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ABSTRACT

EVALUATION OF SEVERAL MULTIAXIAL HIGH CYCLE FATIGUE
ENDURANCE CRITERIA

Engin, Zafer
MSc, Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Demirkan Coker

September 2018, 175 Pages

Multiaxial high cycle fatigue is an important failure mode for industrial
applications as it is experienced by many engineering parts such as rotor blades
and crankshafts. Determining the critical locations and especially the fatigue lives
of such components have great importance. Therefore, a methodology is needed
which would replace expensive and time-consuming test campaigns as it is not
possible and feasible to simulate all the loading scenarios that component would
experience during the service life. The purpose of this thesis is to evaluate the
state-of-the-art multiaxial endurance criteria available in the literature, with
respect to their capability of handling multiaxial load interactions, phase
difference, mean stress, and calculation speed. The criteria transform the
multiaxial stress state to a damage parameter which is compared with endurance
limit to determine whether the structure endures the loading or not. In this thesis,
criteria from the literature belonging to equivalent stress, invariant based and
critical plane are considered. Extensive experimental data is obtained from
literature to compare the estimations of the criteria and a MATLAB code is
written for calculations. Life estimations are obtained for each experimental data
and statistical analysis is performed for obtaining the general behavior of the
criteria. Comparing each type of criteria we conclude that the equivalent stress

methods give highly scattered estimations while invariant based methods yield



more reliable results; however, best estimations are obtained by critical plane
methods. For practical applications GAM (invariant based) or Papuga PCR
(critical plane) may be implemented, former being fast and latter being more

precise.

Keywords: Multiaxial fatigue, equivalent stress, critical plane, non-proportional
loading, damage parameter
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0z

FARKLI COK EKSENLI YUKSEK CEVRIMLI YORULMA
KRITERLERININ DEGERLENDIRILMESI

Engin, Zafer
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Demirkan Coker

Eylil 2018, 175 Sayfa

Cok eksenli yiiksek ¢evrimli yorulma, rotor palleri ve krank milleri gibi ¢cogu
miithendislik parcasinca deneyimlendigi i¢in sanayi uygulamalar1 agisindan
onemli bir kirilma modudur. Bu ¢esit parcalarin, yorulma kritik bolgelerinin ve
Ozellikle yorulma oOmiirlerinin belirlenmesi biiyiik 6nem arz etmektedir. Bu
sebeple ve parganin servis omrii boyunca deneyimleyebilecegi tiim yiikleme
kosullarinin simiile edilmesi olas1 ve yapilabilir olmadigi i¢cin pahali ve zaman
alic1 test kampanyalariin yerini alacak bir metodolojiye ihtiya¢ duyulmaktadir.
Bu tezin amaci, literatiirde mevcut olan en gelismis ¢ok eksenli dayanim
kriterlerinin; ¢ok eksenli yiik etkilesimleri, faz farki ve ortalama gerilim etkilerini
ele alma becerileri ve hizlar1 bakimindan degerlendirilmesidir. Bu kriterler, ¢ok
eksenli gerilim durumunu, yapinin yiiklemeye dayanip dayanamadigini
belirlemek i¢in yorulma dayanimiyla karsilagtirilan bir hasar parametresine
dontistiirtir. Bu tezde, literatiirden alinan; esdeger gerilim, degismez gerilim ve
kritik diizlem kriter ¢esitlerine ait metodlar incelenmistir. Metodlarin Omiir
tahminlerini karsilastirmak amaciyla literatiirden kapsamli bir deney datasi
almmig ve hesaplamalar i¢in bir MATLAB kodu yazilmistir. Her deney datasi
icin Omiir tahminleri yapilmis ve metodlarin genel davranisini belirlemek icin
istatistiksel analizler yapilmistir. Her tipte kriteri karsilastirmamiz sonucunda

esdeger gerilim metotlarinin hayli dagimik omiir tahminleri verdigi, bu esnada

vii



degismez gerilim esasli metotlarin daha glivenilir tahminlere ulastigi; fakat, en iyi
ongoriilerin kritik diizlem metotlariyla elde edildigi sonucuna vardik. Pratik
uygulamalar i¢cin, GAM (degismez gerilim esasli) metodu hizli oldugu ve ya
Papuga PCR (kritik diizlem) metodu GAM’a gore daha hassas oldugu igin

kullanilabilir.

Anahtar Kelimeler: Cok eksenli yorulma, esdeger gerilim, kritik diizlem, orantili

olmayan yiiklemeler, hasar parametresi
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CHAPTER 1

INTRODUCTION

Many engineering parts such as rotor blades, crankshafts, pressure vessels,
railroad wheels and bolted joints experience cyclic loading which is a
combination of tension, bending and torsion loads for millions of cycles (high
cycle) leading to biaxial or triaxial stress states. Fatigue failure under such stress
states is called multiaxial fatigue. Multiaxial fatigue involves at least two loading
channels (multiaxial loading) that differentiates the phenomenon from uniaxial
fatigue and complicates the problem. These complications are related to the
interaction of loading channels which brings along additional mechanisms such
as phase and frequency effects that influence the fatigue life. These effects cause
principal axes to rotate during the loading and magnitude of principal stresses
alter non-proportionally. Multiaxial fatigue may also occur for uniaxial loading
cases if the component is geometrically complex like in the case of the threaded
zones of fasteners. Unfortunately, multiaxial loading and geometric complexities
are unavoidable in industrial applications. Therefore, conservative factor of
safeties are utilized for critical parts and expensive and time-consuming test
campaigns are carried out. However, testing all the load scenarios is not feasible.
Therefore, a methodology is needed for determining the critical locations exposed

to fatigue damage and estimating the fatigue lives of engineering components.
1.1.  Brief History

For several decades, different methods are proposed and developed in order to
estimate fatigue life of components under multiaxial loadings. However, none of

those methods are universally accepted and applicable to all material types or



loading scenarios. Therefore, a good knowledge of methods is required for

accurate life estimations.

Multiaxial fatigue problem was first investigated by Lanza [1] when he
performed combined rotating bending/torsion experiments. Later, several
researchers such as Mason [2], Haigh [3], Nishihara and Kawamoto [4] and
Gough and Pollard [5, 6] correlated multiaxial test results with empirical
relations. Among all these researchers, Gough and Pollard [5, 6] performed the
most extensive set of experiments and proposed empirical formulations in the
form of ellipse quadrant and arc in order to guide the mechanical design of
rotating shafts which are subjected to combined cyclic bending and torsion
loading. Later, extensions of static failure criteria were developed (von Mises,
Max Principal etc. [7]) which reduce multiaxial cyclic stress state to an equivalent
cyclic stress history. Then, whether the structure endures the loading or not is
determined by comparing the alternating value of the equivalent stress (after
mean stress correction) with endurance limits. Although equivalent stress
methods provide estimations that are in good agreement with test data for
proportional loading, experimental studies show that they fail to account the
directivity of non-proportional loading and effects of shear and tensile stresses on
fatigue life [8-14]. As an improvement to equivalent stress methods, Sines [15]
come up with a different idea that multiaxial fatigue does not only depend on the
octahedral stress (von Mises) but also it depends on hydrostatic stress. Therefore,
a damage parameter that is a linear combination of alternating octahedral stress
and mean hydrostatic stress, which are both invariants of stress tensor, is
proposed. So called invariant methods are further investigated by Crossland.
Crossland [16] suggested using the maximum value of the hydrostatic stress
which turns out to be more successful [17, 18, and 19]. The idea of critical plane
approach, which gained great popularity among multiaxial researchers, was first
generated by Stansfield [20]. This new series of criteria are based on
experimental observations of crack initiation and it is assumed that the main
reason of multiaxial fatigue is shear stresses while normal stresses are responsible
for crack opening. Findley [21], McDiarmid [22, 23] and Dang Van et al. [24] are



some of the first critical plane methods. Damage parameters of invariant and
critical plane methods are similar in nature; however, in critical plane methods
stresses on all material planes are investigated instead of examining a single plane
(for example the octahedral plane). Again like in equivalent stress methods,
endurance of the structure is determined by comparing the damage parameter

with endurance limits for invariant based and critical plane criteria.
1.2.  Research Objectives
The objectives of this thesis are as follows:

e Implement the criteria into a multiaxial life prediction code.

e Evaluate and compare the multiaxial endurance criteria in terms of

performance and speed.
e Validate the criteria with experimental test results from literature.
1.3.  Outline of the Thesis

Thesis begins with a literature review in Chapter 2 to gain depth into multiaxial
fatigue phenomenon. First, some common stress quantities are briefly clarified
since these stress quantities are utilized in multiaxial endurance criteria. Then,
complex loading is explained as it is one of the main reasons of multiaxial fatigue
and one needs to have a good knowledge about loading types and combinations.
Chapter 2 continues with definitions of alternating and mean values of shear and
normal stresses for non-proportional loading and with mean stress correction
curves which are used for inclusion of mean stress effects in endurance criteria.
Then, the main ideas and formulations of investigated criteria are introduced. For
this research only the criteria appropriate to high cycle fatigue are chosen as it is

more common in industry.

Most of the multiaxial endurance criteria include torsion endurance limits for
calibrating weighting constants of shear and normal stresses. However, torsion
endurance limit may not be always available; therefore, formulations of

weighting constants for axial/bending endurance limits with different R ratios



(R=-1 and R=0) are derived for selected invariant and critical plane criteria

(Crossland, GAM, Findley and Dang Van) and these are presented in Chapter 3.

In Chapter 4, general procedure of multiaxial fatigue endurance analysis and the
methodology for evaluating/comparing the criteria are explained. Moreover,
experimental data set which is obtained from literature and used for this
evaluation is presented. This data set contains harmonic (loading as a function of
sine or cosine) bending and torsion tests with phase difference and it is proper for
the evaluation of phase and mean stress effects. Data set also contains uniaxial
test results to investigate the performance of the criteria for simple tests. For this
thesis ductile and brittle materials are analyzed. Cast irons are excluded from the
data set since there are very few experimental results for these materials and the
use of cast irons is very limited in industry. Finally, pseudocodes for equivalent
stress, invariant based and critical plane criteria are presented for clarification of

the procedures in these algorithms.

Estimations of each multiaxial endurance criteria are presented in Chapter 5.
Calculations are carried out for each experimental data and predictive capabilities
of the criteria are shown with histograms (after a statistical analysis) which is the
usual representation adopted in literature. These histograms show the general
behavior of the criteria; however, they are insufficient for investigating the partial
effects namely phase and mean stress effects or their combinations; therefore,
tables presenting the statistical results (mean, range and standard deviation) of
these partial effects are also included. Furthermore, comparisons of each criterion
within each type of criteria and with other types of criteria are performed in order

to find out which type of criteria and which criterion performs better.

In Chapter 6, a summary of the thesis is presented with concluding remarks and

also suggestions for future work are involved.



CHAPTER 2

LITERATURE REVIEW

In this chapter, type of multiaxial loading, multiaxial endurance criteria and

common stress quantities used in these criteria are explained.
2.1.  Common Stress Quantities

In this section stress quantities commonly encountered in multiaxial fatigue
criteria are introduced for a better understanding of the criteria. Most of the
definitions and formulations described here are taken from Socie and Marquis [7]
and Budynas and Nisbett [25].

2.1.1. Stresses

Stress is the distribution of load (force or moment) acting on a surface. Stress is
unique at a point on the surface and has two components as normal and shear
stresses. These stress quantities are represented by Greek symbols; o is used for
normal stress and 1 is used for shear stress. Double subscription is preferred for

indicating the direction of the stress and also the normal of the surface.

The state of stress at a point can be described by six stress components acting on
three orthonormal planes of an infinite-small cube. These stress components are
Oxxr Oyyr Oz, Txys Tyz @Nd T, described in Figure 2.1. Since normal stresses act
perpendicular to the surface, usually they are shown with only one subscript
(0x, 0 and a;). If normal stress is in the same direction with its subscript than it
has a positive value and called tensile stress while for the opposite case it is called
compressive stress. For shear stresses, first subscript indicates the direction of the
surface normal and second subscript indicates the direction with respect to



coordinate axis to which the shear stress is parallel. For equilibrium, cross-shear

stresses are equal (T, = Tyx, Tyz = T2y Tzx = Txz)-

Z g,

X<

Figure 2.1: Stress state at a point
2.1.2.  Principal Stresses

At a point on a component, there are infinitely many planes passing through thus,
infinitely many stress states exist. For evaluation of fatigue strength, it is often of
interest to investigate the maximum values of normal and shear stresses. This task
may be achieved by transformation of stress state with respect to two Euler angles
6 and ¢. For a particular orientation, shear stresses on three orthonormal planes
of the stress cube become zero while normal stresses take their maximum values.
These are called principal stresses and related orientations give the principal axes.
Principal stresses are denoted by oy, g, and g;. Maximization of shear stresses is
also possible. Principal shear stresses (t5, 7,3 and 7,3) may be obtained by 45°
rotation around one of the principal axes. However, for this case normal stresses
will not be zero, their value will be the average of principal stresses other than
the the principal stress for which the rotation is made along it’s direction.

Finding principal stresses is actually an eigenvalue problem. Since shear stresses
become zero, stress matrix will be diagonal; therefore, principal stresses will be
eigenvalues and their corresponding directions will be eigenvectors (directional

cosines).



on = oyn (2.1)
By rewriting
(6—0,)n=0 (2.2)

where a is the stress tensor, n is the eigenvectors, o, is the eigenvalue and | is the
identity matrix. In order to avoid the trivial solution determinant of (¢ — o,I)

should be zero. In other words,

Toy gy — 0p Tyz | =0 (2.3)

which leads to a cubic equation,

o3 — (o, + 0y + 0,)07
—(T,%y + 15, + Tiy — 040y — 0,0, — ayaz)ap (2.4)
(0500, + 2Ty Ty Ty — OxT2, — 0,72, — 0,7%,) = 0
xYyYz xytyztzx x‘yz yixz ztxy
Solution of this equation gives three principal stresses. It is important to mention
that principal stresses occur for one particular orientation regardless of the

coordinate system chosen for representing the stress state. As a result, the

coefficients of this cubic equation are constant.

I, = oy +0,+0, (2.5)
I, = 12, + 15, + 13, — 0,0, — 0,0, — 0,0, (2.6)
(2.7)

— 2 2 2
I3 = 050,00, + 2Ty Ty, Tyx — OxTy; — OyTxz — O3 Txy

I;,1, and I are called stress invariants and these constants have importance in

fatigue life estimations. Especially, first two invariants or their deviatoric



counterparts, which are explained in following sections, are used as a measure of

mean normal stress and alternating shear stress respectively.

Roots of (2.4) can be found from the following formula [86],

o; = wcos(f;) +I§1 (2.8)

where i=1,2,3. ® and 3 can be found from,

2 12 571

-1
3 _
o (211 9L I, + 23713) \ 2k 10

2(12 - 31,)2
3

Bi =

where k =0,4+1,+2, ...

After principal stresses are found, their directions may be obtained from (2.3) by
writing the related principal stress value to g, and solving the three equations
with three unknown eigenvectors. Since these three equations give infinitely
many solutions, another condition is necessary which comes through the
orthogonality. This relation is as follows:

nz+ni+nz=1 (2.12)

where n,, n, and n, are directional cosines of the related principal stress. For a

better understanding, principal stresses and directional cosines of the first

principal stress are presented in Figure 2.2.



nx Xr
Figure 2.2: Principal stresses and directional cosines of the first principal stress

Knowing the principal stresses and for o; > o, = o3, principal shear stresses can
be obtained by following equations,

01 — 03

T12 = > (2.12)
o, — O

Tps = — > 3 (2.13)
01 — O

Ty3 = — 2 3 (2.14)

From (2.12) to (2.14), it may be concluded that t,,,, = T13. Normal stresses on
maximum shear stress planes can be found as follows:

oy + o

Osp12 = : ) - (2.15)
o, + 0

Osprs = — 5 3 (2.16)
o, + o

Ogp1z = ——— (217)

Principal stresses can easily be visualized with Mohr’s circle and they are
presented in Figure 2.3.
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Figure 2.3: A three dimensional stress state representation with Mohr’s circle

Another area of interest with respect to fatigue life evaluation is the stress state at
free surfaces. Except for contact areas, regions with high residual stresses and
inhomogenous regions of the material (e.g. defects), surfaces of the component
will likely to be the most critical zones. Stress state at free surface in the absence
of pressure loading is a special case since some of the stress components become
Zero; o0, =Ty, =Ty, = 0. This stress state is called plane stress and a

representation is shown in Figure 2.4.

Z
o, =0
Ty =0 T
Tyz =0
ace
Free sud

X<
Figure 2.4: Plane stress state

Principal stresses for plane stress state are as follows:



o, + o O, — O\ 2
01,0, = — yij(xz y) +12, (2.18)

O, — Oy\2
Ty, Ty =ij( = > y) +12, (2.19)

2.1.3.  Stresses Acting on Octahedral Plane

Most widely used static failure criterion, octahedral shear stress theory
(sometimes called as distortion energy theory) is based on stresses acting on
octahedral plane. This criterion assumes that failure is related to angular
distortion of the stressed element and predicts no failure under equally loaded
principal stresses. Based on these assumptions, shear stress on octahedral plane
comes out to be a good indicator of yielding as theory agrees well with ductile
materials. Some adaptations of this theory are made to multiaxial fatigue in order
to estimate fatigue life. These adaptations are namely; Signed von Mises, Sines
and Crossland, which are explained in Section 2.3.1. and Section 2.3.4.

respectively, that are one of the primary multiaxial endurance criteria.

Octahedral plane is an oblique plane that intersects the principal stress axes at
equal distances. Direction cosines with respect to principal axes are equal and
they have a value of 1/+/3. What makes this plane special is that the normal
stress acting on this plane is the average of the principal stresses. There are eight
planes that have the same stress state and these planes form an octahedron. Thus,
it is called octahedral plane. The stress state on an octahedral plane is shown in
Figure 2.5.

11
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Figure 2.5: Stress state on an octahedron plane
2.1.3.1. Octahedral Shear and Effective Stresses

The resultant shear stress on octahedral plane is called the octahedral shear stress
and through coordinate transformations it can be computed in terms of principal
stresses,

1
Toct = 5\/(01 —03)* + (0, — 03)* + (0, — 03)2 (2.20)
or in terms of stress components octahedral shear stress can be shown as,

Toct

1 2 2 (2.21)
= g (Ux - Jy) + (O-y - O-Z) + (Ux - Uz)z + 6(1-9%3/ + szzz + Tazcz)

According to octahedral shear stress theory, yield occurs when octahedral shear
stress for any stress state exceeds the octahedral shear stress observed during

simple tension test. For a simple tension test, specimen yields when o; = a,, and

o, = a3 = 0. From (2.20) octahedral shear stress at yielding is,

V2 (2.22)

Tocty = ?O-y

12



For the general case, yield is predicted if (2.20) is greater than (2.22). This leads

to,

1

\/E\/(% —03)% + (0 —03)* + (0, — 03)* = 0, (2.23)

Stress at left hand side is called octahedral effective stress or von Mises stress.

Effective stress can be written in terms of stress components as,

Oym

1 5 5 3 ] ; ] (2.24)
= ﬁ (Ux — ay) + (O'y — crz) + (0 — 0,)% + 6(1%, + 15, + 1%,)

Effective stress transforms the multiaxial stress state to a uniaxial stress state
which can be used for estimating static yielding. Furthermore, octahedral shear
stress theory suggests and approximation for shear yield strength. For a pure

shear test, from (2.23) we may conclude that,

V3Tyyy =0, OF Ty, = % = 0.5770, (2.25)

where t,,,,, is the shear yield strength.

2.1.3.2. Octahedral Normal Stress (Hydrostatic Stress)

Normal stress acting on octahedral plane is called hydrostatic stress. It can be

calculated as
1
O-h = 5(0-1 + 0-2 + 0-3) (226)

Hydrostatic pressure is the average of principal stresses and it is used in some
multiaxial endurance criteria such as Sines, Crossland and Dang Van as a

measure of normal mean stress inclusion (Sections 2.3.4. and 2.3.7.).

13



2.1.4. Deviatoric Stresses

Stress is usually separated into hydrostatic and deviatoric stress for components

that are subjected to plastic deformation. This is due to the fact that hydrostatic

component of stress does not influence plastic flow while deviatoric part

influences plastic yielding. In order to obtain deviatoric stresses, hydrostatic

stress is subtracted from stress state. As hydrostatic stress is a stress invariant,

subtraction operation will not affect the directions of principal stresses. In

addition, shear stress components remain unchanged. Deviatoric stresses are

defined as follows,

sx—ax—511=3ax §ay §UZ
1 2 1 1

Sy = O'y —511 = §O'y —§O'Z —§O'x
2 1 1

s, =0,—=1 —gaz—gax _503/

0 0
I 0] (2.27)
0 I
(2.28)
(2.29)
(2.30)

Invariants for deviatoric stresses; J;,/, and J; can be written in terms of I, I, and

I5 as follows,

Ji=0

J, = I# + 31,
2 3

2+ 91, + 2714
3 27

(2.31)

(2.32)

(2.33)

Second invariant of deviatoric stress can also be written in terms of octahedral

shear stress,

14



J2 32 (2.34)

= E Toct

2.1.5. Cyclic Stresses

Engineering components usually encounter cyclic loading which is the main
cause of fatigue failure (uniaxial or multiaxial). In order to evalute the devastating
effects of cyclic stresses, several definitions were made that are used in multiaxial

endurance criteria and these are explained in this section.

A cyclic stress is composed of two stress quantites which are mean or static (o)
and alternating stress (o,). The difference of maximum (o,,,,) and minimum
(omin) Values of the cyclic stress is called range (o,.) which can be expressed as

follows:
Or = Omax — Omin (2-35)

Alternating stress is the one-half of the range and it always has a positive value:

Omax — Omin (2 36)

0, = >

while mean value is the algebraic average of maximum and minimum stresses in

the cycle:

+ .
o_m — Gmax 2 amm (237)

For a constant amplitude loading one cycle includes two reversals (see Figure
2.6) and the period (P) is the time needed for one complete cycle of the loading to
pass in a given point. Frequency (f) of the cyclic loading is related to period and it

can be shown as:

15



1

f=- (2.38)

Another definition is the stress ratio (R) which is used for expressing the loading

condition and it is the ratio of minimum and maximum stress:

Omin

R = (2.39)

O-m ax

Fully reversed loading (R=-1) and pulsating loading (R=0) are two common
loading conditions used in testing and for obtaining fatigue properties (i.e.
endurance limits). For the former loading condition, loading does not have a
mean component and maximum tensile and compressive loads are equal while for
the latter loading condition minimum stress is zero leading always to a tensile

loading.

All definitions clarified in this section and different loading cases according to R
ratios are presented in Figure 2.6.

0 t

Figure 2.6: Definition of stress quantities for cyclic stresses and example loadings
for R=-1 (fully reversed loading), R=0 (pulsating loading) and R>0
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2.2.  Multiaxial Loading

Stress state will be multiaxial if a combination of axial, bending or torsion load
acts on a component. These load combinations are very common in engineering
components. For instance, crankshafts experience bending-torsion loading while

a biaxial stress state occurs in pressure vessels.

Combined load histories can be classified as proportional and non-proportional.
Any loading that causes a change in principal stress directions and/or principal
stress ratio in time is called non-proportional loading whereas principal directions
and stress ratio remains constant for proportional loading. Loading may be non-
proportional due to several reasons such as type of loading (bending, torsion,
axial), phase difference, frequency difference between loading channels and mean
loads. For periodic loadings such as sinusoidal or triangular, some definitions
should be clarified. These definitions are related to phase and frequency
difference. A loading whose load channels act simultaneously is defined as in-
phase loading. However, if a phase shift between loading channels exist this
loading is called out-of-phase loading. In-phase and out-of-phase loadings are
illustrated in Figure 2.7. For the in-phase loading both bending and torsion loads
reach to their maximum or minimum values at the same time (see Figure 2.7a);
however, for out-of-phase loading, loadings reach their maximum (or minimum)
values at different times (see Figure 2.7b) i.e. there is a phase shift. Another
definition relates to frequency of loadings. If both channels have the same
frequency, this loading is called synchronous and asynchronous if there is
frequency difference. Synchronous and asynchronous loadings are illustrated in
Figure 2.7. For the synchronous loading, both load channels have the same wave
length (see Figure Figure 2.7¢); however, for asynchronous loading one of the
loading channels have a lower or higher wave length i.e. a higher or lower
frequency (see Figure Figure 2.7d) which creates a frequency difference. For
multiaxial testing, constant amplitude synchronous sinusoidal loadings are

preferred for investigating the effects of phase difference and mean loads.

17
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Figure 2.7 Periodic loadings; a) In-phase loading, b) Out-of-phase loading, c)

Synchronous loading, d) Asynchronous loading

For a clear identification of the loading history; effect of phase, frequency and
mean loads are investigated. We conclude that any in-phase loading without
mean stresses leads to a proportional loading history (see Figure 2.8 and Figure
2.12). However, addition of mean load to any load channel or a load channel
having only mean load for axial/bending-torsion loading, results in non-
proportional loading (see Figure 2.10). Furthermore, for axial/bending-torsion
loading, phase and/or frequency difference induce non-proportional loading (see
Figure 2.9 and Figure 2.11). On the other hand, these effects are not seen in
biaxial tension. Loading is always proportional for biaxial tension even for out-
of-phase or asynchronous loadings with/without mean stresses (see Figure 2.13 to
Figure 2.15). These findings are agreeable with the arguments made by Socie and
Marquis [7]. Example loadings are shown through Figure 2.8 and Figure 2.15.
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Figure 2.8: Bending/Torsion Proportional Loading
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Figure 2.9 Bending/Torsion Loading with 90° Phase Effect
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Figure 2.10 Bending/Torsion Loading with Mean Stress Effect
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Figure 2.11 Bending/Torsion Loading with Frequency Difference
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Figure 2.13 Biaxial Loading with 90° Phase Effect
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2.3. Multiaxial Endurance Criteria

All methods presented in this thesis are in the form:

af (t) + bg(o) < o_, (2.40)

where a and b are material constants that may be obtained from uniaxial fatigue
test results (endurance limits), f(t) and g(o) are functions of shear and normal
stresses respectively (alternating and/or mean) and o_, is the fully reversed
axial/bending endurance limit. Left hand side of (2.40) is the damage parameter
which is the stress state assumed to cause failure. Material constants are usually
calibrated with axial (or bending) and torsion fully reversed endurance limits
(0_1and 7_;) which will be called bending-torsion calibration (or classical

calibration) henceforth.
2.3.1. Equivalent Stress Criteria

After Gough and Pollard [5, 6] proposed empirical relations for correlating
multiaxial bending/torsion tests, researchers attempted to come up with multiaxial
endurance criteria that does not depend purely on experimental test results but
criteria that are based on physical mechanisms of the multiaxial fatigue process.
This endeavor is mainly to avoid the multiaxial testing campaigns which are
time-consuming and expensive. Furthermore, it is not possible to simulate all
different loading scenarios by these campaigns. As a result, extensions of static
failure criteria (maximum normal stress, octahedral shear stress theory vs.)
adapted to multiaxial fatigue were developed. These criteria transform the
multiaxial stress history into a uniaxial stress history so that the alternating part
(after mean stress correction) may be compared with endurance limits to predict
the high cycle fatigue life of the component. Two of these criteria are investigated
in this study namely Absolute Maximum Principal Stress and Signed von Mises

Stress which are explained below in detail.
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2.3.1.1. Absolute Maximum Principal Stress Criterion (AMP)

Absolute Maximum Principal Stress method is an adapted version of the static
failure criterion; maximum normal stress theory, to multiaxial fatigue problem.
Multiaxial stress state is transformed into an equivalent uniaxial stress history
from principal stresses and a signing procedure, in which the sign of equivalent
stress at a time is the sign of absolute maximum principal stress, is applied. This
signing procedure is required for including the compressive stresses and for

simulating the load spectrum more properly. Formulation is as follows:

Ocqamp(t) = Sign(UAMP (t)) * aapp(t) (2.41)
where
oamp(t) = max([abs(ay(t)), abs(o,(t)), abs(os(t))]) (2.42)

(2.41) can though to be the g(o) in (2.40) where a = 0 and b = 1.
2.3.1.2. Signed von Mises Stress Criterion (SVM)

The idea of Signed von Mises Stress criterion is similar to Absolute Maximum
Principal Stress criterion. However, this time principal stresses are replaced with
von Mises stress at a time. Like in Absolute Maximum Principal Stress method a
signing procedure is needed. Since von Mises stress is always positive,
compressive stresses can only be included with this signing operation.
Furthermore, for some loading conditions von Mises history does not reflect
reality. For example, if signing will not be applied, von Mises history comes out
to be a constant stress value without any oscillation for bending/torsion loading
with 90° phase shift which is not true as this loading case is the most damaging
situation stated by several researchers [26-30]. Different signings are proposed in
literature. Bishop and Sherrat [31] claims sign should be the sign of absolute
maximum principal stress and Papuga et al. [13] suggests that signing should be
applied according to the sign of the first invariant. In this study we implemented

the suggestion of Bishop and Sherrat’s to be consistent with the Absolute
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Maximum Principal method. Signed von Mises stress at a time can be formulated

in terms of principal stresses as follows:

Oeq,SVM (t) =

(2.43)
sign(Tamp () (01() — 02(£))? + (05(t) — 03(t))? + (03(t) — 01(t))?

(2.43) can though to be the f(7) in (2.40) where a = 1 and b = 0.

For both methods, after equivalent stress history is obtained, alternating and mean
stresses may be calculated as follows:

Guga = abs (max(aeq () ; min(o,, (t))>

(2.44)

max(deq(t)) + min(o,,(t))
Oeqm = 2

If loading includes tensile mean stresses, a mean stress correction is necessary to
obtain the fully reversed equivalent stress history. For compressive mean stresses,
the favorable effect shown by Sines [32] is ignored by taking the mean value as
zero. Several mean stress corrections that can be applied are explained in Section
2.3.2. . In this study, all mean stress corrections explained in Section 2.3.2. are
applied in order to compare their performances. When fully reversed equivalent
history is obtained alternating stress is compared with the axial/bending
endurance limit at R=-1 for determining if the component endures the loading or

not.

Although equivalent stress methods are relatively easy to compute and fast,
according to researchers [8-14] they are not appropriate for estimating fatigue
lifes of components under non-proportional loadings. Signing operation is one of
the reasons for this situation. This operation is used for equivalent stress methods
in order to include compressive stresses into stress history and to avoid some
special cases where alternating stress comes out to be very small which is not
realistic. An example to this situation is shown in Figure 2.16 for Signed von
Mises Stress criterion. As shown in Figure 2.16a without signing procedure,
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criterion leads to a stress history without alternating stresses (only mean stress);
however, alternating stresses are the most damaging stresses for fatigue life and
this loading is one of the severest loading as for being a non-proportional loading.
When signing is applied, a more realistic stress history is obtained (see Figure
2.16b); on the other hand, it may be observed that the alternating stress is same as
the alternating stress of the normal stress which shows that the criteria still
ignores the normal and shear stress interactions. Moreover, signing procedure
brings along some other drawbacks. One drawback is that equivalent stress
methods underestimate the fatigue damage (being non-conservative) for non-
proportional loadings and they end up with estimations declaring proportional
loadings are more critical. A good example to this behavior is shown in Figure
2.17. As seen from Figure 2.17a, for proportional loading case a higher value of
alternating stress is obtained while for non-proportional loading, alternating stress
iIs much lower (see Figure 2.17b). Another drawback is that signing procedure
leads to sudden jumps in the stress history which does not reflect real load
spectrums and results in highly conservative estimations for some loading
scenarios. For instance, this situation arises when absolute values of principal
stresses are very close like shown in Figure 2.18. Although the alternating values
of principal stresses is very low as being 5 MPa for this loading case in Figure
2.18, the alternating value of the stress history is 20 times higher than that of
principal stresses which is not logical leading to highly conservative estimates.
Therefore, we may conclude that signing operation is a must for equivalent stress
criteria but it is not much effective for including the directivity and complexity of
the non-proportional loadings. In addition, since these methods include only one
shear/normal stress component (f(t) or g(o)) in the damage parameter, criteria
may lead to inaccurate estimations for simple loading cases like fully reversed
torsion or bending. Conidering all the drawbacks above, two different types of
endurance criteria are developed (as improvements on equivalent stress methods)
through the years which are invariant based and critical plane methods and these

methods are explained in the following sections.
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2.3.2.  Mean Stress Correction Curves

Detrimental effects of tensile mean stresses on fatigue life and how to design
components under cyclic loading with mean stresses have long been studied since
Wohler developed the S/N curves. For this purpose several methods are proposed,
most famous methods are being Soderberg [33], Goodman [34] and Gerber [35].
These methods are based on experiments conducted with different R ratios and
they use allowable alternating and mean stress values for determining the safe
zone where no failure is expected to occur. Failure is expected, for any method, if
the stress state passes the mean stress curve. Allowable alternating stress is
usually taken as the endurance limit at 10 cycles obtained from a fully reversed

loading while allowable mean stress differs for each method.

Approaches proposed by Soderberg and Goodman are linear formulations of
alternating and mean stresses and they only deviate in allowable mean stress
values. Soderberg takes yield strength (cy) as the allowable mean stress while
ultimate strength (o,) is taken in Goodman. Gerber suggests a parabolic
formulation for which again the allowable mean stress is the ultimate strength. It
is clear that Soderberg is conservative as the formulation takes yield strength as
the mean stress limitation. However the accuracy of Goodman and Gerber curves

are questionable. There is a common belief that most of the experimental data lie
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between Goodman and Gerber curves. Dowling [36, 37 and 38] analyzed an
extensive set of steel, aluminum and titanium alloys and he concluded that
Goodman is highly conservative while Gerber is non-conservative. Moreover,
Dowling studied two other approaches being Morrow and Smith, Watson and
Topper (SWT) and found out that both methods give more accurate correlations
for all alloys investigated. Morrow formulation is the improvement of Goodman
with the replacement of the ultimate strength with true fracture strength (o). On
the other hand, true fracture strength may not always be available for the
materials considered. As a result, this formulation is not used in this study. SWT
method is a non-linear formulation of alternating and maximum stress and does
not include an allowable mean stress which might be appealing. However, due to
this property of the method, accuracy of the SWT approach for high mean
stresses is uncertain (which is not examined in literature). Mean stress curves of
Soderberg, Goodman, Gerber and SWT shown in Figure 2.19 for 34Cr4 whose
material properties are presented in Table 4.1.
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Figure 2.19: Mean Stress Curves for Al 7050 T7452

Mean stress methods may be used for various purposes. One aim is to transform
the stress state, which includes mean stresses, to a fully reversed (R=-1) stress

state, that is free of mean stresses. This function is mainly used for mean stress
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correction of equivalent stress methods’ stress history (see Section 2.3.1. ). After
mean stress correction, alternating stress can be compared with fully reversed
axial/bending endurance limit and the performance of the method may be
evaluated. Another aim is to obtain endurance limits at different R ratios. This
function is useful for critical plane approaches (see Section 2.3.7. ) if the
formulation includes an endurance limit in different R ratio than R=-1 and if the

necessary endurance limit is not available.

Formulations of mean stress curves used in this study are given in Table 2.1 with
their functionalities. Furthermore, mean stress corrections for a random stress
state and endurance limits calculated for R=0 for 34Cr4 are shown in Figure 2.20

as an example.
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Mean Stress Corrections of Each Mean Stress Curve
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Figure 2.20: a) Mean stress correction for a random stress state, and b) Endurance
limit at R=0 for 34Cr4

2.3.3. Invariant Methods Background

Invariant methods are based on invariants or history of the stress tensor/deviatoric
stress tensor. The earlier approaches of these methods (Sines [15] and Crossland
[16]) can be thought to be the improved versions of static failure criteria based on
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stresses on octahedral plane. These methods assume the cause of crack initiation
is the alternating value of the octahedral shear stress, which is related to the
second invariant of the deviatoric stress tensor, and the cause of crack opening is
the hydrostatic stress, which is the first invariant of the stress tensor. Newer
versions of these methods (Mamiya and Araujo [39] and GAM [40]) claim
alternating value of the deviatoric stress tensor itself should be used as a measure
of shear stress. Hydrostatic stress is still used for including the mean stress effects
in Mamiya and Araujo method; however, GAM method uses the maximum value

of the first principal stress history for the mean normal stress term.

Since octahedral stress is related to square root of second invariant of deviatoric
stress tensor (,//,), calculation of this stress measure is necessary for invariant

methods. Analytical formulation of \/]_2 and its alternating value is well defined

for proportional loading as stated by Reis et al. [9] and Balthazar and Malcher

[41] and can be shown as:

\/E = \/%Toct
(2.45)

1 2 2
= ﬁ\/(ax - ay) + (oy —0,) +(0y —0,)% + 6(T5y + T3, + T2,)

1

]Za =—=X
’ 6
V6 (2.46)

\/(O-x,a - O-y,a)2 + (O-y,a - Uz,a)z + (O-x,a - Gz,a)z + 6(T9%y,a + szzz,a + T%z,a)

On the other hand, for non-proportional loading these equations are not valid as
stress components may have phase shift or frequency difference creating a
complex stress path in space. Several methodologies are proposed up to now to
determine the correct definition of alternating value of the second deviatoric
stress invariant. First attempt to involve the non-proportionality is made by Fucks
(as reported by Bernasconi [42]) by using the longest chord method which is
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criticized by Papadopoulos et al. [18] as the method leads to non-unigue solution
for some cases. Papadopoulos suggested another method called Minimum
Circumscribed Hypersphere (MCH) which surrounds the second deviatoric stress
invariant history with a hyper-sphere (which becomes a circle for plane
stress/strain problems). Another definition was made by Freitas et al. [43] which
is called Minimum Circumscribed Ellipsoid (MCE) that surrounds the path with

an ellipsoid (which becomes an ellipse for plane stress/strain problems).

In literature, experimental data which is used to evaluate the performance of
different multiaxial endurance criteria, are based on smooth specimens loaded
with synchronous bending/axial and torsion loading with phase shift. This loading
creates special stress states which are plane stress and plane strain. For these
special cases, Papadopoulos et al. [18] formulated the alternating value of second
invariant for MCH approach. Formulation involves the use of deviatoric stresses
and Ilyushin space transformation [44] which is shown below.

Stress state for synchronous sinusoidal bending/axial and torsion with phase shift

is as follows:

o, sin(2rt/P) + o, T, sin(2nt/P—-68)+1, O
o = [t,sin(2nt/P — §8) +1,, 0 0 (2.47)
0 0 0

where P and § are period and phase difference respectively. Second deviatoric

invariant (/,) can also be derived from deviatoric stresses as follows:
1
s=0-— 5111 (2.48)

\/]_2 = %s 'S (2.49)

Ilyushin transformation is used in order to facilitate the calculations by
transforming the deviatoric stress tensor to a vector in 5 dimensional spaces (5D).

Rules for this transformation are as follows:
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S > S ! ( )

= |[5Sy; =—\(sy,—S

Y, (2.50)
S3 = \/Esxy; Sy = \/Esxz; S5 = \/Esyz

S =[S, S, S5 S, Ss] (2.51)

As a result

\/]_2=\/%s:s=\/%5-5 (2.52)

For harmonic bending/axial and torsion loading (loading as a function of sine or

cosine), components of this vector are as follows [45]:

2
S, = |=(o,sin(2nt/P) +0,,); S, =0;
1 \/;(a ( /) m) 2 (253)

Ss =V2(t,sinQnt/P —8) +1); S, =S5=0

This stress state creates an ellipse in S; — S5 plane which gives the history of
deviatoric second invariant. According to Papadopoulos et al. [18], value of the
major semi-axis gives the range of the second deviatoric invariant (MCC

approach).

1 |od 2 & 22422-2 (2.54)
Joa == |5 trat || +ra) —zoatasin ©)) :

For calculation of the alternating value of deviatoric stress path similar proposals
were made like in ./J, .. Magnitude of the deviatoric stress tensor can be found

from;

Isll =vs:s (2.55)
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Deperrois [46] proposed the longest chord approach in order to calculate the
alternating value of deviatoric stress path. A different methodology is suggested
for elliptical stress paths by Mamiya and Araujo [39] which surrounds the stress
path with a minimum ellipsoid. This approach is used for calculation of shear
stress term in GAM method explained in Section 2.3.4.2. as the loadings in
literature create elliptical paths (synchronous harmonic bending-torsion loading
with phase shift). For this methodology, alternating value of the stress tensor can

be found as follows:

1
D; = E(miaxsi(t) — miin si(t)); i=1,..,5 (2.56)

Isll, = /ZSD (257)

For general loading, maximum rectangular hull method based on Jacobi rotations
in ten two-dimensional spaces (1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5 and 4-5)
is presented by Mamiya et al. [47] which is the most recent solution for the

alternating value of deviatoric stress tensor.
2.3.4. Invariant Based Criteria

In this section, historical background and formulations of some widely utilized

invariant criteria are clarified.
2.3.4.1. Sines (SNS) and Crossland (CROSS) Criteria

Sines [15, 32] is one of the oldest and well known multiaxial endurance criteria
and it is the linear formulation of alternating value of the second invariant of
deviatoric stress tensor and the mean value of the first invariant of stress tensor
for inclusion of normal mean stresses. Sines came up with this formulation after
studying Gough, Pollard [5, 6] and Smith’s [48, 49] experimental data that
include in total 27 metals and several failure criteria such as Maximum Shear
Stress and Octahedral Shear Stress theories. Sines choose to use octahedral shear
stresses as the alternating part of the damage parameter since octahedral stresses

37



can be directly calculated from the stress tensor without any transformations even
for 3D stress state (lengthy principal stress calculations are required in the case of
Maximum Shear Stress theory). The choice of using hydrostatic stress as the
normal mean stress component of the damage parameter and combining this
stress value with alternating octahedral shear stress by a linear formulation is
based on the experimental data Sines studied. Sines categorized this data set into

four groups which are:
e Loading of cyclic axial with mean tension/compression
e Loading of cyclic torsion with mean torsion
e Loading of cyclic bending with mean torsion
e Loading of cyclic torsion with mean bending
He concluded that [7]:

e Mean tension has an adverse effect on axial fatigue strength and the
relation is linear unless maximum axial stress does not exceed the axial

yield strength

e Mean torsion has no effect on torsional fatigue strength unless maximum

shear stress does not exceed the shear yield strength.

e Mean torsion has no effect on bending fatigue strength unless the torsional
yield strength is not exceeded by at least 50%.

e Mean bending stress has an adverse effect on torsional fatigue life and the

relation is linear.

Based on these conclusions Sines did not use any mean shear stress component in
the damage parameter and he claimed that hydrostatic stresses influence the
fatigue life with a linear relation. The idea of ineffectiveness of mean torsion
influenced many other researchers such as Findley [21], Dang Van [24] and Liu
and Mahadevan [50] as these methods also only include the effect of mean
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normal stresses. However, this assumption is shown to be incorrect according to
Kluger et al. [26] based on test results of Krgo et al.[51], Kallmyer et al. [52] on
Ti-6Al-4V and test results of Kluger and Lagoda [53, 54], Kluger [55] on
2017(A)-T4 aluminum alloy. Kluger et al. [26] also stated that mean torsion
sensitivity is not observed for all metals (30NCD16 steel stated by Nieslony et al.

[56]). Sines damage parameter is as follows:

a\/J2a + bopm < 04 (2.58)

Material parameters a and b may be obtained from fully reversed torsion and
pulsating bending. For the case of calibration with fully reversed bending and
torsion, method leads to a singular solution giving the ratio t_,/0_; = 1/4/3.
However, according to Papadopoulos et al. [18] this behavior does not reflect the

reality since this ratio is not the same for all metals. Material parameters are as

follows:
a=r (2.59)
b = (6r, —V3.r) (2.60)

r and r, are stress ratios and they are defined as r =o_,/1_1; 19 = 0_1/0,.
Pulsating bending endurance limit (o,) is the maximum stress value (not the
alternating stress) at failure point. As seen from the formulation, three endurance
limits are required in order to calibrate the Sines criterion which may be a
disadvantage compared to other multiaxial criteria (Sections 2.3.4.2. and 2.3.7.).
Furthermore, use of mean hydrostatic stress is criticized by Claudio et al. [17] for
the case of biaxial tension. For this special stress state, Sines approach calculates
the normal mean stress as zero leading to worse estimations compared with
Crossland method that uses the same formulation except the mean stress

component which is the maximum value of hydrostatic stress.

Crossland [16] is a modification of the Sines criterion and it only differentiates

with the mean stress inclusion. Crossland prefers to use maximum hydrostatic
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stress as the normal mean stress contribution and it gives better estimations of
fatigue lives according to several authors [17, 18 and 19]. General formulation of

the criterion is as follows:

a\/]Z,a + bah,max <04 (2-61)

Crossland material constants (a, b) for bending-torsion calibration are given

below:
a=r (2.62)
b=3—-+3r (2.63)

2.3.4.2. Gongalves, Araujo and Mamiya Criterion (GAM)

This method is newer compared to other multiaxial endurance criteria [40]. Itis a
modification of the method proposed by Mamiya and Araujo [39]. GAM method
claims the geometric properties of the rectangular hull enclosing the deviatoric
stress history (after transforming the deviatoric stress tensor into a vector in five-
dimensional Ilyushin subspace), give the correct measure of alternating shear
stress. Authors also criticize the use of hydrostatic stress as a measure of mean
normal stress (arguing that it underestimates the effect of normal stress on fatigue
life) in other multiaxial endurance criteria (Sines, Crossland, Mamiya and Araujo,
Dang Van etc.) and suggest the use of maximum value of the first principal stress
history. Although, this criterion does not utilize any invariant for calculation of
shear or normal stresses, it is categorized as an invariant method as the method

does not fit to any other criteria. General formulation of the method is as follows:

a,’21'5=1 Di2 + bal,max < 0_1 (2-64)

In this formulation D; are the alternating values of transformed deviatoric

stresses:

D; = %(mflx S;i(t) — mtin Si(t)) (2.65)
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GAM material constants for bending-torsion calibration is shown below:

a=—1"1 (2.66)
S 1. -
Jﬂ1—7?
_V3-r (2.67)
V3-1

2.3.5. Critical Plane Methods Background

Critical plane theories involve calculation of mean and alternating values of shear
and normal stresses on every material plane to find the maximum value of a
proposed damage parameter. This task could be achieved by successful
coordinate transformations of the stress state. In this section formulations of shear
and normal stresses on material planes are presented which are mostly taken from
Socie and Marquis [7] and Papadopoulos et al. [18].

For the most general case, a stress vector (traction) acts on a surface that is the
combination of stress components. Cauchy’s stress theorem, which is based on
force equilibrium, states that traction on a surface can be obtained by the dot

product of stress state and normal of the surface as follows,

t=0-n, (2.68)

X

Any plane may be defined by two Euler angles 6 and ¢ (Figure 2.21) and
direction cosines for oriented axes (x’,y’ and z') are as follows and shown in
Table 2.2,

A sin(¢) cos(6) [, —sin(6)

ny = m1] = [sin(¢) sin(0) |, n, = [mzl = [ cos(60) ]
cos(¢) ng 0

(2.69)

—cos(¢)sin(0)
sin(¢)

[ [5 ] —cos(¢)cos(8)

[ n5

41



Table 2.2: Direction cosines for oriented axes

X Yy Z
X' I, mq Ny
y' I mo N2
Z' |3 ms N3
x &

Figure 2.21: Stresses on a plane

Normal and shear stresses acting on the surface can be obtained by projections of

traction on oriented axes. Normal stress acting on a plane is as follows,

Oyt =0 =My -t=m,r -0 Ny (2.70)

Ox Txy Txz
oy =0op=[L m n]|Txy Iy Tyz
Txz Tyz Oz

L
[
n, (2.71)

= O-xl% + O-ym% + O-Zn% + Z(Txyllml + szllnl + Tyzmlnl)

Normal stress has a significant property from the point of multiaxial fatigue.
Although magnitude of normal stress changes with time, it always acts along the
same direction for any loading history. Therefore, mean and alternating values of

normal stress can be obtained by [45],
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1 :
Ox'm = Onm — E(I?E%,X(nx’ o (t) - nx’) + r&lp(nx’ o (t) - nx’))
Ox'q = Ona = E(rPEaTX(nx/ ca(t) ny)— rtneiTn(nxf ca(t) ‘ny))
where t is any time in time history (T).
Expressions for shear stresses on the material plane are given by,

Tyly! = My * t = LY R (>

Ty = [l My ny] [Txy Oy Tyz][ ]
yz

Ty = Oxlily + oymym, + o,mn;y + 7y, (Lm, + I;my) +

x'y

Ty, (Mn, + myny) + 1, (Iin, + rng)

Tyl =Ny =Ny -0 N,
Oy Txy Txz
Ty = [lz Mz nzj Txy Tyz
Tty = Oxlily + oymymg + o,nyng + 14, (ymsz + [3my)

+7y,(myng + mgny) + 7, (40 + I3ny)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

It is more convenient to use the resultant shear stress vector for multiaxial fatigue

calculations which includes the combined effects of shear stress components.

Magnitude of this vector is as follows,

Tp = \/(Tx’y’)z + (Tx’z’)z

(2.80)

As already mentioned before, special cases plane stress and plane strain plays an

important role in multiaxial fatigue in order to determine the prediction

capabilities of different methods. Therefore, analytical derivations were made for

stress measures on material planes by Papadopoulos et al. [18]. History of the

normal stress can be obtained using the stress state given in (2.47) in (2.70):
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0,/ (t) = on(t) = sin?(¢) {[aa sin (?) + O'm] cos?(6) +

(2.81)
[‘L’a sin (% - 6) + rm] sin(26)}
Mean value of the normal stress is the part which is independent of time.
Oyl m = Onm = Sin?(@) (0, cos?(0) + 1,,,5in(26)) (2.82)

Since any harmonic stress component can be presented as the sum of it’s mean
and alternating values, alternating value of the normal stress is the value obtained

by subtraction of (2.82) from the maximum value of (2.81).

Ox'q = Ona = sin2(<p) X

(2.83)

62 cos*(8) + 412 sin2(8) cos?(8) + 20,7, sin(26) cos?(8) cos(8)

History of the shear stresses acting on a material plane can be obtained by using
the stress state given by (2.47) in (2.74) and (2.77):

Tyryr (£) = [aa sm( ) + am] sin(2¢) cos?(0) +

(2.84)
[ (— — 6) + Tm] sin(2¢)sin(20)
2mt
() = [aa sm( B ) + am] sin(¢) sin(20) —
(2.85)
2mt
[‘L’a sin (T — 6) + Tm] sin(¢p)cos(26)
From lengthy manipulations, (2.84) and (2.85) lead to:
2mt 2mt
T,y (t) = —psin|——) — qcos [— | +
) ()~ aees(F) -

[%n cos?(0) + %n Sin(ZQ)] sin(2¢)
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Ty (8) = —fsin (2nt> — gcos (@> +

P P (2.87)
[07"1 sin(20) — Tmcos(ZH)] sin(¢)
where auxiliary functions f, g, p and q are:
f = sin(p)(— %sin(ZB) + t,c0s(260)cos(d))
g = —T1,45in(¢@)cos(26)sin(6)
(2.88)

p= —%sin(Zgo)(aa cos2(0) + 1,5in(20)cos(8))
q= %rasin(Z(p)sin(ZH)sin(S)

Resultant shear stress on the material plane creates an ellipse for harmonic
axial/bending torsion loading. Mean of this shear stress can be obtained from
(2.86) and (2.87):

. (2.89)

= \/[(%n cos?(6) + %n sin(Ze)) sin(Zqo)]2 + [(077” sin(26) — Tmcos(20))sin(<p)]

Major semi axes of the ellipse created by two shear stresses are as follows:

€ma j €min

(2.90)

2
f2+g2+p2+q2 f2+92+p2+q2
5 + 5 — (fq — gp)?

for which e,,,; is the major semi axis and e,,;, is the minor semi axis of the

ellipse. According to Papadopoulos et al. [18] alternating value of the resultant
shear stress corresponds to the half-length of the major semi axis (MCC

approach). Thus,
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TR,a: Ta

(2.91)

f2+ g2 +p2+q2 f2+g2+p2+q22
> + > — (fq — gp)?

These equations are used for formulation of critical plane methods and for their

calibrations at different loading conditions.
2.3.5.1. Alternating value of resultant shear stress

Calculation of mean and alternating values of resultant shear stress is
straightforward for proportional loading as both shear stresses vary proportionally
in magnitude without any change in their direction. However, same is not true for
non-proportional loading as both the direction and magnitude changes. Therefore,

sophisticated methods are required which is discussed in this section.

There are several methods for determining the alternating and mean values of the
resultant shear stress. Those methods are Longest Chord (LC), Longest Projection
(LP), Minimum Circumscribed Circle (MCC) and the most recent method,
Maximum Rectangular Hull (MRH).

2.3.5.1.1. Longest Chord (LC)

One of the very first methods is the longest chord method. In longest chord, any
two points in the shear stress path ¥ (Figure 2.22) are joined with a straight line
and the line with the maximum length is called the longest chord. Method defines
the alternating shear stress as the half length of the longest chord while mean
value is the magnitude of the vector drawn to the midpoint of the longest chord.
Although computation is really simple and fast, solution is not unique where there
may exist more than one chord with the same length. A common example (see
Figure 2.22b) to this situation is the shear stress path of an isosceles triangle in
which alternating shear stress is well defined; however, due to existence of two
different mean shear stress vectors an ambiguous situation arises about the mean

value of the shear stress [27, 57].
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(a)

A

(b) |AB|=BC|

Figure 2.22: a) Longest chord definition, b) Drawback of Longest chord
2.3.5.1.2. Longest Projection (LP)

In longest projection method, main purpose is to maximize the projection of
stress path W on a straight line passing through the origin. After longest
(maximum) projection is found, alternating shear stress is the half length of the
projection whereas mean value is the distance between the origin and the
midpoint of the projection. Like in the longest chord method, this approach
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suffers from the same problem which questions solutions’ uniqueness for mean
shear stress [57]. To illustrate, for some cases method calculates mean shear
stress as zero (see Figure 2.23b) even the shear stress path ¥ has non-zero mean
value [27].

(a)

(b)

Figure 2.23: a) Longest projection definition, b) Drawback of Longest projection

48



2.3.5.1.3.  Minimum Circumscribed Circle (MCC)

In order to cope with the drawbacks stated above, enclosure methods such as
MCC and MRH were developed. Minimum Circumscribe Circle (MCC) method
was first proposed by Dan Vang et al. [58] and later improved by Papadopoulos
et al. [18]. The idea of the MCC is basically environing the shear stress path ¥
with a circle, thus the radius of the circle gives the alternating value of the shear
stress and mean value is the magnitude of the vector joining the center of the
MCC and the origin.

The problem of computing the MCC is not an easy task as complex algorithms
are required. In literature there have been several proposals for finding the MCC.
Algorithms are mainly based on geometrical computations that use two or more
data points for constructing the minimum circle and these algorithms are

explained in detail below.
2.3.5.1.3.1. Incremental Algorithm

When Dang Van et al. [58] came out with the idea of finding MCC of the shear
stress path for obtaining mean and alternating values of the resultant shear stress,
they also proposed an incremental algorithm for an approximate solution of the
problem. This algorithm was inspired from the physical mechanisms of isotropic

and kinematic hardening which are usually employed in theory of plasticity.

Incremental algorithm initializes by forming a circle with an infinite small (close
to zero) radius and an initial center, which is usually chosen as the centroid of the
shear stress path (centroid of the data points). This circle can be expanded and
shifted towards data points on the shear stress path. The expansion of the circle is
analogous to the isotropic hardening in which the elastic domain increases and
shift of the circle is analogous to kinematic hardening in which the elastic domain
moves in the stress space. Algorithm searches all data points one by one and if
any shear stress is outside the range of the circle, circle expands with an
expansion coefficient of k and it is shifted towards the shear stress point so that

this data point now lies inside the circumscribing circle. However, one may
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notice that when a data point is surrounded, another point may be left out from
the circle as it not only expands but also shifts leading to an iterative process for
engulfing all the data points. When the distance of shear stresses is less than or
equal to the radius of the circumscribing circle, algorithm stops and the MCC is
found. According to Bernasconi and Papadopoulos [57], this algorithm runs in
linear time with shear stress points, which can be shown with O(n) time. On the
other hand, this approach has some drawbacks as stated by Weber et al. [59] and

these drawbacks are as follows:

e Excluding some special cases, solution is always approximate.
Furthermore the accuracy and the speed of the algorithm strongly depend
on the value of . For lower values of «, accuracy will be high but speed

drops down and the opposite is true for higher values of «.

e Final result should not depend on the sequence of the data points
examined. However, for incremental algorithm different sequences for
which the shear stress points are searched leads to different final results of
MCC.

e Algorithm may not converge to a solution if radius growth is not equal or

greater than the displacement of the circle center.
2.3.5.1.3.2. Points-Combination Algorithm

Considering the drawbacks of the incremental algorithm, which may lead to
inaccurate solutions or long calculation times due to convergence issues, Ballard
et al. [60] and later Papadopoulos [61] proposed another algorithm. In this
algorithm, two set of circles are formed. First set includes all the possible circles
constructed by pairs of points (i.e. chords) and the second set includes circles
constructed by triple set of points (i.e. triangles). Then, for each circle in the first
set, all data points (shear stresses) are checked whether they are enclosed by the
circle or not. After control of the first circle set is completed, the second set is
controlled and finally circle with minimum diameter, which circumscribes all the

data points, is selected from both sets. Ballard et al. suggests that the algorithm
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shall stop the controlling operation when a circle in the first set fulfills the
necessary condition (surrounding all data points); on the other hand, according to
Papadopoulos search should continue until control of the second set is completed.
This algorithm does not have the drawbacks of the incremental algorithm and the
solution is exact; however, computational cost may be too high for large data sets.
Points combination algorithm requires the evaluation of distances of each data to
the center of each circle which demands the following amount of computations

according to Bernasconi and Papadopoulos [57]:

F-3)

nop = (= 2). 3(n—3)!

n!
2(n—2)! (2.92)

= %n(n —1(n-2) +%n(n —-1D(n—-2)(n—-3)

Nop IN (2.92) is the number of total evaluations while n is the total data points.
From (2.92), one may interpret that the algorithm runs in O(n*) time. This high
amount of computation is due to the search of all possible circles which may not
be necessary for finding the MCC. Therefore, Bernasconi and Papadopoulos [57]
suggested a modification based on the improvements recommended by Weber et
al. [59] for critical plane search algorithm. As a result of this modification,

amount of calculations would be as follows:
Nop = 3[n(n — 1) — 3] (2.93)

which is a second order polynomial and the new run time is O(n?).
2.3.5.1.3.3. Optimization Algorithm (fminmax)

Although points-combination algorithm gives exact solution, the calculation time
may become large depending on the number of data points. Therefore a different
approach is presented by Bernasconi et al. [42, 57] stating that the MCC is
actually a min-max optimization problem and it can be solved by a minmax
algorithm available in commercial mathematical softwares. These minmax

algorithms give exact solution with faster computation time than points
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combination algorithm; however, they are not as fast as the incremental algorithm

as shown by Bernasconi and Papadopoulos. [57].

For any minmax algorithm, at first, mean stress vector is calculated and then
alternating value of the shear stress may be obtained by an algebraic calculation.
Mean shear stress vector may be obtained by minimizing an arbitrary shear vector

* which maximizes the norm of the difference (t-t*) as follows,
T,, = min;-(max.||t(t) — t*||) (2.94)

After center of the MCC (mean shear stress vector) is obtained, radius which
corresponds to the alternating value of shear stress is the maximum value of the

norm of the difference (t-t*) which can be formulated as
To = max||z(t) — Tl (2.95)

For this study fminmax algorithm of MATLAB Optimization Package, which

performs a sequential quadratic programing routine, is utilized.
2.3.5.1.3.4. Randomized Algorithm

Another type of algorithm that is encountered in literature is the randomized
algorithm proposed by Berg et al. [62]. This algorithm is similar to points-
combination algorithm but this time points are chosen randomly and circles may
be formed with two or three data points. Again all the data points are controlled
whether they are encircled or not. However, with randomized algorithm MCC
may be obtained without controlling all the possible circles that are constructed
with two or three data points. Like in points-combination algorithm solution is
exact. Main advantage of the randomized algorithm is that it has a run time of
O(n) as claimed by Bernasconi and Papadopoulos [57]. Steps of the algorithm can

be summarized as follows:

1. Data points are sorted randomly and stored in a vector. Then an initial

circle is constructed from the first two points of this vector.
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2. Data points other than the first two points are controlled whether they are
encircled or not. If points lie inside the circle, the circle remains
unchanged. However, when a point comes out to be outside the initial
circle, then all the data points investigated are passed to a subroutine.

3. Under the first subroutine, the point which is outside the initial circle is
chosen and called gl. Other data points are randomly sorted and stored in
a vector. A new circle is constructed with the point g1 and the first point
of this new vector. Again all data points in the vector are controlled
whether they lie in the new circle or not. If a point comes out to be outside
the circle, then all data points investigated are passed to another

subroutine.

4. Under this second subroutine, the point which is outside the initial circle
is chosen and called g2. Other data points are randomly sorted and stored
in a vector. A new circle is constructed with the point ql and the g2.
Again all data points in the vector are controlled whether they lie in the
new circle or not. If a point comes out to be outside the circle, this point is
called p and a new circle is constructed with g1, g2 and p. After the
second subroutine, there are two possibilities of circles; a circle
constructed with g1 and g2 or a circle constructed with g1, g2 and p.

After step 4 is completed, procedure returns to step 3 with the circle found in step
4 being the initial circle of step 3. Then step 3 continues to control the data points
and whenever necessary step 4 is called. After step 3 is completed, procedure
returns back to step 2 with the initial circle as the one found in step 3. Then,
remaining data points of the first randomly sorted data points are controlled.
Again step 3 is called whenever it is necessary. Algorithm stops when all the data

points of the first randomly sorted data points are controlled and MCC is found.

For this study fminmax and randomized algorithm are employed as both

algorithms yield exact solution and they are the fastest ones in literature.
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Minimum circumscribed circle gives a unique solution unlike Longest Chord and
Longest Projection and currently it is the most popular method [28]. However,
the method has some drawbacks. One drawback is that MCC requires
complicated optimization algorithms. Another drawback is MCC method may not
distinguish between proportional and non-proportional loading i.e. method
bounds some proportional and non-proportional stress histories with the same
MCC [28, 63]. For MCC, two stress paths (V¥1, ¥,) are shown in Figure 2.24b. ¥;
IS a non-proportional stress history while W, is a proportional stress history. As
can be seen from the figure same alternating shear stress is calculated for both
histories which do not reflect the reality since experimental studies show non-

proportional histories are more damaging than proportional ones [26-30].
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Figure 2.24: a) Minimum circumscribed circle definition, b) Drawback of

Minimum circumscribed circle
2.3.5.1.4. Maximum Rectangular Hull (MRH)

Maximum Rectangular Hull (MRH), which is first introduced by Mamiya et al.
[47] for invariant methods and later by Araujo et al. [28] for critical plane
methods, does not have drawbacks stated above. Main idea of the MRH is to
enclose the shear stress path W with a rectangular hull (RH) and to find the
maximum of RH by 2D rotation on material plane A (see Figure 2.25b). Half
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sides of the rectangular hull for an orientation of a. may be obtained from (Figure

2.25a):
ai(a) = %(maxt(rk(a, t)) — min, (7, (a, 1)), k=12 (2.96)

For each rectangular hull alternating value of the resultant shear stress is defined

as:

To(a) = Vai(@) + a3 (a) (2.97)

Maximum Rectangular Hull is defined as the hull where orientation a maximizes
the alternating shear stress. Once the MRH is obtained, like in MCC distance
from origin to the center of MRH gives the mean value of resultant shear stress.
In this study, maximum rectangular hull search is carried out with 1° increments
from 0° up to 90°.
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Figure 2.25: a) Rectangular hull, b) Maximum rectangular hull
2.3.6.  Critical Plane Definitions

In literature, different approaches have been proposed for defining the critical
plane. Proposals are mostly based on physical mechanisms of crack initiation and
crack opening. There are three approaches according to Papuga [19] and Li et al.
[11] which are Maximum Shear Stress Amplitude (MSA), Maximum Damage
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Parameter (MDP) and Critical Plane Deviation (CPD). These approaches are

explained in detail below:
2.3.6.1. Maximum Shear Stress Amplitude (MSA)

According to maximum shear stress amplitude approach, shear stresses are the
decisive stress values that determine the critical plane. This assumption supposes
normal stresses are only effective for crack opening not for crack initiation. Plane
with the maximum shear stress amplitude (or alternating shear stress) is accepted
to be the critical plane. However the original idea appears to create an ill-posed
problem since there may be more than one plane that experiences the maximum
shear stress amplitude. This problem was discussed by Araujo et al. [28] and an
additional step is proposed in critical plane algorithm. Authors’ proposal is to find
the plane with the maximum normal stress and the shear stress amplitude within a
tolerance of the maximum value of shear stress amplitude. Although this
algorithm solves the uniqueness problem it clearly increases the calculation time.
Matake [64] and Susmel [65] methods are some examples of this approach.

2.3.6.2. Maximum Damage Parameter (MDP)

Maximum damage parameter approach assumes the plane with maximum value
of the damage parameter caused by shear and normal stress components leads to
failure of the component. Unlike MSA, MDP approach assumes that normal
stresses also have effect in crack initiation. This concept of critical plane is quite
popular as many researches preferred this assumption. Findley [21], Dang Van
[24] and Papuga PCR [66] methods are some examples that use this approach for

finding the critical plane.
2.3.6.3. Critical Plane Deviation (CPD)

Critical plane deviation approach not only tries to obtain the critical plane but
also the deviation of the critical plane from the fracture plane for which the crack
is observed in macro level. According to this approach, first the fracture plane is
attained by assuming it is the plane with maximum value of the alternating

normal stress and then the deviation of the critical plane is searched by

58



maximization of the damage parameter. This deviation is not only depends on the
stress state but also the type of material that is loaded. There are two methods
which are Liu and Mahadevan [50] and Carpinteri and Spagnoli [67] that use this
approach. Both methods give quite close estimations of the deviation angle for
the test data presented by Macha [68].

2.3.7. Critical Plane Criteria

In this section, historical background and formulations of some widely utilized
critical plane criteria are clarified. All the critical plane criteria examined here

adopt the MDP assumption.
2.3.7.1. Findley Criterion (FIN)

Idea of calculating shear and normal stress on a material plane and formulating a
damage parameter as a combination of these stress measures was first proposed
by Stanfield [20]. However, Stanfield did not verify these proposals nor he made
extensive studies based on experimental data. Damage parameter he proposed is
the linear combination of alternating resultant shear stress and normal stress
acting on a material plane. Same formulation was come out by Stullen and
Cummings [69] with a critical plane concept, assuming the critical plane is the
material plane in which the ratio of alternating resultant shear stress to normal
stress is maximum. Findley [21] proposed a damage parameter with again similar
formulation but with a different mean stress term (maximum value of the normal
stress) and a different critical plane definition. Parabolic forms were also studied
by Findley using Gough and Pollard’s experimental data [5, 6]; however, linear
formulation was found to be sufficient. Findley defines the critical plane as the
material plane where damage parameter is maximized (MDP approach). This

damage parameter usually presented as [7, 21, 70, 71, 72, 59, 63, 26];
T+ kopmax < f (2.98)

where k and f are material constants, k being the weighting constant of the

normal stress and f being the damage allowable. However, for better
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understanding the effects of different shear and normal stress measures and for
methods investigated to be consistent in formulations, demonstration used by

Papuga [45] is obtained:

a.Ty + b.0ymax < 0_4 (2.99)

Findley material constants for the calibration bending-torsion are shown below:

a=2Vvr—1 (2100)
b=2-r (2.101)
2.3.7.2. Dang Van Criterion (DV)

Dang Van [24] is one of the widely used and implemented critical plane criteria.
Method is based on stresses on mesoscopic scale (grain level). The idea of the
method comes from the observations that fatigue crack nucleation is a local
process which starts at grains that are plastically deformed and form slip bands.
According to the criterion, fatigue failure does not occur when plastically
deformed grains are stabilized by neighboring grains, which are elastically
deformed, at the state of stable elastic shakedown. However, if the material
reaches a plastic shakedown state, in which persistent slip bands are formed,
fatigue failure will occur even though the material shows an elastic behavior on

macroscopic scale.

Criterion is the linear combination of instantaneous mesoscopic shear stress and
the hydrostatic normal stress (same value for mesoscopic and macroscopic scale).
When the combination of these stress quantities exceeds the elastic stress state
level, fatigue failure occurs. Mesoscopic shear stress is a deviatoric stress
measure (calculated according to Tresca maximum shear stress theory) that
includes the effects of isotropic and kinematic hardening of the material.

Criterion can be formulated as follows:

Tineso(£) + kop(t) < f (2.102)
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where k and f are material parameters, like in Findley k is the weighting of the
normal stress (for Dang Van it is the hydrostatic stress) and f is the damage
allowable. Although this is the original version proposed by Dang Van, a
different form applicable to macroscopic scale is commonly used [70, 71, 26, 19,
14, 73] which is also adopted in this study. It is worth to mention that in
macroscopic scale there are different approaches. Kluger and Lagoda [26] use
instantaneous shear and hydrostatic stresses while Papuga [19] suggested the use
of alternating value of shear stress and maximum value of hydrostatic stress as
estimations are improved for non-proportional loadings. Formulation used here is

as follows:
a.Ty +b.0pmax < 01 (2.103)

Critical plane is assumed to be the plane with maximum of the damage parameter
and the material constants for bending-torsion calibration are shown below:

a=r (2.104)

b=3——r (2105)

2.3.7.3. Robert Criterion (RB)

Robert criterion [74, 75] is a modification of the Findley criterion. This method
separates the effects of alternating and mean parts of the normal stress in order to
improve estimation capability of Findley criterion for loadings with mean
stresses. However, this separation comes with a price as the criterion requires
another material parameter for calibration. Since only the mean normal stress part
is modified, both Findley and Robert criteria give same estimations for loadings
without mean stresses. According to Papuga [45, 19], a slight improvement is
observed for loadings with mean stresses as the Robert criterion shifts the average
value of estimations to zero while the scatter is increased and the range is very
similar compared to Findley criterion. Furthermore, Papuga states that the linear

combination of alternating and mean values of the normal stress has made the
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criterion very sensitive to mean normal stress effect. Criterion can be formulated

as follows:

a.T,+b.oyg+c.opm <04 (2.106)

Robert criterion does not fit to equation (2.40) completely since it is a three
parameter method. As a result, criterion requires three endurance limits for
calibration. Material parameters may be obtained from fully reversed
axial/bending, fully reversed torsion and pulsating axial/bending and their values

are given below:

a=2NVr—1 (2107)
b=2—7 (2.108)

_20a % 4y 2.109
€= o 2.0_4 r @+7) (2.109)

2.3.7.4. Papuga PCR Criterion (PCR)

Papuga carried out an extensive study for developing a multiaxial endurance
criterion that is suitable for both phase and mean stress effect in his PhD thesis
[45]. First, several combinations of alternating shear stress with alternating
normal stress and hydrostatic stress are tested and Papuga concluded that use of
alternating hydrostatic stress is not suitable for correlating the phase effect.
Therefore, a formulation including alternating normal stress is chosen and the
study continued for inclusion of mean stress effect. Also linear and non-linear
formulations are investigated and it resulted in the choice of a non-linear damage
parameter that is consisted of alternating shear and normal stress values as
damage indicators. For including the mean stress effect, three different options

are examined. These possible solutions are to utilize the maximum normal stress
(Omax), SWT mean stress correction (\/o,.0max) OF to Separately employ

alternating and mean values of normal stresses (o, and g,,) which is inspired

from the Robert criterion. After all these combinations are analyzed for the
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experimental data set studied, the approach proposed by Robert is adopted but
with an empirical constant weighting the mean normal stress component. Papuga
also controlled the second derivatives of the final criterion in order to determine
the limitations of the formulation i.e. the domain that guarantees the maximum

extrema. Criterion can be shown as follows:

0

T_
\/a. TZ +b.(0pq + 0_1' Onm) < 0_q (2.110)

Material parameters a and b take different values based on the type of material

(ductile, brittle) and their formulations are given below:

4 2 rt—r2
r< f ~1.155 a=—+———, b=o0_, (2.111)
3 2 2
4 4r2 \? 80_17%(4 —1?)
> |- = 1.155; = = (2.112)
r_j; 1.155; a (4+r2>' b 4+ 02

As seen from the formulations, criterion requires three endurance limits for the
calibration which may be a disadvantage. Like other critical plane methods
investigated in this study, this criterion does not include a mean shear stress term
which is criticized by Papuga [14, 19] and stated that the inclusion of T,,, may be
an improvement for preventing the shift of results to the non-conservative side

which occurs in loadings with mean torsion stresses.
2.3.8. Summary of Multiaxial Endurance Criteria

In section 2.3. three different types of multiaxial endurance criteria are explained
which are equivalent stress, invariant based and critical plane. In this section a
brief summary of the investigated criteria is made in terms of their formulation,
shear stress term, inclusion of mean stress and required endurance limits which
are presented in Table 2.3. As one may observe from the table, methods except
equivalent stress criteria and Sines have an alternating stress part that is a

combination of shear and normal stresses. The alternating stress part of the
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criteria are used for handling the phase effect and the remaining part of the
damage parameters, which is the mean stress part, is for handling the mean stress

effects (normal mean stress, shear mean stress or both).
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CHAPTER 3

AXIAL/BENDING CALIBRATIONS OF MULTIAXIAL

ENDURANCE CRITERIA

Invariant and critical plane criteria have a common property that their
formulations include weighting constants (material parameters) to adjust the
effect of shear and normal stress terms on the damage parameter. These
weighting constants are calibrated for two different uniaxial loading cases for two
parameter methods. Calibration is usually made with fully reversed axial/bending
and torsion endurance limits (bending-torsion calibration). However, torsion
endurance limit may not always be available as many engineering handbooks
such as MMPDS only include axial fatigue tests. In literature some authors
studied different adjustments of material constants. Karolczuk et al. [70, 71]
calibrate the material constant of Findley, Matake and Dang Van at different
number of cycles unlike the classical calibration (bending-torsion calibration) and
they obtain good conformity with calculated and experimental fatigue lives.
Kallmeyer et al. [52, 76] calibrated the material constants from uniaxial test data
(bending and torsion) of Ti-6Al-4V for different R ratios by a least-squares error
minimization method. Karolczuk and Macha [72] made multiaxial
proportional/non-proportional, constant and variable amplitude bending/torsion
experiments on 18G3A steel smooth specimens. They linearly modified the
material constant of Findley (without relating to endurance limits) and found the
optimum value which gives the closest estimates to experimental tests. Papuga
[45] made an extensive study and evaluated the effects of different stress

measures and calibrations to develop a new method. His final criterion, Papuga
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PCR, came out to be a three parameter critical plane method with adjusting
endurance limits of fully reversed bending, fully reversed torsion and pulsating
bending. However, none of these studies evaluate the performance of a
calibration with only axial/bending endurance limits with different R ratios.
Therefore, in this chapter, a calibration with fully reversed axial/bending and
pulsating axial/bending endurance limits, which will be called axial/bending
calibration throughout the thesis in following sections, is tested for four different
endurance criteria which are Crossland, GAM, Findley and Dang Van. For the
experimental data set obtained from literature, performances of these methods are
investigated and acceptability of the axial/bending calibration is questioned in
Section 5.4.

3.1. Derivation of Material Parameters for Crossland

Axial/bending calibration of Crossland is derived in this section by calculating

the stress state at fully reversed and pulsating axial/bending.
3.1.1. Damage Parameter for Fully Reversed Axial/Bending Loading

For fully reversed axial/bending case loading is as follows:
04 =0_q, O =Tg =Ty =0 (3.1)

For this loading, alternating value of second invariant can be obtained from (2.54)

knowing that § = 0 as the loading is uniaxial:

1 |2 0
M =— 252 ==L (3.2)
= g%, =
J2a V2.3 ! V3
and maximum value of hydrostatic stress is

1 o_
Onmax = 3 (01 + 0 +03) = == (33)

Thus, Crossland damage parameter for fully reversed axial/bending case can be
calculated from (2.61):
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=01 (3.4)

After simplification,

11
a—+h-=1 (3.5)
V3 3

3.1.2. Damage Parameter for Pulsating Axial/Bending Loading

For pulsating axial/bending case loading is as follows:

2 (3.6)

_1 205 _ o 3.7)

And maximum value of hydrostatic force is

Op
Ohmax = 3 (3.8)

Therefore, Crossland damage parameter for pulsating axial/bending case is as

follows:
Op 0o
a.——+b.—=o0_ 3.9
23 3 ! (3.9)

a.——+b.= =1, (3.10)
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Material parameters of Crossland for axial/bending calibration may be obtained
from (3.5) and (3.10); by subtracting ((3.10) from (3.5) following expression may
be obtained:

1
a.——
243

As a result, a parameter can be written in terms of ro:

a=2v3(1-r) (3.12)

Since parameter a is computed, parameter b may be found from (3.5) or (3.10):

1 1
2\/§(1 - rO).ﬁ + bg =T
b=302r—-1) (3.13)

3.2.  Derivation of Material Parameters for Gonc¢alves, Araujo and

Mamiya (GAM)

Axial/bending calibration of GAM is derived in this section by calculating the

stress state at fully reversed and pulsating axial/bending.
3.2.1. Damage Parameter for Fully Reversed Axial/Bending Loading

For loading conditions stated in (3.1), minimum and maximum values of
transformed stress quantities on Ilyushin deviatoric space can be calculated from
(2.53),

2
Sl,min = - 50-—1
2
Sl,max = 50-—1

From which alternating value can be obtained,
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2
5, = ﬁ o, (3.14)

As loading is uniaxial tension/bending, other deviatoric stress quantities (Ss) turn
out to be zero. Maximum value of principal stress may be obtained from plane

stress/strain formulations,

O max = max(w + \/(M) +12,(1)) (3.15)

01, max = 0-1 (3- 16)

Therefore, GAM damage parameter may be calculated from (2.64):

2
a.\/;a_l +b.o_1=0_4 (3.17)

Simplification of (3.17) leads to,

2
a.\/;+ b=1 (3.18)

3.2.2. Damage Parameter for Pulsating Axial/Bending Loading

For loading conditions stated in (3.6), again S; would be again zero while S; is:

S1min = 0

2
Sl,max = §GO

which leads to an alternating value of,
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12
Sia=7 ﬁ% (3.19)

Maximum value of principal stress can be obtained from (3.15),
01, max = Oo (320)

Thus, damage parameter of GAM may be calculated for pulsating axial/bending

case,

1 (2
a.z\/;ao +b.oy =0_4 (3.21)

After simplification (3.21) becomes,

1 (2
i o = 3.22
a.5 \/; +b=r, (3.22)

Material parameters of GAM for axial/bending calibration may be obtained from
(3.18) and (3.22); by subtracting (3.22) from (3.18) following expression may be

obtained:

1 (2
ZZ2=1-= 3.23
a. > 13 1-1m (3.23)

Therefore, parameter a can be written in terms of ry:
a=V6(1—-rp) (3.24)

Since parameter a is computed, parameter b may be found from (3.18) or (3.22):

\/8(1—r0).ﬁ+b=1
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b=(2r,—1) (3.25)

3.3.  Derivation of Material Parameters for Findley

Material constants (a, b) for the axial/bending calibration of Findley is derived by
transforming the k calibration results of Socie and Marquis [7] and the following

relations are obtained for the material constants:

2

a=

2
-1 1- (-3 (3.26)
+
(\/—r0(4r02 —Srp+1) To(415 —5rp+ 1))
21
b= 0 4 (3.27)

J=To(41¢ — 515 + 1)

3.4.  Derivation of Material Parameters for Dang Van

Axial/bending calibration of Dang Van is derived in this section by calculating

the stress state at fully reversed and pulsating axial/bending.
3.4.1. Damage Parameter for Fully Reversed Axial/Bending Loading

Alternating shear stress that appear in (2.103) can be derived from (2.91) and for

fully reversed axial/bending case formulation turns out to be,

T, = %\/sin2 (¢).sin?(20) + sin?(2¢) cos*(H) (3.28)

Hydrostatic force has already be obtained in (3.3) thus, Dang Van damage
parameter takes the form,

0-1

=0 (3.29)

o_
a.Tl\/sin2 (¢).sin?(20) + sin?(2¢) cos*(6) + b.
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Since the criterion defines the critical plane as the plane where damage parameter

IS maximized, derivatives of (3.29) with respect to 8 and ¢ should be equal to

ZEro,

do_; 04
30, " == X
4sin(26,, ) cos(26,,) sin(@.,) — 4 cos® (6., ) sin(6,, ) sin?(2¢.,) “o
\/sin2(<pcp). sin?(26,,) + sin?(2¢,,) cos*(0.,) (3.30)
_ 4sin(20,) sin?(@gp) [2 cos?(0,p)- (1 — cos?(@,p)) — 1] “o
\/sinz((pcp). sin?(26.,) + sin?(2¢p,) cos*(6.p)
do_, o_y sin(2¢,)sin?(26.,) + 4sin(2¢,, ) cos(2¢, ) cos*(6,,) o0
=a—. =
a 4
e \/sinz (@cp)-sin2(26,,) + sin?(2¢,,) cos*(0,,)
sin(2¢,,) sin?(26,,) [1 + Aeos(29cp) -
B Pep cp tan?(0.,) o

\/sinz ((pcp). sin?(20.,) + sin?(2¢,,) cos*(6p)

The three equations (3.29)-(3.31) include a total of four unknown parameters that
are a, b, ., and ¢.,. However, from (3.30) and (3.31) Eulerian angles for the
critical plane can be determined. Two possible combinations are found which
give the same result. These are,

T
0)

(gcp,lv (pcp,l) = (Z:

(3.32)

T T
(Qcp,z'(pcp,z) = (EJZ)

Both of these angle combinations yield the critical plane and the damage
parameter from (3.29) gives,

1 1
— = (3.33)
a2+b 3 1
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3.4.2. Damage Parameter for Pulsating Axial/Bending Loading

For the pulsating axial/bending loading case damage parameter presented in
(2.103) takes the form,

a.%\/sin2 (¢) sin?(20) + sin?(2¢) cos*(p) + b.% =0_4 (3.34)

From (3.34), it is clear that this equation is very similar to (3.29) with the only

difference being % term in shear stress term. Therefore, Eulerian angles at critical

plane would be the same. As a result, damage parameter becomes,

1 1
a.Z + bg =T (335)

Material parameters of Dang Van for axial/bending calibration may be obtained
from (3.33) and (3.35); by subtracting (3.35) from (3.33) following expression

may be obtained:

1
a. = 1-r1 (3.36)
Therefore, parameter a can be written in terms of ry:
a=4(1—-ry) (3.37)
Since parameter a is computed, parameter b may be found from (3.33) or (3.35):
1
2(1 =1y + b.§ =1

b =321, —1) (3.38)

3.5.  Summary of Axial/Bending Calibrations of Multiaxial Endurance

Criteria

In this chapter calibration of several invariant and critical plane criteria is made

which is based on only axial/bending endurance limits with different R ratios
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(R=-1 and R=0). In this section a brief summary of the derieved weigthing

constants are presented in Table 3.1.
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CHAPTER 4

METHODOLOGY AND EVALUATION OF CRITERIA

4.1. Type of Evaluation

All the criteria (equivalent stress, invariant based and critical plane) presented in
this study are developed against high cycle multiaxial fatigue; therefore, the
evaluation is concerned about whether the specimen withstands an infinite life or
not. For this purpose, experimental data presented in Section 4.3. is used and
fatigue index error (FIE) is introduced. FIE shows the derivation of the damage
parameter, calculated either with an equivalent stress, an invariant or a critical
plane criterion, from fully reversed axial/bending endurance limit. It can be

shown as follows:

D o_
FIE(%) = 0—1 « 100 (4.1)
-1

A negative value of FIE means that the criterion predicts no failure; although it
actually occurred in the experiment. Therefore, such estimation is evaluated as

non-conservative while opposite is true for positive values of FIE.

Histograms are utilized in this study for presenting the overall behavior of the
criteria. Papadopoulos et al. [18] is the first author that uses histograms for
comparison of the criteria and later it is adopted by all other multiaxial
researchers. Histograms are bar graphs that show the number of occurrences of a
particular parameter. This parameter is the mean fatigue index error for this study
as the overall predictive capabilities of the criteria is investigated. As explained
above a negative value of the FIE is undesired which means the estimation is
non-conservative; therefore, in histograms shift to left side means that the

criterion becomes non-conservative. Opposite is true for the shift to right side in a
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histogram meaning that the estimations become conservative. For an ideal
criteria, fatigue index errors and the median of the graph should be as close as
possible to zero and histogram should have a range of approximately 20% (or a
lower value) giving a mean fatigue index tolerance of -10% to 10% [45]. A
representation of a histogram is shown in Figure 4.1 for a better understanding of

the graph type.
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Figure 4.1: Example of a histogram showing conservative and non-conservative

sides, median of the graph and the tolerable range

For large data sets, like in this study, this kind of a presentation may not
sufficiently clarify the predictive capabilities of the criteria. Therefore, statistical
analysis measures (applied on mean fatigue index errors) i.e. mean, range and
standard deviations are calculated for all experimental data and for partial effects
(ex. estimations of in-phase loadings without mean stresses). Definitions of

statistical analysis measures are given below (x denotes a single analysis result):
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N
%, = 2= % 4.2)

N
Xr = Xmax — Xmin (43)
N (x; — x,,)?
Xst.dev :\/ 1—15\,1_ 1 m) (4-4)

4.2.  Procedures of Multiaxial Fatigue Endurance Analysis

A general computation process, which is implemented in a MATLAB code for
the multiaxial fatigue endurance calculations and evaluation of the criteria, is
shown in Figure 4.2. Fatigue analysis is actually a post-process and for the
multiaxial fatigue endurance anaylsis, stress state (normal and shear stresses with
phase and frequency differences) is obtained from multiaxial tests which are
conducted on smooth speciments and reported in literature. In addition,
endurance limits (alternating stress usually taken at 10" cycles) for fully reversed
bending and torsion are inputs of the analysis for calibration of the criteria and for
life estimations. Process starts with the calculation of weighting constants that are
presented in Section 2.3. to be used in related multiaxial endurance criteria. Then,
stress tensor is formed for each data in time. From this stress tensor, stress
histories on each material plane can be obtained by tensor rotations. For critical
plane criteria, all material planes are searched and normal and shear stress on
each plane are calculated while for invariant based criteria (except GAM) only
octahedral plane is investigated from which octahedral shear and hydrostatic
stresses are calculated. For GAM criterion deviatoric stresses are calculated and
alternating deviatoric stress tensor is computed. Equivalent stress criteria also
relies on stresses on a single plane like in invariant based criteria. Octahedral
shear stress is calculated for Signed von Mises while for Absolute Maximum
Principal, which is based on maximum principal stress plane, absolute maximum
principal stress is required. Calculations end when the damage parameter of the
selected criterion (indicator of fatigue failure) is computed. In order to evaluate

the performances of the criteria, fatigue index error (FIE) is calculated (for each

81



test data) from damage parameter and endurance limits as explained in section
4.1. Then, for determining the general behavior of the criteria histograms are
formed. However, since histograms do not give information about partial effects
(phase and mean stress effects) statistical analysis is performed from which the

mean, range and standard deviation of FIE is computed.
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Figure 4.2: Computational flow chart of multiaxial fatigue endurance calculations

and evaluation of criteria

83



4.3.  Experimental Data Set

The experimental data is obtained from several resources and tested materials are
shown with their respective references and material properties in Table 4.1. Data
set includes proportional and non-proportional multiaxial high cycle fatigue tests
that is appropriate in size for evaluation of phase and mean stress effects
individually and also of their combined effects. Most of the tests are harmonic
synchronous plane bending and torsion experiments conducted on smooth
specimens. Experimental data set also include uniaxial tests such as plane
bending, tension/compression and torsion in order to evaluate the capability of
methods for these simple tests. However, data set does not include experiments
performed with asynchronous loads; therefore, effect of frequency difference can
not be investigated. The ratio of torsion and axial/bending endurance limits
shown in Table 4.1 is used for classification of materials by Papadopoulos et al.
[18] and Liu and Mahadevan [50]. According to these authors, materials with

T_,/0_; < 1/4/3 are classified as ductile (mild) metals while materials with

1/4/3 < 1_4/0_; <1 are classified as hard (brittle) metals and materials with
T_1/0_1 > 1 are classified as extremely brittle metals. In this study, special
attention is given on ductile and brittle metals; therefore, grey cast iron
(extremely brittle metal) test results of Nishihara and Kawamato [77] are not

investigated.

Yield and ultimate strength values of materials which are tested with mean
stresses are also given in Table 4.1, as these values are used in mean stress
corrections of equivalent stress methods. However, fatigue limit in pulsating
bending (ay) is not found in any of the experimental data except for the material
S65A which is tested by Gough [6]. Therefore, Smith-Watson and Topper (SWT)
formulation is used for obtaining the o, as it is suggested by Dowling [37]
instead of other mean stress corrections such as Goodman or Gerber, which are
explained in Section 2.3.2. Through Table 4.1 to Table 4.16, abbreviation is used
for plane bending (PB), torsion (To), rotating bending (RB), in-phase (IP) and for
out-of-phase (OP).
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Experimental data is divided into two groups according to what kind of partial
effects are evaluated (phase effect or mean stress effect). These groups are called
nMS (tests without mean stresses) and MS (tests with mean stresses) groups. All
individual tests are labelled with respect to their related groups (nMS or MS) and
test loads are shown in Table 4.2 through Table 4.13 with phase differences (6y,)
for each material. MS group is also divided into three groups which are Ax_MS
(tests with only axial mean stress), To_MS (tests with only torsion mean stress)
and C_MS (tests with both axial and torsion mean stress) that are clarified in

tables.

Table 4.2: Test Loads for nMS Experimental Data Set — Hard Steel [77]

Loading Partial Ox a Ox_m Txy a Txy_m

Label Sxy(°)
Type  Effects [MPa] [MPa] [MPa] [MPa]

nMS1 PB IP 327.0 0.0 0.0 0.0 0.0

nMS2  PB+To IP 308.0 0.0 63.9 0.0 0.0

nMS3  PB+To IP 255.1 0.0 127.5 0.0 0.0

nMS4  PB+To IP 141.9 0.0 171.3 0.0 0.0

nMS5 To IP 0.0 0.0 201.1 0.0 0.0

nMS6  PB+To OP 255.1 0.0 127.5 0.0 30.0
nMS7  PB+To OP 142.0 0.0 171.2 0.0 30.0
nMS8  PB+To OP 255.1 0.0 127.5 0.0 60.0
nMS9  PB+To OP 147.2 0.0 177.6 0.0 60.0
nMS10 PB+To OP 308.0 0.0 63.9 0.0 90.0
nMS11 PB+To OP 264.9 0.0 132.4 0.0 90.0
nMS12 PB+To OP 152.5 0.0 184.2 0.0 90.0
nMS13 PB+To IP 138.1 0.0 167.1 0.0 0.0
nMS14 PB+To OP 140.4 0.0 169.9 0.0 30.0
nMS15 PB+To OP 145.7 0.0 176.3 0.0 60.0
nMS16 PB+To OP 150.2 0.0 181.7 0.0 90.0
nMS17 PB+To IP 245.3 0.0 122.7 0.0 0.0
nMS18 PB+To OP 249.7 0.0 124.9 0.0 30.0
nMS19 PB+To OP 252.4 0.0 126.2 0.0 60.0

86




nMS20
nMS21
nMS22

PB+To
PB+To
PB+To

OP
IP
OP

258.0
299.1
304.5

0.0
0.0
0.0

129.0
62.8
63.9

0.0
0.0
0.0

90.0
0.0
90.0

Table 4.3: Test Loads for nMS Experimental Data Set — Mild Steel [77]

Loading Partial

Ox a

Ox m

Txy a

Txy_ m

Label N - 3xy(°)
Type Effects [MPa] [MPa] [MPa] [MPa]

nMS23 PB IP 245.3 0.0 0.0 0.0 0.0
nMS24  PB+To IP 235.6 0.0 48.9 0.0 0.0
nMS25 PB+To IP 187.3 0.0 93.6 0.0 0.0
nMS26 PB+To IP 101.3 0.0 122.3 0.0 0.0
nMS27 To IP 0.0 0.0 142.3 0.0 0.0
nMS28 PB+To OP 194.2 0.0 97.1 0.0 60.0
nMS29 PB+To OP 108.9 0.0 131.5 0.0 60.0
nMS30 PB+To OP 235.6 0.0 48.9 0.0 90.0
nMS31 PB+To OP 208.1 0.0 104.1 0.0 90.0
nMS32 PB+To OP 112.6 0.0 136.0 0.0 90.0

Table 4.4: Test Loads for nMS Experimental Data Set — 42CrMo4 [78]

e Loading Partial Ox a Ox_m Tuy a Txy_m 5xy(0)
Type  Effects [MPa] [MPa] [MPa] [MPa]

nMS33 PB+To IP 328.0 0.0 157.0 0.0 0.0

nMS34 PB+To OP 286.0 0.0 137.0 0.0 90.0

nMS35 PB+To IP 233.0 0.0 224.0 0.0 0.0

nMS36 PB+To OP 213.0 0.0 205.0 0.0 90.0
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Table 4.5: Test Loads for nMS Experimental Data Set — 34Cr4 [78]

Lt Loading Partial Ox a Ox_m Tuy a Tyy_m 5, C)
Type  Effects [MPa] [MPa] [MPa] [MPa]

nMS37 PB+To IP 314.0 0.0 157.0 0.0 0.0
nMS38 PB+To OoP 315.0 0.0 158.0 0.0 60.0
nMS39 PB+To OP 316.0 0.0 158.0 0.0 90.0
nMS40 PB+To OP 315.0 0.0 158.0 0.0 120.0
nMS41 PB+To OP 224.0 0.0 224.0 0.0 90.0
nMS42 PB+To OP 380.0 0.0 95.0 0.0 90.0
nMS43 PB+To OP 129.0 0.0 258.0 0.0 90.0

Table 4.6: Test Loads for nMS Experimental Data Set — 30NCD16 [79], [80]

Loading Partial oXx_a

oxX_m

Xy a

Xy _m

Label N oxy(0)
Type  Effects [MPa] [MPa] [MPa] [MPa]
nMS44  PB+To IP 485.0 0.0 280.0 0.0 0.0
nMS45 PB+To OP 480.0 0.0 277.0 0.0 90.0
nMS46 RB+To IP 337.0 0.0 328.0 0.0 0.0
nMS47 RB+To IP 482.0 0.0 234.0 0.0 0.0
nMS48 PB+To IP 519.0 0.0 291.0 0.0 0.0
nMS49  PB+To OP 514.0 0.0 288.0 0.0 90.0
nMS50 PB+To OP 474.0 0.0 265.0 0.0 90.0
nMS51 PB+To IP 482.0 0.0 268.0 0.0 0.0

Table 4.7: Test Loads for nMS Experimental Data Set — XC18 [81]

Loadin Partial o o T T
Label : N - o P 5(0)
Type  Effects [MPa] [MPa] [MPa] [MPa]
nMS52 PB+To IP 246.0 0.0 138.0 0.0 0.0
nMS53 PB+To OP 246.0 0.0 138.0 0.0 45.0
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nMS54

PB+To

OP

264.0

0.0

148.0

0.0

90.0

Table 4.8: Test Loads for nMS Experimental Data Set — FGS800_2 [82], [83]

Loading Partial

Ox a

Ox m

Txy a

Txy m

Label ~ _ Sxy(°)
Type Effects |[MPa] [MPa] [MPa] [MPa]
nMS55 PB+To IP 228.0 0.0 132.0 0.0 0.0
nMS56 PB+To OP 245.0 0.0 142.0 0.0 90.0
nMS57 PB+To IP 199.0 0.0 147.0 0.0 0.0
Table 4.9: Test Loads for nMS Experimental Data Set — S65A [6]
Lot Loading Partial Ox_a Ox_m Tyy a Ty m 50)
Type Effects [MPa] [MPa] [MPa] [MPa]
nMS58 PB+To IP 547.5 0.0 156.0 0.0 0.0
nMS59  PB+To IP 389.2 0.0 259.5 0.0 0.0
nMS60 PB+To IP 168.3 0.0 335.9 0.0 0.0

Table 4.10: Test Loads for MS Experimental Data Set — 42CrMo4 [78], [45]

Partial

et Loading Ox_a Ox_m Tyy a Txy_m 5xy(0)
Type Effects [MPa] [MPa] [MPa] [MPa]

MS1 PB+To IP,To_MS 266.0 0.0 128.0 128.0 0.0

MS2  PB+To OP,To MS 283.0 0.0 136.0 136.0 90.0

MS3  PB+To OP,To MS 333.0 0.0 160.0 160.0  180.0

MS4  PB+To IP,Ax MS 280.0 280.0 134.0 0.0 0.0

MS5 PB+To OP,Ax_MS 271.0 271.0 130.0 0.0 90.0
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Table 4.11: Test Loads for MS Experimental Data Set — 34Cr4 [78], [84]

Loading Partial Ox a O [ Txy a Txy_m o
Label - - N _ Sxy(")
Type Effects [MPa] [MPa] [MPa] [MPa]

MS6  PB+To IP,To_MS 316.0 0.0 158.0  158.0 0.0
MS7  PB+To OP,To_MS 314.0 0.0 157.0  157.0 60.0
MS8 PB+To OP,To_MS 315.0 0.0 158.0  158.0 90.0
MS9  PB+To IP,AXx_MS 279.0 279.0 140.0 0.0 0.0
MS10 PB+To OP,Ax MS 284.0 284.0 1420 0.0 90.0
MS11 PB+To IP,To_MS 355.0 0.0 89.0 178.0 0.0
MS12 PB+To OP,Ax_ MS 2120 2120 2120 0.0 90.0

Table 4.12: Test Loads for MS Experimental Data Set — 30NCD16 [79], [80], [85]

Loadin Partial o o T T
Label e = a o o 3xy(°)
Type Effects [MPa] [MPa] [MPa] [MPa]
MS13 PB+To IP,Ax MS 480.0 300.0 277.0 0.0 0.0

MS14 PB+To OP,Ax_MS 480.0 3000 2770 0.0 45.0
MS15 PB+To OP,Ax MS 470.0 300.0 270.0 0.0 60.0
MS16 PB+To OP,Ax MS 473.0 3000 273.0 0.0 90.0
MS17 PB+To IP,Ax_ MS 590.0 300.0 148.0 0.0 0.0
MS18 PB+To OP,Ax MS 565.0 300.0 141.0 0.0 45.0
MS19 PB+To OP,Ax_ MS 540.0 300.0 135.0 0.0 90.0
MS20 PB+To IP,Ax MS 211.0 300.0 365.0 0.0 0.0
MS21 PB IP, Ax MS 630.0 300.0 0.0 0.0 0.0
MS22 PB+To IP, AX_MS 0.0 300.0 370.0 0.0 0.0
MS23 PB+To OP,Ax_ MS 220.0 300.0 385.0 0.0 90.0
MS24 To IP, Ax MS 235.0 745.0 0.0 0.0 0.0
MS25 To IP, Ax MS 251.0 704.0 0.0 0.0 0.0
MS26 To IP, Ax_MS 527.0 222.0 0.0 0.0 0.0
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MS27
MS28
MS29
MS30
MS31
MS32
MS33
MS34
MS35
MS36
MS37
MS38
MS39
MS40
MS41
MS42
MS43
MS44
MS45
MS46
MS47
MS48

PB
PB
PB
PB
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To
PB+To

IP, AXx_MS
IP, AXx_MS
IP, Ax_MS
IP, AX_MS
IP, C_MS
OP, C_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS

OP, AX_MS
IP, AX_MS
IP, AXx_MS
IP, Ax_MS
IP, AX_MS
IP, AXx_MS
IP, Ax_MS
IP, AX_MS
IP, AXx_MS

575.0
558.0
627.0
679.0
451.0
462.0
474.0
464.0
554.0
220.0
470.0
527.0
433.0
418.0
0.0
0.0
0.0
207.0
474.0
584.0
447.0
425.0

375.0
428.0
273.0
156.0
294.0
294.0
294.0
294.0
287.0
199.0
299.0
287.0
472.0
622.0
299.0
486.0
655.0
299.0
294.0
281.0
473.0
635.0

0.0
0.0
0.0
0.0
250.0
258.0
265.0
259.0
135.0
368.0
261.0
129.0
240.0
234.0
396.0
411.0
364.0
350.0
265.0
142.0
252.0
223.0

0.0
0.0
0.0
0.0
191.0
191.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
90.0
45.0
60.0
45.0
90.0
90.0
90.0
90.0
90.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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Table 4.13: Test Loads for MS Experimental Data Set — S65A [6], [84]

Lt Loading  Partial Ox a Ox_m Tyy a Txy_m 5 C)
Type Effects [MPa] [MPa] [MPa] [MPa]
MS49  PB+To IP, Ax MS 552.9 266.4 0.0 0.0 0.0
MS50 PB+To IP,Ax MS 5328  532.8 0.0 0.0 0.0
MS51 PB+To IP, To_ MS 549.8 0.0 0.0 169.9 0.0
MS52 PB+To IP, To_MS 540.6 0.0 0.0 343.6 0.0
MS53 PB+To IP,C_MS 556.0 266.4 0.0 169.9 0.0
MS54 PB+To IP,C_MS 556.0 266.4 0.0 343.6 0.0
MS55 PB+To IP,C_MS 469.5 532.8 0.0 169.9 0.0
MS56 PB+To IP,C_MS 4726 532.8 0.0 343.6 0.0
MS57 PB+To IP,Ax MS 0.0 266.4 312.0 0.0 0.0
MS58 PB+To IP,Ax MS 0.0 532.8 284.2 0.0 0.0
MS59 PB+To IP,C_MS 0.0 2664 3043  169.9 0.0
MS60 PB+To IP,C_MS 0.0 532.8 281.1 169.9 0.0
MS61 PB+To IP,C_MS 0.0 266.4 3089  343.6 0.0
MS62 PB+To IP,C_MS 0.0 5328 2934 3436 0.0
MS63 PB+To IP,C_MS 496.5 266.4 141.3 169.9 0.0
MS64 PB+To IP,C_MS 3745 266.4 249.4 169.9 0.0
MS65 PB+To IP,C_MS 1614 266.4 322.0 169.9 0.0
MS66 PB+To IP,C_MS 428.6 532.8 121.2 343.6 0.0
MS67 PB+To IP,C_MS 315.1 532.8 210.0 343.6 0.0
MS68 PB+To IP,C_MS 126.6 532.8 251.7 343.6 0.0
MS69 PB+To IP,Ax MS 386.1 266.4 257.2 0.0 0.0
MS70 PB+To IP,To_MS 383.8 0.0 255.6  169.9 0.0
MS71 PB IP, Ax MS 552.9 266.4 0.0 0.0 0.0
MS72 PB IP, Ax MS 532.8 532.8 0.0 0.0 0.0
MS73 To IP, To_MS 0.0 0.0 339.0 169.9 0.0
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MS74 To IP, To_MS 0.0 0.0 343.6 343.6 0.0

4.4.  Assumptions for Endurance Criteria

In practical applications loading history may not be defined with an analytical
formulation and it may be a variable amplitude loading defined with discrete data
points. Even though the analytical expression of the loading history is available
like in this study (harmonic bending/torsion loading), how many data points to be
utilized is an optimization problem in terms of the accuracy of the methods i.e.
minimum number of data points should be employed which provides the highest
possible accuracy of the methods. This optimization procedure may be thought

like a mesh convergence study usually carried out for finite element models.

Discretization of loading history may affect the accuracy of all the multiaxial
endurance criteria investigated in this study; however, it would have a greater
impact in critical plane models. This is due to the complex shear stress
calculations which are closely related to the non-proportionality of the loading
and which requires a well-defined loading history. Accuracy of the critical plane
methods is also affected by another factor; incrementation of Eulerian angles
(6, ¢), which is not applicable to equivalent stress or invariant based methods
since these methods does not search all material planes. According to Weber et al.
[59], usual practice for angle incrementation is to choose both increments as 10°.
However, it is questionable whether this incrementation is the optimal value or
not as there have not been a study investigating different angle increments found

in literature.

Considering the statements above, an optimization study is performed for both
the number of data points that define the loading history and for the angle
incrementation of the critical plane search. For this study, two critical plane
methods namely; Findley and Dang Van are investigated with experimental data
including four different type of partial effects specifically nMS, Ax_MS, To_MS
and C_MS. Two different critical plane methods are chosen as they reach

dissimilar critical planes owing to their damage parameters thus, the optimal
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incrementation may differ. The aim of examining loadings with different partial
effects is to obtain the optimum number of data points for the load discretization
as non-proportional loadings may require much more data points compared to

proportional loadings for accurate solutions.

Test data selected for this optimization study is composed of eight experimental
data including in phase and out of phase loadings for each set of partial effects.
Detailed information involving material, alternating and mean values of normal
and torsion loads and phase difference about the evaluated experimental data are
shown in Table 4.14.

Table 4.14: Information about the data set chosen for optimization study of load

discretization and angle incrementation

SV Test  Loading Ca Om Ta Tm Oxy
Label Type [MPa] [MPa] [MPa] [MPa] [deg]

Hard Steel nMS3 PB+To  255.1 0 127.5 0 0
Hard Steel nMS10 PB+To 308 0 63.9 0 90
42CrMo4 MS4 PB+To 280 280 134 0 0
42CrMo4 MS5 PB+To 271 271 130 0 90
42CrMo4 MS1 PB+To 266 0 128 128 0
42CrMo4 MS2 PB+To 283 0 136 136 90
30NCD16 MS31 PB+To 451 294 250 191 0

30NCD16 MS32 PB+To 462 294 258 191 90

For load discretization, eight different possibilities are investigated and shown in
Table 4.15.
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Table 4.15: Number of Discrete Points for Harmonic Loading

Tested Discrete Points

5 10 20 40 60 80 100 200

Estimations are obtained for Findley and Dang Van using as many discrete points
as given in Table 4.15 for defining the loading histories and 1° incrementation is
employed for Euler angles as it is assumed to be the lowest incrementation one
could employ. Then for each loading fatigue index errors are found and
normalized with the calculated fatigue index errors for 1000 discrete points,
which is assumed to give the most accurate solution. Finally, these results are
presented with respect to number of discrete points and shown through Figure 4.3

to Figure 4.6.
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Figure 4.3: Accuracy of a) Findley and b) Dang Van with respect to loading
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(a) Findley FIE(%) Accuracy vs Loading Discretisation
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Figure 4.5: Accuracy of a) Findley and b) Dang Van with respect to loading
discretizing for loading set To_MS
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(a) Findley FIE(%) Accuracy vs Loading Discretisation
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Figure 4.6: Accuracy of a) Findley and b) Dang Van with respect to loading
discretizing for loading set C_MS

When Figure 4.3 through Figure 4.6 are evaluated, one may conclude that
simulating the loading history with 10 discrete points is not feasible as for most
of the cases a sudden drop in accuracy is observed. The main reason of this

behavior is that the maximum and minimum peak values of a sine wave will not
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be included in the load history if only 10 discrete points are utilized. Another
interesting conclusion is related to the results obtained with only 5 discrete points.
For this situation, most of the loading cases resulted with the most accurate
solution except loading cases of To_MS and C_MS. This result should not be
confusing. One could simulate the maximum and minimum peak values of a sine
wave by only using 5 points; however, it is clear that for loadings with mean
stresses accurate solutions can not be obtained by this amount of (very few)
discrete points and in global sense more points should be employed. If all these
loading cases are considered, it is clear that the optimum number of discrete
points lie between 80-100 points. To be on the safe side, 100 points are chosen
for load discretization and utilized for all other calculations presented in this
study. For clarifying the differences in discretization, example loading histories
with 5 and 100 discrete points are shown in Figure 4.7. From this figure it is seen
that discretization with 5 discrete points is a rough estimation which includes
sharp turns at peak values while history with 100 discrete points provide a close

approximation to the real sinusoidal loading.

(a)
5 data
(@)}
C
=
©
o
-
Time
(b)
o 100 data
C
=
©
o
—
Time

Figure 4.7 Loading history with a) 5 discrete points b) 100 discrete points
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For angle incrementation same experimental data set is used but with the chosen
loading discretization (100 points) and with eleven different Euler angle
incrementations being 1° is the lowest and these incrementations are given in
Table 4.16.

Table 4.16: Euler Angles (6, ¢) Incrementation for Critical Plane Search

Tested Euler Angles (8, ¢) Incrementations

1 2 4 6 8 10 12 14 16 18 20

Estimations are obtained for Findley and Dang Van using angular increments
given in Table 4.16 and results are normalized with the fatigue index errors for 1°
incrementation which is assumed to be the most accurate solution. These results
are presented with respect to angle increments and shown through Figure 4.8 to
Figure 4.11.
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(a) Findley FIE(%) Accuracy vs Angle Incrementation
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Figure 4.8: Accuracy of a) Findley and b) Dang Van with respect to angular
incrementation for loading set Nms
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(a) Findley FIE(%) Accuracy vs Angle Incrementation
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Figure 4.9: Accuracy of a) Findley and b) Dang Van with respect to angular
incrementation for loading set Ax_MS
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(a) Findley FIE(%) Accuracy vs Angle Incrementation
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Figure 4.10: Accuracy of a) Findley and b) Dang Van with respect to angular
incrementation for loading set To_MS
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Figure 4.11: Accuracy of a) Findley and b) Dang Van with respect to angular

incrementation for loading set C_MS

We conclude from evaluation of Figure 4.8 through Figure 4.11 that higher

increments larger than 10° should not be utilized since too many fluctuations are

observed. As for incrementation of 10° which is proposed by Weber et al. [59],

critical plane may be missed out as results of nMS and To_MS groups deviate
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from the actual solution by at least 30% which is not acceptable. Optimum
incrementation seems to be in the range 2° to 4°. For the 4° incrementation,
deviation may be as high as 15% as seen from Figure 4.11b (C_MS group) which
may be acceptable if calculation time is an issue. However, for this study angle

increments of 2° are employed.
4.5.  Pseudocodes

MATLAB codes are written for conducting calculations related to each type of
criteria (equivalent stress, invariant based and critical plane). All these MATLAB
codes take inputs of experimental data presented in Section 4.2. from an Excel
file (input Excel). These inputs are test labels, materials, endurance limits,
alternating and mean values of loadings and phase and frequency difference
between loading channels. Each code writes damage parameter, fatigue index
error and stress values calculated for each test data as outputs to a new Excel file
(output Excel). In this section, pseudocodes of each type of criteria are presented.
These pseudocodes are useful for comparing the procedures of the different

criteria and for a better understanding of their algorithms.
Pseudocode for equivalent stress criteria is as follows:

1. INPUT the name of the Excel that includes experimental data.
2. INPUT the path of the input Excel.

3. INPUT the method name ('AMP' or 'SVM").

4

. INPUT the mean stress correction type ('Soderberg', ‘Goodman’, ‘Gerber’

or 'SWT").
5. INPUT the discretization of time (default is 100).
6. OPEN a new Excel for writing outputs.
7. FOR each sheet in input Excel
8. FOR each test data in input Excel
9. FOR the time history from 0 to 27 with user input discretization
10. CALCULATE g;(t) for whichi = 1,2,3
11. CALCULATE 0g,4(t)
12. ENDFOR
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13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24.
25.

26.
27.

CALCULATE 04,4/ eqms Teqmax aNd Tegmin
IF 0¢q,m is lower than or equal to 0 THEN
SET Gpqm 100
SET damage parameter (DP) to o, 4
ELSE
CALCULATE 0,4 qusc from the user input mean stress
correction
SET damage parameter (DP) t0 6.4 qmsc
ENDIF
CALCULATE FIE(%)
STORE FIE,DP and stress variables
ENDFOR
WRITE FIE,DP and stress variables to a new sheet in output Excel.
WRITE endurance limits and material parameters to a new sheet in
output Excel.
ENDFOR
CLOSE the output Excel.

Pseudocode for invariant based criteria is as follows:

© oo N o g b w D

[
= o

INPUT the name of the Excel that includes experimental data.
INPUT the path of the input Excel.
INPUT the method name ('SNS', 'CROSS' or 'GAM”).
INPUT the type of calibration Bending/Torsion or Axial (‘frtr' or 'frfQ").
INPUT the discretization of time (default is 100).
OPEN a new Excel for writing outputs.
FOR each sheet in input Excel
FOR each test data in input Excel
CALCULATE material parameters a and b
FOR the time history from 0 to 2z with user input discretization
CALCULATE o¢;(t) and S;j(t) for which =123
andj =1,2,..5
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12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.
25.
26.

217.
28.

ENDFOR

IF method is ‘SNS’ or ‘CROSS’ THEN
CALCULATE 0n,max) Oh,min» On,oscir Oh,mean
CALCULATE \/J24

ENDIF

IF method is ‘GAM’ THEN
CALCULATE 0y yqx

CALCULATE \/ 5 (% (Sjmax — Sj,mm))z
ENDIF
CALCULATE damage parameter (DP)
CALCULATE FIE(%)
STORE FIE,DP and stress variables
ENDFOR
WRITE FIE,DP and stress variables to a new sheet in output Excel.
WRITE endurance limits and material parameters to a new sheet in
output Excel.
ENDFOR
CLOSE the output Excel.

Pseudocode for critical plane criteria is as follows:

1
2
3
4
5.
6
7
8
9

INPUT the name of the Excel that includes experimental data.

INPUT the path of the input Excel.

INPUT the method name ('FIN', 'DV', 'RB' or 'PCR).

INPUT the shear stress calculation method (MCC' or 'MRH").

INPUT the MCC algorithm (‘MCC_fminmax' of 'MCC_Randomised’).
INPUT the type of calibration Bending/Torsion or Axial (‘frtr' or 'frfQ").
INPUT the incrementation of Euler angles 6 and ¢ (default is 1 degree).
INPUT the discretization of time (default is 100).

. OPEN a new Excel for writing outputs.
10.

FOR each sheet in input Excel
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.

27.
28.

29.

30.

31.

32.
33.

34.

35.

FOR each test data in input Excel
IF method is ‘FIN’, ‘DV’ or ‘PCR’ THEN
CALCULATE material parameters a and b.
ELSEIF method is ‘RB’ THEN
CALCULATE material parameters a, b and c.
ENDIF
IF method is ‘DV’ THEN
CALCULATE 0}, jnax
ENDIF
FOR 6 from 1° to 180° with the user input incrementation
FOR ¢ from 1° to 180° with the user input incrementation
FOR the time history from 0 to 2w with user input
discretization
CALCULATE t,0,,(t), 04y, (1), 052 (t)
ENDFOR
CALCULATE 0y maxs Onmins On,oscis Onmean
CALCULATE T, from a,,(t) and o,,(t) for the input
shear stress calculation method, algorithm and calibration type
CALCULATE Damage Parameter (DP)
STORE DP, stress variables, 8 and ¢ in a matrix named
CP.
ENDFOR
ENDFOR
SEARCH rows of the matrix CP for the critical plane for which the
DP is maximum.
CALCULATE FIE (%) for the DP at critical plane
WRITE FIE, DP, stress variables, 8 and ¢ to a new sheet in the
output Excel
WRITE endurance limits, material parameters to another sheet in
output Excel.
ENDFOR
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36. CLOSE the output Excel.

From these psedusocodes we show that the fastest approach is the equivalent
stress criteria as these methods require very few calculations and loops and their
formulations are very simple which only requires principal stresses. Invariant
based criteria involve more computations, particularly the calculation of
deviatoric stresses and the hydrostatic stress, compared to equivalent stress
criteria; however, their speeds are comparable. The slowest approach is the
critical plane criteria as all the material planes are searched with respect to two
Euler angles (6 and ¢) for the maximum value of a damage parameter and the
speed of the process mostly depends on the number of planes to be searched

which is related to the square of the angle incrementation.
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CHAPTER 5

RESULTS AND COMPARISON OF CRITERIA

Multiaxial endurance criteria introduced in Chapter 2 are tested on high cycle
fatigue experimental data which is compiled in Chapter 4. Performance of the
criteria are examined for two major effects namely phase effect (PE) and mean
stress effect (MSE) and their combinations. Estimations of each method for all
experimental data are presented in Appendix. In this chapter, data set is grouped
according to investigated effects (PE and MSE). Then, statistical analysis results
of these groups and histograms demonstrating general behavior of the criteria are
presented. Furthermore, tables showing statistical measures (mean, range and
standard deviation) for each group are also included for detailed analysis of the
criteria. It is worth to mention that some groups like T_MS group lack enough
data (more than 20 data) for a healthy statistical analysis according to Papuga
[45].

5.1. Equivalent Stress Criteria

Absolute Maximum Principal (AMP) and Signed von Mises (SVM) criteria are
tested for four different mean stress corrections (Soderberg, Goodman, Gerber
and SWT) and their histograms are shown below for AMP and SVM in Figure
5.1 and in Figure 5.2 respectively. Also Table 5.1 demonstrates the mean fatigue

index errors (mFIE) for each group of data.

When the first criterion AMP is investigated, we conclude that AMP result in
highly scattered estimations and include excessively non-conservative estimations
up to -70% mFIE. Histogram of SWT shows a better behavior as the most non-
conservative estimate shifts to -65%; however, range is still too high being in

limits -65% to 30%. Most of the estimations lie in the non-conservative side of

111



the histogram. When Table 5.1 is examined, one may observe the inefficiency of
the criterion for handling the phase effect as mFIE for OP_nMS group decreases
up to -20% when compared to IP_nMS groups for which mFIE is -10%. Mean
fatigue index errors are 6.32% and -1.73% for Soderberg and Goodman
estimations for ALL group and they are in tolerable range; however, these results
should not be confusing as it is due to the high conservatism of Soderberg and
Goodman curves. As shown in Table 5.1 Gerber yields non-conservative mFIE
for all group of data which are out of tolerance. One may observe from Table 5.1
that MS group have conservative estimates such as 24.14% and 9.56% for
Soderberg and Goodman while SWT correction leads to -6.29% mFIE which is
acceptable compared to Soderberg. Moreover, criterion leads to very high range
of FIE (see Table 5.2) which is 275% for Soderberg and takes its’ minimum value
for SWT with 108% which is still pretty high. Further investigation reveals that
criterion has a high standard deviation up to 46.25 for Soderberg (see Table 5.3)
for the ALL group and minimum standard deviation is obtained for again SWT

correction with 20.37 which is still too much to be accepted.
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Figure 5.1: Absolute Principal Stress Criterion Histograms for Different Mean
Stress Corrections; a) Soderberg, b) Goodman, c¢) Gerber, d) SWT
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Histogram of SVM is much better compared to AMP as the median is shifted to
5%, which is -5% for AMP with SWT correction; however, estimations are again
highly scattered and non-conservative estimations up to -70% are obtained.
Similar arguments can be made for performance of the criterion with Soderberg
and Goodman corrections but much conservative estimations are obtained for
SVM (mFIE of 36.53% and 19.74 for Soderberg and Goodman respectively for
ALL group). Again best estimations are obtained with SWT correction as the
range of histogram is -50% to 40% for which most of the results lie in the range -
10% to 20%. Mean fatigue index error for SWT correction is 0.49% for ALL
group which is pretty good and other groups are in tolerance except the T_MS
group. Like AMP criterion, SVM suffers from phase effect as estimations drop
down to non-conservative side for OP groups when mean fatigue index errors of
IP_nMS and OP_nMS groups are investigated (3.79% for IP_nMS and -8.24%
for OP_nMS). When range of the estimations are investigated (see Table 5.2),
very high range values are observed for Soderberg, Goodman and Gerber (%800
for Soderberg decreased to % 417% for Gerber). This behavior can be explained
with the highly conservative estimates of mean corrections as the most non-
conservative estimation is -70% (obtained for Gerber). Standard deviation is also
increased for Soderberg, Goodman and Gerber corrections for SVM (see Table
5.3); however, lower standard deviations is obtained for SWT correction with a
value of 18.85.
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Figure 5.2: Signed von Mises Criterion Histograms for Different Mean Stress
Corrections; a) Soderberg, b) Goodman, c¢) Gerber, d) SWT

Since best results are obtained for SWT correction, histograms of AMP and SVM

for this mean stress correction is shown in Figure 5.3.

Discussion about equivalent stress criteria can be concluded with the following

statements:

e Equivalent stress criteria yield high range and standard deviation of FIE
even when the mFIE is tolerable like in the case of SVM with SWT

correction.
e Equivalent stress criteria are unsuitable for out-of-phase loading.

e SVM criterion may be used for in-phase loadings without mean stresses as
the mFIE and range are in tolerable limits; however, for loadings with

mean stress range is high.
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Figure 5.3: Histograms of a) Absolute Maximum Principal Stress and b) Signed
von Mises Criterion with SWT Mean Stress Correction
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5.2. Invariant Based Criteria

Sines, Crossland and GAM criteria are evaluated in this section with standard
calibration (bending-torsion calibration). Evaluations are carried out by
comparing the performance of pairs Sines-Crossland and Crossland-GAM
criteria. Histograms of the criteria are shown in Figure 5.4 and Figure 5.5.
Furthermore, mean, range and standard deviation of FIE are given in Table 5.4 to
Table 5.6. When histograms of Sines and Crossland are investigated (see Figure
5.4), one may conclude that the histograms are more compact compared to
histograms of equivalent stress criteria. Therefore, it may be stated that inclusion
of mean stress into damage parameter instead of using mean stress corrections is
an effective way. Median of histograms for Sines and Crossland are -5% and 0%
respectively which indicates that Crossland is on conservative side. Improvement
of Crossland is also observed by evaluation of ranges of Sines and Crossland.
Estimations of Sines are between -35% to 30% while for Crossland, estimations
are between -30% to 10% meaning that the range is decreased for Crossland.
Mean fatigue index error of Sines for the ALL group is -4.62%; however, it is -
7.62% for Crossland (see Table 5.4). Both methods are not adequate for phase
effect as sharp drop of FIE is observed for OP groups. This behavior can be
verified by comparing IP_nMS and OP_nMS groups. As an example, mFIE is -
4.04% for IP_nMS and it drops down to -14.22% for OP_nMS for Sines criterion.
Actual improvement in Crossland is observed in the range of FIE as mentioned
above. For the ALL group Sines yields a range of 68.10% while the range is
40.48% for Crossland (see Table 5.5) but it is still a high range to be accepted.
Another advantage of Crossland is seen in standard deviations (see Table 5.6) as

they are reduced for all groups.
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Figure 5.4: Histograms of a) Sines and b) Crossland Criteria

When Figure 5.5 is investigated, one may notice that histogram of GAM criterion
is nicer compared to Crossland as the median of the histogram is shifted to 5%
and estimations are obtained in a small range (-10% to 20%). Also most of the
estimations are in the limits of -5% to 10% which is a desired property of a
histogram. If the mean fatigue index errors are evaluated (see Table 5.4), we may
conclude that they take values in between -1.40% to 2.30% which is very close to
zero and mostly conservative. Moreover, GAM criterion show small difference in
estimations of IP and OP groups indicating that phase effect is handled well.
Furthermore, MS groups have low mean fatigue indices showing the efficiency of
using maximum value of the first principal stress as the normal mean stress
inclusion. Range of GAM for ALL group is 31.5% which is slightly high from
the optimum value while the criterion result in a standard deviation of 5.8. Also,
there is not much change in standard deviations of IP and OP groups showing the

outstanding performance of the criterion.
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Figure 5.5: Histograms of a) Crossland and b) GAM Criteria

Discussion about invariant based criteria can be concluded with the following

statements:

Combination of the octahedral shear stress and hydrostatic stress seems
inadequate for handling the phase and mean stress effects. However, use
of maximum value of the hydrostatic stress (Crossland) clearly improves
the results as both the range and standard deviation decreases up to

reasonable values.

Combination of alternating value of the deviatoric stress tensor and
maximum of the first principal stress (GAM damage parameter) seems

promising as all the statistical measures reduce to tolerable values.

GAM criterion shows exceptional behavior for all groups and the speed of
the criterion is a great advantage; however, range and standard deviation

are slightly high from the optimum values. Nevertheless, estimations are

121



mostly on conservative side and the criterion may be used for any loading

case.

Table 5.4: All partial effects, FIE (%) Mean of Sines, Crossland and GAM

Criteria

FIE (%)
Mean Sines Crossland GAM
ALL (134) -4.62 -7.62 131
IP (79) -0.40 -4.15 1.70
OP (55) -10.67 -12.60 0.76
nMS (60) -9.64 -4.81 1.75
IP_nMS (27) -4.04 1.08 1.35
OP_nMS (33) -14.22 -9.62 2.07
MS (74) -0.54 -9.90 0.96
IP_MS (52) 1.49 -6.87 1.88
OP_MS (22) -5.34 -17.06 -1.20
To_MS (12) -15.39 -9.35 -0.26
Ax_MS (62) 2.33 -10.01 1.20
IP_AX_MS (44) 3.95 -6.90 2.26
OP_Ax_MS (18) -1.62 -17.59 -1.39

Table 5.5: All partial effects, FIE (%) Range of Sines, Crossland and GAM

Criteria

FIE (%) _

Sines Crossland GAM
Range

ALL (134) 68.10 40.48 31.50
IP (79) 54.04 32.80 28.94
OP (55) 53.10 39.11 28.83
nMS (60) 42.96 38.60 28.83
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IP_nMS (27) 21.73 1751 17.92

OP_nMS (33) 37.27 34.46 28.83
MS (74) 68.10 39.11 30.26
IP_MS (52) 54.04 29.41 28.89
OP_MS (22) 53.10 39.11 18.08
To_MS (12) 33.36 34.82 14.02
AX_MS (62) 48.02 37.09 30.26
IP_AX_MS (44) 43.21 29.41 28.89
OP_Ax_MS (18) 33.02 32.65 18.08

Table 5.6: All partial effects, FIE (%) Standard Deviation of Sines, Crossland and

GAM Criteria

FIE (%)
Standard Deviation Sines Crossland GAM
ALL (134) 12.50 9.67 5.81
IP (79) 10.70 7.01 5.93
OP (55) 12.42 10.73 5.59
nMS (60) 10.53 9.36 5.11
IP_nMS (27) 5.94 4.12 4.10
OP_nMS (33) 11.24 9.69 5.80
MS (74) 12.49 9.31 6.30
IP_MS (52) 12.05 6.66 6.69
OP_MS (22) 12.21 10.67 4.61
To_MS (12) 9.66 9.20 4.46
Ax_MS (62) 10.83 9.33 6.57
IP_Ax_MS (44) 11.27 7.01 6.95
OP_AXx_MS (18) 8.44 9.93 4.62
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5.3.  Critical Plane Criteria

Findley, Dang Van, Robert and Papuga PCR criteria are evaluated in this section
with standard calibration (bending-torsion calibration) and for shear stress
calculation method MCC. First two critical plane criteria include two material
parameters and they only differ in mean stress inclusion which also affects the
phase effect properties of the criteria. The last two criteria use the same stress
measures; however, their combinations are different. Robert uses a linear
formulation while Papuga PCR uses a non-linear expression. Evaluations of these
criteria are carried out by comparing the performance of pairs Findley-Dang Van,
Findley-Robert and Robert-Papuga PCR criteria. Histograms of the criteria are
shown in Figure 5.6 to Figure 5.8. Furthermore, mean, range and standard

deviation of FIE are given in Table 5.7 to Table 5.9.

One may observe that both Findley and Dang Van criteria have nicely shaped
histograms, both having their medians at 5% mFIE. Range of both criteria is
close; however, it is lower for Dang Van as the estimations lie in the limits of -
25% to 15% while it is -15% to 35% for Findley. From histograms another
conclusion can be made that most of the estimations of Findley are on the
conservative side compared to Dang Van. If the mean fatigue index errors are
investigated from Table 5.7, we conclude that both criterion tends to give
estimations in the desired tolerance; however, Findley yields more conservative
results with mFIE being 7.24% while Dang Van lead to estimations close to zero
with mFIE being -2.05%. This behavior of Dang Van is due to its better
performance in IP_MS group as the mFIE is 0.53% while it is 13.37% for
Findley. On the other hand, when IP and OP groups are compared, insufficiency
of Dang Van for out-of-phase loading is observed (PE) as estimations become
non-conservative for OP groups (-5.90% for OP_nMS, -8.87% for OP_MS).
Findley performs better for out-of-phase loadings with estimations being on the
conservative side and with lower range values compared to Dang Van. When
standard deviations are compared, it may be concluded that Dang Van has
slightly less standard deviation being 8.83 for ALL group while it is 9.02 for
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Findley. However, this is mainly due to the better performance of Dang Van in
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Figure 5.6: Histograms of a) Findley and b) Dang Van Criteria

Histogram of Robert in Figure 5.7 shows that the median remains same for the
criterion compared to Findley; however, range is increased as the estimations lie
in the limits -15% to 45%. This is due to more conservative estimations obtained
by Robert. When mean fatigue index errors for ALL group is examined, a lower
mFIE is seen for Robert criterion (6.45% Robert while 7.24% Findley). This is
due to better performance of Robert criterion for IP_MS group like in Dang Van
as the mFIE decrease down to 7.70% while it is 13.37% for Findley. However,
FIE highly increases (more conservatism) for OP_MS group as it is 7.05% for
Findley while 15.62% for Robert. When range and standard deviations are
examined (see Table 5.8 and Table 5.9), we conclude that Robert criterion is
inefficient compared to Findley as both the range and standard deviation are

increased for all groups.
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Figure 5.7: Histograms of a) Findley and b) Robert Criteria

Both Robert and Papuga PCR use the same stress values for shear and normal
stresses; however, the non-linear relation of Papuga PCR seems to work as seen
from Figure 5.8. Papuga PCR yields estimations between -10% to 10% which is
the ideal range and the median of the related histogram is at 5% again like in
other critical plane criteria. When Table 5.7 is examined, a mean fatigue index
error which is very close to zero (0.56%) is seen while for other groups mFIE is
between the limits -0.80% to 2.40% which is a superb performance. Moreover, IP
and OP estimations do not change much indicating that the phase effect is
handled successfully. Same statement can be made for mean stress effect as nMS
and MS groups show slight difference in terms of mean fatigue index errors.
Criterion also yields tolerable range for all groups which is in limits 15% to 22%
(see Table 5.8). Another advantage of the Papuga PCR criterion is that the
criterion yields the lowest standard deviations compared to all other criteria
investigated in this thesis (see Table 5.9). Standard deviation of Papuga PCR for
ALL case is 4.73 and it is in limits of 4.30 to 5.40 for other groups.
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Figure 5.8: Histograms of a) Robert and b) Papuga PCR Criteria

Discussion about critical plane criteria can be concluded with the following

statements:

Findley yields conservative estimations for all groups. Phase effect is well
handled. Mean stress inclusion with maximum value of the normal stress

is the reason that makes the criterion conservative.

Dang Van seems better compared to Findley with less mean, range and
standard deviation of FIE but the criterion is insufficient for out-of-phase

loadings as non-conservative estimations are obtained.

Separation of alternating and mean values of the normal stress works well
when these stress measures are combined in a non-linear formulation with

alternating shear stress like in Papuga PCR method.

Papuga PCR is the best criterion investigated among the critical plane

criteria. However, the criterion requires three weighting constants
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(0_1,00 and T_,) and it is much slower than equivalent stress or invariant

based criteria.

Table 5.7: All partial effects, FIE (%) Mean of Findley, Dang Van, Robert and
Papuga PCR Criteria

FIE (%)
v Findley Dang Van Robert Papuga PCR
ALL (134) 7.24 -2.05 6.45 0.56
IP (79) 9.91 1.45 6.17 0.64
OP (55) 3.42 -7.09 6.85 0.44
nMS (60) 2.00 -1.79 2.00 1.70
IP_nMS (27) 3.23 3.23 3.23 2.35
OP_nMS (33) 1.00 -5.90 1.00 1.17
MS (74) 11.49 -2.26 10.06 -0.37
IP_MS (52) 13.37 0.53 7.70 -0.25
OP_MS (22) 7.05 -8.87 15.62 -0.66
To_MS (12) 6.29 -8.16 6.02 -0.72
Ax_MS (62) 12.50 -1.12 10.84 -0.30
IP_AX_MS (44) 14.45 1.64 8.26 -0.19
OP_Ax_MS (18) 7.74 -7.89 17.14 -0.57

Table 5.8: All partial effects, FIE (%) Range of Findley, Dang Van, Robert and
Papuga PCR Criteria

FIE (%) )
Findley Dang Van Robert Papuga PCR
Range
ALL (134) 47.80 41.33 56.89 21.33
IP (79) 39.64 25.76 52.14 17.78
OP (55) 37.97 38.17 47.47 21.33
nMS (60) 27.45 38.98 27.45 19.63
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FIE (%) Findley Dang Van Robert Papuga PCR
IP_nMS (27) 18.81 18.81 18.81 15.19
OP_nMS (33) 27.45 35.19 27.45 19.63
MS (74) 42.58 41.33 52.14 21.05
IP_MS (52) 36.16 25.76 52.14 17.78
OP_MS (22) 32.76 38.17 35.96 21.05
To_MS (12) 24.96 37.33 30.17 17.02
Ax_MS (62) 42.58 30.93 52.14 21.05
IP_Ax_MS (44) 34.88 24.47 52.14 17.78
OP_Ax_MS (18) 32.76 27.77 35.96 21.05

Table 5.9: All partial effects, FIE (%) Standard Deviation of Findley, Dang Van,
Robert and Papuga PCR Criteria

FIE (%)

senrbe e Findley Dang Van Robert Papuga PCR
ALL (134) 9.02 8.83 11.28 4.73
IP (79) 8.65 5.81 11.53 4.39
OP (55) 8.12 9.93 10.90 5.18
nMS (60) 5.84 8.82 5.84 431
IP_nMS (27) 3.91 3.91 3.91 3.31
OP_nMS (33) 6.87 9.56 6.87 4.92
MS (74) 8.90 8.84 13.18 4.85
IP_MS (52) 8.40 6.40 13.69 4.61
OP_MS (22) 8.48 10.20 9.88 5.37
To_MS (12) 8.09 9.81 10.04 5.11
AX_MS (62) 8.70 8.16 13.57 4.80
IP_AX_MS (44) 8.15 6.02 14.14 4.65
OP_Ax_MS (18) 8.14 8.73 9.46 5.12
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5.4. Results of Criteria for Different Calibrations and Shear Stress
Calculation Methods

In this section the performance of selected criteria (Crossland, GAM, Findley and
Dang Van) are questioned for the axial/bending calibration and a comparison is
made with the bending-torsion calibration results. Furthermore, a different shear
stress calculation method, MRH is tested for critical plane criteria and

performance of MRH is examined.
5.4.1. Crossland Criterion

Figure 5.9 shows histograms of Crossland method for two different calibrations
investigated in this study. For axial/bending calibration, estimations become more
non-conservative as predictions with -20% and -15% increases while predictions
with 5% decreases. If partial effects are investigated from Table 5.10, one may
observe that mean fatigue index errors become worse for loadings without mean
stress (nMS, IP_nMS, OP_nMS) especially for IP_nMS group (1.08% to -9.65%)
and become better for loadings with mean stresses (MS, IP_MS, OP_MS etc.)
especially for OP_MS group (-17.06% to -7.45%). Furthermore, range and
standard deviations for IP_nMS group are affected most (see Table 5.11 and
Table 5.12). If mean fatigue index for all test data (ALL group) is investigated
predictions are slight worse (-7.62% to -8.87%). Calibration with axial/bending
endurance limits should be used for Crossland method for loading cases with

mean stresses.
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Figure 5.9: Crossland histograms showing results of a) Bending-torsion
calibration, b) Axial/bending calibration.
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5.4.2. GAM Criterion

Histograms for GAM method are shown in Figure 5.10. When effects of different
calibrations are compared, it can be seen that for both calibrations estimation are
between -15% and 15% with estimations of -5% to 5% occurrences are in
majority leading to mean fatigue indices (for all test data) as 1.31% and -0.37%
for calibration with bending-torsion and axial/bending calibration respectively.
From histograms in Figure 11, it may be understood that there is a slight shift to
the left side (non-conservative) as occurrences with 5%, 10% decreases and -5%,
-10% increases. If partial effects are investigated, it may be observed that, like in
other methods, estimations become more conservative for loadings with mean
stresses and estimations become more non-conservative for loadings without
mean stresses. For all partial groups, fatigue index range is not much affected (see
Table 5.11) while standard deviation is increased for the axial/bending calibration
case (see Table 5.12, max standard deviation is 8.25%). Furthermore, we may
conclude that the most affected group is the OP group (for both nMS and MS).
To sum up, although for some partial groups estimations worsen, mean fatigue
indices of GAM method are still in good bandwidth. Therefore, GAM method

may be used with axial/bending calibration.
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Figure 5.10: GAM histograms showing results of a) Bending-torsion calibration,

b) Axial/bending calibration.
5.4.3. Findley Criterion

Figure 5.11 shows histograms of Findley method. From these histograms average
effect of different calibrations and shear stress calculation methods may be

addressed. If a-c and b-d of Figure 5.11 are compared with each other, we may
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conclude that MRH improves the prediction capability of the method by
increasing the occurrence of 0%-10% estimations. Furthermore, if a-b and c-d of
Figure 5.11 are compared with each other, it is clear that method give better
estimations as 0%-5% occurrences are increased. If we investigate the partial
effects, from Table 5.10 it may be concluded that for axial/bending calibration
mean fatigue index decreases for in phase loadings and loadings with mean
stresses. Opposite is observed for out of phase loadings. Moreover, fatigue index
range (see Table 5.11) is decreased for loadings with mean stresses. For partial
groups standard deviation is increased slightly (see Table 5.12). As a result, we
conclude that axial/bending calibration is appropriate for Findley method as range
and standard deviation values are not much affected and self-conservatism of the

method is reduced.
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Figure 5.11: Findley histograms showing results of a) MCC and bending-torsion
calibration, b) MCC and axial/bending calibration, ¢) MRH and bending-torsion
calibration, d) MRH and axial/bending calibration combinations

5.4.4. Dang Van Criterion

Figure 5.12 shows histograms of Dang Van method. MRH method like in Findley

improves the predictions and increases the occurrences of fatigue index errors in
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range -5% to 5%. However, axial/bending calibration seems not improving the
estimations as seen from Figure 5.12b and Figure 5.12d. Moreover, from Table
5.11 and Table 5.12 it can be interpreted that all partial groups except MS group
worsen with increased range and standard deviations. For the combination MRH
with the axial/bending calibration, mean fatigue index errors are within -8.90% to
2.18% (for partial groups); however, the best combination is obtained with MRH
and bending-torsion calibration with mean fatigue index errors within -3.45% to
3.23%.
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Figure 5.12: Dang Van histograms showing results of a) MCC and bending-
torsion calibration, b) MCC and axial/bending calibration, ¢) MRH and bending-

torsion calibration, d) MRH and axial/bending calibration combinations
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

Understanding the multiaxial fatigue problem is an essential part of the reliability
assesment of engineering components, which experience high cycles of complex
loadings, and design against the multiaxial high cycle fatigue. Multiaxial fatigue
is a sophisticated problem as it involves at least two loading channels. Multiaxial
loading may cause principal axes to rotate while magnitudes of principal stresses
vary non-proportionally which makes it difficult to estimate critical locations and
life of the components. Furthermore, assesment of fatigue critical parts with
testing is expensive and time-consuming and it is not possible and feasible to test
all loading scenarios. Therefore, a methodology involving analytical and/or
numerical methods that would replace test campaigns is required. Objectives of
this thesis are to evaluate the state-of-art multiaxial endurance criteria in terms of
their predictive capabilities, to validate the criteria with experimental test results
and to develop a multiaxial life estimation code in which the multiaxial

endurance criteria are implemented.

In this thesis, several multiaxial endurance criteria (a total of nine criteria) belong
to three different types (equivalent stress, invariant based and critical plane
criteria) are explained in Chapter 2. These criteria include weighting constants for
adjusting the effects of shear and normal stresses on damage parameter, which is
the failure indicator. Calibration of weighting constants usually made by using
fully reversed bending and torsion endurance limits; however, as torsional

endurance limit may not always be available, calibration of several invariant
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based (Crossland and GAM) and critical plane (Findley and Dang Van) criteria
based on only axial/bending endurance limits with different R ratios (R=-1 and
R=0) are derieved. In addition, there are several shear stress calculation methods
in literature which is used in critical plane criteria. Two of those most popular and
accepted shear stress calculation methods namely minimum circumscribed circle
(MCC) and maximum rectangular hull (MRH) are also investigated in this thesis.
A MATLAB code is written for evaluating the criteria with regards to their
estimations of the experimental data presented in Chapter 4. Code is written in
such a way that it may easily be adapted to finite element programs as a post
processor that utilize finite element analysis results in order to find the fatigue
critical locations and the fatigue lives of engineering components. Pseudocodes of
the MATLAB code are presented in Chapter 4 for clarification of the processes
involved in the criteria. Evaluation of the criteria is carried out by comparing the
mean, range and standard deviation of the fatigue index errors of each criterion,
which show the deviation of fatigue lives from the real situation, and their general
behavior is demonstrated by related histograms. Performance of each criterion for
phase effect, mean stress effect and their combined effects are investigated. In
addition, effect of different calibrations is examined for Crossland, GAM, Findley
and Dang Van criteria and effect of different shear stress calculation methods
(MCC and MRH) is investigated for critical plane criteria.

When the criteria with the usual calibration of weighting constants (fully reversed
bending and torsion endurance limits) and the shear stress calculation method

MCC for critical plane criteria are examined following conclusions are made:

e Equivalent stress criteria (Absolute Maximum Principal and Signed von
Mises) found out to be highly scattered and non-conservative especially

for out-of-phase loading.

e Highly conservative estimations are obtained with well-known mean
stress corrections like Soderberg or Goodman while SWT mean stress

correction yields the best results for the equivalent stress criteria.
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Equivalent stress criteria may be used for an initial solution as they are
simple and fast; however, for accurate results more advanced methods

(invariant based and critical plane) should be preferred.

Invariant based criteria seems more successful compared to equivalent
stress criteria with lower range and mean fatigue index errors However,
Sines and Crossland criteria are inadequate for both phase and mean stress

effects as estimations are non-conservative.

Among the invariant criteria, GAM draws attention since both effects are
successfully handled which is indicated by small mean, range and
standard deviation of fatigue index errors. GAM owes this outstanding
performance to the use of alternating deviatoric stress tensor and
maximum of the first principal stress in it’s formulation unlike Sines and

Crossland which use alternating octahedral stress and hydrostatic stress.

Critical plane criteria search all material planes in order to find the
maximum of a proposed damage parameter. Main idea of this search is
based on the fact that principal stress directions change in time for non-
proportional loading and relying on a stress state at a specified plane is
assumed to be improper like done in equivalent stress and invariant based
criteria. This assumption seems to work as the best estimations are

obtained by the critical plane criteria.

Findley is the oldest critical plane criteria and estimations are
conservative for the data set investigated. Phase effect is well handled
with this method and the conservatism is due to the use of maximum

normal stress as mean stress inclusion.

Dang Van has lower mean, range and standard deviation compared to
Findley; however, this method gives non-conservative estimations for

non-proportional loadings.
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Among the critical plane criteria, Papuga PCR is the best criterion with
tolerable mean, range and standard deviation of fatigue index errors.
However, method requires three endurance limits (fully reversed bending,

fully reversed torsion and pulsating bending).

When the criteria with the new calibration of weighting constants

(axial/bending endurance limits) and the shear stress calculation method

MRH for critical plane criteria are examined following conclusions are made:

Calibration with axial/bending endurance limits (axial/bending
calibration) give more conservative estimations for loadings with

mean stresses especially with normal mean stresses.

Estimations become more non-consevative for loadings without mean
stresses from which we conclude that the use of torsion endurance

limit is necessary for handling the phase effect.

Axial/bending calibration decrease the self-conservatism of Findley
criterion and still estimations are in tolerable range. Therefore, this
calibration is appropriate for Findley criterion.

Axial/bending calibration is not appropriate for Crossland and Dang
Van as estimations become non-conservative in general while range

and standard deviation of fatigue index errors are increased.

Shear stress calculation method MRH shows excellent behavior for
all critical plane criteria compared to MCC as estimations are
improved for loadings with phase differences. Moreover, this method
is much faster than MCC even for the randomized algorithm which is
another advantage of MRH. Therefore, this method should be utilized

in critical plane methods instead of MCC.

Following recommendations are made for future work:
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In this thesis only phase and mean stress effects are investigated.
Performance of the criteria may be evaluated for the frequency effects.

Critical plane obtained by the critical plane criteria do not always
show the fracture plane (direction of the crack in macro scale) and
most of the data in literature do not share the fracture plnae
orientation. Therefore, deviation of critical plane and fracture plane
may be investigated for enhancing the applicability of the criteria and

for estimating the direction of cracks.

In this thesis, constant amplitude loadings are investigated. However,
real service loadings would possibly be variable amplitude loadings.
Therefore, cycle counting methodologies may be developed for

multiaxial loadings applicable to multiaxial endurance criteria.

Critical plane criteria are the slowest approach compared to invariant
based and equivalent stress criteria. This is due to the search of critical
plane in material planes with a user specified angle incrementation.
The angle incrementation proposed in this thesis, which preserve the
accuracy of the criteria, is between 2 to 4 degrees that results in 8100
to 2025 planes to be searched. In literature several researchers
proposed ways to decrease the amount of computation without
missing the critical plane. One of these proposals is to use genetic
algorithms. Another suggestion is to use greater increments at the start
of analysis (10 degrees for example) than decreasing the
incrementation for angle intervals for which the critical plane is
suspected. This procedure continues until the incrementation is
decreased up to a user specified lower value. Algorithms like these
may be searched for increasing the speed of critical plane criteria as

they give the most accurate solutions in literature.

GAM method draws attention with its” remarkable prediction
capability and speed. However, formulation presented in this thesis is
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applicable only to elliptical loading paths. As explained in Chapter 2,
a proposal is made by Mamiya and Araujo [47] that is to be used for
general loadings. This proposal may be investigated and the criteria
may be validated for general loadings.

Criteria evaluated in this thesis are all stress based and applicable to
multiaxial high cycle fatigue. However, there are stress and strain
based criteria which are applicable to both low cycle and high cycle

fatigue regime. Performance of these criteria may be investigated.

In this thesis, experiment results of smooth specimens are
investigated. However, most critical regions of components are
usually the notched areas or locations with stress concentrations.
Therefore, adaptation of the multiaxaial endurance criteria for notched

areas may be examined.
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APPENDICES

A. FIE (%) RESULTS OF MULTIAXIAL ENDURANCE

CRITERIA FOR ALL EXPERIMENTAL DATA

In the following tables estimations of multiaxial endurance criteria are presented
in terms of FIE (%) for each experimental data and materials presented in section
4.3.

Table A. 1: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — Hard Steel

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS1 417 417 -3.77 417 417 417 417 417 325
nMS2 218 426 -369 379 460 460 460 389 353
nMS3 -191 749 -071 549 817 816 817 579 6.33
nMS4 -18.33 477 -322 023 354 354 354 060 262
nMS5 -35.94 10.96 2.50 250 249 249 249 250 237
nMS6 -465 391 -402 218 689 500 6.89 530 529
nMS7 -2096 265 -518 -1.73 336 196 336 010 244
nMS8 -12.09 -6.44 -1358 -7.38 255 -415 255 396 207
nMS9 -2590 128 -6.44 -287 6.76 206 6.76 240 529
nMS10 -1.88 -1.88 -937 -188 -021 -1.88 -0.21 3.15 -0.01
nMS11 -15.61 -15.61 -22.05 -1561 -0.90 -1561 -090 6.70 0.59
nMS12 -3554 164 -6.12 -241 1034 360 1033 395 825
nMS13 -2040 216 -563 -228 095 095 095 -191 0.36
nMS14 -21.67 181 -596 -255 250 111 250 -0.74 1.69
nMS15 -26.51 052 -715 -361 592 127 592 159 458
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nMS16
nMS17
nMS18
nMS19
nMS20
nMS21
nMS22

-36.43 0.26 -7.39
-5.67 338 -451
-6.66 1.73 -6.04
-13.01 -7.42 -14.48
-17.81 -17.81 -24.08
-0.68 139 -6.35
-299 -2.99 -10.40

-3.74
1.45
0.03

-8.35

-17.81

0.92

-2.99

8.81
4.03
4.64
1.49
-3.46
1.73
-1.30

2.18
4.02
2.80
-5.15
-17.81
1.72
-3.00

8.81
4.03
4.64
1.49
-3.46
1.73
-1.30

2.51
1.74
3.09
2.87
3.94
1.02
2.09

6.97
2.95
3.47
1.24
-1.27
1.25
-0.85

Table A. 2: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — Mild Steel

Label AMP SVM SNS CROSS FIN DV RB GAM PCR
nMS23 421 421 315 421 420 420 420 421 3.56
nMS24 423 6.36 5.28 6.29 718 717 718 630 6.08
nMS25 -3.97 523 417 497 778 777 778 501 6.65
nMS26 -22.25 -0.25 -126 -083 255 255 255 -0.78 210
nMS27 -3955 470 364 364 363 364 363 364 3.5
nMS28 -10.75 -501 -598 -514 350 -1.62 350 866 3.03
nMS29 -26.86 0.00 -1.02 -055 853 466 853 6.43 7.40
nMS30 0.08 0.08 -0.93 0.08 128 008 128 6.21 1.16
nMS31 -11.60 -11.60 -12.49 -11.60 0.00 -11.56 0.00 16.28 0.96
nMS32 -36.53 0.07 -0.95 -046 1132 588 1132 09.77 9381

Table A. 3: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — 42CrMo4

Label AMP SVM SNS CROSS FIN DV RB GAM PCR
nMS33 -1.75 7.05 -539 4.19 6.65 6.65 6.65 4.63 4.72
nMS34 -28.14 -28.14 -36.49 -28.14 -16.13 -28.14 -16.13 -12.54 -9.82
nMS35 -7.29 1371 050 730 10.84 1083 1084 7.94 829
nMS36 -39.72 -10.79 -21.15 -1493 0.16 -860 0.16 -8.00 -0.39
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Table A. 4: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — 34Cr4

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS37 -755 131 -632 -055 198 197 198 -0.27 1.27
nMS38 -16.83 -11.44 -18.11 -1232 -2.89 -9.24 -289 -154 -2.16
nMS39 -22.93 -22.93 -28.73 -22.93 -9.52 -22.93 -952 -248 -5.70
nMS40 -16.83 -11.44 -18.11 -1232 -291 -925 -291 -154 -2.15
nMS41 -36.91 -537 -1250 -838 651 -1.62 651 104 499
nMS42 -732 -732 -1430 -732 -5.03 -7.32 -5.03 -0.48 -3.64
nMS43 -35.01 899 0.78 315 1015 7.05 1015 4.81 8.72

Table A. 5: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — 30NCD16

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS44 -11.17 -060 -748 -261 016 016 016 -233 -0.24
nMS45 -30.43 -30.43 -35.25 -30.43 -10.20 -21.79 -10.20 -6.36 -6.98
nMS46 -22.14 -4.27 -1090 -751 -438 -439 -438 -7.20 -4.23
nMS47 -16.39 -8.73 -15.05 -10.21 -7.97 -7.97 -797 -9.99 -6.90
nMS48 -5.88 485 -241 280 568 568 568 3.09 4.36
nMS49 -25.51 -2551 -30.66 -25.51 -5.80 -18.27 -580 -1.00 -3.53
nMS50 -31.30 -31.30 -36.06 -31.30 -13.26 -24.76 -13.26 -8.79 -9.14
nMS51 -12.84 -3.02 -9.73 -490 -225 -225 -225 -463 -2.24

Table A. 6: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — XC18

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS52 -7.27 331 6.47 421 734 735 734 408 6.61
nMS53 -13.44 -454 -163 -389 238 -0.09 238 452 209
nMS54 -20.48 -20.48 -18.05 -20.48 -3.91 -11.88 -3.91 1310 -2.82
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Table A. 7: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — FGS800 2

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS55 -1.90 983 -1526 245 500 5.00 500 349 243
nMS56 -16.67 -16.34 -3545 -16.42 1132 -7.81 1132 -0.70 6.91
nMS57 -5.78 992 -1519 027 314 314 314 143 108

Table A. 8: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion
Calibration and nMS Experimental Data Set — S65A

Label AMP SVM SNS CROSS FIN DV RB GAM PCR

nMS58 0.86 458 -491 360 492 491 491 378 3.64
nMS59 -11.11 183 -741 -136 164 164 164 -095 0.86
nMS60 -26.27 3.75 -5.67 -3.05 -047 -047 -047 -270 -0.87
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