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ABSTRACT 

EVALUATION OF SEVERAL MULTIAXIAL HIGH CYCLE FATIGUE 

ENDURANCE CRITERIA 

 

Engin, Zafer 

MSc, Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Demirkan Çöker 

 

September 2018, 175 Pages 

Multiaxial high cycle fatigue is an important failure mode for industrial 

applications as it is experienced by many engineering parts such as rotor blades 

and crankshafts. Determining the critical locations and especially the fatigue lives 

of such components have great importance. Therefore, a methodology is needed 

which would replace expensive and time-consuming test campaigns as it is not 

possible and feasible to simulate all the loading scenarios that component would 

experience during the service life. The purpose of this thesis is to evaluate the 

state-of-the-art multiaxial endurance criteria available in the literature, with 

respect to their capability of handling multiaxial load interactions, phase 

difference, mean stress, and calculation speed. The criteria transform the 

multiaxial stress state to a damage parameter which is compared with endurance 

limit to determine whether the structure endures the loading or not. In this thesis, 

criteria from the literature belonging to equivalent stress, invariant based and 

critical plane are considered. Extensive experimental data is obtained from 

literature to compare the estimations of the criteria and a MATLAB code is 

written for calculations. Life estimations are obtained for each experimental data 

and statistical analysis is performed for obtaining the general behavior of the 

criteria. Comparing each type of criteria we conclude that the equivalent stress 

methods give highly scattered estimations while invariant based methods yield 
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more reliable results; however, best estimations are obtained by critical plane 

methods. For practical applications GAM (invariant based) or Papuga PCR 

(critical plane) may be implemented, former being fast and latter being more 

precise.  

 

Keywords: Multiaxial fatigue, equivalent stress, critical plane, non-proportional 

loading, damage parameter 
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ÖZ 

FARKLI ÇOK EKSENLİ YÜKSEK ÇEVRİMLİ YORULMA 

KRİTERLERİNİN DEĞERLENDİRİLMESİ 

 

Engin, Zafer 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Demirkan Çöker 

 

Eylül 2018, 175 Sayfa 

Çok eksenli yüksek çevrimli yorulma, rotor palleri ve krank milleri gibi çoğu 

mühendislik parçasınca deneyimlendiği için sanayi uygulamaları açısından 

önemli bir kırılma modudur. Bu çeşit parçaların, yorulma kritik bölgelerinin ve 

özellikle yorulma ömürlerinin belirlenmesi büyük önem arz etmektedir. Bu 

sebeple ve parçanın servis ömrü boyunca deneyimleyebileceği tüm yükleme 

koşullarının simüle edilmesi olası ve yapılabilir olmadığı için  pahalı ve zaman 

alıcı test kampanyalarının yerini alacak bir metodolojiye ihtiyaç duyulmaktadır. 

Bu tezin amacı, literatürde mevcut olan en gelişmiş çok eksenli dayanım 

kriterlerinin; çok eksenli yük etkileşimleri, faz farkı ve ortalama gerilim etkilerini 

ele alma becerileri ve hızları bakımından değerlendirilmesidir. Bu kriterler, çok 

eksenli gerilim durumunu, yapının yüklemeye dayanıp dayanamadığını 

belirlemek için yorulma dayanımıyla karşılaştırılan  bir hasar parametresine 

dönüştürür. Bu tezde, literatürden alınan; eşdeğer gerilim, değişmez gerilim ve 

kritik düzlem kriter çeşitlerine ait metodlar incelenmiştir. Metodların ömür 

tahminlerini karşılaştırmak amacıyla literatürden kapsamlı bir deney datası 

alınmış ve hesaplamalar için bir MATLAB kodu yazılmıştır. Her deney datası 

için ömür tahminleri yapılmış ve metodların genel davranışını belirlemek için 

istatistiksel analizler yapılmıştır. Her tipte kriteri karşılaştırmamız sonucunda 

eşdeğer gerilim metotlarının hayli dağınık ömür tahminleri verdiği, bu esnada 
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değişmez gerilim esaslı metotların daha güvenilir tahminlere ulaştığı; fakat, en iyi 

öngörülerin kritik düzlem metotlarıyla elde edildiği sonucuna vardık. Pratik 

uygulamalar için, GAM (değişmez gerilim esaslı) metodu hızlı olduğu ve ya 

Papuga PCR (kritik düzlem) metodu GAM’a göre daha hassas olduğu için 

kullanılabilir.   

 

Anahtar Kelimeler: Çok eksenli yorulma, eşdeğer gerilim, kritik düzlem, orantılı 

olmayan yüklemeler, hasar parametresi 
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CHAPTER 1 

1INTRODUCTION 

Many engineering parts such as rotor blades, crankshafts, pressure vessels, 

railroad wheels and bolted joints experience cyclic loading which is a 

combination of tension, bending and torsion loads for millions of cycles (high 

cycle) leading to biaxial or triaxial stress states. Fatigue failure under such stress 

states is called multiaxial fatigue. Multiaxial fatigue involves at least two loading 

channels (multiaxial loading) that differentiates the phenomenon from uniaxial 

fatigue and complicates the problem. These complications are related to the 

interaction of loading channels which brings along additional mechanisms such 

as phase and frequency effects that influence the fatigue life. These effects cause 

principal axes to rotate during the loading and magnitude of principal stresses 

alter non-proportionally. Multiaxial fatigue may also occur for uniaxial loading 

cases if the component is geometrically complex like in the case of the threaded 

zones of fasteners. Unfortunately, multiaxial loading and geometric complexities 

are unavoidable in industrial applications. Therefore, conservative factor of 

safeties are utilized for critical parts and expensive and time-consuming test 

campaigns are carried out. However, testing all the load scenarios is not feasible. 

Therefore, a methodology is needed for determining the critical locations exposed 

to fatigue damage and estimating the fatigue lives of engineering components.  

1.1. Brief History 

For several decades, different methods are proposed and developed in order to 

estimate fatigue life of components under multiaxial loadings. However, none of 

those methods are universally accepted and applicable to all material types or 
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loading scenarios. Therefore, a good knowledge of methods is required for 

accurate life estimations. 

Multiaxial fatigue problem was first investigated by Lanza [1] when he 

performed combined rotating bending/torsion experiments. Later, several 

researchers such as Mason [2], Haigh [3], Nishihara and Kawamoto [4] and 

Gough and Pollard [5, 6] correlated multiaxial test results with empirical 

relations. Among all these researchers, Gough and Pollard [5, 6] performed the 

most extensive set of experiments and proposed empirical formulations in the 

form of ellipse quadrant and arc in order to guide the mechanical design of 

rotating shafts which are subjected to combined cyclic bending and torsion 

loading. Later, extensions of static failure criteria were developed (von Mises, 

Max Principal etc. [7]) which reduce multiaxial cyclic stress state to an equivalent 

cyclic stress history. Then, whether the structure endures the loading or not is 

determined by comparing the alternating value of the equivalent stress (after 

mean stress correction) with endurance limits. Although equivalent stress 

methods provide estimations that are in good agreement with test data for 

proportional loading, experimental studies show that they fail to account the 

directivity of non-proportional loading and effects of shear and tensile stresses on 

fatigue life [8-14]. As an improvement to equivalent stress methods, Sines [15] 

come up with a different idea that multiaxial fatigue does not only depend on the 

octahedral stress (von Mises) but also it depends on hydrostatic stress. Therefore, 

a damage parameter that is a linear combination of alternating octahedral stress 

and mean hydrostatic stress, which are both invariants of stress tensor, is 

proposed. So called invariant methods are further investigated by Crossland. 

Crossland [16] suggested using the maximum value of the hydrostatic stress 

which turns out to be more successful [17, 18, and 19]. The idea of critical plane 

approach, which gained great popularity among multiaxial researchers, was first 

generated by Stansfield [20]. This new series of criteria are based on 

experimental observations of crack initiation and it is assumed that the main 

reason of multiaxial fatigue is shear stresses while normal stresses are responsible 

for crack opening. Findley [21], McDiarmid [22, 23] and Dang Van et al. [24] are 
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some of the first critical plane methods. Damage parameters of invariant and 

critical plane methods are similar in nature; however, in critical plane methods 

stresses on all material planes are investigated instead of examining a single plane 

(for example the octahedral plane). Again like in equivalent stress methods, 

endurance of the structure is determined by comparing the damage parameter 

with endurance limits for invariant based and critical plane criteria. 

1.2.  Research Objectives 

The objectives of this thesis are as follows: 

 Implement the criteria into a multiaxial life prediction code. 

 Evaluate and compare the multiaxial endurance criteria in terms of 

performance and speed. 

 Validate the criteria with experimental test results from literature. 

1.3.  Outline of the Thesis 

Thesis begins with a literature review in Chapter 2 to gain depth into multiaxial 

fatigue phenomenon. First, some common stress quantities are briefly clarified 

since these stress quantities are utilized in multiaxial endurance criteria. Then, 

complex loading is explained as it is one of the main reasons of multiaxial fatigue 

and one needs to have a good knowledge about loading types and combinations. 

Chapter 2 continues with definitions of alternating and mean values of shear and 

normal stresses for non-proportional loading and with mean stress correction 

curves which are used for inclusion of mean stress effects in endurance criteria. 

Then, the main ideas and formulations of investigated criteria are introduced. For 

this research only the criteria appropriate to high cycle fatigue are chosen as it is 

more common in industry.  

Most of the multiaxial endurance criteria include torsion endurance limits for 

calibrating weighting constants of shear and normal stresses. However, torsion 

endurance limit may not be always available; therefore, formulations of 

weighting constants for axial/bending endurance limits with different R ratios 
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(R=-1 and R=0) are derived for selected invariant and critical plane criteria 

(Crossland, GAM, Findley and Dang Van) and these are presented in Chapter 3.   

In Chapter 4, general procedure of multiaxial fatigue endurance analysis and the 

methodology for evaluating/comparing the criteria are explained. Moreover, 

experimental data set which is obtained from literature and used for this 

evaluation is presented. This data set contains harmonic (loading as a function of 

sine or cosine) bending and torsion tests with phase difference and it is proper for 

the evaluation of phase and mean stress effects. Data set also contains uniaxial 

test results to investigate the performance of the criteria for simple tests. For this 

thesis ductile and brittle materials are analyzed. Cast irons are excluded from the 

data set since there are very few experimental results for these materials and the 

use of cast irons is very limited in industry. Finally, pseudocodes for equivalent 

stress, invariant based and critical plane criteria are presented for clarification of 

the procedures in these algorithms.    

Estimations of each multiaxial endurance criteria are presented in Chapter 5. 

Calculations are carried out for each experimental data and predictive capabilities 

of the criteria are shown with histograms (after a statistical analysis) which is the 

usual representation adopted in literature. These histograms show the general 

behavior of the criteria; however, they are insufficient for investigating the partial 

effects namely phase and mean stress effects or their combinations; therefore, 

tables presenting the statistical results (mean, range and standard deviation) of 

these partial effects are also included. Furthermore, comparisons of each criterion 

within each type of criteria and with other types of criteria are performed in order 

to find out which type of criteria and which criterion performs better.  

In Chapter 6, a summary of the thesis is presented with concluding remarks and 

also suggestions for future work are involved.  
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CHAPTER 2 

2LITERATURE REVIEW 

In this chapter, type of multiaxial loading, multiaxial endurance criteria and 

common stress quantities used in these criteria are explained.  

2.1. Common Stress Quantities 

In this section stress quantities commonly encountered in multiaxial fatigue 

criteria are introduced for a better understanding of the criteria. Most of the 

definitions and formulations described here are taken from Socie and Marquis [7] 

and Budynas and Nisbett [25].   

2.1.1. Stresses 

Stress is the distribution of load (force or moment) acting on a surface. Stress is 

unique at a point on the surface and has two components as normal and shear 

stresses. These stress quantities are represented by Greek symbols; σ is used for 

normal stress and τ is used for shear stress. Double subscription is preferred for 

indicating the direction of the stress and also the normal of the surface.   

The state of stress at a point can be described by six stress components acting on 

three orthonormal planes of an infinite-small cube. These stress components are 

𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧 and 𝜏𝑥𝑧 described in Figure 2.1. Since normal stresses act

perpendicular to the surface, usually they are shown with only one subscript 

(𝜎𝑥, 𝜎𝑦 and 𝜎𝑧). If normal stress is in the same direction with its subscript than it

has a positive value and called tensile stress while for the opposite case it is called 

compressive stress. For shear stresses, first subscript indicates the direction of the 

surface normal and second subscript indicates the direction with respect to 
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coordinate axis to which the shear stress is parallel. For equilibrium, cross-shear 

stresses are equal (𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦,𝜏𝑧𝑥 = 𝜏𝑥𝑧).   

 

Figure 2.1: Stress state at a point 

2.1.2.  Principal Stresses 

At a point on a component, there are infinitely many planes passing through thus, 

infinitely many stress states exist. For evaluation of fatigue strength, it is often of 

interest to investigate the maximum values of normal and shear stresses. This task 

may be achieved by transformation of stress state with respect to two Euler angles 

𝜃 and 𝜑. For a particular orientation, shear stresses on three orthonormal planes 

of the stress cube become zero while normal stresses take their maximum values. 

These are called principal stresses and related orientations give the principal axes. 

Principal stresses are denoted by 𝜎1, 𝜎2 and 𝜎3. Maximization of shear stresses is 

also possible. Principal shear stresses (𝜏12, 𝜏23 and 𝜏13) may be obtained by 45
o
 

rotation around one of the principal axes. However, for this case normal stresses 

will not be zero, their value will be the average of  principal stresses other than 

the the principal stress for which the rotation is made along it’s direction.  

Finding principal stresses is actually an eigenvalue problem. Since shear stresses 

become zero, stress matrix will be diagonal; therefore, principal stresses will be 

eigenvalues and their corresponding directions will be eigenvectors (directional 

cosines). 
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𝝈𝒏 = 𝜎𝑝𝒏 (2.1) 

By rewriting 

(𝝈 − 𝜎𝑝𝑰)𝒏 = 0 (2.2) 

where 𝝈 is the stress tensor, n is the eigenvectors, 𝜎𝑝 is the eigenvalue and I is the 

identity matrix. In order to avoid the trivial solution determinant of (𝝈 − 𝜎𝑝𝑰) 

should be zero. In other words, 

|

𝜎𝑥 − 𝜎𝑝 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 − 𝜎𝑝 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎𝑝

| = 0 (2.3) 

which leads to a cubic equation, 

𝜎𝑝
3 − (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧)𝜎𝑝

2 

−(𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑥𝑧
2 − 𝜎𝑥𝜎𝑦 − 𝜎𝑥𝜎𝑧 − 𝜎𝑦𝜎𝑧)𝜎𝑝 

−(𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2 ) = 0 

(2.4) 

Solution of this equation gives three principal stresses. It is important to mention 

that principal stresses occur for one particular orientation regardless of the 

coordinate system chosen for representing the stress state. As a result, the 

coefficients of this cubic equation are constant. 

𝐼1 =  𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧  (2.5) 

𝐼2 =  𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑥𝑧
2 − 𝜎𝑥𝜎𝑦 − 𝜎𝑥𝜎𝑧 − 𝜎𝑦𝜎𝑧 (2.6) 

𝐼3 =  𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2  

(2.7) 

 

𝐼1, 𝐼2 and 𝐼3 are called stress invariants and these constants have importance in 

fatigue life estimations. Especially, first two invariants or their deviatoric 
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counterparts, which are explained in following sections, are used as a measure of 

mean normal stress and alternating shear stress respectively. 

Roots of (2.4) can be found from the following formula [86], 

𝜎𝑖 = 𝜔𝑐𝑜𝑠(𝛽𝑖) +
𝐼1

3
 

(2.8) 

where i=1,2,3. ω and β can be found from, 

𝜔 =
2

3
√𝐼1

2 − 3𝐼2  (2.9) 

𝛽𝑖 =

cos (
2𝐼1

3 − 9𝐼1𝐼2 + 27𝐼3

2(𝐼1
2 − 3𝐼2)

3
2

)

−1

+ 2𝜋𝑘

3
 

(2.10) 

where 𝑘 = 0, ±1, ±2, …  

After principal stresses are found, their directions may be obtained from (2.3) by 

writing the related principal stress value to 𝜎𝑝 and solving the three equations 

with three unknown eigenvectors. Since these three equations give infinitely 

many solutions, another condition is necessary which comes through the 

orthogonality. This relation is as follows: 

𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1 (2.11) 

where 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are directional cosines of the related principal stress. For a 

better understanding, principal stresses and directional cosines of the first 

principal stress are presented in Figure 2.2. 
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Figure 2.2: Principal stresses and directional cosines of the first principal stress 

Knowing the principal stresses and for 𝜎1 ≥ 𝜎2 ≥ 𝜎3, principal shear stresses can 

be obtained by following equations, 

𝜏12 =
𝜎1 − 𝜎2

2
 (2.12) 

𝜏23 =
𝜎2 − 𝜎3

2
 (2.13) 

𝜏13 =
𝜎1 − 𝜎3

2
 (2.14) 

From (2.12) to (2.14), it may be concluded that 𝜏𝑚𝑎𝑥 = 𝜏13. Normal stresses on 

maximum shear stress planes can be found as follows: 

𝜎𝑆𝑃12 =
𝜎1 + 𝜎2

2
 (2.15) 

𝜎𝑆𝑃23 =
𝜎2 + 𝜎3

2
 (2.16) 

𝜎𝑆𝑃13 =
𝜎1 + 𝜎3

2
 (2.17) 

Principal stresses can easily be visualized with Mohr’s circle and they are 

presented in Figure 2.3.  
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Figure 2.3: A three dimensional stress state representation with Mohr’s circle 

Another area of interest with respect to fatigue life evaluation is the stress state at 

free surfaces. Except for contact areas, regions with high residual stresses and 

inhomogenous regions of the material (e.g. defects), surfaces of the component 

will likely to be the most critical zones. Stress state at free surface in the absence 

of pressure loading is a special case since some of the stress components become 

zero; 𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0. This stress state is called plane stress and a 

representation is shown in Figure 2.4. 

 

Figure 2.4: Plane stress state 

Principal stresses for plane stress state are as follows: 
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𝜎1, 𝜎2 =
𝜎𝑥 + 𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (2.18) 

𝜏1, 𝜏2 = ±√(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (2.19) 

2.1.3.  Stresses Acting on Octahedral Plane 

Most widely used static failure criterion, octahedral shear stress theory 

(sometimes called as distortion energy theory) is based on stresses acting on 

octahedral plane. This criterion assumes that failure is related to angular 

distortion of the stressed element and predicts no failure under equally loaded 

principal stresses. Based on these assumptions, shear stress on octahedral plane 

comes out to be a good indicator of yielding as theory agrees well with ductile 

materials. Some adaptations of this theory are made to multiaxial fatigue in order 

to estimate fatigue life. These adaptations are namely; Signed von Mises, Sines 

and Crossland, which are explained in Section 2.3.1. and Section 2.3.4. 

respectively, that are one of the primary multiaxial endurance criteria. 

Octahedral plane is an oblique plane that intersects the principal stress axes at 

equal distances. Direction cosines with respect to principal axes are equal and 

they have a value of 1 √3⁄ . What makes this plane special is that the normal 

stress acting on this plane is the average of the principal stresses. There are eight 

planes that have the same stress state and these planes form an octahedron. Thus, 

it is called octahedral plane. The stress state on an octahedral plane is shown in 

Figure 2.5. 
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Figure 2.5: Stress state on an octahedron plane 

2.1.3.1.  Octahedral Shear and Effective Stresses 

The resultant shear stress on octahedral plane is called the octahedral shear stress 

and through coordinate transformations it can be computed in terms of principal 

stresses, 

𝜏𝑜𝑐𝑡 =
1

3
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 (2.20) 

or in terms of stress components octahedral shear stress can be shown as, 

𝜏𝑜𝑐𝑡

=
1

3
√(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑥𝑧

2 ) 
(2.21) 

According to octahedral shear stress theory, yield occurs when octahedral shear 

stress for any stress state exceeds the octahedral shear stress observed during 

simple tension test. For a simple tension test, specimen yields when 𝜎1 = 𝜎𝑦 and 

𝜎2 = 𝜎3 = 0. From (2.20) octahedral shear stress at yielding is, 

𝜏𝑜𝑐𝑡,𝑦 =
√2

3
𝜎𝑦 (2.22) 
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For the general case, yield is predicted if (2.20) is greater than (2.22). This leads 

to, 

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 ≥ 𝜎𝑦 (2.23) 

Stress at left hand side is called octahedral effective stress or von Mises stress. 

Effective stress can be written in terms of stress components as, 

𝜎𝑉𝑀

=
1

√2
√(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑥𝑧

2 ) 
(2.24) 

Effective stress transforms the multiaxial stress state to a uniaxial stress state 

which can be used for estimating static yielding. Furthermore, octahedral shear 

stress theory suggests and approximation for shear yield strength. For a pure 

shear test, from (2.23) we may conclude that, 

√3𝜏𝑥𝑦,𝑦 = 𝜎𝑦     𝑜𝑟     𝜏𝑥𝑦,𝑦 =
𝜎𝑦

√3
= 0.577𝜎𝑦  (2.25) 

where 𝜏𝑥𝑦,𝑦 is the shear yield strength.  

2.1.3.2.  Octahedral Normal Stress (Hydrostatic Stress) 

Normal stress acting on octahedral plane is called hydrostatic stress. It can be 

calculated as 

𝜎ℎ =
1

3
(𝜎1 + 𝜎2 + 𝜎3) (2.26) 

Hydrostatic pressure is the average of principal stresses and it is used in some 

multiaxial endurance criteria such as Sines, Crossland and Dang Van as a 

measure of normal mean stress inclusion (Sections 2.3.4. and 2.3.7. ).  
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2.1.4.  Deviatoric Stresses 

Stress is usually separated into hydrostatic and deviatoric stress for components 

that are subjected to plastic deformation. This is due to the fact that hydrostatic 

component of stress does not influence plastic flow while deviatoric part 

influences plastic yielding. In order to obtain deviatoric stresses, hydrostatic 

stress is subtracted from stress state. As hydrostatic stress is a stress invariant, 

subtraction operation will not affect the directions of principal stresses. In 

addition, shear stress components remain unchanged. Deviatoric stresses are 

defined as follows, 

[

𝑠𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝑠𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝑠𝑧

] = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] −
1

3
[

𝐼1 0 0
0 𝐼1 0
0 0 𝐼1

] (2.27) 

𝑠𝑥 = 𝜎𝑥 −
1

3
𝐼1 =

2

3
𝜎𝑥 −

1

3
𝜎𝑦 −

1

3
𝜎𝑧 (2.28) 

𝑠𝑦 = 𝜎𝑦 −
1

3
𝐼1 =

2

3
𝜎𝑦 −

1

3
𝜎𝑧 −

1

3
𝜎𝑥 (2.29) 

𝑠𝑧 = 𝜎𝑧 −
1

3
𝐼1 =

2

3
𝜎𝑧 −

1

3
𝜎𝑥 −

1

3
𝜎𝑦 (2.30) 

Invariants for deviatoric stresses; 𝐽1, 𝐽2 and 𝐽3 can be written in terms of 𝐼1, 𝐼2 and 

𝐼3 as follows, 

𝐽1 = 0 (2.31) 

𝐽2 =
𝐼1

2 + 3𝐼2

3
 (2.32) 

𝐽3 =
2𝐼1

3 + 9𝐼1𝐼2 + 27𝐼3

27
 (2.33) 

Second invariant of deviatoric stress can also be written in terms of octahedral 

shear stress, 
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𝐽2 =
3

2
𝜏𝑜𝑐𝑡

2 (2.34) 

2.1.5. Cyclic Stresses 

Engineering components usually encounter cyclic loading which is the main 

cause of fatigue failure (uniaxial or multiaxial). In order to evalute the devastating 

effects of cyclic stresses, several definitions were made that are used in multiaxial 

endurance criteria and these are explained in this section.  

A cyclic stress is composed of two stress quantites which are mean or static (𝜎𝑚)

and alternating stress (𝜎𝑎). The difference of maximum (𝜎𝑚𝑎𝑥) and minimum

(𝜎𝑚𝑖𝑛) values of the cyclic stress is called range (𝜎𝑟) which can be expressed as

follows: 

σr =  𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 (2.35) 

Alternating stress is the one-half of the range and it always has a positive value: 

σa = |
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
| (2.36) 

while mean value is the algebraic average of maximum and minimum stresses in 

the cycle:  

σm =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
(2.37) 

For a constant amplitude loading one cycle includes two reversals (see Figure 

2.6) and the period (P) is the time needed for one complete cycle of the loading to 

pass in a given point. Frequency (f) of the cyclic loading is related to period and it 

can be shown as: 
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f =
1

𝑃
 (2.38) 

Another definition is the stress ratio (R) which is used for expressing the loading 

condition and it is the ratio of minimum and maximum stress:   

R =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 (2.39) 

Fully reversed loading (R=-1) and pulsating loading (R=0) are two common 

loading conditions used in testing and for obtaining fatigue properties (i.e. 

endurance limits). For the former loading condition, loading does not have a 

mean component and maximum tensile and compressive loads are equal while for 

the latter loading condition minimum stress is zero leading always to a tensile 

loading. 

All definitions clarified in this section and different loading cases according to R 

ratios are presented in Figure 2.6. 

 

Figure 2.6: Definition of stress quantities for cyclic stresses and example loadings 

for R=-1 (fully reversed loading), R=0 (pulsating loading) and R>0 
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2.2.  Multiaxial Loading 

Stress state will be multiaxial if a combination of axial, bending or torsion load 

acts on a component. These load combinations are very common in engineering 

components. For instance, crankshafts experience bending-torsion loading while 

a biaxial stress state occurs in pressure vessels.  

Combined load histories can be classified as proportional and non-proportional. 

Any loading that causes a change in principal stress directions and/or principal 

stress ratio in time is called non-proportional loading whereas principal directions 

and stress ratio remains constant for proportional loading. Loading may be non-

proportional due to several reasons such as type of loading (bending, torsion, 

axial), phase difference, frequency difference between loading channels and mean 

loads. For periodic loadings such as sinusoidal or triangular, some definitions 

should be clarified. These definitions are related to phase and frequency 

difference. A loading whose load channels act simultaneously is defined as in-

phase loading. However, if a phase shift between loading channels exist this 

loading is called out-of-phase loading. In-phase and out-of-phase loadings are 

illustrated in Figure 2.7. For the in-phase loading both bending and torsion loads 

reach to their maximum or minimum values at the same time (see Figure 2.7a); 

however, for out-of-phase loading, loadings reach their maximum (or minimum) 

values at different times (see Figure 2.7b) i.e. there is a phase shift. Another 

definition relates to frequency of loadings. If both channels have the same 

frequency, this loading is called synchronous and asynchronous if there is 

frequency difference. Synchronous and asynchronous loadings are illustrated in 

Figure 2.7. For the synchronous loading, both load channels have the same wave 

length (see Figure Figure 2.7c); however, for asynchronous loading one of the 

loading channels have a lower or higher wave length i.e. a higher or lower 

frequency (see Figure Figure 2.7d) which creates a frequency difference. For 

multiaxial testing, constant amplitude synchronous sinusoidal loadings are 

preferred for investigating the effects of phase difference and mean loads.  
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Figure 2.7 Periodic loadings; a) In-phase loading, b) Out-of-phase loading, c) 

Synchronous loading, d) Asynchronous loading 

For a clear identification of the loading history; effect of phase, frequency and 

mean loads are investigated. We conclude that any in-phase loading without 

mean stresses leads to a proportional loading history (see Figure 2.8 and Figure 

2.12). However, addition of mean load to any load channel or a load channel 

having only mean load for axial/bending-torsion loading, results in non-

proportional loading (see Figure 2.10). Furthermore, for axial/bending-torsion 

loading, phase and/or frequency difference induce non-proportional loading (see 

Figure 2.9 and Figure 2.11). On the other hand, these effects are not seen in 

biaxial tension. Loading is always proportional for biaxial tension even for out-

of-phase or asynchronous loadings with/without mean stresses (see Figure 2.13 to 

Figure 2.15). These findings are agreeable with the arguments made by Socie and 

Marquis [7]. Example loadings are shown through Figure 2.8 and Figure 2.15. 
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 Figure 2.8: Bending/Torsion Proportional Loading 

 

Figure 2.9 Bending/Torsion Loading with 90
o
 Phase Effect 
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Figure 2.10 Bending/Torsion Loading with Mean Stress Effect 

 

Figure 2.11 Bending/Torsion Loading with Frequency Difference 
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Figure 2.12: Biaxial Proportional Loading 

 

Figure 2.13 Biaxial Loading with 90
o
 Phase Effect 
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Figure 2.14 Biaxial Loading with Mean Stress Effect 

 

Figure 2.15 Biaxial Loading with Frequency Difference 
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2.3.  Multiaxial Endurance Criteria 

All methods presented in this thesis are in the form: 

𝑎𝑓(𝜏) + 𝑏𝑔(𝜎) ≤ 𝜎−1 (2.40) 

where a and b are material constants that may be obtained from uniaxial fatigue 

test results (endurance limits), 𝑓(𝜏) and 𝑔(𝜎) are functions of shear and normal 

stresses respectively (alternating and/or mean) and 𝜎−1 is the fully reversed 

axial/bending endurance limit. Left hand side of (2.40) is the damage parameter 

which is the stress state assumed to cause failure. Material constants are usually 

calibrated with axial (or bending) and torsion fully reversed endurance limits 

(𝜎−1 and 𝜏−1) which will be called bending-torsion calibration (or classical 

calibration) henceforth. 

2.3.1.  Equivalent Stress Criteria 

After Gough and Pollard [5, 6] proposed empirical relations for correlating 

multiaxial bending/torsion tests, researchers attempted to come up with multiaxial 

endurance criteria that does not depend purely on experimental test results but 

criteria that are based on physical mechanisms of the multiaxial fatigue process. 

This endeavor is mainly to avoid the multiaxial testing campaigns which are 

time-consuming and expensive. Furthermore, it is not possible to simulate all 

different loading scenarios by these campaigns. As a result, extensions of static 

failure criteria (maximum normal stress, octahedral shear stress theory vs.) 

adapted to multiaxial fatigue were developed. These criteria transform the 

multiaxial stress history into a uniaxial stress history so that the alternating part 

(after mean stress correction) may be compared with endurance limits to predict 

the high cycle fatigue life of the component. Two of these criteria are investigated 

in this study namely Absolute Maximum Principal Stress and Signed von Mises 

Stress which are explained below in detail.  
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2.3.1.1.  Absolute Maximum Principal Stress Criterion (AMP) 

Absolute Maximum Principal Stress method is an adapted version of the static 

failure criterion; maximum normal stress theory, to multiaxial fatigue problem. 

Multiaxial stress state is transformed into an equivalent uniaxial stress history 

from principal stresses and a signing procedure, in which the sign of equivalent 

stress at a time is the sign of absolute maximum principal stress, is applied. This 

signing procedure is required for including the compressive stresses and for 

simulating the load spectrum more properly. Formulation is as follows: 

𝜎𝑒𝑞,𝐴𝑀𝑃(𝑡) = 𝑠𝑖𝑔𝑛(𝜎𝐴𝑀𝑃(𝑡)) ∗ 𝜎𝐴𝑀𝑃(𝑡) (2.41) 

where 

𝜎𝐴𝑀𝑃(𝑡) = max([𝑎𝑏𝑠(𝜎1(𝑡)), 𝑎𝑏𝑠(𝜎2(𝑡)), 𝑎𝑏𝑠(𝜎3(𝑡))]) (2.42) 

(2.41) can though to be the 𝑔(𝜎) in (2.40) where 𝑎 = 0 and 𝑏 = 1. 

2.3.1.2.  Signed von Mises Stress Criterion (SVM) 

The idea of Signed von Mises Stress criterion is similar to Absolute Maximum 

Principal Stress criterion. However, this time principal stresses are replaced with 

von Mises stress at a time. Like in Absolute Maximum Principal Stress method a 

signing procedure is needed. Since von Mises stress is always positive, 

compressive stresses can only be included with this signing operation. 

Furthermore, for some loading conditions von Mises history does not reflect 

reality. For example, if signing will not be applied, von Mises history comes out 

to be a constant stress value without any oscillation for bending/torsion loading 

with 90
o
 phase shift which is not true as this loading case is the most damaging 

situation stated by several researchers [26-30]. Different signings are proposed in 

literature. Bishop and Sherrat [31] claims sign should be the sign of absolute 

maximum principal stress and Papuga et al. [13] suggests that signing should be 

applied according to the sign of the first invariant. In this study we implemented 

the suggestion of Bishop and Sherrat’s to be consistent with the Absolute 
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Maximum Principal method. Signed von Mises stress at a time can be formulated 

in terms of principal stresses as follows: 

𝜎𝑒𝑞,S𝑉𝑀(𝑡) =

𝑠𝑖𝑔𝑛(𝜎𝐴𝑀𝑃(𝑡))√(𝜎1(𝑡) − 𝜎2(𝑡))2 + (𝜎2(𝑡) − 𝜎3(𝑡))2 + (𝜎3(𝑡) − 𝜎1(𝑡))2  
(2.43) 

(2.43) can though to be the 𝑓(𝜏) in (2.40) where 𝑎 = 1 and 𝑏 = 0. 

For both methods, after equivalent stress history is obtained, alternating and mean 

stresses may be calculated as follows:  

𝜎𝑒𝑞,𝑎 = 𝑎𝑏𝑠 (
max (𝜎𝑒𝑞(𝑡)) − min (𝜎𝑒𝑞(𝑡))

2
)   

𝜎𝑒𝑞,𝑚 =
max (𝜎𝑒𝑞(𝑡)) + min (𝜎𝑒𝑞(𝑡))

2
 

(2.44) 

If loading includes tensile mean stresses, a mean stress correction is necessary to 

obtain the fully reversed equivalent stress history. For compressive mean stresses, 

the favorable effect shown by Sines [32] is ignored by taking the mean value as 

zero. Several mean stress corrections that can be applied are explained in Section 

2.3.2. . In this study, all mean stress corrections explained in Section 2.3.2. are 

applied in order to compare their performances. When fully reversed equivalent 

history is obtained alternating stress is compared with the axial/bending 

endurance limit at R=-1 for determining if the component endures the loading or 

not. 

Although equivalent stress methods are relatively easy to compute and fast, 

according to researchers [8-14] they are not appropriate for estimating fatigue 

lifes of components under non-proportional loadings. Signing operation is one of 

the reasons for this situation. This operation is used for equivalent stress methods 

in order to include compressive stresses into stress history and to avoid some 

special cases where alternating stress comes out to be very small which is not 

realistic. An example to this situation is shown in Figure 2.16 for Signed von 

Mises Stress criterion. As shown in Figure 2.16a without signing procedure, 
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criterion leads to a stress history without alternating stresses (only mean stress); 

however, alternating stresses are the most damaging stresses for fatigue life and 

this loading is one of the severest loading as for being a non-proportional loading. 

When signing is applied, a more realistic stress history is obtained (see Figure 

2.16b); on the other hand, it may be observed that the alternating stress is same as 

the alternating stress of the normal stress which shows that the criteria still 

ignores the normal and shear stress interactions. Moreover, signing procedure 

brings along some other drawbacks. One drawback is that equivalent stress 

methods underestimate the fatigue damage (being non-conservative) for non-

proportional loadings and they end up with estimations declaring proportional 

loadings are more critical. A good example to this behavior is shown in Figure 

2.17. As seen from Figure 2.17a, for proportional loading case a higher value of 

alternating stress is obtained while for non-proportional loading, alternating stress 

is much lower (see Figure 2.17b). Another drawback is that signing procedure 

leads to sudden jumps in the stress history which does not reflect real load 

spectrums and results in highly conservative estimations for some loading 

scenarios. For instance, this situation arises when absolute values of principal 

stresses are very close like shown in Figure 2.18. Although the alternating values 

of principal stresses is very low as being 5 MPa for this loading case in Figure 

2.18, the alternating value of the stress history is 20 times higher than that of 

principal stresses which is not logical leading to highly conservative estimates. 

Therefore, we may conclude that signing operation is a must for equivalent stress 

criteria but it is not much effective for including the directivity and complexity of 

the non-proportional loadings. In addition, since these methods include only one 

shear/normal stress component (𝑓(𝜏) or 𝑔(𝜎)) in the damage parameter, criteria 

may lead to inaccurate estimations for simple loading cases like fully reversed 

torsion or bending. Conidering all the drawbacks above, two different types of 

endurance criteria are developed (as improvements on equivalent stress methods) 

through the years which are invariant based and critical plane methods and these 

methods are explained in the following sections. 
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Figure 2.16 a) von Mises History, b) Signed von Mises History for multiaxial 

stresses consist of bending stress of 100 MPa and torsion stress of 100/√3 MPa 
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Figure 2.17 Signed von Mises history for a) Proportional loading, b) Non-

proportional loading 
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Figure 2.18 Absolute Maximum Principal Stress history of a loading for which 

absolute value of principal stresses are close 

2.3.2.  Mean Stress Correction Curves 

Detrimental effects of tensile mean stresses on fatigue life and how to design 

components under cyclic loading with mean stresses have long been studied since 

Wöhler developed the S/N curves. For this purpose several methods are proposed, 

most famous methods are being Soderberg [33], Goodman [34] and Gerber [35]. 

These methods are based on experiments conducted with different R ratios and 

they use allowable alternating and mean stress values for determining the safe 

zone where no failure is expected to occur. Failure is expected, for any method, if 

the stress state passes the mean stress curve. Allowable alternating stress is 

usually taken as the endurance limit at 10
7
 cycles obtained from a fully reversed 

loading while allowable mean stress differs for each method.  

Approaches proposed by Soderberg and Goodman are linear formulations of 

alternating and mean stresses and they only deviate in allowable mean stress 

values. Soderberg takes yield strength (σy) as the allowable mean stress while 

ultimate strength (σu) is taken in Goodman. Gerber suggests a parabolic 

formulation for which again the allowable mean stress is the ultimate strength. It 

is clear that Soderberg is conservative as the formulation takes yield strength as 

the mean stress limitation. However the accuracy of Goodman and Gerber curves 

are questionable. There is a common belief that most of the experimental data lie 
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between Goodman and Gerber curves. Dowling [36, 37 and 38] analyzed an 

extensive set of steel, aluminum and titanium alloys and he concluded that 

Goodman is highly conservative while Gerber is non-conservative. Moreover, 

Dowling studied two other approaches being Morrow and Smith, Watson and 

Topper (SWT) and found out that both methods give more accurate correlations 

for all alloys investigated. Morrow formulation is the improvement of Goodman 

with the replacement of the ultimate strength with true fracture strength (σf’). On 

the other hand, true fracture strength may not always be available for the 

materials considered.  As a result, this formulation is not used in this study. SWT 

method is a non-linear formulation of alternating and maximum stress and does 

not include an allowable mean stress which might be appealing. However, due to 

this property of the method, accuracy of the SWT approach for high mean 

stresses is uncertain (which is not examined in literature). Mean stress curves of 

Soderberg, Goodman, Gerber and SWT shown in Figure 2.19 for 34Cr4 whose 

material properties are presented in Table 4.1.  

Figure 2.19: Mean Stress Curves for Al 7050 T7452 

Mean stress methods may be used for various purposes. One aim is to transform 

the stress state, which includes mean stresses, to a fully reversed (R=-1) stress 

state, that is free of mean stresses. This function is mainly used for mean stress 



31 

correction of equivalent stress methods’ stress history (see Section 2.3.1. ). After 

mean stress correction, alternating stress can be compared with fully reversed 

axial/bending endurance limit and the performance of the method may be 

evaluated. Another aim is to obtain endurance limits at different R ratios. This 

function is useful for critical plane approaches (see Section 2.3.7. ) if the 

formulation includes an endurance limit in different R ratio than R=-1 and if the 

necessary endurance limit is not available.  

Formulations of mean stress curves used in this study are given in Table 2.1 with 

their functionalities. Furthermore, mean stress corrections for a random stress 

state and endurance limits calculated for R=0 for 34Cr4 are shown in Figure 2.20 

as an example. 
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Figure 2.20: a) Mean stress correction for a random stress state, and b) Endurance 

limit at R=0 for 34Cr4 

2.3.3. Invariant Methods Background 

Invariant methods are based on invariants or history of the stress tensor/deviatoric 

stress tensor. The earlier approaches of these methods (Sines [15] and Crossland 

[16]) can be thought to be the improved versions of static failure criteria based on 
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stresses on octahedral plane. These methods assume the cause of crack initiation 

is the alternating value of the octahedral shear stress, which is related to the 

second invariant of the deviatoric stress tensor, and the cause of crack opening is 

the hydrostatic stress, which is the first invariant of the stress tensor. Newer 

versions of these methods (Mamiya and Araujo [39] and GAM [40]) claim 

alternating value of the deviatoric stress tensor itself should be used as a measure 

of shear stress. Hydrostatic stress is still used for including the mean stress effects 

in Mamiya and Araujo method; however, GAM method uses the maximum value 

of the first principal stress history for the mean normal stress term.  

Since octahedral stress is related to square root of second invariant of deviatoric 

stress tensor (√𝐽2), calculation of this stress measure is necessary for invariant

methods. Analytical formulation of √𝐽2 and its alternating value is well defined

for proportional loading as stated by Reis et al. [9] and Balthazar and Malcher 

[41] and can be shown as:

√𝐽2 = √
3

2
𝜏𝑜𝑐𝑡

=
1

√6
√(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑥 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑥𝑧

2 )

(2.45) 

√𝐽2,a =
1

√6
× 

√(𝜎𝑥,𝑎 − 𝜎𝑦,𝑎)
2

+ (𝜎𝑦,𝑎 − 𝜎𝑧,𝑎)
2

+ (𝜎𝑥,𝑎 − 𝜎𝑧,𝑎)
2

+ 6(𝜏𝑥𝑦,𝑎
2 + 𝜏𝑦𝑧,𝑎

2 + 𝜏𝑥𝑧,𝑎
2 )

(2.46) 

On the other hand, for non-proportional loading these equations are not valid as 

stress components may have phase shift or frequency difference creating a 

complex stress path in space. Several methodologies are proposed up to now to 

determine the correct definition of alternating value of the second deviatoric 

stress invariant. First attempt to involve the non-proportionality is made by Fucks 

(as reported by Bernasconi [42]) by using the longest chord method which is 
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criticized by Papadopoulos et al. [18] as the method leads to non-unique solution 

for some cases. Papadopoulos suggested another method called Minimum 

Circumscribed Hypersphere (MCH) which surrounds the second deviatoric stress 

invariant history with a hyper-sphere (which becomes a circle for plane 

stress/strain problems). Another definition was made by Freitas et al. [43] which 

is called Minimum Circumscribed Ellipsoid (MCE) that surrounds the path with 

an ellipsoid (which becomes an ellipse for plane stress/strain problems). 

In literature, experimental data which is used to evaluate the performance of 

different multiaxial endurance criteria, are based on smooth specimens loaded 

with synchronous bending/axial and torsion loading with phase shift. This loading 

creates special stress states which are plane stress and plane strain. For these 

special cases, Papadopoulos et al. [18] formulated the alternating value of second 

invariant for MCH approach. Formulation involves the use of deviatoric stresses 

and Ilyushin space transformation [44] which is shown below.  

Stress state for synchronous sinusoidal bending/axial and torsion with phase shift 

is as follows:  

𝝈 = [
𝜎𝑎 sin(2𝜋𝑡 𝑃⁄ ) + 𝜎𝑚 𝜏𝑎 sin(2𝜋𝑡 𝑃⁄ − 𝛿) + 𝜏𝑚 0

𝜏𝑎 sin(2𝜋𝑡 𝑃⁄ − 𝛿) + 𝜏𝑚 0 0
0 0 0

] (2.47) 

where P and 𝛿 are period and phase difference respectively. Second deviatoric 

invariant (𝐽2) can also be derived from deviatoric stresses as follows:

𝒔 = 𝝈 −
1

3
𝐼1𝑰 (2.48) 

√𝐽2 = √
1

2
𝒔 ∶ 𝒔 (2.49) 

Ilyushin transformation is used in order to facilitate the calculations by 

transforming the deviatoric stress tensor to a vector in 5 dimensional spaces (5D). 

Rules for this transformation are as follows: 
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𝑆1 = √
3

2
𝑠𝑥;   𝑆2 =

1

√2
(𝑠𝑦 − 𝑠𝑧)

𝑆3 = √2𝑠𝑥𝑦;   𝑆4 = √2𝑠𝑥𝑧;      𝑆5 = √2𝑠𝑦𝑧

(2.50) 

𝑺 = [𝑆1 𝑆2 𝑆3 𝑆4 𝑆5] (2.51) 

As a result 

√𝐽2 = √
1

2
𝒔 ∶ 𝒔 = √

1

2
𝑺 ∙ 𝑺 (2.52) 

For harmonic bending/axial and torsion loading (loading as a function of sine or 

cosine), components of this vector are as follows [45]: 

𝑆1 = √
2

3
(𝜎𝑎 sin(2𝜋𝑡 𝑃⁄ ) + 𝜎𝑚);     𝑆2 = 0;

𝑆3 = √2(𝜏𝑎 sin(2𝜋𝑡 𝑃⁄ − 𝛿) + 𝜏𝑚);    𝑆4 = 𝑆5 = 0 

(2.53) 

This stress state creates an ellipse in 𝑆1 − 𝑆3 plane which gives the history of

deviatoric second invariant. According to Papadopoulos et al. [18], value of the 

major semi-axis gives the range of the second deviatoric invariant (MCC 

approach). 

√𝐽2,𝑎 =
1

√2
√

𝜎𝑎
2

3
+ 𝜏𝑎

2 + √(
𝜎𝑎

2

3
+ 𝜏𝑎

2)

2

−
4

3
𝜎𝑎

2𝜏𝑎
2 sin2(𝛿) (2.54) 

For calculation of the alternating value of deviatoric stress path similar proposals 

were made like in √𝐽2,𝑎. Magnitude of the deviatoric stress tensor can be found

from; 

‖𝒔‖ = √𝒔 ∶ 𝒔 (2.55) 
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Deperrois [46] proposed the longest chord approach in order to calculate the 

alternating value of deviatoric stress path. A different methodology is suggested 

for elliptical stress paths by Mamiya and Araujo [39] which surrounds the stress 

path with a minimum ellipsoid. This approach is used for calculation of shear 

stress term in GAM method explained in Section 2.3.4.2. as the loadings in 

literature create elliptical paths (synchronous harmonic bending-torsion loading 

with phase shift). For this methodology, alternating value of the stress tensor can 

be found as follows: 

𝐷𝑖 =
1

2
(max

𝑖
𝑠𝑖(𝑡) − min

𝑖
𝑠𝑖(𝑡)) ;      i = 1, . . ,5 (2.56) 

‖𝒔‖𝑎 = √∑ 𝐷𝑖
2

5

𝑖=1

(2.57) 

For general loading, maximum rectangular hull method based on Jacobi rotations 

in ten two-dimensional spaces (1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5 and 4-5) 

is presented by Mamiya et al. [47] which is the most recent solution for the 

alternating value of deviatoric stress tensor.   

2.3.4. Invariant Based Criteria 

In this section, historical background and formulations of some widely utilized 

invariant criteria are clarified. 

2.3.4.1.  Sines (SNS) and Crossland (CROSS) Criteria 

Sines [15, 32] is one of the oldest and well known multiaxial endurance criteria 

and it is the linear formulation of alternating value of the second invariant of 

deviatoric stress tensor and the mean value of the first invariant of stress tensor 

for inclusion of normal mean stresses. Sines came up with this formulation after 

studying Gough, Pollard [5, 6] and Smith’s [48, 49] experimental data that 

include in total 27 metals and several failure criteria such as Maximum Shear 

Stress and Octahedral Shear Stress theories. Sines choose to use octahedral shear 

stresses as the alternating part of the damage parameter since octahedral stresses 
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can be directly calculated from the stress tensor without any transformations even 

for 3D stress state (lengthy principal stress calculations are required in the case of 

Maximum Shear Stress theory). The choice of using hydrostatic stress as the 

normal mean stress component of the damage parameter and combining this 

stress value with alternating octahedral shear stress by a linear formulation is 

based on the experimental data Sines studied. Sines categorized this data set into 

four groups which are: 

 Loading of cyclic axial with mean tension/compression

 Loading of cyclic torsion with mean torsion

 Loading of cyclic bending with mean torsion

 Loading of cyclic torsion with mean bending

He concluded that [7]: 

 Mean tension has an adverse effect on axial fatigue strength and the

relation is linear unless maximum axial stress does not exceed the axial

yield strength

 Mean torsion has no effect on torsional fatigue strength unless maximum

shear stress does not exceed the shear yield strength.

 Mean torsion has no effect on bending fatigue strength unless the torsional

yield strength is not exceeded by at least 50%.

 Mean bending stress has an adverse effect on torsional fatigue life and the

relation is linear.

Based on these conclusions Sines did not use any mean shear stress component in 

the damage parameter and he claimed that hydrostatic stresses influence the 

fatigue life with a linear relation. The idea of ineffectiveness of mean torsion 

influenced many other researchers such as Findley [21], Dang Van [24] and Liu 

and Mahadevan [50] as these methods also only include the effect of mean 
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normal stresses. However, this assumption is shown to be incorrect according to 

Kluger et al. [26] based on test results of Krgo et al.[51], Kallmyer et al. [52] on 

Ti-6Al-4V and test results of Kluger and Lagoda [53, 54], Kluger [55] on 

2017(A)-T4 aluminum alloy. Kluger et al. [26] also stated that mean torsion 

sensitivity is not observed for all metals (30NCD16 steel stated by Nieslony et al. 

[56]). Sines damage parameter is as follows: 

𝑎√𝐽2,𝑎 + 𝑏𝜎ℎ,𝑚 ≤ 𝜎−1 (2.58) 

Material parameters a and b may be obtained from fully reversed torsion and 

pulsating bending. For the case of calibration with fully reversed bending and 

torsion, method leads to a singular solution giving the ratio 𝜏−1/𝜎−1 = 1/√3.

However, according to Papadopoulos et al. [18] this behavior does not reflect the 

reality since this ratio is not the same for all metals. Material parameters are as 

follows: 

𝑎 = 𝑟  (2.59) 

𝑏 = (6r0 − √3. r) (2.60) 

𝑟 and 𝑟0 are stress ratios and they are defined as 𝑟 = 𝜎−1 𝜏−1⁄ ;  𝑟0 = 𝜎−1 𝜎0⁄ .

Pulsating bending endurance limit (𝜎0) is the maximum stress value (not the

alternating stress) at failure point. As seen from the formulation, three endurance 

limits are required in order to calibrate the Sines criterion which may be a 

disadvantage compared to other multiaxial criteria (Sections 2.3.4.2. and 2.3.7. ). 

Furthermore, use of mean hydrostatic stress is criticized by Claudio et al. [17] for 

the case of biaxial tension. For this special stress state, Sines approach calculates 

the normal mean stress as zero leading to worse estimations compared with 

Crossland method that uses the same formulation except the mean stress 

component which is the maximum value of hydrostatic stress.   

Crossland [16] is a modification of the Sines criterion and it only differentiates 

with the mean stress inclusion. Crossland prefers to use maximum hydrostatic 
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stress as the normal mean stress contribution and it gives better estimations of 

fatigue lives according to several authors [17, 18 and 19]. General formulation of 

the criterion is as follows: 

𝑎√𝐽2,𝑎 + 𝑏𝜎ℎ,𝑚𝑎𝑥 ≤ 𝜎−1 (2.61) 

Crossland material constants (𝑎, 𝑏) for bending-torsion calibration are given 

below: 

𝑎 = 𝑟 

𝑏 = 3 − √3𝑟 

(2.62) 

(2.63) 

2.3.4.2.  Gonçalves, Araujo and Mamiya Criterion (GAM) 

This method is newer compared to other multiaxial endurance criteria [40]. It is a 

modification of the method proposed by Mamiya and Araujo [39].  GAM method 

claims the geometric properties of the rectangular hull enclosing the deviatoric 

stress history (after transforming the deviatoric stress tensor into a vector in five-

dimensional Ilyushin subspace), give the correct measure of alternating shear 

stress. Authors also criticize the use of hydrostatic stress as a measure of mean 

normal stress (arguing that it underestimates the effect of normal stress on fatigue 

life) in other multiaxial endurance criteria (Sines, Crossland, Mamiya and Araujo, 

Dang Van etc.) and suggest the use of maximum value of the first principal stress 

history. Although, this criterion does not utilize any invariant for calculation of 

shear or normal stresses, it is categorized as an invariant method as the method 

does not fit to any other criteria. General formulation of the method is as follows: 

𝑎√∑ 𝐷𝑖
25

𝑖=1 + 𝑏𝜎1,𝑚𝑎𝑥 ≤ 𝜎−1
(2.64) 

In this formulation 𝐷𝑖 are the alternating values of transformed deviatoric

stresses:  

𝐷𝑖 =
1

2
(max

𝑡
𝑆𝑖(𝑡) − min

𝑡
𝑆𝑖(𝑡)) (2.65) 
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GAM material constants for bending-torsion calibration is shown below: 

𝑎 =
r − 1

√2(1 −
1

√3
)

𝑏 =
√3 − r

√3 − 1

(2.66) 

(2.67) 

2.3.5. Critical Plane Methods Background 

Critical plane theories involve calculation of mean and alternating values of shear 

and normal stresses on every material plane to find the maximum value of a 

proposed damage parameter. This task could be achieved by successful 

coordinate transformations of the stress state. In this section formulations of shear 

and normal stresses on material planes are presented which are mostly taken from 

Socie and Marquis [7] and Papadopoulos et al. [18]. 

For the most general case, a stress vector (traction) acts on a surface that is the 

combination of stress components. Cauchy’s stress theorem, which is based on 

force equilibrium, states that traction on a surface can be obtained by the dot 

product of stress state and normal of the surface as follows, 

𝒕 = 𝝈 ∙ 𝒏𝒙′ (2.68) 

Any plane may be defined by two Euler angles θ and φ (Figure 2.21) and 

direction cosines for oriented axes (𝑥′, 𝑦′ and 𝑧′) are as follows and shown in

Table 2.2,  

𝒏𝒙′ = [
𝑙1

𝑚1

𝑛1

] = [

sin(𝜑) cos(𝜃)

sin(𝜑) sin(𝜃)

cos(𝜑)
],    𝒏𝒚′ = [

𝑙2

𝑚2

𝑛3

] = [
− sin(𝜃)

cos(𝜃)
0

] 

𝒏𝒛′ = [
𝑙3

𝑚3 
𝑛3

] = [

−cos (𝜑)cos (𝜃)
−cos (𝜑)sin (𝜃)

sin (𝜑)
] 

(2.69) 
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Table 2.2: Direction cosines for oriented axes 

x y z 

x' l1 m1 n1 

y' l2 m2 n2 

z' l3 m3 n3 

Figure 2.21: Stresses on a plane 

Normal and shear stresses acting on the surface can be obtained by projections of 

traction on oriented axes. Normal stress acting on a plane is as follows, 

𝜎𝑥′ = 𝜎n = 𝒏𝒙′ ∙ 𝒕 = 𝒏𝒙′ ∙ 𝝈 ∙ 𝒏𝒙′ (2.70) 

𝜎𝑥′ = 𝜎n = [𝑙1 𝑚1 𝑛1] [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
𝑙1

𝑚1

𝑛1

] 

= 𝜎𝑥𝑙1
2 + 𝜎𝑦𝑚1

2 + 𝜎𝑧𝑛1
2 + 2(𝜏𝑥𝑦𝑙1𝑚1 + 𝜏𝑥𝑧𝑙1𝑛1 + 𝜏𝑦𝑧𝑚1𝑛1)

(2.71) 

Normal stress has a significant property from the point of multiaxial fatigue. 

Although magnitude of normal stress changes with time, it always acts along the 

same direction for any loading history. Therefore, mean and alternating values of 

normal stress can be obtained by [45], 
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𝜎𝑥′,𝑚 = 𝜎n,m =
1

2
(max

𝑡∈𝑇
(𝒏𝒙′ ∙ 𝝈(𝒕) ∙ 𝒏𝒙′) + min

𝑡∈𝑇
(𝒏𝒙′ ∙ 𝝈(𝒕) ∙ 𝒏𝒙′)) (2.72) 

𝜎𝑥′,𝑎 = 𝜎n,a =
1

2
(max

𝑡∈𝑇
(𝒏𝒙′ ∙ 𝝈(𝒕) ∙ 𝒏𝒙′) − min

𝑡∈𝑇
(𝒏𝒙′ ∙ 𝝈(𝒕) ∙ 𝒏𝒙′)) (2.73) 

where t is any time in time history (T).  

Expressions for shear stresses on the material plane are given by, 

𝜏𝑥′𝑦′ = 𝒏𝒚′ ∙ 𝒕 = 𝒏𝒚′ ∙ 𝝈 ∙ 𝒏𝒙′ (2.74) 

𝜏𝑥′𝑦′ = [𝑙2 𝑚2 𝑛2] [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
𝑙1

𝑚1

𝑛1

] (2.75) 

𝜏𝑥′𝑦′ = 𝜎𝑥𝑙1𝑙2 + 𝜎𝑦𝑚1𝑚2 + 𝜎𝑧𝑛1𝑛2 + 𝜏𝑥𝑦(𝑙1𝑚2 + 𝑙2𝑚1) +

𝜏𝑦𝑧(𝑚1𝑛2 + 𝑚2𝑛1) + 𝜏𝑧𝑥(𝑙1𝑛2 + 𝑙2𝑛1)
(2.76) 

𝜏𝑥′𝑧′ = 𝒏𝒛′ ∙ 𝒕 = 𝒏𝒛′ ∙ 𝝈 ∙ 𝒏𝒙′ (2.77) 

𝜏𝑥′𝑧′ = [𝑙3 𝑚3 𝑛3] [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
𝑙1

𝑚1

𝑛1

] (2.78) 

𝜏𝑥′𝑧′ = 𝜎𝑥𝑙1𝑙3 + 𝜎𝑦𝑚1𝑚3 + 𝜎𝑧𝑛1𝑛3 + 𝜏𝑥𝑦(𝑙1𝑚3 + 𝑙3𝑚1)

+𝜏𝑦𝑧(𝑚1𝑛3 + 𝑚3𝑛1) + 𝜏𝑧𝑥(𝑙1𝑛3 + 𝑙3𝑛1)
(2.79) 

It is more convenient to use the resultant shear stress vector for multiaxial fatigue 

calculations which includes the combined effects of shear stress components. 

Magnitude of this vector is as follows, 

𝜏𝑅 = √(𝜏𝑥′𝑦′)2 + (𝜏𝑥′𝑧′)2 (2.80) 

As already mentioned before, special cases plane stress and plane strain plays an 

important role in multiaxial fatigue in order to determine the prediction 

capabilities of different methods. Therefore, analytical derivations were made for 

stress measures on material planes by Papadopoulos et al. [18]. History of the 

normal stress can be obtained using the stress state given in (2.47) in (2.70): 
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𝜎𝑥′(𝑡) = 𝜎n(𝑡) = sin2(𝜑) {[𝜎𝑎 sin (
2𝜋𝑡

𝑃
) + 𝜎𝑚] cos2(𝜃) +

[𝜏𝑎 sin (
2𝜋𝑡

𝑃
− 𝛿) + 𝜏𝑚] sin (2𝜃)}

(2.81) 

Mean value of the normal stress is the part which is independent of time. 

𝜎𝑥′,𝑚 = 𝜎n,m = sin2(𝜑) (𝜎𝑚 cos2(𝜃) + 𝜏𝑚sin (2𝜃)) (2.82) 

Since any harmonic stress component can be presented as the sum of it’s mean 

and alternating values, alternating value of the normal stress is the value obtained 

by subtraction of (2.82) from the maximum value of (2.81). 

𝜎𝑥′,𝑎 = 𝜎n,a = sin2(𝜑) ×

√𝜎𝑎
2 cos4(𝜃) + 4𝜏𝑎

2 sin2(𝜃) cos2(𝜃) + 2𝜎𝑎𝜏𝑎 sin(2𝜃) cos2(𝜃) cos (𝛿)
(2.83) 

History of the shear stresses acting on a material plane can be obtained by using 

the stress state given by (2.47) in (2.74) and (2.77): 

𝜏𝑥′𝑦′(𝑡) =
1

2
[𝜎𝑎 sin (

2𝜋𝑡

𝑃
) + 𝜎𝑚] sin(2𝜑) cos2(𝜃) +

1

2
[𝜏𝑎 sin (

2𝜋𝑡

𝑃
− 𝛿) + 𝜏𝑚] sin (2𝜑)sin (2𝜃)

(2.84) 

𝜏𝑥′𝑧′(𝑡) =
1

2
[𝜎𝑎 sin (

2𝜋𝑡

𝑃
) + 𝜎𝑚] sin(𝜑) sin(2𝜃) −

 [𝜏𝑎 sin (
2𝜋𝑡

𝑃
− 𝛿) + 𝜏𝑚] sin (𝜑)cos (2𝜃)

(2.85) 

From lengthy manipulations, (2.84) and (2.85) lead to: 

𝜏𝑥′𝑦′(𝑡) = −𝑝𝑠𝑖𝑛 (
2𝜋𝑡

𝑃
) − 𝑞𝑐𝑜𝑠 (

2𝜋𝑡

𝑃
) + 

 [
𝜎𝑚

2
cos2(𝜃) +

𝜏𝑚

2
sin(2𝜃)] sin (2𝜑) 

(2.86) 
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𝜏𝑥′𝑧′(𝑡) = −𝑓𝑠𝑖𝑛 (
2𝜋𝑡

𝑃
) − 𝑔𝑐𝑜𝑠 (

2𝜋𝑡

𝑃
) + 

 [
𝜎𝑚

2
sin(2𝜃) − 𝜏𝑚cos (2𝜃)] sin (𝜑)

(2.87) 

where auxiliary functions 𝑓, 𝑔, 𝑝 and 𝑞 are: 

𝑓 = sin (𝜑)(−
𝜎𝑎

2
sin (2𝜃) + 𝜏𝑎cos (2𝜃)cos (𝛿))

(2.88) 

𝑔 = −𝜏𝑎sin (𝜑)cos (2𝜃)sin (𝛿)

𝑝 = −
1

2
sin (2𝜑)(𝜎𝑎 cos2(𝜃) + 𝜏𝑎sin (2𝜃)cos (𝛿))

𝑞 =
1

2
𝜏𝑎sin (2𝜑)sin (2𝜃)sin (𝛿)

Resultant shear stress on the material plane creates an ellipse for harmonic 

axial/bending torsion loading. Mean of this shear stress can be obtained from 

(2.86) and (2.87): 

𝜏𝑅,𝑚 = 𝑇𝑚

= √[(
𝜎𝑚

2
cos2(𝜃) +

𝜏𝑚

2
sin (2𝜃)) sin (2𝜑)]

2

+ [(
𝜎𝑚

2
sin (2𝜃) − 𝜏𝑚cos (2𝜃))sin (𝜑)]

2 (2.89) 

Major semi axes of the ellipse created by two shear stresses are as follows: 

𝑒𝑚𝑎𝑗 , 𝑒𝑚𝑖𝑛

= √
𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
± √(

𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
)

2

− (𝑓𝑞 − 𝑔𝑝)2

(2.90) 

for which 𝑒𝑚𝑎𝑗 is the major semi axis and 𝑒𝑚𝑖𝑛 is the minor semi axis of the

ellipse. According to Papadopoulos et al. [18] alternating value of the resultant 

shear stress corresponds to the half-length of the major semi axis (MCC 

approach). Thus, 



46 

𝜏𝑅,𝑎= 𝑇𝑎

= √
𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
+ √(

𝑓2 + 𝑔2 + 𝑝2 + 𝑞2

2
)

2

− (𝑓𝑞 − 𝑔𝑝)2

(2.91) 

These equations are used for formulation of critical plane methods and for their 

calibrations at different loading conditions.  

2.3.5.1.  Alternating value of resultant shear stress 

Calculation of mean and alternating values of resultant shear stress is 

straightforward for proportional loading as both shear stresses vary proportionally 

in magnitude without any change in their direction. However, same is not true for 

non-proportional loading as both the direction and magnitude changes. Therefore, 

sophisticated methods are required which is discussed in this section. 

There are several methods for determining the alternating and mean values of the 

resultant shear stress. Those methods are Longest Chord (LC), Longest Projection 

(LP), Minimum Circumscribed Circle (MCC) and the most recent method, 

Maximum Rectangular Hull (MRH). 

2.3.5.1.1.  Longest Chord (LC) 

One of the very first methods is the longest chord method. In longest chord, any 

two points in the shear stress path Ψ (Figure 2.22) are joined with a straight line 

and the line with the maximum length is called the longest chord. Method defines 

the alternating shear stress as the half length of the longest chord while mean 

value is the magnitude of the vector drawn to the midpoint of the longest chord. 

Although computation is really simple and fast, solution is not unique where there 

may exist more than one chord with the same length. A common example (see 

Figure 2.22b) to this situation is the shear stress path of an isosceles triangle in 

which alternating shear stress is well defined; however, due to existence of two 

different mean shear stress vectors an ambiguous situation arises about the mean 

value of the shear stress [27, 57]. 
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Figure 2.22: a) Longest chord definition, b) Drawback of Longest chord 

2.3.5.1.2.  Longest Projection (LP) 

In longest projection method, main purpose is to maximize the projection of 

stress path Ψ on a straight line passing through the origin. After longest 

(maximum) projection is found, alternating shear stress is the half length of the 

projection whereas mean value is the distance between the origin and the 

midpoint of the projection. Like in the longest chord method, this approach 
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suffers from the same problem which questions solutions’ uniqueness for mean 

shear stress [57]. To illustrate, for some cases method calculates mean shear 

stress as zero (see Figure 2.23b) even the shear stress path Ψ has non-zero mean 

value [27]. 

Figure 2.23: a) Longest projection definition, b) Drawback of Longest projection 
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2.3.5.1.3.  Minimum Circumscribed Circle (MCC) 

In order to cope with the drawbacks stated above, enclosure methods such as 

MCC and MRH were developed. Minimum Circumscribe Circle (MCC) method 

was first proposed by Dan Vang et al. [58] and later improved by Papadopoulos 

et al. [18].  The idea of the MCC is basically environing the shear stress path Ψ 

with a circle, thus the radius of the circle gives the alternating value of the shear 

stress and mean value is the magnitude of the vector joining the center of the 

MCC and the origin.  

The problem of computing the MCC is not an easy task as complex algorithms 

are required. In literature there have been several proposals for finding the MCC. 

Algorithms are mainly based on geometrical computations that use two or more 

data points for constructing the minimum circle and these algorithms are 

explained in detail below. 

2.3.5.1.3.1.  Incremental Algorithm 

When Dang Van et al. [58] came out with the idea of finding MCC of the shear 

stress path for obtaining mean and alternating values of the resultant shear stress, 

they also proposed an incremental algorithm for an approximate solution of the 

problem. This algorithm was inspired from the physical mechanisms of isotropic 

and kinematic hardening which are usually employed in theory of plasticity.  

Incremental algorithm initializes by forming a circle with an infinite small (close 

to zero) radius and an initial center, which is usually chosen as the centroid of the 

shear stress path (centroid of the data points). This circle can be expanded and 

shifted towards data points on the shear stress path. The expansion of the circle is 

analogous to the isotropic hardening in which the elastic domain increases and 

shift of the circle is analogous to kinematic hardening in which the elastic domain 

moves in the stress space. Algorithm searches all data points one by one and if 

any shear stress is outside the range of the circle, circle expands with an 

expansion coefficient of κ and it is shifted towards the shear stress point so that 

this data point now lies inside the circumscribing circle. However, one may 



50 

notice that when a data point is surrounded, another point may be left out from 

the circle as it not only expands but also shifts leading to an iterative process for 

engulfing all the data points. When the distance of shear stresses is less than or 

equal to the radius of the circumscribing circle, algorithm stops and the MCC is 

found. According to Bernasconi and Papadopoulos [57], this algorithm runs in 

linear time with shear stress points, which can be shown with O(n) time. On the 

other hand, this approach has some drawbacks as stated by Weber et al. [59] and 

these drawbacks are as follows: 

 Excluding some special cases, solution is always approximate.

Furthermore the accuracy and the speed of the algorithm strongly depend

on the value of κ. For lower values of κ, accuracy will be high but speed

drops down and the opposite is true for higher values of κ.

 Final result should not depend on the sequence of the data points

examined. However, for incremental algorithm different sequences for

which the shear stress points are searched leads to different final results of

MCC.

 Algorithm may not converge to a solution if radius growth is not equal or

greater than the displacement of the circle center.

2.3.5.1.3.2.  Points-Combination Algorithm 

Considering the drawbacks of the incremental algorithm, which may lead to 

inaccurate solutions or long calculation times due to convergence issues, Ballard 

et al. [60] and later Papadopoulos [61] proposed another algorithm. In this 

algorithm, two set of circles are formed. First set includes all the possible circles 

constructed by pairs of points (i.e. chords) and the second set includes circles 

constructed by triple set of points (i.e. triangles). Then, for each circle in the first 

set, all data points (shear stresses) are checked whether they are enclosed by the 

circle or not. After control of the first circle set is completed, the second set is 

controlled and finally circle with minimum diameter, which circumscribes all the 

data points, is selected from both sets. Ballard et al. suggests that the algorithm 
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shall stop the controlling operation when a circle in the first set fulfills the 

necessary condition (surrounding all data points); on the other hand, according to 

Papadopoulos search should continue until control of the second set is completed. 

This algorithm does not have the drawbacks of the incremental algorithm and the 

solution is exact; however, computational cost may be too high for large data sets. 

Points combination algorithm requires the evaluation of distances of each data to 

the center of each circle which demands the following amount of computations 

according to Bernasconi and Papadopoulos [57]: 

𝑛𝑜𝑝 = (𝑛 − 2).
𝑛!

2(𝑛 − 2)!
+ (𝑛 − 3).

𝑛!

3(𝑛 − 3)!

=
1

2
𝑛(𝑛 − 1)(𝑛 − 2) +

1

6
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) 

(2.92) 

nop in (2.92) is the number of total evaluations while n is the total data points. 

From (2.92), one may interpret that the algorithm runs in O(n
4
) time. This high

amount of computation is due to the search of all possible circles which may not 

be necessary for finding the MCC. Therefore, Bernasconi and Papadopoulos [57] 

suggested a modification based on the improvements recommended by Weber et 

al. [59] for critical plane search algorithm. As a result of this modification, 

amount of calculations would be as follows: 

𝑛𝑜𝑝 = 3[𝑛(𝑛 − 1) − 3] (2.93) 

which is a second order polynomial and the new run time is O(n
2
).

2.3.5.1.3.3.  Optimization Algorithm (fminmax) 

Although points-combination algorithm gives exact solution, the calculation time 

may become large depending on the number of data points. Therefore a different 

approach is presented by Bernasconi et al. [42, 57] stating that the MCC is 

actually a min-max optimization problem and it can be solved by a minmax 

algorithm available in commercial mathematical softwares. These minmax 

algorithms give exact solution with faster computation time than points 
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combination algorithm; however, they are not as fast as the incremental algorithm 

as shown by Bernasconi and Papadopoulos. [57]. 

For any minmax algorithm, at first, mean stress vector is calculated and then 

alternating value of the shear stress may be obtained by an algebraic calculation. 

Mean shear stress vector may be obtained by minimizing an arbitrary shear vector 

τ* which maximizes the norm of the difference (τ-τ*) as follows,  

𝑻𝒎 = min𝜏∗(max𝑡‖𝝉(𝒕) − 𝝉∗‖) (2.94) 

After center of the MCC (mean shear stress vector) is obtained, radius which 

corresponds to the alternating value of shear stress is the maximum value of the 

norm of the difference (τ-τ*) which can be formulated as 

𝑇𝑎 = max
𝑡

‖𝝉(𝒕) − 𝑻𝒎‖ (2.95) 

For this study fminmax algorithm of MATLAB Optimization Package, which 

performs a sequential quadratic programing routine, is utilized. 

2.3.5.1.3.4.  Randomized Algorithm 

Another type of algorithm that is encountered in literature is the randomized 

algorithm proposed by Berg et al. [62]. This algorithm is similar to points-

combination algorithm but this time points are chosen randomly and circles may 

be formed with two or three data points. Again all the data points are controlled 

whether they are encircled or not. However, with randomized algorithm MCC 

may be obtained without controlling all the possible circles that are constructed 

with two or three data points. Like in points-combination algorithm solution is 

exact. Main advantage of the randomized algorithm is that it has a run time of 

O(n) as claimed by Bernasconi and Papadopoulos [57]. Steps of the algorithm can 

be summarized as follows: 

1. Data points are sorted randomly and stored in a vector. Then an initial

circle is constructed from the first two points of this vector.
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2. Data points other than the first two points are controlled whether they are

encircled or not. If points lie inside the circle, the circle remains

unchanged. However, when a point comes out to be outside the initial

circle, then all the data points investigated are passed to a subroutine.

3. Under the first subroutine, the point which is outside the initial circle is

chosen and called q1. Other data points are randomly sorted and stored in

a vector. A new circle is constructed with the point q1 and the first point

of this new vector. Again all data points in the vector are controlled

whether they lie in the new circle or not. If a point comes out to be outside

the circle, then all data points investigated are passed to another

subroutine.

4. Under this second subroutine, the point which is outside the initial circle

is chosen and called q2. Other data points are randomly sorted and stored

in a vector. A new circle is constructed with the point q1 and the q2.

Again all data points in the vector are controlled whether they lie in the

new circle or not. If a point comes out to be outside the circle, this point is

called p and a new circle is constructed with q1, q2 and p. After the

second subroutine, there are two possibilities of circles; a circle

constructed with q1 and q2 or a circle constructed with q1, q2 and p.

After step 4 is completed, procedure returns to step 3 with the circle found in step 

4 being the initial circle of step 3. Then step 3 continues to control the data points 

and whenever necessary step 4 is called. After step 3 is completed, procedure 

returns back to step 2 with the initial circle as the one found in step 3. Then, 

remaining data points of the first randomly sorted data points are controlled. 

Again step 3 is called whenever it is necessary. Algorithm stops when all the data 

points of the first randomly sorted data points are controlled and MCC is found.   

For this study fminmax and randomized algorithm are employed as both 

algorithms yield exact solution and they are the fastest ones in literature.  
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Minimum circumscribed circle gives a unique solution unlike Longest Chord and 

Longest Projection and currently it is the most popular method [28]. However, 

the method has some drawbacks. One drawback is that MCC requires 

complicated optimization algorithms. Another drawback is MCC method may not 

distinguish between proportional and non-proportional loading i.e. method 

bounds some proportional and non-proportional stress histories with the same 

MCC [28, 63]. For MCC, two stress paths (Ψ1, Ψ2) are shown in Figure 2.24b. Ψ1

is a non-proportional stress history while Ψ2 is a proportional stress history. As 

can be seen from the figure same alternating shear stress is calculated for both 

histories which do not reflect the reality since experimental studies show non-

proportional histories are more damaging than proportional ones [26-30].  
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Figure 2.24: a) Minimum circumscribed circle definition, b) Drawback of 

Minimum circumscribed circle 

2.3.5.1.4.  Maximum Rectangular Hull (MRH) 

Maximum Rectangular Hull (MRH), which is first introduced by Mamiya et al. 

[47] for invariant methods and later by Araujo et al. [28] for critical plane

methods, does not have drawbacks stated above. Main idea of the MRH is to 

enclose the shear stress path Ψ with a rectangular hull (RH) and to find the 

maximum of RH by 2D rotation on material plane Δ (see Figure 2.25b). Half 
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sides of the rectangular hull for an orientation of α may be obtained from (Figure 

2.25a): 

𝑎𝑘(𝛼) =
1

2
(max𝑡(𝜏𝑘(𝛼, 𝑡)) − min𝑡(𝜏𝑘(𝛼, 𝑡))),     𝑘 = 1,2 (2.96) 

For each rectangular hull alternating value of the resultant shear stress is defined 

as: 

𝑇𝑎(𝛼) = √𝑎1
2(𝛼) + 𝑎2

2(𝛼) (2.97) 

Maximum Rectangular Hull is defined as the hull where orientation α maximizes 

the alternating shear stress. Once the MRH is obtained, like in MCC distance 

from origin to the center of MRH gives the mean value of resultant shear stress. 

In this study, maximum rectangular hull search is carried out with 1
o
 increments

from 0
o
 up to 90

o
.
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Figure 2.25: a) Rectangular hull, b) Maximum rectangular hull 

2.3.6. Critical Plane Definitions 

In literature, different approaches have been proposed for defining the critical 

plane. Proposals are mostly based on physical mechanisms of crack initiation and 

crack opening. There are three approaches according to Papuga [19] and Li et al. 

[11] which are Maximum Shear Stress Amplitude (MSA), Maximum Damage
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Parameter (MDP) and Critical Plane Deviation (CPD). These approaches are 

explained in detail below: 

2.3.6.1.  Maximum Shear Stress Amplitude (MSA) 

According to maximum shear stress amplitude approach, shear stresses are the 

decisive stress values that determine the critical plane. This assumption supposes 

normal stresses are only effective for crack opening not for crack initiation. Plane 

with the maximum shear stress amplitude (or alternating shear stress) is accepted 

to be the critical plane. However the original idea appears to create an ill-posed 

problem since there may be more than one plane that experiences the maximum 

shear stress amplitude. This problem was discussed by Araujo et al. [28] and an 

additional step is proposed in critical plane algorithm. Authors’ proposal is to find 

the plane with the maximum normal stress and the shear stress amplitude within a 

tolerance of the maximum value of shear stress amplitude. Although this 

algorithm solves the uniqueness problem it clearly increases the calculation time. 

Matake [64] and Susmel [65] methods are some examples of this approach.  

2.3.6.2.  Maximum Damage Parameter (MDP) 

Maximum damage parameter approach assumes the plane with maximum value 

of the damage parameter caused by shear and normal stress components leads to 

failure of the component. Unlike MSA, MDP approach assumes that normal 

stresses also have effect in crack initiation. This concept of critical plane is quite 

popular as many researches preferred this assumption. Findley [21], Dang Van 

[24] and Papuga PCR [66] methods are some examples that use this approach for

finding the critical plane.   

2.3.6.3.  Critical Plane Deviation (CPD) 

Critical plane deviation approach not only tries to obtain the critical plane but 

also the deviation of the critical plane from the fracture plane for which the crack 

is observed in macro level. According to this approach, first the fracture plane is 

attained by assuming it is the plane with maximum value of the alternating 

normal stress and then the deviation of the critical plane is searched by 
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maximization of the damage parameter. This deviation is not only depends on the 

stress state but also the type of material that is loaded. There are two methods 

which are Liu and Mahadevan [50] and Carpinteri and Spagnoli [67] that use this 

approach. Both methods give quite close estimations of the deviation angle for 

the test data presented by Macha [68].   

2.3.7. Critical Plane Criteria 

In this section, historical background and formulations of some widely utilized 

critical plane criteria are clarified. All the critical plane criteria examined here 

adopt the MDP assumption. 

2.3.7.1.  Findley Criterion (FIN) 

Idea of calculating shear and normal stress on a material plane and formulating a 

damage parameter as a combination of these stress measures was first proposed 

by Stanfield [20]. However, Stanfield did not verify these proposals nor he made 

extensive studies based on experimental data. Damage parameter he proposed is 

the linear combination of alternating resultant shear stress and normal stress 

acting on a material plane. Same formulation was come out by Stullen and 

Cummings [69] with a critical plane concept, assuming the critical plane is the 

material plane in which the ratio of alternating resultant shear stress to normal 

stress is maximum. Findley [21] proposed a damage parameter with again similar 

formulation but with a different mean stress term (maximum value of the normal 

stress) and a different critical plane definition. Parabolic forms were also studied 

by Findley using Gough and Pollard’s experimental data [5, 6]; however, linear 

formulation was found to be sufficient. Findley defines the critical plane as the 

material plane where damage parameter is maximized (MDP approach). This 

damage parameter usually presented as [7, 21, 70, 71, 72, 59, 63, 26]; 

𝑇𝑎 + 𝑘𝜎𝑛,𝑚𝑎𝑥 ≤ 𝑓 (2.98) 

where 𝑘 and 𝑓 are material constants, 𝑘 being the weighting constant of the 

normal stress and 𝑓 being the damage allowable. However, for better 
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understanding the effects of different shear and normal stress measures and for 

methods investigated to be consistent in formulations, demonstration used by 

Papuga [45] is obtained:  

𝑎. 𝑇𝑎 + 𝑏. 𝜎𝑛,𝑚𝑎𝑥 ≤ 𝜎−1 (2.99) 

Findley material constants for the calibration bending-torsion are shown below: 

𝑎 = 2√𝑟 − 1 (2.100) 

𝑏 = 2 − r (2.101) 

2.3.7.2.  Dang Van Criterion (DV) 

Dang Van [24] is one of the widely used and implemented critical plane criteria. 

Method is based on stresses on mesoscopic scale (grain level). The idea of the 

method comes from the observations that fatigue crack nucleation is a local 

process which starts at grains that are plastically deformed and form slip bands. 

According to the criterion, fatigue failure does not occur when plastically 

deformed grains are stabilized by neighboring grains, which are elastically 

deformed, at the state of stable elastic shakedown. However, if the material 

reaches a plastic shakedown state, in which persistent slip bands are formed, 

fatigue failure will occur even though the material shows an elastic behavior on 

macroscopic scale.  

Criterion is the linear combination of instantaneous mesoscopic shear stress and 

the hydrostatic normal stress (same value for mesoscopic and macroscopic scale). 

When the combination of these stress quantities exceeds the elastic stress state 

level, fatigue failure occurs. Mesoscopic shear stress is a deviatoric stress 

measure (calculated according to Tresca maximum shear stress theory) that 

includes the effects of isotropic and kinematic hardening of the material. 

Criterion can be formulated as follows: 

𝜏𝑚𝑒𝑠𝑜(𝑡) + 𝑘𝜎ℎ(𝑡) ≤ 𝑓 (2.102) 
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where 𝑘 and 𝑓 are material parameters, like in Findley 𝑘 is the weighting of the 

normal stress (for Dang Van it is the hydrostatic stress) and 𝑓 is the damage 

allowable. Although this is the original version proposed by Dang Van, a 

different form applicable to macroscopic scale is commonly used [70, 71, 26, 19, 

14, 73] which is also adopted in this study. It is worth to mention that in 

macroscopic scale there are different approaches. Kluger and Lagoda [26] use 

instantaneous shear and hydrostatic stresses while Papuga [19] suggested the use 

of alternating value of shear stress and maximum value of hydrostatic stress as 

estimations are improved for non-proportional loadings. Formulation used here is 

as follows: 

𝑎. 𝑇𝑎 + 𝑏. 𝜎ℎ,𝑚𝑎𝑥 ≤ 𝜎−1 (2.103) 

Critical plane is assumed to be the plane with maximum of the damage parameter 

and the material constants for bending-torsion calibration are shown below: 

𝑎 = r (2.104) 

𝑏 = 3 −
3

2
𝑟 (2.105) 

2.3.7.3.  Robert Criterion (RB) 

Robert criterion [74, 75] is a modification of the Findley criterion. This method 

separates the effects of alternating and mean parts of the normal stress in order to 

improve estimation capability of Findley criterion for loadings with mean 

stresses. However, this separation comes with a price as the criterion requires 

another material parameter for calibration. Since only the mean normal stress part 

is modified, both Findley and Robert criteria give same estimations for loadings 

without mean stresses. According to Papuga [45, 19], a slight improvement is 

observed for loadings with mean stresses as the Robert criterion shifts the average 

value of estimations to zero while the scatter is increased and the range is very 

similar compared to Findley criterion. Furthermore, Papuga states that the linear 

combination of alternating and mean values of the normal stress has made the 
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criterion very sensitive to mean normal stress effect. Criterion can be formulated 

as follows: 

𝑎. 𝑇𝑎 + 𝑏. 𝜎𝑛,𝑎 + 𝑐. 𝜎𝑛,𝑚 ≤ 𝜎−1 (2.106) 

Robert criterion does not fit to equation (2.40) completely since it is a three 

parameter method. As a result, criterion requires three endurance limits for 

calibration. Material parameters may be obtained from fully reversed 

axial/bending, fully reversed torsion and pulsating axial/bending and their values 

are given below: 

𝑎 = 2. √𝑟 − 1 (2.107) 

𝑏 = 2 − 𝑟 (2.108) 

𝑐 =
2. 𝜎−1

𝜎0
−

𝜎0

2. 𝜎−1

(𝑟 − 1) − (2 + 𝑟) (2.109) 

2.3.7.4.  Papuga PCR Criterion (PCR) 

Papuga carried out an extensive study for developing a multiaxial endurance 

criterion that is suitable for both phase and mean stress effect in his PhD thesis 

[45]. First, several combinations of alternating shear stress with alternating 

normal stress and hydrostatic stress are tested and Papuga concluded that use of 

alternating hydrostatic stress is not suitable for correlating the phase effect. 

Therefore, a formulation including alternating normal stress is chosen and the 

study continued for inclusion of mean stress effect. Also linear and non-linear 

formulations are investigated and it resulted in the choice of a non-linear damage 

parameter that is consisted of alternating shear and normal stress values as 

damage indicators. For including the mean stress effect, three different options 

are examined. These possible solutions are to utilize the maximum normal stress 

(𝜎𝑚𝑎𝑥), SWT mean stress correction (√𝜎𝑎. 𝜎𝑚𝑎𝑥) or to separately employ

alternating and mean values of normal stresses (𝜎𝑎 and 𝜎𝑚) which is inspired

from the Robert criterion. After all these combinations are analyzed for the 
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experimental data set studied, the approach proposed by Robert is adopted but 

with an empirical constant weighting the mean normal stress component. Papuga 

also controlled the second derivatives of the final criterion in order to determine 

the limitations of the formulation i.e. the domain that guarantees the maximum 

extrema. Criterion can be shown as follows: 

√𝑎. 𝑇𝑎
2 + 𝑏. (𝜎𝑛,𝑎 +

𝜏−1

𝜎0
. 𝜎𝑛,𝑚) ≤ 𝜎−1 (2.110) 

Material parameters 𝑎 and 𝑏 take different values based on the type of material 

(ductile, brittle) and their formulations are given below: 

𝑟 < √
4

3
≅ 1.155:  𝑎 =

𝑟2

2
+

√𝑟4 − 𝑟2

2
,     𝑏 = 𝜎−1

(2.111) 

𝑟 ≥ √
4

3
≅ 1.155;   𝑎 = (

4𝑟2

4 + 𝑟2
)

2

,     𝑏 =
8𝜎−1𝑟2(4 − 𝑟2)

(4 + 𝑟2)2
(2.112) 

As seen from the formulations, criterion requires three endurance limits for the 

calibration which may be a disadvantage. Like other critical plane methods 

investigated in this study, this criterion does not include a mean shear stress term 

which is criticized by Papuga [14, 19] and stated that the inclusion of 𝑇𝑚 may be

an improvement for preventing the shift of results to the non-conservative side 

which occurs in loadings with mean torsion stresses.  

2.3.8. Summary of Multiaxial Endurance Criteria 

In section 2.3. three different types of multiaxial endurance criteria are explained 

which are equivalent stress, invariant based and critical plane. In this section a 

brief summary of the investigated criteria is made in terms of their formulation, 

shear stress term, inclusion of mean stress and required endurance limits which 

are presented in Table 2.3. As one may observe from the table, methods except 

equivalent stress criteria and Sines have an alternating stress part that is a 

combination of shear and normal stresses. The alternating stress part of the 
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criteria are used for handling the phase effect and the remaining part of the 

damage parameters, which is the mean stress part, is for handling the mean stress 

effects (normal mean stress, shear mean stress or both).  



T
ab

le
 2

.3
 S

u
m

m
ar

y
 o

f 
M

u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 

C
ri

te
ri

a 
F

o
rm

u
la

ti
o
n

 

P
ar

am
et

er
s 

A
lt

er
n
at

in
g
 

S
tr

es
s 

In
cl

u
si

o
n
 

M
ea

n
 

S
tr

es
s 

In
cl

u
si

o
n
 

R
eq

u
ir

ed
 

E
n
d
u
ra

n
ce

 

L
im

it
s 

𝑎
 

𝑏
 

𝑐 

A
b
so

lu
te

 

M
ax

im
u

m
 

S
tr

es
s 

𝑠𝑖
𝑔

𝑛
(𝜎

𝐴
𝑀

𝑃
( 𝑡

) )
.|

𝜎 𝐴
𝑀

𝑃
( 𝑡

)|
0
 

1
 

- 
𝜎

𝑒
𝑞

,𝐴
𝑀

𝑃

M
ea

n
 

C
o

rr
ec

ti
o

n
 

𝜎
−

1
o

r 
𝜏 −

1

S
ig

n
ed

 v
o
n
 

M
is

es
 

𝑠𝑖
𝑔

𝑛
(𝜎

𝐴
𝑀

𝑃
( 𝑡

) )
.|

σ
V

M
(𝑡

)|
1
 

0
 

- 
𝜎

𝑒
𝑞

,𝑆
𝑉

𝑀

M
ea

n
 

C
o

rr
ec

ti
o

n
 

𝜎
−

1
o

r 
𝜏 −

1

S
in

es
 

𝑎
√

𝐽 2
,𝑎

+
𝑏

𝜎
ℎ

,𝑚
𝑟 

(6
r 0

−
√

3
.r

)
- 

√
𝐽 2

,𝑎
𝜎

ℎ
,𝑚

𝜎
−

1
,𝜏

−
1

,𝜎
0

C
ro

ss
la

n
d
 

𝑎
√

𝐽 2
,𝑎

+
𝑏

𝜎
ℎ

,𝑚
𝑎

𝑥
𝑟 

3
−

√
3

𝑟 
- 

√
𝐽 2

,𝑎
 a

n
d

 𝜎
ℎ

,𝑎
𝜎

ℎ
,𝑚

𝜎
−

1
,𝜏

−
1

G
o
n
ça

lv
es

, 

A
ra

u
jo

 a
n
d
 

M
am

iy
a 

𝑎
√

∑
𝐷

𝑖2

5

𝑖=
1

+
𝑏

𝜎 1
,𝑚

𝑎
𝑥

r
−

1

√
2

(1
−

1 √
3

)
√

3
−

r

√
3

−
1

- 
√

∑
𝐷

𝑖2

5

𝑖=
1

 a
n

d
 𝜎

1
,𝑎

𝜎 1
,𝑚

𝜎
−

1
,𝜏

−
1

F
in

d
le

y
 

𝑎
.𝑇

𝑎
+

𝑏
.𝜎

𝑛
,𝑚

𝑎
𝑥

2
√

𝑟
−

1
 

2
−

r 
- 

𝑇 𝑎
 a

n
d

 𝜎
𝑛

,𝑎
𝜎

𝑛
,𝑚

𝜎
−

1
,𝜏

−
1

D
an

g
 V

an
 

𝑎
.𝑇

𝑎
+

𝑏
.𝜎

ℎ
,𝑚

𝑎
𝑥

𝑟 
3

−
3 2

𝑟 
- 

𝑇 𝑎
 a

n
d

 𝜎
ℎ

,𝑎
𝜎

ℎ
,𝑚

𝜎
−

1
,𝜏

−
1

65 



R
o
b

er
t 

𝑎
.𝑇

𝑎
+

𝑏
.𝜎

𝑛
,𝑎

+
𝑐.

𝜎
𝑛

,𝑚
2

. √
𝑟

−
1

2
−

𝑟 

2
.𝜎

−
1

𝜎
0

−
𝜎

0

2
.𝜎

−
1

( 𝑟
−

1
)

−
(2

+
𝑟)

𝑇 𝑎
 a

n
d

 𝜎
𝑛

,𝑎
𝜎

𝑛
,𝑚

𝜎
−

1
,𝜏

−
1

,𝜎
0

P
ap

u
g
a 

P
C

R
; 

r<
1
.1

5
5
 

√
𝑎

.𝑇
𝑎2

+
𝑏

.(
𝜎

𝑛
,𝑎

+
𝜏 −

1

𝜎
0

.𝜎
𝑛

,𝑚
)

𝑟
2 2

+
√

𝑟
4

−
𝑟

2

2
𝜎

−
1

- 

𝑇 𝑎
 a

n
d

 𝜎
𝑛

,𝑎
𝜎

𝑛
,𝑚

𝜎
−

1
,𝜏

−
1

,𝜎
0

P
ap

u
g
a 

P
C

R
; 

r>
1
.1

5
5

(
4

𝑟
2

4
+

𝑟
2

)

2
8

𝜎
−

1
𝑟

2
(4

−
𝑟

2
)

( 4
+

𝑟
2

)2
-

66 



67 

CHAPTER 3 

3AXIAL/BENDING CALIBRATIONS OF MULTIAXIAL 

ENDURANCE CRITERIA 

Invariant and critical plane criteria have a common property that their 

formulations include weighting constants (material parameters) to adjust the 

effect of shear and normal stress terms on the damage parameter. These 

weighting constants are calibrated for two different uniaxial loading cases for two 

parameter methods. Calibration is usually made with fully reversed axial/bending 

and torsion endurance limits (bending-torsion calibration). However, torsion 

endurance limit may not always be available as many engineering handbooks 

such as MMPDS only include axial fatigue tests. In literature some authors 

studied different adjustments of material constants. Karolczuk et al. [70, 71] 

calibrate the material constant of Findley, Matake and Dang Van at different 

number of cycles unlike the classical calibration (bending-torsion calibration) and 

they obtain good conformity with calculated and experimental fatigue lives. 

Kallmeyer et al. [52, 76] calibrated the material constants from uniaxial test data 

(bending and torsion) of Ti-6Al-4V for different R ratios by a least-squares error 

minimization method. Karolczuk and Macha [72] made multiaxial 

proportional/non-proportional, constant and variable amplitude bending/torsion 

experiments on 18G3A steel smooth specimens. They linearly modified the 

material constant of Findley (without relating to endurance limits) and found the 

optimum value which gives the closest estimates to experimental tests. Papuga 

[45] made an extensive study and evaluated the effects of different stress

measures and calibrations to develop a new method. His final criterion, Papuga 
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PCR, came out to be a three parameter critical plane method with adjusting 

endurance limits of fully reversed bending, fully reversed torsion and pulsating 

bending. However, none of these studies evaluate the performance of a 

calibration with only axial/bending endurance limits with different R ratios. 

Therefore, in this chapter, a calibration with fully reversed axial/bending and 

pulsating axial/bending endurance limits, which will be called axial/bending 

calibration throughout the thesis in following sections, is tested for four different 

endurance criteria which are Crossland, GAM, Findley and Dang Van. For the 

experimental data set obtained from literature, performances of these methods are 

investigated and acceptability of the axial/bending calibration is questioned in 

Section 5.4.  

3.1. Derivation of Material Parameters for Crossland 

Axial/bending calibration of Crossland is derived in this section by calculating 

the stress state at fully reversed and pulsating axial/bending.  

3.1.1. Damage Parameter for Fully Reversed Axial/Bending Loading 

For fully reversed axial/bending case loading is as follows: 

𝜎𝑎 = 𝜎−1; 𝜎𝑚 = 𝜏𝑎 = 𝜏𝑚 = 0 (3.1) 

For this loading, alternating value of second invariant can be obtained from (2.54) 

knowing that 𝛿 = 0 as the loading is uniaxial: 

√𝐽2,𝑎 =
1

√2
√

2

3
𝜎−1

2 =
𝜎−1

√3
(3.2) 

and maximum value of hydrostatic stress is 

𝜎ℎ,𝑚𝑎𝑥 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) =

𝜎−1

3
(3.3) 

Thus, Crossland damage parameter for fully reversed axial/bending case can be 

calculated from (2.61): 
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𝑎.
𝜎−1

√3
+ 𝑏.

𝜎−1

3
= 𝜎−1 (3.4) 

After simplification, 

𝑎.
1

√3
+ 𝑏.

1

3
= 1 (3.5) 

3.1.2.  Damage Parameter for Pulsating Axial/Bending Loading 

For pulsating axial/bending case loading is as follows: 

𝜎𝑎 = 𝜎𝑚 =
𝜎0

2

𝜏𝑎 = 𝜏𝑚 = 0

(3.6) 

For this loading case √𝐽2,𝑎 is as follows:

√𝐽2,𝑎 =
1

√2
√

2

3
.
𝜎0

2

4
=

𝜎0

2√3
(3.7) 

And maximum value of hydrostatic force is 

𝜎ℎ,𝑚𝑎𝑥 =
𝜎0

3
(3.8) 

Therefore, Crossland damage parameter for pulsating axial/bending case is as 

follows: 

𝑎.
𝜎0

2√3
+ 𝑏.

𝜎0

3
= 𝜎−1 (3.9) 

After simplification, 

𝑎.
1

2√3
+ 𝑏.

1

3
= 𝑟0

(3.10) 
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Material parameters of Crossland for axial/bending calibration may be obtained 

from (3.5) and (3.10); by subtracting ((3.10) from (3.5) following expression may 

be obtained: 

𝑎.
1

2√3
= 1 − 𝑟0

(3.11) 

As a result, a parameter can be written in terms of r0: 

𝑎 = 2√3(1 − 𝑟0) (3.12) 

Since parameter 𝑎 is computed, parameter 𝑏 may be found from (3.5) or (3.10): 

2√3(1 − 𝑟0).
1

2√3
+ 𝑏.

1

3
= 𝑟0

𝑏 = 3(2𝑟0 − 1) (3.13) 

3.2. Derivation of Material Parameters for Gonçalves, Araujo and 

Mamiya (GAM) 

Axial/bending calibration of GAM is derived in this section by calculating the 

stress state at fully reversed and pulsating axial/bending.  

3.2.1. Damage Parameter for Fully Reversed Axial/Bending Loading 

For loading conditions stated in (3.1), minimum and maximum values of 

transformed stress quantities on Ilyushin deviatoric space can be calculated from 

(2.53), 

𝑆1,𝑚𝑖𝑛 = −√
2

3
𝜎−1

𝑆1,𝑚𝑎𝑥 = √
2

3
𝜎−1

From which alternating value can be obtained, 
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𝑆1,𝑎 = √
2

3
𝜎−1

(3.14) 

As loading is uniaxial tension/bending, other deviatoric stress quantities (𝑆3) turn

out to be zero. Maximum value of principal stress may be obtained from plane 

stress/strain formulations, 

𝜎1,𝑚𝑎𝑥 = max(
𝜎𝑥(𝑡) + 𝜎𝑦(𝑡)

2
+ √(

𝜎𝑥(𝑡) − 𝜎𝑦(𝑡)

2
)

2

+ 𝜏𝑥𝑦
2 (𝑡)) (3.15) 

𝜎1,𝑚𝑎𝑥 = 𝜎−1 (3.16) 

Therefore, GAM damage parameter may be calculated from (2.64): 

𝑎. √
2

3
𝜎−1 + 𝑏. 𝜎−1 = 𝜎−1

(3.17) 

Simplification of (3.17) leads to, 

𝑎. √
2

3
+ 𝑏 = 1 (3.18) 

3.2.2. Damage Parameter for Pulsating Axial/Bending Loading 

For loading conditions stated in (3.6), again 𝑆3 would be again zero while 𝑆1 is:

𝑆1,𝑚𝑖𝑛 = 0

𝑆1,𝑚𝑎𝑥 = √
2

3
𝜎0

which leads to an alternating value of, 
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𝑆1,𝑎 =
1

2
√

2

3
𝜎0

(3.19) 

Maximum value of principal stress can be obtained from (3.15), 

𝜎1,𝑚𝑎𝑥 = 𝜎0 (3.20) 

Thus, damage parameter of GAM may be calculated for pulsating axial/bending 

case,  

𝑎.
1

2
√

2

3
𝜎0 + 𝑏. 𝜎0 = 𝜎−1

(3.21) 

After simplification (3.21) becomes, 

𝑎.
1

2
√

2

3
+ 𝑏 = 𝑟0

(3.22) 

Material parameters of GAM for axial/bending calibration may be obtained from 

(3.18) and (3.22); by subtracting (3.22) from (3.18) following expression may be 

obtained: 

𝑎.
1

2
√

2

3
= 1 − 𝑟0

(3.23) 

Therefore, parameter 𝑎 can be written in terms of 𝑟0:

𝑎 = √6(1 − 𝑟0) (3.24) 

Since parameter 𝑎 is computed, parameter 𝑏 may be found from (3.18) or (3.22): 

√6(1 − 𝑟0). √
2

3
+ 𝑏 = 1
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𝑏 = (2𝑟0 − 1) (3.25) 

3.3. Derivation of Material Parameters for Findley 

Material constants (𝑎, 𝑏) for the axial/bending calibration of Findley is derived by 

transforming the 𝑘 calibration results of Socie and Marquis [7] and the following 

relations are obtained for the material constants:  

𝑎 =
2

(
𝑟0

2 −
1
4

√−𝑟0(4𝑟0
2 − 5𝑟0 + 1)

+ √ 1 − (𝑟0
2 −

1
4

)
2

𝑟0(4𝑟0
2 − 5𝑟0 + 1)

)
(3.26) 

𝑏 =
𝑟0

2 −
1
4

√−𝑟0(4𝑟0
2 − 5𝑟0 + 1)

(3.27) 

3.4. Derivation of Material Parameters for Dang Van 

Axial/bending calibration of Dang Van is derived in this section by calculating 

the stress state at fully reversed and pulsating axial/bending.  

3.4.1. Damage Parameter for Fully Reversed Axial/Bending Loading 

Alternating shear stress that appear in (2.103) can be derived from (2.91) and for 

fully reversed axial/bending case formulation turns out to be, 

𝑇a =
𝜎−1

2
√sin2(𝜑). sin2(2𝜃) + sin2(2𝜑) cos4(𝜃) (3.28) 

Hydrostatic force has already be obtained in (3.3) thus, Dang Van damage 

parameter takes the form, 

𝑎.
𝜎−1

2
√sin2(𝜑). sin2(2𝜃) + sin2(2𝜑) cos4(𝜃) + 𝑏.

𝜎−1

3
= 𝜎−1 (3.29) 
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Since the criterion defines the critical plane as the plane where damage parameter 

is maximized, derivatives of (3.29) with respect to 𝜃 and 𝜑 should be equal to 

zero, 

𝜕𝜎−1

𝜕𝜃𝑐𝑝
= 𝑎.

𝜎−1 

4
× 

4 sin(2𝜃𝑐𝑝) cos(2𝜃𝑐𝑝) sin2(𝜑𝑐𝑝) − 4 cos3(𝜃𝑐𝑝) sin(𝜃𝑐𝑝) sin2(2𝜑𝑐𝑝)

√sin2(𝜑𝑐𝑝). sin2(2𝜃𝑐𝑝) + sin2(2𝜑𝑐𝑝) cos4(𝜃𝑐𝑝)

= 0 

 =
4 sin(2θcp) sin2(𝜑𝑐𝑝) [2 cos2(𝜃𝑐𝑝). (1 − cos2(𝜑𝑐𝑝)) − 1]

√sin2(𝜑𝑐𝑝). sin2(2𝜃𝑐𝑝) + sin2(2𝜑𝑐𝑝) cos4(𝜃𝑐𝑝)

= 0 

(3.30) 

𝜕𝜎−1

𝜕𝜑𝑐𝑝
= 𝑎.

𝜎−1 

4
.
sin(2𝜑𝑐𝑝) sin2(2𝜃𝑐𝑝) + 4 sin(2𝜑𝑐𝑝) cos(2𝜑𝑐𝑝) cos4(𝜃𝑐𝑝)

√sin2(𝜑𝑐𝑝). sin2(2𝜃𝑐𝑝) + sin2(2𝜑𝑐𝑝) cos4(𝜃𝑐𝑝)

+ 0 = 0

(3.31) 

 =

sin(2𝜑𝑐𝑝) sin2(2𝜃𝑐𝑝) [1 +
4cos (2𝜑𝑐𝑝)

tan2(𝜃𝑐𝑝)
]

√sin2(𝜑𝑐𝑝). sin2(2𝜃𝑐𝑝) + sin2(2𝜑𝑐𝑝) cos4(𝜃𝑐𝑝)

= 0 

The three equations (3.29)-(3.31) include a total of four unknown parameters that 

are 𝑎, 𝑏, 𝜃𝑐𝑝 and 𝜑𝑐𝑝. However, from (3.30) and (3.31) Eulerian angles for the

critical plane can be determined. Two possible combinations are found which 

give the same result. These are, 

(𝜃𝑐𝑝,1, 𝜑𝑐𝑝,1) = (
𝜋

4
, 0) 

(3.32) 

(𝜃𝑐𝑝,2, 𝜑𝑐𝑝,2) = (
𝜋

2
,
𝜋

4
) 

Both of these angle combinations yield the critical plane and the damage 

parameter from (3.29) gives, 

𝑎.
1

2
+ 𝑏.

1

3
= 1 (3.33) 
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3.4.2. Damage Parameter for Pulsating Axial/Bending Loading 

For the pulsating axial/bending loading case damage parameter presented in 

(2.103) takes the form, 

𝑎.
𝜎0

4
√sin2(𝜑) sin2(2𝜃) + sin2(2𝜑) cos4(𝜑) + 𝑏.

𝜎0

3
= 𝜎−1 (3.34) 

From (3.34), it is clear that this equation is very similar to (3.29) with the only 

difference being 
𝜎0

4
 term in shear stress term. Therefore, Eulerian angles at critical 

plane would be the same. As a result, damage parameter becomes, 

𝑎.
1

4
+ 𝑏.

1

3
= 𝑟0

(3.35) 

Material parameters of Dang Van for axial/bending calibration may be obtained 

from (3.33) and (3.35); by subtracting (3.35) from (3.33) following expression 

may be obtained: 

𝑎.
1

4
= 1 − 𝑟0

(3.36) 

Therefore, parameter 𝑎 can be written in terms of 𝑟0:

𝑎 = 4(1 − 𝑟0) (3.37)

Since parameter 𝑎 is computed, parameter 𝑏 may be found from (3.33) or (3.35): 

2(1 − 𝑟0) + 𝑏.
1

3
= 1 

𝑏 = 3(2𝑟0 − 1) (3.38) 

3.5. Summary of Axial/Bending Calibrations of Multiaxial Endurance 

Criteria 

In this chapter calibration of several invariant and critical plane criteria is made 

which is based on only axial/bending endurance limits with different R ratios 
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(R=-1 and R=0). In this section a brief summary of the derieved weigthing 

constants are presented in Table 3.1.  
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CHAPTER 4 

4METHODOLOGY AND EVALUATION OF CRITERIA 

4.1. Type of Evaluation 

All the criteria (equivalent stress, invariant based and critical plane) presented in 

this study are developed against high cycle multiaxial fatigue; therefore, the 

evaluation is concerned about whether the specimen withstands an infinite life or 

not. For this purpose, experimental data presented in Section 4.3. is used and 

fatigue index error (FIE) is introduced. FIE shows the derivation of the damage 

parameter, calculated either with an equivalent stress, an invariant or a critical 

plane criterion, from fully reversed axial/bending endurance limit. It can be 

shown as follows: 

𝐹𝐼𝐸(%) =
𝐷𝑃 − 𝜎−1

𝜎−1
∗ 100 (4.1) 

A negative value of FIE means that the criterion predicts no failure; although it 

actually occurred in the experiment. Therefore, such estimation is evaluated as 

non-conservative while opposite is true for positive values of FIE. 

Histograms are utilized in this study for presenting the overall behavior of the 

criteria. Papadopoulos et al. [18] is the first author that uses histograms for 

comparison of the criteria and later it is adopted by all other multiaxial 

researchers. Histograms are bar graphs that show the number of occurrences of a 

particular parameter. This parameter is the mean fatigue index error for this study 

as the overall predictive capabilities of the criteria is investigated. As explained 

above a negative value of the FIE is undesired which means the estimation is 

non-conservative; therefore, in histograms shift to left side means that the 

criterion becomes non-conservative. Opposite is true for the shift to right side in a 
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histogram meaning that the estimations become conservative. For an ideal 

criteria, fatigue index errors and the median of the graph should be as close as 

possible to zero and histogram should have a range of approximately 20% (or a 

lower value) giving a mean fatigue index tolerance of -10% to 10% [45]. A 

representation of a histogram is shown in Figure 4.1 for a better understanding of 

the graph type.  

Figure 4.1: Example of a histogram showing conservative and non-conservative 

sides, median of the graph and the tolerable range 

For large data sets, like in this study, this kind of a presentation may not 

sufficiently clarify the predictive capabilities of the criteria. Therefore, statistical 

analysis measures (applied on mean fatigue index errors) i.e. mean, range and 

standard deviations are calculated for all experimental data and for partial effects 

(ex. estimations of in-phase loadings without mean stresses). Definitions of 

statistical analysis measures are given below (x denotes a single analysis result): 
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𝑥𝑚 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
(4.2) 

𝑥𝑟 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (4.3) 

𝑥𝑠𝑡.𝑑𝑒𝑣 = √
∑ (𝑥𝑖 − 𝑥𝑚)2𝑁

𝑖=1

𝑁 − 1
(4.4) 

4.2. Procedures of Multiaxial Fatigue Endurance Analysis 

A general computation process, which is implemented in a MATLAB code for 

the multiaxial fatigue endurance calculations and evaluation of the criteria, is 

shown in Figure 4.2. Fatigue analysis is actually a post-process and for the 

multiaxial fatigue endurance anaylsis, stress state (normal and shear stresses with 

phase and frequency differences) is obtained from multiaxial tests which are 

conducted on smooth speciments and reported in literature. In addition, 

endurance limits (alternating stress usually taken at 10
7
 cycles) for fully reversed

bending and torsion are inputs of the analysis for calibration of the criteria and for 

life estimations. Process starts with the calculation of weighting constants that are 

presented in Section 2.3. to be used in related multiaxial endurance criteria. Then, 

stress tensor is formed for each data in time. From this stress tensor, stress 

histories on each material plane can be obtained by tensor rotations. For critical 

plane criteria, all material planes are searched and normal and shear stress on 

each plane are calculated while for invariant based criteria (except GAM) only 

octahedral plane is investigated from which octahedral shear and hydrostatic 

stresses are calculated. For GAM criterion deviatoric stresses are calculated and 

alternating deviatoric stress tensor is computed. Equivalent stress criteria also 

relies on stresses on a single plane like in invariant based criteria. Octahedral 

shear stress is calculated for Signed von Mises while for Absolute Maximum 

Principal, which is based on maximum principal stress plane, absolute maximum 

principal stress is required. Calculations end when the damage parameter of the 

selected criterion (indicator of fatigue failure) is computed. In order to evaluate 

the performances of the criteria, fatigue index error (FIE) is calculated (for each 
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test data) from damage parameter and endurance limits as explained in section 

4.1. Then, for determining the general behavior of the criteria histograms are 

formed. However, since histograms do not give information about partial effects 

(phase and mean stress effects) statistical analysis is performed from which the 

mean, range and standard deviation of FIE is computed. 
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Figure 4.2: Computational flow chart of multiaxial fatigue endurance calculations 

and evaluation of criteria 
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4.3. Experimental Data Set 

The experimental data is obtained from several resources and tested materials are 

shown with their respective references and material properties in Table 4.1. Data 

set includes proportional and non-proportional multiaxial high cycle fatigue tests 

that is appropriate in size for evaluation of phase and mean stress effects 

individually and also of their combined effects. Most of the tests are harmonic 

synchronous plane bending and torsion experiments conducted on smooth 

specimens. Experimental data set also include uniaxial tests such as plane 

bending, tension/compression and torsion in order to evaluate the capability of 

methods for these simple tests. However, data set does not include experiments 

performed with asynchronous loads; therefore, effect of frequency difference can 

not be investigated. The ratio of torsion and axial/bending endurance limits 

shown in Table 4.1 is used for classification of materials by Papadopoulos et al. 

[18] and Liu and Mahadevan [50]. According to these authors, materials with

𝜏−1/𝜎−1 < 1/√3 are classified as ductile (mild) metals while materials with

1/√3 < 𝜏−1/𝜎−1 < 1 are classified as hard (brittle) metals and materials with

𝜏−1/𝜎−1 > 1 are classified as extremely brittle metals. In this study, special

attention is given on ductile and brittle metals; therefore, grey cast iron 

(extremely brittle metal) test results of Nishihara and Kawamato [77] are not 

investigated. 

Yield and ultimate strength values of materials which are tested with mean 

stresses are also given in Table 4.1, as these values are used in mean stress 

corrections of equivalent stress methods. However, fatigue limit in pulsating 

bending (𝜎0) is not found in any of the experimental data except for the material

S65A which is tested by Gough [6]. Therefore, Smith-Watson and Topper (SWT) 

formulation is used for obtaining the 𝜎0  as it is suggested by Dowling [37]

instead of other mean stress corrections such as Goodman or Gerber, which are 

explained in Section 2.3.2. Through Table 4.1 to Table 4.16, abbreviation is used 

for plane bending (PB), torsion (To), rotating bending (RB), in-phase (IP) and for 

out-of-phase (OP). 
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Experimental data is divided into two groups according to what kind of partial 

effects are evaluated (phase effect or mean stress effect). These groups are called 

nMS (tests without mean stresses) and MS (tests with mean stresses) groups. All 

individual tests are labelled with respect to their related groups (nMS or MS) and 

test loads are shown in Table 4.2 through Table 4.13 with phase differences (𝛿𝑥𝑦)

for each material. MS group is also divided into three groups which are Ax_MS 

(tests with only axial mean stress), To_MS (tests with only torsion mean stress) 

and C_MS (tests with both axial and torsion mean stress) that are clarified in 

tables.  

Table 4.2: Test Loads for nMS Experimental Data Set – Hard Steel [77] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS1 PB IP 327.0 0.0 0.0 0.0 0.0 

nMS2 PB+To IP 308.0 0.0 63.9 0.0 0.0 

nMS3 PB+To IP 255.1 0.0 127.5 0.0 0.0 

nMS4 PB+To IP 141.9 0.0 171.3 0.0 0.0 

nMS5 To IP 0.0 0.0 201.1 0.0 0.0 

nMS6 PB+To OP 255.1 0.0 127.5 0.0 30.0 

nMS7 PB+To OP 142.0 0.0 171.2 0.0 30.0 

nMS8 PB+To OP 255.1 0.0 127.5 0.0 60.0 

nMS9 PB+To OP 147.2 0.0 177.6 0.0 60.0 

nMS10 PB+To OP 308.0 0.0 63.9 0.0 90.0 

nMS11 PB+To OP 264.9 0.0 132.4 0.0 90.0 

nMS12 PB+To OP 152.5 0.0 184.2 0.0 90.0 

nMS13 PB+To IP 138.1 0.0 167.1 0.0 0.0 

nMS14 PB+To OP 140.4 0.0 169.9 0.0 30.0 

nMS15 PB+To OP 145.7 0.0 176.3 0.0 60.0 

nMS16 PB+To OP 150.2 0.0 181.7 0.0 90.0 

nMS17 PB+To IP 245.3 0.0 122.7 0.0 0.0 

nMS18 PB+To OP 249.7 0.0 124.9 0.0 30.0 

nMS19 PB+To OP 252.4 0.0 126.2 0.0 60.0 
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nMS20 PB+To OP 258.0 0.0 129.0 0.0 90.0 

nMS21 PB+To IP 299.1 0.0 62.8 0.0 0.0 

nMS22 PB+To OP 304.5 0.0 63.9 0.0 90.0 

Table 4.3: Test Loads for nMS Experimental Data Set – Mild Steel [77] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS23 PB IP 245.3 0.0 0.0 0.0 0.0 

nMS24 PB+To IP 235.6 0.0 48.9 0.0 0.0 

nMS25 PB+To IP 187.3 0.0 93.6 0.0 0.0 

nMS26 PB+To IP 101.3 0.0 122.3 0.0 0.0 

nMS27 To IP 0.0 0.0 142.3 0.0 0.0 

nMS28 PB+To OP 194.2 0.0 97.1 0.0 60.0 

nMS29 PB+To OP 108.9 0.0 131.5 0.0 60.0 

nMS30 PB+To OP 235.6 0.0 48.9 0.0 90.0 

nMS31 PB+To OP 208.1 0.0 104.1 0.0 90.0 

nMS32 PB+To OP 112.6 0.0 136.0 0.0 90.0 

Table 4.4: Test Loads for nMS Experimental Data Set – 42CrMo4 [78] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS33 PB+To IP 328.0 0.0 157.0 0.0 0.0 

nMS34 PB+To OP 286.0 0.0 137.0 0.0 90.0 

nMS35 PB+To IP 233.0 0.0 224.0 0.0 0.0 

nMS36 PB+To OP 213.0 0.0 205.0 0.0 90.0 
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Table 4.5: Test Loads for nMS Experimental Data Set – 34Cr4 [78] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS37 PB+To IP 314.0 0.0 157.0 0.0 0.0 

nMS38 PB+To OP 315.0 0.0 158.0 0.0 60.0 

nMS39 PB+To OP 316.0 0.0 158.0 0.0 90.0 

nMS40 PB+To OP 315.0 0.0 158.0 0.0 120.0 

nMS41 PB+To OP 224.0 0.0 224.0 0.0 90.0 

nMS42 PB+To OP 380.0 0.0 95.0 0.0 90.0 

nMS43 PB+To OP 129.0 0.0 258.0 0.0 90.0 

Table 4.6: Test Loads for nMS Experimental Data Set – 30NCD16 [79], [80] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a 

[MPa] 

τxy_m 

[MPa] 
δxy(o) 

nMS44 PB+To IP 485.0 0.0 280.0 0.0 0.0 

nMS45 PB+To OP 480.0 0.0 277.0 0.0 90.0 

nMS46 RB+To IP 337.0 0.0 328.0 0.0 0.0 

nMS47 RB+To IP 482.0 0.0 234.0 0.0 0.0 

nMS48 PB+To IP 519.0 0.0 291.0 0.0 0.0 

nMS49 PB+To OP 514.0 0.0 288.0 0.0 90.0 

nMS50 PB+To OP 474.0 0.0 265.0 0.0 90.0 

nMS51 PB+To IP 482.0 0.0 268.0 0.0 0.0 

Table 4.7: Test Loads for nMS Experimental Data Set – XC18 [81] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS52 PB+To IP 246.0 0.0 138.0 0.0 0.0 

nMS53 PB+To OP 246.0 0.0 138.0 0.0 45.0 
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nMS54 PB+To OP 264.0 0.0 148.0 0.0 90.0 

Table 4.8: Test Loads for nMS Experimental Data Set – FGS800_2 [82], [83] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS55 PB+To IP 228.0 0.0 132.0 0.0 0.0 

nMS56 PB+To OP 245.0 0.0 142.0 0.0 90.0 

nMS57 PB+To IP 199.0 0.0 147.0 0.0 0.0 

Table 4.9: Test Loads for nMS Experimental Data Set – S65A [6] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

nMS58 PB+To IP 547.5 0.0 156.0 0.0 0.0 

nMS59 PB+To IP 389.2 0.0 259.5 0.0 0.0 

nMS60 PB+To IP 168.3 0.0 335.9 0.0 0.0 

Table 4.10: Test Loads for MS Experimental Data Set – 42CrMo4 [78], [45] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

MS1 PB+To IP, To_MS 266.0 0.0 128.0 128.0 0.0 

MS2 PB+To OP, To_MS 283.0 0.0 136.0 136.0 90.0 

MS3 PB+To OP, To_MS 333.0 0.0 160.0 160.0 180.0 

MS4 PB+To IP, Ax_MS 280.0 280.0 134.0 0.0 0.0 

MS5 PB+To OP, Ax_MS 271.0 271.0 130.0 0.0 90.0 
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Table 4.11: Test Loads for MS Experimental Data Set – 34Cr4 [78], [84] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

MS6 PB+To IP, To_MS 316.0 0.0 158.0 158.0 0.0 

MS7 PB+To OP, To_MS 314.0 0.0 157.0 157.0 60.0 

MS8 PB+To OP, To_MS 315.0 0.0 158.0 158.0 90.0 

MS9 PB+To IP, Ax_MS 279.0 279.0 140.0 0.0 0.0 

MS10 PB+To OP, Ax_MS 284.0 284.0 142.0 0.0 90.0 

MS11 PB+To IP, To_MS 355.0 0.0 89.0 178.0 0.0 

MS12 PB+To OP, Ax_MS 212.0 212.0 212.0 0.0 90.0 

Table 4.12: Test Loads for MS Experimental Data Set – 30NCD16 [79], [80], [85] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

MS13 PB+To IP, Ax_MS 480.0 300.0 277.0 0.0 0.0 

MS14 PB+To OP, Ax_MS 480.0 300.0 277.0 0.0 45.0 

MS15 PB+To OP, Ax_MS 470.0 300.0 270.0 0.0 60.0 

MS16 PB+To OP, Ax_MS 473.0 300.0 273.0 0.0 90.0 

MS17 PB+To IP, Ax_MS 590.0 300.0 148.0 0.0 0.0 

MS18 PB+To OP, Ax_MS 565.0 300.0 141.0 0.0 45.0 

MS19 PB+To OP, Ax_MS 540.0 300.0 135.0 0.0 90.0 

MS20 PB+To IP, Ax_MS 211.0 300.0 365.0 0.0 0.0 

MS21 PB IP, Ax_MS 630.0 300.0 0.0 0.0 0.0 

MS22 PB+To IP, Ax_MS 0.0 300.0 370.0 0.0 0.0 

MS23 PB+To OP, Ax_MS 220.0 300.0 385.0 0.0 90.0 

MS24 To IP, Ax_MS 235.0 745.0 0.0 0.0 0.0 

MS25 To IP, Ax_MS 251.0 704.0 0.0 0.0 0.0 

MS26 To IP, Ax_MS 527.0 222.0 0.0 0.0 0.0 
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MS27 PB IP, Ax_MS 575.0 375.0 0.0 0.0 0.0 

MS28 PB IP, Ax_MS 558.0 428.0 0.0 0.0 0.0 

MS29 PB IP, Ax_MS 627.0 273.0 0.0 0.0 0.0 

MS30 PB IP, Ax_MS 679.0 156.0 0.0 0.0 0.0 

MS31 PB+To IP, C_MS 451.0 294.0 250.0 191.0 0.0 

MS32 PB+To OP, C_MS 462.0 294.0 258.0 191.0 90.0 

MS33 PB+To OP, Ax_MS 474.0 294.0 265.0 0.0 45.0 

MS34 PB+To OP, Ax_MS 464.0 294.0 259.0 0.0 60.0 

MS35 PB+To OP, Ax_MS 554.0 287.0 135.0 0.0 45.0 

MS36 PB+To OP, Ax_MS 220.0 199.0 368.0 0.0 90.0 

MS37 PB+To OP, Ax_MS 470.0 299.0 261.0 0.0 90.0 

MS38 PB+To OP, Ax_MS 527.0 287.0 129.0 0.0 90.0 

MS39 PB+To OP, Ax_MS 433.0 472.0 240.0 0.0 90.0 

MS40 PB+To OP, Ax_MS 418.0 622.0 234.0 0.0 90.0 

MS41 PB+To IP, Ax_MS 0.0 299.0 396.0 0.0 0.0 

MS42 PB+To IP, Ax_MS 0.0 486.0 411.0 0.0 0.0 

MS43 PB+To IP, Ax_MS 0.0 655.0 364.0 0.0 0.0 

MS44 PB+To IP, Ax_MS 207.0 299.0 350.0 0.0 0.0 

MS45 PB+To IP, Ax_MS 474.0 294.0 265.0 0.0 0.0 

MS46 PB+To IP, Ax_MS 584.0 281.0 142.0 0.0 0.0 

MS47 PB+To IP, Ax_MS 447.0 473.0 252.0 0.0 0.0 

MS48 PB+To IP, Ax_MS 425.0 635.0 223.0 0.0 0.0 
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Table 4.13: Test Loads for MS Experimental Data Set – S65A [6], [84] 

Label 
Loading 

Type 

Partial 

Effects 

σx_a 

[MPa] 

σx_m 

[MPa] 

τxy_a

[MPa] 

τxy_m 

[MPa] 
δxy(

o
)

MS49 PB+To IP, Ax_MS 552.9 266.4 0.0 0.0 0.0 

MS50 PB+To IP, Ax_MS 532.8 532.8 0.0 0.0 0.0 

MS51 PB+To IP, To_MS 549.8 0.0 0.0 169.9 0.0 

MS52 PB+To IP, To_MS 540.6 0.0 0.0 343.6 0.0 

MS53 PB+To IP, C_MS 556.0 266.4 0.0 169.9 0.0 

MS54 PB+To IP, C_MS 556.0 266.4 0.0 343.6 0.0 

MS55 PB+To IP, C_MS 469.5 532.8 0.0 169.9 0.0 

MS56 PB+To IP, C_MS 472.6 532.8 0.0 343.6 0.0 

MS57 PB+To IP, Ax_MS 0.0 266.4 312.0 0.0 0.0 

MS58 PB+To IP, Ax_MS 0.0 532.8 284.2 0.0 0.0 

MS59 PB+To IP, C_MS 0.0 266.4 304.3 169.9 0.0 

MS60 PB+To IP, C_MS 0.0 532.8 281.1 169.9 0.0 

MS61 PB+To IP, C_MS 0.0 266.4 308.9 343.6 0.0 

MS62 PB+To IP, C_MS 0.0 532.8 293.4 343.6 0.0 

MS63 PB+To IP, C_MS 496.5 266.4 141.3 169.9 0.0 

MS64 PB+To IP, C_MS 374.5 266.4 249.4 169.9 0.0 

MS65 PB+To IP, C_MS 161.4 266.4 322.0 169.9 0.0 

MS66 PB+To IP, C_MS 428.6 532.8 121.2 343.6 0.0 

MS67 PB+To IP, C_MS 315.1 532.8 210.0 343.6 0.0 

MS68 PB+To IP, C_MS 126.6 532.8 251.7 343.6 0.0 

MS69 PB+To IP, Ax_MS 386.1 266.4 257.2 0.0 0.0 

MS70 PB+To IP, To_MS 383.8 0.0 255.6 169.9 0.0 

MS71 PB IP, Ax_MS 552.9 266.4 0.0 0.0 0.0 

MS72 PB IP, Ax_MS 532.8 532.8 0.0 0.0 0.0 

MS73 To IP, To_MS 0.0 0.0 339.0 169.9 0.0 
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MS74 To IP, To_MS 0.0 0.0 343.6 343.6 0.0 

4.4. Assumptions for Endurance Criteria 

In practical applications loading history may not be defined with an analytical 

formulation and it may be a variable amplitude loading defined with discrete data 

points. Even though the analytical expression of the loading history is available 

like in this study (harmonic bending/torsion loading), how many data points to be 

utilized is an optimization problem in terms of the accuracy of the methods i.e. 

minimum number of data points should be employed which provides the highest 

possible accuracy of the methods. This optimization procedure may be thought 

like a mesh convergence study usually carried out for finite element models.  

Discretization of loading history may affect the accuracy of all the multiaxial 

endurance criteria investigated in this study; however, it would have a greater 

impact in critical plane models. This is due to the complex shear stress 

calculations which are closely related to the non-proportionality of the loading 

and which requires a well-defined loading history. Accuracy of the critical plane 

methods is also affected by another factor; incrementation of Eulerian angles 

(𝜃, 𝜑), which is not applicable to equivalent stress or invariant based methods 

since these methods does not search all material planes. According to Weber et al. 

[59], usual practice for angle incrementation is to choose both increments as 10
o
.

However, it is questionable whether this incrementation is the optimal value or 

not as there have not been a study investigating different angle increments found 

in literature.  

Considering the statements above, an optimization study is performed for both 

the number of data points that define the loading history and for the angle 

incrementation of the critical plane search. For this study, two critical plane 

methods namely; Findley and Dang Van are investigated with experimental data 

including four different type of partial effects specifically nMS, Ax_MS, To_MS 

and C_MS. Two different critical plane methods are chosen as they reach 

dissimilar critical planes owing to their damage parameters thus, the optimal 
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incrementation may differ. The aim of examining loadings with different partial 

effects is to obtain the optimum number of data points for the load discretization 

as non-proportional loadings may require much more data points compared to 

proportional loadings for accurate solutions. 

Test data selected for this optimization study is composed of eight experimental 

data including in phase and out of phase loadings for each set of partial effects. 

Detailed information involving material, alternating and mean values of normal 

and torsion loads and phase difference about the evaluated experimental data are 

shown in Table 4.14.  

Table 4.14: Information about the data set chosen for optimization study of load 

discretization and angle incrementation 

Material 
Test 

Label 

Loading 

Type 

σa 

[MPa] 

σm 

[MPa] 

τa 

[MPa] 

τm 

[MPa] 

δxy 

[deg] 

Hard Steel nMS3 PB+To 255.1 0 127.5 0 0 

Hard Steel nMS10 PB+To 308 0 63.9 0 90 

42CrMo4 MS4 PB+To 280 280 134 0 0 

42CrMo4 MS5 PB+To 271 271 130 0 90 

42CrMo4 MS1 PB+To 266 0 128 128 0 

42CrMo4 MS2 PB+To 283 0 136 136 90 

30NCD16 MS31 PB+To 451 294 250 191 0 

30NCD16 MS32 PB+To 462 294 258 191 90 

For load discretization, eight different possibilities are investigated and shown in 

Table 4.15. 
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Table 4.15: Number of Discrete Points for Harmonic Loading 

Tested Discrete Points 

5 10 20 40 60 80 100 200 

Estimations are obtained for Findley and Dang Van using as many discrete points 

as given in Table 4.15 for defining the loading histories and 1
o
 incrementation is

employed for Euler angles as it is assumed to be the lowest incrementation one 

could employ. Then for each loading fatigue index errors are found and 

normalized with the calculated fatigue index errors for 1000 discrete points, 

which is assumed to give the most accurate solution. Finally, these results are 

presented with respect to number of discrete points and shown through Figure 4.3 

to Figure 4.6. 
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Figure 4.3: Accuracy of a) Findley and b) Dang Van with respect to loading 

discretizing for loading set nMS 
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Figure 4.4: Accuracy of a) Findley and b) Dang Van with respect to loading 

discretizing for loading set Ax_MS 
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Figure 4.5: Accuracy of a) Findley and b) Dang Van with respect to loading 

discretizing for loading set To_MS 
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Figure 4.6: Accuracy of a) Findley and b) Dang Van with respect to loading 

discretizing for loading set C_MS 

When Figure 4.3 through Figure 4.6 are evaluated, one may conclude that 

simulating the loading history with 10 discrete points is not feasible as for most 

of the cases a sudden drop in accuracy is observed. The main reason of this 

behavior is that the maximum and minimum peak values of a sine wave will not 
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be included in the load history if only 10 discrete points are utilized. Another 

interesting conclusion is related to the results obtained with only 5 discrete points. 

For this situation, most of the loading cases resulted with the most accurate 

solution except loading cases of To_MS and C_MS. This result should not be 

confusing. One could simulate the maximum and minimum peak values of a sine 

wave by only using 5 points; however, it is clear that for loadings with mean 

stresses accurate solutions can not be obtained by this amount of (very few) 

discrete points and in global sense more points should be employed. If all these 

loading cases are considered, it is clear that the optimum number of discrete 

points lie between 80-100 points. To be on the safe side, 100 points are chosen 

for load discretization and utilized for all other calculations presented in this 

study. For clarifying the differences in discretization, example loading histories 

with 5 and 100 discrete points are shown in Figure 4.7. From this figure it is seen 

that discretization with 5 discrete points is a rough estimation which includes 

sharp turns at peak values while history with 100 discrete points provide a close 

approximation to the real sinusoidal loading.  

Figure 4.7 Loading history with a) 5 discrete points b) 100 discrete points 
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For angle incrementation same experimental data set is used but with the chosen 

loading discretization (100 points) and with eleven different Euler angle 

incrementations being 1
o
 is the lowest and these incrementations are given in

Table 4.16. 

Table 4.16: Euler Angles (𝜃, 𝜑) Incrementation for Critical Plane Search 

Tested Euler Angles (𝜃, 𝜑) Incrementations 

1 2 4 6 8 10 12 14 16 18 20 

Estimations are obtained for Findley and Dang Van using angular increments 

given in Table 4.16 and results are normalized with the fatigue index errors for 1
o

incrementation which is assumed to be the most accurate solution. These results 

are presented with respect to angle increments and shown through Figure 4.8 to 

Figure 4.11. 
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Figure 4.8: Accuracy of a) Findley and b) Dang Van with respect to angular 

incrementation for loading set Nms 
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Figure 4.9: Accuracy of a) Findley and b) Dang Van with respect to angular 

incrementation for loading set Ax_MS 
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Figure 4.10: Accuracy of a) Findley and b) Dang Van with respect to angular 

incrementation for loading set To_MS 
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Figure 4.11: Accuracy of a) Findley and b) Dang Van with respect to angular 

incrementation for loading set C_MS 

We conclude from evaluation of Figure 4.8 through Figure 4.11 that higher 

increments larger than 10
o
 should not be utilized since too many fluctuations are

observed. As for incrementation of 10
o
,
 
which is proposed by Weber et al. [59],

critical plane may be missed out as results of nMS and To_MS groups deviate 
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from the actual solution by at least 30% which is not acceptable. Optimum 

incrementation seems to be in the range 2
o
 to 4

o
. For the 4

o
 incrementation,

deviation may be as high as 15% as seen from Figure 4.11b (C_MS group) which 

may be acceptable if calculation time is an issue. However, for this study angle 

increments of 2
o
 are employed.

4.5. Pseudocodes 

MATLAB codes are written for conducting calculations related to each type of 

criteria (equivalent stress, invariant based and critical plane). All these MATLAB 

codes take inputs of experimental data presented in Section 4.2. from an Excel 

file (input Excel). These inputs are test labels, materials, endurance limits, 

alternating and mean values of loadings and phase and frequency difference 

between loading channels. Each code writes damage parameter, fatigue index 

error and stress values calculated for each test data as outputs to a new Excel file 

(output Excel). In this section, pseudocodes of each type of criteria are presented. 

These pseudocodes are useful for comparing the procedures of the different 

criteria and for a better understanding of their algorithms. 

Pseudocode for equivalent stress criteria is as follows: 

1. INPUT the name of the Excel that includes experimental data.

2. INPUT the path of the input Excel.

3. INPUT the method name ('AMP' or 'SVM').

4. INPUT the mean stress correction type ('Soderberg', ‘Goodman’, ‘Gerber’

or 'SWT').

5. INPUT the discretization of time (default is 100).

6. OPEN a new Excel for writing outputs.

7. FOR each sheet in input Excel

8. FOR each test data in input Excel

9. FOR the  time history from 0 to 2π with user input discretization

10. CALCULATE 𝜎𝑖(𝑡) for which 𝑖 = 1,2,3

11. CALCULATE 𝜎𝑒𝑞(𝑡)

12. ENDFOR
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13. CALCULATE 𝜎𝑒𝑞,𝑎, 𝜎𝑒𝑞,𝑚, 𝜎𝑒𝑞,𝑚𝑎𝑥 and 𝜎𝑒𝑞,𝑚𝑖𝑛

14. IF 𝜎𝑒𝑞,𝑚 is lower than or equal to 0 THEN

15. SET 𝜎𝑒𝑞,𝑚 to 0

16. SET damage parameter (DP) to 𝜎𝑒𝑞,𝑎

17. ELSE

18. CALCULATE 𝜎𝑒𝑞,𝑎𝑀𝑆𝐶 from the user input mean stress

correction 

19. SET damage parameter (DP) to 𝜎𝑒𝑞,𝑎𝑀𝑆𝐶

20. ENDIF

21. CALCULATE FIE(%)

22. STORE FIE,DP and stress variables

23. ENDFOR

24. WRITE FIE,DP and stress variables to a new sheet in output Excel.

25. WRITE endurance limits and material parameters to a new sheet in

output Excel. 

26. ENDFOR

27. CLOSE the output Excel.

Pseudocode for invariant based criteria is as follows: 

1. INPUT the name of the Excel that includes experimental data.

2. INPUT the path of the input Excel.

3. INPUT the method name ('SNS', 'CROSS' or 'GAM’).

4. INPUT the type of calibration Bending/Torsion or Axial ('frtr' or 'frf0').

5. INPUT the discretization of time (default is 100).

6. OPEN a new Excel for writing outputs.

7. FOR each sheet in input Excel

8. FOR each test data in input Excel

9. CALCULATE material parameters 𝑎 and 𝑏

10. FOR the  time history from 0 to 2π with user input discretization

11. CALCULATE 𝜎𝑖(𝑡) and 𝑆𝑗(𝑡)  for which 𝑖 = 1,2,3 

and 𝑗 = 1,2, … 5 
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12. ENDFOR

13. IF method is ‘SNS’ or ‘CROSS’ THEN

14. CALCULATE 𝜎ℎ,𝑚𝑎𝑥, 𝜎ℎ,𝑚𝑖𝑛, 𝜎ℎ,𝑜𝑠𝑐𝑖, 𝜎ℎ,𝑚𝑒𝑎𝑛

15. CALCULATE √𝐽2,𝑎

16. ENDIF

17. IF method is ‘GAM’ THEN

18. CALCULATE 𝜎1,𝑚𝑎𝑥

19. CALCULATE √∑ (
1

2
(𝑆𝑗,𝑚𝑎𝑥 − 𝑆𝑗,𝑚𝑖𝑛))

2
5
𝑗=1

20. ENDIF

21. CALCULATE damage parameter (DP)

22. CALCULATE FIE(%)

23. STORE FIE,DP and stress variables

24. ENDFOR

25. WRITE FIE,DP and stress variables to a new sheet in output Excel.

26. WRITE endurance limits and material parameters to a new sheet in

output Excel. 

27. ENDFOR

28. CLOSE the output Excel.

Pseudocode for critical plane criteria is as follows: 

1. INPUT the name of the Excel that includes experimental data.

2. INPUT the path of the input Excel.

3. INPUT the method name ('FIN', 'DV', 'RB' or 'PCR').

4. INPUT the shear stress calculation method ('MCC' or 'MRH').

5. INPUT the MCC algorithm ('MCC_fminmax' of 'MCC_Randomised').

6. INPUT the type of calibration Bending/Torsion or Axial ('frtr' or 'frf0').

7. INPUT the incrementation of Euler angles 𝜃 and 𝜑 (default is 1 degree).

8. INPUT the discretization of time (default is 100).

9. OPEN a new Excel for writing outputs.

10. FOR each sheet in input Excel
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11. FOR each test data in input Excel

12. IF method is ‘FIN’, ‘DV’ or ‘PCR’ THEN

13. CALCULATE material parameters 𝑎 and 𝑏. 

14. ELSEIF method is ‘RB’ THEN

15. CALCULATE material parameters 𝑎, 𝑏 and 𝑐. 

16. ENDIF

17. IF method is ‘DV’ THEN

18. CALCULATE 𝜎ℎ,𝑚𝑎𝑥

19. ENDIF

20. FOR 𝜃 from 1
o
 to 180

o
 with the user input incrementation

21. FOR 𝜑 from 1
o
 to 180

o
 with the user input incrementation

22. FOR the time history from 0 to 2π with user input 

discretization 

23. CALCULATE 𝒕, 𝜎𝑛(𝑡), 𝜎𝑛𝑦(𝑡), 𝜎𝑛𝑧(𝑡)

24. ENDFOR 

25. CALCULATE 𝜎𝑛,𝑚𝑎𝑥, 𝜎𝑛,𝑚𝑖𝑛, 𝜎𝑛,𝑜𝑠𝑐𝑖, 𝜎𝑛,𝑚𝑒𝑎𝑛

26. CALCULATE 𝑇𝑎 from 𝜎𝑛𝑦(𝑡) and 𝜎𝑛𝑧(𝑡) for the input

shear stress calculation method, algorithm and calibration type 

27. CALCULATE Damage Parameter (DP) 

28. STORE DP, stress variables, 𝜃 and 𝜑 in a matrix named 

CP. 

29. ENDFOR 

30. ENDFOR

31. SEARCH rows of the matrix CP for the critical plane for which the

DP is maximum.  

32. CALCULATE FIE (%) for the DP at critical plane

33. WRITE FIE, DP, stress variables, 𝜃 and 𝜑  to a new sheet in the

output Excel 

34. WRITE endurance limits, material parameters to another sheet in

output Excel. 

35. ENDFOR
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36. CLOSE the output Excel.

From these psedusocodes we show that the fastest approach is the equivalent 

stress criteria as these methods require very few calculations and loops and their 

formulations are very simple which only requires principal stresses. Invariant 

based criteria involve more computations, particularly the calculation of 

deviatoric stresses and the hydrostatic stress, compared to equivalent stress 

criteria; however, their speeds are comparable. The slowest approach is the 

critical plane criteria as all the material planes are searched with respect to two 

Euler angles (𝜃 and 𝜑) for the maximum value of a damage parameter and the 

speed of the process mostly depends on the number of planes to be searched 

which is related to the square of the angle incrementation.   
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CHAPTER 5 

5RESULTS AND COMPARISON OF CRITERIA 

Multiaxial endurance criteria introduced in Chapter 2 are tested on high cycle 

fatigue experimental data which is compiled in Chapter 4. Performance of the 

criteria are examined for two major effects namely phase effect (PE) and mean 

stress effect (MSE) and their combinations. Estimations of each method for all 

experimental data are presented in Appendix. In this chapter, data set is grouped 

according to investigated effects (PE and MSE). Then, statistical analysis results 

of these groups and histograms demonstrating general behavior of the criteria are 

presented. Furthermore, tables showing statistical measures (mean, range and 

standard deviation) for each group are also included for detailed analysis of the 

criteria. It is worth to mention that some groups like T_MS group lack enough 

data (more than 20 data) for a healthy statistical analysis according to Papuga 

[45].   

5.1. Equivalent Stress Criteria 

Absolute Maximum Principal (AMP) and Signed von Mises (SVM) criteria are 

tested for four different mean stress corrections (Soderberg, Goodman, Gerber 

and SWT) and their histograms are shown below for AMP and SVM in Figure 

5.1 and in Figure 5.2 respectively. Also Table 5.1 demonstrates the mean fatigue 

index errors (mFIE) for each group of data.  

When the first criterion AMP is investigated, we conclude that AMP result in 

highly scattered estimations and include excessively non-conservative estimations 

up to -70% mFIE. Histogram of SWT shows a better behavior as the most non-

conservative estimate shifts to -65%; however, range is still too high being in 

limits -65% to 30%. Most of the estimations lie in the non-conservative side of 
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Histogram of SVM is much better compared to AMP as the median is shifted to 

5%, which is -5% for AMP with SWT correction; however, estimations are again 

highly scattered and non-conservative estimations up to -70% are obtained. 

Similar arguments can be made for performance of the criterion with Soderberg 

and Goodman corrections but much conservative estimations are obtained for 

SVM (mFIE of 36.53% and 19.74 for Soderberg and Goodman respectively for 

ALL group). Again best estimations are obtained with SWT correction as the 

range of histogram is -50% to 40% for which most of the results lie in the range -

10% to 20%. Mean fatigue index error for SWT correction is 0.49% for ALL 

group which is pretty good and other groups are in tolerance except the T_MS 

group. Like AMP criterion, SVM suffers from phase effect as estimations drop 

down to non-conservative side for OP groups when mean fatigue index errors of 

IP_nMS and OP_nMS groups are investigated (3.79% for IP_nMS and -8.24% 

for OP_nMS). When range of the estimations are investigated (see Table 5.2), 

very high range values are observed for Soderberg, Goodman and Gerber (%800 

for Soderberg decreased to % 417% for Gerber). This behavior can be explained 

with the highly conservative estimates of mean corrections as the most non-

conservative estimation is -70% (obtained for Gerber). Standard deviation is also 

increased for Soderberg, Goodman and Gerber corrections for SVM (see Table 

5.3); however, lower standard deviations is obtained for SWT correction with a 

value of 18.85. 
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Figure 5.2: Signed von Mises Criterion Histograms for Different Mean Stress 

Corrections; a) Soderberg, b) Goodman, c) Gerber, d) SWT 

Since best results are obtained for SWT correction, histograms of AMP and SVM 

for this mean stress correction is shown in Figure 5.3.  

Discussion about equivalent stress criteria can be concluded with the following 

statements: 

 Equivalent stress criteria yield high range and standard deviation of FIE

even when the mFIE is tolerable like in the case of SVM with SWT

correction.

 Equivalent stress criteria are unsuitable for out-of-phase loading.

 SVM criterion may be used for in-phase loadings without mean stresses as

the mFIE and range are in tolerable limits; however, for loadings with

mean stress range is high.
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Figure 5.3: Histograms of a) Absolute Maximum Principal Stress and b) Signed 

von Mises Criterion with SWT Mean Stress Correction 
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5.2. Invariant Based Criteria 

Sines, Crossland and GAM criteria are evaluated in this section with standard 

calibration (bending-torsion calibration). Evaluations are carried out by 

comparing the performance of pairs Sines-Crossland and Crossland-GAM 

criteria. Histograms of the criteria are shown in Figure 5.4 and Figure 5.5. 

Furthermore, mean, range and standard deviation of FIE are given in Table 5.4 to 

Table 5.6. When histograms of Sines and Crossland are investigated (see Figure 

5.4), one may conclude that the histograms are more compact compared to 

histograms of equivalent stress criteria. Therefore, it may be stated that inclusion 

of mean stress into damage parameter instead of using mean stress corrections is 

an effective way. Median of histograms for Sines and Crossland are -5% and 0% 

respectively which indicates that Crossland is on conservative side. Improvement 

of Crossland is also observed by evaluation of ranges of Sines and Crossland. 

Estimations of Sines are between -35% to 30% while for Crossland, estimations 

are between -30% to 10% meaning that the range is decreased for Crossland. 

Mean fatigue index error of Sines for the ALL group is -4.62%; however, it is -

7.62% for Crossland (see Table 5.4). Both methods are not adequate for phase 

effect as sharp drop of FIE is observed for OP groups. This behavior can be 

verified by comparing IP_nMS and OP_nMS groups. As an example, mFIE is -

4.04% for IP_nMS and it drops down to -14.22% for OP_nMS for Sines criterion. 

Actual improvement in Crossland is observed in the range of FIE as mentioned 

above. For the ALL group Sines yields a range of 68.10% while the range is 

40.48% for Crossland (see Table 5.5) but it is still a high range to be accepted. 

Another advantage of Crossland is seen in standard deviations (see Table 5.6) as 

they are reduced for all groups.    
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Figure 5.4: Histograms of a) Sines and b) Crossland Criteria 

When Figure 5.5 is investigated, one may notice that histogram of GAM criterion 

is nicer compared to Crossland as the median of the histogram is shifted to 5% 

and estimations are obtained in a small range (-10% to 20%). Also most of the 

estimations are in the limits of -5% to 10% which is a desired property of a 

histogram. If the mean fatigue index errors are evaluated (see Table 5.4), we may 

conclude that they take values in between -1.40% to 2.30% which is very close to 

zero and mostly conservative. Moreover, GAM criterion show small difference in 

estimations of IP and OP groups indicating that phase effect is handled well. 

Furthermore, MS groups have low mean fatigue indices showing the efficiency of 

using maximum value of the first principal stress as the normal mean stress 

inclusion. Range of GAM for ALL group is 31.5% which is slightly high from 

the optimum value while the criterion result in a standard deviation of 5.8. Also, 

there is not much change in standard deviations of IP and OP groups showing the 

outstanding performance of the criterion.   
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Figure 5.5: Histograms of a) Crossland and b) GAM Criteria 

Discussion about invariant based criteria can be concluded with the following 

statements: 

 Combination of the octahedral shear stress and hydrostatic stress seems

inadequate for handling the phase and mean stress effects. However, use

of maximum value of the hydrostatic stress (Crossland) clearly improves

the results as both the range and standard deviation decreases up to

reasonable values.

 Combination of alternating value of the deviatoric stress tensor and

maximum of the first principal stress (GAM damage parameter) seems

promising as all the statistical measures reduce to tolerable values.

 GAM criterion shows exceptional behavior for all groups and the speed of

the criterion is a great advantage; however, range and standard deviation

are slightly high from the optimum values. Nevertheless, estimations are
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mostly on conservative side and the criterion may be used for any loading 

case. 

Table 5.4: All partial effects, FIE (%) Mean of Sines, Crossland and GAM 

Criteria 

FIE (%) 

Mean 
Sines Crossland GAM 

ALL (134) -4.62 -7.62 1.31 

IP (79) -0.40 -4.15 1.70 

OP (55) -10.67 -12.60 0.76 

nMS (60) -9.64 -4.81 1.75 

IP_nMS (27) -4.04 1.08 1.35 

OP_nMS (33) -14.22 -9.62 2.07 

MS (74) -0.54 -9.90 0.96 

IP_MS (52) 1.49 -6.87 1.88 

OP_MS (22) -5.34 -17.06 -1.20

To_MS (12) -15.39 -9.35 -0.26

Ax_MS (62) 2.33 -10.01 1.20 

IP_Ax_MS (44) 3.95 -6.90 2.26 

OP_Ax_MS (18) -1.62 -17.59 -1.39

Table 5.5: All partial effects, FIE (%) Range of Sines, Crossland and GAM 

Criteria 

FIE (%) 

Range 
Sines Crossland GAM 

ALL (134) 68.10 40.48 31.50 

IP (79) 54.04 32.80 28.94 

OP (55) 53.10 39.11 28.83 

nMS (60) 42.96 38.60 28.83 
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IP_nMS (27) 21.73 17.51 17.92 

OP_nMS (33) 37.27 34.46 28.83 

MS (74) 68.10 39.11 30.26 

IP_MS (52) 54.04 29.41 28.89 

OP_MS (22) 53.10 39.11 18.08 

To_MS (12) 33.36 34.82 14.02 

Ax_MS (62) 48.02 37.09 30.26 

IP_Ax_MS (44) 43.21 29.41 28.89 

OP_Ax_MS (18) 33.02 32.65 18.08 

Table 5.6: All partial effects, FIE (%) Standard Deviation of Sines, Crossland and 

GAM Criteria 

FIE (%) 

Standard Deviation 
Sines Crossland GAM 

ALL (134) 12.50 9.67 5.81 

IP (79) 10.70 7.01 5.93 

OP (55) 12.42 10.73 5.59 

nMS (60) 10.53 9.36 5.11 

IP_nMS (27) 5.94 4.12 4.10 

OP_nMS (33) 11.24 9.69 5.80 

MS (74) 12.49 9.31 6.30 

IP_MS (52) 12.05 6.66 6.69 

OP_MS (22) 12.21 10.67 4.61 

To_MS (12) 9.66 9.20 4.46 

Ax_MS (62) 10.83 9.33 6.57 

IP_Ax_MS (44) 11.27 7.01 6.95 

OP_Ax_MS (18) 8.44 9.93 4.62 
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5.3. Critical Plane Criteria 

Findley, Dang Van, Robert and Papuga PCR criteria are evaluated in this section 

with standard calibration (bending-torsion calibration) and for shear stress 

calculation method MCC. First two critical plane criteria include two material 

parameters and they only differ in mean stress inclusion which also affects the 

phase effect properties of the criteria. The last two criteria use the same stress 

measures; however, their combinations are different. Robert uses a linear 

formulation while Papuga PCR uses a non-linear expression. Evaluations of these 

criteria are carried out by comparing the performance of pairs Findley-Dang Van, 

Findley-Robert and Robert-Papuga PCR criteria. Histograms of the criteria are 

shown in Figure 5.6 to Figure 5.8. Furthermore, mean, range and standard 

deviation of FIE are given in Table 5.7 to Table 5.9.  

One may observe that both Findley and Dang Van criteria have nicely shaped 

histograms, both having their medians at 5% mFIE. Range of both criteria is 

close; however, it is lower for Dang Van as the estimations lie in the limits of -

25% to 15% while it is -15% to 35% for Findley. From histograms another 

conclusion can be made that most of the estimations of Findley are on the 

conservative side compared to Dang Van. If the mean fatigue index errors are 

investigated from Table 5.7, we conclude that both criterion tends to give 

estimations in the desired tolerance; however, Findley yields more conservative 

results with mFIE being 7.24% while Dang Van lead to estimations close to zero 

with mFIE being -2.05%. This behavior of Dang Van is due to its better 

performance in IP_MS group as the mFIE is 0.53% while it is 13.37% for 

Findley. On the other hand, when IP and OP groups are compared, insufficiency 

of Dang Van for out-of-phase loading is observed (PE) as estimations become 

non-conservative for OP groups (-5.90% for OP_nMS, -8.87% for OP_MS). 

Findley performs better for out-of-phase loadings with estimations being on the 

conservative side and with lower range values compared to Dang Van. When 

standard deviations are compared, it may be concluded that Dang Van has 

slightly less standard deviation being 8.83 for ALL group while it is 9.02 for 
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,ଵିߪ)  ߬ିଵ) and it is much slower than equivalent stress or invariant	and	଴ߪ

based criteria.   

Table 5.7: All partial effects, FIE (%) Mean of Findley, Dang Van, Robert and 

Papuga PCR Criteria 

FIE (%) 

Mean  
Findley Dang Van Robert Papuga PCR  

ALL (134) 7.24 -2.05 6.45 0.56 

IP (79) 9.91 1.45 6.17 0.64 

OP (55) 3.42 -7.09 6.85 0.44 

nMS (60) 2.00 -1.79 2.00 1.70 

IP_nMS (27) 3.23 3.23 3.23 2.35 

OP_nMS (33) 1.00 -5.90 1.00 1.17 

MS (74) 11.49 -2.26 10.06 -0.37 

IP_MS (52) 13.37 0.53 7.70 -0.25 

OP_MS (22) 7.05 -8.87 15.62 -0.66 

To_MS (12) 6.29 -8.16 6.02 -0.72 

Ax_MS (62) 12.50 -1.12 10.84 -0.30 

IP_Ax_MS (44) 14.45 1.64 8.26 -0.19 

OP_Ax_MS (18) 7.74 -7.89 17.14 -0.57 

 

Table 5.8: All partial effects, FIE (%) Range of Findley, Dang Van, Robert and 

Papuga PCR Criteria 

FIE (%) 

Range 
Findley Dang Van Robert Papuga PCR  

ALL (134) 47.80 41.33 56.89 21.33 

IP (79) 39.64 25.76 52.14 17.78 

OP (55) 37.97 38.17 47.47 21.33 

nMS (60) 27.45 38.98 27.45 19.63 
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FIE (%) Findley Dang Van Robert Papuga PCR 

IP_nMS (27) 18.81 18.81 18.81 15.19 

OP_nMS (33) 27.45 35.19 27.45 19.63 

MS (74) 42.58 41.33 52.14 21.05 

IP_MS (52) 36.16 25.76 52.14 17.78 

OP_MS (22) 32.76 38.17 35.96 21.05 

To_MS (12) 24.96 37.33 30.17 17.02 

Ax_MS (62) 42.58 30.93 52.14 21.05 

IP_Ax_MS (44) 34.88 24.47 52.14 17.78 

OP_Ax_MS (18) 32.76 27.77 35.96 21.05 

 

Table 5.9: All partial effects, FIE (%) Standard Deviation of Findley, Dang Van, 

Robert and Papuga PCR Criteria 

FIE (%) 

Standard Deviation 
Findley Dang Van Robert Papuga PCR 

ALL (134) 9.02 8.83 11.28 4.73 

IP (79) 8.65 5.81 11.53 4.39 

OP (55) 8.12 9.93 10.90 5.18 

nMS (60) 5.84 8.82 5.84 4.31 

IP_nMS (27) 3.91 3.91 3.91 3.31 

OP_nMS (33) 6.87 9.56 6.87 4.92 

MS (74) 8.90 8.84 13.18 4.85 

IP_MS (52) 8.40 6.40 13.69 4.61 

OP_MS (22) 8.48 10.20 9.88 5.37 

To_MS (12) 8.09 9.81 10.04 5.11 

Ax_MS (62) 8.70 8.16 13.57 4.80 

IP_Ax_MS (44) 8.15 6.02 14.14 4.65 

OP_Ax_MS (18) 8.14 8.73 9.46 5.12 
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CHAPTER 6 

6CONCLUSIONS AND RECOMMENDATIONS 

7FOR FUTURE WORK 

Understanding the multiaxial fatigue problem is an essential part of the reliability 

assesment of engineering components, which experience high cycles of complex 

loadings, and design against the multiaxial high cycle fatigue. Multiaxial fatigue 

is a sophisticated problem as it involves at least two loading channels. Multiaxial 

loading may cause principal axes to rotate while magnitudes of principal stresses 

vary non-proportionally which makes it difficult to estimate critical locations and 

life of the components. Furthermore, assesment of fatigue critical parts with 

testing is expensive and time-consuming and it is not possible and feasible to test 

all loading scenarios. Therefore, a methodology involving analytical and/or 

numerical methods that would replace test campaigns is required. Objectives of 

this thesis are to evaluate the state-of-art multiaxial endurance criteria in terms of 

their predictive capabilities, to validate the criteria with experimental test results 

and to develop a multiaxial life estimation code in which the multiaxial 

endurance criteria are implemented.   

In this thesis, several multiaxial endurance criteria (a total of nine criteria) belong 

to three different types (equivalent stress, invariant based and critical plane 

criteria) are explained in Chapter 2. These criteria include weighting constants for 

adjusting the effects of shear and normal stresses on damage parameter, which is 

the failure indicator. Calibration of weighting constants usually made by using 

fully reversed bending and torsion endurance limits; however, as torsional 

endurance limit may not always be available, calibration of several invariant 
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based (Crossland and GAM) and critical plane (Findley and Dang Van) criteria 

based on only axial/bending endurance limits with different R ratios (R=-1 and 

R=0) are derieved. In addition, there are several shear stress calculation methods 

in literature which is used in critical plane criteria. Two of those most popular and 

accepted shear stress calculation methods namely minimum circumscribed circle 

(MCC) and maximum rectangular hull (MRH) are also investigated in this thesis.

A MATLAB code is written for evaluating the criteria with regards to their 

estimations of the experimental data presented in Chapter 4. Code is written in 

such a way that it may easily be adapted to finite element programs as a post 

processor that utilize finite element analysis results in order to find the fatigue 

critical locations and the fatigue lives of engineering components. Pseudocodes of 

the MATLAB code are presented in Chapter 4 for clarification of the processes 

involved in the criteria. Evaluation of the criteria is carried out by comparing the 

mean, range and standard deviation of the fatigue index errors of each criterion, 

which show the deviation of fatigue lives from the real situation, and their general 

behavior is demonstrated by related histograms. Performance of each criterion for 

phase effect, mean stress effect and their combined effects are investigated. In 

addition, effect of different calibrations is examined for Crossland, GAM, Findley 

and Dang Van criteria and effect of different shear stress calculation methods 

(MCC and MRH) is investigated for critical plane criteria.    

When the criteria with the usual calibration of weighting constants (fully reversed 

bending and torsion endurance limits) and the shear stress calculation method 

MCC for critical plane criteria are examined following conclusions are made:  

 Equivalent stress criteria (Absolute Maximum Principal and Signed von

Mises) found out to be highly scattered and non-conservative especially

for out-of-phase loading.

 Highly conservative estimations are obtained with well-known mean

stress corrections like Soderberg or Goodman while SWT mean stress

correction yields the best results for the equivalent stress criteria.
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 Equivalent stress criteria may be used for an initial solution as they are

simple and fast; however, for accurate results more advanced methods

(invariant based and critical plane) should be preferred.

 Invariant based criteria seems more successful compared to equivalent

stress criteria with lower range and mean fatigue index errors However,

Sines and Crossland criteria are inadequate for both phase and mean stress

effects as estimations are non-conservative.

 Among the invariant criteria, GAM draws attention since both effects are

successfully handled which is indicated by small mean, range and

standard deviation of fatigue index errors. GAM owes this outstanding

performance to the use of alternating deviatoric stress tensor and

maximum of the first principal stress in it’s formulation unlike Sines and

Crossland which use alternating octahedral stress and hydrostatic stress.

 Critical plane criteria search all material planes in order to find the

maximum of a proposed damage parameter. Main idea of this search is

based on the fact that principal stress directions change in time for non-

proportional loading and relying on a stress state at a specified plane is

assumed to be improper like done in equivalent stress and invariant based

criteria. This assumption seems to work as the best estimations are

obtained by the critical plane criteria.

 Findley is the oldest critical plane criteria and estimations are

conservative for the data set investigated. Phase effect is well handled

with this method and the conservatism is due to the use of maximum

normal stress as mean stress inclusion.

 Dang Van has lower mean, range and standard deviation compared to

Findley; however, this method gives non-conservative estimations for

non-proportional loadings.
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 Among the critical plane criteria, Papuga PCR is the best criterion with

tolerable mean, range and standard deviation of fatigue index errors.

However, method requires three endurance limits (fully reversed bending,

fully reversed torsion and pulsating bending).

When the criteria with the new calibration of weighting constants 

(axial/bending endurance limits) and the shear stress calculation method 

MRH for critical plane criteria are examined following conclusions are made: 

 Calibration with axial/bending endurance limits (axial/bending

calibration) give more conservative estimations for loadings with

mean stresses especially with normal mean stresses.

 Estimations become more non-consevative for loadings without mean

stresses from which we conclude that the use of torsion endurance

limit is necessary for handling the phase effect.

 Axial/bending calibration decrease the self-conservatism of Findley

criterion and still estimations are in tolerable range. Therefore, this

calibration is appropriate for Findley criterion.

 Axial/bending calibration is not appropriate for Crossland and Dang

Van as estimations become non-conservative in general while range

and standard deviation of fatigue index errors are increased.

 Shear stress calculation method MRH shows excellent behavior for

all critical plane criteria compared to MCC as estimations are

improved for loadings with phase differences. Moreover, this method

is much faster than MCC even for the randomized algorithm which is

another advantage of MRH. Therefore, this method should be utilized

in critical plane methods instead of MCC.

Following recommendations are made for future work: 
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 In this thesis only phase and mean stress effects are investigated.

Performance of the criteria may be evaluated for the frequency effects.

 Critical plane obtained by the critical plane criteria do not always

show the fracture plane (direction of the crack in macro scale) and

most of the data in literature do not share the fracture plnae

orientation. Therefore, deviation of critical plane and fracture plane

may be investigated for enhancing the applicability of the criteria and

for estimating the direction of cracks.

 In this thesis, constant amplitude loadings are investigated. However,

real service loadings would possibly be variable amplitude loadings.

Therefore, cycle counting methodologies may be developed for

multiaxial loadings applicable to multiaxial endurance criteria.

 Critical plane criteria are the slowest approach compared to invariant

based and equivalent stress criteria. This is due to the search of critical

plane in material planes with a user specified angle incrementation.

The angle incrementation proposed in this thesis, which preserve the

accuracy of the criteria, is between 2 to 4 degrees that results in 8100

to 2025 planes to be searched. In literature several researchers

proposed ways to decrease the amount of computation without

missing the critical plane. One of these proposals is to use genetic

algorithms. Another suggestion is to use greater increments at the start

of analysis (10 degrees for example) than decreasing the

incrementation for angle intervals for which the critical plane is

suspected. This procedure continues until the incrementation is

decreased up to a user specified lower value. Algorithms like these

may be searched for increasing the speed of critical plane criteria as

they give the most accurate solutions in literature.

 GAM method draws attention with its’ remarkable prediction

capability and speed. However, formulation presented in this thesis is
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applicable only to elliptical loading paths. As explained in Chapter 2, 

a proposal is made by Mamiya and Araujo [47] that is to be used for 

general loadings. This proposal may be investigated and the criteria 

may be validated for general loadings.  

 Criteria evaluated in this thesis are all stress based and applicable to

multiaxial high cycle fatigue. However, there are stress and strain

based criteria which are applicable to both low cycle and high cycle

fatigue regime. Performance of these criteria may be investigated.

 In this thesis, experiment results of smooth specimens are

investigated. However, most critical regions of components are

usually the notched areas or locations with stress concentrations.

Therefore, adaptation of the multiaxaial endurance criteria for notched

areas may be examined.
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APPENDICES 

A. FIE (%) RESULTS OF MULTIAXIAL ENDURANCE

CRITERIA FOR ALL EXPERIMENTAL DATA 

In the following tables estimations of multiaxial endurance criteria are presented 

in terms of FIE (%) for each experimental data and materials presented in section 

4.3.  

Table A. 1: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – Hard Steel 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS1 4.17 4.17 -3.77 4.17 4.17 4.17 4.17 4.17 3.25 

nMS2 2.18 4.26 -3.69 3.79 4.60 4.60 4.60 3.89 3.53 

nMS3 -1.91 7.49 -0.71 5.49 8.17 8.16 8.17 5.79 6.33 

nMS4 -18.33 4.77 -3.22 0.23 3.54 3.54 3.54 0.60 2.62 

nMS5 -35.94 10.96 2.50 2.50 2.49 2.49 2.49 2.50 2.37 

nMS6 -4.65 3.91 -4.02 2.18 6.89 5.00 6.89 5.30 5.29 

nMS7 -20.96 2.65 -5.18 -1.73 3.36 1.96 3.36 0.10 2.44 

nMS8 -12.09 -6.44 -13.58 -7.38 2.55 -4.15 2.55 3.96 2.07 

nMS9 -25.90 1.28 -6.44 -2.87 6.76 2.06 6.76 2.40 5.29 

nMS10 -1.88 -1.88 -9.37 -1.88 -0.21 -1.88 -0.21 3.15 -0.01

nMS11 -15.61 -15.61 -22.05 -15.61 -0.90 -15.61 -0.90 6.70 0.59 

nMS12 -35.54 1.64 -6.12 -2.41 10.34 3.60 10.33 3.95 8.25 

nMS13 -20.40 2.16 -5.63 -2.28 0.95 0.95 0.95 -1.91 0.36 

nMS14 -21.67 1.81 -5.96 -2.55 2.50 1.11 2.50 -0.74 1.69 

nMS15 -26.51 0.52 -7.15 -3.61 5.92 1.27 5.92 1.59 4.58 
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nMS16 -36.43 0.26 -7.39 -3.74 8.81 2.18 8.81 2.51 6.97 

nMS17 -5.67 3.38 -4.51 1.45 4.03 4.02 4.03 1.74 2.95 

nMS18 -6.66 1.73 -6.04 0.03 4.64 2.80 4.64 3.09 3.47 

nMS19 -13.01 -7.42 -14.48 -8.35 1.49 -5.15 1.49 2.87 1.24 

nMS20 -17.81 -17.81 -24.08 -17.81 -3.46 -17.81 -3.46 3.94 -1.27

nMS21 -0.68 1.39 -6.35 0.92 1.73 1.72 1.73 1.02 1.25 

nMS22 -2.99 -2.99 -10.40 -2.99 -1.30 -3.00 -1.30 2.09 -0.85

Table A. 2: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – Mild Steel 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS23 4.21 4.21 3.15 4.21 4.20 4.20 4.20 4.21 3.56 

nMS24 4.23 6.36 5.28 6.29 7.18 7.17 7.18 6.30 6.08 

nMS25 -3.97 5.23 4.17 4.97 7.78 7.77 7.78 5.01 6.65 

nMS26 -22.25 -0.25 -1.26 -0.83 2.55 2.55 2.55 -0.78 2.10 

nMS27 -39.55 4.70 3.64 3.64 3.63 3.64 3.63 3.64 3.55 

nMS28 -10.75 -5.01 -5.98 -5.14 3.50 -1.62 3.50 8.66 3.03 

nMS29 -26.86 0.00 -1.02 -0.55 8.53 4.66 8.53 6.43 7.40 

nMS30 0.08 0.08 -0.93 0.08 1.28 0.08 1.28 6.21 1.16 

nMS31 -11.60 -11.60 -12.49 -11.60 0.00 -11.56 0.00 16.28 0.96 

nMS32 -36.53 0.07 -0.95 -0.46 11.32 5.88 11.32 9.77 9.81 

Table A. 3: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – 42CrMo4 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS33 -1.75 7.05 -5.39 4.19 6.65 6.65 6.65 4.63 4.72 

nMS34 -28.14 -28.14 -36.49 -28.14 -16.13 -28.14 -16.13 -12.54 -9.82

nMS35 -7.29 13.71 0.50 7.30 10.84 10.83 10.84 7.94 8.29 

nMS36 -39.72 -10.79 -21.15 -14.93 0.16 -8.60 0.16 -8.00 -0.39



155 

Table A. 4: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – 34Cr4 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS37 -7.55 1.31 -6.32 -0.55 1.98 1.97 1.98 -0.27 1.27 

nMS38 -16.83 -11.44 -18.11 -12.32 -2.89 -9.24 -2.89 -1.54 -2.16

nMS39 -22.93 -22.93 -28.73 -22.93 -9.52 -22.93 -9.52 -2.48 -5.70

nMS40 -16.83 -11.44 -18.11 -12.32 -2.91 -9.25 -2.91 -1.54 -2.15

nMS41 -36.91 -5.37 -12.50 -8.38 6.51 -1.62 6.51 1.04 4.99 

nMS42 -7.32 -7.32 -14.30 -7.32 -5.03 -7.32 -5.03 -0.48 -3.64

nMS43 -35.01 8.99 0.78 3.15 10.15 7.05 10.15 4.81 8.72 

Table A. 5: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – 30NCD16 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS44 -11.17 -0.60 -7.48 -2.61 0.16 0.16 0.16 -2.33 -0.24

nMS45 -30.43 -30.43 -35.25 -30.43 -10.20 -21.79 -10.20 -6.36 -6.98

nMS46 -22.14 -4.27 -10.90 -7.51 -4.38 -4.39 -4.38 -7.20 -4.23

nMS47 -16.39 -8.73 -15.05 -10.21 -7.97 -7.97 -7.97 -9.99 -6.90

nMS48 -5.88 4.85 -2.41 2.80 5.68 5.68 5.68 3.09 4.36 

nMS49 -25.51 -25.51 -30.66 -25.51 -5.80 -18.27 -5.80 -1.00 -3.53

nMS50 -31.30 -31.30 -36.06 -31.30 -13.26 -24.76 -13.26 -8.79 -9.14

nMS51 -12.84 -3.02 -9.73 -4.90 -2.25 -2.25 -2.25 -4.63 -2.24

Table A. 6: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – XC18 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS52 -7.27 3.31 6.47 4.21 7.34 7.35 7.34 4.08 6.61 

nMS53 -13.44 -4.54 -1.63 -3.89 2.38 -0.09 2.38 4.52 2.09 

nMS54 -20.48 -20.48 -18.05 -20.48 -3.91 -11.88 -3.91 13.10 -2.82
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Table A. 7: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – FGS800_2 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS55 -1.90 9.83 -15.26 2.45 5.00 5.00 5.00 3.49 2.43 

nMS56 -16.67 -16.34 -35.45 -16.42 11.32 -7.81 11.32 -0.70 6.91 

nMS57 -5.78 9.92 -15.19 0.27 3.14 3.14 3.14 1.43 1.08 

Table A. 8: FIE (%) of Multiaxial Endurance Criteria for Bending-Torsion 

Calibration and nMS Experimental Data Set – S65A 

Label AMP SVM SNS CROSS FIN DV RB GAM PCR 

nMS58 0.86 4.58 -4.91 3.60 4.92 4.91 4.91 3.78 3.64 

nMS59 -11.11 1.83 -7.41 -1.36 1.64 1.64 1.64 -0.95 0.86 

nMS60 -26.27 3.75 -5.67 -3.05 -0.47 -0.47 -0.47 -2.70 -0.87



T
ab

le
 A

. 
9
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 H
ar

d
 S

te
el

  

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
1

 
4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

4
.1

7
 

n
M

S
2

 
3
.7

9
 

1
.7

2
 

4
.6

0
 

4
.0

1
 

4
.6

0
 

4
.0

1
 

4
.6

0
 

2
.8

6
 

4
.6

0
 

2
.8

6
 

3
.8

9
 

3
.4

0
 

n
M

S
3

 
5
.4

9
 

-3
.3

7
8
.1

7
 

5
.6

9
 

8
.1

7
 

5
.6

9
 

8
.1

6
 

0
.9

6
 

8
.1

6
 

0
.9

6
 

5
.7

9
 

3
.6

0
 

n
M

S
4

 
0
.2

3
 

-1
9
.9

0
3
.5

4
 

-1
.8

2
3
.5

4
 

-1
.8

2
3
.5

4
 

-1
2
.0

8
3
.5

4
 

-1
2
.0

8
0
.6

0
 

-4
.8

0

n
M

S
5

 
2
.5

0
 

-3
5
.0

0
2
.4

9
 

-6
.9

1
2
.4

9
 

-6
.9

1
2
.4

9
 

-2
4
.9

5
2
.4

9
 

-2
4
.9

5
2
.5

0
 

-8
.4

6

n
M

S
6

 
2
.1

8
 

-5
.4

7
6
.8

9
 

5
.1

0
 

6
.8

9
 

5
.1

0
 

5
.0

0
 

-1
.3

5
5
.0

1
 

-1
.3

5
5
.3

0
 

2
.4

6
 

n
M

S
7

 
-1

.7
3

-2
1
.1

3
3
.3

6
 

-1
.8

5
3
.3

6
 

-1
.8

5
1
.9

6
 

-1
3
.2

3
1
.9

6
 

-1
3
.2

3
0
.1

0
 

-5
.9

1

n
M

S
8

 
-7

.3
8

-1
1
.5

3
2
.5

5
 

2
.8

4
 

2
.8

5
 

2
.8

5
 

-4
.1

5
-8

.0
5

-1
.4

7
-6

.0
9

3
.9

6
 

-0
.6

2

n
M

S
9

 
-2

.8
7

-2
1
.2

5
6
.7

6
 

1
.7

7
 

6
.7

6
 

1
.7

8
 

2
.0

6
 

-1
2
.7

1
2
.0

6
 

-1
2
.7

1
2
.4

0
 

-5
.6

7

n
M

S
1
0

 
-1

.8
8

-1
.8

8
-0

.2
1

0
.4

2
 

2
.3

4
 

2
.3

4
 

-1
.8

8
-1

.8
9

1
.4

9
 

0
.5

9
 

3
.1

5
 

1
.7

2
 

n
M

S
1
1

 
-1

5
.6

1
-1

5
.6

1
-0

.9
0

2
.9

3
 

5
.4

7
 

5
.4

7
 

-1
5
.6

1
-1

5
.6

1
1
.2

5
 

-3
.2

7
6
.7

0
 

0
.3

4
 

n
M

S
1
2

 
-2

.4
1

-2
0
.3

4
1
0
.3

4
 

5
.5

6
 

1
0
.3

4
 

5
.5

6
 

3
.6

0
 

-1
1
.1

3
3
.6

0
 

-1
1
.1

3
3
.9

5
 

-7
.3

1

 

157 



n
M

S
1
3

 
-2

.2
8

-2
1
.9

3
0
.9

5
 

-4
.2

8
0
.9

5
 

-4
.2

8
0
.9

5
 

-1
4
.3

0
0
.9

5
 

-1
4
.3

0
-1

.9
1

-7
.1

9

n
M

S
1
4

 
-2

.5
5

-2
1
.8

3
2
.5

0
 

-2
.6

8
2
.5

0
 

-2
.6

8
1
.1

1
 

-1
3
.9

9
1
.1

1
 

-1
3
.9

9
-0

.7
4

-6
.7

1

n
M

S
1
5

 
-3

.6
1

-2
1
.8

9
5
.9

2
 

0
.9

4
 

5
.9

2
 

0
.9

6
 

1
.2

7
 

-1
3
.4

1
1
.2

7
 

-1
3
.4

1
1
.5

9
 

-6
.4

2

n
M

S
1
6

 
-3

.7
4

-2
1
.4

5
8
.8

1
 

4
.0

9
 

8
.8

1
 

4
.0

9
 

2
.1

8
 

-1
2
.3

7
2
.1

8
 

-1
2
.3

7
2
.5

1
 

-8
.5

9

n
M

S
1
7

 
1
.4

5
 

-7
.0

7
4
.0

3
 

1
.6

5
 

4
.0

3
 

1
.6

5
 

4
.0

2
 

-2
.9

1
4
.0

2
 

-2
.9

1
1
.7

4
 

-0
.3

7

n
M

S
1
8

 
0
.0

3
 

-7
.4

6
4
.6

4
 

2
.8

9
 

4
.6

4
 

2
.8

9
 

2
.8

0
 

-3
.4

3
2
.8

0
 

-3
.4

3
3
.0

9
 

0
.3

1
 

n
M

S
1
9

 
-8

.3
5

-1
2
.4

6
1
.4

9
 

1
.7

7
 

1
.7

8
 

1
.7

8
 

-5
.1

5
-9

.0
2

-2
.5

0
-7

.0
8

2
.8

7
 

-1
.6

6

n
M

S
2
0

 
-1

7
.8

1
-1

7
.8

1
-3

.4
6

0
.2

7
 

2
.7

4
 

2
.7

4
 

-1
7
.8

1
-1

7
.8

1
-1

.3
8

-5
.7

8
3
.9

4
 

-2
.2

6

n
M

S
2
1

 
0
.9

2
 

-1
.1

4
1
.7

3
 

1
.1

3
 

1
.7

3
 

1
.1

3
 

1
.7

2
 

-0
.0

1
1
.7

2
 

-0
.0

1
1
.0

2
 

0
.5

3
 

n
M

S
2
2

 
-2

.9
9

-2
.9

9
-1

.3
0

-0
.6

6
1
.2

7
 

1
.2

7
 

-3
.0

0
-3

.0
0

0
.4

2
 

-0
.5

0
2
.0

9
 

0
.6

4
 

 

158 



T
ab

le
 A

. 
1
0
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 M
il

d
 S

te
el

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
2
3

 
4
.2

1
 

4
.2

1
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

0
 

4
.2

1
 

4
.2

1
 

n
M

S
2
4

 
6
.2

9
 

3
.7

6
 

7
.1

8
 

6
.0

9
 

7
.1

8
 

6
.0

9
 

7
.1

7
 

4
.9

3
 

7
.1

7
 

4
.9

3
 

6
.3

0
 

5
.4

7
 

n
M

S
2
5

 
4
.9

7
 

-5
.4

0
7
.7

8
 

3
.4

7
 

7
.7

8
 

3
.4

7
 

7
.7

7
 

-1
.1

6
7
.7

7
 

-1
.1

6
5
.0

1
 

1
.4

2
 

n
M

S
2
6

 
-0

.8
3

-2
3
.7

4
2
.5

5
 

-6
.5

3
2
.5

5
 

-6
.5

3
2
.5

5
 

-1
6
.3

0
2
.5

5
 

-1
6
.3

0
-0

.7
8

-9
.3

6

n
M

S
2
7

 
3
.6

4
 

-3
8
.6

7
3
.6

3
 

-1
2
.1

6
3
.6

3
 

-1
2
.1

6
3
.6

4
 

-2
9
.1

8
3
.6

4
 

-2
9
.1

8
3
.6

4
 

-1
3
.6

3

n
M

S
2
8

 
-5

.1
4

-1
0
.1

9
3
.5

0
 

4
.4

2
 

4
.4

2
 

4
.4

2
 

-1
.6

2
-6

.6
5

1
.2

9
 

-4
.6

6
8
.6

6
 

0
.9

0
 

n
M

S
2
9

 
-0

.5
5

-2
2
.2

6
8
.5

3
 

0
.4

6
 

8
.5

3
 

0
.4

7
 

4
.6

6
 

-1
3
.8

3
4
.6

6
 

-1
3
.8

3
6
.4

3
 

-6
.8

8

n
M

S
3
0

 
0
.0

8
 

0
.0

8
 

1
.2

8
 

2
.4

4
 

4
.3

9
 

4
.3

9
 

0
.0

8
 

0
.0

8
 

3
.7

8
 

2
.6

0
 

6
.2

1
 

3
.7

6
 

n
M

S
3
1

 
-1

1
.6

0
-1

1
.6

0
0
.0

0
 

7
.8

8
 

1
0
.5

2
 

1
0
.5

2
 

-1
1
.5

6
-1

1
.5

8
7
.3

6
 

1
.3

6
 

1
6
.2

8
 

5
.1

4
 

n
M

S
3
2

 
-0

.4
6

-2
1
.5

7
1
1
.3

2
 

3
.9

3
 

1
1
.3

2
 

3
.9

3
 

5
.8

8
 

-1
2
.5

0
5
.8

8
 

-1
2
.5

0
9
.7

7
 

-8
.7

4

 

159 



T
ab

le
 A

. 
1
1
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 4
2
C

rM
o
4

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
3
3

 
4
.1

9
 

-3
.1

5
6
.6

5
 

5
.4

2
 

6
.6

5
 

5
.4

2
 

6
.6

5
 

0
.9

6
 

6
.6

5
 

0
.9

6
 

4
.6

3
 

3
.4

1
 

n
M

S
3
4

 
-2

8
.1

4
-2

8
.1

4
-1

6
.1

3
-1

4
.3

6
-1

1
.6

6
-1

1
.6

6
-2

8
.1

4
-2

8
.1

4
-1

5
.5

3
-1

8
.4

9
-1

2
.5

4
-1

5
.5

4

n
M

S
3
5

 
7
.3

0
 

-9
.1

4
1
0
.8

4
 

8
.1

8
 

1
0
.8

4
 

8
.1

8
 

1
0
.8

3
 

-1
.4

4
1
0
.8

3
 

-1
.4

4
7
.9

4
 

5
.0

1
 

n
M

S
3
6

 
-1

4
.9

3
-2

5
.5

7
0
.1

6
 

-1
.3

9
0
.1

6
 

-1
.3

9
-8

.6
0

-1
7
.4

9
-8

.5
4

-1
7
.4

5
-8

.0
0

-1
4
.0

9

T
ab

le
 A

. 
1
2
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
4
C

r4
 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
3
7

 
-0

.5
5

-8
.9

3
1
.9

8
 

-0
.3

8
1
.9

8
 

-0
.3

8
1
.9

7
 

-4
.8

5
1
.9

7
 

-4
.8

5
-0

.2
7

-2
.3

6

n
M

S
3
8

 
-1

2
.3

2
-1

6
.3

0
-2

.8
9

-2
.6

2
-2

.6
2

-2
.6

2
-9

.2
4

-1
2
.9

8
-6

.7
2

-1
1
.1

4
-1

.5
4

-5
.9

3

n
M

S
3
9

 
-2

2
.9

3
-2

2
.9

3
-9

.5
2

-5
.9

7
-3

.6
6

-3
.6

6
-2

2
.9

3
-2

2
.9

3
-7

.5
0

-1
1
.6

4
-2

.4
8

-8
.3

5

n
M

S
4
0

 
-1

2
.3

2
-1

6
.3

0
-2

.9
1

-2
.6

4
-2

.6
2

-2
.6

3
-9

.2
5

-1
2
.9

9
-6

.7
2

-1
1
.1

4
-1

.5
4

-5
.9

3

n
M

S
4
1

 
-8

.3
8

-2
1
.9

4
6
.5

1
 

3
.4

3
 

6
.5

1
 

3
.4

3
 

-1
.6

2
-1

3
.3

7
-1

.6
2

-1
3
.3

6
1
.0

4
 

-9
.8

6

160 



n
M

S
4
2

 
-7

.3
2

-7
.3

2
-5

.0
3

-4
.1

2
-1

.5
4

-1
.5

3
-7

.3
2

-7
.3

2
-2

.6
8

-3
.9

3
-0

.4
8

-2
.4

5

n
M

S
4
3

 
3
.1

5
 

-2
3
.1

2
1
0
.1

5
 

1
.9

2
 

1
0
.1

5
 

1
.9

2
 

7
.0

5
 

-1
3
.2

5
7
.0

5
 

-1
3
.2

5
4
.8

1
 

-6
.6

3

T
ab

le
 A

. 
1
3
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
0
N

C
D

1
6

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
4
4

 
-2

.6
1

-1
2
.6

6
0
.1

6
 

-2
.7

9
0
.1

6
 

-2
.7

9
0
.1

6
 

-8
.0

0
0
.1

6
 

-8
.0

0
-2

.3
3

-4
.9

8

n
M

S
4
5

 
-3

0
.4

3
-3

0
.4

3
-1

0
.2

0
-7

.9
1

-7
.2

7
-7

.2
7

-2
1
.7

9
-2

4
.1

6
-1

1
.7

6
-1

6
.8

7
-6

.3
6

-1
3
.5

7

n
M

S
4
6

 
-7

.5
1

-2
3
.6

9
-4

.3
8

-9
.0

0
-4

.3
8

-9
.0

0
-4

.3
9

-1
7
.1

7
-4

.3
9

-1
7
.1

7
-7

.2
0

-1
1
.6

7

n
M

S
4
7

 
-1

0
.2

1
-1

7
.6

0
-7

.9
7

-1
0
.1

6
-7

.9
7

-1
0
.1

6
-7

.9
7

-1
4
.0

4
-7

.9
7

-1
4
.0

4
-9

.9
9

-1
1
.9

0

n
M

S
4
8

 
2
.8

0
 

-7
.4

2
5
.6

8
 

2
.6

7
 

5
.6

8
 

2
.6

7
 

5
.6

8
 

-2
.6

5
5
.6

8
 

-2
.6

5
3
.0

9
 

0
.4

0
 

n
M

S
4
9

 
-2

5
.5

1
-2

5
.5

1
-5

.8
0

-3
.0

7
-2

.1
3

-2
.1

2
-1

8
.2

7
-2

0
.2

5
-6

.6
6

-1
1
.8

1
-1

.0
0

-8
.3

4

n
M

S
5
0

 
-3

1
.3

0
-3

1
.3

0
-1

3
.2

6
-1

0
.7

3
-9

.8
4

-9
.8

4
-2

4
.7

6
-2

6
.5

5
-1

4
.0

0
-1

8
.7

3
-8

.7
9

-1
5
.5

3

n
M

S
5
1

 
-4

.9
0

-1
4
.2

5
-2

.2
5

-5
.0

0
-2

.2
5

-5
.0

0
-2

.2
5

-9
.8

7
-2

.2
5

-9
.8

7
-4

.6
3

-7
.0

9

161 



T
ab

le
 A

. 
1
4
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 X
C

1
8
 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
5
2

 
4
.2

1
 

-8
.7

9
7
.3

4
 

1
.1

6
 

7
.3

4
 

1
.1

6
 

7
.3

5
 

-4
.0

8
7
.3

5
 

-4
.0

8
4
.0

8
 

-1
.0

7

n
M

S
5
3

 
-3

.8
9

-1
3
.3

9
2
.3

8
 

-0
.0

1
2
.3

8
 

-0
.0

1
-0

.0
9

-8
.9

7
-0

.0
9

-8
.9

6
4
.5

2
 

-3
.6

3

n
M

S
5
4

 
-2

0
.4

8
-2

0
.4

8
-3

.9
1

3
.5

0
 

4
.5

1
 

4
.5

0
 

-1
1
.8

8
-1

4
.8

4
1
.8

2
 

-5
.8

5
1
3
.1

0
 

-2
.1

4

T
ab

le
 A

. 
1
5
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 F
G

S
8
0
0
_
2
 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
5
5

 
2
.4

5
 

-3
.5

4
5
.0

0
 

7
.4

0
 

5
.0

0
 

7
.4

0
 

5
.0

0
 

1
.6

1
 

5
.0

0
 

1
.6

1
 

3
.4

9
 

4
.9

7
 

n
M

S
5
6

 
-1

6
.4

2
-1

6
.4

8
1
1
.3

2
 

1
0
.5

9
 

1
1
.3

2
 

1
1
.3

2
 

-7
.8

1
-8

.9
0

2
.0

3
 

-0
.2

7
-0

.7
0

3
.6

9
 

n
M

S
5
7

 
0
.2

7
-7

.5
8

3
.1

4
 

6
.2

4
 

3
.1

4
 

6
.2

4
 

3
.1

4
 

-1
.2

3
3
.1

4
 

-1
.2

3
1
.4

3
 

3
.4

1
 

162 



T
ab

le
 A

. 
1
6
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
n
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 S
6
5
A

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

C
as

es
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

n
M

S
5
8

 
3
.6

0
 

3
.5

5
 

4
.9

2
 

6
.7

3
 

4
.9

2
 

6
.7

3
 

4
.9

1
 

6
.5

7
 

4
.9

1
 

6
.5

7
 

3
.7

8
 

4
.2

2
 

n
M

S
5
9

 
-1

.3
6

-1
.5

3
1
.6

4
 

7
.3

5
 

1
.6

4
 

7
.3

5
 

1
.6

4
 

6
.8

3
 

1
.6

4
 

6
.8

3
 

-0
.9

5
0
.6

0
 

n
M

S
6
0

 
-3

.0
5

-3
.4

2
-0

.4
7

1
1
.0

6
 

-0
.4

7
1
1
.0

6
 

-0
.4

7
1
0
.0

3
 

-0
.4

7
1
0
.0

3
 

-2
.7

0
0
.8

8
 

T
ab

le
 A

. 
1
7
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 C

al
ib

ra
ti

o
n
 a

n
d
 M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 4
2
C

rM
o
4

 

L
ab

el
 

A
M

P
 

S
V

M
 

S
N

S
 

C
R

O
S

S
 

F
IN

 
D

V
 

R
B

 
G

A
M

 
P

C
R

 
S

G
 

G
N

 
G

R
 

S
W

T
 

S
G

 
G

N
 

G
R

 
S

W
T

 

M
S

1
 

-5
.6

7
-7

.1
3

-1
3
.0

1
-4

.3
6

1
3
.9

1
 

1
0
.9

1
 

0
.2

4
 

1
3
.0

5
 

-2
3
.1

1
-1

5
.3

4
0
.4

9
 

-1
3
.3

3
3
.4

9
 

-7
.8

0
-4

.9
6

M
S

2
 

-9
.3

9
-9

.3
9

-9
.3

9
-9

.3
9

1
8
.3

7
 

1
8
.3

7
 

1
8
.3

7
 

1
8
.3

7
 

-3
7
.1

6
-2

8
.8

9
-6

.1
8

-2
8
.9

0
-3

.0
9

-8
.0

1
-7

.4
9

M
S

3
 

-2
.2

4
-0

.6
2

9
.2

8
 

-4
.9

1
5
.1

6
 

7
.8

4
 

2
6
.7

4
 

1
.4

7
 

-3
.8

0
5
.9

3
 

1
8
.7

8
 

8
.4

4
 

2
1
.3

1
 

1
.9

3
 

9
.5

3
 

M
S

4
 

-5
.4

8
-1

4
.9

3
-3

2
.1

6
-7

.7
7

-6
.4

0
-1

6
.9

6
-3

4
.3

7
-9

.5
6

1
8
.0

8
 

-2
.8

9
2
2
.4

0
 

7
.5

4
 

2
9
.1

9
 

7
.0

4
 

4
.7

8
 

M
S

5
 

-3
.5

2
-9

.9
6

-2
5
.4

7
-3

.7
2

-3
.5

4
-9

.9
7

-2
5
.4

8
-3

.7
3

-3
.7

1
-2

4
.0

0
1
1
.4

9
 

-1
5
.9

4
1
8
.3

3
 

1
.6

3
 

0
.0

6
 

 

163 



T
ab

le
 A

. 
1
8
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 C

al
ib

ra
ti

o
n
 a

n
d
 M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
4
C

r4
 

L
ab

el
 

A
M

P
 

S
V

M
 

S
N

S
 

C
R

O
S

S
 

F
IN

 
D

V
 

R
B

 
G

A
M

 
P

C
R

 
S

G
 

G
N

 
G

R
 

S
W

T
 

S
G

 
G

N
 

G
R

 
S

W
T

 

M
S

6
 

2
2
.6

7
 

1
5
.0

2
 

4
.1

7
 

1
2
.1

7
 

6
2
.2

1
 

4
4
.2

9
 

2
6
.0

1
 

3
3
.4

9
 

-5
.7

2
0
.0

8
 

1
6
.1

5
 

2
.6

2
 

2
2
.8

4
 

6
.0

1
 

6
.6

8
 

M
S

7
 

1
0
.0

6
 

6
.1

4
 

-0
.5

7
5
.2

2
 

4
1
.9

1
 

3
8
.8

8
 

3
3
.1

3
 

3
6
.9

0
 

-1
8
.4

6
-1

2
.6

9
3
.8

5
 

-9
.6

4
1
0
.8

7
 

3
.3

3
 

-2
.6

8

M
S

8
 

-0
.0

4
-0

.0
4

-0
.0

4
-0

.0
4

3
3
.4

9
 

3
3
.4

9
 

3
3
.4

9
 

3
3
.4

9
 

-2
8
.9

6
-2

3
.1

7
-0

.5
4

-2
2
.9

8
6
.1

0
 

1
.4

5
 

-3
.5

8

M
S

9
 

6
4
.0

8
 

1
.8

6
 

-1
.4

3
-1

0
.9

3
8
4
.9

3
 

3
.2

9
 

7
.5

5
 

-1
2
.2

6
1
6
.6

8
 

-6
.3

8
1
6
.2

6
 

4
.3

0
 

2
8
.7

0
 

-0
.2

1
2
.0

8
 

M
S

1
0

 
4
3
.2

3
 

7
.7

5
 

-5
.5

6
-2

.0
6

4
3
.2

3
 

7
.7

4
 

-5
.5

6
-2

.0
7

-2
.0

4
-2

5
.5

1
8
.9

2
 

-1
6
.9

3
2
2
.2

2
 

-0
.0

1
-1

.2
5

M
S

1
1

 
1
9
.9

1
 

1
5
.4

7
 

7
.9

4
 

1
3
.8

1
 

4
3
.9

4
 

3
4
.9

3
 

2
2
.1

7
 

2
9
.7

0
 

-1
2
.7

2
-6

.1
9

1
1
.7

8
 

-5
.2

0
1
9
.9

9
 

-0
.7

7
2
.2

5
 

M
S

1
2

 
-1

5
.8

8
-2

9
.5

2
-3

9
.2

9
-2

6
.9

0
-7

.2
6

-2
3
.5

7
-3

4
.1

9
-2

2
.4

8
8
.1

3
 

-9
.4

0
2
1
.4

1
 

3
.4

1
 

3
1
.3

4
 

3
.4

1
 

7
.8

1
 

T
ab

le
 A

. 
1
9
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 C

al
ib

ra
ti

o
n
 a

n
d
 M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
0
N

C
D

1
6

 

L
ab

el
 

A
M

P
 

S
V

M
 

S
N

S
 

C
R

O
S

S
 

F
IN

 
D

V
 

R
B

 
G

A
M

 
P

C
R

 
S

G
 

G
N

 
G

R
 

S
W

T
 

S
G

 
G

N
 

G
R

 
S

W
T

 

M
S

1
3

 
2
7
.3

1
 

1
8
.7

7
 

1
.3

3
 

1
1
.6

0
 

3
7
.3

5
 

3
0
.0

5
 

1
3
.3

0
 

2
2
.5

2
 

1
7
.6

1
 

3
.9

1
 

2
0
.4

4
 

1
2
.4

4
 

2
9
.2

5
 

7
.6

3
 

8
.6

2
 

M
S

1
4

 
2
0
.2

3
 

1
1
.9

7
 

-4
.6

9
5
.9

6
 

2
8
.6

1
 

2
2
.1

1
 

6
.8

6
 

1
6
.1

6
 

1
0
.3

3
 

-3
.3

6
1
7
.8

4
 

5
.8

0
 

2
6
.6

7
 

6
.7

7
 

6
.7

4
 

164 



M
S

1
5

 
1
3
.0

6
 

5
.0

9
 

-1
0
.7

6
0
.2

7
 

2
0
.3

2
 

1
4
.6

8
 

1
.0

2
 

1
0
.2

3
 

2
.8

9
 

-1
0
.9

1
1
3
.3

9
 

-1
.2

9
2
2
.2

7
 

3
.9

4
 

3
.6

1
 

M
S

1
6

 
5
.8

7
 

-2
.6

5
-1

8
.2

9
-6

.5
5

9
.7

9
 

3
.8

8
 

-9
.6

1
0
.4

9
 

-1
1
.3

6
-2

5
.1

2
1
0
.3

0
 

-1
0
.5

6
1
9
.5

1
 

3
.9

7
 

1
.9

3
 

M
S

1
7

 
3
6
.1

9
 

2
5
.2

4
 

5
.1

1
 

1
5
.2

5
 

3
8
.9

0
 

2
8
.3

1
 

8
.2

0
 

1
8
.1

6
 

1
2
.6

2
 

0
.1

1
 

1
2
.8

4
 

6
.8

0
 

2
0
.7

6
 

4
.3

2
 

3
.8

1
 

M
S

1
8

 
2
8
.0

3
 

1
7
.4

2
 

-1
.7

1
8
.9

1
 

2
9
.5

9
 

1
9
.2

6
 

0
.1

8
 

1
0
.6

8
 

5
.5

6
 

-7
.2

2
6
.0

4
 

-0
.8

9
1
3
.7

6
 

-0
.1

3
-0

.8
3

M
S

1
9

 
1
9
.5

8
 

9
.0

9
 

-9
.1

2
2
.0

5
 

1
9
.5

8
 

9
.0

9
 

-9
.1

2
2
.0

5
 

-1
.9

2
-1

4
.9

7
-4

.1
0

-9
.3

2
2
.7

2
 

-4
.4

7
-6

.9
3

M
S

2
0

 
-3

3
.7

9
-4

5
.7

7
-5

6
.2

9
-4

1
.5

8
-5

.2
4

-2
6
.2

5
-3

9
.9

4
-2

9
.7

9
1
5
.8

9
 

-0
.6

8
1
6
.6

3
 

7
.7

7
 

2
5
.8

4
 

1
.8

6
 

5
.2

0
 

M
S

2
1

 
3
9
.5

1
 

2
7
.2

7
 

6
.0

3
 

1
5
.9

8
 

3
9
.5

1
 

2
7
.2

7
 

6
.0

3
 

1
5
.9

8
 

1
0
.7

5
 

-1
.3

4
6
.9

4
 

4
.3

2
 

1
3
.2

5
 

3
.0

5
 

0
.8

9
 

M
S

2
2

 
-6

5
.8

6
-7

0
.7

8
-7

6
.4

0
-6

0
.3

6
-3

4
.2

6
-4

6
.7

8
-5

7
.0

4
-4

2
.4

6
1
2
.2

8
 

-6
.5

5
7
.7

3
 

-0
.8

9
1
6
.8

3
 

-5
.2

2
-2

.2
8

M
S

2
3

 
-3

9
.1

5
-4

5
.4

4
-5

5
.1

4
-4

0
.4

8
-1

2
.3

2
-2

4
.2

6
-3

8
.7

2
-2

5
.2

7
1
5
.9

4
 

-0
.5

3
2
1
.8

4
 

9
.2

7
 

3
1
.0

5
 

3
.7

3
 

9
.5

3
 

M
S

2
4

 
9
4
.4

7
 

1
0
.6

8
 

8
.9

9
 

-1
4
.3

0
9
4
.4

7
 

1
0
.6

8
 

8
.9

9
 

-1
4
.3

0
1
9
.3

4
 

-2
5
.5

0
2
5
.3

6
 

-1
2
.0

4
1
.4

9
 

1
8
.9

5
 

4
.5

7
 

M
S

2
5

 
7
3
.0

9
 

8
.4

4
 

-0
.5

8
-1

2
.5

7
7
3
.0

9
 

8
.4

4
 

-0
.5

8
-1

2
.5

7
1
6
.6

8
 

-2
4
.4

3
2
2
.9

8
 

-1
1
.7

1
0
.5

8
 

1
7
.5

7
 

4
.0

7
 

M
S

2
6

 
2
2
.8

0
 

1
5
.4

7
 

-0
.4

6
1
2
.1

9
 

2
2
.8

0
 

1
5
.4

7
 

-0
.4

6
1
2
.1

9
 

-2
.7

9
3
.8

0
1
6
.0

3
 

7
.8

1
9
.9

2
 

1
7
.0

5
 

5
.5

8
 

M
S

2
7

 
3
7
.6

8
 

2
1
.2

1
 

-1
.2

9
7
.1

1
 

3
7
.6

8
 

2
1
.2

1
 

-1
.2

9
7
.1

1
 

3
.8

4
 

-1
2
.9

0
-2

.8
5

-6
.1

3
5
.0

4
 

-7
.7

7
-7

.0
6

M
S

2
8

 
4
7
.1

8
 

2
5
.7

0
 

1
.4

6
 

7
.5

0
 

4
7
.1

8
 

2
5
.7

0
 

1
.4

6
 

7
.5

0
 

5
.2

6
 

-1
4
.8

4
-3

.2
2

-7
.1

1
5
.9

6
 

-8
.9

7
-7

.9
3

M
S

2
9

 
2
7
.5

1
 

1
7
.6

3
 

-0
.9

5
8
.8

7
 

2
7
.5

1
 

1
7
.6

3
 

-0
.9

5
8
.8

7
 

3
.7

1
 

-6
.3

9
0
.7

5
 

-1
.4

6
6
.2

8
 

-2
.6

5
-3

.1
4

M
S

3
0

 
1
7
.7

4
 

1
3
.1

1
 

1
.1

3
 

9
.1

3
 

1
7
.7

4
 

1
3
.1

1
 

1
.1

3
 

9
.1

3
 

2
.5

2
 

-0
.0

3
3
.9

5
 

2
.7

8
 

6
.9

8
 

2
.1

1
 

0
.8

8
 

M
S

3
1

 
3
7
.6

2
 

2
0
.4

2
 

-2
.1

8
6
.0

0
 

6
9
.2

5
 

4
3
.4

8
 

1
5
.6

9
 

1
8
.5

6
 

4
.9

4
 

-8
.1

9
4
.8

5
 

-0
.4

0
1
2
.7

5
 

-1
.6

8
-2

.1
8

165 



M
S

3
2

 
1
3
.8

4
 

7
.2

5
 

-7
.2

7
2
.4

0
 

2
8
.9

0
 

2
5
.4

5
 

1
5
.4

3
 

2
1
.6

3
 

-1
7
.0

8
-3

0
.0

9
3
.2

5
 

-1
8
.4

7
1
4
.1

2
 

-2
.5

7
-3

.5
1

M
S

3
3

 
1
1
.9

6
 

4
.3

9
 

-1
1
.0

2
-0

.7
6

1
9
.5

5
 

1
3
.4

9
 

-0
.7

2
8
.2

9
 

2
.8

4
 

-1
0
.0

6
9
.4

8
 

-1
.5

8
1
7
.8

6
 

-0
.6

1
0
.9

3
 

M
S

3
4

 
5
.4

4
 

-1
.8

9
-1

6
.5

7
-5

.9
5

1
2
.1

0
 

6
.8

2
 

-5
.9

5
2
.9

5
 

-3
.9

8
-1

6
.9

8
5
.3

6
 

-8
.1

6
1
3
.8

0
 

-3
.1

2
-1

.8
1

M
S

3
5

 
1
7
.6

9
 

8
.4

5
 

-8
.7

9
1
.5

6
 

1
9
.1

1
 

1
0
.0

9
 

-7
.1

1
3
.1

1
 

-1
.6

2
-1

3
.2

9
-1

.3
2

-7
.5

2
5
.8

2
 

-6
.9

0
-5

.7
7

M
S

3
6

 
-4

0
.6

6
-4

3
.3

6
-4

9
.9

7
-4

0
.2

5
-1

3
.4

3
-1

8
.0

0
-2

8
.5

2
-1

8
.4

6
-0

.0
8

-9
.8

2
7
.0

1
 

-2
.2

4
1
2
.9

4
 

-6
.1

7
0
.1

9
 

M
S

3
7

 
0
.2

9
 

-7
.8

7
-2

2
.7

6
-1

1
.4

5
4
.0

0
 

-1
.8

1
-1

4
.8

4
-4

.9
9

-1
5
.6

5
-2

8
.8

8
2
.4

1
 

-1
7
.4

1
1
1
.3

2
 

-2
.7

2
-3

.1
6

M
S

3
8

 
9
.4

4
 

0
.3

9
 

-1
5
.9

5
-5

.0
8

9
.4

4
 

0
.3

9
 

-1
5
.9

5
-5

.0
8

-8
.8

0
-2

0
.7

4
-1

0
.9

1
-1

5
.5

6
-4

.6
3

-1
1
.3

1
-1

1
.5

2

M
S

3
9

 
2
4
.7

2
 

3
.4

4
 

-1
6
.6

8
-9

.2
8

2
4
.7

2
 

3
.4

4
 

-1
6
.6

8
-9

.2
8

-8
.5

2
-3

2
.5

1
5
.2

9
 

-1
8
.4

9
1
9
.3

6
 

-5
.7

7
-4

.0
5

M
S

4
0

 
7
5
.4

6
 

2
5
.7

7
 

6
.0

3
 

-4
.4

4
7
5
.4

6
 

2
5
.7

7
 

6
.0

3
 

-4
.4

4
-0

.0
3

-3
3
.1

8
1
1
.5

2
 

-1
6
.1

0
3
0
.0

6
 

-4
.7

5
-2

.2
7

M
S

4
1

 
-6

3
.3

4
-6

8
.8

4
-7

4
.8

7
-5

9
.4

2
-2

7
.4

7
-4

2
.2

5
-5

3
.2

4
-4

0
.5

9
1
3
.4

7
 

-4
.4

8
9
.0

9
 

0
.9

2
 

1
7
.9

0
 

-3
.2

8
-0

.6
2

M
S

4
2

 
-5

3
.4

5
-6

5
.8

4
-7

1
.5

3
-5

7
.8

8
-6

.2
4

-3
7
.8

5
-4

5
.1

5
-4

1
.6

6
3
0
.0

8
 

0
.9

0
 

2
2
.9

9
 

9
.6

8
 

3
7
.3

2
 

3
.3

7
 

6
.2

9
 

M
S

4
3

 
-4

7
.8

2
-6

9
.6

1
-7

0
.6

0
-6

2
.7

0
4
.1

7
 

-4
7
.1

3
-4

2
.8

6
-5

0
.7

4
3
0
.9

4
 

-8
.3

8
2
1
.4

1
 

3
.4

5
 

4
0
.7

6
 

-4
.2

0
0
.5

0
 

M
S

4
4

 
-3

9
.9

7
-5

0
.5

0
-6

0
.1

2
-4

5
.7

0
-1

5
.6

9
-3

3
.6

2
-4

6
.1

1
-3

5
.1

8
7
.3

6
 

-8
.5

1
7
.8

9
 

-0
.5

1
1
6
.8

0
 

-6
.1

1
-1

.6
7

M
S

4
5

 
1
8
.3

9
 

1
0
.5

9
 

-5
.5

2
4
.4

1
 

2
7
.5

2
 

2
0
.7

7
 

5
.2

7
 

1
4
.1

9
 

9
.6

0
 

-3
.2

9
1
2
.0

3
 

4
.6

4
 

2
0
.3

9
 

0
.1

5
 

2
.5

8
 

M
S

4
6

 
2
5
.1

8
 

1
5
.8

7
 

-2
.0

7
7
.8

2
 

2
7
.6

4
 

1
8
.6

0
 

0
.6

7
 

1
0
.3

6
 

5
.1

7
 

-5
.8

4
5
.4

6
 

0
.1

7
 

1
2
.6

1
 

-2
.1

3
-1

.0
8

M
S

4
7

 
5
2
.2

8
 

8
.7

8
 

-8
.1

3
-1

3
.7

3
7
1
.7

9
 

1
3
.7

9
 

0
.4

7
 

-1
4
.2

3
1
7
.4

2
 

-6
.4

9
1
6
.5

4
 

4
.5

5
 

3
0
.0

8
 

-0
.9

2
2
.2

3
 

M
S

4
8

 
1
3
3
.9

2
 

3
8
.8

9
 

3
2
.4

1
 

-6
.4

9
1
8
0
.0

0
 

4
4
.3

4
 

5
3
.9

7
 

-8
.8

6
2
1
.9

6
 

-1
1
.9

0
1
7
.7

1
 

1
.7

6
 

3
5
.8

9
 

-4
.1

7
0
.1

8
 

166 



T
ab

le
 A

. 
2
0
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x
ia

l 
E

n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 C

al
ib

ra
ti

o
n
 a

n
d
 M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 S
6
5
A

 

L
ab

el
 

A
M

P
 

S
V

M
 

S
N

S
 

C
R

O
S

S
 

F
IN

 
D

V
 

R
B

 
G

A
M

 
P

C
R

 
S

G
 

G
N

 
G

R
 

S
W

T
 

S
G

 
G

N
 

G
R

 
S

W
T

 

M
S

4
9

 
3
1
.7

8
 

2
9
.0

6
 

2
.8

5
 

1
5
.2

9
 

3
1
.7

8
 

2
9
.0

6
 

2
.8

5
 

1
5
.2

9
 

-5
.3

8
-1

.1
5

7
.5

8
 

4
.4

0
 

-1
.0

2
4
.5

1
 

-0
.1

3

M
S

5
0

 
1
0
8
.6

9
 

9
5
.1

9
 

3
3
.5

5
 

2
9
.0

7
 

1
0
8
.6

9
 

9
5
.1

9
 

3
3
.5

5
 

2
9
.0

7
 

0
.0

0
 

-0
.4

5
1
8
.1

3
 

1
0
.6

7
 

-0
.0

2
1
0
.8

7
 

1
.4

7
 

M
S

5
1

 
2
.4

5
 

2
.4

5
 

2
.4

5
 

2
.4

5
 

6
.8

2
 

6
.8

2
 

6
.8

2
 

6
.8

2
 

-1
4
.3

7
-5

.8
2

6
.1

5
 

-5
.8

3
-1

.7
5

-4
.0

5
-0

.9
2

M
S

5
2

 
2
1
.1

8
 

2
1
.1

8
 

2
1
.1

8
 

2
1
.1

8
 

3
7
.7

2
 

3
7
.7

2
 

3
7
.7

2
 

3
7
.7

2
 

-1
5
.8

1
-7

.4
1

1
6
.9

1
 

-7
.4

1
0
.8

7
 

-1
.2

7
1
.4

6
 

M
S

5
3

 
4
1
.2

4
 

3
8
.6

5
 

1
2
.3

0
 

2
3
.9

9
 

4
5
.5

7
 

4
3
.1

0
 

1
7
.0

9
 

2
8
.3

9
 

-4
.9

0
-0

.6
2

1
9
.6

6
 

4
.9

3
 

3
.3

9
 

6
.2

8
 

3
.5

6
 

M
S

5
4

 
6
2
.2

3
 

5
9
.7

1
 

3
2
.2

5
 

4
2
.6

6
 

7
6
.5

7
 

7
4
.4

2
 

4
8
.8

1
 

5
8
.0

4
 

-4
.9

0
-0

.6
2

3
1
.6

7
 

4
.9

3
 

7
.7

1
 

9
.6

2
 

6
.8

9
 

M
S

5
5

 
1
0
3
.2

4
 

8
4
.6

4
 

2
3
.0

3
 

1
1
.7

3
 

1
1
9
.9

8
 

9
4
.3

4
 

2
8
.6

1
 

6
.7

5
 

-9
.8

7
-1

1
.2

9
1
8
.4

2
 

-0
.1

8
-6

.8
6

1
.0

5
 

-2
.4

6

M
S

5
6

 
1
9
3
.3

6
 

1
4
5
.2

4
 

6
4
.3

5
 

9
.6

0
 

6
2
5
.9

9
 

3
1
5
.9

3
 

2
7
5
.6

3
 

-1
.1

4
-9

.3
9

-1
0
.7

7
3
0
.4

3
 

0
.3

5
 

-2
.2

5
4
.4

6
 

1
.2

0
 

M
S

5
7

 
-7

1
.0

7
-7

2
.0

3
-7

9
.1

9
-6

2
.2

1
-4

6
.8

3
-4

9
.1

4
-6

3
.5

5
-4

5
.5

0
-7

.3
4

-1
1
.7

0
3
.2

3
 

-6
.1

5
-9

.3
3

-9
.9

4
-8

.5
8

M
S

5
8

 
-7

1
.6

8
-7

4
.0

4
-8

2
.6

0
-6

5
.5

8
-5

0
.8

8
-5

5
.6

0
-7

0
.4

8
-5

4
.7

3
-6

.3
3

-1
5
.0

6
1
4
.8

8
 

-3
.9

4
-1

0
.2

8
-9

.6
7

-8
.7

4

M
S

5
9

 
-4

1
.8

3
-4

4
.4

9
-6

0
.4

5
-4

2
.5

7
2
6
.7

1
 

1
7
.3

8
 

-2
0
.6

3
-1

3
.0

5
-9

.4
2

-1
3
.7

8
4
.9

0
 

-8
.2

3
-1

0
.2

1
-6

.1
0

-9
.1

5

M
S

6
0

 
-2

6
.8

8
-3

4
.9

8
-5

6
.9

5
-4

5
.3

8
6
1
.0

8
 

3
5
.2

2
 

-9
.5

4
-2

4
.3

4
-7

.1
6

-1
5
.8

9
1
7
.4

7
 

-4
.7

8
-9

.9
6

-5
.4

5
-8

.1
4

167 



M
S

6
1

 
4
.0

1
 

-2
.7

8
-3

3
.5

4
-2

1
.3

0
2
1
3
.3

6
 

1
6
8
.3

5
 

7
8
.3

2
 

2
3
.0

0
 

-8
.1

7
-1

2
.5

3
1
1
.4

1
 

-6
.9

8
-7

.5
4

1
.3

6
 

-6
.6

7

M
S

6
2

 
7
0
.2

9
 

4
1
.7

8
 

-4
.8

2
-2

3
.2

6
7
6
3
.4

7
 

3
9
7
.1

3
 

3
4
6
.9

3
 

1
1
.0

1
 

-3
.8

3
-1

2
.5

6
2
5
.6

8
 

-1
.4

4
-5

.2
4

3
.5

6
 

-4
.1

4

M
S

6
3

 
4
3
.2

7
 

3
9
.4

4
 

7
.0

8
 

1
9
.1

4
 

5
8
.7

2
 

5
3
.8

9
 

1
5
.9

5
 

2
6
.6

0
 

-5
.2

8
-1

.9
2

1
5
.3

8
 

4
.8

3
 

1
.8

7
 

6
.6

0
 

2
.0

1

M
S

6
4

 
3
5
.4

2
 

3
1
.3

0
 

-1
.0

5
1
1
.4

6
 

6
8
.5

9
 

6
2
.3

0
 

1
8
.8

1
 

2
7
.4

9
 

-2
.4

5
-0

.9
9

1
3
.2

9
 

7
.4

6
 

2
.8

0
 

8
.1

0
 

2
.1

0
 

M
S

6
5

 
-3

.3
6

-8
.0

4
-3

4
.9

8
-2

0
.1

2
6
4
.9

1
 

5
2
.8

2
 

3
.3

7
 

4
.4

0
 

-1
.0

7
-2

.9
2

1
5
.8

9
 

5
.1

2
 

2
.2

7
 

5
.7

0
 

1
.4

6
 

M
S

6
6

 
2
0
3
.7

3
 

1
6
0
.5

7
 

7
3
.0

7
 

2
1
.0

4
 

4
7
5
.7

0
 

3
2
0
.5

6
 

2
0
7
.4

0
 

2
5
.4

2
 

-8
.6

6
-1

0
.7

2
2
4
.5

8
 

1
.4

2
 

-4
.1

1
6
.4

7
 

-0
.5

2

M
S

6
7

 
1
7
7
.2

6
 

1
4
0
.3

8
 

5
9
.3

0
 

1
7
.5

5
 

4
2
7
.0

3
 

3
0
8
.5

5
 

1
8
5
.8

7
 

3
4
.4

3
 

-8
.0

4
-1

1
.8

6
1
6
.3

0
 

1
.6

9
 

-7
.2

4
5
.9

8
 

-4
.0

4

M
S

6
8

 
1
0
7
.1

0
 

7
7
.2

0
 

1
7
.7

8
 

-6
.9

4
4
4
6
.8

3
 

2
9
5
.7

0
 

1
9
1
.3

9
 

1
8
.9

4
 

-1
2
.2

7
-1

9
.0

3
1
7
.3

6
 

-5
.9

7
-1

1
.3

9
-1

.7
7

-7
.8

7

M
S

6
9

 
1
7
.0

9
 

1
5
.3

3
 

-4
.0

7
7
.6

8
 

2
9
.6

8
 

2
8
.2

3
 

1
0
.4

9
 

2
0
.4

2
 

0
.3

1
 

1
.9

5
 

1
9
.5

9
 

1
0
.4

9
 

7
.2

2
 

6
.5

7
 

5
.5

3
 

M
S

7
0

 
5
.0

8
 

4
.2

0
 

-7
.4

6
1
.2

4
 

3
6
.6

7
 

3
4
.6

1
 

1
1
.8

9
 

2
3
.0

6
 

-8
.7

5
-2

.7
8

1
0
.2

9
 

0
.1

8
 

3
.5

8
 

3
.0

4
 

2
.5

7
 

M
S

7
1

 
3
1
.7

8
 

2
9
.0

6
 

2
.8

5
 

1
5
.2

9
 

3
1
.7

8
 

2
9
.0

6
 

2
.8

5
 

1
5
.2

9
 

-5
.3

8
-1

.1
5

7
.5

8
 

4
.4

0
 

-1
.0

2
4
.5

1
 

-0
.1

3

M
S

7
2

 
1
0
8
.6

9
 

9
5
.1

9
 

3
3
.5

5
 

2
9
.0

7
 

1
0
8
.6

9
 

9
5
.1

9
 

3
3
.5

5
 

2
9
.0

7
 

0
.0

0
 

-0
.4

5
1
8
.1

3
 

1
0
.6

7
 

-0
.0

2
1
0
.8

7
 

1
.4

7
 

M
S

7
3

 
-2

9
.2

4
-3

0
.0

6
-4

0
.0

0
-2

8
.8

5
-2

9
.2

4
-3

0
.0

6
-4

0
.0

0
-2

8
.8

5
-8

.5
5

-8
.5

5
-4

.4
9

-8
.5

7
-7

.3
3

-2
.3

0
-6

.9
5

M
S

7
4

 
-7

.6
2

-1
0
.3

6
-3

2
.2

1
-1

6
.7

6
-7

.6
2

-1
0
.3

6
-3

2
.2

1
-1

6
.7

6
-7

.3
0

-7
.3

0
2
.3

1
 

-7
.3

2
-4

.6
5

5
.3

4
 

-4
.5

2

168 



T
ab

le
 A

. 
2
1
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 4
2
C

rM
o
4

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

M
S

1
 

-1
5
.3

4
-2

1
.3

5
0
.4

9
 

2
.2

4
 

0
.4

9
 

2
.2

4
 

-1
3
.3

3
-1

7
.9

9
-1

3
.3

3
-1

7
.9

9
-7

.8
0

-5
.1

7

M
S

2
 

-2
8
.8

9
-2

8
.8

9
-6

.1
8

-3
.0

6
-5

.9
6

-3
.0

5
-2

8
.9

0
-2

8
.9

0
-1

6
.3

3
-1

9
.2

8
-8

.0
1

-8
.2

7

M
S

3
 

5
.9

3
 

-1
.5

8
1
8
.7

8
 

1
8
.2

7
 

1
8
.7

8
 

1
8
.2

7
 

8
.4

4
 

2
.6

2
 

8
.4

4
 

2
.6

2
 

1
.9

3
 

-1
.5

8

M
S

4
 

-2
.8

9
1
1
.8

1
 

2
2
.4

0
 

2
7
.1

2
 

2
2
.4

0
 

2
7
.1

2
 

7
.5

4
 

1
5
.3

2
 

7
.5

4
 

1
5
.3

2
 

7
.0

4
 

1
4
.9

7
 

M
S

5
 

-2
4
.0

0
-3

.7
1

1
1
.4

9
 

1
8
.4

5
 

1
1
.8

8
 

1
8
.4

5
 

-1
5
.9

4
-3

.7
1

-3
.9

5
5
.4

7
 

1
.6

3
 

8
.2

7
 

169 



T
ab

le
 A

. 
2
2
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
4
C

r4
 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

M
S

6
 

0
.0

8
 

-8
.3

5
1
6
.1

5
 

2
0
.0

2
 

1
6
.1

5
 

2
0
.0

2
 

2
.6

2
 

-4
.2

4
2
.6

2
 

-4
.2

4
6
.0

1
 

1
1
.3

8
 

M
S

7
 

-1
2
.6

9
-1

6
.6

2
3
.8

5
 

9
.3

0
 

3
.8

5
 

9
.3

1
 

-9
.6

4
-1

3
.3

4
-7

.1
2

-1
1
.5

0
3
.3

3
 

6
.0

0
 

M
S

8
 

-2
3
.1

7
-2

3
.1

7
-0

.5
4

6
.4

1
 

0
.9

3
 

6
.4

2
 

-2
2
.9

8
-2

3
.0

3
-7

.7
0

-1
1
.8

5
1
.4

5
 

1
.0

2
 

M
S

9
 

-6
.3

8
9
.1

9
 

1
6
.2

6
 

2
4
.7

1
 

1
6
.2

6
 

2
4
.7

1
 

4
.3

0
 

1
2
.8

4
 

4
.3

0
 

1
2
.8

4
 

-0
.2

1
1
2
.5

4
 

M
S

1
0

 
-2

5
.5

1
-2

.0
4

8
.9

2
 

2
2
.3

9
 

9
.9

9
 

2
2
.3

9
 

-1
6
.9

3
-2

.0
4

-3
.0

7
8
.1

0
 

-0
.0

1
1
1
.0

6
 

M
S

1
1

 
-6

.1
9

-8
.8

4
1
1
.7

8
 

1
7
.7

3
 

1
1
.7

8
 

1
7
.7

3
 

-5
.2

0
-7

.4
1

-5
.2

0
-7

.4
1

-0
.7

7
5
.6

2
 

M
S

1
2

 
-9

.4
0

-4
.7

0
2
1
.4

1
 

2
6
.1

7
 

2
1
.4

1
 

2
6
.1

7
 

3
.4

1
 

3
.4

1
 

3
.4

1
 

3
.4

1
 

3
.4

1
 

3
.4

1
 

170 



T
ab

le
 A

. 
2
3
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 3
0
N

C
D

1
6
 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

M
S

1
3

 
3
.9

1
 

9
.1

9
 

2
0
.4

4
 

2
4
.8

6
 

2
0
.4

4
 

2
4
.8

6
 

1
2
.4

4
 

1
4
.0

0
 

1
2
.4

4
 

1
4
.0

0
 

7
.6

3
 

1
4
.7

3
 

M
S

1
4

 
-3

.3
6

4
.6

0
 

1
7
.8

4
 

2
3
.7

5
 

1
7
.8

4
 

2
3
.7

5
 

5
.8

0
 

9
.1

7
 

5
.8

1
 

9
.1

7
 

6
.7

7
 

1
2
.6

0
 

M
S

1
5

 
-1

0
.9

1
-0

.7
1

1
3
.3

9
 

2
0
.5

3
 

1
3
.3

9
 

2
0
.5

3
 

-1
.2

9
3
.6

0
 

0
.3

8
 

4
.8

1
 

3
.9

4
 

9
.0

9
 

M
S

1
6

 
-2

5
.1

2
-9

.5
1

1
0
.3

0
 

1
9
.7

4
 

1
1
.0

5
 

1
9
.7

4
 

-1
0
.5

6
-3

.0
3

-0
.2

5
4
.4

8
 

3
.9

7
 

7
.8

7
 

M
S

1
7

 
0
.1

1
 

1
2
.9

5
 

1
2
.8

4
 

1
9
.2

8
 

1
2
.8

4
 

1
9
.2

8
 

6
.8

0
 

1
4
.4

3
 

6
.8

0
 

1
4
.4

3
 

4
.3

2
 

1
4
.4

5
 

M
S

1
8

 
-7

.2
2

6
.9

3
 

6
.0

4
 

1
3
.2

8
 

6
.0

4
 

1
3
.2

8
 

-0
.8

9
7
.8

0
 

-0
.6

9
7
.9

5
 

-0
.1

3
9
.6

6
 

M
S

1
9

 
-1

4
.9

7
0
.6

5
 

-4
.1

0
3
.9

0
 

-0
.7

9
6
.1

9
 

-9
.3

2
0
.6

4
 

-5
.2

0
3
.6

4
 

-4
.4

7
4
.9

5
 

M
S

2
0

 
-0

.6
8

-8
.7

8
1
6
.6

3
 

1
7
.1

8
 

1
6
.6

3
 

1
7
.1

8
 

7
.7

7
 

-0
.4

9
7
.7

7
 

-0
.4

9
1
.8

6
 

3
.1

5
 

M
S

2
1

 
-1

.3
4

1
4
.2

8
 

6
.9

4
 

1
3
.4

5
 

6
.9

4
 

1
3
.4

5
 

4
.3

2
 

1
4
.2

8
 

4
.3

2
 

1
4
.2

8
 

3
.0

5
 

1
4
.2

8
 

M
S

2
2

 
-6

.5
5

-2
4
.2

9
7
.7

3
 

5
.5

1
 

7
.7

3
 

5
.5

1
 

-0
.8

9
-1

5
.5

0
-0

.8
9

-1
5
.5

0
-5

.2
2

-8
.6

5

M
S

2
3

 
-0

.5
3

-8
.1

8
2
1
.8

4
 

2
1
.6

2
 

2
1
.8

4
 

2
1
.6

2
 

9
.2

7
 

0
.9

7
 

9
.2

7
 

0
.9

7
 

3
.7

3
 

-0
.2

1

M
S

2
4

 
-2

5
.5

0
-2

.9
3

2
5
.3

6
 

3
.4

2
 

2
5
.3

6
 

3
.4

2
 

-1
2
.0

4
-2

.9
3

-1
2
.0

4
-2

.9
3

1
8
.9

5
 

-2
.9

3

171 



M
S

2
5

 
-2

4
.4

3
-3

.1
1

2
2
.9

8
 

2
.1

7
 

2
2
.9

8
 

2
.1

7
 

-1
1
.7

1
-3

.1
1

-1
1
.7

1
-3

.1
1

1
7
.5

7
 

-3
.1

1

M
S

2
6

 
3
.8

0
 

1
0
.5

3
 

1
6
.0

3
 

9
.7

1
 

1
6
.0

3
 

9
.7

1
 

7
.8

1
 

1
0
.5

2
 

7
.8

1
 

1
0
.5

2
 

1
7
.0

5
 

1
0
.5

3
 

M
S

2
7

 
-1

2
.9

0
5
.8

4
 

-2
.8

5
5
.2

0
 

-2
.8

5
5
.2

0
 

-6
.1

3
5
.8

4
 

-6
.1

3
5
.8

4
 

-7
.7

7
5
.8

4
 

M
S

2
8

 
-1

4
.8

4
6
.5

6
 

-3
.2

2
6
.0

8
 

-3
.2

2
6
.0

8
 

-7
.1

1
6
.5

6
 

-7
.1

1
6
.5

6
 

-8
.9

7
6
.5

6
 

M
S

2
9

 
-6

.3
9

7
.2

6
 

0
.7

5
 

6
.4

7
 

0
.7

5
 

6
.4

7
 

-1
.4

6
7
.2

5
 

-1
.4

6
7
.2

5
 

-2
.6

5
7
.2

6
 

M
S

3
0

 
-0

.0
3

7
.7

7
 

3
.9

5
 

7
.1

3
 

3
.9

5
 

7
.1

3
 

2
.7

8
 

7
.7

6
 

2
.7

8
 

7
.7

6
 

2
.1

1
 

7
.7

7
 

M
S

3
1

 
-8

.1
9

-2
.2

0
4
.8

5
 

1
0
.7

8
 

4
.8

5
 

1
0
.7

8
 

-0
.4

0
1
.8

8
 

-0
.4

0
1
.8

8
 

-1
.6

8
1
0
.0

9
 

M
S

3
2

 
-3

0
.0

9
-1

5
.3

9
3
.2

5
 

1
4
.0

5
 

3
.9

3
 

1
4
.0

5
 

-1
8
.4

7
-1

0
.8

1
-7

.9
5

-3
.1

7
-2

.5
7

3
.9

7
 

M
S

3
3

 
-1

0
.0

6
-2

.1
4

9
.4

8
 

1
5
.2

4
 

9
.4

8
 

1
5
.2

4
 

-1
.5

8
1
.9

4
 

-1
.5

8
1
.9

4
 

-0
.6

1
5
.1

4
 

M
S

3
4

 
-1

6
.9

8
-7

.0
3

5
.3

6
 

1
2
.3

1
 

5
.3

6
 

1
2
.3

1
 

-8
.1

6
-3

.2
4

-6
.4

1
-1

.9
6

-3
.1

2
1
.9

9
 

M
S

3
5

 
-1

3
.2

9
-0

.2
5

-1
.3

2
5
.3

9
 

-1
.3

2
5
.3

9
 

-7
.5

2
0
.5

1
 

-7
.3

2
0
.6

6
 

-6
.9

0
2
.2

0
 

M
S

3
6

 
-9

.8
2

-2
0
.7

3
7
.0

1
 

5
.0

1
 

7
.0

1
 

5
.0

1
 

-2
.2

4
-1

2
.3

7
-2

.2
4

-1
2
.3

7
-6

.1
7

-1
2
.1

3

M
S

3
7

 
-2

8
.8

8
-1

3
.9

3
2
.4

1
 

1
1
.8

7
 

3
.5

2
 

1
1
.8

7
 

-1
7
.4

1
-9

.5
2

-6
.5

5
-1

.6
3

-2
.7

2
1
.5

3
 

M
S

3
8

 
-2

0
.7

4
-6

.3
9

-1
0
.9

1
-3

.5
6

-7
.9

3
-1

.4
8

-1
5
.5

6
-6

.4
0

-1
1
.8

7
-3

.7
2

-1
1
.3

1
-2

.5
4

M
S

3
9

 
-3

2
.5

1
-8

.9
1

5
.2

9
 

1
8
.5

5
 

5
.5

3
 

1
8
.5

5
 

-1
8
.4

9
-4

.9
2

-8
.4

4
2
.3

8
 

-5
.7

7
5
.2

9
 

M
S

4
0

 
-3

3
.1

8
-2

.0
8

1
1
.5

2
 

2
8
.0

8
 

1
1
.5

2
 

2
8
.0

8
 

-1
6
.1

0
2
.1

6
 

-6
.6

4
9
.0

4
 

-4
.7

5
1
1
.8

6
 

M
S

4
1

 
-4

.4
8

-2
3
.8

2
9
.0

9
 

6
.3

2
 

9
.0

9
 

6
.3

2
 

0
.9

2
 

-1
4
.8

2
0
.9

2
 

-1
4
.8

2
-3

.2
8

-7
.3

9

172 



M
S

4
2

 
0
.9

0
 

-1
0
.3

9
2
2
.9

9
 

2
3
.9

1
 

2
2
.9

9
 

2
3
.9

1
 

9
.6

8
 

-1
.0

4
9
.6

8
 

-1
.0

4
3
.3

7
 

3
.6

9
 

M
S

4
3

 
-8

.3
8

-7
.1

6
2
1
.4

1
 

2
7
.1

3
 

2
1
.4

1
 

2
7
.1

3
 

3
.4

5
 

1
.1

2
 

3
.4

5
 

1
.1

2
 

-4
.2

0
2
.5

8
 

M
S

4
4

 
-8

.5
1

-1
5
.2

4
7
.8

9
 

8
.7

0
 

7
.8

9
 

8
.7

0
 

-0
.5

1
-7

.6
6

-0
.5

1
-7

.6
6

-6
.1

1
-4

.5
0

M
S

4
5

 
-3

.2
9

2
.1

2
 

1
2
.0

3
 

1
6
.3

5
 

1
2
.0

3
 

1
6
.3

5
 

4
.6

4
 

6
.4

6
 

4
.6

4
 

6
.4

6
 

0
.1

5
 

7
.0

8
 

M
S

4
6

 
-5

.8
4

5
.7

2
 

5
.4

6
 

1
1
.2

9
 

5
.4

6
 

1
1
.2

9
 

0
.1

7
 

7
.0

5
 

0
.1

7
 

7
.0

5
 

-2
.1

3
7
.0

9
 

M
S

4
7

 
-6

.4
9

8
.2

7
 

1
6
.5

4
 

2
5
.2

8
 

1
6
.5

4
 

2
5
.2

8
 

4
.5

5
 

1
2
.4

1
 

4
.5

5
 

1
2
.4

1
 

-0
.9

2
1
2
.1

4
 

M
S

4
8

 
-1

1
.9

0
1
2
.3

9
 

1
7
.7

1
 

3
0
.7

7
 

1
7
.7

1
 

3
0
.7

7
 

1
.7

6
 

1
5
.9

3
 

1
.7

6
 

1
5
.9

3
 

-4
.1

7
1
5
.0

9
 

T
ab

le
 A

. 
2
4
: 

F
IE

 (
%

) 
o
f 

M
u
lt

ia
x

ia
l 

E
n
d
u
ra

n
ce

 C
ri

te
ri

a 
fo

r 
B

en
d
in

g
-T

o
rs

io
n
 (

σ
-1

, 
τ -

1
) 

an
d
 A

x
ia

l/
B

en
d
in

g
 (

σ
-1

, 
σ

0
) 

C
al

ib
ra

ti
o
n
s 

an
d
 S

h
ea

r 

S
tr

es
s 

C
al

cu
la

ti
o
n
 M

et
h
o
d
s 

(M
C

C
 a

n
d
 M

R
H

) 
fo

r 
M

S
 E

x
p
er

im
en

ta
l 

D
at

a 
S

et
 –

 S
6
5
A

 

L
ab

el
 

C
R

O
S

S
 

F
IN

 
D

V
 

G
A

M
 

M
C

C
 

M
R

H
 

M
C

C
 

M
R

H
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

σ
-1

, 
τ -

1
 

σ
-1

, 
σ

0
 

M
S

4
9

 
-1

.1
5

-0
.9

3
7
.5

8
 

-1
.0

2
7
.5

8
 

-1
.0

2
4
.4

0
 

-0
.9

3
4
.4

0
 

-0
.9

3
4
.5

1
 

-0
.9

3

M
S

5
0

 
-0

.4
5

0
.0

0
 

1
8
.1

3
 

-0
.0

1
1
8
.1

3
 

-0
.0

1
1
0
.6

7
 

-0
.0

1
1
0
.6

7
 

-0
.0

1
1
0
.8

7
 

0
.0

0
 

M
S

5
1

 
-5

.8
2

-5
.8

2
6
.1

5
 

-0
.9

6
6
.1

5
 

-0
.9

6
-5

.8
3

-5
.8

3
-5

.8
3

-5
.8

3
-4

.0
5

-5
.0

3

M
S

5
2

 
-7

.4
1

-7
.4

1
1
6
.9

1
 

2
.4

4
 

1
6
.9

1
 

2
.4

4
 

-7
.4

1
-7

.4
1

-7
.4

1
-7

.4
1

-1
.2

7
-4

.6
7

173 



M
S

5
3

 
-0

.6
2

-0
.4

0
1
9
.6

6
 

4
.1

8
 

1
9
.6

6
 

4
.1

8
 

4
.9

3
 

-0
.5

0
4
.9

3
 

-0
.5

0
6
.2

8
 

0
.1

5
 

M
S

5
4

 
-0

.6
2

-0
.4

0
3
1
.6

7
 

9
.3

1
 

3
1
.6

7
 

9
.3

1
 

4
.9

3
 

-0
.4

1
4
.9

3
 

-0
.4

1
9
.6

2
 

1
.6

4
 

M
S

5
5

 
-1

1
.2

9
-1

0
.8

5
1
8
.4

2
 

-6
.0

0
1
8
.4

2
 

-6
.0

0
-0

.1
8

-1
0
.8

5
-0

.1
8

-1
0
.8

5
1
.0

5
 

-1
0
.3

9

M
S

5
6

 
-1

0
.7

7
-1

0
.3

2
3
0
.4

3
 

-0
.5

5
3
0
.4

3
 

-0
.5

5
0
.3

5
 

-1
0
.3

3
0
.3

5
 

-1
0
.3

3
4
.4

6
 

-8
.5

8

M
S

5
7

 
-1

1
.7

0
-1

1
.9

3
3
.2

3
 

5
.5

3
 

3
.2

3
 

5
.5

3
 

-6
.1

5
1
.0

2
 

-6
.1

5
1
.0

2
 

-9
.9

4
-8

.5
6

M
S

5
8

 
-1

5
.0

6
-1

5
.0

3
1
4
.8

8
 

4
.4

7
 

1
4
.8

8
 

4
.4

7
 

-3
.9

4
-3

.2
3

-3
.9

4
-3

.2
3

-9
.6

7
-1

3
.0

1

M
S

5
9

 
-1

3
.7

8
-1

4
.0

0
4
.9

0
 

3
.6

7
 

4
.9

0
 

3
.6

7
 

-8
.2

3
-1

.3
8

-8
.2

3
-1

.3
8

-6
.1

0
-8

.1
2

M
S

6
0

 
-1

5
.8

9
-1

5
.8

5
1
7
.4

7
 

4
.0

5
 

1
7
.4

7
 

4
.0

5
 

-4
.7

8
-4

.1
9

-4
.7

8
-4

.1
9

-5
.4

5
-1

1
.6

4

M
S

6
1

 
-1

2
.5

3
-1

2
.7

6
1
1
.4

1
 

5
.9

2
 

1
1
.4

1
 

5
.9

2
 

-6
.9

8
0
.0

6
 

-6
.9

8
0
.0

6
 

1
.3

6
 

-4
.0

3

M
S

6
2

 
-1

2
.5

6
-1

2
.5

4
2
5
.6

8
 

8
.7

1
 

2
5
.6

8
 

8
.7

1
 

-1
.4

4
-0

.3
6

-1
.4

4
-0

.3
6

3
.5

6
 

-5
.5

9

M
S

6
3

 
-1

.9
2

-1
.7

5
1
5
.3

8
 

3
.6

4
 

1
5
.3

8
 

3
.6

4
 

4
.8

3
 

1
.0

0
 

4
.8

3
 

1
.0

0
 

6
.6

0
 

0
.0

7
 

M
S

6
4

 
-0

.9
9

-0
.9

3
1
3
.2

9
 

7
.9

9
 

1
3
.2

9
 

7
.9

9
 

7
.4

6
 

7
.1

1
 

7
.4

6
 

7
.1

1
 

8
.1

0
 

2
.4

6
 

M
S

6
5

 
-2

.9
2

-3
.0

5
1
5
.8

9
 

1
3
.5

0
 

1
5
.8

9
 

1
3
.5

0
 

5
.1

2
 

9
.8

5
 

5
.1

2
 

9
.8

5
 

5
.7

0
 

2
.2

3
 

M
S

6
6

 
-1

0
.7

2
-1

0
.3

2
2
4
.5

8
 

-2
.2

9
2
4
.5

8
 

-2
.2

9
1
.4

2
 

-7
.9

8
1
.4

2
 

-7
.9

8
6
.4

7
 

-7
.2

4

M
S

6
7

 
-1

1
.8

6
-1

1
.5

6
1
6
.3

0
 

-3
.1

5
1
6
.3

0
 

-3
.1

5
1
.6

9
 

-4
.7

8
1
.6

9
 

-4
.7

8
5
.9

8
 

-7
.0

8

M
S

6
8

 
-1

9
.0

3
-1

8
.8

6
1
7
.3

6
 

-2
.3

1
1
7
.3

6
 

-2
.3

1
-5

.9
7

-8
.7

8
-5

.9
7

-8
.7

8
-1

.7
7

-1
3
.1

2

M
S

6
9

 
1
.9

5
 

2
.0

0
 

1
9
.5

9
 

1
3
.5

7
 

1
9
.5

9
 

1
3
.5

7
 

1
0
.4

9
 

1
0
.3

0
 

1
0
.4

9
 

1
0
.3

0
 

6
.5

7
 

3
.4

6
 

174 



M
S

7
0

 
-2

.7
8

-2
.9

5
1
0
.2

9
 

9
.1

6
 

1
0
.2

9
 

9
.1

6
 

0
.1

8
 

5
.2

9
 

0
.1

8
 

5
.2

9
 

3
.0

4
 

1
.5

5
 

M
S

7
1

 
-1

.1
5

-0
.9

3
7
.5

8
 

-1
.0

2
7
.5

8
 

-1
.0

2
4
.4

0
 

-0
.9

3
4
.4

0
 

-0
.9

3
4
.5

1
 

-0
.9

3

M
S

7
2

 
-0

.4
5

0
.0

0
 

1
8
.1

3
 

-0
.0

1
1
8
.1

3
 

-0
.0

1
1
0
.6

7
 

-0
.0

1
1
0
.6

7
 

-0
.0

1
1
0
.8

7
 

0
.0

0
 

M
S

7
3

 
-8

.5
5

-9
.0

4
-4

.4
9

6
.9

1
 

-4
.4

9
6
.9

1
 

-8
.5

7
5
.0

1
 

-8
.5

7
5
.0

1
 

-2
.3

0
-0

.7
1

M
S

7
4

 
-7

.3
0

-7
.8

0
2
.3

1
 

9
.1

5
 

2
.3

1
 

9
.1

5
 

-7
.3

2
6
.4

5
 

-7
.3

2
6
.4

5
 

5
.3

4
 

3
.4

6
 

175 




