the central structure

are quite analogous to those computed for the snowflake in isolation (See the top row

of Figure 2.2.).

2.3 Computational Aspects

We discretize equation (2.5) on a regular grid of voxels (or pixels in 2D) via finite-

difference method. Specifically, at each voxel v, we approximate the Laplacian using

the central difference yielding the equation below:

− (|N (v)|+ α) Φ(v) +
∑

u∈N (v)

Φ(u) = −f(v) (2.9)
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Figure 2.7: Snowflake in a crowded context. The six dendrites are clearly identifiable.

The shapes of the central region and of the level curves describing the stellar dendrites

are no different than those computed for the snowflake in isolation.
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Figure 2.8: Running times comparison of solving the proposed family Φr (cholsolve)

and solving function u of the previous model (usolve). See text for the details.

where N (v) is the set of neighboring voxels and |.| denotes the cardinality. We used

4- and 6-connected neighboring voxels for 2D and 3D shapes respectively. For the

experiments, where shape boundary fragments are put in an image context, we further

impose homogeneous Neumann condition on the image boundary.

The discretization yields a system of linear equations with a sparse, symmetric and

positive definite coefficient matrix. A plethora of direct and iterative alternatives

exist to solve the system with multiple right-hand sides. We use MATLAB built-in

CHOLMOD implementation (mldivide function) as a direct solver based on Cholesky

factorization . The algorithm is proven to have a sub-quadratic complexity in solving

Poisson problem, and performs even better in practice [7]. Once the system matrix

is decomposed, the method can solve for large number of right-hand sides very fast.

Note here that a fast solution with multiple right-hand sides is crucial both to find

the critical value of the parameter r∗ and to extract the rich information via multiple

selections of r.

In Figure 2.8, we compare the running times of the direct CHOLMOD solver (chol-

solve) and the iterative solver [68] (usolve) used for obtaining multiple solutions to

16



our model (2.9) and only a single solution to the previous model (2.1), respectively.

Note that constructing a linear system for a multidimensional shape domain in order

to compute the function u of the previous model using a direct solver is not feasible

even for moderate grid resolutions and one needs to resort to a relaxation scheme that

solves the problem on the grid setting without constructing the system matrix. The

solve times were measured for 205 different three-dimensional domains varying in

their shape and size ranging from 50k to 550k voxels. When comparing the running

times, one should keep in mind that, for each domain, the usolve time (red data points)

indicates the running time to obtain a single solution for a fixed parameter selection,

whereas the cholsolve time (blue data points) involves solving (2.9) for 64 different

right-hand sides which we found adequate for further processing. In order to facilitate

visual comparison, we fit curves to the sample running times. We also put an esti-

mated running time curve (red dashed curve) that corresponds to 64 sequential runs

of usolve to obtain multiple solutions by varying its parameter ρΩ. The comparison

verifies the computational advantage of our local model over the previous nonlocal

model.
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CHAPTER 3

SOURCE-AGGREGATED-POISSON

In the previous chapter, we developed a Poisson PDE based local and linear compu-

tational model for shape analysis that is capable of capturing nonlocal interactions

within the shape volume. In this chapter, we will extend the proposed model by

further exploring the entire volume via systematically changing its parameter r, and

aggregating the rich information carried in the outcomes of those explorations into a

single function, which we call Source-Aggregated-Poisson (SAP).

3.1 The Method

We simultaneously solve n Poisson equations (2.5) within the shape volume Ω by

systematically varying the radius r in (2.6) such that the source function indexed by

i = 1, 2, . . . , n at the ith step is formulated as

f(x)i = sign(d(x)− i× s) (3.1)

where s = 1/n is the step size.

By design, each right-hand side fi resembles a heat source in the shape center sur-

rounded by a sink in the outer region which yields a steady state temperature dis-

tribution Φi that divides the shape domain Ω into a central region Ω+ with positive

temperature and a outer region Ω− with negative temperature. Here, the source-sink

separation in each right-hand side represents an initial hypothesis for a decomposition

of the shape domain into central and marginal regions which correspond to positive

and negative sets in the steady state distribution, respectively.

Once a set of n equations are solved, hence n distinct solutions Φi, i = 1, 2, . . . , n
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Figure 3.1: SAP computational scheme. Top row: Source functions fi. Middle row:

Corresponding solutions Φi to equation (2.5). Bottom row: Indicator functions mi

for negative sets Ω−i which aggregate into SAP.

are obtained, the shape information contained in these solutions are aggregated by

assigning each shape location the number of solutions in which the location falls into

the outer region, i.e. attains a negative value. We call the resulting integer-valued

function defined on the shape domain as SAP.

In Figure 3.1, we present an overview of the computational scheme on a two dimen-

sional example. Source functions fi are presented in the top row with sources and

sinks depicted as red and blue, respectively. Corresponding solutions Φi to the equa-

tion (2.5) are given in the middle row with red tones depicting positive sets Ω+
i and

blue tones negative sets Ω−i . In the bottom row, indicator functions mi for the nega-

tive sets Ω−i (Heaviside step function H applied to the negation of Φi) are presented,

which are then aggregated to generate SAP.

In order to utilize SAP in applications that require surface features, we further project

SAP onto the object surface. To this end, we simply attribute each surface point with

the value of the nearest point within the shape domain.

3.2 Properties of SAP

The behavior of the SAP is the result of the evolution of the positive set Ω+ generated

by the sequence of the solutions Φi (i = 1, 2, . . . , n), i.e. moving boundary δΩ+
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form the level curves/surfaces of SAP. Indeed, this is the evolution of the shape itself

embedded in the positive sets Ω+
i of the solutions Φi (with Ω+

0 being the original

shape Ω), where the inward motion of the boundary δΩ+ is induced by the systematic

change of the source function f and smoothing is introduced by the operator (∆−α).

Exploiting the linearity of the operator in (2.5), two consecutive solutions can be

related as follows:

(∆− α)(Φi+1 − Φi) = −(fi+1 − fi) (3.2)

where fi+1−fi attains a negative value over the shrinkage zone Zs = {x : x ∈ Ω, i×
s < d(x) ≤ (i+ 1)× s} and zero otherwise, thus yielding a residual Φi+1−Φi which

is negative at any shape location. Negative residual ensures the positive set Ω+
i+1 to be

a subset of Ω+
i . Further taking into consideration the fact that the heat source (positive

set of fi) resides in the shape center, we conclude that δΩ+ evolves towards the center

(see mi in Figure 3.1). Notice that fi+1 − fi represents morphological erosion of the

shape Ω with a radius dictated by the choice of s and the operator (∆ − α) adds a

smoothing factor to the evolution process. Thus, together they provide an analogy to

the traditional curve evolution where the speed of the evolving curve has a constant

(morphological) component and a curvature dependent component for smoothing.

However, in contrast to the curve evolution, morphology and smoothing factors act

indirectly in producing the behavior of δΩ+ and hence of SAP as implied by the

equation (3.2).

In Figure 3.2, we compare SAP to the Euclidean distance transform d(x) and to

the solution of the screened Poisson equation (2.5) with constant right-hand side

f = f(x)0 = 1 over a 2D example. Here, our goal is to discuss the behavior of SAP

with respect to those fields and to emphasize the difference of SAP from a single so-

lution to the screened Poisson, where the latter represents a sample constituent of the

former aggregate construction. The level curves of the distance transform simulates

curve evolution with constant speed (pure morphological evolution) and those of the

screened Poisson solution field represent curvature dependent motion [70]. The level

curves of the SAP reveals the effect of morphological and smoothing factors on the

evolution of δΩ+ as well as the distinguishing property that it can remain stationary

for a certain time, i.e. the contours of SAP, except the innermost ones, partly coincide

21



Figure 3.2: SAP behavior (left) in comparison with EDT (middle) and screened Pois-

son (right) fields computed for a 2D deer shape. Corresponding level curves are given

in the bottom row.
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with the boundary of the shape.

In Figure 3.3, we demonstrate the behaviour of SAP for further 2D silhouettes. Re-

gions that the positive set Ω+ lefts early are depicted with red tones, whereas blue

tones represent central regions held by Ω+ till the last stages of the evolution. Ob-

serve that the inward motion of δΩ+ starts near locally narrow regions such as the tips

of protrusions, corners and narrow necks. During the course of the evolution, those

details are smoothed out and δΩ+ becomes gradually coarser versions of the shape

boundary until the positive set disappears.

In the following paragraphs, we investigate the behavior of the SAP under several

transformations and nuisance factors such as pose changes, occlusions and topologi-

cal differences.

Translation and rotation. A solution Φi(x) at any shape point x ∈ Ω to the equa-

tion (2.5) with homogeneous boundary conditions depends on the location of x with

respect to the shape boundary δΩ up to the choice of the source function fi which is

also derived from a translation and rotation invariant feature, namely Euclidean dis-

tance transform. SAP inherits translation and rotation invariance from its constituents

Φi.

Scale. We identify the scale with the volume of the shape. Change of the volume

scales the range of the solutions Φ to the equation (2.5) leaving the locations of sign

change (or δΩ+) and hence the behavior of SAP unchanged. Note that the source

function has already been made scale invariant using normalized distance transform.

In Figure 3.4, we demonstrate corresponding solutions Φ for 1D lines of different

lengths (x, 2x, 4x). Here, different lengths imply different number of elements used

for discretization, which are assumed to represent the same unit length. For visual

comparison of the solutions at corresponding locations, we mapped each of them

onto a line of unit length.

Pose. We demonstrate the robustness of SAP under pose changes of articulated

models, e.g. moving mammals, which are near-isometric deformations of shapes.
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Figure 3.3: SAP computed for various 2D silhouettes.
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Figure 3.4: Response of a solution Φ to changing scale. Equation (2.5) is solved

on 1D lines of different lengths (x, 2x, 4x) with equivalent source functions f . The

solutions are mapped onto the line of unit length for comparison at corresponding

locations. Observe that the locations of the zero-crossings are preserved through

different scales.

Figure 3.5: SAP is robust under changes in the pose of an articulated object.
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(a) (b) (c)

Figure 3.6: Effect of occlusions and topological changes.

Toward this end, we experiment with different poses of a human body from scape

dataset [1]. The dataset consists of 71 registered mesh models. In Figure 3.5, we il-

lustrate SAP computed for various representative poses. We also compute the average

deviation to report a statistical measure. We first calculate the mean absolute devia-

tion of SAP at each surface element across 71 poses and then average this value over

all surface elements. The average deviation is measured about 1% of the specified res-

olution n used for determining the step size s. Several factors are responsible of the

measured deviation including anatomically-based deformations of the body volume,

noise in the mesh data due to acquisition of 3D point data, surface reconstruction and

registration errors, and discretization of our computational model.

Occlusions and topology. In real life scenes, we often encounter objects partially

occluded by other objects, which may also affect the topology of the object’s shape.

Our experiments show that the effect of the occlusion is fair and localized to the

vicinity of the occlusion (see Figure 3.6a) with the exception that the central blob is

occluded to a large extent. SAP is also resilient to modifications in part connectivity

such as the modification of the mounting style of the handle to the teapot shown in

Figure 3.6b. In an extreme case, an articulation might entirely merge with the body

as shown in the example of the woman in Figure 3.6c whose arms are entirely sticks

to the body and legs. The effect on SAP appears still limited.
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Figure 3.7: SAP computed for the same model with different tessellations (depicted

with yellow edges) of the surface and using different grid resolutions (number of

voxels).

3.3 Implementation Details

A proper grid resolution should be chosen considering the task dependent speed and

quality requirements. Quality of SAP depends mostly on the grid resolution specified

for voxelization rather than the surface tessellation. In Figure 3.7, we demonstrate the

effect of changing the grid resolution (number of voxels) and the tessellation (number

of facets) using a vase model. SAP appears to be resistant to a 16× coarser tessellation

and behaves well when the vase volume is represented using 100k voxels or more,

whereas noise becomes apparent using 10k voxels. Averaging over a dataset of 380

3D shapes, the computation of SAP for a shape with 100k, 500k and 900k voxels

took approximately 1.3, 20 and 77 seconds respectively on a desktop computer with 4

GHz quad-core i7 CPU. We also note that the specified step size s (or the number of

distinct solutions n) which determines the resolution of the SAP imposes a minimum

grid resolution such that the maximum distance of a point in the shape, in terms of

the number of voxels, should at least be on the order of n.
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CHAPTER 4

HIERARCHICAL SHAPE DECOMPOSITION

We evaluate the effectiveness of SAP for use in a hierarchical shape decomposition

task. To this end, we devised a simple method that exploits evolutionary behavior of

the level curves of SAP to extract a decomposition hierarchy of a shape. The method

is detailed in Section 4.1. We will call the output tree the preliminary partitioning

hierarchy tree which we consider an intermediate representation that is then exposed

to a stochastic reorganization process in order to obtain a more intuitive hierarchy and

to improve stability among the hierarchies of similar shapes enabling multiple shape

interpretations. The reorganization process performs local rearrangements on the hi-

erarchy tree based on the difference between SAP levels of partitioning as explained

in Section 4.2.

4.1 Computation of Preliminary Hierarchies

Let the root node hold the shape and each child node represent a sub-part of its parent

node in the preliminary partitioning hierarchy tree. We apply a simple thresholding

based procedure to split a part into its subparts (see Algorithm 1).

Two components of the decomposition algorithm are connected component analysis

of the binarized part volume based on the SAP level threshold and pruning spurious

components. The pruning step consists of size and protrusiveness tests. A candidate

component is considered too small if its volume is not larger than 0.5% of the shape

volume. The degree of a part’s protrusiveness measure, as suggested by Hoffman and

Singh [30], is the ratio of the part boundary length to the length of the base line that

connects the two boundary end points of the part. In order for a candidate part to
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Algorithm 1: Decomposition of a part
input : SAPP , where P denotes the part domain.

Degree of protrusiveness threshold dopth.

Part size threshold sth.

output: Set of subparts C.

begin

th← min(SAPP);

split← false;

while th < max(SAPP) and not split do

C ← ConnectedComponentAnalysis(SAPP > th);

C ← Pruning(C, sth, dopth);

if |C| > 1 then

split← true;

else

C ← ∅;
end

th← th+ 1;

end

end

qualify the protrusiveness test, it has to meet two criteria. First, the base line should

intersect the shape volume indicating the candidate is actually a protrusion. Second,

the measured degree of protrusion ratio should at least be 1.3. Note here that all

threshold values are determined experimentally.

In Figure 4.1 (a), the preliminary partitioning hierarchy tree of an elephant shape is

demonstrated. At each tree node, the corresponding part is depicted black, and the

residual area from the parent part is shaded for visual comparison. Note that the union

of sibling parts does not cover their parent completely. Numeric code pairs (ID-Split

value) next to tree nodes indicate part identification numbers followed by SAP levels

at which the parts are split.
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(a)

(b)

Figure 4.1: Preliminary partitioning hierarchy of an elephant shape (a) and the most

probable hierarchy (b) generated by the stochastic reorganization process with prob-

ability 0.216.
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4.2 Stochastic Reorganization

The naive decomposition approach is prone to yield trees that contain inconsistencies

in the hierarchy levels of parts perceived similar. For example, in Figure 4.1 (a),

forelegs and hind legs of the elephant appear at different levels of the hierarchy. The

reason is the imbalance between the siblings on the second level in the hierarchy. The

sibling (ID:2) that holds the front portion of the elephant includes additionally the

head, the trunk and the tusk parts, which in turn postpones the split of the legs.

We propose a stochastic reorganization method in order to address the consistency

issue and to enable a probabilistic way of shape representation that could help select

the task-dependent optimum from among multiple possible hierarchies.

At the core of the reorganization process is the random decision made locally at each

internal node (except the root) of whether to replace the node with its children, i.e.

the children become the children of their ancestor. The process relies solely on the

difference between the split (SAP) value of the parent and children in determining

the probability of a potential replacement decision. Specifically, the probability of

replacement pr is calculated using the formula exp(−λ(lc − lp)), where λ = 0.05

determines the rate of decay, and lc and lp are the split values of children and parent

nodes, respectively. In order to reserve some space for randomness at both extremities

of the split level difference, i.e. when lc − lp becomes small or large, we impose a

maximum (0.85) and minimum (0.05) for pr.

In Figure 4.1 (b), the most probable hierarchy tree is shown that is generated by the

reorganization process described above for the same elephant shape whose prelim-

inary partitioning hierarchy was shown in part (a) of the same figure. The process

generates this hierarchy with probability 0.216. Observe the nodes 2, 3 and 9 are

replaced by their children. The reorganization process improves the hierarchy in two

ways. Firstly, conforming to our expectation, the legs (4, 5, 10, 11) share the same

level in the hierarchy together with the head as a whole, from which then the tusk (7)

and the trunk (8) split off. Secondly, the process tends to remove parts that represent

perceptually less significant abstractions such as front (2), back (9) and forelegs (3),

yielding a more compact partitioning hierarchy.
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Figure 4.2: Preliminary partitioning hierarchies of a horse shape produced by our

method (top) and the method proposed in [68] (bottom).
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Figure 4.3: The leaf parts of preliminary partitioning hierarchies produced by our

method (left) and the method proposed in [68] (right). Observe that our method better

localizes the limbs.

4.3 Comparison with the Decomposition using Previous Nonlocal Model

In [68], a method of hierarchical shape decomposition has been proposed that exploits

the geometry and topology of the level curves of solution u to the previous nonlocal

model which was reviewed in Chapter2. The method decomposes the shape domain

into adjacent regions enclosed by the level curves of u that are passing through saddle

points of the function. Repeated such splits ordered by the levels of the saddle points

yield a decomposition hierarchy that can be represented by a hierarchy tree.

The most important difference is that our method of decomposition is easier to im-

plement or compute than the method proposed in [68]. Remember that our method

just thresholds SAP values and the latter needs to locate saddle points of u which, in

turn, requires computation of derivatives up to second degree which especially limits

extendability to higher dimensions.

In Figure 4.2, we compare the methods over the decomposition of a horse shape. A

significant difference is that the decomposition method in [68] first extracts the coarse

central blob (see the left sibling of the first level of decomposition hierarchy) that is

the positive locus of u (see Section 2.1). The saddle point based decomposition of

the peripheral parts starts after that point. Our SAP based method does not extract

such a central region explicitly. However, the difference set between the whole shape

and the parts extracted at the first level of decomposition can be considered a central

structure as well.
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A more subtle difference is observed in the coverage relationship between the parent-

child nodes. Combination of the sibling parts that result from u based decomposition

method reproduces the parent part, whereas the combination of the siblings do not

reproduce the parent in our method. We consider this a useful property of our method

which provides the flexibility for better localization of parts. Observe that the legs,

which are shown in the leaves of the hierarchy tree, are better localized in comparison

to those produced by the other method that excessively penetrate into the center of the

shape. We depicted the leaves of both decomposition trees in Figure 4.3 for an easier

visual comparison.
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CHAPTER 5

GROUPWISE ANALYSIS OF A SHAPE SET

The task at hand may require analysis of a group of similar shapes simultaneously,

where it is suitable to gather information from individual shape analyses to obtain the

collective partitioning hierarchy representing the group. Then, the collective hierar-

chy could help optimizing the individual hierarchies in an attempt to reduce within

group representational variance by selecting the hierarchies that are most similar to

the collective hierarchy from the set of all possible sample hierarchies that can be

generated by the stochastic reorganization process.

5.1 Method

The overview of our method is depicted in Figures 5.1 and 5.2 separating bottom-up

and top-down processing parts. In the bottom-up part, we employ the hierarchical

partitioning and stochastic reorganization methods given in Chapter 4 to obtain sam-

ple decomposition hierarchies.

In the top-down part, the collective hierarchy is determined as the medoid of the set of

the individual representatives. The individual representatives are the most probable

hierarchy trees generated by the stochastic reorganization process for each individual.

In computing the medoid we utilize the tree editing distance algorithm proposed in

[79] to measure pairwise distances between individual representatives. Once the pair-

wise distances are computed, the individual representative whose median distance to

other individual representatives is minimum qualifies as the collective hierarchy of

the group. Note that we use the median instead of the average distance to prevent the

outliers to influence the process adversely.
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Input set

Hierarchical partitioning

Preliminary 
hierarchies

Stochastic reorganization

Sample 
hierarchies

Bottom-up Processing

Figure 5.1: Illustration of the bottom-up processing part of the proposed method for

groupwise analysis of a shape set. First, the preliminary hierarchy trees are com-

puted (see Section 4.1). Then, randomized samples are generated using stochastic

reorganization (see Section 4.2).
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hierarchies Most probable samples

Medoid computation

Compare sample hierarchies 
to collective hierarchy

Optimized individual 
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(nearest samples to medoid)

Top-down Processing

Collective Hierarchy

Figure 5.2: Illustration of the top-down processing part of the proposed method for

groupwise analysis of a shape set. The collective hierarchy is computed as the medoid

of the most probable samples of each individual shape. Finally, the optimized individ-

ual representations are selected to be the nearest samples to the collective hierarchy.
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The tree editing distance algorithm was proposed for ordered labeled trees, i.e. the

order among the siblings is important and the nodes are assigned labels from a set

of symbols. Thus, we have to address two issues to be able to employ the algorithm

in our method: ordering the sibling nodes and proposing a shape characteristic as a

replacement for label abstractions. The proposed characteristic, then, allows us to

specify the costs of tree editing operations which are needed to transform a hierarchy

tree to another as a means of measuring the distance between those trees.

We order the siblings with respect to their clockwise order which is captured by trac-

ing the shape boundary. We use the part to entire shape area ratio, namely the relative

area of a part, as the shape characteristic property of tree nodes to determine the cost

of an editing operation. Specifically, the cost is equal to the absolute difference be-

tween the relative area properties of two nodes in case of a change operation, i.e. the

two nodes are matched. Otherwise, when a node is not mapped to any node in the

other tree, i.e. it is deleted or inserted, the node contributes as much as its relative

area to the overall tree editing distance.

Finally, for each individual shape, we select the most similar sample hierarchy to

the collective one among all samples generated by the stochastic reordering process.

Again, we use the tree editing distance algorithm with a small modification in defining

the costs of individual operations. Specifically, an insertion operation adds half the

cost of a deletion operation.

The rationale behind the weighting idea is the assumed precedence of the collective

hierarchy over individual hierarchies. Thus, we evaluate the absence of a collective

hierarchy node in the individual hierarchy as a more significant aberration than the

presence of a node in the individual hierarchy that has no counterpart in the collective

hierarchy. This assumption provides us the necessary degree of flexibility to select

individual hierarchy representations that capture as much of the collective information

as possible while preserving the variation in the individual hierarchies.
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Figure 5.3: The preliminary decomposition hierarchy trees of a paper boat (top) and

its wrinkled version (bottom). The comparison shows how boundary deformations

can affect the resulting preliminary hierarchies.
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Figure 5.4: The individual representative hierarchy trees of the paper boats shown in

Figure 5.3, i.e. the most probable tree samples generated by the stochastic reorga-

nization process. The comparison shows how boundary deformations can affect the

resulting individual representatives.
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Figure 5.5: The collective decomposition hierarchy tree of the paper boat category

(top), and the improved individual decomposition hierarchy of the wrinkled paper

boat (bottom), which is the nearest tree to the collective hierarchy tree among all

samples generated by the stochastic reordering process for the wrinkled paper boat.

Observe also that the first level of the decomposition tree of the wrinkled boat be-

comes similar to that of the non-wrinkled boat, which was shown in Figure 5.4 to the

top, as the further splits of the boat sides are deferred to the next level of the tree.
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5.2 Experimental Results

We demonstrate shape decomposition performance our groupwise analysis method

on various object categories from the 1000 shapes dataset [3]. The dataset involves

1000 object silhouettes from 50 categories (20 silhouettes per category). The result-

ing decompostion hierarchies of individual objects are shown in Appendix B. In the

following paragraphs, we give examples that show how the proposed groupwise anal-

ysis method improves decomposition hierarchies of individual objects in presence of

different conditions.

Decomposition hierarchy of an object can be affected by possible deformations on

objects boundary. In Figure 5.3, we compare the decomposition of a paper boat to

that of its wrinkled version. Observe that the decomposition hierarchy of the wrin-

kled version has an additional level of decomposition, where each side splits into its

top and bottom part. This additional level of decomposition, then, results into an

individual representative, where the boats side as a whole is absent in contrast to non-

wrinkled version (see Figure 5.4). In Figure 5.5, we show the collective hierarchy tree

of the paper boat category, and the improved individual hierarchy tree of the wrinkled

version obtained with the help of the proposed groupwise analysis method. Observe

that, consistent with the collective hierarchy, the sides of the boat are preserved in the

improved hierarchy.

In Figures 5.6 and 5.7, we depicted the collective hierarchy tree of the cat category,

the preliminary decomposition hierarchy of a specific cat object from that category,

its individual representative tree and, finally, the optimized individual hierarchy tree

obtained for that object, respectively. Observe in the individual representative that the

head as a whole is missing and replaced by the ears and the nose due to the relative

proximity between the split values of the parent (24) and its descendant nodes (34,

39). Then, the front legs are represented one level down the hind legs.

The partial occlusion of one front leg by the other leg results in relatively distant split

values (24 vs. 45) which, most of the times, prevent replacement of the parent node

(front legs unified) by its descendants (separated legs) in the reorganization process.

In the optimized representation, though, both issues are resolved thanks to our collec-
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tive analysis method: all legs are on the same level, and the head is preserved with its

subparts. Indeed, if the ears and the nose were removed from the representation, the

optimized hierarchy would have the same structure as the collective hierarchy with

an exact mapping of counterparts. The issue of difference in the levels of the legs is

also observed in the individual representative of the elephant depicted in Figure 5.8.
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Figure 5.6: The preliminary decomposition hierarchy tree of a cat and elephant sil-

houette.
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Figure 5.7: The collective decomposition hierarchy tree of the cat category (top), the

individual representative tree (middle) of the specific cat whose preliminary tree is

shown in Figure 5.6, and the optimized individual hierarchy (bottom) obtained by

selecting the nearest tree sample to the collective tree.
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Figure 5.8: The collective decomposition hierarchy tree of the elephant category

(top), the individual representative tree of a specific elephant object (middle), and

the optimized individual hierarchy (bottom) obtained for that object.
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CHAPTER 6

UNSUPERVISED SEGMENTATION OF 3D MESH MODELS

Real world objects are commonly modeled using polygon meshes which define the

shape of the object by a collection of vertices, edges and faces. As in the case of

additive manufacturing, we may need to segment a 3D mesh model into connected

disjoint parts guided by the application specific objectives. Mesh segmentation also

facilitates the following graphics applications. In metamorphosis [61, 80, 25], mesh

segmentation is used for establishing correspondence. Then, it is utilized for improv-

ing compression rate in compression and simplification applications [37, 17]. In 3D

modeling, segmented parts from existing object models are combined to synthesize

new object designs [15]. Other applications include skeleton-driven animation [39],

texture mapping [43], collision detection [44], and retrieval [81].

In this chapter, we developed an unsupervised algorithm for mesh segmentation that

exploits part coding feature of SAP (projected onto the mesh surface) together with

two local surface geometry cues, namely dihedral angle and concavity information.

In Section 6.2, we give the details of the segmentation algorithm. The results, given

in Section 6.3, show that SAP has the greatest contribution to the algorithm perfor-

mance. Moreover, in comparison with the state-of-the-art, the algorithm performs

best among unsupervised algorithms for single mesh segmentation (even better than

a human) and it also performs comparable to a supervised algorithm and a segmenta-

tion method for joint segmentation of multiple meshes.
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6.1 Related Work

Started with the earliest works, local (per-vertex/facet or pairwise) geometric prop-

erties of the surface have been exploited in segmenting meshes. Clustering based

methods [61, 39] define pairwise distances between surface points using geodesic

and angular distances and concavity information. Region growing based methods

[52, 55] partition the mesh into surface patches with consistent curvatures bounded

by contours of curvature extrema.

Surface properties such as principal curvatures, angular distance, and concavity pro-

vide low-level information to locate segment boundaries as well as to measure the

geometrical consistency of the segment, yet bring sensitivity to local surface defor-

mations induced by noise, small creases and pose changes. Geodesic distance pro-

vides spatial coherence and is invariant under nearly-isometric deformations such as

pose change; however, it often causes spurious divisions of geometrically coherent

parts due to polarization effect. Furthermore, it is sensitive to changes in topology.

Gaussian curvature (product of principal curvatures) is another isometry invariant, yet

its approximation on a discrete mesh surface is prone to noise.

Higher-level information can be derived by considering larger neighborhoods to mea-

sure geometric properties in multiple scales in order to alleviate sensitivity to local

perturbations on the shape surface. To this end, principal component analysis is em-

ployed both over surface- [35] and volume(ball)-neighborhoods [76, 41]. Further-

more, in [35, 51], curvature is measured on patches of growing size fitted to local

surface points. Computed using spectral properties of Laplace-Beltrami, Heat kernel

signature (HKS) [65] also provides multi-scale curvature related information at each

surface point.

Average Geodesic Distance (AGD) by [28] represents an extreme case that takes

global interactions over the surface into account. AGD characterizes a surface point

within the context of global mesh geometry by aggregating pairwise geodesic dis-

tances from the point to all other surface points. Topology driven methods [38, 6],

and saliency-guided segmentation approach [46] make use of AGD to detect feature

points through which the intrinsic shape structure is captured to guide the segmenta-
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tion process. Conformal factors (CF) [5] is another global representation that is stored

locally. It is derived from local Gaussian curvature, hence invariant to pose changes.

Both AGD and CF are sensitive to topological differences.

Intrinsic symmetry information is captured using approximate Killing vector fields

[4] to discover shape primitives that are the basic parts of the shape which might have

undergone nearly-isometric deformations due to pose changes but preserving intrinsic

symmetry [63].

Spectral methods [48, 78, 73, 71] define the Laplacian on the mesh (or dual) graph

whose weights encode pairwise similarities between adjacent nodes based on vari-

ous properties of the surface geometry. Eigenvectors and eigenvalues of the graph

Laplacian matrix reveal global shape properties. [73] employs a further analysis of

individual eigenvectors from which a concavity-aware feature called single segmen-

tation field (SSF) is synthesized. In [71], the spectral analysis is driven by an initial

over-segmentation via construction of a heterogeneous graph that combines local face

affinities with nonlocal patch affinities.

Line-of-sight visibility is utilized to capture long range interactions among surface

points through the shape volume. A point is considered in the line-of-sight of another

point if they are connected through a line which lies entirely within the shape vol-

ume. [60] propose an invariant under pose change, namely Shape Diameter Function

(SDF), that approximates the local thickness of the shape volume. SDF is measured

by propagating rays from a surface point around the inward normal direction, and

then averaging distances to sighted points on the opposite side of the surface. Despite

the altered visibility conditions due to pose changes, the proposed function remains

largely invariant by setting the computational parameters carefully and smoothing the

measurements as a post-processing. Based on the observation that the points on the

surface of a convex part are visible to each other, [2, 34] cluster the surface points that

are mutually visible and geometrically connected in order to segment the mesh into

weakly convex parts. [47] proposes Continuous Visibility Feature (CVF) which char-

acterizes a surface point with respect to its sight both through the shape volume and

over the shape surface. A serious drawback of CVF is its sensitivity to concavities on

the surface due to its stronger visibility definition.
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Given a task that involves segmenting a set of similar objects without prior knowl-

edge, a practical way of thinking is to enable knowledge transfer by means of joint

segmentation to achieve set-wide consistency. Knowledge transfer allows identifi-

cation of salient segments shared across the objects and provides external support

to assist segmentation of challenging objects on which derived shape properties are

inadequate to recover salient segments. However, accurate identification of part-

correspondences between objects in the presence of large intra-class variations in ge-

ometry and scale of semantically similar parts pose a challenge to joint segmentation

processes. To factor out the scale variation, [75] proposes to pre-cluster the objects

into groups with homogeneous part scaling and employs the global rigid alignment

based algorithm [23] in each group independently. Descriptor space clustering based

joint segmentation algorithms [62, 32, 31, 50], in essence, first over-segment indi-

vidual meshes into patches, then measure patch proximities based on several shape

descriptors between all patches from all meshes, and finally cluster the patches to

have consistent segmentations and part correspondences simultaneously. The patch

descriptors used for proximity measurements include patch area, patch-wide geomet-

ric surface properties (including histograms of per-vertex/facet properties, principal

component analysis based features and AGD), visibility-based SDF, HKS, CF, and

geodesic distance to the shape base.

A nice instrument for consistency is a voting mechanism that pools multiple segmen-

tation results, yielding a continuous function defined over the edges of a mesh that

indicates the probability that an edge is cut by a segmentation [22]. The function is

used to evaluate a segmentation by weighting the cut to obtain a consistency score.

6.2 Method

The proposed algorithm consists of three steps. We provide its pseudo-code in Algo-

rithm 2 and explain the details of each step in the following paragraphs.

Spectral analysis Spectral analysis of the dual Laplacian matrix has been success-

fully applied to capture nonlocal shape features using local features of the surface

geometry such as concavity, curvature, geodesic distance etc. Our contribution in this
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Algorithm 2: Segmentation for a given number of segments
input : MeshM, representation SAP ,

number of segments k

output: Segment labels l

begin

{vi : i = 1..k − 1} ← Spectral analysis(M, SAP );

{pτ : τ ∈M} ← Soft-clustering({vi} , k);

{lτ : τ ∈M} ← Hard-segmentation({pτ});

end

part is integration of SAP into the definition of the pairwise distance measure between

neighboring mesh elements to be used in constructing the Laplacian.

Let G = (V,E,w) be the dual graph of the mesh M with the set of nodes V =

{τ : τ represents a triangle ofM}, the set of edgesE = {(i, j) : τi and τj are adjacent}
and the function of edge weightsw : E → R+. The edge weightw(i,j) associated with

the edge (i, j) represents the similarity between the adjacent pair of triangles τi and

τj and computed as shown in (6.1).

w(i,j) =
|eij|
|e|

exp

{
−δ (τi, τj)

δ̄

}
(6.1)

where |eij| is the length of the shared edge normalized against the mean length |e| of

all edges inM, δ (τi, τj) is the distance between the pair, measured using (6.2) and

normalized by the average distance δ̄ over all pairs of adjacent triangles.

δ (τi, τj) = κ(i, j)× (δSAP (i, j) + δDHD(i, j)) (6.2)

δSAP (i, j) denotes the difference between the SAP values assigned to the distinct

vertices of τi and τj . δDHD(i, j) is an angular difference based on the dihedral angle

φi,j—the angle between outward normals —and formulated by min(3 × φi,j/π, 1.0)

to emphasize low-frequency geometric features. κ(i, j) is a constant to apply the

minima rule which suggests higher priority for concave creases. We set κ(i, j) = 1.0

when the edge between τi and τj is concave, and 0.1 otherwise.
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We construct the dual Laplacian matrix L as follows:

Lij =


−w(i,j) (i, j) ∈ E∑

k w(i,k) i = j, (i, k) ∈ E

0 otherwise

(6.3)

We compute a sequence of eigenvectors v1, . . . , vn of the Laplacian matrix corre-

sponding to the first n nonzero eigenvalues of smallest magnitude λ1, . . . , λn in as-

cending order.

Salient parts are strongly separated in the feature space associated with the eigenvec-

tors, yet some of the eigenvectors may represent small surface features isolated from

their surrounding region because of strongly discriminating cues. To cope with such

cases, we employ a pruning step in which the mesh is bisected on the basis of each

individual eigenvector (by thresholding) and select first k − 1 eigenvectors for which

the size of the smaller part is greater than a given size threshold relSize which we set

to 1% of the entire surface area.

Soft-clustering We soft-cluster the mesh triangles into k clusters, i.e. we com-

pute cluster posterior probabilities for each triangle, based on their distribution in the

feature space. We represent clusters as components of a Gaussian Mixture Model

(GMM), whose parameters are estimated by employing expectation-maximization

algorithm. Given a triangle τ , the associated feature vector fτ and the estimated

model parameters θi for (i = 1, 2, . . . , k), we compute posterior probabilities vector

pτ = [P (θ1|fτ ), . . . , P (θk|fτ )]T .

Hard-segmentation Assigning a mesh triangle to the most probable cluster with

respect to the posterior probabilities appears to be a reasonable solution for many

shapes. For many other shapes, however, it can fail in producing smooth and plausible

segment boundaries that adhere to concave creases of the mesh surface. To this end,

following [60], we define an optimization problem that search for a final labeling

that simultaneously tries to assign each triangle to a cluster with higher posterior

probability, and to yield smooth and plausible segment boundaries. Specifically, we
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consider the following energy minimization problem:

arg min
l

∑
τ∈M

F (τ, lτ ) + β
∑

(i,j)∈E

Q(lτi , lτj) (6.4)

F (τ, lτ ) = − log(P (θlτ |fτ ) + ε)

Q(lτi , lτj) =

− log(κ(i, j)× φi,j/π) lτi 6= lτj

0 otherwise

where F is the fidelity term that measures the disagreement between the labeling l and

the GMM that was fit to data, and Q is the quality term that imposes short/smooth

boundaries passing through concave creases. The parameter β determines the weight

of the quality against fidelity.

We employ the expansion move algorithm based on graph cuts proposed in [8] to

solve the energy minimization problem.

6.3 Results and Benchmark Evaluation

We evaluate the performance of our algorithm with respect to state-of-the-art meth-

ods by computing the Rand index performance metric on the Princeton Segmentation

Benchmark set [11]. The benchmark dataset contains 4300 human generated seg-

mentations for 380 watertight mesh models. The mesh models are adapted from the

Watertight Track of the 2007 SHREC Shape-based Retrieval Contest [21] and uni-

formly distributed to 19 different object categories that range from human and animal

bodies to mechanical CAD parts and furnitures. Two of them (armadillo and pliers)

contain various appearances (different poses with missing parts occasionally) of the

same object. Another seven categories (human, ant, octopus, teddy bear, hand, bird,

four leg) consist of different articulated objects of the same type that appear in differ-

ent poses. There are also categories (cup, vase, chair) where the objects have non-zero

topological genus.

During the evaluation of segmentation algorithms, in order to provide a fair compar-

ison between the algorithms that require the number of segments from the user and

those that automatically find it, the benchmark chooses a separate value for the num-

ber of segments for each model by setting it to the mode of the number of segments
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that appear in human generated segmentations of that model. This models a typical

use case scenario where the human user looks at the model and then runs the seg-

mentation algorithm with an estimation of the number of segments. Note that giving

the exact number of segments for each human generated segmentation would unfairly

benefit those algorithms that require the number of segments.

State-of-the-art methods have reported performance results using the Princeton Bench-

mark Rand Index measure making it the defacto standard for comparison of the mesh

segmentation algorithms. The region-based Rand index was originally proposed for

measuring similarity between two data clusterings in [59]. In our context, it measures

the likelihood that a pair of mesh faces are either in the same segment or in different

segments in both segmentations. The distinguishing property of the metric is that it

can model overlapping regions without finding associations between segments.

Let S1 and S2 be two segmentations, s1
i and s2

i be the segment ids of the face i in S1

and S2, and N be the total number of mesh faces. Then the Rand index is calculated

using the formula:

RI(S1, S2) =

∑
i,j,i<j[PijQij + (1− Pij)(1−Qij)](

N
2

) (6.5)

where Pij = 1 if and only if s1
i = s1

j and Qij = 1 if and only if s2
i = s2

j . The first

term of the sum (PijQij) counts the pairs i and j that fall to the same segment in

both segmentations, whereas the second counts those that are in different segments

in both segmentations. The denominator of the formula is simply the total number

of pairs. We note that the Rand index metric reported by the Princeton benchmark is

in fact calculated as 1 − RI(S1, S2), i.e. it measures the dissimilarity between two

segmentations rather than the similarity which is measured byRI(S1, S2). Therefore,

in our report, lower Rand index values indicate better performance.

The benchmark evaluates the final Rand index performance of an algorithm as fol-

lows. First, Rand index values for each human generated segmentation of a model is

computed by comparing it to the resulting segmentation of the algorithm (see (6.5)).

Then, those values are averaged to obtain the Rand index value of the model. Finally,

Rand index values of all models and models from the same category are averaged to

determine the overall and the category-based performance of the algorithm.
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In Figure 6.1 (overall) and in Table 6.1 (per class), Rand index performances of

several algorithms from different categories are compared with human performance

(small values indicate better performance). Unsupervised single mesh segmentation

category includes our algorithm, spectral mesh segmentation using SSF (SSF, [73]),

Mumford–Shah mesh decomposition (M-S, [78]) and another spectral algorithm driven

by heterogeneous graphs (HGD, [71]). Other methods include Joint Shape Segmen-

tation (Joint, [32]) for segmenting multiple meshes jointly and the supervised method

for segmentation and labeling [35] with varying number of samples used for train-

ing: 95% of the samples for each category (Sup95), 60% (Sup60), and 15% (Sup15).

Our method performs the best among state-of-the-art algorithms from the same cate-

gory, performs comparable to the joint segmentation method that exploits information

from entire dataset, surpasses the supervised method when the size of the training set

is specified as 60% of each category (Sup60), and appears to be even better than

a human subject. Representative segmentations from benchmark evaluation of our

algorithm are shown in Appendix A.

We also evaluated the contribution of SAP to the benchmark performance of the pro-

posed algorithm by redefining the distance measure (6.2) so that it involves different

combinations of the cues. The resulting benchmark performances using the modified

distance measures are shown in Figure 6.2. Obviously, the best individual perfor-

mance is achieved using SAP, which already competes with unsupervised single mesh

segmentation algorithms. Moreover, the algorithm outperforms them using SAP and

concavity without dihedral angle.

In Figure 6.3, illustrative segmentations obtained using the distance measure (6.2)

both with and without SAP are depicted. The contribution of SAP is observed in dif-

ferent ways. SAP acts as a supportive cue when the surface-based cues remain weak

to segment a protrusion correctly, e.g., the angular distance is small on a remarkable

portion of the segment boundary. Thereby our algorithm manages to separate the pair

of glasses and to segment the left leg of the walking woman (instead of a finger), the

dorsal fin of the fish, the nose of the bear and the bust, the left wing of the airplane, the

middle finger of the hand, and the handle of the vase. SAP also improves consistency

in segmenting different poses of shapes. In the walking and running women example,

without using SAP, the algorithm segments the right hand instead of the right leg;
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Figure 6.1: Benchmark performance of our algorithm (Ours) in comparison with

state-of-the-art methods of different categories: unsupervised single mesh segmenta-

tion algorithms (HGD, [71]), (SSF, [73]) and (M-S, [78]), algorithm for joint segmen-

tation of multiple shapes (Joint, [32]), supervised segmentation with various portions

of samples used for training (95%-Sup95, 60%-Sup60, 15%-Sup15, [35]).
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Figure 6.2: Evaluation of SAP’s contribution to the benchmark performance of our

algorithm based on Rand Index values. The contributions are evaluated by using

various combinations of the cues in the definition of the distance measure (6.2) as

indicated by the labels, i.e. the leftmost bar represents the performance using all

cues: SAP function (δSAP ), dihedral angle (δDHD) and concavity information (κ).

Figure 6.3: SAP contributes to segmentation performance in different ways. In each

triplet, from left to right, we show segmentation results using and not using SAP, and

SAP itself.
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Table 6.1: Princeton Benchmark Rand Index Values

Single-Unsupervised Joint Supervised

Human Ours HGD SSF M-S CVF RC SDF JSS SB19 SB12 SB3

Average 10.3 9.98 10.2 11.6 12.0 15 15.3 17.6 10.1 9.4 10.7 14.8

Human 13.5 13.67 12.4 12.8 11.1 14 13.1 17.9 11.3 11.9 12.9 14.7

Cup 13.6 11.61 11.0 14.6 20.4 23 21.9 35.8 11.2 9.9 9.9 10.0

Glasses 10.1 9.22 9.9 11.3 9.4 19 10.1 20.4 9.9 13.6 14.1 14.2

Airplane 9.2 8.50 11.2 13.2 11.1 20 12.2 9.2 10.2 7.9 8.2 10.2

Ant 3.0 1.80 2.0 2.8 2.2 4 2.5 2.2 2.4 1.9 2.2 2.6

Chair 8.9 6.33 7.4 8.4 10.9 7 18.4 11.1 9.6 5.4 5.6 6.6

Octopus 2.4 1.78 2.6 2.6 2.5 3 6.3 4.5 7.2 1.8 1.8 2.2

Table 9.3 6.24 7.0 6.1 10.3 9 38.3 18.4 6.6 6.2 6.6 11.1

Teddy 4.9 3.36 3.9 3.6 3.2 7 4.5 5.7 3.3 3.1 3.2 5.6

Hand 9.1 9.65 10.7 11.0 7.9 13 9.0 20.2 13.1 10.4 11.2 15.8

Plier 7.1 8.05 5.7 8.5 8.9 22 10.9 37.5 7.5 5.4 9.0 10.5

Fish 15.5 19.33 18.6 21.5 29.6 18 29.7 24.8 13.1 12.9 13.2 13.5

Bird 6.2 6.58 7.8 7.8 9.4 18 10.6 11.5 7.6 10.4 14.8 18.6

Armadillo 8.3 8.63 10.3 9.1 8.7 10 9.2 9.0 7.4 9.0 8.4 8.6

Bust 22.0 25.29 25.8 28.6 25.1 30 23.2 29.8 19.8 21.4 22.2 39.3

Mech 13.1 11.13 10.5 12.6 13.1 14 27.7 23.8 13.3 10.0 11.8 24.0

Bearing 10.4 9.29 9.5 14.8 16.6 13 12.4 11.9 11.3 9.7 17.6 32.7

Vase 14.4 12.71 12.1 15.4 12.5 18 13.3 23.9 13.2 16.0 17.1 25.3

Fourleg 14.9 16.57 15.7 16.5 14.4 17 17.2 16.1 11.2 13.3 13.9 16.3

moreover, the upper half of the left arm is merged with the body. It is shown that with

the help of SAP, the algorithm segments the walking and running women consistently.

Limitations Despite the benchmark performance of our algorithm, there are two is-

sues that have to be dealt with. One of them is missing significant parts due to current

fixations of the parameters. In Figure 6.4, two such cases are depicted. In the first

case, right engine of the airplane is removed in the hard-segmentation step due to the

large weight (β) given to the boundary quality term in (6.4). The part is recovered by

choosing a smaller weight. In the second case, the beak of the bird is missed because

of its size, which is below the relative size threshold and hence the associated eigen-

vector is ignored in the spectral analysis step. Similarly, a smaller selection of the

parameter recovers the beak. Missing part issue suggests user adjustable parameters

or employing a means of adaptive parameter selection.
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Figure 6.4: Missing parts due to the current parameter fixations. By adjusting the

parameters, we can recover the missing parts.

Our algorithm also shares a common issue with spectral analysis based methods

which is determining the eigenvectors to be used for segmentation. Our algorithm

selects k− 1 eigenvectors to segment the mesh into k parts following the approach in

[78] which, however, causes instabilities especially in decomposing complex shapes

such as the ones from human or four-legs categories into finer segments. The problem

could be handled by an adaptive selection mechanism similar to the one proposed in

[73] based on second-order difference analysis of the Laplacian matrix eigenvalues.
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CHAPTER 7

SUMMARY AND CONCLUSION

In this thesis study, we developed methods for shape analysis in two and three dimen-

sions. Toward this end, we first presented an efficient computational model for shape

analysis. The model solves Poisson’s equation in the shape domain with specially

designed right-hand sides to explore the entire shape yielding a family of part-coding

functions.

We showed that the proposed model is a superior alternative to a previous nonlo-

cal model from the aspects of computational efficiency, part-coding capability and

applicability. Our model is computationally efficient, since it reduces to solving a lin-

ear system of equations with a sparse and positive definite matrix for which efficient

solvers exist. In contrast, the previous model yields a full system matrix for which

a direct solution becomes unfeasible as the shape domain gets larger, and hence, it-

erative solvers are employed to obtain approximate solutions. Then, we showed that

by varying the parameter of our model, we obtain multiple decompositons of shape,

extending the part-coding capability of the previous model. Specifically, our model

relaxed the division of the shape domain into central (positive valued) and peripheral

(negative valued) regions which was strict in the previous model. We demonstrated

that such a relaxation enables adjusting the granularity of parts encoded in the solu-

tion within the peripheral region. And finally, we demonstrated that, thanks to the

local formulation, our model is also applicable to image frames in which shapes are

only implied by incomplete edge fragments, whereas the nonlocal previous model

requires the complete knowledge of the shape domain.

We further aggregated multiple part-coding functions sampled from our model into

an integer-valued function defined on the shape, namely Source-Aggregated-Poisson
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(SAP). We showed that SAP encodes evolution of the shape boundary (represented

by the boundary of the positive set throughout those functions) induced by morpho-

logical and curvature dependent factors. Then, we exhibited robustness of SAP under

various visual transformations, occlusions and topological distortions.

In order to demonstrate the claimed part-coding capability of our model, and hence of

SAP, we first devised a simple shape decomposition method that hierarchically parti-

tions the shape domain using level sets of SAP. Then, we proposed a probabilistic tree

structure to effectively and flexibly represent multiple interpretations of decomposi-

tion hierarchy. The proposed structure was an ordinary tree (i.e. the one produced by

the simple decomposition method) endowed with a probabilistic process that traverse

the tree and change the local tree configuration with a probability imposed by the SAP

levels attributed to the related tree nodes (parent and its children). Finally, in the con-

text of a groupwise analysis task, we demonstrated how such a probabilistic structure

helps optimizing representations of individuals in the group of similar shapes in an

attempt to reduce within group representational variance. For this purpose, we first

determined the collective representation of the shape group as the medoid of the most

probable hierarchy tree samples that can be generated by the individual probabilistic

hierarchy trees. Then, for each individual shape, we select the tree sample that is most

similar to that collective representation.

Finally, in the context of mesh segmentation problem, we showed that SAP values

near shape boundary proves to be useful in meaningful segmentation of the boundary,

which is commonly represented by a surface mesh in 3D. To that end, we developed

an unsupervised mesh segmentation algorithm that consits of three steps. In the first

step, we combined volume based SAP values projected onto surface mesh with lo-

cal surface geometry information to construct the dual graph Laplacian matrix and

computed its spectrum. Then in the second step, we soft-clustered mesh elements

in the feature space constructed using the computed spectrum, where clusters were

represented by the components of a Gaussian Mixture Model and the output was the

cluster association scores computed for each element. In the last step, we solved an

optimization problem to assign each mesh element to a cluster with a high association

score as possible while the segment boundaries are smooth and plausible.
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We evaluated the performance of our mesh segmentation algorithm against state-of-

the-art methods via the Princeton Segmentation Benchmark. Using the Rand Index

error, the benchmark essentially measures the deviation of segmentations produced

by our algorithm from the segmentations generated by an average human subject.

Our algorithm performed the best among all unsupervised methods, and even com-

parable to joint and also supervised ones. Moreover, without the surface-geometry-

based information and using only our volume-based SAP function projected to the

surface, the algorithm could compete with other unsupervised algorithms. Another

remarkable result was that among all segmentation cues SAP distinguishes as the one

that contributes the most to the final performance of the algorithm. We showed that

SAP improves the segmentation when surface geometry does not provide sufficient

information for segmenting a part and should be supported by a volume-based cue.

We also demonstrated that SAP helps improving consistency in segmenting differ-

ent poses of objects with moving articulations or limbs. These results suggest that a

meaningful segmentation of the object boundary demands more information than the

local geometry of the boundary can provide. SAP as a volume-based nonlocal shape

information has the potential to fill the gap.

From the part-coding functions of our model to derived SAP and decomposition hi-

erarchies, all constructions of this thesis work are developed to represent the shape

at different stages of visual processing. The natural continuation work will progress

towards designing a vision system that would take the scene as its input and uncover

the semantics via recognizing the objects and their relations.
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APPENDIX A

SEGMENTATION PERFORMANCE ON PRINCETON BENCHMARK SET

In this appendix, we show representative segmentations that form the basis for the

benchmark performance of the proposed unsupervised mesh segmentation algorithm

given in Chapter 6.
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Figure A.1: Segmentation results for HUMAN category.
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Figure A.2: Segmentation results for CUP category.
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Figure A.3: Segmentation results for GLASSES category.
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Figure A.4: Segmentation results for AIRPLANE category.
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Figure A.5: Segmentation results for ANT category.

80



Figure A.6: Segmentation results for CHAIR category.
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Figure A.7: Segmentation results for OCTOPUS category.
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Figure A.8: Segmentation results for TABLE category.
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Figure A.9: Segmentation results for TEDDY category.
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Figure A.10: Segmentation results for HAND category.
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Figure A.11: Segmentation results for PLIER category.
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Figure A.12: Segmentation results for FISH category.
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Figure A.13: Segmentation results for BIRD category.
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Figure A.14: Segmentation results for ARMADILLO category.
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Figure A.15: Segmentation results for BUST category.
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Figure A.16: Segmentation results for MECH category.

91



Figure A.17: Segmentation results for BEARING category.
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Figure A.18: Segmentation results for VASE category.
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Figure A.19: Segmentation results for FOURLEG category.
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APPENDIX B

GROUPWISE ANALYSIS RESULTS WITH 1000-SHAPES DATASET

In this appendix, we demonstrate the performance of our groupwise analysis method

on 1000-shapes dataset. In order to compactly present the decomposition hierarchy

trees, we superimpose tree-nodes, i.e. draw the part stored in a tree node on top

of the part stored in its parent node. Moreover, we coded different levels of the

decomposition hierarchy using different colors. The shape itself (root) is drawn with

light-gray. The parts that are split in the first level are shown in blue color. And finally,

the second level is coded using orange. An example to construction of superimposed

representation is shown in Figure B.1.
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Figure B.1: From decomposition hierarchy tree representation to compact represen-

tation with superimposed nodes. The shape itself (root) is drawn with light-gray. The

parts that are split in the first level are shown in blue color, whereas the second level

is coded using orange.

96



Figure B.2: Groupwise analysis results for category 1.
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Figure B.3: Groupwise analysis results for category 2.
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Figure B.4: Groupwise analysis results for category 3.
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Figure B.5: Groupwise analysis results for category 4.
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Figure B.6: Groupwise analysis results for category 5.
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Figure B.7: Groupwise analysis results for category 6.
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Figure B.8: Groupwise analysis results for category 7.
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Figure B.9: Groupwise analysis results for category 8.
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Figure B.10: Groupwise analysis results for category 9.
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Figure B.11: Groupwise analysis results for category 10.
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Figure B.12: Groupwise analysis results for category 11.
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Figure B.13: Groupwise analysis results for category 12.
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Figure B.14: Groupwise analysis results for category 13.
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Figure B.15: Groupwise analysis results for category 14.
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Figure B.16: Groupwise analysis results for category 15.
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Figure B.17: Groupwise analysis results for category 16.
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Figure B.18: Groupwise analysis results for category 17.

113



Figure B.19: Groupwise analysis results for category 18.
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Figure B.20: Groupwise analysis results for category 19.
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Figure B.21: Groupwise analysis results for category 20.
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Figure B.22: Groupwise analysis results for category 21.
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Figure B.23: Groupwise analysis results for category 22.
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Figure B.24: Groupwise analysis results for category 23.
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Figure B.25: Groupwise analysis results for category 24.
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Figure B.26: Groupwise analysis results for category 25.
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Figure B.27: Groupwise analysis results for category 26.
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Figure B.28: Groupwise analysis results for category 27.
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Figure B.29: Groupwise analysis results for category 28.
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Figure B.30: Groupwise analysis results for category 29.
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Figure B.31: Groupwise analysis results for category 30.
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Figure B.32: Groupwise analysis results for category 31.
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Figure B.33: Groupwise analysis results for category 32.
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Figure B.34: Groupwise analysis results for category 33.
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Figure B.35: Groupwise analysis results for category 34.
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Figure B.36: Groupwise analysis results for category 35.
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Figure B.37: Groupwise analysis results for category 36.
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Figure B.38: Groupwise analysis results for category 37.
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Figure B.39: Groupwise analysis results for category 38.
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Figure B.40: Groupwise analysis results for category 39.
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Figure B.41: Groupwise analysis results for category 40.
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Figure B.42: Groupwise analysis results for category 41.
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Figure B.43: Groupwise analysis results for category 42.
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Figure B.44: Groupwise analysis results for category 43.
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Figure B.45: Groupwise analysis results for category 44.
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Figure B.46: Groupwise analysis results for category 45.
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Figure B.47: Groupwise analysis results for category 46.
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Figure B.48: Groupwise analysis results for category 47.
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Figure B.49: Groupwise analysis results for category 48.
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Figure B.50: Groupwise analysis results for category 49.
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Figure B.51: Groupwise analysis results for category 50.
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