
A NOVEL DESIGN AND FABRICATION PARADIGM FOR 3D PRINTERS:
LIPRO

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

VAHID HASELTALAB

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

SEPTEMBER 2018

Approval of the thesis:

A NOVEL DESIGN AND FABRICATION PARADIGM FOR 3D PRINTERS:
LIPRO

submitted by VAHID HASELTALAB in partial fulfillment of the requirements for
the degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Ulaş Yaman
Supervisor, Mechanical Engineering Department, METU

Assoc. Prof. Dr. Melik Dölen
Co-supervisor, Mechanical Engineering Department, METU

Examining Committee Members:

Prof. Dr. Serkan Dağ
Mechanical Engineering Department, METU

Assist. Prof. Dr. Ulaş Yaman
Mechanical Engineering Department, METU

Assist. Prof. Dr. Evren Yasa
Mechanical Engineering Department,
Eskisehir Osmangazi University

Assist. Prof. Dr. Orkun Özşahin
Mechanical Engineering Department, METU

Assist. Prof. Dr. Sezer Özerinç
Mechanical Engineering Department, METU

Date: 06.09.2018

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Vahid Haseltalab

Signature :

iv

ABSTRACT

A NOVEL DESIGN AND FABRICATION PARADIGM FOR 3D PRINTERS:
LIPRO

Haseltalab, Vahid

M.S., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. Ulaş Yaman

Co-Supervisor : Assoc. Prof. Dr. Melik Dölen

September 2018, 103 pages

This study starts with highlighting some disadvantages of the conventional design

and fabrication pipelines of Additive Manufacturing (AM) processes. In order to

overcome the major drawbacks of the conventional pipeline, a novel design and fab-

rication pipeline called as LIPRO is proposed and it is implemented on two different

AM processes to illuminate its effectiveness on alleviating the disadvantages of the

conventional approaches. A single board computer is used to realize the method on

AM machines. The structure of the LIPRO based on different types of functions is

explained and the developed Python scripts are appended to the thesis. By employing

this method, some sample parts are fabricated with two AM processes; namely Fused

Deposition Modeling and Digital Light Processing. The details of this implementa-

tion are elaborated and the advantages are discussed throughout the thesis.

Keywords: Curve Offset Generation, Additive Manufacturing, Command Generation,

v

Fused Deposition Modeling, Digital Light Processing.

vi

ÖZ

3B YAZICILAR İÇİN YENİ BİR TASARIM VE ÜRETİM AKIŞI: LIPRO

Haseltalab, Vahid

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Ulaş Yaman

Ortak Tez Yöneticisi : Doç. Dr. Melik Dölen

Eylül 2018 , 103 sayfa

Bu çalışma, Eklemeli Üretim (EÜ) yöntemlerinde kullanılan geleneksel tasarım ve

üretim akışının sorunlarını tartışarak başlamaktadır. Geleneksel akışın sahip olduğu

dezavantajların üstesinden gelmek amacıyla LIPRO isimli yeni bir tasarım ve üre-

tim akışı önerilmiş ve başarımını göstermek amacıyla iki farklı EÜ yöntemi üzerinde

gerçekleştirilmiştir. Tek kartlı bir bilgisayar kullanılarak gerçekleştirilen yöntem 3B

yazıcılar üzerinde sınanmıştır. Birçok farklı fonksiyona dayanan LIPRO’un yapısı

açıklanmış ve geliştirilen Python kodları tez içerisinde sunulmuştur. Önerilen yöntem

iki farklı EÜ yöntemi, Eriyik Yığma Modelleme ve Sayısal Işık İşleme, kullanılarak

çeşitli parçalar üretilmiştir. Uygulanan yöntemin detayları tez içerisinde açıklanmış

ve avantajları tartışılmıştır.

Anahtar Kelimeler: Eğri Ofset Üretimi, Eklemeli Üretim, Komut Üretimi, Eriyik

vii

Yığma Modelleme, Sayısal Işık İşleme.

viii

Dedicated with love and thanks to my family, who have given me so much along the

way.

ix

ACKNOWLEDGMENTS

Hereby I would like to express my deep gratitude to my supervisor Assist. Prof.

Dr. Ulaş Yaman, for his generous support and guidance throughout my studies. His

constant encouragements have given me the confidence to complete this dissertation.

I also would like to thank Assoc. Prof. Dr. Melik Dölen for conveying his invaluable

knowledge that helped me at some points of this thesis.

The author also would thank the Scientific and Technological Research Council of

Turkey (TÜBİTAK) for granting the scholarship with the code 116E882.

I owe my sincere gratitude to my family who gives me strength and assurance through-

out my studies. I would like to acknowledge the invaluable assistance and counseling

of my deepest friend Dr. Reza Zeinali especially at the starting of my study. I also

appreciate the support of my friends Armin Taghipour, Sardar Vayghannezhad, Ba-

har Garehpapagh, Rasul Tarvirdilu Asl, Ramin Rouzbar and appreciate their intimate

friendships during these years.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF SYMBOLS AND ABBREVIATIONS xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Scope of the Thesis . 2

1.3 Limitations of the Study . 2

2 BACKGROUND . 5

2.1 Introduction . 5

2.2 Direct Digital Manufacturing 5

2.3 Design and Fabrication Pipelines 6

xi

.

.

2.4 Direct Slicing . 10

2.5 Implicit Slicing . 11

2.6 Curve Offset . 12

2.7 Digital Light Processing . 17

2.8 Fused Deposition Modeling 18

3 LIST PROCESSING LANGUAGE AND ITS PIPELINE 21

3.1 Introduction . 21

3.2 Generating Polygons . 23

3.3 Data Decompression . 23

3.4 Slicing . 24

3.5 Polygon Operations . 25

3.6 Transformations . 26

3.7 Path Sequence . 27

3.8 Curve Offset Generation . 27

3.8.1 Improved Morphological Operations on Boundary
Sets (IMOBS) . 28

3.8.2 Advanced Morphological Operations on Bound-
ary Sets (AMOBS) 28

3.8.3 Shapely . 29

3.8.4 Parameter Adjustment 31

3.8.5 Comparisons and Discussions 32

3.9 Controller Board . 36

xii

.

4 IMPLEMENTATION OF THE LIPRO ON AN FDM PRINTER . . . 37

4.1 Introduction . 37

4.2 Main Steps of the Conventional FDM Printing 38

4.3 Printing Scheme of the LIPRO 39

4.4 Test Prints . 43

5 IMPLEMENTATION OF THE LIPRO ON A DLP PRINTER 47

5.1 Introduction . 47

5.2 Conventional Approach . 49

5.3 Proposed Approach (The LIPRO) 51

5.3.1 Creating Bitmap Images 52

5.3.1.1 Image Generation Algorithms 54

5.3.1.2 Comparison and Result 55

5.3.2 Printing . 57

5.4 Results and Discussions . 61

6 CONCLUSIONS AND FUTURE WORKS 65

6.1 Conclusions . 65

6.2 Future Works . 67

REFERENCES . 69

APPENDICES

A OFFSET ALGORITHMS . 77

A.1 IMOBS . 77

xiii

.

.

.

A.2 AMOBS . 81

A.3 Simplification . 88

B . 89

B.1 LIPRO Library . 89

B.2 Build Table Calibration Main Function 103

xiv

LIST OF TABLES

TABLES

Table 3.1 The process of choosing printer . 22

Table 3.2 DLP main function . 23

Table 3.3 FDM main function . 23

Table 3.4 Execution times (sec) for two test cases 33

Table 3.5 Results of three methods for bunny 35

Table 4.1 Material properties of ABS and PLA [103] 37

Table 4.2 Print Parameters . 44

Table 4.3 Comparison table, the sizes are in KB 45

Table 5.1 DLP Part Specifications . 48

Table 5.2 Running time (sec) for each polygon size 56

Table 5.3 Comparison table, the sizes are in KB 63

xv

LIST OF FIGURES

FIGURES

Figure 2.1 AM fabrication pipeline [22] . 8

Figure 2.2 The voids caused by a) Round profiles and b) Thin walls, [84] . . . 11

Figure 2.3 From left to right: Curve offsets in a) path planning of Robotics, b)

tool-path generation of Pocket milling, c) tool-path patterns of Additive

Manufacturing . 13

Figure 2.4 Two types of closed curves [94] 16

Figure 2.5 Generating offset curve for Type 1 [94] 17

Figure 2.6 DLP Process [98] . 18

Figure 2.7 FDM process [98] . 19

Figure 3.1 Structure of LIPRO . 22

Figure 3.2 The process of generating polygon 24

Figure 3.3 Different types of polygons generated by gpc 24

Figure 3.4 A sliced layer of Stanford Bunny 26

Figure 3.5 Union operation. a) raw polygons, b) after union applied 26

Figure 3.6 Summary of IMOBS [96] . 29

Figure 3.7 Using gradient vector around each base to create boundary points

[96] . 30

xvi

Figure 3.8 The process of Buffer around a line. a) base line, b) offset points

generated, c) buffer derived [101] . 30

Figure 3.9 Test results of the Doodle with (a) Shapely, (b) IMOBS and (c)

AMOBS . 33

Figure 3.10 Accuracy of offset curves in (a) AMOBS and (b) IMOBS 33

Figure 3.11 Test results for rabbit in (a) Shapely, (b) IMOBS and (c) AMOBS . 34

Figure 3.12 Tool path patterns of the layers. (a) The model Bunny after print-

ing, (b) Paths of a bottom layer, (c) Paths of an upper layer and (d) The

bottom layers printed . 34

Figure 3.13 Raspberry Pi 3 model B . 36

Figure 4.1 Design in a CAD software . 38

Figure 4.2 Slicing in Cura . 39

Figure 4.3 A sample printed in FDM machine using, a) Conventional method,

b) LIPRO . 44

Figure 4.4 Additional test parts printed by the LIPRO 45

Figure 5.1 B9Creator V1.2 [105] . 47

Figure 5.2 Major components of B9Creator V1.2 described in Table 5.1 48

Figure 5.3 The main menu of B9Creator commercial software 49

Figure 5.4 Adjusting the orientation of 3D model 50

Figure 5.5 Slicing and compressing . 50

Figure 5.6 Print settings . 51

Figure 5.7 Machine preparation . 51

Figure 5.8 Motor shield connections . 52

xvii

Figure 5.9 Polygon sample utilized in this process 53

Figure 5.10 Generated bitmap image . 55

Figure 5.11 Printed samples by a) Conventional approach, b) LIPRO 62

Figure 5.12 Other specimens printed by LIPRO 63

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

L Length of base curve

N Number of points on perimeter of a curve

P Base curve

pk The kth index of set P

q A point on a curve offset

r Offset distance

S Set of polygons

u Direction of a vector

α Minimum angle of the curvature

δ Maximum distance between two successive points

ε Error tolerance band for generating curve offset

θ Rotation angle

xix

ABBREVIATION

ABS Acrylonitrile Butadiene Styrene

AM Additive Manufacturing

AMOBS Advanced Morphological Operation on Boundary Set

CAD Computer Aided Design

CBS Creation of Boundary Set

CCO Creation of Curve Offsets

CCW CounterClockWise

CLIP Continuous Liquid Interface Production

CW ClockWise

DDM Direct Digital Manufacturing

DLP Digital Light Processing

DMD Digital Micromirror Device

FDM Fused Deposition Modeling

GPIO General-Purpose Input/Output

IMOBS Improved Morphological Operation on Boundary Set

MFO Merging the Fragmented Offsets

NURBS Non-Uniform Rational B-Spline

OM Operation Management

PIL Python Imaging Library

PLA Polylactic Acid

STL Standard Tessellation Language

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last three decades, advancements in Additive Manufacturing (AM) undoubt-

edly have had a huge impact on the manufacturing technology. Despite the massive

advantages of these processes in comparison to the traditional ones, there are still

numerous complications in their manufacturing pipeline. The conventional plan for

fabricating with AM processes requires an STL (Standard Tessellation Language) file

format which is obtained from Computer Aided Design (CAD) software. The STL

file is later sliced in Computer Aided Manufacturing (CAM) software and most of the

manufacturing parameters must be fixed in this environment before the commands

are transferred to the machine. This arrangement brings some limitations in the AM

technologies which draws attention of researchers. These drawbacks are mostly in

the prefabrication time including the design of the CAD model, conversion to the

STL file format from the original CAD file format, slicing, setting the fabrication

parameters and generating the G-codes. In some complicated artifacts having high

resolutions, these issues become very significant. For instance, in Continuous Liq-

uid Interface Production process known as CLIP, in order to produce a single hearing

aid whose STL file has more than 1 million triangles, it takes 10 hours to prepare the

model for printing whereas the fabrication process only takes 10 minutes (Kwok et al.

[1]). Another major problem of the conventional pipeline is that after the conversion

of the design model to an STL file, the additional information of the model (such as

material, color etc.) will no longer exist. If the design artifact happens to be changed

during the fabrication process, the operation must be aborted and all of the process

1

planning must be exerted to the new design. These factors were the motivation of

the proposed study by [2, 3]. Their focus was to come up with a solution that can

alleviate the terms described and this dissertation will present an implementation of

the corresponding works.

1.2 Scope of the Thesis

LIPRO, a design and fabrication pipeline proposed for AM processes, is an abbre-

viation of List Processing. Since the structure of this method provided in Python

programming language and lists are one the major Python data type employed for

storing data in each process of this study, the name LIPRO is chosen to describe this

fabrication paradigm. To appreciate this new command generation and its compo-

nents, a background information along with the recent developments on each stage of

fabrication pipeline is presented in Chapter 2. Furthermore, Chapter 3 will provide

the concept of the proposed approach and it will demonstrate each particular oper-

ation involved in this technique. To assess the performance and benefits of LIPRO,

Chapter 4 and 5 are presented. In these Chapters, an implementation of this method

is applied on an Fused Deposition Modeling (FDM) and a Digital Light Processing

(DLP) printer by utilizing Python programming language and through a comparison

with conventional approaches, advantages of LIPRO is highlighted. Finally, the last

Chapter will recap the experimental work discussed in the earlier Chapters and in the

end, the implemented Python scripts is delivered.

1.3 Limitations of the Study

Like every study, this one also has some restrictions which can be improved in the

future. The following context highlights some of these limitations.

• Currently, there is no Graphical User Interface (GUI) for the LIPRO that en-

ables the users to communicate with the design in a comfortable manner.

• There is no function available in the LIPRO that handles support structures at

the moment, but this feature can be included in the future.

2

• At this moment, the proposed paradigm only uses contour parallel tool-path for

filling each layer.

• LIPRO is unable to adjust the orientation of the design artifact.

• The current slicing method presented in the LIPRO is not efficient enough in

terms of execution time.

3

4

CHAPTER 2

BACKGROUND

2.1 Introduction

As mentioned in the introductory chapter, there is a basis procedure for almost all

AM processes from designing to the fabrication of the product. Throughout the years,

many studies provided to amend the limitations of the existing process pipelines. Sim-

ilar to these studies, the thesis has also the same objective and in order to demonstrate

the details of the proposed approach, the prior works are summarized in this sec-

tion. This literature survey starts with the importance of additive manufacturing and

the changes it provides in today’s manufacturing organizations (Section 2.2). Then,

some recent researches regarding fabrication pipeline of AM processes are evaluated.

Since some steps in the pipeline are playing significant roles, their background are

delivered in more details in the study. Finally, in Sections 2.7 and 2.8 the fundamen-

tals of the two AM processes which are employed in this dissertation are described

briefly.

2.2 Direct Digital Manufacturing

Direct Digital Manufacturing (DDM) or Direct Additive Manufacturing is the process

of using AM techniques for producing ready-to-use products and it has been evolv-

ing in the recent years considerably. Nowadays, demands for fabricating customized

products with lower cost and better quality have encouraged researchers to develop

AM processes as a solution for this challenge. David Bak [4] discussed the benefits of

rapid manufacturing and how it can improve the industrial economy. In another work,

5

Holmstrom et al. [5] discussed the implications of DDM and how it may change the

operations management (OM). They claimed that by utilizing DDM, many of these

OM principles may alter or even become unnecessary including job-shop problems,

supply chain management and batch sizing. Chen et al. [6] highlighted some of DDM

merits by comparing it with other paradigms like craft production, mass production

and mass customization. Petrovic et al. [7] also conducted some case studies to

present the application of AM in various industries and they emphasized the privilege

of using AM processes through these test cases.

Mechanical properties of metal products were always a major concern in AM in-

dustry. However, in the last two decades, a significant amount of development was

established in this area which enhanced the DDM capabilities. Some of these direct

methods consist of Selective Laser Melting (SLM), Laser Metal Deposition (LMD)

and Electron Beam Melting (EBM) are analyzed in [8] in terms of the qualities of

the final products. In this study, the mechanical and physical properties of the metal

parts are evaluated in comparison with traditional processes. Results of this compar-

ison stated that the products manufactured by AM processes have better properties.

The only constraint is the property’s dependency on the process selection. In another

study, Mari Koike et al. [9] investigated the mechanical properties of titanium alloy

products which are manufactured by EBM for the purpose of dental applications. The

examination of metal parts from AM processes is also presented in [10–13]. In each

of these studies, the properties of the final specimen was evaluated regarding their

fabrication purpose and some suggestions were proposed to increase their functional-

ity.

2.3 Design and Fabrication Pipelines

Regarding fabrication pipeline, although it is a privilege to use AM processes rather

than traditional methods, their pipeline still require a great deal of careful consid-

eration [14]. Figure 2.1 indicates the base configuration of pipeline in AM. This is

the general form and there are some other details which may vary according to the

processes including part orientation and support structures. The figure represents the

conventional pipeline and it is still the practical method of most of the 3D printers.

6

Even though it has some limitations, which were explained in the previous Chapter,

there is no efficient pipeline introduced which can overcome all the problems up to

now. However, there are some effective researches conducted recently for each step

of the AM pipeline that can remodel this format in the future. One of the restrictions

exist in conventional pipeline is about the thickness of the last layer which some-

times is less than the machine resolution. For this purpose, Telea-Jalba [15] proposed

a method using voxel-based representations to detect these regions. Rolland-Nevier

[16] also utilized a shape diameter function to estimate the corresponding thickness

of the artifacts. To overcome this challenge, Wang-Chen [17] suggested an approach

to increase the thickness of the 3D objects so that the layer will be printed. Another

constraint is due to the volumes of the machines. They may fabricate parts up to a

specific size. For this case, Luo et al. [18] came up with an algorithm to separate the

parts into pieces (printable with the machine) and then reassemble the components to

form the original part. Triangular tessellation (STL file conversion) is another factor

affecting the accuracy and robustness of the printed products. There are some com-

mon errors happen when a CAD model converts to STL file format including missing

triangles or flipped triangles. These errors cannot be observed visually but they in-

terfere the slicing process and make it unreliable. That is why, some studies attempt

to provide techniques to repair ([19–21]) and improve the meshes for gaining better

quality based on the application of the final product.

Orientation of the part is a crucial parameter since it affects the amount of support

structures, the execution time, the final quality of the surfaces and its practicality.

Earlier studies discussed the suitable direction of the parts [23–27], but in the later

ones, they focused on optimizing the orientation based on the specific concerns of

the fabrication. For instance, some works intended to reduce the amounts of sup-

port structures [28–30], some others considered the accuracy and the surface quality

as their basis [31–36] and lastly, functionality was at the center of attention while

considering the part orientation [37, 38]. One of the main concepts of process plan-

ning in AM technology is devoted to the generation of support structures. In many

processes, they are needed to avoid the material falls. On the other hand, they can

increase the cost of manufacturing considerably. For this reason, some researchers

offered to change the original design to decrease (Kailun Hu et al. [39]) the amount

or even eliminate (Reiner-Lefebvre [40]) the support structures. Generally, the pro-

7

Figure 2.1: AM fabrication pipeline [22]

cess of building supports can be divided into two steps. First, the corresponding areas

and surfaces must be identified and then the actions for constructing such supports

can be applied. In order to recognize these regions, Kirschman et al. [41] analyzed

the slopes of the mesh faces. Some others proposed methods using two consecutive

sliced layers and a Boolean comparison to detect the exposed regions [42, 43]. Once

these areas are discovered, the support structures can be produced considering a few

factors including the use of material and print time. For instance, [44, 45] provided

methods for FDM type of 3D printers that decrease the volume of support structures

for greater efficiency. Another concern which has an influence on surface quality and

cost is the removal of supports. They must be taken away and there should be very

low amount of residuals to reduce the post-processing efforts. Preideman-Brosch [46]

proposed soluble material for support structures to alleviate these leftovers. Hildreth

et al. [47] inspired by this approach and offered a similar technique in the printing of

stainless steel. An alternative algorithm was offered by Zhang et al. [36] to adjust the

direction of the parts such that the supports attach to the parts with their least possible

sections. This eases the removal of the support structures. One more significant pa-

rameter of the fabrication pipeline is slicing. The algorithm utilized for slicing must

give precise closed contours for each layer and should be executed in the shortest

possible time. Some algorithms are slicing the model uniformly and some others are

8

doing it in an adaptive manner, meaning that they are capable of modifying the layer

height throughout the part [48, 49]. The adaptive methods can reduce the building

time effectively, but they are not capable of dealing with complications within a layer

which may result in the staircase effect. For this issue, Tyberg-Bohn [50] offered a

locally adaptive slicing algorithm in which the 3D model is split into segments and

each part is sliced separately. Further studies employed this technique to divide a part

into interior and exterior segments. They sliced them independently in a way that the

interior portions utilize thicker layers since they are not visible when the part is fab-

ricated [51, 52]. Another impressible case of study regarding the slicing is about the

type of input geometry. Whether the geometry is presented by triangular meshes and

ray representations (ray-reps) which is referred to indirect slicing, or using the orig-

inal CAD model without any conversion to slice directly (direct slicing). Slicing of

the triangle meshes is known as the most common technique and is of two strategies.

The first one is focused on each triangle individually and detects every slicing plane

which crosses it [53–55]. The second algorithm discovers all the triangles located in

each slicing plane and the contour of that is created from their intersections [56–58].

Ray-reps is a method for representing solid geometries which were developed earlier

by Hook [59] and utilized in many studies to acquire the sliced layers of a 3D model

[60–63]. In addition to indirect slicing, some works dedicated for direct slicing and

implicit slicing (lately) which are explained in Sections 2.4 and 2.5, respectively.

After the model is sliced, tool-path for each layer must be generated. This operation

has also a great impact on the fabrication cost and surface quality. Therefore, pro-

viding an effective algorithm to fill up each layer requires a considerable attention in

terms of the path continuity, geometry, type of pattern and its performance. Zhao et

al. [64] tried to come up with a strategy to alleviate the number of disconnections in

an entire layer in FDM process. Jin et al. [65] focused on the geometry and explained

how sharp corners can increase the execution time. They provided an optimization

approach to smooth the geometry of the tool-paths without losing the accuracy. Many

other approaches attempt to enhance the performance of the fabrication process by re-

ducing the non-printing time of the nozzle in FDM machines [66–70]. Some other

studies conducted to target specific applications. For instance, the pipeline for having

multiple-materials in a fabricated object was studied in several cases [71–73].

9

2.4 Direct Slicing

In the conventional approach of AM processes, STL is widely used for represent-

ing the designed models. This approach has some drawbacks that motivated the re-

searchers to turn into direct slicing. The first reason is about the precision of the STL

file which greatly depends on the number of triangles. Therefore, if high accuracy is

required, then a wide storage room must be provided. Another motivation is due to

the loss of properties from the conversion and also some slicing failures may occur

because of the patch errors. Direct slicing was offered as a solution to these dilem-

mas. In this method, there is no conversion of the CAD model to STL file format

and the model is sliced directly. An implementation of direct slicing on a commercial

CAD software (Parasolid) was provided by [74] to acknowledge the benefits of direct

slicing. Through this technique, it was asserted that the sliced data can be manipu-

lated. Area deviation ratio was utilized by [75] to obtain an adaptive slicing algorithm

on AutoCAD software. Here, uniform and adaptive algorithms were compared and

the merits of the second method were highlighted. Another study [76] used Power-

SHAPE to slice the models directly. As a result, some Bezier curves and lines were

established which can be utilized for AM machinery. Further research conducted by

Hayasi-Asiabanpour [77], was aimed to generate machine paths. On the base of their

techniques, they used a direct slicing algorithm written in Visual Basic programming

language and applied inside Autodesk Inventor as a solid modeler. The biggest ad-

vantage of this method is that it can be adaptable to different AM processes. Ma

et al. [78] employed non-uniform rational B-spline to achieve this purpose. Their

study contained a provision of adaptive slicing algorithm with and without a selective

hatching strategy. Both methods demonstrated efficient outputs in terms of decreasing

the build time while retaining the surface accuracy. Starly et al. [79], first developed

a direct slicing method on standard STEP files which are presented by NURBS and

then through some test cases they compared the algorithm with the conventional ap-

proach utilizing STL files. The results indicated a better accuracy of direct slicing

for freeform models and shorter amount of file sizes. In order to combine rapid pro-

totyping with reverse engineering Qiu et al. [80] got benefited from point clouds to

propose a direct slicing process. They managed to improve the efficiency of the slic-

ing for complicated shapes, using topological information of the point cloud. The

10

NURBS-based surfaces are directly employed in Sikder et al. [81] research to present

an adaptive slicing algorithm. The intention of this study was to make the slicing

process more efficient by optimizing the texture errors. In another work, Sasaki et

al. [82] put forward an adaptive slicing approach of the geometric models which are

formed by trivariate B-spline functions. Recently Feng et al. [83] took advantage of

T-spline surfaces to develop a direct slicing algorithm. In accordance with this study,

although the presented method expressed great deals of usefulness for free-form sur-

faces, it is not efficient enough for models with regular shapes.

2.5 Implicit Slicing

In today’s AM industries, most of the commercial slicing algorithms create tool-paths

explicitly without considering the geometrical attributes of the parts including sharp

corners, thin walls and round profiles. As a result of these properties, the final part

is fabricated by having some serious voids inside which may yield to fractures and

failures.

(a) (b)

Figure 2.2: The voids caused by a) Round profiles and b) Thin walls, [84]

This issue was the basis of a new methodology named as implicit slicing in which

the functional tool-path patterns are specified for each particular sliced layer based

on their geometries. The purpose is to rectify or eliminate the aforementioned voids.

11

In addition, some studies also considered the mechanical properties when generating

these patterns. For instance, Adams-Turner [85] performed a tensile test on some

specimens with different infill patterns to highlight their influence on the mechanical

properties. Steuben et al. [86] provided an implicit slicing method in terms of evalu-

ating tool-paths for each layer. They further examined the effect of infill patterns on

the performance of different models regarding their stress and strain distributions and

compared them with the conventional explicit methods. The final tests of their study

indicated a great improvement in terms of structural analysis of the specimens.

Although the implicit slicing brings great advantages to AM machinery, there is still

room for progress. Since this method utilizes mathematical functions to model the ar-

tifacts, currently it is not applicable for organics parts having complicated geometric

features.

2.6 Curve Offset

The parallel of a curve, also known as a curve offset in computer-aided design, is

defined as locating a curve at a constant distance from the basis curve with any shape

and it is one of the major concepts in geometry with many applications in different

areas especially in mechanical engineering. There are three domains which get ben-

efits mostly from curve offsets including tool-path patterns in pocketing and motion

planning in robotics as well as additive manufacturing (figure 2.3). One of the main

concerns in the field of robotics is motion planning, it means dividing the movement

trajectory into separated tracks so that it satisfies constraints which are represented as

obstacles. In order to plan the route, offsets of the obstacles in workspace must be

carried out to avoid the risk of serious injury from the impact between the robot and

these barriers. A robot path needs to be smooth with a shortest possible way to its

destination, hence a considerable amount of studies was conducted to present various

approaches for this problem [87]. In pocket milling, which is a machining process,

there is a cutting tool for removing material from workpiece according to a specific

path. Whether it is a rough operation or a finishing one, there are some tool-path

patterns like the direction-parallel path or contour-parallel path which utilize offset

curve algorithms. These patterns are selected based on the workpiece geometry or

12

other properties of the machining process. but they extremely affect the surface qual-

ity and cost of the machining operation. Therefore, choosing the proper one may be

slightly troublesome. Additive manufacturing (AM) which lately becomes an explicit

requirement in manufacturing industry utilizes curve offsets widely in its processes.

The process basically begins by defining the shape of a model with the help of CAD

software. Based on the analysis of this geometrical information the process planning

will be carried out in order to convert CAD representation of the desired component

into a finished part. Process planning is composed of four principal parts includ-

ing, defining the orientation, support structures, slicing and tool-path generation. In

process planning of an AM process, a reduction in product launch time to the final

part was always researchers concern intensively. Moreover, some other parameters

including geometric accuracy, build efficiency etc. need to be considered. The ma-

jor application of curve offsets in additive manufacturing processes is for generating

tool-path patterns. Path planning is not limited only to AM but also utilized in NC ma-

chining, generating hollow shell and robotics. Therefore, some of those path patterns

are applicable for path planning in AM processes. For instance, the most desirable

patterns, utilized in the FDM process are contour and parallel zigzag paths which are

employed distinctly or together as hybrid path[88]. Here, the focus is on the contour

paths to demonstrate the importance of offset curve and compare the capability of

each algorithm. Since tool-path affects the manufacturing efficiency and the accuracy

of the finishing part, choosing a proper offsetting algorithm is imperative. Although

these algorithms have been extensively studied recently, there is still a lot of room for

progress.

Figure 2.3: From left to right: Curve offsets in a) path planning of Robotics, b) tool-
path generation of Pocket milling, c) tool-path patterns of Additive Manufacturing

13

E. Lee [89] presented a new toolpath technique for finishing processes in high-speed

machining and he mentioned it as a spiral topology toolpath. In this method, he

utilized an approximation to compute curve offsets. Here the base curve is represented

in a parametric form as C(t) and the corresponding curve offsets are also evaluated

parametrically as,

C0(t) = C(t) + l(t)N(t) (2.1)

where N(t) is unit normal vector and at t the offset distance can be evaluated as l(t).

The output of Equation 2.1 is a set of points which can be interpolated as line sectors.

Some of these offset lines may intersect with each other and they should be eliminated

from the set, therefore, there must be an algorithm to recognize these invalid segments

and the solution is to check the direction of each offset loop based on the direction of

the base. If the base curve has a counter-clockwise direction then all the clockwise

loops must be removed. Another method used for generating contour-parallel path

conducted by Zhiwei et al.[90] and it is very suitable for creating offsets of curves

with islands. In order to have a result, three steps must be applied to the given data.

These steps are, the islands bridging, creation of offset curves and removing of invalid

loops. Here the input has two distinct sets which represents outer profile and islands.

In the first process, Delaunay triangulation is utilized to connect islands together and

also with the outer profile so that the base curve presents uniformly as a single set. In

the second step, in order to generate the offset curves, two algorithms are developed.

The first one uses three successive points of the base and finds the bisector of the

corresponding two lines. Then by having the offset distance, offset point is obtained.

But there are some situations that bisectors intersect with each other, then the second

algorithm needs to be applied. It defines a stuck circle with a radius of r (offset dis-

tance) and for four consecutive points, the algorithm checks whether this circle exists

or not. The center of the stuck circle is defined as an offset point. Finally, in the last

step, all of the self-intersections are recognized and the invalid loops are removed.

Because of the connections between islands and outer profile, there are some areas

left without any offset curves. So this can be one of the disadvantages of this method.

On the other hand, since all the stages in this method show a linear trend in time

with respect to the number of base points, therefore it has a linear time complexity.

A pairwise offset technique was provided by Choi-Park[91] which utilizes closed 2D

14

Point Sequence curves (PS-curves) as input. In this method, a pairwise interference

detection (PWID) test is applied before constructing the offset curves. In the test, all

the invalid loops which will be made by self-intersection of offset curves, are detected

and removed from PS curve. Then the raw offset curve is created and local interfering

ranges and pair-wise self intersections are detected and removed. Finally, the remain-

ing parts of the raw offset curve form the result offset curve. The biggest advantage

of this algorithm can be the linear time complexity O(n) and the drawback is that it

cannot be applied to base curves with islands. Another approach obtained by Lee et

al.[92] creates offset curves in four steps. First, according to the bisectors of each

two lines of the base curve, the offset points are evaluated. The direction and position

of each offset line are checked to define its validity. After that, all of the offset lines

gathered to construct the raw offset curve without local invalid loops. The radius of

the raw offset curves is checked and global invalid loops are eliminated so that in the

end, the final offset curves remained. Yang et al. [93] introduced an effective offset

algorithm for generating tool-path in additive manufacturing processes. The process

begins with finding the direction of the base boundary. Then for every three vertices

on the base, the inward and outward offset points are computed using Equations 2.2

and 2.3 [93],

x =
(xi+1 − xi)r
xiyi+1 − y2i

, y =
(yi+1 − yi)r
xiyi+1 − y2i

(2.2)

x = −(xi+1 − xi)r
xiyi+1 − y2i

, y = −(yi+1 − yi)r
xiyi+1 − y2i

(2.3)

After generating the raw offset curve, self-intersections must be identified and elimi-

nated from the set. The algorithm checks the curve offset, line by line to see if there

is an intersection between non-adjacent lines and provide a set of intersection points.

The order of these points must preserve according to the initial direction of the base

curve. From induction, it can be proved that the amount of closed polygon obtained

from this raw offset curve is m + 1, in which m is the number of self-intersection

points. By traveling in the same direction as the base, if a closed loop is located

on the right side of the joint (self-intersection point) then the corresponding polygon

15

Figure 2.4: Two types of closed curves [94]

must be removed. Another algorithm provided by Jin et al.[94] to create curve offsets

is using NURBS (Non-Uniform Rational B-Spline). In this method, the boundary

curves need to be categorized into two types firstly. Based on the box created by

connecting the control points of the boundary curve and passing some intersection

lines the type of the curve can be identified. As it is evident in Figure 2.4, if the line

intersects with more than two points from the box, then the boundary is recognized

as the concave curve. Otherwise, it is considered to be convex. For Type 1, a center

point (D) is utilized for obtaining the offset curves in kth layer through Equation 2.4

[94]. In this equation, k represents the number of layers and j is the number of offset

curves in a single layer.

CP (k,j) = D + α(CP (k,1) −D) (2.4)

Here, α is a factor for producing the new control points which is related to the offset

radius and the amount of overlapping between the two paths (Figure 2.5).

If the curve is in Type 2 (concave), it must be separated into multiple convex curves.

Thus, the concave points are identified and they will be connected to other control

points to turn the curve into two or more convex curves with their own center points

(Di). Then for each curve, the algorithm used in Type 1 will be applied to obtain the

offsets.

In another study presented by Dolen-Yaman [95], morphological operations were em-

16

Figure 2.5: Generating offset curve for Type 1 [94]

ployed to offer four offset techniques with the aim of generating tool-paths for 2.5D

machining. The first one utilized a tracing system on binary images to create off-

sets and in the result, it was known as its high memory cost. The second method

intended to solve this issue by using boundary sets, but instead it demonstrated in-

efficient outcomes in terms of time complexity. Therefore, the third technique was

proposed to overcome this problem and it successfully lowered the time complex-

ity with the help of a grid search. Finally, the last one produces offset curves using

polygon operations. These methods evaluated in terms of time complexity, memory

complexity and the accuracy of their geometry and in conclusion, the third one which

is known as Improved Morphological Operations on Boundary Sets (IMOBS), found

to be more eligible to be used in CNC machining applications. Furthermore, they

introduced an additional approach in [96] named as Advanced Morphological Op-

erations on Boundary Sets (AMOBS) which was aimed to enhance the geometrical

accuracy of the IMOBS using a gradient algorithm.

2.7 Digital Light Processing

DLP is a mask projection process which depends on the functionality of Digital Mi-

cromirror Device (DMD) systems (Dudley et al. [97]). The DMD was then equipped

with electrical supports to create DLP technology and used in AM. This technology

utilizes bitmap images as a tool to solidify the UV photopolymerised resin for man-

ufacturing parts. This resin is reactive to light and they can be cured using a light

17

source like a projector. Figure 2.6 indicates a comprehensive view of the entire pro-

cess and its components. At first, a 3D model is sliced into layers and bitmap images

are created from these slices. Then the images are sent to the machine and ready to

be projected. In this process, resin is kept in a vat and over the vat a build table is

situated to hold the fabricated parts. In order to print each layer, the build table is lo-

cated away from the vat surface with a distance of one layer thickness so that the resin

can fill this gap. Afterwards, the corresponding image is projected from the bottom

to the table which hardens the material. In some commercial machines, recoating is

required to prepare the surface for the next layer. Then, the table rises one layer, resin

is exposed to the light again and the process continues consecutively to the end. This

method is known as a fast process owing to the fact that the entire layer is created

at once. Another advantage is its remarkable resolution and the accuracy of the end

products. This operation requires support structures and in some cases post-curing.

Figure 2.6: DLP Process [98]

2.8 Fused Deposition Modeling

FDM is the most common AM process which is based on material extrusion systems.

In extrusion-based operations, the material is stored in a reservoir and fed to the noz-

zle with a controllable speed which results in a continuous flow of materials onto the

table. Since the extruded material is in a semisolid state, they cohere with the pre-

18

vious layer immediately after leaving the nozzle. By keeping the temperature of the

nozzle at a constant level, the state of the material can be controlled. Each layer can

be produced by having a machine able to scan the horizontal plane. Then, the build

plate brings down for one layer thickness so that the next layer can be manufactured.

The cross-sections are made successively until the entire part is fabricated (Figure

2.7). In this process, ABS and PLA are the most popular materials, but recently some

other materials are used with this operation for the special purposes. Some studies

even employed soluble materials for support structures in FDM which was mentioned

in the previous section.

Figure 2.7: FDM process [98]

The quality of the final parts highly depends on the material properties and the build-

ing parameters. Ahn et al. [99] analyzed some of these parameters in the FDM fab-

rication process. This method has low resolution in comparison to other processes.

Therefore, it may need some post processing. Another drawback is that it is not a fast

AM process.

19

20

CHAPTER 3

LIST PROCESSING LANGUAGE AND ITS PIPELINE

3.1 Introduction

As was mentioned in Chapter 1 of the dissertation, the conventional pipeline of AM

processes has some limitations and in order to make these drawbacks less severe,

LIPRO is provided which was proposed earlier by [2, 3]. LIPRO is a new command

generation paradigm, aimed to produce motion trajectories for various production

machinery. The main data employed for generating these trajectories are base curves

and as it is illustrated in Figure 3.1, they can be provided based on the imported input

data by using three different procedures. Sometimes the information about the CAD

models are provided using 3D scanning or from slicing. Since the size of such data

might be huge, it is more sensible to compress them before they can be transferred into

the LIPRO. Therefore, a decompression function is provided to access the basis curve

of a particular layer and represent it in a readable format for further operations. Next

method employs a function to create simple polygons. Here, in order to define the

design artifacts, some parameters related to its geometry are required. Furthermore,

if a CAD model representation or an STL file format is given, the LIPRO is also

capable of preparing the base curve of each layer using a slicing function.

After each basis curve is provided, it can be reshaped to be a more complicated curve

by utilizing two functions including polygon operations and homogeneous transfor-

mation. Then, the pathway of the fabrication for each layer is generated by using

curve offsets. If there are more than two separate basis curves, a path sequencing

function is executed on them to speed up the fabrication process. In the final stage,

commands for each layer based on the existing paths are generated. However, the

21

Figure 3.1: Structure of LIPRO

same commands are not operational for both FDM and DLP printers. Since FDM is a

point-wise process, its operative information must contain the details about the coor-

dinates of the points so that it can be utilized for generating the corresponding G-code

commands. On the other hand, DLP is layer-wised and its path related information is

obtained in the form of a bitmap image. In addition, G-codes are not applicable for

DLP printers and separate commands are introduced to control the fabrication pro-

cess. As a result, a decision must be made at the beginning of the process so that

the LIPRO can comprehend the correct procedure to follow. Table 3.1 is representing

the process of printing Stanford Bunny with a DLP printer. Also the main functions

written in Python for both DLP and FDM printers are provided in Table 3.2 and 3.3

respectively.

Table 3.1: The process of choosing printer

1 import LIPRO

2 ### Define your printer ###

3 Printer = 'DLP'

4 ### Load Data and parameters ###

5 data = load('StanfordBunny')

6 ### Printing ###

7 if Printer == 'FDM':

8 LIPRO.FDMmain(data)

9 elif Printer == 'DLP':

10 LIPRO.DLPmain(data)

11 else:

12 print('Your printer is not defined by LIPRO!')

22

Table 3.2: DLP main function

1 import LIPRO as lp

2 dc, step, s = lp.InitialS() ### The initial measures

3 lp.wait(s) ### Wait for operator

4 lp.DLPPrint(s,dc,step,data) ### Start the print

5 lp.FinalS(dc, step, s) ### The end settings

Table 3.3: FDM main function

1 import LIPRO as lp

2 import time

3 ### Connection to Arduino

4 s = lp.connection('/dev/ttyACM0', 250000, 5)

5 time.sleep(5)

6 lp.strt_confg(s) ### Initiate the start settings

7 lp.FDMPrint(s,data)

8 lp.end_confg(s) ### Initiate end settings

9 lp.closing(s) ### Terminate the connection

3.2 Generating Polygons

In accordance with the designed artifacts, sometimes the 3D model is not complicated

and can be created using the provided functions in the LIPRO (gpc). With the help

of this function, various types of polygons can be generated. Basically, this opera-

tion can divide a circle into equal segments and delivers the coordinates of the points

representing these segments. Figure 3.2 presents this operation by creating a quadri-

lateral shape. Therefore, by putting the number of points (number of sides), radius of

the polygon and the starting angle of the first point, polygons with different types can

be generated. Figure 3.3 illustrates some of the polygons created by this function.

3.3 Data Decompression

In some cases, along with information regarding layer numbers, layer thickness and

other fabrication parameters, base curve (number of points) data must be loaded into

the LIPRO. The size of the data might be large and it results in some issues in terms

23

Figure 3.2: The process of generating polygon

Figure 3.3: Different types of polygons generated by gpc

of the use of memory and data transfer. Therefore, it is more efficient to store the

compressed version of the original data in the LIPRO and use a decompression oper-

ation when it is required. There are some approaches including zip and gzip, but like

it was offered in [3], the ∆Y method can be more effective for motion trajectories.

3.4 Slicing

To enhance the capability of the LIPRO, a slicing operation is provided so that the

CAD models with the file format of STL can be fabricated using this method. The

main concept of this slicing method is that the algorithm searches for all the triangles

that are passing through each slicing plane and it finds the intersection points. This

process employs three points from each facet, generates three lines from these coor-

dinates and checks if the Z value for the slice plan is in the range of the line. Then

it obtains a 2D coordinates of a point located on the line based on Z value. After

the intersection points are found, since they may not be in a correct sequence, addi-

tional operation for ordering the points are required. A summary of this approach is

described in Algorithm 3.1. In order to find the triangles that are in contact with the

24

slicing plane, since the number of triangles is extremely large, a grid search must be

employed to speed up this process. Also, this special function applied to ordering part

to handle all of the intersection points in a shorter time. For better comprehension,

a sample (Stanford Bunny) is sliced using this method with a layer thickness of 0.06

mm and the layer with the number 1166 is demonstrated in Figure 3.4.

Algorithm 3.1
1: procedure SLICING(M)

2: Input: STL file format representing triangular facets

3: Input: Parameter Z as slice plane

4: Output: List of coordinates (Q) representing the base curve

5: Find all triangular facets near slicing plane with a constant search radius and

store them in a list as T

6: for each facet in T do

7: Get the vertices of the facet and store three lines from those vertices in L

8: for line in L do

9: Check if there is any intersection between the line and the slicing

plane

10: Store these intersections into Q

11: Order the intersection points inside Q

3.5 Polygon Operations

This is another function that enables the LIPRO create more complex 2D curves from

simple polygons using a polygon clipping technique. The operations provided in this

method are composed of union, difference and intersection. Since in this study Python

programming language is chosen to represent the LIPRO, many Python libraries ca-

pable of performing these operations can be employed including Clipper and Shapely.

A single union operation is illustrated in Figure 3.5.

25

Figure 3.4: A sliced layer of Stanford Bunny

(a) (b)

Figure 3.5: Union operation. a) raw polygons, b) after union applied

3.6 Transformations

Another function utilized for building more sophisticated 2D shapes is described here.

It applies a homogeneous transformation on the base curves including translation (tx

and ty) and rotation (θ). Equation 3.1[3] displays this operation that can both translate

and rotate at the same time by taking the amount of translations (tx and ty) and the

rotation angle (θ). This equation is applied on each points of the base curve with the

coordinates of Pi = (xi, yi) and it is capable of providing the transformed points as

26

P ′i = (x′i, y
′
i).


x′i

y′i

1

 =


cosθ −sinθ tx

sinθ cosθ ty

0 0 1



xi

yi

1

 (3.1)

3.7 Path Sequence

There are some cases that a few models are printed beside each other simultaneously.

The algorithm is generating the motion trajectories of these closed curves for each

layer. In order to reduce the time and make the printing process more efficient, the

order of these closed curves in each layer must be optimized. Therefore, the sequence

of multiple paths are analyzed within this function based on the shortest distance

between them. To illuminate this concept, Algorithm 3.2 is clarifying this approach

and further details are explained in [3].

Algorithm 3.2
1: procedure PATH SEQUENCING(S)

2: Input: A list of basis curves (S)

3: Output: A list of ordered curves (S ′)

4: Let S ′ be a set of basis curves ordered

5: Let P1 be the first curve of the set S

6: for curve in S do

7: Check euclidean distance of points in P1 with points in curve

8: Add P1 as the next curve to S ′

9: Set P1 to the closest curve

3.8 Curve Offset Generation

In this Section, the two offset algorithms conducted by Yaman and Dolen [96] are

studied. These algorithms are unique because of their capability for offsetting both

self-intersection curves and islands. Here, these methods are implemented in Python

27

and the capability and the performance of each are compared with another offset

method which exists in one of the Python libraries. The two methods were briefly in-

troduced in the previous Chapter and they are known as IMOBS and AMOBS. Their

structure is almost the same and they are basically created by three common steps

including creation of boundary sets (CBS), invalid points removal and creation of

curve offsets (CCO). In addition, IMOBS has an extra phase for merging the frag-

mented offsets (MFO) at the end of CCO. In the following context, the details for

each method are explained.

3.8.1 Improved Morphological Operations on Boundary Sets (IMOBS)

In this method, the initial step (CBS) has two equations for generating the offset

points. One of them is based on the curvature of the initial curve to create only two

boundary points for each base point and the other is to make a set of circular boundary

points around each base point. The decision between these two methods will be done

by a user-defined parameter. For instance, if the curvature between three points in the

base is more than the threshold, then the first method is utilized to create offset points

otherwise, the circular method is carried out. After creating the raw offset points,

those invalid points must be eliminated with the help of a hash table localizing the

search for each boundary point. In order to determine whether the curve offset points

are valid, the method checks the point with all the base points close to it. A circular

search with a radius of 2r is performed to find neighboring base points. Next step is

to order the final sets (CCO) according to the direction of the base curve. To order

all the disjoint sets, IMOBS goes through the boundary points and for each point,

the nearest one is found. In the end, the remaining disjoint sets need to be merged

together (MFO) to create the sets of external and internal offset curves. Figure 3.6

briefly displays each section along with its outcome.

3.8.2 Advanced Morphological Operations on Boundary Sets (AMOBS)

The second part of IMOBS (CBS) can participate in AMOBS only in specific cases

if the distance between the particular point and its previous point is less than the

28

Figure 3.6: Summary of IMOBS [96]

parameter δ [96]. The CBS part of AMOBS relies on the gradient vectors around

each base point (Figure 3.7). After obtaining the boundary points, invalid points must

be defined. For this purpose, the algorithm checks the Euclidian distance between

each base point and the boundary points around it. If the distance is less than r, then

it will be known as invalid and will be removed from the set. To speed up the process,

a grid search is applied to localize the search for finding the invalid points. The CCO

of AMOBS also uses the same grid search in the previous phase to find the order of

offset points. Here, along with examining the Euclidean distance between vertices, a

gradient algorithm of the offset curve is added with a weight factor to overcome some

of the errors occurring in the sharp corners and increase the accuracy.

3.8.3 Shapely

Shapely is library written in Python which basically utilized in geographic informa-

tion systems (GIS) and has some functions for manipulating the geometrical features

29

Figure 3.7: Using gradient vector around each base to create boundary points [96]

in a plane. There is a buffer function for offsetting a base curve which is employed

in this study. This function can be applied not only to polylines but also to points and

polygons. The buffer technique [100] goes through each base point and creates buffer

offset vertices around them. Then as a compound of circular arcs and lines centered

on the points of the convex hull, the buffer regions are formed. From this region, the

exterior part is the final offset curve which can be used for the purpose of this study.

Figure 3.8: The process of Buffer around a line. a) base line, b) offset points gener-
ated, c) buffer derived [101]

30

3.8.4 Parameter Adjustment

Through the implementation of IMOBS and AMOBS, it is observed that there are

some parameters affecting the running time and accuracy of the final curve offset.

Hence, in order to maximize the performance of these two algorithms, some measures

need to be carried out for adjusting the parameters. The two influential parameters

affecting the outcomes of IMOBS are the number of points on the base curve (P) and

the number of points on a circle in circular approach (N). In addition, there exists

a parameter called resolution (ffi) which specifies the method needs to be used for

creating boundary points. The following relations can be used for this purpose,

P =
L√
8rε

(3.2)

N =
14rπ

δ
(3.3)

where ε is an error tolerance band and L describes the length of the base curve.

In order to find a relation for the resolution (ε [0,1]), some tests performed and by

considering the accuracy and the time complexity of the outcomes. It is concluded

that the most effective way is to pick this number as one since reducing this amount

leads to an increment in the number of base points (P) which results in an increase

in execution time. In the case of AMOBS, there are two extra parameters which are

necessary for gradient algorithm [96], Equation 3.4. First one is the weight factor (w

∈ [0,1]) and the other is nQ, which is the number of points required for computing

the gradient of the offset curve.

U = min
m,j

{∥∥∥s∗m,j − q
∥∥∥
2

[
w

δ
+

1− w
u.(s∗m,j − q)

]}
(3.4)

To find a relation between them, the base curve must be analyzed since the curva-

ture of offset curves follow the same trend in their basis curve. While testing some

trajectories, results proved that for noisy curves large number of nQ with w < 0.75

yields to an incorrect order of offset points resulting in errors in the final offset curves

(this fact was also mentioned in Yaman and Dolen [96]). Therefore, by having a set

31

of curvatures of all base points and considering worse case, the minimum value of

this set must be picked for computing both parameters (Equation 3.5 and 3.6). These

minimum values show the locations in which the curve loses its smoothness.

nQ = P (0.0025α2 + 0.0005) (3.5)

w = 0.7
√

1− α2 + 0.3 (3.6)

where α is the minimum angle exists in the curvature of the base curve.

3.8.5 Comparisons and Discussions

To demonstrate the capability of these methods, the same test cases used in [95]

are examined. Among these samples, two of them (Doodle and Rabbit) are more

controversial since Doodle is presenting a self-intersecting base curve and Rabbit

which shows a basis curve with islands. For the Doodle case, an offset radius of 1mm

and for the Rabbit, r = 0.5mm is utilized. Initially, the three algorithms applied on

the Doodle case (Figure 3.9) and the following results achieved. As it is clear in

Figure 3.9a, Shapely is not capable of evaluating the offsets of the curve having self-

intersections. Although IMOBS (Figure 3.9b) and AMOBS (Figure 3.9c) perform

offsetting, their accuracies are not the same. In Figure 3.10a, a closed view of the

Doodle case is shown for AMOBS which displays the precision of it. But in the

case of IMOBS (Figure 3.10b), there are some fragments in the corners. This is

due to the fact that in the CCO of IMOBS, the ordering of the offset points is not

carried out well. That is why a gradient algorithm is added to the CCO of AMOBS

to overcome this problem. For this model, IMOBS completes the offset curves in

t = 1.29 seconds, but it takes longer for AMOBS with t = 4.468 seconds to fulfill

the task. This difference in execution time is again because of the gradient algorithm

used in the CCO of AMOBS. Despite its effective performance on the accuracy, since

it utilizes a grid search, it increases the running time for a large amount of points in

the base curve.

In the case of managing the islands, the Rabbit case is presented in Figure 3.11. The

32

(a) (b) (c)

Figure 3.9: Test results of the Doodle with (a) Shapely, (b) IMOBS and (c) AMOBS

offset curves in all of these three methods are achievable. In terms of accuracy, in

addition to the fact explained in the Doodle case for AMOBS and IMOBS, it seems

that Shapely can provide proper offset curves.

(a) (b)

Figure 3.10: Accuracy of offset curves in (a) AMOBS and (b) IMOBS

The running time results are available in Table 3.4 for each test cases. These results

indicate a big difference between Shapely and the other two methods in the case of

execution time showing the major advantage of this algorithm.

Table 3.4: Execution times (sec) for two test cases

Test cases IMOBS AMOBS Shapely
Doodle 1.29 4.4687 0.0312
Rabbit 0.75 3.5156 0.0312

In another experiment, in order to understand the capability of the corresponding

techniques to create the tool-path patterns, a model (Bunny) is presented in Figure

3.12. This model provided in STL file format is sliced with a layer thickness of 60

33

(a) (b) (c)

Figure 3.11: Test results for rabbit in (a) Shapely, (b) IMOBS and (c) AMOBS

µm. For this model, ten layers of the bottom are filled entirely with an offset distance

of 0.35mm as illustrated in Figure 3.12b and the remaining layers will be created as a

wall with three offset curves in each layer (Figure 3.12c). The G-code file is obtained

from these paths and this file can be executed on an FDM machine to fabricate the

model (Figure 3.12a). The printed bottom layers are also illustrated in Figure 3.12d.

(a) (b) (c) (d)

Figure 3.12: Tool path patterns of the layers. (a) The model Bunny after printing, (b)
Paths of a bottom layer, (c) Paths of an upper layer and (d) The bottom layers printed

After implementing the three algorithms, results in Table 3.5 are obtained. As it is

observed, there is a huge difference in the first row of the table between Shapely

and the other two. That is due to the fact that in Shapely, the buffering technique

will simplify curve segments on the basis. It means that Shapely performs the offset

process with a lower amount of input data and also in the end, it presents the result

in an optimum number of offset points. But in the case of AMOBS and IMOBS,

the number of input data must be picked high in order to complete the offset curves

and the corresponding data at the end of their algorithm is also high. This is due to

the fact that the distribution of the points in the basis curve for IMOBS and AMOBS

is the same because their procedure for presenting the initial curve is based on the

34

fixed parameter δ. However for generating the G-codes since the results of IMOBS

and AMOBS contains a huge amount of data, an extra operation involved to remove

the redundant 2D coordinates. This function is applied on each curve offsets and the

amount of deviation for every three consecutive points is evaluated. If this amount

does not exceed 1 µm (deviation threshold), the corresponding point recognized as

redundant and the program will remove it. Therefore, after simplification on outputs

of IMOBS and AMOBS, the G-codes file sizes are provided in Table 3.5 to avoid

having issues in terms of memory usage and data transmission.

Table 3.5: Results of three methods for bunny

Test cases IMOBS AMOBS Shapely
Running time (sec) 750.28 1135.62 8.6562

G-code file size (MB) 36 42 67.8

The comparison between the offset methods through some test cases demonstrate the

following facts.

• Shapely cannot be used for the base curves having self-intersections.

• All of the algorithms are capable of handling the base curves with islands. In

the case of accuracy, AMOBS shows great preciseness and also Shapely can

bring a proper offset curve but since it simplifies the base curve, the accuracy

would not be that great.

• Using a huge amount of data in IMOBS and AMOBS increases the running

time.

• Shapely can perform the offsetting in a very short amount of time, which makes

it highly efficient for huge tasks like generating tool-path patterns for AM.

In order to make IMOBS and AMOBS applicable for generating tool-path patterns,

some modifications are needed. Since they need to adjust some parameters for each

test case, a new algorithm should be developed having only one parameter (P) to be

specified. This algorithm must be functional for the base curves with few amount of

input points. Hence, a densification method is required for presenting the base curve

accurately, but in a lower amount of points. Due to these results, in the following

Chapters, shapely is employed to fulfill the task of generating offsets.

35

3.9 Controller Board

In order to implement this new paradigm, a single-board computer called Raspberry

Pi 3 is utilized (Figure 3.13). The reasons behind choosing this board are its high

capability of computing, high performance, convenient connectivity, proper power

management and low cost. One of the main advantages of this board is having various

types of connectivity including 4 USB ports, HDMI, bluetooth and built-in wireless.

These provide easy communication with the 3D printers. Additionally, the row of

general-purpose input/output (GPIO) pins near the top edge make it capable to be

connectted with other electronic devices like buttons and LEDs. Some extra informa-

tion about its hardware and physical specifications are availablle in [102].

Figure 3.13: Raspberry Pi 3 model B

36

CHAPTER 4

IMPLEMENTATION OF THE LIPRO ON AN FDM PRINTER

4.1 Introduction

In this Chapter of the thesis, instructions of the LIPRO for printing 3D models on an

FDM type of printer are presented. Before demonstrating the procedure, important

machine specifications such as material descriptions, extruder parameters, etc. must

be denoted. The two most common materials used in FDM process are Acrylonitrile

Butadiene Styrene (ABS) and PolyLactic Acid (PLA). A comparison is provided in

Table 4.1 and more details can be found in [103].

Table 4.1: Material properties of ABS and PLA [103]

Properties ABS PLA
Tensile Strength 27 MPa 37 MPa
Elongation 3.5 - 50% 6%
Flexural Modulus 2.1 - 7.6 GPa 4 GPa
Density 1.0 - 1.4 g/cm3 1.3 g/cm3
Melting Point N/A (amorphous) 173 °C
Biodegradable No Yes, under the correct conditions
Glass Transition Temperature 105 °C 60 °C
Common Products LEGO, electronic housings Cups, plastic bags, cutlery

For the implementation of the LIPRO, Ultimaker 2 Go is utilized as a commercial

FDM machine with specifications displayed in [104]. The only type of filament can

be used on this machine is PLA. Arduino Mega 2560 is the main board responsible

for interpreting G-codes to machine instructions and controlling the details of the

fabrication. Since in this implementation LIPRO is performed on Raspberry Pi 3, a

serial communication must be carried out between the Raspberry Pi and the Arduino

Mega. The following sections denote the details of the fabrication process both in

37

conventional way and the LIPRO. At the end, fabricated parts are presented and the

fundamental differences of the LIPRO and the conventional approach are elaborated.

4.2 Main Steps of the Conventional FDM Printing

The initial step to fabricate by this method is to design an artifact in CAD software.

Figure 4.1a is displaying this task performed in solid modeling CAD software named

as SolidWorks and the cross section of this 3D model is presented in Figure 4.1b. In

order to design this model in SolidWorks, firstly a simple pyramid is created using

the commands called Extrude and Draft. Then, the resulting shape is twisted based

on a desired angle with the help of the command Flex. Afterward, Shell is utilized to

obtain a void inside the model and finally, the bottom face is filled using an Extrude

command.

(a) (b)

Figure 4.1: Design in a CAD software

In order to import this model to the corresponding CAM software, it must first be

converted to the STL file format. This task is carried out by SolidWorks itself, simply

by saving as an STL file. Then Cura, which is an open source 3D printer slicing appli-

cation, is utilized to read the STL file. Since the Ultimaker manufacturing company is

using this application exclusively, the additional prefabrication operations can simply

be set by this application. The most important task is to slice the model, therefore

the slicing layer thickness must be defined. In conjunction with slicing, the tool-path

patterns are also generated within the same software. Figure 4.2 shows the Graphi-

cal User Interface (GUI) of this CAM software. In addition to aforementioned tasks,

38

Figure 4.2: Slicing in Cura

several machine parameters can also be set in this environment including nozzle tem-

perature, infill density, printing speed, adhesion type, support structure settings, etc.

Finally, the corresponding G-codes are transferred to the 3D printer using an SD card

and the process of fabrication can be initialized utilizing the user interface on the 3D

printer.

4.3 Printing Scheme of the LIPRO

In this section, the part designed in the previous section is to be fabricated utilizing the

LIPRO. In order to prepare the base curves, polygons are generated inside the LIPRO.

Therefore, the design characteristics must be defined including the type of base poly-

gon (number of polygon sides), radius of the base polygon, the height and its angle

for each layer (if a twisted shape is required). These values are given to the main

function (Algorithm 4.1) as input arguments so that at each layer the corresponding

polygon is generated accordingly. This method can only be applied to the 3D models

whose cross-sections can be constructed using the polygon functions available inside

the LIPRO. Later, some printing parameters must be devoted containing nozzle di-

ameter (offset distance), layer thickness and the starting position of the nozzle in the

39

Algorithm 4.1
1: procedure MAINALGORITHM

2: Input: Design parameters including height, polygon type and radius

3: Output: A set of operations for printing

4: Let B be the printing parameters

5: Initialize serial connection

6: INITIALMEASURE

7: PRINTING(B,height,type, radius)

8: FINALMEASURE

9: Close serial connection

z-direction. Then a serial connection between the Raspberry Pi and the machine board

(Arduino mega) is established so that through this connection the G-code commands

can be conveyed. In order to obtain this connection, knowing the USB port address

(for the Raspberry Pi) and the baud rate is essential. Then, the operation performs

some tasks that are vital to prepare the machine for printing (Algorithm 4.2). In this

part of the scheme, the printer heats up the nozzle to 210 Celsius degrees which is

the appropriate temperature for the thermoplastic filament to be extruded. After that,

the nozzle and the bed are moved to their home locations so that the three axes can

use absolute coordinates to stop in the accurate positions. Afterward, the program

raises the bed to the below of the nozzle and extrudes some filaments to test if it is

operational. Since the amount of extrusion is essential for the main process, it must

set the amount of extruded material to zero before the printing starts. Finally, the side

fans are turned on and the machine is prepared for printing the workpiece.

Algorithm 4.2
1: function INITIALMEASURE

2: Output: A set of operations to prepare the machine for printing

3: Set nozzle temperature to 210 °C

4: Bring nozzle and bed to the home positions

5: Bring up the bed close to the nozzle

6: Extrude some filaments

7: Set the amount of the extrusion to zero

8: Turn the fan on

40

The printing function, presented by Algorithm 4.3, is started with a conditional loop.

Here, the early value of the Z axis is set to 0.3 mm which the initial distance between

the nozzle and the build table. The total number of layers can be obtained from

Equation 4.1. Hence, the program iterates through some functions to establish the

printing process. First, it creates the base polygon using arguments including radius,

number of sides and its primary point angle. Then, in accordance with the number

of offsets required for that layer (N), the program calls the offset function (Section

3.8.3) to generate the desired tool-path.

Algorithm 4.3
1: function PRINTING

2: Input: Printing parameters (B), height, polygon type and radius

3: Output: A set of operations for printing process

4: Get the initial nozzle height Z from printing parameters B

5: while Z is less than height do

6: Generate POLYGON(type,radius)

7: Generate OFFSET(N)

8: Create GCODE(Z,B) and set it as L

9: SENDGCODES(L) to machine line by line

10: Z = Z + layer thickness

Number of Layers =

⌊
Height

Layer Thickness

⌋
(4.1)

Afterward, having the tool-path, by using Algorithm 4.4 the G-code commands are

created. In this algorithm, the amount of extrusion ratio is obtained based on the

nozzle diameter and the layer thickness. This rate can be extracted from the G-codes

provided by the conventional approach (Cura) by observing the G1 codes from one

point to the next one. Equation 4.2 demonstrates this value which is obtained from

the material used (E) between two consecutive points divided by the distance between

them.

Extrusion Rate =
Ep2 − Ep1

‖p2 − p1‖2
(4.2)

41

Algorithm 4.4
1: function GCODES(Z,B)

2: Input: List of coordinates

3: Input: Z value of the layer and printing parameters (B)

4: Output: List of the strings that represents G-code

5: Let extrusion ratio be 0.12

6: for each offset in the list do

7: Retract filament

8: Go to the first point of the offset list with the correct height (Z)

9: Extrude to cover the retraction

10: for each point in offset list do

11: Set the extruder position

12: Write G1 code for each coordinates using the new extruder position

Therefore, the program loops through each offset polygon and each point inside the

polygon. Then by employing extruder position and proper feed rate, the G1 com-

mands are generated. The position of the extruder is determined using the equation

below,

Extruder Position = Extruder Position + (Distance× Extrusion Ratio) (4.3)

where, distance is the length between that particular point from the iteration with the

next point in the list. As it is clear, the extruder length is an incremental value and

at the end of the printing, it presents how much filament was utilized in millimeters.

After the G-codes are acquired, they must be sent to the machine to be executed. This

task can be done from the serial connection between the Raspberry Pi and the Arduino

Mega (machine mainboard). Through this connection, the strings can be dispatched

line by line (Algorithm 4.5). Since the Arduino has a limited amount of buffer, all

lines cannot be sent at once. Therefore, the machine must confirm that the action

is done and then it can receive new commands. After each task, the buffer must be

cleared so that other commands can be accepted.

After the printing is completed, like the initial settings, some measures must be ap-

42

Algorithm 4.5
1: function SENDGCODES(L)

2: Input: List of G-code strings as L

3: Output: Operation to send G-code line strings

4: for each line in L do

5: Send the line to the machine

6: while Task is not finished do

7: Check if the task is finished

8: Clear the buffer

plied before terminating the serial connection. Algorithm 4.6 lists the details of this

operation.

Algorithm 4.6
1: function FINALMEASURE

2: Output: A set of operations after the printing process

3: Retract the filament

4: Bring nozzle and bed to the home positions

5: Set nozzle temperature to 20 °C

6: Turn off the side fans

4.4 Test Prints

Following the aforementioned instructions, the same model provided in Figure 4.1a

is printed by Ultimaker 2 Go using both methods. These prints are produced by

the fabrication parameters revealed in Table 4.2 and the result of these processes are

illustrated in Figure 4.3. In this Figure, the undesirable quality of the peak is due to

the lacking of sufficient time for material to solidify.

Although using the LIPRO and the conventional approach yield the same output, it

is worth mentioning some of the details which differentiated these methods. As can

be observed from Table 4.3, there are some extra stages in the first method to prepare

the G-codes including designing the CAD model and converting it to STL file format.

In addition, CAM software (Cura) must be employed to carry out the remaining op-

43

Table 4.2: Print Parameters

Material PLA
Filament Diameter 2.85 mm
Nozzle Diameter 0.4 mm
Layer Thickness 60 µm
Feed-rate Speed 1800 mm/min
Rapid Movement Speed 6000 mm/min
Infill Density 100 %
Shell Thickness 1.2 mm

(a) (b)

Figure 4.3: A sample printed in FDM machine using, a) Conventional method, b)
LIPRO

erations. Whereas the second approach summarizes these pre-fabrication processes

inside each layer of printing which results in a huge reduction of memory usage. Ad-

ditionally, the third row of the Table is demonstrating this fact by comparing the size

of the machine codes. The second column of this row is indicating the size of Python

scripts being used for this fabrication process. Here, the LIPRO only stores one layer

of G-codes and it transfers each line at a time to the FDM machine. Another dis-

tinction, which is stated in Chapter 1, is the ability of the second approach to change

the design while it is in the middle of printing. In the conventional method, if any

modification on the design of the artifact is required, the process of the fabrication

must be aborted and all of the operations described in Section 4.2 should be executed

again. Whereas, the LIPRO can pause the printing, reform the parameters inside the

scripts for the new design and continue the printing from last index. Along with the

new design, it also has the ability to resume the fabrication process with the new print

parameters assigned in Table 4.2. For instance, it is possible to use different nozzle

44

Table 4.3: Comparison table, the sizes are in KB

Conventional Approach LIPRO
Size of CAD 244 —
Size of STL File 378 —
Size of Machine Code 3079 (G-code file) 8 (Python Scripts)

diameter, layer thickness, feed-rate speed and wall thickness. Figure 4.4 indicates

other specimens fabricated by the LIPRO. The only difference between Figure 4.4a

(a) (b) (c)

Figure 4.4: Additional test parts printed by the LIPRO

and 4.4b is the number of sides employed in polygon function which is selected as 4

for the first model and 6 for the second one. Figure 4.4c also presents a hexagon for

its basis curve like Figure 4.4b, but their main distinction is defined as the utilization

of transformation function (rotation) within the right of the Figure.

45

46

CHAPTER 5

IMPLEMENTATION OF THE LIPRO ON A DLP PRINTER

5.1 Introduction

Digital Light Processing (DLP) is an Additive Manufacturing process which uses

Photopolymer as material to manufacture desired parts. In this process, with the help

of a projector, images (bitmaps) are projected onto a surface of the resin and the entire

layer is cured at a time. Since it is a layer-wise process, speed is considered as one of

its advantages as well as high resolution. An example commercial product is demon-

strated in Figure 5.1 from B9Creator, which is founded by Kickstarter company in

2012 and it is the subject of the study.

Figure 5.1: B9Creator V1.2 [105]

Figure 5.2 presents main components of the DLP printer which are responsible for

47

(a) (b)

Figure 5.2: Major components of B9Creator V1.2 described in Table 5.1

actuating the machine, and their specifications are listed in Table 5.1. These parts

are essential for controlling the printing process and their relations and duties are de-

scribed below.

The projector is specifically modified for the purpose of printing and as mentioned

before its task is to cure the resin of each layer based on the input bitmaps. In order

to have a particular resolution, three parameters, including position, zoom and focus

of the projector, play a critical role. The projector, the actuators and all the sensors

are connected to a circuit board which is the brain of the system (Part 2). This circuit

board is composed of an Arduino UNO along with a Motor Shield and it uses a 12-

volt power supply and a USB port for communicating with the main computer (Host

PC running the software of the printer).

Table 5.1: DLP Part Specifications

No. Part Name Descriptions Quantity
1 Projector Modified D912HD Projector 1
2 Printed Circuit Board Arduino UNO along with B9Creator motor shield 1
3 Stepper Motor 1402HS050A stepper motor with 4 lead bi-polar and 1.8 degree 1
4 DC Motor X axis DC gear motor with encoder, 131:1 eatio 1
5 Lead Screw 2 mm pitch lead screw along with anti-backlash nut 1
6 Optical Sensors home positioning optical sensors, type EE-SX4009-P10 2

Next part is a lead screw (Part 5) which is combined with a stepper motor (Part 3),

and together they provide movement of the Z axis. The screw has a 2 mm pitch per

each revolution and since the stepper motor has an accuracy of 1.8 degrees, it results

in 10 micrometer precision for the Z axis. Part 4 is showing a DC motor which is

48

utilized for the motion of the X axis. This travel can be limited by an optical limit

switch. These sensors (Part 6) are used for stopping the motors when they reach the

home positions.

Similar to the previous Chapter, the following sections clarify the fabrication proce-

dure of the DLP process, both in conventional way and the LIPRO.

5.2 Conventional Approach

The usual printing procedure requires a CAD model in STL file format. Similar to

Section 4.2 a designed artifact is provided in CAD software (SolidWorks) and it is

converted to STL format. The remaining measures are taken by a commercial soft-

ware created by B9Creations company which is particularly designed for B9Creator

printer as its main menu illustrated in Figure 5.3. This software is capable of calibrat-

ing both build plate and projector, but as can be observed from the Figure, the main

functions required to fulfill the printing task is of three parts.

Figure 5.3: The main menu of B9Creator commercial software

To prepare the 3D model before slicing, Layout is employed in which some oper-

ations including position adjustment, orientation, scaling and generation of support

structures are carried out (Figure 5.4). After saving the model, it is sliced using the

second selection from the main menu. As it is illustrated in Figure 5.5, the main

option available for this task is the layer thickness. Along with slicing, the bitmap

images are generated with this operation. Since the size of these images is very large,

49

they must be compressed before storing.

Figure 5.4: Adjusting the orientation of 3D model

Figure 5.5: Slicing and compressing

Finally, by using Preview the compressed images are imported and print setup rises

to indicate the settings required for the fabrication process (Figure 5.6a). These pa-

rameters whose values are highly effective on the quality of the end product can be

modified using Advanced Setting tab located at the top bar (Figure 5.6b).

Some of these influential parameters are composed of the exposure time for both ini-

tial layers and remaining ones, number of attached layers (whose exposure time is

more than other layers), delay time before exposing light, delay time after exposing,

the amount of build table lift after exposing and the amount of lift for initial layers.

Afterwards, by selecting Begin in the print setup part, the software asks for some

instructions. These tasks which are represented in Figure 5.7 are essential to prepare

50

(a) (b)

Figure 5.6: Print settings

the DLP printer for the fabrication process.

Figure 5.7: Machine preparation

5.3 Proposed Approach (The LIPRO)

In this Section, a Raspberry Pi computer is employed to control the actuators and

receive singnals from the sensors of the B9Creator. For this purpose, a motor shield

(Adafruit DC and Stepper Motor HAT for Raspberry Pi) is attached to the Raspberry

Pi so that the PWM (Pulse Width Modulation) capability of the Raspberry Pi can be

extended to control the DC and the stepper motor of the printer at the same time with

the help of an extra power supply. Hence, the previous configuration of the B9Creator

is changed by eliminating the main board and those connections and replacing it

51

Figure 5.8: Motor shield connections

with the Raspberry Pi together with its motor shield and new connections. In this

configuration, Raspberry Pi is connected directly to the projector (using an HDMI

cable) and the motor shield (using GPIO pins). For the rest of the parts, the contact

is indirectly through the motor shield (Figure 5.8). As can be observed from the

Figure, the two groups of coils of the stepper motor are connected to the terminal

blocks of M1 and M2, the DC motor uses terminal M3 and for the limit switches the

connections are different. Each switch requires 5 Volt to operate. Thus, two wires

reach the ground and 5 Volt pins, and the other which can give a signal (high or low)

is attached to the one of the GPIO pins of the Raspberry Pi. Some of those pins are

available on the motor shield. Here, pin number 4 and 17 are utilized as input pins

for the limit switches.

5.3.1 Creating Bitmap Images

Prior to the print procedure, since each layer projects a mask, the process of gener-

ating bitmap images must be clarified. The running time of this process is of a great

52

(a) (b)

Figure 5.9: Polygon sample utilized in this process

importance and affects the printing time directly. Therefore, in this Section two algo-

rithms to generate images are provided and the performance of each is analyzed on

Raspberry Pi.

Firstly, the original 2D shape is created and the (x,y) coordinates are extracted. For

this purpose, gpc function which is explained in Section 3.2 is employed. Figure

5.9 displays one of these types, without the offsets (5.9a) and with an offset (5.9b).

The function utilized for generating the curve offsets is elaborated in Section 3.8. A

summary of the entire operation is illustrated in Algorithm 5.1. After polygon is cre-

ated, each polygon is scaled to the new screen dimensions since the projector of the

B9Creator has a resolution of 1920 × 1080. If the projector and the printing param-

eters are set for printing with layer thickness of 70µm, then the size of the screen

is 104 × 75.6 (Width × Height). In order to maintain the aspect ratio of the poly-

gon, their coordinates are multiplied by a constant amount which is obtained from the

below equation:

Ratio = min

(
MaxWidth

Width
,

MaxHeight
Height

)
(5.1)

where MaxWidth and MaxHeight stand for the projector resolution 1920 × 1080,

respectively. Now a linear translation from the center of the polygon to the center of

the projector screen locates the 2D shape at the center.

53

5.3.1.1 Image Generation Algorithms

After having the polygon scaled and centered on the new screen, bitmap image can

be created using Python Imaging Library (PIL) within two methods. The first one

which is described in Algorithm 5.2, starts with setting the screen in accordance with

the projector resolution. Since this configuration follows the Cartesian coordinate

system, and the corresponding polygon is also modified and scaled to be fit in this

system, each pixel must be checked whether it is inside or outside of the polygon.

This operation requires two indices provided by two for loops to represent a pixel

which is known as a point. The script checks the point and if it is inside the poly-

gon or outside the offset polygon, it sets the pixel’s value to white by employing its

RGB code (255,255,255). Therefore, all the points within the polygon boundary are

checked and the bitmap image is generated.

In the second approach, an array containing 1080 rows and 1920 columns is created.

Each value of this array is set to be a 1× 3 vector and each element is set to be zero.

Here, the algorithm only goes through each row which is started from minimum value

of the polygon to its maximum. For each row, a line is formed from the starting point

of the row to the end of the row. Then, the script checks if the line is colliding with

both the original polygon and the offset polygon. Afterwards, from the intersection

points it can identify the exposed region that must be filled with the white color. After

all the rows are covered, the corresponding array can be converted to a pixel map by

a single operation.

Algorithm 5.1
1: procedure IMAGE

2: Input: Design parameters including polygon type and radius

3: Output: Bitmap image

4: CREATEPOLYGON(type,radius) and set it as P

5: SCALE(P)

6: CENTER(P)

7: Generate BITMAP(P) image

54

Algorithm 5.2
1: procedure BITMAP(P)

2: Input: A list of coordinates representing polygon

3: Output: A pixel map as bitmap image

4: Set the resolution and create pixel map

5: Take the minimum and maximum boundaries of the polygon

6: for i =min width of polygon to max width do

7: for j =min height of polygon to max height do

8: if pixel[i,j] is inside original polygon and outside the offset then

9: Set value of the pixel as (255,255,255)

5.3.1.2 Comparison and Result

Both approaches are implemented on a test case illustrated in Figure 3.2 and the

results prove the capability of both for generating bitmap images accurately (Figure

5.10). The difference in their performance is characterized by the execution time.

From the examination on these methods, it is observed that the first algorithm utilized

a slower time complexity O(n2) since it is checking each pixel at a time. On the other

hand, the second approach instead of examining each pixel, it analyzes the entire row

of pixels and performs the task with a time complexity of O(n).

Figure 5.10: Generated bitmap image

55

Algorithm 5.3
1: procedure BITMAP(P)

2: Input: A list of coordinates representing polygon

3: Output: A pixel map as bitmap image

4: Define a 2D array and assign black RGB code for each element

5: Take the minimum and maximum boundaries of the polygon

6: for each row of the array do

7: Set a line from starting and ending point of this row

8: if line intersects the original polygon then

9: if line intersects the offset polygon then

10: Find the intersection points for original polygon and its offset

11: Set the exposed elements to (255,255,255) from intersection

points

12: else

13: Find intersection points for original polygon

14: Set the exposed elements of array to (255,255,255)

15: Create pixel map based on the final array

To further evaluate the image generation algorithms, these two methods are run on

Raspberry Pi 3 (with the processor of Quad Core 1.2GHz Broadcom BCM2837 64bit

CPU) and their results are presented in Table 5.2. Here, three polygons with different

sizes and having an offset of 2 mm are assessed to demonstrate the influence of the

time complexity on the outcome. The Table confirms the effect of polygon size on the

execution time especially on the first algorithm which is more extreme. In conclusion,

to be able to print on the DLP printer without losing time, method number two is

appeared to be efficient and is employed in the next parts of the thesis.

Table 5.2: Running time (sec) for each polygon size

20×20 30×30 40×40
First Method 11.66 19.06 26.50

Second Method 1.18 1.65 2.15

56

Algorithm 5.4
1: procedure BTCALIBRATION

2: Output: A set of operations for calibrating the table

3: Move build table and vat to their home positions

4: Move build table by 5 cm down

5: Wait for command

6: Move Bed to the home position

5.3.2 Printing

In this Section, the algorithm for controlling the printing process is going to be de-

scribed using pseudocodes (Python codes can be found in the Appendices). Similar

to the conventional approach, before dealing with the printing process, several cali-

brations must be exerted. Therefore, Algorithm 5.4 is performing this operation in a

simple manner. Before executing this function, the build table must be mounted and

it is essential to loose the four screws on its both side so that the surface of the build

table can touch the vat without harming it. This function initially moves the table

to the home position by calling another function named as BedHomePosition which

will be described later. Since the distance between the home position and the vat is a

constant, a 5 cm movement will assure the table to touch the vat. After the movement

ceases, the operator can tighten the four screws and by pressing Ctrl+C the bed will

rise to the home position again. Also, for calibrating the projector, Algorithm 5.5 is

provided which is only capable of calibrating the projector sharpness. By running

this function, a black screen appears and the vat travels to the left side so that the

projector light can enter the upper side of the machine. Then, the calibration image is

projected on the upper surface of the vat and the script waits for the operator to adjust

the sharpness. Afterward, by pressing Esc from keyboard, the vat travels to the right

side and the corresponding screen is closed. For better comprehension, the readers

are referred to watch the B9Creator instructions for calibrating the projector and the

build table.

The printing operation is performed in three stages including initial setting, printing

process and final setting (Algorithm 5.6). In the first step, before turning on the

projector, the vat travels to its home position (Xhome) in order to prevent the projector

57

Algorithm 5.5
1: procedure PROJCALIBRATION

2: Output: A set of operations for adjusting the sharpness of the projector

3: Turn screen into black

4: Move vat to the left side

5: Display the calibration image

6: Wait for command

7: Move vat to the right side

8: Close the black screen

light from entering the vat. Then, a black screen needs to come up so that it prevents

projector to cure the resin. Then, the projector can be turned on. While the projector

is warming up, the bed is sent to its home position and then brought down for 5 cm to

prepare the machine for printing (Algorithm 5.7).

Algorithm 5.6
1: procedure PRINTING

2: Input: Design parameters including height, polygon type and redius

3: Output: A set of instructions for printing

4: INITIALSETTING

5: Wait for operator to start printing

6: PRINTINGPROCESS(height,type,radius)

7: FINALSETTING

After execution of the initial settings, the program ceases for operator to fill the vat

with photo polymer resin and connect the sweeper. Later, by pressing Esc the printing

process begins. The function employed for moving the build table to its home location

(Algorithm 5.8) explicitly presents how a limit switch is utilized for sending bed to

its home location.

Here, pin number 17 of the Raspberry Pi is used as an input to get signals from the

optical limit switch. The stepper motor must be set and prepared to work by allocating

its number of steps and speed. In this function, the initial pulse from the sensor

declares the location of the bed. If the sensor detects one (variable A is detected), it

is inferred that the red lever connected to the bed is engaging with the sensor and the

58

Algorithm 5.7
1: function INITIALSETTING

2: Output: A set of operations

3: Define both motors

4: Initiate a black screen

5: Turn on the projector

6: XHOME

7: Brings down the bed for 50 mm

Algorithm 5.8
1: function BEDHOMEPOSITION

2: Output: A set of operations to stop the bed in its home position

3: Setup GPIO pin 17 as an input

4: Let A be the signal comes from pin 17

5: if A not detected then

6: while A not detected do

7: Let A be the signal comes from pin 17

8: Turn stepper motor for one step forward (down)

9: else

10: while A is detected do

11: Let A be the signal comes from pin 17

12: Turn stepper motor for one step backward (up)

bed motion must be upward. Therefore, a while loop is employed to turn the stepper

motor until the against signal is detected. For each loop, the stepper motor is turned

for one step and also the amount of voltage in pin 17 is read. Immediately after the

program detects this amount against its initial value, it breaks the loop and the stepper

motor stops turning. Consequently, for each initial position of the bed, this function

is able to lead it to its home location.

For sending vat to its home, Algorithm 5.9 is utilized. The general idea is similar to

the previous one which uses an optical limit switch for taking a signal. The function

starts with setting up the pin number 4 as an input for the sensor. Then, the DC motor

is prepared to operate at a specific speed. Afterward, inside a while loop, the DC

59

motor rotates backward until the red sheet beneath the vat reaches to the sensor. The

high pulse coming from the sensor breaks the loop and the program ceases the DC

motor in its home position.

Algorithm 5.9
1: function XHOME

2: Output: A set of operations to stop the Vat in its home position

3: Setup GPIO pin 4 as an input

4: Define DC motor and its parameters

5: Let A be the signal comes from pin 4

6: while A is detected do

7: Let A be the signal comes from pin 4

8: Turn DC motor backward

9: Stop DC motor

The printing process which is provided by Algorithm 5.10 takes the design parame-

ters as an input. Based on the number of layers provided from the geometric param-

eter (height) and the amount of resolution (layer thickness), the script loops through

each layer and performs the following operations. At the beginning of each loop, the

screen color must be set to black to avoid curing resin more than their exposure time.

Through the function KeyboardEvent, the script can pause or abort the fabrication

process just by pressing P and Esc on the keyboard, respectively. For initial layers, in

order to have better attachment between printed part and the build plate, the time for

curing and the amount of lifting must be set differently. Therefore, the if statements

presented in this Algorithm checks the indices and set these parameters. Then, the

bed rises based on the amount defined for lifting. In this function, recoat is referred

to the motion of the vat in which it first travels to the home position and then comes

back to the left side. By this movement, the sweeper can clean the vat surface leading

to better attachment of the next layer. Afterward, the bed pulls down with one layer

thickness away from the vat surface. The corresponding image is generated based on

the index and the geometrical parameters (details of this operation is demonstrated

in Section 5.3.1). Eventually, the bitmap image is displayed in accordance with the

exposing time allocated in the previous lines. This process continues till the last layer

and the 3D model is manufactured.

60

Algorithm 5.10
1: function PRINTINGPROCESS

2: Input: Design parameters including height, polygon type and redius

3: Output: A set of operations for printing

4: Let N be the number of layers obtained from parameter height

5: Set the initial count to zero

6: while counter is less than N do

7: Update the screen to black

8: KEYBOARDEVENT

9: if counter is less than 2 then

10: Set the initial exposure time

11: Set the initial overlift

12: else

13: Set the sequential exposure time

14: Set the sequential overlift

15: Move up the bed with the amount defined for overlift

16: Recoat

17: Lower down the bed for (overlift - resolution)

18: Generate IMAGE(type,radius)

19: Display image for the amount defined in exposure time

20: counter = counter + 1

After the printing is done, the stepper motor lifts the bed up to some extent that the

operator can extract the bed without colliding with the vat. Then, the vat moves to

the left and the projector is turned off. Finally, the script closes the black screen and

disables the motors (Algorithm 5.11). Now, the bed can be separated and the operator

can remove the workpiece.

5.4 Results and Discussions

Similar to the previous Chapter, both aforementioned methods are employed to pro-

duce samples on the B9Creator printer. They utilized the same printing parameters

demonstrated in Figure 5.6a to fulfill the task. Despite the same quality observed in

61

Algorithm 5.11
1: function FINALSETTING

2: Output: A set of operations after printing

3: Bring up the bed

4: Move vat to the right side

5: Turn off the projector

6: Wait for the projector to be turned off

7: Close the black screen

8: Disable the motors

Figure 5.11, there exist some distinctions elaborated in Table 5.3 which can prove the

capability of the LIPRO for reducing memory usage. As it is realized from the Table,

the four steps require in conventional method for printing are gathered in a single

process with 19 KB of size. Additionally, another term which is recognized as the

main advantage of the LIPRO is the ability to pause the printing process, modify the

designed artifact and print parameters, and continue printing with the updated design.

As mentioned before, in order to accomplish this task in the conventional approach,

the entire operations stated in Table 5.3 must be executed from the start.

(a) (b)

Figure 5.11: Printed samples by a) Conventional approach, b) LIPRO

The design changes can be exerted in the LIPRO without any complications. To

appreciate this concept, Figure 5.12 is presented to indicate the flexibility of this new

paradigm. There is only a single line of Python code excluded from the print function

of Figure 5.11b so that Figure 5.12a can eventuate. That particular line defines the

radius of the polygon in accordance with the index of that layer and by removing this

62

Table 5.3: Comparison table, the sizes are in KB

Conventional Approach LIPRO
Size of CAD 162 —
Size of STL 223 —
Size of B9Layout 1 —
Size of B9Job 246 19 (Size of Python scripts)

line, the radius is considered as constant throughout the entire fabrication process. In

addition, Figure 5.12c is demonstrating the design change during printing process.

While printing this specimen, the process paused for two times and different design

plan applied for the remaining process.

(a) (b) (c)

Figure 5.12: Other specimens printed by LIPRO

63

64

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this dissertation, a new design and fabrication pipeline for 3D printers is introduced

and its operational algorithms along with necessary Python scripts for implementing

on FDM and DLP printers are delivered. In the first Chapter, the motivation and

reasons behind this study are illuminated and the related literature is reviewed in the

second Chapter. After that, structure of the proposed pipeline (LIPRO) is described in

details and the process of generating motion trajectories is evaluated in three different

approaches which represents the flexibility of the paradigm. Afterward, the instruc-

tions and the algorithms for implementing on FDM and DLP printers are provided in

Chapter 4 and 5, respectively. At the end of these Chapters, some test cases printed

by the LIPRO are demonstrated and through a discussion, the conventional approach

and the LIPRO are compared. As a result of this analysis, the advantages of fabrica-

tion using the LIPRO are eventuated. A brief recapitulation of the main contributions

provided in the chapter are presented in the following paragraphs.

In the second Chapter of the thesis, the significant role of Additive Manufacturing

in today’s manufacturing industry is discussed. Then, the conventional AM pipeline

is described and the background for some parts of the proposed pipeline which are

crucial for this study was assessed exclusively. In addition, the details of two AM

processes which are the subject of the experiments in this dissertation are presented.

The third chapter introduces the LIPRO as a new design and fabrication pipeline for

AM machinery and discusses how this paradigm is able to alleviate the drawbacks of

65

the standard AM pipelines mentioned before. Within the structure of the LIPRO, three

course of actions are assigned for different input data to provide the base curve in each

layer. Later, some operations for modifying the designed geometry and the functions

for generating the final motion trajectories are presented. After the general overview

of the LIPRO is described, the functions for each stage are discussed in details. Since

curve offsetting plays an essential role in the last stage and the accuracy of the end

product depends on them significantly, more research is invested to this section. In

order to supply an efficient offset algorithm for the LIPRO, three curve offset methods

investigated and through some experiments, Shapely is recognized as a more qualified

approach.

Chapter 4 demonstrates a direct set of commands and algorithms to fabricate a 3D

model on an FDM printer by employing both the conventional method and the LIPRO.

By utilizing a printed sample, the contrasts between these methods are examined.

This comparison proved the new paradigm utility to overcome the limitations empha-

sized in Chapter 1. More specimens are printed by the LIPRO to demonstrate the

flexibility of this approach for fabricating various artifacts by simply changing few

parameters and lines.

Similarly Chapter 5 is dedicated to describe the course of actions required for fab-

ricating on a DLP printer using both the standard method and the LIPRO. Within

the implementation of the new paradigm, additional instructions for controlling the

machine components (actuators and sensors) are devoted. Since generating bitmap

images is the most crucial operation affecting the efficiency of the printing process

considerably, two algorithms are developed for this purpose. The performances of

these algorithms are examined in terms of the execution time and as a result, one of

them is chosen to be employed in the LIPRO. In a similar manner to the prior Chapter,

the differences in both printing methods are discussed and the final results once again

support the capabilities of the LIPRO to resolve the difficulties mentioned in the first

Chapter.

66

6.2 Future Works

Although the presented experimental works succeeded to accomplish the studies as-

signed within the scope of this dissertation, there are still a lot of research arising to

improve this new design and fabrication pipeline.

Before fabricating each layer, the slicing algorithm provided in this study is only

slicing the particular layer and if this function enriched with the best quality pro-

gramming algorithms, it can reduce the overall fabrication time significantly. The

current slicing function still requires some improvement in terms of execution time

even though, it is able to slice a model with or without islands accurately.

Despite the fact that Python is a more comprehensible programming language, it is

still difficult for users to employ functions in a correct sequence for a particular print-

ing task. Therefore, a graphical user interface (GUI) needs to be developed that can

perform properly on various 3D printers.

For the overhanging parts within the layer which are not supported by the prior layer,

additional materials are required beneath those parts to ensure an accurate print. At

the moment, the presented paradigm in this study is lacking this function and it is

expected to be provided in the future.

Since the orientation of a fabricated part has a great influence on the quality of the

end product and the amount of support structures, its existence is demanded. There-

fore, while providing a GUI for the LIPRO this fact must be considered and a proper

interface can be provided.

The tool-path pattern utilized in this study is composed of only parallel contours.

However, some other studies should be conducted to evaluate the efficiency of other

patterns or mixed patterns in the performance of the final product. Hence, the func-

tionality of the LIPRO can be increased if it equips with various infill patterns.

67

68

REFERENCES

[1] T.-H. Kwok, H. Ye, Y. Chen, C. Zhou, and W. Xu, “Mass Customization:
Reuse of Digital Slicing for Additive Manufacturing,” Journal of Computing
and Information Science in Engineering, vol. 17, p. 021009, 2 2017.

[2] U. Yaman and M. Dolen, “A command generation approach for desktop fused
filament fabrication 3D printers,” IECON Proceedings (Industrial Electronics
Conference), pp. 4588–4593, 2016.

[3] U. Yaman and M. Dolen, “A novel command generation paradigm for pro-
duction machine systems,” Robotics and Computer-Integrated Manufacturing,
vol. 51, pp. 25–36, 6 2018.

[4] D. Bak, “The rapid prototyping technologies,” Rapid Prototyp. J., vol. 23,
no. 4, p. 26, 2003.

[5] J. Holmström, M. Holweg, S. H. Khajavi, and J. Partanen, “The direct digital
manufacturing (r)evolution: definition of a research agenda,” Oper. Manag.
Res., 2016.

[6] D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J. G. Steingrímsson, and
S. Thiede, “Direct digital manufacturing: definition, evolution, and sustain-
ability implications,” J. Clean. Prod., vol. 107, pp. 615–625, 11 2015.

[7] V. Petrovic, J. Vicente, H. Gonzalez, O. J. Ferrando, J. Delgado Gordillo,
J. Ramón, B. Puchades, . Luis, P. Griñan, O. J. Jorda´ferrando, J. Ramo´n,
R. B. Puchades, L. Portole´s, and P. Grinãn, “International Journal of Produc-
tion Research Additive layered manufacturing: sectors of industrial application
shown through case studies Additive layered manufacturing: sectors of indus-
trial application shown through case studies,” Int. J. Prod. Res., vol. 49, no. 4,
pp. 1061–1079, 2011.

[8] F. I. Azam, A. M. Abdul Rani, K. Altaf, T. V. Rao, and H. A. Zaharin, “An
In-Depth Review on Direct Additive Manufacturing of Metals,” in IOP Conf.
Ser. Mater. Sci. Eng., 2018.

[9] M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic, and T. Okabe,
“Evaluation of titanium alloy fabricated using electron beam melting system
for dental applications,” J. Mater. Process. Technol., vol. 211, pp. 1400–1408,
8 2011.

69

[10] L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N.
Amato, P. W. Shindo, F. R. Medina, and R. B. Wicker, “Metal Fabrication by
Additive Manufacturing Using Laser and Electron Beam Melting Technolo-
gies,” J. Mater. Sci. Technol., vol. 28, pp. 1–14, 1 2012.

[11] A. Gebhardt, F.-M. Schmidt, J.-S. Hötter, W. Sokalla, and P. Sokalla, “Additive
Manufacturing by selective laser melting the realizer desktop machine and its
application for the dental industry,” Phys. Procedia, vol. 5, pp. 543–549, 1
2010.

[12] W. E. Frazier, “Direct Digital Manufacturing of Metallic Components: Vision
and Roadmap,”

[13] J. Yu, M. Rombouts, and G. Maes, “Cracking behavior and mechanical prop-
erties of austenitic stainless steel parts produced by laser metal deposition,”
Mater. Des., vol. 45, pp. 228–235, 3 2013.

[14] S. Yang and Y. F. Zhao, “Additive manufacturing-enabled design theory and
methodology: a critical review,”

[15] A. Telea and A. Jalba, “Voxel-Based Assessment of Printability of 3D Shapes,”
tech. rep.

[16] X. Rolland-Nevière, G. Doërr, and P. Alliez, “Robust diameter-based thickness
estimation of 3D objects,” Graphical Models, vol. 75, pp. 279–296, 11 2013.

[17] C. C. L. Wang and Y. Chen, “Thickening freeform surfaces for solid fabrica-
tion,” Tech. Rep. 6, 2013.

[18] L. Luo, I. Baran, and S. Rusinkiewicz, “Chopper : Partitioning models into 3D-
printable parts The MIT Faculty has made this article openly available . Please
share how this access benefits you . Your story matters . Citation Association
for Computing Machinery (ACM) Author ’ s final manuscrip,” 2016.

[19] T. Ju, “Fixing geometric errors on polygonal models: A survey,” Tech. Rep. 1,
2009.

[20] M. Attene, “Polygon Mesh Repairing: An Application Perspective,” vol. 45,
2013.

[21] M. Campen and L. Kobbelt, “Exact and Robust (Self-)Intersections for Polyg-
onal Meshes,” Computer Graphics Forum, vol. 29, pp. 397–406, 5 2010.

[22] Sushant Negi, S. D. Sharma, and R. Kumar, “Basics, applications and future
of additive manufacturing technologies : A review,” no. March, 2013.

[23] D. C. Thompson and R. H. C. Research, “Optimizing Part Quality with Orien-
tation,” tech. rep.

70

[24] D. Frank and G. Fadel, “Expert system-based selection of the preferred direc-
tion of build for rapid prototyping processes,” tech. rep., 1995.

[25] W. Cheng, J. Y. H. Fuh, A. Y. C. Nee, Y. S. Wong, H. T. Loh, and T. Miyazawa,
“Rapid Prototyping Journal Multi-objective optimization of part-building ori-
entation in stereolithography Article information,” tech. rep.

[26] P.-T. Lan, S.-Y. Chou, L.-L. Chen, and D. Gemmill, “Determining fabri-
cation orientations for rapid prototyping with Stereolithography apparatus,”
Computer-Aided Design, vol. 29, pp. 53–62, 1 1997.

[27] J. H˜ar and K. Lee, “The Development of a CAD Environment to Determine
the Preferred Build-up Direction for Layered Manufacturing,” tech. rep., 1998.

[28] B. Ezair, F. Massarwi, and G. Elber, “Orientation analysis of 3D objects to-
ward minimal support volume in 3D-printing,” Computers & Graphics, vol. 51,
pp. 117–124, 10 2015.

[29] R. Khardekar and S. McMains, “Fast Layered Manufacturing Support Volume
Computation on GPUs,” in Volume 1: 32nd Design Automation Conference,
Parts A and B, vol. 2006, pp. 993–1002, ASME, 1 2006.

[30] H. D. Morgan, J. A. Cherry, S. Jonnalagadda, D. Ewing, J. Sienz, and H. D.
Morgan hdmorgan, “Part orientation optimisation for the additive layer man-
ufacture of metal components,” Int J Adv Manuf Technol, vol. 86, pp. 1679–
1687, 2016.

[31] P. Delfs, M. Tows, and H.-J. Schmid, “Optimized build orientation of addi-
tive manufactured parts for improved surface quality and build time,” Additive
Manufacturing, vol. 12, pp. 314–320, 10 2016.

[32] S. Masood, W. Rattanawong, and P. Iovenitti, “A generic algorithm for a best
part orientation system for complex parts in rapid prototyping,” Journal of Ma-
terials Processing Technology, vol. 139, pp. 110–116, 8 2003.

[33] S. H. Masood, W. Rattanawong, and P. Iovenitti, “Part Build Orientations
Based on Volumetric Error in Fused Deposition Modelling,” tech. rep., 2000.

[34] K. Hildebrand, B. Bickel, and M. Alexa, “Orthogonal slicing for additive man-
ufacturing,” Computers & Graphics, vol. 37, pp. 669–675, 10 2013.

[35] D. Ahn, H. Kim, and S. Lee, “Fabrication direction optimization to minimize
post-machining in layered manufacturing,” International Journal of Machine
Tools and Manufacture, vol. 47, pp. 593–606, 3 2007.

[36] X. Zhang, X. Le, A. Panotopoulou, E. Whiting, and C. C. Wang, “Perceptual
Models of Preference in 3D Printing Direction,” ACM Trans. Graph, vol. 34,
2015.

71

[37] E. Ulu, E. Korkmaz, K. Yay, O. B. Ozdoganlar, and L. B. Kara, “Enhancing
the Structural Performance of Additively Manufactured Objects Through Build
Orientation Optimization,” Journal of Mechanical Design, vol. 137, p. 111410,
11 2015.

[38] N. Umetani and R. Schmidt, “Cross-sectional Structural Analysis for 3D Print-
ing Optimization,” tech. rep.

[39] K. Hu, S. Jin, and C. C. Wang, “Support slimming for single material based
additive manufacturing,” Computer-Aided Design, vol. 65, pp. 1–10, 8 2015.

[40] T. Reiner and S. Lefebvre, “Interactive Modeling of Support-free Shapes for
Fabrication,” 5 2016.

[41] C. F. Kirschman, C. C. Jara-Almonte, and A. Bagchi, “Computer Aided Design
of Support Structures for Stereolithographic Components,” tech. rep.

[42] D. R. Smalley and B. Park, “United States Patent (19) 11 Patent Number:
5,854,748,” tech. rep.

[43] K. Chalasani, L. Jones, and U. Larry Roscoe, “Support Generation for Fused
Deposition Modeling,” tech. rep.

[44] H. Xiaomao, Y. E. Chunsheng, X. Huang, C. Ye, J. Mo, and H. Liu, “Slice
Data Based Support Generation Algorithm for Fused Deposition Modeling,”
Tsinghua Science and Technology, vol. 14, pp. 223–228, 6 2009.

[45] E. K. Heide, “Method for generating and building support structures with
deposition-based digital manufacturing systems,” tech. rep., 2010.

[46] A. L. B. William R. Priedeman, Jr., “Soluble material and process for three-
dimensional modeling,” 2004.

[47] O. J. Hildreth, A. R. Nassar, K. R. Chasse, and T. W. Simpson, “Dissolvable
Metal Supports for 3D Direct Metal Printing,”

[48] E. Sabourin, S. A. Houser, and J. H. Bøhn, “Adaptive slicing using stepwise
uniform refinement,” Rapid Prototyp. J., vol. 2, no. 4, pp. 20–26, 1996.

[49] R. L. Hope, R. N. Roth, and P. A. Jacobs, “Adaptive slicing using stepwise
uniform refinement,” Rapid Prototyping Journal, vol. 3, no. 3, pp. 274–288,
1997.

[50] J. Tyberg and J. H. Bøhn, “Local adaptive slicing,” Tech. Rep. 3, 1998.

[51] E. Sabourin, S. A. Houser, and J. H. Bøhn, “Accurate exterior, fast interior
layered manufacturing,” Tech. Rep. 2, 1997.

[52] K. Mani, P. Kulkarni, and D. Dutta, “Region-based adaptive slicing,”
Computer-Aided Design, vol. 31, pp. 317–333, 4 1999.

72

[53] C. F. Kirschman and C. C. Jara-Almonte, “A Parallel Slicing Algorithm for
Solid Freeform Fabrication Processes,” tech. rep.

[54] K. Tata, G. Fadel, A. Bagchi, and N. Aziz, “Efficient slicing for layered man-
ufacturing,” Rapid Prototyping Journal, vol. 4, no. 4, pp. 151–167, 1998.

[55] Y.-S. Liao and Y.-Y. Chiu, “A New Slicing Procedure for Rapid Prototyping
Systems,” tech. rep., 2001.

[56] S. J. Rock and M. J. Wozny, “Generating Topological Informa*ion from a
"Bucket of Facets",” tech. rep., 1992.

[57] S. J. Rock and i. Vvozny, “Utilizing Topological Information to Increase Scan
Vector Generation Efficiency,” tech. rep.

[58] S. Mcmains and C. Sequin, “A Coherent Sweep Plane Slicer for Layered Man-
ufacturing,” tech. rep., 1999.

[59] T. Van Hook, “Real-time shaded NC milling display,” Tech. Rep. 4.

[60] W. Zhang, X. Peng, M. C. Leu, and W. Zhang, “A Novel Contour Generation
Algorithm for Surface Reconstruction From Dexel Data,” Journal of Comput-
ing and Information Science in Engineering, vol. 7, p. 203, 9 2007.

[61] K. Yuksek, W. Zhang, B. I. Ridzalski, and M. C. Leu, “A new contour re-
construction approach from dexel data in virtual sculpting,” 3rd International
Conference on Geometric Modeling and Imaging: Modern Techniques and
Applications, GMAI, pp. 82–86, 2008.

[62] P. Huang, C. C. L. Wang, and Y. Chen, “Intersection-Free and Topologically
Faithful Slicing of Implicit Solid,” Journal of Computing and Information Sci-
ence in Engineering, vol. 13, p. 021009, 4 2013.

[63] P. Huang, C. C. L. Wang, and Y. Chen, “Algorithms for Layered Manufacturing
in Image Space,” in Advances in Computers and Information in Engineering
Research, Volume 1, ASME Press.

[64] H. Zhao, F. Gu, Q.-X. Huang, J. Garcia, Y. Chen, C. Tu, B. Benes, H. Zhang,
D. Cohen-Or, and B. Chen, “Connected Fermat Spirals for Layered Fabrica-
tion,”

[65] Y.-a. Jin, Y. He, J.-z. Fu, W.-f. Gan, and Z.-w. Lin, “Optimization of tool-path
generation for material extrusion-based additive manufacturing technology,”
Additive Manufacturing, vol. 1-4, pp. 32–47, 10 2014.

[66] Y. W. Y. Weidong, “Optimal path planning in Rapid Prototyping based on ge-
netic algorithm,” 2009 Chinese Control and Decision Conference, pp. 5068–
5072, 2009.

73

[67] P. K. Wah, K. G. Murty, A. Joneja, and L. C. Chiu, “Tool path optimization in
layered manufacturing,” IIE Transactions, vol. 34, pp. 335–347, 4 2002.

[68] K. Y. Fok, N. Ganganath, C. T. Cheng, and C. K. Tse, “A 3D printing path op-
timizer based on Christofides algorithm,” 2016 IEEE International Conference
on Consumer Electronics-Taiwan, ICCE-TW 2016, pp. 9–10, 2016.

[69] N. Ganganath, C.-t. Cheng, K.-y. Fok, and C. K. Tse, “Trajectory Planning for
3D Printing : A Revisit to Traveling Salesman Problem,” vol. 2, pp. 287–290,
2016.

[70] K. Castelino, R. D’souza, and P. K. Wright, “Tool-path Optimization for Min-
imizing Airtime during Machining,” tech. rep.

[71] L. E. Weiss, R. Merz, F. B. Prinz, G. Neplotnik, P. Padmanabhan, L. Schultz,
and K. Ramaswami, “Shape Deposition Manufacturing of Heterogeneous
Structures,” Journal of Manufacturing Systems, 1997.

[72] K.-H. Shin, H. Natu, D. Dutta, and J. Mazumder, “A method for the design and
fabrication of heterogeneous objects,” Materials & Design, vol. 24, pp. 339–
353, 8 2003.

[73] S.-M. Park, R. H. Crawford, and J. J. Beaman, “Volumetric Multi-Texturing
for Functionally Gradient Material Representation,” 2001.

[74] R. Jamieson and H. Hacker, “Direct slicing of CAD models for rapid prototyp-
ing,” Rapid Prototyp. J., vol. 1, no. 2, pp. 4–12, 1995.

[75] Z. Zhao and Z. Luc, “International Journal of Production Research Adaptive
direct slicing of the solid model for rapid prototyping,” 2010.

[76] X. Chen, C. Wang, X. Ye, Y. Xiao, and S. Huang, “Direct Slicing from Pow-
erSHAPE Models for Rapid Prototyping,” Int J Adv Manuf Technol, vol. 17,
pp. 543–547, 2001.

[77] M. T. Hayasi and B. Asiabanpour, “Machine path generation using direct slic-
ing from design-by-feature solid model for rapid prototyping,”

[78] W. Ma, W.-C. But, and P. He, “NURBS-based adaptive slicing for efficient
rapid prototyping,” Comput. Des., vol. 36, pp. 1309–1325, 11 2004.

[79] B. Starly, A. Lau, W. Sun, W. Lau, and T. Bradbury, “Direct slicing of STEP
based NURBS models for layered manufacturing,” Comput. Des., vol. 37,
pp. 387–397, 4 2005.

[80] Y. Qiu, X. Zhou, and X. Qian, “Direct slicing of cloud data with guaranteed
topology for rapid prototyping,”

74

[81] S. Sikder, A. Barari, and H. A. Kishawy, “Global adaptive slicing of NURBS
based sculptured surface for minimum texture error in rapid prototyping,”
Tech. Rep. 6, 2015.

[82] Y. Sasaki, M. Takezawa, S. Kim, H. Kawaharada, and T. Maekawa, “Adap-
tive direct slicing of volumetric attribute data represented by trivariate B-spline
functions,” Int J Adv Manuf Technol, vol. 91, pp. 1791–1807, 2017.

[83] J. Feng, J. Fu, Z. Lin, C. Shang, and B. Li, “Rapid Prototyping Journal Direct
slicing of T-spline surfaces for additive manufacturing Article information,”
tech. rep.

[84] D. W. Adams and C. J. Turner, “Implicit slicing method for additive manufac-
turing processes,” tech. rep.

[85] D. Adams and C. J. Turner, “An implicit slicing method for additive manu-
facturing processes, Virtual and Physical Prototyping,” vol. 13, no. 1, pp. 2–7,
2018.

[86] J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, “Implicit slicing
for functionally tailored additive manufacturing,” Computer-Aided Design,
vol. 77, pp. 107–119, 8 2016.

[87] T. Lozano-Perez and P. A. O’Donnell, “Parallel robot motion planning,” in
Proceedings - IEEE International Conference on Robotics and Automation,
vol. 2, 1991.

[88] Y.-a. Jin, Y. He, G.-h. Xue, and J.-z. Fu, “A parallel-based path generation
method for fused deposition modeling,” The International Journal of Advanced
Manufacturing Technology, vol. 77, no. 5-8, pp. 927–937, 2015.

[89] E. Lee, “Contour offset approach to spiral toolpath generation with constant
scallop height,” CAD Computer Aided Design, vol. 35, no. 6, pp. 511–518,
2003.

[90] Z. Lin, J. Fu, Y. He, and W. Gan, “A robust 2D point-sequence curve offset
algorithm with multiple islands for contour-parallel tool path,” CAD Computer
Aided Design, vol. 45, no. 3, pp. 657–670, 2013.

[91] B. K. Choi and S. C. Park, “A pair-wise offset algorithm for 2D point-sequence
curve,” Computer-Aided Design, vol. 31, no. 12, pp. 735–745, 1999.

[92] C. S. Lee, T. T. Phan, and D. S. Kim, “2D curve offset algorithm for pockets
with Islands using a vertex offset,” International Journal of Precision Engi-
neering and Manufacturing, vol. 10, no. 2, pp. 127–135, 2009.

[93] Y. Yang, H. Loh, J. Fuh, and Y. Wang, “Equidistant path generation for improv-
ing scanning efficiency in layered manufacturing,” Rapid Prototyping Journal,
vol. 8, no. 1, pp. 30–37, 2002.

75

[94] G. Q. Jin, W. D. Li, L. Gao, and K. Popplewell, “A hybrid and adaptive tool-
path generation approach of rapid prototyping and manufacturing for biomed-
ical models,” Computers in Industry, vol. 64, no. 3, pp. 336–349, 2013.

[95] M. Dolen and U. Yaman, “New morphological methods to generate two-
dimensional curve offsets,” International Journal of Advanced Manufacturing
Technology, vol. 71, no. 9-12, pp. 1687–1700, 2014.

[96] U. Yaman and M. Dolen, “A gradient-based morphological method to produce
planar curve offsets,” International Journal of Advanced Manufacturing Tech-
nology, vol. 80, no. 1-4, pp. 255–274, 2015.

[97] D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror
device (DMD) applications,” no. January 2003, p. 14, 2003.

[98] J. Gardan, “Additive manufacturing technologies: state of the art and trends,”
International Journal of Production Research, vol. 54, no. 10, pp. 3118–3132,
2016.

[99] S.-H. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, “Rapid Pro-
totyping Journal Anisotropic material properties of fused deposition modeling
ABS Article information,” tech. rep.

[100] S. Bhatia, V. Vira, D. Choksi, and P. Venkatachalam, “Geo-spatial Informa-
tion Science An algorithm for generating geometric buffers for vector feature
layers,” Online) Journal, pp. 1993–5153, 2013.

[101] “How Buffer (Analysis) works—Help | ArcGIS Desktop.”

[102] “Raspberry Pi 3 Model B Product Description | www.rs-components.com.”

[103] “PLA vs. ABS: What’s the difference? | 3D Hubs.”

[104] “Ultimaker 2 Go Factsheet | Ultimaker.com.”

[105] Creations and LLC, “B9Creator v1.2 Hardware Assembly Manual,” tech. rep.,
2014.

76

APPENDIX A

OFFSET ALGORITHMS

The Python scripts for offset algorithms compared in Section 3.8 is presented in ap-

pendix A. From these methods, since Shapely was chosen to be employed in the

LIPRO, its Python scripts are delivered in appendix B.

A.1 IMOBS

1 import numpy as np

2 import itertools

3 from scipy import spatial

4

5 def IMOBS(c,y,r):

6 ### optimizing parameters

7 def Iopt_prmt(B,eps,r):

8 delta1=[]

9 for i in range(len(B)):

10 delta1.append(abs(B[i]-B[i-1]))

11 L=sum(delta1)

12 delta=np.sqrt(1*eps*r)

13 P=int(L/delta)

14 N=int(round(14*np.pi*r/delta,-1))

15 if P<=0:

16 P=10

17 print(P);print(N)

18 return P,N,L

19 #Increasingpoint function

20 def ssample(X,Y,P):

21 s=np.insert(np.cumsum(np.absolute(np.add(np.diff(X)

22 ,1j*np.diff(Y)))),0,0)

23 if P<1:P=np.ceil(s[-1]/P)

24 n=len(X);delta=s[-1]/P

25 xs=np.zeros((P+1,1));ys=np.zeros((P+1,1))

26 xs[0]=X[0];ys[0]=Y[0]

27 for i in range(1,P+1):

77

28 sr=i*delta;j=np.sum(s<sr)

29 if j!=n:

30 u=(sr-s[j-1])/(s[j]-s[j-1])

31 dx=X[j]-X[j-1];dy=Y[j]-Y[j-1]

32 xs[i]=X[j-1]+u*dx;ys[i]=Y[j-1]+u*dy

33 else: xs[i]=X[-1];ys[i]=Y[-1]

34 return xs,ys

35 #The function clear will remove empty lists from S

36 def clear(A):

37 n=len(A);s=0;k=0

38 for i in range(n):

39 s+=int(not A[i])

40 W=[[0 for i in range(1)]for j in range(n-s)]

41 for i in range(n):

42 if A[i]:

43 W[k]=A[i]

44 k+=1

45 return W

46 #MFO phase

47 def mfo(Qi,mfo_r):

48 Qc=[]

49 while Qi:

50 Q=Qi[0]

51 del(Qi[0])

52 b=Q[0]

53 e=Q[-1]

54 delta=0

55 while delta<mfo_r and Qi:

56 dl11=[];dl21=[];dl31=[];dl41=[]

57 for j in range(len(Qi)):

58 dl11.append(abs(b-Qi[j][0]))

59 dl21.append(abs(b-Qi[j][-1]))

60 dl31.append(abs(e-Qi[j][0]))

61 dl41.append(abs(e-Qi[j][-1]))

62 dl1=min(dl11);idx1=dl11.index(dl1)

63 dl2=min(dl21);idx2=dl21.index(dl2)

64 dl3=min(dl31);idx3=dl31.index(dl3)

65 dl4=min(dl41);idx4=dl41.index(dl4)

66 delta=min(dl1,dl2,dl3,dl4)

67 if delta>mfo_r:

68 Qc.append(Q)

69 else:

70 if delta==dl1:

71 Q=Qi[idx1][::-1]+Q

72 del(Qi[idx1])

73 b=Q[0]

74 elif delta==dl2:

75 Q=Qi[idx2]+Q

76 del(Qi[idx2])

77 b=Q[0]

78

78 elif delta==dl3:

79 Q.extend(Qi[idx3])

80 del(Qi[idx3])

81 e=Q[-1]

82 elif delta==dl4:

83 Q.extend(Qi[idx4][::-1])

84 del(Qi[idx4])

85 e=Q[-1]

86 if len(Qi)==0:

87 Qc.append(Q)

88 return Qc

89 def IMOBS_offset(x,y,r):

90 eps=0.05 # error tolerance band

91 B = [x+y*1j for x,y in zip(x,y)]

92 res = 1;mfo_r = 1.8*r

93 P,N,L = Iopt_prmt(B,eps,r)

94 X,Y=ssample(np.array(x),np.array(y),P)

95 y1=1j*Y

96 x=list(itertools.chain(*X.tolist()))

97 y=list(itertools.chain(*y1.tolist()))

98 ### CBS of IMOBS)

99 S=[[]for c in range(len(x))]

100 #making T0 for Tk and eqn7

101 T0=(r*np.exp(1j*np.linspace(0,2*np.pi,num=N+1)))

102 S[0]=np.add(np.add(x[0],y[0]),T0).tolist()

103 for k in range(1,len(x)-1):

104 #angle of two consecutive points for a specific k

105 ukp=(x[k+1]-x[k]+y[k+1]-y[k])/abs(x[k+1]-x[k]+y[k+1]-y[k])

106 ukn=(x[k]-x[k-1]+y[k]-y[k-1])/abs(x[k]-x[k-1]+y[k]-y[k-1])

107 xkp=ukp.real;ykp=ukp.imag

108 xkn=ukn.real;ykn=ukn.imag

109 chi=(xkp*xkn)+(ykp*ykn)

110 #Tk will be:

111 Tk=np.add(np.add(x[k],y[k]),T0)

112 Tk=Tk.tolist()

113 #condition to see whether to use eqn6 or eqn7

114 if chi>res: #from eqn6

115 xs=x[k]-r*ykp

116 ys=y[k]+r*xkp*1j

117 S[k].append(xs+ys)

118 xs=x[k]+r*ykp

119 ys=y[k]-r*xkp*1j

120 S[k].append(xs+ys)

121 else: #from eqn7

122 for i in range(len(Tk)):

123 if abs(Tk[i]-(x[k+1]+y[k+1]))>r and abs(

124 Tk[i]-(x[k-1]+y[k-1]))>r:

125 S[k].append(Tk[i])

126 alpha=[[]for h in range(len(S))]

127 #Grid search and removing invalid points

79

128 B=[x+y for x,y in zip(x,y)]

129 S0=[[]for h in range(len(S))]

130 A=np.column_stack((X,Y))

131 A=A.tolist()

132 T=spatial.cKDTree(A)

133 for k in range(int(len(A))):

134 idx=T.query_ball_point(A[k],2*r)

135 alpha[k]=idx

136 for i in range(len(S[k])):

137 for j in range(len(idx)):

138 if abs(S[k][i]-B[idx[j]])<r:

139 S0[k].append(S[k][i])

140 S[k]=[a for a in S[k] if a not in S0[k]]

141 #creation of curve offsets

142 S=clear(S)

143 Qi=[]

144 Q=[]

145 while S:

146 Qi.append(Q)

147 Q=[]

148 for k in range(len(S)):

149 qmin=0

150 while qmin<1.4*r and S[k]:

151 if not Q:

152 q=S[0][0]

153 qabs=[];qlist=[]

154 for j in range(len(S[k])):

155 qabs.append(abs(S[k][j]-q))

156 qlist.append(S[k][j])

157 qmin=min(qabs)

158 idx=qabs.index(qmin)

159 qq=qlist[idx]

160 if qmin<1.4*r:

161 Q.append(q)

162 q=qq

163 del(S[k][idx])

164 S=clear(S)

165 if len(S)==0:

166 Qi.append(Q)

167 del(Qi[0])

168 Qc = mfo(Qi,mfo_r)

169 return Qc

170 X1 = [];Y1 = [];j = 0

171 B = [x+y*1j for x,y in zip(x,y)]

172 for i in range(len(B)-1):

173 if abs(B[i+1]-B[i]) > 2*r:

174 X1.append(x[j:i+1]);Y1.append(y[j:i+1])

175 j = i+1

176 X1.append(x[j:]);Y1.append(y[j:])

177 Qcc = []

80

178 for i in range(len(X1)):

179 Qcc.append(IMOBS_offset(X1[i],Y1[i],r))

180 return Qcc

A.2 AMOBS

1 import numpy as np

2 import itertools

3 from scipy import spatial

4 import math

5

6 def AMOBS(x,y,r):

7 ### this function find the two parameters based on the curvature

8 def weight(B,P,L):

9 h = []

10 for k in range(1,len(B)-1):

11 if abs(B[k+1]-B[k]) != 0 and abs(B[k]-B[k-1]) != 0:

12 ukp=(B[k+1]-B[k])/abs(B[k+1]-B[k])

13 ukn=(B[k]-B[k-1])/abs(B[k]-B[k-1])

14 xkp=ukp.real;ykp=ukp.imag

15 xkn=ukn.real;ykn=ukn.imag

16 cost=(xkp*xkn)+(ykp*ykn)

17 h.append(abs(cost))

18 g = min(h)

19 #avg = sum(h)/len(h)

20 nq = int((0.0025*g**2+0.0005)*P)

21 if nq == 0:

22 nq = 5

23 if g == 0:

24 w = 1

25 else: w = 0.7*math.sqrt(1-g**2)+0.8

26 print(w);print(nq)

27 return w,nq

28 def ssample(X,Y,p):

29 s=np.insert(np.cumsum(np.absolute(

30 np.add(np.diff(X),1j*np.diff(Y)))),0,0)

31 if p<1:p=np.ceil(s[-1]/p)

32 n=len(X);delta=s[-1]/p

33 xs=np.zeros((p+1,1));ys=np.zeros((p+1,1))

34 xs[0]=X[0];ys[0]=Y[0]

35 for i in range(1,p+1):

36 sr=i*delta;j=np.sum(s<sr)

37 if j!=n:

38 u=(sr-s[j-1])/(s[j]-s[j-1])

39 dx=X[j]-X[j-1];dy=Y[j]-Y[j-1]

40 xs[i]=X[j-1]+u*dx;ys[i]=Y[j-1]+u*dy

81

41 else: xs[i]=X[-1];ys[i]=Y[-1]

42 return xs,ys

43 #This function will remove empty lists from S

44 def clear(A):

45 n=len(A);s=0;k=0

46 for i in range(n):

47 s+=int(not A[i])

48 W=[[0 for i in range(1)]for j in range(n-s)]

49 for i in range(n):

50 if A[i]:

51 W[k]=A[i]

52 k+=1

53 return W

54 ### finding direction of a set of points

55 def drctn(Q,nq):

56 cost = 0; sint = 0

57 cos = 0 ; sin = 0

58 for m in range(nq-1):

59 cos = (Q[m+1].real - Q[m].real)/(abs(Q[m+1]-Q[m]))

60 sin = (Q[m+1].imag - Q[m].imag)/(abs(Q[m+1]-Q[m]))

61 cost += cos

62 sint += sin

63 return cost/nq, sint/nq

64 ### length of a curve

65 def length(B):

66 delta2 = []

67 for i in range(len(B)):

68 delta2.append(abs(B[i]-B[i-1]))

69 return sum(delta2)

70 def number_of_P(x,y,B,eps,r):

71 mxx = max(x);mnx = min(x);mxy = max(y);mny = min(y)

72 Sf = (mxx-mnx)*(mxy-mny)

73 delta2 = []

74 for i in range(len(B)):

75 delta2.append(abs(B[i]-B[i-1]))

76 L=sum(delta2)

77 cr = (0.1-L/Sf)*(2*r)+0.2

78 if cr<=0: cr = 0.08

79 delta3=np.sqrt(cr*eps*r)

80 P=int(L/delta3)

81 return P,L

82 #MFO phase

83 def mfo(Qi,mfo_r):

84 Qc=[]

85 while Qi:

86 Q=Qi[0]

87 del(Qi[0])

88 b=Q[0]

89 e=Q[-1]

90 delta=0

82

91 while delta<mfo_r and Qi:

92 dl11=[];dl21=[];dl31=[];dl41=[]

93 for j in range(len(Qi)):

94 dl11.append(abs(b-Qi[j][0]))

95 dl21.append(abs(b-Qi[j][-1]))

96 dl31.append(abs(e-Qi[j][0]))

97 dl41.append(abs(e-Qi[j][-1]))

98 dl1=min(dl11);idx1=dl11.index(dl1)

99 dl2=min(dl21);idx2=dl21.index(dl2)

100 dl3=min(dl31);idx3=dl31.index(dl3)

101 dl4=min(dl41);idx4=dl41.index(dl4)

102 delta=min(dl1,dl2,dl3,dl4)

103 if delta>mfo_r:

104 Qc.append(Q)

105 else:

106 if delta==dl1:

107 Q=Qi[idx1][::-1]+Q

108 del(Qi[idx1])

109 b=Q[0]

110 elif delta==dl2:

111 Q=Qi[idx2]+Q

112 del(Qi[idx2])

113 b=Q[0]

114 elif delta==dl3:

115 Q.extend(Qi[idx3])

116 del(Qi[idx3])

117 e=Q[-1]

118 elif delta==dl4:

119 Q.extend(Qi[idx4][::-1])

120 del(Qi[idx4])

121 e=Q[-1]

122 if len(Qi)==0:

123 Qc.append(Q)

124 return Qc

125 def AMOBS_offset(x,y,N=20,r=1):

126 eps=0.05 # error tolerance band

127 B = [x+y*1j for x,y in zip(x,y)]

128 P,L = number_of_P(x,y,B,eps,r)

129 w,nq = weight(B,P,L)

130 X,Y=ssample(np.array(x),np.array(y),P)

131 x = list(itertools.chain(*X.tolist()))

132 y = list(itertools.chain(*Y.tolist()))

133 B = [x+y*1j for x,y in zip(x,y)]

134 if w != 1:

135 w,nq = weight(B,P,L)

136 delta = max((np.absolute(np.add(np.diff(x),

137 1j*np.diff(y)))).tolist())

138 S = [[] for _ in range(len(x))]

139 for k in range(len(x)-1):

140 if abs(B[k]-B[k-1]) <= delta:

83

141 if x[k-1] <= x[k] and x[k] <= x[k+1]:

142 if (x[k+1]-x[k])==0:

143 if (y[k+1]-y[k]) < 0:

144 atan1 = -math.pi/2

145 else: atan1 = math.pi/2

146 else: atan1 = math.atan((y[k+1]-y[k])/

147 (x[k+1]-x[k]))

148 if (x[k]-x[k-1])==0:

149 if (y[k]-y[k-1]) < 0:

150 atan2 = -math.pi/2

151 else:

152 atan2 = math.pi/2

153 else: atan2 = math.atan((y[k]-y[k-1])/

154 (x[k]-x[k-1]))

155 aplus1 = atan1+math.acos(abs(B[k+1]-

156 B[k])/(2*r))

157 amines1 = atan1-math.acos(abs(B[k+1]-

158 B[k])/(2*r))

159 aplus2 = math.pi+atan2-

160 math.acos(abs(B[k]-B[k-1])/(2*r))

161 amines2 = -math.pi+atan2+

162 math.acos(abs(B[k]-B[k-1])/(2*r))

163 elif x[k-1]-x[k] < 0 and x[k+1]-x[k] < 0:

164 atan1 = math.pi +

165 math.atan((y[k+1]-y[k])/(x[k+1]-x[k]))

166 atan2 = math.pi +

167 math.atan((y[k]-y[k-1])/(x[k]-x[k-1]))

168 aplus1 = atan1+

169 math.acos(abs(B[k+1]-B[k])/(2*r))

170 amines1 = atan1-

171 math.acos(abs(B[k+1]-B[k])/(2*r))

172 aplus2 = atan2-

173 math.acos(abs(B[k]-B[k-1])/(2*r))

174 amines2 = (-math.pi*2)+atan2+math.acos(

175 abs(B[k]-B[k-1])/(2*r))

176 elif x[k-1]-x[k] > 0 and x[k+1]-x[k] > 0:

177 atan1 = math.atan((y[k+1]-

178 y[k])/(x[k+1]-x[k]))

179 atan2 = math.atan((y[k]-y[k-1])/

180 (x[k]-x[k-1]))

181 aplus1 = atan1+math.acos(abs(B[k+1]-

182 B[k])/(2*r))

183 amines1 = atan1-math.acos(abs(B[k+1]-

184 B[k])/(2*r))

185 aplus2 = atan2-math.acos(abs(B[k]-

186 B[k-1])/(2*r))

187 amines2 = (-math.pi*2) + atan2+math.acos(

188 abs(B[k]-B[k-1])/(2*r))

189 else:

190 if (x[k-1]-x[k])==0:

84

191 if (y[k-1]-y[k]) < 0:

192 atan1 = -math.pi/2

193 else: atan1 = math.pi/2

194 else: atan1 = math.atan((y[k-1]-y[k])/

195 (x[k-1]-x[k]))

196 if (x[k]-x[k+1])==0:

197 if (y[k]-y[k+1]) < 0:

198 atan2 = -math.pi/2

199 else:

200 atan2 = math.pi/2

201 else: atan2 = math.atan((y[k]-y[k+1])/

202 (x[k]-x[k+1]))

203 aplus1 = atan1+math.acos(abs(B[k-1]-

204 B[k])/(2*r))

205 amines1 = atan1-math.acos(abs(B[k-1]-

206 B[k])/(2*r))

207 aplus2 = math.pi+atan2-

208 math.acos(abs(B[k]-B[k+1])/(2*r))

209 amines2 = -math.pi+atan2+

210 math.acos(abs(B[k]-B[k+1])/(2*r))

211 A = [];nplus=0;nmines=0

212 if (aplus2 - aplus1) < 0:

213 pass

214 else:

215 if abs(aplus2 - aplus1) <= (delta/(1*r)):

216 A.append((aplus1+aplus2)/2)

217 else:

218 nplus = math.ceil(r*abs(aplus2-

219 aplus1)/delta)

220 dphiplus = ((aplus2-aplus1)-

221 (delta/r))/(nplus)

222 i = 0

223 while i < nplus:

224 i += 1

225 aplus = aplus1+(delta/(10*r))+

226 (i-1)*dphiplus

227 A.append(aplus)

228 if -(amines2 - amines1) < 0:

229 pass

230 else:

231 if abs(amines2 - amines1) <= (delta/(1*r)):

232 A.append((amines1+amines2)/2)

233 else:

234 nmines = math.ceil(r*abs(

235 amines2-amines1)/delta)

236 dphimines = (-(amines2-amines1)-

237 (delta/r))/(nmines)

238 i = 0

239 while i < nmines:

240 i += 1

85

241 amines = amines1-(

242 delta/(10*r))-(i-1)*dphimines

243 A.append(amines)

244 for a in A:

245 S[k].append(((x[k]+r*
246 math.cos(a))+1j*(y[k]+r*math.sin(a))))

247 else:

248 T0=(r*np.exp(1j*np.linspace(0,2*np.pi,num=N+1)))

249 Tk=np.add(np.add(x[k],1j*y[k]),T0)

250 Tk=Tk.tolist()

251 for i in range(len(Tk)):

252 S[k].append(Tk[i])

253 ### removing the invalid points

254 A = np.column_stack((X,Y))

255 T = spatial.cKDTree(A)

256 for k in range(int(len(A))):

257 idx=T.query_ball_point(A[k],2*r)

258 for a in idx:

259 for m in S[a]:

260 if abs(m-B[k])<r:

261 S[a].remove(m)

262 x1 = x

263 y1 = y

264 for i in range(len(S)):

265 if not S[i]:

266 x1[i] = []

267 y1[i] = []

268 S = clear(S)

269 x1 = clear(x1)

270 y1 = clear(y1)

271 ### CCO of AMOBS

272 Qi = []

273 Q = [[]]

274 A = np.column_stack((np.array(x1),np.array(y1)))

275 T = spatial.cKDTree(A)

276 z = [9]

277 while z:

278 q = 0

279 z = clear(S)

280 Qi.append(Q)

281 Q=[]

282 if not Q:

283 for k in range(len(S)):

284 if S[k]:

285 q = S[k][0]

286 del(S[k][0])

287 break

288 if q == 0:

289 break

290 qmin = 0

86

291 while qmin < r:

292 idx=T.query_ball_point(A[k],2*r)

293 qmin = 2*10**15

294 light = False

295 if len(Q) >= nq and w != 1:

296 u1, u2 = drctn(Q[-nq:],nq)

297 for a in idx:

298 for b in S[a]:

299 if b != q:

300 e1 = b.real - q.real

301 e2 = b.imag - q.imag

302 dt = (u1*e1+u2*e2)

303 if dt == 0:

304 b1 = (w/delta)+

305 ((1-w)/0.00001)

306 else:

307 b1 = (w/delta)+((1-w)/dt)

308 if abs(b-q)*b1 < qmin:

309 qmin = abs(b-q)*b1

310 qq = b

311 k = a

312 light = True

313 if light:

314 qmin = abs(qq-q)

315 else:

316 for a in idx:

317 for b in S[a]:

318 if b != q:

319 if abs(b-q) < qmin:

320 qmin = abs(b-q)

321 qq = b

322 k = a

323 if qmin < r:

324 if q not in Q:

325 Q.append(q)

326 q = qq

327 S[k].remove(q)

328 del(Qi[0])

329 Qi = clear(Qi)

330 mfo_r=1.9*r

331 Qc = mfo(Qi,mfo_r)

332 for a in Qc:

333 if abs(a[-1]-a[0]) < 1.5*r:

334 a.append(a[0])

335 return Qc

336 X1 = [];Y1 = [];j = 0

337 B = [x+y*1j for x,y in zip(x,y)]

338 for i in range(len(B)-1):

339 if abs(B[i+1]-B[i]) > 2*r:

340 X1.append(x[j:i+1]);Y1.append(y[j:i+1])

87

341 j = i+1

342 X1.append(x[j:]);Y1.append(y[j:])

343 Qcc = []

344 for i in range(len(X1)):

345 Qcc.append(AMOBS_offset(X1[i],Y1[i],N,r))

346 return Qcc

A.3 Simplification

1 from numpy.linalg import norm

2 import numpy as np

3 ### Find the prependicular distance between point 3 and line generated

4 ### from point 1 and 2

5 def deviation(p1,p2,p3):

6 return norm(np.cross(np.subtract(p2,p1),

7 np.subtract(p3,p1)))/norm(np.subtract(p2,p1))

8 ### Filter the points based on their deviations

9 ### Inputs: x and y coordinates and the amount of deviation threshold

10 def Filter(x,y,e):

11 iddx = []

12 for i in range(1,len(x)-1):

13 if deviation([x[i-1],y[i-1]],[x[i+1],y[i+1]],[x[i],y[i]]) < e:

14 iddx.append(i)

15 for a in iddx[::-1]:

16 del(x[a]);del(y[a])

17 return x,y ### Returns simplified x,y coordinates

88

APPENDIX B

The Python scripts for the LIPRO is presented here as a library. It is composed of

the functions described as the structure of the LIPRO in Chapter 3 and operations

required to implement on the FDM and DLP printers.

B.1 LIPRO Library

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sat Aug 25 15:51:26 2018

4 @author: V.Haseltalab

5 """

6 import math

7 import shapely.geometry as sg

8 import numpy as np

9 import serial

10 import pygame,os

11 from Adafruit_MotorHAT import Adafruit_MotorHAT,

12 Adafruit_DCMotor, Adafruit_StepperMotor

13 import time

14 import atexit

15 import RPi.GPIO as gp

16 from PIL import Image

17 from stl import mesh

18 from scipy import spatial

19 import matplotlib.pyplot as plt

20

21 ### Generating polygon

22 ### Input: radius of the polygon, Number of points in polygon

23 ### and the starting angle of the polygon

24 def gpc(r,N,angle=0):

25 out = [0]*2

26 angle = np.pi*angle/180

27 circle = r * np.exp(1j * (np.linspace(

89

28 0, 2 * math.pi, N + 1) + angle))

29 out[0] = circle.real; out[1] = circle.imag;

30 np.put(out[0],[-1],out[0][0]); np.put(out[1],[-1],out[1][0])

31 return out

32 ### Generate offset polygons

33 ### Input arguments are x,y coordinates of the base curve,

34 ### number of offsets and offset distance

35 def offset(x,y,N,d):

36 ### providing (x,y) tuples together

37 if any(isinstance(el, list) for el in x):

38 poly=[[] for j in range(len(x))]

39 B=[[] for _ in range(len(x))]

40 for i in range(len(x)):

41 B[i].extend([(x,y) for x,y in zip(x[i],y[i])])

42 else:

43 poly = []

44 B = [(x,y) for x,y in zip(x,y)]

45 X = [];Y = []

46 ### creating seperated polygons

47 if any(isinstance(el, list) for el in x):

48 for i in range(len(poly)):

49 poly[i]=sg.Polygon(B[i])

50 for k in range(len(poly)):

51 for j in range(N):

52 s = poly[k].buffer(-d*j)

53 if isinstance(s,sg.multipolygon.MultiPolygon):

54 for i in range(len(s)):

55 x1,y1 = s[i].exterior.coords.xy

56 X.append(x1);Y.append(y1)

57 else:

58 s1 = np.array(s.exterior)

59 if s1.any():

60 x1, y1 = s.exterior.coords.xy

61 X.append(x1);Y.append(y1)

62 else:

63 poly=sg.Polygon(B)

64 for i in range(N):

65 s = poly.buffer(-d*i)

66 if isinstance(s,sg.multipolygon.MultiPolygon):

67 for i in range(len(s)):

68 x1,y1 = s[i].exterior.coords.xy

69 X.append(x1);Y.append(y1)

70 else:

71 s1 = np.array(s.exterior)

72 if s1.any():

73 x1,y1 = s.exterior.coords.xy

74 X.append(x1);Y.append(y1)

75 return X,Y

76 ### Slicing an STL file format. It requires STL address,

77 ### layer thickness and the height of slice plane

90

78 def slicing(addr,thickness = 0.07,z = 1):

79 sb = 0.5 ## search bound

80 def vertices(a): ### Input argument a as address of the stl file

81 # importing ths stl file

82 msh = mesh.Mesh.from_file('%s'%a)

83 zvalues = [] ### stores the z value of a vertex

84 ### categorizing the vertices into a list based on their faces

85 vrt = [[] for s in range(len(msh))]

86 for i in range(len(msh)):

87 p1 = (msh[i][:3]).tolist()

88 p2 = (msh[i][3:6]).tolist()

89 p3 = (msh[i][6:]).tolist()

90 zvalues.append(p1[-1]);zvalues.append(p2[-1])

91 zvalues.append(p3[-1])

92 vrt[i] = [p1,p2,p3]

93 return vrt,zvalues

94 ### Returns a list of vertices along with their z values

95

96 ### finds intersection coordinates between a point and a line

97 ### p1 and p2 are two points generating a line

98 ### and z is the slice plan presented as a point

99 def eqn(p1,p2,z):

100 ### the ratio that can apply to distance of x and y

101 t = (z-p1[2]) / (p2[2]-p1[2])

102 return [p1[0] + (p2[0]-p1[0])*t , p1[1] + (p2[1]-p1[1])*t]

103 ### returns coordinates of the intersection point

104

105 ### checks whether the z plane is crossing through the line

106 def checkline(zl,z):

107 if z < max(zl) and z > min(zl):

108 return True

109 else: return False

110

111 ### finds intersection coordinates between

112 ### a plane and a triangular facet

113 def trintersct(l,z):

114 inlst = []

115 for i in range(3):

116 pt1 = l[i];pt2 = l[i-1]

117 zl = [pt1[2],pt2[2]]

118 if checkline(zl,z):

119 p = eqn(pt1,pt2,z)

120 inlst.append(p)

121 return inlst

122 #The function clear will remove empty lists from S

123 def clear(A):

124 n=len(A);s=0;k=0

125 for i in range(n):

126 s+=int(not A[i])

127 W=[[0 for i in range(1)]for j in range(n-s)]

91

128 for i in range(n):

129 if A[i]:

130 W[k]=A[i]

131 k+=1

132 return W

133 ### Ordering the points in a correct sequence

134 def order(L,r):

135 l = [[] for _ in range(5)]

136 i = 0

137 p = L[0]

138 del(L[0])

139 T1 = spatial.cKDTree(L)

140 l[i].append(p)

141 while L:

142 ds, idx = T1.query(p)

143 pp = L[idx]

144 if ds > r:

145 i += 1

146 l[i].append(pp)

147 del(L[idx])

148 if not L:

149 break

150 T1 = spatial.cKDTree(L)

151 p = pp

152 l = clear(l)

153 for a in l:

154 a.append(a[0])

155 return l

156 vrt, zvalues = vertices(addr)

157 one = [1 for f in range(len(zvalues))]

158 A=np.column_stack((np.array(zvalues),np.array(one)))

159 T = spatial.cKDTree(A.tolist())

160 fnum = []

161 Q = []

162 planept = [z,1]

163 idx=T.query_ball_point(planept,sb)

164 for a in idx:

165 fidx = int(a/3)

166 if fidx not in fnum:

167 fnum.append(fidx)

168 Q.extend(trintersct(vrt[fidx],z))

169 if Q:

170 l = order(Q,4)

171 return l

172 else:

173 print("No intersections!")

174 return []

175

176 #### Functions specifically used in FDM printer

177

92

178 ### Generating G-code

179 ### Input: two lists of x,y coordinates and nozzle height Z

180 ### Returns a list of strings as G-codes

181 def u2g(X,Y,Z):

182 main = []

183 extruderRatio = 0.12 #0.008

184 extruderPos = 0

185 offsetX = 40

186 offsetY = 40

187 for j in range(len(X)):

188 main.append("G1 F6000 E%.3f\n" % (extruderPos - 2))

189 main.append("\nG0 F3600 X%.3f Y%.3f Z%.3f\n" % (

190 X[j][0] + offsetX, Y[j][0] + offsetY, Z))

191 main.append("G1 F6000 E%.3f\n" % (extruderPos))

192 for i in range(len(X[j])-1):

193 distance = math.sqrt(math.pow(X[j][i] - X[j][i+1],2) +

194 math.pow(Y[j][i] - Y[j][i+1],2))

195 extruderPos += distance * extruderRatio

196 main.append("G1 F1800 X%.3f Y%.3f E%.3f\n" % (

197 X[j][i+1] + offsetX,

198 Y[j][i+1] + offsetY, extruderPos))

199

200 main.append("G92 E0.0\n")

201 return (main)

202

203 ### removing curves inside to maintain the wall

204 ### Input arguments are the x,y coordinates

205 def rem_ins(x,y):

206 if any(isinstance(el, list) for el in x) and len(x)>1:

207 poly=[[] for j in range(len(x))]

208 B=[[] for _ in range(len(x))]

209 pt = [[] for _ in range(len(x))]; g = []

210 for j in range(len(x)):

211 B[j].extend([(x,y) for x,y in zip(x[j],y[j])])

212 for k in range(len(poly)):

213 poly[k]=sg.Polygon(B[k])

214 pt[k] = sg.Point(B[k][0])

215 for n in range(len(pt)):

216 for m in range(len(poly)):

217 if pt[n].within(poly[m]):

218 g = m

219 if isinstance(g,int):

220 x = x[g]; y = y[g]

221 return [x,y]

222

223 ### Connect with Arduino

224 ### Inputs: Port address, required buad rate and timeout

225 ### Delivers a variable sr defining the connection port

226 def connection (com, baudrate, tout):

227 # Open serial port

93

228 sr = serial.Serial('%s'%com, baudrate, timeout = tout)

229 return sr

230 ### Wait until operation is over and reset the buffer

231 def readsg(s):

232 srs = 'no signals'.encode()

233 while srs != 'ok'.encode():

234 srs = s.readline().strip()

235 s.reset_input_buffer()

236 ### Initial measures

237 def strt_confg(s):

238 s.write(('M109 S210'+'\n').encode())

239 print(type(s))

240 s.write(('G28'+'\n').encode())

241 readsg(s)

242 s.write(('G0 F3600 X-10.0 Y11.800 Z20.0'+'\n').encode())

243 readsg(s)

244 s.write(('G92 E0.0'+'\n').encode())

245 readsg(s)

246 s.write(('G1 F100 E25'+'\n').encode())

247 readsg(s)

248 s.write(('G92 E0.0'+'\n').encode())

249 readsg(s)

250 s.write(('M106 S255'+'\n').encode())

251 readsg(s)

252 ### Turn on the side fans

253 def fan_on(s):

254 s.write(('M106 S255'+'\n').encode())

255 print(('M106 S255'+'\n').encode())

256 readsg(s)

257 def fan_off(s):

258 s.write(('M106 S0'+'\n').encode())

259 readsg(s)

260 ### Apply end settings

261 def end_confg(s):

262 s.write(('G1 F6000 E-10.0'+'\n').encode())

263 readsg(s)

264 s.write(('G28'+'\n').encode())

265 readsg(s)

266 s.write(('M104 S0.0'+'\n').encode())

267 readsg(s)

268 s.write(('M106 S0'+'\n').encode())

269 readsg(s)

270 ### Terminate the connection

271 def closing(s):

272 s.close()

273 ### Retract the filament

274 def retract(s):

275 s.write(('G1 F6000 E-10.0'+'\n').encode())

276 ### Send G-codes line by line to the machine

277 ### l is representing the list of G-codes

94

278 def txt(l,s):

279 srv = 'no signals'.encode()

280 for e in l:

281 s.write(e.encode())

282 while srv != 'ok'.encode():

283 srv = s.readline().strip()

284 s.reset_input_buffer()

285 srv = 'no signals'.encode()

286 ### Main function of printing process

287 def FDMPrint(radius,height,s):

288 t = 0.06 ## Layer thickness

289 d = 0.35 ## Offset distance

290 angle = 0.3 ## twisting angle in each layer

291 diff = t*(radius)/height ### Requires for pyramid

292 Z = 0.3 ## initial position of the nozzle

293 P = int(height/t) ### Number of layers

294 N = 4 ## Polygon type - Number of sides

295 n = int(radius/d) ## Number of offsets in each layer

296 for i in range(5): ### Print the bottom layers

297 print('Layer Number: %d'%(i+1))

298 ### Generate the base polygon

299 a = gpc(radius-(diff*i),N,i*angle)

300 x = a[0].tolist();y = a[1].tolist()

301 x1, y1 = offset(x,y,n,d) ### Generate the offsets

302 gcode = u2g(x1,y1,Z) ### Get G-codes from trajectories

303 txt(gcode,s) ### Send G-codes line by line to machine

304 Z += t ### Add one layer thickness

305 n = 3

306 for i in range(5,P+1): ### Pring the upper layers

307 print('Layer Number: %d'%(i+1))

308 a = gpc(radius-(diff*i),N,i*angle)

309 if int((radius-(diff*i))/d) < 3:

310 n = int((radius-(diff*i))/d)

311 x = a[0].tolist();y = a[1].tolist()

312 x1, y1 = offset(x,y,n,d)

313 gcode = u2g(x1,y1,Z)

314 txt(gcode,s)

315 Z += t

316 ### Lower down the bed

317 s.write(('G0 F3600 Z%.3f\n'%(Z+20)).encode())

318 readsg(s)

319

320 #### Functions specifically used in DLP printer

321

322 ### Provide the black screen and return as a variable

323 def Screen():

324 os.environ["SDL_VIDEO_CENTERED"] = "1"

325 pygame.init()

326 #screen = pygame.display.set_mode((1500,800))

327 screen = pygame.display.set_mode((0,0),pygame.FULLSCREEN)

95

328 pygame.display.set_caption('DLP Print')

329 pygame.mouse.set_visible(0)

330 screen.fill((0,0,0))

331 return screen

332 ### Define DC motor and Stepper motor and return both of them

333 def MotorStart():

334 ### create a default object

335 mh = Adafruit_MotorHAT(addr=0x70)

336 ### No changes to I2C address or frequency

337 mhstep = Adafruit_MotorHAT()

338 ### recommended for auto-disabling motors on shutdown!

339 def turnOffMotors():

340 mh.getMotor(1).run(Adafruit_MotorHAT.RELEASE)

341 mh.getMotor(2).run(Adafruit_MotorHAT.RELEASE)

342 mh.getMotor(3).run(Adafruit_MotorHAT.RELEASE)

343 mh.getMotor(4).run(Adafruit_MotorHAT.RELEASE)

344 atexit.register(turnOffMotors)

345 myMotor = mh.getMotor(3)

346 ### 200 steps/rev, motor port #1

347 myStepper = mhstep.getStepper(200, 1)

348 return myMotor,myStepper

349 ### Motion of vat to right side, Input argument is DC motor

350 def XRmove(myMotor):

351 gp.setmode(gp.BCM)

352 gp.setwarnings(False)

353 gp.setup(4,gp.IN,pull_up_down=gp.PUD_UP)

354 ### set the speed to start, from 0 (off) to 255 (max speed)

355 myMotor.setSpeed(50)

356 myMotor.run(Adafruit_MotorHAT.FORWARD);

357 ### turn on motor

358 myMotor.run(Adafruit_MotorHAT.RELEASE);

359 myMotor.run(Adafruit_MotorHAT.FORWARD)

360 running = True

361 try:

362 while running:

363 A = gp.input(4)

364 myMotor.setSpeed(70)

365 if A:

366 running = False

367 except KeyboardInterrupt:

368 myMotor.run(Adafruit_MotorHAT.RELEASE)

369 gp.cleanup()

370 myMotor.run(Adafruit_MotorHAT.RELEASE)

371 ### Motion of vat to left side. Inputs: DC motor and its time

372 def XLmove(myMotor,xt=1.4):

373 myMotor.setSpeed(50)

374 myMotor.run(Adafruit_MotorHAT.FORWARD);

375 ### turn on motor

376 myMotor.run(Adafruit_MotorHAT.RELEASE);

377 myMotor.run(Adafruit_MotorHAT.BACKWARD)

96

378 myMotor.setSpeed(70)

379 time.sleep(xt)

380 myMotor.run(Adafruit_MotorHAT.RELEASE)

381 ### Brings the build table to home position. Input: Stepper motor

382 def Zhome(myStepper):

383 gp.setmode(gp.BCM)

384 gp.setup(17,gp.IN,pull_up_down=gp.PUD_UP)

385 myStepper.setSpeed(2000)

386 A = gp.input(17)

387 if not A:

388 running = True

389 try:

390 while running:

391 A = gp.input(17)

392 myStepper.step(10, Adafruit_MotorHAT.FORWARD,

393 Adafruit_MotorHAT.INTERLEAVE)

394 if A:

395 running = False

396 except KeyboardInterrupt:

397 running = False

398 else:

399 running = True

400 try:

401 while running:

402 A = gp.input(17)

403 myStepper.step(10, Adafruit_MotorHAT.BACKWARD,

404 Adafruit_MotorHAT.INTERLEAVE)

405 if not A:

406 running = False

407 except KeyboardInterrupt:

408 running = False

409 ### Move up the build table for defined amount

410 ### Inputs are Stepper motor and amount of rotation

411 def Z_up(stepmtr,amount):

412 stepmtr.setSpeed(2000) # 30 RPM

413 stepmtr.step(amount, Adafruit_MotorHAT.BACKWARD,

414 Adafruit_MotorHAT.SINGLE)

415 ### Move down the build table for defined amount

416 def Z_down(myStepper,amount):

417 myStepper.setSpeed(2000) ### Set speed

418 myStepper.step(amount, Adafruit_MotorHAT.FORWARD,

419 Adafruit_MotorHAT.SINGLE)

420 ### The start settings for printing in DLP printer

421 def InitialS():

422 dc,step = MotorStart() ### Define motors

423 s = Screen() ### Initiate black screen

424 XRmove(dc) ### Move vat to right

425 Zhome(step) ### Move build table to home position

426 wait(s) ### Wait for operator

427 Z_down(step,5080-300) ### Lower down the build table

97

428 return dc, step, s ### Returns DC, stepper motor and screen

429 ### The final settings after printing

430 def FinalS(dc, step, s):

431 Z_up(step,7000) ### move up the build table

432 XRmove(dc) ### To avoid entering projector light into vat

433 wait(s) ### Wait for operator to turn off the projector

434 ScreenOff(s) ### Terminate the screen

435

436 ### Calibrate the projector

437 def CalbProjector():

438 os.environ["SDL_VIDEO_CENTERED"] = "1"

439 pygame.init()

440 #s = pygame.display.set_mode((800,800))

441 s = pygame.display.set_mode((0,0),pygame.FULLSCREEN)

442 pygame.display.set_caption('DLP Print')

443 pygame.mouse.set_visible(0)

444 s.fill((0,0,0))

445 ### Get the image address

446 Img = pygame.image.load(r"/home/pi/122.bmp")

447 s.blit(Img, (-100,-60)) ### Display the image

448 pygame.display.update() # Update the screen

449 pygame.display.flip()

450 Clock = pygame.time.Clock()

451 running = True

452 while running: ### Check for events (press Esc to exit)

453 Clock.tick(60)

454 for event in pygame.event.get():

455 if event.type == pygame.QUIT:

456 running = False

457 if event.type == pygame.KEYDOWN and

458 event.key == pygame.K_ESCAPE:

459 running = False

460 break

461 s.fill((0,0,0))

462 pygame.display.update() # Update the screen to black

463 pygame.display.flip()

464 return s ### returns the screen

465 ### Build table calibration

466 def BuildTableCal(myStepper):

467 myStepper.setSpeed(1000) # 30 RPM

468 c = 0

469 running = True

470 try:

471 while running:

472 myStepper.step(20, Adafruit_MotorHAT.FORWARD,

473 Adafruit_MotorHAT.SINGLE)

474 c += 20

475 if c > 5080:

476 running = False

477 except KeyboardInterrupt:

98

478 running = False

479 print(c)

480 ### Wait for operator command (Esc)

481 def wait(s):

482 s.fill((0,0,0))

483 pygame.display.update()

484 pygame.display.flip()

485 running = True

486 try:

487 while running:

488 for event in pygame.event.get():

489 if event.type == pygame.QUIT:

490 running = False

491 if event.type == pygame.KEYDOWN

492 and event.key == pygame.K_ESCAPE:

493 running = False

494 break

495 except KeyboardInterrupt:

496 print(running)

497 print("Done")

498 ### Wait for operator command (Ctrl+C)

499 def wait2():

500 w = 0

501 try:

502 while True:

503 w += 1

504 time.sleep(2)

505 except KeyboardInterrupt:

506 print(w)

507 ### Check if the point is inside a single polygon

508 def Inside(a,p1):

509 if a.within(p1) or a.touches(p1):

510 return True

511 else:

512 return False

513 ### Check if a point is between two polygons

514 ### p1 is the outerior polygon and p2 is interior

515 def Inside2(a,p1,p2):

516 if (a.within(p1) or a.touches(p1)) and not a.within(p2):

517 return True

518 else:

519 return False

520 ### Locate the polygon into center of the screen

521 ### x,y presents the polygon,

522 ### width and length are the resolution of projector

523 def center(x,y,width,length):

524 B = [(x2,y2) for x2,y2 in zip(x,y)]

525 poly = sg.Polygon(B)

526 minx,miny,maxx,maxy = poly.bounds

527 dis = ((width/2)-(maxx+minx)/2,(length/2)-(maxy+miny)/2)

99

528 x = (np.array(x) + dis[0]).tolist()

529 y = (np.array(y) + dis[1]).tolist()

530 return x,y ### return the new list of coordinates

531 ### Scale the polygon

532 def scale(x,y):

533 x1 = [];y1 = []

534 for i in range(len(x)):

535 x1.append(x[i]*1080/80)

536 y1.append(y[i]*1080/75.6)

537 return x1,y1 ### return the new list of coordinates

538 ### Get new coordinates

539 def NewCoord(x,y):

540 x,y = scale(x,y)

541 x,y = center(x,y,1920,1080)

542 return x,y

543 ### Generate bitmap image.

544 ### Inputs: Length of polygon, starting angle

545 ### if offset is requires withoff must be True, offset distance

546 def image(L,angle,withoff = False, offdis = 2):

547 width = 1920

548 height = 1080

549 array = np.zeros([height, width, 3], dtype=np.uint8)

550 array[:,:] = [0, 0, 0] ### defines a black pixel

551 if withoff: ### if Offset requires

552 r = L/math.sqrt(2)

553 b = gpc(r,4,angle)

554 x = b[0].tolist();y = b[1].tolist()

555 B = [(x1,y1) for x1,y1 in zip(x,y)]

556 poly = sg.Polygon(B) ### Base polygon

557 ### Offset polygon

558 offset = list(poly.buffer(-offdis).exterior.coords)

559 x1 = [b[0] for b in offset]

560 y1 = [b[1] for b in offset]

561 x,y = NewCoord(x,y) ### new coordinates of base polygon

562 x1,y1 = NewCoord(x1,y1)

563 B1 = [(x1,y1) for x1,y1 in zip(x,y)]

564 B2 = [(x2,y2) for x2,y2 in zip(x1,y1)]

565 poly1 = sg.Polygon(B1) ### Define bsae polygon in shapely

566 poly2 = sg.Polygon(B2)

567 ### Get the boundaries of the base

568 minx,miny,maxx,maxy = poly1.bounds

569 ### for every Row of screen:

570 for i in range(int(miny),int(maxy)):

571 ### Generate a line to cover the row

572 l = sg.LineString([(int(minx-3),i),(int(maxx+3),i)])

573 ### Check if the line intersects with base

574 if l.intersects(poly1):

575 ### Get intersection

576 a = list(l.intersection(poly1).coords)

577 ### Check with offset polygon

100

578 if l.intersects(poly2):

579 a2 = list(l.intersection(poly2).coords)

580 ### Fill the exposed region with white

581 array[i,int(a[0][0]):int(a2[0][0])].fill(255)

582 array[i,int(a2[1][0]):int(a[1][0])].fill(255)

583 else:

584 a = list(l.intersection(poly1).coords)

585 array[i,int(a[0][0]):int(a[1][0])].fill(255)

586 else:

587 r = L/math.sqrt(2)

588 b = gpc(r,4,angle)

589 x = b[0].tolist();y = b[1].tolist()

590 B = [(x1,y1) for x1,y1 in zip(x,y)]

591 poly = sg.Polygon(B)

592 x,y = NewCoord(x,y)

593 B1 = [(x1,y1) for x1,y1 in zip(x,y)]

594 poly1 = sg.Polygon(B1)

595 minx,miny,maxx,maxy = poly1.bounds

596 for i in range(int(miny)-1,int(maxy)+1):

597 l = sg.LineString([(int(minx-3),i),(int(maxx+3),i)])

598 if l.intersects(poly1):

599 a = list(l.intersection(poly1).coords)

600 array[i,int(a[0][0]):int(a[1][0])].fill(255)

601 return array

602 ### Get images based on indices of the design model

603 def Pyimage(i,L,diff,offdis,H):

604 L = 2*(10-diff*i) ### Must be used if pyramid requires

605 num = int(H/0.07)

606 if i == 0:

607 array = image(L,0,False,2)

608 img = Image.fromarray(array)

609 data = img.tobytes()

610 Img = pygame.image.fromstring(data,img.size,img.mode)

611 elif i < 29 or i > num-29: ### No offset for these layers

612 array = image(L,0.2*(i+1),False,2)

613 img = Image.fromarray(array)

614 data = img.tobytes()

615 Img = pygame.image.fromstring(data,img.size,img.mode)

616 else:

617 array = image(L,0.2*(i+1),True,2)

618 img = Image.fromarray(array)

619 data = img.tobytes()

620 Img = pygame.image.fromstring(data,img.size,img.mode)

621 return Img ### returns the bitmap image

622

623 ### Printing process

624 ### Inputs: screen, DC and stepper motors,

625 ### length, height and offset distance

626 def DLPPrint(s,dc,myStepper,L,H,offdis):

627 lt = 0.07 ## layer thickness

101

628 diff = lt*L/(2*H) ## radius difference in each layer

629 num = int(H/lt) ## number of layers

630 Clock = pygame.time.Clock()

631 myStepper.setSpeed(2000) ### Set Stepper motor speed

632 running = True

633 while running:

634 Clock.tick(60)

635 s.fill((0,0,0))

636 pygame.display.flip()

637 for i in range(num): ### i indicates the layer number

638 print(i) ### Display layer number

639 xt = 1.4 ### Time used for moving DC motor

640 if i < 3: ct = 21.182 ### Exposure time

641 else: ct = 6.637

642 s.fill((0,0,0))

643 pygame.display.update() # Update the screen to black

644 pygame.display.flip()

645 time.sleep(0.5)

646 ### For initial layers settings are different

647 if i < 3 and i != 0:

648 Z_up(myStepper,30)

649 time.sleep(1)

650 XRmove(dc)

651 time.sleep(0.5)

652 Z_up(myStepper,270)

653 Img = Pyimage(i,L,diff,offdis,H) ### Get image

654 XLmove(dc,xt)

655 time.sleep(0.5)

656 Z_down(myStepper,293)

657 time.sleep(1)

658 elif i == 0:

659 Img = Pyimage(i,L,diff,offdis,H)

660 XLmove(dc,xt)

661 time.sleep(1)

662 Z_down(myStepper,293)

663 else:

664 Z_up(myStepper,50)

665 time.sleep(1)

666 XRmove(dc)

667 time.sleep(0.5)

668 Img = Pyimage(i,L,diff,offdis,H)

669 XLmove(dc,xt)

670 time.sleep(1)

671 Z_down(myStepper,43)

672 ### Check for Keyboard events

673 for event in pygame.event.get():

674 pause = False

675 if event.type == pygame.QUIT:

676 running = False

677 if event.type == pygame.KEYDOWN and

102

678 event.key == pygame.K_ESCAPE:

679 running = False

680 break

681 if event.type == pygame.KEYDOWN and

682 event.key == pygame.K_p:

683 pause = True

684 while pause:

685 for event in pygame.event.get():

686 if event.type == pygame.QUIT:

687 pause = False

688 running = False

689 if event.type == pygame.KEYDOWN and

690 event.key == pygame.K_ESCAPE:

691 pause = False

692 running = False

693 if event.type == pygame.KEYDOWN and

694 event.key == pygame.K_p:

695 pause = False

696 if not running:

697 break

698 if i == (num-1): running = False

699 s.blit(Img, (0,0))

700 ### Update the screen to show image

701 pygame.display.update()

702 pygame.display.flip()

703 time.sleep(ct) ### Cure with this interval

704 s.fill((0,0,0))

705 pygame.display.update() ### Update the screen to black

706 pygame.display.flip()

707 ### Terminate the black screen

708 def ScreenOff(s):

709 pygame.quit()

B.2 Build Table Calibration Main Function

1 import LIPRO as lp

2 dc,step = lp.MotorStart() ### Start motors

3 lp.Zhome(step) ### Move build table to home position

4 lp.XLmove(dc,1.4) ### Move vat to left side

5 lp.wait2() ### Wait for operator

6 lp.BuildTableCal(step) ### Build table calibration function

7 lp.wait2()

8 lp.Z_up(step,5000) ### Move the build table up 5 cm

103

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	Introduction
	Motivation
	Scope of the Thesis
	Limitations of the Study

	Background
	Introduction
	Direct Digital Manufacturing
	Design and Fabrication Pipelines
	Direct Slicing
	Implicit Slicing
	Curve Offset
	Digital Light Processing
	Fused Deposition Modeling

	List Processing Language and its Pipeline
	Introduction
	Generating Polygons
	Data Decompression
	Slicing
	Polygon Operations
	Transformations
	Path Sequence
	Curve Offset Generation
	Improved Morphological Operations on Boundary Sets (IMOBS)
	Advanced Morphological Operations on Boundary Sets (AMOBS)
	Shapely
	Parameter Adjustment
	Comparisons and Discussions

	Controller Board

	Implementation of the LIPRO on an FDM Printer
	Introduction
	Main Steps of the Conventional FDM Printing
	Printing Scheme of the LIPRO
	Test Prints

	Implementation of the LIPRO on a DLP Printer
	Introduction
	Conventional Approach
	Proposed Approach (The LIPRO)
	Creating Bitmap Images
	Image Generation Algorithms
	Comparison and Result

	Printing

	Results and Discussions

	Conclusions and Future Works
	Conclusions
	Future Works

	REFERENCES
	APPENDICES
	Offset Algorithms
	IMOBS
	AMOBS
	Simplification

	
	LIPRO Library
	Build Table Calibration Main Function

