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ABSTRACT 

 

A CONTROL MOMENT GYROSCOPE BASED ON ROTATIONAL 

VIBRATIONS, DYNAMIC MODEL AND EXPERIMENTATION 

 

Arberkli, Ferhat 
Master of Science, Mechanical Engineering 
Supervisor: Assist. Prof. Dr. Kıvanç Azgın 

 
 

September 2018, 74 pages 

 

Satellite attitude determination and control system is one of the main subsystems of a 

spacecraft. Within this domain, there are several types of actuators; such as reaction 

wheels, control moment gyroscopes (CMG), propulsion systems and magnetic torque 

rods. All of them are common and currently being used on modern satellites and space 

stations depending on the application. Conventional reaction wheel and CMG 

operation are based on the continuous rotation of their rotor mass to exchange angular 

momentum between spacecraft body and their rotor body. It this thesis, vibration is 

proposed as a new way of actuation instead of continuous rotation. Firstly, a 

mathematical model of single axis vibrating CMG was developed and the possibility 

of useful output is investigated. Effects of system excitation parameters were analyzed 

and interpreted. In addition, unwanted vibrations on spacecraft due to excitation 

responses were canceled, and performance of the actuator was improved by finding 

optimum rotor geometry. Finally, two experimentation setups were designed, 

manufactured, tested and their results were discussed. 

 

Keywords: Control moment gyroscope, vibration, satellite attitude control 
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ÖZ 

 

DÖNEL TİTREŞİMLERLE ÇALIŞAN KONTROL MOMENTİ JİROSKOBU, 

DİNAMİK MODEL VE DENEY 

 

Arberkli, Ferhat 
Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Kıvanç Azgın 
 
 

Eylül 2018, 74 sayfa 

 

Uydu yönelim tespiti ve kontrolü bir uzay aracının ana alt sistemlerinden birisidir. Bu 

bağlamda, uydu yönelimini sağlayan tepki tekeri, kontrol momenti jiroskobu (KMJ), 

itki sistemi ve manyetik tork çubuğu gibi eyleyiciler vardır. Tüm bu eyleyiciler yaygın 

bir şekilde günümüz modern uydularında ve uzay istasyonlarında uygulamaya bağlı 

olarak kullanılmaktadır. Standart bir tepki tekeri ve KMJ, rotor adı verilen bir kütlenin 

sürekli olarak dönmesi ve bu sayede bu kütle ile uzay aracının kütlesi arasında açısal 

momentum değişimi prensibine dayanarak çalışmaktadır. Bu tezde, sürekli olarak 

dönme yerine titreşim ile eyleyicinin çalışması önerilmiştir. İlk olarak, titreşimle 

çalışan tek dengeleme halkalı (gimbal) bir KMJ’nun matematiksel modeli geliştirilmiş 

ve faydalı bir dönüş elde edilip edilemediği değerlendirilmiştir. Uygulanan titreşim 

parametrelerinin sistemin açısal hız çıktısına etkisi incelenmiş ve değerlendirilmiştir. 

Buna ek olarak, uzay aracı üzerinde oluşan istenmeyen titreşimler ortadan kaldırılmış 

ve en iyi rotor geometrisi tespit edilip eyleyicinin performansı iyileştirilmiştir. Son 

olarak, iki adet deney düzeneğinin mekanik tasarımı yapılmış, üretilmiş ve testleri 

yapılıp elde edilen sonuçlar değerlendirilmiştir. 

 

Anahtar Kelimeler: Kontrol momenti jiroskobu, titreşim, uydu yönelim kontrolü 
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CHAPTER 1  

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Introduction to Spacecraft Dynamics 

In this chapter, an introduction to spacecraft dynamics and satellite attitude actuators 

will be presented. The proposed actuator in this thesis closely relevant to the control 

moment gyroscopes (CMGs) and this part focuses mostly on CMGs and its historical 

background. Later, the contribution of this study to the field of attitude control 

actuators will be discussed.   

1.1.1. Spacecraft Attitude Dynamics and Control 

This engineering field deals with the orientation of the spacecraft in microgravity 

environment. The orientation of the spacecraft is critical because some of its 

subsystems must be directed to a specific orientation in order to operate and work 

properly. For instance, solar panels should be directed to the sunbeams in order to 

generate the required power for the spacecraft. Similarly, antennas should be pointed 

towards ground stations to establish a connection for data transfer. In addition to these, 

the most critical performance demanding application is targeting optical camera to 

desired locations. Especially, in the Low Earth Orbit (between 160 km and 2000 km 

altitude) there are many Earth observation satellites. Mostly, attitude control systems 

in these satellites must be agile to reach desired orientation in the required time span 

and must hold spacecraft at this orientation without exceeding desired error limit.  

Spacecraft attitude control systems consist of sensors, actuators, controlled plant, and 

controller. Sensors provide information about the orientation of spacecraft (angular 

acceleration). They provide direction of other celestial bodies such as Sun and other 

stars (i.e. star tracker) or magnetic field (magnetometer) in order to calculate the 

attitude of the spacecraft. Attitude determination algorithms run on onboard computer 
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of spacecraft to calculate the orientation of spacecraft accurately. Guidance algorithms 

are utilized to determine target orientation. Hence, the current error could be fed to 

controllers. Controllers provide the necessary outputs to the actuators by using the 

inputs from the sensors. Actuators perform useful momentum exchange between 

spacecraft body and inner mass. Hence, spacecraft may reorient to the desired target 

or absorb external attitude perturbations [1]. 

1.1.2. Common Spacecraft Attitude Actuators 

As mentioned before attitude actuators are subsystems of attitude control loop. There 

are several common types of attitude actuators such as magnetic torque rods, 

propulsion systems, reaction wheels, and control moment gyroscopes. 

Magnetic torque rods interact with the Earth’s magnetic field using principles of 

electromagnetism and generate torques on the spacecraft body. Generated torque is 

limited and highly depended on the location of the spacecraft around Earth due to 

variance in the magnetic field of the Earth. However, they are useful at the beginning 

of the mission after launch. When the reaction wheels are not activated yet, initial 

angular velocities must be reduced. They are also used to decrease angular momentum 

built on the actuators in time. Lastly, they only work when spacecraft is close to the 

orbiting planet and there is a planetary magnetic field. For instance, Mars orbiter must 

use a propulsion system to manage angular momentum on spacecraft due to lack of a 

magnetic field on Mars [2].  

The propulsion system is mainly used for orbit maneuvering. However, it may also be 

used for attitude control by utilizing thrusters. Using the propulsion system for attitude 

control is costly because it requires a high amount of propellant to operate for long 

times.  

Reaction wheels exchange angular momentum of spacecraft to reorient it by 

accelerating or decelerating. They also rotate at a constant angular velocity at idle and 

provide gyroscopic stiffness to the spacecraft at a certain direction. Reaction wheels 
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can produce more torque than magnetic torque rods and they are better than magnetic 

torque rods when precision attitude control of the spacecraft is critical.  

Control moment gyroscopes (CMGs) are also momentum exchange devices like 

reaction wheel for attitude control of spacecraft. Reaction wheels create torques by 

changing the magnitude of angular momentum vector. But unlike reaction wheels, 

CMGs change the direction of angular momentum vector inside themselves to create 

control moment on the spacecraft body. 

1.1.3. History of Control Moment Gyroscopes 

Using CMGs for attitude control is not a new idea. Utilization of CMG concept was 

developed in early 20th century. J.S. Lang patented a device which uses gyroscopic 

stiffness to create restoring moment to aircraft in 1914 [3]. Similarly, E.A. Sperry, 

founder of Sperry Gyroscope Company, designed a similar device for stabilization of 

ships in 1917 [4]. Rocket pioneer R.H. Goddard also patented a “Gyroscope Steering 

Apparatus” in 1936. His main idea while developing this device was control of 

heading of the vehicle which “will be operative regardless of the density of the air 

through which the craft is moving”. His invention is the first implementation of a pair 

of CMGs to cancel out gimbal reaction torque [5]. 

Using CMGs for attitude control becomes feasible after advancement of space 

technology and construction of bigger spacecrafts. Space stations are the first 

examples of implementation of CMGs due to their modular structures and large solar 

panels. In addition to this, the mass of the space stations is distributed and this causes 

a larger polar moment of inertia values. One solution to control the attitude of the 

station is using propellant, however, this way is costly and decreases station lifetime 

depending on resupply missions. Using reaction wheels is another solution; however, 

CMGs are capable of generating much larger torques on the spacecraft body for 

limited power and inertia sources [6]. Hence, space stations are one of the most 

suitable spacecrafts for application of CMGs for attitude control.  
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Skylab space station was one of the first spacecrafts where CMGs are implemented 

for attitude control. It had four double gimbal CMGs. Three of them were operational 

and one of them was for replacement in case of failure of the other three CMGs. CMGs 

had rotors with 55 cm in diameter and they were spinning around 9000 rpm. The total 

mass of individual CMGs was 65 kg and they had 3100 N.m.s total angular momentum 

storage capability. Each unit was able to deliver 160 N.m torque [7]. The designed 

lifetime of rotor bearing was 10,000 hours and its design started in 1965. When the 

extended lifetime experiments were conducted, it had been seen that CMGs were able 

to operate 13,000 hours continuously [8].  

Skylab was launched to orbit on May 14th, 1973. One of the CMGs becomes non-

operational due to bearing failure after 195 (approximately 4700 hours) days of 

operation. Moreover, one of the other CMGs showed abnormal conditions but it 

continued operation. A detailed investigation and study were carried out to find the 

reason behind the failure and anomalous operation of CMGs. It was found that the 

reason was improper lubrication of rotor bearings in microgravity environment. The 

supply oil did not reach bearing contact surfaces. These problems did not emerge 

during lifetime time tests of CMGs on the ground because Earth’s gravitational field 

helps lubricant to pool and replenish the bearing surfaces [9].  

Salyut 3 (or military designation Almaz-2) was in orbit between June 1974 and 

January 1975 [10]. It was the eastern-bloc space station which contains CMGs [11]. 

Different from Skylab, these were single gimbal control moment gyroscopes called 

Gyrodynes. These actuators were also used in MIR space station which is the follow 

up of Salyut program. A total of 12 Gyrodynes were used on MIR with Kvant 1 and 

Kvant 2 modules [12]. Each module had six of them with 990 kg total mass [10]. MIR 

space station was oriented by using Gyrodynes of Kvant 1 module on April 30, 1987. 

Till the year 1991, four out of six CMGs on Kvant 2 and 1 CMG on Kvant 1 had 

failed. By July 1992, extra-vehicular activity was required to look at station 

Gyrodynes. New Gyrodynes were sent to the MIR space station to replace the failed 

ones on Kvant 2 module on March 1993. 
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CMGs are also used on International Space Station. These units are double axis CMGs 

with 4760 N.m.s angular momentum storage capacity and 258 N.m torque output. 

Four CMGs are mounted on the Truss Z of ISS. During functioning, one of the CMGs 

failed and its operation has been stopped. Subsequently, another CMG also 

malfunctioned and it was also taken out of the operations. The reason of failure was 

detected by onboard sensors. It was found that there was excessive radial acceleration 

due to unbalance of faulty rotor bearing.  

ISS CMGs were returned back to the Earth and possible cause of the errors was 

investigated with detailed studies. They were returned in 2005 and the root cause was 

found as loss of preload function which shifts the raceway of bearing balls.  

Besides large spacecrafts such as space stations, CMGs are also mounted to satellites. 

One of the most important mission is BİLSAT for application of CMG technology to 

mini satellites. BİLSAT is a part of SSTL Disaster Monitoring Constellation and it 

housed two single axis CMGs in a parallel configuration. These CMGs are capable of 

applying 100 mN.m torque and they have 0.25 N.m.s angular momentum storage [13]. 

More recently, all the satellites in CNES high-resolution satellite group (consisting of 

Pleiades 1A & 1B together with SPOT 6 & SPOT 7) equipped with Airbus D&S 15-

45 series CMGs. These actuators can deliver 45 N.m torque and store 15 N.m.s angular 

momentum. By utilizing four of them, Pleiades 1A was able to perform agile 

maneuvers up to 3.4 °/𝑠 angular velocity. Thanks to this CMGs configuration, the 

satellite was also capable of taking 30 images of the same location in a single pass 

[14]. 

Scaling down of CMGs will probably continue. For instance, a 

microelectromechanical system (MEMS) CMG with rotary comb drive actuated rotor 

and parallel plate actuated gimbal was proposed [15]. Different from conventional 

CMGs, this device is actuated with vibrations, instead of continuous rotations. 

However, in this study, no detailed simulation results, design or manufacturing details 

were given. Further research on this idea is done by proposing a MEMS design and 
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corresponding manufacturing processes. Additional simulation results were also 

introduced via MEMS simulation software [16]. One novel point stated was the 

measures taken in order to reduce the effects of disturbances generated by vibratory 

motions on rotor and gimbal geometry. It was shown that synchronizing an array of 

such MEMS CMGs with certain phase difference makes possible to cancel vibratory 

disturbance out. 

1.2. Motivation 

As it was mentioned above, there are several actuators for attitude control of satellites. 

Among them, reaction wheels and control moment gyroscopes perform continuous 

rotations for angular momentum exchange between their rotor masses and spacecraft 

body. This continuous rotary motion requires bearings and inherently there should be 

lubrication for the long and safe operation of these rotor bearings. However, 

lubrication in microgravity environment is a hard topic and its problems do not occur 

during ground tests of the actuators due to the gravitational field of the Earth. Hence, 

unexpected actuator failures may occur in orbit and spacecraft becomes useless due to 

loss of attitude control [17]. It is stated that 83% of the satellite failures in Low Earth 

Orbit was due to the failure of mechanical bearings [18]. Aforementioned CMG 

failures were also caused by faulty rotor bearings. 

Therefore, in this study, vibratory motion is preferred instead of continuous rotation. 

Thanks to that, flexible joints may be used to realize the degree of freedom of actuator 

mechanism instead of revolute joints and mechanical bearings. Hence, there is no need 

for lubrication and the proposed actuator may have a much longer lifetime.  

In the literature, satellite attitude control via vibrations has a small volume. Other than 

references [15] and [16], there is also a study inspired from the cats which use their 

tails to orient themselves in the air. The study proposes two masses connected to each 

other with a ball joint and these masses vibrate to change the structural shape of 

assembly. Hence, angular momentum is generated on the system of masses [19]. 

Starting from “single gimbal” vibrating CMG concept, the main contribution of this 
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study to the literature is developing a mathematical model by using conservation of 

angular momentum and a better understanding of dynamical characteristics of the 

concept in more detail via simulation of this model together with two experimental 

setups for verification. In addition, some improvements and optimization for the 

performance of this concept have been presented. 
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CHAPTER 2  

 

2. MATHEMATICAL MODEL 

 

The starting point of derivations of the mathematical model is a single axis CMG 

mechanism. The gimbal and rotor geometry of the actuator are excited with sinusoidal 

position inputs and output of the CMG has been interpreted.  

 

Figure 2.1. Rotor and Gimbal Configuration and Coordinate Systems 

The drawing in Figure 2.1 shows the coordinates of the gimbal, rotor and the 

spacecraft.  It is also shown that 𝜑 defines the angle of the gimbal axis with respect to 

spacecraft reference frame and 𝜃 is the angle of the rotor axis with respect to the 

gimbal reference frame.  
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The mathematical model of the system may be also developed by using Newton-Euler 

equations. However, these equations give the linear and angular accelerations of the 

spacecraft body. Hence, numerical integration is required to see the velocity output of 

the actuator. On the other hand, conservation of angular momentum principle directly 

gives the angular velocities of the spacecraft body which is the scope of the 

mathematical model. As a result, a mathematical model of the concept has been 

derived by using conservation of angular momentum principle. Then, the total angular 

momentum of the spacecraft and the actuator assembly may be written as,  

�⃗⃗� 𝑡𝑜𝑡𝑎𝑙 = �⃗⃗� 𝑠 + �⃗⃗� 𝑔 + �⃗⃗� 𝑟 = 0⃗  (1) 

�⃗⃗� 𝑠 = 𝐽𝑠 ∙ �⃗⃗� 𝑠             �⃗⃗� 𝑔 = 𝐽𝑔 ∙ �⃗⃗� 𝑔             �⃗⃗� 𝑟 = 𝐽𝑟 ∙ �⃗⃗� 𝑟 (2) 

 

The total angular momentum is taken as zero. 

Angular velocity vectors of the gimbal and rotor reference frames are, 

�⃗⃗� 𝑔 = �̇�𝑥 𝑔         �⃗⃗� 𝑟 = �̇�𝑥 𝑔 + �̇�𝑦 𝑟 (3) 

Inertia dyadics for spacecraft, gimbal and rotor body are represented as, 

𝐽𝑠 = 𝐽𝑠
𝑥𝑥𝑥 𝑠𝑥 𝑠 + 𝐽𝑠

𝑦𝑦
𝑦 𝑠𝑦 𝑠 + 𝐽𝑠

𝑧𝑧𝑧 𝑠𝑧 𝑠 (4) 

𝐽𝑔 = 𝐽𝑔
𝑥𝑥𝑥 𝑔𝑥 𝑔 + 𝐽𝑔

𝑦𝑦
𝑦 𝑔𝑦 𝑔 + 𝐽𝑔

𝑧𝑧𝑧 𝑔𝑧 𝑔 (5) 

𝐽𝑟 = 𝐽𝑟
𝑥𝑥𝑥 𝑟𝑥 𝑟 + 𝐽𝑟

𝑦𝑦
𝑦 𝑟𝑦 𝑟 + 𝐽𝑟

𝑧𝑧𝑧 𝑟𝑧 𝑟 (6) 

For simplicity, it is assumed that reference frames are principal reference frames and 

off-diagonal terms of inertia matrices vanish.  

Transformation matrices from the rotor to the gimbal �̂�(𝑔/𝑟) and from the gimbal to 

the spacecraft �̂�(𝑠/𝑔) may be shown with following vector algebra: 

The rotation of a reference frame A to B can be shown with rotation dyadic as, 

�⃗� 𝑘
(𝑏)

= �̌�𝑎𝑏�⃗� 𝑘
(𝑎) (7) 
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Where �⃗� 𝑘
(𝑎) is kth unit vector of reference frame A and �⃗� 𝑘

(𝑏) is kth unit vector of 

reference frame B. �̌�𝑎𝑏 is rotation dyadic from frame A to B. This vector equation can 

be represented in any frame. For mathematical simplicity, it is represented in frame 

A. 

�̅�𝑘
(𝑏/𝑎)

= �̂�𝑎𝑏
(𝑎)

�̅�𝑘
(𝑎/𝑎) (8) 

�̅�𝑘
(𝑎/𝑎) means that unit vectors of frame A is represented again in frame A and this 

gives unit column matrix representation of unit vectors. They are given in the notation 

as, 

�̅�𝑘
(𝑎/𝑎)

= �̅�𝑘 (9) 

�̅�1 = [
1
0
0
]      �̅�2 = [

0
1
0
]      �̅�3 = [

0
0
1
] (10) 

 

However �̅�𝑘
(𝑏/𝑎) shows the representation of unit vectors of frame B in frame A and 

transformation matrix is needed for calculation.  

�̅�𝑘
(𝑏/𝑎)

= �̂�(𝑎/𝑏)�̅�𝑘
(𝑏/𝑏)

= �̂�(𝑎/𝑏)�̅�𝑘 (11) 

where �̂�(𝑎/𝑏) is the transformation matrix from frame B to A. 

Putting into Eq. (8) gives, 

�̂�(𝑎/𝑏)�̅�𝑘
(𝑏/𝑏)

= �̂�𝑎𝑏
(𝑎)

�̅�𝑘
(𝑎/𝑎) (12) 

�̂�(𝑎/𝑏)�̅�𝑘 = �̂�𝑎𝑏
(𝑎)

�̅�𝑘 (13) 

�̂�(𝑎/𝑏) = �̂�𝑎𝑏
(𝑎) (14) 

Hence, transformation matrix from frame B to A is equal to rotation matrix from frame 

A to B. 

Rotation matrices from spacecraft to gimbal �̂�𝑠𝑔 and, from gimbal to rotor �̂�𝑔𝑟 are 

defined in spacecraft and gimbal reference frames respectively and, they are written 

in exponential form as, 
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�̂�𝑠𝑔
(𝑠)

= 𝑒 �̃�𝜑           �̂�𝑔𝑟
(𝑔)

= 𝑒�̃�𝜃 (15) 

(~) symbol over unit vectors means that cross product matrix form of unit vectors is 

represented. For example, 

�̃� = [
0 −𝑥3 𝑥2

𝑥3 0 −𝑥1

−𝑥2 𝑥1 0
] (16) 

 

According to Eq. (14) transformation matrices are, 

�̂�(𝑠/𝑔) = �̂�𝑠𝑔
(𝑠)

= 𝑒 �̃�𝜑 (17) 

�̂�(𝑔/𝑟) = �̂�𝑔𝑟
(𝑔)

= 𝑒�̃�𝜃 (18) 

The inverse of rotation and transformation matrices are, 

�̂�(𝑔/𝑠) = �̂�𝑔𝑠
(𝑠)

= 𝑒−�̃�𝜑 (19) 

�̂�(𝑟/𝑔) = �̂�𝑟𝑔
(𝑔)

= 𝑒−�̃�𝜃 (20) 

Now angular momentum vector of gimbal body can be represented at gimbal reference 

frame as follows, 

�⃗⃗� 𝑔 = 𝐽𝑔�⃗⃗� 𝑔 = (𝐽𝑔
𝑥𝑥𝑥 𝑔𝑥 𝑔 + 𝐽𝑔

𝑦𝑦
𝑦 𝑔𝑦 𝑔 + 𝐽𝑔

𝑧𝑧𝑧 𝑔𝑧 𝑔) ∙ �̇�𝑥 𝑔 = 𝐽𝑔
𝑥𝑥�̇�𝑥 𝑔 (21) 

�̅�𝑔
(𝑔)

= 𝐽𝑔
𝑥𝑥�̇��̅� (22) 

In the same manner, the angular momentum of the rotor body is written in its own 

reference frame and then transformed to the gimbal reference frame as follows, 

�⃗⃗� 𝑟 = 𝐽𝑟�⃗⃗� 𝑟 = (𝐽𝑟
𝑥𝑥𝑥 𝑟𝑥 𝑟 + 𝐽𝑟

𝑦𝑦
𝑦 𝑟𝑦 𝑟 + 𝐽𝑟

𝑧𝑧𝑧 𝑟𝑧 𝑟) ∙ (�̇�𝑥 𝑔 + �̇�𝑦 𝑟) (23) 

When Eq. (23) is resolved in rotor reference frame, 

�̅�𝑟
(𝑟)

= (𝐽𝑟
𝑥𝑥�̅��̅� + 𝐽𝑟

𝑦𝑦
�̅��̅� + 𝐽𝑟

𝑧𝑧𝑧̅𝑧̅) ∙ (�̇�𝐶(𝑟/𝑔)�̅� + �̇��̅�) (24) 

�̅�𝑟
(𝑟)

= (𝐽𝑟
𝑥𝑥�̅��̅� + 𝐽𝑟

𝑦𝑦
�̅��̅� + 𝐽𝑟

𝑧𝑧𝑧̅𝑧̅) ∙ (�̇�𝑒−�̃�𝜃�̅� + �̇��̅�) (25) 

�̅�𝑟
(𝑟)

= (𝐽𝑟
𝑥𝑥�̅��̅� + 𝐽𝑟

𝑦𝑦
�̅��̅� + 𝐽𝑟

𝑧𝑧𝑧̅𝑧̅) ∙ (�̇�(�̅� cos 𝜃 + 𝑧̅ sin 𝜃) + �̇��̅�) (26) 

�̅�𝑟
(𝑟)

= 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 �̅� + 𝐽𝑟

𝑦𝑦
�̇��̅� + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃 𝑧̅ (27) 
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Finally, 

�⃗⃗� 𝑟 = 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 𝑥 𝑟 + 𝐽𝑟

𝑦𝑦
�̇�𝑦 𝑟 + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃𝑧 𝑟 (28) 

However, in order to add scalar components of two vectors, they must be resolved in 

the same reference frame. Then, Eq. (28) transforms to gimbal reference frame as 

�̅�𝑟
(𝑔)

= 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 �̅�(𝑟/𝑔) + 𝐽𝑟

𝑦𝑦
�̇��̅�(𝑟/𝑔) + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃𝑧(̅𝑟/𝑔) (29) 

�̅�𝑟
(𝑔)

= 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 �̂�(𝑔/𝑟)�̅� + 𝐽𝑟

𝑦𝑦
�̇��̂�(𝑔/𝑟)�̅� + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃�̂�(𝑔/𝑟)𝑧̅ (30) 

�̅�𝑟
(𝑔)

= 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 𝑒�̃�𝜃�̅� + 𝐽𝑟

𝑦𝑦
�̇�𝑒�̃�𝜃�̅� + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃𝑒�̃�𝜃𝑧̅ (31) 

�̅�𝑟
(𝑔)

= 𝐽𝑟
𝑥𝑥�̇� cos 𝜃 (�̅� cos 𝜃 − 𝑧̅ sin 𝜃) + 𝐽𝑟

𝑦𝑦
�̇��̅� + 𝐽𝑟

𝑧𝑧�̇� sin 𝜃 (𝑧̅ cos 𝜃

+ �̅� sin 𝜃) 
(32) 

Collecting terms, 

�̅�𝑟
(𝑔)

= [𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2]�̅� + 𝐽𝑟
𝑦𝑦

�̇��̅�

+ [𝐽𝑟
𝑧𝑧�̇� sin 𝜃 cos 𝜃 − 𝐽𝑟

𝑥𝑥�̇� sin 𝜃 cos 𝜃]𝑧̅ 
(33) 

Hence angular momentum of the rotor body can be represented by gimbal reference 

frame unit vectors as, 

�⃗⃗� 𝑟 = [𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2]𝑥 𝑔 + 𝐽𝑟
𝑦𝑦

�̇�𝑦 𝑔

+ [𝐽𝑟
𝑧𝑧�̇� sin 𝜃 cos 𝜃 − 𝐽𝑟

𝑥𝑥�̇� sin 𝜃 cos 𝜃]𝑧 𝑔 
(34) 

The angular momentum of the spacecraft body is, 

�⃗⃗� 𝑠 = −�⃗⃗� 𝑔 − �⃗⃗� 𝑟 (35) 

�⃗⃗� 𝑠 = −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]𝑥 𝑔 − 𝐽𝑟

𝑦𝑦
�̇�𝑦 𝑔

− [(𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� sin 𝜃 cos 𝜃]𝑧 𝑔 
(36) 

Angular momentum vector of spacecraft body may be represented at spacecraft 

reference frame for further investigation. 

�̅�𝑠
(𝑠)

= −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]�̅�(𝑔/𝑠) − 𝐽𝑟

𝑦𝑦
�̇��̅�(𝑔/𝑠)

− [(𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� sin 𝜃 cos 𝜃]𝑧(̅𝑔/𝑠) 
(37) 



 

 
 

14 
 

�̅�𝑠
(𝑠)

= −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]�̂�(𝑠/𝑔)�̅� − 𝐽𝑟

𝑦𝑦
�̇��̂�(𝑠/𝑔)�̅�

− [(𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� sin 𝜃 cos 𝜃]�̂�(𝑠/𝑔)𝑧 ̅
(38) 

�̅�𝑠
(𝑠)

= −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]𝑒 �̃�𝜑�̅� − 𝐽𝑟

𝑦𝑦
�̇�𝑒 �̃�𝜑�̅�

− [(𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� sin 𝜃 cos 𝜃]𝑒 �̃�𝜑𝑧̅ 
(39) 

�̅�𝑠
(𝑠)

= −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]�̅�

− 𝐽𝑟
𝑦𝑦

�̇�(�̅� cos 𝜑 + 𝑧̅ sin 𝜑)

− [(𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� sin 𝜃 cos 𝜃](𝑧̅ cos 𝜑 − �̅� sin𝜑) 

(40) 

 

Collecting terms yields, 

�̅�𝑠
(𝑠)

= −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]�̅�

− [𝐽𝑟
𝑦𝑦

�̇� cos 𝜑 − (𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� cos 𝜃 sin 𝜃 sin𝜑]�̅�

− [𝐽𝑟
𝑦𝑦

�̇� sin𝜑 + (𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� cos 𝜃 sin 𝜃 cos𝜑]𝑧̅ 

(41) 

Finally, the vector equation of spacecraft angular momentum in terms of unit vectors 

of spacecraft reference frame is, 

�⃗⃗� 𝑠 = −[𝐽𝑟
𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟

𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔
𝑥𝑥�̇�]𝑥 𝑠

− [𝐽𝑟
𝑦𝑦

�̇� cos 𝜑 − (𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� cos 𝜃 sin 𝜃 sin 𝜑]𝑦 𝑠

− [𝐽𝑟
𝑦𝑦

�̇� sin 𝜑 + (𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥)�̇� cos 𝜃 sin 𝜃 cos𝜑]𝑧 𝑠 

(42) 

 

Where, 

𝜑 = 𝜑0 sin(2𝜋𝑓𝑡)    𝜃 = 𝜃0 sin(2𝜋𝑓𝑡 + 𝛽) (43) 

�̇� = 2𝜋𝑓𝜑0 cos(2𝜋𝑓𝑡)         �̇� = 2𝜋𝑓𝜃0 cos(2𝜋𝑓𝑡 + 𝛽)  (44) 

 

are the input position and velocities of gimbal and rotor bodies and, β angle shows the 

input phase difference between rotor and gimbal axes.  
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Scalar angular velocity output equations can be obtained as follows: 

�⃗⃗� 𝑠 = 𝐽𝑠�⃗⃗� 𝑠 = (𝐽𝑠
𝑥𝑥𝑥 𝑠𝑥 𝑠 + 𝐽𝑠

𝑦𝑦
𝑦 𝑠𝑦 𝑠 + 𝐽𝑠

𝑧𝑧𝑧 𝑠𝑧 𝑠) ∙ (𝜔𝑠𝑥𝑥 𝑠 + 𝜔𝑠𝑦𝑦 𝑠 + 𝜔𝑠𝑧𝑧 𝑠) (45) 

�⃗⃗� 𝑠 = 𝐽𝑠
𝑥𝑥𝜔𝑠𝑥𝑥 𝑠 + 𝐽𝑠

𝑦𝑦
𝜔𝑠𝑦𝑦 𝑠 + 𝐽𝑠

𝑧𝑧𝜔𝑠𝑧𝑧 𝑠 (46) 

 

Equating coefficients of Eq. (42) and Eq. (46), scalar angular velocity equations of 

spacecraft are obtained. 

𝜔𝑠𝑥 = −
1

𝐽𝑠
𝑥𝑥 [𝐽𝑟

𝑥𝑥�̇� (cos 𝜃)2 + 𝐽𝑟
𝑧𝑧�̇�(sin 𝜃)2 + 𝐽𝑔

𝑥𝑥�̇�] (47) 

𝜔𝑠𝑦 = −
1

𝐽𝑠
𝑦𝑦 [𝐽𝑟

𝑦𝑦
�̇� cos 𝜑 − (𝐽𝑟

𝑧𝑧 − 𝐽𝑟
𝑥𝑥)�̇� cos 𝜃 sin 𝜃 sin 𝜑] (48) 

𝜔𝑠𝑧 = −
1

𝐽𝑠𝑧𝑧
[𝐽𝑟

𝑦𝑦
�̇� sin𝜑 + (𝐽𝑟

𝑧𝑧 − 𝐽𝑟
𝑥𝑥)�̇� cos 𝜃 sin 𝜃 cos𝜑] (49) 

The desired output of the CMG is 𝜔𝑠𝑧 and when inputs are given to Eq. (49), 

𝜔𝑠𝑧 = −
1

𝐽𝑠𝑧𝑧
[𝐽𝑟

𝑦𝑦
𝜃02𝜋𝑓 sin(𝜑0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡 + 𝛽) + (𝐽𝑟

𝑧𝑧

− 𝐽𝑟
𝑥𝑥)𝜑0 2𝜋𝑓cos(𝜑0 sin(2𝜋𝑓𝑡)) sin(𝜃0 sin(2𝜋𝑓𝑡

+ 𝛽)) cos(𝜃0 sin(2𝜋𝑓𝑡 + 𝛽)) cos(2𝜋𝑓𝑡)] 

(50) 

 

The torques on the spacecraft body may also be derived by taking derivative of the 

angular momentum vector with respect to inertial reference frame. According to 

Coriolis’ Transport theorem, 

𝐷0�⃗⃗� 𝑠 = 𝐷𝑠�⃗⃗� 𝑠 + �⃗⃗� 𝑠 × �⃗⃗� 𝑠 (51) 

Cross product of the angular velocity of spacecraft and angular momentum of 

spacecraft is zero. Because two vectors are parallel. Hence,  

𝐷0�⃗⃗� 𝑠 = 𝐷𝑠�⃗⃗� 𝑠 (52) 
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The components of the angular momentum vector have already been calculated and 

its derivative with respect to spacecraft reference frame is just the derivatives of the 

components. 

 

𝐷0�⃗⃗� 𝑠 = [𝐽𝑟
𝑥𝑥(�̈�(cos 𝜃)2 − 2�̇��̇� cos 𝜃 sin 𝜃)

+ 𝐽𝑟
𝑧𝑧(�̈�(sin 𝜃)2 + 2�̇��̇� cos 𝜃 sin 𝜃) + 𝐽𝑔

𝑥𝑥�̈�]𝑥 𝑠

+ [𝐽𝑟
𝑦𝑦

(�̈� cos 𝜑 − �̇��̇� sin 𝜑) − (𝐽𝑟
𝑧𝑧

− 𝐽𝑟
𝑥𝑥)(�̈� cos 𝜃 sin 𝜃 sin𝜑 − �̇��̇�(sin 𝜃)2 sin 𝜑

+ �̇��̇�(cos 𝜃)2 sin 𝜑 + �̇�2 cos 𝜃 sin 𝜃 cos𝜑)]𝑦 𝑠

+ [𝐽𝑟
𝑦𝑦

(�̈� sin𝜑 + �̇��̇� cos 𝜑) + (𝐽𝑟
𝑧𝑧

− 𝐽𝑟
𝑥𝑥)(�̈� cos 𝜃 sin 𝜃 cos𝜑 − �̇��̇�(sin 𝜃)2 cos𝜑

+ �̇��̇�(cos 𝜃)2 cos𝜑 − �̇�2 cos 𝜃 sin 𝜃 cos𝜑)]𝑧 𝑠 

(53) 
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CHAPTER 3  

 

3. EFFECT OF EXCITATION PARAMETERS 

 

It is not very intuitive to grasp the dynamical characteristics of the output angular 

velocity from analytical expression in Eq. (50). Hence, the effect of system excitation 

parameters such as phase difference between the rotor and gimbal excitation axes, 

excitation frequency, and excitation amplitudes was investigated to gain insight about 

output behavior of the actuator. Output velocity graphs for desired rotation axes were 

obtained and interpreted. For geometry at Figure 2.1, the aluminum material is used 

for all solid bodies and hypothetical inertia values were obtained as: 

 

𝐽𝑟 = [
1.024492𝐸 − 04 0 0

0 1.705278𝐸 − 05 0
0 0 1.024492𝐸 − 04

]  𝑘𝑔.𝑚2 

𝐽𝑔 = [
4.163880𝐸 − 07 0 0

0 1.140054𝐸 − 05 0
0 0 1.140054𝐸 − 05

]  𝑘𝑔.𝑚2 

𝐽𝑠 = [
6.564948𝐸 − 04 0 0

0 6.564948𝐸 − 04 0
0 0 6.564948𝐸 − 04

]  𝑘𝑔.𝑚2 

 

for rotor, gimbal, and spacecraft, respectively. Rotor geometry is axisymmetric and 

spacecraft is assumed as a uniform solid cube. 
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The angular velocity output on Z axis of spacecraft reference frame in Eq. (50) may 

be simplified by assuming the amplitude of vibrations is small. Hence, the angular 

velocity output becomes, 

𝜔𝑠𝑧 ≅ −
1

𝐽𝑠𝑧𝑧
[𝐽𝑟

𝑦𝑦
𝜃02𝜋𝑓𝜑0 sin(2𝜋𝑓𝑡) cos(2𝜋𝑓𝑡 + 𝛽) + (𝐽𝑟

𝑧𝑧

− 𝐽𝑟
𝑥𝑥)𝜑02𝜋𝑓𝜃0 sin(2𝜋𝑓𝑡 + 𝛽) cos(2𝜋𝑓𝑡)] 

(54) 

Collecting terms yield, 

𝜔𝑠𝑧 ≅ −
𝜃0𝜑02𝜋𝑓

𝐽𝑠𝑧𝑧
[𝐽𝑟

𝑦𝑦
sin(2𝜋𝑓𝑡) cos(2𝜋𝑓𝑡 + 𝛽) + (𝐽𝑟

𝑧𝑧

− 𝐽𝑟
𝑥𝑥) sin(2𝜋𝑓𝑡 + 𝛽) cos(2𝜋𝑓𝑡)] 

(55) 

The angular velocity output may also be represented with following mathematical 

manipulations, 

𝜔𝑠𝑧 ≅ −
𝜃0𝜑02𝜋𝑓

𝐽𝑠𝑧𝑧
[
𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥

2
sin(2𝜋𝑓𝑡) cos(2𝜋𝑓𝑡 + 𝛽)

+
𝐽𝑟
𝑦𝑦

− 𝐽𝑟
𝑧𝑧 + 𝐽𝑟

𝑥𝑥

2
sin(2𝜋𝑓𝑡) cos(2𝜋𝑓𝑡 + 𝛽)

+
𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥

2
sin(2𝜋𝑓𝑡 + 𝛽) cos(2𝜋𝑓𝑡)

−
𝐽𝑟
𝑦𝑦

− 𝐽𝑟
𝑧𝑧 + 𝐽𝑟

𝑥𝑥

2
sin(2𝜋𝑓𝑡 + 𝛽) cos(2𝜋𝑓𝑡)] 

(56) 

Using sine summation formulas yield, 

𝜔𝑠𝑧 ≅ −
𝜃0𝜑02𝜋𝑓

𝐽𝑠𝑧𝑧
[
𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥

2
sin(4𝜋𝑓𝑡 + 𝛽)

−
𝐽𝑟
𝑦𝑦

− 𝐽𝑟
𝑧𝑧 + 𝐽𝑟

𝑥𝑥

2
sin 𝛽] 

(57) 

 

The Eq. (57) approximately represents the angular velocity gain of spacecraft. The 

expression inside square brackets in Eq. (57) shows the trend of the velocity curve and 

the coefficient before the square bracket includes excitation frequency 𝑓 and 
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excitation amplitudes 𝜃0 and 𝜑0. The first expression inside square bracket is the 

oscillating term of the angular velocity gain and the second term is the mean angular 

velocity term of the angular velocity gain. This means that, spacecraft angular velocity 

oscillates at twice the excitation frequency and it has a mean value depending on phase 

difference given between rotor and gimbal excitations. 

3.1. Phase Difference 

In that simulation, rotor and gimbal axes are excited with 1 Hz sinusoidal position 

inputs with 5 degrees amplitude. Excitation amplitudes start from 0° and increase up 

to 5° in 2 seconds in order to eliminate initial condition effects on the system due to 

sudden excitation of the torques on rotor and gimbal axes. According to inertia values 

given above, angular velocity gain for 0° and 90° phase difference was plotted. 

 

Figure 3.1. Angular velocity gain on spacecraft reference frame for 0° and 90° phase difference 
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It may be seen from Figure 3.1 that there is a difference between the net angular 

velocity gains for 0º and 90º phase difference between rotor and gimbal axes. For 0º 

phase difference, spacecraft simply vibrates at its original orientation and there is no 

net angular velocity on desired spacecraft rotation axis. However, if 90º phase 

difference is given, a net angular velocity is obtained. 

 

Figure 3.2. Phase difference vs mean angular velocity gain 

For detailed interpretation, the phase difference versus mean angular velocity gain 

graph was obtained (Figure 3.2). Mean angular velocity is calculated as an average 

value of the induced velocity. There are three outcomes from this simulation.  

 First, there is no net angular velocity on spacecraft useful rotation axis if the 

phase difference between rotor and gimbal axes is 0º, 180º and 360º.  

 Second, maximum angular velocity is obtained at 90º and 270º phase 

differences.  

 Third, both angular velocity output magnitude and direction can be controlled 

by changing the phase difference between rotor and gimbal axes from -90º to 

+90º. 
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It may directly be seen from Eq. (57) that phase difference contributes the mean 

angular velocity term with sin 𝛽. Hence, above numerical results in Figure 3.2 shows 

a very close trend to sine curve as presented second term inside the square brackets of 

Eq. (57). 

3.2. Frequency 

As it is mentioned before, if small angles are assumed for excitation, the angular 

velocity equation reduced to Eq. (57). Hence, it may be observed from Eq. (57) that 

there is a proportional relation between excitation frequency and the angular velocity. 

If excitation frequencies are doubled for rotor and gimbal axes, output mean and 

maximum angular velocity are also doubled. This means that the actuator shows better 

performance with higher excitation frequencies. The phase difference is 90° for both 

results. The frequency of output angular velocity is two times of excitation 

frequencies. 

 

Figure 3.3. Effect of excitation frequency on angular velocity output 
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3.3. Amplitude 

When Eq. (57) is investigated, there is a quadratic relation between excitation 

amplitudes and angular velocity if amplitudes 𝜃0 and 𝜑0 are equal to each other. When 

excitation amplitudes are doubled, angular velocity output is multiplied by four. Phase 

difference is 90° for both results. Increasing excitation amplitudes also increases the 

magnitude output angular velocity. 

 

 

Figure 3.4. Effect of excitation amplitude on angular velocity output 
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CHAPTER 4  

 

4. STABILIZATION AND OPTIMIZATION OF THE ACTUATOR 

 

4.1. Cancellation of Vibrations on Rotor and Gimbal Axes 

 

The angular velocity output for all three axes of the spacecraft reference frame may 

be seen in Figure 4.1. Due to excitations on rotor and gimbal axes, there occur reaction 

vibrations on the spacecraft body. When these responses are compared to output 

angular velocity on the desired rotation axis, it has been seen that the amplitude of 

reaction vibrations are very large with respect to the amplitude of output angular 

velocity.  In order to cancel out these unwanted vibrations, a pair of CMGs may be 

used. 

 

 

Figure 4.1. Angular velocity output for all three axes of spacecraft reference frame 
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Figure 4.2. Pair of CMGs to cancel out excitation vibrations on the spacecraft body 

In the configuration presented in Figure 4.2, CMGs are identical. The upper and lower 

CMGs move out of phase to cancel out excitation vibrations on rotor and gimbal axes. 

The individual CMGs have 90º phase difference between their own rotor and gimbal 

axes. In Figure 4.3, results are presented for 1 Hz excitations with 5º amplitude. As 

can be seen from Figure 4.3, X and Y axis vibrations are totally canceled out. Output 

angular velocity is also increased with respect to single CMG’s performance. 

However, as can be seen from Figure 4.3, output angular velocity (green plot) also has 

vibratory nature and this oscillating angular velocity profile will not be suitable for 

optical devices during operation, dropping the image quality. Smooth operation and 

rotation of spacecraft are critical for such purposes. In the following part, the method 

developed to eliminate these oscillations on angular velocity output is proposed. 

 

Figure 4.3. Angular velocity output of the pair of CMGs in ADAMS 
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4.2. Cancellation of Vibrations on Desired Rotation Axis 

In the previous part, it was shown that there is vibration in the output axis of the CMG 

and consequently on spacecraft. The reason behind this oscillation is using 

axisymmetric rotor geometry such as a cylinder, cube or sphere. During numerical 

simulations with arbitrary inertia values, it has been observed that oscillations on 

angular velocity output may change with inertia distribution and there may be 

optimum inertia distribution to minimize this unwanted oscillation on angular velocity 

output. Large oscillatory motions are also present in the other two axis as well, due to 

excitation response torques.  However, it was shown that by using a pair of CMGs 

with out of phase excitations, those oscillations in the remaining axis may be nulled 

(Figure 4.3). On the other hand, oscillations on the angular velocity output on the 

spacecraft rotation axis (Z axis) remains. In this part, a mathematical approach to find 

optimum rotor geometry has been proposed.  

4.2.1. Optimum Inertia Distribution of Rotor Geometry  

Mathematical proof of optimum rotor inertia distribution was derived from the scalar 

Z-axis angular velocity output of the actuator. To simplify the analysis, the phase 

difference 𝛽, is taken as zero. Then, the spacecraft z-axis angular velocity expression 

simplifies to, 

𝜔𝑠𝑧

= −
1

𝐽𝑠
𝑧𝑧

[𝐽𝑟
𝑦𝑦

𝜃02𝜋𝑓 sin(𝜑0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡) + (𝐽𝑟
𝑧𝑧

− 𝐽𝑟
𝑥𝑥)𝜑0 2𝜋𝑓cos(𝜑0 sin(2𝜋𝑓𝑡)) sin(𝜃0 sin(2𝜋𝑓𝑡)) cos(𝜃0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡)] 

(58) 

 

It was previously shown that when there is no phase difference, there is no net useful 

rotation but spacecraft vibrates around its original position (Figure 3.1). When there 

are no angular oscillations and no net angular velocity, 𝜔𝑠𝑧  must be zero.  Then, 

 

𝐽𝑟
𝑦𝑦

𝜃02𝜋𝑓 sin(𝜑0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡)
+ (𝐽𝑟

𝑧𝑧 − 𝐽𝑟
𝑥𝑥)𝜑02𝜋𝑓 cos(𝜑0 sin(2𝜋𝑓𝑡)) sin(𝜃0 sin(2𝜋𝑓𝑡)) cos(𝜃0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡)

= 0 
(59) 
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Collecting inertia terms on the left-hand side yields, 

𝐽𝑟
𝑦𝑦

𝐽𝑟
𝑥𝑥 − 𝐽𝑟

𝑧𝑧

=
𝜑02𝜋𝑓 cos(𝜑0 sin(2𝜋𝑓𝑡)) sin(𝜃0 sin(2𝜋𝑓𝑡)) cos(𝜃0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡)

𝜃02𝜋𝑓 sin(𝜑0 sin(2𝜋𝑓𝑡)) cos(2𝜋𝑓𝑡)
 

(60) 

 

Canceling out terms gives, 

𝐽𝑟
𝑦𝑦

𝐽𝑟
𝑥𝑥 − 𝐽𝑟

𝑧𝑧 =
𝜑0 cos(𝜑0 sin(2𝜋𝑓𝑡)) sin(𝜃0 sin(2𝜋𝑓𝑡)) cos(𝜃0 sin(2𝜋𝑓𝑡))

𝜃0 sin(𝜑0 sin(2𝜋𝑓𝑡))
 (61) 

 

Eq. (60) may be further simplified assuming that oscillation amplitudes of gimbal and 

rotor axis (𝜑0 and 𝜃0) are small and equal each other, 

𝐽𝑟
𝑦𝑦

𝐽𝑟
𝑥𝑥 − 𝐽𝑟𝑧𝑧

= cos(𝜑0 sin(2𝜋𝑓𝑡))2 ≅ 1 (62) 

𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 ≅ 𝐽𝑟

𝑥𝑥 (63) 

 

Eq. (63) shows the optimum distribution of rotor inertia values to minimize 

oscillations on angular velocity output of the actuator. This result is the novel part of 

this thesis.  

The Eq. (63) may also be obtained by equating oscillating term of Eq. (57) to zero. 

 

𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥

2
sin(4𝜋𝑓𝑡 + 𝛽) = 0 

 
(64) 

𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 − 𝐽𝑟

𝑥𝑥 =0 
 (65) 

𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 = 𝐽𝑟

𝑥𝑥 (66) 
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4.2.2. Simplified Angular Velocity Equation 

By putting Eq. (63) into Eq. (50), a simple angular velocity output equation can be 

obtained. After inserting angular Eq. (50) becomes, 

 

𝜔𝑠𝑧 = −
𝐽𝑟
𝑦𝑦

𝐽𝑠𝑧𝑧
[𝜃02𝜋𝑓 𝑠𝑖𝑛(𝜑0 𝑠𝑖𝑛(2𝜋𝑓𝑡)) 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝛽)

− 𝜑0 2𝜋𝑓𝑐𝑜𝑠(𝜑0 𝑠𝑖𝑛(2𝜋𝑓𝑡)) 𝑠𝑖𝑛(𝜃0 𝑠𝑖𝑛(2𝜋𝑓𝑡

+ 𝛽)) 𝑐𝑜𝑠(𝜃0 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝛽)) 𝑐𝑜𝑠(2𝜋𝑓𝑡)] 

(67) 

 

Small angle assumption for 𝜑0 and 𝜃0 gives, 

𝜔𝑠𝑧 ≅ −
𝐽𝑟
𝑦𝑦

𝐽𝑠𝑧𝑧
2𝜋𝑓[𝜃0𝜑0 𝑠𝑖𝑛(2𝜋𝑓𝑡) 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝛽)

− 𝜑0𝜃0 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝛽) 𝑐𝑜𝑠(2𝜋𝑓𝑡)] 
(68) 

 

Then, trigonometric identity was used below to simplify the Eq. (50) even more, 

𝑠𝑖𝑛(𝛼 − 𝛾) = 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛾 − 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛼      where      

  𝛼 = 2𝜋𝑓𝑡  𝑎𝑛𝑑  𝛾 = 2𝜋𝑓𝑡 + 𝛽 
(69) 

𝜔𝑠𝑧 ≅ −
𝐽𝑟
𝑦𝑦

𝐽𝑠𝑧𝑧
𝜃0𝜑02𝜋𝑓 𝑠𝑖𝑛(2𝜋𝑓𝑡 − 2𝜋𝑓𝑡 − 𝛽) (70) 

𝜔𝑠𝑧 ≅ 
𝐽𝑟
𝑦𝑦

𝐽𝑠𝑧𝑧
𝜃0𝜑02𝜋𝑓 𝑠𝑖𝑛 𝛽  (71) 

 

The Eq. (71) may also be obtained from the Eq. (57) by putting optimum inertia 

relation inside it and canceling out the oscillating term. 

Eq. (71) gives an approximate analytical result for CMG with preferred inertia relation 

at Eq. (63). By just looking this simple equation, the effect of system parameters may 
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be interpreted. Firstly, if 𝜑0 and 𝜃0 are equal to each other there is a quadratic relation 

between angular velocity output and excitation amplitude (Figure 3.4). Secondly, there 

is a proportional relation with excitation frequency (Figure 3.3). The phase difference 

contributes to angular velocity gain with 𝑠𝑖𝑛 𝛽 term. The plot of numerical sweep and 

approximate analytical solution graph of phase shift may be seen in Figure 4.4. There 

is a slight difference between the results of Eq. (50) and Eq. (71). This simple angular 

velocity equation may be used for control purposes. 

 

 

Figure 4.4. Comparison of exact and approximate analytical results of phase difference effect on 
angular velocity output 

4.2.3. Possible Rotor Geometries 

This relation between the principal mass moments of inertias of the rotor, given in Eq. 

(63) should eliminate the oscillations in the spacecraft output axis. A prism-shaped 

rotor geometry is selected to find possible rotor geometries which satisfy the preferred 

inertia relation in Eq. (63).  The dimensions of this rotor are shown symbolically in 

Figure 4.5. 
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Figure 4.5. Rectangular prism rotor geometry with rotor reference frame 

Then, the moment of inertias become, 

𝐽𝑟
𝑥𝑥 =

1

12
𝑚(𝑎2 + 𝑏2)   𝐽𝑟

𝑦𝑦
=

1

12
𝑚(𝑎2 + 𝑐2)   𝐽𝑟𝑧𝑧 =

1

12
𝑚(𝑏2 + 𝑐2) (72) 

 

Inserting into the inertia relation of Eq. (63) gives, 

1

12
𝑚(𝑎2 + 𝑐2) +

1

12
𝑚(𝑏2 + 𝑐2) ≅

1

12
𝑚(𝑎2 + 𝑏2)   →    𝑐 ≅ 0 (73) 

 

This means that rotor geometry must be a plate-like thin object where its surface 

normal is in the direction of the xr vector (gimbal axis). The useful shape could be a 

thin disc where, xr, is the axis of rotation of the disc. On the other hand, a rod-like 

rotor geometry where the rod axis is oriented along the z-axis also closely satisfies the 

preferred inertia relation obtained.  

 

4.2.4. Tip Point Trajectory of Slender Rod 

The kinematics of the motion of the rod-like rotor geometry may further be 

investigated by looking at the trajectory of the tip point of the rotor. When 90° phase 

shift is given between rotor and gimbal axes, the following derivation may be done. 
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Figure 4.6. Simulation Model Constructed in ADAMS 

 

Tip vector, 

𝑟 = 𝑎�⃗�  (74) 

Oscillatory inputs, 

𝜑 = 𝜑0 sin 2𝜋𝑓𝑡 (75) 

𝜃 = 𝜃0 sin(2𝜋𝑓𝑡 + 𝛽) (76) 

 

The position of the tip of the rod-like rotor in the spacecraft fixed frame is, 

𝑟 𝑟𝑜𝑡 = 𝑇𝜃𝑇𝜑𝑟  (77) 

𝑟 𝑟𝑜𝑡 = [
𝑎𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃
−𝑎𝑠𝑖𝑛𝜑

𝑎𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃
] (78) 

 

With oscillatory motions, 

𝑟 𝑟𝑜𝑡 = [

acos (𝜑0 sin 2𝜋𝑓𝑡)sin (𝜃0 sin(2𝜋𝑓𝑡 + 𝛽))
−asin (𝜑0 sin 2𝜋𝑓𝑡)

acos (𝜑0 sin 2𝜋𝑓𝑡)cos (𝜃0 sin(2𝜋𝑓𝑡 + 𝛽))
] (79) 
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Assuming small angle oscillations, cosine terms drop, 

 

𝑟 𝑟𝑜𝑡 ≅ [
a𝜃0 sin(2𝜋𝑓𝑡 + 𝛽)

−a𝜑0 sin 2𝜋𝑓𝑡
a

] (80) 

 

Assuming 𝜑0 = 𝜃0 and 𝛽 = 90° 

 

𝑟 𝑟𝑜𝑡 = [
a𝜑0 cos 2𝜋𝑓𝑡
−a𝜑0 sin 2𝜋𝑓𝑡

a

] (81) 

 

The trajectory of the above vector tip gives a circle.  For different phase shifts, tip 

trajectories obtained are plotted in Figure 4.7. The half-length of the rotor is taken as 

100 units and vibration amplitudes of the rotor and gimbal axis are 5°. The orange line 

for 90° phase shift deviates only 2.4 10−4 % from an exact circle. It may be also seen 

that for 0° phase shift the tip point of rotor only oscillates on the blue line in the middle 

and no angular momentum generated on the rotor and spacecraft. Geometrically 

speaking, up to 90° phase difference, the total angular momentum built on the rotor 

gradually increases and reaches a maximum at the 90° phase difference. Numerically, 

it was shown that 90° phase difference gives maximum angular velocity gain. By 

looking at this figure, it may be concluded that the amount of precession of the rotor 

mass increases with increasing phase difference up to 90°. 



 

 
 

32 
 

 

Figure 4.7. The trajectory of the tip point of the rotor from 0° to 90° phase differences 

 

 

4.2.5. Comparison of Rotor Performances 

The system is modeled and simulated in the ADAMS software environment. A pair of 

CMG actuators, excited in an out of phase manner with respect to each other, are used 

to cancel out excitations along xs and ys axis. The ADAMS simulation drawing is given 

in Figure 4.6.  The gimbal body was not drawn. However, gimbal axis connections are 

realized using universal joints between the spacecraft body and rod-like rotor body. 

For simplicity, fully symmetric spacecraft body is employed. Due to universal joint 

used, the rod does not rotate around zr. However, it can rotate around xr which is 

gimbal axis and yr which is rotor axis. In the ADAMS model, the aluminum material 

is selected for the rods and spacecraft body is cast iron (gray). The inertia matrix of 

the rods then becomes, 
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𝐽𝑟 = [
1.573269𝐸 − 004 0 0

0 1.573269𝐸 − 004 0
0 0 1.246951𝐸 − 006

]  𝑘𝑔 ∙ 𝑚2 

 

Thus, the calculated inertias closely satisfy the relation 𝐽𝑟
𝑦𝑦

+ 𝐽𝑟
𝑧𝑧 ≅ 𝐽𝑟

𝑥𝑥. 10 Hz, 0.1 

rad (~5.73°) amplitude sinusoidal motions applied to the rotor and gimbal axis. Upper 

and lower CMGs operate in out of phase manner and individual CMGs has a 90° phase 

shift between their own rotor and gimbal axes. Amplitudes of vibrations are gradually 

increased between 0-2 secs and decreased between 5-7 secs. The simulation results 

are presented in Figure 4.8, shows that the spacecraft z-axis attains an angular velocity 

as the oscillation amplitudes are increased, and the reaction oscillations in the other 

two axis are successfully cancelled and do not exist. 

 

 

Figure 4.8. Simulation results with two out of phase CMGs with slender rod rotor geometry 

 

To demonstrate the effects of inertia on the response, a spherical or cube-shaped rotor 

with inertia properties given below is also used by changing z component of previous 

slender rod’s inertia matrix, 
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𝐽𝑟 = [
1.573269𝐸 − 004 0 0

0 1.573269𝐸 − 004 0
0 0 1.573269𝐸 − 004

]   𝑘𝑔 ∙ 𝑚2 

 

The output with the spherical rotor is presented in Figure 4.9 together with the rod-

like rotor.  The green line in the figure gives the satellite z-axis angular velocity when 

a cube-shaped or spherical rotor is used. As it may be observed from the figure, the 

useful angular velocity output oscillates between 0°/s and 4°/s and its mean value is 

about 2°/s. On the other hand, the magenta line shows the previous rod-like rotor 

output. There are three advantages obtained when a rod-like rotor design is used.  

 The total mass of the rotor is reduced.  

 The mean angular velocity increased attained by the satellite is two times 

higher.  

 The oscillations on the angular velocity output almost dropped to the zero. 

 

 

Figure 4.9. Satellite response with the spherical rotor and long slender rotor CMGs 

 

In the Figure 4.10 and Figure 4.11, angular accelerations on both rotor configurations 

are given.  For cube shaped rotor geometry, angular acceleration amplitude is around 

250°/s2 but for the rod, it is only about 1.1°/s2. This further demonstrates that, at steady 
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state, the oscillatory torque generated by the CMG drastically drops and spacecraft 

moves smoothly on the desired rotation axis when a rod type rotor is used. 

 

Figure 4.10. Angular acceleration on the spacecraft axis by using slender rotor geometry 

 

Figure 4.11. Angular acceleration on the spacecraft axis by using cube rotor geometry 

A set of simulations are carried out to demonstrate the effect of making slender CMG 

on the output axis performance.  For this purpose, first, a cube-shaped rotor is used.  

The rotor base area is gradually reduced while the x-axis is increased such that the 

rotor mass is kept constant (Figure 4.12). The simulation results are presented in 

Figure 4.13.  It may be seen from this figure that, as the rotor becomes slender, the 

satellite slew velocity increases.  In addition, the oscillations along this axis are also 

reduced.  These results are also tabulated in Table 4.1. The change in oscillations and 

the mean value of the angular velocity along the satellite z-axis may be observed from 

the table.  Numerically, the mean value of the angular velocity obtained with different 
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rotors changes from 0.082°/s for the cube rotor to 8.19°/s for a slender rotor which is 

10 times taller and angular velocity almost increased 100 times. The oscillations also 

decreased from 100% for a cube rotor, to less 0.15% for the slender rotor. 

 

 

Figure 4.12. Changing rotor shape with the same mass 

 

Figure 4.13. The angular velocity of satellite obtained with different rotor geometries 
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Table 4.1. The effect of rotor geometry on the output angular velocity and fluctuation 

 

 
Dimensions 

(mm) 

Ix 

(kg.m^2) 

X 10-12 

Iy  

(kg.m^2)   

X 10-12 

Iz  

(kg.m^2)   

X 10-12 

Wmax 

(deg/s) 

Wmin 

(deg/s) 

W average 

(deg/s) 

W fluctuation 

(deg/s) % 

Cube 
26.5 x 26.5 x 

26.5 
5.8 5.8 5.8 0.1629 0 0.0821 0.1629 100 

%80 base 

area 
23.7x23.7x33.1 6.8 6.9 4.7 0.1926 0.0626 0.1281 0.1300 50.74 

%60 base 

area 
20.5x20.5x44.1 9.8 9.9 3.5 0.2755 0.1786 0.2274 0.0969 21.31 

%40 base 

area 
16.7x16.7x66.1 19.4 19.4 2.3 0.5427 0.4799 0.5122 0.0628 6.13 

%20 base 

area 
11.8x11.8x132.3 73.5 73.5 1.17 2.0573 2.0349 2.0470 0.0224 0.55 

%15 base 

area 
10.2x10.2x176.4 130.1 130.0 0.88 3.6405 3.6333 3.6381 0.0072 0.1 

%10 base 

area 
8.4x8.4x264.6 292.0 292.0 0.58 8.1887 8.1639 8.1797 0.0248 0.15 
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CHAPTER 5  

 

5. EXPERIMENTATION 

Two experiments were performed to observe the dynamics of the actuator. First one 

has totally arbitrary rotor geometry to investigate the most general case and the second 

one consists of two actuators with slender rod rotor geometry. 

5.1. Test Setup with Arbitrary Inertia Values 

For the first iteration, a test prototype with arbitrary inertia values was modeled in 

SolidWorks and manufacturing has been done using CNC milling machines. 

 

Figure 5.1. CAD model of the test prototype 

The produced prototype of the actuator is presented in Figure 5.2. The rotor and 

gimbal axes are actuated by stepper motors (green). The step angles of the chosen 

stepper motors are 7.5°. Sinusoidal voltage inputs are generated with the desired phase 

shift and applied to the single coil group of the stepper motors. When a sinusoidal 

signal is applied to a single coil group of the stepper motor, it is expected that it starts 
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vibrating within two steps. Since, with the applied excitation, the coil becomes an 

electromagnet which changes its poles with a specified frequency, it rotationally 

vibrates the rotor of the stepper motor.  

 

After several tests with sinusoidal inputs, it was realized that it is impractical to control 

the vibration of stepper motors within a single step. This is due to the fact that steps 

can be missed and the continuous rotation of stepper motors may occur. Hence, the 

design is augmented by attaching restoring springs to the gimbal and rotor axes (Figure 

5.3). In this way, the stepper motors can only vibrate within a single step amplitude. 

 

The actuator was attached to the air bearing to reduce the friction on the CMG output 

axis. The air bearing is mounted on a heavy platform to minimize vibrations on the 

gimbal and rotor axes due to excitation. Moreover, this platform was balanced to have 

a horizontal orientation with respect to the ground hence the effect of gravity is 

mitigated. Sinusoidal inputs are generated by a high-resolution NI PCI-4461 signal 

generator card. A voltage follower operational amplifier circuit was constructed to 

buffer the output signals of the signal generator card. DC power supply was used to 

feed power to the op-amps.  Amplified signals are transmitted via very thin cables 

suspended above the actuator to reduce the spring effect of these cables. The useful 

rotation on the air bearing rotation axis was measured by Polytech scanning 

vibrometer with PSV-400 scanning head. The vibrometer laser beam was aligned 

perpendicular to a vertical surface of the rotor to measure the linear velocity of this 

point. For small angles, this linear velocity may easily be converted to angular velocity 

by dividing the perpendicular distance between the laser spot and the rotation axis of 

the air bearing. Complete setup can be seen in Figure 5.4. 
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Figure 5.2. Manufactured CMG prototype 

 

 

Figure 5.3. Restoring springs for gimbal and rotor axes 
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Figure 5.4. Actuator, air bearing and position of laser footprint (left). The general architecture of the 
setup is presented on the right 

The experiments were conducted for various phase differences and obtained angular 

velocities are presented in Figure 5.5. The graphs present the results of four separate 

experiments. The difference between these experiments is the phase shifts between 

the sinusoidal excitation applied to the gimbal and rotor axes.  The air bearing, 

together with the CMG only vibrates around its original position for in-phase 

excitation.  As the phase difference between the sinusoids applied to the gimbal and 

rotor axis is increased, mean velocity increases. 

 

Figure 5.5. Angular velocity results for 0°, 30°, 60° and 90° phase differences 
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From the results presented in Figure 5.5, it may be observed that the angular velocities 

gradually drop to zero in time. The possible reasons for this behavior are, small but 

nonzero spring effect caused by the suspended signal cables of motors, the unbalance 

on the platform, and damping inside the air bearing due to air flow. Together with the 

spring effect by suspended cables and gravitational effect due to slight unbalance on 

the platform, the angular position of air bearing returns to its equilibrium position 

afterward. However, when the bearing returns to its equilibrium position, the amount 

of the angular momentum stored on the rotor of the CMG may be observed by instantly 

cutting the power supplied to the rotor and gimbal axes’ motors. When the power is 

shut down, the gimbal and rotor springs, internal frictions on the excitation axes and 

damping, slows down the rotor and gimbal vibration immediately. Response forces 

and torques are induced on the air bearing axis back again. The following figure shows 

the amount of angular velocity gained by air bearing when the system is shut down at 

the reached equilibrium position. For 0° phase difference, the Z-axis (spacecraft) 

component of the angular momentum of the rotor is zero. Hence, there is no net torque 

response on the air bearing axis after cutting off power and net angular velocity of the 

air bearing is zero. The angular velocity response at equilibrium increases from 0° to 

90°. 

 

Figure 5.6. Angular velocity results for 0°, 30°, 60° and 90° phase differences after shutdown 
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Additional results are presented from Figure 5.7 to Figure 5.10, for phase differences 

from 0° to 360° are given in 10 degree increments. From these results, it may be 

observed that no net angular momentum is shed for 180° phase difference just like the 

0° phase difference case.  For phase difference from 180° to 360°, the angular 

momentum transferred to the air bearing is reversed.  Thus, it may be concluded that, 

by negating the phase difference, the air bearing (or satellite) rotation direction may 

be changed.  These results are also in line with the observations obtained from the 

simulations.  The expected angular velocities obtained from the mathematical model 

and experiments were presented in Figure 5.11.  From the figure, it may be observed 

that the mathematical model and the experiment yields the similar trends although the 

angular velocity magnitudes are different. 

 

 

Figure 5.7. Angular velocity gains for 0° to 90° phase differences after shutdown 
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Figure 5.8. Angular velocity gains for 90° to 180° phase differences after shutdown 

 

 

 

Figure 5.9. Angular velocity gains for 180° to 270° phase differences after shutdown 
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Figure 5.10. Angular velocity gains for 270° to 360° phase differences after shutdown 

 

 

Figure 5.11. Effect of phase difference on mean angular velocity from 0° to 360° (Mathematical 
result on the left, experimental result on the right) 

The experimental results were compared with ADAMS simulation. First, the required 

inertia parameters of the experimental setup are obtained from the CAD models.  

 

𝐼𝑔𝑖𝑚𝑏𝑎𝑙 = [
36827.75𝑒 − 9 0 0

0 108327.90𝑒 − 9 0
0 0 88046.18𝑒 − 9

] 𝑘𝑔.𝑚2 
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𝐼𝑟𝑜𝑡𝑜𝑟 = [
250427.92𝑒 − 9 0 0

0 157607.89𝑒 − 9 0
0 0 97674.44𝑒 − 9

] 𝑘𝑔.𝑚2 

 

In the above matrices, the inertia of the gimbal and rotor motors are not included.  

The rotor inertia of the rotor motor should also be estimated because it contributes to 

the inertia of the CMG rotor. An approximate inertia estimation for moving part 

(magnets) of rotor motor estimated from geometry as: 

  

𝐼𝑚𝑎𝑔𝑛𝑒𝑡𝑠 = [
2470.59𝑒 − 9 0 0

0 1972.38𝑒 − 9 0
0 0 2470.59𝑒 − 9

] 𝑘𝑔.𝑚2 

The inertia of the spacecraft axis was obtained by using parallel axis theorem. Since 

the center of the mass of the CMG is not on the rotation axis of the air bearing.  The 

moment of inertia of the air bearing rotor is 0.0052 kg.m2. Then, the total moment of 

inertia along the rotation axis is estimated as, 

 

𝐼𝑠𝑐 = 6.982687 × 10−3𝑘𝑔.𝑚2 

The other two inertia terms are not considered since it is a single axis air bearing. 

Voltages given to the motors were properly adjusted such that the vibration amplitudes 

of the axes are about 5°. In the simulations 6° amplitudes given to rotor and gimbal 

axis.  Gimbal and rotor motors can supply 125 N.mm and 80 N.mm maximum torques, 

respectively.  The spring constants of the restoring springs of gimbal and rotor axes 

are approximately calculated as 1.05 N.m/rad and 0.57 N.m/rad, respectively.   

 

Finally, due to the spring effect of suspended power cables, unbalance of the air 

bearing platform and viscous friction inside air bearing, external torques occurred on 

the air bearing rotation axis. Hence, a spring and damper coefficient values are needed 
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on the air bearing (spacecraft) rotation axis to consider these torques.  Assuming a 

linear behavior, the air bearing rotor equation may be written as,  

 

𝐼𝑧(𝑡𝑜𝑡𝑎𝑙)�̈� + 𝑐�̇� + 𝑘𝛾 = 0   𝑤𝑖𝑡ℎ  𝛾(0) = 0 𝑎𝑛𝑑 �̇�(0) = 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (82) 

 

As mentioned in the previous results, after shutting down the power of the motors 

when the system is at equilibrium, the system tries to return its original equilibrium in 

a vibratory fashion.  The 90° phase difference velocity measurement data is integrated 

to obtain the angular position graph. 

 

Figure 5.12. The position of spacecraft from equilibrium position after power shutdown while 90° 
phase difference applied 

 

After some tuning of c and k values, it is observed that the air bearing rotation axis is 

close to the critically damped system. By using excel solver and least squares 

regression, a critically damped solution curve is fitted with the experimental result. 

𝛾(𝑡) = 𝑒−𝜔𝑛𝑡𝜔0𝑡        𝑤ℎ𝑒𝑟𝑒   

  𝜔0 = 0.003497
𝑟𝑎𝑑

𝑠
    𝑏𝑦 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡  

(83) 
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Figure 5.13. Critically damped solution curve fitted to the experimental result 

Due to the nonlinear behavior of the system, it is impossible to fit a linear solution 

perfectly to the experimental result. However, this solution satisfies and realizes the 

experimental result with an acceptable error. After this curve fitting procedure, the 

stiffness and damping on the air bearing rotation axis becomes; 

 

𝑐𝑎𝑖𝑟 = 0,006017
𝑁𝑚𝑠

𝑟𝑎𝑑
 

𝑘𝑎𝑖𝑟 = 0.001277
𝑁𝑚

𝑟𝑎𝑑
 

Together with all these systems parameters, simulations were done by using ADAMS. 

 

Figure 5.14. ADAMS simulation results with experiment setup mechanical properties 

ADAMS simulation results show close numerical values and trends with respect to 

experimental results for 90° phase difference. Around 0.2°/s maximum angular 

velocity gain was obtained just like in the experimental results. 
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5.2. Test Setup with Slender Rotor Geometry 

In the equation Eq. (63), it has been shown that vibratory CMG shows better 

performance with preferred inertia values for rotors. According to this result, a new 

mechanical design has been performed. It consists of two actuators with slender rod 

rotor geometry. A balancing table was also designed to reduce gravitational effects on 

the axis of the air bearing. 

 

Figure 5.15. Mechanical design of experiment setup for slender rotor geometry 

 

Figure 5.16. The configuration of balancing points 
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The balancing table has three legs and touches to ground with sharp-edged M10 bolts 

to adjust the level of table perpendicular to the gravity field. One leg is just top of the 

axis of rotation and the other two were separated 500 mm apart. The positions of the 

other two legs are just on the corners of a 500x500 mm square. Thanks to this 

configuration, the table can be balanced just with two axes and these axes are 

decoupled. The calibration of one axis is not affected while the orientation of other 

axis is changed. This eases the leveling operation of the table. The slope of balancing 

table changes 0.172° for one revolution of bolts. 

 

 

Figure 5.17. Flexure design and rotor geometry 

 

In the design of actuator, gimbal geometry was completely removed and only rotor 

body has been designed. Because it has been seen that the gimbal body does not have 

any effect on output angular velocity of the spacecraft body when Eq. (50) is 

investigated. On the other hand, the degree of freedom of gimbal is given 

kinematically using flexure geometry (Figure 5.17). Flexure geometry has been 

designed for 20-25 Hz resonance frequency range. The material of flexure is 1 mm 

thick AISI 1075 sheet. Rotor body was made of AISI 1040 steel. 
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Figure 5.18. Located electromagnets to drive rotors and modification piece added to rotor geometry 
to increase the performance of electromagnets 

Electromagnets were used to drive rotors without any contact. Chosen electromagnets 

are capable of holding 24.5 N load. In Figure 4.7, it has been shown that the tip of 

slender rod rotor geometry draws a trajectory that is close to the circle when 90° phase 

difference is given between the rotor and gimbal axes. As a result, rods actually 

performs precession motion for 90° phase difference.  

After manufacturing, the first test was done to check holding performance of magnets. 

However, it was not enough for the desired vibration amplitudes. Hence, a 

modification piece was manufactured to decrease the distance between the magnetic 

fields and the rotor surface. In addition to this, electromagnets work better on flat 

surfaces. Due to this reason, the modification piece was designed as a square prism 

with flat side surfaces to increase the performance of the magnets (Figure 5.18). The 

material was chosen AISI 1010 low carbon steel for better ferromagnetic properties. 

Including the modification part, the first two resonance frequency of CMGs were 

found via COMSOL. Results may be seen in Figure 5.19. Two resonance frequencies 

are very close to each other and describe the degree of freedom of gimbal and rotor 

revolute joints, kinematically. 
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Figure 5.19. First two resonance frequencies of flexure geometry (22.942 Hz and 22.938 Hz) 

Fatigue analysis of designed flexure geometry should also be performed for long-term 

operation. 

The resonance frequencies of upper and lower CMGs were found by using Polytech 

Scanning Vibrometer mentioned in the previous experiment. Firstly, the 

electromagnets were demounted and impact response tests were done for upper and 

lower CMGs separately. Vibrometer measures linear velocity of the rotor and 

calculates FFT of the measured velocity of the rotors after impacts. Obtained 

frequency resolution for FFT is 0.25 Hz. 

 

Figure 5.20. Impact test FFT result of upper CMG without electromagnets (21.25 Hz first 
fundamental frequency) 
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Figure 5.21. Impact test FFT result of lower CMG without electromagnets (21.75 Hz first 
fundamental frequency) 

It can be seen from Figure 5.20 and Figure 5.21 that measured fundamental 

frequencies of designed flexure geometry is very close to each other. The results are 

also very close to the simulation results of COMSOL in Figure 5.19. However, there 

are higher frequencies with multiples of fundamental frequency as noise. The same 

impact tests were also done by mounting electromagnets. Electromagnets were not 

excited. 

 

Figure 5.22. Impact test FFT result of upper CMG with electromagnets (21.25 Hz first fundamental 
frequency) 
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Figure 5.23. Impact test FFT result of lower CMG with electromagnets (21.75 Hz first fundamental 
frequency) 

After mounting the electromagnets, it has been seen that there is no change in the 

fundamental frequencies. However, multiples of the fundamental frequencies almost 

vanished. The possible reason behind this may be Eddy currents developed inside the 

rotor and the electromagnets, and due to the movement of the ferromagnetic rotor 

body. These developed currents create a damping effect on the rotor and clear higher 

harmonics on the motion of the rotor. As a result, only the first fundamental 

frequencies remained.  

Polar moment of inertia of the rotors becomes as follows after modification. 

𝐼𝑟𝑜𝑡𝑜𝑟 = [
951377.23𝑒 − 9 0 0

0 951377.23𝑒 − 9 0
0 0 20940.58𝑒 − 9

] 𝑘𝑔.𝑚2 

 

Inertia value at the Z axis (spacecraft) is about 45 times smaller than the X and Y axes 

inertia values and manufactured rotor geometry closely satisfies optimum inertia 

distribution relation in Eq. (63). 
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The air bearing in the previous experiment failed due to rust and, a new air bearing 

was ordered to continue experimentation. The new air bearing is PI Glide A-632.050H 

model which includes a high-resolution encoder. It can carry 536 N axially and 229 N 

radially and operates with 75-80 Psi pressurized air. The encoder has 15,744 lines/rev 

on the scale, and the electronics provide 4x interpolation.  In total, there are 62,976 

encoder counts/revolution of the stage. Hence, the resolution of the encoder is 99.77 

µrad.  

A force transducer was also ordered to measure torque output of the actuator and it 

can also be assembled to balancing platform instead of the air bearing. The purchased 

force transducer is AMTI MC3A-250 multi-component force transducer and it can 

carry 556 N force on X and Y axes which correspond the gimbal and the rotor 

excitation axes of the actuator. 1112 N maximum load can be applied on the Z axis of 

the sensor. The gain and excitation voltages for 3 axis forces and moments can be 

adjusted by using AMTI Netforce software. Hence, force and torque resolution of the 

transducer can be adjusted for each axis. With maximum gain and excitation, 

resolution for measured torques drops down to 0.00014362 Nm/bit for the X and the 

Y axes and 0.00017952 Nm/bit for the Z axis. However, highest torques can be 

measured by the sensor drop to 1.18 Nm on the X and the Y, 1.47 Nm on the Z axes. 

Firstly, experiments for torque characteristics were done by using the force transducer. 

Full view of experiment setup may be seen in Figure 5.24. There are eight 

electromagnets on the experiment prototype as mentioned before. Hence, eight driving 

signals must be generated. Because of manufacturing errors of mechanism and 

differences in generated signals due to varied properties of electrical circuits and 

electromagnets, the amplitude and phase difference of eight signals must be tuned 

precisely to generate desired motion of the rotors. The signals are generated via 

Raspberry Pi 3 B+ model small computer which runs with a Linux operating system. 

The wireless connection between Raspberry Pi and another computer established via 

remote control software. Signal generation code is written in the Python language. The 

generated signals are transferred PCF8591 YL-40 digital to analog converted modules 
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which communicate through i2c port of the Raspberry Pi with 400 kHz speed. Coming 

digital signal data from Raspberry were converted to analog signals by using these 

modules and analog signals were amplified with inverting amplifier circuits with On 

Semiconductor LA6500 power operational amplifiers. 

 

Figure 5.24. The general picture of the experiment setup with the force transducer 

 

Figure 5.25. Electrical circuit layout 
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The electromagnets were driven with sine waves squeezed between zero voltages and 

desired maximum voltage. To have rotary motion mentioned on the rotors, the 

electromagnets were excited with 0°, 90°, 180°, and 270° phases. Therefore, signals 

go to their peak voltages sequentially. Hence, the electromagnets run sequentially as 

a rotary configuration. As a result, the rotor body does precession motion. The whole 

system was operated with open loop control. 

 

 

Figure 5.26. Driving signals for electromagnets and direction of precession for the ideal case 

 

Firstly, the upper stage of the actuator was disassembled and only the output of the 

lower actuator was taken. Amplitude and phases of generated signals were slightly 

adjusted to have desired motion of rotor body. The amplitude of vibrations is 2.34°. 

The CMG was excited with 21.5 Hz frequency which is very close to the resonance 

frequency of flexure geometry. The steady-state torque output of a single actuator is 

represented in Figure 5.27. Data length is 0.2 seconds. There is 90° phase difference 

between X-axis and Y-axis response torques as expected.  
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Figure 5.27. The steady-state torque output of the lower CMG 

In more detail, only Z-axis torque output may be seen in Figure 5.28. The net torque 

on the spacecraft body is zero but a very slight oscillation has been observed with 

some amount of noise. When the smooth velocity output of the slender rotor 

considered in the simulation results, this result is also expected.  

 

Figure 5.28. The steady-state torque output of the lower CMG on Z-axis 
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After adjustment of the excitation voltages and phases by using the force transducer, 

the whole system mounted on the air bearing to see angular velocity output of the 

actuator. The circuit components placed on the avionics plate and before mounting to 

the air bearing. The positions of the components were defined to balance weight 

distribution on the plate using the force transducer. Hence, the effect of gravity due to 

unbalance and tilt of the balancing platform may be reduced as low as possible.  

Four Li-Po batteries were used as power supply for the amplifier circuits. These 

batteries have a capacity of 2200 mA.h and 7.4 volts with 2S configuration. Four of 

them were serially connected and from the middle of the serial connection, the circuit 

was grounded. When the batteries are fully charged, ±16.8 volts supplied from the 

battery set. Raspberry Pi was also powered with another battery with 5 volts 2.1 A 

output. Hence, the whole system becomes wireless for testing. 

 

Figure 5.29. The general picture of the experiment setup for lower CMG mounted on the air bearing 

 

Figure 5.30. The positioning of electrical circuit components for a balanced distribution of mass 
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When the air bearing was pressurized, it has been seen that there occurs a turbine 

torque inside the air bearing and it starts rotating itself. Angular position data collected 

by the encoder for 40 psi pressure may be seen in Figure 5.31. 

 

Figure 5.31. Change in angular position due to turbine torque inside air bearing 

It may also possible to extract angular velocity gain from the bias caused by turbine 

torque. In order to do that, firstly detailed angular velocity profile of the air bearing 

investigated. It is concluded that, due to inner dynamics of bearing, there are 

unpredictable and unexpected velocity fluctuations during rotation caused by turbine 

torque and amplitude of oscillations are comparable to actuator output angular velocity 

amplitude (Figure 5.32). Hence, it is hard to extract angular velocity gain from this 

noisy bias. 

 

Figure 5.32. Turbine torque angular velocity of the air bearing under 40 psi supply pressure 
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In order to eliminate the turbine torque better, an experimental procedure was 

developed. Firstly, the air supply is completely closed and the air bearing becomes 

stationary. Then, it is opened small enough (around 10 psi) to just carry weight on the 

air bearing and the actuator is excited immediately after the air supply is opened. 

Hence, there was not enough time to gain velocity for the air bearing due to turbine 

torque. Thanks to this procedure, better experimental results were obtained.  

The actuator was excited 21.5 Hz and amplitude of the vibrations are 2.34° for the 

rotor body. Total excitation time was 45 seconds and amplitudes of input voltages 

increased in 15 seconds in order to eliminate initial condition effects on the output 

angular velocity. The excitation signals were cut at 45th second after the start and the 

rotor body slows down under hysteresis damping forces inside the flexure geometry.  

The air bearing was rotated about 8 degrees in 45 seconds and the angular position 

data collected by the encoder may be seen in Figure 5.33. 

 

 

Figure 5.33. Angular position gain on air bearing axis with balanced masses and lowest possible 
turbine torque effect 
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Figure 5.34. Angular velocity gain on air bearing axis with balanced masses and lowest possible 
turbine torque effect 

The angular velocity gain slightly deviates in Figure 5.34. One of the reasons behind 

this may be the open loop control applied to rotors. The amplitudes of the rotor 

vibrations cannot be stable perfectly to have constant angular velocity gain. Secondly, 

the air bearing also has some dynamics inside due to air flow and the roughness of its 

surfaces. This may also affect the angular velocity output.  

 

The most important observation of this part of the experiment is that the oscillations 

on the angular velocity are very small compared to the oscillations of the angular 

velocity in the previous experiment prototype with arbitrary rotor inertia values. The 

amplitude of oscillations is about 0.002°/s which is around 1% of the angular velocity 

gain. Actually, the resolution of encoder was not enough to detect these remaining 

small oscillations on velocity output. As a result, it may be concluded that the velocity 

oscillations were less than 0.002°/s and Figure 5.35 shows measurement noise. This 

result is expected when the output torque result of the Z-axis of the force transducer 

in Figure 5.28. 
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Figure 5.35. Oscillations on angular velocity gain between 32nd and 33rd seconds of the result in the 
previous figure 

 

When the phase differences given to electromagnets were reversed, the direction of 

motion changed as expected. As a result, a similar angular velocity gain trend was 

obtained with reversed direction of motion. 

 

 

Figure 5.36. Angular position gain on air bearing axis with balanced masses and lowest possible 
turbine torque effect (reversed direction) 
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Figure 5.37. Angular velocity gain on air bearing axis with balanced masses and lowest possible 
turbine torque effect (reversed direction) 

Both positive and negative directions resulted in almost the same position gain around 

8 degrees of rotation in 45 seconds. 

A pair of CMG configuration was also tested on the force transducer for the output 

torques. Previously, it was proposed that a pair of CMGs may cancel out excitation 

vibrations on X and Y axis. Two rods were driven synchronously to demonstrate this 

effect.  

Upper and lower CMGs were excited separately at the beginning of the tests. 

However, it was hard to synchronize two rods with out of phase manner by using open 

loop control. Hence, a flexible coupling was mounted to ends of the rods for out of 

phase motion. Thanks to this coupling, tips of the rods were connected and they started 

moving together. The mounted coupling can easily be bent on X-axis and Y-axis and 

it can easily be deflected on Z-axis. However, it restricts the translational motion of 

the rods with respect to each other on X and Y axes. Due to mounted coupling, there 

occurred an unbalance on the rotor bodies. These unbalance also caused vibrations on 

X and Y axis. As a result, balancing masses added to other two ends of the rods and 

their amounts were tuned to decrease excitation response torques as low as possible. 
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Figure 5.38. Flexible coupling mounted between two rods and mounted balance masses added to the 
other tips of the rods 

The torque output results of this configuration may be seen in Figure 5.39. The 

amplitude of vibration of two rods measured as 1.34° and corresponding torque 

generated by single CMG calculated as 0.39 N.m. Hence, generated excitation torques 

by individual CMGs on X and Y axis was dropped from 0.39 Nm to 0.06 Nm and 

0.035 Nm, respectively. This result shows that the proposed CMG configuration is 

successful to reduce excitation vibrations. It is possible to reduce this remaining 

vibration even more with high precision manufacturing and closed-loop control 

algorithm. 

 

Figure 5.39. The torque output of a pair of CMG configuration 
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CHAPTER 6  

 

6. CONCLUSION AND FUTURE WORK 

In this thesis, the concept of a novel satellite attitude control actuator based on 

rotational vibrations is presented.  

Developing a detailed mathematical model and simulating it, it has been proved that 

vibratory CMG concept gives useful rotational motion to spacecraft on desired 

rotation axis. The single gimbal CMG model was used for the mathematical model of 

the concept and then output angular velocity equations are obtained using conservation 

of the angular momentum principle. 

Effects of excitation parameters such as excitation frequency, excitation amplitudes 

and the phase difference between rotor and gimbal excitation axes were investigated 

and the following results are obtained.  

 The angular velocity output increases proportional to the excitation frequency.  

 The angular velocity of the spacecraft increases in a quadratic manner with 

increasing excitation amplitudes of rotor and gimbal bodies.  

 The angular velocity output is directly proportional to sine of phase difference 

between the rotor and the gimbal excitations.  

For 0º, 180º and 360º phase differences between rotor and gimbal axes, the spacecraft 

only vibrates around its original orientation and there is no net angular displacement 

on the desired rotation axis. The maximum angular velocities are obtained at 90º and 

270º phase differences. Both the magnitude and direction of the angular velocity may 

be controlled by changing the phase difference between [-90º, 90º].  

There are also vibrations on the other two axes of the spacecraft reference frame due 

to the reaction forces and moments of the rotor and the gimbal bodies. When the 

amplitudes of reaction angular velocities on X and Y-axes were compared with the 
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angular velocity output magnitudes, it has been observed that these reaction angular 

velocity amplitudes are very high and they must be canceled. Hence, a double CMG 

configuration was proposed to cancel out these oscillatory motions on the other two 

axes of the spacecraft. Two CMGs were driven out of phase manner and they cancel 

out excitation vibrations of each other, leaving only the desired rotation at the output 

axis.  

The angular velocity output on the desired rotation axis also has oscillations and it is 

observed that the reason of these oscillations is axisymmetric rotor geometry such as 

a cylinder, cube or sphere. Mathematically, optimum rotor inertia distribution relation 

was also investigated to reduce these velocity oscillations to a minimum. This result 

of this study is one of the most important and novel contribution of this thesis. Detailed 

analysis of rotor inertia distribution was tabulated. It is shown that when the rotor body 

evolves to a slender rod geometry,  

 The angular velocity increases for the same rotor mass  

 The velocity fluctuations decrease. Therefore, the velocity profile becomes 

smoother. Smooth operation of the actuator is important for some operational 

purposes such as image capturing by Earth observation satellites.  

 These results also mean that it is possible to achieve the same angular velocity 

with less rotor mass. Hence, it is beneficial for reducing the total mass of the 

actuator and the spacecraft. 

Kinematic analysis of the motion of the slender rotor body was also performed to 

understand motion under different phase shifts between the rotor and gimbal 

excitation. The tip point of the rod geometry draws a circular path for 90º phase 

difference. This path slightly deviates from an exact circle as the excitation amplitudes 

increase. Hence, it was concluded that the rotor geometry actually does precession 

motion when 90º phase difference applied between the rotor and gimbal excitation.  
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Before the optimum inertia distribution for rotor body was discovered, a preliminary 

mechanical design with arbitrary rotor inertia values had been performed and tested. 

Effect of phase difference was proved with experimental results which show the same 

trend and behavior with the results of the mathematical model.  

At the final stage, a new mechanical design with slender rod rotor geometry was 

studied. A balance platform to reduce gravitational effects was also designed and 

manufactured. This new mechanical design consists of two actuators, without the 

gimbal body because it has been shown that the gimbal body does not contribute the 

angular velocity output on the desired rotation axis. Instead of the mechanical gimbal, 

a flexure geometry was designed. Hence, the rotor body has two rotational degrees of 

freedom. Rotor bodies were excited by electromagnets. Hence, this mechanical design 

does not have any joints and there is no contact to drive rotor bodies.  

Several experiments were done on both force transducer and the air bearing to observe 

system dynamics. Firstly, upper CMG is removed from the design and only single 

CMG outputs were obtained. Experiment results showed that angular velocity 

direction changes when phase differences are inverted (Figure 6.1). Moreover, angular 

velocity fluctuation drastically reduced and air bearing rotated more smoothly. This 

result shows that the slender rod geometry mitigates angular velocity oscillations on 

the desired rotation axis. Secondly, two slender rods were excited together on the force 

transducer to observe output torques of the actuator. The excitation torques on X and 

Y axes reduced considerable amount compared with excitation response torques of 

single CMG. Clearly, a pair of CMG configuration successfully reduces excitation 

response torques on the spacecraft body. 
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Figure 6.1. The positive and negative direction of rotations for a single CMG 

 

 

Figure 6.2. Comparison of the excitation response torques of a single CMG and a pair of CMGs 
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As a future study, the closed-loop control algorithm can be applied to this mechanical 

design to achieve maximum output velocity and minimum parasitic vibrations. The 

motion of the rotors may be detected by MEMS gyros or the Hall Effect sensors and 

a feedback control algorithm can drive the electromagnets accordingly. 

In addition, MEMS version of this concept can be performed. Angular momentum 

storage capacity of a single rod for macro scale actuator is relatively small. As a result, 

the performance of the single actuator at macro scale is not comparable with the 

performance of reaction wheels and conventional CMGs. However, an array of 

microscale design which consists of a large number of actuators may have comparable 

performance. Detailed performance analysis of MEMS arrays of this concept can be 

performed for future study. 
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