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ABSTRACT

PREDICTION OF RENAL RESPIRATORY MOTION FOR
COMPENSATION DURING PERCUTANEOUS NEEDLE INSERTION IN

ROBOT ASSISTED SURGERY

Çetinkaya, Mehmet

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Aydan Müşerref Erkmen

September 2018, 132 pages

In this study, the aim is to design a respiratory motion prediction algorithm which

can be used to compensate for this physiological disturbance in medical operations

where respiration limits operation accuracy. For this purpose, a new Kalman filter

has been developed for tracking quasi-periodic signals approximated as finite Fourier

series. Instead of relying on approximations provided by Extended Kalman Filter

or Unscented Kalman Filter, our filter performs the exact calculation of the mean

and covariances of interest. Our results indicate that the theoretically derived mean

and covariance calculations result in either comparable or better estimation perfor-

mance in terms of convergence speed and output estimation error depending on the

circumstances. We then employ an expectation maximization algorithm to find the

maximum likelihood estimates of the process noise with known measurement noise

statistics. Coupled with this, the new filter is able to track the output despite breath-

ing irregularities. However, the degree of irregularity may cause divergence from the

assumed underlying model.
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ÖZ

ROBOT DESTEKLİ CERRAHİ İLE YAPILAN PERKÜTAN İĞNE
GİRİŞİMİ SIRASINDA SOLUNUM KAYNAKLI BÖBREK

HAREKELERİNİN KOMPANSE EDİLMESİ İÇİN KESTİRİLMESİ

Çetinkaya, Mehmet

Yüksek Lisans, Elektrik ve Elektronik Müh. Bölümü

Tez Yöneticisi : Prof. Dr. Aydan Müşerref Erkmen

Eylül 2018 , 132 sayfa

Bu çalışmanın amacı, hassasiyet gerektiren tıbbi operasyonlarda oluşabilecek solu-

num kaynaklı bozuklukları gidermede kullanılabilecek solunuma dayalı hareket kes-

tirim algoritmasının modellenmesidir. Bu amaçla, sonlu Fourier serisi yaklaşımı ya-

pılmış yarı periyodik sinyallerin takibi için yeni bir Kalman filtresi geliştirildi. Geliş-

tirdiğimiz filtre, Genişletilmiş Kalman veya Kokusuz Kalman Filtre’lerinin sağladığı

yaklaşık ortalama ve kovaryans değerlerini kullanmak yerine, bu değerleri tam ola-

rak hesaplamaktadır. Aldığımız sonuçlara göre, teorik olarak hesaplanan bu değerler

yakınsama hızı ve çıktı kestirim hatası bazında iyileşme sağlamaktadır. Süreç gürül-

tüsünün en çok olabilirlik kestirimi, bilinen bir ölçüm gürültüsü varsayımı ile beklenti

maksimizasyonu algoritması kullanılarak bulunmuştur. Oluşabilecek solunum düzen-

sizliklerine rağmen, bahsi geçen filtreleme yöntemi ve beklenti maksimizasyonunun

birlikte kullanımı ile çıktı kestirimi yapılabilmektedir. Fakat, düzensizliğin derecesi

varsayılan modelden ıraksamaya sebep olabilmektedir.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Humans and robots have complementary strengths in medical operations. When com-

pared to humans, robots have poorer judgment and less versatility in adapting to new

situations. Their limited dexterity and manipulator-eye coordination still restrict their

widespread usage. However, they can be used as assistant to a surgeon’s capabilities

as they are stable with repeatable moves and they are not prone to fatigue. More-

over, robot design allows different motion scales whereas humans have limited mo-

tion scale due to their presized end effectors. Furthermore, robots are immune to

radiation and infection that improves surgical safety. Robots can also provide more

consistent results as they have better geometric accuracy and they can integrate big

data from multiple sensors [12]. Within the balance of this thesis, we aim at assis-

tive biorobotics and focus on a situation where a robot is used to enhance surgeon’s

capabilities.

There are various sources of physiological disturbances that limit surgeon’s capabil-

ities in medical operations, the most significant ones being respiratory motion of the

patient, his/her heartbeat and tremor of the surgeon [13]. Examples to the operations

where respiratory motion can be a problem are, among others, cardiac interventions,

radiotherapy and minimally invasive procedures such as percutaneous access to kid-

neys. Heartbeat has a more local effect, only causing movements in the chest and

upper abdomen. Tremor, in contrary to the other two, originates not from the patient

but from the surgeon and it is the involuntary movement of the hand of the surgeon.

1



What these disturbances have in common is that they are quasi-periodic and that med-

ical operation accuracy can benefit greatly from the precise tracking of them.

To get a better idea of these quasi-periodic disturbances, a visualization of quasi-

periodic motion can be seen in Fig. 1.1.a which shows a regular breathing pattern.

Fig. 1.1.b shows a breathing pattern with intermittent stops, resulting in frequency

changes of the signal. 1.1.c is a signal with changing DC component and 1.1.d depicts

a signal with changing amplitude. Quasi-periodic movement of the heart, at a higher

frequency than the respiratory one, modulated with the respiratory motion is shown

in Fig. 1.1.e. Their overall combination is given in Fig. 1.1.f.

Figure 1.1: Patterns of breathing, (a) regular breathing, irregular breathing with (b)
changing frequency, (c) changing baseline, (d) changing amplitude, (e) cardiac mo-
tion modulated with respiratory motion and (f) combination of them, obtained from
[1]

To introduce an operation where respiration acts as a physiological disturbance, per-

cutaneous nephrolithotomy (PCNL) is a term used to describe the medical operation

of accessing the kidney using a needle inserted through the skin with the aim to ac-

cess, destroy and extract kidney stones. On a word by word basis, percutaneous,

nephro-, -litho- and -tomy mean through the skin, kidney, stone and removal, re-
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spectively. It is accepted as the standard procedure for the removal of stones with

a diameter larger than 2 cm, although other factors such as stone chemical compo-

sition and stone location in kidneys may make PCNL necessary. It is a minimally

invasive procedure, with reduced morbidity and recovery time when compared to its

open surgery counterpart. However, it still remains a challenging problem with ap-

proximately 11% of the surgeons performing PCNL achieve kidney access [14]. This

problem arises from the combined effect of the lack of skill of the surgeon, lack of

three dimensional information due to the limitations of two dimensional imaging - the

two dimensional fluoroscopy screen. This imaging procedure also exposes the patient

to levels of radiation higher than the limit one person should be exposed to within a

single year [14].

Respiratory motion causes problems during PCNL operations as well. Placement of

the needle needs an accuracy of 5 mm so that it can be punctured to the desired calyx

of the kidney, which are veinless regions of kidney that constitute a safe entry point.

When such operations are performed by hand, re-puncture is usually necessary as

hand driven error rates are high. Moreover, respiratory motion may cause movements

in the region of interest up to several centimeters, which is far more than the required

accuracy stated at the beginning of this paragraph. The usual approach in dealing with

respiratory motion is halting the respiration, but this cessation may not last longer than

25 seconds [15]. That is why, the operation is segmented into intervals of at most 25

seconds; which cause the operation to become inefficient, with prolonged operation

time and, thus, increased costs. Also, the respiration needs to be stopped at the same

point of respiratory cycle so that the target entry point is in the same point in space

at each cessation. This requirement is prone to error as it is "controlled manually by

the anesthesiologist" [15]. On top of this, being able to stop respiration requires the

usage of general anesthesia and mechanical ventilation. On the other hand, if we were

to predict and compensate for respiratory motion especially around the punctuation

area of the kidney as it is our aim in this thesis, this would enable the usage of local

anesthesia, thus decreasing operation time and patient morbidity.

3



1.2 Objectives and Goals

One of the key challenges during a robotic surgery is that instantaneous motion con-

trol of a mechanical device cannot be achieved. Data acquisition, its processing for

the determination of new robot position and mechanical actuation all add up to the

overall system latency as can be seen in Fig. 1.2. Current data acquisition systems are

relatively fast with a common approximate latency around 10 ms [2]. Data processing

for the determination of robot position is dependent on the computations used for mo-

tion prediction and inverse kinematics of the robot; general latency of data processing

in actual clinical systems can be accepted to be in the range of 1 ms to 20 ms [2]. The

last and the major source of latency comes from the robotic actuation, with common

approximate delays of 75 to 100 ms. In total, these add up to a latency of 100 to 150

ms that has to be compensated for by motion prediction [2].

The sources of latencies are not the only problem associated with respiratory motion

prediction. Patients show varying, irregular patterns of respiratory motion as was

shown in Fig. 1.1. Our objective in this study is to predict respiratory motion adap-

tively with patient acceptable clinical accuracies despite changing breathing patterns.

Figure 1.2: Sources of latencies obtained from [2]

1.3 Methodology

Prediction of respiratory motion is a well-studied subject with the earliest work dating

back to 1997 [1], with various model-free and model-based methods developed for

this task. One of the most widely used method is a sinusoidal model with slowly vary-

ing frequency and amplitude coefficients for tracking quasi-periodic signals, which

we intend to use in this work. Both an Extended Kalman Filter (EKF) and an Un-

scented Kalman Filter (UKF) have been studied for such a model. However, to the

best of our knowledge, only the first order EKF [16] has so far been examined and
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UKF [17] was used for a simple nonlinear system with a single harmonic. What is

more is that the underlying model used in both is the worse of the two possible alter-

natives: states are chosen such that the system is more nonlinear. Instead, we will use

an Exact Moment Matching KF (ExKF) for the tracking problem with a more suitable

state space representation that favors linearity more [18]. Both the UKF and EKF use

approximations for the calculation of mean and covariance after a random variable is

passed through the nonlinearity. In contrast, our filter calculates these parameters ex-

actly. By doing so, it is expected that ExKF should be as good as a Monte Carlo KF

using much less computational resources with higher accuracy than EKF and UKF

[19]. This higher accuracy can tackle the motion prediction problem better, which is

needed because of the latencies.

In contrast to previous Kalman filter implementations for tracking respiratory motion,

we will use a second KF for the adaptation of process noise covariances to improve

the accuracy of tracking. Manual tuning of process noise covariance is error prone

and process noise covariances are not stationary but may change during tracking due

to changing breathing patterns. For these reasons, automatic tuning is needed.

1.4 Contribution

The main contribution of this thesis is the development of an ExKF for tracking quasi-

periodic signals and show its superior performance when compared to the traditional

nonlinear KFs. Its novelty lies in the exact calculation of first two moments of the

nonlinear sinusoidal observation model. Although there were one other study for the

calculation of mean and covariance for a mapping such as sin θ, its derivation did not

allow the extension for non-scalar case. Different from their approach, we used the

linearity property of expectation and differentiation as well as the Moment Generating

Function of a Gaussian random vector for calculations. With such an approach, mean

and variance of signals in the form of a sin θ, for jointly Gaussian a and θ, are found

explicitly. This is subsequently extended for multi harmonic tracking.

ExKF is then shown to be better than the other two filters when the initial estimates

associated with the states are erroneous. Although all filters have comparable per-
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formances when the initial estimate in the current angle θ is exactly known, ExKF

outperforms the other two when this initial estimate is wrong. This is beneficial for

tracking a quasi-periodic motion as we do not know at which instant and phase we

start tracking the actual signal. Moreover, our filter converges faster than the other

two when the estimates of the current angle θ and amplitude coefficients are wrong.

Apart from convergence, it is shown that the newly developed filter is able to track

a quasi-periodic signal when covariance associated with either (i) the amplitude co-

efficient or (ii) the current angle is high. These imply that it should better be able to

track signals with (i) changing amplitude and (ii) changing frequency both of which

are observed in respiratory motion. These results clearly favor the usage of ExKF

over UKF and EKF.

Although the respiratory motion shows a wide variety of irregularities, Kalman fil-

tering has been done with manually tuned systems. Instead of manual tuning, an

expectation maximization (EM) algorithm will be used to iteratively find the maxi-

mum likelihood estimates of the process noise covariance. Inspired by the idea from

projected gradient descent, we perform a projection after each maximization to guide

the search for faster convergence. This also enables the covariance matrix to fit the

desired structure.

1.5 Outline of the Thesis

The outline of this thesis is as follows.

In chapter 2 a literature review is presented regarding the studies on respiratory mo-

tion. Specifically, respiratory motion and its mechanics are discussed, requirements

of robotic platforms for respiratory motion simulations are then presented. Existing

modeling algorithms are then briefly discussed.

Chapter 3 focuses on respiratory motion as a tracking problem. State space models

and equations needed for EKF and UKF are first presented. Existing KFs are then dis-

cussed along with the need for the development of an ExKF, followed by a derivation

of our filter. Next, an Expectation Maximization based identification of the process

noise covariance is presented.
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Chapter 4 compares all three Kalman filters in terms of state and output RMSEs using

simulation data, which is followed by the demonstration of the validity of the results

on a respiratory motion trace from a patient.

Chapter 5 evaluates the performance of the ExKF coupled with an EM algorithm

for tracking a simulated quasi-periodic signal as well as their performances on real

respiratory motion trace.

Chapter 6 lists our concluding remarks as well as possible future research directions.
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CHAPTER 2

LITERATURE SURVEY

Respiratory motion tracking requires prediction of respiratory motion due to unavoid-

able latencies of robotic platforms. Correlation, on the other hand, enables the pre-

diction of internal movement from externally placed markers. When these two are

coupled together, they enable the prediction of internal organ position with the ex-

ternally placed markers at a desired time horizon. In this work, we aim to tackle the

prediction problem.

We will begin by first introducing the respiratory motion mechanics and how this

dynamics change during general anesthesia for possible benefits in percutaneous op-

erations in Section 2.1. Section 2.2 surveys the range of kidney motion in order to

build up the background for requirements of a respiratory motion platform that should

be built in order to test the accuracy of the overall accuracy of the percutaneous access

system as a respiratory motion simulator, which is given in section 2.3. Section 2.4

gives the common evaluation metrics used in respiratory motion prediction. Section

2.5 introduces the Principle Component Analysis which is commonly used in for di-

mensionality reduction in respiratory motion prediction algorithms. Finally, section

2.6 presents some portion of the prediction algorithms that currently exist on literature

as well as our justifications as to why we opted not to use them.
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2.1 Respiratory Motion and Its Mechanics

2.1.1 Respiratory Motion Under Free Breathing

Breathing consists of two phases: inhalation (inspiration or breathing in) and exhala-

tion (expiration or breathing out). In mammals, inhalation is mainly accomplished by

the contraction of diaphragm, increasing thoracic (i.e. belonging to upper body) vol-

ume and, consequently, lung volume [3]. This increase is accompanied by a decrease

in lung pressure, allowing atmospheric air which is at a higher pressure to flow into

lungs. The opposite case occurs for exhalation.

To dig a little bit deeper as in [3], contraction of diaphragm straightens its parachute

shape (see Fig. 2.1) and expands lung volumes by pulling them downwards. This con-

traction, though inadvertently, causes mobility in both the upper body and abdominal

organs. The inhalation phase is also assisted by the external intercostal muscles (i.e.

muscles located at the outside of ribs), which contract and engender the elevation of

the rib cage, increasing lung volume by as much as 25% (see Appendix A for details)

comparable to 75% contribution of diaphragm activity. In addition to diaphragm and

intercostals, further muscles depicted in Fig. 2.1 are enacted for deep inhalation to al-

low greater thoracic expansion. These muscles are sternocleidomastoid muscles, the

scalene muscles and the pectoralis minor muscles elevating the sternum, first two ribs

and 3rd to 5th ribs, respectively. These are collectively termed as accessory muscles

since their contribution is negligible.

Exhalation, on the other hand, is usually a passive process. When both diaphragm and

intercostal muscles are relaxed (or released), diaphragm moves upwards and rib cage

moves inwards, both into their natural state due to their elasticity. Active expiration

occurs only in deep breathing, where internal intercostals are contracted to reduce

rib cage volume and several abdominal muscles are enacted to push the diaphragm

further up by compressing abdominal organs. These are all coordinated through the

respiratory center of the brain, which fires rhythmic impulses to enable the required

contractions. This center is also connected to the cerebral cortex that enables the

voluntary control of breathing.
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As the target group of our implementation consists of patients under anesthesia, the

next subsection is devoted to the description of changes that occur due to anesthesia.

Figure 2.1: Respiratory muscles assisting breathing, obtained from [3], p.937

2.1.2 Respiratory Motion Under Anesthesia

Respiratory cycle takes a different turn when anesthetic agents are used [20]. These

agents are used to relieve or suppress pain, and most of them affect the control of

breathing by suppressing the respiratory center. This suppression may be observed

even in sub-anesthetic concentrations and is generally a side effect.

Different areas of the brain are responsible for inhalation and exhalation, and these ar-

eas are affected by anesthesia differently. According to Pelosi et al. [20], "diaphragm

activity is fairly well preserved" in the inhalation phase of respiratory cycle, but the

contraction of external intercostal muscles is lost. In contrast, exhalation, which is

a passive process for awake patients under normal breathing, becomes active under

anesthesia. The reason for this activation is unknown but the result is the contraction

of internal intercostal muscles. It should be noted that not all of anesthetic agents

have these exact effects, but these are the general conclusions from the aforemen-

tioned source.
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What these imply for the problem at hand are as follows:

• Baseline shifts in respiratory motion are still possible even under general anes-

thesia due to active expiration.

• Range of abdominal organ motion is expected to increase due to preserved di-

aphragm activity while thoracic organ motion is expected to decrease due to

loss of intercostal muscle activity.

A more quantitative approach is presented in the next subsection.

2.1.3 Respiration Induced Motion: Range and Hysteresis

As was previously discussed in the introduction, sub-centimetric accuracy (0.5cm) is

needed for percutaneous access to kidneys while the respiratory motion is in great ex-

cess of this range. Here, we will present a survey on the range of respiratory induced

motion that kidneys undergo.

Rehder et al. [4] reported that general anesthesia where spontaneous breathing is al-

lowed or aided, reduces the percent rib cage contribution to total lung volume change

(termed as tidal volume) in a range of 11 − 34%. Consequently, the diaphragm con-

tribution is increased with the same percentage values. This is attributed to the pre-

viously discussed loss of intercostal activity during inhalation. What this suggests is

that chest wall motion is expected to decrease while abdominal one is expected to

increase due to the decrease in thoracic contribution to the total tidal volume.

Mechanical ventilation is an artificial ventilation where the spontaneous breathing is

replaced by an external machine. Under general anesthesia with complete mechanical

ventilation, percent rib cage contribution to tidal volume increases, making the chest

wall motion more prominent while diminishing the abdominal motion. This change is

attributed to different elasticity levels of the rib cage and diaphragm. These results are

depicted in Fig. 2.2 and offer benefits during abdominal laparoscopic surgeries such

as percutaneous renal access. The most important benefit would be the decrease in the

amplitude of abdominal motion that we are trying to eliminate. The second benefit of

mechanical ventilation would be the stabilization of breathing patterns; mechanical
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Figure 2.2: Changes in percentage of rib cage and diaphragm contribution to tidal
volume, obtained from [4], p.738

ventilation does not eliminate the irregularities but makes the respiratory motion more

predictable [21]. An example of this will be presented under the simulation chapter.

As a final remark, using anesthesia is not the only variable that is affecting the respi-

ratory motion. Although we accept the suggestion that the range of abdominal motion

decreases under general anesthesia with complete mechanical ventilation as correct,

there are other factors that may change the range of renal respiratory motion. Take,

for example, the inversely proportional respiratory motion and respiratory rate (fre-

quency) relationship. Sorensen et al. [22] reported that least respiratory movement

of a kidney stone occurred when the patient was anesthetized and had the highest

respiratory rate, completely agreeing with the benefit stated at the end of the previous

paragraph. Yet, highest respiratory motion occurred for a patient with the lowest res-

piratory rate, and this is reported to happen even under mechanical ventilation. There

were also awake, spontaneous breathers under the same study, which we would have

disregarded based only on the mechanical ventilation argument that "mechanical ven-

tilation decreases abdominal motion". Therefore, we should focus on the the whole

range of respiratory motion studies in the next section instead of focusing solely on

the ones for complete mechanical ventilation.
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2.2 Effect of Respiration on Kidney Motion

Any medical robotic platform should be thoroughly tested before using it on patients.

That is why a physical device on which one can test the developed algorithms is

needed. With this goal in mind, we will compile the studies on kidney respiratory

motion to find the requirements of a possible respiratory motion simulator. In the rest

of this thesis we will use the body directional terms that are generally accepted as

shown in Table 2.1 [3].

Table 2.1: Body Directions

Superior (cranial) Upwards or towards the head
Inferior (caudal) Downwards, or away from the head
Anterior Towards the front of the body
Posterior Towards the back of the body

Pham et al. [23], compiled the results of 25 publications (related to studies on ap-

proximately 450 patients) focusing on renal respiratory motion. A brief version of

the results are given in Table 2.2. First thing to be noted is that deep breathing causes

the largest amount of respiratory movement as expected. Next, in accordance with

the nature of the diaphragm movement, the greatest movement appears in Superior-

Inferior direction. Kidneys also move in Anterior-Posterior and Left-Right directions,

although the latter is negligibly small. NA’s in the last two lines indicate that those

measurements are not available.

Table 2.2: Kidney Motion Records

Direction Condition Mean (mm) Range [Min, Max] (mm)
Superior-Inferior Deep 18 [7, 86]
Superior-Inferior Free 10 [4, 35]
Anterior-Posterior Free 5 [NA]
Left-Right Free 2 [NA]

The only study we could find regarding the speed and acceleration of kidney respira-

tory motion is written by Davies et al. [24]. The measurements were taken both from

awake thoracic and abdominal breathers and are measured in superior-inferior direc-

tion. A summary of their measurements are given in Table 2.3. They observed that

greater amplitude of respiratory motion was observed for abdominal breathers; this

seems to suggest that mechanically ventilated patients, as in our case, would benefit
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from such a result. They have also recorded age, sex, weight for any trends regard-

ing these, but did not reach concluding remarks, suggesting further research on this

was needed. A recent study regarding the these variables [25] concluded that kidney

respiratory motion is "independent of age, sex, height or body weight"; that is, no

definite conclusion can be drawn by looking at these variables. Another conclusion

was that renal respiratory motion shows wide variations and it is necessary to evaluate

respiratory motion for each individual patient.

2.3 Respiratory Motion Simulator

In this section, we will use the information gathered in the previous one to build up the

requirements for a robotic platform which needs to be built to test the overall accuracy

of algorithms the medical robotic system uses. As we have no records gathered from

patients, we will use the following rudimentary algebraic manipulation for determin-

ing our own motion simulator: Maximum acceleration and velocity values given in

Table 2.3 will be scaled by maximum displacements given in both tables. This gives

internal motion simulation platform requirements as: capable of 86 mm displacement,

max(vTable 2.3)
max(dTable 2.2)
max(dTable 2.3)

= 91 mm/s velocity and max(aTable 2.3)
max(dTable 2.2)
max(dTable 2.3)

= 215

mm/s2 acceleration for simulating the motion in superior inferior direction. For the

anterior posterior direction using mean values and adding a safety margin of 50%,

those values are 8 mm, 6 mm/s and 12 mm/s2. Left-right displacement is negligibly

small but its requirements, if needed, are 3 mm, 2 mm/s and 5 mm/s2.

Table 2.3: Kidney Motion Records; Acceleration, Velocity and Displacement

Measurement Type Mean ± SD Min Max
Displacement (mm) 11 ± 4 5 16
Velocity (mm/s) 8 ± 2 5 17
Acceleration (mm/s2) 18 ± 8 8 40

An example of a motion simulator is given in Fig. 2.3. This simulator has been de-

veloped for testing the accuracy of CyberKnife with Synchrony (Accuray, Sunnyvale,

CA) [5], a robotic radiation delivery system for the treatment of tumors. It has two

independent parts: robotic platform given on the left hand side is what the authors

call the tumor motion simulator (TMS) to simulate the internal organ motion. It con-
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Figure 2.3: An example of respiratory motion simulator, adapted from [5]

sists of two linear slides, 1 and 2, for the movements in left-right and superior-inferior

direction, while the last one, 3, is a linear actuator in anterior-posterior direction. The

handle added to this third actuator should be made of nonmetallic materials so that X-

ray imaging techniques can also be tested without obstructing its scene. The second

robotic platform, skin motion simulator (SMS), merely consists of three linear slides

to simulate external motion. The reason for using two independent platforms is that

internal and external respiratory motion can be quite complex. Using two platforms

should be sufficient to generate any correlated motion between the two. This is not

the only solution available to simulate the respiratory motion (see, for example, com-

mercially available QUASAR™ Respiratory Motion Phantom [26]) but the group of

an SMS and TMS is a sufficient and easy to build solution. These platforms provide

a clue for our own motion simulator with the aforementioned requirements.

2.4 Evaluation Metrics

There are various performance evaluation metrics that can be used in evaluating the

accuracy of respiratory motion prediction algorithms, such as mean error, mean ab-

solute error and maximum absolute error. However, the most commonly used one

among them is Root Mean Square Error (RMSE) [21]. As its advantage over the oth-

ers, RMSE considers the whole error signal while putting more weigh on large errors.
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It is given as in Eq. (2.1), where yi is the true signal to be tracked, ŷi is the estimated

signal and N is the length of yi. Whatever underlying model we use to predict respi-

ration, this is the only metric that makes sense as it is the only variable that we can

measure. For example, we will use a state space model to predict respiration; yet, as

we have no access to the true underlying states, what we can get from the system is

the measured output and the only comparison we can make without any assumptions

is to use it for prediction accuracy.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2.1)

2.5 Principal Component Analysis

A common approach used in speeding up the estimation of external respiratory mo-

tion is using Principal Component Analysis (PCA) for dimensionality reduction [2].

PCA is an effective method for structuring data into bins such that the variance of

projected data is maximized. As the external respiratory motion is mainly one dimen-

sional, using PCA to find the motion in that dimension is beneficial for two reasons.

First, the number of data points needed to be processed decreases. Second, signal to

noise ratio in that dimension is maximized.

To give a short introduction sufficient for reducing the three dimensional respiratory

motion record into one, we will use the explanations given in [27], which is the intro-

ductory example of PCA. What we are seeking is a 3 dimensional vector u1 that con-

tains the maximum variance of a window of measurement sequence. As we are only

interested in the direction of u1 not its magnitude, we can arbitrarily set ||u1|| = 1.

Mean of the original data is given in 2.2c and mean of the projected data after the

translating the original data by an amount of its mean is 0. Its variance, which we

seek to maximize, is given in 2.2e. In order to maximize this variance with the con-

straint that ||u1|| = 1, a Lagrange multiplier can be introduced as in equation 2.2f. By

differentiating this w.r.t. u1 and equating the result to zero, the necessary condition

for extrema is given in equation 2.2g. This form of structure for u1 simply states that

u1 is the right eigenvector corresponding to the eigenvalue λ1 of S and maximizing
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this is equivalent to choosing the largest eigenvalue λ1 as well as its corresponding

eigenvector u1.

xi =
[
xi yi zi

]T
(2.2a)

xT = uT1 (xi − µx) (2.2b)

where

µx =
1

N

N∑
i=1

xi (2.2c)

S =
1

N

N∑
i=1

(xi − µx)(xi − µx)T (2.2d)

ST =
1

N

N∑
i=1

(uT1 xi − uT1µx)2 = uT1Su1 (2.2e)

uT1Su1 + λ1(1− uT1u1) (2.2f)

Su1 = λ1u1 (2.2g)

For respiratory motion tracking, the authors suggest that [2] at least five cycles of

respiration to be used in calculating µx and uT1 . We will use their suggestion without

any modifications.

2.6 Respiratory Motion Prediction Algorithms

As it was stated in the first chapter, respiratory motion prediction is a well studied

subject, several outstanding studies can be seen in Fig. 2.4. The algorithms are

classified into three parts: model-based and model-free methods as well as the hybrid

methods that use the combination of them. We will briefly discuss some of them as

well as their shortcomings in the following sections.

2.6.1 Model Based Methods

One of the most frequently cited respiratory motion algorithm is called "Adaptive

& Sinusoidal" model and it first fits a sinusoidal model given in equation 2.3 to a
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Figure 2.4: Respiratory motion prediction algorithms, obtained from [6]

signal history of chosen length. Then it uses the current measurement and updates it

according to the difference provided by the fitted sinusoidal model. This method has

two shortcomings. According to the authors, one of them is that it does not cope well

against latencies larger than 200 ms. The second one is that this model is based on

a single harmonic and respiratory motion is clearly not such a signal. Its extension

into multiple harmonic case is straight forward, which we will introduce in the next

chapter when we give the state space model of filtering equations, but will give our

criticism then.

xfitted(tn) = A sin(Btn + C) +D (2.3)

xpred(tn + ∆) = xmeasured(tn) + (xfitted(tn + ∆)− xfitted(tn)) (2.4)

Another previous attempt uses a similar, multiharmonic sinusoidal model what they

term as a "weighted-frequency Fourier linear combiner" [15]. They use a cascaded

gradient descent approach for finding Fourier series coefficients and angular speed of

the signal given in 2.5. The outer loop performs the frequency adaptation with a lower

gain (consequently, with a lower speed) and the inner one performs the coefficient

adaptation with a larger gain (consequently, with a larger speed). However, their

approach does not take into account the noise associated with the measurements.
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This is clearly apparent from their suggestion that a model order of M=2 or M=3

is suggested as higher order coefficients are likely to adapt to noise instead of the

underlying signal.

xfitted(t) =
M∑
k=1

(
ak cos(tnω) + bk sin(tnω)

)
(2.5)

Work conducted by Vedam et al. [28] approaches the tracking of respiratory motion

as a Finite State Model in which they introduce discrete states with constant velocities

to model inhale, exhale and end-of-exhale states of respiration which can be seen in

Fig. 2.5. Their original work was a deterministic model where transitions are deter-

mined from current the speed estimated from the current and last measurement as well

as time it takes from the last state transition. They have extended it to a probabilistic

model using Hidden Markov Models where state transitions are determined proba-

bilistically where state transition probabilities are determined from these variables.

However, even this extension did not allow thier model to become "good enough".

More specifically, even with a prediction horizon of 200 ms, their prediction errors

exceeded the defined threshold value of 2.5 mm 80% of the time, with clear lags in

the predicted signal.

Figure 2.5: Finite state model of respiration, obtained from [6]

One last respiration model, "Vector based model" or more specifically more with

significant citations is introduced by Low et al. [7]. It uses the total amount of air

-the tidal volume- as well as the current flow to capture the hysteresis observed in

internal organs. Total amount of air captures the linear part of motion observed using

the vector −→rv as can be seen in Fig. 2.6, where v is the tidal volume and α & r̂v are
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the parameters to be found. Similarly, hysteresis is captured by −→rf where f is the

patient’s airflow and β & r̂f are the parameters to be found. By separating the model

into inhale and exhale through f , this model is able to capture the hysteresis between

the two modes of respiration. However, even though it was shown to be one of the

most cited respiratory motion models, it does not fit the purposes of prediction. This

model better suits a correlation model between internal and external sensors.

Figure 2.6: Vector based model of respiration, obtained from [7]

2.6.2 Model Free Methods

The most prominent model free method is Adaptive Neural Network (ANN) as can

be seen in Fig. 2.4 [6]. The most general structure of a two-layered NN can be seen

in Fig. 2.7. Inputs given to the system are the measured position over a training

window ni while the outputs are the future positions with desired prediction horizon.

The idea behind the NN is simple: pass the desired inputs as well as hidden layers

from a nonlinear activation function, their choice being the most commonly used

sigmoid function (f(x) = 1
1+e−x

), and learn the weights (wij, wjk) that connect the

layers. We won’t be using this method for two reasons. The first reason is that

their justification of using a NN is "highly irregular breathing patterns are difficult or

impossible to model bio-mechanically", which should not happen under mechanical

ventilation. The second reason, on the other hand, is that the boundaries of what a

NN has learned may not be known clearly as they are black box models.

Another recent respiratory motion model is developed by using Gaussian process re-

gression models [21]. The idea is to fit a "kernel function", an example of which
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Figure 2.7: Two-layered NN architecture for respiratory motion prediction, obtained
from [6]

is given in equation 2.6, and try to find the hyperparameters that relate the L2-norm

distance r to the correlations of observed data points. This L2-norm difference corre-

sponds to differences in observation times as far as time-series tracking is concerned.

Quasi-periodic kernel function given in equation 2.6 is a natural choice for respiratory

motion tracking problem. The hyperparameter θp captures the periodic nature/corre-

lation of respiratory motion while the hyperparameter θl captures the inter-period

variations by allowing less correlation and higher forgetting factor between each pe-

riod (θs is a parameter that captures just the information related to the variance of

the output). Although it is a good fit for respiratory tracking problem the problem

associated with this method is its computational burden. The training time to find the

parameters of interest is at the order of minutes as our initial attempts and authors’

later publications reveal, which is in great excess of real-time tracking requirements.

That is, sampling period of most external markers is in the range of 25−100 millisec-

onds and the model we trained should have a shorter training time than this sampling

period. That is the main problem with such machine learning algorithms, Support

Vector Regression and Relevance Vector Machines being some examples of them.

They are not fit for real-time tracking as their training times are higher than sensor

sampling periods, making their usage in real time tracking implausible if retraining is

often needed.

kQP = θ2
S exp

(
− r2

2θ2
L

)
exp

(
−sin2[(2π/θp)r]

2

)
(2.6)
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CHAPTER 3

PROPOSED METHODOLOGY

In this section, we will introduce the overall structure of our filtering problem, which

can be seen in Fig. 3.1. Principal Component Analysis is used to reduce the 3-

dimensional quasi-periodic signal (xi, yi, zi) obtained from the sensor to 1D quasi-

periodic signal (yk) as external respiratory motion is mainly 1D. Subscript is changed

with the only purpose of consistency within this chapter. Exact Moment Matching

Kalman Filter (ExKF), or the other filters, will use this linearly projected measure-

ment to find the the updated state estimates x̂k|k as well as the next measurement ŷk+1

and state prediction x̂k+1|k. The tuning block will use these updated estimates as well

as their predictions to find the Kalman process noise Qk. PCA was already intro-

duced in the previous chapter. The state space model will be introduced in section

3.1.1, followed by the literature research on nonlinear Kalman filters in section 3.1.3.

Then we will introduce our ExKF in section 3.2 as well as an EM algorithm tuned for

our needs in section 3.3.

3.1 Mathematical Background

3.1.1 State Space Representation

In this section state space (SS) representation of the filtering problem will be de-

rived. SS representation will be obtained in first continuous time and subsequently

discretized; this approach will allow a computationally efficient multi-step prediction

by eliminating the need for recursive estimation which is needed when only discrete

model is used. Multi-step prediction is needed for respiratory motion tracking as
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PCA ExKF

Kalman Filter
Tuning

xi, yi, zi yk x̂k|k, x̂k+1|k, ŷk+1

Q̂kQ̂k

Figure 3.1: Block diagram of the proposed method

the latencies associated with sensors, processing their data and robotic actuation may

exceed the estimation horizon provided by a single step predictor such as a Kalman

filter.

The previous section and the section 1.1 have introduced the characteristics of the res-

piratory motion as a quasi-periodic signal. This quasi-periodic signal to be tracked is

given by equation (3.1a) (in rectangular coordinates) or (3.1b) (in polar coordinates),

where w0 is the slowly changing fundamental frequency (the breathing frequency),

a0 (r0) is the DC component of the signal (capturing the baseline shifts in Fig. 1.1.c),

m is the order of Fourier series representation, ai & bi’s (ri’s) are the respective am-

plitude coefficients and v(t) is assumed to be additive white Gaussian noise with

statistical properties given in equations (3.1c) and (3.1d).

y(t) = a0(t) +
m∑
i=1

(
ai(t) cos(iw0(t)t) + bi sin(iw0(t)t)

)
+ v(t) (3.1a)

= r0(t) +
m∑
i=1

(
ri sin(iw0(t)t+ φi(t))

)
+ v(t) (3.1b)

where

E{v(t)} = 0 (3.1c)

E{v(t1)v(t2)} =

σ
2
v if t1 = t2

0 otherwise
(3.1d)
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There are two options for the state space representation of the above system: either

use a nonlinear state transition matrix and make the measurement equation linear or

use a linear state transition matrix with a nonlinear measurement model. Gustafsson

(p. 323 of [29]) stated that linear time invariant system assumption is needed to have

an exact discrete time (DT) state noise propagation; that is the reason why we will

be adapting the latter. Having an exact DT noise propagation also enables us making

multi step prediction more efficiently. That is, if we were to perform a multi step

prediction of respiratory motion, we can do this in one state transition step, instead

of repetitively performing the state propagation equations. This is in accordance with

the aforementioned efficient multi-step prediction requirement.

Then, the choice for SS model boils down to whether to use the rectangular model

in equation (3.1a) or polar model in (3.1b). To put the above equations into a more

compact form, we make the following changes as was done in [30]. Different from

their derivation is performing these steps in continuous time (CT) rather than DT

similar to the approach of sine wave tracking problem presented in [31], where the

authors tracked only a single sine wave. Note that b1 in the rectangular form equation

(3.2b) is intentionally set to zero as this information can be captured by a1 and θ(t);

thus, it is logical to eliminate the redundant state b1 [30]. Secondly, the two forms

seem to be identically equivalent when the underlying dynamics are deterministic

with a simple change of variables. However, degree of nonlinearities involved in each

model differs a lot, and that is expected to have an effect on the filtering performance.

θ̇(t) = ω0(t) and ω̇0(t) = wω(t) (3.2a)

y(t) = a0(t) + a1(t) cos(θ(t)) +
m∑
i=2

(
ai(t) cos(iθ(t)) + bi(t) sin(iθ(t))

)
+ v(t)

(3.2b)

y(t) = r0(t) +
m∑
i=1

(
ri sin(iθ(t) + φi(t))

)
+ v(t) (3.2c)

Parker et al. [30] stated that tracking in rectangular coordinates has a superior per-

formance to that in polar coordinates in radar tracking applications, without any ref-

erences but with an appreciation of their colleagues for pointing this out. Yet, their
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assertions seems reasonable when you consider that m + 1 states in equation (3.2c)

pass through a severe nonlinearity of a sine function while only one state is passed

through that nonlinearity in rectangular coordinate form. This was demonstrated to

be the case for tracking quasi-periodic signals, where Kim and McNames [18] have

compared the performance of an Extended Kalman Smoother for tremor amplitude

and frequency tracking. They showed that using rectangular form yields faster fre-

quency tracking convergence and lower NMSE (Normalized Mean Square Error) than

its polar counterpart. That is why we choose the model in equation 3.2b as the respi-

ratory motion is a quasi-periodic signal like tremor. With these choices, the SS model

then becomes as in equations (3.3a) - (3.3c), where w ∈ R2m+1 is zero-mean process

noise vector with covariance matrixQc = E(wwT ) ∈ R(2m+1)×(2m+1).

x(t) =
[
a0(t) a1(t) . . . am(t) b2(t) . . . bm(t) θ(t) ω(t)

]T
(3.3a)

ẋ =


02m×2m 02m×2

02×2m

0 1

0 0


︸ ︷︷ ︸

,Fc

x+


I2m×2m 02m×1

02×2m

0

1


︸ ︷︷ ︸

,Gc

w (3.3b)

y(t) = a0 + a1 cos(θ(t)) +
m∑
i=2

(
ai cos(iθ(t)) + bi sin(iθ(t))

)
︸ ︷︷ ︸

,h(x(t))

+v(t) (3.3c)

In the formulation above, rate of change in amplitude coefficients is modeled as

Wiener processes; thus they behave as Brownian or random walk models (ȧi = σ2
ai

etc.). Phase of the system, on the other hand, is modeled as a constant velocity model

where the angular velocity is under random walk (θ̇ = ω and ω̇ = σ2
w). Using equa-

tion 4.90 of [32], state transition matrix Φ(t1, t2) of the above system can be obtained

as in equation (3.4). While proceeding to the second line, nice structure of Fc allowed

us to eliminate higher order terms. Discrete state transition matrix and discretized

process noise covariance (using equation 4.112 of [32]) are given in equations (3.5)

and (3.6), respectively, where Ts is the sampling period andQab and qω are the block
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diagonal entries ofQc.

Φ(t1, t2) = Φ(t1 − t2) = e
∫ t2
t1
Fcdt = eFc(t1−t2) =

∞∑
n=0

F n
c (t1 − t2)n

n!

= I + Fc(t1 − t2) =


I2m×2m 02m×2

02×2m

1 t1 − t2
0 1


(3.4)

Fk = Φ(Ts) =


I2m×2m 02m×2

02×2m

1 Ts

0 1

 (3.5)

Qk =

∫ Ts

0

Φ(Ts − τ)GcQcG
T
c Φ(Ts − τ)Tdτ

=

∫ Ts

0

Φ(Ts − τ)


I 0

0
0

1


 Qab 0

0 qw

I 0

0 0 1

Φ(Ts − τ)Tdτ

=

∫ Ts

0


I 0

0
1 Ts − τ
0 1



Qab 0

0
0 0

0 qw



I 0

0
1 0

Ts − τ 1

 dτ

=

∫ Ts

0


Qab 0

0
(Ts − τ)2qw (Ts − τ)qw

(Ts − τ)qw qw

 dτ

=


QabTs 0

0
qwT

3
s /3 qwT

2
s /2

qwT
2
s /2 qwTs



(3.6)
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Overall state space equations in DT are listed below.

xk+1 =


I2m×2m 02m×2

02×2m

1 Ts

0 1

xk + wk (3.7a)

yk = h(xk) + v(k) = a0,k + a1,k cos(θk)

+
m∑
i=2

(
ai,k cos(iθk) + bi,k sin(iθk)

)
+ vk (3.7b)

where

xk =
[
a0,k a1,k . . . am,k b2,k . . . bm,k θk ωk

]T
∈ R(2m+2) (3.7c)

Qk =


QabTs 0

0
qwT

3
s /3 qwT

2
s /2

qwT
2
s /2 qwTs

 ∈ R(2m+2)×(2m+2)

Qab = E
{

(A− µA)(A− µA)T
}

forA =
[
a0 a1 . . . am b1 . . . bm

]T
vk ∼ N (0;σ2

v) and wk ∼ N (0;Qk)

(3.7d)

3.1.2 Bayesian Filtering

In this section a brief introduction introduction to Bayesian filtering will be provided.

Interested readers are advised to read [33] and [34] for further details. In the remain-

der of this chapter, states and measurements are as given in equations (3.7a)-(3.7d).

Now, consider the following discrete time system from [34]. Most of the following

explanations can be traced back to this source.

xk+1 = fk(xk,wk) (3.8a)

yk = hk(xk,vk) (3.8b)
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where Eq. (3.8a) is the process or dynamic model, xk ∈ Rnx is the state vector of

order nx at time k, fk is the state transition function, wk is the process noise, Eq.

(3.8b) is the measurement or observation model, vk is the measurement noise and

yk ∈ Rny is the measurement vector at time k. The goal is to obtain the following

conditional densities: state transition density in Eq. (3.9a) and measurement model

density in Eq. 3.9b.

xk+1 ∼ p(xk+1|x0:k,y1:k) = p(xk+1|x0:k) (3.9a)

yk ∼ p(yk|x0:k,y1:k−1) = p(yk|xk) (3.9b)

Our goal then becomes obtaining a recursive calculation of the estimation problem.

Let Yk = {y1,y2, . . . ,yk} be the sequence of measurements. Then, using the pre-

vious conditional independence rules as well as applications of Bayes’ rule and total

probability theorem, one can obtain the following distributions. This conditional in-

dependence is acceptable in our problem as the state dynamics govern the evolution

of states, no matter what the measurement we get from them. That is why, the next

state p(xk+1) is independent from the measurement Yk once we know the value of

p(xk).

Prediction or Time Update:

p(xk+1|Yk) =

∫
p(xk+1,xk|Yk)dxk

=

∫
p(xk+1|xk,Yk)p(xk|Yk)dxk (3.10a)

=

∫
p(xk+1|xk)p(xk|Yk)dxk
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Filtering or Measurement Update:

p(xk|Yk) =
p(xk,yk|Yk−1)

p(yk|Yk−1)
=

Likelihood︷ ︸︸ ︷
p(yk|xk)

Prior︷ ︸︸ ︷
p(xk|Yk−1)∫

p(yk|xk)p(xk|Yk−1)dxk︸ ︷︷ ︸
Normalization Constant

(3.10b)

Obtaining the distributions given in equations (3.10a) and (3.10b) is the key point in

Bayesian filtering method. However, it is almost impossible to get those exact PDFs

as analytical expressions except under very limited circumstances [34]. This happens

to be the case for us as well; that is why we will be using Kalman filters to approxi-

mate those integrals. Also, marginalization integral in Eq. (3.10b) is often intractable.

For linear systems with additive Gaussian noise, these can be solved optimally with

some additional milder constraints such as the requirement of observability. Other

methods such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF)

or any other nonlinear Kalman filtering scheme approximate these densities with the

joint Gaussian assumption. Provided that the nonlinearities involved are mild and

the process and measurement noise is not too far from Gaussian, such filters may be

promising candidates to the filtering problem [34]. Stating from the same source,

given an exact mean and covariance for any distribution, Gaussian density assump-

tion can be justified to be useful because the Gaussian density is the maximum entropy

distribution with that mean and covariance.

3.1.2.1 Kalman Filter

A special case when the above likelihood has an exact, recursive solution is when the

traditional Kalman Filter (KF) is applicable [35]. Its recursive nature makes the KF a

great online estimation algorithm thanks to its low computational burden; this burden

can be further improved for LTI systems by allowing calculation of the Kalman gain

offline [36]. KF is an optimal (in minimum mean square error sense) and a consistent

filter provided that the following conditions are met.

• State transition (fk(xk,wk)) and measurement (gk(xk,vk)) functions are lin-
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ear.

• Process noise and measurement noise are additive.

• Process noise wk and measurement noise vk as well as the distribution of the

initial estimate are Gaussian of known statistical properties with the usual as-

sumption of zero-mean and independent noise components.

When the above assumptions are valid, Kalman Filter equations can be summarized

as in Table 3.1 [36].

Table 3.1: Standard Kalman Filter Algorithm

State Space Model:

xk+1 = Fkxk +wk (3.11a)

yk = Hkxk + vk (3.11b)

Initialization:

E
{
x0|−1

}
, x̂0 = E {x0} (3.12a)

P0|−1 , P0 = E
{

(x0 − x̂0)(x0 − x̂0)T
}

(3.12b)

Prediction or Time Update: (A priori state and its covariance estimate)

x̂k+1|k = Fkx̂k|k (3.13a)

Pk+1|k = FkPk|kF
T
k +Qk (3.13b)

Kalman Gain:

Kk+1 = Pk+1|kH
T
k (HkPk+1|kH

T
k +Rk+1)−1︸ ︷︷ ︸

cov(yk+1|k)−1

(3.14)
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Filtering or Measurement Update: (A posteriori state and its covariance estimate)

x̂k+1|k+1 = x̂k+1|k +Kk+1 (yk+1 −Hkx̂k+1|k︸ ︷︷ ︸
ŷk+1|k

)

︸ ︷︷ ︸
Innovation

(3.15a)

Pk+1|k+1 = (I −Kk+1Hk)Pk+1|k (3.15b)

Assumptions:

x0 ∼ N (x̂0;P0) (3.16a)

wk
i.i.d.∼ N (0;Qk) (3.16b)

vk
i.i.d.∼ N (0;Rk) (3.16c)

With the Gaussianity assumptions given in equations (3.16a)-(3.16c), prediction and

measurement update distributions are Gaussian and given as follows.

p(xk+1|yk) = N (xk+1; x̂k+1|k,Pk+1|k) (3.17a)

p(xk|yk) = N (xk; x̂k|k,Pk|k) (3.17b)

where

p(x;µx,Px) =
1√

(2π)n|Px|
e−

1
2

(x−µx)TP−1
x (x−µx) (3.17c)

When the measurement noise given in Eq. (3.14) is considerably higher than the

process noise, Kalman gain will have small eigenvalues. This, in turn, will result in

filtered estimates to depend more on process dynamics than on measurement values.

Conversely, when the measurement noise is much lower than process noise, Kalman

gain will be high, resulting in the filtered estimates to be more dependant on the

measured values than the process dynamics.

The key point in designing a KF lies in the determination of process and measurement

noise parameters, which collectively can be termed as KF tuning. That is why it is
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important to note the effects of overestimating and underestimating both of these

parameters. Collecting the results of demonstrations given in [37] for a single target

tracking case, effects of wrong KF tuning are as follows. Underestimating process

noise and, equivalently, overestimating measurement noise result in time correlated

innovation sequence ek , yk − ŷk. That is because the measurements are not given

proper importance and estimated states cannot catch up with the real ones. Another

observation is that ek falls too frequently outside the 2σ bounds, which should not

happen more frequently than 5% of the time. The converse case, on the other hand,

causes ek to rarely leave the 2σ bounds with no apparent time correlation. One last

thing to note about these observations is overestimating the process noise is equivalent

to underestimating measurement noise; this was proved in [38] for a general Extended

Kalman Filter (EKF) and demonstrated in [39] that it is the ratio of process noise

to measurement noise that determines the Kalman gain and, hence, its convergence

properties. As the linear KF is a special case of the EKF, it is natural to assume that

these properties would be applicable.

3.1.3 Nonlinear Kalman Filters

Standard Kalman filter given in the previous section requires both the system and the

measurement functions to be linear, which is rarely the case in most of the practi-

cal systems [36]. Its extensions into nonlinear filtering are sub-optimal algorithms

that try to approximate the posterior distribution by a Gaussian one using different

approximations, several ones of which are discussed below.

3.1.3.1 Extended Kalman Filter

Extended Kalman Filter (EKF) is the most widely used approximation in nonlinear

Kalman filtering [36]. It is based on the approximation of the nonlinear function

based on its Taylor series expansion. The most commonly used EKF is based on the

linearization of the nonlinear function about the mean of the current estimate, and

propagate mean and covariance according to the linearized dynamics as in a regular

KF. This is sometimes referred as a first order EKF. Depending on the severity of
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the nonlinearity involved, one may have to adopt to the its extension, a second order

EKF, for a better approximation of the transformed variable at the cost of increased

computational complexity. In the light of our problem, even the simulated results

with a second order quasi-periodic signal shows EKF1 to be insufficient while EKF2

fails with the increased model order of 5.

Below, a second order EKF where both the process and measurement noises are addi-

tive introduced, starting with some notational conventions. First, define the following

Jacobian matrices for a scalar function f : Rn 7→ R and for a vector-valued function

f : Rn 7→ Rm w.r.t. a vector x ∈ Rn. Hessian given in Eq. (3.18c) can be readily

obtained by using the equations given below.

∇xf(x) =
∂f(x)

∂x
=



∂f(x)

∂x1
∂f(x)

∂x2...
∂f(x)

∂xn


∈ Rn (3.18a)

f ′(x) , ∇xf =
∂f

∂x
=

[
∂f1

∂x

∂f2

∂x
. . .

∂fm
∂x

]
∈ Rm×n (3.18b)

f ′′(x) , ∇2
xf =

∂2f

∂x∂xT
=



∂2f

∂x1∂x1

∂2f

∂x1∂x2

. . .
∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x2∂x2

. . .
∂2f

∂x2∂xn
...

... . . . ...

∂2f

∂xn∂x1

∂2f

∂xn∂x2

. . .
∂2f

∂xn∂xn


(3.18c)

For x ∼ N (µx;Px), the idea is to approximate the posterior density after using

the Taylor series expansion of f(x) around the current mean µx perturbed with the

covariance Px. Using the results and notation in [19], the following is the Taylor

series approximation of the output. Let the notation [ai]i denote a vector a whose ith
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element is ai. Similarly, [Aij]ij denotes a matrixA whose (i, j)th element is Aij .

y = f(x) ∼= f(µx) + f ′(µx)(x− µx)

+
1

2


(x− µx)Tf ′′1 (µx)(x− µx)
(x− µx)Tf ′′2 (µx)(x− µx)

...

(x− µx)Tf ′′m(µx)(x− µx)


︸ ︷︷ ︸

,[(x−µx)T f ′′i (µx)(x−µx)]i

+O(||x− µx||3) (3.19)

Using the terms up to the second order of this expansion, the mean and covariance

of y can be approximated as shown in equations (3.20c) and (3.20d), respectively.

Using the terms up to first order results in dropping the Hessian terms, and mean &

covariance approximations are also shown below for the sake of completeness. For

a complete derivation, see equations (5a) to (11b) of [19]. TT1 (Taylor transforma-

tion 1) and TT2 (Taylor transformation 2) are abbreviations that the authors used to

represent which order of Taylor approximation is used for statistical property trans-

formations. After this approximation, most of the calculations of second order EKF

can be obtained in a straightforward manner as shown in Table 3.2, where both the

process and the measurement noises are assumed to be additive.

TT1:

µy = f(µx) (3.20a)

Σy = f ′(µx)Σx(f
′(µx))

T (3.20b)

TT2:

µy = f(µx) +
1

2
[tr(f ′′i (µx)Σx)]i (3.20c)

Σy = f ′(µx)Σx(f
′(µx))

T +
1

2

[
tr
(
f ′′i (µx)Σxf

′′
j (µx)Σx

)]
ij

(3.20d)
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where

y = f(x) and x ∼ N (µx; Σx) =⇒ y
approx∼ N (µy,Σy) (3.20e)

Using higher order terms would result in better mean and covariance estimates; how-

ever, in general, it is difficult to obtain even the Hessian matrix let alone the higher or-

der derivatives. On top of that, such a computationally expensive approach may make

the tracking problem inexecutable in real time. One last thing to note here is that

process and measurement noises are additive in equations (3.24b) and (3.25b) when

their covariance matrices are sufficiently larger than the effect of the addition of Hes-

sian based terms (more strictly speaking, when Qk has much larger eigenvalues than
1
2

tr(.) term in equation (3.24b), and similarly for Rk) even the standard first order

EKF would have a comparable performance to its higher counterparts [19]. Hence,

in short, when the noise term dominates the time or measurement update covariance

terms, even the first order EKF may provide sufficiently well approximations. This is

the very same reason that a third order EKF may not compensate for its computational

burden with increased accuracy and it is not advised to go further than this order of

approximation.

For our system, Jacobian and Hessian calculations are given below. Their calculation

is straightforward by the application of Jacobian and Hessian definitions in equations

(3.18a) and (3.18c) to our measurement model given in equation (3.7b).

h′(x) = ∇xh =



1

cos θ

cos 2θ
...

cosmθ

sin 2θ
...

sinmθ∑m
i=1(−iai sin iθ) +

∑m
i=2(ibi cos iθ)

0


(3.21a)
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h′′(x) =



0

∂2h
∂a0∂θ

∂2h
∂a1∂θ

...

∂2h
∂bm∂θ

0

∂2h
∂a0∂θ

∂2h
∂a1∂θ

. . . ∂2h
∂bm∂θ

∂2h
∂2θ

0

0 0 0


(3.21b)

=



0

0

− sin θ

−2 sin 2θ
...

−m sinmθ

2 cos 2θ
...

m cosmθ

0

0 − sin θ −2 sin 2θ . . . m cosmθ h1(θ) 0

0 0 0



(3.21c)

where

h1(θ) = −
m∑
i=1

(i2ai cos iθ)−
m∑
i=2

(i2bi sin iθ) (3.21d)

Finally, note that state transition dynamics are linear in our system, that is f(x) =

Fx. Therefore, f ′(x) = F and f ′′(x) = 0 which reduces the second order EKF

equations to those of a linear KF.

Table 3.2: Second Order Extended Kalman Filter Algorithm

State Space Model:

xk+1 = fk(xk) +wk (3.22a)

yk = hk(xk) + vk (3.22b)
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Initialization:

E
{
x0|−1

}
, x̂0 = E {x0} (3.23a)

Σ0|−1 , Σ0 = E
{

(x0 − x̂0)(x0 − x̂0)T
}

(3.23b)

Prediction or Time Update: (A priori state and its covariance estimate)

x̂k+1|k = fk(x̂k|k) +
1

2
[tr(f ′′k,i(x̂k|k)Σk|k)]i (3.24a)

Σk+1|k = f ′k(x̂k|k)Σk|k(f
′
k(x̂k|k))

T

+
1

2

[
tr
(
f ′′k,i(x̂k|k)Σk|kf

′′
k,j(x̂k|k)Σk|k

)]
ij

+Qk (3.24b)

Kalman Gain:

ŷk+1|k = hk+1(xk+1|k) +
1

2
[tr(h′′k+1,iΣk+1|k)] (3.25a)

Σyk+1|k = h′k+1(x̂k+1|k)Σk+1|k(h
′
k+1(x̂k+1|k))

T

+
1

2

[
tr
(
h′′k+1,i(x̂k+1|k)Σk+1|kh

′′
k+1,j(x̂k+1|k)Σk+1|k

)]
+Rk+1 (3.25b)

Kk+1 = Σk+1|k(h
′
k+1)T (xk+1|k)Σ

−1
yk+1|k

(3.25c)

Filtering or Measurement Update: (A posteriori state and its covariance estimate)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1) (3.26a)

Σk+1|k+1 = (I −Kk+1h
′
k+1(x̂k+1|k))Σk+1|k (3.26b)

Assumptions:

x0 ∼ N (x̂0; Σ0) (3.27a)

wk
i.i.d.∼ N (0;Qk) (3.27b)

vk
i.i.d.∼ N (0;Rk) (3.27c)
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3.1.3.2 Unscented Kalman Filter

EKF approximations are based on linearization of nonlinear functions around the cur-

rent mean without considering the uncertainty (or spread) associated with the current

estimates. On top of this, they may lead to inconsistent covariance estimates; that

is, they may fail to satisfy the positive semidefiniteness of left hand side of equation

(3.28) [40]. This underestimation of covariance matrix Σy would result in a large

Kalman gain and may lead to filter divergence. Overestimating Σy should be pre-

ferred provided that it is not greatly in excess of the actual one; greatly overestimating

would have caused a lag in tracking true states as was discussed in KF explanations

for overestimating measurement noise, and equivalently, Σy.

Σy − E
{

(y − ŷ)(y − ŷ)T
}
≥ 0 (3.28)

As an alternative to linearization, Julier et al. [41] introduced the Unscented Trans-

form (UT) to deal with this problem. Their intuition was that "with a fixed number

of parameters it should be easier to approximate a Gaussian distribution than it is

to approximate an arbitrary nonlinear function transformation". In UT (or any other

sigma point based transformations that are used in Cuberature Kalman Filter, Central

Difference Kalman Filter, etc.) the idea is to generate a carefully selected determin-

istic set of sigma points around the current mean with their spread controlled by the

current uncertainty. These sigma points are then passed through the nonlinearity and

weighted average of these are used to calculate the mean and variance of the output

as discussed in equations (3.29a)-(3.29n) and as depicted in 3.1.3.2 (the depiction

representing the 2 dimensional case).

Equation of interest:

y = f(x) (3.29a)

Define the Cholesky decomposition of a PSD matrix as its numerically stable and

efficient square root:

Σ = LLT =⇒ L =
√

Σ (3.29b)
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Generate 2nx + 1 sigma points around the current mean of x.

X0 = µx (3.29c)

Xi = µx +
(√

(nx + λ)Σx

)
i

i = 1, . . . , nx (3.29d)

Xi+nx = µx −
(√

(nx + λ)Σx

)
i

i = 1, . . . , nx (3.29e)

Associated weights for the sigma points (where superscripts indicate whether they

will be used for mean or covariance calculation):

W
(m)
0 =

λ

nx + λ
(central mean weight) (3.29f)

W
(c)
0 = W

(m)
0 + (1− α2 + β) (central covariance weight) (3.29g)

W
(m)
i = W

(c)
i =

1

2(nx + λ)
i = 1, . . . , 2nx (3.29h)

Calculation of the sample mean and sample covariance of y:

µy =
2nx∑
i=0

W
(m)
i f(Xi) (3.29i)

Σy =
2nx∑
i=0

W
(c)
i (f(Xi)− µy)(f(Xi)− µy)T (3.29j)

Parameters to be tuned:

λ : resulting scaling parameter controlling the distribution of sigma points

λ = α2(nx + κ)− nx (3.29k)

β : parameter to be scaled according to the distribution of x

β = 2 for Gaussian distributions (3.29l)

α : primary scaling parameter usually set to a small positive value

α ∈ [10−3, 1] (3.29m)

κ : secondary scaling parameter

κ = 0 or κ = 3− nx usual choice for κ acc. to [41] or [8] (3.29n)

There is no general consensus as to which parameter selection would result in better
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Figure 3.2: Actual (sampling based), first order linearization and UT based mean and
covariance propagation (obtained from [8])

capturing the statistical properties of y. For example, the choice of κ = 3− nx given

in [41], it is guaranteed that mean and covariance estimation of y are correct up to and

including the third order moment of x in Taylor series based approximations. This

seems fine unless the value of κ may become negative, which may result in λ < 0

and consequently Σy ≯ 0. Also, as was demonstrated in [9] for tracking a single sine

wave, α = 1, β = 2 and κ = 0 resulted in far better mean and covariance estimates

than the previous case (provided that the input standard deviation is bounded by 2;

their results can be seen in Fig. 3.3.). Thus, the optimal choice of their values are

problem specific and should be examined for the problem at hand. We will use their

tuning values for the UKF. With this choice, λ in equation 3.29k becomes 0; central

and non-central covariance weights in equations 3.29g and 3.29h become 2 and 1
nx

,

respectively. Then, the positive semidefiniteness of Σy is asserted by having these

covariance weights as non-negative [42]. The non-augmented UKF equations are

summarized in Table 3.3.
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Figure 3.3: Mean and variance estimation provided by TT1 and UT for y = sinx for
µx = 0 (top), π/4 (middle) and π/2 (bottom) as a function of σx, obtained from [9]
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Table 3.3: Unscented Kalman Filter Algorithm

State Space Model:

xk+1 = fk(xk) +wk (3.30a)

yk = hk(xk) + vk (3.30b)

Initialization:

E
{
x0|−1

}
, x̂0 = E {x0} (3.31a)

Σ0|−1 , Σ0 = E
{

(x0 − x̂0)(x0 − x̂0)T
}

(3.31b)

Generate sigma points according to equations (3.29c) - (3.29e) with µx = x̂k|k

and Σx = Σ̂k|k.

Prediction or Time Update: (A priori state and its covariance estimate)

X̂ = fk+1(f(X)), x̂k+1|k =
2nx∑
i=0

W
(m)
i X̂i (3.32a)

Σk+1|k =
2nx∑
i=0

W
(c)
i (X̂i − x̂k+1|k)(X̂i − x̂k+1|k)

T (3.32b)

Kalman Gain (After the regeneration of sigma points):

Ŷ = hk+1(f(Xi)), ŷk+1|k =
2nx∑
i=0

W
(m)
i Ŷi (3.33a)

Σyk+1|k =
2nx∑
i=0

W
(c)
i (Ŷi − ŷk+1|k)(Ŷi − ŷk+1|k) +Rk+1 (3.33b)

Σxyk+1|k =
2nx∑
i=0

W
(c)
i (X̂i − x̂k+1|k)(Ŷi − ŷk+1|k) (3.33c)

Kk+1 = Σxyk+1|kΣ
−1
yk+1|k

(3.33d)

Filtering or Measurement Update: (A posteriori state and its covariance estimate)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k) (3.34a)

Σk+1|k+1 = Σk+1|k −Kk+1Σ
−1
yk+1|k

KT
k+1 (3.34b)

43



3.2 Exact Moment Matching Kalman Filtering

All of the Kalman filters previously mentioned (even those that are slightly touched

upon as sigma point based Kalman filters) attribute their superior success in tracking

to less erroneous mean and covariance estimation. The choice of β = 2 being optimal

for a GRV x was demonstrated by the authors of the original UKF [41] for perfectly

estimating the mean and covariance of y = x2. This has led us to think that, the

closer one gets to the true mean and covariance, the better estimation performance

is expected to be obtained. Beginning with this thought, the following will be a

collection of the results found in the literature. Note that the restriction that the output

of nonlinear transformation being Gaussian is still not loosened in this section, so the

filter described is still suboptimal but should be better than those described previously.

Downsides of EKF were previously touched open under Section 3.1.3.2, which are

(i) disregarding the current uncertainty associated with current estimates during lin-

earization and (ii) possible divergence due to underestimation of Σy. Two of the short-

comings of UKF was specified as tuning α, β and K which is not straightforward and

is problem specific (although it may be argued that it is more straightforward than

the derivations to be shown later whose benefit is the increased accuracy in track-

ing). Moreover, the tuning is not only problem specific but also depends on the state

estimation variances. Consider, for example, the nonlinear transformation given in

Eq. (3.35a), which is part of our measurement model. If the input standard deviation

were limited to 2, the previously stated parameter choice results in the best covari-

ance estimates with α = 1. However, if one considers the distribution given in Eq.

(3.35b), it is clear that sample covariance estimate tends towards 0 as the transformed

sigma points are equal to each other, which happens due to sigma point collapse. A

caption from [10] has a clear demonstration of this case for an almost exact sigma

point collapse, which can be seen in Fig. 3.4 with sigma points depicted with the red

crosses and approximated pdf with the red pdf curve. By performing exact moment

matching, our aim is to obtain a distribution close to the one shown with the green

curve, not the erroneous one that can be obtained from the wrongly tuned UKF. Note

that multimodality of the output is still visible (with two clear peaks at the output)

and can be represented better with the sum of two Gaussian variables; however, we
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Figure 3.4: UKF sigma point collapse obtained from [10]

will still approximate the output as unimodal as a simplifying assumption. We will

show in chapter 4 that even with this approximation, exact moment matching still

outperforms the approximations of Taylor transformation or unscented transform.

y = g(x) = sin(x) (3.35a)

x ∼ N (0; π2) (3.35b)

λ = α2(nx +K)− nx = α2 − 1 =⇒
√

(nx + λ)σ2
x = ασx (3.35c)

X =
[
g(µx) g(µx + ασx) g(µx − ασx)

]
=
[
sin(0) sin(π) sin(−π)

]
= 0

(3.35d)

3.2.1 Monte Carlo Transformation

Let us first define the Monte Carlo Transformation (MCT) that can be used for the

mean and covariance estimation. Given a sufficiently large number of samples, MCT

is asymptotically the best transformation in calculating the parameters of interest

thanks to the law of large numbers [19]. "Given a sufficiently large number of sam-

ples" is naturally the root cause of its computational burden. However, the idea be-

hind is quite simple and it is to generate a large number of samples from a normal

distribution, pass them through the nonlinearity and calculate the sample mean and
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covariance according to the equations shown below.

x(i) ∼ N (µx; Σx) i = 1, 2, . . . , N (3.36a)

y(i) = f(x(i)) (3.36b)

µy =
1

N

N∑
i=1

y(i) (3.36c)

Σy =
1

N − 1

N∑
i=1

(y(i) − µy)(y(i) − µy)T (3.36d)

3.2.2 Moment Matching Kalman Filters

Luca et al. [43] first developed an exact Kalman filter for polynomial systems. They

have developed a general framework for such systems and have given analytical ex-

pressions for mean and covariance transformation through Chebyshev polynomials

of order up to 4. They have demonstrated that (i) EKF fails in the estimation of

transformed statistics even under mild nonlinearities, (ii) UKF greatly improves these

results, and (iii) exact transformation gives the correct output which totally agrees

with the MCT described above. They have also, through simulations, shown that

ΣEKF
y ≤ ΣUKF

y ≤ ΣExPKF
y (ExPKF refers to Exact Polynomial KF). What this

means is that EKF and UKF gives more optimistic results than the ExPKF, which

may lead to local filter divergence. Another consequence is that associated Kalman

gains follow a similar pattern, resulting in ExPKF having the most superior perfor-

mance in tracking. In a separate work, Saha et al. [44] independently developed what

is actually the same filter with some different terminology (for interested readers they

named it as KF with Exact Moment Matching), and they have also demonstrated that

this filter has far better RMSE estimates than EKF/UKF. What is important and dif-

ferent in their work is that the performance of the new filter (in RMSE sense) is found

to be comparable to Unscented Particle Filter (refer to the previous source [8] for

details) with much less computation time (approximately 1% of the particle filter).

In a completely separate work, Rhudy et al. [9] revisited the same problem with

the addition of several nonlinear functions to enhance this method. Their derivation
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started with a zero mean Gaussian r.v.. Using the following equations, they have first

found the mean and variance of sinx and cosx. A simple trick used in the last step

of Eq. (3.37g) is the fact that if x ∼ N (µ;σ2) then 2x ∼ N (2µ; 4σ2).

x ∼ N (0;σ2) (3.37a)

=⇒ f(x) = e−
x2

2σ2 (3.37b)

=⇒ M(r) = E {erx} ,
∫ ∞
−∞

erxf(x)dx = e
1
2
σ2r2

(3.37c)

kth order moment (where !! is the double factorial):

E
{
xk
}

=
∂M(r)

∂r

∣∣∣∣
r=0

=

 0 for k odd

σk(k − 1)!! for k even
(3.37d)

Then,

E {sinx} = E

{
∞∑
i=0

(−1)ix2i+1

(2i+ 1)!

}
=
∞∑
i=0

(−1)i���
���: 0

E {x2i+1}
(2i+ 1)!

= 0 (3.37e)

E {cosx} = E

{
∞∑
i=0

(−1)ix2i

(2i)!

}
=
∞∑
i=0

(−1)iE {x2i}
(2i)!

=
∞∑
i=0

(−1)iσ2i(2i− 1)!!

(2i)!
=
∞∑
i=0

(−1)iσ2i

(2i)!!
= e−

σ2

2 (3.37f)

var(sin x) = E
{

sin2 x
}
−����

��:0
E {sinx}2 = E

{
1− cos 2x

2

}
=

1

2
(1− e−2σ2

)

(3.37g)

var(cos x) = E
{

cos2 x
}
− E {cosx}2 = E

{
1 + cos 2x

2

}
− e−σ2

=
1

2
(1 + e−2σ2

)− e−σ2

=
1

2
(1− e−σ2

)2 (3.37h)

Extensions of these for non-zero mean case follows the trivial trigonometric identities
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as follows.

x ∼ N (µ;σ2) and x1 , x− µ, =⇒ x1 ∼ N (0;σ2) (3.38a)

E {sinx} = E {sin(x1 + µ)} = E
{
��

��:0
sinx1 cosµ+ cosx1 sinµ

}
= sinµe−

σ2

2 (3.38b)

E {cosx} = E {cos(x1 + µ)} = E
{

cosx1 cosµ−����:0
sinx1 sinµ

}
= cosµe−

σ2

2 (3.38c)

var(sinx) = E
{

sin2(x1 + µ)
}
− E {sin(x1 + µ)}2

= E

{
1− cos(2x1 + 2µ)

2

}
− sin2 µe−σ

2

=
1

2
(1− cos 2µe−2σ2

)− e−σ2 1− cos 2µ

2

=
1

2
(1− e−σ2

)(1 + cos 2µe−σ
2

) (3.38d)

var(cos x) = E
{

cos2(x1 + µ)
}
− E {cos(x1 + µ)}2

= E

{
1 + cos(2x1 + 2µ)

2

}
− cos2 µe−σ

2

=
1

2
(1 + cos 2µe−2σ2

)− e−σ2 1 + cos 2µ

2

=
1

2
(1− e−σ2

)(1− cos 2µe−σ
2

) (3.38e)

3.2.3 Our Moment Matching Kalman Filter

What was done in the original paper [9] was only with a single sinusoidal function

for a single state. Now, we will extend their work for a more general case to include

the effect of higher order harmonics and more than one states. In order for us to run

the Kalman filter equation, we need to find the Kalman gain which requires finding

Σxy and Σy. Also expected value of y, ŷ, will be needed in the Kalman update step.

After finding these, the equations given in 3.5 are directly available from our state

formulation.

Starting with the simple case of ŷ = ŷk+1|k, it is given as in Eq. (3.39a). Note that
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Time Update
(Prediction)

1. Project the state ahead

x̂k+1|k = Fkx̂k|k

2. Project the error covariance ahead

Σk+1|k = FkΣ̂k|kF
T
k +Qk

1. Compute the Kalman gain

Kk+1 = Σxy,k+1|kΣ
−1
y,k+1|k

2. Update the state estimate via yk+1

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

3. Update the error covariance

Σk+1|k+1 = Σk+1|k −Kk+1Σy,k+1|kK
T
k+1

Measurement Update
(Filtering)

The outputs at k will be the inputs for k + 1 Initial estimates at k = 0
x̂0|−1 = x̂0

Σ0|−1 = Σ0

Figure 3.5: Kalman filter equations

for deterministic ai and random θ, this also verifies the result in equations (3.38b)-

(3.38c).

ŷ =
m∑
i=0

E {ai cos iθ}+
m∑
i=2

E {bi sin iθ} (3.39a)

where

E {ai cos iθ} = (µai cos iµθ − iΣaiθ sin iµθ)e
− i

2Σθ
2 (3.39b)

E {bi sin iθ} = (µbi sin iµθ + iΣbiθ cos iµθ)e
− i

2Σθ
2 (3.39c)

Proof: Moment generating function of a Gaussian random vector is given by (3.40a)

[45]. Letting x =
[
ai θ

]T
, t =

[
t1 t2

]T
, taking the partial derivatives w.r.t. t1

and evaluating at t1 = 0 yields (3.40b). Letting t2 = ji where j =
√
−1 and i is an

integer, we found the desired results by equating the real and imaginary parts.

Mx(t) = E
{
et
Tx
}

= et
Tµx+ 1

2
tTΣxt (3.40a)
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∂Mx(t)

∂t1

∣∣∣∣
t1=0

= E
{
aie

t2θ
}

= (µai + Σaiθt2)et2µθ+ 1
2
t22Σθ (3.40b)

∂Mx(t)

∂t1

∣∣∣∣
t1=0,t2=ji

= E {ai cos iθ + jai sin iθ}

= (µai + Σaiθji)(cos iµθ + j sin iµθ)e
− 1

2
i2Σθ (3.40c)

Working on a bit more complicated scenario, we will show that cov(x, ak cos kθ) is

given by (3.41a). Variable x can be equal to any one of the state variables.

cov(x, ak cos θkk) =
(

(Σxak − k2ΣxθΣakθ) cos kµθ

− kΣxθµak sin kµθ

)
e−

k2Σθ
2 (3.41a)

cov(x, bk sin kθ) =
(

(Σxbk − k2ΣxθΣbkθ) sin kµθ

+ kΣxθµak cos kµθ

)
e−

k2Σθ
2 (3.41b)

Proof: Again start with a general MGF of a Gaussian vector with x =
[
x ak θ

]T
,

t =
[
t1 t2 t3

]T
. Differentiating w.r.t. t1 and evaluating at t1 = 0 yields (3.42a);

repeating the same for t2 gives (3.42b). Finally, setting t3 = jk, separating real &

imaginary parts as before and subtracting µaiµak cos kθ results in (3.41a).

∂Mx(t)

∂t1

∣∣∣∣
t1=0

= E
{
xet2ak+t3θ

}
= (µx + t2Σxak + t3Σxθ) Mx(t)|t1=0 (3.42a)

∂2Mx(t)

∂t1∂t2

∣∣∣∣
t1=t2=0

= E
{
xake

t3θ
}

=
(
Σxak + (µx + t3Σxθ)(µak + t3Σakθ)

)
et3µθ+

t23Σθ
2 (3.42b)

∂2Mx(t)

∂t1∂t2

∣∣∣∣
t1=t2=0,t3=jk

= E {xak cos θ + jxak sin θ}

=
(
Σxak + (µx + jkΣxθ)(µak + jkΣakθ)

)
· (cosµθ + j sinµθ)e

−k2Σθ
2 (3.42c)
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E {xak cos kθ} =
[
(Σxak + µxµak − k2ΣxθΣakθ) cos kµθ

− k(Σxθµak + Σakθµx) sin kµθ

]
e−

1
2
k2σ2

(3.42d)

E {xbk sin kθ} =
[
(Σxbk + µxµbk − k2ΣxθΣbkθ) sin kµθ

+ k(Σxθµbk + Σbkθµx) cos kµθ

]
e−

1
2
k2σ2

(3.42e)

Then, using the linearity of covariance (as a direct result of linearity of expectation),

we found state and output correlation vector given as below.

Σxy,k+1|k =
m∑
i=0


cov(a0, ai cos iθ)

...

cov(ω, ai cos iθ)

+
m∑
i=2


cov(a0, bi sin iθ)

...

cov(ω, bi sin iθ)

 (3.43)

Finally, we calculated the last parameter needed to complete the filtering equations,

which is Σy = var(y). The trick used at equation (3.44d) is similar to the one used in

[9], where the multiplication is converted into addition using trigonometric identities.

Expectations in (3.44b) can be obtained from (3.42b). The final expectations are read-

ily obtainable from Eq. (3.42d) and (3.42e) with a simple change of indices. Overall

filtering equations are then given in Fig. 3.5. Note that the prediction equations are

linear, and regular KF prediction steps are applicable.

Σy,k+1|k =
m∑
i=0

cov(ai cos iθ, y) +
m∑
i=2

cov(bi sin iθ, y) +R

=
m∑
i=0

m∑
j=0

cov(ai cos iθ, aj cos jθ) +
m∑
i=2

m∑
j=2

cov(bi sin iθ, bj sin jθ)

+ 2
m∑
i=0

m∑
j=2

cov(ai cos iθ, bj sin jθ) +R (3.44a)

where

cov(ai cos iθ, aj cos jθ) = E {ai cos iθaj cos jθ} − µai cos iθµaj cos jθ

= 0.5E {aiaj cos(i− j)θ}+ 0.5E {aiaj cos(i+ j)θ} − µai cos iθµaj cos jθ

(3.44b)
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cov(ai cos iθ, bj sin jθ) = E {ai cos iθbj sin jθ} − µai cos iθµbj sin jθ

= 0.5E {aibj sin(i+ j)θ} − 0.5E {aibj sin(i− j)θ} − µai cos iθµbj sin jθ

(3.44c)

cov(bi sin iθ, bj sin jθ) = E {bi sin iθbj sin jθ} − µbi sin iθµbj sin jθ

= 0.5E {bibj cos(i− j)θ} − 0.5E {bibj cos(i+ j)θ} − µbi sin iθµbj sin jθ

(3.44d)

3.2.3.1 MCT Verification

One of the most prevalent criticism that the EKF gets is that obtaining and coding

of Hessian & Jacobian matrices is error prone. This is even more valid for the ExKF

described above, both for the derivation and the coding. This situation gets even more

severe when one tries to make the computation memory bound by avoiding repetitive

calculations of sin(.), cos(.) and e(.) and storing their values in an array. That is

why some verification of the results would be beneficial. In this subsection, we will

demonstrate that the calculation of the exact mean and covariance matches the one

given by MCT. Number of Monte Carlo points were chosen as N = 30 · 106. The

procedure to do so is as follows.

1. Generate a random vector v ∈ R2m+2×2m+2.

2. Check the singularity of P = vTv. If singular, go back to Step 1.

3. Generate a random mean vector m ∈ R2m+2.

4. Find ŷ, Σy and Σxy using MCT & exact calculation using the above mean and

covariance matrices.
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P =


−0.0815 −0.0082 −0.0628 −0.0360

−0.1507 0.0790 0.0786 −0.0224

−0.1022 −0.0330 −0.0141 0.1503

−0.0370 0.0125 0.0044 0.0684

 and m =


−0.1608

0.9850

−0.6011

0.0443


=⇒ ŷEx = ŷMCT = 0.6514,Σy,MCT = Σy,Ex = 0.03626

Pxy,Ex = 100 ∗
[
3.1360 0.1842 0.6173 −1.6878

]T
Pxy,MCT,1 = 100 ∗

[
3.1359 0.1839 0.6169 −1.6879

]T
Pxy,MCT,2 = 100 ∗

[
3.1356 0.1842 0.6176 −1.6875

]T
Pxy,MCT,3 = 100 ∗

[
3.1361 0.1837 0.6169 −1.6874

]T
(3.45)

When one looks at the results shown in 3.45, there is very close agreement between

MCT and Exact Transformation. Only in the calculation of Pxy,MCT approximately

0.2% differences were observed. In order to see whether our formulation was wrong,

we have run 2 more MCTs, which showed that MCT gave somewhat inconsistent

results at such low resolution. Increasing the number of data points used would have

solved this problem but limited computer memory made this impossible. Another test

case was run with increased covariance matrix eigenvalues (by approximately a factor

of 2), this also shows a close agreement between MCT and Exact Transformation.

P =


0.2495 −0.0459 0.1550 0.0249

−0.0459 0.0438 0.0074 0.0731

0.1550 0.0074 0.2334 0.0978

0.0249 0.0731 0.0978 0.2322

 and m =


−0.0639

0.5022

1.9087

0.4122


=⇒ ŷEx = ŷMCT = −0.2183,Σy,MCT = 0.2013 ∼= Σy,Ex = 0.2012

Pxy,Ex = 100 ∗
[
19.8009 −6.1904 5.4920 −3.7703

]T
Pxy,MCT = 100 ∗

[
19.7922 −6.1873 5.4884 −3.7678

]T
(3.46)

We will also compare the results of MCT/Exact Transformation to those of the TT2
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and UT so that some simulation result discussions can be referred back to here.

Table 3.4: Comparison of Different Transformations

1. x ∼ N ([0; 1; 0; π/2]; 0.1 · diag[1, 1,1, 0.01])

Transformation y ∼ N (.; .) Pxy
TT2 0.950; 0.210 [0.100, 0.100, 0, 0]T

UT 0.952; 0.212 [0.100, 0.100, 0, 0]T

MCT 0.951; 0.196 [0.100, 0.095,−10−5,−10−6]T

Exact 0.951; 0.196 [0.100, 0.095, 0, 0]T

2. x ∼ N ([0; 1; 0; π/2]; 0.1 · diag[1, 1,10, 0.01])

Transformation y ∼ N (.; .) Pxy
TT2 0.500; 0.700 [0.100, 0.100, 0, 0]T

UT 0.646; 0.826 [0.100, 0.100, 0, 0]T

MCT 0.606; 0.357 [0.100, 0.061, 10−4, 10−6]T

Exact 0.607; 0.357 [0.100, 0.061, 0, 0]T

3. x ∼ N ([0; 1;π/4; π/2]; 0.1 · diag[1, 1,1, 0.01])

Transformation y ∼ N (.; .) Pxy
TT2 0.672; 0.208 [0.100, 0.071,−0.071, 0]T

UT 0.673; 0.200 [0.100, 0.071,−0.066, 0]T

MCT 0.673; 0.198 [0.100, 0.067,−0.067, 0]T

Exact 0.673; 0.198 [0.100, 0.067,−0.067, 0]T

3. x ∼ N ([0; 1;π/4; π/2]; 0.1 · diag[1, 1,10, 0.01])

Transformation y ∼ N (.; .) Pxy
TT2 0.354; 0.950 [0.100, 0.071,−0.071, 0]T

UT 0.457; 0.567 [0.100, 0.071,−0.066, 0]T

MCT 0.429; 0.466 [0.100, 0.043,−0.043, 10−8]T

Exact 0.429; 0.466 [0.100, 0.043,−0.043, 0]T

Variables that have changed between each trial are written in bold. Our general ob-

servations are as follows.

• UT does a fairly good job in estimating ŷ, irrespective of the current mean of θ.

Its estimation performance gets worse with increased Σθ. TT2 works well only

when Σθ is low.

• Both the TT2 and UT overestimate the output covariance. This would lower

the Kalman gain, resulting in slower convergence. Overestimation gets more

pronounced when the current angle θ, the third state, is non-zero.

• When elements of x are uncorrelated, correlation between y and a0 is perfectly

estimated by all methods thanks to the linear relationship between y and a0.
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3.3 Kalman Filter Tuning

Kalman filter tuning is the process of finding the process and measurement noise

covariances. As manual tuning is often prone to errors and as it is likely that these

parameters may change over time, there is a need for adapting the KF parameters

to the incoming data. Early work by Mehra [46] introduced and categorized KF

tuning methods into 4: covariance matching, correlation, Bayesian and Maximum

Likelihood (ML).

Covariance matching technique has a basic idea that covariance obtained from sam-

ple innovation sequence has to match its theoretical one. Innovations obtained for the

output are sampled over a window and measurement noise variance R is obtained

by subtracting the prior output variance from the covariance of this sequence. Pro-

cess noise covariance is obtained similarly. One may also use a low pass filtering or

forgetting factor approach instead of windowing as presented in [39] to increase the

major strength of this method, which is its computational speed. However, assuring

positive definiteness in this method is its major drawback. Subtraction step used in

finding R may result in this. Ad-hoc methods such as forcing R to be diagonal and

replacing diagonal entries with their absolute values was suggested to overcome this

problem [47], although a more educated fix with smoothed output estimates were

later introduced. As it should be apparent from even this basic fact that covariance

matching techniques are suboptimal. Also measurement noise estimates are generally

more accurate than process noise estimates [47]. Despite such major drawbacks, such

techniques are preferred thanks to their simplicity and computational efficiency.

Correlation techniques make use of the fact that the innovation sequence should be

zero-mean, white and Gaussian. Sample autocorrelation functions are generated from

the innovation sequence and they are used to find the process and measurement noise

covariances. A unique solution to R can be obtained with this method for linear

systems; however, a unique solution for Q is guaranteed with strict restrictions that

the system is fully observable and the number of measurements is greater than the

number of states [46]. For nonlinear systems, on the other hand, even the positive

definiteness of R is not guaranteed [47], and correlation techniques may not give

sound results even for linear time-varying systems while trying to find Q. That is
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why, similar to the covariance matching techniques they require ad-hoc procedures to

assure positive definiteness and are suboptimal.

3.3.1 Maximum Likelihood Tuning with Expectation Maximization

Maximum Likelihood (ML) estimate of θ is the vector that maximizes the probability

of θ given a set of observed output sequence, YN , where θ may include any of process

and noise parameters. Note that it is equivalent to maximize the likelihood and log-

likelihood as the logarithmic function is monotonic.

θ̂ML = arg max
θ

p(θ|YN) = arg max
θ

log p(θ|YN)︸ ︷︷ ︸
Lθ(YN )

(3.47)

The probability given above can be expanded using Bayes’ rule as follows [46]. One

can safely ignore the normalization constant given in equation 3.48 while trying to

maximize the probability on the left hand side. Furthermore, if no prior information

is available on the noise parameters θ, the term p(θ) can be dropped as well. What

this implies is that maximum likelihood estimate of θ coincides with the θ that max-

imizes the likelihood of the measurement sequence when no information is available

regarding θ.

p(θ|YN) =
p(YN |θ)p(θ)

p(YN)
(3.48)

p(θ|YN) ∝ p(YN |θ) = p(yN ,YN−1|θ)

= p(yN |YN−1,θ)p(YN−1|θ)

. . .

= p(yN |YN−1,θ)p(yN−1|YN−2,θ) . . . p(y0) (3.49)

Finding probabilities given in equation 3.49 are not directly obtainable from KF equa-

tions. Moreover, optimization procedure after this may be problematic if the proba-

bilities are not obtained parametrically. That is why, we will be using a standard

approach of Expectation Maximization (EM) algorithm to find the ML estimate of

θ. It is an iterative procedure that finds a maximum for maximum likelihood esti-

56



mation and this maximum does not necessarily correspond to the global one. As a

common approach in EM, we have to introduce some latent variables. The natural

choice of unobserved variables in a KF are unobserved states as was done in [48].

Letting θ = Q, EM algorithm is then given as follows.

1. Set an initial value forQ0 and l = 1.

2. Expectation step: Calculate the expectation

Γ(Q;Ql−1) = E {log p(YN ,XN |Q)|Ql−1,YN}

3. Maximization Step: Maximize the next iterated value ofQ using

Ql = arg max
Q

Γ(Q;Ql−1)

4. Iterate until convergence: Stop if ||Ql −Ql−1|| < ε; otherwise go back to step

2 with l = l + 1.

Citing from the same source, maximization step has the following structure. What it

means is that smoothed expectations ofE
{
wiw

T
i |Ql−1,YN

}
can be used to calculate

the next iterated value and this expectation is given as in equation 3.51.

Ql =
1

N

N−1∑
i=1

E
{
wiw

T
i |Ql−1,YN

}
(3.50)

= Ql−1 +
1

N
Ql−1

(
N−1∑
i=1

P−1
i+1|i

(
Pi+1|N − Pi+1|i + aaT

)
P−1
i+1|i

)
Ql−1

(3.51)

where

a , (x̂i+1|N − x̂i+1|i) (3.52)

There is one little problem with the above form of the EM algorithm. It needs to find

(2m + 2) × (2m + 2) number of parameters for a model order m in order to find

the correct process covariance matrix. That is, even for a second order system, 36

parameters are needed to be found. Our initial experimentation with this produced

57



extremely slow convergence and inaccurate results under simulation with diagonal

noise entries. In order to reduce the number of parameters to be found, we decided

to apply a projection step after the maximization step in order to guide the search

into an a-priori form of covariance matrix as a set of feasible solutions. This idea is

inspired by Projected Gradient Descent method used in optimization problems [49].

The projection will be onto a block diagonal matrix as shown in equation 3.53: am-

plitude coefficient covariance portion is assumed to be diagonal to speed up the con-

vergence. Angular velocity and position block will be of the form given in equation

3.54. The final goal is to minimize the Frobenius norm given in equation 3.55. With

the diagonality assumption ofQab, it is clear that only keeping the diagonal entries of

Ql,(1:2m)(1:2m) minimizes this norm error and it is given as in equation 3.56.

Ql,BD =

QabTs 0

0 Qω

 (3.53)

Qω =

qwT 3
s /3 qwT

2
s /2

qwT
2
s /2 qwTs

 (3.54)

||Ql −Ql,BD||2 =
2m+2∑
i,j

|qij − qij,BD|2 (3.55)

QabTs = diag(Ql,(1:2m)(1:2m)) (3.56)

Finding qw is a bit more challenging. Minimization of norm error given in equation

3.55 is equivalent to the minimization given in equation 3.57 as far as the parameters

of Qw are concerned, where vec(·) is the vectorization. This is equivalent to find the

minimum norm error for the linear system of equations given in equation 3.59. Since

the matrix A is full column rank, it left inverse exists and is given in equation 3.60,

where the second manipulation can be made as ATA is a scalar. Finally, the explicit

solution for qw is given as in equation 3.61.
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||qw


T 3
s /3

T 2
s /2

T 2
s /2

Ts

− vec(Q̂w)||2 where Q̂w = Ql,(2m+1:2m+2)(2m+1:2m+2) (3.57)

LetA ,


T 3
s /3

T 2
s /2

T 2
s /2

Ts

 . (3.58)

Aqw = vec(Q̂w) (3.59)

A+ = (ATA)−1AT =
AT

ATA
(3.60)

qw =
AT vec(Q̂w)

ATA
(3.61)

These two projections given in equations 3.56 and 3.61 can be inserted after the third

step of EM algorithm to give projected EM algorithm.

As a final remark for the above projection is that we do not suggest that the projected

covariance estimates are the optimum ones. However, this approach allows faster

convergence when the DT covariances are separated by an order of magnitude. In our

early simulations, it was impossible for Σθ to approach its true value qwT 3
s /3 which is

an order of magnitude lower than Σω as the sampling period is Ts = 1
20

. Decreasing

ε may have solved this problem with a great increase in computational resources. It

was thanks to this modification that Σθ could be guided to its true value faster, that is

with less number of iterations.

Pseudocode for the combined KF and EM algorithm can be seen in Algorithm 1. Note

that until the number of available data points reach the number required by the EM

algorithm, regular filtering equations are applied. After that limit is exceeded, EM is

run at least once with the arrival of a new data point and it may be run more than once

if the convergence criterion of EM is not met. As a results, process noise covariance
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estimation is performed online.

Algorithm 1: Online EM & KF

1 Initialization:;

2 Q=Qmanual;

3 Generate two FIFO buffers of length N for state prediction and filtered state

estimate vectors;

4 Do the same for state prediction covariance and filtered state estimation

covariance matrices;

5 Iterations:;

6 Do a measurement update as in Fig. 3.5;

7 Push the filtered state estimates and their covariances into their FIFO buffers;

8 if k>Number of data points N then

9 Set l = 0 andQ0 = Q;

10 repeat

11 Update the process noise according equation 3.51;

12 until ||Ql −Ql−1|| < ε;

13 Q = Ql;

14 end

15 Increment k;

16 Do a time update as in Fig. 3.5;

17 Push the state predictions and their covariances into their FIFO buffers;
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, we will describe the results obtained from both simulation and our

own setup. We discuss the data generation process used in our simulations with jus-

tifications based on respiratory motion data obtained from a patient in Section 4.1. A

comparative discussion in terms of convergence speeds and output RMSE between

the Kalman filters is presented in Section 4.2. Section 4.3.1 introduces sensor used

for respiratory motion tracking as well as the sensor placements. Section 4.3.2 uses

respiratory records obtained from patients to compare the filtering performance of 3

nonlinear Kalman filters to justify the benefits of ExKF over the others.

4.1 Simulation Environment

In this section, we will describe how we have determined the data generation process

used in our simulations. Figure 4.1 shows the Fourier transform of the chest move-

ment data obtained from an artificially ventilated patient. Ventilation frequency is 16

breaths per minute, justifying the peaks around 16
60

= 0.667Hz and at higher harmon-

ics. There is no DC offset in the data as PCA removes this offset. Also, frequency

components of respiratory motion do not exhibit sharp peaks around the harmonics

but are somewhat spread around them, indicating the quasi-periodic nature of the

movement.

A more quantitative analysis of this signal yields that a1 ≈ 0.496 and b1 ≈ 0.602. Our

model assumes that the first order harmonic is to be tracked with a single coefficient:

that is, information in b1 can be captured by θ and a1 as we have previously discussed.
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This results in a1 ←
√
a2

1 + b2
1 ≈ 0.780. With this in mind, much of the information

is contained in the first harmonic, with an approximate decay ratio of a2

a1
= 1/4.

This also holds for the higher order harmonics (an+1

an
). As we have analyzed a single

respiratory motion record, we will assume and force this limit as the twice of 1/4

during simulations.
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Figure 4.1: Fourier Transform of respiratory motion trace

After examining these, we will follow a similar approach to what was done in [50] to

simulate the system: generate an initial state as in Eq. (4.1), and perturb each state

with noise. Different from their approach, we will keep the angular velocity noise

Σω relatively lower than those of the Fourier series coefficients in order to keep an-

gular velocity changes almost zero so as to reflect a consistently periodic nature of

mechanical ventilation. As was discussed in [15], the second model based method

described in Section 2.6.1, approximation orders with m = 2 and m = 3 are rec-

ommended; otherwise, higher order coefficients are likely to adapt to noise as their

model does not take measurement noise statistics into account. Also considering the

case given in Fig. 4.1, higher order coefficients contribute little to the explanation

of the output. With a decay ratio of 1/4, power associated with third and higher or-

der coefficients corresponds to approximately 6.25% of the total power of the signal.

We will use their recommendation only when we artificially generate data. We will

try to track the real respiratory motion trace with different orders of Fourier series
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approximations in order to find the best underlying model in Chapter 5.

x0 =
[
0 1 0.5 0.25 . . . 0.5 0.25 . . . θ0 ω

]T
(4.1)

Finally, it would be impossible to differentiate the systems given in Eqs. (4.2)-(4.3)

by only looking at the output y since both measurements are equivalent. That is, it

is impossible to both track θ by a factor of π and the sign of odd order coefficients.

Therefore, an error of π is equivalent to an error of 0 if the true sign and estimated

sign of the coefficients tracked are different. Similarly, error in the coefficient of

interest would be equal to ei = ai − (−âi) = ai + âi in the same case. Alternatively,

one has two options: either track only the amplitude of odd order coefficients, letting

θ oscillate between −π to π, or restrict θ to be bounded in 0 to π, making signs of

coefficients important. We opted to track the amplitude of a1 and reflected its sign to

θ whenever it became negative.

y = a0 + a1 cos(θk) +
m∑
i=2

(
ai cos(iθk) + bi sin(iθk)

)
(4.2)

y = a0 − a1 cos(θk + π) +
∑
i even

(
ai cos(iθk + iπ) + bi sin(iθk + iπ)

)
+
∑
i odd

(
ai cos(iθk + iπ) + bi sin(iθk + iπ)

)
(4.3)

4.2 Simulation Results and Discussion

We will conduct a comparative performance test of ExKF on our system against UKF,

EKF1 and EKF2 In order to test the usefulness of ExKF, we will test it against the

UKF and EKF2 under different conditions with artificially generated data for a second

order Fourier series approximation with m = 2 with a reasoning discussed in the

previous section. Also note that increasing the value of m deteriorates convergence

properties of all filters, with UKF and EKF2 being unable to converge most of the time

as shown in Section 4.3.2. That is why the choice of m = 2 yields more comparative

results. For reproducibility of the results, we use the following variables common on
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our tests.

• Sampling frequency is chosen as 20Hz as it is the sampling frequency of the

device we will be using for data collection,

• Fundamental period or "breathing period" is chosen as 5 seconds,

• Number of data points, or epochs, is 1000 as convergence results can be ob-

served with them, and

• Number of Monte Carlo simulations is N = 1000.

• Case 1:

Qab = diag(0, 0, 0, 0), qω = 0

R = 0.012,x0 =
[
0 1 0.5 0.5 π/2 2 ∗ π/5

]T
x̂0 =

[
0 0 0 0 0 2 ∗ π/5

]T
,P0 = diag(x0 − x̂0)2

The first test case is devoted to examine the convergence properties of these filters.

To achieve this, we aim to keep the states constant; consequently, process noise vari-

ances are intentionally set to zero so that no variations occur in x. In order to make

the measurement covariance calculation dominated by the nonlinearity, measurement

noise variance is chosen small: that is, we have chosen a value for R as 0.012 so that

Σy value of 0.263 increases to the value of Σy,measured = 0.2631 for the above set

of parameters, with less than 1% contribution of measurement noise. By doing so,

output covariance is mostly affected by the nonlinearity instead of the linear additive

part.

Initial uncertainty is chosen as 1 standard deviation away from each state so that er-

rors due to overestimating or underestimating initial estimate covariance are avoided.

Initial state estimates are all chosen as 0 except for ω to reflect the uncertainty in

the coefficients and θ, both of which would be unknown if we were to track a quasi-

periodic signal as in our results with real data. That is to say that coefficients to be

tracked as well as at the angular position would be unknown a-priori at the nitializa-

tion of tracking. When we examined the MCT verification of ExKF in section 3.2.3.1,
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we have observed that ExKF had the highest Kalman gain when the uncertainty as-

sociated with the current angle θ was high (as it is the case here with Σθ0 = π2/4).

That is why our expectation is that ExKF should have the fastest convergence among

all filters.

RMSE state errors can be seen in Figure 4.2. Note that UKF cannot handle such

large initialization errors; it cannot track either one of the states θ or a1 as can be

justified with residual errors even after t > 40. The same goes for EKF1. ExKF and

EKF2 both converged to the true model, with ExKF having smaller errors initially;

this is true especially for θ. This seems to suggest that ExKF is more robust to initial

parameter estimation errors than both of the filters, with UKF having the worst per-

formance. Before evaluating this suggestion more thoroughly, we wish to compare

the performances in output prediction as presented in Table 4.1. UKF has the worst

RMSE as 0.652 while EKF2 provides 63% improvement over it. ExKF, on the other

hand, has an approximate improvement as 89%, making it the best filter for this test

case. EKF1, on the other hand, has clear lags in tracking both θ and a1 despite its

reduced output RMSE of 0.144.

Table 4.1: Simulation Results - Output RMSE for Different Test Cases

Case # RMSEEKF1 RMSEEKF2 RMSEUKF RMSEExKF
1 0.144 0.239 0.652 0.072
2 0.350 0.829 0.841 0.145
3 0.033 0.030 0.038 0.031
4 0.091 0.429 0.814 0.104
5 0.150 0.514 0.870 0.115
6 0.108 3.43 · 106 0.665 0.899

In order to check whether the ExKF has the fastest convergence among the three fil-

ters, the other two being EKF2 & UKF, we decided to generate more sub-cases similar

to case #1. Initial estimate of θ is chosen from the discrete group of
[
0 π

4
π
2

3π
4

π
]

as its initial estimation error affects the convergence properties of the filters the most.

Fourier series coefficients on the other hand were drawn randomly from

[
0 1 0.5 0.5

]T
· a

where a has a zero mean normal distribution with standard deviation α. Now, one

65



0 10 20 30 40 50 60

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Average Error on 1000 Runs

ExKF

UKF

EKF1

EKF2

0 10 20 30 40 50 60

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2
Average Error on 1000 Runs

ExKF

UKF

EKF1

EKF2

Figure 4.2: RMSE of θ (left) and a1 (right) in test case # 1

of the problems faced with this approach is when the ratios of |a1/a2| and |a1/b2|
were larger than 0.5 individually. Similarly, having the initial estimate in a1 too large

for filters to handle resulted in divergences. That is why the random drawing pro-

cedure was repeated for ratios exceeding the threshold of 0.5 or for values of |a1|
exceeding 3. These values are determined experimentally: when they were exceeded

filter convergences were achieved inconsistently. This is just a region where our filter

outperforms the other two, outside of which the filtering behaviour was intractably

unexplainable with frequent output and state divergences. RMSE vs. time plots of

these subcases are provided subsequently on pages 68-72 for the sake of clarity.

First comparison is done for θ0 = 0 with α values from 0.1, 0.5, 1 and 1.5. As can

be seen in Fig. 4.3 on page 68 convergence speeds of all of the filters are equivalent

no matter what the value of α is. This means that all of the filters converge to the

true model without any performance differences provided that the current angle θ is

estimated correctly.

Second comparison is done for θ0 = π/4. The RMSE values in estimation of a1 can

be seen in Fig. 4.4 on page 69. All of the filters are able to converge to the true

state if α = 0.1 with approximately the same speed. However, for increased values

of α, UKF and EKF2 have deteriorating performances. UKF cannot cope well with

large initialization errors when the error in θ̂ is large as can be seen for α = 1. None

of the filters are able to converge to true a1 for α = 1.5 with a residual RMSE of
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approximately 0.2.

Third subcase is devoted to θ0 = π/2 and RMSE plots of a1 can be seen in Fig. 4.5

on page 70. UKF cannot converge to true a1 no matter what the initial error is. EKF2

does a fairly good job, with a residual state RMSE greater than 0.1 only apparent

when α = 1 or α = 1.5. ExKF is clearly the best filter especially under this subcase.

Fourth subcase is for θ0 = 3π/4 and is presented in Fig. 4.6 on page 71. Just like

the case in θ0 = π/4, EKF2 always has residual errors. UKF can only converge for

α = 0.1 while ExKF showed no convergence problems in these trials except for the

extremely slow convergence when α = 0.1.

Fifth subcase is for θ0 = π. Now, we expected and obtained identical results to that

of the θ0 = 0. If one accepts the fact that sign of a1 in a1 cos θ as well as a phase

difference of π in θ is indistinguishable by observing the output, only the errors in the

amplitude of a1 should matter. To clarify this point, if â1 converges to true a1 = 1

in the first subcase, â1 may converge to −1 in the fifth one. Provided that the phase

difference due to sign differences are reflected to θ̂, both subcases should provide

identical results. Identical results for θ0 = 0 and θ0 = π can be seen by comparing

Figures 4.3 (on p. 68) and 4.7 (on p. 72). In my personal trials, we found that similar

cases occur for higher values of θ0; that is why we took the liberty to terminate the

tests at π without falling out of generality.
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Figure 4.3: RMSE of a1 for α = 0.1 (top left), α = 0.5 (top right), α = 1 (bottom
left) and α = 1.5 (bottom right) for θ0 = 0
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Figure 4.4: RMSE of a1 for α = 0.1 (top left), α = 0.5 (top right), α = 1 (bottom
left) and α = 1.5 (bottom right) for θ0 = π/4
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Figure 4.5: RMSE of a1 for α = 0.1 (top left), α = 0.5 (top right), α = 1 (bottom
left) and α = 1.5 (bottom right) for θ0 = π/2
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Figure 4.6: RMSE of a1 for α = 0.1 (top left), α = 0.5 (top right), α = 1 (bottom
left) and α = 1.5 (bottom right) for θ0 = 3π/4
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Figure 4.7: RMSE of a1 for α = 0.1 (top left), α = 0.5 (top right), α = 1 (bottom
left) and α = 1.5 (bottom right) for θ0 = π

72



• Case 2: Case 1 with R = 0.12

Going back to the main cases, we intend to test the filters with an increased mea-

surement noise. When the measurement noise variance is increased from 0.012 to

0.12, we expect all the filters to perform worse than the first case. RMSE results of

state estimates can be seen on Fig. 4.8. Just like it was in the first test case, neither

UKF nor EKF1 can track the states. EKF2, in contrast, loses its ability to track both

of the states. These can be justified by the over-estimation of the output variance

by both filters; with increased measurement noise, Kalman gain remains so low that

states cannot be tracked accurately. ExKF is still able to track a1 but has a clear lag

in tracking θ. Their performances on output RMSE-wise converged to each other.

Considering the output, UKF demonstrates a value of 0.841, and that of the EKF2

demonstrates a similar performance with a slight amelioration of 2% in the output

RMSE value. ExKF and EKF1 have approximate improvements in output RMSE of

83% and 58% over that of UKF, respectively, despite the inability of EKF1 to track

the true states. Percentage improvements over UKF decreases when compared to case

1 and all filters have deteriorating performances with increased R.
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Figure 4.8: RMSE of θ (left) and a1 (right) in test case # 2

• Case 3: Case 1 with x̂0 =
[
0.75 ∗ x0,1−5 x0,6

]T
.

In Case 3, our aim is to examine filter performances with a fair initial estimate all

states but one. The exception is the angular velocity state ω0 which is fairly well
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known for a mechanically ventilated patient. State RMSE of a1 and θ can be seen in

Fig. 4.9. Although no significant error differences can be observed under this case,

UKF still has the largest initial errors in both of the states. ExKF and EKF2 have

indistinguishable performances in tracking a1 but EKF2 has an initial advantage over

ExKF for tracking θ, between t = 0 to t = 3 seconds. EKF1 can track the amplitude

coefficient almost with the same convergence speed but it has a small lag in tracking

θ. In accordance with these results, output RMSE for UKF, ExKF, EKF1 and EKF2

are 0.038, 0.031, 0.033 and 0.030, respectively.

Our conclusion from these three test cases as well as the subcases of case 1 is that

ExKF is better than or on par with the UKF/EKF1/EKF2 in terms of convergence.

Faster convergence allows ExKF to have less RMSE in tracking respiratory motion

as a quasi-periodic signal.
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Figure 4.9: θ (left) and a1 (right) tracking error in test case # 3

• Case 4: Case 1 with qω = 0.0012 andQab = 0.0052 diag(0.1, 1, 1, 1).

Having examined the convergence properties of the filters with constant states, we

will be performing simulations with added process noise in Case 4, which constitutes

a more realistic scenario. In this test case, coefficient process noise variance is chosen

slightly larger than the angular velocity noise variance. Their variances are swapped

at a later case, Case 5. Moreover, there is no clue on the values of Fourier series

coefficients when one starts tracking a respiratory motion model, that is why their

initial estimates are set to zero in this test case. Finally, θ is a variable that oscillates
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between (−π, π] and filtering of respiratory motion may start at any instant. That is

why, the initial error θ0 − θ̂0 is given a value of π/2. This value will be changed in

several subcases as it has a great impact on the convergence abilities of filters.

RMSE in a1 and θ can be seen in Fig. 4.10. UKF cannot converge to true a1 or

θ. EKF1 cannot converge to true a1 and tracking θ shows oscillatory behaviour. To

compare the remaining two, EKF2 has larger overshoots in θ and ExKF has larger

overshoots in a1; however, ExKF converges to the true values much faster than EKF2.

These are all reflected to the output RMSEs as well: UKF has an RMSE of 0.814,

EKF2 of 0.429 and ExKF of 0.104. A slight increase in these values when compared

to case 1 can be attributed to the added process noise. The only filter that benefits from

increased process noise is EKF1, which has an output RMSE of 0.091. However, its

inability to stably track θ or a1 is a clear indication of convergence to a wrong model.
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Figure 4.10: RMSE of θ (left) and a1 (right) in test case # 4

A closer evaluation of convergence to a1 for different values of θ̂0− θ0 can be seen in

Fig. 4.11. Note again that all filters are again equivalent for a zero initial angle error.

UKF is able to track a1 for θ̂0− θ0 = 0 or π/4; larger initial angle errors causes UKF

to diverge. EKF2 achieves an RMSE of 0.01 in almost all cases in less than t = 15

seconds, only having a lousy performance for θ̂0 − θ0 = 3π/4. ExKF achieves this

convergence performance in all cases, usually outperforming EKF2 in most of the

time. An initial error of θ̂0−θ0 = π/4 seems to favor EKF2 over the others; however,

calculation of exact mean and variance seems to favor ExKF more especially when

the initial errors associated with θ̂ are high.
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Figure 4.11: RMSE of a1 for θ̂0−θ0 equal to 0 (top left), π/4 (top right), π/2 (bottom
left) and 3π/4 (bottom right) for the subcases of case # 4

• Case 5: Case 4 with qω = 0.0052 andQab = 0.0012 diag(0.1, 1, 1, 1).

The next case is devoted to examine the filter performances when the variance of the

state θ passing through the severe nonlinearity of a sinusoidal function is increased.

What is different from the previous case is that the variance associated with angular

velocity is higher than the variances of the Fourier series coefficients. Our expec-

tation, which can be confirmed when the results are compared to the previous case,

is that all filters are likely to perform worse for the following two reasons. Firstly,

approximations provided by UKF, EKF1 and EKF2 will be less adequate. See Fig.

3.3 on page 42 as a reminder of the fact that worse mean and variance estimations are

obtained for a sinusoidal mapping of sinx with increased variance of x. Secondly,

the Gaussianity assumption used by all filters is violated more; refer to Fig. 3.4 on
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page 45 to see the introduction of multimodality of the same sinusoidal mapping with

increased variance of x. In accordance with these expectations, EKF1, EKF2 and

UKF have divergence problems as can be seen in Fig. 4.12; this divergence is newly

introduced to EKF2 as it was convergent in the previous case. ExKF converges to the

true value of θ and a1 at around t = 25 and t = 20 seconds, respectively, in contrast to

t = 15 seconds in the previous case. Their output RMSEs have also increased. Still,

ExKF still has the lowest output RMSE of 0.115, with 78% improvement over EKF2

with an RMSE of 0.514 and with 87% improvement over UKF with an RMSE of

0.870. EKF1 still has a low output RMSE of 0.150 despite its worse state estimation

performance.
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Figure 4.12: RMSE of θ (left) and a1 (right) in test case # 5

Similar to the previous case, now convergence of filters with respect to initial angle

estimation error will be examined, with all results of RMSEs presented in Fig. 4.13.

This simulation also verifies that all filters are equivalent provided that initial angle

estimate as well as its covariance are known. UKF cannot track a1 only when θ̂0 −
θ0 = π/2 and in other cases its response shows initially large oscillations. Similar to

the previous case, EKF2 cannot track a1 when θ̂0 − θ0 = π/2 and it has a residual

errors in a1 when θ̂0 − θ0 = 3π/4. ExKF, on the other hand, can converge to a1

in approximately 20 seconds, a slight increase from the previous case. This can,

again, be attributed to the violation of Gaussianity for sinx, the output of which

ExKF approximates as Gaussian.
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Figure 4.13: RMSE of a1 for θ̂0−θ0 equal to 0 (top left), π/4 (top right), π/2 (bottom
left) and 3π/4 (bottom right) for the subcases of case # 5

• Case 6: Case 4 with x0 = diag(0, 0, 0, 0, 0, 0).

The last case, Case 6, is devoted to wrong convergence results provided by UKF,

a single run of tracking results can be seen in Fig. 4.14. This case corresponds

to the one that both ExKF and EKF2 have their superiority over UKF. Both filters

are divergent, while EKF2 unnecessarily increases the estimated mean and variance.

UKF, on the other hand, has an apparent and inaccurate output convergence around

t = 40 seconds and tries to converge to a model that does not fit the underlying one.

Further evaluation of these results yield that all filters stop tracking the current angle

θ, which can be seen on the left hand side of average error plot on Fig. 4.15; and

average error plot for a1 goes to zero only for the UKF. However, if one examines the

convergence in a single run, the result can be seen in Fig. 4.16. Estimated coefficients
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Figure 4.14: A single run of output tracking with wrong initial frequency estimate

no longer posses a random walk behaviour, unlike the ones that are used in simulation.

A consistency test would be needed for the UKF to detect divergence, which would

require more memory and computational resources. Interested readers are advised

to read [51]; however, as we do not intend to use the UKF for tracking respiratory

motion, we will not be checking its consistency.
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Figure 4.15: RMSE of θ (left) and a1 (right) tracking errors in test case # 6
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In this section, we have compared the newly developed filter, ExKF, with two tradi-

tional filters. Below are the summary of conclusions drawn from the simulations that

are beneficial for us while tracking a quasi-periodic signal such as respiratory motion.

1. From first two cases, the region where the Fourier series coefficients showed a

decay ratio of at least 0.5, ExKF can converge to true coefficients while EKF1,

EKF2 and UKF frequently cannot. Whenever there is another filter that can

converge to the true model, ExKF is demonstrated to be at least on par with it

with the unlikely choice of estimating the initial angle perfectly. Under nonzero

initial angle errors, ExKF converges the fastest.

2. ExKF provides better state estimates both when the coefficients of the quasi-

periodic signal change (case 4) and when the frequency of respiration change

(case 5); this implies that respiratory motion can be tracked with less errors

using ExKF.

3. UKF and EKF1 frequently have convergence problems.

4. EKF2 rarely has convergence problems, but it is generally slower than ExKF.

Our expectation from these simulation studies is that ExKF should also be the best
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filter in tracking respiratory motion, with the fastest convergence irrespective of the

initial error in θ. This is expected to hold on real data as well. However, we are aware

of the fact that simulations are performed for a finite order model, whereas infinitely

many coefficients can represent a periodic or quasi-periodic signal. It is possible that

some coefficients may adapt to this high frequency components or completely avoid

modeling it.

4.3 Experimental Results for Filter Comparison

4.3.1 Experimental Data Collection

This section describes the environment as well as the way measurements were taken

to form the experimental database. Measurements are the outputs of position sensors

we will introduce in detail. Position sensors are placed on front thorax or front ab-

domen of mechanically ventilated patients under general anesthesia to record respira-

tory motion. Respiratory motion measurements were collected by Elmed Electronics

& Medical Industry & Trade Incorporated [52] with our collaboration and comprise

of the motion traces observed at the sternum of patients, which is the frontal bone con-

necting ribs. The choice of such a placement is solely due to the recommendations of

the operating room staff in order not to endanger the contamination of surgical ster-

ile zone. Thanks to Elmed that organized the data collection environment, we are in

possession of three respiratory motion records that we will use in our trials with real

data in this thesis work: a regular breathing pattern for a 41-year-old, slightly over-

weight female (which will be used extensively in this study as patient 1 if not other-

wise stated), a motion pattern with DC shift irregularities belonging to a 51-year-old,

slightly overweight male (patient 2) and a motion pattern with DC shift & amplitude

changes belonging to a 28-year-old male of normal weight (patient 3). During the

data collection, all three patients were lying on their backs and they were undergoing

laparoscopic surgeries. Motion records were taken approximately 15 minutes after

the start of the operation. We are only interested in the type of breathing patterns

present in these records. Age, sex and weight information is presented here for the

sake of completeness as we do not intend to infer any information from these vari-
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ables. That is because the number of samples is limited to draw any conclusions,

causing us to resort to the results that was stated in section 2.2: that the respiratory

motion is "independent of age, sex, height or body weight" [25].

Sensors used in collecting breathing data from the described patients belong to two

classes of sensors: electromagnetic and optical position tracking systems. NDI Au-

rora [11] is one of the few commercially available products that can be used for elec-

tromagnetic position measurements. It uses a magnetic field generator (see Fig. 4.17

top left) to sequentially excite three orthogonal coils at every measurement cycle to

obtain the position and the orientation of the tip of the sensor by measuring the in-

duced voltages across the coils. Together with its required peripherals for amplifica-

tion, digitization and processing, this sensor can measure the relative coordinates of

field detecting coils which changes according to the breathing pattern of the thorax of

the patient. When one considers the field generator, coils and peripherals as a system,

its output is the position and orientation measurement of coil tips without requiring

external inputs. We are inherently assuming that regular or irregular breathing motion

is to reflect itself to external breathing motion which we can measure with a position

sensor and the measurements we get from the output of NDI Aurora are indicators of

breathing regularities. NDI Polaris, which can be seen in see Fig. 4.17 center left, is

an optical position tracker to record breathing patterns and it uses an infrared illumi-

nator to get the position of infrared reflective marker by using its two detectors. This

optical measurement system gives more accurate measurements than its electromag-

netic counterpart. Bottom left Fig. 4.17 belongs to the measurements taken by the

NDI Aurora system, which are more noisy than bottom right Fig. 4.17 belonging to

the NDI Polaris system. The main advantage of the electromagnetic position sensor

over its optical tracking counterparts is that no line of sight is required between the

field generator and the coils. This is the main reason for choosing it for data collection

because obstruction of view is very likely in an operating room with various medical

devices that are present.
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Figure 4.17: NDI Aurora field generator (top left) and field detecting coils (top right),
NDI Polaris IR illuminator & detector (center left), IR reflector (center right) obtained
from [11]. Respiratory motion measurements recorded with Aurora (bottom left) and
Polaris (bottom right)
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4.3.2 Results from Own Setup Data

What follows next is the demonstration of filtering performances on mechanically

ventilated patients in the real environment described in section 4.3.1 from which real

data was obtained.

One of the methods that we have used without any modifications is data dimension-

ality reduction using PCA. Although this simplifies our filtering problem, processing

each dimension independently may increase the prediction accuracy. Krauss et al.

[53] compared several models and found that PCA decreased the accuracy in track-

ing. They have also found out that the decrease in accuracy is dependent on the

prediction model used; however, in none of their comparisons error deterioration was

more than %5, so such an investigation is unlikely to greatly improve our estimation

performance. Yet, processing data without applying of PCA can be informative to see

whether the data shows any hysteresis, which may help us in phase estimation. We

will present the filtered output without PCA at section 5.1.

Data is preprocessed using PCA to remove the DC offset of measurements as well as

to project it to a subspace where the variance of data is maximized. See Fig. 4.18 for

an example of this input output relationship, where PCA1 is to be fed to our filters.

The order of the model is chosen asm = 5, which will be shown in the next chapter as

the optimum one. Measurement standard deviation is given as
√
R = 0.0137 mm for

each of the x, y, z axis of the Aurora 6-DoF magnetic tracker [54]; and since the PCA

operation does not alter the variance of data (and equivalently noise) measurement

standard deviation is empirically set to
√
R = 0.0137. As for the tuning of the process

noise, angular velocity variance is set to a small value to reflect our belief in the almost

exact periodicity under fully mechanical respiration (
√
σω = 0.0001). Coefficient

covariances were gradually decreased under random walk behaviour were observed

for all coefficients. Initial state estimates follow a similar pattern as in the simulations

(i.e.
[
0 1 0.5 0.52 . . .

]
): these estimates are also in accordance with the FS

coefficients given at the beginning of this chapter. Such a good estimate is of benefit

especially for UKF and EKF2 as they have poorer convergence properties. Initial

standard deviations for coefficient estimates are given a large value of 1, slightly
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Figure 4.18: PCA inputs and outputs

larger than one third of the peak to peak amplitude of the observed signal: this was

done with the assumption that the FS coefficients may not be larger than the amplitude

of the signal, which clearly is the case if one refers to Fig. 4.1. Breathing frequency

is ω0 = 2π 16
60

(for 1/5 breaths per second) with high confidence (Σ0,ω = 10−4) as the

patient is mechanically ventilated with 16 breadths per minute. Initial angle estimate

is θ0 = 0 with a confidence level that is bounded it between −π and π (Σ0,ω = (π
3
)2).

The results can be seen in Fig. 4.19. EKF2 has an initial overestimation of the out-

put variance (top right subfigure) and it cannot handle wrong initial angular position

estimate, as the value of a1 stays around 0. EKF2 tries to explain the oscillatory be-

haviour of the output by altering the values of Fourier series coefficients instead of

tracking the current angle (top left figure). UKF, on the other hand, underestimates

the output variance and only after 10 seconds of oscillatory behaviour it can track the

output (center right subfigure). ExKF could capture the exact output around t = 5

seconds (bottom right subfigure). ExKF also shows a more stable convergence than

UKF if one examines the variance associated with the predicted output.

As the initial estimate of θ was important during simulations, we wanted to try two

different values for it. The results for θ̂0 = π/2 can be seen in Fig. 4.20. As the
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Figure 4.19: Experimental results on real data - correct angular frequency estimate,
predicted outputs (left) and predicted states (right) with θ̂0 = 0

tracked signal is the same as the previous case, the coefficients should converge to

the same values. EKF2 again overestimates the initial output variance, although the

amount of overestimation is much less than the previous case and it cannot track the

output as it is the case for θ̂0 = 0. UKF greatly underestimates the output variance in

this case, resulting in premature convergence of a1 to a wrong value. This premature

convergence results in increased output variance at around t = 6 seconds and wrong

output estimation after that point. ExKF achieves output convergence in about t = 5

seconds and its state estimate a1 is equal in magnitude to that of the previous case. As

we have stated at the end of section 4.1 that we are only interested in the amplitude

of a1, reflecting its sign to θ, both converged values are equivalent.

Figure 4.20: Experimental results on real data - correct angular frequency estimate,
predicted outputs (left) and predicted states (right) with θ̂0 = π/2
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With θ̂0 = π, overestimation of initial output variance by EKF2 further decreased,

enabling EKF2 to be able to track the output. UKF again fails to converge to the true

output. Both EKF2 and ExKF can achieve output convergence in about 5 seconds if

one examines the left plot given in Fig. 4.21. EKF2 converges to a negative value

of a1 and ExKF converges to its positive value, with both being equivalent with the

justification given in the last sentence of the paragraph above.

Figure 4.21: Experimental results on real data - correct angular frequency estimate,
predicted outputs (left) and predicted states (right) with θ̂0 = π
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Figure 4.22: Experimental results on real data - wrong angular frequency estimate,
predicted outputs (left) and predicted states (right)

One last trial was performed for estimating the breathing fundamental period incor-

rectly as 0 with all other parameters as stated at the beginning of this section. As can

be seen in Fig. 4.22, ExKF and EKF2 show divergent estimates while the UKF tries

to track the output by altering the coefficients. Its divergence can only be detected by
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looking at the sequence of state residuals and check whether they show a chi-square

distribution, which would increase both the memory and computational requirements.

As a final remark, note that the measurements y in ExKF predictions (bottom left plot

in Fig. 4.22) frequently fall outside of the 3σ range unlike the case in our simulations.

This indicates that process noise tuning is incorrect for some states, which is expected

as the manual filter tuning is prone to errors.

Results from these trials indicate that,

1. Conclusions from simulations are valid from the previous section, in the sense

that ExKF is better at tracking respiratory motion. Its convergence speed is

faster than UKF, and is comparable to EKF2. However, in our trials with three

different angle estimates, it is the only filter that achieves convergence in all

cases whereas the other two could not achieve convergence in 2 out of 3 cases.

2. Manual tuning of all of the filters are erroneous; thus, there is a need for auto-

matic process noise tuning for better accuracy at tracking.

3. Building another filter for tuning on top of a slow or frequently divergent one

can make the tuning process problematic. That is why we won’t be proceeding

with the two filters, EKF2 and UKF, in the next section.
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CHAPTER 5

SENSITIVITY ANALYSIS IN FILTER TUNING OF OUR

BREADTH TRACKING SYSTEM

In this chapter, we will be tackling the sensitivity of tuning of our filter to various

parameters. First, we will evaluate how much information is lost due to the applica-

tion of PCA for data projection. Then, process noise covariance tuning results will be

presented in section 5.2 using artificially generated data in order to see the effect of

stopping criterion as well as the number of data points used in each run. In the same

section, we will analyze how the accuracy of tuning is affected by these parameters

by comparing the tuned variances against the simulated ones. In section 5.3, we will

evaluate the combined performance of ExKF and its tuning on the respiratory records

of mechanically ventilated patients based on output estimation accuracy as well as the

fitness to the assumed Gaussian model.

5.1 Filtering Without PCA

In this section we will evaluate how much information is lost due to the usage of

PCA and the projection process. Fig. 5.1 shows a portion of data and its projection.

Examining the top view of this data, it is apparent that the hysteresis information is

lost with this projection.

Filtering all three dimensions separately gives the filtered estimates shown in Fig. 5.2,

where the top row is for raw x measurements, the second and the third ones are for

raw y and z measurements, and the last row is for the processed data. Now, as can be

seen in the figure, the ExKF can process each dimensions separately, as well as their
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Figure 5.1: Original measurement and its projection, arbitrary 3D view (top) and top
view (bottom)
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projection onto the first PC. We will examine the amount of information loss through

the first order coefficient estimate a1 by making use of the cursor measurements as

follows:

√
a2

1,x + a2
1,y + a2

1,z = 1.208 > a1,PC = 1.204

The amplitude of motion captured by the three Kalman filters, one for each dimen-

sion, is larger than the amplitude of information captured by the first PC. However, if

we compare their amplitude ratios, a1,PC is greater that 99% of
√
a2

1,x + a2
1,y + a2

1,z.

That is why, the information carried in the first PC is sufficient for respiratory mo-

tion prediction and processing each dimension separately unnecessarily increases the

computational cost of filtering by three times.

5.2 Kalman Filter Tuning in Simulation

5.2.1 Effect of Varying the Stopping Criterion

In this section, tuning parameter selection process is justified through simulations.

The stopping criterion is the 2-norm of the updated covariance being less than a

threshold, that is, when ||Ql − Ql−1|| < ε and we will start with the justification

of the first parameter ε which terminates the expectation maximization algorithm. We

adopt the same parameters used in case 4 of the simulation section 4.2 which are

qω = 0.0012 and Qab = 0.0052 diag(0.1, 1, 1, 1) to reflect our belief that mechan-

ical ventilation allows strict periodicity through ω. Initial covariance estimates are

chosen as 1000 times the original ones and ε = 10−6. This value of ε is changed

within this subsection to see its effect on the process noise convergence. The other

parameter chosen for this tuning is the number of data points used for training, with

N=300 to cover 3 breathing cycles. This parameter will also be altered at a later stage

of this analysis (section 5.2.2) to record its effect on filter tuning. The result of the

experiment with ε = 10−6 can be found in Fig. 5.3. The expectation maximization

algorithm stops after 44 iterations and it can bring the coefficient variances to approx-

imately 10 − 20 times the real one as can be seen in Fig. 5.3.b-d. More specifically,
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Σa1 in b, Σa2 in c and Σb2 in d are 11, 12 and 13 times their true values. However,

since the covariances associated with angular position and speed are low, errors in

their estimates are large when compared to the real ones, which can be seen in Fig.

5.3.e-f. This shows that either the stopping criterion needs to be decreased or the EM

algorithm may not be run only once. The latter also makes sense as the process noise

covariance does not have to be stationary and online EM is needed for adjustments

whenQ changes.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.3: Simulation results of variance estimates for overestimating the process
noise with a single stopping criterion as ε = 10−6 (one trial)
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The basic remedy to fix the residual errors in variances is decreasing ε lo a lower value

although this would increase the computational requirements of the EM algorithm.

Our trial with decreasing ε to 10−8 provides far better variance estimates as can be

seen in Fig. 5.4. Looking at Fig. 5.4.b, it can be seen that the variance of the first

FS coefficient can be estimated to a value of 1.1 times the real one, which is an

acceptable level as compared to the manual tuning procedure. The other variance

estimates show slight improvements as well: Σa2 reaches 11 times the real one (Fig.

5.4.c) as compared to the value of 12 for the case with ε = 10−6 while Σb2 in Fig. 5.4.d

remains at 14 times the actual one. The number of iterations the EM algorithm needs

increases to approximately 450 iterations, almost a tenfold increase as compared to

ε = 10−6. This increase can be justified with the fact that iterations are performed

even for smaller updates inQ thanks to smaller stopping criterion.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.4: Simulation results of variance estimates for overestimating the process
noise with a single stopping criterion ε = 10−8 (one trial)
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Forcing the solution a bit further with further decreased ε to a value of 10−10 gives

the result in Fig. 5.5. As compared to the previous case with ε = 10−8, variance

associated with a1 is underestimated this time, see Fig. 5.5.b. Variance estimate of a2

in Fig. 5.5.c shows a slight and insignificant improvement of decreasing from 11 to

10 times the original variance while the variance estimate associated with b2 in Fig.

5.5.d does not show any improvement. Only estimates that benefit from this decrease

are the variance estimates of θ and ω, but that comes at a huge expense as the number

of iterations needed reaches the value of 4400, another tenfold increase. What is

undesirable is that the combined effect of filtering and tuning lasts slightly less than 50

seconds, on a PC with a CPU speed of 3.20 GHz; this causes our prediction algorithm

to almost lose its ability to operate on real time as 1000 data points correspond to a

data sequence covering a time interval of 50 seconds. That is why further decrease of

ε will not be beneficial and will not be tried.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.5: Simulation results of variance estimates for overestimating the process
noise with a single stopping criterion ε = 10−10 (one trial)
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As an alternative of decreasing ε more, we tried setting different values for norm

matrix updates: ε1 for the subblock of coefficient covariance estimates and ε2 for

angular velocity and position estimates. Such settings yield approximately the same

results as obtained in the previous cases, the results of which we shall not report

here due to its insignificance. The values we chose were ε1 = 10−6 and ε2 = 10−8

which give almost identical results to that of ε = 10−6; the choice of ε1 = 10−6 and

ε2 = 10−10 produces almost equivalent results as ε = 10−8. That is why, we omit

their inclusion in this thesis work.

Instead a better solution was found using N number of data points in each EM itera-

tion, performing EM algorithm at least once upon the arrival of a new data point and

stopping with the same criterion as in the case that can be seen in page 92 which is

iterating until L2 norm convergence. By setting ε = 10−6, the result can be seen in

5.6. Initial convergence jumps are comparable to those in Fig. 5.3. As an example,

consider the plot given in Fig. 5.6.b: Σa1 starts with 1000 times the true variance

and the initial iterations of EM at N=300 brings this value to 200 times the true one

exactly like the one EM is run once at N=300 without online updates as in Fig. 5.3.b.

Estimated coefficient variances do show some oscillatory behaviour after approaching

the true variances. Estimated variance of ω, on the other hand, oscillates somewhere

between 1.5 and 0.5 times the true variance, far better than the ones in the coefficients.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.6: Simulation results of variance estimates for overestimating the process
noise with a single stopping criterion ε = 10−6 and continuous updates (one trial)
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Further decreasing or increasing ε only changed the initial amount of jumps observed

until the stopping criterion is met. As an example, left hand side of the Fig. 5.7 shows

the variance estimates of a1, b2 and ω for ε = 10−8 while the right hand side plots

show the variance estimates of the same variables for ε = 10−4. Setting ε = 10−8

gives the correct variance estimate for a1 even in the initial iterations at N=300 as can

be seen in Fig. 5.7.a. However, angular velocity convergence in Fig. 5.7.e and 5.7.f

are still comparable in the sense that convergence is first achieved at around N=1000.

The oscillations observed after estimates reach the true variance values still persist:

an order of magnitude of error can be seen for Σb2 with ε = 10−8 in Fig. 5.7.c and an

order of magnitude of error can be seen for Σa1 with ε = 10−4 in Fig. 5.7.b. Note that

there are no multiple EM iterations after N=300 in all plots as there are no step-wise

changes after N=300. That is why it can be concluded that this oscillatory behaviour

is independent from the value of ε.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.7: Simulation results of variance estimates for overestimating the process
noise with a single stopping criterion ε = 10−8 (left) and ε = 10−4 (right) (one trial)
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Table 5.1 shows the approximate convergence times for different values of ε. Al-

though the steady state behaviour is oscillatory, what we take as rise time is the first

time the variance reaches the value 10% close to the actual one. a0 is disregarded

in all of the coefficient variance rise times as it takes approximately 2500 number of

epochs for it to reach the true value no matter what the ε value is. With ε = 10−2,

the EM algorithm always meets the stopping criterion, resulting in a single EM run

each time new data arrive. With ε = 10−4, EM runs 4 times more initially. Rise times

of all variances remaining almost the same. ε = 10−6 improves the rise times of θ

and ω with a slight additional computational burden. Choosing ε = 10−8 improves

coefficient variance rise times by approximately 20% by also doubling the number of

EM iterations. As its effect on rise times is substantial, we opt to choose ε as 10−6.

Table 5.1: Simulation Results - Total Number of EM Iterations and Approximate Rise
Times for Different Values of ε

ε 10−2 10−4 10−6 10−8

Coefficient Var. Rise Times 500 500 500 400
θ Var. Rise Time 1500 1250 1000 1000
ω Var. Rise Time 1500 1500 1000 1000

Number of EM Iterations 2196 2200 2239 4544

One final remark before we proceed to the effect of number of data points used in

EM algorithm is that the initial estimate inQ should be chosen greater than the actual

one for ε to be useful. That is, if Q̂0 has much smaller eigenvalues than Q, the

stopping criterion would always be satisfied with |10−6 − ε110−6| < 10−6 for a small

positive number ε1. That is why, overestimating Q̂0 should be preferred for ε to be

effective in speeding up convergence. Otherwise, the results we obtained showed that

convergence speed is as slow as setting up a small value of ε = 10−2.

5.2.2 Effect of Varying the Number of Data Points

In this section, we will examine how changing number of data points used in our

simulations affects the convergence properties of the EM algorithm. At first, we will

start the tuning process with less number of data points than a breathing period. To do

so, we choose the number of data points as N=50, covering half period of a breathing
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cycle. The result can be seen in Fig. 5.8. It is clear from these results that the

EM algorithm fails to capture the true variances, especially with Σθ and Σω being

divergent in Fig. 5.8.e and 5.8.f, respectively.

To understand the effect of this divergence better, it is worth remembering the appar-

ent convergence achieved by UKF under case # 6 in section 4.2. In this case, UKF

has an apparent output convergence even if the estimated FS coefficients do not show

a random walk behaviour. Interested readers are advised to refer to Fig. 4.16 on page

80 to reexamine this behavior. This case shows that Kalman filter does not take into

account whether a state innovation sequence shows a random walk behavior as long

as the output convergence is achieved, despite the fact that the underlying model does

show a random walk behavior. Such a misleading output convergence is more likely

when we employ two Kalman filters: one for state prediction and one for process

noise prediction.

This divergence can be explained as follows: initial output convergence is achieved

by altering the values of θ and ω thanks to their initially overestimated covariances.

Then, this causes the EM algorithm to further increase the variances associated with

these parameters. This, in turn, results in larger changes in θ and ω. The two Kalman

filters continue to engage in this vicious circle despite the violation of Gaussianity

in state innovation sequences in θ and ω. Moreover, EM takes approximately 10000

iterations trying to explain the measurement, that is, trying to achieve output conver-

gence.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.8: Simulation results of variance estimates for overestimating the process
noise with ε = 10−6 and N=50

Increasing N to 100 brings it to a critical limit in terms of estimated variance conver-

gence. As the frequency of respiration may either (i) increase or (ii) decrease during

the simulations, the EM algorithm may (i) capture or (ii) fail to capture a full cycle of

respiratory motion. A case where the EM is able to converge is shown in Fig. 5.9.a

and a case there it is not able to converge is shown in Fig. 5.9.b. In our trials, the

results were divergent more than 50% of the time. The EM algorithm takes approxi-

mately 2760 evaluations whenever the model is convergent, while it took more than

60000 evaluations for the result given in right hand side of Fig. 5.9 even when the

simulation was stopped with reduced number of epochs as 1700.
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(a)

(b)

Figure 5.9: Simulation results of variance estimates for overestimating the process
noise with ε = 10−6 and N=100, convergence (top) and divergence (bottom)
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Now, the convergence results for N=200 and N=300 can be seen in Fig. 5.10 (on

page 104) and for N=400 and N=500 can be seen in Fig. 5.11 (on page 105), with

number of iterations EM performed as well as computational time presented in Table

5.2. All window lengths provide almost comparable predictions of Σa2 and Σb2 when

one compares these two figures: a similar order of magnitude of error is observed in

subplots c and d no matter what the number of data points is used. Increasing number

of data points used in EM improves the performance of the estimator in finding Σa1

while its performance deteriorates for Σω. To demonstrate this, we shall compare the

Fig. 5.11.b and 5.11.f for the case with N=400 to the Fig. 5.11.h and 5.11.l for the

case with N=500, where this is the most apparent. Starting with the process noise

estimate of a1, Σa1 is chosen as 1.25 ·10−6 in both simulations. Using 500 data points

bounds Σ̂a1 between 0.5 to 2 · 10−6 while using 400 data points bounds it between

0.3 to 1 · 10−6, where the latter bound does not even contain Σa1 . As for the process

noise estimate, Σω is chosen as 5 · 10−8. Using 500 data points bounds Σ̂ω between 1

to 10 · 10−8 while using 400 data points bounds it between 1.1 to 5 · 10−8, where the

latter has a tighter bound.

As for the computational burden, increasing N decreases the initial amount of iter-

ations needed until reaching the stopping criterion. To clarify this point, we have a

total number of 2500 data points and a training window size of N=200 implies that the

EM algorithm runs 2300 times if the stopping criterion is always satisfied, giving us

the remaining number of iterations that are run initially as 132. Thus, the remaining

number of initial iterations decreases with increasing N. This makes sense if one con-

siders the fact that more information is embedded in a window length of larger size;

therefore, it should be easier to extract this information with less number of iterations.

However, this does not imply less computations as it is shown in the table with in-

creasing computational cost as N increases, limiting our ability for real time tracking.

We have decided to stop evaluating the effect of increasing N at 500 because even at

this rate, the algorithm is barely able to run at real time. That is, for a sampling rate

of 20 Hz, 2500 data points correspond to a data duration of 125 seconds. A real time

tracking algorithm should process this data in less than 125 seconds, that the choice

of N=500 barely achieves.

Before proceeding to experimenting on real data from breathing patterns of a me-
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Table 5.2: Simulation Results - Total Number of EM Iterations and Approximate Rise
Times for Different Values of ε

N 50 100 200 300 400 500
Number of Iterations NA NA 2432 2245 2139 2037

Initial Number of Iterations NA NA 132 45 39 37
Computation Time (sec) NA NA 62 89 111 118

chanically ventilated patient, our conclusions from this section are:

• The EM algorithm does provide better results that can adapt to underlying pro-

cess noise. However, its accuracy in estimating coefficient noise variances may

be accurate up to an order of magnitude. This accuracy can be increased by

increasing the number of data points used in training at the cost of deteriorat-

ing accuracy in estimating angular velocity variance. However, elimination of

covariance estimate errors does not seem possible with this approach due to the

nonlinearities involved in state estimations.

• Finite order modelling of respiratory motion may cause several problems when

we use real data. If the assumed order is insufficient in verifying the model

against real data, covariance estimation may blow up, which we will show in

the next section.
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Figure 5.10: Simulation results of variance estimates for overestimating the process noise with ε = 10−6, N=200 (left) and N=300 (right)
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Figure 5.11: Simulation results of variance estimates for overestimating the process noise with ε = 10−6, N=400 (left) and N=500 (right)
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5.3 Real Data

In this section, we will evaluate the combined performance of ExKF and its tuning

on the respiratory records of mechanically ventilated patients. The first pattern of

respiratory motion record is the same as in section 4.3.2 of the previous chapter. We

will restate the choice for ω0 and θ0 for the sake of clarity. "Breathing frequency is

ω0 = 10π
60

(for 1/5 breaths per second) with high confidence (Σ0,ω = 10−4) as the

patient is mechanically ventilated with 12 breadths per minute. Initial angle estimate

is θ0 = 0 with a confidence level that bounds it between −π and π (Σ0,ω = (π
3
)2)."

Our initial trials started by changing the number of data points used in the EM algo-

rithm. Unfortunately, no matter what the order of the model used was, we observed

that a training window less than N=4 breathing cycles gave divergent results for over-

estimating the process noise 10000 times the manually tuned one. That is why, we

present the real data run starting with N=4 cycles.

For a second order Fourier series model m = 2, the convergence results can be seen

in Fig. 5.12 on page 109. As can be seen in Fig. 5.12.b, expected value of one of the

highest order Fourier series coefficients, in this case a2, does not show a random walk

behaviour bearing the burden of finite order approximation. What is worse is that the

EM algorithm seems to favor this non-Gaussian behaviour. This can be seen from the

plots of expected value of a2 and its variance in Fig. 5.12.b and 5.12.h, respectively.

EM first runs at around N1=400 corresponding to t=40 seconds. Especially after this

instant, a2 adapts to the high frequency content of the data which can be seen in Fig.

5.12.b. That is, its estimated value captures the positive peaks observed at the output

in Fig. 5.12.m when the mode of respiration changes from exhale to inhale. More-

over, changes in a2 do not behave like a Gaussian random walk model due to the

periodicity of its estimated value. Also, the information carried in this coefficient is

corrupted because a2 does not converge to its true value of 0.45 which we will when

we increase the model order. Estimated output obtained by ignoring this corrupted

coefficient can be seen in Fig. 5.12.m with an RMSE of 0.053. Large errors seen

in the estimated output indicate that a second order model fails to track respiratory

motion. On the computational performance, EM takes approximately 16000 itera-

tions to fit this model at an approximate time cost of 390 seconds. This huge cost of
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computational burden makes sense as the EM tries to find a better alternative while

the assumed model cannot converge to the underlying one.

Increasing model order to m = 3 gives the results given in Fig. 5.13 on page 110.

Compared to the previous case, a2 fits the assumed model with a value of 0.45. This

time, it is the third order coefficient b3 that does not fit the assumed random walk

model, taking the cost of a finite order model approximation. This can be seen in Fig.

5.13.g. Information captured by this coefficient is corrupted just like the information

captured by a2 is with a model order m = 2. Estimated output obtained by excluding

b3 can be seen in Fig. 5.13.q with an RMSE of 0.021. When one compares the

estimated output in Fig. 5.13.q for m = 3 to that of m = 2 in Fig. 5.12.m, estimated

output is found to approach the measured one with increased model order. Also,

the number of EM iterations drops significantly to a number of approximately 7900

iterations calculated in about 220 seconds. This performance increase in both the

computational performance as well as the improved output estimation accuracy is an

indication of approaching the true model and verifying it with actual data.

Setting m = 4 and m = 5 yield similar results, with one of the highest order coeffi-

cients overfitting the high frequency content of measurements. The case for m = 5

is given in Fig. 5.14 on page 111. We are skipping the plot for m = 4 for the sake

of not spreading this section as it gives similar results as for m = 5. We are only

reporting m = 5 as it is the highest order model that verifies the model based on

measurements with the lowest computational time of 161 seconds, which makes this

model good for real time tracking as the computational cost associated with this is

less than the data duration which is 200 seconds long. The magnitudes of coefficient

estimates a5 and b5 after convergence are about 0.1 and 0.02 as can be seen in Fig.

5.14.f and 5.14.j, respectively. Having
√
a2

5 + b2
5
∼= 0.102, their magnitude is much

smaller than the amplitude of measured respiratory motion, which is approximately

3, and ignoring these coefficients in the output estimation adds little error to output

estimation error. Estimating the output by ignoring these coefficients results in a max-

imum error of 0.25 mm at the instants where mode of respiration changes from inhale

to exhale (which are the sharp tips observed at positive values of the measured signal

constituting a small portion of the breathing cycle). Apart from this, the estimated

signal fits fairly well the measured one with an RMSE of 0.016.
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Increasing m further to 6 gives the result in Fig. 5.15 on page 112. Non random walk

behaviour is observed in a5 with a6 convergent to zero, b5 and b6 finally converging to

zero. Increasing m to 6 did not improve the model as it is again the 5th order coefficient

that accounts for the high frequency content. Total runtime has also increased to

approximately 190, thanks to the added complexity with no beneficial reason (output

RMSE is still at 0.016 as in the case with m = 5) despite the decrease in the total

number of EM iterations to approximately 4600.

As a final remark on this case, computational costs associated with each approxima-

tion order are given in Table 5.3. Average EM and average update time are increasing

with increasing model order, and average update time is affected more severely than

the average EM time from this increase. Number of EM iterations, on the other hand,

are decreasing. What dominates the total runtime is the duration of EM algorithm:

it is roughly 1000 times more costly than average ExKF update time. That is why,

decrease in total runtime should be explained by the number of EM iterations and its

average evaluation time: percentage decrease in number of EM iterations are larger

than percentage increase of average EM time when we gradually increase m up to 5,

which does not hold when m is increased further.

Table 5.3: Filtering of Real Data - Total Number of EM Iterations, Total Runtime and
Output RMSE vs. Model Order for a Training Window Covering 4 Breathing Cycles

Order m # of EM
Iterations

Total
Runtime

(sec)

Average
Update Time

(µsec)

Average
EM Time

(msec)

Output
RMSE
(mm)

2 15754 392 39 25 0.0531
3 7983 215 46 27 0.0211
4 5200 170 49 30 0.0171
5 4783 161 53 31 0.0160
6 4679 190 59 34 0.0160
7 4341 186 65 37 0.0163
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Figure 5.12: Estimated coefficients (top left), estimated variances (top right) and estimated output using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=2 and N=4 breathing cycles
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Figure 5.13: Estimated coefficients (left), estimated variances (center) and estimated output (right) using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=3 and N=4 breathing cycles
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Figure 5.14: Estimated coefficients (left), estimated variances (center) and estimated output (right) using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=5 and N=4 breathing cycles
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Figure 5.15: Estimated coefficients (left), estimated variances (center) and estimated output (right) using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=6 and N=4 breathing cycles
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Increasing the number of data points used in the EM algorithm to cover 5 breathing

cycles instead of 4 gives similar results to the previous case. The fifth order coefficient

still does not behave in accordance with the assumed model, which can be seen in

Fig. 5.16.k and Fig. 5.17.f for m = 5 and m = 6 with an output RMSE of 0.0159

and 0.0158, respectively. There is again no improvement in increasing m to 6; high

frequency content is still captured by the fifth order coefficient while the average

EM and ExKF update cost increased from 41 to 45 msec and from 63 to 60 µsec,

respectively.

As for the computation complexity, computational costs associated with each approx-

imation order are given in Table 5.4. In accordance with the case when the number

of data points covers 4 breathing cycles, average update and EM times are again in-

creasing with increasing m while the total number of EM iterations are decreasing.

Different from the case of covering 4 breathing cycles, this time least amount of total

runtime is for the model with m = 4. However, as the the fifth order model adds to

the accuracy of output estimation with non-zero fourth order coefficients (a4
∼= 0.08

in Fig. 5.4.c and b4
∼= 0 in Fig. 5.4.e), the slight increase in computational require-

ments is acceptable. As a further justification of this acceptability, average EM time

which dominates the total computational cost (41 msec) is less than the data arrival

period which is 50 msec.

Table 5.4: Filtering of Real Data - Total Number of EM Iterations and Total Runtime
vs. Model Order for a Training Window Covering 5 Breathing Cycles

Order m # of EM
Iterations

Total Runtime
Time (sec)

Average Update
Time (µsec)

Average EM
Time (msec)

2 13638 398 40 29
3 7957 247 44 31
4 4301 162 47 36
5 3914 177 53 41
6 3881 201 60 45
7 3848 197 66 48
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Figure 5.16: Estimated coefficients (left), estimated variances (center) and estimated output (right) using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=5 and N=5 breathing cycles
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Figure 5.17: Estimated coefficients (left), estimated variances (center) and estimated output (right) using coefficients up to the order where
coefficients fail to show a random walk behaviour for a model order m=6 and N=5 breathing cycles
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Next cases will be devoted to patients with more irregular breathing patterns as for

patient 2. Results for the second patient can be seen in Fig. 5.18. If one refers to

the measured output given in Fig. 5.18.z, where the measured output is magnified

between t = 80 and t = 100, it is apparent that this respiratory motion shows a DC

shift. Estimated value of a0 in the Fig. 5.18.a does not show a Gaussian random walk

behaviour. To see whether this behavior is in agreement with the measured signal, a

closer examination of the results is needed. The baseline shift at the output in Fig.

5.18.z starts around t ∼= 85 seconds. This leads the EM algorithm to an increase of

the variance associated with a0 around N ∼= 1800 (Fig. 5.18.m), which enables the

estimated value of a0 to increase its value around t ∼= 90 seconds (Fig. 5.18.a). This

increase makes sense when one compares the plots given in Fig. 5.18.y and 5.18.z,

where the plot in Fig. 5.18.z shows the estimated output obtained by ignoring a0

failing to capture this DC shift. This DC shift also hits the estimated value of ω as the

periodicity of the signal is violated, and this can be observed by the increase in Σω

estimate in Fig. 5.18.z around N ∼= 1800. However, thanks to adaptation of model

adaptation by EM, ω can gradually approach its steady state value as can be seen in

Fig. 5.18.x. Again, the behaviour of the fifth order coefficients is not Gaussian as can

be seen in 5.18.i and 5.18.k, just like the case where the breathing pattern was regular

as in patient 1.

As for its computational burden, the EM algorithm takes a total of 4467 iterations,

each with average EM time of 32 msec and each update took 53 µsec. The total

amount of runtime was 145 sec with an estimated output RMSE of 0.0203.
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Figure 5.18: Patient 2, estimated coefficients (left), estimated variances (center) and estimated output using coefficients up to 4th order
including a0 (right, top) and exluding a0 (right, bottom) for a model order m=5 and N=4 breathing cycles
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One last respiratory motion record can be seen in Fig. 5.19 from the third patient

with the most irregular breathing patterns showing DC level and amplitude shifts.

Convergence towards steady state variance values cannot be achieved by most of the

parameters (see 5.19.m, 5.19.s and 5.19.w). Increased value of a0 around t=75, 110

and 150 in Fig. 5.19.a is in agreement with the DC shift in the measured respiratory

motion when one examines the measured output at around t=75, 110 and 150 in Fig.

5.19.y, just like in the previous patient where only the DC shifts were observed. The

output estimation performance is also in agreement with the measurements as can be

seen in Fig. 5.19.y. However, most of the coefficients and ω do not follow a random

walk behaviour if one examines the plots in Fig. 5.19 from g to l: what this indicates

is that the chosen model is a bad fit for this breath pattern. Respiratory motion with

high irregularity cannot be modeled with our model. As a side indicator of this: the

EM algorithm takes approximately 10500 iterations, a number comparable to that we

get when greatly underestimating the model order for a regular breathing pattern with

m = 2. That is, number of EM iterations increases greatly when there is a mismatch

between the assumed model and the true one. What is worse is that the processing of

data corresponding to a duration of 200 seconds took approximately 480 seconds, a

clear violation of real time tracking requirements.

In this section, we have evaluated the performance of our filter with the data collected

from three different patients: one with a regular breathing pattern, one with a breath-

ing pattern with DC shifts and one with amplitude and DC shifts. Our results indicate

that:

• Automatic tuning of process noise covariance matrix is easily achievable when

breathing is regular as it is the case for the first patient. The only problem

associated with this was the selection of model order. We have experimentally

decided that m = 5 was the best choice.

• Our model can handle the DC shifts in the output as was demonstrated with the

data from the second patient even though random walk behaviour is lost for a0.

The choice of m = 5 seems to be sufficient for this respiratory motion trace as

well.

• Data with frequent irregularities cannot be modeled with our assumed model
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which is clearly demonstrated in the base of patient 3 with DC shifts and am-

plitude changes. Although the output is seemingly captured, the violation of

Gaussian innovation in our estimated variables clearly indicate this unfitness.
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Figure 5.19: Patient 3, estimated coefficients (left), estimated variances (center) and estimated output using coefficients up to 5th order (right)
for a model order m=5 and N=4 breathing cycles
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, two traditional non-linear Kalman filters, EKF2 and UKF, are com-

pared against a newly developed ExKF called Exact Moment Matching Kalman Fil-

ter for tracking respiratory motion traces. Their performances are first compared in

terms of state convergence speeds using artificially generated data, ExKF has been

demonstrated to have the fastest convergence especially when the initial estimate in

θ is varied thanks to the theoretically derived mean and covariance calculations that

do not rely on approximations. Respiratory motion records were collected using NDI

Aurora electromagnetic tracking system from mechanically ventilated patients under-

going laparoscopic surgeries. Convergence effect was emphasized when we used the

real respiratory motion data, and we increased the model order to m = 5. Increased

degree of nonlinearity causes EKF2 and UKF to frequently diverge, while ExKF can

achieve convergence when the others failed.

EM based maximum likelihood estimation of process noise covariance is also eval-

uated. It is shown through simulation that variances associated with Fourier series

coefficients can be brought to an order of magnitude close to the true ones. When ap-

plied to real data, variances high order coefficients adapt to unmodeled high frequency

content; this case is especially pronounced when the model order is severely under-

estimated with m = 2 and m = 3. Using such observations as well as the associated

computational costs, the choice of m = 5 seems to be the best choice for respiratory

motion tracking. Moving on to more irregular patterns of breathing, our model can

handle and adapt to the level shifts observed at the output. However, with frequent

changes in amplitude and baseline shifts baseline shifts, real time requirements of the
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tracking algorithm is violated.

The studies we have come across to so far had only focused on the output estima-

tion error as the evaluation metric of the proposed state space model, without paying

much attention to the fitness of the underlying model. Although the fitness can be ac-

ceptable for the breathing regular breathing patterns and breathing patterns with level

shifts, the real time tracking ability of our method and the Gaussianity assumption

are clearly violated for patterns with frequent changes in amplitude on top of level

shifts. In conclusion, the proposed method is able to track respiratory motion traces

of mechanically ventilated patients but its computational cost needs to be improved

as will be discussed in the next section.

6.1 Future Work

We have implemented an online EM algorithm that updates the process noise co-

variance whenever a new measurement arrives. However, we still impose multiple

iterations by rerunning the EM until convergence is achieved. Although that enables

us to track regular and irregular breathing patterns with mild irregularities, real time

tracking of signals with high irregularities is impractical. Instead, one can try using an

online EM with forgetting factor to guarantee that EM is run only once at the arrival

of a new measurement in order to speed up the computations.

We have demonstrated that the effect of initial estimate in θ is crucial for the con-

vergence properties of the filters. In fact, when this angle is known, all three filters

have equivalent convergence speeds as the problem reduces to the estimation of states

of a linear time varying system. As an alternative to using a nonlinear KF, one can

try to tackle this tracking problem with a particle filter. However, it is quite likely

that a large number of particles would be needed even with m = 5. A marginalized

particle filter can also be used to marginalize out the angle (θ) dependence of our mea-

surement model, after which the measurement model becomes equivalent to a linear

time varying equation of the remaining states. This method seems to be a possible

candidate with promising improvements over ExKF that we have introduced.

As a final remark, biological systems are complex in the sense that a simple input-
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output relationship may not be obtained. However, recording and evaluating some

vital signs such as heartbeat rate and blood pressure may be of benefit for respira-

tory motion tracking, both of which are available in a clinical environment. These

vital signs are all effective in respiratory motion patterns of spontaneously breathing

patients. However, as far as we know, their effect on respiratory motion patterns of

mechanically ventilated patients have not been studied so far. They may initiate the

irregularities under mechanical ventilation and we may use such an information to

check whether our method may be used for tracking the respiratory motion. Even if

such a relationship may not be found, these signs may indicate that effect of anesthetic

agents has worn off, and this wearing off may initiate sudden breathing irregularities

as the mechanical ventilation is replaced with the spontaneous one. If such a relation-

ship can be found, it would improve the surgical safety as the operation can be halted

at those times.
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Appendix A

EFFECTS OF INTERCOSTAL MUSCLES ON BREATHING

Intercostal muscles have a peculiar way of assisting respiratory motion and will be

discussed here in some detail. Work presented here is based on what is so called

as Hamberger’s law [55]. Consider the diagram shown in Fig. A.1. Blue ellipses

represent two individual ribs, and intercostal muscles are shown as red lines. Their

orientation in space is as shown and the orientation is important for their functionality

in pulling the rib cage up or down. Spine acts as a pivot point for both inhalation

and exhalation while sternum moves freely with the ribs. To simplify the problem,

right hand side of the figure can be used with a single intercostal muscle represented

in 1D. When an external intercostal is contracted for inspiration, it pulls both ribs

closer to each other with equal force, f . This creates torques on both ribs, given as

τ1 = −f × r1 and τ2 = f × r2. Since the lower part has a longer lever arm, its torque

is greater in magnitude. Net overall torque for this case is pointing outwards (
⊙

)

and the resulting angular movement is in counter clockwise direction with a simple

application of right hand rule. Thus, the ribs should move upwards. The opposite

case occurs for internal intercostal muscle contraction with τ2 being smaller than τ1.
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