

NFA BASED REGULAR EXPRESSION MATCHING ON FPGA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

KAMİL SERT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2018

Approval of the thesis:

NFA BASED REGULAR EXPRESSION MATCHING ON FPGA

submitted by KAMİL SERT in partial fulfillment of the requirements for the degree

of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences ___________

Prof. Dr. Tolga Çiloğlu

Head of Department, Electrical and Electronics Engineering ___________

Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

Supervisor, Electrical and Electronics Engineering Dept., METU ___________

Examining Committee Members:

Prof. Dr. Gözde B. Akar

Electrical and Electronics Engineering Dept., METU ________________

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU ________________

Prof. Dr. Şenan Ece G. Schmidt

Electrical and Electronics Engineering Dept., METU ________________

Prof. Dr. İlkay Ulusoy

Electrical and Electronics Engineering Dept., METU ________________

Assoc. Prof. Dr. Oğuzhan Erdem

Electrical and Electronics Engineering Dept., Trakya U. ________________

 Date: ________________

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last Name: Kamil SERT

Signature :

v

ABSTRACT

NFA BASED REGULAR EXPRESSION MATCHING ON FPGA

Sert, Kamil

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

September 2018, 82 pages

String matching is about finding all occurrences of a string within a given text,

which is a classical but still a popular problem. String matching algorithms have

important roles in various real world areas, such as web and security applications.

In this work, we are interested in solving regular expression and hence string

matching problem targeting especially the network intrusion detection systems

(NIDS) field.

An NIDS engine inspects both the header and the content of the packet and hence

performs a type of deep packet inspection also. This inspection requires effective

string matching techniques because each network packet should be checked and

compared against maybe hundreds of possible malicious attacks at line speed. In

this thesis, a detailed literature analysis is presented first that explains and classifies

regular expression matching studies. Among these, studies exist that presents

nondeterministic finite automata (NFA) based architectures and their novel

mappings onto FPGA. In our study we select one such study [1] and further modify

vi

and enhance the NFA architecture already proposed. The reference study uses the

modified-McNaughton-Yamada-algorithm and maps the resulting NFA into

structural HDL for FPGA implementation. Our modification proposes to use a 2-

character based matching structure that yields better memory utilization. With our

approach, the circuit for the NFA representation needs less number of states (hence

flip-flops) and LUTs to perform the 2-character regular expression matching

process. Within the scope of this thesis, an extensive evaluation study is performed

using the well-known Snort IDS ruleset and the worst case evaluation is done using

some intuitively and synthetically created regular expressions targeting Xilinx 7-

series FPGAs. Evaluation results are obtained using various performance metrics.

Keywords: regular expression matching, string matching, NFA, network intrusion

detection, network security

vii

ÖZ

FPGA ÜZERİNDE BELİRSİZ SONLU DURUM MAKİNASI TEMELLİ

DÜZENLİ İFADE EŞLEŞTİRME

Sert, Kamil

Yüksek Lisans. Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt Fehmi Bazlamaçcı

Eylül 2018, 82 sayfa

Dizi eşleştirme, bir dizinin belirli bir metin içerisinde ki tüm mevcudiyetlerini

bulmakla ilgili olan klasik ancak yine de popüler bir sorundur. Dizi eşleştirme

algoritmaları, web ve güvenlik uygulamaları gibi çeşitli gerçek dünya alanlarında

önemli rollere sahiptir. Bu çalışmada, özellikle Ağa Sızmayı Algılama Sistemleri

(ASAS) alanını hedefleyen düzenli ifade eşleştirme ve dolayısıyla dizi eşleştirme

problemini çözmekle ilgileniyoruz.

Ağa sızmayı algılama sistemi ağ paketlerinin hem başlığını hem de içeriğini inceler

dolayısıyla bir tür derinlemesine paket denetimi de gerçekleştirir. Bu inceleme,

etkili dizi eşleştirme tekniklerinin kullanımını gerektirir, çünkü her ağ paketi belki

de yüzlerce olası kötü niyetli saldırıya karşı hat hızında kontrol edilmeli ve

karşılaştırılmalıdır.

viii

Bu tezde, ilk olarak düzenli ifade eşleştirme çalışmalarını açıklayan ve sınıflandıran

ayrıntılı bir literatür analizi sunulmaktadır. Bu çalışmaların arasında, belirsiz sonlu

durum makinesi (NFA) temelli mimarileri ve onların FPGA üzerine eşlemlenmesini

sunan çalışmalar bulunmaktadır. Kendi çalışmamızda böylesi bir çalışmayı [1]

seçtik ve daha önce önerilen NFA mimarisini daha da değiştirip geliştirdik.

Referans çalışma değiştirilmiş McNaughton-Yamada algoritmasını kullanır ve elde

edilen sonlu durum makinesini FPGA uygulaması için yapısal donanım tanımlama

diline (HDL) çevirir. Değişikliğimiz, daha iyi bellek kullanımı sağlayan 2-

karakterli bir eşleştirme yapısı kullanmayı önermektir. Bizim yaklaşımımızla sonlu

durum makinesi gösterimi için olan devre, 2-karakterli düzenli ifade eşleştirme

işlemini gerçekleştirmek için daha az sayıda duruma (dolayısıyla iki durumlu hafıza

birimine) ve arabul çizelgesine ihtiyaç duyar. Bu tez kapsamında, Xilinx 7 serisi

FPGA ları hedefleyen, tanınmış Snort ağa sızmayı algılama sistemi kural seti

kullanılarak kapsamlı bir değerlendirme çalışması ve bazı sezgisel ve yapay olarak

oluşturulmuş düzenli ifadeler kullanılarak en kötü durum değerlendirmesi çalışması

yapılır. Değerlendirme sonuçları çeşitli performans ölçütleri kullanılarak elde

edilir.

Anahtar kelimeler: düzenli ifade eşleştirme, dizi eşleştirme, NFA, belirsiz sonlu

durum makinası, ağ sızma algılama, ağ güvenliği

ix

To My Family

x

ACKNOWLEDGEMENTS

I want to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Cüneyt

F. Bazlamaçcı for giving me the honor of working with him. Without his

constant support and guidance, it would be impossible to perform this work.

Last but not the least, I want to thank my family for their spiritual supports.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiv

LIST OF FIGURES .. xvi

CHAPTERS

1. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Aim of the Thesis .. 2

1.3 Contributions of the Thesis ... 2

1.4 Thesis Outline .. 3

2. BACKGROUND AND LITERATURE OVERVIEW .. 5

2.1 BACKGROUND INFORMATION .. 5

2.1.1 Intrusion Detection Systems .. 5

2.1.2 Existing IDSs ... 6

2.1.3 Pattern Matching, Regular Expressions and Finite Automata 7

2.2 LITERATURE REVIEW .. 9

xii

2.2.1 Regular Expression Matching .. 9

2.2.2 NFA-based Regular Expression Matching on GPU 10

2.2.3 NFA-based Regular Expression Matching on FPGA 11

3. COMPACT ARCHITECTURE FOR HIGH-THROUGHPUT REGULAR

EXPRESSION MATCHING ON FPGA ... 17

3.1 ARCHITECTURE OVERVIEW .. 17

3.1.1 Regular Expression to NFA Conversion .. 17

3.1.2 NFA to HDL mapping .. 19

3.1.3 BRAM-based Character Classification .. 19

3.2 MULTI-CHARACTER MATCHING OPTIMIZATION 23

4. 2C-NFA ARCHITECTURE FOR FAST REGULAR EXPRESSION

MATCHING .. 25

4.1 Main Idea ... 25

4.2 Structural Construction of 2C-NFA .. 26

4.2.1 2-Character Shifted 3-Character Window Search 29

4.2.2 Module Design ... 32

4.2.2.1. T1 module .. 32

4.2.2.2. T2 module .. 35

4.2.2.3. T3 module .. 38

4.2.2.4. T4 module .. 41

4.2.2.5. T5 module .. 43

4.2.2.6. T6 module .. 47

4.3 Module Implementations ... 48

xiii

4.3.1 Implementation of T1 module .. 50

4.3.2 Implementation of T2 module .. 51

4.3.3 Implementation of T3 module .. 52

4.3.4 Implementation of T4 module .. 54

4.3.5 Implementation of T5 module .. 55

4.3.6 Implementation of T6 module .. 57

4.3.7 Implementation of transitions connected to another modules’ inputs . 58

5. PERFORMANCE EVALUATION ... 61

5.1 Evaluation Tools .. 61

5.2 Data Set ... 61

5.2.1 Real Data Set .. 62

5.2.2 Gaussian Distributed Data Set ... 63

5.3 Performance Metrics ... 63

5.4 Worst-case Memory Performance ... 64

5.5 Implementation Results ... 66

5.6 Comparison ... 75

CONCLUSION AND FUTURE WORK .. 77

REFERENCES ... 79

xiv

LIST OF TABLES

TABLES

Table 3-1: Example Character Class Representations ... 21

Table 4-1: State transition table of the T1 module ... 32

Table 4-2P: State transition table of cdefgh regexp .. 34

Table 4-3: State transition table of the T2 module ... 36

Table 4-4: State transition table of cdefg regexp .. 37

Table 4-5: State transition table of T3 module ... 39

Table 4-6: State transition table of T4 module ... 42

Table 4-7: State transition table of T5 module ... 45

Table 4-8: State transition table of T4 module ... 47

Table 5-1: Data-sets generated from Snort IDS ... 63

Table 5-2: Random data-sets generated via Gaussian distribution 63

Table 5-3: Worst-case memory performance ... 65

Table 5-4: Implementation results for 1052-reme (2C-NFA) 68

Table 5-5: Implementation results for 719-reme (2C-NFA) 68

Table 5-6: Implementation results for 569-reme (2C-NFA) 69

Table 5-7: Implementation results for 1052-reme (Yang’s arch.) 70

Table 5-8: Implementation results for 719-reme (Yang’s arch.) 71

xv

Table 5-9: Implementation results for 569-reme (Yang’s arch.) 71

Table 5-10: Average length of the regular expressions ... 73

Table 5-11: Number of states to represent datasets for both approaches 75

Table 5-12: FPGA Slices per State and LUTs per state values for both approaches . 76

xvi

LIST OF FIGURES

FIGURES

Figure 2-1: NIDS Architecture ... 5

Figure 2-2: Example SNORT signature ... 7

Figure 3-1: NFA representation of ‘b*c(a|b)*[ac]#’ for original McNaughton-Yamada

construction .. 18

Figure 3-2: NFA representation of ‘b*c(a|b)*[ac]#’ for modified McNaughton

Yamada algorithm .. 18

Figure 3-3: Circuit corresponding to b*c(a|b)*[ac]# regular expression 19

Figure 3-4: 8-bit comparator for character ‘a’ (ascii 0110 0001) 20

Figure 3-5: Character class representation in BRAM .. 21

Figure 3-6: Centralized character classification for 6 different REMEs 22

Figure 3-7: Yang’s 2-stride character matching circuit ... 24

Figure 4-1: NFA used to match regexp kl(mn|op)qr .. 26

Figure 4-2: 2C-NFA used to match kl(mn|op)qr .. 26

Figure 4-3: NFA for RE (hierarchical representation) ... 28

Figure 4-4: Combination of modules to implement a given regexp 29

Figure 4-5: 2-character shifted 3-character windows ... 30

Figure 4-6: Illustration of search window .. 31

xvii

Figure 4-7: Circuit for obtaining character match signals ... 31

Figure 4-8: General NFA representation of the T1 module 32

Figure 4-9: Final NFA representation of the T1 module ... 32

Figure 4-10: T1 module ... 33

Figure 4-11: NFA representation of cdefgh regexp .. 34

Figure 4-12: Circuit for cdefgh regular expression .. 34

Figure 4-13: Illustration of the validation step for T1 module................................... 35

Figure 4-14: General NFA representation of the T2 module 36

Figure 4-15: Final NFA representation of the T2 module ... 36

Figure 4-16: T2 module’s circuitry .. 37

Figure 4-17: NFA representation of cdefg regexp .. 38

Figure 4-18: Illustration of the validation for T2 module .. 38

Figure 4-19: General NFA representation of the T3 module 38

Figure 4-20: NFA representation of T3 module .. 39

Figure 4-21: Final NFA representation of T3 module ... 39

Figure 4-22: T3 module’s circuitry .. 40

Figure 4-23: NFA representation of ‘cde*fgh’ regexp .. 40

Figure 4-24: Illustration of the validation for T3 module .. 41

Figure 4-25: Final NFA representation of T4 module ... 42

xviii

Figure 4-26: T4 module’s circuitry .. 42

Figure 4-27: NFA representation of ‘cde*’ regexp .. 43

Figure 4-28: Illustration of the validation for T4 module .. 43

Figure 4-29: General NFA representation of the T5 module 44

Figure 4-30: NFA representation for T5 module ... 44

Figure 4-31: Final NFA representation for T5 module .. 45

Figure 4-32: T5 module’s circuitry .. 45

Figure 4-33: NFA representation of ‘cdef*gh’ regexp ... 46

Figure 4-34: Illustration of the validation for T5 module .. 46

Figure 4-35: General NFA representation of the T4 module 47

Figure 4-36: NFA representation for T4 module ... 48

Figure 4-37: T4 module’s circuitry .. 48

Figure 5-1: Worst-case memory performance ... 66

Figure 5-2: Throughput scaling of 1052-reme (2C-NFA) ... 70

Figure 5-3: Throughput scaling of 1052-reme set (Yang’s arch.) 72

Figure 5-4: Achievable throughput for three sets ... 72

1

CHAPTER I

INTRODUCTION

String matching algorithms are used to find all occurrences of a string in a given text.

These algorithms have important roles in a variety of real world application areas, such

as security applications (spam filters, network intrusion detection systems, etc.), web

applications (search engines, social media networking, etc.), bioinformatics, word

processors, plagiarism detection, databases, etc. Many recent applications conduct

regular expression matching in order to solve the string matching problem because

regular expressions are more flexible in representing complex string patterns.

In this thesis, we are interested in solving regular expression matching and thereby the

general form string matching problem targeting network intrusion detection systems

(NIDS) in particular using a non-deterministic finite automata (NFA) based approach.

Yang et al. [1]’s solution to this problem required two state registers while performing

two-character (2-stride) matching in one cycle. We modified the NFA representation

of the proposed architecture in [1] so that this match requires only one state register.

In this case, while the limiting factor in [1] is the number of state registers, the limiting

factor in our approach becomes LUT usage. To substantiate our approach, we designed

several hardware modules and evaluated the proposed approach.

1.1 Overview

In computer networks, a malicious user may want to intrude into a computer system

to steal information, to make unwanted interference or to make a Denial of Service

(DoS) attack. In order to achieve such things, messages carrying malicious content

could be sent to a victim computer. The aim of a Network Intrusion Detection System

is to catch messages carrying such malicious content and this process has to be

2

conducted at line speed. Many hardware or software based approaches were proposed

in order to reach line speeds. Software-based approaches generally run on network

processors or general-purpose processors. They utilize CPUs or GPUs and their

throughputs are dependent on the computing power of the processors used [2][3].

Hardware-based approaches are generally implemented using field programmable gate

arrays (FPGAs) [4][5][6], application specific integrated circuits (ASICs) [7], and

content addressable memories (CAMs) [8]. In this work, we use an approach that runs

on FPGA. FPGAs can make high-speed computations but their internal memories

currently are limited to about tens of megabytes. Hence, we aim to use this limited

memory more effectively in order to reach higher throughputs on the same device.

1.2 Aim of the Thesis

Network Intrusion Detection Systems (NIDSs) attempt to analyze the network traffic

and identify malicious strings of information by performing a form of string matching

at the heart of the system. An NIDS inspects both the header and the content of the

packet and hence performs a type of deep packet inspection also. This inspection

requires fast and effective string matching techniques because each network packet

should be checked and compared against possible malicious attacks at line speed.

There are a lot of approaches performing high-speed string matching, but increasing

internet traffic still requires faster and faster string matching.

In this thesis, our aim is to obtain a non-deterministic finite automata (NFA) based

high-throughput memory-efficient regular expression matching engine targeting state-

of-the-art FPGA devices.

1.3 Contributions of the Thesis

We propose a new NFA architecture and its associated circuits, which makes it

possible to represent two characters as one state and describe the mapping of the

proposed architecture onto FPGA circuits. Our architecture requires smaller number

flip flops to store the regular expressions, and in the worst case LUT usage does not

3

exceed the previous approaches.

We perform performance evaluations for the proposed approach using regular

expressions extracted Snort IDS’s ruleset and test results are compared against similar

studies found in the literature. Our results suggest that the proposed system performs

well.

The contributions of this thesis can be summarized as follows;

1. We modify the RE-NFA architecture used in [1] and create an NFA including

transitions corresponding to 2-character inputs also.

2. We propose four different modules to translate the proposed NFA architecture

into FPGA circuits easily.

3. We use the same approach as in [1] for utilizing block memory resources of

the FPGA device in order to implement centralized character classification. This helps

us improve the resource efficiency of our design.

4. We provide worst case memory requirements of our architecture.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2, background information about NIDSs, existing NIDSs, regular

expression matching problem and NFA based regular expression matching concepts

are given. The relationship between NIDS and regular expression matching is

discussed. Existing regular expression matching approaches are classified and

explained.

In Chapter 3, the architecture proposed by Yang et al. [1] is summarized. The modular

NFA architecture, BRAM character classification and other optimizations provided in

4

[1] are explained. The performance evaluation results of [1] are also discussed.

In Chapter 4, the proposed NFA based on 2-character transitions is presented and

requirements of the suggested architecture that needs to be satisfied are explained.

Corresponding circuit modules are defined and explained including the algorithms

used to generate them.

In Chapter 5, performance evaluation of the proposed implementation is done, tools

and platforms employed are given and the performance metrics used are explained. A

detailed performance study including the scalability analysis is performed using

various test scenarios.

In Chapter 6, conclusions and possible future work are discussed.

5

CHAPTER II

BACKGROUND AND LITERATURE OVERVIEW

2.1 BACKGROUND INFORMATION

2.1.1 Intrusion Detection Systems

Intrusion detection can be defined as identifying whether network packets are

malicious or not by inspecting packet payloads for signatures in a given rule set

(database). Defending a computer system or a computer network by identifying

malicious attacks is the main purpose of a Network Intrusion Detection System (NIDS)

[9]. A typical NIDS architecture is shown in Figure 2-1.

Figure 2-1: NIDS Architecture

NIDSs can be classified into two categories: anomaly-based and signature-based.

Anomaly-based NIDS monitors, analyzes and searches network traffic for abnormal

behaviors [10]. The most important feature of anomaly-based NIDS is the ability to

detect zero-day attacks but their false positive rate is very high [11]. On the other hand,

signature-based NIDS inspects packet payload to identify whether the packet contains

6

malicious patterns (signatures) or not, hence performing deep packet inspection (DPI)

also. Therefore, they generally employ string matching techniques.

Increase in the amount of network traffic and number of known-attacks results in

increase in the number of signatures stored in rule sets/dictionaries such as Snort [12]

and Bro [13], two well-known open source NIDSs. In that case, intrusion detection

systems require more CPU time and memory. Therefore, implementations on FPGA

like devices that have limited memory becomes a challenging issue. Current works

aim to increase the search speed or to reduce memory to store signatures, by using for

example compression techniques or new automata representations.

2.1.2 Existing IDSs

Two commonly used open source intrusion detection systems area Snort [12] and Bro

[13]. Bro is an open-source anomaly-based intrusion detection system. Bro first

extracts application level semantics, then analyzes and compares a variety of activities

involving malicious patterns. Bro inspects both signature-based attacks and unusual

activities [13]. Snort is the most widely used open-source intrusion detection system.

It has the ability to perform packet logging, network traffic analysis and string

matching. While doing performance analysis of our architecture we used regular

expressions extracted from Snort’s rule dictionary. Figure 2-2 represents an example

rule from Snort database. The first part of the rule (outside of the brackets) indicates

that the signature corresponds to TCP packets that arrives from an external network

from any port number, and that goes to HTTP ports of an HTTP server. Snort contains

Perl compatible regular expressions (pcre). For the following example rule, the

specified regular expression (in bold) will match those packets containing

“username=” followed by 255 characters that are not ‘&’, ‘;’ or spaces.

7

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg:”WEB-MISC Oracle iSQLPlus username overflow attempt”;

flow:to_server, established; uricontent:”/isqlplus”; nocase;

pcre:”/username=[^&\x3b\r\n]{255}/si”; reference:bugtraq,10871;

reference:url,www.nextgenss.com/advisories/ora-isqlplus.txt;

classtype:web-application-attack; sid:2702; rev:1;)

Figure 2-2: Example SNORT signature

Snort database contains about 7.000 regular expressions in many different categories,

such as blacklist, browser-firefox, file-office, malware-tools, os-linux, web-misc and

protocol-icmp.

2.1.3 Pattern Matching, Regular Expressions and Finite Automata

Regular expressions are used to represent patterns for matching text. Each regular

expression consists of regular characters or metacharacters, they have a textual and

special meaning, respectively. For example, in the regex ab. , a and b are textual

characters, that is they match only a and b characters, respectively, and ‘.’ is a

metacharacter matches every single character. Hence, this regex matches with abm,

aba, abx, etc. Using metacharacters and textual characters any pattern can be identified.

Metacharacters provide flexibility to represent a specific patterns and help us to obtain

easily readable regular expressions. For example, the regex initiali[sz]e matches both

‘initialise’ and ‘initialize’ words. In order to match against a search pattern, regular

expression has to be translated into an internal representation. In that point one option

is to utilize finite automata. We can construct a nondeterministic finite automata for

the given regular expression using any NFA construction algorithm or construct DFA

from the resulting NFA.

8

Finite Automata or Finite State Machine (FSM) is a computing model/device that

recognizes/accepts a regular language, and can be used to solve string matching

problem. Finite automata can be specified by a 5-tuple (Q, ∑, q, F, δ).

 Q: Finite set of states

 ∑: Set of input symbols

 q: Initial/Start state

 F: Final/accepting state

 δ: Transition function

Transition from one state to another state happens by transition function and an input

symbol. There are two type of finite automata: Deterministic Finite Automata (DFA)

and Non-deterministic Finite Automata (NFA).

In a DFA, for a certain input symbol, automata goes to only one state. There is only

one transition for each state and each input symbol. Hence, it is called deterministic.

Also DFA cannot move to new state without any input character, that is null (ε,

epsilon) transitions are not allowed for DFA. Input string is accepted if the accepting

state is active. DFA has only one active state at any time.

In an NFA, for a certain input symbol, automata can goes to more than one states. That

is, automata can move to different states by the same input symbol. Therefore it is

called nondeterministic. NFA allows ε transitions, it can move to next state without

processing an input symbol. Input string is accepted if one of the accepting state is

active. In NFA, there might be more than one active states at any time.

Each NFA can be translated into a DFA. When NFA is translated to DFA, state

explosion problem occurs. So, NFA requires less space than DFA.

Aim of the regular expression matching is to find all occurrences of a regex or string

on input text. Normally, finite automata designed for implementing some regex only

gives a match result if the input text matches completely. For example, automata for

abcd regex gives a match result if and only if the input text is abcd. If input text is

9

abcdefg or sabcdklabcd automata gives no-match output. However, if automata is used

for regular expression matching problem we expect that the above automata gives a

match for abcd, abcdefg and sabcdklabcd input text. That is a different search

mechanism is employed in order to utilize automaton for regular expression matching.

2.2 LITERATURE REVIEW

2.2.1 Regular Expression Matching

Early deep packet inspection (DPI) techniques rely on exact string matching for attack

detection [14] [15], however many recent techniques use regular expression matching

[16] [17] [18] because regular expressions are more flexible in representing complex

string patterns. At this point, we can categorize the relevant works broadly as NFA-

based, DFA-based and hybrid designs.

NFA based implementations use less memory but their matching speed is slow. Some

research have focused on utilizing parallelism to increase the NFAs matching

performance [19] [20]. In [19], using multi-character decoding, the NFA technique has

led to high-performance circuits with a large variety of pattern set sizes. NFAs keep a

frontier of multiple states at every step during its operation while all these states are

handled for every input symbol. In [20], NFA-OBDDs approach is introduced, which

use ordered binary decision diagrams (OBDDs) in order to process the NFA frontier

states in an efficient manner. NFAs’ matching performance are unpredictable (no

worst case guarantee). An efficient NFA based string matching model in BCAM

(Binary Content Addressable Memory) is proposed in [21]. An efficient NFA

generator using BCAMs, having fewer transistors and low latency, is built. The

difference between other TCAM-based approaches and BCAM-NFA is that the latter

doesn’t access memory after each TCAM matching process, thus matching speed can

be increased.

DFA based implementations suffer from state explosion issue. Exponential number of

states may be generated when an NFA is converted to a DFA. Some methods were

10

proposed to solve this issue to a certain extent. The main idea of D2FA [18] for

example is to compress the state transition table of the DFA. The authors of [22]

provide a compact representation of regular expressions that has the same throughput

as of uncompressed DFAs. In [23], DFA states and transitions are grouped into three

variable sized blocks, so that each block can employ different methods to optimize the

performance and storage requirement. A memory-based parallel matching engine

which uses the compressed state transitions is proposed in [24]. In this approach, the

pointers represent the existence of transitions and they are compressed while the bit

fields for storing transitions are also shared. Therefore, the memory cost can be

minimized for storing these transitions. When multiple characters are processed at a

time the throughput can be increased but this leads the transition table size to grow

exponentially and hence increase total memory consumption. The authors in [25]

applies two methods to overcome the memory explosion problem, namely top-k state

extraction and transition merging.

Hybrid approaches combine the benefits of deterministic and non-deterministic finite

automata. The aim of these approaches is to solve DFAs state explosion problem and

NFAs performance problem simultaneously. By adjusting the degree of conversion of

NFA/DFA, number of redundant states is reduced [26] [27] and in this way signatures,

which may cause state explosion can be determined and avoided. Tunable-FA (TFA)

[28], not a DFA, allows multiple simultaneous active states. Thereby, the total number

of TFA states to watch the matching status is smaller than the number of DFA states.

TFA guarantees that the number of active states is bounded by a bound factor, so

unpredictable performance problem of NFA is also solved.

2.2.2 NFA-based Regular Expression Matching on GPU

In this part, we present existing NFA-based regular expression matching approaches

implemented using Graphic Processor Units (GPUs).

DFA-based regular expression matching solutions suffer from state-explosion

problem. Because of this problem, popularity of NFA-based architectures has

11

increased. Using Graphic Processor Units (GPU) high clock frequency and high-

throughput can be achieved. In [34], several methods are proposed in order to

implement NFA on a GPU. Performance of the architecture is evaluated using regular

expression sets extracted from Snort. The paper reports 29~46 times speedup and over

10 Gbps throughput.

In [32], SR-NFA (segmented regex NFA) architecture is proposed for regular

expression matching. This architecture targets multi-core processors and is

implemented in 4 steps. At the first step, regular expressions are compiled into

nondeterministic finite automata (NFA) in a modular form. At the second step

resulting NFA is partitioned, and at the third one some optimizations are done. The

last step is for regular expression is matching on multi-core processors. The proposed

architecture has the following advantages;

 SR-NFA is attack-resistant and has high throughput.

 It is not affected from the common issues of DFAs such as state explosion or

backtracking.

 It can be constructed easily.

When compared with DFA implementations with moderate state explosion, the

proposed architecture consumes 23k times less memory resources, and can be

constructed and implemented 367k times faster. Performance evaluation is done on

Opteron Platform, which has 8-cores and 2,6 GHz clock speed. Throughput of this

architecture is about 2,2 Gbps.

2.2.3 NFA-based Regular Expression Matching on FPGA

In this part we present existing NFA-based regular expression matching approaches

implemented using FPGAs.

The study in [5] is the first practical nondeterministic finite automata implementation

on reconfigurable hardware. In order to implement a single character NFA module, we

12

need one character-comparator circuit, one flip-flop and one AND gate. Using this

single character module, union, concatenation and Kleene star operators (modules) can

be easily constructed. NFA construction algorithm proposed in the paper, takes a

regular expression as an input, then creates a syntax tree for it, and finally combines

these modules in order to implement final circuit that represents the related NFA. The

paper explains NFA construction both for Field-Programmable Gate Array (FPGA)

and Self-Reconfigurable Gate Array (SRGA).

Another FPGA-based NFA architecture is presented in [39]. The authors describe a

method for directly compiling Perl Compatible Regular Expression (PCRE) opcodes

generated via Snort signatures to HDL and finally implement them on FPGA.

Performance evaluation is done using Xilinx Virtex-4 FPGA device. They obtain 12,9

Gbps interface throughput. And also they achieve speedup of 353x over SW-based

perl compatible regular expression execution.

In [38], a similar NFA-based technique on FPGA is presented. Multiple characters are

matched per clock cycle which is, according to authors, is the key novel property of

their proposal. Another novelty is an efficient range match operation implementation.

In range match, [a-z] matches any character between a to z. Performance of the

proposed architecture is evaluated using Snort regular expression database. With 1-

character input NFA and 1,25 Gbps throughput is achieved. With 4-character input

NFA 3,63 Gbps throughput is achieved. 4-character NFA is shown to consume 6%

less registers and 20% more LUTs.

In paper [37] a bitmap-based architecture is presented for the Glushkov-NFA (G-

NFA). This architecture can process multiple symbols per cycle in order to achieve

higher throughput. Authors mentioned that their architecture is suitable for small and

moderate length regular expressions. The algorithm has ability to detect the ending

positions of the input strings’ substring.

CAN-SCID (Combined Architecture for Stream Categorization and Intrusion

Detection) is an NFA-based regular expression matching architecture [36]. This

13

architecture utilizes a microprocessor for match results counting and for system

control. They implement the architecture in 3 steps: firstly, regexes are translated into

an NFA, secondly, resulting NFA is converted to a new modular NFA architecture,

which has p-character transitions, and finally, in order to match with p-characters a

finite-input memory machine is designed. Performance evaluation is done on Altera

Stratix-3 FPGA device, and 798 Mbps throughput is achieved.

CES is an NFA-based approach implemented on FPGA [35]. CES means Character

Class with Constraint Repetition (CCR) based regular expression scanner. MIN-MAX

is a counting algorithm which helps to solve both ambiguity of character classes

problem and overlapped match problem. CES is designed to create a novel MIN-MAX

algorithm. This algorithm supports back-references also. Block RAMs are utilized to

store character classes. Proposed architecture is implemented on a Xilinx Virtex-5

device and its estimated throughput is obtained to be approximately 2 Gbps.

ECD-NFA [28] is based on an Equivalence Classification, which is a type of input

compression technique. Proposed approach constructs classes via compressed inputs.

These inputs are represented by positive integers and they are referred as ECDs. The

main idea is to classify inputs and to drive the non-deterministic finite automata via

classified inputs. The architecture does not use unclassified input strings. The proposed

technique has two challenges: First one is that decoding module uses too many BRAM

units, shift registers and logic, and the other one is that it requires too long to synthesize

and place-and-route the design. ECD-NFA technique can be parallelized on FPGA. It

runs at about 460 MHz and achieves 3,68 Gbps throughput.

In [29], a regular expression matching technique targeting text analytics systems is

proposed. These systems have many functions such as, start-offset reporting, group

capturing. It suggests some extensions such as configuration register implementation

to NFA architectures [5], [1] in order to implement the above functions. The proposed

architecture eliminates state replication, avoids offset comparisons and reduces the

number of offset registers in order to achieve resource-efficiency and higher clock

frequency. The architecture evaluated using regular expressions extracted from text

14

analytics and IDS areas and it is shown to achieve higher clock frequency and threefold

logic resource reduction on Altera Stratix FPGA.

Memory-based non-deterministic finite automata (MX-NFA) approach [30] proposes

a proper technique in order to handle character class repetitions which occurs in Snort

signatures. These repetitions can cause expensive hardware cost when repetitions are

handled by unrolling. In this technique, transition rules and embedded control signals

are stored in a table which has a different organization in comparison to the

conventional approach. Each table entry contains a transition symbol and a control

signal, but does not store the state-IDs. Outgoing transitions from an active state are

activated and from an inactive state are deactivated, instead of holding active states. In

order to handle these repetitions MX-NFA module also implemented a count module.

Performance evaluation is performed using ClamAV virus database.

Non-deterministic finite automata based regular expression matching technique on

reconfigurable hardware called as ENREM is proposed in [31]. This paper designs a

novel infix and suffix sharing mechanism. In order to optimize memory-cost for

pattern matching circuits this mechanism and several other techniques are utilized. The

proposed architecture is evaluated using Snort rules and is implemented on Xilinx

Virtex-2 FPGA device. It was possible to reduce LUT usage by 42% and Flip-Flop

usage by 32% when compared with the previous architectures. The implementation

had throughput between 1,45 to 2,35 Gbps.

Yang and Prasanna [33] proposed a design, implementation and evaluation of a

modular NFA-based high-performance REM architecture. This architecture firstly

parses regular expressions to represent them in a concise token list form and then

generates RE-NFA using McNaughton-Yamada NFA construction algorithm. In order

to increase the performance of the proposed architecture several optimizations are

done. To process multi-character inputs per clock cycle spatial stacking is utilized

while constructing the engine. In order to match complex character classes, a

mechanism that enables sharing of a BRAM-based character classifiers between

regular expressions is proposed. Using shift-register LUTs in parallel, matching of a

15

single-character constrained repetitions are handled efficiently. Test results show that

11 Gbps throughput can be achieved on Xilinx Virtex 5-series with this architecture.

They also claim that they managed to obtain more throughput efficiency than the other

architectures.

A Binary Content Addressable Memory (BCAM) based efficient nondeterministic

finite automata (NFA) architecture is suggested in [20]. Implementation of this

architecture needs less transistors and has shorter latency. With multi-character

processing, scalability is achieved. The architecture is evaluated using both Snort and

ClamAV signature sets.

NFA-OBDDs architecture is proposed in [19]. This architecture utilizes ordered binary

decision diagrams (OBDDs) in order to process NFA frontier state sets. Experiments

conducted using with regular expression sets extracted from Snort has shown that

NFA-OBDDs can outperform traditional NFAs by up to three orders of magnitude.

16

17

CHAPTER III

COMPACT ARCHITECTURE FOR HIGH-THROUGHPUT REGULAR

EXPRESSION MATCHING ON FPGA

In this part of the thesis, we explain the work of Yang et al. [1], which has been chosen

as our main reference paper. This paper has already modified the original RE-NFA

conversion approach used in [5] to get a highly modular structure, which helped them

to translate an NFA into FPGA circuits easily. They have also suggested a very simple

way of using the block ram (BRAM) resource of the FPGA. Because of these

advantages, we prefer to use some of the ideas they have already proposed. In the paper

some additional optimizations are also employed in order to get a high-throughput

search engine.

3.1 ARCHITECTURE OVERVIEW

Yang et al. [1] implemented their regular expression matching engine (REME) on

FPGA in three steps. First, a regular expression is parsed into a tree structure in order

to be able to perform a post-order traversal of the regular expression. In the second

step, a modular NFA architecture is constructed using the modified McNaughton-

Yamada construction algorithm. Finally, the resulting NFA architecture is mapped into

HDL for FPGA implementation. These steps are explained in following subsections.

3.1.1 Regular Expression to NFA Conversion

Given a regular expression, original McNaughton-Yamada NFA construction

algorithm generates an NFA, which has many intermediate nodes (white circles) and

18

unnecessary (є)-transitions (dashed lines). An example NFA constructed by original

McNaughton Yamada algorithm is shown in Figure 3-1.

Figure 3-1: NFA representation of ‘b*c(a|b)*[ac]#’ for original

McNaughton-Yamada construction

Yang et al. [1] modified the McNaughton-Yamada algorithm to eliminate unnecessary

nodes and epsilon (є)-transitions. Therefore, they reduced the memory cost and get a

highly modular architecture that is easy to map onto an FPGA. The NFA constructed

by the modified McNaughton-Yamada algorithm is shown in Figure 3-2.

Figure 3-2: NFA representation of ‘b*c(a|b)*[ac]#’ for modified

McNaughton Yamada algorithm

19

3.1.2 NFA to HDL mapping

In the resulting NFA, shaded elliptic areas are identical and they are named as basic

state block. These basic state blocks can be defined as a single module type, e.g. an

entity in VHDL. In order to translate the NFA into a circuitry, all we need to do is to

connect the basic state blocks in accordance with state transitions. The circuit that

corresponds to the regular expression b*c(a|b)*[ac]# is shown in Figure 3-3.

All of the basic blocks contain one OR and one AND gate. Rectangles show character

comparison results which will be obtained from BRAM.

Figure 3-3: Circuit corresponding to b*c(a|b)*[ac]# regular expression

3.1.3 BRAM-based Character Classification

In a previous work [5], character match signals were obtained via comparators such as

the one in Figure 3-4, which is designed to match with character ‘a’ whose binary

ascii representation is ‘01100001’. This 8-bit comparator requires two LUTs for its

implementation. 4 MSBs are input to the first LUT. The LUT contains only one 1 entry

20

corresponding to the number to be compared. 4 LSBs are processed similarly in the

second LUT and the AND gate generates the final match when both parts match.

If such comparators are used for all states, FPGA LUT usage increases. Therefore,

storing character match signals on BRAMs instead of comparators (hence LUTs)

might be preferable, which also does not affect clock frequency badly.

Figure 3-4: 8-bit comparator for character ‘a’ (ascii 0110 0001)

Snort signature database contains Perl Compatible Regular Expressions (PCREs).

PCRE represents a group of characters as a character class and doing so any regular

expression can be written in a shorter and more easily readable form. The table below

shows some example PCRE character classes and corresponding standard regular

expression representations.

21

Table 3-1: Example Character Class Representations

PCRE Character

Class

Corresponding standard regular

expression representation

Comment

a a single character ‘a’

[ac] (a | c) a + c

[ab - e] (a | b | c | d | e) a + b + c + d + e

\d (0 | 1 | 2 | 3 | … | 9) one digit

\w (a | b | c | … | y | z) one word character

[0-9 a-f] (0 | 1 | … | 9 | a | b | … | f)
one digit or any character

‘a’ to ‘f’

For example, to implement ‘\d’ character class we need a 10 8-bit comparators (as in

Figure 3-4). Such an implementation requires more LUT resources and can reduce

clock frequency of the architecture. Yang et al. implemented these character classes

on block RAM by storing character match signals directly in BRAM. BRAM contents

corresponding to the circuit in Figure 3-3 is illustrated in Figure 3-5.

Figure 3-5: Character class representation in BRAM

22

In order to implement the circuit in Figure 3-3 we need 5 different character match

signals, i.e. there are 5 different character classes; a, b, c, # and [ac]. In the associated

BRAM, there are 5 columns, each corresponding to a unique regular expression and

256 rows for each ASCII characters, and outputs a 5-bit number to be used in the

circuit. For example, ASCII code of ‘b’ is 98, hence we store ‘1’ at the 98th row of the

column corresponding to character class ‘b’. In order to implement character class

‘[ac]’ we store ‘1’ at the 97th and 99th row of the column corresponding to character

class ‘[ac]’. If input of the BRAM is ‘a’ or ‘c’ then BRAM outputs ‘1’ from [ac]

column.

Encoding simple character classes may result in some redundancy in BRAM. In order

to minimize this, centralized character classification is proposed by Yang et. al., as

illustrated in Figure 3-6. With this architecture any block RAM output can be used by

different REMEs.

Figure 3-6: Centralized character classification for 6 different REMEs

Assume that REMEs have the following character classes;

 REME_1  a, b, c, \w

 REME_2  c, d, \w, [a-z]

 REME_3  a, e, [acx]

 REME_4  \w, [acx], [0-9]

 REME_5  a, b, c

 REME_6  [a-f 0-9]

23

We have 10 distinct classes, when these 6 REMEs are implemented. Virtex-7 FPGAs

have BRAM units having 64-bits data output, therefore we can implement a maximum

of 64 distinct character classes on each block RAM unit. Characteristics of the regular

expressions in the set to be implemented determines the maximum number of regular

expressions that can be implemented in a single BRAM block. If REME_1 and

REME_5 are implemented on the same BRAM, we need a total of 4 distinct character

classes. But if REME_1 and REME_4 are implemented together, in that case we need

a total of 6 distinct character classes. Consequently, we can claim that grouping of

regular expressions may reduce the number of BRAM units required while

implementing large sets.

3.2 MULTI-CHARACTER MATCHING OPTIMIZATION

In order to get higher throughput, Yang et al. [1] proposed also a multi-character input

matching architecture. Multi-character inputs are also known as strides in the

literature. In Figure 3-7, a 2-input (2-stride) character matching circuit is shown. In

comparison to single character matching, this approach requires nearly the same

amount of LUTs but half the amount of state registers and one extra BRAM in order

to obtain the character match signal for the second character. To create this 2-input

matching circuit, Yang et al. [1] used two separate 1-input matching circuits. For this,

the state registers of the lower circuit are removed first and the outputs of the lower

AND gates are forwarded to corresponding state registers. Then, state outputs are

connected to the inputs of the OR gates in the lower circuit. In the combined circuit,

the first (blue lines in Figure 3-7) and second (black lines in Figure 3-7) characters

are processed by the lower and upper of the 2-input matching circuit, respectively.

Our idea is simply to represent two consecutive characters in only one state so that

register usage will be reduced by 50% for a 2-input (2-stride) character matching

circuit.

24

Figure 3-7: Yang’s 2-stride character matching circuit

25

CHAPTER 4

2C-NFA ARCHITECTURE FOR FAST REGULAR EXPRESSION

MATCHING

In this chapter, a detailed explanation of our new non-deterministic finite automata

based architecture, where each transition represents 2-characters is given and its

advantages, disadvantages and performance analysis are provided. First, we discuss

the main idea and then present the design of the corresponding search mechanism

required to find all occurrences of strings matching the specified RE and four circuit

modules that are used to implement the NFA based circuit in question. We also present

algorithms that may be used to generate and implement these circuit modules on

modern day FPGAs without any structural fault.

4.1 Main Idea

State transitions on finite automata corresponds in general to actions triggered by a

single character. For example; let a regular expression be kl(mn|op)qr. This

expression can be matched by using the NFA in Figure 4-1 appropriately. The

automata goes from initial state to state-1 via single character k, from state-1 to state-

2 via l, and so on. In order to store this regular expression on FPGA, we need 8 state

registers except the initial one.

Our idea is to represent transitions as functions of two concatenated characters, that is

transition from state-i to state-j can be triggered, for example by ab or xy. In this

way, number of state registers that will be required to store a regular expression on

FPGA can be reduced by half. This approach will be referred as 2C-NFA in the rest of

the thesis. 2C-NFA representation for the example regular expression given above is

26

shown in Figure 4-2. In order to it, we now need only 4 state registers except the initial

one.

Figure 4-1: NFA used to match regexp kl(mn|op)qr

Figure 4-2: 2C-NFA used to match kl(mn|op)qr

4.2 Structural Construction of 2C-NFA

In this part of the thesis, we will develop the circuits and the search mechanism that

are necessary to construct our 2C-NFA approach on FPGA. 2C-NFA architecture is

implemented in four steps.

1. Given a regular expression, split it into sub-expressions using ‘(’, ‘)’ and ‘|’ as

delimiters.

2. Split each sub-expression into groups such that each group is composed of two

non-star characters and including their following ‘*’s, if exists; where the final

group can be composed of a single non-star character, if necessary.

3. Construct NFAs and their associated circuit corresponding to each group

(hereafter modules) and combine them to form the final circuit.

27

The above steps are explained in detail below:

Step 1:

Any regular expression can be represented as composed of simpler sub-expressions.

In this step, we identify ‘(’, ‘)’ and ‘|’ as delimiters and label the remaining parts of the

regular expression as sub-expressions.

Let RE be an example regular expression given as cde*f*(g*hij|kl*m*)nop.

RE can be re-written as the concatenation of the following sub-expressions having

delimiters also in place.

RE = RE1 (RE2 | RE3) RE4

where:

 RE1 = cde*f*

 RE2 = g*hij

 RE3 = kl*m*

 RE4 = nop

Figure 4-3 illustrates the NFA for matching RE as composed of smaller NFAs

corresponding to the sub-expressions formed. This is a hierarchical form in which the

unlabeled transitions correspond to epsilon transitions. Each connection between two

NFAs in Figure 4-3 represents a set of transitions from the final states of the previous

machine to the initial state of the current machine.

28

Figure 4-3: NFA for RE (hierarchical representation)

Step 2:

In this step, we find groups of character pairs in each sub-expression. For the given

example, the groups are obtained as follows:

 RE1 = cde*f* = G1G2 where G1 = cd and G2 = e*f*

 RE2 = g*hij = G3G4 where G3 = g*h and G4 = ij

 RE3 = kl*m* = G5G6 where G5 = kl* and G6 = m*

 RE4 = nop = G7G8 where G7 = no and G8 = p

Hence RE = G1G2 (G3G4 | G5G6) G7G8. Final group may be composed of a single

character.

Step 3:

We observe that there can be at most 6 different types of groups for any regular

expression if the above splitting mechanism (steps 1 and 2) is employed. General form

of expressions corresponding to these possible groups are shown below:

 ab  Type 1 module (T1) (example: cd, ij, no)

29

 a  Type 2 module (T2) (example: p)

 a*b  Type 3 module (T3) (example: g*h)

 a*  Type 4 module (T4) (example: m*)

 ab*  Type 5 module (T5) (example: kl*)

 a*b*  Type 6 module (T6) (example: e*f*)

The implementation details of the above module library (T1…T6) is presented in

section 4.2.2.

Assuming we have the necessary modules, we choose the associated Ti for each group

and combine them as illustrated in Figure 4-4.

Figure 4-4: Combination of modules to implement a given regexp

4.2.1 2-Character Shifted 3-Character Window Search

Using the NFA approach, any pattern can be matched anywhere in the input stream

provided that the input is presented to the engine one character at a time. However,

when matching with 2C-NFA architecture, a pattern can only be matched if the first

character of the string is in an odd-numbered position. Otherwise, 2C-NFA cannot

match, hence providing a false negative output.

Here are some sample input streams where klmnop can be found.

30

• klmnopgdkewf

• smklmnopgdkewf

• fngsythbklmnopgdkewf

It will be helpful to make the following definitions:

 Unshifted case: The case where the first character of the pattern to match occurs

 in an odd-numbered index in the input stream.

 Shifted case: The case where the first character of the pattern to match occurs

 in an even-numbered index in the input stream.

We would like to note that example input streams given above represent unshifted

cases. In order to match a regular expression anywhere in the input stream with our

2C-NFA approach, i.e. to eliminate false negative matches, it is necessary to present a

new search mechanism suitable to the new architecture.

In order to eliminate false negatives, we need three characters to check in parallel at

every clock cycle while searching the input stream. Simply stated, we need to use 3

characters as input and then shift these 3 characters window by 2 characters at every

iteration since two input characters are to be consumed by the engine at each clock.

The idea is illustrated below.

Figure 4-5: 2-character shifted 3-character windows

31

We are searching character pairs both on the left side of the window for an unshifted

case and on the right side of the window for a shifted case as illustrated in Figure 4-6.

Figure 4-6: Illustration of search window

In Figure 4-5, the input provided to the automata are ‘reg’, ‘gul’, ‘lar’, etc. in

subsequent cycles. Match results (whether there is a match or not) will be obtained

from BRAMs in our architecture, the same way as in Yang [1] but we need three

replicated BRAMs to obtain the required character match signals. For every character

match result, we need a corresponding 1-bit signal. The circuit for obtaining character

match signals is shown in Figure 4-7. BRAMs take ch1, ch2 and ch3 as an address

input, respectively and outputs 3 n-bit numbers, where each bit in these numbers

correspond to a different character class. BRAM outputs will be connected to the

corresponding character match inputs of the state logic.

Figure 4-7: Circuit for obtaining character match signals

32

4.2.2 Module Design

4.2.2.1. T1 module

T1 module implements ab type patterns. General NFA representation that can be used

to match it is shown in Figure 4-8.

Figure 4-8: General NFA representation of the T1 module

With our search mechanism, we search for string ab in a 3-character window. ab can

be found either at the right or left of the window. Hence, the NFA representation of T1

module that can be used to match ab using 2-Character Shifted 3-Character Window

Search is given in Table 4-1 and in Figure 4-9.

Table 4-1: State transition table of the T1 module

 NS

PS ab- -ab

Si Sj Sj

Sj - -

Figure 4-9: Final NFA representation of the T1 module

We need two AND gates and one OR gate to implement this module on FPGA. The

resulting circuitry is given in Figure 4-10.

33

Figure 4-10: T1 module

When implementing ab-, if successor module is available, we need a connection from

the successor module’s left character class. In that case ‘-’ stands for the character

stated above, otherwise it stands for don’t care (no connection from successor module

can be considered as a don’t care).

When implementing -ab, if predecessor module is available, we need a connection

from the predecessor module’s right character class. Similarly in this case also, ‘-’

stands for the character stated above, otherwise it stands for don’t care (no connection

from predecessor module can be considered as a don’t care).

Remark: The above explanations for ‘-’ is valid for all modules.

Validation: We can implement the circuit to match cdefgh as an example to show

that 2C-NFA architecture does not cause any false positives or false negatives. State

transition table for cdefgh and the corresponding NFA are shown in Table 4-2 and

Figure 4-11, respectively.

34

Table 4-2P: State transition table of cdefgh regexp

 NS

PS -cd cde def efg fgh gh-

S0 S1 S1 - - - -

S1 - - S2 S2 - -

S2 - - - - S3 S3

S3 - - - - - -

Figure 4-11: NFA representation of cdefgh regexp

We can implement this regular expression using 3 T1 modules on FPGA where the

resulting circuit is given in Figure 4-12.

Figure 4-12: Circuit for cdefgh regular expression

35

Transition from S0 to S1 can only occur if the input window contains -cd or cde.

Assume that the input window contains -cd for the ith cycle. There is a match with -

cd and S1 will be active. In (i+1)th cycle, input window is shifted by 2-characters, and

it exactly starts with character ‘d’. Transition from S1 to S2 occurs if the input window

contains def or efg. Since the first character of the window is d, then we are

searching for def in order to move to S2 state. If this happens, S2 will be active. In

the (i+2)th cycle, input window starts exactly with f. Transition from S2 to S3 occurs

if the input window contains fgh or gh-. Since the first character of the input window

is f, we are searching for fgh in order to move to S3 state. If this happens, S3 will be

active, i.e., cdefgh has been found on the input stream. Similarly, if input windows

contains cde , efg and gh- for successive cycles then the automata will match

cdefgh string. NFA in Figure 4-11 finds only cdefgh. This is illustrated in Figure

4-13.

Figure 4-13: Illustration of the validation step for T1 module

4.2.2.2. T2 module

T2 module implements a type regular expression, i.e., single character. NFA

representation of it is shown in Figure 4-14.

cycle

ith - c d c d e

↓ ↓

(i+1)th d e f e f g

↓ ↓

(i+2)th f g h g h -

string - c d e f g h c d e f g h -

36

Figure 4-14: General NFA representation of the T2 module

T2 module is similar to T1 module. While T1 module is searching for ab on the left

and the right of an input window, T2 module is searching for a on the left and the right

of an input window. We obtained final NFA representation of T2 module as in Figure

4-15 and state transition table of this module as in Table 4-3.

Table 4-3: State transition table of the T2 module

Figure 4-15: Final NFA representation of the T2 module

We need two AND gates and one OR gate to implement this module on FPGA. The

resulting circuitry is given in Figure 4-16.

 NS

PS a-- -a-

Si Sj Sj

Sj - -

37

Figure 4-16: T2 module’s circuitry

Validation: We will implement cdefg as an example, and using this example, we

will validate that 2C-NFA architecture does not cause any false positives or false

negatives. State transition table for cdefg is shown in Table 4-4 and its corresponding

NFA is shown in Figure 4-17.

Table 4-4: State transition table of cdefg regexp

 NS

PS -cd cde def efg fg- g--

S0 S1 S1 - - - -

S1 - - S2 S2 - -

S2 - - - - S3 S3

S3 - - - - - -

38

Figure 4-17: NFA representation of cdefg regexp

Above NFA finds cdefg string only, which is illustrated in Figure 4-18.

Figure 4-18: Illustration of the validation for T2 module

4.2.2.3. T3 module

T3 module implements a*b type regular expressions. General NFA representation of

it is shown in Figure 4-19.

Figure 4-19: General NFA representation of the T3 module

Using a*b we can derive the following 2-character length strings; aa, ab and b. T3

module searches for these strings and they can be found at the right of a window, or at

the left of a window. NFA representation of T3 module is shown in Figure 4-20.

cycle

ith - c d c d e

↓ ↓

(i+1)th d e f e f g

↓ ↓

(i+2)th f g - g - -

string - c d e f g - c d e f g - -

39

Figure 4-20: NFA representation of T3 module

 -b- transition also contains ab- transition therefore we can only implement -b-

transition string. To decrease number of inputs to LUTs, dashes on the right are not

implemented (not connected to previous modules). Because of the nature of our 3-

character window search mechanism transition from predecessor of the Si state (say

Sh) to Sj is possible. Assuming that x and y are the character classes of the Sh state (x

and y correspond to a and b, respectively), then there is a transition ‘Sh to Sj via xyb’.

Finally, we can form the following NFA representation for T3 module in Figure 4-21.

whose state transition table is given in Table 4-5 while the resulting circuit is given in

Figure 4-22.

Table 4-5: State transition table of T3 module

 NS

PS xyb -aa -ab -b-

Sh Sj - - -

Si - Si Sj Sj

Sj - - - -

Figure 4-21: Final NFA representation of T3 module

40

Figure 4-22: T3 module’s circuitry

We need four AND gates and one OR gate to implement this module on FPGA.

Validatiom: We will implement cde*fgh regular expression as an example, and

using this example, we will validate that 2C-NFA architecture does not cause any false

positives or false negatives. NFA representation of cde*fgh is shown in Figure 4-23.

Notice that cdfgh (no e), cdefgh (single e), cdeefgh (double e), cdeeefgh (triple e), etc.

matches with cde*fgh.

Figure 4-23: NFA representation of ‘cde*fgh’ regexp

41

Above NFA exactly finds those strings that only match with cde*fgh as illustrated

in Figure 4-24.

Figure 4-24: Illustration of the validation for T3 module

4.2.2.4. T4 module

T4 module implements a* type regular expression and is similar to T3 module. We

need to convert some transitions of T3 module to the following transitions to

implement T4 module.

 ‘Sh to Sj via xyb’ transition is converted into ‘Sh to Sj via xy-’

 ‘Si to Sj via -ab’ transition is converted into ‘Si to Sj via -a-’

 ‘Si to Sj via –b-’ transition is converted to ‘Si to Sj via ---’, this means that if

Si is an active state then Sj becomes an active state without any character

match.

NFA representation and state transition table of T4 module is given in Figure 4-25

and Table 4-6, respectively.

cycle

ith c d f - c d c d e - c d

↓ ↓ ↓ ↓

(i+1)th f g h - f g - f g - e f

↓ ↓ ↓

(i+2)th g h - g h - f g h

string c d f g h - c d f g h - c d e f g h - - c d e f g h

ith - c d - c d c d e

↓ ↓ ↓

(i+1)th - e e - e e - e e

↓ ↓ ↓

(i+2)th - f g - e f - e f

↓ ↓

(i+3)th f g h f g h

string - c d e e f g - c d e e e f g h c d e e e e f g h

42

Table 4-6: State transition table of T4 module

 NS

PS xy- -aa -a- ---

Sh Sj - - -

Si - Si Sj Sj

Sj - - - -

Figure 4-25: Final NFA representation of T4 module

T4 module’s circuitry is shown in Figure 4-26. We need four AND gates and one OR

gate to implement this module on FPGA.

Figure 4-26: T4 module’s circuitry

43

Validation: We will implement cde* as an example, and using this example, we will

validate that 2C-NFA architecture does not cause any false positives or false negatives.

NFA representation of cde* is shown in Figure 4-27. Notice that cd (no e), cde

(single e), cdee (double e), cdeee (triple e), etc. matches with cde* regular expression.

Figure 4-27: NFA representation of ‘cde*’ regexp

Above NFA exactly founds strings that only match with cde* which is illustrated in

the Figure 4-28.

Figure 4-28: Illustration of the validation for T4 module

4.2.2.5. T5 module

T5 module implements ab* regular expression. General NFA representation of it is

shown in Figure 4-29.

cycle

ith c d - - c d c d e - c d c d e c d e

↓ ↓ ↓ ↓ ↓

(i+1)th - - - - - - - e - - e - - e e

↓

(i+2)th - - -

string c d - - c d - - c d e - - - c d e - c d e e - c d e e e - -

44

Figure 4-29: General NFA representation of the T5 module

T5 module searches for ab, a and bb strings and they can be found at the right of a

windows, or at the left of a window. Therefore, we can represent this module on NFA

as shown in Figure 4-30.

Figure 4-30: NFA representation for T5 module

-a- transition also contains -ab transition so we can only implement -a- transition

string. To decrease number of inputs to LUTs, dashes on the left are not implemented

(not connected to next modules). Due to our 3-character window search mechanism

transition from predecessor of the Si state (say Sh) to Sj and transition from state Si to

successor of the state Sj (say Sk) are possible. Assuming that x and y are the character

classes of the Sh state and u and v are the character classes of the Sk state (x,u and y,v

correspond to a and b respectively), then there are transitions ‘Sh to Sj via xya’ and

‘Si to Sk via ‘auv’. Finally, we obtain the NFA representation and state transition table

of T5 module and they are given in Figure 4-31 and Table 4-7, respectively.

45

Figure 4-31: Final NFA representation for T5 module

Table 4-7: State transition table of T5 module

 NS

PS xya ab- -a- bb- auv

Sh Sj - - - -

Si - Sj Sj - Sk

Sj - - - Sj -

Sk - - - - -

We need five AND gates and one OR gate to implement this module on FPGA as in

Hata! Başvuru kaynağı bulunamadı..

Figure 4-32: T5 module’s circuitry

46

Validation: We will implement cdef*gh as an example, and using this example, we

will validate that 2C-NFA architecture does not cause any false positives or false

negatives. NFA representation of cdef*gh is shown in Figure 4-33. Notice that

cdegh (no f), cdefgh (single f), cdeffgh (double f), cdefffgh (triple f), etc. matches with

cdef*gh regular expression.

Figure 4-33: NFA representation of ‘cdef*gh’ regexp

Above NFA exactly finds strings that only match with cdef*gh. This is illustrated

in Figure 4-34.

Figure 4-34: Illustration of the validation for T5 module

cycle

ith - c d c d e - c d c d e

↓ ↓ ↓ ↓

(i+1)th d e - e g h d e - e f -

↓ ↓ ↓

(i+2)th g h - f g h g h -

string - c d e g h - c d e g h - c d e f g h c d e f g h -

ith c d e - c d c d e

↓ ↓ ↓

(i+1)th e f - d e - e f -

↓ ↓ ↓

(i+2)th f g h f f - f f -

↓ ↓

(i+3)th g h - g h -

string c d e f f g h - c d e f f g h - c d e f f f g h -

47

4.2.2.6. T6 module

T6 module implements a*b* type regular expression. General NFA representation of

it is shown in Figure 4-35. This module can be considered as a combination of T3 and

T5 modules. So we can create the state transition table using state transition tables of

them. State transition table of T6 module is given in Table 4-8.

Figure 4-35: General NFA representation of the T4 module

Table 4-8: State transition table of T4 module

 NS

PS xyb xya -aa -ab -b- ab- -a- bb- yuv auv

Sh Sj Sj - - - - - - - -

Si - - Si Sj Sj Sj Sj - Sk Sk

Sj - - - - - - - Sj - -

Sk - - - - - - - - - -

We can combine xyb and xya transition strings as an xy- string and yuv and auv

transition strings as an -uv string. And also we can combine ‘-b-‘ and -a- as ‘-

(a/b)-‘ in order to obtain more compact circuit. NFA representation and resulting

circuit for the T4 module is given in Figure 4-36 and Figure 4-37 below.

48

Figure 4-36: NFA representation for T4 module

Figure 4-37: T4 module’s circuitry

4.3 Module Implementations

We presented the design of the circuitry for all modules in the previous section. While

combining these modules and getting the match result from the accepting state/states,

we consider module positions. Consider “S0 S1 (S2 S3 | S4 S5) S6 S7 S8” as the

regular expression under question.

49

We can list possible positions as follows:

 After initial state (example: S0)

 In the middle (example: S1 to S7)

 In the last state (example: S8)

Other possible cases with respect to OR grouping are given below:

 Case1: Before OR group, i.e. before “(“ (example: S1)

 Case2: Inside OR group, i.e. after “(“ or after “|” (example: S2 and S4)

 Case3: Inside OR group, i.e. before “|” or before “)” (example: S3 and S5)

 Case4: After OR group, i.e. after “)” (example: S6)

Additionally, some connections may be discarded due to their positions. In order to

explain our algorithms easily, we need to define our notations.

 2ps: two previous state/s

 ps: previous state/s

 cs: current state

 ns: next state

 ls: last state/s

 pright(x): x
th BRAM output for the right character/s of a previous state/s (previous

state of S1 is S0, previous states of S6 are S3 and S5)

 pleft(x): x
th BRAM output for the left character/s of a previous state/s

 cright(x): x
th BRAM output for the right character of a current state

 cleft(x): x
th BRAM output for the left character of a current state

 nleft(x): x
th BRAM output for the left character of a next state

 gatey: the yth gate of the module

In following sections, pseudocodes of the algorithms that can be used to form the

modules are presented and explained.

50

4.3.1 Implementation of T1 module

T1 module has one OR gate and two AND gates. Whether the state register of this

module (cs) is active or not is determined via the following equations.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2

𝑔𝑎𝑡𝑒1 = 𝑝𝑠 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(1) 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(2) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(3)

𝑔𝑎𝑡𝑒2 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(2) 𝐴𝑁𝐷 𝑛𝑙𝑒𝑓𝑡(3)

Equations for gate1 and gate2 change for different case and positions. These changes

are explained in Algorithm-1. Match value is determined in lines 34-38. Assuming that

we have “S0 S1 (S2 S3 | S4 S5)” regular expression (case 3) match value will be

equal to “S3 OR S5”. Or assuming that we have “S0 S1 (S2 S3 | S4 S5)S6 S7 S8”

regular expression (case 1 or case 4) match value will be equal to “S8”.

Algorithm-1: T1 Module Implementation Algorithm

1 determine state register values

2 cs = gate1 OR gate2

3 if position of the state = next to initial state then

5 if case1 or case3 then

6 gate1 = ps & cleft(2) & cright(3)

7 gate2 = ps & cleft(1) & cright(2)

8 else

9 gate1 = ps & cleft(2) & cright(3)

10 gate2 = ps & cleft(1) & cright(2) & nleft(3)

11 else if position of the state = in the middle then

12 if case1 or case3 then

13 if ps is even-sized then

14 gate1 = ps & pright(1) & cleft(2) & cright(3)

15 gate2 = ps & cleft(1) & cright(2)

16 else

17 gate1 = ps & pleft(1) & cleft(2) & cright(3)

18 gate2 = ps & cleft(1) & cright(2)

19 else

51

20 if ps is even-sized then

21 gate1 = ps & pright(1) & cleft(2) & cright(3)

22 gate2 = ps & cleft(1) & cright(2) & nleft(3)

23 else

24 gate1 = ps & pleft(1) & cleft(2) & cright(3)

25 gate2 = ps & cleft(1) & cright(2) & nleft(3)

26 else (position of the state = in the last state)

27 if ps is even-sized then

28 gate1 = ps & pright(1) & cleft(2) & cright(3)

29 gate2 = ps & cleft(1) & cright(2)

30 else

31 gate1 = ps & pleft(1) & cleft(2) & cright(3)

32 gate2 = ps & cleft(1) & cright(2)

33

34 determine match value

35 if case3 then

36 match = ls x OR ls y…

37 if case1 or case4 then

38 match = ls

4.3.2 Implementation of T2 module

T2 module has one OR gate and two AND gates, whether state register of this module

(cs) is active or not is determined via following equations.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2

𝑔𝑎𝑡𝑒1 = 𝑝𝑠 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(1) 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(2)

𝑔𝑎𝑡𝑒2 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(1)

Equations for gate1 and gate2 change for different case and positions. These changes

are explained in Algorithm-2.

52

Algorithm-2: T2 Module Implementation Algorithm

1 determine state register values

2 cs = gate1 OR gate2

3 if position of the state = next to initial state then

3 gate1 = ps & cleft(2)

4 gate2 = ps & cleft(1)

5 else if position of the state = in the middle then

6 if ps is even-sized then

7 gate1 = ps & pright(1) & cleft(2)

8 gate2 = ps & cleft(1)

9 else

10 gate1 = ps & pleft(1) & cleft(2)

11 gate2 = ps & cleft(1)

12 else (position of the state = in the last state)

13 if ps is even-sized then

14 gate1 = ps & pright(1) & cleft(2)

15 gate2 = ps & cleft(1)

16 else

17 gate1 = ps & pleft(1) & cleft(2)

18 gate2 = ps & cleft(1)

19

20 determine match value

21 if case3 then

22 match = ls x OR ls y…

23 if case1 or case4 then

24 match = ls

4.3.3 Implementation of T3 module

T3 module has one OR gate and four AND gates. Whether state register of T3 module

(cs) is active or not is determined via following equations. gate4 is not consider in this

section, because output of it goes to previous state. Implementation of it will be

explained in section 4.3.7.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2 𝑂𝑅 𝑔𝑎𝑡𝑒3

53

𝑔𝑎𝑡𝑒1 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(2) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(3)

𝑔𝑎𝑡𝑒2 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(2) 𝐴𝑁𝐷 𝑛𝑙𝑒𝑓𝑡(3)

𝑔𝑎𝑡𝑒3 = 2𝑝𝑠 𝐴𝑁𝐷 𝑝𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(2) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(3)

Equations for gate1, gate2 and gate3 change for different case and positions. These

changes are explained in Algorithm-3.

Algorithm-3: T3 Module Implementation Algorithm

1 determine state register values

2 cs = gate1 OR gate2 OR gate3

3 if position of the state = next to initial state then

4 if case1 or case3 then

5 gate1 = ps & cleft(2) & cright(3)

6 gate2 = ps & cright(2)

7 else

8 gate1 = ps & cleft(2) & cright(3)

9 gate2 = ps & cright(2) & nleft(3)

10 else if position of the state = in the middle then

11 if case1 or case3 then

12 if ps is even-sized then

13 gate1 = ps & cleft(2) & cright(3)

14 gate2 = ps & cright(2)

15 gate3 = 2ps & pleft(1) & pright(2) & cright(3)

16 else

17 gate1 = ps & cleft(2) & cright(3)

18 gate2 = ps & cright(2)

19 gate3 = 2ps & pleft(1) & cright(3)

20 else

21 if ps is even-sized then

22 gate1 = ps & cleft(2) & cright(3)

23 gate2 = ps & cright(2) & nleft(3)

24 gate3 = 2ps & pleft(1) & pright(2) & cright(3)

25 else

26 gate1 = ps & cleft(2) & cright(3)

27 gate2 = ps & cright(2) & nleft(3)

54

28 gate3 = 2ps & pleft(1) & cright(3)

29 else (position of the state = in the last state)

30 if ps is even-sized then

31 gate1 = ps & cleft(2) & cright(3)

32 gate2 = ps & cright(2)

33 gate3 = 2ps & pleft(1) & pright(2) & cright(3)

34 else

35 gate1 = ps & cleft(2) & cright(3)

36 gate2 = ps & cright(2)

37 gate3 = 2ps & pleft(1) & cright(3)

38

39 determine match value

40 if case3 then

41 match = ls x OR ls y…

42 if case1 or case4 then

43 match = ls;

4.3.4 Implementation of T4 module

T4 module has one OR gate and four AND gates. Whether state register of T4 module

(cs) is active or not is determined via following equations. gate4 is not consider in this

section, because output of it goes to previous state. Implementation of it will be

explained in section 4.3.7.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2 𝑂𝑅 𝑔𝑎𝑡𝑒3

𝑔𝑎𝑡𝑒1 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(2)

𝑔𝑎𝑡𝑒2 = 𝑝𝑠

𝑔𝑎𝑡𝑒3 = 2𝑝𝑠 𝐴𝑁𝐷 𝑝𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(2)

Equations for gate1, gate2 and gate3 change for different case and positions. These

changes are explained in Algorithm-4.

55

Algorithm-4: T4 Module Implementation Algorithm

1 determine state register values

2 cs = gate1 OR gate2 OR gate3

3 if position of the state = next to initial state then

4 gate1 = ps & cleft(2)

5 gate2 = ps

6 else if position of the state = in the middle then

7 if ps is even-sized then

8 gate1 = ps & cleft(2)

9 gate2 = ps

10 gate3 = 2ps & pleft(1) & pright(2)

11 else

12 gate1 = ps & cleft(2)

13 gate2 = ps

14 gate3 = 2ps & pleft(1)

15 else (position of the state = in the last state)

16 if ps is even-sized then

17 gate1 = ps & cleft(2)

18 gate2 = ps

19 gate3 = 2ps & pleft(1) & pright(2)

20 else

21 gate1 = ps & cleft(2)

22 gate2 = ps

23 gate3 = 2ps & pleft(1)

24

25 determine match value

26 if case3 then

27 match = ls x OR ls y…

28 if case1 or case4 then

29 match = ls;

4.3.5 Implementation of T5 module

T5 module has one OR gate and four AND gates. Whether state register of T5 module

(cs) is active or not is determined via following equations. gate4 is not consider in this

56

section, because output of it goes to next state. Implementation of it will be explained

in section 4.3.7.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2 𝑂𝑅 𝑔𝑎𝑡𝑒3

𝑔𝑎𝑡𝑒1 = 𝑝𝑠 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(1) 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(2)

𝑔𝑎𝑡𝑒2 = 𝑝𝑠 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(2)

𝑔𝑎𝑡𝑒3 = 𝑐𝑠 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(1) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(2)

𝑔𝑎𝑡𝑒4 = 2𝑝𝑠 𝐴𝑁𝐷 𝑝𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(2) 𝐴𝑁𝐷 𝑐𝑙𝑒𝑓𝑡(3)

Equations for gate1, gate2 and gate3 change for different case and positions. These

changes are explained in Algorithm-5.

Algorithm-5: T5 Module Implementation Algorithm

1 determine state register values

2 cs = gate1 OR gate2 OR gate3

3 if position of the state = next to initial state then

4 gate1 = ps & cleft(2)

5 gate2 = ps & cleft(1) & cright(2)

6 gate3 = cs & cright(1) & cright(2)

7 else if position of the state = in the middle then

8 if ps is even-sized then

9 gate1 = ps & pright(1) & cleft(2)

10 gate2 = ps & cleft(1) & cright(2)

11 gate3 = cs & cright(1) & cright(2)

 gate4 = 2ps & pleft(1) & pright(2) & cleft(3)

12 else

13 gate1 = ps & pleft(1) & cleft(2)

14 gate2 = ps & cleft(1) & cright(2)

15 gate3 = cs & cright(1) & cright(2)

16 gate4 = 2ps & pleft(1) & cleft(3)

17 else (position of the state = in the last state)

18 if ps is even-sized then

19 gate1 = ps & pright(1) & cleft(2)

57

20 gate2 = ps & cleft(1) & cright(2)

21 gate3 = cs & cright(1) & cright(2)

22 gate4 = 2ps & pleft(1) & pright(2) & cleft(3)

23 else

24 gate1 = ps & pleft(1) & cleft(2)

25 gate2 = ps & cleft(1) & cright(2)

26 gate3 = cs & cright(1) & cright(2)

27 gate4 = 2ps & pleft(1) & cleft(3)

28

29 determine match value

30 if case3 then

31 match = ls x OR ls y…

32 if case1 or case4 then

33 match = ls;

4.3.6 Implementation of T6 module

T6 module has one OR gate and five AND gates. Whether state register of T6 module

(cs) is active or not is determined via following equations. gate4 and gate5 is not

consider in this section, because output of them are go to previous state and next state,

respectively. Implementation of them will be explained in section 4.3.7.

𝑐𝑠 = 𝑔𝑎𝑡𝑒1 𝑂𝑅 𝑔𝑎𝑡𝑒2 𝑂𝑅 𝑔𝑎𝑡𝑒3

𝑔𝑎𝑡𝑒1 = 𝑐𝑠 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(1) 𝐴𝑁𝐷 𝑐𝑟𝑖𝑔ℎ𝑡(2)

𝑔𝑎𝑡𝑒2 = 2𝑝𝑠 𝐴𝑁𝐷 𝑝𝑙𝑒𝑓𝑡(1) 𝐴𝑁𝐷 𝑝𝑟𝑖𝑔ℎ𝑡(2)

𝑔𝑎𝑡𝑒3 = 𝑝𝑠 𝐴𝑁𝐷 (𝑐𝑙𝑒𝑓𝑡(2) 𝑂𝑅 𝑐𝑟𝑖𝑔ℎ𝑡(2))

Equations for gate1, gate2 and gate3 change for different case and positions. These

changes are explained in Algorithm-6.

Algorithm-6: T6 Module Implementation Algorithm

58

1 determine state register values

2 cs = gate1 OR gate2 OR gate3

3 if position of the state = next to initial state then

4 gate1 = cs & cright(1) & cright(2)

5 gate3 = ps (cleft(2) | cright(2))

6 else if position of the state = in the middle then

7 if ps is even-sized then

8 gate1 = cs & cright(1) & cright(2)

9 gate2 = 2ps & pleft(1) & pright(2)

10 gate3 = ps (cleft(2) | cright(2))

11 else

12 gate1 = cs & cright(1) & cright(2)

13 gate2 = 2ps & pleft(1)

14 gate3 = ps (cleft(2) | cright(2))

15 else (position of the state = in the last state)

16 if ps is even-sized then

17 gate1 = cs & cright(1) & cright(2)

18 gate2 = 2ps & pleft(1) & pright(2)

19 gate3 = ps (cleft(2) | cright(2))

20 else

21 gate1 = cs & cright(1) & cright(2)

22 gate2 = 2ps & pleft(1)

23 gate3 = ps (cleft(2) | cright(2))

24

25 determine match value

26 if case3 then

27 match = ls x OR ls y…

28 if case1 or case4 then

29 match = ls;

4.3.7 Implementation of transitions connected to another modules’ inputs

In this part we will explain how we implemented transitions (gate outputs) that are

connected to another modules’ inputs. In algorithm-7 we explain all such transitions.

T3 and T4 modules have a transition to previous module. Hence, while implementing

59

the previous module we should check whether next module is T3 or T4 module or not.

If next module is one of them, we should connect this transition to previous module’s

OR gate of the state register. T5 module creates a transition from previous module to

next module. Therefore, while implementing next module we should check whether

previous module is T5 or not. If this happens, we should connect this transition to next

module’s OR gate of the state register. T6 module has transition to previous module

and also creates a transition from previous module to next module. Therefore, while

implementing previous module we should check whether next module is T6 module

or not and while implementing next module we should check whether previous module

is T6 module or not. If next module is T6 module we should connect this transition to

previous module’s OR gate of the state register. And also if previous module is T6

module we should connect this transition to next module’s OR gate of the state register.

Algorithm-7: Algorithm to implement transitions connected to another modules’

inputs

1 define previous_module, current_module, next module

2 define connection#1 (connection to previous module)

3 define connection#2 (connection from previous module to next module)

4

5 if successor module is type 3 or type 4 module then

6 connection#1 = cs & nleft(2) & nleft(3)

7

8 if successor module is type 6 module then

9 connection#1 = cs & nleft(2) & nleft(3)

10

11 if predecessor module is type 5 module then

12 connection#2 = 2ps & pleft(1) & cleft(2) & cright(3)

13

14 if predecessor module is type 6 module then

15 connection#2 = 2ps & cleft(2) & cright(3)

60

61

CHAPTER 5

PERFORMANCE EVALUATION

In this chapter we evaluate the performance of the suggested architecture. We first

provide information about the evaluation tools used in this work and explain signature

data-sets that are employed in our evaluation. We then define a set of performance

metrics and study the proposed architecture. We finally compare our results with

Yang’s work [1].

5.1 Evaluation Tools

We evaluate 2C-NFA using both Vivado and ISE Design Suites. Vivado and ISE are

software used for analysis and synthesis of HDL designs. Both of them are produced

by Xilinx. Vivado supersedes ISE because it has additional features for high-level

synthesis. With these additional features Vivado creates more compact circuits then

ISE for the same VHDL, Verilog or System Verilog codes.

5.2 Data Set

We analyze 2C-NFA using a real signature data-set and also performing worst-case

computations. For the first part, we use part of the signature database of Snort Intrusion

Detection System. For the second part, to perform worst-case computations, we

generate a set of regular expressions whose length is Gaussian. In Section 5.2.1, we

provide information about some of the features of the data-sets obtained from Snort’s

database and in Section 5.2.2 we explain how we generate the sample sets used in

worst-case computations.

62

5.2.1 Real Data Set

We extract regular expressions from pcre (Perl compatible regular expression) field in

Snort’s signature database. There are more than ten thousand regular expressions in

Snort. The aim of this work, is not to implement all regular expressions of Snort

signatures but to propose a general architecture to implement any regular expression.

Hence all regular expressions in Snort are not used but a sample set is formed and used

in the tests. While selecting regular expressions from Snort to form the sample data

set, we follow the following criteria:

1. Identical regular expressions stored in different rules are handled as a single

one. Using the same regular expressions more than once inflates the number of

regular expression matching engines.

2. We avoid choosing regular expressions that are too short or containing

repetition of one or more characters. Similar to the previous criteria this also

inflates the number of regular expression matching engines.

3. We avoid choosing regular expressions containing a large number of

repetitions of a character or character groups. This inflates the number of states

when implementing regular expression.

We used 1052 regular expressions from Snort database from 27 different categories.

State-of-the-art FPGAs has BRAM units that has 64 bit output. Since character

classifications can fit in only one BRAM unit, we partition 1052 regular expressions

into 11 different sets and we compose 3 different sets of regular expressions using

these sets. 1052-reme (regular expression matching engine) set contains all regular

expressions. 719-reme set contains 719 regular expressions selected randomly and

569-reme set contains 569 regular expressions selected randomly. The aim in

composing 3 different sets is to see how scalable 2C-NFA is with respect to the number

of regular expressions. Number of states to implement these sets and state per regex

values for these sets are given in Table 5-1.

63

Table 5-1: Data-sets generated from Snort IDS

 # of regexes # of states # of states/regexes

1052-reme 1052 10530 10.1

719-reme 719 8141 11.3

569-reme 569 6222 10,9

5.2.2 Gaussian Distributed Data Set

In order to perform a worst-case performance analysis of the proposed architecture we

generate variable length regular expressions using Gaussian distribution as follows:

 First, we randomly generate fixed size (100) sets of regular expressions using

expected mean values of 10, 30, 50 and 100 and variance of 2.

 Second, we calculate their actual averages.

The sets formed are listed in Table 5-2.

Table 5-2: Random data-sets generated via Gaussian distribution

 Average length of the

regular expression

Random Set-1 9.51

Random Set-2 29.54

Random Set-3 49.48

Random Set-4 99.50

5.3 Performance Metrics

For evaluating 2C-NFA, we use following performance metrics:

 State count: Total number of states to implement regular expression.

64

 State fan-in: maximum number of the incoming transitions of any state.

 State fan-out: maximum number of the outgoing transitions of any state.

 LUT usage: Total number of LUTs used to implement regular expression

matching engine.

 Slice usage: Total number of slices used to implement regular expression

matching engine.

 BRAM usage: Total number of BRAM units used to implement regular

expression matching engine.

 Throughput: Number of bits processed by the regular expression matching

engine in one second.

 Clock frequency: Maximum clock frequency that regular expression matching

engine runs properly.

When implementing regular expressions on hardware they are not created equal [1].

Therefore, state count, state fan-in and state fan-out values are different for all regular

expressions. State fan-in and state fan-out values affect clock frequency of the regular

expression matching engine. The slowest engine determines the overall clock

frequency. Maximum fan-in value for 1052-reme, 719-reme and 569-reme is 12 for

both 2C-NFA and Yang’s architecture [1]. Maximum fan-out values are about 7 also

for both approaches. In that case, fan-in value determines the overall clock frequency.

All of the three sets reach up to 260 MHz clock frequency.

LUT usage, slice usage, BRAM usage, throughput and clock frequency 2C-NFA are

given in Section 5.5.

5.4 Worst-case Memory Performance

In this part, we analyze worst-case LUT and best-case register usage for both

approaches namely 2C-NFA and Yang’s architecture. We need to make this analysis

for two reasons:

65

i. HDL synthesis tools perform many optimizations to reduce the number of

LUTs and registers while implementing the regular expression matching

engine. In Yang’s work, LUT per state value differs from 1.24 to 2.25 for

different data-sets, but in our implementation LUT per state value turned

out to be around 0.5.

ii. State-of-the-art FPGAs has 6-input LUTs. Our 2C-NFA implementation

needs 1 LUT for the first state of the regular expression matching engine

since fan-in value is 5 or 6. If fan-in value were 7 or 8, we would need 2

LUTs obviously. If two successive characters are the same, fan-in value

decreases to 6, therefore we need only 1 LUT for such states.

For reasons stated above, we needed a worst-case memory performance evaluation

using random-sets generated by using Gaussian distribution. While making this

evaluation we did not take into consideration union and Kleene star operators because

they affect Yang’s architecture more in comparison to 2C-NFA. For a fair comparison

we assume that neither union nor Kleene star operators occur in the regular

expressions.

For Yang’s architecture, in order to implement a regular expression which contains

only concatenation, we need only 1 LUT and only 1 register for any state. On the other

hand, in order to implement a regular expression which contains only concatenation in

2C-NFA we need 1 LUT and 1 register for the first state and 2 LUTs and 1 register for

the other states. Using Table 5-2, we present the number of LUTs and registers needed

to implement 100 regular expressions in Table 5-3. The same information exists also

in Figure 5-1.

Table 5-3: Worst-case memory performance

 Average length

regexp length

LUT usage

(2C-NFA)

Register usage

(2C-NFA)

LUT usage

(Yang)

Register usage

(Yang)

Random Set1 9.5 851.6 500.8 951.6 951.6

Random Set2 29.5 2854.1 1501.6 2954.1 2954.1

Random Set3 49.4 4848.5 2499.7 4948.5 4948.5

66

Random Set4 99.5 9850.9 5000.7 9950.9 9950.9

2C-NFA needs one LUT less for each regular expression in comparison to Yang.

Hence we might say that 2C-NFA does not require more LUTs but reduces register

usage to nearly half.

Figure 5-1: Worst-case memory performance

5.5 Implementation Results

In order to measure the other performance metrics for three sets we implemented the

1052-reme, 719-reme and 569-reme on a Xilinx Zynq-7000 series xc7z030 FPGA

device. This device has 78600 6-input LUTs, 157200 registers, 19650 slices and 265

BRAM units.

While obtaining results we observed that following optimizations are done by Vivado

design suite. These affect the results so we need to talk about them.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Random Set1 Random Set2 Random Set3 Random Set4

LUT usage of 2C-NFA Register usage of 2C-NFA

LUT usage of our Yang's arch. Register usage of Yang's arch.

67

 If a state has a value of ‘1’ all the time, then any such register/flip-flop is

implemented for that state. For example, initial state is always zero in 2C-NFA,

hence no register is implemented for keeping this initial state.

 If the successor state of the initial has the following equation, then no LUT is

implemented for state Sj (Sinitial is always ‘0’.). Only one register is

implemented for Sj, and this register stores the value ‘m’.

 Sj = Sinitial & m

 While implementing two regular expressions which has a common prefix parts,

these parts are implemented only once by Vivado.

 RE_1: abcd

 RE_2: abce

 S1 = S0 & a; S2 = S1 & b; S3 = S2 & c; S4 = S3 & d;

 S5 = S0 & a; S6 = S5 & b; S7 = S6 & c; S8 = S7 & e;

 S0 is always ‘1’ therefore S1 = S5 = a.

 S2 = S6 = a & b;

 S3 = S7 = a & b & c;

We can say that these regular expressions are implemented as abc(d|e) by

Vivado.

 And also when time constraints are written in the code, this forces Vivado to

use less resources and to make more efficient placement & routing. Finally, we

can obtain higher clock rates and more compact circuits.

First, we analyzed how 2C-NFA achieves higher throughput by using increasingly

more resources. For this, we replicated 1052-reme set 1 to 7 times, 719-reme set 1 to

10 times and 569-reme set 1 to 14 times, i.e. we implemented 7 parallel circuits for

1052-reme set, 10 parallel circuits for 719-reme set and 14 parallel circuits for 569-

reme set, respectively). Results are given in a Table 5-4, Table 5-5 and Table 5-6

respectively.

68

Table 5-4: Implementation results for 1052-reme (2C-NFA)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 8916 9120 2618 33 260 4,2

x2 17820 18214 5183 66 260 8,3

x3 26733 27361 7645 99 260 12,5

x4 33530 36481 10106 132 255 16,3

x5 44380 45601 12593 165 255 20,4

x6 53311 54721 15125 198 250 24,0

x7 62166 63841 17643 231 250 28,0

Table 5-5: Implementation results for 719-reme (2C-NFA)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 6603 6717 1939 27 260 4,2

x2 13259 13433 3885 54 260 8,3

x3 19785 20149 5705 81 260 12,5

x4 26434 26865 7546 108 255 16,3

x5 33033 33581 9480 135 255 20,4

x6 39582 40297 11254 162 255 24,5

x7 46291 47013 13193 189 255 28,6

x8 52950 53729 15008 216 250 32,0

x9 59445 60445 16770 243 250 36,0

x10 69446 67289 18689 260 250 40,0

69

Table 5-6: Implementation results for 569-reme (2C-NFA)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 4899 5104 1430 18 260 4,2

x2 9824 10207 2826 36 260 8,3

x3 14702 15310 4188 54 255 12,2

x4 19720 20413 5645 72 255 16,3

x5 24574 25516 7003 90 250 20,0

x6 29521 30619 8413 108 245 23,5

x7 34483 35722 9829 126 245 27,4

x8 39382 40825 11192 144 248 31,7

x9 44237 45928 12484 162 248 35,7

x10 49300 51031 13914 180 245 39,2

x11 54185 56134 15212 198 243 42,8

x12 59128 61237 16614 216 240 46,1

x13 63378 66340 17253 234 230 47,8

x14 68245 71443 18582 252 230 51,5

We observe that 1052-remes run with about 260 MHz clock and achieves 4,16 Gbps

throughput (Figure 5-2). While achieving this throughput, 11,3% of total LUTs, 5,8%

of total registers, 13,3% of total slices and 12,5% of total BRAM units are used.

Throughput is calculated as follows:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = #𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠/𝑐𝑦𝑐𝑙𝑒 ∗ 8 𝑏𝑖𝑡𝑠/𝑐ℎ𝑎𝑟 ∗ 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ #𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 2 ∗ 8 𝑏𝑖𝑡𝑠 ∗ 0,260 𝐺𝐻𝑧 ∗ 1 = 4,16 𝐺𝑏𝑝𝑠

When this circuit is replicated 7 times, clock frequency of the circuit decreases to 250

MHz and we obtain 28 Gbps throughput. In that case, resulting circuit uses 79% of

total LUTs, 40,6% of total registers, 89,8% of total slices and 87,1% of total BRAM

units. We cannot replicate it one more time because FPGAs slice resources are

exhausted and are not sufficient for further parallelization.

70

Figure 5-2: Throughput scaling of 1052-reme (2C-NFA)

We also analyze the throughput of Yang’s architecture using the same 3 regular

expression sets for comparison purpose. We replicate 1052-reme set for 1 to 6 times,

719-reme set for 1 to 7 times and 569-reme set for 1 to 11 times, i.e. we implement

parallel circuits up to 6 times for 1052-reme, up to 7 times for 719-reme and up to 11

times for 569-reme sets, respectively). Results are presented in Table 5-7, Table 5-8

and Table 5-9, respectively.

Table 5-7: Implementation results for 1052-reme (Yang’s arch.)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 9098 13018 3343 22 260 4,2

x2 18193 26037 6679 44 260 8,3

x3 27297 39056 10036 66 255 12,2

x4 36400 52075 13372 88 252 16,1

x5 45502 65086 16719 110 252 20,1

x6 54595 78103 18948 132 250 24,0

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

th
ro

u
gh

p
u

t

%
 u

sa
ge

number of parallel circuits

% LUT % Register % Slice % BRAM Throughput Gbps

71

Table 5-8: Implementation results for 719-reme (Yang’s arch.)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 7237 10069 2751 18 260 4,2

x2 14483 20137 5280 36 260 8,3

x3 21764 30205 8004 54 257 12,3

x4 29956 40275 10673 72 257 16,4

x5 36198 50343 13342 90 253 20,2

x6 43434 60413 15820 108 250 24,0

x7 50756 70477 18060 126 250 28,0

Table 5-9: Implementation results for 569-reme (Yang’s arch.)

Replication #LUTs #Registers #Slices
#BRAM

units

Clock frequency

(MHz)

Throughput

(Gbps)

x1 5395 7483 1839 12 260 4,2

x2 10823 14965 3961 24 260 8,3

x3 16228 22447 5820 36 256 12,3

x4 21624 29929 7776 48 256 16,4

x5 27043 37411 9967 60 256 20,5

x6 32336 44893 12026 72 250 24,0

x7 37709 52375 14295 84 250 28,0

x8 43261 59857 15447 96 250 32,0

x9 48684 67339 17424 108 250 36,0

x10 54061 74821 18608 120 250 40,0

x11 55122 82300 19052 132 243 42,8

When we implemented 1052-reme with Yang’s approach, we observe that the resulting

circuit runs with about 260 MHz clock, and achieves 4,16 Gbps throughput (Figure

72

5-3) 11,6% of total LUTs, 8,3% of total registers, 17,0% of total slices and 8,3% of

total BRAM units are consumed to implement 1052-reme circuit. We can implement

6 parallel 1052-reme circuits on FPGA device, then clock frequency of the circuit

decreases to 250 MHz and we obtain 24 Gbps throughput. In that case, it uses 69,4%

of total LUTs, 49,7% of total registers, 96,4% of total slices and 49,8% of total BRAM

units. This is the end of parallelization for this device similarly.

Figure 5-3: Throughput scaling of 1052-reme set (Yang’s arch.)

Figure 5-4: Achievable throughput for three sets

1 2 3 4 5 6

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

90

100

number of parallel circuits

th
ro

u
gh

p
u

t

%
 u

sa
ge

% LUT % Register % Slice % BRAM Throughput Gbps

-5

5

15

25

35

45

55

1052-reme 719-reme 569-reme

th
ro

u
gh

p
u

t

Throughput of 2C-NFA Throughput of Yang's arch.

73

Achievable throughputs for both 2C-NFA and Yang’s architecture are shown in

Figure 5-4. 2C-NFA have better throughput for all sets.

Average length of the regular expressions for all sets are shown in the Table 5-10

below. 569-REME and 719-REME sets are subset of the 1052-REME. We can say that

1052-REME set has shorter regular expressions than the others. If any set contains

longer regular expressions this increases the memory cost of the implementation, and

we can implement less number of parallel circuits therefore achievable throughput

value decreases. And if any set contains shorter regexes this reduces the memory cost,

thus we can obtain higher throughput with more parallelization.

Table 5-10: Average length of the regular expressions

 length (character)

569-REME 19,2

719-REME 20,0

1052-REME 17,1

In this paragraph we will discuss whether all regular expressions of the Snort database

can be implemented on a single FPGA chip or not, and if this is possible what will be

the throughput of such an implementation. When we consider the xc7z030 FPGA

device which has 265 block RAM units each has a 64-bits data output, 265x64 = 16960

distinct character classes can be implemented on this device. In terms of BRAM

capacity, we can say that all Snort rules can be implemented on a single FPGA device

such as an xc7z030. Snort has about 14k regular expressions together with ‘deleted’

category contains old regular expressions, and some of the regular expressions has

repeated pieces up to 1024 times. Therefore all of the Snort rules cannot be

implemented on a small FPGA devices which has less resources. Nowadays, FPGA

devices which has 500k LUTs and 1M registers are available. We observe that 1052-

REME has 6222 states and is implemented using approximately 9000 LUT’s and

registers. If average length of all of the 14k Snort regexes is 17 states as like 1052-

REME, we need 238k states in order to implement these rules, i.e. we need

74

approximately 357k LUT’s and registers. Therefore, we can say that all of the Snort

rules can be implemented on a single chip if the above case is satisfied. Because of the

parallelization is not possible for such an implementation, we can obtain up to

16xclock frequency throughput (2 characters x 8-bits characters x 1 replication x clock

frequency).

Discussion about clock frequency will be done in this paragraph. State fan-in and fan-

out values affects the reachable clock frequency. We observe that state fan-in value is

12 for both 2C-NFA and Yang’s architectures. This means that values of some states

are calculated using 2 6-input LUTs. If fan-in value is between 13-18, in that case

calculation is done using 3 LUTs and this process needs more time than the above case

therefore clock frequency decreases. Fan-out values for both of the architectures are

about 8. Also placement & routing processes affects the reachable clock frequency.

Synthesizers makes optimizations to achieve higher clock frequencies when

implementing the circuitry on a device.

Finally, we can summarize our results below:

 2C-NFA architecture achieves at most 51Gbps throughput when 14 parallel

569-reme circuits are implemented. 1052-reme achieves 28 Gbps throughput

with 7 replications. 719-reme achieves 40 Gbps throughput with 7 times

parallelization.

 Yang’s NFA architecture achieves at most 42 Gbps throughput when 11

parallel 569-reme are implemented. 1052-reme achieves 24 Gbps throughput

with 7 replications. 719-reme achieves 28 Gbps throughput with 7 replications.

 In implementation, if block RAMs are not sufficient, design tool utilizes from

LUTRAMs (LUTs that can be used as memory units).

 As resource consumption increases on FPGA device, it is observed that the

clock frequency decreases. Minimum clock frequency, 230 MHz, is obtained

when implementing 569-reme set with our 2C-NFA architecture.

75

5.6 Comparison

In this part, first we compare memory costs for both architectures. LUT usage of 2C-

NFA does not exceed Yang’s and it nearly halves the number of registers required.

We then analyzed the number of states that are used to represent datasets. Results are

given in Table 5-11. We observe that 2C-NFA needs 41,7% less number of states to

represent 1052-reme set and needs 43,5% less number of states to represent 719-reme

and 569-reme sets.

Table 5-11: Number of states to represent datasets for both approaches

of regexes with 2C-

NFA

of regexes with

Yang’s approach

1052-reme 10530 18043

719-reme 8141 14368

569-reme 6222 10975

LUT/state and slice/state values are also analyzed. Results are presented in Table 5-12.

One can easily conclude that 2C-NFA performs worse in comparison to Yang’s

architecture because the latter less slice resource and LUT to store a state on FPGA.

Although 2C-NFA seems to be performing poor in these two resource aspects, the

number of states to represent the datasets is reduced considerably in 2C-NFA.

Therefore, it needs less slice resource to implement the whole dataset on the FPGA

device. Consequently, we may conclude that 2C-NFA is more compact than Yang’s.

For example, 719-reme needs 14368*0,19=2729 slices and 8141*0,24=1953 slices to

implement on FPGA device, respectively. We observe that Table 5-8 and Table 5-5

are consistent in this respect.

76

Table 5-12: FPGA Slices per State and LUTs per state values for both

approaches

 Slice/State LUT/state

 Our app. Yang’s app. Our app. Yang’s app.

1052-reme 0,25 0,19 0,85 0,50

719-reme 0,24 0,19 0,81 0,50

569-reme 0,23 0,17 0,78 0,49

Finally, we compare consumption of BRAM units. Because of the need for a 3-

character window search mechanism, 2C-NFA needs 3-character match signals,

therefore we need 3 BRAM units. On the other hand, Yang’s architecture needs 2

BRAM units in order to implement a character class. We create 11, 9 and 6 different

character classes to implement 1052-reme, 719-reme and 569-reme sets, respectively.

Hence to implement only one 1052-reme circuit, we need 33 and 22 BRAM units for

2C-NFA and Yang, respectively.

We may conclude that while the limiting factor of 2C-NFA is BRAM usage, the

limiting factor for Yang’s architecture is slice usage.

1052-reme implementation achieves 28 Gbps throughput with 2C-NFA approach and

24 Gbps throughput with Yang’s architecture. Hence, we achieved approximately 16%

of higher throughput in comparison to the latter for the corresponding data set. For

719-reme implementation, improvement is approximately 42% (40 Gbps instead of 28

Gbps) while for 569-reme it is approximately 20% (51 Gbps instead of 42 Gbps).

77

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we proposed a i) novel ii) modular iii) compact iv) nondeterministic

finite automata based v) memory-efficient vi) high-performance regular expression

matching engine, which is suitable to be implemented on FPGAs. We utilized modified

McNaughton-Yamada algorithm to create the matching circuit as in [1]. However, the

memory-efficient nature of our approach helps us to implement more parallel circuits

on a given FPGA device and therefore achieve higher throughputs.

2C-NFA does not support runtime updates. When we want to implement a new regular

expression, there is a need for off-line processing to construct and add the new NFA

and hence the final circuitry after which reconfiguration of the FPGA is required.

With a better grouping of characters, the number of character classes used in the

architecture is reduced and as a result the number of block RAM units required is also

reduced.

While FPGA technology is continuing to be improved, when more than 6-input LUTs

will common in FPGAs, memory usage for our proposed 2C-NFA will be reduced

even further in comparison to Yang’s approach and hence even larger throughputs will

be possible in the future.

As short term future work, higher throughput may be aimed by using a multi 2-

character (4-character, 6-character etc.) architecture first and then performing further

optimizations aiming less LUT usage.

78

79

REFERENCES

[1] Y.E. Yang, W. Jiang, V.K. Prasanna, “Compact architecture for high-

throughput regular expression matching on FPGA,” Proc. IEEE Symp. Arch.

Net. Comm. Sys., pp. 30-39, 2008.

[2] Y.E. Yang, V.K. Prasanna, "Robust and scalable string pattern matching for

deep packet inspection on multicore processors," IEEE Trans. Paral. Dist. Sys.,

pp. 2283-2292, 2012.

[3] C-L. Lee, T-H. Yang, "A flexible pattern-matching algorithm for network

intrusion detection systems using multi-core processors," Algorithms, vol. 10,

pp. 58, 2017.

[4] O. Erdem, "Tree-based string pattern matching on FPGAs," Comp. Elec. Eng.,

vol. 49, pp. 117-133, 2016.

[5] R. Sidhu, V.K. Prasanna, "Fast regular expression matching using FPGAs,"

Proc. IEEE Symp. Field-Prog. Cust. Comp. Mach., pp. 227-238, 2001.

[6] I. Sourdis, J. Bispo, J.M. Cardoso, S. Vassiliadis, "Regular expression matching

in reconfigurable hardware," J. Sig. Proc. Sys., vol. 51, pp. 99-121, 2008.

[7] P. Dlugosch, D. Brown, P. Glendending, M. Leventhal, H. Noyes, "An efficient

and scalable semiconductor architecture for parallel automata processing,"

IEEE Trans. Paral. Dist. Sys., vol. 25, pp. 3088-3098, 2014.

[8] K. Peng, S. Tang, M. Chen, Q. Dong, "Chain-based DFA deflation for fast and

scalable regular expression matching using TCAM," Proc. ACM/IEEE Symp.

Arch. Net. Commun. Sys., pp. 24-35, 2011.

[9] A-S. K. Pathan (ed.), The state of the art intrusion prevention and detection,

CRC Press, 2014.

[10] R. Beghdad, "Critical study of neural networks in detecting intrusions," Comp.

& Secur., vol. 27, pp. 168-175, 2008.

[11] M. Gupta, "Hybrid intrusion detection system: Technology and Development,"

Int. J. Comp. App., vol. 115, pp. 5-8, 2015.

[12] Snort. accessed at July, 2018, from http://www.snort.org/

80

[13] V. Paxson, "Bro: a system for detecting network intruders in real-time," Comp.

Net., vol. 31, pp. 2435-2463, 1999.

[14] S. Wu, U. Manber, "A fast algorithm for multi-pattern searching," Tech. R.,

Comp. Sci., Uni. Arizona, 1994.

[15] N. Tuck, T. Sherwood, B. Calder, G. Varghese, "Deterministic memory-

efficient string matching algorithms for intrusion detection," Proc. IEEE Int.

Conf. Comm., vol. 4, pp. 333-340, 2004.

[16] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, R. H. Katz, "Fast and memory-

efficient regular expression matching for deep packet inspection," Proc. IEEE

Symp. Arch. Net. Comm. Sys., pp. 93-102, 2006.

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. S. Turner, "Algorithms to

accelerate multiple regular expressions matching for deep packet inspection,"

Proc. App. Tech. Arch. Pro. Comp. Comm., vol. 36, pp. 339-350, 2006.

[18] C. R. Clark, D. E. Schimmel, "Scalable pattern matching for high speed

networks," Proc. IEEE Sym. Field-Prog. Cust. Comp. Mach., pp. 249-257,

2004.

[19] L. Yang, R. Karim, V. Ganapathy, R. Smith, "Fast, memory-efficient regular

expression matching with NFA-OBDDs," Comp. Net., vol. 55, pp. 3376-3393,

2011.

[20] Y. Sun, V. C. Valgenti, M. S. Kim, "NFA-based pattern matching for deep

packet inspection," Proc. IEEE Int. Conf. Comp. Comm. Net., pp. 1-6, 2011.

[21] S. Kumar, J. Turner, J. Williams, "Advanced algorithms for fast and scalable

deep packet inspection," Proc. IEEE Symp. Arch. Net. Comm. Sys., pp. 81-92,

2006.

[22] L. Vespa, N. Weng, R. Ramaswamy, "MS-DFA: Multiple-stride pattern

matching for scalable deep packet inspection," Comp. J., vol. 54, pp. 285-303,

2011.

[23] H. Kim, S-W. Lee, "A hardware-based string matching using state transition

compression for deep packet inspection," ETRI J., vol. 35, pp. 154-157, 2013.

[24] J. Yang, L. Jiang, Q. Tang, Q. Dai, J. Tan, "PiDFA: A practical multi-stride

regular expression matching engine based on FPGA," Proc. IEEE Int. Conf.

Comm., pp. 1-7, 2016.

[25] M. Becchi, P. Crowley, "A hybrid finite automaton for practical deep packet

inspection," Proc. IEEE Int. Conf. Emer. Net. Exp. Tech, pp. 1-12, 2007.

81

[26] Y-H. E. Yang, V. K. Prasanna, "Space-time tradeoff in regular expression

matching with semi-deterministic finite automata," Proc. IEEE Int. Conf.

Comp. Comm., pp. 1853-1861, 2011.

[27] Y. Xu, J. Jiang, R. Wei, Y. Song, H. J. Chao, "TFA: A tunable finite automaton

for pattern matching in network intrusion detection systems," IEEE J. Sel. Area.

Comm., vol. 30, pp. 1810-1821, 2014.

[28] B. Modi, G. Tripp, "A highly compressible regular expression matching circuit

for network intrusion detection systems: An ECD-NFA approach," IOSR J.

VLSI Sig. Proc., vol. 6, pp. 50-58, 2016.

[29] K. Atasu, "Resource-efficient regular expression matching architecture for text

analytics," Proc. IEEE Int. Conf. App-Spec. Sys Arch. Proc. Proc., pp. 1-8,

2014.

[30] D. Pao, N. Lam, R. C. C. Cheung, "A memory-based NFA regular expression

match engine for signature-based intrusion detection," Comp. Comm., vol. 36,

pp. 1255-1267, 2013.

[31] T. T. Hieu, T. N. Thinh, S. Tomiyama, "ENREM: An efficient NFA-based

regular expression matching engine on reconfigurable hardware for NIDS," J.

Sys. Arch., vol. 59, pp. 202-212, 2013.

[32] Y-H. E. Yang, V. K. Prasanna, "Optimizing regular expression matching with

SR-NFA on multi-core systems," Proc. IEEE Int. Conf. Par. Arch. Comp. Tech.,

pp. 424-433, 2011.

[33] Y-H. Yang, V. K. Prasanna, "High-performance and compact architecture for

regular expression matching on FPGA," IEEE Trans. Comp., vol. 61, pp. 1013-

1025, 2012.

[34] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, Q. Dong , "GPU-based

NFA implementation for memory efficient high speed regular expression

matching," Proc. Prin. Prac. Par. Prog., pp. 129-139, 2012.

[35] H. Wang, S. Pu, G. Knezek, J-C. Liu, "A modular NFA architecture for regular

expression matching," Proc. Int. Sym. Field-Prog. Gate Arr., pp. 209-218,

2010.

[36] N. Nakahara, T. Sasao, M. Matsuura, "A regular expression matching using

non-deterministic finite automaton," Proc. IEEE Int. Conf. Form. Met. Mod.

Code., pp. 73-76, 2010.

[37] T-H. Lee, "Hardware architecture for high-performance regular expression

matching," IEEE Trans. Comp., vol. 58, pp. 984-993, 2009.

82

[38] N. Yamagaki, R. Sidhu, S. Kamiya, "High-speed regular expression matching

engine using multi-character NFA," Proc. IEEE Int. Conf. Field Prog. Log.

App., pp. 131-136, 2008.

[39] A. Mitra, W. Najjar, L. Bhuyan, "Compiling PCRE to FPGA for accelerating

SNORT IDS," Proc. IEEE Symp. Arch. Net. Comm. Sys., pp. 127-136, 2007.

[40] C. Xu, S. Chen, J. Su, S. M. Yiu, L. C. K. Hui, "A survey on regular expression

matching for deep packet inspection: applications, algorithms, and hardware

platforms." IEEE Comm. Sur. & Tut., vol. 18, pp. 2991-3029, 2016.

