DEVELOPING INSTRUCTIONAL STRATEGIES AND RECOMMENDATIONS
FROM AN INTRODUCTORY PROGRAMMING COURSE IN HIGHER
EDUCATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KADIR YUCEL KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY

SEPTEMBER 2018

Approval of the thesis:

DEVELOPING INSTRUCTIONAL STRATEGIES AND
RECOMMENDATIONS FROM AN INTRODUCTORY PROGRAMMING
COURSE IN HIGHER EDUCATION

submitted by KADIR YUCEL KAYA in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Education and Instructional
Technology Department, Middle East Technical University by,

Prof. Dr. Halil Kalipgilar
Dean, Graduate School of Natural and Applied Sciences

Assoc. Prof. Dr. Omer Delialioglu
Head of Department, Computer Edu. & Inst. Tech.

Prof. Dr. Kiirsat Cagiltay
Supervisor, Computer Edu. & Inst. Tech., METU

Examining Committee Members:

Assist. Prof. Dr. Halil Ersoy
Computer Edu. & Inst. Tech., Baskent University

Prof. Dr. Kiirsat Cagiltay
Computer Edu. & Inst. Tech., METU

Prof. Dr. Soner Yildirim
Computer Edu. & Inst. Tech., METU

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Erman Uzun
Computer Edu. & Inst. Tech., Mersin University

Date: 19.09.2018

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Name, Surname: Kadir Yicel KAYA

Signature:

ABSTRACT

DEVELOPING INSTRUCTIONAL STRATEGIES AND
RECOMMENDATIONS FROM AN INTRODUCTORY PROGRAMMING
COURSE IN HIGHER EDUCATION

Kaya, Kadir Ycel
Ph.D., Computer Education and Instructional Technology
Supervisor: Prof. Dr. Kiirsat Cagiltay

September 2018, 268 pages

Purpose of this study is to design and develop an introductory programming course for
higher education level and extract instructional strategies and recommendations. The
course was offered as a visual programming course at the Department of Computer
Education and Instructional Technology in Middle East Technical University. MIT
App Inventor (a visual programming environment to develop applications for Android
OS) was used in the course. The course was 14 weeks long. Basic concepts of
programming were offered through a project and product focused introductory

programming course.

Design-Based Research methodology was used as the research framework of the
study. Under this framework, qualitative data were collected through interviews,
observations, and documents. Data were collected iteratively to reshape the design of
the course and the instructional strategies until it is appropriate and substantial. Data
collection were 2 semester long which included observations throughout the course,
interviews at the end of each semester, examination of discussions and products of the

students.

Results of this study aimed to provide an instructional prescription for the instructors

who are to develop an introductory programming course. An effective, efficient, and

\Y

motivating course design could help both learners and instructors for the first step of
programming education which could lead to an advanced level programming

education and help students to grasp computational thinking.

Keywords: Programming Education, Visual Programming, App Inventor

Vi

0z

YUKSEKOGRETIM ICIN GIRIS SEVIYESINDE BIR PROGRAMLAMA
DERSINDEN OGRETIM STRATEJILERI VE ONERILERI
GELISTIRILMESI

Kaya, Kadir Ydcel
Doktora, Bilgisayar ve Ogretim Teknolojileri Egitimi Boliimii
Tez Danigmani: Prof. Dr. Kiirsat Cagiltay

Eylul 2018, 268 sayfa

Bu c¢alismanin amaci yiiksekdgretim seviyesindeki deneyimsiz programlama
ogrencileri i¢in bir 6gretim stratejileri ve onerileri tasarlayip gelistirmektir. Stratejiler
Orta Dogu Teknik Universitesi, Bilgisayar ve Ogretim Teknolojileri Egitimi
Bolimundeki bir gorsel programlama dersinden ¢ikarilacaktir. Ortam olarak App
Inventor (Android isletim sistemine uygulamalar gelistirmek i¢in bir gorsel
programlama ortami) kullanilmistir. Arastirmaci teoriyi gelistirmek igin 14 haftalik bir
ders tasarlamistir. Temel programlama kavramlari, proje ve iriin odakli bir giris

seviyesi programlama dersi araciligiyla sunulmustur.

Calismada gerceve olarak tasarim tabanli aragtirma yontemi kullanilmistir. Bu ¢ergeve
altinda, nitel veri goriismeler, gézlemler ve dokiimanlar araciligiyla toplanmistir. Veri
yinelemeli olarak toplanarak, ders ve teori tasarimi uygun ve saglam hale gelene kadar
tekrar sekillendirilmesi saglanmistir. Veri toplama siireci 2 donem boyunca stirmiistiir.
Veriler ders boyunca yapilan gézlemler, her donem sonunda yapilan goriigmeler, ve

tartisma yazigmalarini ve 6grenci {irlinlerini inceleyerek toplanmustir.

Bu ¢alismanin sonucunda giris niteliginde programlama dersleri i¢in regete sunan bir
Ogretim tasarimi gelistirmek amaglanmaktadir. Etkili, verimli ve motive edici bir

Ogretim teorisinin 6grencilere hem de §gretmenlere programlama egitiminin ilk adimi

vii

i¢in yardimci olabilecegi; bunun da ileri diizey programlama egitimine yonlendirmeyi

ve bilisimsel diisiinceyi anlamasini saglayacagi diisiiniilmektedir.

Anahtar Kelimeler: Programlama Egtimi, Gorsel Programlama, App Inventor

viii

To My Family...

ACKNOWLEDGMENTS

First of all, I would like to thank Prof. Dr. Kiirsat Cagiltay for supporting me, teaching
me, believing in me, and showing me the way as my advisor throughout my Ph. D.
process. | am also lucky to have you as a mentor, a role model, and a friend.

I would like to express my gratitude to my thesis monitoring committee members Prof.
Dr. Soner Yildirim, and Assoc. Prof. Dr. Sinan Kalkan for their invaluable support and
feedbacks. I was also lucky to have Dr. Erman Uzun, and Dr. Halil Ersoy in my thesis

examination committee.

I would like to thank all of the faculty members in METU and Dokuz Eylul University.
Especially, Prof. Dr. Ercan Akpinar, Elif Ozyenginer, and Dr. Ugur Altunay. | am
grateful to all of the academic staff of CEIT in Kastamonu University, especially,
Assoc. Prof. Dr. Goksal Bilgici, Dr. ismail Yildiz and Dr. Ekmel Cetin, Funda Catan,
Zeynep Piri, and Semih Piri. | am also lucky to have such wonderful friends and
colleagues. Sezin Esfer and Mustafa Giileg were both shareholders of this study.
Giilenay Vardarli, Ersin Kara, Gok¢en Aydin, Filiz Cicek, Mehtap Ozen, Mithat
Cicek, Esra Kavasoglu, Eymen Canatan, and my brother from another mother Durmus
Kus, knowing to have you all strengthen me with your unconditional support.

I would like to thank Scientific and Technological Research Council of Turkey
(TUBITAK) for supporting me and this study financially throughout my Ph. D.
education, both in Turkey (2211) and USA (2214-a). | am sincerely grateful to
TUBITAK. I would like to thank Council of Higher Education (YOK) for supporting
this study through OYP project.

I would like to thank my life long supporters, my mother Hatice Kaya, my father
Ertugrul Kaya, and my sister, Pinar Kaya. | am also grateful to have Fevzi Keskin,

Vedat and Hilya Tisoglu, Sinem and Berat Simsek.

I would like to thank my wife Dr. Secil Tisoglu Kaya. We have been through a lot
through our Ph. D. education. It would not be finished without your constant love and

support.

TABLE OF CONTENTS

A B ST RA CT .. a e e e e areeanes Y
O Z ettt vii
ACKNOWLEDGMENTS ...ttt X
TABLE OF CONTENTS ..ottt Xi
LIST OF TABLES ... oottt enaa e XV
LIST OF FIGURES ...ttt XVi
LIST OF ABBREVIATIONS ..ottt Xviii
CHAPTERS
1 INTRODUCTION ...ttt et nae e e e e neeeanee e 1
1.1 Background of the STUAYcccoviiiiieiicc e 1
1.2 Purpose Of the STUAY.......ccociiiieii e 3
1.3 Significance of the STUAYccooeiiiiiii e, 4
1.4 Research QUESTIONScccciiiiiieiicie e 6
1.5 Theoretical FrameWOrKcccouiiiriiriieie e 6
1.6 ASSUMPLIONS ...oeiieiiciie ittt te e re e be e sraesre s e sreenteaneenne s 8
1.7 LIMITALIONS. .ecvieiiieie ettt sre e eneenre e e e neenneas 8
1.8 DeliMITAtiONSeoiieeiieiiieieeie et ne e ee e nneas 8
1.9 Definitions OF TEIMScccoiiiiiiiieieee e 8
2 LITERATURE REVIEWccoiiiiiiiiiiiee e 11
2.1 Computer Programming Education for Novice Learners...........cc.ccocvevennen. 11
2.1.1 Approaches, Suggestions, and Shifts in Programming Education....... 12
2.1.2 Computational ThiNKINGccccoveiiiiieiieie e 15
2.1.3 Visual Programmingcccccceieeieiiieiiene et 16
2.2 Programming environment and Mobile Technologies............cc.ccoovrirnennee. 18
2.2.1 Mobile Technologies and Android OScccoeiiieninenininieeeen 18
2.2.2 SCIALCN ... e 19
2.2.3 APP INVENTON .ot 20
2.2.4 Advantages of APP INVENTOTccociiiiiiiiiiieee e 22

Xi

2.2.5 Disadvantages of ApP-INVENTOLcccoviiieiiiiniiee e 23

2.3 MOtivation/ENQGAgEMENTcceerieiieiiieie ettt 23
2.3.1 Ensuring the 3C (Confidence, Competence, Comfort)c...coc....... 26
2.3.2 COMMUNICALION ..ovvitiiiiiiiiieieie et e 27

2.4 GaP IN The LITEIatUIE.......ooviieiciieieieeeee s 29

3 METHODOLOGY ...ttt e e enae e 31

3.1 INEOTUCTION ..ttt 31

3.2 ReSearch QUESLIONS.couiiiiieiiieitee ittt et re e sreesbeenbee s 31

3.3 RESEAICN DESIGN ...t 32
3.3.1 Design-Based RESEAICN........ccccuiiiiieii e 32
3.3.2 Qualitative RESEAIrCHcccovviiiiiiecee e 41

3.4 Description of the Setting and the COUrSecccevevieveiieseece e 42

3.5 Participants of the Study and Sampling..........ccccooviiiniininn e 44

3.6 Researcher’s Role and Potential Ethical ISSues...........ccccovcvveiiiiiiiiee i, 47

3.7 Data COlECION ...ccveevieieie e 49
3.7.1 Data ColleCtion ProCEAUIEScocerieiiririiieieie e 49
3.7.2 Data COllECtiON PrOCESScevviieiieiesiiesieeieseesiee e e sieeee e saeenee e 54

3.8 DaAta ANAIYSIS. ..ceiiieiiieiieiete s 56

3.9 Trustworthiness of the StUdY.........ccccceiiiii i 60
3.9.1 TrHANQUIALION ..o 60
3.9.2 INtercoder agreBmMENT........coiriereie et 61
3.9.3 RICh/Thick desCriptioncceiiieriiiiiiiisieee e 62
3.9.4 Real-life Setting / Prolonged Time........c.ccoeveiiiiieve e 62
3.9.5 Peer EXAmMINALIONcccocviieiieieieie e 62
3.9.6 ReSEarCher’s TOl€cviiiiiiieiiii i 62
3.9.7 Negative INFOrMAatioNcooeiiiiiiiiieeeee s 63

I] 1 1 1 SR 65

4.1 COMMUNICALION ..ottt et nes 65
41.1 Communication with the instructor and between students................... 65
4.1.2 Communication MediUMccccevuriiiereeiesieese e e e e see e 70
4.1.3 Summary of the Communication Themeccccceoeveneneneninieiennn, 86

4.2 Contributions Of the COUISE.........ccoiiiiiiiiiie s 87
4.2.1 Transfer/Link to Professional Lifecccoooiiiiniiiininne e, 87

Xii

4.2.2 Computational ThINKINGcccovieiiiiiiieiee s 95

4.2.3 Learned Concepts of Programmingccccceeereneienenenenieeeeieenen, 101
4.2.4 Summary of the Contributions Theme.........cccccovevieieicc e, 102
4.3 MOTIVALION ..o bbb 104
4.3.1 Visual ENVIFONMENTooviiiiiieie e 104
4.3.2 Non-intimidating Course designcceoveeerereneneneseseseeeeeeeens 106
4.3.3 Creating a Useful/Working/Purposive Product..............cccccevverveennenn. 108
4.3.4 Self-IMProvemMENtcccoiieiieieciece e 114
4.3.5 Preferring Practice t0 TheOIYcoovvvieiiiii i 117
4.3.6 Proofs of the Motivation/COmpPetencCeccceeerereneninicieieeee, 119
4.3.7 Summary of Motivation Themeccccoceiieieiieie e, 121
4.4 Programming and Programming Environmentcccccccevveveiiieieennnn, 123
441 Attitude Change towards Programming........ccccoceeererenenenenieeneennnn, 123
4.4.2 Textual vs. Visual (App Inventor) Programmingcc.cceeeeveeenen. 125
4.4.3 Evaluation of the App Inventor Environment............ccccccoovveveieennenn, 134
4.4.4 Summary of Programming and Programming Environments............ 153
4.5 Dynamics and Evaluation of the COUrSeccceviieienininisececee 154
45.1 Challenging Concepts of Programmingcccceeererenenenenineneennnn, 154
452 COUrSe DYNAMICScoviiiiiciiieie e 160
45.3 Summary of the Dynamics, and Evaluation of the Course................ 177
4.6 Examination of the Products and Course Progress..........cocoevvreseevenenn 179
4.6.1 Examination of Products of the Students..........c.cccocvevevieriveieseennnn, 180
4.6.2 Progress of the Students based on Characteristics.............cccccceveennen. 186
4.6.3 Interventions throughout the COUrSe...........ccceveiieiieie i, 187
4.7 Overall Summary of FINAINGScccoeiiiiiiiie e 189
5 DISCUSSION AND CONCLUSION ..o 195
5.1 Preparation fOr the COUISE........ccoiiiiieierie e 197
51.1 Knowing the LEArNers.........ccccoiieieeieiie e 197
5.1.2 Choosing the Programming Environment.............cccccovevvveiieeiveennnnnn, 199
5.1.3 Choosing the Communication Mediumcccoceveriienininnenieennnn, 207
5.2 Implementing the COUISE ..o 210
5.2.1 Product-First APProach........ccccoveeiieiiieiiie e 210
5.2.2 Spiral Approach with a Course Themec.ccccevvveveiiie e, 215

Xiii

5.2.3 Blending top-down and bottom-up approach...........ccccceeeereererennenn, 220

5.2.4 Dynamic Tutorials and Develop-it-more activities............cccceeveenenes 221
5.2.5 Support-Buddies and 1dea-PitChingccccccevviieiiveneiieseese e, 224
5.2.6 Misconceptions and Difficult CONCeptsSccccvvveiiveviiiieseeie e, 228
5.2.7 Learner-Centered Formative ASSESSMENTccccovvvverierieenieerieninneens 230
5.3 Conclusion and Prescription for the Future COUrses.........cccocevvereeseennenn. 231
5.4 FULUIE STUAIESeovvivieie ittt 235
REFERENGCES.......c.o oottt enenns 237
APPENDICES
APPENDIX A INTERVIEW ... 255
APPENDIX B: APPROVAL OF ETHICAL COMMITTEEcccccovvviiiieienen, 257
APPENDIX C: INFORMED CONSENT FORM......ccccoviiiiiiiieiee e, 259
APPENDIX D: CODING TABLE ...t 261
APPENDIX E: SYLLABUS EXAMPLE ... 265
CURRICULUM VITAE ..ottt 267

Xiv

LIST OF TABLES

Table 3.1 Commonly used methodologies used under the DBR framework.............. 36
Table 3.2 Code Names and Characteristics of the Participants...........cc.ccocvvvviennee. 46
Table 3.3 Tentative Course OULIINEcccooviiieiiie e 55
Table 4.1 Interventions based on problems or observationsc.c.cccecvevveieennenn. 188
Table 5.1 Comparison of Visual and Textual Programming Environments............ 205

XV

LIST OF FIGURES

Figure 1.1 First Principles of Instruction - General Process..........cccooevveveiiveseennenne 7
Figure 1.2 Phases Of INSIIUCTIONc.oiiiiiiiiiicciee e 7
Figure 2.1 Designer screen of App INVENTOT ... 21
Figure 2.2 Block-based programming interface of App Inventorccccceevveenee. 22
Figure 2.3 Affect Transitions Modelcccooieiieiiiiciiccec e 24
Figure 2.4 Factors that influence intrinsic motivation in programming learning...... 25
Figure 3.1 Process of DBR and LEarningccccoeveririninienenene e 37
Figure 3.2 Iterative Nature 0f DBRccccooiiiiiicie e 38
Figure 3.3 Steps of predictive and DBRccccooeiiiie i 39
Figure 3.4 General steps of the STUAY ..o 40
Figure 3.5 Poster to ANNOUNCE the COUISEcceviiiiriiiiieieie e 43
Figure 3.6 General Sitting Plan of the Classroomcccccovevieiiiic i, 43
Figure 3.7 Picture of the ClasSrO0mcccvciiiiieiieii e 44
Figure 3.8 Programming Experiences of Participants before the Course.................. 47
Figure 3.9 Process 0f DBRccccoiiiiiiiieeee s 56
Figure 3.10 Data ANalysiS PrOCESSccveiieiieiieiieite ettt 59
Figure 4.1 Peer Help Using Facebook Group.........ccccveveiiiieiie i 77
Figure 4.2 Helping each other without encouragement...........ccoceeeveneneneneneennenn 78
Figure 4.3 Discussion environment to help each other...........ccoooiiiiiiien 79
Figure 4.4 Feedback from and Evaluation of INStructor............c.cccccoceniiiniiiiinenenn 80
Figure 4.5 Using each other's Projects as RESOUICE..........cccvvevveieeieerie e 83
Figure 4.6 Providing Encouragement through Communication Medium 85
Figure 4.7 Using Communication as a Resource Hub ..., 87
Figure 4.8 Motivation Effect of Course ENVIronment...........cccoceveieiencnnnicnennn, 122
Figure 4.9 App Inventor INterfaceccvevviiiiiiie e 152
Figure 4.10 Effect of Visual Environment on Novice Programmers 153
Figure 4.11 Defining and Using Variable in App INVENtOrc.cocevviiiiiicinennn, 157
Figure 4.12 Categories of Project Topics (First TEIrM).......ccccevererereniinininieiennn 183

XVi

Figure 4.13 Complexity Level of Projects (First Term)ccccceveniniineninneniennn, 184

Figure 4.14 Categories of Project Topics (Second Term)cccocevvvvrivnvnnenennn, 185
Figure 4.15 Complexity Level of Projects (Second Term)........cccocvevevvverveieninnnnnn 186
Figure 4.16 Variable Knowledge of Students based on their Departments............. 187
Figure 5.1 The Criteria to Select the ENVIronment...........ccccoovvieieeienienienesieeenn 204
Figure 5.2 Benefits of using textual programming to support visual programming 206
Figure 5.3 Characteristics of end-productcccueveiiieiieerieiie e 212
Figure 5.4 Levels of Information in Product-First Approach..........cccccecevvevviinnnnnn 213
Figure 5.5 Spiral Learning - NOVICe t0 MASEEr...........cooveiiiiiciiie e, 217
Figure 5.6 Progress and Steps TULOMalScccovviieiiiiiiieseee e 223
Figure 5.7 Peer Help/ldea-Pitching with Support-Buddies Strategy............cccc.c..... 227
Figure 5.8 Strategies to Overcome Difficulties of Students............cccccoevveiviienn, 230

Xvii

LIST OF ABBREVIATIONS

Al: App Inventor

BA: Business Administration

BUA: Bottom-Up Approach

CEIT: Computer Education and Instructional Technology
CS: Computer Science

DBR: Design-Based Research

EME: Elementary Mathematics Education

ESE: Elementary Science Education

TDA: Top-Down Approach

Xviii

CHAPTER 1

INTRODUCTION

This chapter provides an introduction to the topic, problem, and the study. It consists
of background, purpose, significance of the study, research questions, assumptions,

limitations, delimitations, and definition of terms.
1.1 Background of the Study

Computing technology is influencing every people’s life, thinking, and behaviors, and
it is growing more popular day by day (Kazimoglu, Kiernan, Bacon, & MacKinnon,
2011; Kwon, Yoon, & Lee, 2011; Wong, 2017). From the last years of the 20" century
to recent years, computer and mobile software technologies get more popular among
people. Despite its growing popularity, technology is only a product for the most of
the people. Even the people claiming to be experienced about technology (and so-
called digital natives) are just consumers rather than producers (H. Gardner & Davis,
2013; Smutny, 2011). As the demand is growing bigger for producers, society needs
more programmers to meet the need. However, programming is a very complex task
to teach and learn; and it requires special attention (Hanks, Fitzgerald, McCauley,
Murphy, & Zander, 2011; Kwon et al., 2011). When it comes to inexperienced
learners, programming language education is one of the most serious issues in software
development (Saito & Yamaura, 2013). Teachers are also interested in how novices

learn to program (Rountree, Robins, & Rountree, 2013).

There is a demand for programmers in the industry more than ever. Among young
people, interest in programming has grown rapidly. However, when it comes to
learning programming and developing software, programming is seen to be a difficult,
and complicated topic by the same people. Even the university students (including
computer science majors) could get confused by the complexity of programming
which could lead to high failure rates in introductory programming courses (de Raadt,

2007; Govender, 2009). Due to this perception and other factors, computer

1

programming courses have a high drop-out rate, up to 50% (Ma, Ferguson, Roper, &
Wood, 2011; Porter, Guzdial, McDowell, & Simon, 2013; Robins, Rountree, &
Rountree, 2003). According to Jones and Burnett (2008), even the students who
perform well in other subjects may not be successful in programming. Obviously, there
Is a problem with programming education. Since 70s variety of solutions offered to
solve this problem (Sorva, Karavirta, & Malmi, 2013). Educational programming
environments such as microworlds, visualization software, and visual programming
languages are among those solutions (Malliarakis, Satratzemi, & Xinogalos, 2013;
Rolandsson, 2013). One of the potential solutions is visual programming languages.
Visual programming language was described by Smutny (2011) as “a programming
language that lets users create programs by manipulating program elements
graphically rather than specifying them textually” (p. 358). The earliest and the best
known visual programming language is Logo (Papert, 1993). Since Logo, many visual
programming languages are developed to help people learn programming. In recent
years, Alice, Scratch, BlueJ, and App Inventor (Al) are more popular than others.
Especially, Al provides an easy way to create their own mobile software programs that

could help adult novice programmers while others are mainly for K-12 and education.

In visual programming, learners can create their programs just by experimenting with
the environment. Even though visual programming environments provide an easier
way to learn programming, there is not one true answer for everyone and every
situation (Sorva, Lonnberg, & Malmi, 2013). Especially when complex programs are
aimed to be created, experimenting and drag-and-drop may not be enough for users.
There is a need for instructional guidelines for both learners and teachers for learning
programming via visual programming. While there are many studies of expert
programmers, studies about novice or non-programmers do not have the equal amount
of studies (Robins et al., 2003). Additionally, computer scientists and cognitive
scientists have a lot of research studies about programming education, instructional
technology has fewer studies about that subject (Kazimoglu et al., 2011; Sajaniemi,
2008). Reiser (2002) defines Instructional Technology as “the analysis of learning and
performance problems, and the design, development, implementation, evaluation, and
management of instructional and non-instructional processes and resources intended

to improve learning and performance in a variety of settings, particularly educational

institutions and the workplace” (p. 12). Instructional Technology could provide
valuable contributions to the Computer Science (CS) field, especially for the novice
learner education. Suggestions should be made by teachers and students to improve

the programming courses (Sampaio & Sampaio, 2012).

The programming environment is one of the key components of the introductory
programming courses. Learning programming is a demanding task that requires
computational thinking to describe and solve a problem then design and code in order
to convert solution into the syntax of a programming language (Kazimoglu et al.,
2011). Traditionally, students learn programming language’s syntax and commands
before designing algorithms which could cause a great cognitive load to novice
learners. Computer scientists developed many techniques to alter this difficulty. Over
the years many programming languages have been developed for novice users to
reduce the cognitive load (Wilson, Hainey, & Connolly, 2012). Educational
programming environments could be used to help learners to improve their
computational and algorithmic thinking abilities. Wing (2006) defines computational
thinking as an analytic approach to problem-solving, understanding human behavior
by drawing on the concepts fundamental to computer science. While the main aim for
the introductory programming courses is to cause students to gain computational
thinking and problem-solving skills, much of the introductory textbooks and courses
focus on the knowledge about a particular programming language (Robins et al.,
2003). Kafai and Burke (2013) stated that “students should not only know about
programming but also to think more systematically to solve all types of problems” (p.
65). Moreover, Winslow (1996) states that novice learners approach programming line
by line rather than meaningful chunks or structures. This perspective could be fixed
by extracting guidelines to develop and design a course with the use of a visual

programming environment in practice.
1.2 Purpose of the Study

There are lots of empirical studies about learning programming, however, they are
mostly focused on learning outcome during or after the course (Bennedsen &
Caspersen, 2012). This study is sought to create instructional guidelines and strategies
by reshaping an introductory programming course iteratively, based on the data

collected from students by constant observations, interviews, documents and with the
3

support of literature. Purpose of this study is to create instructional strategies and
recommendations for an introductory computer programming course via a visual
programming language through Design-Based Research framework. Qualitative data
were collected through interviews, observations, and documents to reach this aim.
Each week of the course, positive and negative implementations were examined to
reshape the course. Before selecting the environment, different programming
environments were taken into consideration. The target group of this course was the
first time learners or novice programmers. According to the literature review, among
the textual and visual programming environment, visual programming environments
hold the potential for motivating students and have a steeper learning curve. Popular
visual programming environments were examined to be chosen as they could be more
suitable environments for the first time learners. There were Scratch, Alice, Kodu, and
App Inventor as the popular and relatively modern environments. App Inventor was
chosen among them considering the target group who were higher education students.
Products of App Inventor are working applications for Android OS. Users can develop
games and applications with App Inventor just by dragging and dropping
“Components” and “Blocks”. Interviews were analyzed to see the influence of the
visual programming environment, specifically App Inventor. During the interviews,
the researcher asked questions about both about visual programming environments and
App Inventor environment, specifically. Perception of students towards textual
programming environments was also asked the students with no previous experience.
Moreover, comparison of the two environments was asked to the students who have

taken a textual programming course before.
1.3 Significance of the Study

The main significance of this study is presenting help for the programming instructors
by providing instructors some concrete and grounded instructional strategies and
recommendations. Programming literacy, which may increase critical-thinking and
problem-solving abilities, is “essential today’s heavily computer-dependent society”
(Wright, Rich, & Leatham, 2012, p. 8). In campaigns like “Code Hour”, people from
every age group and every sector are encouraged to learn programming. The campaign
aims to direct people toward programming not only for make them programmers but
also to provide them a new perspective which is called computational thinking. As it

4

was mentioned before, computational thinking is a crucial skill for the 21st century.
One of the significance of this study is that results of this study could guide instructors
to teach and learners to learn problem-solving, computational thinking and overcome
their fears towards computer programming. This would not only change the students’
thinking about programming but also will change their perspective towards any
problem they will encounter during their daily lives. The common saying “reading the
word is reading the world” is now changing to “reading the code is reading today’s

and tomorrow’s world” (Kafai & Burke, 2013).

There is also a more practical (de facto) significance of this study. Since the
environment is easy-to-use and understand, its products are useful, and with the
appropriate instructional theory, it could motivate student intrinsically to learn
programming and to be a programmer. While this study is limited to university
students, future studies could expand it to K-12 level or adult people. In this way, say,
teachers can develop their own programs for their courses which will be a need in near
future. Better yet, App Inventor (Al) which is created to develop mobile applications,
is getting more popular in last years for both daily use and education. “The mobile
learning applications can offer assistance and enhancement of traditional learning,
synchronous interactions between the students and teachers, and many ways of
interacting with course content.” (Bertea, 2011, p. 2). Additionally, this could be a step

for advanced programming learning and traditional programming language learning.

Another significance of this study is its methodology. This study uses a Design-Based
Research (DBR) framework. Apiola and Tedre (2012) states that there is a need for
more action research and formative evaluation which are similar research frameworks
to DBR for programming courses. Starting to shape the course through the First
Principles of Instruction, and enhancing it through the experience are other significant

parts of this study.

Finally, this study could enlighten the programming education problems and solutions
for Turkish context. Teaching and learning programming is found challenging
worldwide, however, it is crucial to understand local practices of the topic (Apiola &
Tedre, 2012).

1.4 Research Questions
Research question of this study and sub-questions are:

What are the instructional strategies and recommendations to develop an
efficient, effective and engaging introductory programming course for non-CS
majors?
a) What are the instructional strategies and recommendations for the
preperation part of the course?
b) What are the instructional strategies and recommendations for the

implementation part of the course?

To answer those questions qualitative data were collected throughout the course under

the framework of Design-Based Research.
1.5 Theoretical Framework

It is essential to put forward what theoretical framework is and how it will help to
manage a study before continuing with the selected theoretical frameworks and their
explanations. Anfara and Mertz (2006) defined the theoretical frameworks basically
as “any empirical or quasi-empirical theory of social and/or psychological processes,
at a variety of levels (e.g., grand, midrange, explanatory), that can be applied to the
understanding of phenomena” (p. xxvii). This study started with the pragmatic stance
to be open to any way to go further with the research. As the starting point for the

design of the course Merrill’s First Principles of Instruction was chosen.

According to Merrill (2013), different than learning, instruction is a goal-directed
activity towards a specified knowledge and skill and the purpose of instruction is to
promote effective, efficient, and engaging (e3) learning. Using both appropriate
instructional principles that were developed by the instructor and known instructional
strategies are useful to develop a better instruction. Merrill’s (2002) first principles of
instruction consists of 5 main principles which are: Learning is promoted when... (a)
learners are engaged in solving real-world problems; (b) existing knowledge is
activated as a foundation for new knowledge; (c) new knowledge is demonstrated to

the learner; (d) new knowledge is applied by the learner; (e) new knowledge is

integrated into learner’s world. These principles were applied throughout the course
as Merrill (2013) suggested as figure 1.1 below.

First Principles of Instruction

Problem- Problem-
Solving Centered
Strategies Strategy

F 3 F A
—[Peer-Interaction]
.7 —[Structural Frameworks]
{ Media Implementation]

Figure 1.1 First Principles of Instruction - General Process (taken from Merrill,
2013, p. 1)

Instruction would not be effective if not carefully designed, and a unique theoretical
framework could be helpful for the design such as First Principles of instruction (Lo
& Hew, 2017; Merrill, 2013). The principles used for instructional-design should be
design-oriented and relevantly designed to promote learning activities (Merrill, 2013).
While designing a problem-centered instruction four phases should be and were taken
into consideration for the design of this course (1) activation of prior experience, (2)
demonstration of skills, (3) application of skills, and (4) integration of these skills into

real-world activities (Merrill, 2013).

INTEGRATION ACTIVATION

PROBLEM-
CENTERED

APPLICATION DEMONSTRATION

Figure 1.2 Phases of Instruction (Merrill, 2008)

The premise of Merrill’s of first principles instruction was providing an efficient,
effective, and engaging instruction (Merrill, 2008), similar to the goal of this study.
Therefore, it was selected as the main theoretical framework to develop the course

from the starting point to the extracting of instructional strategies.
1.6 Assumptions
Following statements assumed to be true for this study:

1) Participants honestly answered the questions of interviews during the study and
willingly stated their opinions

2) The data were accurately recorded and analyzed

3) Validity and reliability techniques are sufficient to meet the needs of the study

1.7 Limitations

This study has some limitations in terms of generalizability. Following limitations

could affect the generalizability of the study:

1) This study is limited to students in Middle East Technical University.
2) Sampling is another limitation of this study because purposive sampling was

used.

1.8 Delimitations

1) This study is delimited to students who (a) are non-programmers or novice
programmers, (b) have basic computer skills (c) are students of Middle East
Technical University.

2) This study is delimited to data from interviews, observations, documents,

products of the students and literature.
1.9 Definitions of Terms

Visual Programming: Visual programming language is “a programming language that
lets users to create programs by manipulating program elements graphically rather than
specifying them textually” (Smutny, 2011, p. 358).

Computational Thinking: ... an analytic approach to problem-solving, understanding
human behavior by drawing on the concepts fundamental to computer science (Wing,
2006).

App Inventor: “MIT App Inventor is a drag-and-drop visual programming tool for
designing and building fully functional mobile apps for Android” (Pokress & Veiga,
2013, p. 1)

10

CHAPTER 2

LITERATURE REVIEW

This chapter consists of two main parts. While the first part focuses on programming
education and suggestions based on it (including visual programming languages and
computational thinking), second part discusses firstly, mobile technologies and
importance of mobile application development and secondly, visual programming
environment and its features. The main environment that this study focused on is App
Inventor (Al), but Scratch is very similar and older program than Al. There are more
research studies about Scratch, and it is essential to emphasize its features, so Scratch
will also be examined under this part. Since literature is an important source of
information especially in design-based research, in both parts, suggestions, and

information were used to design the first implementation of the study.
2.1 Computer Programming Education for Novice Learners

Computers and computer-related knowledge are an important link between the world’s
economy, technology, and innovation (Buitrago Florez et al., 2017). In recent years,
people, especially younger ones, tend to use computers and technology with an
increasing rate, however, computer programming is still viewed as a terrifying field
(Sandoval-Reyes, Galicia-Galicia, & Gutierrez-Sanchez, 2011). It is a known fact that
computer programming is also seen as a subject that is difficult to teach and learn
(Cetin, 2013; Maet al., 2011; Mozelius et al., 2013; Sandoval-Reyes et al., 2011). This
is true for not only the K-12 students but also the students in higher education. Some
studies state that even the 50% of computer science students switch to a different study
program due to high cognitive demand after three or four semesters (Schafer et al.,
2013). Moreover, Kurkovsky (2013) stated that “CS majors end up changing their
majors after taking CS I or CS I, because they find the material irrelevant to practical
applications” (p. 138). The key to the solution of this problem regarding non-majors
must be the design of introductory programming courses. When it comes to the

11

solution, there is no consensus about how an introductory programming course should
be designed (Mozelius et al., 2013). This is not just the problem of computer science
students/teachers either. According to Guzdial and Forte (2005), many students who
are not majors in computer science are going to be required to take an introductory
computing course which includes programming as a core activity. For example,
Georgia Tech University requires all of the students to take a course in computers
science (Porter et al., 2013). However, Porter et al. (2013) also stated that the pass rate
of majors of mentioned majors was less than 50% on average. Obviously, there is a

problem on learning programming for novice programmers.

New knowledge and technologies (more enjoyable environments, changes in the
classroom environment and ways of learning etc.) lead computer science education to
evolve, based on those global changes (Hawi, 2010; Malliarakis et al., 2013). Even
though there are lots of challenges in computer programming environment, there are
also studies based on those changes and technologies provide some approaches,
suggestions, and changes in computer programming and its education to solve those
problems. Those suggestions and how they can be relevant when designing a new

computer programming course will be examined in the following sections.

2.1.1 Approaches, Suggestions, and Shifts in Programming Education

First suggestion for programming education depends on the paradigm shift in
education. Knowledge age needs a student-centered educational system (Charles M.
Reigeluth, 1999a). A student-centered approach should be used in computer
programming learning rather than a traditional one because its aim is not that students
memorize or stack information in their minds (Hawi, 2010). It requires higher thinking
skills such as problem-solving, creative thinking, to cope with the complex challenges.
The teacher should not be the instructor of the course, s/he should be a guide and help
students when they need help. Additionally, when the teacher steps back a little, s/he

gave students a chance to think and become a source of information (Hawi, 2010).

Sometimes, teachers could bore or get students out of the flow by presenting too
complex problems and exercises which are higher level than students’ knowledge.
Apiola and Tedre (2012) reported that providing simple tasks for an introduction to
students will help them to be motivated and make them feel competent for the course.

12

Reigeluth’s (1999a) elaboration theory also suggests that given tasks to students
should proceed from simple to complex.

Another suggestion is about the assessment of programming courses. Students should
not be choked with the traditional lecture-homework-exam arrangement, on contrary,
they should be free to create their own program based on their need (Apiola & Tedre,
2012). Open-Ended assignments should be provided to students which can easily be
extended based on students’ needs (e.g. students could create a part of their application
project) (Falkner & Falkner, 2012). Those programs should be assessed according to
criterion-based assessment in which criteria should be stated carefully (Barg et al.,
2000). Grading should not be the main source of motivation in programming
education. “Success of problem-solving activities based on its secure environment, in
which students explore and experiment without worrying about grades” (Hawi, 2010,
p. 50). Creating their own program based on their daily or academic needs should be
targeted to be students’ primary motivator. There is a consensus about that
programming learning cannot be effective without the practice of students in their
leisure time (Apiola & Tedre, 2012). So it should be aimed to motivate student about
working on their own project in their free time. Additionally, assessment should based
on the products, not on some kind of test or exam. As Marlowe and Page (2005) stated
the importance of learning by doing in programming, they emphasized that best way
to check the understanding of programming is programming. Novice programmers
must create their own program plans, in this way problem-solving skills could be
developed (Robins et al., 2003). The learner should be the driver of his own learning,

not a passenger of learning goes along with the classroom.

Apiola and Tedre (2012) subtracted some pedagogical suggestions on the
programming teaching: First number of practices should be increased; second, in-class
exercises the best ways of utilizing guided environments should be explored; third,
while positive aspects of group work is put to use, negative aspects should be
overcome; fourth arranged interventions should be included with more action and
formative research; and the last, help should be always available for students from

different sources.

Falkner and Falkner (2012) stated that for novice learners, learning activities should

have a low threshold and high ceiling which means exercises should be easy to
13

complete but also provide students a way that they can be challenged if they want. In
Apiola and Tedre’s study (2012), teachers suggested there should be simple
programming language which can direct learners to an advanced programming
language. To create a successful programming course, instructors should avoid
designing a course that leads students to complain frequently: Programming is asocial,
boring, tedious, irrelevant and competitive (Porter et al., 2013). What they should do
is create a social environment (online or real world), motivating student to create their
own programs based on their needs, and rather than grades their program should be

the main motivation source.

Kafai and Burke (2013) mentions about 3 shifts in programming: First, shift from code
to applications in which students create programs rather than coding exercises; second,
shift from tools to communities, where tools like scratch and Al provide an intuitive
environment, it is also important to create a community as well; third shift from
creating from scratch to creating via remix, programming is not an individual activity
anymore and students should use samples and sharing as well. Those 3 shifts should
be taken into consideration when creating any programming course to keep up with

the new programming paradigm.

Saito and Yamauara (2013) stated that traditionally “There are two approaches in
learning a programming language: a bottom-up approach (BUA) and a top-down
approach (TDA)” (p. 16). In BUA, learner first learns the language syntax and
grammar; proceed from basics to details. On the other hand, TDA provides learners a
sample program to let learner study on the sample to understand the language and
programming. Saito and Yamaura (2013) emphasize that advantages of TDA over
BUA it needs a shorter period to understand, students enjoy more from reusing and
understanding the code and focuses more on the program rather than syntax. On the
other hand, TDA could lead students to “I think I understand everything” syndrome
which is understanding the overview of the program but may not understand the detail
(Saito & Yamaura, 2013). Sorva (2013) also states that students could get a concept
wrong with an incomplete understanding with TDA. However, new visual
environments like Scratch or Al could overcome the disadvantages of both approaches.
Users can both create their own application without a syntax and understand every step
of what they have created. Due to its easy-to-understand nature, those environments

14

could integrate the advantages of both approaches. Even with a BUA, they need shorter
period, provides enjoyment, and focus on the program rather than syntax which may
motivate students easily. Motivation in programming education will be examined

thoroughly in this chapter.

2.1.2 Computational Thinking

Computational thinking is defined as an analytic approach to problem-solving,
understanding human behavior by drawing on the concepts fundamental to computer
science (Wing, 2006). People use computational thinking without knowing that they
use it. It should be learned how to use it and encouraged to be used. Computational
thinking can be used while solving a complex task or designing a complex system by
reformulation it into little pieces that we know how to solve (Wing, 2006).
“Computational thinking is often associated with computer science actually is better
understood as extending computer principles to other disciplines in order to help break
down elements of any problem, determine the relationships and solve it with devised
algorithms” (Kafai & Burke, 2013, p. 62). While industry age was demanding
specialized in one job for mass production, information age needs more people with
employees with problem-solving and group-work capabilities. This type of thinking
skills could help people to cope with modern day problems, additionally, it is a desired

quality for business life.

Most of the people still think computational thinking as just about computer science
as it is mentioned before. They confuse about what computational thinking is what it
is not. Wing (2006) lists the characteristics of computational thinking by mentioning

what it is and what it is not, to clarify this confusion as follows:

= Conceptualizing, not programming

» Fundamental, not rote skill

= A way that humans, not computers, think

= Complements and combines mathematical and engineering thinking

= |deas, not artifacts

= For everyone, everywhere

= Intellectually challenging and engaging scientific problems remain to be
understood and solved

15

Computational thinking is no longer a special thinking type for software developers,
computer scientists etc. Wing (2006) also states that “computational thinking is a
fundamental skill for everyone, not just computer scientists” (p. 33). It should be
encouraged to learn not only for computer majors but also for all K-12 and university
students. Although computers are part of our lives nearly 30 years, computational
thinking is not still a part of our curriculum (Kafai & Burke, 2013). Some institutions
take baby steps to meet the needs. For example, Georgia Tech University requires all
of the students including Liberal Arts, Architecture, and Business majors to take a

course in computers science (Porter et al., 2013).

Kafai and Burke (2013) stated that while teaching computational thinking, and
programming language (syntax, properties of the language) should not be the focus of
teaching. An easy to learn programming could help students to focus on computational
thinking and problem-solving rather than focusing on syntax (semicolons, parentheses,
debugging). It is essential for a teacher, especially in an introductory programming
course, provide students a programming-centered learning environment rather than a

programming language-centered environment.

Kwon et al. (2011) propose an integrated learning environment in which students learn
necessary information about programming language for their program when they need
to learn. Instead of the passive use of syntax, programming must be taught in the light
of computational thinking (Buitrago Florez et al., 2017). This minimizes the language
learning section (and of course its cognitive load) and focuses more on the
programming and computational thinking process. One of the pioneers and supporter
of teaching computational thinking is MIT. “MIT Logo Group in the 1960s, and whose
influence persists today through many activities and programs designed to support
computational thinking” (Castelluccio, 2012, p. 67). MIT Media Lab still supports
computational thinking by creating visual programming environments such as Scratch
and Al. Visual programming environments could provide an easier way to learn both
programming and computational thinking. Visual programming and environments will

be examined in the next section.

2.1.3 Visual Programming
From the inventions of programming languages, many tools were created and used to

enhance the learning and motivation of novice programmers (Hooshyar, Ahmad, &
16

Nasir, 2014). Visual programming language is “a programming language that lets
users create programs by manipulating program elements graphically rather than
specifying them textually” (Smutny, 2011, p. 358). Learning syntax could be one of
the barriers that novice programmers face while learning programming. Winslow
(1996) states that novice programmers know the syntax and meaning of statements but
they do not know how to create a program with this knowledge. Novice programmers
sometimes think that programming is the production of program text rather than

controlling computer’s actions at runtime (Sorva, Lonnberg, et al., 2013).

Sorva (2013) states that one way that could help learners to understand program
dynamics is visualization. While most of the teachers use visualization on textbooks
and drawing on paper, some of them use visualization software (Sorva, Karavirta, et
al., 2013). Sorva, Karavirta, et al. (2013) and Ma et al. (2011) emphasize that
visualization software tend to offer a positive impact on introductory programming
courses. Sorva, Karavirta, et al. (2013) also state that visual programming languages
could be also used for visualization. Users can construct programs by dragging and

dropping graphical objects (Falkner & Falkner, 2012).

“Visual Programming could be a good solution to help non-programmers learn
programming more easily” (Hsu & Ching, 2013, p. 120). Visual programming
languages are easier, and closer to human language since it uses representations, while
traditional languages are more powerful in terms of creating complex programs (Lye
& Koh, 2014). Visual programming can help novice programmers to avoid syntax
errors and make programming a more enjoyable experience (Hsu & Ching, 2013).
Focusing on syntax and errors could increase the cognitive load of novice learners.
Students frequently forget to write a semicolon or a parenthesis and stuck in the same
place without knowing what to do (Bennedsen & Caspersen, 2012). Bennedsen and
Caspersen (2012) state that even the students who understand the logic of loops and
statements could not remember how to write it. On contrary visual programming let
them create their program without getting stuck in the syntax. As in Scratch and Al
example, only the specific blocks are relevant to integrate and prevent users from
making mistakes. Soloway and Spohrer (1989) also suggested the use of visual
programming, especially for the novices. Lye and Koh (2014) reported that visual

programming environments can help learners to understand computational concepts

17

more easily without the need to learn syntax. Visual programming languages like
Scratch and Al could provide a handy and fun environment for an introductory
programming course. In the next part, visual programming environments will be

examined.
2.2 Programming environment and Mobile Technologies

In this part of the paper, the main focus is the environment that will be used in the
study: App Inventor. Al is a visual programming environment that is designed to create
applications for Android OS smartphones. To highlight its importance before
mentioning Al, smartphones, Android OS and mobile software implications will also
be examined. Additionally, Scratch (another visual programming environment) will

be examined because of its similarity to the Al environment.

2.2.1 Mobile Technologies and Android OS

Abelson (2009) states that 10 years ago, people’s use of computing was largely
dissociated from real life. Now computers are in our pockets (smartphones), our TV
(smart TVs), in our handbags (tablets) etc. There is an application for nearly anything
to solve daily problems of people or just to entertain them. Especially mobile operating
systems changed people’s lives dramatically. After the development of Apple iPhone
and Google’s Android OS phone, a new generation of computers have risen.
According to the International Data Corporation (IDC: Smartphone OS Market Share,
2017), Android OS is the leader with the 85% market share as of the first quarter of
2017. There are hundreds of thousands of applications in the Android OS’ application
market, called Google Play Store. Android OS offers free and open source
development kit (SDK) for developers. However, developing applications with
Android SDK is complicated for novice programmers and it is complicated to teach in
class. However, Abelson (2009) had a vision for Android where young people -and
everyone- can engage the world of mobile services and applications as creators, not
just consumers. Abelson cooperated with Google to develop an easy to develop visual
programming environment: Al. With Al, (released in 2010) ordinary folks with no
programming experience can write their own applications (Castelluccio, 2012). This
environment can help both students and teachers to develop their own applications

which are not very easy in normal conditions (Soep, 2011).

18

Development of mobile apps attract teachers attention, however, applications for every
need of teacher is not available sometimes (Hsu & Ching, 2013). Most of the teachers
even with little ICT knowledge, can prepare presentations with computer programs,
however, application development is a far more complicated job to do. Designing and
developing mobile apps is still a challenge for teachers without programming
experience (Hsu & Ching, 2013; Tanner & Duncan, 2013). Al could provide an easy-
to-use environment for both teachers and students. Teachers and students could design
their own applications according to their needs. They can also change/edit the existing
projects to reach what they want (Hsu, Rice, & Dawley, 2012). There is a very similar
environment to Al was released by the MIT in 2007. Since it is similar to Al, Scratch

will be examined first.

2.2.2 Scratch

Scratch is an educational programming environment which lets users create interactive
media-rich projects, created by MIT-media lab and Yasmin Kafai’s team from UCLA
(Kwon et al., 2011; Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010). Scratch
project publicly launched in 2007 (Maloney et al., 2010). Novice programmers can
learn programming with interest while creating their own games or animations by
using Scratch environment (Kwon et al., 2011). While Scratch is created mainly for
K-12 students, Scratch has been used for university (including Harvard University and
UC Berkeley) students too (Resnick et al., 2009; A. Wilson et al., 2012).

Scratch has a site that includes projects, tutorials, forums etc. Users can get help from
other scratch users and examines each other’s projects. Core audience of the site is
children between 8 and 16, however adults are also participate to the site (Resnick et
al., 2009) Resnick et al. (2009) stated that scratch users upload more than 1500 new
projects every day, since release more than 3 million projects of 1.5 million registered
members (Meerbaum-Salant, Armoni, & Ben-Ari, 2013) have been uploaded which

are open source and shared with other users.

While creating their programs with Scratch, they also learn creative and systematic
thinking, problem-solving skills, mathematical and computational concepts which are
parts of computational thinking (Lee, 2011; Resnick et al., 2009). Scratch provides an
easy to design environment in which user can even make changes while a program is

running (Resnick et al., 2009). In that way, it also encourages users to experiment.
19

Scratch has recognized as a highly potential first language for first-time programmers
(Tangney, Oldham, Conneely, Barrett, & Lawlor, 2010). Mostly used the first example
of programming, “Hello world” is just a two-piece puzzle in the Scratch environment
(Malan & Leitner, 2007).

Studies also show that students also find Scratch as a fun to use environment (Malan
& Leitner, 2007; Maloney et al., 2010). Scratch environment is coherent with the low
threshold (easy to learn), high ceiling (could be created complex projects) concept
which is a needed feature for introductory programming languages (Su, Yang, Hwang,
Huang, & Tern, 2014). Wolz et al. (2009) reported that after initially learning Scratch,
the students’ transition to Java or C appeared to be easier. Scratch has a very similar
interface and logic with Al. However, Scratch is designed and developed for children
at its core and products of it are animations and games. On the other hand, users can
develop a standalone application for a smartphone or tablet with Android OS. Next

section will focus on Android and its features.

2.2.3 App Inventor

“MIT App Inventor is a drag-and-drop visual programming tool for designing and
building fully functional mobile apps for Android” (Pokress & Veiga, 2013, p. 1).
Google App Inventor for Android was created for users without coding experience to
make simple apps for a mobile phone which was released in 2010 (Bertea, 2011). By
the September 2017, App Inventor has 6.8 million registered users from 195 countries
and in total, 24 million applications were developed by the users (MIT App Inventor,
2017).

In traditional programming learning, it took months to create a program that actually
works rather than a console application like ordering inputted numbers or generating
a list of prime numbers. It only took15 minutes in Al to create sound box application
which is very popular in Google Play Store. Additionally, you can send and install it
to your phone as soon as it is finished. This could increase the motivation of students
toward learning programming. Al has two main component: designer part and blocks
editor part (Pokress & Veiga, 2013). While blocks editor is used for the behavior of
the application (programming part), designer let the user design and place the
components to the screen. A screenshot of the designer screen can be seen below

(figure 2.1). Components selected and dragged to screen to add to the appliaction. The
20

components added was listed in the component section. The properties of each
component can be changed from the properties section. In designer screen, there are
many components to use, including buttons, textboxes, GPS, Bluetooth detectors etc.
User can just drag those components to the screen and add behaviors to them in the
blocks editor (Bertea, 2011).

Palette
User Interface

Layout

Viewer Components

Display hidden components in Viewer e Screenl

Lheck to see Freview o ablet size Ganvasl
_ : e

Properties

Screen1

AboutScreen

Media
2 S Button1
Drawing and Animation AccentColor
Labell [Default
Maps §
AccelerometerSensorl AlignHorizontal
Sensors Left:1 ~
AccelerometerSensor AlignVertical
Text for Button1 Top 1+
S
BarcodeScanner Text for Labelt .
Clock tez_screens hot
$ GyroscoepeSensor BackgroundColor
[0 pefault
LocationSensor
Backgroundimage
NearField None.
d| OrientationSensor CloseScreenAnimation
Default ~
Pedometer
Icon
@ ProximitySensor None.
Social OpenScreenAnimation
Default «
Storage Media
< PrimaryColor
Connectivity Non-visible components Upload File l Default

LEGO® MINDSTORMS®

AccelerometerSensorl

PrimaryColorDark
l Default

Figure 2.1 Designer screen of App Inventor

Al focuses on the functionality of the application. Users can create their applications
intuitively without any programming knowledge just by exploring the components
(Bertea, 2011; Pokress & Veiga, 2013). Visual cues that Al provides, reduces the
chance of errors (Sandoval-Reyes et al., 2011). Al makes application development
considerably easier than a traditional programming language (Smutny, 2011). It uses
puzzle shaped blocks to help students program their application. As it can be seen from
the figure 2.2 below, programming part was made with the color categorized blocks.
Users create their applications by dragging and dropping the blocks to the viewer

screen, and connect or nest them into the compatible blocks.

21

Blocks Viewer

© Built-in

Hcontrol initialize global ([(EZUREIEE Yo | (D"
D Logic

M vatn when .Timer

Moo L gobal new variabie - TGN 0ooa new variavee - AL)
R set - {Gl™ . -1 global new_variable ~

.Colors o

.Variab\es

] Procedures
e Screenl

—A Canvas1

Ll TextBox1

= Button1

Labell

Figure 2.2 Block-based programming interface of App Inventor

Smutny (2011) lists key features of the visual language of Al as

e has no syntax,

e based on idea what happens when component do a certain action
¢ No need for a manual - Drag and Drop

e Restrict users from making mistakes

e Concrete

e Has a powerful library

While the primary audience of App-Inventor is educators and learners, it is also used
by developers, entrepreneurs, and hobbyists (Pokress & Veiga, 2013). Hsu and Ching
(2013) stated that Al has a great potential for novice programmers to develop apps

even for professional needs.

2.2.4 Advantages of App Inventor

The first advantage of the Al is that it provides a powerful medium to teach
computational thinking to students. Al could also provide an easy-to-use environment
to let teachers use for presenting introductory programming concepts. Hsu and Ching
(2013) stated that Al motivates students to learn programming logic and to engage in
the creative problem-solving process. As it was stated before, in traditional
programming environments, students could focus too much on the syntax and less on
the algorithm and logic behind the program. Al could remove this barrier with its no-

syntax environment.

22

Another advantage of App-Inventor is easy-to-test nature for applications. Users can
see what they create concurrently without any need for compiling and running process
which encourage users to develop their apps (Pokress & Veiga, 2013). Additionally,
users can see their applications running both from the emulator (design screen) and
their own smartphone or tablet by using Al Companion app at the same time.
Applications can be tested, used or played immediately on a mobile device or emulator
(Hsu & Ching, 2013). Users also can test their applications by right-clicking to
individual blocks and clicking to “Do it” command to see blocks’ behavior (Pokress
& Veiga, 2013).

It is also applicable for teaching in higher education. In Hsu and Ching’s (2013) study,
participants define designing an app with Al as fun and useful. They want to use the
program they have created in the class. In the same study, even the participants with
programming experience find Al satisfying and incorporate it with Java language.
Pokress and Veiga (2013, p. 2) states that college and high-school faculty have

successfully used Al in their courses over the 4 years.

2.2.5 Disadvantages of App-Inventor

As the advantages, Al has also some disadvantages. One disadvantage of Al is the fact
that, while simple applications are easy to make, complex applications could need
deeper knowledge (Bertea, 2011). Additionally, when programs get complicated,
block designer gets annoying as well (Hsu & Ching, 2013). If there was an option to
switch from blocks editor to text editor, it would be more helpful both for control the

program and to be a step for advanced programming.

Additionally, students may not appreciate the tool that their instructor has provided
(Sorva, Lonnberg, et al., 2013). Based on the teacher perspective, Al could be seen as
a perfect environment for teaching programming, but students may found it childish
or meaningless. Of course, this disadvantage could not be detected without a pilot
study.

2.3 Motivation/Engagement

Motivation is what makes students continue learning by engaging in learning activities

(Boyer, Phillips, Wallis, Vouk, & Lester, 2009). Introductory programming course has

a low retention, and high dropout/failure rates, hence the students may have lower
23

motivation levels (Howles, 2009; Mendes, Paquete, Cardoso, & Gomes, 2012; Schéfer
et al., 2013). Two probable reasons for that are lack of motivation and fear from
programming of students. However, maintaining motivation and self-efficacy,
especially in introductory programming courses, do not have enough attention from
the instructors and organizations (Parhami, 2008; Soh, Samal, & Nugent, 2007).
Additionally, it is hard to constantly maintain engagement in programming education
because failure could lead to confusion and frustration (Bosch & D’Mello, 2015). As
it can be seen in the affect transitions model figure below (figure 2.1), while curiosity
could trigger the engagement, confusion could lead to frustration, and frustration could
lead to disengagement. Those factors should be taken into consideration while

designing the course.

Novelty
(Curiosity)

Impasse s
Detected 65\ 9‘58
Equilibrium)y ¥ Disequilibrium
(Engagement) 4_ (Confusion)
929 Persistent Lack of Control/
Impasse Failure/ Forced Effort
Resolved Hopelessness

—y Disengagement
— (Boredom)

Figure 2.3 Affect Transitions Model (taken from Bosch and D'Mello 2005, p. 201)

The experience in the last 40 years shows that learning programming is hard and
introductory programming courses have a high dropout or failure rate (Bati,
Gelderblom, & van Biljon, 2014; de Raadt, 2007). Students with low computer
experience are likely to be more anxious when starting programming course (Byrne &
Lyons, 2001). Sandoval-Reyes et al. (2011) stated that “motivating students to learn

programming has never been easy” (p. 444). It is also a known fact both from research

24

studies (Mozelius et al., 2013) and personal experiences of the author of this study,
programming courses which are mostly teacher-centered and syntax-focused are found
boring by the most of the students. Instructors should be very careful while designing
a programming course for novice learners because they are likely to be anxious and

negative about the course.

Various educational methods have been proposed over the years to increase student
interest and motivation towards programming and computer science (Kim, Kim, &
Kim, 2013). Hawi (2010) “emphasizes that the social dialogues among students in
class generate better communication outside the class” (p. 52), which will motivate
students and should encourage them both in class and online discussion groups.
Another motivation source should be the environment. Visual programming languages
could provide an environment which is easy to understand and productive in the end.
In that way, students find it enjoying and attractive. Robins et al. (2003) also state that
working on easy tasks especially with graphical output can be stimulating and

motivating.

The most important motivation type in learning is intrinsic motivation. Long’s (2007)
study shows the factors that influence intrinsic motivation in programming education
(figure 2.1). All of the subtopics are about being able to actually do something rather
than writing “Hello World” on console screen. Students should have the chance to

create their own working programs to be motivated about programming.

To be able to solve

my problems on my
own

Autonomy

To be able to be
creative

Intrinsic Motivation

To be able to put
skills in use

Competence

To be able to learn
new skills

Figure 2.4 Factors that influence intrinsic motivation in programming learning (Long,
2007)

25

It should not be forgotten that many students make very little progress in a first
programming course (Robins et al., 2003). The main aim should not be to teach
everything in one semester or it could demotivate student to learn programming.
Teachers should mainly focus on teaching algorithmic and computational thinking to
in @ motivating environment. Robins et al. (2003) suggest that instructors “...need to
motivate students, engage them in the process, and make them want to learn to be
effective programmers” (p. 166). The instructors should put the motivation in the first

place, even before the content of the course, for the first time programming learners.

2.3.1 Ensuring the 3C (Confidence, Competence, Comfort)

A large number of studies showed that students think that programming is difficult to
learn, and teachers also think that it is difficult to teach (Lister et al., 2004; Robins et
al., 2003; Wong, 2017; Yadav, Gretter, Hambrusch, & Sands, 2017). “Engaging
students is critical too deeper learning” (Guzdial & Soloway, 2002, p. 18). Making
sure of student feel confident, competent, and comfortable should be one of the
engagement strategies that instructor implements. Students feel more motivated when
they have a higher level of self-efficacy and competence beliefs (Pintrich, 2003). Self-
confidence is one of the factors that influence motivation, and student motivation is an
important, directly affecting element of computer science learning (Boyer et al., 2009;
Cheong, Pajares, & Oberman, 2004). Wiedenbeck’s (2005) study also shows that self-
efficacy is one of the key factors that affects the outcome of non-majors’ programming
learning. Bergin and Reilly (2005) also reported that self-confidence is strongly
correlated with programming performance. Additionally, students with low self-
efficacy are unlikely to seek instrumental help and ask more unnecessary questions
(Cheong et al., 2004). Katz, Allbritton, Aronis, Wilson, and Soffa (2006) reported that
loss of confidence and decrease of interest might be the cause behind the dropout
problem. Schunk’s (1981) study showed that there is a high correlation between self-
efficacy and achievement. Wiedenbeck (2005) also stated that having more self-
efficacy helped students to get through challenging tasks. Therefore, making students
feel competent and confident throughout the course is important for ensuring the
motivation of the students and reducing the dropout rate. Soh et al. (2007) suggested
adding methods to the curriculum to focus on and measure the self-efficacy and

motivation. Self-efficacy of the students get higher throughout the course according to

26

the observations of the instructor and the interviews conducted at the end of each
semester. Wiedenbeck’s (2005) study also emphasized that post-self-efficacy had a

high correlation with performance.

Robins et al. (2003) stated that according to more than one studies, students reveal how
they are likely to do in the first two weeks of the programming course and many of
them make very little progress in a first programming course. “The exploratory
findings suggest that student motivation is an important component of the process by
which students come to understand computing.” (Boyer et al., 2009, p. 114). Wong’s
(2017) study put forward that students are afraid of programming because it is too
complex for them. Lack of performance affects confidence, study habits, engagement,
retention (Falkner & Falkner, 2012). It is important to keep the motivation of the
students high in the beginning of the course to help them feel confident. Gasparinatou
and Grigoriadou (2011) reported that learners with appropriate knowledge tend to take
the path of least resistance. Therefore, as Reigeluth (1999b) suggested for any
instructional design, tasks should be provided simple to complex. Especially initial
course material should be simple and they should be expanded as students being more
experienced (Robins et al., 2003). In addition to the simple to complex tasks, there
should be an artifact on the hand of the student at the end of each task. In this way,
students could say “I know programming” which is also relevant to the last two steps
of Keller’s (1987) ARCS model: Confidence and Satisfaction. Wilson and Shrock’s
(2001) study showed that comfort level which is determined by the anxiety level of
students while working on assignments, is the best predictor of success in an
introductory computer science course. Constituting a comfortable and relaxed
environment regarding classroom, communication medium and communication itself
is directly in relation with the engagement level of the student. When students are more
engaged and motivated to the course, they would be more successful as the studies

above suggested.

2.3.2 Communication

Peer help with the additional sources can be effective throughout the course (Soep,
2011). Students’ asking for help from other students is their first option (Araujo,
Bittencourt, & Santos, 2018). Student control during the course hours may be an
important motivator for the students (Boyer et al., 2009). Students who are less

27

comfortable socially may avoid help-seeking (Cheong et al., 2004), however, using
the communication medium as the main communication hub could help those students
to communicate with their peers. Sanders (2002) stated that the most common problem
among students was finding time to meet and work together. Use of communication
medium could overcome the time-consuming part of working together. Positive
feedback with correction during the course and for assignments submitted to the
communication medium increases student’s self-efficacy which is directly related to
success (Boyer et al., 2009). Using communities are helpful to build a sense of
belonging, to develop a sense of self-confidence, and to improve learning (Howles,
2009). Using a communication medium as the hub of the community was decided in

this study, even though it has some flaws.

There are two different types of help-seeking: executive help-seeking which is
requesting from someone else to complete the task and instrumental help-seeking
which is requesting necessary assistance to complete a task (Cheong et al., 2004).
Cheong et al. (2004) stated that while executive help-seeking is not a desired behavior,
instrumental help-seeking is a useful and adaptive behavior. Instrumental help-seeking

should be encouraged through the communication medium and in-class collaboration.

Communication with instructor is important for introductory programming courses as
well as others (Howles, 2009). Cooperation and communication with their professor
lead students to have greater motivation to learn and better results in learning. “Student
must construct knowledge assisted by guidance from the instructor and feedback from
other students.” (Buitrago Florez et al., 2017, p. 843). Additionally, communication
among students during the course and out of the classroom should be allowed at all
times (Williams, Wiebe, Yang, Ferzli, & Miller, 2002). Collaboration activities like
pair programming, group code writing during the course hours could promote learning
(Bati et al., 2014). Creating a closer relationship between students and instructors
through a sense of community could lead to enthusiastic engagement and team spirit
(Bati et al., 2014; Bryson & Hand, 2007). Wilson reported (2004) that communication
between instructor and students increases both the success and the motivation.
Moreover, Howles (2009) reported that it is the communication that affected

satisfaction positively not the change of instructor himself.

28

2.4 Gap in the Literature

Robins et al. (2003) reported that “Majority of studies about programming education
focus on program comprehension, often in experts, and typically based on
experimental studies” (p.162). There is little research regarding beginner level
programming students who are non-CS majors and by collecting in-depth qualitative
data from students. Only qualitative research studies could reveal the topics like
communication among students, the friendship of the students, and the effects of the
emotional side of the participants as a whole (Cheong et al., 2004). There are not many
studies or practices that asking students for course improvement suggestions without
providing them predefined choices (Sampaio & Sampaio, 2012). This study aimed to
create a better course with students throughout the semester. Instead of comparing
environments, or methods as most of the studies in the literature put forward, this study
focused on exploring the possible improvement with an in-depth and holistic approach.

29

30

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will explain and clarify the methodology of this study. This chapter
consists of the research question, research design, description of the setting and the
course, participants of the study and sampling, researcher’s role and potential ethical

issues, data collection, data analysis, and trustworthiness of the study sections.
3.2 Research Questions

Purpose of this study is to extract instructional strategies, recommendations, and
experiences from and for an introductory visual programming course (named as Visual
Programming with App Inventor). Review of literature showed that programming
courses are seen as difficult, abstract and complex by the students. This study aims to
create a course that copes with those challenges with the help of instructional
technology. Main research question of this study and the sub-questions of the research

question are:

What are the instructional strategies and recommendations to develop an
efficient, effective and engaging introductory programming course for non-CS
majors?
¢) What are the instructional strategies and recommendations for the
preperation part of the course?
d) What are the instructional strategies and recommendations for the

implementation part of the course?

To answer those questions, interviews were conducted with the students; progress of
the students was observed throughout the course, and posts and discussions of the
students from Facebook group of the course were also examined. Additionally,
relevancy of the findings was checked with the literature.

31

3.3 Research Design

This study aimed to extract instructional strategies, recommendations, and experiences
for an introductory programming course. An introductory programming course was
designed and reshaped after interviews and observations. Investigating research
methodologies and designs let the researcher see one specific framework the best fitted
in such a study. This study was conducted under the Design-Based Research
framework. Design-Based Research itself is not a methodology, it can be called a
research approach or framework (Herrington, Mckenney, Reeves, & Oliver, 2007).
Under this design framework, 3 different qualitative data collection types were used:
Interviews, observations, and documents (Facebook group discussions and posts). The
qualitative research methodology was followed during the data collection and data
analysis. Under the following part, Design-Based Research and its implementation in
this study will be examined.

3.3.1 Design-Based Research

First of all, it has to be clarified that what Design-Based Research is and why it was
used in this study. Since the use of qualitative research methodologies were essential
for the research design, and rationale for the qualitative research will also be

investigated afterward.

3.3.1.1 Definition of Design-Based Research
Definition of the design-based research approach is now beginning to clarify but also
differentiate especially in terms of naming it (Van den Akker, Gravemeijer,
McKenney, & Nieveen, 2006). While the most common name is Design-Based
Research to describe this type of research, it has many names in the literature.
McKenney and Reeves (2012) listed those names as design-based research,
development research, design experiments, formative research, and educational design
research. There are also names in the literature such as developmental research, design
studies, formative research/evaluation, engineering research (J. Van den Akker et al.,
2006). Author of this dissertation adopted the term design-based research because as
McKenney and Reeves (2012) stated that (even though they prefer educational design
research) it is the most common name and it represents the design of the study

adequately.

32

Barab and Squire (2004) define Design-based research as “not so much an approach
as it is a series of approaches, with the intent of producing new theories, artifacts, and
practices that account for and potentially impact learning and teaching in naturalistic
settings.” (p. 2). Richey and Klein (2007) also defined Design-Based Research (DBR)
(or design and development research as they call it) as ‘“systematic design,
development and evaluation processes with the aim of establishing an empirical basis
for the creation of instructional and non-instructional products and tools and new or
enhanced models that govern their development” (p. 1). Similarly, McKenney and
Reeves (2012) defined the DBR as a research framework that provides an iterative

solution for developing a structure and to solve complex real-world problems.

McKenney and Reeves (2012) compiled attributes of DBR from literature as
“adaptive, collaborative, contextual, flexible, goal oriented, grounded, integrative,
interactive, interventionist, iterative, methodologically inclusive, multilevel,
pragmatic, process-focused, theoretical, transformative and utility-oriented.” (p. 13).
While all of them are accurate for DBR, there are more universal features for the
process of DBR. McKenney and Reeves (2012) listed the main features of DBR as
theoretically oriented, interventionist, collaborative, responsively grounded, and
iterative. Similarly Van den Akker et al. (J. Van den Akker et al., 2006) lists the
characteristics of DBR as (1) Interventionist: designing intervention in the real world,
(2) Iterative: cyclic approach, (3) Process-oriented: focus is on understanding and
improving interventions, (4) Utility oriented: measured by its practicality in real
contexts, (5) Theory oriented: based upon theoretical propositions. While those are the
attributes and characteristics of DBR, the next section describes why DBR framework

was selected for this study.

3.3.1.2 Rationale for Design-Based Research
Learning environments are getting more and more complex with the emerging new
technologies and paradigm shifts. Influence of research in education to the classrooms
and practices was loose and indirect (Walker, 2006). Our field needs a different, novel
methodology with a new epistemology to cope with the challenge, in which DBR
seems like the strongest candidate (Dai, 2012; Dede, 2005). Reeves (2006) reported
that instead of more media comparison studies, there is a need for a better approach in

educational technology research.

33

Richey (1997) stated that in instructional design and technology (IDT) field, practice
and research are not sufficiently informed by each other. They are rather disconnected.
Design-Based Research could be an important methodology to fill the gap between
practice and research. According to McKenney and Reeves (2012), the uniqueness of
DBR comes from providing theoretical insights and practical solutions at the same
time, not in a laboratory environment but in the real world/natural environment. While
DBR provides a unique research design to fill the gap, unfortunately, there is not
enough amount of this type of research (Richey & Klein, 2007). Purpose of this study
aims to extract instructional strategies and recommendations to create an introductory
programming course through the practical implications in an educational environment.
Through the procedure, the study intended to develop a course, reshape and construct
a better one from its predecessor. DBR process is an iterative, formative, progressive
and flexible process (Dai, 2012; McKenney & Reeves, 2012). Decker (2006) stated
that DBR could help to make the connection between features of educational
innovation and learning principles. “DBR in education concerned with building,
testing, modifying and disseminating new practices and artifacts for particular
educational purposes” (Dai, 2012, p. 13). This study is coherent with DBR
framework’s nature because it was designed based on the data from a real course, the
new course was shaped on the data, and iteratively implementations were tested and
shaped again. It can be seen that the aim of the study and the characteristics of the

research design congruent with each other.
Sources of DBR come from three main areas:

e Actual workplace settings and projects.

e Technology (especially novel and innovative ones)

e Theoretical questions prompted by current research and development literature
(Richey & Klein, 2007, p. 16)

Accordingly, the research problem of this study emerged from both three categories.
Author of this dissertation lectured lab courses including programming for 4 years
before this study, development of App Inventor environment which provided a new
perspective to programming education, and finally literature support that there is a

need for an effective and motivation introductory programming course for non-

34

programmers which could help lowering drop out rate for a programming course.
Additionally, the purpose of this study was to extract suggestions and instructional
strategies. DBR could provide both theoretical and practical contributions to the field.
DBR contribute to building blocks of theory and ultimately leads to theories
(McKenney & Reeves, 2012). After investigating other methodologies, as the most
relevant methodology, DBR was selected. For such a complex task, an iterative study
was needed to validate the outcome of this study. DBR is more of a framework than a
single methodology that allows the researcher to use a variety of methodologies.
Different types of qualitative data were collected and used to triangulate each other.

Based on those grounds, DBR was suitable for this study.

There are alternative methodologies similar to DBR and applicable to this theory
which were action research, and grounded theory. Both will be examined to clarify the
rationale of DBR in this study. Action research is a methodology “conducted by one
or more individuals or groups for the purpose of solving a problem or obtaining
information in order to inform local practice” (Fraenkel, Wallen, & Hyun, 2012, p.
589). Research questions of action research are different than traditional
methodological approaches (Berg, 2001) which is relevant to this study. “Action
research aims at solving specific problems within a program, organization, or
community” (Patton, 2002, p. 221). While action research is a viable alternative to
DBR, this study did not aimed to solve a specific problem. It rather focused on
understanding what problem is, and implementation of a new and evolving course
which could help the instructors to design their introductory programming course. On
the other hand, grounded theory was another suitable alternative methodology for this
study. Grounded theory is a methodology for building theory from data or as a more
generic sense to denote theoretical constructs derived from qualitative analysis of data
(Corbin & Strauss, 2008, p. 1). Similar to this study, in grounded theory, the theories
(or principles) are not generated before a study begins, but are formed inductively from
the data that are collected during the study itself (Fraenkel et al., 2012, p. 433).
However, it needs a strict constant comparative method to compare the data from
research site with other sites and theoretical knowledge. It also focuses on the process
of creating a theory rather than paricular theoretical content (Patton, 2002). The theory

needs to be generated at the end of study which could take more time than intended.

35

For this study, what will emerge was not expected at the start of the study, it rather
constructed in time. Therefore, even though both the action research and grounded

theory was suitable to this study as the research method, DBR was chosen.

3.3.1.3 Methodologies in DBR
DBR uses a variety of different data collection methods (both qualitative and
quantitative but mostly qualitative), not limited to, but including case studies,
interviews, document reviews, observations, surveys, content analysis, expert reviews,
experiments etc. (Dai, 2012; McKenney & Reeves, 2012; Richey & Klein, 2007).
Common methods used in DBR are presented in Table 3.1 (taken from Richey &
Klein, 2007, p. 40). As it can be seen from the table and literature of DBR studies rely
on qualitative methods more than quantitative methods (Dai, 2012; McKenney &
Reeves, 2012; Richey & Klein, 2007). Data collection in DBR is usually small and
purposive samples, it rather focuses on exploring the theoretical propositions in their
own context than generalization from sample to population (J. Van den Akker, 1999).
This study also consists of pure qualitative methodology due to its exploratory nature.
Richey and Klein (2007) explained why qualitative methodologies preferred over
quantitative ones in DBR as a) DBR resists the over-controlled nature of quantitative
methodologies, b) DBR studies demands exploratory techniques which can be easier
to explain with qualitative methodologies. So it can be said that DBR embraces

qualitative over quantitative methodology.

Table 3.1 Commonly used methodologies used under the DBR framework (Richey &
Klein, 2007)

Type of Research Project Emphasis Research Methods Employed
Product & Tool Research Comprehensive Case Study, Content Analysis,
Design & Evaluation, Field Observation, In-
Development Depth Interview
Projects

Product & Tool Research Phases of Design ~ Case Study, Content Analysis,
& Development Expert Review, Field Observation,

In-Depth Interview, Survey

36

Table 3.1 cont’d

Product & Tool Research Tool Evaluation, Expert Review, In-

Development & Depth Interview, Survey

Use
Model Research Model Case Study, Delphi, In-Depth
Development Interview, Literature Review,
Survey, Think-Aloud Methods
Model Research Model Validation Experimental, Expert Review, In-
Depth Interview
Model Research Model Use Case Study, Content Analysis,

Field Observation, In-Depth
Interview, Survey, Think-Aloud
Methods

3.3.1.4 Model Development Research and Plan of This Study
According to Richey and Klein’s (2007) categorization, DBR consists of two large
categories: Product and tool research and model research. The first category includes
documenting the entire development and design process of a tool or product. On the
other hand, model research ultimately aims to generate a new model or theory by the
light of the new knowledge acquired from practice (Richey & Klein, 2007). The
process and relationship between practices and DBR were summarized by Walker

(2006) as seen in figure 3.1 below.

Improved
Practices
and Policies

Figure 3.1 Process of DBR and Learning (adapted from Walker, 2006, p. 10)

DBR had a priority on information richness and efficiency that it should not only
concentrate on locating problems and shortcomings, but also generate suggestions on
how to improve those shortcomings (J. Van den Akker, 1999). Richey and Klein
(2007) also suggest that models development research does not mean to focus on the

37

entire process for newly developed models. It could focus on a specific part of the
development and/or design process. This study focuses on developing instructional
strategies and suggestions for an introductory programming course to students in the
university level. This study embraced an exploratory research design. As Richey and
Klein (2007, p. 41) stated that exploratory research relates to topics about very little is
known and there are few guidelines to follow. Through the explorative and iterative
nature, guidelines and procedures emerged. DBR studies in nature reshape again and
again after each implementation, due to the nature of the methodology (McKenney &
Reeves, 2012).

T e

E ' v :
Maturing

Analysis Design Evaluation .

Exploration Construction Refiection

Figure 3.2 Iterative Nature of DBR (McKenney & Reeves, 2012, p. 77)

In the instructional technology and education field, predictive research is widely used.
However, it does not meet the needs of educational problems. While predictive
research which dominates educational research field for decades (Herrington et al.,
2007) approaches propose a well-structured system for educational research, DBR in
education proposes an open and an ill-structured system rather than well-structured
(Dai, 2012). In DBR, knowledge is constructed during research (McKenney & Reeves,
2012). Figure 3.3 (Reeves, 2006) shows the steps of predictive research and DBR.
Reigeluth (1999b) states that instructional-design theories should be prescriptive rather
than predictive. DBR is also relevant with prescriptive nature. The similarity of design
research and prescriptive theories could be seen from the figure 3.3. Instructional
strategies that emerged from this study, were also aimed to be prescriptive. It aimed to

guide teachers with principles to create their own introductory programming courses.

38

Predictive Research

Hypotheses Based Experiments Theory Application of
upon Designed to Test Refinement Based Theory by
Observations ‘ Hypotheses ‘ on Test Results ® = Practitioners
and/or Existing
Theories

T‘ Specification of New Hypotheses l

Design Research

Analysis of Development of Iterative Cycles of Reflection to
Practical Problems Solutions Testing and Produce “Design
by Researchers Informed by Refinement of Principles” and
and Practitioners - Existing Design ‘ Solutions in - Enhance Solution
in Coliaboration Principles and Practice Implementation

Technological
Innovations

| 1 1 l

Refinement of Problems, Solutions, Methods, and Design Principles

Figure 3.3 Steps of predictive and DBR (taken from Reeves, 2006, p. 59)

This study also followed the steps of Reeves (2006) suggested. General steps of this
study summarized visually in Figure 3.4. As the first main step of the study
implemented in spring semester 2014. After the first main (or macro) iteration,
iterative cycles continued and the course was opened for a second macro iteration on
fall 2014. Details of the courses and cycles will be presented and explained in the

following parts of methodoloy chapter.

39

Analysis

Development

Testing in the
field

Producing
Design
Principles
from Data

Figure 3.4 General steps of the study

To be more specific, the first design of the study based on the experiences of researcher
and literature support. Richey and Klein (2007) suggested that while developing a
model (or a theory) a dummy model could be developed before implementation.
Merrill (2002) stated that first principles of instruction theory emerged from various
theories and applicable to most of the learning environments. Gardner (2010) stated
that first principles of instruction is “synthesized through a lifetime of research,
practice, and synthesis” (p. 23). First principles of instruction theory was used for the
first design of the study as a starting guide. Merrill (2002) lists the five first principles
as: “Learning is promoted when; a) learners are engaged in solving real-world
problems, b) existing knowledge is demonstrated to the learner, ¢) new knowledge is
demonstrated to the learner, d) new knowledge is applied by the learner, e) new
knowledge is integrated into the learner’s world” (p. 43). Those general principals

were applied to the first version of the design.

40

3.3.2 Qualitative Research

Under the design-based research framework data collected and analyzed according to
qualitative research methodology. Qualitative research has an important role in this
study. Creswell (2007) explained that it is best to use a qualitative study when the
researcher aims to reach to an insider view, have a deeper understanding and clear
view of the picture. Patton (1985) emphasized that qualitative research aims to
“understand situations in their uniqueness as part of a particular context and the
interactions” (cited in Merriam, 2009, p. 14). Creswell (2007) mentions that qualitative
research has an emergent design per se, which could lead to a change of plans during
the implementation of the study. Researcher planned a flexible setting to design the

course and gather the data to use this characteristic of qualitative research beneficially.

3.3.2.1 Rationale for Qualitative Research
This study based on a pragmatic and interpretive research paradigm rather than a
positivist one, because rather than having one and only answer to the question or
having a hypothesis to test, it focuses on building the possible answers through
observations and multiple opinions. Qualitative research uses data for exploring and
building the knowledge inductively in their natural setting, instead of testing a
hypothesis deductively (Creswell, 2014; Merriam, 2009).

As Merriam (2009) explained that interpretive research “assumes that reality is
socially constructed, that is, there is no single, observable reality. Rather, there are
multiple realities, or interpretations, of a single event. Researchers do not ‘find’
knowledge, they construct it.” (p. 8). As the interpretive paradigm suggested research
study should take place in their natural setting to get a clear understanding. Qualitative
researchers tend to gather data from thir natural settings, because it gives them the real
information they want to observe (Creswell, 2014). Merriam (2009) explained the
difference of naturalistic inquiry as taking place in a real-world setting rather than a
laboratory, and whatever was being observed and studied was allowed to happen
‘naturally’ in which researcher interested in understanding the phenomena from the

people who have experienced and extract the essence of it.

One of the most mentioned strengths of qualitative research is having a deeper
understanding of more complex and exploratory research studies. This study sought to

observe an introductory class and design it through the needs of the students. Both
41

feedback from the students during the semester and their opinions after the course
ended were taken into examination to extract the important points for an introductory
programming course. Due to the exploratory nature of this study, qualitative research
was selected under the design-based research as a framework. Qualitative research
could be effective for both contributing to knowledge of a field and to improve the
practice of discipline (Merriam, 2009). Merriam (2009) also stated that the exploratory
nature of qualitative research is relevant to improve a practice through exploration and

discovery.

The mostly mentioned weak sides of qualitative research are lack of causality and
representing the population (Merriam, 2009). However, Merriam and also (2009, p. 5)
express some of its strengths as uncovering the meaning of the phenomenon,
understanding how people interpret their experiences, how they construct their worlds,
and what meaning they attribute to their experiences. Similarly, Patton (2002) stated
that main strength of qualitative research is seeing from the eyes of the participant in

their natural setting.

Qualitative research and data were the most relevant research methodology and data
type for this research study. Merriam (1998) lists the characteristics of qualitative
research as, [1] getting the insider view from participants, [2] human is the primary
instrument, [3] gathering data from its natural setting, [4] employing inductive
research strategy, [5] product is richly descriptive. All of the characteristics represent
the distinctive pertinence. Especially its exploratory, inductive nature helped to
uncover the unknown parts, and make explicit the tacit knowledge about programming
education. Moreover, building the knowledge through the eyes of both participants
and the researcher makes it more suitable for this study.

3.4 Description of the Setting and the Course

The course offered as an elective course all across the university. The name of the
course in registration system of the university was Special Problems in Computer
Education and Instructional Technology. The course was announced throughout the
campus with a poster as seen in figure 3.5. In the poster, information to register the
course was located as well as the first meeting place and date. The unofficial name of

the course was “Visual Programming for Android”.

42

- ™

APPINVENTOR
Uygulama

Gelistirme v

Programlama bilgisine ihtiyac duymadan, akilli
telefonlar igin uygulama gelistirmek ister misiniz? .

Ders Kodu: 4300440 Section 1
First Meeting: 21 Subat 9:00, CEIT EFC111

e e "
) . 0oTi
Iletigim: kykaya@metu.edu tr B O METU £é]

Figure 3.5 Poster to Announce the Course

The course that participants were observed take 14 weeks excluding the first meeting
and project development weeks In total course was 14 weeks long. The course took
place in a computer laboratory at the Computer Education and Instructional
Technology building, METU. The general structure of the computer lab can be seen
in the picture below (figure 3.6). The computer lab was a U-shaped classroom with 12

desktop computers.

Figure 3.6 General Sitting Plan of the Classroom

43

As it can be seen from the figure 3.7, shape and structure of the classroom allowed
students to see each other’s screens, to communicate, and to have discussion. Those

features are not a must, however, it could be helpful.

N

"I
s

Figure 3.7 Picture of the Classroom

3.5 Participants of the Study and Sampling

Participants of this study were novice/non-programmer university students with basic
computer skills. A course was opened up as an elective course in the Department of
Computer Education and Instructional Technology (CEIT), Middle East Technical
University (METU), so it was expected from participants to take the course willingly.
For the first semester, 11 participants have participated in the course. For the second
semester, 7 participants have participated in the course. In total, data collected from
18 university students. Large participants and assessing them could provide an
inaccurate sense of students’ computing competencies. Therefore a small number of

participants were selected to be worked with (Brennan & Resnick, 2012).

Fraenkel, Wallen, and Hyun (2012) stated that one of the most important steps for the
research process is sampling process which involves the procedure and criteria to
select the participants. “Sample selection in qualitative research is usually (but not
always) nonrandom, purposeful, and small, as opposed to larger, more random
sampling in quantitative research.” (Merriam, 2009, p. 16). Purposive sampling
method used to select the participants as it was suggested for a qualitative research
study. According to Patton (2002) strength of the purposeful sampling comes from in-
depth understanding of a phenomenon through the information-rich cases which hold
the important central knowledge serves to the purpose of the inquiry. Purposeful
sampling is mostly preferred on the assumption that the researcher “wants to discover,
understand, and gain insight and therefore must select a sample from which the most
can be learned” (Merriam, 2009, p. 77). Fraenkel, Wallen, and Hyun (2012) suggested

that for the generalizability of the studies, purposive sampling methods are not very
44

decent to use. On the other hand, purposive sampling is appropriate to use in studies
which solely rely on qualitative data (Fraenkel et al., 2012). Under the purposeful
sampling method, one or more strategy could be applied to select the participants
(Patton, 2002), In this study, a two-step strategy was applied in which researcher
started with criterion sampling strategy and continued with the heterogeneous
sampling strategy which will be mentioned later. According to Patton (2002), criterion
sampling strategy under the purposeful sampling used for making sure of participants
qualifies for the needed information. Therefore some criteria were applied to select the
participants. Since the study aims to design an effective course for novice/non-
programmers, selecting the participants from students with advanced programming
skills could bias the results of the study. Additionally, participants should have basic
computer skills to use the environment without getting help. To summarize there were

be 2 basic criteria to select participants were:

1. Participants should have basic computer skills

2. Participants should be a novice or non-programmer

Registered students were selected based on their purpose and background. In addition
to the criteria above, the common grounds of participants were as follows; (1) Students
with the purpose of completing needed credit hours were eliminated to gather a
meaningful data. (2) None of the students had previous experience regarding visual
programming. It should be noted that the students from departments such as Electrical
and electronics engineering or computer science were rejected, since they are not
coherent for this study as participants. In addition, it was aimed to gather data from the
students with different perspectives and from departments to reach a heterogeneous
data. On account of the aim of reaching such data, heterogeneous sampling strategy
was the second step. According to Patton (2002) heterogeneous (or maximum
variation) sampling strategy is useful to reveal different viewpoints for each case and
to reveal the shared pattern of participants from different cases. It was aimed to have
at least one student who was good at programming for each semester. In addition, to
ensure heterogeneity, students who have failed traditional programming and students
with no programming experience were also selected. While students with
programming experience could give an insight about the comparison of two different

programming environments and instructional approaches and strategies that both

45

courses used, students with no programming experience could help researcher to see
the experience of first-time learners and the difficulties they have faced with when
they are learning programming. Since this study included interviews with audio
recordings, observations with video recordings, Facebook group discussions, the
privacy of the participants will be taken care of by the researcher. ldentities and
personal data of the participants will be confidential throughout and after the study and
protected by using code names. Participants, their departments and programming
experience presented with their code names used in the findings part in table 3.2 below
to get a clear understanding of the source of data in this study. The number after the
letter “T” represents the term/semester they had participated, while the number after

“S” used to create a unique code name for each participant.

Table 3.2 Code Names and Characteristics of the Participants

Code Name Department Programming Gender
Experience
(T1_S1) Elementary Math. Education None Male
(EME)
(T1. S2) EME None Male
(T1.S3) EME None
(T1_S4) Computer Edu. and Ins. Good Female
Technology (CEIT)
(T1_S5) CEIT Failed (C++) Male
(T1 S6) Elementary Science None Female
Education (ESE)
(T1_S7) ESE None Female
(T1.S8) CEIT Failed (C++) Male
(T1. S9) EME None Male
(T1.S10) Physics Introductory (C++) Female
(T1_S11) EME None Female
(T2_S1) CEIT Good Male
(T2_.S2) CEIT Good Male
(T2.S3) CEIT Introductory (C++) Female

46

Table 3.2 cont’d

(T2_S4) Business Administration Introductory (VB) Male
(T2_S5) CEIT Introductory (C++) Female
(T2_S6) CEIT Good Male
(T2_S7) EME None Female

Ratio figure of participants regarding their programming knowledge levels of before
taking the visual programming course can be seen below. Majority of the participants
have no background in programming or have taken and failed a programming course
(56%) before. Additionally, the same number of participants who have taken and

passed a programming course before this course.

Introductory
22%

Figure 3.8 Programming Experiences of Participants before the Course

First analysis and design steps of a DBR study are crucial for the study (Richey &
Klein, 2007). If any problem would have occurred in the first step, the researcher
aimed to reach participants to replace dropouts as soon as possible. However, only one
student dropped the course in the first semester due to the personal problems and took
the course in the next semester. That student was not included in the data for both

semesters as it was not included in the table below.
3.6 Researcher’s Role and Potential Ethical Issues

Different than quantitative studies, the researcher is not separate from the research in
terms of data collection, and interaction with the data source. According to Denzin and
Lincoln (1998), the interaction of researcher with the researched phenomena and the

47

data source shape the outcome by the perception of researcher which makes the
researcher an instrument of the study. According to Merriam (2009) in real life,
researchers are rarely total participants or total observers. In this study, the researcher
was an all-time active participant of the group, however, neither a total participant nor
a total observer. Creswell (2009) suggested that it is important to identify “the biases,
values, and personal background, such as gender, history, culture, socioeconomic
status” (p.177).

In qualitative research, the researcher should report any personal and professional
information that may have affected the data collection, analysis, and interpretation of
the study (Patton, 2002). Knowing the background and the position of the researcher
is essential to understand the study and the outcome of the analysis. Researcher
received his Bachelor’s Degree in Computer Education and Instructional Technology
program. The researcher is also a Ph. D candidate and Research/Teaching assistant in
Department of Computer Education and Instructional Technology, at a public
university in Turkey. As of writing this dissertation, the researcher has 8 years of
teaching experience in computer and programming education. Additional information
about the researcher can be found at the Curriculum Vitae of the Researcher at the end
of this thesis. Researcher was also the instructor of the course he gathered data from.
In this way, he had the chance of observing participants at every critical point.
Additionally, he had the freedom of improving and changing the course based on his
observations anytime he needed. Moreover, after the classroom, students
communicated with the instructor via the social media group. Therefore

communication and observation of the students continued after the course hours.

The ethical side of a research study is also important for both research study and the
role of the researcher. Before starting the study, researcher took the approval from
Human Subjects Ethics Committee of the Middle East Technical University
(Appendix-B). If the participants of the study are trusting and believing the researcher
and the study, they will be more honest and open to communicate (Postholm &
Madsen, 2006). Participants of the course/study were informed verbally and with a
written informed consent form (Appendix-C) about the research study involving the
purpose, data collection types, and process before the course started. Informed consent

form is a form that invites, informs and explains participants what they are being taken

48

part in before research starts (Postholm & Madsen, 2006). Additionally, researcher
also notified students before video or audio recordings began. According to Creswell
(2012), researcher should not create artificial data and share the outcomes with the
participants. Researcher used quotes with the context and explanations to ensure the
reader that data were valid. Additionally, participants were free to reach any outcome
and publication of the research by reaching the researcher. Researcher shared all of the
communication information with them and did not close the social media group to
make certain that participants could reach the outcomes and researcher after the study

any time they need.

Being the researcher and the instructor at the same time could also affect the criticism
and the negative comments of the students. Researcher constantly encouraged students
to put forward their positive and negative ideas during the course and in the interview
sessions. Researcher also stated that any criticism about the course would be even more

helpful to him.
3.7 Data Collection

In this part, data collection procedures and the study was examined. For the qualitative
data collection, three different procedures were followed: Interview, observation, and
documents. The data collection techniques used in a research study are determined by
problem and purpose of the study, the researcher’s theoretical orientation and selected
sample (Merriam, 2009). The three data collection techniques followed to collect and
analyze the data are the main techniques used in qualitative research studies (Fraenkel
et al., 2012). Those procedures were examined in this part of this dissertation.

3.7.1 Data Collection Procedures

A distinct characteristic of qualitative research is that humans are both data source and
primary data collection instrument. Since the qualitative research focuses on meaning
in context, it mainly uses human to human interaction through interviewing,

observation to gather and interpret the data (Creswell, 2007; Merriam, 2009).

Three basic way of reaching to the data in qualitative research are interviews,

observations, and documents (Merriam, 2009). All of those three different types of

qualitative data were collected to reveal the critical sides and to take the views of the

students on the course and computer programming. There were 3 different data sources
49

to answer the research question: Interviews, observation, and documents. Each data
type could be used like quotes, screenshots, excerpts, and combinations of them to
support the findings of the study (Merriam, 2009). Those three different types will be
investigated one by one in the following parts of this dissertation. Central data source
was a semi-structured interview conducted with students at the end of each semester.
As Creswell (2007) and Mason (2002) suggested in qualitative studies, qualitative data
mostly play a main role as the data source. The observations throughout the course and
the documents which are mainly Facebook group discussions and messages of students

supported the main data of this study.

3.7.1.1 Interviews
“An interview is a process in which a researcher and participant engage in a
conversation focused on questions related to a research study. These questions usually
ask participants for their thoughts, opinions, perspectives, or descriptions of specific
experiences.” (DeMarries, 2004, p. 54). According to Merriam (2009), the most
common form of data collection in qualitative research, especially in the education
field (in some cases the only one) is interview. Similarly, the main data source for this
study was semi-structured interviews. A one-on-one interview was conducted with

each student at the end of each semester.

The purpose of interviewing is to enter into another person’s mind and see and
understand their perspective (Patton, 2002). Mason (2002) explained that interviewing
is the only way to access the mind of a person to gather interpretations and
understandings. Even though the interviewer observed the participants throughout the
course, it is essential to gather their opinions verbally through critical questions by
interviewing. As Patton (2002) remarked interviews are also useful to reach data
researcher cannot observe such as feelings, thoughts, and intentions. Moreover,
interviewing is also an important tool to check the accuracy of data which was gathered
through the observation (Fraenkel et al., 2012). According to Patton (2002), the quality
of interviews heavily depends on the interviewer. Therefore, researcher/instructor
himself interviewed with the participants. Since he did know all of the experiences,
perspectives of the participants throughout the course, he easily managed the semi-
structured questions. Bogdan and Biklen (2007) stated that good interviews are the

ones in which participants talk freely and at ease about their opinions and answers.

50

Interviews were conducted after the evaluation of the students ended, and students
were notified about that to let them know whatever their opinion was towards the
course or the instructor, it will not affect their final grade. Moreover, participants were

relaxed because they already know the instructor from the course.

A semi-structured interview was conducted to reveal the opinions and experiences of
the students. According to Fraenkel, Wallen, and Hyun (2012), there are four types of
interviews: Structured, semi-structured, informal and retrospective. Semi-structured
interview was selected to provide a more flexible interview based on the different
answers of the students. There are six types of interview questions: demographic,
knowledge, experience, opinion, feelings, and sensory (Fraenkel et al., 2012).
Interviews in this study included demographic questions, experience questions, and
opinion questions since the research was foucsed on extracting the opinions and

experiences of the students towards programming, course and the environment.

The most common form of recording the interview is tape-recording the data to ensure
that data is preserved for analysis(Merriam, 2009). Interviews should be recorded
audibly by a tape/voice recorder regardless of interview type (Creswell, 2007; Fraenkel
et al., 2012; Patton, 2002). Therefore Interviews was recorded in audio format with
two different voice recorder to make sure every word was recorded clearly. In addition
to recording, interviewer took notes throughout the interviews. Patton (2002)
suggested taking notes during the interviews for more than one reason such as helping
the researcher to formulate new questions during the interviews, keeping the interview
in the right direction, keeping the notes as a backup data etc. Interview questions can
be found in the Appendix A. As it was stated before it was a semi-structured interview.
Additional questions which are called probe and follow-up questions (Patton, 2002)
were asked to students, according to the flow of the interview and the answers of the

students.

3.7.1.2 Observations
Creswell (2012) defined the observation in qualitative research as “...the process of
gathering open-ended, firsthand information by observing people and places at a
research site.” (p. 213). Observation technique was used in this study in order to
examine the in-class activities, experiences, reactions of the students at the time they

occurred. Observation is one of the useful research tools when it focused on solving a
51

research problem and it provides an internal control mechanism to the checks and
balances in producing trustworthy results (Merriam, 2009). It was also used to support
other data sources to triangulate the findings of the study. Merriam (2009) also
emphasized the observation’s duty for triangulation to provide evidence, in

coordination with interviewing and document analysis to strengthen the findings.

Advantages of using observation data in qualitative research highlighted by many
authors. Merriam (2009) stated one advantage of observation over the other data
collection types as it gives the researcher the chance of recording the behavior as it is
happening. Observations have also an important role for interviews. Observations
made before interviews could help to shape the interview questions (Patton, 2002).
Without relevant data of the participants and the phenomenon, interviews and the
follow-up questions used in the interview could be inadequate. Patton (2002) also lists
the advantages of observation in the natural setting as [1] understanding the context,
[2] making researcher more open and inductive, [3] providing researcher an
opportunity of outsider view which he is aware of the routine the others could not, [4]
learning things that participants would avoid talking in an interview. On the other
hand, Mason (2002) pointed out another rationale for the observation data: the
ontological and epistemological position of the researcher is essential for deciding
whether to use observation or not. The epistemological standpoint of this study also

suggests that gathering observational data is relevant to the study.

Role of the observer varies according to the classification in the qualitative research.
Main two different observation types are participant observation and nonparticipant
observation which are based on whether participants take the role as the full participant
or observe the phenomenon without participating (Creswell, 2012; Fraenkel et al.,
2012; Merriam, 2009; Patton, 2002). However, in this study more specific variation of
observation type were used: Naturalistic observation which is more close to participant
observation. Naturalistic observation consists of observing the individuals in their
natural setting in such places as classrooms, athletic events, playgrounds etc. (Fraenkel
etal., 2012).

Observation data mostly consist of unstructured text data and pictures taken during
observations by the researcher (Creswell, 2012). In this study observations made by

researcher/instructor himself, by taking notes about data-rich reactions, answer,
52

questions and behaviors. In addition to notes for three weeks of the first-semester
instructor recorded the video of the class to examine if his observations are accurate
and if there was anything that he missed in general. After three weeks camera was
removed from the classroom to remove its negative effect on the natural behaviors of
participants. The researcher is the primary instrument for data collection in qualitative
research as it was stated before which also could cause some problems regarding
healthy observation data. Subjectivity, interaction, and inter-dependency between
participants and observer are expected and could cause changes in behaviors of
observed and observer (Merriam, 2009). This impact of the observer’s presence on
behaviors of the participants is known as observer effect (Fraenkel et al., 2012).
Another problem to consider while gathering observation data is observer bias.
Observer bias is the factor that interfere with objective observations such as emotions,
prejudices, attitudes, personal interests, values of observers, hasty decisions etc. (Polit
& Beck, 2003). Even though there is no strategy to completely remove those two
negative effects, it is possible to minimize them. Fraenkel, Wallen, and Hyun (2012)
suggested that spending a considerable amount of time at the data collection site could
help to reduce both observer effect because participants would get used to observing
and observer and observer bias, because getting to know the environment, and
observees would strip the observers from their prejudices and made decisions. In this
study, researcher spent time with participants every week about 3 hours in classroom,
and more on Facebook group page to get to know them deeply to minimize the
negative effects of observation.

3.7.1.3 Documents
Documents are also another form of qualitative data collection type. ‘Documents’ is
the third major source of data and an umbrella term which refers to visual, written,
audial, printed and other materials to be studied as the data source in qualitative
research (Merriam, 2009). Documents ranged from official reports to personal diaries,
e-mails etc. (Creswell, 2009). As the third type of data, documents were used in this
study. As Patton (2002) remarked that documents has the potential of holding the rich
source of information. Creswell (2012) also emphasized that documents are a valuable
data source to help the researcher to understand the central phenomenon. In this study,

Facebook group discussions, posts, comments, and messages were used to support the

53

findings. Facebook group posts, discussion, and communication were encouraged by
the researcher to let participants solve problems they encountered with the help of their
peers. In addition to the written data, final projects/presentations of the students were
also examined to reveal their knowledge and misconceptions, whether they were
relevant with their statements in interviews or the observations of the researcher during

the course hours.

According to Merriam (2009), documents are underused as a qualitative data source
in qualitative research studies. Mason (2002) remarked that documents and visual data
could present researcher an alternative angle on or add another dimension to the study,
therefore used more commonly in social science research. Merriam (2009) also
emphasized that having data sources like online data widens the scope of data available
to the researcher, and provide it could establish unexpected communication forms and
relationships.

The Facebook group comments and posts were also observed in real time, however, to
see the bigger picture and to look at the data in a more holistic way logs were saved as
pdf files. The presentations and the project files of the students were also examined to
gather richer data. Documents primarily served the purpose of supporting the findings

of interviews and observations.

3.7.2 Data Collection Process

As it was stated before, Design-Based Research consists of iterative cycles which are
called micro, meso and macro cycles (Dai, 2012; McKenney & Reeves, 2012; Richey
& Klein, 2007). This study also consists of Micro, Meso and Macro cycles. As it was
mentioned before data collected from two different classes for two following semesters
which formed the macro cycle of the study. The course was 14 weeks long including
the first-meeting and project discussions, development and presentation weeks of the
course. For the tentative outline and the topics of the course see table 3.3 below. Of
course the products were the ones that shape the course and rather than focusing on

the topic, the knowledge was built on top of the previous week’s.

54

Table 3.3 Tentative Course Outline

Date Topic

1st week First Meeting & Introduction

2nd week Getting to know the environment
3rd week Using Sprites and Creating Animations
4th week Using Variables

5thweek If...Else Structure and Clock Use
6th week Functions

7th week Loops

8th week Using Multiple Screens

9th week Database and Lists

10th week Working with Sensors

11th - 13th week Project discussions and development

14th week Product Presentations

Macro cycle consisted of 9 weeks. In each macro cycle, there are 2 meso and 4 micro
cycles. Every step (or micro cycle) consists of analysis and exploration, design and
construction, or evaluation and construction (see a planned macro process in Figure
3.9 below, adapted from McKenney & Reeves, 2012, p. 78). As McKenney and
Reeves (2012) stated while researcher can collect data both in analysis and evaluation
phase, and construct according to data he gathered in the design phase. It is not
appropriate to collect data because in this phase researcher use data to reshape the
product or model. Throughout the coherent cycles of the study, data were collected
regularly, to be more specific each week as observation data. The researcher was also
the lecturer of the course hence a constant observer of the course. Through 9 weeks
researcher observed the participants each week, however main data collection was

occurred at the end of the semester by conducting interviews with students.

55

2 week 2 week 2 week 2 week 1 week

’ Design and ’ Design and
Construction Construction

Micro Micro Micro Micro Micro

Evaluation

Analysis and

Analysis and

and
Reflection

Exploration

Exploration

Meso Meso

Macro

Figure 3.9 Process of DBR (adapted from McKenney & Reeves, 2012, p. 78)

Throughout the data collection process, researcher will observe the students and their
behaviors. As it was stated before, naturalistic observation took part for observation.
Researcher is also a part of the setting naturally and actually participates in the
classroom that he observed and participants know that observations are being made
(Fraenkel et al., 2012). During the data collection, in addition to notes and memory of
observer, video recordings were also taken for the first three weeks since for that
process researcher was still foreign to participants and their characteristics. According
to Fraenkel, Wallen and Hyun (Fraenkel et al., 2012) recorded observation permit

researcher to investigate the critical points repeatedly.

After the course ended interviews were conducted as it was stated before. Before the
next course started researcher examined the gathered data which includes interviews,
observation notes, observation videos, and Facebook group discussions to rebuild the
course. The same process started over with new course started. Through the cycle and

iterations, instructional strategies and suggestions were extracted.
3.8 Data Analysis

Data analysis in qualitative research studies is the process of searching and arranging
the collected data such as interviews, fieldnotes, and other materials to understand and
present them to others (Bogdan & Biklen, 2007). In this study, 3 different qualitative
data source were used under the framework of Design-Based Research: Interviews,
observations, and documents. Interviews with the students were the main source of
data of this study. Therefore the main structure of the findings consisted of interview
data. However, all of the qualitative data sources were analyzed similarly. According

to Creswell (2009), analysis of qualitative data is like peeling off the layers of onion

56

one by one to reach the core. Researcher of this study also used qualitative findings to

reach the cores of the instructional strategies for a visual programming course.

At the end of each semester, interviews were conducted with every student as it was
mentioned in the data collection part. An example of interview questions can be found
at Appendix-A. Interviews were recorded digitally by two different recording device
and transcribed verbatim. “Transcription is the process of converting audiotapes
recordings or fieldnotes into text data.” (Creswell, 2012, p. 239). Interviews were
transcribed by the researcher to get a general picture of the data, and insights from the
data as Merriam (2009) suggested, rather than hiring somebody to do it. Even though
those transcriptions are only raw data of the study, it shed a light of where the study is
heading. A general mistake that is being made by the researchers is waiting for data
collection to be completed, and then start to analyze. Merriam (2009) stated that this
mistake leads researchers to drown in the hundred pages of data. She suggests that the
researcher should start analyzing data right after the first data were collected. As Patton
(2002) declared that there is no strict line between data collection and analysis in
qualitative research. After transcribing the data, all of the transcriptions were printed
and read by the researcher. Patton (2002) suggested that reading and checking the
transcriptions is beneficial to get a sense of the whole. Data were analyzed with NVivo
10 software which is a qualitative data analysis tool. Nvivo offers a complete toolkit
for both visual and textual qualitative data (Creswell, 2012). Qualitative data analysis
tools help researchers to read, organize, review, and categorize the qualitative data
acquired from texts, pictures, or videos more easily and faster. (Creswell, 2012; Patton,
2002).

According to Creswell (2012), qualitative data should be reduced and transformed to
make it more accessible, understandable and be able to draw out conclusions. Meaning
of reducing and transforming data is focusing on the important parts of the answers
and transform them into grounded themes and theoretical conclusions (Creswell,
2007). Qualitative analysis usually starts as an inductive process which is a primary
characteristic of qualitative research that researcher should figure out the possible
patterns from the data (Patton, 2002). The most common technique to analyze the data
among researchers is coding (Fraenkel et al., 2012) in which the researcher of this

study used the same. In this study, interviews were analyzed and transformed into

57

codes to create a frame and make sense of the data instead of dealing with raw
hundreds of pages of data. Coding is a process in which researcher make sense of data
and label them the segments with short names representing the information in that
segment (Creswell, 2012). The form of coding that inductive and open to any type of
information is called ‘open coding’ generally (Merriam, 2009). According to Lincoln
and Guba (1985) a code should have two characteristics: First, it should be to the point
of the study that it should provide some understanding of the research study; second,
the code should represent the data by itself without a need of additional information
other than the broad context of the study. Codes were checked for consistency and
accuracy to see their similarities and differences before creating the themes. This
technique is called constant comparison which is a method used in the creation of the
codes to check within and between cases (Gibbs, 2007). After creating the codes, codes
were formed into categories to generate the themes of the research study. Themes are
the categories which were constructed after gathering similar types of codes under
them (Merriam, 2009). Themes are a core element of qualitative research to form a
major idea by collecting codes together (Creswell, 2012). The process of the data
analysis can be seen from the figure 3.10 (adapted from Creswell, 2009). This process
also coherent with the epistemology of Desing Based Research. DBR also suggests
that knowledge should be constructed in the beginning and re-constructed and

validated in the light of new data.

58

Interviews, Observation Notes, Documents

A 4
Reading Through All Data

Initial analysis

A 4
Coding the Data with NVivo

Creating Themes from the Codes

Interpreting the Meaning of Themes

Figure 3.10 Data Analysis Process (adapted from Creswell, 2009)

\Y
a
I
[
d
a
t
[
0
n

Observation notes that were taken during the class and the video recording of the
course were also analyzed using the same process and tools with the interviews.
Another source is documents which were consisted of Facebook group posts and
comments. Patton (2002) suggested that deductive approach can be used in the
confirmatory stage of analysis. Coherently, in the final/confirmatory part of the coding
process, remaining codes that were not placed under any categories, deductively tested
if they fit into one or could be generated into a new category. After creating the themes,
the themes were supported with the results of other data sources such as observation
notes and Facebook group posts and comments. Notes from observation during the
class, transcriptions from the critical points of video recordings and screenshots of
every post and comment were also transcribed and analyzed to be used for
confirmatory part of the analysis. Analysis of those three different data sources was
also used to make sure that the findings are accurate. Triangulation method was used
which is a process of corroborating evidence by using data from different individuals,
different sources or methods of data sources (Creswell, 2012), which will be
investigated further in the following part.

59

3.9 Trustworthiness of the Study

In this part, the validity and reliability of the study will be investigated. According to
Bogdan and Biklen (2007), there is no standard for testing the validity and reliability
in qualitative research studies. Additionally, in qualitative studies, validity and
reliability, are named and secured differently. Merriam (2009) stated that “credibility,
transferability (generalizability), dependability substitutes for internal validity,
external validity, reliability.” (p. 211). Both terms will be used under this section. In
true qualitative fashion, as well as there is no sole truth or objective reality regarding
collected data, analysis and analyzer of the data would also have different aspects.
Although the paradigms and methodologies enlight the path, each person makes sense
of the underlying philosophical influences in his or her own way (Merriam, 2009).
This could be seen as researcher bias or subjectivity that threats the validity. Merriam
(2009) explains that identifying and monitoring the subjectivity and their effect on the
study is an applicable and suggested strategy rather than trying to eliminate these

biases or ‘subjectivities’.

3.9.1 Triangulation

Triangulation is one of the main and most well-known strategies to ensure the
trustworthiness (specifically credibility/internal validity) of a qualitative study
(Merriam, 2009). According to Creswell (2012), triangulation is the process of
corroborating evidence from different individuals, types of data, or methods of data
collection. Triangulating the outcome by using different data sources and methods
would build a coherent justification for the themes created (Creswell, 2009). Patton
(2002) emphasized that the purpose of the triangulation is not reaching to the same
result from different sources, the point of using triangulation is to test the data for
consistency. As it was mentioned before, three different types of data were collected
in this study: Interviews, observations, and documents. Fraenkel, Wallen, and Hyun
(2012) and McKenney and Reeves (2012) also suggest using various instruments and
methods to collect data from the real-life setting enhance ecological validity of the
study by triangulating the data. Patton (2002, p. 556) on the other hand, reported that
there are four Kinds triangulation to contribute to verification: (1) Methods
triangulation, (2) Triangulation of sources, (3) Analyst triangulation, (4)
Theory/perspective triangulation. While not all of the triangulation kinds applicable to

60

all types of studies, using diverse triangulation methods could be helpful to ensure the
validity of the study. In this study, as well as collecting from different sources, data
were collected from two different semesters and from students from different

departments due to the nature of design based research framework.

3.9.2 Intercoder agreement

The intercoder agreement is a strategy to ensure the reliability of the study based on
the use of multiple coders to analyze transcript data (Creswell, 2007). Generating
codes from the raw data is one of the most crucial points of the study. However,
looking from a single point of view could lead to unreliable outcomes. Checking or
generating the codes by different researchers is essential for the reliability of the
research study (Miles & Huberman, 1994). Intercoder agreement did not mean
researchers used the same passage for the exact same code, it rather means that
researcher understands the similar meaning from a passage of text and codes it

similarly (Creswell, 2009).

Firstly three different interview transcriptions were handed over to two researchers.
Researchers were also Ph. D. Candidates and from Computer Education and
Instructional Technology, Middle East Technical University. The purpose of the study,
the characteristics of the participants, and methodology of the study were explained to
the researchers. Coders were given 1 week to analyze the data. After the analysis
completed, coders and the researcher set up a meeting to cross-check their codes. At
the start of the meeting, coders checked and compared their codes with the researcher.
According to Miles and Huberman (1994), agreed code to total code ratio should be
equal to or greater than 80% even if it is ok to reach 70% at the first meeting. After the
calculation, it was revealed that the similarity ratio with one researcher was 81% and
it was 83% with the other one. At the second round, coders discussed the differences
and disagreeing codes to reach an agreement through a codebook. Some of the code
names were changed and one code was added. Additionally, one theme name was
changed (from ‘recommendations for the course’ to ‘dynamics and evaluation of the
course’) and the old theme name was converted into a sub-category (Computational
Thinking).

61

3.9.3 Rich/Thick description

Rich (or thick) description is a validity strategy to transport readers to the setting and
to make results more realistic and richer by giving them as detailed as possible
information about the setting (Creswell, 2009). Creswell (2007) also stated that this
strategy allows readers to make decisions regarding transferability. In this study,
researcher also aimed to explain the setting, themes, context, process, and the findings
of the study. Merriam (2009) does not only suggest the rich description as a strategy
to enhance the transferability of the result to other settings but also explains it as one

of the main characteristics of qualitative research.

3.9.4 Real-life Setting / Prolonged Time

To ensure generalizability (external validity in a classical term), researcher should
collect data from natural work settings and representative samples (Kelly, 2004,
Richey & Klein, 2007). McKenney and Reeves (2012) state that transferability of a
design based research study is increased when conducted under real-world conditions.
Additionally, Creswell (2009) reported that the more time researcher get to spend in
the actual setting, the more chance the more accurate or valid the findings will be,
because of the in-depth understanding of the setting and participants. In this study, as
it was mentioned before, researcher was also the instructor of the study and he
observed and participated the classroom setting at least 3 hours a week, and much more

in the social media group.

3.9.5 Peer Examination

Peer examination is a process in which knowledgeable peers about the topic and the
methodology examines the manuscript and gives recommendations; as Merriam
(2009) put forward that all of the dissertations have this strategy, thanks to the Ph. D.
advisor and thesis monitoring committee. Additionally, researcher shared the study
with his colleagues occasionally to make sure that the steps he followed were decent.
This strategy by involving other people beyond the researcher’s perception adds
validity to the study (Creswell, 2009).

3.9.6 Researcher’s role
Providing researcher’s role (position) is essential in a qualitative study to understand
the analysis, description, and the context. As the researcher gives detailed information

about himself, regarding his experience, background, culture, etc., the bias of the
62

researcher would be clarified and provide a more honest and open result (Creswell,
2009). Researcher’s role was provided regarding his background and experience. By
providing such information, readers could see the researcher’s position, interpretation

and approach to the study and clarify the bias of him/her (Creswell, 2007).

3.9.7 Negative Information

Presenting the negative information that was counter to the themes improves the
credibility of the study, since the real world composed of opposing information
(Creswell, 2009). In the analysis phase, researcher looked for negative versions of the
code for each turn as Miles and Huberman (1994) suggested. In this study, opposing
codes were even presented, since some of the students disagreed on some aspects of
the course. Gibbs (2007) suggested that discussing negative cases fall outside of the
pattern, providing contradictory descriptions could show the complexity of the data
and identify the nature of the study. Providing both sides not only increase the
credibility of the study but also let readers to see different perspectives regarding a
specific topic. Even though the study were not to prove a hypothesis, giving a

contradict point would help for further studies regarding the topic.

63

64

CHAPTER 4

RESULTS

The analysis of the interviews, observation notes, videos, discussions and posts of the
Facebook group and the final project products of the students revealed five themes.
The themes are Communication, Contributions of the course, Motivation,
Programming and Programming Environment, and Dynamics & Evaluation of the
Course. Those themes will be examined one by one with the support of interviews,
observations, and documents. The coding table including themes and sub-themes can

be found in Appendix D.
4.1 Communication

One of the themes emerged from the interviews was communication. Since this theme
includes the communication of students, in addition to the interviews, Facebook logs
and observation notes are also included. Students found communication essential both
between students and student-instructor for the course. Two sub-themes appeared
under the communication and interaction theme: Communication with the Instructor
and between students, and Communication Medium. Especially, communication
medium was seen very important for the students. Firstly, communication with the

instructor sub-theme will be examined.

4.1.1 Communication with the instructor and between students

According to the interviews, 4 of 17 students stated that the communication with the
instructor was very crucial. Both in and out of the course hours, students feel better if
they know they can reach out to the instructor any time they need him/her. Student
T2 _S3 linked her not having any difficulty throughout the course to good
communication with the instructor. She defined the proper communication with the
instructor as one of the best sides of the course since she can ask a question any time

she wanted.

65

Communication with you (instructor) and us was good. When
we have a question or a problem, you always helped to solve
it. That was nice. Because communication with the teacher is
very important to me... Since our communication with you was
good, | did not have any difficulty. This was the side | liked
most for me. Strong communication and being visual...

(T2_S3)

Sizin bizle iletisiminiz iyiydi. Her sorumuz oldugunda problemimiz
oldugunda yardim ettiniz ¢ozdiiniiz. Bu giizeldi. Ciinkii 6gretmenle
iletisim ¢ok énemli benim icin... Sizle iletisimimiz iyi oldugu icin
sorularimiza cevap buldugunuz igin stkinti yasamadim. En sevdigim

yonil buydu. Zetisimimizin kuvwvetli olmasi, gorsel olmasu... (T2 _S3)

Good and continuous communication with the instructor could affect the motivation
of the students not only towards the course but also with the topic. According to the
recorded videos and the observation notes of the researcher, even in the topics students
have had difficulties with, students asked instructor and each other without hesitating.
In addition to asking questions when needed, student T1_S2 also stated that informal
and sincere communication with the instructor affected their attitude towards the

course when asked what he liked about this course.

Your communication with us was good. As | have said, in the
course, it was not like instructor and student, more like a big
brother, little brother. This semester was very nice for us.
(T1_S2)

Sizin bizle iletisiminiz iyiydi. Hani dedigim gibi. Dediginiz derste de
ogretmen dgrenci degil de abi kardes gibi oldu. Cok giizel oldu
bence bu dénem bizim igin. (T1_S2)

Students also found communication with each other important. In both classes for two
terms, students could talk with and help each other during the course hours. Moreover,
after course hours they can discuss the topics through the Facebook group of the
course. One of the students (T2_S3) defined their communication with each other as

fun. He also mentioned that he examined what others did from the Facebook group.

66

We were talking to each other and such. It was fun because of
this. | looked at what others did. | did not use them but to see
how they did it how they solved it. (T2_S3)

Kendi aramizda sey yapryoruz konusuyoruz falan filan. Onun igin
eglenceliydi. Digerlerinin yaptiklarina baktim. Kullanmadim ama

nasil yapmiglar, acaba sunu nasil ¢ozmiisler? (T2 _S3)

If students do not have good communication with the instructor, their attitude towards
the course and the topic could be affected. When one of them has a question in mind,
they want to be able to ask it anytime they need. They think that it is beneficial to close
the gaps and to ask what they did not understand thoroughly. Students also see that as
a positive feature of the course as students T2 S6 and T1 S3 explained. T2 _S6
compared the course with another programming course he took regarding the

communication.

(Regarding other programming courses’ lab) Because in his
lab, the professor comes and says “do this” and leave. When
you ask a question, there is a slight chance to get an answer to
your question. (T2_S6)

Ciinkii labinda hoca geliyor sunu yapin diyor gidiyor. Soru sorunca
cevap alma ihtimalimiz ¢ok diisiik. (T2_S6)

I think it was very active. I don’t think it has any shortcoming.
We were constantly in communication. You always answered

our questions... (T1_S3)

Bence ¢ok aktifti ben herhangi bir eksigi oldugunu diistinmiiyorum.
Zaten sirekli iletisim halindeydik. Siz surekli hani cevap

veriyodunuz. (T1_S3)

It is important to note that positive attitude towards and communication with the
instructor are other sources of motivation as expected. Instructor has to make sure that
students would not be bored by the course or felt distant from the instructor.
Communication should not be limited to course, but it should continue in social media
as a continuous icebreaker between instructor and students. Interacting or even just

posting on the social media could be a good option for the crowded classes to help shy
67

students to be motivated towards the course. T1 S2 has also emphasized the
communication, and the atmosphere of the course is affecting their attitude towards

the course.

Your relation with us and your personality, and the content of
the course, etc. | mean course was interesting. We came to
class willingly without getting bored... Entertaining... I mean
not entertaining, you cannot expect entertainment from a
course, but it is important not to be boring... We were
laughing, we were having fun, and we were working hard
(T1_S2)

Sizin bizle iliskileriniz bi de kisiliginiz dersin icerigi olsun sey olsun
ilgi cekiciydi yani ders. Sikilmadan seve seve geldik. Eglenceli...
Eglenceli degil de hani dersten eglence bekleyemezsiniz de sikici

olmamasi 6nemli bence... Giilliyorduk, egleniyorduk, ugrasiyorduk
(T1_S2)

Other than social media, feeling comfortable when asking a question to the instructor
was also important for students to be motivated towards the course as student T1_S8

remarked.

We felt comfortable. Asking you questions in person was
comfortable. (T1_S8)

Cok rahattik. Birebir sizle ¢ok rahat sorular sorduk. (T1_S8)

Observations revealed that open communication with instructor directly related to
motivation of the students towards course. One of the students emphasized that
communication throughout the course and creating products made the course
enjoyable and stated that “even if the course is very early in the morning, we did not
think that as a course. This is a fun thing to do.” Observation notes also showed that
most of the students felt free and started asking questions without hesitating from the

second week of the course.

According to observation notes, students who knew each other started to help each
other in the first week. Peer support was automatically started. However, some of the

students who did not know each other was not communicating in the classroom. They
68

finished the tutorials without communication. Peer support just needs a little
encouragement for students who do not know each other. Using an informal
communication medium and sincere communication during the class could break the
ice and makes it easier for all students to know and help each other. Also, observation
notes from the second week of the first term showed that one student who finished
earlier than her friends showed her product to her friends before leaving the class and
helped them willingly. Communication during the course occurred regularly which
was driven by need oriented information sharing. A student wished for copy feature
during the course and instructor showed him the similar ‘duplicate’ feature. As it did
occurred for the duplicate feature, students kept sharing their information with each
other instantaneously. Another example from observation notes shows that
communicating during the course inspired benefitting from peer experience. One
student deleted the entire function of blocks by pressing delete button. While looking
for a solution, he explored the checkpoint feature which is similar to “Save as” feature
of the traditional software. After the exploration, his friends benefitted from his
knowledge and they also used checkpoint feature. Observation notes showed that help
from peers was accepted more easily. Students even formed a group to overcome the
problems of their friends.

Free and open communication inside and outside of the classroom should be
encouraged so that students who have difficulty understanding the topic could get
instant help from his peers. Encouraging peer-support was one of the important
strategies came up from the observations. Encouraging peer-support was named as
support-buddies strategy in which instructor will assign some students to each other to
help the needed one. Support-buddies strategy will be examined further in the course
dynamics and the discussion part.

While communication with the instructor is important for students, the communication
medium was also as much important as the former. In addition, the communication
medium also holds the potential to improve student-instructor and student-student
communication. Constant communication with the instructor should be the standard
for an introductory course. Next codes will include the influence of communication
medium and opinions of students towards the use of the medium including

communication with the instructor and between students.

69

4.1.2 Communication medium

One of the main sub-theme of communication and interaction theme is communication
medium since the communication medium which was a Facebook group for this course
was very important and influential to construct a stronger communication outside of
the course hours. Observations throughout the course, interviews with the students and
experience of the researcher as an instructor revealed that one of the essential things
about the communication medium was being common among students.
Communication medium was determined by the consensus of the students. At the
beginning of the first class, instructor collected information about their communication
media usage habits via a short survey to ensure that communication medium was used
regularly out of the class hours. In the survey, a wide range of communication media
was offered to students including email, LMS messaging, Facebook, Twitter, or any
medium they want. All of the students agreed on Facebook as the communication
medium of the course. Social media use is widespread among Turkish people including
university students. One of the most popular one among others is Facebook with more
than 48 million users (Kemp, 2017). All of the students participated the course stated
that they already have Facebook accounts and 17 of 18 students indicated that they
actively use Facebook in their spare times. The one student who had not actively used
Facebook said that he opened the account for another course he took from the
department. Use of Facebook in education is getting popular among researchers
(Manasijevié, Zivkovié, Arsi¢, & Milogevié, 2016). In this course, students were the
deciders of the communication medium, and after the implementation, they were the
ones who evaluated the use of Facebook in the course. Their opinions and views were
taken towards the use of communication medium. Codes under this sub-theme are
“positive sides of the communication medium” and “negative sides of the
communication medium”. Codes under those categories were examined further one by

one.

4.1.2.1 Positive sides of the Communication Medium
Popular and Common Use among Students
Students had both positive and negative opinions about the use of the social media in
the course. Majority of the students (14 out of 18) have stated their positive opinions
towards using the Facebook. Firstly, students declared their positive views about how

70

the Facebook group was suitable for the communication, in general. One of the
positive views about Facebook was that being very popular and common so that
everyone could reach out to each other and students liked using it. Student T1_S1 and
T1 S6 explained” that it was advantageous to use a medium which is popular among

students.

The Facebook group was good in terms of communication...

Almost everyone uses Facebook and use a lot. (T1_S1)

Facebook grubu bence iyiydi haberlesme a¢isindan... Hemen hemen

herkes Facebook kullantyor, bir de bayagi kullaniyor. (T1_S1)

It was good. I mean more communication... was established.

We were certainly sign-in to Facebook. (T1_S6)

Iyi oluyordu. Yani daha cok iletisim... Daha ¢ok saglaniyordu.
Mutlaka giriyorduk ¢iinkii Facebook’a. (T1_S6)

Student T2_S1 also emphasized the effectiveness of using the Facebook

group as the communication medium since it is popular.

It is effective. There are lots of people use Facebook
nowadays. (T2_S1)

According to the observations throughout the course and during the
examination of the Facebook group, it was clear that selecting a commonly
used medium had a positive impact on more than one point. The first point
was that since the students are familiar with the environment and experienced
about how to use it, there was not any learning step for them. Second,
Facebook is a warming environment, since the students were using Facebook
in their spare time. Third, students instantly notified about the homework,
announcements or the posts. Student T2_S7 also had a similar opinion about

the positive aspect of the frequent use of the communication medium.

It was much better in my opinion. We log in Facebook more so

we can see them (posts, announcements) more. (T2_S7)

Bence ¢ok daha iyi oldu. Obiir tiirlii face i daha ¢cok girdigimiz icin
daha cok gorebiliyoruz. (T2_S7)
71

Some of the instructors use the university’s course management system: METU
Online. Students stated that they do not log in to METU Online regularly. It was only
used for some of the courses students take. So, as student T1_S7 put forward that they
would not prefer to use a system they do not even want or need to log in. If they do
not log in, they will not hear the announcements, and they will not be mentally ready

and active about the course.

In my opinion, the Facebook group was good, it was nice. |
mean, [don’t sign-in to METU Online regularly, but Facebook
is always open. | see it all the time. (T1_S7)

Bence Facebook grubu iyiydi, gizeldi. Yani strekli, mesela Metu
Online’a girmiyorum ama Facebook a¢ik oluyor strekli gériyorum.
(T1_S7)

Common use among students makes the other students reachable anytime. Being an
active user of the communication medium out of the course hours was affecting the
attention of the students towards posts and announcements from the course. Students
were thinking that using Facebook as the communication medium is both practical and
convenient for them since they use it all of the time. Using a communication medium
that was used by students in their spare time could motivate them in terms of keeping
them updated. For students who are not active regularly on Facebook, “Notification”
was advantageous regarding being more noticeable. “Notification” feature of the
Facebook has kept student updated about the course. Student T1_S1 was thinking that
notification feature helped the active communication of the course, even when students

were not using the Facebook group.

Even when they are not using, a notification pops up on the

phone when someone shared something on Facebook. (T1_S1)

Kullanmasa bile, telefonuna bildirim geliyo Facebook tan bir seyler
yvazimcea. (T1_S1)

An announcement can be spotted faster or attracts my attention
more. (T2_S5)

Bir duyuru daha huzli ulasiyor agikeasi, ya da daha ¢ok dikkatimi

cekiyor. (T2_S5)
72

Student T2 S5 and T1 S2 were also thinking that Facebook group was faster,

immediate, and more noticeable.

Yes, it happens directly and instantly, we can (learn) who did see,
who did not see, what to do... (T1_S2)

Evet direkt anlik oluyor. Kimin gérdiigiinii, Kimin gormedigini, ne

yapman gerektigini, hemen gsey yapabiliyoruz. (T1_S2)

While the students saw notification feature positively, overusing it could cause
negative attitudes towards the page of the course. Posting too much could draw
students away, bore them with unnecessary information, or tire them as student T2_S6
stated. If students feel bored because of too many postings, they could just turn off the

notification, and that will eliminate the whole advantage of the notification feature.

It was active, | mean it was nice. | mean it was active and not
tiring. For example, I turn off the notifications in other courses.
(T2_S6)

Cok etkindi yani giizeldi. Mesela seydi, etkindi ve yorucu da degildi.
Mesela ben ¢ogu ders seyinde, diger derslerde falan bildirimlerini
kapatyorum. (T2 _S6)

Multi-directional, Interactive, and Open Communication
Some students compared Facebook group to the other communication media they used
before in other courses as it was mentioned in the previous code. According to students
and observations of the researcher, the majority of the other instructors use email to
communicate with students. Therefore, students mostly compared the Facebook Group
with email, since email is a more conventional method for the students regarding other
courses. When student T2_S5 compared the Facebook group with email, he
emphasized the interactive and multi-directional features, while student T2_S7 found

the Facebook group more practical.

It is faster, and a lot more interactive than email in my opinion.
Everybody can talk with each other or everyone can speak up
their mind. (T2_S5)

73

Daha hizli ve mailden cok daha interaktif geliyor bana. Herkes

birbiriyle konusabiliyor ya da herkes fikrini sdyleyebiliyor. (T2_S5)

Otherwise, it took a lot of time to check my e-mails. Therefore,
I think using Facebook is better. (T2_S7)

Obdr tirlt, benim maillerime bakmam cok uzun zaman aliyor

mesela. O yuzden, bence face kullanmak daha iyi. (T2_S7)

Student T2_S5, in additon to his previous idea, was thinking that Facebook
group should be used as the main communication medium in other courses
too.

It was good. I think that it should be used in plenty of courses.

(T2_S5)

Iyiydi bence. Bircok derste olmas: gereken bir sey. (T2 S5)

Using a Facebook group provides a multi-directional and open communication in
which students could, not only communicate with each other and instructor in private,
but also open communication like a discussion page. Therefore, other students can see
and learn from each other mistakes and solutions. Student T1_S8 compares using the
Facebook group instead of email and states that it allow them to learn from each other’s

mistakes and questions.

Using Facebook was seriously helpful and nice because we
learned some things from our classmates’ mistakes and
questions. However, in other courses, our friends
communicate directly via email and learn by himself. | mean

we have a little chance of learning those. (T1_S8).

Facebook ‘u kullanmak cidden ¢ok kolaylik saglad: ve ¢ok giizel
oldu. Ciinkii diger simif arkadaslarimizin hatalart ve sorularinda da
biz biseyler ogrendik orada. Ama diger derslerde diyim arkadas
projede birebir irtibata gecip mail yoluyla sadece kendisi

ogreniyodu yani biz 6grenme sansimiz Zor oluyodu. (T1_S8)

Student T1_S1 found using Facebook group beneficial for not only communicating
with each other but also seeing the posts of each other. Student T1_S5 also found the
discussion-like communication helpful to learn from each other’s questions. Open

74

communication between students could be very helpful for a complex topic like

programming.
We can also talk with our friends and see their posts. (T1_S1)

Bi de arkadaslarimizla da sey yapabiliyoduk iste konusabiliyoduk
paylasimlar: gorebiliyoduk. (T1_S1)

One of the things I liked about this course was our friends’

asking questions to each other on Facebook. (T1_S5)

Dersin sevdigim yonleri sey mesela guizeldi facebookta arkadaslarin

birbirine soru sormasi. (T1_S5)
Another comparison point for communication media was about the atmosphere of the
environment. Some students prefer the informal structure of Facebook to e-mail. They

found e-mail more formal and strict as student T1_S1 stated.

It was good. I mean we could have some difficulties with

email. E-mail is a more formal environment. (T1_S1)

Bence iyiydi. hani o olmasayd: zorlanabilirdik maille falan email

biraz daha resmi ortam oluyor. (T1_S1)

In addition, they want to have the chance of instant and constant communication with
the instructor. The Facebook environment could help to break the ice between students
and the instructor. Student T1 S10 and T1 S11 linked the communication with the

instructor opportunity because of the informal environment of the Facebook group.

So that it was the Facebook environment, we were constantly

in communication with you. (T1_S10)

Simdi Facebook ortami oldugu icin stirekli sizle iletisim halindeydik.
(T1_S10)

I mean, in my opinion, the group was sufficient, all in all... I
mean, | think there was a helpful environment in there. You

were always active in there. (T1_11)

Yani bence grup gayet yeterliydi sonucta... Hani yardim ortami oldu

hocam bence orada. Siz strekli aktiftiniz orada. (T1_11)

75

In addition to those positive views, some students (T1 S2 and T2_S3) stated that
Facebook leads to better communication hence building stronger social interaction and
friendship between students. Students found Facebook as a warmer environment.
Informal communication between students through the social media leads to a warmer

environment, which could affect the attitude towards the course.

Most of us are on Facebook like 5-6 hours a day. We knew it
already what’s in there. There was a warmer environment in

our Facebook Group. (T1_S2)

Facebook’a giinde ¢ogumuz giinde 5-6 saat giriyoruz. Biliyoruz
zaten ne oldugunu orda. Bir de daha sicak bir ortam vard:
Facebookdaki grubumuzda. (T1_S2)

It led to both a social friendship with people in there (course’s
Facebook page) and establishing instant communication with
you. (T2_S3)

Hem oradaki insanlarla bir sosyal arkadasiik kurmamiza sebep oldu
hem sizle aninda iletisim kurabilmemize sebep oldu. (T2_S3)

T1 S5 stated, keeping students communicating and asking questions to each other
openly, was one of the favorite features for the students about the communication
medium. As one of the examples can be seen from the figure 4.1 below, students asked
questions to their friends through the wall of the Facebook group, when they had a
problem with their homework. After the instructor’s answer, another student who have
had the same problem while doing homework, shared his solution with a screenshot of

his way of solution.

76

T1_S8

Viarch 27, 2014 - Ankara

2 problemim var. bi tanesi arag ekrani tamamen terketmiyor yani 300 px de
kaliyor. ikincisi de tekrar butonuna bastigimda sifira gelmeden ara¢ hareket
ediyor. yardimci olabilir misiniz?

o Like () Comment

v Seen by everyone

Instructor Benim digimda aklna fikir gelen var mi? ilk sorun igin éneri
Canvasi ekrandan daha genis tut or: 800px.
March 27, 2014 at 10:56pm - Like - @) 1
Instructor yarin labda ilk 6rnegimiz buna benzer. Ayrica bu 6deve de
bakacagiz. Ama benzer sorunlari yasayan arkadaslar da var nerde onlar
March 27, 2014 at 10:59pm - Like
T1_S4 bu problemi resimdeki gibi blok ekleyerek ¢6zdim

Figure 4.1 Peer Help Using Facebook Group

Another example of students help through the communication medium can be seen
below in figure 4.2. Student asked a question about her problem in homework and
before instructor saw it, another student came up with the probable solutions to the
problem. Through the notification whoever saw the post first he or she could help her
or his friend. If students are motivated to help each other, both helper and the
beneficiary would learn more effectively and permanently. While sometimes students
helped each other, sometimes providing help for more complex problems could need

some encouragement.

77

T2_S3 uploaded a file

6devimde bir gariplik var ama ¢é6zemedim, arkadaslarim ve hocam bir bakip
bana nerede hata yaptigimi sdylerseniz sevinirim. kosan karakterin
framlerini tek tek photoshopda kendim yaptim bu arada o ylizden ¢ok etkili
degil

DumbWaystoDie.aia

Download

o Like (D) Comment

v Seen by everyone

T2_S2 Herhangi bir kisinin oyunu kazanmasi bu sekliyle imkansiz
gérlnuyor. CollidedWith blokunda karakterin garpigmasini kontrol ettirdigin
"hurd" adini verdigin objenin yatay kapsama alani genis oldugu icin, karakterin
o yatay alan bitene kadar havada siziilmesi gerekir. C6zum olarak iki sey
yapabilirsin; ya karakterin havada kalma stresini uzatacaksin, ya da objenin
yatay genigligini daraltacaksin. Perspektifsel degil de Ustten diz bir hat gibi
gorlinebilir. Ha bir de ben oyunun bu kismini videoda felan gérememistim, ana
sitesinde de fark edemedim 2

December 26, 2014 at 9:24pm - Like - @ 2

T2_S2 Bir de sey var, photoshop'ta ugragmana gerek yoktu
karakter hareketi icin. Akademik '¢'alinti metoduyla halledebilirdin <=

http://dumbwaystodie.com/images/characters/toasty.png mesela ¢arpilarak
6ldugu sahnenin kendi sitelerinde yer alan png serisi (2

Figure 4.2 Helping each other without encouragement

As it can be seen from figure 4.3, discussion environment could easily be created with
a little encouragement. In this screenshot, instructor assigned some of the students who
have enough knowledge to solve the asked problem. It is important to select an
environment commonly used by students as it was stated before. In this case, since the
students are already active on the Facebook environment, the help of the students or
instructor would be faster than other environments. As it can be seen from the
screenshot below, after assigning students, the problem of the student was solved
around 3 hours and solved completely in less than 7 hours. Students could help each
other to solve their problems with the right medium and management. They can offer
solutions for the errors they have encountered and provide instant help for each other.
As it can be seen from the screenshot of the discussion, Additionally, the informal
structure of the group helped the discussions to be warmer and friendly rather than
being formal and homework-like which would be discussed further in the next code.

78

uploaded a file

T2_S3

hocam bu sefer olmadi.. yarin tekrar yapicam.

hareket.aia

Download

gb Like () Comment

O T12_S6 v Seen by everyone
Instructor ey T2_S2 T2_S6 T2_.S4 1u

sorunun yardimcilari olarak sizi atadim. Yardimci olunuz &
November 28, 2014 at 8:36am - Like - @) 2

TZ_S Screen ayarlarindan AlignHorizontal't "center " yapman gerek ki
resim sol taraftan ¢ikip gidiyomus gibi gozukebilsin. Tabii sonrasinda resmin x
koordinatinin ayarlarini tekrar yapman gerekecek.

November 28, 2014 at 11:46am - Like -) 2

T2_S2 AynenT2_S4 soyledigi kisim dogru, bir de kuciik bir detay
Screen-Width sayisal deger olarak kullanacagin resmin (Width Degeri)x3
olarak ayariaman isini kolaylastirir. Resim olarak tercihin de suregenligi
saglayici birsey olursa gercekciligi artar. Soyleki resmin baslangic kismi bitis
kismina ne kadar yakin olursa o kadar ¢ok suregenlilik ve gercekcilik sadlanir.

November 28, 2014 at 1:18pm - Like -) 2

T2_S3 dediklerinizi yaptim fakat soyle bir sorunum var.
resim 2i kez geliyor ekran bitince birdaha gelmiyor. ve yaptigimiz sey cok basit
fekat 50. kez deniyorum oluyor kafay yiyecegim az kaldi & &
November 28, 2014 at 2:44pm - Like - @ 1

T2_S2 Birinci resim ekrandan tamamen ¢iktigi anda diger resmin

sonuna tagiman gerekiyor. Genel sureci nasil ayarladin bilmiyorum ama
atiyorum resmin boyutu 300px'dir - canvas boyutun 900'dir ve onar px
ilerletiyorsan, hareket halindeki resmin X'i 0 oldugunda... See More

November 28, 2014 at 2:53pm - Like - @) 2

Figure 4.3 Discussion environment to help each other

Facebook medium was also used to give feedback to students about their homework
and projects. As it can be seen from the figure 4.4 below as an example, uploaded
homework of a student was evaluated and been given feedback by the instructor.
Students stated that he misunderstood the function of a block and after the feedback
he corrected his mistake. Opportunities that medium provides could be essential for

keeping students motivated and active towards the course.

79

T2_s1

PaintPot .aia

Download

ib Like (D Comment

© Instructor v Seen by everyone

Instructor You make everything correctly but camera button. While
your applicaiton have the "after picture” trigger block, it doesn't have any
camera button to open camera

Like

T2_S1 Actually, | thought the "camera button" is like a real
camera pution that 1s provided on some phones, so | did not make it since it is
already on the device. But, it seems | misunderstood, | will be more careful next
time. Thankyou

Like ©

Instructor Camera in App Inventor is one of the "non-visible"
components and it should be connected with some trigger. Don't worry your
app is good enough

Like O

Figure 4.4 Feedback from and Evaluation of Instructor

According to interviews and observations, students prefer Facebook to e-mail because
of some of the additional features Facebook has. Rather than one-way communication,
it has multi-directional communication. Commenting on an announcement or post
makes them feel free. A more interactive, open, multi-directional and informal

communication medium is what students seek for the communication of course.

Communication Medium as a Resource Hub
Another significant finding that students pointed out regarding the Facebook Group
was that they also see and use the Facebook Group as a resource-sharing hub. While
the resources utilized in the course like tutorials, links, etc. were shared in the web
page of the course, announcements, questions about the homework of the students,
progress of their projects were shared in the Facebook group. They use the group to
overcome their mistakes in their homework or projects. In addition to the questions
and shared problems, students also used old questions or posts to overcome their
problems. As it was mentioned before, the openness of the environment also
transforms the communication medium into a resource hub for students who are having
difficulties. Student T1_S1 specified that while he was doing his project, he checked

the posts of other students to draw a path for his project.

80

We can see the posts. We can also use it as a resource when
we were stuck. When | am working on the project, | looked
there to see what my friends did and how they did theirs.
(T1_S1)

Paylasimlar: gérebiliyorduk. Orayr ayni zamanda kaynak olarak da
kullanabiliyorduk takildigimiz yerlerde falan. Ben proje 6devini

yaparken bakmistim, iste diger arkadagslar ne yapmis nasil yapmis.
(T1_S1)

Student T1_S3 thought that the Facebook group was very beneficial to close the gaps
in the topics that they have learned in class. According to the student T1_S5, they
relied on each other as well as the instructor, when they have encountered a problem.
Using the Facebook group to ask questions and help each other, remove the

dependence solely on the instructor.

Actually, 1 can say it was very beneficial to close the gaps.
(T1_S3)

Hatta bayag: bir faydali oldu diyebilirim. A¢iklar: kapatmak icin.
(T1_S3)

It was nice that everyone was asking questions or sharing
something with each other. Because if my friend knows better
than 1 do, about some point where | have some deficiency, s/he

can help me. I mean we are not bound only to you. (T1_S5)

Facebookta herkesin birbirine soru sormasi veya bir seyler
paylasiimast giizel bir sey, ¢iinkii benim eksik oldugum bir noktada
arkadasim benden daha cok bi sey biliyosa o bana yardimci
olabiliyor yani sadece size bagimli degiliz yani o noktada. (T1_S5)

Encouraging students to share any problem they have encountered could help all of

the students to learn from each other’s mistakes. Moreover, just seeing what others

were doing in their project was also beneficial to help students to enrich their

experience about developing their application. In this way, students with more

knowledge about programming can share their experience and skills with first-time

learners. Student T1 S8 emphasized that he benefited from the experience and
81

mistakes of other students by using and looking at Facebook group. Similarly, T2_S6

also found the openness helpful for their learning.

Using Facebook was seriously providing much help and it was
very good. Because we learned some things from the mistakes

and questions of our friends. (T1_S8)

Facebook’u kullanmak cidden ¢cok kolaylik sagladi ve ¢ok giizel
oldu. Ciinkii diger sinmif arkadaslarimizin hatalart ve sorularinda da

biz biseyler dgrendik orda. (T1_S8)

We have a chance to see what others did, not directly but more
like how did he do it, what did he use. (T2_S6)

Digerlerinin yaptiklarimi gorme sansumiz oluyor orda. Direkt sey
olarak degil de nasil yapmig. Ne yapmuis neyi kullanmig. (T2 _S6)

Student T1 S10 has also appreciated the open and transparent structure of the
Facebook group. In addition to the capability of the medium, she also thought that
encouragement of the instructor was also important to keep communication open and

transparent.

Seeing what everybody does was nice, indeed. So that, having
it (Facebook group) was good, and you, saying, ‘write there

(group), do not send a message’ was very good. (T1_S10)

Herkesin ne yaptigini gériiyor olmak guizel tabi. Bu ylzden iyi oldu
grubun olmas: sizin de hani daha ¢ok mesaj degil de her seyi oraya
yazin demeniz gergekten ¢ok iyi oldu. (T1_S10)

According to the observation notes, some of the students recalled the last week’s
examples to complete the tutorial. Retention of knowledge was observed by the
instructor. After that week, instructor kept reminding the older examples to gave them
hints from the tutorials of previous weeks. In addition to this strategy, it could be better
to link the new knowledge with the old one at the start of the course and highlight the
similarities and differences. According to observation notes, students also used the
tutorial files as a resource to solve the current problem. Keeping all of the files
accessible at all times and easy to access could help students to practically reach the

82

information they need at any time they need. Other than checking the previous tutorials
students also used projects of their classmates as a resource. Figure 4.5 shows that one
student who was more experienced regarding programming than others shared the
source file of his project to help his classmates. While one of them replied to the post,
observations revealed that all of the students examined the project to overcome a

problem in their projects.

Merhaba arkadaglar,
Gelistirmekte oldugum projenin .aia dosyasi ekte. Belki yardimci olabilir bazi
yerlerde size.
Blocklarda procedurlere nesne génderme, listedeki nesnelerle iglemler
yapma, kontroller vs. var.
istediginiz zaman sorabilirsiniz.
Kolay gelsin
projei.aia

Download

ik Like (D Comment
Q v Seen by everyone

Herkese 6dev bu uygulamay! agip bir bakin kendi
uygulamaniza uygun olan yerleri inceleyin. Sorularinizi bana ve Erkan'a
sorabilirsiniz. Yalniz sorularinizi 6zel mesajlar degil gruba atarak sorun

Like

ne kadar ¢ok degisken var
Like

| sorular, puan filan igin igine girdiginde biraz daha artacak, ama
minimum diizeyde kullanmaya c¢aligtim degiskenleri. £
Like

Figure 4.5 Using each other's Projects as Resource

4.1.2.2 Negative Sides of the Communication Medium
The researcher also asked students about the negative sides of the course regarding
communication and Facebook group. Most of the students think that there was not any
problem about the communication. The researcher also asked about a problem he
encountered at the beginning of the course to reveal the reason behind this issue: Direct
Messaging. Another possible problem was one communication medium could not be

suitable for all of the students, especially in large classes.

Direct Messaging
One of the problems that instructor encountered at the beginning of the course was
instead of sharing a question or a problem on the wall of the Facebook group, open to

everyone; some of the students asked their questions to the instructor or their friends
83

through the direct messaging. Throughout the course, Instructor encouraged the
student to share anything they have had trouble with on the “wall” of the Facebook
group. If they have a question, the instructor told them to ask that through posts on the
wall. In this way, the students will see each other’s problem and learn from the other’s
experiences, mistakes and difficulties. Even if they do not have any difficulty, they
ought to share the progress of their project. Researcher aimed to create a more open
and transparent communication group, in which students can improve their knowledge
by following the Facebook Group. One problem about the Facebook group was that
some of the students used direct messaging instead of sharing. When the direct
messages from students on the Facebook group were examined, students who had
difficulty while developing their applications used direct messaging. The Interviews
and examination of the documents revealed that students not only sent messages to the
instructor, but also to their friends. The researcher investigated this issue to see the
cause; the main reason was that they were shy as students T1_S11 and T2_S1 put
forward. Since they are new to the domain, they think that their question is too easy to

ask and their classmates will laugh at them.
We are shy. (T2_S1).

I mean, If it was a very simple thing that | did not understand,
I mean not to be in front of my friends’ eyes. I mean, it is a

psychological thing actually. (T1_S11)

Hani bdyle ¢ok basit bir seyse anlamadigim hani diger arkadaslarin
gozii oniinde sey olmamast icin hani bu biraz psikolojik bir sey
ashinda. (T1_S11)

Students T1_S5 were thinking that their questions/problems were too easy to ask and

they were ashamed to ask open to everyone.

For example, there is something so simple, and you look at it
like “is that even a question to ask?” People sent direct
messages... | mean the reason behind this ‘would our friends
laugh at me?’ You know, kids in elementary schools afraid of
raising their hands, because it is an easy question. It was like
that. (T1_S5)

84

Mesela ¢ok basit bir sey oluyo ya bu da sorulur mu gibisinden
bakiyorsunuz. Ozelden mesaj atiliyor... Yani iste arkadaslar bize
giler mi diye bi mantik. Ilkokuldaki ¢ocuklar gibi parmak
kaldirmaya korkan cocuklar oluyor kolay bi soru diye. Onun gibi.
(T1_S5)

Constant encouragement could be needed to get rid of this barrier. Instructor reminded
students to share all of their questions and problems through the wall of the Facebook
group. As it can be seen from the figure 4.6, instructor also used the communication
medium to remind and encourage students to share their questions and problems
through the Facebook wall. This problem was solved after the encouragement of the
instructor. Instructor also made it mandatory to share the progress of their final project
regularly. Students shared the progress of their project with screenshots from design
and blocks screen, once every three days. After the encouragement of the instructor
and other students answered their questions instantly, students also feel relaxed about

sharing their problems.

Instructor

Arkadaglar 6devle ve diger konularla ilgili hem benimle hem de diger
arkadaslarinizla iletisime gecmek igin bu grubun duvarini kullanabilirsiniz.

[fb Like () Comment

v Seen by everyone

Figure 4.6 Providing Encouragement through Communication Medium

Using a Single Communication Medium
Although nearly all of the students liked and preferred using the Facebook, not all of
the features of Facebook were interesting for everyone. One of the students stated that
he only used Facebook for their courses. This showed that if there was not a consensus
about the communication medium of the course, instructors could use more than one
medium or support the main medium with another. The student was checking the
updates from his e-mail account and login Facebook to help others or check the
homework posts. The student was very helpful to his friends when they have a problem

with their project or homework. Without being an active user, he could not see the
85

posts, if Facebook did not have an e-mail notification feature. So, the instructor should
make sure that every student was kept updated.

I mean, I don’t like to use it, so... I checked the posts from my
mail. If there was something | need to write, | was logging in
and wrote it. (T2_S2)

Yani ben de c¢ok kullanmayi sevmedigim igin. Oradaki
mesajlasmalart genelde mail Uizerinden kontrol ediyordum. Yazmam

gereken bir sey varsa girip yaziyordum. (T2_S2)

Other than this exception communication medium was preferable for the students,
however in classes with higher number of students, it could be harder to reach a
consensus. Alternative media could be used to support the students who do not actively
use the medium chosen by the majority.

4.1.3 Summary of the Communication Theme
As the overview of this theme, some of the crucial points have been emphasized which
could help the design of new introductory programming courses. Some of the findings

are also eligible for courses from different domains.

e Constant and strong communication with instructor helps students to eliminate
difficulties of the course
e Informal and sincere communication could affect the attitude towards the
course and the topic
e Choosing an appropriate communication medium based on the opinions of the
students which
o Is commonly used and popular among students
o Allows instant communication between students
o Is convenient and practical

Allows open and multi-directional communication

(@]

e Using communication medium not just for communication and announcements
but also as a hub for resources for students which put the student into the center
and allow them to

o Learn from each other
o Track each other's projects
86

o Ask questions about their problems to instructor or peers

o Check out the old problems and examples

Other
Students

Figure 4.7 Using Communication as a Resource Hub

e Encouraging students to share their problems and questions open to everyone
which will help students to learn from each other’s mistakes and questions
e Encouraging peer help and canalizing students to help each other could also

help to reduce the workload of instructor and prevent instructor overload
4.2 Contributions of the Course

Contributions of the course to the students emerged as another theme from the

interviews and observations.

4.2.1 Transfer/Link to Professional Life

Students were asked if they have a plan in the future regarding App Inventor. In
addition, the researcher asked them if they have a plan to develop an application in the
future. There were two answers come forward among them. Most of the student
emphasized that they will develop an application if they need an application. Need is
what motivates them to continue to use the knowledge, they have acquired. Another
popular answer was career-wise. If students have a career related to programming, they

stated that they are going to use their knowledge to develop an application or teach

87

others what they have learned in the course. And the students from other fields also
thinks that learning programming is beneficial for their career, regarding both material
development, understanding the programming logic and relating their field to

programming.

4.2.1.1 Teaching Programming
Students planning to use the programming knowledge they acquired from the course,
show that they have a clear understanding of programming logic. Some of the students
who were taking the course were from the Department of Computer Education and
Instructional Technology. Main job opportunity for these students is becoming
information technology teacher. They were willing to use the App Inventor

environment to teach their students programming logic as T2_S5 stated.

Yes, | feel like | can use it when | teach programming logic.
(T2_S5)

Evet kullanabilirim gibi geliyor bana. Programlama mantigi

verecegim zaman. (T2_S5)

One student (T1_S11) who was willing to be a mathematics teacher in future, thought
that developing applications would increase the motivation of the students. She also
wants to teach the App Inventor to help them understand that math and programming
are in direct relation. She also stated that she has already some students who are willing
to be a computer engineer but do not like the mathematics. So, she wanted to use his
knowledge of programming to show the relationship between his field and

programming.

I mean, | can make something to increase the motivation of the
children. Mathematics is necessary, to develop an application.
I can show the application and say ‘do this like this’ I mean

you have to use the math. (T1_S11)

Yani c¢ocuklara hani gey yapabilirim onlarin motivasyonunu
arttirmak igin hani. Matematik sart mesela uygulamay: yapmak igin.
Uygulamayr gosterebilirim bunu bdyle yap hani matematik

kullanmaniz gerekiyor. (T1_S11)

88

Another student T2_S4 who was a student in the business administration program
thought that knowing programming could be beneficial for his career. Especially if he

would work for a technology company.

| think that if 1 work for a technology company, | mean
knowing the subject, even if you are a supervisor or the
owner... It is beneficial for understanding what employees do,

or for helping them, or for supervising them. (T2_S4)

Teknoloji sirketinde ¢alissam diye diistiniiyorum, yani konuyu
bilmek, yonetici olsa bile veya baska bir isletmeci olsan bile hani
¢alisanlarin ne yaptigini bilmek ya dayardimci olmak agisindan ya
da denetlemek a¢isindan bence saglar. (T2_S4)

4.2.1.2 Product Development
Developing an application after the course is over, could be an important indicator for
both motivation and knowledge about programming. Interviews revealed that 15 of 18

students are planning to develop applications for business or leisure purposes.

Supporting the Career
They also tend to use their knowledge to develop their application for their
professional life. Most of the students would not/could not choose programming as
their main career. However, they think they can use their programming knowledge to
support their career or develop their own application to help their students or co-
workers. Student T1_S2 feel competent enough to develop his own application, and
since his plan is becoming a mathematics teacher, he thinks that he can develop

applications about education.

For example, we can develop applications now, or at least if
we work on it we can make something out. We develop one on
our own, if we want, we can develop something about
education. It could be for material (development)... I don’t
know... In charter schools, teachers share applications with
their students. Teacher installs it on the tablets. | mean you can
develop simple things like those on your own, why not.
(T1._S2)

89

Mesela uygulama gelistirebiliyoruz ya en azindan artik iizerine
ugraswrsak bir seyler ortaya cikarabiliriz. Bir tane uygulama
kendimiz gelistirdik istersek egitimle ilgili bir seyler gelistirebiliriz.
Materyal olabilir. Ne bileyim... Ozel okullarda falan hani uygulama
paylasryormug hocalar. Hoca koyuyo tabletlere gidiyor. Hani o tarz
bir seyler kendin basitce bir seyler yapilabilir, neden yapilmasin.
(T1_S2)

Student T1 S6 and T1_S7 are students of the elementary science education
department, and they both think that developing applications for their future students
will provide a more effective teaching opportunity for them and fun learning for

students.

Yes if I can do it, it would be very good. For example, this one
(mentioning the project) was about my field of expertise. It
would be nicer to improve it, present it to students, and teach

them basic stuff in a more entertaining way. (T1_S6)

Evet yapabilirsem ¢ok iyi olur mesela bu yaptigim benim alanima
yonelikti ya. Onu daha gelismis bir sekilde yapip, ogrencilere sunup,
onlara hem eglenceli sekilde vermek falan guzel olurdu yani basic
seyleri. (T1_S6)

I can make them (his students) understand a topic better. |
mean, maybe | can make it more entertaining by using games.
(T1_S7)

Bir konu hakkinda daha iyi anlamalarint saglayabilirim belki hani

oyun seklinde hani daha zevkli hale getirebilirim. (T1_S7)

Student T2_S6 also tends to use his knowledge acquired from this course for his
professional life. He has thought about developing an application for the law office he

was working the time he was interviewed.

I can develop simple programs directly related with business
life. It can be for our office. (T2_S6)

Bir de direkt is hayatina yonelik basit programlar sey yapabilirim.
Bizim ofise yonelik de olabilir. (T2_S6)
90

On the other hand, based on the observations, student T1_S9 who was an EME student
was planning to develop an application to make money. Even though his education
was teaching related, he can use his knowledge of programming to switch careers. As
his final project, he made two applications, even if one was enough. He made a
breakout clone using bonibon candies (similar to M&M candies) rather than bricks.
One of his plans was selling the game to the company which makes the candies.

Yes, | have. | have a thought that putting it on Play Store and
being rich. (T1_S9)

Var hocam evet. Play store’a koyup zengin olma gibi bir diisiincem
var. (T1_S9)

Observation during the course showed that relating the knowledge to their or to a
career towards programming career is a strong motivator for the students. Observation
revealed another contribution of the course: students constructed the idea of

developing an application they need.

Need/Leisure Time/Entertainment
Interviews revealed that it is important for students to have the ability to develop an
application by themselves any time they need. Even if they did not want to be a
software developer, or they did not want to use it in their professional life, students
still think that what they have learned provide them the belief and opportunity of
developing any application they need. While some students mentioned before are
planning to use the skills they have from the course, some of the students are planning

to develop applications based on their needs, or just for entertainment.

| took a step like this, so it was beneficial for me. | can do little

apps with App Inventor that will come to my mind. (T1_S4)

Boyle bir adim atmis oldum benim i¢in de ¢ok faydali oldu. Klguk
aklima gelen seyleri yine App Inventor ile yapabilirim. (T1_S4)

If I need anything, I will try at least. (T1_S6)

Ihtiya¢ duydugum bir sey olursa denerim en azindan. (T1_S6)

91

Yes, | will use most likely. I mean, | am going to work on the
list creation. I am going to learn that one... Exclusive to me...

(T1_S10)

Evetyani kullanirim biiyiik ihtimalle. Yani bu liste olugturma iizerine

zaten ugrasicam 6grenicem onu... Kendime ozel... (T1_S10)

Student T1_S2 states that he would prefer to create his own application before he
would look for it in Play Store. He thinks that he would put some effort into it before

using a prepared one.

I mean, if 1 need something rather than searching the Google
Play, I think I can make something by myself. Even if | could
struggle a little, | think I can manage to get my work done.
(T1_S2)

Yani bir ihtiyacim oldugunda direkt Google playden aramak yerine
bir seyler yapabilirim diye diistiniiyorum. Biraz ugrasabilirim basit
de olsa isimi halledecek bir geyler olacak diye diigiiniiyorum.

(T1_S2)

Student T1 S5 exemplified one of the benefits of App Inventor knowledge as

developing applications for the children relatives of his.

It will provide benefits because | have a lot of children

relative... Making something for them would be nice. (T1_S5)

Yarar saglar ¢iinkii bayagi bir akrabam var kiclk ¢ocuklardan.

Onlar igin bir sey yapmak gtizel olur. (T1_S5)

Student T1_S11 emphasized the need as the other students did, and she thought that

she could use it to improve her abilities in programming to develop an application.

In case there is a need for anything, it is something | would
want to do, or | could want to improve myself, I don’t know...
Then | can research and make something in App Inventor.
(T1_S11)

Herhangi bir sey i¢in hani ihtiyag halinde yapabilecegim bi sey ya
da kendimi gelistirmek isteyebilirim bilmiyorum. Hani sunu da
92

kullanayim diye o zaman arastirip bir seyler yapabilirim App
Inventorda. (T1_S11)

Some students think that they can work in the software development field with the

help of what they have learned from the course. Students T1_S8 who is a CEIT student

planning to

develop an application about psychology.

Yes. We are thinking about a project with my brother. We are
thinking about developing something related to psychology.
(T1_S8)

Evet. Bunun icin yani kardesimle ashinda ortak bi proje
diistiniiyoruz... Psikoloji ve psikolojiyle alakali bir sey gelistirmeyi
diistiniiyoruz. (T1_S§)

Another CEIT student, T2_S3 was thinking that if her career will move towards mobile

application

application.

development, or if she needs to develop one, she would develop an

I do not have anything in mind, but I took the course thinking,
“maybe android programming could help me in my career in
future” Now after finishing the course, improving ourselves is
up to us. Of course, if | start to work in that business area, of

course, | will be able to develop an application. (T2_S3)

Aklimda bir sey yok ama ileride belki bir is dalimda android
programlama bana yardumct olur diigiincesi ile dersi almistim.
Simdi dersi aldiktan sonra bunu gelistirmek iistiine koymak artik
bizim elimizde. Tabi ki de ileride bir ig alanina girersem ya da bir
seye ihtiya¢ duyarsam tabi ki de bir program gelistirebilirim.
(T2_S3)

Student T2_S5 was planning to develop an application to meet her need regarding her

hobby.

I am thinking (to develop) about tv series follower app. Like,
I will enter the dates of the shows | watch, at the beginning of
the season. When | touch the one | watched, it will disappear.

(T2_S5)
93

Dizi takip seyi gibi béyle diisiiniiyorum. Kendi izledigin dizileri falan
tarihleri falan donem basinda giricem. Izledigime tiklayacam o
gidecek. En azindan, ben de kaldigim yeri bilecem. (T2_S5)

Observations during the course hours supported the code revealed after the interviews.
Students constantly had the ideas of developing a program based on their needs. One
of the students (T1_S9) even developed a delivery tracking application depending on
his need to track his orders from different online shopping retailers. At the beginning
of the second week, another student came up with an application idea that he needed.
Student asked the instructor what he needs to develop that application which had to be
developed using proximity sensor and was not available at that time in App Inventor.
The student had to give up that idea because of the constraints of App Inventor.
Throughout the course “the need and entertainment” was one of the essential
stimulants for students to go further about programming. Students constantly
generated ideas about their possible projects, after learning new topics and

components.

4.2.1.3 Using Al for Other Courses
Students were also asked whether they could use the App Inventor for other courses.
While some students say that they can use their knowledge about programming in
other courses, they are planning to take in future; others could not make a connection
between them. Student T1_S4 suggested App Inventor as an alternative programming
environment to be used in other courses. He thought that it would be better to use App
Inventor instead of more commonly used Adobe Flash as the development

environment.

It would exceedingly be beneficial for the other courses. In
some courses, we still use Flash. Instead of that, if we can
develop a game or application as the project of that course, I

believe that it would be far more beneficial. (T1_S4)

Diger dersler icin yarar saglar fazlastyla bazi derslerde hala flash
yapryoruz Onun yerine app inventorda bi tane oyun ya da uygulama
yapsak o proje, o dersin projesi kapsaminda ¢ok daha faydal

olacagina inanyyorum. (T1_S4)

94

Some of the non-majors of computer area were also thinking that using App Inventor
could help their courses. Student T1_S10, an EME student, believed that that App
Inventor could be used to support and concretize the subjects in their courses could be

beneficial for them.

I mean my classes mostly based on theorems. Related to that
subject, 1 want to develop an application that collects all
theorems in one place... | mean | want to create a program like
that. (T1_S10)

Ondan sonra derslerimi hani zaten ¢cok teoremlerden olusan bir ders
onlarla ilgili hani bir konuyla alakali tiim teoremleri bir yerde

toplayp hani o sekilde bir program yapmak istiyorum. (T1_S10)

Student T2_S7 who was also an EME student found App Inventor useful to create

materials for her courses.

We develop (teaching) materials a lot. This can be beneficial
in the second semester while developing those. We make a lot
of games, PowerPoint (presentation) and stuff. It would be
easier. (T2_S7)

Mesela seyle alakali olabilir biz material falan ¢ok hazirlyoruz. 2.
Donem onlari hazirlarken isime yarayabilir. Oyunlar falan gok

yapiyoruz PowerPoint sudur budur. Daha kolay olur. (T2_S7)

Observations also revealed that students saw the App Inventor as a beneficial
developing environment for other courses. As student T2_S7 put forward during the
interviews, students from elementary mathematics education in the first semester also
asked during the course hours, if the App Inventor environment would be a good

alternative to PowerPoint to develop educational materials with more interaction.

4.2.2 Computational Thinking

4.2.2.1 Definition/Characteristics of Computational Thinking
Students did not know about the concept of computational thinking as they were
focused on programming solely. However, interviews revealed that they have some

idea about computational thinking with different names or definitions. Even though

95

they were not aware of the concept wholly, they were familiar that programming has
a different kind of logic. According to the observation notes from the first week of the
first term, when instructor asked the student their opinions about the first week, they

stated that it was very good. And when instructor added that next week programming
logic will be more pellucid, they were happier. That means students were expecting

and motivated to learn programming and its logic even though they do not know the

characteristics fully but they were aware.

One of the students (T2_S2) from CEIT department expressed his opinion of the
benefits of this course to the new learners. He named the benefits as mathematical
thinking and strategical thinking which are the concepts both related to computational

thinking ability.

It has two things that could provide benefit. First, it can be a
preparation for programming courses. Plus, mathematical
thinking is in the course so let’s say, you are going to give a
motion (to an imagesprite) you are thinking about coordinates.
You will add an object, again “where to put it in coordinates.”
When you are creating a motion how much to increase or how
much to decrease, | mean it is nested inside mathematics a lot,
so it develops mathematical skills too. Other than that, not as
a course, it provides strategical development. I mean it
improves strategy of the person, or | can say strategical
thinking. (T2_S2)

Yarar saglayabilecegi ki sey var zaten birisi programlama
derslerine on hazirlik gibi bir sey olur. Art: matematiksel diistince
de isin iginde oldugu i¢in siirekli atryorum bir hareket verecekseniz
koordinatlart diigiintiyorsunuz. Bir o0bje koyacaksaniz yine
koordinatlar tzerinde nereye koysam. Hareket saglarken ne kadar
arttirayim ne kadar azaltayim yani bayag: bir matematikle i¢ ice
oldugu icin matematigi de gelistirmis oluyor. Onun haricinde ders
olarak degil de strateji gelistirmeyi de saglyor bir sekilde yani
stratejiyi de gelistiriyor kisinin. Stratejik diisiinmesini diyeyim ya da.
(T2_S2)

96

Another student who was an elementary mathematics education student (T1_S11) also
related the mathematics to programming. She connected the logical reasoning in

mathematics with computational thinking.

Also, there is a thing called logical reasoning. We use it in this
course. Source of it is actually mathematics. (T1_S11)

Bir de mantiksal akil yiiriitme diye bisey var hani. Onu bu derste
hani kullaniyoruz. Onun da kaynagi aslinda matematik. (T1_S11)

The same student was thinking that, after taking the course, the algorithmic thinking
approach changed his way of thinking. Moreover, she expressed some of the
characteristics of computational thinking in the literature (Grover & Pea, 2013; Wing,

2006) without knowing the concept.

At least, | can say that it helps us to think differently. | mean,
as a guide, to reach the end, I can say that it helped me to
conclude it is needed to pass through those paths. You break it

into pieces and reach to the whole. (T1_S11)

En azindan farkh diisiinmemizi sagliyor diyebilirim hani bi yol
gasterici hani bir sona gitmek i¢in bu yollardan gegilmesi gerektigi
gibi bi sonuca varmami sagladi diyebilirim. Par¢alara ayirip sonra

bir bittine gidiliyordu. (T1_S11)

Similar to student T1_S11, during the interviews 7 more students stated that their
thinking styles about their daily routines were changed which will be mentioned in the

following code.

4.2.2.2 Real Life Examples/Realization
Even the simple connections to their daily routines helped them think differently, and
change their perspective and way of thinking. In their daily lives, students realized that
they already were using the algorithmic thinking. At the beginning of the courses,
students were asked to write the steps of how to brew tea. They found out that they
make their daily routines by dividing them into little steps. After the realization that
thinking style got more explicit for them. Integrating a new thinking style to solve the
problems, not just for programming course but also for their everyday activities, could

help them to integrate computational thinking as their living style. After the very basic
97

examples, student T1 S2 stated that learning the basic algorithm examples changed
her perspective

After the first class, my point of view has changed towards
daily life. You know, you told us to brew tea. | mean, | started
to think in that style, wondering how that will do. (T1_S2)

Ik dersten sonra bakis acim degisti giindelik hayata bazen. Hani siz
dediniz ya cay demle. Hani, o tarz seyleri biraz diisiinmeye basladim
bdyle acaba nas:/ olur falan diye. (T1_S2)

You know how to brew a pot of tea but dividing it into step by
step adds you something new. You can implement this to any
field actually... No one says ‘I have this problem, I will write
the algorithm of this’ but when he was thinking, at least, they
come to his mind. (T2_S6)

Cay demlemeyi biliyorsun ama onu bir de basamak basamak
yazmak adimlara bélmek yeni seyler katryor. Her alanda
uygulanabilecek bir sey aslinda. Kimse sey yapmaz hani benim soyle
bir problemim var onun hadi algoritmasini yazayum demez ama en

azindan diistiniirken seyler gelir. (T2_S6)

Students thought that they realized that they were already using the algorithm in their
minds, but this course made them realize and create awareness about their thinking
style. Students stated that they noticed real life, daily routine examples leads to explicit
the algorithm concept.

The things | passed by superficially have become more
attention-grabbing. (T1_S2)
Boyle iistiin korii gegtigimiz seyler simdi dikkat gekici olmaya

baglad:. (T1_S2)

We had been doing some things related to the algorithm, but
we were not aware of it. We had been hearing from computer
engineers (students) like ‘this is my algorithm’ and stuff. This
adds something to us. (T1_S3)

98

Daha énce yapryormusuz algoritmayla ilgili bir seyler ama onun
farkinda degildik hani algoritma (zerine. Bilgisayar
miihendisliginden falan duyuyoduk benim algoritmam falan diye.
Onu iste eklemis oldu. (T1_S3)

It creates awareness. You know how to brew a pot of tea, but
you realize that it is an algorithm, and realize the decision

mechanisms. (T2_S6)

Sey olusturuyor farkindalik olugturmus oluyor. Cay demlemeyi
biliyorsun ama bunun aslinda algoritma oldugu karar

mekanizmalarinn falan farkina variyorsun. (T2_S6)

Even though student T1_S8 have taken a programming course before in the same
department with a textual programming language (C++), he stated that after this course
they have realized they have gained a skill that helps them to see the alternative

solutions and choose the shorter, more practical one.

For instance, you will develop a program. You have two ways;
one is long other is short. This (course) taught me to choose

the short one, | mean, it taught that short way. (T1_S8)

Mesela bir program yapacaksiniz bunun iki yolu var bi uzun yolu
var bi de kisa yolu var. Kisa yolunu se¢meyi 6gretti yani o kisa yolu
ogretti. (T1_S8)

One of the students reported that programming means the translation of the human
mind to the computer. He found programming interesting by its nature. Moreover,
students discovered a new way of thinking; they realized that their minds divide big
problems into little steps just as a computer does. They connect their mind with the

computer’s working style. They also find this way of thinking useful.

I like it because it is challenging how to translate from our

mind to the computer. So it is interesting in itself. (T2_S1)

For the introductory learning... I understood the programming
logic now. | mean, this helped a lot to us to understand the

programming logic. (T1_S2)

99

Ik 6grenim icin... Programlamanin mantigini anladim ben su anda.
Hani ona ¢ok faydas: oldu bence programlama mantigini

anlamamiz agisindan. (T1_S2)
Strategical thinking helps everything. (T2_S2)
Stratejik diisiince her seye yardimci olur. (T2_S2)

In addition to computational thinking, according to the students, real-life examples
make students to learn the fundamental concepts of programming better. T1_ S8 stated

that learning concepts like ‘if” and ‘function’ through daily life example was better.

In class, for instance, when we give examples of real, daily
life, we understood it better. For example, we are learning “if”,
“function” and stuff. We learned those from a daily life
example. It was nicer with that method. It was like integrated
with our lives. We had the chance of exemplifying it as it is so
that we understood them better. (T1_S8)

Derste mesela drnek verirken glnliik hayattan érnekler yapilip daha
iyi bi sekilde anlyyoduk olayr mesela. Mesela if leri ogreniyoruz
fonksiyonlart ogreniyoruz bagka bir seyi ogreniyoruz. Giinliik
hayattan bi ornekle 6greniyoduk bunu yani daha guzel oluyodu bu
sekilde. Bizim hayatimizla da igice girmig oluyodu. Birebir

ornekleme yapma sansimiz oluyordu daha iyi anliyorduk. (T1_S8)

Even though this course was their first time ever to see and try computer programming
for seven of the eighteen participants, during the course they were highly motivated
and curious about programming logic. According to the observation notes, in the first
lab hour of the course, when the instructor mentioned that they will learn more about
the programming logic, especially students with no programming experience were
happy and enthusiastic. Motivation and enthusiasm of students should be encouraged
and fed by the instructor regularly. Being aware of the different thinking style is an
essential step to develop more complex applications. The instructor should give
examples and reminders about computational thinking and its thinking style and

strategies.

100

4.2.3 Learned Concepts of Programming

Students have also stated that they learned new concepts about programming. Students
with no previous programming knowledge stated their general knowledge about the
programming changed their perspective and they learned the programming logic.
Learning programming in itself is important for students with no previous knowledge
since programming was known as challenging and scaring topic to learn. Being more

familiar with what programming could have changed the attitude of the student T1_S7.

I, for instance, had no idea about programming, maybe it gave
me some information about programming. It seemed to me that
which part makes what was too complex, I mean | am more
familiar now. (T1_S7)

Benim mesela programlama yoéninde hi¢ bir bilgim yoktu belki
programlama yonuiinde bana bilgi verdi. Neyin ne ise yaradigini ¢ok

kompleks geliyodu bana biraz hani ona asina oldum. (T1_S7)

I mean, at least [have an idea about programming now. [didn’t

have a clue about what it is, or it is not. (T1_S6)

Yani, en azindan bi fikrim olmus oldu programlamaya dair. Hicbir

sey bilmiyordum nedir ne degildir. (T1_S6)

Certainly, it added something to me. My computer knowledge

has developed even more. I can do things better now. (T2_S7)

Muhakkak bir seyler katti ya. Bilgisayar bilgim bir kere biraz daha
gelisti. Bir seyleri daha iyi yapar oldum. (T2_S7)

Students with previous knowledge about programming gave some examples of what
they have learned better with the help of this course. Student T1_S8 stated that he had
taken a programming course, but some of the concepts like variables have gotten better
after this course.

I understood the variables better... They have gotten better.
(T1_S8)

Su variableslar: daha iyi anladim. Onlar daha iyi oldu. (T1_S8)

101

Even the students with programming knowledge stated that this course could be useful
for the students in their department. They liked some of the concepts they have learned
in this course which they have not in the other programming courses. One of them is
the time concept. Clock component in App Inventor was both found difficult to

understand by some students, but it was also seen as useful.

Our friends who will graduate from our department should

know this, in my opinion. (T1_S4)

Ama bizim bélimden mezun olan bir¢ok arkadagsin bilmesi gerekiyor
bence. (T1_S4)

Another thing is the time concept. I liked the clock very much
because for programmers, I don’t know programming so well
but as far as I can see, there aren’t any time concept in C, C++,

Java. There are loops but there wasn’t much regarding time, in

what we learned. (T2_S6)

Bir ikincisi de zaman konusu ¢ok sey yaptum clocklara ¢ok hosuma
gitti ¢ctnki bir programcilar igin programlamay: tamam ¢ok fazla
bilmiyorum ama benim géordiigiim kadariyla C de C++ da javada
sunda bunda zaman kavrami sey yok dongiiler var ama zaman

olarak da ¢ok fazla bir sey yok bizim gordiklerimizde. (T2_S6)

4.2.4 Summary of the Contributions Theme
Students shared their opinions and experiences regarding the contributions of the

course to them. Students emphasized some of the important parts as follows:

e To be able to develop an application makes students to
o Feel competent
o Feel motivated towards subject
o Change their attitude towards programming and stop them to fear from
programming
e “Need” was one of the primary sources to drive students to develop
applications.
e Connecting their knowledge with their career and using the knowledge from
the course to develop applications for their career
102

According to students, to be able to teach programming by using App Inventor
is another benefit for the career of students
Using the knowledge for other courses with App Inventor is another
contribution based on the interviews. The main use for other courses:
o Alternative development environment for computer related courses
o Rather than preparing passive presentations with PowerPoint,
developing an interactive app
o Support material to concretize the abstract concepts
Another contribution was learning programming or concepts about
programming
o First-time learners stated that they overcame their fear about
programming since they have learned the basic concepts
o Students with previous knowledge indicated that they have learned
difficult concepts better
Activities in the course create change about their thinking styles
o Realization: Real life algorithm examples make students to “realize”
how they divide a procedure or a daily routine into little steps
o Awareness about the algorithms and different thinking and solving
process
o Making their thinking styles explicit
Students named some of the effects of this course to their thinking styles as
they named it:
o Change of perspective
o Strategic thinking
o Algorithmic thinking
o Mathematical thinking
o Logical reasoning
o Programming logic
o Translating mind to computer
o Dividing problems into steps

o Choosing the easier solution among alternatives

103

According to the findings under this theme, “Need” was what keep students to plan
developing applications, after the course ended. Feeding the need with giving
application ideas or uncover their daily problems which could be solved with an
application. Another contribution was students’ using the knowledge for their careers.
Transferring their knowledge to their daily or professional life is essential to help them
to improve themselves. Throughout the course, linking the knowledge to the careers
of the student could be an effective strategy both for motivation and effectiveness of
the course even after the course has ended. Moreover, examples related to their
educational field could also be an effective strategy to help them to see the connection
between the other courses and programming to develop material for those courses.
Students think that they can use App Inventor to develop interactive applications for

their courses that could concretize the abstract topics.

Students were also thinking that this course gave them a new perspective and thinking
style. Students use computational thinking in their daily lives without realizing.
Turning a tacit knowledge into an explicit one could help students to be aware of the
problem and practical way to solve it. According to students, giving real-life problems
and examples assist them to see and evaluate the situation in a different way.

4.3 Motivation

Motivation could be one of the most important factors to help novice programmers to
continue learning. In this theme, what motivates and what demotivates students were
investigated. This course and the environment were related and very close to each
other. Therefore both the environment and the design and strategies emerged from the

course will be examined one by one.

4.3.1 Visual Environment

Visual environments hold potential to motivate the novice programmers towards
programming. Comparing to the textual programming environment, visual
programming environments have some advantages in general with the help of course
implementation. While visual programming is not limited to App Inventor
environment, the students also mentioned some special visual features of App Inventor
environment. Student T1_S2 stated that using blocks instead of textual codes make the

environment more attractive for the first time learner.

104

When blocks are ready-to-use, and everything was hidden
inside codes, the environment became a little more attractive.

For the first time learning... (T1 _S2)

Boyle bloklar hazir her sey kodlar iginde gizli dyle olunca biraz
daha cezbedici ortam oldu. IIk 6grenim icin... (T1_S2)

Student T2_S3 listed some benefits of visual environment as having visual feedback,

visual and concrete products.

| like designing stuff. And also, there is visual feedback
actually. I mean, maybe because we acquire concrete things...
Even though I took the course as an elective course, | labor for
this course the most among others, and | enjoyed this one the
most. It is very good for it to be visual. (T2_S3)

Seviyorum, bir seyler dizayn etmeyi. Bir de geri doniti gorsel
oldugu i¢in aslinda. Yani daha somut seyler elde ettigimiz igin belki
de. Se¢meli olarak almama ragmen dersler arasinda en ¢ok

ugrastigim en ¢ok eglendigim derslerden biriydi. Yani gorsel olmast
cok iyi. (T2_S3)

Same student (T2_S3) who have previous programming experience states that having
a visual product also motivates her to study. This shows that motivation of visual

products are not limited to any environment including the visual environment.

When | worked with Jquery, because | have something visual
in my hands, | was working more enthusiastically, more
willingly. If I explain this with the applications we make with
App Inventor, frankly, I like it more because it is visual and |

worked more enthusiastically. (T2_S3)

Jquery yaptigim zaman gorsel bir sey oldugu icin elimde ben daha
cok daha hevesli ¢aliszyordum daha istekli ¢alisiyordum bunu app
inventorla yaptigimiz programlarla agiklarsam gérsel agidan
oldugu icin benim actkcast daha cok hosuma gitti daha hevesli
calistim. (T2_S3)

105

Student T1 S10 found C++ course as a theoretical course in which she did not
understand what they were making because they did not see a product through the

creation.

That (C++ course) was a little theoretical; we did not see what
we are making. It comes out when we compile but App
Inventor is more enjoyable, we can see directly as an

application. We can see it right on the phone. (T1_S10)

O biraz daha teorik kalyyodu aslinda gérmiiyoduk ne yaptigimiz pek
ashnda yazdwrinca ¢ikiyodu ama App Inventor tabi daha zevkli
direkt uygulama olarak gorebiliyoruz. Telefonda falan direkt sey

yapip gorebiliyoruz. (T1_S10)

As the easier environment was one of the important motivators for student regarding

the course, it also motivates students to develop their own applications in future.

I mean, | can make something that | need, for example. We
made the Google search engine example. | was surprised when
| saw that. | showed that to my friends, and they were very
surprised. It seems like it is very difficult for them, but it was
easy. (T1_S7)

Yani ihtiyacim oldugu bir seyi yapabilirim mesela. Seyi Google gibi
arama motorlart yapnustik bir tane onu gordiigiimde ¢ok
sasirmistim. Arkadaglarima gosterdim falan da nasil yaptin falan
diye ¢ok sasiryorlardi. Cok zor bir seymis gibi geliyodu onlara ama
kolaymis. (T1_S7)

4.3.2 Non-intimidating course design

Course’s non-intimidating design was also another source of motivation for the
students. Since the course was an introductory course and the subject was intimidating
for the most of the learners, the course and the environment should not be too difficult
for the students. Moreover, the instructor should make sure that examples are relevant,
and easy for every participant, and open to development for the fast learners. In-depth

look at the environment and its easy-to-use feature will be examined further in the

106

environment theme. Since it is also related to the motivation, students mentioned that

the easier the environment, the more motivated students.

Student T1_S8 emphasized that two factors affected his learning in a better way. First,
simple to complex sequencing of examples, second, easygoing environment which
provided students a more relaxed environment to learn. Both factors are not specific
but applicable to introductory programming courses. Starting from simple examples

and build it into a more complex one step by step motivates students to learn more.

Our examples were very good. | mean, | have felt that things
were like steps... We made one example in one week, the other
week you reach the next level. That was very nice. For one
thing, in my opinion, because the course environment was

easygoing, | learned everything more easily. (T1_S8)

Orneklerimiz ¢ok iyiydi. Yani kademelendirme olsun seye onu bi
hissettim... Bir érnek bir hafta bir sey yapiyoruz. Bir hafta bi sey
yapryoruz mesela o level atlryosunuz. Boyle giizel oluyo o. Bir kere
ders ortamu rahat oldugu icin ben kendi adima konusayim daha
kolay ogrendim her seyi yani. (T1_S8)

Student T1_S11 also stated that simple environment leads students to develop more
willingly. Instant help and explanation of the environment also motivate students

towards the course.

Even, it looks simple a little. The simple look makes people
like “T will drag this to this one, and this thing will happen”
Actually, it motivates people more to develop more... When
you hover the mouse, there was an explanation or the block
itself was in English. And it makes you like the course because
itiseasy. (T1_S11)

Her ne kadar biraz basit gibi goriintyor. Basit gibi gériinmesi de
sey yapryor insanda ben bunu buna getircem bu olacak. Daha tegvik
ediyor ashinda insan: yapmak icin. Uzerinde durunca bile blogun
aciklamast ya da blogun zaten Uzerindeki yazan zaten Ingilizce

oluyor. yani O da dersi kolay oldugu i¢in sevdiriyordu. (T1_S11)

107

Observation notes also put forward that simple to complex building tutorial design
helped students to cope with understanding new concepts and topics. Moreover,
students got help from the environment through explanations of the blocks. Designing
a course related to steps provided by the environment would make the course more

coherent and adaptable for the students.

4.3.3 Creating a Useful/Working/Purposive Product

Strongest intrinsic motivator for the students in this course was creating a
useful/working/purposeful product. Conventionally in most of the introductory
programming courses, basic algorithms were taught with console applications that
have no purpose other than the algorithm itself. Students who have taken other
programming courses defined the products they have created at the end as
meaningless, abstract, and useless. Observations revealed that from the first week to
the end of the course, developing a product at the end of each week motivated students
significantly towards the programming and the course. Especially, after seeing the very
first working example that students created on their phone which was a button playing
a sound when touched, students seemed very happy, proud and motivated. Interviews
also revealed that creating a concrete product at the end is very important both for the

students who have taken a programming course before and for the first-time learners.

Students, who have taken a textual programming course before, stated that they could
not see the outcome of the examples. Students compared the conventional
programming course with visual programming course. Student T2 _S4 from
Department of Business Administration, who have taken a Visual Basic course before,
compared the two course regarding its products and examples. He specified that there
were not any outcome of the examples they have made in that course. Even though he
liked the examples, he did not see a real product at the end. This statement as the other
similar ones shows that outcomes of the examples are as important as the knowledge

and the process.

I cannot see the outcome in the Visual Basic. Or, | can say that,
maybe, we did not see any... We made things like Binomial
distribution and stuff. Basic algorithms... Algorithms. It was
also fun actually, but in this one, there is the level of creating

a product. You see the outcome; it is nice in App Inventor
108

because more concrete things were created. We could not
make anything really, | mean there was no decent product at
the end (regarding the Visual Basic course). (T2_S4)

Sonucunu ben, géremiyorum ben seyde visual basic’te. Ya da biz
goremedik belki dyle diyim. Binom agilimi falan éyle seyler yaptik.
Temel algoritmalar. Algoritmalar. O da zevkliydi aslinda da bu iste
tiriin ¢tkma agamast oldugu i¢in. Goriiyorsun sonucunu giizel oluyor
App Inventor. Ciinkii daha somut seyler ¢ikiyor ortaya onda dedigim
gibi pek bir sey yapmadigimiz igin yani sey olarak bir iiriin
ctkmadig icin ortaya dogru diizgiin. (T2_S4)

Student T2_S6 made a similar statement about his experience with C++ course.
According to the students, traditional programming courses miss implementation of
product creation. Students need more than algorithm examples or meaningless

programs to be motivated towards the course.

In that course (C++), we learned the basics. | mean, you learn
the part like how a computer works, how you can write a
program. In this one, the nice part is you have a thing to
implement directly what you have just learned. In that (C++)
we were writing codes like “addition program” but it is not a
useful thing or things like sorting algorithms. It (C++ course)
did not have a meaningful outcome. In this one (App Inventor)
we get the results of what we make. A product were made and
we make one or two of these every week, that was nice.
(T2_S6)

O derste programlamamn artik temelini Ogreniyoruz. Yani
bilgisayar nasi c¢alisir nasil program nasil yazilir tarafini
ogreniyosun. Burada giizel tarafi da ogrendiklerini direkt
uygulamaya koyabilecegim bir sey var. Onda iste ne yaziyorduk
toplama programi yaziyorduk ama kullanish bir sey degil zaten. Ya
da iste swraya dizme bilmem ne. Anlamli bir sonucu yoktu yani.
Bunda direct yaptigumizin sonucunu aliyoduk. Bir iiriin olugsuyordu

ve de bunu her hafta bir ya da iki tane yapryorduk o giizeldi. (T2_S6)

109

On this course, both examples and the nature of the environment encouraged students
to create working product instead of basic algorithms from the first example. Students
with previous programming experience also criticized examples with no product.
Examples or assignments with a working end-product were seen as one of the strongest
motivators for the students. Students need to integrate their algorithms into their
products. However, the product should not be just implementation of algorithms like
sorting algorithm. End-product could contain sorting algorithm to help to solve a real

world problem or just to create a game.

Students who have taken a programming course before, compared the environment
they have used before with App Inventor environment. They think that the course and
the environment was more theoretical in textual programming environments. Student
T1 S10 states that they did not develop any application in C++ course, they have only

made some algorithm examples.

It was a little theoretical. We did not actually see... What we
did appear after we print (compile) it but App Inventor is more
enjoyable, we can see directly as an application. (T1_S10)

O biraz daha teorik kalyyodu aslinda gérmiiyoduk ne yaptigimiz pek
aslinda yazdirinca ¢ikiyodu ama Al tabi daha zevkli direkt uygulama
olarak gorebiliyoruz. (T1_S10)

Student T1 S4 with previous programming knowledge stated that this course (or
environment) was better compared to the others since it allowed them to develop a

working product, rapidly.

In other projects, we start; it took 3 to 5 weeks to put a product
on the table. Or even for the smallest project, 1 to 2 days in
average. (T1_S4)

Diger projelerde sey oluyor, baslyoruz 3 hafta siiriiyor, 5 hafia
suriiyor bir iiriin ¢tkarmak. Ya da en kiiciik bir sey bile 1-2 gun
atiyorum. (T1_S4)

Even the students with no programming experience compared the course with other
courses they have taken, and they set forth that creating something at the end of each

week was a positive aspect of the course. Student T1_S6 expressed that creating
110

something like the outcome of the course, as fun compared to the other courses.
Student T2_S7 also thinks that developing a product at the end was a positive side of

the course.

I mean... The course was fun, in general, in my opinion when
we compare to the others (courses)... It was focused on
creating something in the laboratory. That why it is nice. It is
also nice that we were the ones creating. In the end, | mean as

the outcome making a product was good. (T1_S6)

Yani... Ya zaten eglenceliydi ders bence genel olarak. Digerlerine
baktigimizda, labda tamamen bir sey yapmak iizerine, 0 yuzden
giizel yani. Oyle bizim bir sey olusturmamiz da giizel. Sonunda yani

sonug olarak, bir tiriin yapmamiz giizel. (T1_S6)

When something was developed at the end, it was very nice.
(T2_S7)

Sonlarinda ¢ok keyifli oluyordu, bir sey ¢ikinca. (T2 _S7)

Creating product is also beneficial for the assessment of the student. Project based
evaluation has provided deeper assessment chance to the instructor. Students from

both terms preferred project based assessment to the exams.

Absolutely, having no exam was very good for this course.
Because | have this thing, when there is an exam in a course, |
am working to get good grades. When there is a project, [don’t
know, it is for learning. At the end, a product was emerged at
least. (T1_S9)

Kesinlikle sinav olmamasi bu ders icin ¢ok iyi oldu. Hocam ¢unki
stnav olunca sey olayr var bende de ayni sekilde sinav varsa hani bir
derste sinavdan iyi not almak i¢in ¢calismak gibi bir sey oluyor. Proje
oldugu zaman ne bileyim ogrenmek icin oldu yani. Sonunda en

azindan bir iiriin ¢itkmis oldu ortaya. (T1_S9)

111

Creating something unique to herself for student T2_S3 is what motivates her towards
the programming. Providing a free development environment to let students create

what is on their mind is essential to motivate them towards the programming.

What | like is creating new things, writing something unique
to me, and put forward something new. I mean in my mind...
Without any obligation, just transferring the thing, | put
together in my mind to the computer and having an outcome
from it and seeing that it works was making me happy. That
was the beautiful side of programming. (T2_S3)

Ya benim hosuma giden yeni bir seyler yaratmak kendime 6zgl bir
sey yazip yeni bir sey ortaya koymak. Hani kendi kafam... Bir seyin
bir zorlamann altinda olmadan sadece kendi kafamda kurdugumu
bilgisayara gecirip ordan bir sonu¢ elde etmek ve o sonucun

calistigini gérmek beni mutlu ediyordu. Buydu programlamanin

giizel tarafi. (T2 S3)

Learning that at the end of each week one or more application will be developed
motivated students towards coming to class with curiousity. Since they have learned
that they will create an application at the end of each tutorial, students were highly
motivated. According to observation notes both students T1_S2 and T1_S9 asked
enthusiastically that what they will develop this week during the course. Student
T1 S11 indicated that making even a small application, in the beginning, motivated

them to make something.

Desiring to make something... We made an application in the

beginning, even if it was small. (T1_S11)

Yapabilme istegi. Baslangicta kii¢iik uygulama da olsa yaptigimiz
icin. (T1_S11)

Knowing programming, feel competent about developing an application is also
another motivator in itself for the students. It was in direct relation to creating a
useful/working product. Creating a product also leads to a social motivator. It was also
motivating for students to show their friends the product they have created as student

T1 S10 mentioned. Moreover, student T2_S6 indicated that he showed the examples

112

that he has made in C++ course to their friends, and they were not impressed. On the
other hand, they were playing with the visual programming examples.

I mean, now | am cool. For example, my friends come and say
what are you doing, and they are like “Wow, what is that”
Actually it is easy when you learn, not that easy but when other

people look at it they say wow. (T1_S10)

Yani simdi havam oldu diyomusum diger insanlara. Mesela
arkadaslarimdan gelen ne yapiyorsun diyo hani vay be neymig falan
diye aslinda hani 6grenince basit gibi hani ¢ok basit olmasa da

diger insanlar bakinca vay be diyo. (T1_S10)

My friends saw what I wrote in C++ and they were saying, “Is
that it, you made just this” In this one (App Inventor) you show
them in the phone, and they were playing it and talking about
it. (T2_S6)

Ben C++ ta yazdigim programlart gériiyordu arkadaglarim bunu
mu yazdi. Bu mu yani diyordu. Bunda telefonda gosteriyorsun

oynuyorlar bir seyler soyliiyorlar falan. (T2 _S6)

Other than creating useful applications while making the examples, some students also
found it motivating to create interesting applications like games. Creating examples
based on the interest of students could motivate students even more towards the course
and the topic as student T2_S1 mentioned that the game examples were the most

enjoyable part of the course.

The most | enjoy because the examples are most of them are
games. So, after we program it we can play it directly. It was
enjoying. (T2_S1)

T2_S7 also found creating a game at the end of the class as entertaining.
Student T2_S5 also thought that game related tutorials were attention

grabbing.

I love it when a game was created at the end of it, which was
entertaining. (T2_S7)

113

En son bir oyun ¢ikinca ¢ok eglenceli oluyor onlar: ¢ok seviyorum.
(T2_S7)

Parts | liked was tutorials which were very nice. | mean, they
were getting attention. I liked those... There was the one with

Hulk; the other was Street Fighter. (T2_S5)

Sevdigim yonleri seyler tutoriallar falan ¢ok keyifliydi. Hani dikkat
cekicilerdi. Onlart seviyordum. Bir yandan Hulk geliyordu Street
fighter geliyordu o guizeldi hani. (T2_S5)

Observation notes from second week of the first term showed that one of the students
after finishing the example stated that “Now the button makes sense a lot, you
understand after you finished.” And explained the functions of each button to his friend
which shows that creating product is beneficial to make abstract concepts concrete.
Also it showed that it is important to show the fully working example to students
before starting rather than verbal explanation. Creating useful/working/ meaningful
products are essential as the interviews and observations put forward. Therefore it
would be beneficial for instructors to design and develop their computer programming
courses and activities for beginners by putting the product of each activity at the center
as well as the learners. This approach is called product-first approach and will be

investigated more in the discussion part.

4.3.4 Self-Improvement

Apart from the novelty effect, learning something new was also very motivating for
the students. For both students who had no programming background and students
with previous programming experience, learning new topics or features were

important.

Interviews put forward that according to the first-time learners of programming,
learning programming was essential. Having the sense of learning programming
motivated students towards the course by itself. Student T1_S11 stated that self-
improvement feeling which was from learning something she has never learned before,
made her motivated more towards the course. The sense of learning something new
and self-improvement was one of the primary sources of motivation for some of the

students attended the course.

114

| enjoyed doing the activities we made. Generally, | liked them
all, from the beginning to the end. | mean, the self-
improvement makes you feel good... I mean, actually, since
this is something | have never done, | feel like improved.
That’s why 1 liked this course. | liked it because | felt
developed since it is self-improvement. | liked it even more

when | learned something new. (T1_S11)

Yapilan etkinliklerden keyif aliyordum. Genel olarak yani hepsini
sevmigtim ilk bastan sona kadar. Hani insanin gelistigini hissetmesi
guzel bir duygu... Yani séyle aslinda benim sevdigim yanlar: daha
once hi¢ yapmadigim bir sey oldugu icin ben kendimin gelistigini
hissettigim icin bu dersi seviyordum. Self-Improvement oldugu i¢in
gelistigim hissediyodum o yiizden seviyordum. Bir seyler 6grendikce
daha cok seviyordum. (T1_S11)

Student T1_S7 had no knowledge about programming, and that caused him to feel
incompetent about programming. Familiarizing towards complex parts of
programming improved her motivation. T1_S6 also stated that learning about

programming was worthy for her since she did not have an idea what that was.

I, for example, have no knowledge of programming. It (the
course) gave me that information about programming. The
function of each part was too complex for me. I mean, |
became familiar with that. (T1_S7)

Benim mesela programlama yonutnde hi¢ bir bilgim yoktu. Belki
programlama yonuinde bana bilgi verdi. Neyin ne ise yaradigini ¢ok

kompleks geliyodu bana biraz hani ona asina oldum. (T1_S7)

I mean at least | have an idea about programming. I didn’t
know anything, about what it is. (T1_S6)

Yani en azindan bi fikrim o/mug oldu programlamaya dair hi¢bir sey
bilmiyordum nedir ne degildir. (T1_S6)

115

Student T1_S2 compared the homework of the course to homework of other courses.
He saw the homework with a fruitful product as a source of new knowledge, which

motivates him towards the course and doing homework even more.

They weren’t like classical homework. For example, what is
the benefit of writing the report in community service course?
But when | do this homework | am going to learn something,

that is obvious, so I will do that willingly. (T1_S2)

Diger klasik 6devler gibi degil. Mesela Community Service dersinde
ben o raporu yazsam ne olur yazmasam ne olur? Ama bu 6devi
yapinca bir sey 6grencem belli yani o yuzden seve seve yaparim.
(T1._S2)

For students who had some experience regarding programming, developing in a new,
visual environment in which the product is for mobile devices is also another source
of motivation. Having the sense of learning something new was also a strong motivator
for students with previous programming experience. Student T2 _S6 stated that
learning new features and constant progression towards new topics keep him

motivated towards the course.

Despite that, it wasn’t a course I can say like “I already know
those why did I (take this), I can do this blindfolded” We
constantly make something new, we put something new on the
top of that. Those were fun. | mean, another thing is that ok,
we know programming. We are computer education and
instructional technology students, but I never feel like I knew
this already, I really liked it. For example, we are working with
touchscreens, its features, etc., we entered into a new

environment. (T2_S6)

Ona ragmen béoyle of ben bunlart biliyormusum zaten ya niye sey
yaptim rahat rahat yaparim diyecegim bir ders degil siirekli yeni bir
seyler yeni bir sey daha yaptik iistiine bir sey katuk falan onlar
eglenceliydi. Yani bizim sonugta su da var mesela biz iste
programlama biliyoruz bdte dgrencisiyiz falan ama ben derste hig

seyi hissetmedim hani biliyorum zaten seyi yapmadim hakkaten
116

sevdim. Mesela sey hani dokunmatik seylerle ugrasiyorsunuz bir
taraftan onun seyleri vs. tamamen yeni bir ortama ge¢mis olduk.
(T2_S6)

During the activities, students should feel that they are learning something new.
Through the new functions and features, students were kept motivated towards the
course and the environment. Additionally, interviews and observations revealed that
feel of self-improvement was one of the important motivators for the students. Even
the students with programming experience were motivated towards developing a
visual application for the mobile operating system since they were in a new

environment with different dynamics and products.

4.3.5 Preferring Practice to Theory

Modern educational paradigms suggest learning meaningfully, rather than memorizing
verbatim (Charles M. Reigeluth, 1999b), programming is not an exception. as the
students in this study preferred the similar. Students found the tutorials meaningful
and preferred the practice to theory. Student T1_S6 stated that learning functions of

blocks instead of memorizing information, as raw data was a good side of the course.

I mean it was nice. You were telling us like “this button’s
function is that, and it is used for this.” so it was beyond
memorizing. I mean, it wasn’t from the top of our hats, like do
this and do that without knowing the function. That was nice.
Your explanation of the use of the blocks and their functions.
(T1_S6)

Yani glzeldi hani sizin de sey genel olarak su buton béyle bu ise
yarwyor bu yiizden bunu kullanilmis dediginiz zaman hani birazcik
sey olmaktan ¢ikt:. Hani ezber olarak ordan bunu boyle yap bunu
boyle yap ne ise yaradigini bilmeden. Gilzeldi onlar falan.
Anlatmanmiz bloklarin kullanimuni... Gorevini falan bu ylzden
kullaminmug falan diye. Eksik olarak bilmiyorum pek bir sey yoktu.
(T1_S6)

Student T2_S1 thinks that hands-on practice from the day one of the course was very
interesting. Instead of theoretical information from the start, T2_S1 stated that he

prefers practice.
117

The most interesting is on the first meeting when we are... has
to try the games and | like the labs because we can write the
codes by ourselves... And, the other is there wasn’t any

lecture. (T2_S1)

The researcher asked students if anything was boring regarding tutorials or any part of
the course. This question also revealed the part that students liked most. As it was
mentioned before under this theme, creating useful outcomes in the course is important
for the students. This was also suitable for in-class activities and tutorials. Students
were thinking that designing and developing an application in course hours is an

advantage of the course.

In course hours, it was good in general; I mean there wasn’t
anything to bore a person. Besides, in laboratory classes, all

we do were designing application. (T1_S5)

Yani ders iginde genelde iyiydi yani sey olarak bi insan sikilacag
bir nokta yoktu zaten laboratuvar dersinde tamamen sey isliyoduk
uygulama tasarliyoduk. (T1_S5)

Students T2_S5 thinks that it was fun to create something at the end of each step in

course hours.

No, it wasn’t boring It was fun. I mean at the end of each step,
seeing that you made something, something was created...
(T2_S5)

Yok stkici degil gene eglenceliydi hani her bir adimin sonunda bir

sey yaptigini gormek bir sey olustugunu gormek... (T2_S5)

Creating an application in course hours was fun, not boring at
all. (T2_S7)

Ders saati icinde uygulama gelistirmek giizeldi sikici degildi.
(T2_S7)

According to student T1_S7, learning with hands-on practice helps students to learn

the topic easily.

118

When we look at it, when we try to do something, we were
learning easier. (T1_S7)

Kendimiz bakarak bir seyler yapmaya c¢alisarak daha kolay
ogreniyoduk. (T1 _S7)

T1_S5 stated that developing applications further keeps the student motivated towards

the course because of the freer environment.

I was looking forward to making things (applications) more
detailed. That part of the course was very enjoying for me.
(T1_S5)

Daha detay seyler yapmak istiyo daha ne yapabilirim gibi bakiyor.
O yonden zevkli bir dersti yani benim icin. (T1_S5)

As the outcome of this code, students prefer environments and courses which provide
a freer atmosphere. Additionally, practice-based learning helped students to be
motivated towards the course. Starting to learn with practice and developing actual
products rather than theoretical information Especially, students emphasized that
learning by developing (similar to learn by doing) motivated them starting from day
one. As a very similar finding to creating products at the end, students also were in
favor of the creation process to learn the programming concept or the feature of the
environment. Students also reported that learning through the practice made them learn

the concept easily and motivated them.

4.3.6 Proofs of the Motivation/Competence

According to the observation notes, most of the students were motivated throughout
the semester. Even during one course hour during the fourth week of the first semester,
students choose to continue the course instead of finishing it early. Another indicator
for the motivation is the will of the learners to continue to learn the subject or take it
to the next step. According to the interviews, 15 out of 18 students were planning to
develop their own applications for their professional life or their own. Improving their
abilities or using it to develop is also another indicator of motivation related to
competence. Student T1_S2 was motivated to develop his application after the course
ended. He wanted to create the application he needs instead of searching the Play Store.

119

If I need an application and it is a simple one, I won’t search
Google Play. I would try to make myself... If I am in need, as
I said why not. | do not want to use the prepared one from now
on. First, | want to make it. | think that | want to elaborate on
it. (T1_S2)

Dedigim gibi bi uygulamaya ihtiyacim olursa ¢ok basit bir seyse
Google Play’de aramam ugragsirim yapmaya calisirim. Yani ihtiyag
olursa dedigim gibi neden olmasin. Direkt hazira konmay
istemiyorum su anda once bi kendim yapayim. Cabalayayim tarz

diistiniiyorum su anda. (T1_S2)

Student T1_S5 was thinking to develop his programming knowledge even further into

programming in native Android programming environment.

[am planning; I was planning to learn Java... I mean this could
be a foundation for it because | have developed an application
before and we can publish it in Google Store, Google Play.
(T1_S5)

Ya ben seyi diistiniiyorum Java ogrenmeyi diistintiyodum... Yani
onun igin bi altyapt olabilir bu ¢iinkii daha 6nce program yapmisim
ve onu belki Google store’da da Google play 'de de yayinlayabiliriz.
(T1_S5)

Regarding the course assignments, student T2_S3 stated that they were working on
homework or project willingly which shows that student was motivated during the

course, even when he was doing homework.

For the project, | worked on it every day till | finish it. Last 2-
3 days I sit in front of the computer like 6-7 hours because |
need to debug the application. However, since I didn’t get
bored doing it, I wasn’t affected from how much time | spent.
(T2_S3)

Proje icin mesela giinlik bitirene kadar baktim. En son 2-3 gun 6-7

saat falan basinda oturdum c¢iinkii hatalarim flana ayiklamam

120

gerekiyordu ama sikilmadigim icin basinda ne kadar kaldigim
aslinda beni etkilemedi. (T2_S3)

As one of the students, student T2_S6 summarized his opinions of the course, which
were parallel with the views of other students in brief regarding the motivating part of

the course.

Creating a product, fun course hours, being outcome focused,
being useful, constantly getting something new... Even if you
know the programming... It was a lot of fun. Teaching
method, topics, examples we make... Without any trouble or
without saying “not this course again” even it was at very early

hours of the morning, we came to the class. (T2_S6)

Uriin ortaya cikarmis olmak, derslerin eglenceli gecmesi, hani
sonuca yénelik olmasi, kullanisli bir sey olmasu, stirekli yeni bir sey
hani programlamay: bilsen bile... Gayet eglenceliydi. Derslerin
islenisi konular yaptigimiz ornekler falan herhangi bir sikinti
yasamadan gey demeden off gene ders var yaa falan kim ugrasacak

sabahin koriinde falan demeden gayet geldik. (T2_S6)

This code focused on the whether the interpretation of motivations were true, or not.
An important indicator of motivation was to keep the interest on the topic. As it was
mentioned the majority of the students were planning to develop application even
though their affiliation with the course has ended. Some students stated that after the
course ended they want to spend time on developing their own application rather than
downloading a prepared one. In addition to continuing interest after the course ended,
students also reported that they were motivated during the course. They wanted to
come to the course as well as some of them were willingly worked on homework and
projects. Motivation is an important factor for any course, especially in a topic with
high drop-out rate like programming it is essential. Therefore, it is important to check

the motivation level of the students during the course as well as at the end.

4.3.7 Summary of Motivation Theme
Motivating components and features will be reiterated and added based on the

interviews of the students. Major motivating features of the visual programming

121

environment for the students were being easy, having visual feedback and being able

to produce visual products in the end.

e Motivating features of visual programming environment was one of the
strongest motivators of the course. Which leads to
o Easier learning
o Make programming concepts concrete

o Enthusiastic about learning

Leads to

Non-

Intimidating
Course &
Environment

Transforms it

Figure 4.8 Motivation Effect of Course Environment

¢ Another finding emerged from the interviews and observations was designing
course and tutorials according to a product-oriented design
o Products are as important as the process and the knowledge itself
o Students want to create useful products rather than solely algorithms
o The proper product at the end of tutorials/homework/project will be the
reward and motivator by itself
e Keeping the sense of learning new aspects and additional features of
programming is necessary for the motivation of students
o Activities in each week should be connected with the week before, but
something entirely new should also be provided
122

e Students prefer practice to theory so
o Hands-on practice should be provided from week 1
o Practice should be open to discovery learning. Even the novice learners
prefer to learn by practice and discovery
o Providing a freer environment to students for developing application
further than minimum expectancy motivate students while learning
new information
o Creating applications in the course hours were motivating students and
help them to learn better
e Constant communication in and out of the classroom keep students motivated
o Relaxed and comfortable atmosphere should be kept during the course
hour to keep communication between students and instructor and
between students
o Outside of the classroom communication medium should be kept active

to encourage the communication
4.4 Programming and Programming Environment

Since one of the most important aspects of this course was the programming
environment and its features, the researcher asked questions regarding the environment
and the comparison of the block-based visual programming environment (specifically
App Inventor) to the other programming environments. In this way, researcher
intended to reveal the difference of visual programming environments from
conventional textual programming environments. In addition, since App Inventor
environment was used, positive and negative sides of the App Inventor were tried to
be examined based on the student perspective. This could help both developing new

programming environments and enhancing existing ones.

4.4.1 Attitude Change towards Programming

Even all of the students took this course as elective, and they participated in the course
voluntarily, some of them stated that they were afraid of the programming because
they think it is hard to learn. Some students stated that after taking this course, they
overcame their fear of programming since they are familiar with the programming

concepts with the help of the visual environment. Student T1 S3 stated that for a

123

person out of the computer field programming seems very complicated. However, this

course stopped her to be afraid of programming.

If a person is out of the area, it seems very complicated. Yes,
we are more familiar with this kind of things... You know we

developed an application working on the phone. (T1_S3)

Insan boyle seylerin disinda oldugunda insana cok karmagsik
geliyor. Evet biraz daha en azinda seyiz asinayiz boyle seylere ne
bileyim telefonda ¢alisan bir tane uygulama yaptik. (T1_S3)

Student T1_S2 was also expressed his attitude towards programming before and after
taking the course. He stated that curiosity for the environment won over their fear. The

right choice of environment could help students as much as an instructional strategy.

We took this course because it is programming. When we see
that it is App Inventor, and everything is ready to use we like
it more. | mean, because we were afraid of the Programming-
I course when we were taking it, but curiosity won over the
fear. (T1_S2)

Simdi bu dersi sey diye aldik programlama diye aldik Al oldugunu
ogrenince her seyin hazir oldugunu goriince daha da bir sevdik.
Yani cunkld programlama 1 donem dersine korkmuyor degildik
alrken ama merak olunca korkunun oniine gecti merak aldik.
(T1.S2)

While conventional (textual) programming was seen as a complex labor by student
T2_S7, visual environment made her think that programming in a visual environment

is simple.

Positive sides are, | mean my roommate is in computer
engineering, what he does is very complicated for me. This is
a simpler version, so it is nice. Puzzle stuff is entertaining.
(T2_S7)

Olumlu yanlart sey diger iste oda arkadasim mesela bilgisayar

miihendisliginde onun yaptiklar: ¢ok karmagsik geliyor bana. Bu

124

béyle daha basit hali. yi oluyor o yiizden. Puzzle falan eglenceli.
(T2_S7)

Observation notes also showed that most of the students started the course with lack
of self-confidence regarding programming. After 2 weeks, especially after they saw
that they could develop functioning applications such as games, their attitude and
confidence changed towards a positive state.

4.4.2 Textual vs. Visual (App Inventor) Programming

Students, who have taken a textual programming course before, were asked to choose
one of the programming environments: visual or textual. In a total of two semesters,
ten students have had programming background before taking this course. Among
those students, four of them preferred App Inventor, the remaining six answered the
question diversely. Two of them preferred textual environment (C++ for them), other
two preferred textual, however, for easier tasks they stated that they would use App
Inventor, and the remaining two students preferred a combination of both
environments. The reason behind their preference will be examined further under this
sub-theme. Opinions of the students with no programming background were also taken
if they would like to put forward their ideas. They will be mentioned in the codes under

this sub-theme.

4.4.2.1 Visual Only
While some of the students thought that after taking this course, they overcame their
fear and they can continue to learn programming in a textual programming
environment, others find App Inventor was enough for them and still think
conventional programming was too difficult for them. Student S1_T1 thought that App
Inventor is sufficient for him and C++ course would be difficult for him. However, he
also thinks that he can take an introductory C++ course from scratch just to discover
it. He explained his negative attitude because to whomever he asked about

programming, they answered ‘it is very hard.’

Al is enough in my opinion. | mean, | think C++ will be too
hard... I can take an introductory course starting from scratch

to learn a little, but C++ sounds scary. (T1_S1)

125

Al yeterli bence C++ hani ¢ok zor olur diye diistintiyorum... Sifirdan
baslayan bir tamtim dersini alabilirim biraz dgrenmek igin bir

seyler ama C++ deyince bi g6zimiiz korkuyor. (T1_S1)

Syntax Related Problems
Some students preferred visual programming to textual because they think that syntax
is a waste of time, and constantly causing (punctuation errors, etc.) problems. T1 S8
who have taken and failed a programming course once stated that developer must write
the code without a single character mistake to get the software to work. This was seen

as a negative side of textual programming environments.

You must write everything up to the smallest detail (in textual
programming environment). OK, there are auto-complete

things in some software, but still, you need to write. (T1_S8)

Her seyi ¢ok en temel seyine kadar yazmak zorundasimiz yani.
Tamam, tamamlama olaylar: oluyor bazi seylerde, programlarda

ama yine de yazmak zorunda kaliyorsunuz yani. (T1_S8)

Student T2_S3 who is also a CEIT student with programming experience expressed
his choice toward the visual programming environment because of the syntax errors in

textual programming environments.

I would have chosen the visual one of course... Visual Blocks
because writing syntax is a waste of time. Because making the
slightest mistake makes it difficult to return and look, if the

program is too long. (T2_S3)

Tabi ki gorsel olan: tercih etmek isterdim... Gaérsel bloklar, ¢unki
vakit kayb: syntax olarak yazma. Cunkl en ufak bir hatada belki
geriye donlp bakmak program uzunsa zor olabiliyor. (T2_S3)

Immediate Feedback and User-Friendly Environment
Student T2_S3 thought that immediate feedback and instant correction makes the

programming easier and time-saving.

However in here (App Inventor) you get immediate feedback,

you see that there is a mistake and you have the chance to

126

correct that instantly. While connecting the blocks compatible
ones connect, but for example, if they are wrong they do not
connect. That gives a hint to the user. Being visual is not time-

consuming, it is time-saving and makes it even easier. (T2_S3)

Ama burada aninda geri ileti aliyorsunuz hata oldugunu
gortiyorsunuz aninda diizeltme sansiniz var. Bloklari birlestirirken
ashinda birlegebilecek olanlar birlesiyor ama mesela yanlissa
birlesmiyor o da bir ipucu veriyor karsidaki insana. Gérsel olmast
hem vakit kaybi degil kazan¢ sagliyor hem de daha kolay hale
getiriyor. (T2_S3)

Being easy, visual and having some kind of scaffolding system through blocks, which
prevents users from making simple mistakes, another reason for choosing App
Inventor environment over textual environments like C++. Student T2_S5, who have
failed from C++ course once, thinks that she feels more in control in a visual
programming environment. She explains her experience with both environment as

follows.

C++ was giving a hard time. I mean I didn’t know anything
aboutitand I have a task at hand. But, we don’t have any steps.
I need to think unbelievably, a lot. |1 did many mistakes.
However, when I think Android (meaning App Inventor) they
are like puzzle pieces so I can get rid off some of the mistakes

at least when | was placing them. (T2_S5)

C++ bayag zorluyordu. Hani hi¢ bilmedigim i¢in direkt elimde bir
gorev var ve adumlart yok ki bu, inanilmaz derecede diisiinmek
zorunda kaliyordum. Cok fazla yanhs yaptigim da oluyordu. Ama
Android’l (App Inventor) diisiindiigiimde puzzle par¢alar: gibi
oldugu i¢in yanhglar: birazcik daha atlatabiliyordum en azindan

yerine yerlestirmede. (T2_S5)

Concrete Products
Student T2_S4 thinks that App Inventor is a simplified version of the programming,
other than being unstable he did not believe that it has any negative side. He explains
his preference as App Inventor allows him to produce products that are more concrete
127

while textual environment did not allow him to create any decent product. As it was
mentioned in the motivation part, one of the most important motivators for the student
is to create a usable product in the end. It also affects their choice of environment for

their future.

Q: If you had the chance of choosing only one of them, which

one would you prefer?

T2_S4: 1 would prefer App Inventor.

Q: Because of what?

T2_S4: Because more concrete things are created in that one.

As | said before (regarding the textual environment), we didn’t

produce any decent product in that one... Because it is a

simplified version. There isn’t any negative side for me. Just,

It seems that App Inventor is not that stable yet. (T2_S4)

Q: Peki ikisi arasinda bir segim yapman gerekse hangisini secerdin

T2 S4: App Inventor’t secerdim ya.

Q: Neigin?

T2_S4: Cunki daha somut seyler ¢ikiyor ortaya onda dedigim gibi

pek bir sey yapmadigimiz i¢in yani sey olarak bir iiriin ¢ikmadig

icin ortaya dogru diizgiin... Basitlestirilmis hali oldugu igin.

Olumsuz yani yok benim i¢in. Sey AI'in sadece 0 biraz stabil degil

sanki daha. (T2_S4)
Student T1 _S4 thinks that choice of the environments for him depends on your
professions. He indicated that if you are not a professional programmer, App Inventor
is better to create basic applications; if your career choice is programming, then textual

programming is better.

If your profession is programming, | really prefer traditional
method (syntax-based programming), writing code, but if | am
a teacher or my purpose is creating little applications for daily

use, | will prefer App Inventor. (T1_S4)

Eger isiniz seyse programciliksa geleneksel yontemlerle gercekten
kod yazarak onu tercih ederim ama d&gretmensem veya hani

programlamayla ilgili sadece hani derste kullanicam ya da giindelik

128

hayatta kendimin kullanacag: kiigiik uygulamalar yapmaksa App

Inventor’1 tercih ederim. (T1_S4)

4.4.2.2 Combination of Both
Student T2_S1 thinks that both types have the advantage and disadvantage of their
own. He thinks that it would be better if a combination of App Inventor and C++ would
be provided. Even if it is impossible to create an environment from scratch for an

instructor, a course that teaches both simultaneously could be created.

Actually, Al is good but the commands are still basic, so it is
hard for me. I think if we can combine both. Some benefits of
C++, and Some benefits of Al... I like to find the other

program for Android application inventor. If there is one...

(T2_S1)

Student T2_S5 stated that it would be better to have a combination of both
environments. To be exact, she thinks that App Inventor would be better if it allows

the user to write code when needed.

T2_S5: I would have mixed both. If there was an area to write

code, if needed, it would be much better in my opinion.

Q: You mean like App Inventor interface, but you can check

(the code)?

T2_S5: Exactly, 1 mean like having puzzle pieces, but on the

other side there could be codes. (regarding tabs) it could have

three steps. However, App Inventor outweighs (C++) frankly.

T2 S5: Ikisini karistirirdim .evet gerektigi yerde kod yazabilecegim

bir alan da olsa ¢ok guizel olurdu diye diisiiniiyorum

Q: Yani Al arayiizii ama agp da bir bak gibi

T2_S5: Aynen yani sey gibi bir yandan puzzie par¢alar: gibi olsun

bir yandan kod olsun bir yandan da dizayn yani 3 asamali olsun

gibi. Ama Al daha agir baswyor agik¢asi
T2_S2, a student with advanced programming knowledge, stated that App Inventor
has its benefits like efficiency. However, he also thinks that it is not enough for
advanced development. If App Inventor will reach to the complexity of conventional
programming environments, he says that he could choose the App Inventor over

129

textual programming environment. He states that App Inventor has a smooth learning

curve; however, it has some limitations for advanced programming.

...The difference from ‘normal programming’ is that
preparation of one could take nearly six months, you will
complete preparation for App Inventor in just 1-2 weeks
because it is more visual type in general. | mean that in terms
of time and getting used to, App Inventor provides a very big
advantage. In addition, as a user, you can proceed up to some
point in App Inventor, but you stuck at some point. It needs
more advanced stuff. That is a thing related to software’s self-
development. If the software can develop itself, I mean if it can
equalize itself with regular learning strategies, learning with
App Inventor will be much better. (T2_S2)

Normal programlamayla olan fark: birisindeki on hazirligin
atiyorum neredeyse 6 ay kadar surmesi, yani sirebilecekken App
Inventor da sadece genelde gorsele doniik oldugu i¢in 1-2 haftada o
on hazirligi tamamlamis oluyorsun. Yani zaman ve alisma agisindan
cok buyuk bir avantaj sagliyor App Inventor. Kullanan olarak da
belli bir yere kadar gelinebiliyor App Inventor da ama bi yerde
tikaniyor daha gelismis seyler istiyor. O da iste programin kendini
gelistirmesi ile alakali bir durum. Program kendini gelistirirse yani
birebir endeksleyebilirse, normal o6grenme yéntemleriyle App

Inventor’la 6grenme yontemi ¢ok daha iyi olur. (T2_S2)

Student T2_S6 reported that while C++ course is more of a theoretical side of
computers and programming, it does not provide anything useful for long term. The
better side of the App Inventor course was providing them a chance to implement what

they have learned into an application.

In that course, we can learn the basics of programming, | mean,
you learn how computers work how codes are written part. In
this course, better side is that there is a place that you can
implement what you have learned directly. In that one (C++)

we write applications that sum the numbers, but it is not a

130

useful thing. Or, like sorting algorithm, we make it but it does
not have anything in the long term. (T2_S6)

O derste programlamanin artik temelini 6greniyoruz yani bilgisayar
nasil ¢alisir nasil program nasil yazilir tarafint 6greniyosun. Burda
glizel tarafi da ogrendiklerini direct uygulamaya koyabilecegim bir
sey var. Onda iste ne yaziyorduk toplama programi yaziyorduk ama
kullanmigl bir sey degil zaten ya da iste siraya dizme bilmem ne hani

seyi yok yapiyoruz ama bize uzun sureli bir seyi yok. (T2_S6)

Using a textual programming environment with a visual one is another strategy to
make students familiar with textual environments. Using both visual and syntax-based
programming languages could be beneficial. It could help them to see the similarities
and differences. Also, it could assist them to use App Inventor as a step for the syntax-

based programming language.

I mean that is written in that software like this. In App
Inventor, you can make the same thing as this. Similarities can
be shown like that. Or, after showing it (syntax), it could help
as a guide like how can it be done in App Inventor. (T1_S11)

Hani o programda bu boyle yaziliyo. Bizim app inventorda bu boyle
yapilyo arasindaki benzerligi gosterip ya da once onu gosterdikten
sonra acaba app inventorda nasil yapryoruz diye bi yol gosterici

oalrak ona yardim edebilir. (T1_S11)

4.4.2.3 Textual Only
More Flexible and Advanced
As it Student T1_S5 because of the limitations of App Inventor, it is better to choose

a textual programming environment like C.

I mean | would prefer C probably; you can create more
comprehensive things. App Inventor is a more limited
software; you cannot develop anything you want. As | said in
the presentation, you can’t even change the font type to the

type you want. (T1_S5)

131

Yani ben C’yi tercih ederdim herhalde yani daha kapsamli daha
fazla sey yapabilirsiniz. Al biraz daha kusutli bir program gibi her
istediginizi yapamiyorsunuz. Gegen seyde de sunumda séyledigim
gibi yazi fontunu bile tam istediginiz sekle getiremiyosunuz. (T1_S5)

Student T1_S8 also prefers C language because of its flexibility. However, he also
stated that App Inventor is very useful to develop a simple application. He thinks that
it is better to be specialized in a textual programming environment instead of a visual

one for his career.

I would prefer C because of the flexibility. And, by flexibility,
I mean, | have an application in my mind, and I can develop it
ideally by writing the code. However, in App Inventor, it is
very good regarding time. Let’s say, I have a simple
application in my mind, I will use App Inventor to develop

that. I can do that in no time. (T1_S8)

C yi esneklikten ve esneklikten kastim su: Mesela benim kafamda bi
program var ben bu programi en 1yi yazarak yapabilirim su anda.
Ama Al da da zaman olarak ¢ok iyi mesela basit bi program var
kafamda bunu yapmak i¢in AI kullanirim. Cok kisa siirede yaparim.
(T1_S8)

Student T1_S3 with no programming background before this course thinks that textual

programming environment could be more flexible.

It looks like we can transfer what we have in mind in there
(textual programming), but in here we are limited to blocks so

that it could be a more narrow area. (T1_S3)

Sanki orasi daha béyle sey Qibi aklimizdakini daha istedigimiz gibi
aktarabilirmisiz gibi geliyor ama burda bloklarla sinurii oldugumuz

icin daha dar bir alan olabiliyor hani. (T1_S3)

Even though student T2 S2 was thinking that visual programming
environment has many advantages like being easy and faster development,
he stated that he would prefer textual because App Inventor would not let

him advance as the textual programming environments do.

132

If 1 look at the current condition, | will choose the traditional
one, because I have learned what it has got to teach me already.
Because I couldn’t go further, I would be in the position of
choosing a normal/traditional one... It is a fast solution, and it
provides easiness about many things. However, if it
(application) was more advanced until App Inventor improves
itself, I cannot make anything. (T2_S2)

Su anki durumuna bakarsa gelenekseli secerdim ¢iinkii ben Al in
bana dgretecegini zaten ogrenmis durumda oldugum i¢in orada
daha fazla yere gidemedigim icin normal gelenekseli tercih etmek
durumunda kalyyorum... Hizli ¢oziim hem de kolaylik saladigi icin
cogu seyde. Ama eger ki kapsamlirysa AI kendini gelistirene kadar
bir sey yapamam. (T2_S2)

Student T2_S6 also stated that textual programming is more flexible and provides a

wider area to go further than the visual programming.

You can make something very complex, and complicated in
C++ or another programming (environment). It can be used in
a broader scope. It has a bigger elbowroom. It is not like the
blocks in this one, in the end, you can do anything you want.
(T2_S6)

C++ ta ya da diger programlamalarda cok kompleks boyle
karmagik bir sey yapilabilir. Daha gec¢is c¢apli kullanilabilir.
Hareket alani ¢ok genis. Bundaki bloklar gibi degil sonucta her
istedigini yapiyorsun. (T2 _S6)

As the summary of textual vs. visual sub-theme, some important points will be
revisited. Students emphasized the advantages of using a purely visual environment.
First of all, textual environments found harder to use and understand for students, and
writing syntax is found time-consuming. Moreover, visual environments give
immediate feedback and in environments like App Inventor applications could be
tested without compiling. Similarly, students think that having a user-friendly design
helped them to reduce their mistakes. One of the most important advantages, as it was

133

mentioned under the motivation theme, is the ability to develop a concrete product at
the end.

The only advantage of using solely textual programming comparing to the visual
environment was to have a more flexible and open environment for advanced
programming. Students reported that they are limited to App Inventor’s features when

they compare it to a textual environment like C++.

Some of the students agreed with the advantages above, however, they also reported
that combining both visual and textual environments would be more beneficial. An
environment which is easy to develop a visual product at the end and also advance
enough to develop a more complex application. Some students just needed to have
another tab to edit the code textually while keeping all other features. Another idea
was to combine the learning with both environment. It could be helpful for students to
learn some of the programming concepts textual and implement it in a visual

programming environment.

4.4.3 Evaluation of the App Inventor Environment

While the comparison of the textual and visual environment was made in the previous
sub-theme, under this section includes the opinions of students about the App Inventor
environment specifically. Evaluation of the environment from the perspective of the
students could provide insight for the instructors who are going to give a lecture or
create a course to choose an environment, as well as for the developers who want to
enhance or who will create a visual programming environment. Students gave their
opinion about the environment that they have used in this course, which is MIT App
Inventor in this case. They evaluate the environment regarding its positive and
negative sides. Among the opinions of students, three positive and three negative

aspects of the environment come forward.

4.4.3.1 Positive Aspects
App Inventor is Visual / Simple / Productive
Three mostly mentioned positive features of App Inventor were directly in relation
with each other. Therefore, they were examined under the same code. Visual nature of
App Inventor was found easy to develop programs by the student. Easy to develop

feature leads to a more productive environment comparing to the other environments.

134

As it would be broken down to investigate further, the mostly mentioned positive
feature of App Inventor environment was being easy. By saying ‘easy’ students
mentioned easy-to-learn, easy-to-use, and easy-to-develop. App Inventor is found easy

to use, learn and develop environment even for the novice programmers.

Students with no programming experience found App Inventor easy as the student
T1 S1 who was an Elementary Mathematics Education student. He stated that they

use the environment to produce applications without hassle.

App Inventor environment was simple... We use App
Inventor. It is not a thing that will tire to use. Something to
think a little and produce... It was easy. It was really, easy to

do something. (T1_S1)

Al ortami seydi basitti. App Inventor’a giriyoruz ¢ok bizi yoracak
bir sey degil biraz diisiiniip bir seyler iiretmek. Kolaydi. Gergekten
kolaydi onlari yapmak. (T1_S1)

Easy-to-develop nature of App inventor made students think that it is also suitable for
children. Student T1 S2 thought that even children could develop an application in

App Inventor environment.

Even children could make something. With a little thinking,
contemplation... I mean, they may have some difficulties in
blocks part, most of the people could make something in the
designer part. (T1_S2)

Cocuklar bile yapabilirdi bir seyler. Azicik diisiinse kafa yorsa. Ha
bloklarda belki sikinti ceker ama designer kisminda ¢ogu insan bir
seyler yapabilirdi orda. (T1_S2)

Being easy and visual were related based on the opinions of the students. Since the
development interface is visual, it provides some benefits for learners. Student T2_S4
stated that visual coding with puzzle pieces simplified the coding part, which shows

that visual programming structure of App Inventor makes the programming simpler.

I mean codes being puzzle pieces was nice. | mean it is a

simplified version. (T2_S4)

135

Yani sey olarak kodlar olarak hani puzzie seklinde olmast bence

giizel Al in yani kolaylagtirimg hali. (T2_S4)

Student T1_S8 stated that visual interface prevents syntax errors as well as it has a
smooth learning curve comparing to the textual environments which save the time of

learners.

In App Inventor, you don’t use the keyboard. It is a very good
thing actually. It is faster, it prevents simple punctuation
(syntax) errors and it is better to understand... You can make
the same thing in 15 minutes, which took 1 hour on the other
side (traditional programming). It shortens the time a lot.
(T1_S8)

Al Klavye kullanmiyosunuz ¢ok giizel bir sey aslinda bu daha hizli
ve iste sey basit noktalama hatalarini engelliyor ve anlasilma seyi
daha giizel... Diger tarafta 1 saatte yapacaginizi burda 15 dakkada

yapabilirisiniz mesela. Cok kisaltiyor zamani. (T1_S8)

Visual programming was one of the most mentioned features of App Inventor. While
students who have programming background found the code screen or command
console of the textual environment to test the application boring, visual environment
and outcome of the App Inventor was one of the expected positive sides of the
environment. Instead of writing the code, dragging and dropping the blocks was better
according to the students. It was both seen as simple and fun. Student T1_S5 who have
programming experience before this course found the visual environment more
interesting compared to the textual one. In addition to the development screens, he also
stated that the outcome of the textual environments was worse since they were viewed

in a black and white console screen.

For example, drag and drop is better than writing the code.
Because there is the drag and drop in App Inventor and it is
visual, it is more interesting. In the other, you just write code.
Codes are working on a black screen. This was better than that.
(T1_S5)

136

Mesela siiriikle birak seyi daha iyi bence sade kod yazmaktansa o
daha iyi. App Inventor’da siiriikle birak oldugu i¢in gorsel olmasi
da ilgi cekici oluyor. Digerinde sadece kod yaziyosunuz. Siyah bi
ekranda kodlar ¢alisiyor. Bu daha iyiydi ona gore. (T1_S5)

No-syntax/only visual structure of App Inventor made student T1_S4 to think that App
Inventor was different from conventional programming environments. Coding with

dragging and dropping the blocks was seen as an easy thing to do.

App Inventor is a really, different environment in my opinion.
Until now (this course) you have to write the code if you want

to use an environment. But in this, drag and drop... (T1_S4)

App Inventor zaten ¢ok bence farkii bir ortam. Su ana kadar hep
seydi illa ki kod yazacaksin hani. Bir ortam kullanacaksan ama
burada siiriikle birakla... (T1_S4)

Student T1_S3 also found drag and drop structure of App Inventor as very helpful

especially for first-time learners.

App Inventor is very easy to use, in my opinion. | mean, it does
not have any complexity after working on it a little... For us, I
mean who do not have any experience, using programming,
understanding it is more complicated, more difficult.
Therefore, it is more suitable for us because it uses blocks.
Because it has a drag and drop method... I mean it lets you
develop an application without learning any programming
language. (T1_S3)

Zaten sey hani AI ¢ok kullaniimas: kolay bence. Hani karmasiklig
yok yani Uzerine biraz ¢alistiktan sonra... Bizim i¢in mesela hig
almayanlar igin bir programlama kullanmak ¢ok daha karmasik
daha zor yani onu anlamak. O yuzden bloklarla oldugu igin bizim
icin daha kullanisli o var sonra siiriikle birak yontemiyle oldugu
icin. O sekilde. Yani programlama dili 6grenmeden bi uygulama

gelistirmeyi saghyor. (T1_S3)

137

Other than being easier to develop, students also think that App Inventor is easier to
learn. Student T2_S2 who is a Computer Education and Instructional Technology
(CEIT) senior specifies the positive sides of the App Inventor environment as being
easy to learn and easy to use. He said that programming turned into something for

people out of the computer field.

As my opinion, | just realized programming was transformed

into something easy-to-learn for normal people. (T2_S2)

Goriis olarak sadece yani yazilimin diger iste normal kisiler i¢in

daha kolay dgrenilebilir dontistiigiinii iste farkettim sadece. (T2_S2)

Another CEIT senior (T2_S3) thought that App Inventor was understandable and
anybody could learn it. He thought that App inventor was structured in a way that
anyone could understand. Student T1_S6, on the other hand, stated that App Inventor
speaks our language. While textual programming languages were seen as foreign
languages to students, App Inventor uses human language, instead of computer

language.

Being visual, being in a comprehensible language... Simple at
least, being in a structure that everyone can understand.
(T2_S3)

Evet gorsel olmast anlasilir bir dilde olmasi. Basit en azindan

herkesin anlayabilecegi bir yapida olmasi. (T2 _S3)

It speaks our language, I mean like “we did this, when | drag

this, this will happen” Because of that, it makes our job easier.
(T1_S6)

Bizim dilimizden konusuyor yani simdi boyle yaptik stiriiklendiginde
su olsun bu olsun gibi seyler o yiizden biraz daha kolay oluyor
isimiz. (T1_S6)

Student T1_ S8 who was a CEIT student exemplified easier learning of App Inventor
with ‘If” concept in programming, in addition to the no-syntax structure of it with no

need to use the keyboard. Turning the code of ‘If” concept to visual blocks which have

138

to be nested each other visually for multiple use of ‘If’s could help the students to learn

more easily.

In App Inventor, you do not use the keyboard. This is a very
good thing actually. It is faster and prevents syntax errors.
Understanding it is better, for example, blocks nest in each
other. If, for example; “if” is a more understandable thing in
App Inventor. (T1_S8)

Al klavye kullanmiyosunuz ¢ok giizel bir sey aslinda bu daha hizli
ve iste sey basit noktalama hatalarim engelliyor ve anlasilma seyi
daha guzel. Mesela icice gegiyo o bloklar falan isze bu bunun iginde

iste if mesela if Al da daha iyi anlagsilabilir bisey ashinda. (T1_S8)

Easy-to-develop feature was also found helpful by student T1_S4 who was a senior in
CEIT department. Especially, comparing to the textual programming environments,
he finds App Inventor more practical and rapid way to develop an application. As it
was mentioned in comparison with textual environments part, App Inventor also
prevents simple punctuation errors made by the novice programmers generally, due to

its visual nature.

First, in traditional programming languages, you have to spare
some time, like 3-5 days. However, in App Inventor, so that
there are a direct explanation and stuff in the codes, you do not
have to know a lot... Of course, doing this in traditional
programming languages took a little more time, wants a little
more labor. (T1_S4)

Oncelikle, bu geleneksel programlama dillerini birazcik vakit
ayirmaniz lazim, bir 3-5 gin. Ama Al da. Direkt zaten a¢iklamalar:
filan oldugu igin kodlarinda birazcik da ¢ok bilmenize gerek yok...
Tabi bunlart diger geleneksel programlama dillerinde yapmak
birazcik daha zaman alwyor birazcik daha emek istiyor bence.
(T1_S4)

As the programming environment, App Inventor was seen as a more productive

development environment. Comparing to the textual environment he used in another

139

programming course; student T2_S4 found App Inventor environment being more

productive as one of the positive features of it.

This course was more pleasant in my opinion because in
another one we did not produce anything really, just simple
things. (T2_S4)

Bu ders daha zevkliydi bnce cunki onda hani pek bir sey hani
ctkarmiyorduk. Hani basit seyler yapiyorduk. (T2_S4)

In addition to being visual, interface and arrangement of the environment was also
found helpful by some of the students. Student T1_S2 thinks that separating the block
and the designer part, and splitting the blocks and components into categories helped

him to find the block or component he needed easily.

Being visual, | mean, the interface was good. Blocks,
designers; they were separated. | know what to do in where,
where to add something. Categories and stuff are on the left. It

was very well-arranged. (T1_S2)

Gorselligi yani, seyi iyiydi arayiz iyiydi bloklar olsun designer
olsun ikiye ayirmislar. Nerde ne yapmam gerektigimi biliyordum.
Nerden ne ekleyecegim. Kategoriler falan solda. Kesinlikle ¢ok iyi
diizenlenmigsti. (T1_S2)

Two more students, T2_S3 and T2_S5, also put the same opinion forward as a positive
feature of the App Inventor environment. Separating code (block) and design

environment was an advantage according to the students.
Design and Blocks screen tabs being separate. (T2_S3)
Hem gorinti hem blok ayri ayri olmast ekranlarin. (T2 S3)
Design and Block tabs were nice. (T2_S5)
Design ve Block olmasi giizeldi. (T2 _S5)

Instant Feedback and Testing
App Inventor uses Blockly library. Blockly is a client-side JavaScript library for

creating visual block programming languages and editors. Instead of textual codes,

140

using puzzle-like pieces that prevents students from making basic mistakes since
incompatible puzzle pieces will not interlock. This feature provides free scaffolding
for novice programmers who could easily make mistakes. Student T1 S9 stated that

preventing users to snap incompatible blocks corrects student’s action into the relevant

way.

Blocks do not snap when they are not compatible with each
other. We can say that ‘Oh. This is not happening because they
are not compatible’ (T1_S9)

Birbirine uymayan bloklar yan yana getirdigimiz zaman
birlesmiyor. ‘Ha bunlar olmuyor uyumlu degilmis’ diyebiliyoruz.
(T1_S9)

Student T2_S5 put forward a similar opinion. Preventing students from joining non-

compatible blocks helped them to understand and overcome their mistakes.

But, when I think of android (App Inventor) | can get over the
mistakes a little more because they are like puzzle pieces. At
least when | was placing them. | mean, you can see which part
places at where. Sometimes it won’t fit. You say “Ouch I made

a mistake” and you can take it back. (T2_S5)

Ama androidi diisiindiigiimde puzzle pargalart Qibi odlugu igin
yanliglart birazcik daha atlatabiliyordum en azindan yerine
yerlestirmede. Hani neyin nereye yerlesecegini gorebiliyorsun
bazen yerlesmiyor. Ovv yanhs yaptim deyip geri gekebiliyorsun.
(T2_S5)

Students also think that information, which was given by the App Inventor about the

blocks, was very beneficial for them. Student T1_S9 found instant feedback provided

by the environment helpful.

We can see it directly. Guidance is very good. It gives detailed
information like do this if this does not work. If you say that
you want to use it, I don’t think you will have any problems

regarding guidance. (T1_S9)

141

Direkt gorebiliyoruz. Yonlendirmeleri falan filan da cok iyi bu
olmazsa ‘bunu yap, bu olmazsa bunu yap’ seklinde ayrintili bir
sekilde bilgi verilmig. Yani ben bunu kullanmak istiyorum diyorsaniz
hocam, stkinti yasayacagimizi sanmiyorum yéonlendirme agsindan.

(T1_S9)

Description of the blocks and components when hovering the mouse pointer over them
and information about the errors helped students to learn from their mistakes and
prevents them from making common mistakes. Student T1_S11 found the description

balloons beneficial for correcting errors of the learners.

When you hover over the block, what it does is written. Let’s
say you made one (mistake). At least you can instantly see
your mistake. You could think about what you should do next,

I mean you can change it to something else. (T1_S11)

Blogun tizerine geldiginiz zaman ne yapacagi yaziyo. Hani bir sefer
yaptimiz. En azindan yanligimizi hemen gorebiliyorsunuz.
Sonrasinda ne yapmamz gerektigini diistintip hani onu
cevirebilirsiniz baska bir sekilde. (T1_S11)

Even the students with a programming background found the supporting of the
environment to prevent users from making mistakes as very beneficial. Through
compatibility of the puzzle pieces and warnings and errors at the bottom of the blocks
screen, users can overcome their mistakes by themselves without the further guidance
of the instructor. Student T1 S4 stated that he evaluated and corrected his own

mistakes with the help of feedback and support from the environment.

Because of that, I think that this does not belong to here, it is
easy because of that. And also, on the left downside it shows
warning and errors, so it became more, it became easier.
(T1_S4)

O yuzden demek ki buramin degilmis bu hani diyorum o yiizden
kolay. Bi de hani bu seyler sol alt késede warningler errorlarda
gosteriyordu o yizden ¢ok daha sey oluyordu kolay oluyordu.
(T1_S4)

142

Another positive aspect of the environment according to the students was
instantaneous testing through the phone. Application in App Inventor does not have to
be compiled. With the help of App Inventor companion app, users can instantly see
the change they have made on the phone. Student T1_S4 stated that trying and playing
with the application they have developed at the end of the course instantly was a

positive aspect of the environment.

We can instantly try them. We can see the applications
instantly on our phones at the end of the course. We can even
play with them. (T1_S4)

Hemen deneyebiliyoruz. Uygulamalar hemen son giinde de, ders
sonunda da telefonumuza yikleyip gorebiliyorduk oynayabiliyorduk
hatta. (T1_S4)

Student T1_S5 also stated that testing the application instantly and simultaneously in
phone screen while developing it was another positive feature of the environment.
Seeing directly on the phone is a nice thing... But I can see the
changes I’ve made directly from the phone. I mean you made

something and instantly see the result. (T1_S5)

Dogru telefonda direkt gérmeniz o da iyi bir sey Ama o yonden iyi
yani direkt telefondan gorebiliyorum yaptigim degisiklikleri. yani

yapryosunuz hemen sonucunu goriyosunuz. (T1_S5)

Student T2_S3 and T2_S1, both CEIT students, found testing the application and
seeing the outcome while creating it without any need of compiling as it was in
conventional programming environments as an interesting and better side of the App

Inventor environment.

As | said, when | write the code in screen and start it in an
android tablet or phone seeing the output of what I write
instantly, was beautiful regarding programming, in my

opinion. That’s what got my attention the most. (T2_S3)

Dedigim gibi 0 kodu yazip ekranda calistrdigim zaman mesela

andrroid bir tablette ya da telefonda calistirdigim zmaan onu

143

yazdigim seyin doniitiinii gériiyor olmak aninda o ¢ok giizel bir sey
bence programlama icin. En gok dikkatimi ¢eken buydu. (T2_S3)

Al better because we can play it directly from the phone and

try it if it’s working... There is no compiling. So it’s better in

Al. (T2_S1)

Summary of positive aspects
Positive sides of the App Inventor environment will not reveal the advantages of the
environment per se. It also holds the potential for the relevant programming
environment choice for the future courses, especially for the introductory
programming courses. Students reported that the simple structure was one of the
remarkable positive aspects of the environment. Especially for the new learners, easy
to understand and develop aspect of the App Inventor environment was crucial for the
students. Moreover, using visual puzzle pieces to develop the application was found
advantageous which prevents users from making syntax mistakes. According to
students, developing visually and constructing a visual product at the end helped

students to learn faster.

Another positive aspect was instant feedback and testing. Descriptions provided by the
environment for each puzzle piece and component. The puzzle pieces were also found
useful regarding providing feedback to the students, since some of the puzzle pieces
compatible with each other while others are not. This provided scaffolding to students
when they were confused about using which puzzle piece in where. It can be seen that
from the statements of the students, features of the environment is essential for an
introductory programming course, especially in terms of being simple, helpful,

communicative and productive.

4.4.3.2 Negative Aspects
Opinions of the students about the negative sides of the environment were also taken
through the interviews. Students reported the negative aspects of the App Inventor
environment as not being flexible enough for advanced programming, having technical
deficiencies and lacking visual flexibility. Those aspects will be examined with the

quotes from the interviews of the students.

144

Not Flexible Enough for Advanced Programming
As it was mentioned in the comparison of textual and visual programming
environments, the most common answer from the students with previous programming
experience is that App Inventor is not flexible enough for advanced programming.
Even though they find App Inventor useful for introductory and practical level; they
do not think that it is relevant for further improvement and professional career. Student
T1 S5 thought that visual programming would not offer enough opportunity as textual

programming does.

App inventor seems to have no significant negative side. Just
maybe, we could not make everything we could make with
C++. (T1_Sb)

Al da yani ¢ok bi olumsuzluk yok gibi sade belki C++ta yaptigimiz
herseyi bunda yapamiyor olabiliriz. (T1_S5)

Student T1_S8, on the other hand, was thinking that creating the codes with the visual

interface will not be free and flexible as it is in textual programming environments.

You still do not feel like as flexible as writing with the
keyboard. (T1_S8)

Hala sey kadar esnek hissetmiyosunuz yazarken klavyedeki kadar

esnek hissetmiyosunuz. (T1_S8)

Some students think that reason behind being not flexible enough for advanced
programming was being online. They believe that if it became an offline application,
the problem will be solved as students T1_S4 and T1_S5 stated. Therefore, another

downside for them is being solely online.

Of course, App Inventor has negative sides. Because of
working online, we cannot make very complex things in bigger
projects. It limits us. (T1_S4)

Simdi seyin Al in olumsuz yanlari tabi online olarak ¢alistigimiz icin
daha biiyiik projelerde onla zaten ¢ok bir seyler kompleks igler
yapamiyoz bizi kisitliyor. (T1_S4)

145

App Inventor could be better as an application on the
computer, not internet-based. (T1_S5)

App Inventor’t uygulama seklinde yani bilgisayarda uygulama
seklinde olmas: da daha iyi olur bence internet tizerinden degil de.
(T1_S5)

Technical Deficiencies
Students also think that App Inventor has some technical deficiencies. Especially
shortcomings that prevent users from making a change he or she wants, crashes and
errors, lack of some basic features were listed as technical problems of the App
Inventor environment by the students. Student T2_S2 states that lack of some features

restrict them to make the changes they want.

For example, there are restrictions... However, in traditional
programming, you can make anything you want. You can
make things like open the first window, close the second and
open the fifth but App Inventor does not have this feature and
restrict you, so constantly stack of screens pile up. App
Inventor has shortcomings like that. (T2_S2)

Mesela iste kisitlamalar var App Inventor’da. Ama normal
programlamada istedigini yapiyorsun. 1.yi kapat 2.yi a¢ 5. Yi a¢
falan diye sey yapabiliyorsun. Ama Al da o olmadigi igin ve
surladigy icin seni mesela siirekli iistii iiste birikmis ekranlar yigim
olusuyor. Bu tipte handikaplart var AI'in. (T2_S2)

Some students complained about the errors and crashes in App Inventor. Most of the
students have afraid to lose their application due to some error or exit without saving,
even though App Inventor has an auto-saving feature. As students T1_S7, T1_S11,
and T2_S3 specifically explained their experiences regarding the crashes or technical
shortcomings of App Inventor environment; there are still need for technical

improvements.

It does not save for example. It ended up bad for me. For

example, the things | added into vertical, horizontal

146

(arrangements) when | delete them it was all deleted. | had to
make them all over again. (T1_S7)

Kaydetmiyodu mesela o kétii olmustu benim icin. Mesela bir seyin
horizontal, vertical onlarin igine attiklarim silince hepsi birden

silinmigti. Onlar: tekrar yapmak zorunda kalmistim. (T1_S7)

Once it scared me; | thought that I lost my application. Because
of that I constantly downloaded after any changes | have made.
(T1_S11)

Bi ara korkuttu beni; uygulamalarim gitti sandim. Evet onlar var. O
yiizden stirekli bilgisayarda yaptigim herseyden sonra degisiklikten
sonra indiriyordum. (T1_S11)

If App Inventor will be enhanced a little, | think, better
outcomes will emerge. Because, if an error or a crash occurs,
it places us into a difficult position. Other than that, | do not
think there is any shortcoming. The thing | complained about
the most was problems | encountered in App Inventor.
(T2_S3)

Al biraz iylestirilirse daha iyi sonucglar alinabilecegini
diistiniiyorum. Ciinkii biiyiik bir hata oldugunda veya ¢okme
oldugunda o bizi zor duruma sokuyor yoksa herhangi bir eksiklik

yok benim en ¢ok sikayet ettigim sey Al da yasadigimiz sorunlar
oldu. (T2_S3)

Other than crashes and errors, the most common complaint was lack of undo feature.
When the developer deletes a group of blocks or an arrangement of visual components,
there is no turning back to the previous version, unless if he or she took a backup
manually before as students T1_S5and T1_S10 stated.

There is no undo button. When you exit without saving, you
lost all. (T1_S5)

Geri al yok. Kaydetmeden ¢iktiginizda hepsi gidiyor. (T1_S5)

147

Yes, for example, when you remove something, you lost all.
(T1_S10)

Evet Mesela seyden bir seyi c¢ikardigin zaman hepsi gidiyo.
(T1_S10)

As it was mentioned in the previous code, students think that if an offline version of
the App Inventor is provided it would be more convenient for them. The online version
also restricts them to access from one place and open one project at a time. This type
of restriction prevented students from benefiting from their old projects like looking
at the codes as student T2_S6 stated.

For example, if it were downloadable and usable like
Scratch... You want to open the other one in the side window.
Old example and new example side by side to look at it and
make the new one. It lacks this (feature). (T2_S6)

Mesela sey gibi Scratch gibi indirilebilir ve kullanilabilir bir hali
olsa... Seyi agmak istiyorsan bir de yan tarafta agmak istiyorsun.
Eski ornek burada yeni Ornek burda olsun en azindan bakarak

yapaymm o yok. (T2_S6)

According to observation notes, technical problems (e.g. losing connection with the
companion testing app) while testing the application made students think that they
have a problem with their codes. Using a stable environment is important, but
informing students about the probable problems could be essential for the first time

learners.

Students also complain about App Inventor’s getting slower when the application is
getting more complex. According to the interviews, 13 of the 18 students complained
about the slowness of the environment and their problems with that. According to the
observations and students opinions throughout the course, all of the students

complained about this disadvantage of the App Inventor Environment.

I mean when we uploaded too many visual, video, or wrote too
many codes, we face difficulties in App Inventor. It cannot
render, or we constantly have to download the apk file to make

it work appropriately... Maybe because, we wrote many codes
148

but when we download it separately, loading it was slow. The
reason could be that it is online. (T2_S3)

Yani, iste ¢ok fazla mesela gorsel video yiikledigimiz zaman ¢ok
fazla kod yazdigimiz zaman Al da sikinti yasiyoruz. Ya render
edemiyor géremiyoruz ya da stirekli apk a/mamiz gerekiyor diizgiin
calismast icin... Belki biz ¢ok fazla kod yazdigimiz icin ama bize sey
yaptigimiz zaman ayrt olarak indirdigimiz zaman yiiklenmesi biraz
yavas oluyor mesela. Internet iizerinden oldugu icin olabilir.
(T2_S3)

When block count is too many, there had been a slowness...

Like we were back in Stone Age and worked there. (T1_S9)

Ama sey olayr bazen sikiyor bu Al da program yaparken bloklar
bayag bir arttigr zaman hani bi kasma oluyor ya sanki tas devrine

donmiis de orda ¢alistyomus gibi oluyordu. (T1_S9)

Student T2_S5 states that it was constantly getting slower and sometimes crashes after

getting slower.
Being slow... Sometimes it crashes. (T2 _S4)
Kasmast... Bazen Cékiiyor ya. (T2_S4)

Especially when testing their application through the App Inventor companion app,
slowness of the environment was becoming a real problem since it causes lags as

student T1_S1 and T1 S2 mentioned in interviews.

It was getting slower. For example, my application is lagging
3 seconds (when testing). (T1_S1)

Yavaslyodu. Program evet su an mesela benim programim 3 saniye
sonradan geliyor. (T1_S1)

Negative sides... It was lagging. For example, there has been
a change, but because I haven’t reset the companion, I could

not see it. | realize that later. (T1_S2)

149

Olumsuz yanlar: ge¢ geldi. Mesela yapryodum ben degisiklik olmus
ama resetlemedigim icin ben hala goremiyordum. Geg farkettim

bunu falan. O biraz companiona Oneri olacak da ne bileyim. (T1_S2)

Environment’s getting slower when students try to develop a more complex
application was acting like a natural demotivator environment. It is also one of the

main reason for preferring a textual environment instead of a visual one for the future.

Visual Flexibility Problem
Another point that students want it to be improved is the visual flexibility of the App
Inventor environment. Students have problems while designing their applications
visually. Using designer tab sometimes restricts students while designing the screen of
the application. Especially, while they are dragging and dropping the components, they

think that App Inventor was acting weird.

Student T1_S5 and T2_S3 emphasized a simple shortcoming nearly all of the students
complained throughout the course. They were thinking that the visual design
capabilities of App Inventor were very limited including the font library. They could
not find the font types they wanted. Even it could be seen as an elementary problem;
it affected their development process significantly.

I could not use the font face | wanted. (T1_S5)
Yani istedigim fontu veremedim. (T1_S5)

Visually, buttons and images could be improved... Font type
numbers could be increased for example. When | tried to add
a sound or video, it caused some problems. Those can be
improved. (T2_S3)

Gorsel olarak butonlar koyulan resimler onlar belki daha
iyilestirilebilir. Yazi tipleri arttirilabilir mesela kisutly fontlarin
falan... Mesela sey geldi su an aklima ses eklemeye veya video
eklemeye calistigim zaman o ¢ok sikinti yaratmist: projede. Onlarla

ilgili bir iyilestirme yapulabilir. (T2_S3)

Placing the components in the designer screen was also another technical shortcoming

in App Inventor environment. Throughout the course, nearly all of the students had

150

problems while assigning a component to a position on the screen. Students T1_S2
and T2_S4 expressed this issue as follows.

The problem of the program (App Inventor) is that | cannot
place them in anywhere | want without using arrangement. The
designer made me angry and work extra. (T1_S2)

Programin problemi o arrangement olmadan istedigim yere
koyamamam falan onlar sikinti ¢ikartyor. Designer kizdirdr yani
biraz ugrastirdi kizdird: da yani. (T1_S2)

We cannot place the thing where we want. When we work on

designer screen, it can be freer. (T2_S4)

Istedigimizi istedigimiz yere koyamiyoruz. Sey anlaminda o designer

ekraminda calistigimizda biraz daha free olsa. (T2_S4)

Another tab (or screen) that App Inventor has is Blocks tab. Blocks tab is where the
developer write (or create for App Inventor case) the code. It is just a blank screen
where the developer could drag and drop the blocks anywhere her or she wants (figure
4.9). However, the screen is an infinite scrolling area. When the screen is full of blocks,
the developer needs to scroll to an empty place. Students also find this inappropriate
for the big scale projects. They used the zoom feature of the browser to overcome this
problem. However, this minimizes the blocks up to a scale where they are unreadable.
As the researcher was writing of this dissertation, MIT updated the App Inventor with

a zoom button placed at the blocks screen to overcome this problem.

Blocks area is too narrow, | mean, OK, we did not make
anything complex, but still, we wrote some. Because of that,

we constantly shrink and enlarge the screen. (T2_S6)

O bloklarin oldugu kismdanki yer ¢ok kiiciik mesela hani tamam biz
cok komplike bir sey yapmadik ama yine de sonucta bir seyler yazdik
yani. Onun igin gey oldu stirekli biraz kigulteyim biraz buyuteyim.
(T2_S6)

It is very hard to go to the bottom of the screen. (T2_S7)

Mesela ekranda en alta inmek ¢ok zor. (T2_S7)

151

Palette Viewer

User Interface Display hidden components in Viewer

Preview on Tablet size

Button Check to see y

DatePicker

u# 'mage

S

Label

ListPicker

ListView

Notifier

PasswordTextBox

Bl Slider

Spinner

TextBox

Figure 4.9 App Inventor Interface

Summary of negative aspects
Similar to positive aspects students also reported negative aspects of the App Inventor
environment. Mostly mentioned negative aspect was that App Inventor is not flexible
enough for advanced programming. Especially students with programming
background or with programming career goal found App Inventor inadequate. They
put forward that students with a programming career plan should learn a textual
programming language like C++. In addition to lack of advanced features, students
also criticized the crashes and errors they have encountered during their project
development. Moreover, students also reported that the more complex the application
gets, the slower it becomes. Some students linked those errors and slowing to being

solely online.

In addition to programming problems, students also complained about the lack of
visual design features. They could not find enough fonts, they have had problems
placing and moving objects etc. Another mostly mentioned lack of feature was not
having common software features like undo and redo. It could be seen clearly that as
the App Inventor environment and similar environments are developed more maturely,

it would be embraced more by the non-programmer audiences.

152

4.4.4 Summary of Programming and Programming Environments

Some of the important points emerged under themes will be emphasized under this
part. In addition to examination of the advantages of visual and textual programming
use, specifically positive and negative sides of the App Inventor environment will be
listed.

e Attitude change towards programming
o Visual Environment helped students to overcome their fear towards
programming
o Being able to develop a working product increased their self-
confidence regarding programming
e Comparing textual with the visual programming environment
o Advantages of using only visual programming environments:
= Suitable for first-time learners
» Product-oriented / Concrete outcome
= Instant development and immediate feedback
= More practical / More chance of implementation

= No syntax error

Visual Environment Makes programming .| Easier to

Learn Use Develop

!

More

Productive

Figure 4.10 Effect of Visual Environment on Novice Programmers

153

o Advantages of using a combination of both environments
= Benefits of the visual environment
= Knowing a different and more flexible environment
= Preparation opportunity for advanced programming
= Attitude change towards textual programming
o Advantages of using textual environments
= More flexible and advanced environment
e Positive sides of App Inventor environment (similar to advantages of visual
programming environment)
o Visual structure of App Inventor was easy to learn, use and develop
o Have helpful interface and arrangement
o Immediate feedback and testing without compiling
¢ Negative sides of App Inventor environment
o Not flexible enough for advanced programming
o Technical deficiencies: crashes, errors, lack of basic features, online-
only software
o Visual flexibility problems: lack of font types, visual design problems

o Getting slower when creating complex applications
4.5 Dynamics and Evaluation of the Course

Students were also asked to evaluate the course, tutorials and the general process of
the course. In addition to the evaluation of the course, the programming concepts that
they find challenging, and the changes that they think beneficial, was also taken into
consideration to reshape the course. Unlike other themes, under this theme
chronological order of the interviews will be followed to form a clearer picture of the

process and the outcome of the course.

4.5.1 Challenging Concepts of Programming

45.1.1 Variables
One of the essential programming concepts that were found hard to understand by
students was the variable concept. The first example with variables was presented to
students in the third week of the course. After the first example, many examples with

variables were presented. Students stated that particularly at the beginning of the

154

course variables in programming was confusing and difficult to understand. During
the course hours, some students called the variables as “orange things” since the
variable blocks were in orange color. That word turned into a joke for them,
representing that they do not understand how to use variables in their applications. In
addition to the observations, the students also emphasized that during the interviews.
While student T1_S9 mentioned the variables as their nightmares, T1_S2 was thinking

that understanding variables was causing some problems.
Our nightmare was orange things. (T1_S9)
Korkulu riiyamiz turuncu seylerdi. (T1_S9)
Variables were problematic in my opinion. (T1_S2)
Variablelar bence problemdi. (T1_S2)

Student T1 S11 explained the essence of the problem as using the
variables. He stated that he did not have difficulty understanding the
definition part of the variables, however using the variables was the real

issue for her.

Orange things. Variables. After defining, 1 mean, OK, we
define it but after defining, using it... (T1_S11)

Turuncu seyler. Degiskenler. Degisken tammladiktan sonra tamam

tammliyoruz ama o degiskenin nasil kullanildigini... (T1_S11)

Students from Elementary Mathematics Education have some additional problem
understanding the variable concept since they use variables in their own profession in
a different way. Having the same name, but different use led to a misconception and
made them need some special attention to understand the concept. Student T1 S3
states that they always use the variables in mathematics, however defining the
variables and changing them through the application was causing some

misconceptions for them.

Because of the variables, | mean we use them in mathematics,
but when it comes to this, what will we say, we should define

it. That’s why it’s different... It was really different for us. I

155

mean, what will we define? Because, you know, we decide the

variable on our own, probably because of that. (T1_S11)

Ciinkii degigken hani matematikte kullaniyoruz ama buraya gelince
degisken ne diyecez kendimiz belirleyecez ya o yiizden farkh
oluyor... Bizim icin evet gercekten farkliydi. Yani ne tammliycaz.
Ciinkii degiskene kendimiz karar veriyoruz ya biraz o ylzden
Sanmirim. (T1_S11)

Student T1_S1 stated that he did not understand variables at the beginning, using

variables in examples regularly, made him understand the concept.
Variable lar1 basta anlamamistim. (T1_S1)
1 didn 't understand the variables at the beginning. (T1_S1)

Student T1 S11 recommended using basic applications to learn the concept then
continue to use the variables in tutorials that are more complex could be better in terms
of understanding the variable concept. The suggestion of this student was used directly

in the course which was more successful than the predecessor course.

Just to show how variable could be used, a basic application
could be made. And then we could add that (information) into
an application; it could be more efficient. It could be easier to
understand. (T1_S11)

Evet sadece degiskeni bu nasil kullaniliyor onla basit bi uygulama
yaptiktan sonra bizim diger bir uygulamanin icine katilsaydi daha
verimli olabilirdi anlamas: kolay olabilirdi. (T1_S11)

Based on the observation of the instructor, there was another part that was hard to
grasp by students regarding using variables and other values specific to App Inventor
environment. To define and give a value to a variable, users need to use “set” block;
and to use the variable they need to use the “get” block (in figure 4.11) below from top
to bottom, defining a variable, assigning a new value using ‘set’ block, and giving the
value of variable to a label using get block). Some of the students find it confusing
since it is not using any equality system. They were making mistakes about when to

use set and when to use the get block. Very similar confusion was observed more than

156

one time about the general structure of blocks. Students were choosing the block with
the name of the component (e.g. textbox1), instead of using the block which contains
the data (e.g. textboxl.text). At the first class students with previous programming
experience had problems with no-tutorial examples. Structure of the blocks and the
variables should be verbally explained to the students. Even the ones with previous
knowledge of programming since they could have a misconception about the using the

variables in the visual programming.

initialize global Variable_Name

-1 global Variable Name ~ [/ (B8 5

S Label1 ~ B Text - MG = global Variable Name -

Figure 4.11 Defining and Using Variable in App Inventor

Another data extracted from the observation notes was that students were confused
about the mathematical variables and programming variables. When variables name
was used students saw it as the mathematical variable which represents a number or
involves the numerical value. Especially assigning and constantly changing the value
of the variables confused the students. One possible solution for this misconception
could be explaining the differences between the variables in programming and
mathematical variables, at the start of the variables topic.

45.1.2 Clock
Students also found the clock concept as difficult to understand. The clock was used
as an alternative loop method in the course and generally used in-game examples. As
student T1_S2 stated that he had some difficulty while trying to understand the clock
concept and its components. He indicated that he understood the concept and its

properties after recurring examples of the clock.

For instance, | had a hard time understanding the logic of clock
for a while, but I understood it at the end. What interval is,
what enabled is... (T1_S2)

157

Mesela su clockun mantigimi anlamakta biraz zorlandim ama

anladim sonunda. Interval neymis enabled neymis. (T1_S2)

Even the students with programming background have not used components similar
to the clock. Time concept was different for them since the examples they have made
were mostly output based. Even, student T1_S4 who was an intern PHP programmer
thinks that clock concept is hard to understand. He stated that he needed to study the

clock at home.

As in the other difficult concepts, it could be also beneficial for clock concept to
familiarize the students towards the concept with as simple as possible. Student T1_S2
suggested having a countdown timer example for clock concept which was applied in
the second term. However, students still have difficulty at the beginning of clock

concept.

I, too, had difficulties in Clock (component). This was my first

time using a Clock (component). (T2_S3)
Clockta ben de sorun yasadim. Clockta ilk defa ¢alistim. (T2_S3)

T2_S6 stated that the first activity he found hard was clock concept. He thought that it
was similar to the loops. However, he was not sure about how it works. Students with
previous programming knowledge tried to make a connection with their old knowledge
about the similar concept. So, it could be better to make the connection more apparent

to them.

For example, first activity I’ve had difficulty was... Different
than C++, | mean on the other software there was loop concept,
but there wasn’t any time concept. I mean, we didn’t use any.
We have used the loops, and we haven’t even seen how they

were working. That gave me some hard time, first. (T2_S6)

Etkinlikler ilk sey zorlayict mesela. C++tan farki da hani Diger
programlamalarda sey kavrami yok hani dongii kavrami var ama
zaman kavrami yok hani onu hi¢ kullanmamistik. Dongiileri
kullaniyorduk dongiilerin de hani isledigini bile gormiiyorduk. Ilk
basiarda da o beni ¢ok zorlamisti. (T2 S6)

158

Although T2_S6 was having difficulty understanding the clock first, he had effectively
used three clock components in his project. He also looked at the projects of the other
students to understand how they used the clock component and used their projects as

a source of knowledge.

I didn’t understand the Clocks first, but, afterward, I started to
understand those, while 1 was making the game (project).
(T2_S7)

Clocklart en basta anlamamistim ama sonra onlar: anlamaya

basladim sonlara dogru oyun yaparken. (T2_S7)

45.1.3 Database
Both students with advanced programming knowledge and novice programming
learners had a hard time in understanding the database. While student T1_S4 stated
that he was confused at first when he was introduced to the database in App Inventor,
student T2_S7 declared the database as the hardest topic.

Database topic quite confused me. That could be elaborated in
detail. (T1_S4)

Database konusu bayagi kafami karigtirdi. Onun iizerinde daha
detayl: durulabilir. (T1_S4)

The hardest part was the database in my opinion; others could

be understood in one way or another. (T2_S7)
En zoru database bence digerleri bir sekilde anlasilyyordu. (T2 _S7)

Student T2_S6 stated that he understood the database concept. However, he did not

learn the concept fully. He used the older examples to overcome his lack of knowledge

| understood the database when you first explain it to us, but |
did not comprehend it fully... I went back frequently and
looked at the examples we made like the walking example. |
looked at it to see how we used the images, how we used the
database... (T2_S6)

159

Database’i ilk anlattiginiz zaman anlamistim ama tam oturmamis....
Onlara ben sik sik doniip baktim yani sey yaparken mesela yiiriiyiisii

nasil yapmugiz resimleri nasil kullanmisiz orada database’i nasil
kullanmigiz... (T2_S6)

According to the observations and the interviews, students needed more examples and
more emphasis on the database concept. Students also reported that revisiting the
examples they have completed in course hours helped them to understand the concept.
It was clear that providing an open and online library of examples to students is

essential as it was once again mentioned by the students.

4.5.2 Course Dynamics

This course was designed as an introductory programming course, which uses App
Inventor Environment to teach the programming concepts to the learner with real-
world examples. The course was an 8-week long elective course, open to all
departments within Middle East Technical University. For two semesters, the same
course was given under Computer Education and Instructional Technology. Since the
research framework of this course was design-based methodology, the design of the
course reshaped based on the feedback from students. In addition to the observations
and opinions of the students throughout the course, at the end of each semester, by
conducting interviews with students some key points and guidelines were detected.
Those key points and the guidelines could shed light on the fruitful and incompetent

parts of the course.

4.5.2.1 Discovery Learning — Reshaping the Tutorials

One of the most common feedback taken from students regarding the tutorials was
after the first couple of weeks they need less explanation more discovery and problem-
solving. While the course was initially designed as a self-learning course through
tutorials with the instructor as a guide, too much explanation and well-structured steps
stopped students to think about the example that they were working on. Since the
programming environment was visual and tutorials was showing every step and every
block which were needed to be created, students stated that after some point, they
started to imitate the same image they were seeing in tutorials without any effort and
thinking.

160

Fewer Images in Tutorials
Student T1_S5 remarked that tutorials with exact images of the blocks screen make
them copy and paste the exact images in their application without any effort and

thinking.

I mean, we were copying and placing the exact image that we
see, maybe that could be a problem regarding the learning.
(T1_S5)

Yani birebir o resmi kopyalayp yani gordiigiimiizii oraya
koyuyorduk belki o yonden dediginiz Qibi &6grenme ydniinden
stkintilar olabilir. (T1_S5)

As student T1_S3 specified that students were not actively thinking the
solution while using the tutorials, he suggested that rather than tutorial

based class, basic applications could be started to be made.

Because we always look there and make it. We weren’t
thinking much about it. Maybe, instead of making many
tutorials and then starting to make applications, they can be put
into the middle. (T1_S3)

Clnku ordan hep bakarak yapryorduk iizerine ¢ok diisiinmiiyoduk
samrim. Belki gey olabilir bir siirii tutorial yapip da sonra birden

uygulamaya ge¢mek yerine araya konulabilir. (T1_S3)

T1 S9 thinks that the tutorial with images of every step including the blocks stops
them to think and just matching the image in the tutorial with their application in App

Inventor.

| have seen that many of my friends and me also, we look at
the picture, look at the blocks. After some time it turns into
matching... The ones that you have prepared could be in detail
for the first and second applications, but after those, text

without picture could be used. (T1_S9)

Bir ¢ok arkadasta seyi gordik ben de mesela yaprigim oldu. Resme

bakiyoruz bloklara bakiyoruz. Eslestirme gibi oluyodu bir siire

161

sonra. Sizin hazirladiginiz tarzdaki 1-2. Uygulamalar icin olabilir
ayrintt olayt ama sonrasindakiler icin sey yapilabilir mesela sadece
resim olmadan metin. (T1_S9)

The More Practice, the Better
This problem was detected before the interviews. After the second week, instructor
added “in-class assignments” with no tutorials. In-class assignments were simple
problems with just screenshots of the end-product without any steps. Students were
confused at first when they think that they were successfully completed the tutorials
of the first two weeks. They found the basic example more difficult since there was no
image of the blocks screen. At the end of the course, even though, they found them
more difficult, they thought that they are beneficial and there should be more of them.
Student T1_S3 was also thinking that the more practice, the better in the time of her

interview.

We could have developed more applications. On the other
hand, we developed a bunch. Since we have never taken
anything (course) like this, the more practice, the better for us.
I mean that could be nice, and we were making them
(applications) from the tutorials. We were confused when we
jumped into application making part. (T1_S3)

Daha c¢ok belki uygulama gelistirebilirdik ama zaten bayagi bir
uygulama gelistirdik. Biz daha dnce hi¢ boyle bir sey almadigimiz
icin ne kadar ¢ok pratik yaparsak bizim i¢in o kadar faydali olacakt:.
Hani o guzel olabilirdi bi de hani sey diistiniiyorum tutoriallardan
vapyorduk ya ordan bi anda kendimiz uygulama yapmaya gegince
biraz saswdik. (T1_S3)

According to observation notes, students ran into a stone wall when they encountered
problems without tutorials. So, it could be better to use instant demonstration,
feedback, guidance, and explanation of the instructor for the first couple of in-class
assignments (problems without tutorials). As it was recommended in the first
principles of instruction, explaining the complex steps with demonstration was used in
order to help students understand the concept or procedure. However, in the following

weeks, they adapted to the solving process by using some strategies. Some students

162

get help from each other and instructor to understand what the problem is. Some of
them linked the current problem with previous examples. Remembering students to
thinking step by step, and computational thinking which was mentioned in the
theoretical hours also worked for some of the students. Even though examples without
tutorials took much more time than the examples with tutorials, students got used to
solving problems by using computational thinking. Observation notes also showed that
in examples without tutorials, some of the students tried alternative solutions and asked
for the approval of the instructor to go further with their solutions. After they have
regular examples without tutorials and homework, they learned to try and test the
solution. To help them through the baby steps phase, it could be beneficial to use
training wheels-like problems with prepared steps for the first two weeks of the
problems with no tutorial. It could help students to see the next step and embrace the

computational thinking.

Removal of Tutorials after Two Weeks
Student T1_S2 thinks that if there were fewer tutorials and more discovery, students
would enjoy more. He thought that after the first two weeks tutorials could be
removed. While tutorials were beneficial to build the initial knowledge and support
the new learners’ motivation towards the programming, students demand freer area to
discover by themselves. The important point of this statement, which other students
agreed upon, even the students with little knowledge need to explore and discover the

learning by themselves.

Nevertheless, as | have said before, if tutorials become less,
first 1-2 weeks using tutorials then remove the tutorials, in my
opinion, students would enjoy more. It would be better to ask
the next generation, but | like to learn by exploring, that would

be more interesting for me. (T1_S2)

Ama dedigim ¢ibi tutorialler az olursa ilk 1-2 hafta tutorial
tizerinden gidip ondan sonra onlart kaldirsak bence ogrenciler de
keyif alir. Gelecek nesillere de sormak lazim da ben kesfederek

ogrenmeyi sevdigim icin daha ¢ok ilgimi ¢cekerdi benim. (T1_S2)

Thoughts of the student T1_S9 were similar to T1_S2, well-structured steps are good

for the first week. After that, in tutorials, less detail should be provided, fewer images
163

of blocks should be used, and more textual guidance should be given to make them
think more. He also thinks that in-class assignments with no tutorial or guidance are

also beneficial for them.

Too much detail were given in some of them. | mean, like “you
must do this like that”. In my opinion, that should only be in
the first one. First one was nice. | like the first one very much.
The application after that makes us think a little more. The one
with just the text... Like “you should do this, create a canvas,
throw the ball and make image sprites do this”. Those parts, I

don’t know, we make that one with more thinking. (T1 S9)

Bazilarinda ¢ok ayrinti veriyoduk ya hani mesela bu béyle yapilmali
bu béyle yapilmali bence o sadece ilkinde olmali ilk glzeldi ¢ok
hosuma gitti benim. Sonrasinda sey uygulamas: mesela biraz daha
diigtindiirmeye baslamigti; Hani Sadece metin vardi Sunu sunu
yapmalisin mesela canvas olusturmalisin. Iste top atmalisin
imagespritelarla sunu yapmalisin falan gibi kisitmlar oldugu zaman

ne biliim biz biraz daha diisiiniierek yapmistik onu. (T1_S9)

T1 S2 mentions a solution to overcome the match the image problem. He thinks that
students should work on solving a problem in course hours. Well-structured tutorials
should be available after course hour to be checked by students to see the solution.

Hani 6nce bi ugrassin ama kendi. Direkt olunca ¢iinkii agip
bakiyoruz belli bir seye. (T1_S2)

I mean let them (students) work on it first, when it is right there, we
look at it (tutorial/solution). (T1_S2)

Student T1_S6 states that they can learn the application just by discovering and trial
and error. According to her, the instructor should explain the example and the blocks
in general, and he should let students try them by themselves. T1_S7 also thinks that
when she learned by doing it rather than following the tutorial step by step, she learns
better.

164

I think it is enough that you give a lecture in the beginning.
After that, it is like a trial and error type of software in my

opinion. I mean, you can learn by trying. (T1_S6)

Bence iste sizin basta anlatmaniz yeterli olacaktir diye
diigtintiyorum. Sonrasinda zaten biraz da deneme zerine kurulu bir
program gibi geliyor bana. Yani deneyerek dgrenebiliyorsun.
(T1_S6)

When | learned by doing, it was more effective. | learned what
makes what. If | understood the function at the beginning,
instead of drag this to here, drag that to there, it would be
better. (T1_S7)

Kendim yaparak hani 6grendigimde daha verimli oldu. Neyin ne ise
yaradigim égrendim. Oyle bagslangicta hani bdyle bunu buraya
strtikle bunu buraya surlkle yerine ne ise yaradigini anlasaydim
daha gtizel olabilirdi. (T1_S7)

When students started to do their own project, there was not any tutorial or guide in
their hands. With a bigger goal to complete, it made them think more than the in-class
activities or homework. Student T1_S11 stated that when she started to do her project,
she needed to look at the blocks and their functions again to understand why and how
they work. This could be a proof of open-ended, and bigger assignments are beneficial

for students to learn by doing and discovering.

Daha sonrasinda tek tek bakmam gerekti aslinda bu hani
buraya neden buton olmuyodu label oluyo. Neden textbox
olmuyo da o oluyo seklinde daha ¢ok diisiinmemi sagladi.
(T1_S11)

After that (project started) | need to look at them one by one. | mean,
why the label is used instead of a button. Like why textbox could not
be used but the other could be... It made me think more. (T1_SI1)

Since nearly the half of the students from the first term suggested that tutorials should
be removed, in second term each week an example without a tutorial was given to

students. However, observations showed that the students had problems with the basic

165

examples without the tutorials. They checked and tried the blocks one by one to solve
the problem, even for an easy example as finding the sum of two different variables.
Therefore, removing the tutorials would be confusing and difficult for the students.
Providing different kinds of examples, and finished examples with missing pieces as
it will be mentioned in the blending the top-down and bottom-up approach part, could

be supporting for the students with different learning style and knowledge level.

Dynamic Tutorials and Develop-it-more activity
Student T1_S11 suggested a strategy to overcome the tutorial problem. After every
week, students should make the last week’s example without looking at any tutorial or
resource. However, making the same example could be boring for students who have
enough knowledge about the topic and could be challenging for students with less
knowledge. Instead of that instructor added a challenge at the end of each tutorial to
let them make their own version by developing it more. Develop-it-more activities let
them enhance the application without using any tutorial in which challenges were
offered students to complete after finishing the tutorial. According to the observation
notes from the first week of the first term, two students who have previous knowledge
completed the tutorials without any excitement or being enthusiastic about it. Those
activities did help the students with previous knowledge about programming in the

following weeks by providing them challenges after completion.

All of the students liked the in-class activities including tutorials. However, even in-
class assignments without any tutorials were provided to the students in the second
term; they still think similar to the students in the first term. As students T2_S3 and
T2_S5 suggested, tutorials should have missing steps based on the knowledge of the
learner. According to their recommendations, tutorials would be better if they are

dynamic based on the knowledge level of the student.

In some tutorials, what we should do was written step-by-step.
Maybe that could be up-to-us. That simplifies it. Of course,

there are people who never take the course. (T2_S3)

Bazi tutoriallarda adim adim ne yapmamiz gerektigi yaziyordu ya o
biraz bize birakilabilirdi belki. O biraz basitlestiriyor ama tabi hig

almayan insanlar da aliyor dersi. (T2_S3)

166

Activities were fun. It was both informative and entertaining,
and each has a different feature. That was nice. Sometimes |
think that, I mean, what if not all of the steps were given. Make
us think, make us... Force us, | liked that type of activities
more, frankly. (T2_S5)

Etkinlikler gayet eglenceliydi. Hani hem ogreticiydi hem
eglenceliydi her bir etkinlikte farkli bir ozellik vardi. O giizeldi.
Bazen seyi diisiiniiyorum hani biitiin adimlart vermese mi diye.
Direkt bizi diisiindiirsiin bizi sey yapsin. Zorlasin, o tir etkinlikler
daha ¢ok hosuma gidiyordu agik¢asi. (T2_S5)

On the contrary to the other students in second-semester, student T2_S7 found tutorials
helpful but have difficulty while making the in-class assignments without any tutorials.
T2_S7 was the only student in the second semester with no previous programming
knowledge. So, instant guidance should be provided for students who are having
difficulty

| think the tutorials were very good. Others were giving me
some hard time. (T2_S7)

Seyler bence cok iyidi mesela tutoriallar onun disindakiler beni
biraz zorluyordu. (T2_S7)

According to observation notes, students from computer education and instructional
technology program found the tutorials easy and completed faster than other students
as expected. Students from different backgrounds or different interests areas learning
pace could be different. Designing flexible examples could help them to stay in the
flow of the course. While giving some ideas to students could be helpful, letting
students find their own ideas to develop the application further would also be
beneficial. Having an audience from different fields and students with different
knowledge level could cause problems regarding the pace of the course. Student
S2_T2 who has advanced programming knowledge thinks that course could be a little
faster, on contrary to his classmates, because he was finishing the examples and

additional develop-it-more activities in class. So, if the class is more diverse regarding

167

previous knowledge of the students, the course could be more flexible for students

with no knowledge and with a programming background.

It could be a little faster. Even if my classmates told that we
are going a little faster, I think that’s because they threw back
a little in the beginning. I mean you could increase the speed a
little. (T2_S2)

Birazcik sadece hizlanabilir. Benim seyim her ne kadar sonuna
dogru birazcik hizli gidiyorsunuz dese de arkadagslar onlar bence
bastakileri aksattigi icin o duruma diistiiler. Yani birazcik hizi yani

tempoyu arttirirsaniz. (T2_S2)

Observation notes from the first week of the first term put forward that students who
had finished the tutorials looked for ideas to develop the applications further than the
tutorials without any encouragement. After that week additional challenges were
presented students at the end of each tutorial. It was called develop-it-more activity
which was used to show a way to students to let them go further with the example.
Observation notes showed that providing challenges also motivated students to
develop the application of the wee even more. Providing additional
missions/challenges could be an effective and motivating strategy for the faster
students. On the other hand, students from the second term finished the first examples
and started improvements without any encouragement or reminder. If develop-it-more
strategy would be a tradition for students, they will continue to search for ways to

improve their applications further.

The instructor provided step-by-step tutorials (most of them were from MIT’s website)
which include fundamental concepts of App Inventor and programming in general.
Some students suggested that tutorials could be removed to provide them a freer area
for discovering the program. However, removing step-by-step tutorials and let novice
learners deal with new information just by the discovery in a complex area like
programming could be confusing and demotivating. Rather than removing the
tutorials, it would be better to manipulate the tutorials into the ones with missing steps,
which could keep the attention of the students. Every tutorial should include challenges
regularly to keep the attention of the students, let them explore the solution by

themselves, and at the end, there should be an open-ended task at the end to provide a
168

way students to proceed even further. After the feedbacks of students in the first

semester, both a tutorial and a challenge were provided.

Homework

In the first semester, only two homework were given to the students. Students of the
first semester found given homework as very beneficial for them. They think to
improve the course more homework should be provided for the students. They
believed that homework is essential to understand the logic of the programming.
Moreover, as students suggest that tutorials should let them learn by discovering, they
thought that homework is also helping them to learn by discovering. Since they were
thinking homework was beneficial, they suggested that more homework should be
provided as student T1_S1 did.

But, for example, 1 homework per week would not tire us.
(T1_S1)

Ama mesela haftada / édev yormazd: bizi. (T1_S1)

Student T1 S7 also emphasized that she need some additional homework to
understand the logic. Student T1_S11 also highlighted that homework helps them to

exercise of new concepts they have learned.

At the beginning of the first term, the instructor gave students tutorials in which every
step of the application was taking part. After the interviews of the first term, it was
revealed that students prefer to discover some steps by themselves. They want to solve
the problems by themselves. In addition to tutorials, students from the first term
suggest that more homework could be beneficial for them to learn by discovery as
T1 S2 stated. Student T2_S4 from the second term approve the benefit as he states he

liked the homework since he needs to discover the solution by himself.

Like the Street Fighter example, when we work on it on our
own, | enjoyed more, to be honest. In the end, | discover
something when | worked on it. (T1_S2)

Su Street fighter falan olsun kendimiz ugrasinca daha c¢ok keyif
aldim ne yalan soyliim. Sonugta bir seyler kesfettim yani ugrasirken.
(T1_S2)

169

Specifically, ourselves, without knowing anything... I mean,
before showing us you gave us the homework, we discover
how to do the homework. Those parts were fun for me.
(T2_S4)

Spesifik olursak, kendimiz hani hi¢hir sey bilmeden... hani bilmeden
derken 6dev veriyorsunuz ya mesela hani nasil yapilacagin falan

kendimiz buluyoruz o kisimlar benim acimdan zevkliydi. (T2_S4)

While students from the first term were demanding more homework, some students in
the second group think that there was too much workload. Since the course was
updated based on the feedback from the students, nearly every week students have had
homework. Student T2_S3 stated that the workload of the course was a little more than
she expected since the course is elective. Student T2_S1 and T2_S6 also were thinking

that having a homework every week was a negative side of the course.

4.5.2.2 Blending Top-Down and Bottom-Up Approach
Another suggestion from the students that was not tried by the instructor was blending
top-down, and the bottom-up approaches for students to let them explore and
understand the function of each block. Top-down approach starts with the big picture
instead of building the program form the start. Normally bottom-up approach was
implemented in the course. However, students suggested the use of top-down approach
in addition to the bottom-up approach without knowing the names for them. Student
T1 S10 exemplify the strategy she was thinking of as completing the missing part of

the created application.

If there were... For example, we saw an incomplete part of a
program. We can complete that part. | mean, after we improve

our self, we can do that by ourselves. (T1_S10)

Hani su da olsaydr mesela bi programda bir sey eksik goriyoruz.
Onu hani kendin tamamlayabilirsin. Yani kendini gelistirdikten

sonra kendimiz tamamlayabiliriz. (T1_S10)

Student T1_S11 also suggested a similar tactic to enhance learning. She was thinking

trying blocks in a complete program to see what is the function of each would be more

170

beneficial for her to understand the difference between blocks. The same student had

offered the same tactic while taking the course.

For example, | prefer to learning like this, I mean, by looking
at the whole. Because when you make a change, you see the
difference. Like “is that one compatible with here”... Learning
could be more beneficial when step by step by adding the
blocks one by one. (T1_S11)

Mesela ben boyle 6grenmeyi tercih ederim hani bir biitiine bakip.
Gunkl hani yaptiginiz her bir degisikligi goriiyosunuz bu burda
oluyo mu boéyle hani asama asama blok ekleye ekleye ogrenince
daha yararli olabilir bence. (T1_S11)

Student T2_S4 also suggested using non-working examples with missing parts to
complete. He suggested that students can complete the codes and make the application

work.

There could be a missing one near to the end. Even a person
with no knowledge could do that by looking... If we were
trying to find the non-working part, it could be more
informative. (T2_S4)

Eksik verilebilirdi sonuna dogru belki direkt hani hi¢ bilmeyen birisi
bile bakarak apabilirdi onu... Neresinin ¢alismadigini bulmaya

¢aligsak daha ogretici olabilirdi. (T2_S4)

Observation notes also showed that some students want explanation of each block
instead of learning it from the tutorial. Before implementation of the block through the
tutorials, using simple finished examples with missing pieces could be helpful for the
students to let them see the difference that block makes to the program. Blending top-

down and bottom-up approach could be an effective strategy for the first time learners.

4.5.2.3 Theoretical Hour
The course was mainly focused on implementation and creating examples since the
researcher was following the spiral approach. During the first term, theoretical hours
was used to explain the theoretical side of the programming and to show the textual

simplified equivalent of the programs we made in the lab hour. Additionally, flowchart
171

diagrams and basic algorithms were also presented to students. However, observation
notes displayed that even the students who were very active in lab hours were quiet
and unwilling to participate in the theoretical hour. When there was an application,
students became more active during the course. Another strategy to make students
more active could be giving students on paper activities like flowchart challenges or
CS Unplugged activities. Flowchart challenges or CS Unplugged activities should be
directly related with their daily routines or the applications from the lab hours to

motivate them towards the activity as it was mentioned before.

Another problem was the difficulty of connecting the theoretical background with the
application part. Researcher tried to connect the theoretical hours and lab hours
through the applications student made in the lab hours. Demonstration tactic of first
principles of instruction was followed in order to give students a clear understanding
of each block and function and its algorithmic background. Demonstration was also
used in the lab hours after the hands-on tutorials. It was helpful for students to have a
clear understanding of the function of each block. Carrying that tactic to theoretical
hour made it even more effective for students both for being active in the class and
retaining the knowledge acquired from lab hours.

Feedbacks of the students from the first term was used to overcome the problems and
reshape the theoretical hour into a more effective one. After the changes according to
the feedback from the students through interviews and observations showed that use
of theoretical hours as the recitation hours for the examples, demonstration of the
blocks and the new concepts of the week was as important as the implementation by

itself after the improvements and updates.

Verbal Explanation / Recitation Hour
Student T1_S2 stated that it would be beneficial to explain the function of each block
that was used in the tutorials. According to him, that would help them to understand
the parts that they have superficially followed through the tutorials. Student T1 S11
was also thinking explaining the features of a block could be more beneficial regarding

understanding the block completely.

172

I mean your explanation on the blackboard is more beneficial
than the tutorials. Because, when we see the picture (in
tutorials), we do not think. (T1_S2)

Yani sizin orda tutorialden daha fazla faydali oluyor siz tutup
tahtada anlatiyorsunuz su soyle bu boyle o ¢ok daha faydali oluyor

bizim igin. Resmi goriince diisiinmiiyoruz ¢iinkii biz. (T1_S2)

After | started to be able to develop something, | started to
enjoy more. After | started to understand more that which
block does what... Maybe you can give us something about
that one (block) and show us the features of it and then we
could make the activity there (tutorial). (T1_S11)

Ben de bir seyler yapabilemeye basladiktan sonra daha ¢ok zevk
almaya basladim. Daha ¢ok anlamaya basladiktan sonra hangi blok
ne ise yarwo... Belki hani ilk basta bize siz onunla ilgili seyler verip
Ozelliklerini gosterip ondan sonra herhangi oradaki bi aktiviteyi
yapsak. (T1_S11)

Student T1_S3 also put forward a similar idea as a recommendation for the course for
the theoretical hours. She stated that theoretical hours could be used as a recitation
hour to recap the previous week’s example and homework. In addition verbal

explanation of the function of each block.

Actually, 1 find the theoretical hour very beneficial. For
example, we developed an application, something with a car,
the first application we made without a tutorial... First, I was
confused about how to do it by myself, | close the gap by
coming the theoretical hour... In addition, if we learn stuff like
which block does what, in theoretical hour, it would be more
beneficial. (T1_S3)

Aslinda teorik saati ben faydali buluyorum ornegin bir tane
uygulama gelistirmistik araba iizerine ilk kendimiz tutorial olmadan
yaptigimiz uygulama. Araba bdyle hareket ediyodu ekranda. Onu

ben kendim basta cok sasirmistim nasil yapacagumi onu teorik saate

173

gelerek kapatmistim... Bir de iste bu bloklarla ilgili seyler teori
dersinde hani biraz daha anlatilirsa hangi blok ne ise yariyor diye
ogrenirsek o faydali olur. (T1_S3)

Student T1_S10 has emphasized the topic she has had difficulty to be
supported with more explanation in theoretical hour. She thought that

harder topics such as lists could be explained more in theoretical hours.

List things’ function could be taught with more explanation...
It could be explained in theoretical hour and implemented in
lab hour. (T1_S10)

Listedeki seylerin ne ise yaradigim daha agiklayici bir sekilde
ogretilirse... Teorik derste anlatilsa seyde de uygulamast yapilsa
labda (T1_S10)

Some students even needed verbal explanation for the parts that were written in the
tutorials. That could show that demonstration and verbal explanation is needed, even
if the information was presented in the tutorials. In the first implementation, the course
was based on laboratory primarily, while theoretical hours were used for algorithms
and recitation hours for homework. According to the feedback of the students,
explanation, and features of each block (or code) could help students to understand the
concept better. Based on the feedback of the students from the first semester, at the
second semester of the course a recitation-lecture was added to the schedule, in which
rather than making new activities, the instructor explained the example of the last week
and the blocks used on that example in detail, and answered questions of the students.
Since students demanded a detailed explanation about specific blocks, theoretical
hours were changed to add explanations of the blocks used in last week’s tutorials do,

in detail.

Peer Support and Idea-Pitching
In addition to recitation hours, student T1_S2 also thought that it would be better to
use the theoretical hours also as a discussion and idea-sharing place. According to him,
students can explain their homework and the process of it as they did for their final
project. Instead of the Facebook environment, he was thinking that sharing ideas face

to face would be better to benefit from the ideas of each other.

174

For theoretical hours, there could be homework like stuff. We
could share the ideas like “I used this block because...” Just
like, we made in our final presentations. The same thing could
be in the theoretical hours. I used this because... Because

different ideas will be shared. (T1_S2)

Teorik saatte ev ddevi tarzi seyler olabilirdi. fikir paylasir su blogu
kullandim ¢iinkii hani en son uygulama sunumunda yaptik ya
bunlart kullandim ¢iinkii bunun igin teorik derste de bunlarin
tistiinde konugulabilirdi. Bunlar: kullandim ¢iinkii ya da ¢iinkii farkl
fikirler gelecek. (T1_S2)

One of the suggestions of the students was group project. The group project is
commonly used in programming courses especially for the final project of the course.
Student T1_S2 was thinking that coming up with a project idea was hard and providing
project ideas and distributing those ideas among groups would have helped them to

work more effectively.

It became harder to come up with a project idea when you let
us decide. | was not sure what to do, what to make. | mean
providing options and based on difficulty distributing them
between two people, three people, four people groups could

give better outcomes in my opinion. (T1_S2)

Siz serbest birakinca zor oldu projeyi secmek. Ne yapsam ne etsem
kararsiz kaldim... Segenekler sunup zorluguna gére 2 kisi 3 kisi
belki 4 kisi o tarz bir seyler yapilip daha iyi sonu¢lar alinabilir
bence. (T1_S2)

Student T1_S10 suggested the group project for the final project since she thought that

with a group they could have developed more complex applications.

There could be a group project; | mean everyone could come
up with an idea. We could have developed better things.
(T1_S10)
Grup projesi olabilirdi daha hani herkesten fikir ¢ikardi. Daha giizel
seyler de gelistirebilirdik. (T1_S10)

175

Student T1_S11 also suggested group project to improve their responsibility towards
the mission and each other. She also suggested that having group work could help them
to overcome their mistakes by helping each other and support each other to come up

with a new idea.

Group work could have improved our responsibility. Could be
effective if there was something like... For example, we will
develop an application. Everyone could have come up with an
idea or could have thought what to make in that application.
Since there was a shared commitment to it, when someone
stuck, s/he could receive help from others. It could be more
effective. (T1_S11)

Grup ¢alismast soyle bir sey etkin olurdu belki biraz
sorumlulugumuz artardr. Mesela bi uygulama gelistirecez herkes
belli bi kismunda fikir yOritebilirdi ya da uygulamada neler
yapilmasi gerektigini diisiintirdiiortak bir amag i¢in oldugunda hani
yapamadig yerlerde de hani diger ogrencilerden yardim aldiginda
daha etkin olabilirdi. (T1_S11)

While group projects have some problems on its own, App Inventor environment also
does not support the project works effectively since the developers could not work on
one project simultaneously. Instead of developing one application together, students
could be their support-buddies. Check their applications and help each other to
overcome their mistakes. They could be responsible for his/her buddy’s project up to
an agreed on grade ratio. They could have regular meetings to check their final projects

or homework.

4.5.2.4 Supportive Materials
Student T2_S6 thinks that there should be additional materials each includes the
concept itself instead of an example. Students want to open those documents and check
the attributes and how-to-use of that block when they have a difficulty. Attributes of
each block were provided on MIT’s website. However, it was in raw text and
disconnected from its use. So additional support documents could be helpful for the

student.

176

I mean, generally, it goes from example-wise, we need to scan
the whole example and try to extract. However, at least, in
some fundamental topics...I mean, if there were documents
like “this is the logic behind this, and you can use it like that.”
It will be easier. (T2_S6)

Yani genelde hep ornekler iizerinden gitmis biitiin ornegi tarayip
ordan onu c¢ikarmak. Ama en azindan biraz daha belli basi
konularda hani deger alanlarini bilmiyorduk bizim 6rneklerimiz
disinda. Hani su sekilde yapilir bunun mantigi sudur gibi biraz daha
dokimanlar olsa kolaylasird:. (T2 _S6)

Student T1_S1 has found a supportive material which was prepared for making up for
a holiday week as very helpful. He thinks that the explanation of each block would

help their learning to be more effective.

It is so good to be taught with PowerPoint (slides). You put
both the block and the picture of it. I think that should be
increased. You made some activity with us in lecture, you can
increase the number of those... Both could progress
simultaneously. For example, if we could learn in theoretical
hour and afterward in (lab) course, we can implement, it would

be more effective, in my opinion. (T1_S1)

Powerpointlerde ogretilmesi ¢ok iyi hem blogu blogun fotografini
da koymugstunuz siz derste gormiistiik. Bence onlardan daha fazla
olmali. Onlarla birlikte bize de etkinlik yaptirmistiniz derslerde
onlart arttirabilirsiniz... Beraber gitse mesela teorik derste
ogrenilip bir sonraki derste yapilabilecek sekilde olsa ¢ok etkili
olablir bence. (T1_S1)

4.5.3 Summary of the Dynamics, and Evaluation of the Course
In this part evaluation of the course including the challenging concepts, reasons of
being challenging, and probable solution to teach them, suggestions and strategies to

make an introductory programming course more effective will be emphasized in brief.

177

Challenging Concepts: Same name different feature makes the concept more
difficult, putting emphasis on then with basic examples and support material
could help to solve the problem
o Variables
= Misconception: confusing with mathematical variables
= Frequently changing the value of the variable makes it harder to
understand the concept
= Possible solutions: Emphasizing the difference between
mathematical and programming variables, starting with basic
examples focusing solely on variable use, underlining the role
of the variables constantly
o Clocks
= Misconception: Confusing with the real clock with a fixed
interval
= Found difficult even by the students with programming
experience since they did not use of clock in a textual
programming course
o Database
= More emphasis on it needed
= Useful basic examples should be used as a resource for students
Course Dynamics and Suggestions
o Need more Discovery Learning
= Restructuring the tutorials to keep students as active thinkers
during the course. After the first two weeks tutorials should
have:
e Less step by step explanation
e Missing parts
e Fewer images
o Just textually explained steps
e Added challenge
e Dynamic feature to show the solution after some try or

time

178

e Develop more activities for faster learners/makers
= The more practice, the better learning
o Homework
= Weekly supportive homework
= Should involve problem-solving and discovery
= Should not be too challenging for the first time learners
o Using both Top-down and Bottom-Up Approach could help
= deeper learning
= students to understand the function of each block
= keeping student mentally active
o Theoretical Hour should
= Have more verbal explanation of the function of the blocks
= Be recitation for the lab hours
= Encourage peer support and idea pitching
o More Supportive materials should be provided for the students
= To help them overcome the difficult concepts
= Which could be more effective to remember the features of a

specific block in brief
4.6 Examination of the Products and Course Progress

In addition to the qualitative data examined above, final projects and homework of the
students could encapsulate essential information about the progress of the students and
their engagement in programming. For the first semester, two homework were given
to students, one with a walkthrough tutorial and one with a no tutorial. For their final
project, students were asked to create an application with App Inventor. Students were
free to create any application they want under the supervision of instructor without any
boundaries. As expected, there was no difference among the first homework of the
students, since they were asked to use a walkthrough tutorial. However, after the
observations, it came up that using only walkthrough examples could lead to
obstructing learning. Due to that observation, some in-class assignments were given
without any tutorial. Similarly, the second example was given without any tutorial. For
the first semester, the second homework and the final projects were investigated to see

the progress of the students individually and based on their characteristics. Majority

179

of the participants were from CEIT and EME programs. Those programs was not very
close to each other in terms of university entrance exam score. CEIT students
approximately need to be in first 50.000 students to be accepted to the programs. On
the other hand, EME students approximately need to be in the first 12.000 students in
the same exam. The minority of students were from ESE program (55.000), Physics
program (70.000), and Business Administration program (4.000) as it was stated in the
participants part. Additionally, it should be stated that Business adimistration program
accepts students with a different type of exam score (Turkish-Mathematics), while all
of the other programs accepts students from Mathematics-Science exam score.
Nonetheless, the university exam score was not affect the success of the students. Each

group has students with different success levels before and after taking the course.

Another point was knowledge level of students before and after taking the course. As
it was stated before the participants were selected intentionally to be heterogeneous
through the purposeful sampling method. Some students have the programming
knowledge before taking the course, while others do not. Examination of the products
put forward that pre-knowledge level of the students was not the project an important
difference between their projects.

4.6.1 Examination of Products of the Students

4.6.1.1 First Semester
In the first example, it was expected of students to create an animation in which a car
and countdown timer will appear on the screen. After the countdown timer reached to
zero from ten, the car which is an imagesprite will start moving through the right side
of the screen. To achieve this students are free to use any component unless it is logical.
Four expected concepts to be used in this example were variable, clock (as a timed
loop), if statement, and imagesprite. The homework students sent were examined one

by one and by group characteristics.

Student T1_S1 who is a male Elementary Mathematics Education (EME) student used
defined and used variable successfully. He also used the double Clock block which is
a timed loop and need to be used two times in this example one for the countdown,
other for the move of the car image. Additionally, if statement was also successfully

implemented. The student was among the students who were experiencing

180

misconception about defining and using the variables. Additionally, he also had some
problem with using the clock concept, however, he used both of them effectively in
this example. The probable reason behind the improvement is switching from
walkthrough tutorials with image of each step to in-class assignments with no tutorials.
After the problem solving during the class and demonstration after the students’
solutions, students stated that learning with discovery is better.

A student with similar background and characteristics to T1_S1 was T1 S2 who is
also a male EME student with variable misconception at the beginning. The difference
of T1_S2’swas that he used a label component as the value holder instead of a variable.
The use was not wrong, however, it could be an indicator of negative attitude towards
variables since this student was the one having problems with defining and changing
the value of the variable. The application was working correctly, however, there was
one logical error regarding the clock loop. Student used the same speed for the
imagesprite, instead of increasing it. Other EME students, T1_S3, T1 S11 who are
female students of the course were also successfully completed the homework,
efficiently. The last male EME students T1 _S9 has also completed the example
successfully. Interesting difference about this student’s homework, there were
unnecessary code blocks, nevertheless, T1_S9 was the most successful student among
the EME students. This phenomenon showed itself in other successful students too.
For example, T1_S4 who was a CEIT student with previous programming background
had also used unnecessary blocks in his homework. Similar examples were also seen
for the successful students of next semester. This could be due to proactive inhibition
for the students with previous programming experience. Code blocks of those students
showed that the students who were more interested and more successful had tried to
develop the application via alternative ways or with new blocks experimentally. For
students who are willing to create a more advanced application should be encouraged,
but providing a guide or a roadmap for them could help them not to lose in creating
something novel. It will be mentioned in the discussion part as develop-it-more

activities.

There was no significant waste of resources in the projects. Some characteristics of
expert programmers listed as efficiently organized knowledge schemas, organize the

knowledge according to underlying algorithm rather than syntax (Robins et al., 2003).

181

Nearly all of the students have effectively implemented the programming concepts and
according to an algorithm rather than focusing on syntax. Regarding the complexity
of the project, one CEIT student created a first-aid application which did not include
any blocks that showed his programming skills. Additionally, one ESE student did not
use variables as the application’s value holder. She used label areas instead. It is
important to make students feel free regarding choosing their projects. However, there
should be some criteria about programming concepts to be integrated into the projects.
In total, 7 students preferred creating application related to their career which was
mostly educational games or applications. Remaining 4 students developed various
applications. One female student (T1_S11) from EME department developed an
interactive campus map. Another female student from Physics (T1_S10) department
developed a grade calculator with note-taking feature. The interesting fact about the
project of those two students are (1) personal need related, (2) included not mentioned
concepts. Additionally, one male EME student (T1_S9) developed a game (breakout
clone) as the final project. He also developed a package tracking application willingly
in addition to his final project. One male CEIT student’s (T1_S5) project was not
appropriate in terms of its coding which was a first-aid application. As it can be seen
in the Figure 4.12, the majority of student projects was educational applications or
games. This finding was also coherent with the finding from interviews and
observations in which relation to the career was one of the important instigators of

product development as a part of the need of the student.

182

PROJECT TOPIC

M Career Related W Hobby-Daily need mOther

Figure 4.12 Categories of Project Topics (First Term)

Examination of the projects showed that 5 of the projects were very complex to create
in which students used additional information that was not mentioned in the course, 4
of them has mediocre complexity (used all the mentioned concepts), and 2 of them
were not very complex to create but useful (Figure 4.13). Analysis of the products
showed that regular in and out of the classroom homework helped students to
understand the more difficult concepts. Additionally, explaining blocks by using a top-

down approach could also be useful for students.

183

COMPLEXITY OF THE PROJECT

M Very Complex M Mediocre Complexity M Not Complex

Figure 4.13 Complexity Level of Projects (First Term)

4.6.1.2 Second Semester
Participants of the second semester consisted of 7 students (4 males, 3 females). Five
of the students were from CEIT department, 1 of them was from Business
Administration department, and 1 of them from EME department. In the second
semester, there were 5 homework, 1 project as the out of the class assignment of the
students. First homework was with a step-by-step tutorial. Following 3 homework
were with specific tasks to be completed. The last homework was creating a part of a
professional game (Dumb ways to die). Students selected the part they want from the

application.

Examination of all the homework showed that using homework is an effective
intervention to make students revisit the programming concepts they have learned. It
also motivated them to discover the new concepts of programming. A similar finding
with the first semester is the better the students at programming, the more unnecessary
blocks were used. Phenomenon probably appeared due to desire to explore and seek
alternative solutions. This could be seen as a waste of time and resources, however, it
can also provide a chance for students for further exploration. Homework of two
students (both female, one from CEIT, one form EME) who were having difficulty
understanding some concepts were similar to in-class examples. They probably used
the tutorials as a guide for themselves. Providing additional information with tutorials
184

could help students who are using tutorials as a resource. Creating dynamic tutorials

could be one way as a solution which was also emerged from the interviews.

Examination of the second-semester projects in terms of their topics (figure 4.14
showed that 4 of 7 projects were games. From those 4 students, 2 students were from
CEIT, 1 from Business Administration, and 1 from EME department. 2 CEIT students
have developed an educational game. Remaining 1 CEIT students developed an
application for calculating the calories of the foods. In total 6 of 7 students have
developed a game, the probable reason behind this could be that most of the tutorials
and homework were game or game related examples. Building the course around a
theme like games, education, or commercial applications could help students to be

more engaged.

PROJECT TOPIC

W Game (Hobby) m Educational Game (Career) mOther

Figure 4.14 Categories of Project Topics (Second Term)

Regarding their complexity, analysis of the projects put forward that that 4 of the 7
projects were very complex (figure 4.15). They involved all of the concepts that
students learned throughout the course. Remaining 3 projects had mediocre
complexity.

185

COMPLEXITY OF THE PROJECT

H Very Complex W Mediocre Complexity

Figure 4.15 Complexity Level of Projects (Second Term)

4.6.2 Progress of the Students based on Characteristics

For tracking the progress of the students the first semester were used since the major
changes were made in the first semester. Elementary Mathematics Education students
from the first semester (3 males, 2 females) were compared since they are the largest
group with similar characteristics without any programming knowledge before this
course. The compared group CEIT students (3 males) was not very homogeneous in
terms of their programming knowledge, however, they all are at least taken one
programming course before. Based on three phases about their programming
knowledge was compared to see if there were any significant intervention. Observation
notes and analysis of in-class assignments, homework, and projects through rubrics
showed that in-class implementations without any step-by-step tutorials were showed
the real knowledge of students. However, by providing more examples and homework
with variables helped students to understand the variable concept and use it effectively

in their homework and project.

186

Variable Knowledge

First Week In-Class Assignments Homework Project

EME e=@==CEIT

Figure 4.16 Variable Knowledge of Students based on their Departments

When projects of the students were compared based on their gender (6 male, 5 female)
regarding the first semester, there was no significant difference in terms of the

knowledge of programming concepts.

4.6.3 Interventions throughout the course

As some of the interventions for the problems mentioned before, some of the strategies
and recommendations emerged during the course based on the problems or
observations of the instrucr listed in table 4.1 below. At the start of the course, instead
of a theoretical example a tutorial with visual product at the end was provided to
students. Students were amazed and motivated when they see a working product at the
end of the tutorial in their phone. This observation led instructor to put emphasis on
products of the tutorials for each week. Interviews confirmed that focusing on the
products during the course hours was found effective in terms of motivation and
effectiveness. Rather than implementing the simple algorithms, intergrating the same
algorithms into the products is found more effective. This interventention named as
the product-first strategy. In this strategy, it is recommended that putting emphasis on
designing the in-class tutorials to have a useful, working, and purposive product at the
end. Achieving engagement of the students through product-first approach could also

increase the effectiveness of the course. Additionally, it was also found that using

187

games as the products has additional positive effect for the engagement of the students.
After the first semester, it was decided that using games as the course theme would
help students to understand the programming concepts better, since it would build on

top of a similar context.

In addition to using the game theme, during the course hours it was observed that using
spiral approach in which students learn key concepts simple to complex with a
repetitive nature. Concepts offered in previous weeks should be re-offered to students
with additional features and information. In accordance with using a theme strategy,
using spiral approach also helped students to understand the complex topics like

variables, loops, arrays etc.

Table 4.1 Interventions based on problems or observations

Problem-Observation

Intervention

Engaging effect of visual, useful, working,
purposive products

Seeking help by messaging (shyness)
Following in-class tutorials without
thinking

Having difficulties understanding the
variables, clocks etc.

Engaging and meaningful use of game

Focusing on Products (Product-First)

Encouraging communication in and out
of the classroom
Providing in-class
develop-it-more activities
Specialized small examples for the
concepts + repetitive examples with
spiral approach

Using games as the course theme

assignments,

examples

Positive effect of recitation and discussion Support-Buddies and Discussion

environment

Throughout the course, a Facebook group was setup as the communication medium to
enable the constant and open communication. However, during the course some
students asked each other students through the direct messages. Since this would affect
the openness of the course, instructor intervened by encouraging the open
communication by asking simple questions and giving positive reinforcements to
simple questions. Another problem observed throughout the course was following the
in-class tutorials without thinking. In this problem, students as they also reported
during the interviews, copied the tutorials without understanding the functionality of

the example. To overcome this problem, instructor provided in-class assignments each

188

week without any tutorials which were based on last week’s information. Students had
difficulty seriously to complete the assignment. However, in the following weeks they
learned to use resources to solve the problem. In addition to in-class assignments, more
challenging tutorial desing was also considered. In the second semester, develop-it-
more activities were provided to students who finished the tutorial steps in which
students need to enhance the application with new features offered at the end of each

tutorial.

Another observation was the need for face-to-face discussion and group work/support
which was demanded by the students during the interviews. Using a group project was
not feasible due to the nature of App Inventor Environment. Additionally, using group
work could lead to unbalanced workload among students, especially in an introductory
programming course. To overcome this problem, students recommended to have a
recitation hour where they could ask question for the topics they did not understand
and discuss about their project. A discussion and recitation hour was set up which was
similar to studio approach. Additionally, it was decided to have support-buddies
approach in future in which students were assigned to help each other’s project. It was
not applied in this study completely, however, through the communication medium

students were assigned to help each other’s problem.
4.7 Overall Summary of Findings

Interviews with students and observations throughout both semesters formed the main
data of this dissertation. Quotations and notes from this data sources gathered around
5 different themes. Those themes are (1) Communication, (2) Contributions of the
course, (3) Motivation, (4) Programming and programming environment, and (5)

Dynamics and evaluation of the course.

One of the themes emerged from the interviews with students and observations
throughout the course was communication. It was not expected to emerge as a main
theme, however, it is found that communication is one of the most essential factors
that influence the motivation towards a novel subject, if not the most essential. It was
put forward that it is important for all courses, but in difficult topics, students needed
more in and out of the classroom communication. Communication is not only essential

per se, but it is also a source of scaffolding and information. Communication between

189

students and with instructor was one of the most mentioned elements that influence
the motivation towards the course and success of the students according to themselves.
Feeling comfortable to ask questions any time they needed help making them more
relaxed for the times they had stuck. In addition to out of the classroom
communication, in-class communication between students was also found helpful to
help them to overcome their mistakes. Communication and collaboration of students
should be encouraged when they are making the in-class examples. As it was
mentioned before out of the classroom also should be encouraged. One of the efficient
ways to do that was using a mutual communication medium. Choosing a medium that
commonly used and providing both synchronous and asynchronous communication
environment. Facebook was chosen by the students. Being instantly notified by the
application of Facebook, providing multi-directional, interactive, and open
communication was the most mentioned positive features that Facebook environment
have. Facebook also provided a resource hub to students since all of the tutorials,
resources, and homework including their feedbacks were shared on the Facebook
group. Students also stated that they used the group both for communication and for
the resources it possessed. The medium has some negative aspects as it had positive
aspects. Even though the instructor constantly encouraged students to ask any question
on the Facebook group, open to everyone, some of the students used direct messaging
to ask their questions to instructor and their friends because they were ashamed of their
“to easy to ask” questions. Constant encouragement solved that problem, however,
instructor should be aware of that problem exist in the digital medium as well as in the
classroom. Additionally, choosing and using one medium could make some students

who are not using that medium as much to feel left out.

Another theme emerged from the qualitative data was contributions of the course.
Under this theme, positive sides of the course that was reported by the students, the
concepts they have learned consciously and unconsciously, the signs of learning and
motivation towards the programming concepts were gathered. As a sign of learning
and embracing the topic, future plans could be seen as an important indicator. Even
the students not related to computer education reported that they could teach
programming and its logic in their professional lives. Some of the students stated that

they could develop their own application for career-related or as a hobby. A group of

190

students was also planning to use App Inventor to support the other courses they will
take. The course was effective in terms of relating to career and future of the students.
Being able to develop their own applications made their knowledge more relatable to
their everyday life and careerwise. As it will be mentioned further in the following
theme, motivation, being able to develop their own application might be the most
important factors that influence the motivation towards the programming according to
interviews with students. It helped students to connect their knowledge with their
world out of the classroom. Therefore, it kept them motivated towards programming
and prevent them from cutting their interest. In addition to future plans of the students,
they reported that they realized with algorithmic thinking style their perspective
towards their daily lives were changed. They started to think differently as they stated.
They realized “computational thinking” -even though they named it differently- the
thinking style they were using throughout the course was also similar to the one they
used their everyday lives. By realizing they were using algorithms, they consciously
started to use that thinking style. Students could be more involved in the course if the
knowledge from the course was connected to their daily lives and provides a value for
today or for their future. Emphasizing and linking the programming knowledge such
as computational thinking could also help them in their professional lives.

The third theme was motivation. Understanding what motivates students towards the
course could help the instructors to lower the dropout rate as well as increasing the
success rate. According to interviews and observations, students find it motivating to
work in a visual environment. Both the developing environment and the end-product
were visual in this course. Students reported that developing a visual product and doing
that in a visual environment also motivated them towards the course. Moreover getting
visual feedbacks and cues from the environment made it easier for them to understand
and overcome their mistakes which leads to an easier and concrete learning
environment. Designing the course step by step and constructing on top of the previous
week’s examples also motivated them towards the course and programming. A non-
intimidating design could lower the drop-out rate dramatically, especially for an
introductory programming course. As it was mentioned before, one of the most
mentioned motivators about the course was creating a working and useful product.

Instead of algorithm focused examples, algorithm-embedded useful examples should

191

be used to keep students motivated towards what they are learning and what they are
developing. Seeing a useful end-product after each tutorial was the strongest motivator
for this course. When the students with previous programming experience compared
the course with their previous courses, the mostly mentioned difference was the end-
product of what they have learned. They defined the examples from their previous
courses as meaningless algorithm tutorials. Students also reported that the sense of
learning something new every week was one of the factors kept them motivated to
come to the classroom each week. Other than providing new programming concept,
providing a new component with different feature could also help the instructor to
motivate the students towards the course. Students also need to have a practice every

week instead of theoretical information similar to the previous finding.

Another important aspect to be examined was the programming and programming
environment. This theme has emerged from the interview questions and examination
of instructor throughout the course. As it was mentioned before App Inventor, a visual
programming environment was used as the programming environment of this course.
The comparison of the environment to textual environments could provide important
inside for programming instructors. According to interviews with students, visual
environment helped them to overcome their fear towards programming. They thought
that programming was hard before the course. Students reported that seeing that
environment allowed them to program just by drag and dropping helped them to build
self-confidence about programming. When they compare visual and textual
environments and offered to select one of them, most of the students selected a visual-
only environment. They explained their choice based on three main reasons: no-syntax
problems, immediate feedback and a user-friendly environment, and concrete products
(as it was mentioned in the motivation theme). Students reported that visual
environment provided them scaffolding, and preventing them to make mistakes by
providing visual cues. However, there were some students reported that textual
programming should be integrated into App Inventor environment to “edit the code”
would make the environment more effective and flexible. Similarly, flexibility and
adaptability were seen as the only advantages of the textual programming
environments. Some students stated that visual-only environment would not be

flexible enough for advanced programming. Hence, it could be beneficial to use a

192

visual programming environment with a support of a textual environment for
introductory programming courses. When students were asked to evaluate the App
Inventor. Similar answers emerged. Additionally, students reported that App Inventor
had some technical deficiencies such as crashes and slowing, and lacked some features
like undo, offline working and visual flexibility. Evaluation of environment showed
that a mature visual programming environment with textual programming support

could be the ideal environment for an introductory programming course.

The fifth and last theme was dynamics and evaluation of the course. Under this theme,
challenging concepts, suggestions of students about the course, and possible changes
were gathered. The programming concepts students have had difficulty with was asked
to students. Three different concepts come forward: variables, clock, and database.
The most common mistake was with variables due to the confusing the concept with
mathematical variables. The clock which is basically a time-based loop was also found
hard to understand by some of the students. Those two concepts were emphasized by
using them in multiple examples which helped students to understand. On the other
hand, the database concept was not focused enough since it was one of the last
examples. Breaking down the challenging concepts into smaller examples could help
students to understand the concept from multiple aspects. In addition to challenging
concepts, what students would add or remove from the course was also investigated.
According to interviews, one of the suggestions come forward that tutorials should not
be well-structured. Tutorials should have fewer images and could be removed after a
couple of weeks. This was not a consensus as it was expected. Therefore, a dynamic
tutorial could be provided to students as students have problems, more helping images
would be revealed. Moreover, some students asked for even more practice and
homework. They stated that more practice in and out of the classroom would help
students to learn programming even better. Some students also suggested (without
knowing the concept) that using both top-down and bottom-up approach could be
beneficial for students. Providing finished examples, and examples with missing
pieces could also be used as well as bottom-up examples. Students from the first
semester also suggested a recitation hour to further explanation for the examples of the
week. This suggestion was used at the second semester and found useful by the

students. Additionally, students offered to make group projects, however, both the

193

environment would not allow an effective group work, and since it was an introductory
course some members could have left behind. Rather than that students could be

assigned to support each other for ideas and help.

194

CHAPTER 5

DISCUSSION AND CONCLUSION

An introductory programming course is difficult for many students, even the ones
considered as digital natives (Kafai & Burke, 2017; Wiedenbeck, 2005). Learners’
success in the future regarding computing and programming will depend on the
introductory course they took (Grover, Pea, & Cooper, 2015). Programming has a
central role in computing and computer science especially regarding the
implementation of the concepts (Rountree et al., 2013). Programming is seen as a
difficult skill to learn and acquire and research has shown it needs special attention to
teach (Mannila, Peltomaki, & Salakoski, 2006; Sajaniemi, Ben-Ari, Byckling, Gerdt,
& Kulikova, 2006). In classical programming teaching, a general purpose language is
taught, and the course is more concerned with the concepts the language have rather
than programming concepts (Orfanakis & Papadakis, 2014). Even more, than 30 years
before this study, introductory programming courses were growing in K-12 and higher
education, and faculty spends a significant amount of time on course development and
instruction since (Anderson & Skwarecki, 1986). Some common problems in teaching
and learning programming listed as (a) motivational problems, (b) lack of agreement
upon efficiently teaching concepts, and skills in introductory courses, (c)
methodological problems in teaching programming (Buitrago Flérez et al., 2017, p.
841).

Research question of this study is “What are the instructional strategies and
recommendations to develop an efficient, effective and engaging introductory
programming course for non-CS majors?” Efficient, effective, and engagement aspects
of the research study are simply based on their dictionary definitions. Efficient is
defined by Merriam-Webster Dictionary as “capable of producing desired results with
little or no waste (as of time or materials)” (“Efficient,” n.d.). Hence, being efficient

for an introductory course as in this study means that being capable of providing

195

essential concepts of the programming to students in one semester or less time.
Effective is defined by Merriam-Webster dictionary (“Effective,” n.d.) as “producing
a decided, decisive, or desired effect” which is equipping students with the capabilities
of developing their own application at the end of the course, understanding the
essential programming concepts. Lastly, engaging defined by Merriam-Webster
dictionary as “tending to draw favorable attention or interest” (“Engaging,” n.d.). In
this study engaging used as a synonym of motivation and keeping the desire to learn

programming and continuing the course.

This study focuses on extracting instructional strategies and recommendations for an
introductory programming course. Four themes emerged from the qualitative analysis
of the course: (1) Communication, (2) Contributions of the course, (3) Motivation, (4)
Programming and programming environment, (5) Dynamics and Evaluation of the
course. Themes and codes were investigated in-detail in the results part. On the other
hand, discussion part converted the results into applicable, and ready to implement
instructional strategies and recommendations with the support of literature. It was
aimed to help other instructors to design their courses through the strategies and
recommendations extracted from interviews and observations from two separate but
connected courses with the literature. It should be noted that this study does not focus
on what happens inside of novice programmer’s brain. It rather focuses on to
understand what could be done to stop them from being afraid of the course, improve
their self-confidence, and help them learn programming in a one-semester course by
providing strategies and recommendations to instructors. Some of the strategies and
recommendations offered in this study are not solely for instructors, but also for the
learners. Robins et al. (2003) suggested that strategies should be more explicit and
should be discussed as a part of the lecture in introductory programming courses. The
common mistake about teaching programming is focusing on syntax rather than
pragmatics of writing a program (Sajaniemi et al., 2006). Soloway (1986) also
suggested that rather than teaching syntax, strategies should be explicit for the learners.
Strategies and recommendations from the findings and literature will be explained and

will be presented as a final model in this part of the study.

196

5.1 Preparation for the Course

Before starting the course there are some points that the instructor/teacher should take
into consideration. In this part of the study, the preparations for the course is
investigated. Three crucial points come forward among others: (1) Knowing the
learners, (2) Choosing the programming environment, (3) Choosing the
communication medium. Learners and their characteristics should be the ones who
steer the wheel from the first fork on the road. As the focus group of this study is non-
CS major university students, all decisions, strategies, and recommendations are based
on such learners. Some of the strategies could be relevant to other groups as well.
Selecting, changing, or manipulating the strategies are up to the instructor. Choosing
the programming environment should also be based on learners and the interest of the
time. “The process of teaching and learning not only involve learners but a set of
situations in which teachers stage knowledge about programming.” (Rogalski &
Samurcay, 1990, p. 158). Before starting the course it is essential for an instructor to
be competent about which the programming language or environment he will teach
and to whom he will teach. Another important aspect of this study is communication.
Establishing the communication is crucial for any kind of course. In subjects that found
difficult by the students, it is more important. Using communication tools and media
is one of the factors that influence and enhance communication among the students
and between students and instructor. Three points mentioned will be examined further

in the following sections of this study.

5.1.1 Knowing the Learners

The most important factor in any kind of learning environment is the learner itself. As
it is suggested in any instructional-design implications, one of the most important
elements of an instructional design is to know the audience or the learners, if not the
most important (Reigeluth, 1999b). “Curriculum designers and teachers need to
consider student profile...” (Araujo et al., 2018, p. 1). The main distinction in
programming based on the experience level of the learners: novice and expert
programmers. According to Winslow (1996), it takes 10 years to turn a novice
programmer into an expert one as a general knowledge from the studies. Winslow
(1996) also reported the characteristics of novice programmers as having limited

superficial knowledge, lacking an adequate model, using general problem-solving

197

strategies rather than specified one, using line-by-line, bottom-up approach. The
instructor should take those characteristics of the learners into consideration before
starting to design the course. This course and the study focused on novice programmers

rather than expert ones.

In this study, an initial survey was conducted to learn the characteristics of the learners.
As it was mentioned in the participants of the study part, students are not from the
same programs and have same knowledge level. Hence, the course was designed

accordingly.

Prensky (2001) defines the new generation as ‘digital natives’, however, being a digital
native does not necessarily mean that the new generation has all the skills they need.
One of the main differences between expert and novice programmers is that experts
retrieve the plan from memory, while novices must create plans from scratch (Robins
et al.,, 2003). Experts programmers and novice programmers have different
characteristics as it was mentioned. Having learners from different backgorund needs
a more flexible design. Strategies like develop-it-more activities, and support-buddies
which will be mentioned later depended on heterogeneous foundation of the course.
The instructional strategies offered in this study could be commonly used for
introductory courses, however, it is not intended to be used for computer science
majors. Defining the characteristics of the audience should be the first step before
starting to design a course. Learning the general and specific characteristics of your
audience regarding their programming knowledge level is an important indicator for
the instructional design. While the all of the participants of this study were novice or
non-programmers, coming from different background was also another factor that
affected the design of instruction. Similarly, the perspectives of learners out of the
computer programming field (e.g. non-CS majors) are also different. While CS majors
have similar target to reach the at the end of the course, non-CS majors could have
different purposes since they have a different background. Their purpose of taking the

course should be learned and analyzed to begin developing the progress of the course.

Rather than trying to transform their perspective, instructors need to keep them in the
field and keep their motivation and self-confidence high. Results of this study showed
that even the students from unrelated departments considered a career in programming

after their self-confidence levels rose during the course. Following strategies and
198

recommendation for the course, design was created according to students from the
range of no knowledge of programming to with programming experience of fewer than
4 years. Instructional strategies and recommendations could be modified or
manipulated according to the characteristics and the development of the students
through out the course. Knowing what works and what does not work for the learners,
would be clarified as the instructor know the learners. Using the Design Based
Research features including reshaping the course based on the interative cycles, and
being flexible throughout the course was one of the strengths of this study. It is

recommended for the future courses as well.

5.1.2 Choosing the Programming Environment

Programming and programming environment was one of the themes emerged from the
interviews. Therefore, it is an important aspect for this study to choose programming
environment. Programming environments are systems used by programmers to
develop and test programs which provide a range of functionalities and used by both
novices and experts (Deek & McHugh, 1998, p. 133). Teachers/Instructors are the ones
who decide the programming environment and how to use them in their courses (Levy
& Ben-ari, 2009). Curriculum revision in programming education through the years
changed the programming languages and environments, however, paradigm stayed the
same (Armoni & Gal-Ezer, 2014). Integrating a new programming environment is not
separate from other design strategies and the educational paradigm. Foundations of
this study also based on the experiences of the researcher and the development of a
new programming environment which has a potential for the first-time learners. The
programming environment is crucial for programming education, however,
programming education should not be confused with programming environment
education; on the contrary, the focus point should be the pedagogy and the strategies
(Grover et al., 2015). Wing (2008) also emphasized that it is essential not to confuse
the learning about the environment with learning programming concepts. Even though,
the focus is not the programming environment, it is one of the most important aspects
that could affect the learning the essential concepts. This study tried the combine the
positive aspects of a programming environment with the instructional strategies
developed during the progress of the course. Therefore, investigating the recent

programming environments is an essential recommendations for the instructors. Based

199

on the results of this study, one of the important aspect was the features that
programming environment offered. It is critical the choose relevant and effective
programming environment or environments to have an effective, efficient, and
engaging course. App Inventor was chosen in this study. Positive aspects of the
environment were explained to give the readers an insight about the effect of the
environment and which features could help students to learn better and more easily.
The negative aspects were also reported in the results part, however, since the focus is
choosing the relevant environment, the aspects that environment need to have were

reported in this part of the study.

The programming environment comes with challenges as well as the opportunities.
The programming interface could intimidate new learners (Wyeld & Barbuto, 2014).
Normally, learners get to know the environment and language, learn and become
comfortable with the environment, thereafter students start to build programs
(Romeike, 2008). Although the programming environment is not the main focus,
students have to learn one and it plays an important role in the learning process
(Mannila et al., 2006, p. 211). Overcoming the mistakes and creating error-free
programs is a challenge and a struggle for non-majors who are taking introductory
programming courses (Wiedenbeck, 2005). Choosing a relevant programming
environment could shorten the steps to build an error-free program. Starting with a
relevant programming environment as important as the other instructional strategies,
since it shapes the perspective of students towards programming and it impacts
student/teacher dynamics (Deek & McHugh, 1998; Felleisen, Findler, Flatt, &
Krishnamurthi, 2004). This study used the App Inventor environment which let
students start creating their own visual and working applications from the first week,
as it was one of the most engaging and motivating interventions different than a
traditional programming course. During the writing of this study mobile applications
were very popular among the society regarding both daily lives and profession to be
mastered. The popularity should be another aspect to be considered before choosing
the environment.

Environments that support computational thinking could learners to focus on
abstraction, automation, analysis by minimizing the effort spent on the coding process

(Repenning, Basawapatna, & Escherle, 2017). Such environments “...must be

200

consistent with the activities of actual learning situation and support the entire problem
solving and program development process” (Deek & McHugh, 1998, p. 172). Bruce
(2005) suggested using a different programming language or environment than the
ones in advanced courses could help students to take the first step to the programming.
As generations are changing and technology is developing, it is not possible to say
learning strategies and tools should stay the same for students. Many existing
environments are too complex since they are designed for professionals which
overwhelm beginners (Kélling, Quig, Patterson, & Rosenberg, 2003). The course
designed are not for professional, however, it is expected to be a step for non-
programmers to continue on advance programming. Therefore, the selected
environment should be flexible to satisfy the learners with different intention to take
the course. Technological developments allowed new environments to be developed
to support learning and problem solving (Deek & McHugh, 1998). Using textual
environments solely for the introductory programming course could lead to
disengaging students with boring examples. Choosing a visual programming
environment instead that offers essential programming concepts could be more
relevant for introductory programming courses. “Visual programming environments
enable the learner to write programs using graphical notation.” (Ben-Ari, 2013, p. 53).
Results of this study showed that having a visual environment to program and having
a visual product at the end are both effective, efficient, and engaging for the students.
Choosing an appropriate programming environment could help reduce extraneous
cognitive load, and by freeing of cognitive resources from aspects of language and
syntax, it could be channelled into concepts and procedures (R. Mason & Cooper,
2013). Instructors do not see syntax errors as severe problems, however, they could
easily frustrate the students especially in the introductory programming courses
(Mannila et al., 2006). As the literature suggested, the common problems with
programming environments having syntax problems and errors which could cause a
great extraneous cognitive load. The features (or lack of feature for some
environments) are in direct relation with motivation of the learners. Using a visual
programming environment could also be a solution for reducing the cognitive load and
motivate the students toward the topic.

There should be some criteria to choose a programming environment regarding an

introductory programming course for non-CS majors. Many instructors do not use an
201

integrated environment, because they could not find a suitable one which causes loss
of opportunities, time, and efficiency (Kolling et al., 2003). Most of the courses
programming languages like C++ and Java, which are both popular in the industry,
however, their suitability in introductory programming education is questionable
(Mannila et al., 2006). Moreover, traditional programming environments provide less
support for problem-solving (Deek & McHugh, 1998). Visual programming could be
a solution to support problem-solving. Grover et al. (2015) stated that visual
programming courses are relatively easy to use, and to avoid errors of programming
syntax for beginner level learners which let them focus on designing and creating.
Visual programming use in this course also supported the focus of creating rather than

focusing on the syntax.

The main criticism against using easier languages or environments is the chance of
running into the wall when students have to switch on to a more complex one (Mannila
et al., 2006). However, firstly, switching is not a must for non-majors, and secondly,
it is a risk that could be taken instead of losing the students’ interest in the first course.
Connecting the textual programming with visual programming is also another strategy
emerged from this study which will be mentioned later. Using an only visual
programming environment is not a problem, but having the benefits of multiple
environments could be beneficial for students with different programming
background. Another risk is the difference between the knowledge level of students.
While first-time learners could create their programs without knowing the language
syntax, students with previous knowledge of textual programming could find visual
languages confusing (Deek & McHugh, 1998). Using textual programming
environments to support the visual environment could also be beneficial for students

with previous experience with textual programming environments.

Even though visual programming environments have a colorful interface, it could still
provide sophisticated features as the textual environments do (Ben-Ari, 2013). As it
was mentioned before, App Inventor environment was chosen for this course. App
Inventor is used to create applications for Android devices as it was mentioned before.
App Inventor is a free to use environment, the majority of K-12 teachers polled that as
the language they most wanted to learn (Margulieux, Catrambone, & Guzdial, 2016).

Studies show that students are well equipped with the latest mobile technology (Igbal,

202

Chowdhury, & Harsh, 2013). App Inventor was an effective and engaging
environment according to the opinions of the students, and observations of the
instructor. App Inventor distinguishes from other programming environments by
gathering some characteristics in it: (1) visual environment with visual products, (2)
allow to develop mobile apps, (3) provides immediate feedback and live testing, (4)
suitable for adults and children, (4) allows extensions and modules (Arduino, Lego
Mindstorms etc.). However, for the future courses, there could be a better or more
relevant programming environment for the target group. Even though there could be
limitless possibilities, some criteria are emerged and required for introductory
programming courses. Results of this study showed that some features came up among

others.

New learners of programming could be shocked on their first encounter with the
environment to deal with the different types of difficulties (du Boulay, 1989). The
programming environment should be easy and simple to use, to develop, and to learn
since it is an introductory programming course. Especially the students with no
programming knowledge emphasized the importance of having an easy to develop
environment in their hands. They connected the being easy with being visual which is
not irrational since seeing the code as blocks and producing a visual product was what
motivated them in the first place. Being visual is not a must, however, this study
showed that it has a big potential regarding both learning and motivation. Deek and
McHugh (1998) suggested that the focus of the programming courses should be
problem-solving activities rather than emphasizing on syntax. According to Robins et
al. (2003), typical introductory programming courses are syntax focused and
knowledge-driven. However, programming is “beyond mere command of the syntax
and semantics of a programming language” (Deek & McHugh, 1998, p. 130). A visual
environment could help to shift the focus to using strategies by removing the
overemphasis on the syntax. Additionally, visual or textual, the environment should
provide constant help to students with cues and scaffolding. Without immediate help
and guidance, students could recede from programming. Finally, as one of the
important findings of this study, the product is very important for the student. Winslow
(1996) reported that even the students who understood the syntax and solved the

problem have trouble creating the program by combining the feature they learned into

203

a working program. An easy and helpful environment could let students focus on
problem-solving and product development which is also a rewarding outcome for the
students. The technical and product-wise capability of the environment should also be
taken into consideration since some of the students criticized the lack of features in
App Inventor. The programming environment should provide immediate, consistent,
detailed and informative feedback to the learner (Robins et al., 2003, p. 158). The main
criteria based on the findings of this data that could be used before selecting the

environment are summarized in figure 5.1 below.

Capable
eto be
HeIpfuI connected to
eto prevent students' world
mistakes eto devglop
Visual «by providing appealing
scaffolding products
eto see the . -
product eto immediately
show the correct
*to see the way
Easy process
*to see the
*To Use mistakes
*To Develop
*To Learn

Figure 5.1 The Criteria to Select the Environment

Students in this study compared the App Inventor as a visual programming
environment and the textual programming environments they have used before. The
comparison table below has come forward (Table 5.1). The comparison revealed that
that visual programming environments are more relevant to start learning
programming. However, in some point students would need to switch, if they are

planning a career in programming.

204

Table 5.1 Comparison of Visual and Textual Programming Environments

Visual Textual

Practical Theoretical

Simple Complex

Product-Focused Algorithm-Focused

Limited Flexible

Less Likely to have User Errors More Likely to have Syntax Errors
More Likely to have Software Errors Less Likely to have Software Errors
Immediate Feedback and Testing Feedback after Compiling

Based on the data analyzed in this study, using a visual environment is more relevant
for an introductory programming course. App Inventor was one of the most suitable
ones based on the needs of the students and the instructor. However, visual
programming environments could limit students, especially if they are seeking a career
in the computer programming field. As it can be seen in Table 5.1, the two negative
opinions about the visual programming were to have errors and its limited capability.
Errors could be fixed in future updates of the App Inventor, however, it is less likely
to use the visual programming as an environment for an expert programmer. Therefore,
students with programming career in mind could have negative opinions towards
visual programming, since visual environments could lack a way of expressing the
solution similar to traditional programming environments have (Cambranes, 2013).
Some of the advanced functionality of textual environment is not needed in the first-
year learning in programming, therefore it could be traded off for an easier
environment (Kolling et al., 2003). This study also showed that students who have
taken a textual course before thought that the examples in textual programming courses
are pointless. Even without a visual programming environment, students sought to
create visual and purposive products rather than sole algorithms (Robins et al., 2003).
Each environment have the advantages of its own (Noone & Mooney, 2017). On the
other hand, the strategy to overcame disadvantages of both environments could be
creating a blended environment regarding the visual and textual programming as it was
suggested above. Starting the course with visual programming environment at the
center, supporting and explaining the examples with textual examples could help

students to see the visual programming as a step to advanced programming. In another

205

saying, for one or two semesters long visual programming course could be used as
training wheels for the students with future plans about programming, and easy to learn
programming knowledge for other students. Even though the students with no
programming knowledge preferred visual only environment, the instructor should not
cut the connection between visual and textual programming environment (Homer &
Noble, 2017). Moving from visual programming to textual programming is difficult
for the learners (Kaurel, 2016). Using both environments could easen the transition
switching to a text-based environment from a visual one, as Araujo et al. (2018)
reported in their study. However, it is not studied to see if the students would switch

to a textual environment.

A disadvantage that visual environments potentially hold is that focus could shift into
dragging and dropping (by trial and error) rather than designing and constructing the
program’s structure (Ben-Ari, 2013). It should be noted that the use of visual and easier
environment is for the first time learning, not to master the use of the environment as
a career choice, and students who seek a career in programming should be forced to
explore professional environments (Kolling et al., 2003). Supporting the course with
a textual programming knowledge is important to help students to feel comfortable

about switching to a more advanced environment.

Visual Textual
ISua
eUnderstanding the
eUnderstanding the underlying structure
basics Being familiar with
*Seeing the outcome textual

programming

Figure 5.2 Benefits of using textual programming to support visual programming

Kalas and Winczer (2008) suggested that three stages of working with computers
which are (1) using it; (2) understanding it; (3) creating with it. This study suggests

that learners should understand it by using while creating with the environment, rather
206

than having sequential stages. Programming environment could ease the three stages
as the App Inventor environment did in this study. Providing a relevant environment
with an environment capable of creating visual products facilitate the learning by

doing.

5.1.3 Choosing the Communication Medium

One of the results that the researcher did not predict was the effect of communication
medium on engagement level of student, and effectiveness on the course. Using a
communication medium to enhance communication could be useful for students who
need help out of the class hours. Giving in-person teaching support and necessary
feedback to students requires a significant amount of time commitment (lchinco,
Zemach, & Kelleher, 2013). Using a communication medium is helpful for instructors
but it is their duty to use it to enhance the learning experience through the
communication medium (Manasijevi¢ et al., 2016). According to Wellman, Haase,
Witte, and Hampton (2001), use of the Internet could supplement the face to face
interaction and extend the time spent on communication. Communication was found
one of the most important factors that influence both engagement of the students, and
effectiveness of the course. To ensure motivation and success while designing an
engaging introductory course, communication of instructor with students and
communication among students are crucial. To support the communication among the
students and with instructor, an online communication medium was planned to be
selected. In this study, communication medium was decided through a survey
conducted with the students. Among options, all of the students participated in the
study chose Facebook as the communication medium. A Facebook group was set up
for the course according to the demand of the students. Social networking sites have
the potential to provide easy access to discussions, instant communication with other
students (Maleko, Hamilton, & D’Souza, 2012). Facebook is commonly used for
meeting new people and communicating with friends (Ellison, Steinfield, & Lampe,
2007). Educators also considered Facebook as an alternative learning management
system or educational tool to support learning and activities (Dennen & Burner, 2017).
In Charlton, Devlin, and Drummon’s (2009) study Facebook was also the student’s
choice as the communication medium that meets their needs which would support the

communication and work collaboration. Using Facebook for education could increase

207

communication, collaboration, and material/resource sharing (Manasijevi¢ et al.,
2016). All three aspects were observed to increase in this study. Among the adults aged
18-29, Facebook is very popular which makes it a relevant choice for education to
benefit from its popularity (Dennen & Burner, 2017). Participants of this study also
were 100% Facebook users; only 1 of 18 participants was not a daily active user of
Facebook. He was using Facebook for educational purposes only. As the results of this
study put forward, students found Facebook as the communication medium helpful.
Rather than having focused on a sole medium, it is important to examine the positive
and negative sides, and the views of the students towards the medium to determine the

medium of the courses.

One aspect to care about is that the communication medium should be popular and
used commonly among students before the course. According to Ellison et al. (2007),
94% of their participants who are undergraduate students were already Facebook
members. As of 2018, Facebook has 1.47 billion daily active users around the world
(Statista, 2018b), and 44 million users in Turkey (Statista, 2018a). Results showed
that it is important for students to use the medium regularly. For many students,
Facebook is part of their daily routine, and they defined it as part of their everyday
activity (Ellison et al., 2007). Additionally, students stated that being able to easily
access Facebook group through mobile phones anytime and anywhere was also
essential for them. Being able to access Facebook anywhere makes learning of
programming easier (Maleko et al., 2012). Another feature that students stated as a
positive aspect is being notified instantly. Tracing the updates and being notified are
also important for students, according to the interviews. While tracing the updates in
sites like wikis, LMSs, and forums may frustrate students, media like social media, e-
mail etc. could easily notify students about the updates (Thomas, King, & Minocha,
2009).

Another feature that came up in the interviews as an advantage is being interactive,
allowing multi-directional and open communication. Facebook is an environment that
users could present themselves in their profile, they can post comments on each other’s
pages, join virtual groups of interests, and they can learn about and from each other
(Ellison et al., 2007). Facebook groups provide environments for interactions to be

used anytime anywhere, that encourage engagement with programming and enhance

208

the learning of programming (Maleko, Hamilton, D’Souza, & Scholer, 2014).
Comparing to e-mail, students in this study found Facebook more interactive,
positively informal, and instantaneous. Similar results also came forward in Charlton
et al.”’s (2009) study, students found easier, more active, and more efficient to use
Facebook instead of using e-mail. Students also compared the Facebook group with
the learning management system of the university in favor of the Facebook group,
similar to Maleko et al.’s study (2012). Instant notifications and instant feedback
increase learning and interaction (Maleko et al., 2012). Discussions and seeing each
other’s posts should be encouraged since they are beneficial for every student, even if
they did not face that specific problem (Dennen & Burner, 2017). Students in this study
stated that they benefited from the posts and discussions of each other since every

question and answer provides a new perspective for them.

Another positive aspect of the communication medium that students used throughout
the course is using the Facebook group as a resource hub, repository of examples.
“Novices were more successful when they continued referencing an example
throughout a programming task™ (Ichinco & Louis, 2016, p. 261). Using the older
examples, assignments, and the projects of other students helped the learners

throughout their projects when they faced a problem.

One problem throughout the study was direct messaging among students to seek help
from each other. Similarly, in Dennen and Burner’s (2017) study, some students
preferred to use private communication. Some of the students in this study also
performed a similar behavior. The possible reason behind this is the fear of being
embarrassed. Performance-avoid goal orientation in which students’ purpose for doing
well is to avoid being embarrassed, or looking stupid (Cheong et al., 2004). The
instructor should encourage the all of the students to ask questions open to everyone
in communication medium. When students with task goal orientation which is learning
for learning sake (Cheong et al., 2004) shared their question, this would help the others
to have the courage to ask questions and seek for help open to everyone. First-time
learners could show dependency syndrome in which students depend on others to
complete their assessment (Bati et al., 2014) which could lead to direct messaging as
this study put forward. More transparent communication could fix this problem, or

remove the syndrome stepwise as the students see each other ’s progress and questions

209

with their answers. Facebook group could also help shy students to initiate
communication and encourage the students asking questions to and responding to
questions of others by lowering the barriers to participation (Ellison et al., 2007). Some
students may not feel as comfortable as the other using Facebook or any
communication medium. Especially, if the medium is one of the environments they
use for their personal life like Facebook (Dennen & Burner, 2017). Those students
could be informed to open a new account for the course since the main communication

would be in Facebook group.

Using a communication medium as a resource hub to constantly support the students.
In addition to tutorials, support documents should be created and provided for the
students through the communication medium. Students in this study stated that they
extracted the needed information from the tutorials. It would be more helpful for
novice programmers to reach the support documents at any time they needed.
Especially when they encountered with a novel situation, they would need support
documents more. Support documents similar to a cheat-sheet could help them not to

lose themselves in such a situation.

To sum up, a communication medium, not necessarily a Facebook group, that (1) is
popular and commonly used among students; (2) allows multidirectional, open, and
interactive communication among students and with instructor; (3) could be used as a
resource hub; (4) notifies students instantly and accessed anywhere/anytime they need,;

could enhance learning as well as communication.
5.2 Implementing the course

5.2.1 Product-First Approach

Romeike (2008) stated that the problems presented at the introductory programming
courses are math problems instead of programming problems. Even though the math
is in touch with programming, this could affect the motivation of the students
negatively. Rather than accurately coding a program or algorithm, nowadays students
can create authentic applications such as playable games, sophisticated animations, or
digital stories as signifiers of success (Kafai & Burke, 2017). Accurate to purpose of
this study which is developing a course that is engaging, effective, and efficient,

creating such applications as examples could effect engagement which is directly in

210

relation with effectiveness. Students should be constructing programs that matter to
them rather than building meaningless algorithms (Lye & Koh, 2014). Gross and
Kelleher (2010) suggested connecting the code to observable output since it would
help students to interpret the programming concepts according to its functionality.
Results of this study also showed that products or artifacts are one of the most
important factors that influence the effectiveness and engaging nature of programming
instruction according to students. Students also thought that after creating something
on their own, programming is “cool” rather than “scary”. Seneviratne (2017) stated
that programming courses often focus on theory rather than application. Rist (1995)
also emphasizes the importance of breaking out of theory and stepping into the action
by creating a concrete level of design (p.537). Kurkovsky (2013) stated that many CS
students disappointed due to the irrelevant examples which are boring or non-related
to the real-world applications which sometimes lead to a change of program for the
students. Romeike (2008) stated that students performed and motivated better if the
task is meaningful and the product is relevant to their reality. Relevant to the Merrill’s
(2013) First Principles of Instruction’s fourth and fifth principles (Learning is
promoted when new knowledge is applied by the learner, and learning is promoted
when new knowledge is integrated into the learner’s world), knowledge and learning
are directly related with the products that students created. Experimentation and
learning-by-doing are important in programming education (Christiansen, 2004).
Similarly, Anderson (2015) stated that “doing” is what makes learners shifting from
abstract information to knowledge of practice. In this study, students learn
programming by creating the applications each week with the help of tutorials. Soh et
al. (2007) suggested having hands-on practices on curriculum. Additionally,
homework and final projects of the students were also products that were relevant to
the learners’ world. As the literature suggested, the programming education is shifting
from math problems, and sole algorithms to real-world applications and meaningful
products. Interviews and observations supported this idea. Especially, the students
with previous programming experience compared the previous courses they take with
the one in this study. The main positive difference they stated was difference between
the features and characteristics of the products they produced.

211

Difficult and meaningless tasks could lead to loss of interest. (Howles, 2009). As it
was mentioned in the findings part, students found the creating a useful, working, and
purposive product was seen as one of the most engaging parts of the course. Robins et
al. (2003) also stated that “the reinforcement and encouragement derived from creating
a working program can be very powerful” (p. 158). In the light of the findings, it is
possible to say that in addition to the student-centered design, putting the end-product
in the center according to the characteristics of the students could influence the
motivation of the students. Lye and Koh (2014) also stated that creating something
concrete was one of the popular interventions for students. Instructors should focus on
the design of tutorials and artifacts that students are to create. Instructors should help
students to see classes as task goals rather than performance goals “...in assignments
and activities, minimizing competitive structures, and adopting evaluation practices
consistent with task goal orientation.” (Cheong et al., 2004, p. 16). Results of this study
put forward that the end-product should be/have (a) visual/concrete, (b)
purposive/functional, (c) related to real-life, (d) integrated algorithms, (e) relevant to

students where it is possible (figure 5.3).

Visual/Concrete

= Purposive/Functional

= Related to Real-Life

mm |ntegrated Algorithms

i)
o
-

O
O
| -

o

i®)
C

L

= Relevant to Students

Figure 5.3 Characteristics of end-product

While Merrill (2013) stated that “learning is promoted when learners apply their newly
acquired skills” (p. 25). In this context, learners are getting the skills and knowledge
while they are applying it. Davies (1993) separated the two level of programming,

212

programming knowledge (the declaring how a programming concept works) and
programming strategies (the way knowledge is used and applied). Using a product-
first approach could allow students stepping from programming knowledge to
programming strategies from the beginning of the learning. According to First
Principles of Instruction, knowledge is presented in different levels. In product-first
approach, information should be hidden in application part (figure 5.4). By
implementing and adopting the knowledge while creating an application take the level
2 to the same level with level 0. This study put forward that demonstrating and
explaining the examples after the implementation help students understand the
concepts better. After the implementation and understanding the concepts thoroughly,
providing problem-centered acitivies to students with in-class assignments could be
beneficial. Effectively implementing the skills students learned could be performed by
solving a problem rather than following specific steps (Merrill, 2013). Putting the
activities at the center while designing the course could enhance the effectiveness of
the asssignments and examples, problem-solving capabilities of the students could be
enhanced. As the effectiveness of the products increase, effectiveness of the course

will also be increased due to the focus on implementation part.

First Principles of Product-First Approach

Instruction
e Information (Level 0) e Information via
e Demonstration (Level Application (Level 0-1)
1) e Demonstration after
e Application (Level 2) application (Level 2)
e Problem-Centered ® Problem-Centered
(Level 3) with previous week's

information (Level 3)

Figure 5.4 Levels of Information in Product-First Approach

5.2.1.1 Visual and Purposeful Products
As the previous part suggested, focusing on the design of the examples are crucial to
motivate students as much as increasing the effectiveness of the course. Students put
213

forward that it is essential to have visual products at the end of each week and example.
The first example of a traditional programming course is writing “Hello World” to the
screen by using code. Guzdial and Soloway (2002) suggested that instead of textual
outputs like “Hello World” examples, students of the new generation demand more
visual, and multimedia programs to develop. “Working on easily accessible tasks,
especially programs with graphical and animated output, can be stimulating and
motivating for students.” (Robins et al., 2003, p. 158). In this study, students developed
a soundbox application in which there is a button with a image when it is clicked it
plays a sound. Installing and using the app they developed had a very dramatic effect
on students. It made them excited and motivated to develop more. Interviews put
forward that developing visual, working, concrete, and purposeful product was what
motivated students most with similar finding emerged from the observations. The
more engaged students are, the more effetive course was.

Using drag-drop programming by developing animations and visual products are
found to reduce syntax errors, reduce the frustration of students and introduce the
programming in a fun and engaging way (AlHumoud, Al-Khalifa, Al-Razgan, &
Alfaries, 2014). Studies show that games could be used as educational game tools since
they increase the motivation level of the students (Chao, 2006). Developing games as
the artifacts might have the similar impact for many students. Developing games and
editing the code making changes visible and concrete which makes novice
programmers more comfortable in the coding environment (Wyeld & Barbuto, 2014).
As it was stated before, visual products also have the effect of increasing engagement
towards programming. Interviews put forward that motivation of testing their own
games motivated students more than playing commercial games. Observation notes
also showed that playing their own games had a positive effect on the motivation of
students. There are few studies that report about using mobile games instead of
computer games to increase the engagement and interest level of learners (Kurkovsky,
2013). Teaching is more beneficial when the instruction is “...interesting, meaningful
lessons that inspire students’ interest and focus attention on the task itself, as well as
to minimize the emphasis on grade competition” (Cheong et al., 2004, p. 14). Guzdial
and Soloway (2002) suggested focusing on the multimedia products that students
would want to produce to teach programming is a crucial strategy to enhance the

engagement level of the students. “Students become intrinsically motivated when
214

learning tasks give them senses of competence, autonomy, relatedness, and purpose”
(Herman, 2012, p. 371). Moreover, Bergin and Reilly (2005) put forward that the more
important, useful, and interesting the tasks are the better the programming
performance. One of the clear findings of this study is products that are relevant to
learners’ interest increase the engegement of the students and effectiveness of the
course according to the experience acquired from this course. Seneviratne (2017)
stated that developing a working game, in the end, to play made students excited about
their product. As similar studies suggested using games and purposeful applications
had a similar effect on novice programmers. Kafai and Burke (2017) also stated that
designing an application increases the interest and success rate of the learners and
sharing their artifacts attracts them to programming. When designing the examples,
assignments, and homework for the course, it should be taken into consideration
products like games and animations emerged at the end are seen as an important source
of motivation for the students. It is a relevant strategy for the introductory
programming course students. Developing games as the product was inverstigated

further in the following part of this study.
5.2.2 Spiral Approach with a Course Theme

Product-first approach offered in the previous part focused on creating examples and
assignments that have a visual/purposeful product at the end to increase the
engagement of the students and effectiveness of the course. On the other hand,
providing method of the examples is also crucial for an introductory course. Winslow
(1996) stated that “Good pedagogy requires the instructor to keep initial facts, models,
and rules simple, and only expand and refine them as the student gains experience.”
(p. 21). The spiral approach was chosen to reinforce and strengthen the newly acquired
knowledge of students in a recursive manner. “The spiral approach is the parallel
acquisition of syntactic and semantic knowledge in a sequence which provokes student
interest by using meaningful examples, builds on previous knowledge, is in harmony
with the student's cognitive skills, provides reinforcement of recently acquired material
and develops confidence through successful accomplishment of increasingly difficult
tasks.” (Shneiderman, 1977, p. 193). Normally, spiral learning’s focus is curriculum,
however, it can also be adapted to separate course by presenting contents repearedly

and with gradual increase in complexity. (Araujo et al., 2018, p. 2).

215

Learning needs to build on existing mental models of them. Using frequent hands-on
activities which consists of tasks of increasing difficulty is promising more success
than infrequent large assignments (Wiedenbeck, 2005). As the figure 5.5 visualized,
spiral approach in learning let learners to introduced with concept, thereafter the same
concept was presented constantly in more complex examples with new concepts
introduced over time. Through the successive cycles, the basic concepts introduced,
further details are presented over time by expanding the details to expand the
knowledge level of the students (Jaime et al., 2016). Increasing complexity and
difficulty would help students reach mastery without having any difficulty. In this
study, concepts were presented through the tutorials first. However, observations
suggested that using basic examples in the start is more beneficial for increasing the
effectiveness of the learners and the course. Spriral approach improved the learning
performance, motivation and quality in some studies which could lower the dropout
rate and it is a coherent strategy for all educational levels (Araujo et al., 2018; Jaime
et al., 2016; Jing, Cheng, Wang, & Zhou, 2011; Veladat & Mohammadi, 2011). Spiral
approach is an effective methodology to teach programming for first-time learners,
even for 10/11-year-old learners (Yovcheva, 2008). Students in this study are higher
education students, they also found the flow and implementation of spiral approach
beneficial. In this study, students stated that they feel more organized since the
provided examples were connected with each other. Observations also confirmed the
finding as the student used the previous week’s concepts and examples to solve the
current problem. Similartly, sudents in Araujo et al.’s study (2018) found the spiral

approach as organized and helpful, which facilitated their learning.

216

Mastery

Revision

New
Content

Difficulty

Figure 5.5 Spiral Learning - Novice to Master (Writer, 2017)

This study embraced the spiral approach from the beginning since it was appropriate
for introductory level learning and it was relevant to Merrill’s First Principles of
Instruction. Merrill (2013) suggested a four level instructional strategy starting with
information-only, continue with information and demonstration, plus application, and
problem-centered information, demonstration, and application. Merrill’s strategies are
also builduing on top of the previous strategy. Product-first approach manipulated the
steps as it was presented in the previous part. Nonetheless, spiral approach similarly
offered a way with increasing complexity through the examples. Spiral approach is
also beneficial to reduce the extraneous cognitive load of new learners (Araujo et al.,
2018). Implementing the spiral approach along with product-first approach, keep the

students motivated and focused on learning new concepts.

According to students, keeping the sense of learning something new each week was
one of the motivating factors for students to come to the class because they would like
to learn the new features by creating their own applications. Another important
motivator for the learners was developing something that they did not create before

the course. It is essential to keep that sense throughout the course. Spiral approach is

217

helpful to new learners since it repeatedly returns and connects the old knowledge with
the new one at different stages of learning. Similar to spiral approach, constructivist
theory also suggests that “...knowledge construction is recursive; therefore students
will continuously build on what they already know...” (Bernard & Bachu, 2015, p.
285).

In addition to being compatible with introductory programming courses and product-
first approach, some advantages relevant to this study of spiral approach for software
development eduation listed by Spicer (1983) as (1) a natural, effective, and proven
programming education technique, (2) useful for integrating both academic and
industrial needs, (3) raises interest and self-awareness of the students, (4) provides
hands-on experience, (5) increase self-confidence. On the other hand, there are
disadvantages of spiral approach as well. Spicer (1983) also stated the disadvantages
of the spiral approach, and the relevant one to this study is that it could be hard to
provide feedback to students in large classes which is a similar disadvantage for other
approaches. Spiral approach could also decrease the efficiency, in terms of providing
time on a single concept. However, through product-first approach, programming
concepts would not be solely focused on a single concept, which would not effect the

efficiency of the course, since the course will end in estimated time and effort.

A very common motivational technique is to build a course around a theme (Merrill,
2013). Using a theme could help students the focus on the programming concepts
while building on top of their experience each week rather than having disconnected
examples. It is also compatible with the spiral approach since the examples would be
congurent with each other. Students stated that they have the feeling of constantly
learning something new on top of their knowledge. This course mainly focused on
games which was found engaging and effective by the students. Use of games to teach
programming explored in some studies (Araujo et al., 2018).While using games is not
a must, its motivational aspect, relevancy to the spiral approach, and being compatible
with the product-first approach make it a proper them choice for the course.

Game examples used in this course were open to development on top of the previous
week. Since games play an important role for social connection among people, it could
be a good medium to deliver the computational thinking, critical thinking, and

problem-solving skills (Croff, 2017). Games are already a popular choice and an
218

engaging way to teach programming in introductory courses (Al-Bow et al., 2009).
Creating similar games to commercial games they play affect the motivation of the
students, and their will to spend time and effort on developing one (Good & Howland,
2017). However, it should be noted by learners and teachers that an expert player in
video games does not necessarily mean an expert in programming (Buss & Gamboa,
2017). Nonetheless “Mobile applications and game development may help students to
better relate to the course material and make stronger connections to real-world
applications and gadgets they see and use every day” (Kurkovsky, 2013, p. 138).
Games for mobile devices are simple enough to create during the week and provide a
chance for implementing programming concepts into a working application
(Kurkovsky, 2013). Through spiral approach, games were getting more complex in
each example of the course. As an example used in the course a basic animation using
multiple images were used to introduce loop concept in programming. Students were
excited about creating a game character animation. In the following week, a similar
animation was used to implement movement of a imagesprite. The sense of continuing
the development motivated students and put emphasis on the loop concept. Students
without knowing the name of the spiral approach stated that constantly learning
something new in addition to the examples from previous week helped them learn the

concepts better.

Majority of studies show that students preferred developing computer games which
were the main reason for many students to start CS program (Kurkovsky, 2013).
Students in this also preferred developing games as the main examples of the course.
Games are engaging when playing and developing which create a fun-flow experience
(Chao, 2006). The part instructors should give extra attention to is that while using the
motivational aspect of game-development, they should not leave behind the
educational aspect (Kurkovsky, 2013). Using games could promote teaching and
learning computational skills, and motivates students towards learning especially in
introductory programming courses which are critical for students’ perspective towards
programming (Kurkovsky, 2013; Quaye & Dasuki, 2017). Digital games are proposed
to be used in introductory programming courses since games are attractive and
motivational in nature (Quaye & Dasuki, 2017). The motivational side of the using

games was realized by the instructor at the middle of the first semester which led

219

instructor focusing on games more. The second semester was created based more on

the game examples. Using games was effective in terms of motivation and learning.

It is important to note that game development(or whatever theme selected for the
course) should not be the focus and instructors should not be afraid of wandering off
from the theme. Some concepts may not be compatible with the theme and instructors
could show the examples non-relevant to the theme. Using the theme in spiral approach
is a strategy to increases the engagement (increasing the motivation level), efficiency
(faster embracement of a new concept), and effectiveness (implementing the
programming concepts in a familiar program). The theme should be flexible since it

may not be compatible with all of the programming concepts.

5.2.3 Blending top-down and bottom-up approach

The two dimensions of programming understanding could be defined as
comprehension which is describing how a piece of code works and generation which
is generating the code that solves a problem (de Raadt, 2007). Both dimensions are
important for the novice programmers. Traditional introductory programming classes
tend to take place as traditional lectures which is compatible with top-down approach
through demonstration, and presentation of finished examples, even though the hands-
on practices in laboratory-based environments are more successful (Falkner & Falkner,
2012). While top-down and bottom-up strategies appear as two separate approaches,
each has different benefits for learners and none of them should be left behind. Even
though the spiral approach is more close to the bottom-up approach and it could have
more potential for novice learners, top-down approach could be supportive for in-depth
learning. Widowski and Eyferth (1986) suggested that employing a top-down
approach to read conventional programs, and bottom-up approach for simple but
unusual programs (cited in Robins et al., 2003). Gross and Kelleher (2010) also
suggested for novice programmers to use and debug poorly constructed code to see
unfamiliar codes for themselves and enhance their experience with different coding
styles. In this study, it was observed that students acquired programming knowledge
(which is required for first-time learners) by applying step by step instructions.
However, for developing programming strategies, and applying the knowledge into
novel situations, interviews and observations showed that using top-down approach

could have the potential of providing useful information for first-time learners.

220

Students in this study also suggested using top-down approach as an alternative
strategy. Rogalski and Samurcgay (1990) reported that top-down approaches could be
difficult for beginner programmers, therefore top-down strategy could be implemented
by providing manipulation tasks to students to a finished application which students
are not unfamiliar of. Robins et al. (2003) suggest using a design strategy relevant to
bottom-up approach which starts with a cue, a direction, a level, and a type of link to
explore further. Top-down approach was not implemented thoroughly during the
course, however, an example was provided to students in the second semester.
Additionally, they were using each other’s projects to get help and review the code.

During the interviews, students found reviewing each other’s example beneficial.

Another benefit of using both approach is learning programming from different
aspects. According to studies, writing a program and the ability to read a program have
little connection, therefore it is beneficial to teach both of them (Robins et al., 2003;
Winslow, 1996). Lister et al. (2004) also stated that one of the knowledge students are
missing at the end of their study was the ability to read the code which even affected
their problem-solving skills. Kafai and Burke (2017) also stated that using the top-
down approach occasionally would give students the opportunity of seeing, modifying
and building far more complex applications than they could build from scratch.
Additionally, deciding what to add or remove from a built application offers a different
experience to students which would be useful for building more complex applications
(Kafai & Burke, 2017). This study showed that using visual programming and tutorials
to build applications are helful but not sufficient in some aspects including lack of
encounter with complex examples, debugging the errors of another application, and
seeing other programmers’ perspectives. All of which are expected requirements for a
programmer. The examples could be prepared and be provided by the instructor or by

assigning students to evaluate each other’s assignment.

5.2.4 Dynamic Tutorials and Develop-it-more activities

Learners need more guidance and explanation for the topics they learned for the first
time (Merrill, 2013). Structured laboratory assignments and handouts have advantages
such as promoting cognitive abilities in comprehension and application (Soh et al.,
2007). According to this information, this course was also designed as a well-
structured and continued with detailed explanation and demonstration of each step.

221

Tutorials and assignments encourage and motivate students towards the new topics
and completion of the next assignments (Willman et al., 2015). However, interviews
put forward that some students needed more flexible and less demonstrating, and less
structured tutorials. In this course, tutorials started with step by step well-structured
tutorials with screenshots of each step. Students realized that after some time, they do
not need that much structure and images. Providing problems with textual descriptions
could be helpful for the problem-solving skills of the students (Hooshyar et al., 2014),
which were provided as in-class assignments in this study. Providing unstructured
tasks is also one of the demands that novice programmers have (Langrich & Schulze,
2015). Solely focusing on building a specific product could cause students to engage
only on the environment rather than constructing a solution. Mannila et al. (2006)
divided the problem-solving process into 4 stages: (1) understanding the problem, (2)
coming up with a solution, (3) developing an algorithm, and (4) implementing the
algorithm. Using well-structured tutorials might affect the problem-solving process
negatively in which instead of coming up with a solution, students could wait for the
step-by-step tutorial. Falkner and Falkner (2012) suggested providing gradually
decreasing scaffolding while the knowledge of students is increasing. Higher
motivation levels could be achieved by providing tasks that offer opportunities to be
successful, but also yield challenges (Pintrich, 2003). In addition to examples, the
programming environment is also essential to keep the confidence of students in higher
state as it was stated before. Through the easy examples and an environment that
digitally support and provide scaffolding to the students when they made mistakes
would help students to feel competent about the programming. Providing only easy
examples could bore the students who are good at programming. By using challenges,
motivation of the students would be kept and they would stay in the flow zone
(Csikszentmihalyi, 1991). While results of Soh et al.’s (2007) study showed that
motivation and self-efficacy levels of students kept decreasing throughout the course.

It is essential to keep the motivation high and constant throughout the course.

According to Csikszentmihalyi (1991), learners need to stay in the flow to be engaged
in an activity. To achieve this goal, the task should not be too difficult or too easy. For
a classroom with different knowledge level, it cannot be achieved with a static

tutorial/task system. A gradually increasing difficulty/challenge level could be helpful

222

for learners to stay in the flow. In the light of this information, it is suggested that
tutorials and tasks should be open to discovery learning. Results of the study showed
that it is better to provide well-structured, step-by-step for 2-3 weeks. After students
got familiar with the environment and the concepts of programming, instead of step-
by-step tutorials, a tutorial with fewer images, less direction, and missing steps could
be offered. Top-down examples could also be helpful at this point. Rather than a step
by step walkthrough, new tutorials should be a guide for students to solve the problems

presented (see figure 5.9 below).

- . Challenge

o Well- o lll- e Develop-
Structured Structured it-more
e Steps with ® Less e Tasks with
Images Images no
o Less e More guidance
Challenge Textual e Missing
e More Guidance Steps
Guidance e Make your
own
version
N J - J - J

Figure 5.6 Progress and Steps Tutorials

Lye and Koh’s (2014) study showed that the most popular intervention was providing
scaffolding to students while they are constructing their own programs. Scaffolds
could help them without copying the content in the tutorial. Additionally, based on the
knowledge level of students, tutorials could be dynamic. One easy way to achieve
dynamic tasks is to providing additional tasks at the end of each tutorial for the students
who completed faster than their classmates. By providing 2-3 tasks to improve the
application further, students would stay on the flow rather than simply waiting for their
friends to complete the tutorial. For the first task, a “make your own version task”
could be provided in which students should manipulate the application into a different
one visually and functionally. In addition to that task, an open-ended task named

“develop-it-more” activity could be presented to the students in which they could
223

discover new features to complete the task. By providing open-ended tasks students
could discover new features related to that specific example. Another way is by
developing a webpage to provide tutorials based on the speed and success of the
students. Tutorials could reveal the information if a student could not complete the
task in given time. Develop-it-more activities could also be provided through a

webpage.

5.2.5 Support-Buddies and Idea-Pitching

Aside from the other strategies and the programming environment, effectiveness,
engagement, and efficiency of this course heavily relied on to communication.
Constant and open communication between students and with instructor are found as
one of the factors what increased the success and motivation of the students. Some
novice programmers learn to program with little assistance, others learn to program
with a great deal of assistance if they do not fail (de Raadt, 2007, p. 202). It is observed
that students communicated and interacted with each other throughout the course.
Similarly, Quaye and Dasuki (2017) reported that students constantly interacted with
each other while trying to complete their program. Student-student interactions lead to
a positive effect on student success (Maleko et al., 2014). Therefore, collaboration and
communication should be encouraged in programming education. Students could learn
teamwork, communication and sharing ideas to solve large and complex problems.
(Kim et al., 2015). Throughout the course in-class and out-of-class communication and

collaboration were encouraged.

Coding also is no longer an isolated activity, rather it is a social activity shared with
other participants (Kafai & Burke, 2017). Most of the students demanded help from
their peers or from the instructor throughout the course. Soh et al. (2007) proposed to
encourage teamwork, and cooperation as a design strategy. Collaborative learning’s
major achievements are listed as motivation, social cohesion, cognitive development,
and cognitive elaboration (Bernard & Bachu, 2015). Similar findings were emerged in
this study. Students stated that communicating and collaborating with each other were
seen as positively different feature of this course. Students listed communication and
collaboration as one of the motivator for the course. Importance of collaboration

regarding pogramming is emphasized by more than one study. As DeMarco and Lister

224

(2013) reported that 70% of their time, software developers work with one or more
people, while they work alone in 30% of their time.

One popular suggestion came from students were forming project groups. MacGregor
(1988) stated that students who are working in groups tend to resolve problems with
their peers rather than the instructor (cited in Williams et al., 2002). Project groups is
a popular strategy to prepare students for group work in real life. However, there is a
downside of group work when it comes to the classroom level. In most projects, the
workload would not be shared equally. Sometimes students with better knowledge
level took the responsibility and the other students just do the labor. Students who are
better at programming work more while the others just tag along with them without
doing much programming work. Especially in introductory programming, using group
project approach could make students who are good at programming better and

students who are bad at programming worse.

Additionally, environments like App Inventor does not allow simultaneous working
on the same project as some other programming environment. This also restricts the
group work specifically for this course. An alternative to project group and the most
commonly used strategy that involves collaboration is pair programming strategy
(Bernard & Bachu, 2015). In pair programming, two programmers use one computer
collaboratively to develop a software, one person role as the driver and write/create
the code, while others watch and direct him towards the solution (Hanks et al., 2011;
Lewis, 2011). There is evidence that pair programming increases the competence,
retention level, the success of students (Hanks et al., 2011; Lewis, 2011), however, for
introductory programming, this also could lead to getting out of the flow especially for
the students who are not using the computer. As Lewis (2011) also stated that students
worked on their own computer were faster to complete examples on their own, which
could be an indicator of pair programming could be unproductive for learning,
engagement, and success of the new learners. Additionally, similar to group project,
pair programming also could lead to distribution of unbalanced workloads, such as
more successful student could do the most of the work (Mentz, van der Walt, &
Goosen, 2008).

Collaborating to solve a problem should be one of the emphasized skills in

programming education. Encouraging novice programmers to collaborate can help
225

them to overcome some of the challenges they face, and by engaging discussion, they
can see different viewpoints, alternative solutions to their problems, as well as offering
their own (Bernard & Bachu, 2015). Teacher/Instructor could not possibly respond to
all questions or requests for help, therefore the peer help is more beneficial, and
valuable especially in crowded courses (Cheong et al., 2004). More knowledgeable
students could help their peers to understand programming concepts that they could
not understand on their own (Maleko et al., 2014). Courses could embrace a different
collaboration approach based on their audience and the environment they chose. The
studio-based approach could be one solution to enhance collaboration in introductory
programming courses (Narayanan, Hundhausen, Hendrix, & Crosby, 2012). Studio-
based approach let students construct, iteratively refine, and critically review the
artifacts designed and developed by students which also increases the motivation and
engagement level of students (Narayanan et al., 2012). However, studio-based
collaborations are not enough for out of the classroom collaboration. Support-buddies
(see figure 5.10 below for visualization) could be an alternative strategy to group
project, peer programming, and studio-based approach, especially in introductory
programming courses. In that strategy, students should be paired with two or more of
their friends as in group projects. As an alternative to group project, each student would
develop their own project. However, they would still be responsible for helping out
their “buddies” and check the progress of each other’s projects. In this way, every
student could learn about teamwork, as well as embracing the sole responsibility of a
project. “Especially in the context of practical tasks, paired or collaborative work and
‘peer learning’ has also been shown to be beneficial” (Robins et al., 2003, p. 158).
Falkner and Falkner (2012) reported that required skills for programming such as
problem-solving, communication, and critical thinking effectively and efficiently are
developed through social constructivist activities. Through the practical tasks and
development of the project, support-buddies could help students to overcome their
problems with peer help. Peer support could also be helpful to the students who are
shy about asking “simple” questions to the instructor as the results of this study
showed. However, a similar problem about pair programming could also be the case
for support-buddies. As Sanders (2002) reported that the stronger student in the pair
frustrated to explain to the weaker student. Having more students than pair

programming in each group and communication among groups could help to solve this
226

problem. Wiedenbeck (2005) also reported that pairing students with different levels
of self-efficacy is beneficial for first-time learners, and observing the performance of
peers is a self-efficacy strengthening activity. Strategies similar to pair programming
is most effective when the members of each pair have roughly same skill level and

they meet in scheduled laboratory sessions.

/\/\/ /\/_/

Idea-Pitching
M

/\/\/ /\/_/

Support-Buddies 1 Support-Buddies 2

Figure 5.7 Peer Help/ldea-Pitching with Support-Buddies Strategy

Support-buddies strategy does incorporate five principles of cooperative learning that
Mentz et al. reported: (1) Positive interdependence, (2) Individual accountability, (3)
Face-to-face interaction, (4) Development of good social skills, (5) Group processing
(Mentz et al., 2008, pp. 249-250).

Cooperative learning does also need a communication environment that allows
students to interact an communicate with each other, which emphasize the importance
of using an effective communication environment as it was mentioned before. Students
had some problems when they needed to came up with a project idea. Additionally,
when students faced with a problem or need a mentor to improve their projects, they
need a discussion environment rather than a mentor. Even though the Facebook group
was active in terms of idea sharing, an idea-sharing place in real life was also
demanded by the students. Johnson and Caristi (2002) reported that communication
among students helped them getting multiple ideas, and to avoid unnecessary trial and
error. Novice programmers spend very little time planning the program they will create
(Robins et al., 2003). Idea-pitching strategy could also improve their planning time
since they are going to discuss what they will develop, and how they will be doing it.

It could be helpful for students to use a weekly idea-pitching and recitation hour similar

227

to the studio approach. Every week students and the instructor could meet and walk
through the application they made during lab hours. Additionally, they could come up
with the ideas for their final project and develop it theoretically with the help of their
friends in a studio-like environment. Functions of the block used at the current week’s
lab could be explained step by step to re-emphasize the role of each block in recitation

hour.

5.2.6 Misconceptions and Difficult Concepts

“Acquiring and developing knowledge about programming is a highly complex
process” (Rogalski & Samurgay, 1990, p. 170). Students have had difficulty while
learning some of the fundamental concepts of programming. Investigating the
difficulties of the concepts could shed a light on the reasons and the possible solutions.
Some strategies were developed to overcome the difficult concepts, however, it should
be noted that there would be no single solution for every learner. The background of
the students heavily affects the possible strategy to be implemented. One of the
findings about the concepts was the same name with different features could lead to
confusion in students. Variables and Clock concepts were among them. As it was
mentioned in-detail, variable concept is taught students through the mathematics
course before programming. Difference in the conceptual meaning and usage could
end with a misconception of students. Clock concept in programming is a loop with
changeable interval, while clock normally has a fixed interval by 1 second. The

concepts and possible strategies to overcome the difficulty explained below.

One of the essential programming concept that students found difficult to understand
was variables. Rogalski and Samurcay (1990) stated that variables are more complex
than it seems, which could lead to diverse problems. Freiermuth, Hromkovi¢, and
Steffen (2008) reported that starting with the variable concept too early could lead to
a confusion among students. Especially students from the elementary mathematics
education program had a misconception about it since the exact name was used for
mathematical variables. In mathematical variables, they were asked to find the value
of the variable. On the other hand, programming variable was determined by them and
changed through the calculations. Defining the variable and assigning the first value
were an unfamiliar concept for them. While the name stays the same throughout the

application, value changes constantly (Rogalski & Samurcay, 1990). Robins et al.

228

(2003) also reported that updating and testing the variables are equally complex for
novice programmers, but the initialization of the variable is more difficult for the
learners. Instructor should clearly specify and emphasize the difference between a
mathematical variable and programming variable with simple examples at the
beginning of the concept. The examples should solely on variable use rather than being
integrated into an example with more than one aspect. After the simple examples,
usage and role of the variables should be emphasized constantly at the following
weeks. Sajaniemi et al. (2006) offered to assign roles for variables, it could be
confusing since the roles are too complicated for non-majors. Instead of that strategy
appropriate naming of the variables could be used as a strategy for novice
programmers. Students stated that after implementing the variables without tutorials,
they understood it better. Simple examples with appropriate naming might be a simple
but useful strategy for the first-time learners. Complex topics like databases, arrays
(lists), variables could be used in multiple simple examples to help students to
understand the concept thoroughly. Complex programs could broken down into mini
programs as manageable tasks to help students understand the parts of a complex
problems (Lye & Koh, 2014). Examples and tutorials are a good source of information
to look back and remember the concepts. Therefore, the concepts they had could be

listed in an index to help students to find what they need.

Another strategy to overcome the difficulties of programming concepts is using
analogies from the real world. It is very easy to use the real clock to teach the clock
concept. However, changing the clock interval could confuse the students, when the
interval is more or less from one second. With basic examples like countdown timer,
and heartbeat application concept of clock and interval could be learned more easily.
Programming concepts without real-life analogies are difficult to understand for
novice programmers (Buitrago Florez et al., 2017). During the course hours, students
stated that analogies are helpful for them to understand clock concept better. Especially
after seeing it in a clock-focused example. Due to the general game concept of the
examples clock concept was used multiple times. As expected students embraced it
easier than the other difficult concepts. Complex topics could also be integrated into
the projects of the students as smaller modules since most of the students stated that

they learned the harder concepts while they were developing their projects.

229

Homework-like tasks related to the projects of the students could help them to
understand the programming of the concepts of the week. If the concept is not related
to their project, it could be used as a practice of the concept. Possible points and
strategies to be considered to overcome the difficulties that were stated by students can

be seen below in figure 5.11.

Building the Project
Idea-Pitching

Simol les t — - - Tasks with Difficult Concepts
Imple examples to Initial designs with the

support the_idea and help of "support-buddies" :
understanding Project-related Homework

Modules

eVariables
*Clocks
eDatabase
elists (Arrays)

Figure 5.8 Strategies to Overcome Difficulties of Students

5.2.7 Learner-Centered Formative Assessment

Traditionally assessment’s primary role is evaluating the comprehension of factual
knowledge of the students (Webber & Tschepikow, 2013). Assessment can be used
for (a) giving grades, (b) give feedback to learners to support the learning process, (c)
predicting the future learning and success of the learners (Dagiene & Skupas, 2013, p.
82). Traditional assessment method in programming by scoring the source codes and
emphasizing the wrong points may not be helpful to students since the reason behind
errors could be the concepts that student did not fully comprehend (Phuong, 2010). On
the other hand, learner-centered assesment is seen as an activity to foster student
learning by (1) providing constructive and progressive feedback to students, (2) having
students to evaluate each other’s work, (3) servicing assignments that require
community interaction. As the design of the course should embrace an eclectic and
formative approach, assessment should embrace a learner-centered formative
assessment type. The main evaluation instrument should be the products of the

students. Even the theoretical information should be evaluated from actual programs
230

relevant to the product-first approach. Learner-centered assessment includes a
mechanism for prompt feedback, foster collaboration and increased communication of
students and faculty, and should require students to demonstrate meaningful
application of knowledge and skills to real-world tasks; this would lead to concrete
evidence of student’s development of knowledge in which students should create
meaningful applications for real-world tasks (Jon Mueller, 2005; Webber &
Tschepikow, 2013). Learning-centered assessment which is more relevant for
learning-centered education could increase the student-student and student-faculty
interaction (Webber & Tschepikow, 2013) as this study suggested in and out of the
classroom, face-to-face and through a communication medium. Of course, use of
learner-centered assessment does not ensure higher performance (Webber &
Tschepikow, 2013), it should be applied with other instructional strategies that support
learning as this study suggests. Weber and Tschepikow (2013) reported that according
to many research studies, learner-centered assessment is the best practice to evaluate
students in higher education. It was more beneficial for learners to be given the
opportunity to demonstrate their knowledge and skills in multiple ways such as

presenting the projects, quizzes, open-ended questions (Grover, 2017).

Grover (2017) stated that presenting their projects worked better than summative tests
for all of the students including the ones performed poorly in the summative test. To
improve the effectiveness, efficiency, and engagement level of the course, instructor
should constantly evaluate the performance of the students through the products, rather
than summatively evaluate them to give grades. Additionally, as students stated,
homework could also be a source of effectiveness to learn the concepts, getting
feedback from the instructor and their peers. Open and formative feedback by using a
communication medium was also one of the factors that students efficiently benefited
from. As the summative evaluation, students found that presenting their projects by

explaining the process are more beneficial for their understanding.
5.3 Conclusion and Prescription for the Future Courses

This study suggested strategies and recommendations that could help instructors to
design an effective, efficient, and engagement introductory programming course. The
strategies offered extracted from process of designing and developing an introductory

programming course based on the experiences of both the instructor and the learners.
231

It is a fact that each course is unique regarding its learners, instructor, environment etc.

The strategies and recommendations offered in this study are not universal. However,

they could be still helpful to build an introductory programming course, since the

strategies and recommendations followed were extracted from the experiences,

opinions, and observations obtained through the process of course development and

design cycles. The instructional strategies and recommendations presented below

given with their expected effect on the course.

1- Knowing the learners and defining their characteristics before designing

the course: Even though there is no need to conduct a research study, data

should be collected through a survey or any other form that could reveal (a)

programming experience, (b) the perception and attitude towards programming

(c) demographic information, (d) the purpose of taking the course, (e) the

communication medium choice of the students.

2- Searching and choosing the programming environment(s) (engagement,

efficiency, and effectiveness): Programming environments are crucial for the

course since the capabilities of the environments shapes the curriculum of the

course. The study put forward that programming environment to use in an

introductory programming course should have the following features

a.
b.
C.

d.

Easy to use, to develop, and to learn

Visual to see the product, to see the process, and to see the mistakes
Helpful to prevent mistakes, to immediately show the correct way, by
providing scaffolding

Capable to be connected students’ world, to develop appealing products

Depending on the characteristics of the learners an easy to learn textual

environment could be chosen as the supporting environment to let learners

see the underlying structure and be familiar with textual programming to

ease the transition.

3- Searching and choosing the communication medium (engagement,

efficiency, and effectiveness): The communication medium is one of the

essential parts of the study. Choosing a communication medium which is

a.

Popular and commonly used among students

b. Notifying the learners instantly

232

4-

c. Multi-directional, interactive, and allowing open communication

d. Allowing to be used as a resource hub
Designing the course activities according to product-first approach in
which examples and assignments should be (effectiveness, and
engagement): The course activities should be designed as the products at the
center. The products of the tutorials, examples, and assignments should be

a. Visual and Concrete

b. Purposive and functional

c. Meaningful/related to life

d. Products with basic algorithms integrated

e. Relevant to Students
Using spiral approach with a course theme for the course flow
(effectiveness, and engagement): The course should be designed according to
spiral approach in which the basic concepts introduced and expanded through
increasing difficulty. Presenting the same concepts with increasing difficulty
and adding new concepts on top of the previous knowledge. Additionally,
spiral approach and product-first approach appeared to work better if the course
was designed according to a theme. In this study games were chosen based on
the interest of the students, and relevancy of gaming concepts to the course. A
different concept could be chosen, if the interest of the audience is different.
Presenting the examples with both top-down and bottom-up approach
(effectiveness, and efficiency): Main two approach in programming learning
are top-down and bottom-up approach. According to instructional strategies
such as spiral approach and above, bottom-up approach is more relevant to use.
Additionally, bottom-up approach is also better for introductory level.
However, results showed that using top-down approach is also beneficial to
understand different perspectives, debugging the programs, and see working
parts as a whole.
Promoting computational thinking through real-life examples and on-
paper flowchart activities (effectiveness, and engagement): Computational
thinking is not the main curriculum in an introductory programming course,
however, it could be emphasized by providing flowchart examples to students.

Making the thinking styles explicit by connecting the daily routines and
233

programming problems could be one strategy for help students to realize
computational thinking. Even though computational thinking is realized by
students unconsciously throughout the course, integrating programming
problems into learners’ world could be an effective strategy for learners.

8- Using dynamic tutorials with develop-it-more activities (effectiveness,
efficiency, and engagement): As spiral approach suggested activities should
be designed in a simple to complex order. However, knowledge level
difference between learners could make students get out of the flow zone
during the in-class activity. A possible solution for this could be providing
students dynamic tutorials, in which scaffolding will be presented to students
when they are having a problem rather than presenting them fully well-
structured. In addition to having dynamic tutorials, develop-it-more activities
is another intervention created during the course. For students who are ahead
of others develop-it-more activities could be presented at the end of each
tutorial. Develop-it-more activities kept the students who are more experienced
or successful in the flow zone during the course.

9- Enhancing the student-student and student-instructor out-of-classroom
communication, and interaction by using a communication medium
(effectiveness, and engagement): Choosing a communication medium is
essential for the course design. However, using it to enhance communication
IS more important. Instructor should use the communiation medium to help
students colaborate with and learn from each other. An open communication
and helping environment should be set up and encouraged to let students help
each other.

10- Enhancing the collaboration skills by using support-buddies approach
(effectiveness, efficiency, engagement): Support-Buddies approach was
introduced as a future intervention for the course. A mix of studio approach,
group projects, and pair programming was presented as support-buddies to
enhance the collaboration through the course and the project. According to the
approach, each student will have a separate personal project. Each student will
also have buddies to be responsible to help. Additionally, all of the students

will meet weekly to review each other’s projects like in studio approach.

234

11- Using a learner-centered formative assessment (effectiveness, efficiency,
and engagement): Assessment of the course should be relevant to product-
first approach and spiral approach. Rather than traditional assessment which
based on grading, using a learner-centered assessment that focuses on giving
feedback to learners to improve their understanding. Through the assignments
and projects, student should evaluate and give feedback to each other, instead
of having one-way feedback from instructor to students. It is also found that
rather than having a final exam, it is more beneficial for students to present

their projects and its process at the end of the course.

As it was mentioned before the strategies could be replaced or enhanced by the
instructors. Flexible design of the course and implementation of the instructional
strategies based on the context might be more helpful and successful since every
course is unique regarding the components. Rogalski and Samurcay (1990) suggest
using/developing “flexible strategies to derive benefits from programming aids
(programming environment, programming methods)” (p.170). Soh, Samal, and
Nugent (2007) each curriculum within a course related to CS should have effective,
flexible, customizable, and modular components (p. 60). Robins et al. (2003)
suggested opportunistic exploration for novice programmers where strategies are
determined by episodes of problem-solving activities. Similarly being open for new
strategies are essential for the instructional strategies. Even though, the strategies
above based on the data from learners and instructor, the strategies presented above
might not be relevant for all course contexts. Instructional strategies and
recommendations could be benefitted, but the course should be designed flexible

enough to be compatible with multiple environments, tools and strategies.
5.4 Future Studies

Those strategies are derived from an introductory course for non-CS major university
students. Even though they depend on in-class experience. They needed to be tested
and matured by other instructors and learners by implementing in-class. Other than
strategies and recommendations suggested in this study, new strategies should be
developed and added to the extracted ones. More in-class experience is needed and
should be encouraged to make the experiences of different environments more explicit.

In addition to the introductory course, a follow-up course could be designed to find if
235

the knowledge acquired from this course could help students to advance in
programming. Different programming environments which are suitable for advanced
programming could be used with help of visualization tools and the strategies of this
study. Integrating program visualization tools on a follow-up course to the
introductory programming course could improve students’ experiences and illustrate

a positive outcome as some studies suggested (Bati et al., 2014).

The course constructed in this study have few students, therefore more follow-up
studies are needed with crowded classes. Since one of the important challenges in
education is presenting the information to a large audience, effectiveness of
recommendations and strategies should be implemented to classes with different

number of students.

There is a demand for computational thinking, and programming education to be
integrated into K-12 curriculum (Brasiel et al., 2017; Julie Mueller, Beckett,
Hennessey, & Shodiev, 2017; Pan, 2017). Similar studies could be conducted to see if
the strategies are relevant for K-12 students and whether there is new instructional

strategies and recommendations emerge from the studies.

Another aspect to focus on in future studies is using different data types from larger
number of participants. Data of this study based on qualitative data from few
participants. It was beneficial for a exploratory research design to inductively construct
pronciples. However, it would be also beneficial to test the effectiveness of the
strategies and recommendations by collecting and analyzing quantitative data from
different groups of students after implementing the strategies and recommendations.

236

REFERENCES

Abelson, H. (2009). App Inventor for Android. Google Research Blog. Retrieved from
https://research.googleblog.com/2009/07/app-inventor-for-android.html

Al-Bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., ... Meyer,
S. (2009). Using game creation for teaching computer programming to high
school students and teachers. Proceedings of the 14th Annual ACM SIGCSE
Conference on Innovation and Technology in Computer Science Education -
ITiCSE 09, 104. https://doi.org/10.1145/1562877.1562913

AlHumoud, S., Al-Khalifa, H. S., Al-Razgan, M., & Alfaries, A. (2014). Using App
Inventor and LEGO mindstorm NXT in a summer camp to attract high school
girls to computing fields. IEEE Global Engineering Education Conference,
EDUCON, (April), 173-177. https://doi.org/10.1109/EDUCON.2014.6826086

Anderson, J. R. (2015). Cognitive psychology and its implications (Eigth Edit). New
York, NY: Worth Publishers.

Anderson, J. R., & Skwarecki, E. (1986). The automated tutoring of introductory
computer programming. Communications of the ACM, 29(9), 842-849.
https://doi.org/10.1145/6592.6593

Anfara, V. A, & Mertz, N. T. (2006). Theoretical Frameworks in Qualitative
Research. Thousand Oaks, CA: SAGE Publications, Inc.
https://doi.org/10.1017/CB09781107415324.004

Apiola, M., & Tedre, M. (2012). New perspectives on the pedagogy of programming
in a developing country context. Computer Science Education, 22(3), 285-313.
https://doi.org/10.1080/08993408.2012.726871

Araujo, L. G. J., Bittencourt, R. A., & Santos, D. M. B. (2018). Contextualized Spiral
Learning of Computer Programming in Brazilian Vocational Secondary
Education. In Proceedings of the 48th Annual Frontiers In Education
Conference. San Jose, California.

Armoni, M., & Gal-Ezer, J. (2014). High school computer science education paves the
way for higher education: the Israeli case. Computer Science Education, 24(2-3),
101-122. https://doi.org/10.1080/08993408.2014.936655

Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground.
Journal of the Learning Sciences, 13(2), 1-14.
https://doi.org/10.1207/s15327809jls1301_1

Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J., Kingston, J. H., & Crawford,
K. (2000). Problem-Based Learning for Foundation Computer Science Courses.
Computer Science Education, 10(2), 109-128. https://doi.org/10.1076/0899-
3408(200008)10:2;1-C;FT109

237

Bati, T. B., Gelderblom, H., & van Biljon, J. (2014). A blended learning approach for
teaching computer programming: design for large classes in Sub-Saharan Africa.
Computer Science Education, 24(1), 71-99.
https://doi.org/10.1080/08993408.2014.897850

Ben-Ari, M. (2013). Visualization of programming. In D. M. Kadijevich, C. Angeli,
& C. Schulte (Eds.), Improving Computer Science Education (pp. 52-65). New
York, NY: Routledge. https://doi.org/10.4324/9780203078723-14

Bennedsen, J., & Caspersen, M. E. (2012). Persistence of elementary programming
skills. Computer Science Education, 22(2), 81-107.
https://doi.org/10.1080/08993408.2012.692911

Berg, B. L. (2001). Qualitative research methods for the social sciences. Qualitative
Research (Vol. Seventh Ed). https://doi.org/10.2307/1317652

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to program. In P. Romero, J. Good, E. Acosta Chaparro, & S. Bryant
(Eds.), Psychology of Programming Interest Group 17th annual workshop (PPIG
2005) (pp. 293-305). Brighton.

Bernard, M., & Bachu, E. (2015). Enhancing the Metacognitive Skill of Novice
Programmers Through Collaborative Learning. In Metacognition: Fundaments,
Applications, and Trends. Intelligent Systems Reference Library, vol 76 (Vol. 76,
pp. 277-298). Springer, Cham. https://doi.org/10.1007/978-3-319-11062-2

Bertea, A. F. (2011). Mobile Learning Applications Using Google App Inventor For
Android. In The 7th International Scientific Conference eLearning and Software
for Education. Bucharest.

Bogdan, R. C., & Biklen, S. K. (2007). Qualitative Research for Education: An
Introduction to Theory and Methods. Boston, MA: Pearson Education Inc.
https://doi.org/10.1177/1468794107085301

Bosch, N., & D’Mello, S. (2015). The Affective Experience of Novice Computer
Programmers. International Journal of Artificial Intelligence in Education, 27,
181-206. https://doi.org/10.1007/s40593-015-0069-5

Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. a., & Lester, J. C. (2009).
Investigating the role of student motivation in computer science education
through one-on-one tutoring. Computer Science Education, 19(2), 111-135.
https://doi.org/10.1080/08993400902937584

Brasiel, S., Close, K., Jeong, S., Lawanto, K., Janisiewicz, P., & Martin, T. (2017).
Measuring Computational Thinking Development with the FUN! Tool. In
Emerging Research, Practice, and Policy on Computational Thinking (pp. 327-
347). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-
319-52691-1 20

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In 2012 annual meeting of the AERA (pp.
1-25). Vancouver, Canada.

238

Bruce, K. B. (2005). Controversy on how to teach CS 1. ACM SIGCSE Bulletin, 37(2),
111-117. https://doi.org/10.1145/1083431.1083477

Bryson, C., & Hand, L. (2007). The role of engagement in inspiring teaching and
learning. Innovations in Edcuation and Teaching International, 44(4), 349-362.

Buitrago Flérez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies,
G. (2017). Changing a Generation’s Way of Thinking: Teaching Computational
Thinking Through Programming. Review of Educational Research, 87(4), 834—
860. https://doi.org/10.3102/0034654317710096

Buss, A., & Gamboa, R. (2017). Teacher Transformations in Developing
Computational Thinking: Gaming and Robotics Use in After-School Settings. In
Emerging Research, Practice, and Policy on Computational Thinking (pp. 189—
203). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-
319-52691-1 12

Byrne, P., & Lyons, G. (2001). The Effect of Student Attributes on Success in
Programming. Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, 49-52.
https://doi.org/10.1109/ICETC.2009.35

Cambranes, E. (2013). Supporting novice programmers with natural language in the
early stage of programming. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing (pp. 173-174). IEEE.
https://doi.org/10.1109/VLHCC.2013.6645271

Castelluccio, B. M. (2012). Want an App , Write an App, Strategic Finance
(September, 2012).

Cetin, L. (2013). Visualization: a tool for enhancing students’ concept images of basic
object-oriented concepts. Computer Science Education, 23(1), 1-23.
https://doi.org/10.1080/08993408.2012.760903

Chao, C. (2006). An Investigation of Learning Style Differences and Attitudes toward
Digital Game-based Learning among Mobile Users. In 2006 Fourth IEEE
International Workshop on Wireless, Mobile and Ubiquitous Technology in
Education (WMTE’06). |EEE. https://doi.org/10.1109/WMTE.2006.261340

Charlton, T., Devlin, M., & Drummond, S. (2009). Using Facebook to improve
communication in undergraduate software development teams. Computer
Science Education, 19(4), 273-292. https://doi.org/10.1063/1.2756072

Cheong, Y. F., Pajares, F., & Oberman, P. S. (2004). Motivation and Academic Help-
Seeking in High School Computer Science. Computer Science Education, 14(1),
3-19. https://doi.org/10.1076/csed.14.1.3.23501

Christiansen, H. (2004). Teaching Computer Languages and Elementary Theory for
Mixed Audiences at University Level. Computer Science Education, 14(3), 205-
234. https://doi.org/10.1080/0899340042000302727

Corbin, J. M., & Strauss, A. L. (2008). Basics of qualitative research: Techniques and
procedures for developing grounded theory. Thousand Oaks, CA: Sage
Publications.

239

Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five
approaches. Thousand Oaks, @CA: SAGE Publications, Inc.
https://doi.org/10.1111/1467-9299.00177

Creswell, J. W. (2009). Research Design Qualitative, Quantitative, and Mixed
Methods Approaches (Vol. 3rd). Thousand Oaks, CA: SAGE Publications, Inc.
https://doi.org/10.1016/j.math.2010.09.003

Creswell, J. W. (2012). Educational Research: Planning, Conducting, and Evaluating
Quantitaive and Qualitative Research. Boston, MA: Pearson.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. Thousand Oaks, CA: SAGE Publications, Inc.

Croff, C. H. (2017). Teaching Computational Thinking Patterns in Rural
Communities. In Emerging Research, Practice, and Policy on Computational
Thinking (pp. 175-188). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-52691-1 11

Csikszentmihalyi, M. (1991). Flow: the psychology of optimal experience. New York:
HarperPerennial.

Dagiene, V., & Skupas, B. (2013). Assessment of students’ programs. In D. M.
Kadijevich, C. Angeli, & C. Schulte (Eds.), Improving Computer Science
Education (pp. 82-97). New York, NY: Routledge.
https://doi.org/10.4324/9780203078723-16

Dai, D. Y. (2012). Design Research on Learning and Thinking in Educational Settings
Enhancing Intellectual Growth and Functioning. New York: Routledge.

Davies, S. P. (1993). Models and theories of programming strategy. International
Journal of Man-Machine Studies, 39(2), 237-267.
https://doi.org/10.1006/IMMS.1993.1061

de Raadt, M. (2007). A Review of Australasian Investigations into Problem Solving
and the Novice Programmer. Computer Science Education, 17(3), 201-213.
https://doi.org/10.1080/08993400701538104

Dede, C. (2005). Why design-based research is both important and difficult.
Educational Technology, 45(1 (Jan-Feb)), 5-8.

Deek, F. P., & McHugh, J. A. (1998). A survey and critical analysis of tools for
learning programming. Computer Science Education, 8(2), 130-178.

Demarco, T., & Lister, T. (2013). Peopleware Productive Projects and Teams (Third
Edit). Indianapolis, IN: Addison-Wesley.

DeMarries, K. (2004). Qualitative Interview Stories: Learning Through Experience. In
K. DeMarries & S. D. Lapan (Eds.), Foundations for Research: Methods of
Inquiry in Education and the Social Sciences. Mahwah, N.J.: Lawrence Erlbaum
Assoc.

Dennen, V. P., & Burner, K. J. (2017). Identity, context collapse, and Facebook use in
higher education: putting presence and privacy at odds. Distance Education,
38(2), 173-192. https://doi.org/10.1080/01587919.2017.1322453

240

Denzin, N. K., & Lincoln, Y. S. (1998). The Landscape of Qualitative Research :
Theories and Issues. Thousand Oaks, CA: SAGE Publications, Inc.

du Boulay, B. (1989). Some difficulties of learning to program. In E. M. Soloway &
J. C. Spohrer (Eds.), Studying the Novice Programmer (pp. 283-299). Hillsdale,
NJ: Lawrence Erlbaum Assoc.

Effective. (n.d.). Retrieved September 8, 2018, from https://www.merriam-
webster.com/dictionary/effective

Efficient. (n.d.). In Merriam-Webster Dictionary. Retrieved from
https://www.merriam-webster.com/dictionary/efficient

Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The Benefits of Facebook
“Friends:” Social Capital and College Students’ Use of Online Social Network
Sites. Journal of Computer-Mediated Communication, 12(4), 1143-1168.
https://doi.org/10.1111/j.1083-6101.2007.00367.x

Engaging. (n.d.). In Merriam-Webster Dictionary. Retrieved from
https://www.merriam-webster.com/dictionary/engaging

Falkner, K., & Falkner, N. J. G. (2012). Supporting and Structuring “Contributing
Student Pedagogy” in Computer Science Curricula. Computer Science
Education, 22(4), 413-443. https://doi.org/10.1080/08993408.2012.727713

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The
TeachScheme! Project: Computing and Programming for Every Student.
Computer Science Education, 14(1), 55-77.
https://doi.org/10.1076/csed.14.1.55.23499

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. H. (2012). How to Design and Evaluate
Research in Education (Vol. 53). New York, NY: McGraw-Hill.

Freiermuth, K., Hromkovi¢, J., & Steffen, B. (2008). Creating and Testing Textbooks
for Secondary Schools. In Informatics Education - Supporting Computational
Thinking (pp. 216-228). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-69924-8_20

Gardner, H., & Davis, K. (2013). The app generation: How today’s youth navigate
identity, intimacy, and imagination in a digital world. New Haven, CT: Yale
University Press.

Gardner, J. (2010). Applying Merrill’s First Principles of Instruction: Practical
methods based on a review of the literature. Educational Technology, 50(2), 20—
25. Retrieved from
http://ezproxy.lib.indiana.edu/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=eric& AN=EJ890773&site=ehost-
live%5Cnhttp://asianvu.com/bookstoread/etp/

Gasparinatou, A., & Grigoriadou, M. (2011). Supporting students’ learning in the
domain of computer science. Computer Science Education, 21(1), 1-28.
https://doi.org/10.1080/08993408.2010.509909

241

Gibbs, G. R. (2007). Qualitative Research kit: Analyzing qualitative data. London:
SAGE Publications Ltd. https://doi.org/10.4135/9781849208574

Good, J., & Howland, K. (2017). Programming language, natural language?
Supporting the diverse computational activities of novice programmers. Journal
of Visual Languages & Computing, 39, 78-92.
https://doi.org/10.1016/j.jvlc.2016.10.008

Govender, 1. (2009). Computers & Education The learning context: Influence on
learning to program. Computers & Education, 53(4), 1218-1230.
https://doi.org/10.1016/j.compedu.2009.06.005

Gross, P., & Kelleher, C. (2010). Non-programmers identifying functionality in
unfamiliar code: Strategies and barriers. Journal of Visual Languages and
Computing, 21(5), 263-276. https://doi.org/10.1016/j.jvlc.2010.08.002

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12:
Lessons from a Middle School Classroom. In Emerging Research, Practice, and
Policy on Computational Thinking (pp. 269-288). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-52691-1 17

Grover, S., & Pea, R. (2013). Computational Thinking in K — 12 : A Review of the
State of the Field, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science
Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142

Guzdial, M., & Forte, A. (2005). Design process for a non-majors computing course.
ACM SIGCSE Bulletin, 37, 361. https://doi.org/10.1145/1047124.1047468

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program.
Communications of the ACM, 45(4), 17-21.
https://doi.org/10.1145/505248.505261

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair
programming in education: A literature review. Computer Science Education,
21(2), 135-173. https://doi.org/10.1080/08993408.2011.579808

Hawi, N. (2010). The exploration of student-centred approaches for the improvement
of learning programming in higher education, 7(9), 47-57.

Herman, G. L. (2012). Designing contributing student pedagogies to promote students’
intrinsic motivation to learn. Computer Science Education, 22(4), 369-388.
https://doi.org/10.1080/08993408.2012.727711

Herrington, J., Mckenney, S., Reeves, T., & Oliver, R. (2007). Design-based research
and doctoral students: Guidelines for preparing a dissertation proposal.
Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2007, 2007(2007), 4089-4097.

Homer, M., & Noble, J. (2017). Lessons in Combining Block-based and Textual
Programming. Journal of Visual Languages and Sentinent Systems, 3, 22—-39.

Hooshyar, D., Ahmad, R. B., & Nasir, M. H. N. M. (2014). A framework for automatic
242

text-to-flowchart conversion: A novel teaching aid for novice programmers.
Proceeding - 2014 International Conference on Computer, Control, Informatics

and Its Applications: “New Challenges and Opportunities in Big Data”, IC3INA
2014, 7-12. https://doi.org/10.1109/IC3INA.2014.7042592

Howles, T. (2009). A study of attrition and the use of student learning communities in
the computer science introductory programming sequence. Computer Science
Education, 19(910534876), 1-13. https://doi.org/10.1080/08993400902809312

Hsu, Y.-C., & Ching, Y. (2013). Mobile App Design for Teaching and Learning :
Educators’ Experiences in an Online Graduate Course. The International Review
of Research in Open and Distance Learning, 14(4), 117-1309.

Hsu, Y.-C., Rice, K., & Dawley, L. (2012). Empowering educators with Google’s
Android App Inventor: An online workshop in mobile app design. British Journal
of Educational Technology, 43(1), E1-E5. https://doi.org/10.1111/}.1467-
8535.2011.01241.x

Ichinco, M., & Louis, S. (2016). Suggesting and Supporting Examples for Novice
Programmers. In 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (pp. 260-261).

Ichinco, M., Zemach, A., & Kelleher, C. (2013). Towards generalizing expert
programmers’ suggestions for novice programmers. Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
(1054587), 143-150. https://doi.org/10.1109/VLHCC.2013.6645259

IDC: Smartphone OS Market Share. (2017). Retrieved from
http://www.idc.com/promo/smartphone-market-share/os

Igbal, S., Chowdhury, M. U., & Harsh, O. K. (2013). Mobile devices supported
learning for novice programmers. In 2013 Second International Conference on
E-Learning and E-Technologies in Education (ICEEE) (pp. 277-282). Lodz.
https://doi.org/10.1109/1CeLeTE.2013.6644388

Jaime, A., Blanco, J. M., Dominguez, C., Sanchez, A., Heras, J., & Usandizaga, |.
(2016). Spiral and Project-Based Learning with Peer Assessment in a Computer
Science Project Management Course. Journal of Science Education and
Technology, 25(3), 439-449. https://doi.org/10.1007/s10956-016-9604-x

Jing, L., Cheng, Z., Wang, J., & Zhou, Y. (2011). A spiral step-by-step educational
method for cultivating competent embedded system engineers to meet industry
demands. IEEE Transactions on Education, 54(3), 356-365.
https://doi.org/10.1109/TE.2010.2058576

Johnson, D. H., & Caristi, J. (2002). Using Extreme Programming in the Software
Design Course. Computer Science Education, 12(3), 223-234.
https://doi.org/10.1076/csed.12.3.223.8616

Jones, S., & Burnett, G. (2008). Spatial ability and learning to program. Human
Technology, 4(May), 47—-61. https://doi.org/10.17011/ht/urn.200804151352

Kafai, Y. B., & Burke, Q. (2013). Computer Programming Goes Back to School. Phi
Delta Kappan, 95(1), 61-65. https://doi.org/10.1177/003172171309500111

243

Kafai, Y. B., & Burke, Q. (2017). Computational Participation: Teaching Kids to
Create and Connect Through Code. In Emerging Research, Practice, and Policy
on Computational Thinking (pp. 393-405). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-52691-1 24

Kalas, I., & Winczer, M. (2008). Informatics as a Contribution to the Modern
Constructivist Education. In Informatics Education - Supporting Computational
Thinking (pp. 229-240). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-69924-8_21

Katz, S., Allbritton, D., Aronis, J., Wilson, C., & Soffa, M. Lou. (2006). Gender,
achievement, and persistence in an undergraduate computer science program.
ACM SIGMIS Database, 37(4), 42. https://doi.org/10.1145/1185335.1185344

Kaurel, H. G. (2016). Easing the Transition from Visual to Textual Programming.
Norwegian University of Science and Technology.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2011). Understanding
Computational Thinking before Programming. International Journal of Game-
Based Learning, 1(3), 30-52. https://doi.org/10.4018/ijgbl.2011070103

Keller, J. M. (1987). Development and use of the ARCS model of motivational design.
Journal of Instructional Development, 10(1932), 2-10.
https://doi.org/10.1002/pfi.4160260802

Kelly, A. E. (2004). Design Research in Education: Yes, but is it Methodological?
Journal of the Learning Sciences, 13(1), 115-128.
https://doi.org/10.1207/s15327809jls1301

Kemp, S. (2017). Digital in 2017: Global Review. Retrieved from
https://wearesocial.com/special-reports/digital-in-2017-global-overview

Kim, B., Kim, T., & Kim, J. (2013). Paper-and-Pencil Programming Strategy toward
Computational Thinking for Non-Majors: Design Your Solution. Journal of
Educational Computing Research, 49(4), 437-4509.
https://doi.org/10.2190/EC.49.4.b

Kim, D.-K., Jeong, D., Lu, L., Debnath, D., & Ming, H. (2015). Opinions on
computing education in Korean K-12 system: higher education perspective.
Computer Science Education, 25(4), 371-3809.
https://doi.org/10.1080/08993408.2016.1140409

Kolling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ System and
its Pedagogy. Computer Science Education, 13(4), 249-268.
https://doi.org/10.1076/csed.13.4.249.17496

Kurkovsky, S. (2013). Mobile Game Development: Improving student engagement
and motivation in introductory computing courses. Computer Science Education,
23(2), 138-157. https://doi.org/10.1080/08993408.2013.777236

Kwon, D., Yoon, I., & Lee, W. (2011). Design of Programming Learning Process
using Hybrid Programming Environment for Computing Education, 5(10), 1799—
1813. https://doi.org/10.3837/tiis.2011.10.007

244

Langrich, M., & Schulze, J. (2015). Rethinking task types for novice programmers. In
Proceedings - Frontiers in Education Conference, FIE.
https://doi.org/10.1109/FIE.2014.7044421

Lee, Y. (2011). Scratch: Multimedia Programming Environment for Young Gifted
Learners. Gifted Child Today, 34(2), 26-31.

Levy, R. B., & Ben-ari, M. (2009). Adapting and merging methodologies in doctoral
research. Computer Science Education, 19(2), 51-67.
https://doi.org/10.1080/08993400902937550

Lewis, C. M. (2011). Is pair programming more effective than other forms of
collaboration for young students? Computer Science Education, 21(2), 105-134.
https://doi.org/10.1080/08993408.2011.579805

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Newbury Park, CA: SAGE
Publications, Inc.

Lister, R., Seppild, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., ...
Thomas, L. (2004). A multi-national study of reading and tracing skills in novice
programmers. In Working group reports from ITiCSE on Innovation and
technology in computer science education - ITICSE-WGR '04 (Vol. 36, pp. 119—
150). New York, NY: ACM Press. https://doi.org/10.1145/1044550.1041673

Lo, C. K., & Hew, K. F. (2017). Using “First Principles of Instruction” to Design
Mathematics Flipped Classroom for Underperforming Students. Educational
Technology & Society, 20(1), 222—-236. https://doi.org/10.18178/ijlt.3.2.82-89

Long, J. (2007). Just For Fun: Using Programming Games in Software Programming
Training and Education-A Field Study of IBM Robocode Community. Journal of
Information Technology Education, 6, 279-290. https://doi.org/Article

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the
models of programming concepts held by novice programmers. Computer
Science Education, 21(1), 57-80.
https://doi.org/10.1080/08993408.2011.554722

MacGregor, S. K. (1988). Computer Programming Instruction. Journal of Research
on Computing in Education, 21(2), 155-164.
https://doi.org/10.1080/08886504.1988.10781868

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM
SIGCSE Bulletin, 39(1), 223. https://doi.org/10.1145/1227504.1227388

Maleko, M., Hamilton, M., & D’Souza, D. (2012). Access to mobile learning for
novice programmers via social networking sites. Computer Science & Education
(ICCSE), 2012 7th International Conference On, (lccse), 1533-1538.
https://doi.org/10.1109/ICCSE.2012.6295355

245

Maleko, M., Hamilton, M., D’Souza, D., & Scholer, F. (2014). Understanding and
analysing novice programmer interactions in a facebook programming group. In
Proceedings - 2014 International Conference on Teaching and Learning in
Computing and Engineering, LATICE 2014 (pp. 112-119).
https://doi.org/10.1109/LaTiCE.2014.28

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2013). A Holistic Framework for the
Development of an Educational Game Aiming to Teach Computer Programming.
Proceedings of the 7Th European Conference on Games Based Learning, Vols 1
and 2, 359-368.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The
Scratch Programming Language and Environment, 10(4), 1-15.
https://doi.org/10.1145/1868358.1868363.http

Manasijevi¢, D., Zivkovi¢, D., Arsi¢, S., & Milogevi¢, I. (2016). Exploring students’
purposes of usage and educational usage of Facebook. Computers in Human
Behavior, 60, 441-450. https://doi.org/10.1016/j.chb.2016.02.087

Mannila, L., Peltoméki, M., & Salakoski, T. (2006). What about a simple language?
Analyzing the difficulties in learning to program. Computer Science Education,
16(3), 211-227. https://doi.org/10.1080/08993400600912384

Margulieux, L. E., Catrambone, R., & Guzdial, M. (2016). Employing subgoals in
computer programming education. Computer Science Education, 26(1), 44-67.
https://doi.org/10.1080/08993408.2016.1144429

Marlowe, B. A., & Page, M. L. (2005). Creating and sustaining the constructivist
classroom. Thousand Oaks, CA: Corwin Press.

Mason, J. (2002). Qualitative researching. London: SAGE Publications, Inc.
https://doi.org/10.1016/S0143-6228(97)90005-9

Mason, R., & Cooper, G. (2013). Mindstorms robots and the application of cognitive
load theory in introductory programming. Computer Science Education, 23(4),
296-314. https://doi.org/10.1080/08993408.2013.847152

McKenney, S., & Reeves, T. (2012). Conducting Educational Design Research. New
York: Routledge, Taylor & Francis Group.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science
concepts with Scratch. Computer Science Education, 23(September), 239-264.
https://doi.org/10.1080/08993408.2013.832022

Mendes, A. J., Paquete, L., Cardoso, A., & Gomes, A. (2012). Increasing student
commitment in introductory programming learning. In 2012 Frontiers in
Education Conference Proceedings (pp. 1-6). Seattle, WA: IEEE.
https://doi.org/10.1109/FIE.2012.6462486

Mentz, E., van der Walt, J. L., & Goosen, L. (2008). The effect of incorporating
cooperative learning principles in pair programming for student teachers.
Computer Science Education, 18(4), 247-260.
https://doi.org/10.1080/08993400802461396

246

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in
Education. San Francisco, CA: Jossey-Bass.

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation.
San Francisco, CA: Jossey-Bass.
https://doi.org/10.1017/CB09781107415324.004

Merrill, M. D. (2002). First principles of instruction. Educational Technology,
Research and Development, 50(3), 43-59. https://doi.org/10.1007/BF02505024

Merrill, M. D. (2008). Converting e3-learning to e”3-learning: An alternative
instructional design method. In S. Carliner & P. Shank (Eds.), The E-Learning
Handbook: Past Promises, Present Challenges (pp. 359-400). San Francisco,
CA: Pfeiffer.

Merrill, M. D. (2013). First Principles of Instruction. San Francisco, CA: Pfeiffer.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook. Thousand Oaks, CA: SAGE Publications, Inc.

MIT App Inventor. (2017). MIT App Inventor. Retrieved September 7, 2017, from
appinventor.mit.edu/explore/

Mozelius, P., Shabalina, O., Malliarakis, C., Tomos, F., Miller, C., & Turner, D.
(2013). Let the Students Contruct Their own fun And Knowledge - Learning to
Program by Building Computer Games. In Proceedings of the 7th European
Conference on Games Based Learning (Vol. 1,2, pp. 418-426).

Mueller, J. (2005). The Authentic Assessment Toolbox: Enhancing Student Learning
Through Online Faculty Development. Journal of Online Learning and Teaching,
1(1). Retrieved from http://jolt.merlot.org/voll_nol mueller.htm

Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017). Assessing
Computational Thinking Across the Curriculum. In Emerging Research,
Practice, and Policy on Computational Thinking (pp. 251-267). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-319-52691-1 16

Narayanan, N. H., Hundhausen, C., Hendrix, D., & Crosby, M. (2012). Transforming
the CS classroom with studio-based learning. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education - SIGCSE '12 (pp. 165—
166). New York, NY: ACM Press. https://doi.org/10.1145/2157136.2157188

Noone, M., & Mooney, A. (2017). First Programming Language : Visual or Textual?
In International Conference on Engaging Pedagogy (ICEP).

Orfanakis, V., & Papadakis, S. J. (2014). Teaching basic programming concepts to
novice programmers in Secondary Education using Twitter, Python, Arduino and
a coffee machine. In Proceedings of the 2014 Workshop on Interaction Design in
Educational Environments. https://doi.org/10.1007/978-3-319-55553-9

Pan, T.-Y. (2017). Reenergizing CSO in China. In Emerging Research, Practice, and
Policy on Computational Thinking (pp. 351-362). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-52691-1 21

247

Papert, S. (1993). Mindstorms : children, computers, and powerful ideas. New York:
Basic Books.

Parhami, B. (2008). A puzzle-based seminar for computer engineering freshmen.
Computer Science Education, 18(4), 261-277.
https://doi.org/10.1080/08993400802594089

Patton, M. Q. (2002). Qualitative research and evaluation methods (Vol. 3rd).
Thousand Oaks, CA: SAGE Publications, Inc. https://doi.org/10.2307/330063

Phuong, D. D. (2010). Graining and Filling Understanding Gaps for Novice
Programmers. In 2010 International Conference on Education and Management
Technology (ICEMT 2010) (pp. 60-64).

Pintrich, P. R. (2003). A Motivational Science Perspective on the Role of Student
Motivation in Learning and Teaching Contexts. Journal of Educational
Psychology, 95(4), 667-686. https://doi.org/10.1037/0022-0663.95.4.667

Pokress, S. C., & Veiga, J. J. D. (2013). MIT App Inventor: Enabling Personal Mobile
Computing, 3. Computers and Society; Human-Computer Interaction.
https://doi.org/10.1145/2721914.2721935

Polit, D. F., & Beck, C. T. (2003). Nursing Research Principles and Methods. Phil:
Lippincott Williams & Wilkins.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in Introductory
Programming: What Works? Communications of the ACM, 56(8), 34-36.
https://doi.org/10.1145/2492007

Postholm, M. B., & Madsen, J. (2006). The Reseaercher’s Role: An Ethical
Dimension. Outlines, 7(1), 49-60.

Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, 9(5), 1-6.
https://doi.org/10.1108/10748120110424816

Quaye, A. M., & Dasuki, S. I. (2017). A Computational Approach to Learning
Programming Using Visual Programming in a Developing Country University.
In Emerging Research, Practice, and Policy on Computational Thinking (pp.
121-134). Cham: Springer International Publishing. https://doi.org/10.1007/978-
3-319-52691-1 8

Reeves, T. C. (2006). Design Research from a Technology Perspective. In K. van den
Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design
research (pp. 52-66). London: Routledge.

Reigeluth, C. M. (1999a). The elaboration theory: Guidance for scope and sequence
decisions. In C. M. Reigeluth (Ed.), Instructional-Design Theories and Models:
A New Paradigm of Instructional Theory (pp. 425-454). New Jersey: Lawrence
Erlbaum Assoc.

Reigeluth, C. M. (1999b). What is Instructional-Design Theory and How Is It
Changing? In Instructional Design Theories and Models: New Paradigms of
Instructional Theory (Vol. I, pp. 5-29).

248

Reiser, R. A. (2002). What field did you say you were in? Defining and naming our
field. In R. A. Reiser & J. V. Dempsey (Eds.), Trends and issues in instructional
design and technology (pp. 5-14). New Jersey: Merrill/Prentice Hall.

Repenning, A., Basawapatna, A. R., & Escherle, N. A. (2017). Principles of
Computational Thinking Tools. In Emerging Research, Practice, and Policy on
Computational Thinking (pp. 291-305). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-52691-1_18

Resnick, M., Maloney, J., Monroy-, A., Rusk, N., Eastmond, E., Brennan, K., ... Kafai,
Y. (2009). Scratch : Programming for All. Communications of the ACM, 52(11),
60-67.

Richey, R. C. (1997). Research on instructional development. Educational Technology
Research and Development, 45(3), 91-100. https://doi.org/10.1007/BF02299732

Richey, R. C., & Klein, J. D. (2007). Design and development research : methods,
strategies, and issues. Mahwah, N.J.: L. Erlbaum Associates.

Rist, R. S. (1995). Program structure and design. Cognitive Science, 19(4), 507-561.
https://doi.org/10.1016/0364-0213(95)90009-8

Robins, A., Rountree, J.,, & Rountree, N. (2003). Learning and Teaching
Programming: A Review and Discussion. Computer Science Education, 13(2),
137-172. https://doi.org/10.1076/csed.13.2.137.14200

Rogalski, J., & Samurcay, R. (1990). Acquisition of Programming Knowledge and
Skills. In J. M. Hoc, T. R. G. Green, R. Samurgay, & D. J. Gillmore (Eds.),
Psychology of Programming (pp. 157-174). London: Academic Press.
https://doi.org/10.1016/B978-0-12-350772-3.50015-X

Rolandsson, L. (2013). Changing computer programming education: The dinosaur that
survived in school: An explorative study about educational issues based on
teachers’ beliefs and curriculum development in secondary school. In
Proceedings - 2013 Learning and Teaching in Computing and Engineering,
LaTiCE 2013 (pp. 220-223). https://doi.org/10.1109/LaTiCE.2013.47

Romeike, R. (2008). What’s My Challenge? The Forgotten Part of Problem Solving
in Computer Science Education. In Informatics Education - Supporting
Computational Thinking (pp. 122-133). Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-540-69924-8 11

Rountree, J., Robins, A., & Rountree, N. (2013). Elaborating on threshold concepts.
Computer Science Education, 23(3), 265-289.
https://doi.org/10.1080/08993408.2013.834748

Saito, D., & Yamaura, T. (2013). A new approach to Programming Language
education for beginners with top-down learning. International Journal of
Engineering Pedagogy Is, 3(4), 16-21.
https://doi.org/10.1109/TALE.2013.6654538

Sajaniemi, J. (2008). Special issue on psychology of programmiing. Human
Technology, 4(2).

249

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of
Variables in Three Programming Paradigms. Computer Science Education, 16(4),
261-279. https://doi.org/10.1080/08993400600874584

Sampaio, A., & Sampaio, I. (2012). Improving computing courses from the points of
view of students and teachers: a review and an empirical study. Computer Science
Education, 22(2), 139-173. https://doi.org/10.1080/08993408.2012.692920

Sanders, D. (2002). Extreme Programming: The student view. Computer Science
Education, 12(3), 235-250. https://doi.org/10.1076/csed.12.3.235.8615

Sandoval-Reyes, S., Galicia-Galicia, P., & Gutierrez-Sanchez, 1. (2011). Visual
Learning Environments for Computer Programming. 2011 IEEE Electronics,
Robotics and Automotive Mechanics Conference, 439444,
https://doi.org/10.1109/CERMA.2011.76

Schafer, A., Holz, J., Leonhardt, T., Schroeder, U., Brauner, P., & Ziefle, M. (2013).
From boring to scoring — a collaborative serious game for learning and practicing
mathematical logic for computer science education. Computer Science
Education, 23(2), 87-111. https://doi.org/10.1080/08993408.2013.778040

Schunk, D. H. (1981). Modeling and attributional effects on children’s achievement:
A self-efficacy analysis. Journal of Educational Psychology, 73(1), 93-105.
https://doi.org/10.1037/0022-0663.73.1.93

Seneviratne, O. (2017). Making Computer Science Attractive to High School Girls
with Computational Thinking Approaches: A Case Study. In P. J. Rich & C. B.
Hodges (Eds.), Emerging Research, Practice, and Policy on Computational
Thinking (pp. 21-33). Cham: Springer. https://doi.org/10.1007/978-3-319-
52691-1

Shneiderman, B. (1977). Teaching programming: A spiral approach to syntax and
semantics. Computers & Education, 1(4), 193-197.
https://doi.org/10.1016/0360-1315(77)90008-2

Smutny, P. (2011). Visual programming for smartphones. In Proceedings of the 2011
12th International Carpathian Control Conference, ICCC’2011 (pp. 358-361).
https://doi.org/10.1109/CarpathianCC.2011.5945879

Soep, E. (2011). Youth Media. National Civic Review, 100(3), 8-11.
https://doi.org/10.1002/ncr.20073

Soh, L.-K., Samal, A., & Nugent, G. (2007). An integrated framework for improved
Computer Science Education: Strategies, implementations, and results. Computer
Science Education, 17(1), 59-83. https://doi.org/10.1080/08993400701203782

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850-858.
https://doi.org/10.1145/6592.6594

Sorva, J. (2013). Notional machines and introductory programming education. ACM
Transactions on Computing Education, 13(2), 1-31.
https://doi.org/10.1145/2483710.2483713

250

Sorva, J., Karavirta, V., & Malmi, L. (2013). A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM
Transactions on Computing Education, 13(4), 1-64.
https://doi.org/10.1145/2490822

Sorva, J., Lonnberg, J., & Malmi, L. (2013). Students’ Ways of Experiencing Visual
Program Simulation. Computer Science Education, 23(3), 207-238.
https://doi.org/10.1080/08993408.2013.807962

Spicer, J. C. (1983). A spiral approach to Software Engineering Project Management
Education. ACM SIGSOFT Software Engineering Notes, 8(3), 30-38.
https://doi.org/10.1145/1010891.1010895

Statista. (2018a). Leading countries based on number of Facebook users as of July
2018 (in millions). Retrieved from
https://www.statista.com/statistics/268136/top-15-countries-based-on-number-
of-facebook-users/

Statista. (2018b). Number of daily active Facebook users worldwide as of 2nd quarter
2018 (in millions). Retrieved September 5, 2018, from
https://www.statista.com/statistics/346167/facebook-global-dau/

Su, A. Y. S, Yang, S. J. H., Hwang, W.-Y., Huang, C. S. J., & Tern, M.-Y. (2014).
Investigating the role of computer-supported annotation in problem-solving-
based teaching: An empirical study of a Scratch programming pedagogy. British
Journal of Educational Technology, 45(4), 647-665.
https://doi.org/10.1111/bjet.12058

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy
and Processes for a Computer Programming Outreach Workshop—The Bridge to
College Model. IEEE Transactions on Education, 53(1), 53-60.
https://doi.org/10.1109/TE.2009.2023210

Tanner, A., & Duncan, S. (2013). On Integrating Mobile Applications into the Digital
Forensic Investigative Process. International Journal of Advanced Computer
Science and Applications (IJACSA), 4(8), 56-61. Retrieved from
http://ijacsa.thesai.org/

Thomas, P., King, D., & Minocha, S. (2009). The effective use of a simple wiki to
support collaborative learning activities. Computer Science Education, 19(4),
293-313. https://doi.org/10.1080/08993400903384943

Van den Akker, J. (1999). Principles and methods of development research. In J. Van
den Akker, R. M. Branch, K. Gustafson, N. Nieven, & T. Plomp (Eds.), Design
aproaches and tools in education and training (pp. 1-14). Dordrecht: Kluwer
Academic Publishers.

Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing
educational design research. In J. Van den Akker, K. Gravemeijer, S. McKenney,
& N. Nieveen (Eds.), Educational design research (pp. 3-7). New York, NY:
Routledge. https://doi.org/10.1111/j.1467-8535.2008.00855_1.x

251

Veladat, F., & Mohammadi, F. (2011). Spiral learning teaching method: Stair stepped
to promote learning. Procedia - Social and Behavioral Sciences, 29, 1115-1122.
https://doi.org/10.1016/j.sbspro.2011.11.345

Walker, D. (2006). Toward productive design studies. In J. Van Den Akker, K.
Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research
(pp. 8-13). New York, NY.

Webber, K. L., & Tschepikow, K. (2013). The role of learner-centred assessment in
postsecondary organisational change. Assessment in Education: Principles,
Policy & Practice, 20(2), 187-204.
https://doi.org/10.1080/0969594X.2012.717064

Wellman, B., Haase, A. Q., Witte, J.,, & Hampton, K. (2001). Does the Internet
Increase, Decrease, or Supplement Social Capital? Social Networks,
Participation, and Community Commitment. American Behavioral Scientist,
45(3), 436-455. Retrieved from http://abs.sagepub.com

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to
program. In Proceedings of the 2005 international workshop on Computing
education research - ICER '05 (pp. 13-24). New York, New York, USA: ACM
Press. https://doi.org/10.1145/1089786.1089788

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair
programming in the introductory computer science course. Computer Science
Education, 12(3), 197-212. https://doi.org/10.1076/csed.12.3.197.8618

Willman, S., Lindén, R., Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T. (2015).
On study habits on an introductory course on programming. Computer Science
Education, 25(3), 276-291. https://doi.org/10.1080/08993408.2015.1073829

Wilson, A., Hainey, T., & Connolly, T. (2012). Evaluation of Computer Games
Developed by Primary School Children to Gauge Understanding of Programming
Concepts. Proceedings of the European Conference on Games Based Learning,
(2007), 549-558.

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory
computer science course: a study of twelve factors. ACM SIGCSE Bulletin, 33(1),
184-188. https://doi.org/http://doi.acm.org/10.1145/366413.364581

Wilson, M. E. (2004). Teaching, learning, and millennial students. New Directions for
Student Services, 106, 59-71. https://doi.org/10.1002/ss.125

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33—
35. https://doi.org/10.1145/1227504.1227378

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A, 366(1881), 3717-3725.
https://doi.org/10.1098/rsta.2008.0118

Winslow, L. E. (1996). Programming Pedagogy --A Psychological Overview. ACM
SIGCSE Bulletin, 28(3), 17-22. https://doi.org/10.1145/234867.234872

252

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009). Starting with Scratch in
CS 1. In SIGCSE 09 Proceedings of the 40th ACM technical symposium on
Computer science education (pp. 2-3).

Wong, B. (2017). ‘I'm good, but not that good’: digitally-skilled young people’s
identity in computing. Computer Science Education, 26(4), 299-317.
https://doi.org/10.1080/08993408.2017.1292604

Wright, B. G. A, Rich, P., & Leatham, K. R. (2012). Curriculum, (April), 3-10.

Writer, J. (2017). Spiral Learning Applies To Writers. Retrieved September 5, 2018,
from https://jubileewriter.wordpress.com/2017/08/17/spiral-learning-applies-to-
writers/

Wyeld, T., & Barbuto, Z. (2014). Don’t hide the code!: Empowering novice and
beginner programmers using a HTML game editor. Proceedings of the
International Conference on Information Visualisation, 125-131.
https://doi.org/10.1109/1VV.2014.56

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2017). Expanding computer
science education in schools: Understanding teacher experiences and challenges.
Computer Science Education, 26(4), 235-254.
https://doi.org/10.1080/08993408.2016.1257418

Yovcheva, B. B. (2008). Spiral Teaching of Programming to 10-11 Year-Old Pupils
After Passed First Training (Based on the Language C++). In Informatics
Education - Supporting Computational Thinking (pp. 171-179). Berlin,
Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-
69924-8 16

253

254

APPENDIX A: INTERVIEW

GORUSME

Merhaba. Bu goriismenin amaci bu donem almis oldugunuz “Gorsel programlama ile
yazilim gelistirme” dersi ve 68renme ortamu ile ilgili goriislerinizi 6grenmektir. Bu
ders ile sahip oldugunuz deneyimleri, yasadiginiz zorluklar1 ve onerilerinizi benimle

paylasirsaniz ¢ok sevinirim.

Sakincasi yoksa gorlismeyi kaydetmek istiyorum. Bu sekilde goriismeden sonra
yanitlarinizi daha iyi analiz edebilirim. Bu goriigme boyunca sodylediginiz hersey gizli
kalacaktir. Elde edilen bilgiler hi¢ kimseye iletilmeyecektir ve agiklanan higbir bilgi

tizerinde isminiz belirtilmeyecektir. Calismaya katildiginiz i¢in tesekkiir ederim.

Calisma sonucunda sizin deneyimlerinizden faydalanarak etkili bir programlama
egitimi tasarlamayr planliyoruz. Oncelikle kendinizi tamtir misimz? Adiniz,

boliimiiniiz, simifiniz. ..

1. Daha once hig¢ programlama deneyiminiz oldu mu? Olduysa
a) Hangi ortami ve hangi programlama dilini kullandiniz?
b) Programlama 6grenirken zorluk yasandiniz m1?
a. Evet ise yasadigimiz zorluklar nelerdir?
b. Hayir ise dersin en ¢ok hangi yonleri hosunuza gitti?
c) Bu donem aldiginiz programlama dersi ile karsilagtirdiginizda akliniza gelen
a. Olumlu yanlar
b. Olumsuz yanlari nelerdi?
d) Se¢me sansiniz olsayd: geleneksel tip programlama egitimini mi tercih
ederdiniz yoksa gorsel programlama egitimini mi? Neden?
2. Bu donem aldigimiz visual programming dersinden ve derste yasadiginiz
deneyimlerden bahsedebilir misiniz?
255

8.
9.

a. Yapilan etkinliklerden keyif aliyor muydunuz?
b. Yapilan etkinliklerden sikildiginiz yonler nelerdi?
c. Ders haricinde bu derse ne kadar zaman ayiriyordunuz?
i. Odevler ve proje igin?
il. Anlamak veya kendinizi gelistirmek i¢in?
Sizce visual programming dersinin diger dersler i¢in yarar saglayabilir mi
Bu derste edindiginiz algoritma bilgileri giindelik hayatinizda isinize yaradi
mi1/yarar mi?
Derste eksik gordiigiiniiz noktalar var mi1? Nelerdir
Dersin sevdiginiz yonleri nelerdir?
Ogrenmekte giigliik ¢ektiginiz veya yardima ihtiyag duydugunuz noktalar var mi?
Varsa
a. Hangi konularda sikint1 yasadiniz?
b. Bu sorunlari ¢6zmek i¢in ne gibi dneriler sunabilirsiniz?
App Inventor ortaminin size kattig1 seyler nelerdir?

Ortamin olumlu yanlar1 nelerdir?

10. Ortamin olumsuz yanlar1 nelerdir?

11. Ders disinda uygulama gelistirmeyi diisiiniiyor musunuz?

12. Ders bittikten sonra

a. App inventorla baska uygulamalar gelistirmeyi veya profesyonel
yasaminizda kullanmay1 diistiniiyor musunuz?

b. Ders kapsaminda veya goniillii olarak iist diizey bir programlama dili
O0grenmeyi diistiniiyor musuz?

C. Android programlamada ilerlemek daha ileri diizey bir ders agilirsa almak

ister miydiniz?

256

APPENDIX B: APPROVAL OF ETHICAL COMMITTEE

A\ ARTA DOGL TEK INIVERSITES]
UYGULAMALI ETiK ARASTIRMA MERKEZI \ ORTA DOGU TEKNIK UNIVERSITESI
APPLIED ETHICS RESEARCH CENTER /) MIDDLE EAST TECHNICAL UNIVERSITY

Say!: 28620816/

12.03.2014

Gonderilen : Prof. Dr. Kirsat Cagiltay

Bilgisayar ve Ogretim Teknolojileri Egitimi

Gonderen : Prof. Dr. Canan Ozgen
IAK Baskani

ilgi . Etik Onayi

Danigmanligini yapmig oldugunuz Bilgisayar ve Ogretim Teknolojileri
Egitimi Bolumi 6grencisi Kadir Yicel Kaya'nin “Developing an
Instructional Theory for Novice Programming Students to Teach
Visual Programming” isimli aragtirmasi “insan Arastirmalari Komitesi”

tarafindan uygun gérulerek gerekli onay verilmistir.

Bilgilerinize saygilarimla sunarim.

Etik Komite Onayi
Uygundur

12/03/2014

Mt

Prof.Dr. Canan Ozgen
Uygulamali Etik Arastirma Merkezi
(UEAM) Baskani
ODTU 06531 ANKARA

257

258

APPENDIX C: INFORMED CONSENT FORM

GONULU KATILIM FORMU

Bu ¢alisma ODTU Bilgisayar ve Ogretim Teknolojileri Egitimi Boliimii
binyesinde doktora 6grencisi Ars. Gor. Kadir Yiicel Kaya tarafindan Prof. Dr. Kiirsat
Cagiltay gozetiminde yapilmaktadir. Calismanin amaci baslangic diizeyindeki
programlama Ogrencileri icin etkili, verimli ve motive edici bir 6gretim teorisi

tasarlamaktir.

Calisma siiresince video kamera ile kayit altina alinacaksiniz. Bu kayitlar da
dahil olmak tizere ¢aligma stiresince elde edilen bilgiler ve gozlemler sadece bilimsel

yayinlarda kullanilacaktir. Herhangi bir kisisel bilgi paylagilmayacaktir.

Kullanilan programlama ortami siiriikle-birak islemleri ile Andorid isletim
sistemine sahip telefon ve tabletler i¢in uygulama gelistirme imkani1 saglanmaktadir.
Calisma boyunca goriisleriniz gelistirilecek 0Ogretim teorisini sekillendirmeye
yarayacaktir. Bu ¢alismaya katildiginiz/katilima izin verdiginiz i¢in simdiden tesekkiir
ederiz. Calisma hakkinda daha fazla bilgi almak icin Bilgisayar ve Ogretim
Teknolojiler1 Egitimi Bolimii 6gretim iiyelerinden Prof. Dr. Kiirsat Cagiltay ile
(Tel:312 210 3683; E-posta: kursat@metu.edu.tr) ya da arastirma gorevlisi Kadir
Yucel Kaya (Tel:312 210 7519; E-posta: kykaya@metu.edu.tr) ile iletisim

kurabilirsiniz.

Bu c¢alismaya tamamen goniillii olarak katiltyyorum ve istedigim zaman
yarida kesip ¢ikabilecegimi biliyorum. Verdigim bilgilerin bilimsel amaclh
yayimlarda kullanmilmasini kabul ediyorum. (Formu doldurup imzaladiktan sonra

uygulayiciya geri veriniz).

Isim Soyad Tarih Imza

259

mailto:kykaya@metu.edu.tr

260

APPENDIX D: CODING TABLE

Theme

Sub-theme

Code

Communication

Contributions of the

course

Motivation

Positive sides of the
communication medium
Positive sides of the

communication medium

Positive sides of the
communication medium
Negative sides of the
communication medium
Negative sides of the
communication medium
Transfer/link to
proffessional life
Transfer/link to
proffessional life
Transfer/link to

proffessional life

Computational thinking

Computational thinking

Communication with the
instructor

Popular and common use

Multi-directional,
interactive, and open
communication
Communication medium
as a resourcehub

Direct messaging

Using one communication
medium

Teaching programming

Supporting the Career

Need/leisure
time/entertainment
Using Al for other courses
Definition/characteristics
of CT

Real-life
examples/realization
Learned concepts of
programming

Visual environment

261

Programming and
programming

environment

Dynamics and evaluation

of the course

Visual only

Visual only

Visual only

Textual only

Positive aspects of Al

Positive aspects of Al

Negative aspects of Al

Negative aspects of Al
Negative aspects of Al
Challenging concepts of
programming
Challenging concepts of
programming
Challenging concepts of

programming

Non-intimidating course
design

Self-improvement

Preferring practice to
theory
Proofs of

motivation/competence
Attitude change towards

programming

Syntax related problmes
Immediate feedback and
user-friendly environment
Concrete products
Combination of both
More flexible and
advanced

Al is Visual / Simple /
Productive

Instant feedback and
testing

Not flexible enough for
advanced programming
Technical deficiencies
Visual flexibility problem

Variables

Clock

Database

262

Discovery learning —
reshaping the tutorials
Discovery learning —
reshaping the tutorials
Discovery learning —
reshaping the tutorials
Discovery learning —
reshaping the tutorials
Discovery learning —
reshaping the tutorials

Theoretical hour

Theoretical hour

Fewer images in tutorials

The more practice, the
better

Removal of tutorials after
two weeks

Dynamic tutorials and
develop-it-more activities

Homework

Blending top-down and
bottom-up approach
Verbal explanation /
recitation hour

Peer support and Idea-
pitching

Supportive materials

263

264

APPENDIX E: SYLLABUS EXAMPLE

Middle East Technical University
Spring 2014
CEIT 440 (Visual Programming)

Instructor: Prof. Dr. Kiirsat Cagiltay

E-mail: kursat@metu.edu.tr

Teaching Assistant: Res. Ast. Kadir Yucel Kaya

E-mail: kykaya@metu.edu.tr

Office: C-104

Course Hours: Wednesday 9:40-11:30 (Lab session —in CEIT-Lab 3)
Friday 9:40-11:30* (Theoretical session- in CEIT-Seminar
Room)

*Time and day of session can be changed based on the free
hours of students

Course Description

This course is designed to provide students basics of algorithms and programming
through a visual programming language. Students will develop their own android
applications based on their needs. App Inventor environment will be mainly used as
a visual programming environment. At the end of the course, it is aimed to teach
basic concepts of programming. It is also aimed to reach a working end-product
prepared by the students based on their needs.

Target Group

- Students with basic computer skills
- Students with no prior programming experience (or basic level)

- Students who are interested in application development

Resources

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App inventor: create
your own Android apps Sebastopol, CA: O'Reilly.

http://appinventor.mit.edu/explore/

265

mailto:kursat@metu.edu.tr
mailto:kykaya@metu.edu.tr
http://appinventor.mit.edu/explore/

http://www.appinventor.org/

http://www.youtube.com/ -> Search App Inventor

Course Website: http://ocw.metu.edu.tr/course/view.php?id=232

Grading

In-class assignments (%20) Homework (%30) Presentation and End-Product (% 50)

Tentative Course Calendar

Date Topic

Feb 25" First Meeting & Introduction

Mar 2-3" Getting to know the environment

Mar 9-10%" Using Sprites and Creating Animations
Mar 16-17" | Using Variables

Mar 23-24" | If...Else Structure and Clock Use
Mar 30-31%" | Functions

Apr 6-7" Loops

Apr 13-14" | Using Multiple Screens

Apr 20-21% | Database and Lists

Apr 27-28" | Working With Sensors

May 4-18th | Project Discussions and Development
Final Week | Project Presentations

266

http://www.appinventor.org/
http://www.youtube.com/
http://ocw.metu.edu.tr/course/view.php?id=232

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kaya, Kadir Yucel

Nationality: Turkish (TC)

Date and Place of Birth: 25 November 1984, Mersin
Marital Status: Married

Phone: +90 366 280 3419

Fax: +90 366 212 3353

email: kadirkaya@kastamonu.edu.tr

EDUCATION
Degree Institution Year of Graduation
BS Dokuz Eylul University CEIT 2005
High School icel Anadolu High School 2002

WORK EXPERIENCE

Year Place Enrollment
2016-Present Kastamonu University - CEIT Research Assistant
2009-2016 Middle East Technical University - CEIT

FOREIGN LANGUAGES
Advanced English
PUBLICATIONS

1. Tisoglu, S., Kaya, K. Y., & Cagiltay, K. (2018). Review of Village Institutions
from the Aspect of Instructional Technology. Mersin Universitesi Egitim Fakiiltesi
Dergisi 14 (1), 463-480.

2. Tisoglu, S., & Kaya, K. Y. (2017). Proceedings from 26" EDEN Annual
Conference: Exploring the Use and Creation of a MOOC Environment: A Case
Study.

3. Kaya, K. Y., Gulec, M., Esfer, S., Tisoglu, S. & Kara, E. (2017). Proceedings
from 26" EDEN Annual Conference: Research Trends of Instructional Technology
Dissertations in Turkey.

4. Kaya, K. Y., & Cagiltay, K. (2017). Creating and Evaluating a Visual
Programming Course based on Experience of Students. In Rich, P., & Hodges, C.

267

(Eds.), Emerging Research, Practice, and Policy on Computational Thinking (pp.
135-151). Springer International Publishing

5. Kaya, K. Y., Gulec, M., & Cagiltay, K. (2016). Proceedings from ICITS 2016:
Examining Visual Programming Products of Novice Programmers: A Case Study.
6. Kara, E. Esfer, S., Giileg, M., Tisoglu, S., Kaya, K. Y. (2016). Proceedings from
ICITS 2016: 2003-2015 yillar: arasinda Ogretim Teknolojileri Alaminda Yazilmus
Doktor Tezlerinin Icerik Analizi.

7. Tisoglu, S., Kaya, K. Y., & Cagiltay, K. (2016). Proceedings form OE Global
2016: Exploring the Non-obligatory Use of Open Educational Resources: A Case
Study

8. Kaya, K. Y., Tisoglu, S, Cicek, M. (2015). Proceedings from AECT 2015:
Creating and Evaluating a Visual Programming Course based on Experience of
Students: A Case Study.

9. Cicek, M., Kaya, K. Y., Tisoglu, S. (2013). Proceedings from AECT 2013: The
Reasons of Playing/Not Playing Games on Facebook: University Students Case.
10. Tisoglu, S., Kaya K. Y., Cagiltay, K. (2013). Proceedings from ICITS 2013:
Examining the Village Institutions from the Aspect of Instructional Technology:
Literature Review.

11. Kaya, K. Y., Tisoglu, S., Ucak, S. S. K., Kadioglu, E. A. (2012). Proceedings
from EDULEARN'12: Perceptions of Prospective Information Technologies
Teachers towards Fatih Project and Its Components.

12. Kaya, K. Y., Tisoglu, S., Ucak, S. S. K., Kadioglu, E. A. (2012). Proceedings
from ICITS 2012: Investigating Technological Components of Fatih Project: A
Review Of Literature.

13. Uzun, C., Kaya, K. Y., Kursun, E., & Cagiltay, K. (2011). Proceedings from
ICITS 2011: Critical Points and Dynamics of Instructional Design and Development
Process in the Creation of Learning Material for Teaching Basic Concepts to
Students with Mental Disabilities via Multitouch Screen.

14. Kaya, K. Y. & Cagiltay K. (2011). Proceedings from ICITS 2011: Perceptions
Of Turkish Computer Education And Instructional Technology Program Students
and Alumni Towards Game Use in Education.

HOBBIES

Video games, Computer Technologies, Movies, Literature

268

