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ABSTRACT

ADAPTIVE MULTIVARIATE SOLUTION SCHEMES FOR INVERSE
ELECTROCARDIOGRAPHY PROBLEM

Onak, Onder Nazim
Ph.D., Department of Scientific Computing
Supervisor : Assoc. Prof. Dr. Yesim Serinagaoglu Dogrus6z
Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

September 2018, [IT1] pages

Electrocardiographic Imaging (ECGI) is an emerging medical imaging modality to
visualize the heart’s electrical activity. It has a promising potential for diagnosing car-
diac abnormalities and facilitate the planning and execution of necessary treatments.
Visualizing heart’s electrical activity requires solving the ill-posed inverse electro-
cardiography (ECG) problem. Despite the considerable efforts and improvements in
this field, there exist some limitations and challenges that hinder its application to
daily clinical practice. Hence, the inverse ECG problem still attracts the attention of
researchers.

Since the inverse ECG problem has a ill-posed characteristic, it is necessary to regu-
larize the problem by imposing constraints based on prior information about the solu-
tion. Although, several regularization methods have been applied to solve the inverse
ECG problem, none of the them has been accepted as an optimal technique. Because,
each method has limitations and there exist some cases where they have pros and cons
in terms of accuracy, computational complexity and required prior information about
the solution.

This study focuses on developing adaptive methods that do not claim strong assump-
tions about the functional form of the unknown epicardial potential distribution and
requires less or relatively easily obtainable prior information compared to traditional
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inverse problem solution techniques. In order to reach these goals the inverse ECG
problem is handled both from statistical and deterministic solution techniques per-
spectives. Firstly, minimum relative entropy method is adopted as an alternative sta-
tistical solution technique for inverse ECG problem and effects of method parameters
are comprehensively assessed. From deterministic solution technique perspective,
we have proposed multivariate adaptive spline-based method in order to decrease the
number of unknown in the problem while increasing the estimation accuracy by tak-
ing advantage of local support property of spline-based approaches.

Keywords: inverse problem, inverse electrocardiography, minimum relative entropy,
multivariate adaptive regression splines, regularization
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0z

TERS ELEKTROKARDIOGRAFI PROBLEMININ COZUMUNDE
COKDEGISKENLI UYARLANABILIR YONTEMLER

Onak, Onder Nazim
Doktora, Bilimsel Hesaplama Boliimii
Tez Yoneticisi : Dog. Dr. Yesim Serinagaoglu Dogrusoz
Ortak Tez Yoneticisi : Prof. Dr. Gerhard Wilhelm Weber

Eyliil 2018 , sayfa

Elektrokardiyografik goriintiileme (ECGI) kalp elektriksel aktivitesini daha detayli
gorsellestirmek icin iizerinde calisilan bir tibbi goriintiileme yontemidir. Kardiyak
anormalliklerin teshisi ve gerekli tedavilerin planlanmasini ve uygulanmasini kolay-
lastiric1 potansiyele sahiptir. Kalp elektrik aktivitesinin goriintiilenmesi, kotii konum-
landirilmus ters elektrokardiyografi (EKG) problemini ¢6zmeyi gerektirmektedir. Ce-
sitli ¢coziim yontemleri gelistirilmesine ve uygulanmasina ragmen, giinliik klinik uy-
gulamalarda kullanimini engelleyen bazi sinirlamalar ve zorluklar bulunmaktadir. Bu
nedenle, ters EKG problemi hala arastirmacilarin ilgisini cekmektedir.

Ters EKG problemini ¢6zmek i¢in cesitli diizenlilestirme yontemi uygulanmis olsa da
bunlarin hi¢biri optimum yontem olarak kabul edilmemektedir. Ciinkii, bu yontemle-
rin hassasiyet, hesaplama karmagiklig1 ve ¢oziimle ilgili gerekli onsel bilgilerin elde
edilmesi bakimindan birbirlerine gore artilar1 ve eksileri bulunmaktadar.

Calismamizda, bilinmeyen epikardiyal potansiyel dagiliminin fonksiyonel yapis1 hak-
kinda gii¢lii varsayimlarda bulunmayan esnek yontemler gelistirmeyi amacladik. Bu-
nunla beraber mevcut ters problem ¢oziim teknikleri ile karsilastirildiginda, uygula-
yacagimiz yontemin goreceli daha az veya elde edilmesi kolay 6nsel bilgi icermesini
hedefledik. Bu amaglara ulagmak i¢in, ters EKG problemi istatistiksel ve determi-
nistik ¢oziim teknikleri agisindan ele alinmigstir. Oncelikle, ters EKG problemi igin
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alternatif istatistiksel ¢oziim yontemi olarak minimum bagil entropi yontemi benim-
senmis ve yontem parametrelerinin etkileri detayli incelenmistir. Deterministik ¢o-
ziim teknigi olarak, cok degiskenli parametrik olmayan baglayict fonksiyon temelli
¢Oziim yontemi Onerilmis, tahmin dogrulugunu arttirirken problemin bilinmeyen sa-
yisi azaltilmisgtir.

Anahtar Kelimeler: Ters problemler, ters EKG, minimum bagil entropi, ¢ok degis-
kenli uyarlanabilir regresyon egrileri, diizenlilestirme.
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CHAPTER 1

INTRODUCTION

Heart is an electro-mechanical organ that pumps the blood through the whole body
via contracting and expanding its muscles. The contraction of the cardiac muscles
is triggered and accompanied by the electrical current, which causes potential fields
through the heart tissue. Spread of these potential fields over the heart surface acti-
vates the resting tissues for contraction. It also propagates throughout the body tissues

encircling the heart and on the thorax.

Heart diseases are the foremost cause of death worldwide. According the World
Health Organization (WHO), heart diseases represented 31% of all global deaths in
2015, which is higher than all form of cancer combined [[110]. Since the heart failure
can occur rather unexpectedly or happen gradually over months, anyone who are at
cardiovascular risk need early detection and inspection via counseling, guidance and

medication as deemed appropriate.

Medical imaging modalities have been important tools to visualize tissues, organs and
chemical or electrical activities of the human body in order to diagnose the patients
clinical problems. In the field of Cardiac Electrophysiology, 12-lead electrocardiog-
raphy (ECG) has become the broadly used non-invasive tool for visualizing the time-
varying electrical activity of the heart. The information provided by ECG might be
crucial to diagnose heart diseases. Since, any deviation from the regular behavior of
the electrical activity may be the indicator of cardiovascular disorders and, it can help
diagnose a disease while it is still in its early stages. However, ECG suffers from
a low-resolution information due to the sparse body surface measurement locations,

attenuated and smoothed signal measurements, which significantly restraint its bene-



fits. Since the activity of the heart arise as a result of complex electrical and biological
phenomenons, low-resolution information prevents determination of clear-cut sepa-
ration between normal and abnormal ECG signal [65]. For this reason, researchers
have been working on the imaging technology, known as Electrocardiographic Imag-
ing (ECGI), and developed computational methods to obtain more extensive infor-
mation of cardiac electro-physiology to tackle with difficulties confronted in clinical

diagnosis arising from limited data.

Imaging heart’s electrical activity by ECGI systems requires solving the inverse prob-
lem of electrocardiography. Solution of this inverse problem can be defined as esti-
mating the parameters of the cardiac source model using the forward model relating
the source to body surface potential measurements (BSPM). It could be an alternative
imaging modality by filling the gap between 12-lead ECG and invasive cardiac elec-
trical activity monitoring methods if it is supported by a sufficient patient statistical
evaluation [20, 62]. The establishment of the forward model relies on the geometry
and electrical conductivities of inhomogeneities inside the torso. Due to the dispers-
ing effect of the torso on the heart signals and the discretization process, inverse
problem is ill-posed [[16]. Thus, small variations in the model or measurements can

give rise to large errors in the solution.

Solving an ill-posed inverse ECG problem to reconstruct a physiologically meaning-
ful electrical activity of the heart is a challenging task. On the other hand, it is possible
to increase the solution stability against the perturbations by means of regularization
methods by incorporating prior knowledge about the desired solution. Although sev-
eral methods have been proposed, this task still receives a lot of attention from re-
searchers, who are trying to develop a solution technique that is optimal both in terms

of accuracy and computational complexity (23,31} [116].

1.1 Motivation and Goals of the Study

Because of advancements in applied mathematics and supported by emerging com-
puter technology, solution techniques (quadratic, non-quadratic, statistical, etc.) have

been developed to solve inverse problems in various fields of science and engineer-
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ing. Many of these algorithms have been adopted to solve the inverse ECG problem
by considering the properties of underlying cardiac electrical process. On the other
hand, all methods have their pros and cons compared to each other in terms of accu-
racy, computational complexity and required prior information about the solution. For
example, while quadratic methods assumes that the epicardial potential distribution
is smoothly changing over the heart surface, on the contrary /;-norm regularization
implicitly seek a sparse solution [37, [114]]. However, hearts electrical activity starts
from a few focal sites but then propagates throughout heart surface. As a result, the
structure of epicardial potential distribution has complex spatio-temporal behavior
during the cardiac cycle [84]. Assuming that we have no a priori information about
the current form of epicardial potential distribution, the question remains as which
particular norm solution should be employed. Alternatively, inverse problem can be
solved by statistical methods. Given an estimate of the multivariate probability distri-
bution function (pdf), one can obtain estimation of the unknown variables. Although
the studies on Bayesian estimation of epicardial potentials [91) [104] assumed that
prior pdf is multivariate Gaussian distribution. This definition is based on empirical
study of the epicardial potential distributions, and it is not proven that Gaussian prior

is the best way to represent the epicardial potentials.

The main goal of this thesis is to develop adaptive methods that do not claim strong
assumptions about the functional form of the unknown epicardial potential distribu-
tion, and that need less or relatively easily obtainable prior information compared to
other inverse problem solution techniques. To reach these goals, inverse ECG prob-
lem is handled both from statistical and deterministic solution perspectives. For each

perspective, the goals and contribution of this research can be summarized as follows:

o Adopting a statistical solution method for the solution of the inverse ECG prob-
lem which requires prior information about the unknown epicardial potential
distribution that can be obtained more easily, compared to other statistical
methods. Reducing the dependency of this information could facilitate and

improve the quality of the solution.

The success of statistical methods relies on good prior information such as prior

expected value and variance, which are not always easy to obtain. Even with



a simple Gaussian distribution, prior expected value (mean) vector and covari-
ance matrix are necessary to fully represent the epicardial potentials. On the
other hand, the form of the probability density function (pdf) may not be known
or be highly suspected and some important statistical parameters, such as the

mean or the variance may not be well-known or difficult to estimate [[111}[114].

o Constructing an adaptive method that represents the epicardial potential dis-
tribution such that the number of unknown variables are less than the original
problem but overcome the shortage of lo-norm approaches when the epicardial

potential distribution is sparse.

Spline-based methods are alternative approach to solve ill-posed inverse prob-
lems. The main advantage of them is the parametrization of the problem in
terms of a small number of unknowns. In addition, the local support of the
splines allows changing the approximation in local regions without affecting
remote portions of the curve to increase accuracy of the approximation [10, [18]].
Despite these advantages, there are very few studies in literature that solve the
inverse ECG problem using splines [28, 118, [119]]. These studies use paramet-
ric methods, i.e., assumptions on functional relationship between dependent
and independent variables must be specified in advance. However, determina-
tion of the optimal number of basis functions and the knot locations requires
preliminary works on the data to obtain an accurate approximation. Typical
approach to choose these parameters is quite arbitrary by using trial-and-error
[45]. A possible way to remedy this issue is to use non-parametric regression

methods.

1.1.1 Contributions of the Thesis

This dissertation achieves the following major contributions.

e Minimum Relative Entropy (MRE) method is successfully adopted to recon-
struct epicardial potential distribution, and effects of its parameters to the solu-
tion have been systematically investigated. Starting from simple box car distri-

bution, first of all prior pdf is constructed with the help of body surface mea-
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surements. This step eliminates the strong assumption about prior pdf definition
for statistical inversion. Instead, it is shown for inverse ECG problem that prior
pdf can be constructed starting from any simple probability distribution. Next,
posterior pdf is computed and than impacts of parameters lower-upper bounds,
mean and expected uncertainty to the solution have been investigated. It is also
revealed that, the most important parameter is the expected mean value unless
the other parameters are under-estimated. Compared to Bayesian estimation,

information about the MRE parameters can be obtained more easily.

This work has resulted in the following publications and presentations:

— Onak, O. N., Serinagaoglu Dogrusoz, Y., G.-W. Weber, Effects of a priori
parameter selection in minimum relative entropy method on inverse elec-

trocardiography problem. Inverse Problems in Science and Engineering,

26(6), 877-897, 2018. (SCI)

— Onak, O. N., Serinagaoglu Dogrusoz, Y., G.-W. Weber, Minimum rela-
tive entropy method for inverse electrocardiography problem, Problems
of Non-linear Analysis in Engineering Systems No.1(41), vol. 20, 64-70,
2014.

Multivariate adaptive non-parametric reduced-order model for ill-posed linear
inverse ECG problem is proposed. Its strong features and properties that need
to be improved have been investigated using a large dataset under several sim-
ulation scenarios. Proposed method adaptively constructs functional represen-
tation of the unknown epicardial potential distribution using a small number of
basis functions, which significantly reduces problem dimension while increas-
ing the estimation accuracy in earlier times of the stimulation. Our approach
differs from the other spline based methods such that the underlying functional
relationship between dependent and independent variables do not need to be

determined in advance.

As a result of this study, it is shown that non-parametric regression methods
provide a flexible way of modeling epicardial potential distribution function for
the inverse ECG problem. Hence, necessity of preliminary work to determine
the functional representation of the unknown epicardial potential distribution

is alleviated by means of non-parametric regression technique. Additionally,
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it is also demonstrated that, local support of the spline based modeling can
facilitate the shortage of /;-norm solutions in some extend when the epicardial
potential distribution is sparse (i.e., close to stimulation time). The success in
estimating the sparse epicardial potential leads to determination of pacing site

more accurately.

This work has resulted in the following publications and presentations:

— Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Evaluation
of multivariate adaptive non-parametric reduced-order model for solving
the inverse electrocardiography problem: A simulation study. In review:

Medical and Biological Eng and Computing. (SCI)

— Onak, O. N., Serinagaoglu Dogrusoz, Y, and Weber G.-W., Robustness of
Reduced Order Non-Parametric Model for Inverse ECG Solution Against
Modelling and Measurement Noise, Computing in Cardiology, Maastricht,
Netherlands, Sep. 23-26, 2018.

— Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Effects of
Measurement Noise in MARS-based Inverse ECG Solution Approach, 26th
IEEE Signal Processing and Communications Applications Conference,

Cesme, [zmir, 2-5 May. 2018.

— Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Effect of the
Geometric Inaccuracy in MARS-based Inverse ECG Solution Approach,
Computing in Cardiology, Rennes, France, Sep. 24-27, 2017.

— Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Application of
Multivariate Adaptive Regression Splines for Inverse ECG Problem, 20th
National Biomedical Engineering Meeting, Seferihisar, Izmir, 3-5 Nov.

2016.

Consequently, both MRE and proposed non-parametric spline-based method
in this dissertation construct models for representation of unknown epicardial
potential distribution step by step using available measurements. They are less
restrictive, and demand less prior information compared to other parametric
regularization techniques. They can also be used to confirm the correctness of

the parametric model for the inverse ECG problem under consideration.
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1.2 Scope of the Thesis

This dissertation is composed of 4 main chapters excluding the introduction and ap-

pendices:

e The second chapter provides background information about cardiac anatomy
and electrophysiology. After that, foundation of the forward and inverse ECG
problems, along with a comprehensive literature survey including the inverse
problem solution techniques are presented. This chapter also includes the ex-
planation of datasets that we used for solving the inverse ECG problem and

quantitative accuracy measurement metrics for comparison purposes.

e Chapter 3 starts with the detailed description of the MRE method and its ap-
plication to linear inverse ECG problem. After that, second part of the chapter
presents the estimation results and assessments on the effects of MRE parame-

ters.

e Chapter 4 presents the definition of Multivariate Adaptive Regression Splines
(MARS) algorithm, and a reformulation of the linear inverse ECG problem
based on MARS method. The rest of the chapter includes estimation results

obtained under perturbations such as modeling error and measurement noise.

e Chapter 5 includes concluding remarks and an outlook to future studies.






CHAPTER 2

BACKGROUND

2.1 Anatomy of the Heart

The heart is a cone shaped, fibromuscular organ. It lies in the middle mediastinum of
the thoracic cavity between the right and left pleural sacs, which is called pericardium
[61]. A small amount of fluid is present within the sac, called as the pericardial
fluid, which lubricates the surface of the heart and allows it to move freely during
contraction and relaxation functions (61, |68 [109]. The heart continuously operates
as a pump to deliver blood to whole body. It is at the a centre of the circulatory system.
The average human heart beats at 72 beats per minute and pumps approximately 4.7-
5.7 liters of blood per minute. It weighs approximately 250 to 300 grams in females

and 300 to 350 grams in males [106].

The wall of the heart is composed of three layers as shown in Fig. 2.1}

e The epicardium is the outer lining of the cardiac chambers and is formed by the
visceral layer of the serous pericardium [47]]. It is the interior pericardium layer

and also called visceral pericardium.

e The myocardium is the middle layer of the cardiac wall and is composed of
three discernable layers of muscles that are seen predominantly in the left ven-
tricle and inter-ventricular septum alone. It includes a subepicardial layer, a
middle concentric layer and a subendocardial layer [92]. The myocardium also
contains important structures such as excitable nodal tissue and the conducting

system.



e The endocardium is the innermost layer of the heart. It is formed of the en-

dothelium and subendothelial connective tissue [92) [10T]].

PERICARDIUM

J_‘ Heart wall
—
J ' NONTEE TN

ENDOCARDIUM

FIBROUS PERICARDIUM

PARIETAL LAYER OF
SEROUS PERICARDIUM

Coronary blood vessels

Parietal pericardium

p

Endocardium Trabeculae carneae

Pericardial cavit
Y 2 Pericardial cavity

% MYOCARDIUM

o (CARDIAC MUSCLE)

Visceral pericardium

epicardium
Myocardium (ep )

VISCERAL LAYER OF
SEROUS PERICARDIUM
(EPICARDIUM)

Figure 2.1: Layers of the heart [92] [T0OT]).

The heart is separated into four distinct chambers as shown in Fig. 2.2] The two su-
perior receiving chambers are the left and right atria, which are thin-walled, located
just above the thick-walled inferior pumping chambers called as left and right ven-
tricles, respectively. The atria receive blood from the venous system and lungs and
then contract and eject the blood into the ventricles. The right ventricle pumps blood
through the pulmonary circulatory system, and the left ventricle pumps blood through

the longer systemic circulatory system [26, (92, [101]).

The heart contains four valves located between each atrium and ventricle and in the
two arteries that empty blood from the ventricle (Fig. 2.2)). These valves are primarily

composed of fibrous connective tissues that originate and extend from the heart walls.

Tricuspid valve manages blood flow from the right atrium to the right ventricle. The
bicuspid (mitral) valve controls blood flow from the left atrium to the left ventricle.
The pulmonary valve blocks the blood pumped to left pulmonary arteries from flow-
ing back to the right ventricle. The aortic valve restricts blood flow direction only

towards the aorta [26].
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Figure 2.2: The Chambers and valves of the heart [26] 92].

2.2 Cardiac Electrophysiology

Cardiac muscle cells also known as cardiac myocytes are packed with mitochondria
to maintain the steady supply of ATP required for contraction [78]]. The contraction
of the cardiac muscles is a complex process and can be divided into neural, hormonal
and intrinsic components. Under normal conditions, the contraction of heart muscles
is initiated by an electrical impulse in the sinotrial node located at the right atrium and
spread through the atria and antrioventricular node. The stimulation of one cardiac
cell initiates stimulation of adjacent cells. The difference between excited and resting
tissue voltages leads to electrical current which causes excitation of the resting tissues
in a wave-like manner [65]. Concurrently with electrical stimulation and contraction
of atrium, blood is pumped to the ventricles. Afterwards, excitation wave-front acti-
vates ventricular conduction system, Fig. [2.3] and advances throughout the ventric-
ular muscle and triggers contraction of ventricular myocardium, resulting in blood
being pumped to the body. The conduction system provides an automatic rhythmic

beat in order to pulmonary and systemic circulation operate in synchrony.

The electrical impulse that travels through the heart is formed by ion movements
across the membranes of heart cells that result in a potential difference across cellu-
lar membranes. This imbalance, which is called the Action Potential (AP), reflects
the complex intracellular and extracellular concentration variation of sodium (Na™),

potassium (K ) and calcium (C'a2™) ions. The shape of AP differs depending on lo-
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Figure 2.3: Schematic illustration of the cardiac conduction system [26]].

cation of the cell in the heart, due to different ion channels and anatomy of myocytes
muscle cells. Notwithstanding differences, APs have strong similarities and their
shape can be divided into five phases. The shape of AP as shown in Fig. [2.4] rep-
resents different phases of opening and closing of different ion-channel types, which

results in ion currents and also membrane potentials as follows [58]):

+50 — ERP

e

IKio—

Y

Ik1— Ikr

Figure 2.4: Phases of a cardiac action potential (myocardium) [58]].

e Resting phase (4): It is the natural state, and a cell will remain in the resting
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state until an electrical stimulation arrives.

e Depolarization phase (0): The sharp increase in AP is caused by the transient

influx of Na* ions.

e Early re-polarization phase (1): Corresponds to the Na™ channel inactivation

and the polarizing efflux of Kt ions.

o Plateau phase (2): The distinctive plateau is associated with the opening of

voltage-sensitive C'a®* channels.

e Re-polarization phase (3): Outward K channels remain open, but the C'a*"

channels close.

Electrically discharging frequency of sinotrial node determines the rate of heart beats.
Any premature discharges due to electrical irregularities of the heart muscles disrupt
the heart rhythm. If premature contraction occurs in the lower chambers of the heart,
it is called Premature Ventricular Contraction (PVC). During PVC, the ventricle gen-
erates an action potential too soon without waiting for a stimulation initiated by a nor-
mal conduction mechanism of the heart, causing an irregular heart beat. The source
and pattern of PVC can be identified via electrocardiogram (ECG). Treatment proce-
dure depends on the severity of the symptoms. In case of ablation therapy, determi-
nation of exact source location of premature contraction is important for the success
of the procedure. However, classical ECG techniques offer limited information about
the spatial properties of cardiac abnormalities [22]]. It is the goal of noninvasive ECGI
techniques to provide high resolution information for clinicians in order to increase
the success of treatment. For example, priory localization of PVC via ECGI would

facilitate the planning and execution of radio frequency catheter ablation [103].

2.3 Electrocardiographic Imaging

Electrocardiographic imaging (ECGI) is a noninvasive technique for cardiac electro-
physiology to provide high resolution information from body surface potential mea-
surements (BSPM) with the use of patient-specific cardiac MR and CT images. All

these measurements and images are used to reconstruct cardiac electrical activity such
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as potential and activation patterns of the heart tissues. The idea of developing high
resolution electrocardiographic method derives from the aspiration to obtain a high
resolution image of cardiac electrical activity beyond the capabilities of the classi-
cal 12-lead ECG [49, 86, 88]]. It has been gaining attention of the researchers both
from academia and industry. Because of the strong interest in this field Consortium
of Electrocardiographic Imaging (CEI) [23]] and EDGAR data repository [4] has been
formed for interaction and collaboration of researchers and data exchange through the
workgroups. The basic ECGI methodology involves solving the electrocardiographic
forward and inverse problems. While the forward problem of ECG aims to predict
body surface potential distributions from the known cardiac source model, the inverse
problem of ECG reconstructs electrical activity of the heart from body surface mea-
surements and previously constructed forward model. In this chapter, we provide a
brief description and mathematical structure of both problems, then summarize the
important solution techniques that have been proposed to solve the ill-posed inverse

problem of ECG.

2.4 ECG Forward Problem

The term forward problem refers to modeling some physical fields, processes, or
phenomena. Mainly, forward problem includes: domain and equations of process,
the initial conditions if applicable (i.e., process is non-stationary) and boundary con-
ditions of the domain [55]. The forward problem of ECG aims at computation of
the body surface potential distribution resulting from cardiac electrical activity. Cal-
culation of the electric field in the torso is mainly dependent on size, location and
properties of the internal structures between the heart and torso surface [[73]]. Skele-
tal muscles, lungs, fats, bones and blood are some of the major internal structures
that can be taken into account in the solution of the forward problem. On the other
hand, considering all the inhomogeneities increases the computational complexity of
the forward problem. For this reason, it is required to find a balance between the

accuracy of the solution and the computational complexity of the problem.

Besides structure of the torso, the cardiac source model also needs to be specified

to complete the model of the forward ECG problem. The equivalent double layer
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(EDL) and the surface potential representation (endocardial and epicardial) are two
major cardiac source models that have been used to solve inverse and forward prob-
lems [[105]. After selecting torso and cardiac source models, potential distribution on
the body surface can be computed either by boundary element method (BEM) or by
volume conductor model (VCM) [41, 142,73, [81]].

V¢s-ng=0

Figure 2.5: A model of homogeneous torso-volume conductor. The human thorax
is bordered by a surface, Sz, and surrounded by a non-conductive air; all cardiac
bio-electric sources are planted in the closed region covered by epicardial layer, Sy

[71].

The system depicted in Figure [2.5]represents the thorax and epicardium forming two
nested non-intersecting surfaces. This system is described by a quasi-static approxi-
mation of Maxwell’s equations with the assumption of no active bioelectric sources
existing between these two surfaces. In terms of the epicardial potentials, the ECG

forward problem can be formulated as Laplace’s equation with boundary condition

defined in Eqn. (2.1) [71]].

V-oVe(p)=0  (p€ B), Vo(p) np,=0  (p€ Sp), (2.1

where B is an isotropic volume conductor (the human torso) in which is contained the
region of bioelectric sources, H, o is the scalar conductivity of B, ¢(p) is the electric
potential at a field point p = (z,y, ), and Sy and Sp are smooth surfaces with unit

normals ny and npg that are oriented outward with respect to the region H.

The outcome of the forward solution can be represented in vector-matrix notation as
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follows:

y = Ax. (2.2)

Here, A € R™*" is a forward operator, y € R™ stands for the measurement vector

and x € R" denotes the source (epicardial potential) vector.

It is important to ensure a rigorous identification of the forward transfer operator in
ECGI, which characterizes the relationship between measurements and source. How-
ever, as we stated previously, taking into account all inhomogeneities within the torso
increases computational complexity of the forward problem. For this reason, it is
required to find a balance between accuracy of the solution and computational com-
plexity of the problem. Nevertheless, which inhomogeneous electric properties of
internal structures need to be accounted for is not clear enough [11]. Several studies
have been done by researchers to find out how much detail needs to be considered
for the forward/inverse ECG problems. In [85]], Ramanathan et al. attempted to char-
acterize and understand the effects of conductor properties within the torso using a
detailed realistic torso model that includes all the major inhomogeneities and epi-
cardial potentials as a cardiac source model. Results of this study showed that, if
there were no pathology causing variations in volume conductor properties, poten-
tial patterns on body surface were minimally affected by the torso inhomogeneities.
Klepfer et al. [S9] concluded that including inhomogeneities have minor influence on
the of body surface potential pattens but they alters the magnitude of potentials. The
results of Klepfer’s study suggest that subcutaneous fat, anisotropic skeletal muscle
and lungs should be included in simulating the torso potentials. Keller et al. [57]
discussed different organs have varying influences on the different ECG segments;
While lungs are more important for atrial signals, ventricular signals are more ef-
fected by the heart conductivities. But, blood and anisotropic skeletal muscle have
greater impact on both atrial and ventricular signals. In recent study by Bear et al.
[L1]], the inhomogeneous torso models produced potential amplitudes closer to the
true potentials compared to those obtained by the homogeneous model. Common
conclusion in these studies was, despite the amplitude differences between simulated
and measured body surface potentials their potential maps were quite similar. On the

other hand, Cluitmans et al. [20] argued that to decide the complexity of the forward
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model, more in-vivo studies need to be conducted.

2.5 ECG Inverse Problem

Inverse problem is a field in mathematics and the applied sciences, which refers to
approximating underlying function or estimating model parameters of a physical phe-
nomena from indirect measurements [25,97]]. In this sense, inverse problem of ECG
can be described as inferring cardiac electrical activity from the given BSPM and
mathematical model that characterizes the relationship between measurements and
sources. Here, the mathematical model is constructed by solving the forward ECG
problem. Depending on the selected cardiac source model, the parameters to be es-
timated vary. On the other hand, the generic form of the problem is similar [1035].
If the cardiac source is taken as an epicardial potential distribution, then the problem

can be represented as follows:

yk:Axk+nk (k;: 1,27...T), (23)

where, A € R™*" and k are the forward transfer matrix and the time index, respec-
tively: y, € R™ stands for the body surface potentials at all observation points, and
x; € R™ denotes the unknown epicardial potentials to be estimated. In our study,
these parameters are the potentials on the epicardial surface. The last term n; € R™

represents the measurement noise.

The difficulty of the inverse ECG problem arises from their ill-posed nature. This
ill-posedness originates from the discretization process in the forward solution and
attenuation of the signal inside the torso. Amount of attenuation also changes de-
pending on the measurement location, because of the distance to the source and the
inhomogeneities through propagation direction. Although there is no formal defini-
tion of an ill-posed problem, it should involve all the problems that have no solutions
or have many solutions in the desired class, or the solutions are unstable. But in com-
mon use, the term ill-posed is related to unstable problems [55)]. From the perspective
of inverse ECG problem, instability means that relatively small changes in the body

surface measurements are abundantly amplified in the solution. In addition to mea-
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surement noise, inaccuracies in the heart-torso geometric model and errors in the
conductivities of the organs, which are used to calculate forward operator, also affect
the solution. Furthermore, if the number of the measurement locations is less than
the number of the parameters to be estimated (i.e., the forward transfer matrix A in
Eqn. (2.3) is under-determined) there can be no unique solution [82]]. Consequently,
problem need to be appropriately constrained by introducing prior information about

the solution in order to obtain physiologically meaningful outcome.

2.5.1 Solution Methods

Inverse problems have gained lots of attention due to their important applications in
different fields of science. Several algorithms have been developed to solve linear
and non-linear inverse problems. These algorithms solve the inverse ECG problem
by considering the properties of underlying cardiac electrical process. These solution
techniques can be divided into two categories: deterministic and statistical frame-
works [82]. In this part of the thesis we will review the most commonly used methods

solving the inverse ECG problem.

2.5.1.1 Deterministic Methods

The solution techniques in deterministic framework usually called as regularization
methods, in which an objective function to be minimized or a constraint function
to be satisfied is composed of a combination of the norm of the residual error and
some norm of a constraint functions [82]]. In this part, we will summarize notable

deterministic methods which are proposed for solving inverse ECG problem.

Tikhonov Regularization:

It is well-known standard technique to eliminate the instability in the inverse solution
[S, 117, 138]. It has been applied in several areas including electrocardiography. The
form of the Tikhonov regularization for the linear inverse problem takes the form

given in Eqn. (2.4). In this equation, since the problem is solved at each time instant
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separately, the time index £ is omitted.

arg min{|ly — Ax[l; + A[Rx|l5}, 24)

where A\ > 0 is a regularization parameter. It controls the trade-off between fidelity
to the measurements and the defined constraint. Although several methods have been
proposed to determine the optimal value for A, the L-curve method [43]] is commonly
utilized for the inverse ECG problems. The L-curve is a plot on log-log scale with A
is a parameter on this curve and the optimal regularization parameter is assumed to be
the value of A which minimizes both ||y — Ax||% and ||Rx]|3 in some sense [§]]. Reg-
ularization matrix R is used to incorporate the priori information about the solution.
It can be the identity matrix or the first or second order derivative operator depending
on the desired smoothness of the solution. If R = I, then the Tikhonov estimation

can be calculated using singular value decomposition (SVD) as follows:

Singular value decomposition of matrix A is represented as:

A =TV, (2.5)

where
U:[ul...un], V:[Vl...Vn, (26)
Y =diag(o1,...,0n), (01 >09>...2>0,). 2.7

The Tikhonov estimation is given by

n 2 T
n o; Wiy
XTikh = E TN o Vi. (2.8)

i=1
The idea of Tikhonov method is to suppress the contribution of small singular values
into solution, i.e., high frequency components are filtered out. Tikhonov regulariza-
tions of zero-first and second order were applied to inverse ECG problem and its
estimation accuracy reported in [21, 70, [71]. According the results of these studies,
although the major features of epicardial potential distribution pattern could be de-
tected, the solutions were smooth and had lower amplitudes then the true epicardial

potentials.
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Truncated Singular Value Decomposition (TSVD):
TSVD method uses first £ < n singular values and corresponding right and left eigen-

vectors to solve the problem, which is called truncation.

k T
~ u;
Rrpi =Y Dy, (2.9)

=1 U
The truncation parameter £ is used to prevent the perturbation error from blowing up,
at the cost of introducing bias in the regularized solution. But the determination of

optimal k is another issue to be solved.

Generalised Eigensystem:

Generalised eigensystem (GES) proposed by Throne et al. [99] employs finite ele-
ment technique to define a truncated eigenvector expansion. The BSPM are approx-
imated in terms of the eigenvectors, and a least squares fit is used to estimate the
expansion coefficients. The resultant expansion can be used to calculate the heart

surface potentials as follows:

xy | =D ai v (2.10)
1=1 ;
y vy

where the «; and NV, are expansion coefficients and number of eigenvector considered
in the solution respectively and: xy, xy and y are heart surface, volume and body
surface potentials respectively. On the other hand, v, v{ and vfy correspond to
the i*" eigenvectors. The increase in the surface mesh structure resolution and the

optimally selected NV, value produces better estimations as expected.

GES, TSVD methods and Tikhonov regularization were employed for solving the
problem of inverse ECG using inhomogeneous eccentric sphere model in [100] to
examine the effects of geometry and conductivity errors. Although the outcomes of
GES had lower RMS values for almost all range of tested modeling error cases, stud-

ies on more realistic geometries are required in order to comprehensively its success.

Truncated Total Least Squares

Shou et al. [93]] tested Truncated Total Least Squares (TTLS) method using a realistic
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heart-lung—torso model with inhomogeneous conductivities.

minimize||(A,y) — (A,y)|[r subjectto y = Ax. (2.11)

Ay
Here, A y are the erroneous version of A and y. This study concludes that TTLS

results are very close to Tikhonov and TSVD estimations if there is only measurement

noise, but performed better in case of geometric errors imposed into the model.

However these standard regularized solutions produce smeared output and lead to
decrease in accuracy when locating minimum and maximum potential values [[16]]. In
order to improve the smooth solution of Tikhonov regularization, several approaches

have been proposed. Some of the important methods are explained subsequently.

Genetic Algorithm with Tikhonov and TSVD:

In [51], heuristic optimization technique genetic algorithm (GA) was used to improve
the estimations of Tikhonov and TSVD regularizations. The idea is to start from the
initial population, which is actually constructed by using Tikhonov or TSVD estima-
tions, and find the best epicardial potential vector by solving the following minimiza-
tion problem:

minimize|y — Ax||3. (2.12)

According to the simulation results in [51] that were performed under different mea-
surement noise levels, estimation accuracies significantly improved. On the other
hand the success of this approach strongly depends on the number of generations in

the GA algorithm and must be properly determined to improve the estimation.

Binary quadratic optimization:

Potyagaylo et al. [79] developed an approach to determine the ischemic areas and
ectopic foci based on transmembrane voltages (TMV). Using the fact that faster de-
polarization process compared to re-polarization and plateau phase after depolariza-
tion, the TMV is assumed to have a constant value in the depolarization phase. Under
these assumptions the problem was reformulated as an unconstrained binary quadratic

optimization problem.

argxg[llignﬂly—AX||§+A||RX|I§}' (2.13)
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Here, [ and u stand for binary values corresponding to the upper and lower bounds that
every solution component may take. The problem in Eqn. (2.13)) has finite but very
large possible solutions. For this reason the authors implemented heuristic search
and difference of convex functions algorithms in order to reduce the dimension of the

problem to locate ischemic region and ectopic foci.

Multiple Constraint Regularization:
Imposing multiple spatial constraints into the problem was proposed to improve the
Tikhonov-based estimations. In [1], incorporation of both spatial energy and Lapla-

cian of the solution constraints were employed.

arg min{[ly — Axl3 + M [x]5 + Ao T3} (2.14)

Here, Ay > 0 and A\ > 0 are regularization parameters and L is the Laplacian op-
erator. On the other hand, these methods ignore the time-evolution dynamics of the
potential distribution and solve the problem at each time frame separately. Therefore,
successively more progressive method was attempted in [[16] to account for both spa-

tial and temporal information in the solution by using an augmented model addressed

by Eqn. (2.15).

arg min {[[7 — AX[; + M R + Ao T2} (2.15)

The elements of augmented model are defined as follows: There is the measurement
vectory = [yl ... yZ]?, where k is the number of time samples. The unknown vec-
tor X is defined in a similar way as y. The augmented forward operator is constructed
as A = I, ® A. Here, ® represents the Kronecker product, and I, is k x k identity

matrix. The matrices R, T are operators for spatial and temporal constraints.

It was shown that the conjecture of using spatial and temporal constraints increased
the temporal behavior of estimations compared to spatial constraint alone. However,
the drawback of this approach is the need for determination more than one regu-
larization parameter. The original study suggested L-surface method to find these
parameters. Later on, a genetic algorithm based approach was also proposed in to

find these parameters [34].
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Greensite Spatio-Temporal Approach:

Greensite [40] included temporal correlation of potentials in the problem by concur-
rently regularizing the equations associated with all time instants. Greensite’s method
relies on the use of principal components of measurement matrix Y = [y1,...,y7]

to compute unknown matrix X = [xy,...,X7|.

If we compute the SVD of the measurement matrix, we obtain:

Y = PSTY, (2.16)

where P, T are eigenvector matrices related to spatial and time domains of BSPM,
respectively. S is the diagonal matrix containing singular values of Y. Then Eqn.

(2.3) can be modified as follows:

Y = AX, 2.17)

PSTT = AX. (2.18)

If we multiply both sides by T from the right side, we receive:

AXT = PS, (2.19)

AX = PS. (2.20)

Here, X = XT is the new unknown matrix and Tikhonov regularization can be used
to estimate it. After that the solution of X can be obtained by multiplying X by T7.
It was shown that behind in [40] Greensite method produced more accurate solution

by increasing the temporal stability of the estimation.

Greensite’s idea can be summarized as follows; First the time series of the signals
decorrelated prior to applying spatial regularization. After decorrelation is achieved,
the resulting set of equations is solved by the standard Tikhonov regularization and

finally, the decorrelation is reversed to restore the temporal correlation.
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Twomey Technique:
The modification of Tikhonov method was proposed by Twomey [102] in order to

avoid unwanted oscillations by including a priori information on the solution.
arg min {[|ly — Ax||3 + Allx — xp|[3}, (2.21)

where xj, is a prior estimate of x. It is intended to minimize the difference between
the solution and an a priori knowledge. Twomey regularization was employed to

solve the inverse ECG problem in [36, [77].

Non-Quadratic Methods:

Besides the quadratic regularization methods, non-quadratic approaches have also
been proposed for cardiac source reconstruction and locating arrhythmic substrates
on the heart. Since /;-norm penalty functions lead to smooth solutions, they do not
produce accurate solution for sparse source imaging, such as locating diseased regions

or pacing sites.

The [;-norm regularization scheme, also known as total-variation regularization, has
been applied with considerable success especially, when restoring high-frequency
spatial features of inverse ECG problem [37, 115]]. This method can be formulated as

follows:

arg min{[ly — Ax||; + A|Dx]|1}, (2.22)

where D = g—z is the normal derivative of the potential on the heart surface. It was
concluded in [37] that, /;-norm method has a better capability when detecting and
localizing the areas of early activated regions than /5-norm regularization. Despite
its success in reconstructing sparse signals, /1-norm regularization has high compu-
tational complexity due to its nondifferentiable structure. For this reason, smoothed
lo-norm regularization [[108]] has been proposed to estimate epicardial potential dis-

tribution.

Besides the /- and ;- norm based regularization for reconstructing sparse signals,
Rahimi et al. [84] utilized /,-norm regularization to bridge the gap between overly

smeared and overly focal solutions. In their subsequent study, a multi-model adaptive
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estimation approach in which the weighted combination of [y, ; and [, solution was

employed to determine the final estimation [83].

Reduced Order Models:

In order to reduce complexity and increase the estimation accuracy in the inverse
ECG problem, reduced-order models were also considered. Use of Proper Orthogo-
nal Decomposition (POD) was attempted to identify ionic parameters and infarction
locations [[15]. Spline-based methods were applied to the ill-posed inverse ECG prob-
lems in order to take the advantages of spline-based regression. Their main advantage
is the parametrization of the problem in terms of a small number of unknowns, and
their local support that allows for changing the approximation in local regions without
affecting remote portions of the function to be estimated. Recently published works
of Zettinig [[118,119] and Erem et al. [28] modeled the problem based on cubic poly-
nomials in order to benefit from splines. We call the method in [28]] as Spline Inverse

(SI) in the rest of thesis.

The method proposed in [28]] can be summarized as a low-order parametrization of
an individual beat using temporal splines. First, the spline fitting procedure for body
surface potentials is realized by employing the spline curves that are defined in terms
of pseudo-time parameter