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ABSTRACT 

 

RECURRENCE QUANTIFICATION ANALYSIS OF GROUP EYE TRACKING 

DATA 

 

 

Tajaddini, Mani 

MSc., Department of Cognitive Sciences 

Supervisor: Assoc. Prof. Dr. Cengiz Acarturk 

 

August 2018, 87 pages 

 

Eye movements can provide insight into the cognitive processes behind them. To study 

group cognition through investigating eye movements, we have developed a software tool 

(GETapp) to collect eye movement data from groups of participants performing a task on 

a set of computers in the scope of the Group Eye Tracking (GET) paradigm. Like many 

real-world systems, the data from group eye tracking experiments are non-linear. We have 

developed a software tool, a package for the R programming language, called the 

generalRQA package for analyzing these non-linear data. The methods used in this 

package are based on recurrences of time-series and implement a part of the theory of 

Recurrence Quantification Analysis (RQA). In this thesis we describe both the software 

tools and apply them to propose measures that differentiate between different group 

formation patterns in a group eye tracking search task. 

 

Keywords: Group Eye Tracking, Recurrence Quantification Analysis, Nonlinear 
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ÖZ 

 

GROUP EYE TRACKING VERILERI UZERINDE RECURRENCE 

QUANTIFICATION ANALYSIS 

 

 

Tajaddini, Mani 

Yüksek Lisans, Bilişsel Bilimler Bölümü 

Tez Yöneticisi: Doç. Dr. Cengiz Acartürk 

 

Ağustos 2018, 87 sayfa 

 

Göz hareketleri arkalarındaki bilişsel proselere içgörü sağlayabilir. Göz hareketlerini 

incelemekle gurup bilişimini araştırmak için bir yazılım geliştirdik. Bu yazılım 

aracılığıyla group eye tracking (GET) kapsamında yer alan bir gurup denekle ve bir gurup 

bilgisayar üzerinde yapılan deneylerde göz verileri topladık. Group eye tracking verileri, 

her gerçek-dünya sisteminde olduğu gibi, nonlineerdirler. Bu nonlineer verileri analiz 

etmek için generalRQA isimli ve R package’i formunda bir yazılım geliştirdik. Bu 

yazılımdaki kullanan yöntemler recurrence üzerinde bina olup Recurrence Quantification 

Analysis (RQA) teorisinin bir kısmını uygulamaktadır. Bu tezde her iki yazılımı tanımlayıp 

onları farklı gurup oluşum desenlerini birbirinden ayırt edebilen ölçümler bulmak için 

uyguladık. 

 Anahtar Sözcükler: Group Eye Tracking, Recurrence Quantification Analysis, Nonlineer  
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

Coming together in groups may be regarded as one of the most important 

characteristics of humans. The majority of human activities, including learning, working, 

playing, sleeping, worshiping, etc. are done in relation to others in the context of a group. 

Humans live in highly sophisticated societies and therefore they need to frequently make 

decisions and act on them collectively. From small household management to state 

legislation, most is done in the context of group and is dependent on group consensus. 

Likewise, interpersonal conflicts in human societies may result from not being able to 

reach a group consensus (Conradt & List, 2009; Forsyth, 2014). 

With the advent of internet and social media, coming together in online groups has 

become much easier than before. Whereas in the past an individual may have been a 

member of a handful of groups, like the family and friends, nowadays, each person 

belongs to a myriad of different groups under various contexts. The group action effects, 

constrains and its guiding the individual members, have become more dynamic and 

complex in the context of social media as the rate of information sharing has skyrocketed 

in the recent era. This has brought advantages and challenges. Even though coming 

together in groups and sharing information have become much easier than before, an 

understanding of how digital media may conciliate human collaboration is still 

rudimentary (Ludvigsen, Law, Rose, & Stahl, 2017; Stahl, 2006). 

Accordingly, it is necessary to understand how actions, processes and changes, occur 

inside a group and between groups. This is called the group dynamics or the study of how 

groups change over time. Group dynamics is a broad area as there are many aspects to a 

group that can be studied. In this thesis, the dynamics of group formation will be 

investigated in the context of a visual search task. We have developed a software tool to 

measure group dynamics in gaze behavior. A set of measures have been developed, which 

were used for data analysis in a visual search experiment. The experiment was carried out 

in a lab setting and the search task was performed by participants on a group of computers. 

The data consisted of gaze locations of the participants, which were collected using eye 

tracking devices. 
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We studied the dynamics of group formation in eye tracking using a non-linear time-

series analysis technique, called the recurrence quantification analysis (RQA) (Webber Jr 

& Marwan, 2015). This method, besides giving us insights into the dynamics of group 

formation in a collective search task, introduces new measures in the group eye tracking 

domain. The goal of the current study is to explore these measures by comparing various 

conditions in the experiment design. The experiment conducted was in three conditions 

where the search target of the task (a dot with a fixed radius of few pixels) was dark, light 

and absent and in two conditions where a marker (a red circle with its center corresponding 

to the mean collective gaze location and its radius corresponding to the standard deviation 

of the gaze locations) indicating the mean location of the collective gaze was present or 

absent. In essence, the research goals of this study involve developing a software tool 

which is able to: 

• investigate RQA measures among the three conditions of the search target 

(dark, light, and absent) 

• investigate RQA measures when a marker–as a means of communication 

among group members–is present or absent 

• investigate if the previous two findings hold for various larger size groups 

The initial goal of the thesis is to develop the software tool for the analysis. As for the 

experimental predictions, our hypothesis is that firstly, as the search becomes more 

difficult due to reduced visual saliency of the object on the display, the correlation among 

the time series of participants (referring to the time series composed of sequences of gaze 

locations per participant) will decrease, whereas the complexity of the time series will 

increase. Secondly, the time series will show less structure when there is no marker 

signaling the mean of the collective gaze location. This is because, when there is a marker 

present on the display while the participants search for a target actively, they will tend to 

look for hints from the group. Lastly, we expect that the effects studied through the RQA 

measures under different conditions will be similar for different group sizes. 

Chapter 2 introduces eye tracking along with an outline of the concept of recurrence 

analysis in dynamical systems by introducing the Poincaré recurrence theorem, the 

Takens’ embedding theorem and the theory of recurrence quantification analysis which 

describes the mathematical basis for the measures which were used in the analysis of the 

experimental data in this study. Chapter 3 provides a description of the software tools we 

have developed for collecting data (the GETapp) and analyzing the data (the generalRQA 

package) using an example dynamical system. Chapter 4 explains the actual data 

collection procedure and presents the results of the data analysis and chapter 5 provides a 

discussion on the results, the limitations of the methods used in the current study and the 

possible future work. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

2.1.Analysis of Recurrences 

The process of understanding the physical world through scientific inquiry involves 

observation, measurement, analysis and possibly prediction. Linear systems have 

characteristics that make them ideal subjects for scientific investigation; however, nature 

is abundant with processes and systems which are non-linear and non-predictable (Charles 

L Webber & Zbilut, 2005). The study of systems through time is done in virtue of systems 

dynamics. The trajectories of such systems contain phase singularities and noise. These 

trajectories have been studied by linear tools in the temporal and frequency domain. 

However, these tools are sometimes not enough to capture non-linear characteristics of a 

system under study and often consider the non-linearities as noise. Basic to the field of 

non-linear analysis is the representation of system trajectories in a phase space. Successful 

characterization of these non-linear systems has been done by non-linear analysis tools 

such as the Liyapunov exponent, Kolmogorov-Sinai entropy and correlation dimension. 

One assumption in these methods is that the system is stationary. A stationary system is a 

system that retains its average characteristic measures over time. Nonetheless, most of the 

systems that are ubiquitous in nature are non-stationary and non-linear. A practice that has 

emerged in the recent years to tackle this limitation of the mainstream methods of analysis 

is the analysis of recurrences (Webber Jr & Marwan, 2015). 
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Recurrence is a fundamental feature of systems evolving in time which can be used to 

characterize the system’s behavior in phase space. The idea was first proposed by 

Poincaré, known as Poincaré’s recurrence theorem. Poincaré’s theorem was merely 

qualitative; however, further studies and experiments have shown that recurrences contain 

all the relevant information about a system’s behavior. In 1980’s a powerful method was 

proposed to visualize recurrences in a dynamical system, called recurrence plot 

(Eckmann, Kamphorst, & Ruelle, 1987). The quantification of the recurrence plot is what 

is now called Recurrence Quantification Analysis (RQA). This method of non-linear 

analysis does not require the system to be stationary and it is efficient in detecting 

transitions in the dynamics of systems from time series (Norbert Marwan, Carmen 

Romano, Thiel, & Kurths, 2007a). 

 

Recurrence quantification analysis has been successfully used in various fields like 

economy, neuroscience, physiology, psychology, behavioral sciences, health sciences, 

earth sciences, astrophysics and engineering among others (Webber, Ioana, & Marwan, 

2016). The current study takes advantage of the fact that recurrence quantification analysis 

allows studying and quantifying interactions of coupled systems and is an appropriate tool 

Figure 1 a) a Lorenz attractor in 3-dimensional phase space. b) the Recurrence Plot of the Lorenz attractor. 

A point of the trajectory at j which falls into the gray circle in (a) of a given point at i is considered as a 

recurrence point [black point on the trajectory in (a)]. This is marked with a black point in the RP at the 

location (i,j). A point outside the small circle in (a) causes a white point in the RP. The radius of the circle 

for the RP is D=5. The recurrence plot shows short diagonal line structures representative of a chaotic 

behavior (Webber et al., 2015, p. 7) 
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for the study of synchronization of complex systems (Norbert Marwan et al., 2007a), like 

conversational dynamics and natural semiotics (Fusaroli & Tylén, 2016; Orsucci et al., 

2006). In the field of eye tracking, there is research based on RQA, investigating subjects 

such as expert vs. novice behavior and characterization of fixation sequences (Anderson, 

Bischof, Laidlaw, Risko, & Kingstone, 2013; Vaidyanathan, Pelz, Alm, Shi, & Haake, 

2014); however, as of our knowledge, it has not been used for investigating group eye 

tracking as a measure of group dynamics. 

In the next section the Poincaré recurrence theorem and subsequently the Takens’ 

embedding theorem will be introduced. These two theorems make the basis for recurrence 

quantification analysis. 

2.2. Poincaré Recurrence Theorem 

In the early 1890’s the study of celestial mechanics was based on finding individual 

solutions to differential equations. The analysts tried to extract as much information as 

possible about the individual solutions to a system of differential equations by analytical 

methods. Poincaré shifted this paradigm towards the global analysis of phase space. His 

ideas resulted in the establishment of two new fields in the study of dynamics: topological 

dynamics and ergodic theory. In topological dynamics the phase space is abstracted into 

the topological space and the topological structures of the trajectories and attractors are 

studied. In ergodic theory, the phase space is replaced by an abstract measure space and 

the dynamics of the system are studied as the behavior of a group of measure-preserving 

transformations (Furstenberg, 1981). 

In short, Poincaré’s recurrence theorem states that in certain systems, the system will 

come arbitrarily close (recur) to an arbitrary state given enough time. The time that it takes 

for the system to recur to a state is called the recurrence time (Poincaré, 1890; Wikipedia 

contributors, 2018). Poincaré’s theorem is merely qualitative and does not provide 

quantitative measures. In the next two sections, efforts to quantify Poincaré’s theorem are 

outlined. 

2.3. Taken’s Theorem 

A phase space, necessary for modeling dynamical systems, is the collection of 

possible states of a dynamical system. A system’s state at time t is a collection of all the 

information needed to define that state uniquely. The phase space of the mathematically 

modeled systems is known from its time dependent equations; however, for naturally 

occurring chaotic dynamical systems, the mathematical description of the system is 

usually unknown. In these situations, phase space reconstruction methods are employed. 

The phase space reconstruction methods use one or more observed time signals from the 

system to construct a surrogate of the original phase space. 
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The Whitney Embedding Theorem (Whitney, 1936) defines embedding as a mapping 

from an n-dimensional space to 2n+1 dimensional Euclidean space. After the embedding 

the n-manifold has unfolded completely in the larger space. This means that no two points 

in the n-manifold map to the same point in the larger space. In general, Whitney 

Embedding Theorem maintains that 2n+1 independent signals measured from a system, 

can be considered as a map from the set of states to 2n+1-dimensional space. In this space, 

each state can be identified uniquely by a vector of 2n+1 measurements, thereby 

reconstructing the phase space. 

The Takens Embedding Theorem (Takens, 1981) supplemented the Whitney Theorem 

by maintaining that the same goal can be reached by a single observed time signal from 

the system. Takens in his seminal work, proved that a series of 2n+1 time-delayed signals 

acquired from a single signal, instead of 2n+1 signals, can be used to embed the n-

manifold (an n-dimensional space). The idea of using time-delayed signals to reconstruct 

a phase space is reminiscent of an existence theorem of ordinary differential equations, 

which states that a unique solution exists for a series of time derivatives of the dependent 

variable. 

With the advent of chaos theory and fractal geometry, a reassessment of the original 

theory, concerning smooth manifold attractors was proposed. It was shown that an 

attractor with box-counting dimension of d can be reconstructed with m observed signals 

or m time-delayed versions of a single observed signal from the system, where m is any 

integer greater than 2d (Sauer, Yorke, & Casdagli, 1991). 

An embedding is not always successful and depends strongly on the specific 

application. If there are only weak connections between the degrees of freedom of the 

system and the aspect of the system being observed, it can affect the adherence of the 

reconstructed trajectory. To add to this, the difference of time scales in different parts of 

the system and the system and observational noise may be limiting factors for the practice 

of embedding as well. 

A system’s state is specified by its n state variables. If we represent the state of the 

system at time t as a vector in a n-dimensional space, that space is called a phase space. 

𝑿(𝒕) = [

𝑥𝟏(𝑡)

𝑥𝟐(𝑡)
⋮

𝑥𝒏(𝑡)

] (𝟏) 

This vector moves in time and in the direction of its velocity vector ∂X/∂t. The temporal 

succession of the phase space vectors forms a trajectory. This trajectory, its topology and 

structure and its time evolution explain the dynamics of the system. The phase trajectory 

can be specified by integrating the velocity vector over time; however, insights about the 

system can be obtained from the shape of the trajectory by visualizing it without the need 

for integration (Webber Jr & Marwan, 2015). 
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In real-life situations, observations do not yield all possible state variables. It is usually 

the case that either not all the variables are known or not all of them are measurable; most 

often, only one state variable is available for observation. Taken’s theorem states that 

because of the coupling between system’s components, each single component contains 

essential information about the dynamics of the whole system. Because of this, by using 

only one time series, it is possible to reconstruct a phase space that conserves the 

topological structures of the original phase space (Packard, Crutchfield, Farmer, & Shaw, 

1980; Takens, 1981). 

When collecting data, measurement of a state variable 𝑢(𝑡) results in a discrete time 

series 𝒖𝑖  where 𝑡 = 𝑖∆𝑡 and ∆𝑡 is the sampling rate (here the continuous variables are 

denoted by braces and the discrete variables by subscripts). A method frequently used for 

reconstructing a trajectory �̂�(𝑡) from the original time series 𝑢(𝑡) such that it conserves 

the topological structures is called the time delay method. Having the measured original 

time series 𝒖𝑖, we define the reconstructed trajectory as:  

�̂�𝑖 = [𝑢𝑖 𝑢𝑖+𝜏 … 𝑢𝑖+(𝑚−1)𝜏] (2) 

where m is the embedding dimension and 𝜏 is the time-delay parameter (here 𝜏 is the 

index-based time delay, whereas the real time delay is 𝜏∆𝑡). The preservation of the 

original trajectory is guaranteed if 𝑚 ≥ 2𝑑 + 1 where 𝑑 is the dimension of the attractor 

(Takens, 1981). 

The embedding parameters, the time-delay and the embedding dimension need to be 

chosen appropriately. Random errors and low measurement precision lead to linear 

dependence between the columns of �̂�𝑖 (Eq.2). The delay parameter should be chosen 

such that the dependence approaches zero. A method to accomplish this task is to 

determine the time-delay parameter using the mutual information (Fraser & Swinney, 

1986). Intuitively, the mutual information is the average amount of information that a 

value carries with itself to the next value. The mutual information is given by the formula: 

𝐼(𝜏) = − ∑ 𝑝𝜑,𝜓(𝜏) 𝑙𝑜𝑔
𝑝𝜑,𝜓(𝜏)

𝑝𝜑𝑝𝜓
𝜑,𝜓

(3) 

Here 𝐼(𝜏) represents the mutual information at time 𝜏. 𝑝𝜑 and 𝑝𝜓 are the probabilities that 

𝑢𝑖 = 𝜑 and 𝑢𝑖+𝜏 = 𝜓 respectively and 𝑝𝜑,𝜓(𝜏) is the joint probability that 𝑢𝑖 = 𝜑 and 

𝑢𝑖+𝜏 = 𝜓. Therefore, the mutual information is not a function of the variables 𝜑 and 𝜓 

but of the joint probability 𝑝𝜑,𝜓(𝜏). The best choice of the time-delay parameter is where 

𝐼(𝜏) has its first local minimum. The advantage of the mutual information over other 

methods for determining the time-delay parameter (e.g. autocovariance function) is that it 

is sensitive to nonlinear interrelations; however, experiment has shown that the mutual 

information method sometimes overestimates the time delay. 
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Among various methods for finding the optimal embedding dimension, in this study, 

we used the false nearest neighbors (FNNs) method (Kantz & Schreiber, 2004; Kennel, 

Brown, & Abarbanel, 1992). The intuition behind the FNN method is that as the 

dimension increases, some points in the neighborhood of an arbitrary phase space point 

are projected onto locations that are not in the neighborhood of that point. These points 

are called the false nearest neighbors. In other words, as the dimension increases, the 

number of false nearest neighbors decrease. The simplest method that uses false nearest 

neighbors, uses the amount of FNNs as a function of embedding dimension to find the 

minimal embedding dimension; that is where the FNNs vanish (Kantz & Schreiber, 2004). 

In the plot of FNNs vs. dimension, the plot shows a clear inflection point or an elbow 

(Figure 2) at the appropriate minimum dimension (Chelidze, 2017). 

 

Figure 2 This plot shows the number of false nearest neighbors in the time series acquired from a logistic 

map with two slightly different initial points. The elbowing occurs when the dimension is 2 in both time 

series. 

In this section we provided the theory of methods for embedding a single time series 

into a multi-dimensional phase space. In the next section we will introduce the basics of 

recurrence quantification analysis. One may or may not embed the data prior to recurrence 

analysis depending on the specifics of the problem. 

2.4. Theory of Recurrence Quantification Analysis 

2.4.1 Preliminaries  

As mentioned in section 2.2, one of the fundamental properties of deterministic 

dynamical systems is the recurrence of the states of the system. Recurrence of states in the 
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sense that they get arbitrarily close to each other (cf. section 2.3) is typical for nonlinear 

and chaotic systems (Argyris, Faust, & Haase, 1994; Ott, 2002; Poincaré, 1890). 

Eckmann et al. 1987 introduced a method of visualizing recurrences in a dynamical 

system called the recurrence plot. Briefly, a recurrence plot represents the times at which 

states �̂�𝑖 (section 2.3) recur in the corresponding phase space. The original intent behind 

the invention of recurrence plots was to provide insight into high-dimensional dynamical 

systems, the phase spaces of which are difficult to visualize otherwise (Eckmann et al., 

1987; N. Marwan, 2008). A recurrence plot (RP) is a way of visualizing the m-dimensional 

phase space trajectory by representing a recurrence of a state at time i at a different time j 

within a two-dimensional square matrix 𝑹 where both axes are time axes. The matrix is 

in Boolean form, meaning that the recurrent states are depicted as values of 1 and others 

as zero; however, if the matrix is depicted as a grid of pixels, the recurrences are 

represented as dots (black dots in the case of a black and white representation). The formal 

definition of the recurrence matrix is presented below (Webber Jr & Marwan, 2015): 

𝑅𝑖,𝑗
𝑚,𝜀𝑖 = Θ(ℰ𝑖 − ‖𝒙𝑖 − 𝒙𝑗‖),    𝒙𝑖 ∈ ℝ𝑚,    𝑖, 𝑗 = 1, … , 𝑁 (4) 

where 𝑁 is the number of considered states 𝒙𝑖; ℰ𝑖 is a threshold distance; ‖. ‖ a norm and 

Θ(. ) the Heaviside function1. In the recurrence plot, because 𝑅𝑖,𝑖 = 1 by definition, the 

RP has a black main diagonal line called the line of identity (LOI). The line of identity 

should be ignored in quantifying the RP. 

 

 

1 A Heaviside function is a discontinuous function whose value is zero for negative argument and one for 

positive argument. 

Θ(𝑥) = {
0        𝑥 < 0
1         𝑥 ≥ 0
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Figure 3 This plot shows the RP of a categorical data (namely the string 

"DOYOULIKEGREENEGGSANDHAMIDONOTLIKETHEMSAMIAMIDONOTLIKEGREENEGGSA

NDHAM"). Both of the axes contain the same string. The cells in the plot which correspond to the characters 

on the x and the y axes that are the same, are black. All the other cells are white. The diagonal line structures 

and the LOI are visible in the plot. (Wallot, 2017, p. 1) 

A bivariate extension of the recurrence plot, called the cross-recurrence plot (CRP) 

was proposed to explore the simultaneous evolution of two different phase space 

trajectories. The dependencies and dynamics of the two trajectories relative to each other 

can be investigated using the CRP (Norbert Marwan & Kurths, 2002; Zbilut, Giuliani, & 

Webber, 1998).  
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Taking 𝒙𝑖  and 𝒚𝑗  to represent two trajectories of two dynamical systems in m-

dimensional phase space the cross-recurrence plot can be constructed by computing the 

pairwise Euclidean distance between the different phase vectors of the two systems. 

𝐶𝑅𝑖,𝑗
𝒙,𝒚(𝜀) = 𝛩(𝜀 − ‖𝒙𝑖 − 𝒚𝑗‖),    𝑖 = 1, … , 𝑁,    𝑗 = 1, … , 𝑀 (5) 

A 𝑪𝑹  matrix is not necessarily a square. This is because the length of the 𝒙  and 𝒚 

trajectories do not need to be the same. It should be emphasized that both the systems are 

represented in the same phase space. This is because a cross-recurrence plot designates 

the times when the state of one system recurs to the state of the other system. If the 

embedding parameters are estimated for the time series (as mentioned in section 2.3) and 

are not equal for both of the them, the higher embedding dimension should be chosen. 

Furthermore, the data for the time series should be obtained from the same or similar 

processes and should represent the same observable (Webber Jr & Marwan, 2015). 

The objects of interest in all variations of the recurrence plot are the macroscopic and 

microscopic structures; a single recurrence point at (𝑖, 𝑗) does not bear any information 

about the states at the time 𝑖 and 𝑗, but from the totality of the recurrence points the phase 

space trajectory can be reconstructed (Hirata, Horai, & Aihara, 2008; Norbert Marwan, 

Carmen Romano, Thiel, & Kurths, 2007b; Robinson & Thiel, 2009). 

Exact recurrences of two states 𝒙𝑖 = 𝒚𝑗 in (4) and 𝒙𝑖 = 𝒚𝑗 in (5) are impractical and 

useless to find. This is because, as mentioned in the Poincaré’s recurrence theorem in 

Figure 4 a) the embedded trajectories of two coupled Rossler systems in the phase space. b) the 

corresponding CRP. If a phase space vector of the second Rössler system at j (grey point on the grey line) 

falls into the neighbourhood (grey circle) of a phase space vector of the first Rössler system at i , in the CRP 

(b) at the location (i,j) a black point will occur. (Webber et al., 2015, p. 25) 
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section 2.2, the state of a chaotic system will not recur exactly to the initial state but will 

approach arbitrarily close to the initial state. Therefore, a recurrence is said to happen 

whenever a state gets closer than a certain threshold in an m-dimensional space to another 

state. This is expressed in (4) and (5) by the Heaviside function, its argument 𝜀 and the 

norm operator (Norbert Marwan, 2010; Norbert Marwan et al., 2007b). 

In the current study, because we are investigating concurrent time series from different 

participants, the CRP fits better to our purposes. An advantage of the CRPs is that they 

are sensitive to the local differences of the dynamical evolution of trajectory segments 

near each other. A time dilatation or compression of one of the trajectories relative to 

another causes a distortion in the diagonal lines, usually in the form of bowed lines. In the 

remainder of this thesis we will focus mainly on the CRP and leave other versions of the 

recurrence plots in future work.  

2.4.2. CRQA measures 

The most commonly used norms for calculating the distance between two states in the 

phase space is the L2-norm and the L∞-norm. The L∞-norm is often used because it is 

relatively easy to compute and is independent of the phase space dimension; however, it 

is also more prone to outliers and noise (Faure & Korn, 1998; M Thiel, Romano, & Kurths, 

2003; Marco Thiel et al., 2002). In the current study, the eye tracking data used, is a highly 

noisy data because of the rapid and jumpy nature of eye movements. For this reason, the 

L2-norm (Euclidean norm) was used in the calculations and will be the norm used in the 

remainder of the text. 

The parameter 𝜀, the recurrence threshold, is the third parameter after the time-delay 

parameter and the embedding dimension (if embedding is done), that should be 

determined in order to produce a CRP. Several studies have proposed methods for 

determining the recurrence threshold; however, a general and systematic study on 

determining the recurrence threshold remains an open task (Webber Jr & Marwan, 2015). 

The recurrence threshold selection procedure should be implemented such that it yields 

the minimum threshold possible but at the same time a threshold that reveals sufficient 

recurrences and recurrence structures. Essentially, the choice of the optimal recurrence 

threshold depends on the application and the experimental conditions (Norbert Marwan et 

al., 2007b; Matassini, Kantz, Hołyst, & Hegger, 2002; Marco Thiel et al., 2002; Webber 

Jr & Marwan, 2015). 

There are various guidelines in the literature for choosing the optimal recurrence 

threshold, some of them are listed below: 

• 𝜀 should be a few percent (not larger than 10%) of the maximum phase space 

diameter (Koebbe & Mayer-Kress, 1992; Mindlin & Gilmore, 1992; Zbilut & 

Webber, 1992) 

• 𝜀  should be between 20% and 40% of the signal’s standard deviation (for 

signal detection and classification) (Schinkel, Dimigen, & Marwan, 2008) 
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• 𝜀 is determine based on the diagonal structures within the RP. The threshold is 

chosen such that it minimizes the fragmentation and thickness of the diagonal 

lines (which change inversely to each other) (Matassini et al., 2002) 

• 𝜀 should be five times larger than the standard deviation of the observational 

noise (Marco Thiel et al., 2002) 

• 𝜀 is determined based on the recurrence point density of the RP. The recurrence 

point density is suggested to be 1%  (Zbilut, Zaldivar-Comenges, & Strozzi, 

2002) 

In the current study, the methods of which are implemented in the generalRQA 

package (section 3.2) it is possible to either enter the recurrence threshold manually or 

enter a range for the recurrence point density so that the function chooses the recurrence 

threshold such that the recurrence point density falls in the range. In the analysis section 

(section 4.2) the threshold was entered manually because it was possible to offer an 

appropriate recurrence threshold based on the experiment settings (the procedure for 

choosing the threshold is explained in section 4.2). 

Inspecting the CRP visually can provide useful insights in the dynamics of dynamical 

systems. For example, if there are many long diagonal lines, it means that the two systems 

are evolving in synchrony. More formally, if a state 𝒙𝑖 in one system at time 𝑖 recurs to 

another state 𝒚𝑗  in the other system at time 𝑗, it can be expected that the two systems 

evolve together for a length of time with a time lag of |𝑖 − 𝑗|. If the CRP is homogeneous, 

it means that the two systems are hardly synchronized. 

 
Figure 5 These plots show characteristic macroscopic manifestations of RPs corresponding to a) 

homogeneous (uniformly distributed noise), b) periodic (super-positioned harmonic oscillations), c) drift 

(logistic map with a linearly increasing parameter) and d) disrupted (Brownian motion). (Webber et al., 

2015, p. 10) 

However, to gain insight from the visuals of the CRP is a subjective task. Furthermore, 

the insufficient resolution of the CRP can exacerbate the situation (even when the 

resolution of the CRP is higher than that of the display, visual artifacts can be seen and 

cause incorrect conclusions). To overcome the subjectivity of this methodology, Zbilut 

and Webber introduced definitions and procedures to quantify the RP (and its various 
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extensions, e.g. CRP) structures (Grassberger & Procaccia, 1983; Mindlin & Gilmore, 

1992; Zbilut & Webber, 2007). The recurrence quantification analysis (RQA) term was 

coined by Zbilut and Webber and they defined five recurrence variables as complexity 

measures as part of the RQA. These five measures are based on diagonal line structures. 

The diagonally oriented lines in the CRP are of major interest because they represent 

segments on the trajectories of the two time series which evolve in parallel for some time. 

The length and frequency of these lines are connected to a certain similarity between the 

dynamics of the two systems and a measure based on them can be employed to detect 

nonlinear interrelations between the two dynamical systems which are impossible to find 

using common cross-correlation techniques (Norbert Marwan & Kurths, 2002). 

The first measure is called the percent recurrence (REC) or recurrence rate (RR): 

𝑅𝑅(𝜀, 𝑁) =
1

𝑁
∑ 𝐶𝑅𝑖,𝑗

𝒙,𝒚(𝜀)

𝑁

𝑖=1,𝑗=1

(6) 

where 𝐶𝑅 is the cross-recurrence matrix, 𝜀 is the recurrence threshold, 𝑁 is the number of 

cells in the recurrence matrix and 𝑖  and 𝑗  are the indices of the matrix. The 𝑥  and 𝑦 

superscripts on the 𝐶𝑅 matrix signify that the matrix is constructed from two different 

time series. The RR merely counts the black dots (or the cells with value 1) in the CRP. 

RR is a measure of the relative density of the recurrence points in the recurrence matrix 

and is related to the correlation sum (Grassberger & Procaccia, 1983); however, large 

segments of data is required to use RR as an estimator of the correlation sum. 

The remaining four measures are based on the line structures in the CRP. To define 

these measures, we first need to construct a histogram of the lengths of the diagonal lines 

in the CRP: 

𝐻𝐷(𝑙) = ∑ (1 − 𝐶𝑅𝑖−1,𝑗−1)(1 − 𝐶𝑅𝑖+1,𝑗+1) ∏ 𝐶𝑅𝑖+𝑘,𝑗+𝑘

𝑙−1

𝑘=0

𝑁

𝑖=1,𝑗=1

(7) 

Where 𝑙  is the length of the diagonal line under consideration, 𝐶𝑅  is the cross-

recurrence matrix, 𝑁 is the number of cells in the 𝐶𝑅 matrix and 𝑖 and 𝑗 are the indices of 

the matrix.  

The second measure is the percent determinism (DET), defined as the ratio of the 

recurrence points that make diagonal lines to all the recurrence points: 

𝐷𝐸𝑇 =
∑ 𝑙 𝐻𝐷(𝑙)𝑁

𝑙=𝑑𝑚𝑖𝑛

∑ 𝐶𝑅𝑖,𝑗
𝑁
𝑖=1,𝑗=1

(8) 

where 𝑙 is the length of a diagonal line, 𝐶𝑅 is the cross-recurrence matrix, 𝑁 is the number 

of cells in the 𝐶𝑅 matrix and 𝑖 and 𝑗 are the indices of the matrix. DET can be interpreted 

as the predictability of the system. With a higher DET value we should expect longer 

times two systems spend synchronized. 𝑑min sets the lower bound on the definition of a 

line. Typically, 𝑑min is set to 2. If 𝑑min is set to 1, DET and RR are identical. An extra 

derived variable called the RATIO can be defined as the ratio of DET to RR. The RATIO 
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can be computed directly from the frequency distributions of the lengths of the diagonal 

lines: 

𝑅𝐴𝑇𝐼𝑂 = 𝑁2
∑ 𝑙 𝐻𝐷(𝑙)𝑁

𝑙=𝑑𝑚𝑖𝑛

(∑ 𝑙 𝐻𝐷(𝑙))𝑁
𝑙=1

2
(9) 

where 𝑙 is the length of a diagonal line, 𝐶𝑅 is the cross-recurrence matrix, 𝑁 is the number 

of cells in the 𝐶𝑅 matrix, 𝑖 and 𝑗 are the indices of the matrix and 𝑑min sets the lower 

bound on the definition of a line. During certain types of transitions on the dynamics of a 

dynamical system, the RR decreases while DET remains constant, hence the RATIO 

increases. Because of this, a study shows, the RATIO can detect dynamical transitions 

hence RATIO has proven to be useful in studying some physiological systems (C. L. 

Webber & Zbilut, 1994). 

 

The third measure is the maximal line length in the diagonal direction (Dmax): 
𝐷𝑚𝑎𝑥 = arg max

𝑙
𝐻𝐷(𝑙) (10) 

which is the length of the longest diagonal line within the CRP. Since the diagonal lines 

designate segments of the trajectories of the two systems that run in parallel, this measure 

gives a hint about the divergence of the two systems’ trajectories. This means that the 

smaller the 𝐷𝑚𝑎𝑥, the more divergent the trajectories. This definition suggests that there 

is a connection between the largest positive Lyapunov exponent2 and 𝐷𝑚𝑎𝑥. The relation 

 

 

2
 The Lyapunov exponents measures how quickly two states very close together diverge over time. In the 

equation below: 

|𝐹𝑡(𝑥0 + 𝜀) − 𝐹𝑡(𝑥0)| ≈ 𝜀𝑒𝜆𝑡 

the exponent 𝜆 when 𝑡 approaches infinity (𝑡 → ∞) is the Lyapunov exponent. If 𝜆 > 0, initially close 

states diverge and if 𝜆 < 0, initially close states do not diverge. To gain more insight into Lyapunov 

exponent, we can show that: 

𝑒𝜆𝑡 ≈
|𝐹𝑡(𝑥0 + 𝜀) − 𝐹𝑡(𝑥0)|

𝜀
 

𝜆 = lim
𝑡→∞,𝜀→0

1

𝑡
log |

𝐹𝑡(𝑥0 + 𝜀) − 𝐹𝑡(𝑥0)

𝜀
| 

= lim
𝑡→∞

1

𝑡
log |

𝑑𝐹𝑡

𝑑𝑥
|𝑥=𝑥0

| 

= lim
𝑡→∞

1

𝑡
log |

𝑑𝐹

𝑑𝑥
|𝑥=𝐹𝑡−1(𝑥0)=𝑥𝑡−1

.
𝑑𝐹

𝑑𝑥
|𝑥=𝐹𝑡−2(𝑥0)=𝑥𝑡−2

. … .
𝑑𝐹

𝑑𝑥
|𝑥=𝑥0

| 

= lim
𝑡→∞

1

𝑡
∑ log |

𝑑𝐹

𝑑𝑥
|𝑥=𝑥𝑖

|

𝑡−1

𝑖=0
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can be explained using the frequency distribution of the lengths of the diagonal lines and 

the lower limit of the sum of the positive Lyapunov exponents (Norbert Marwan et al., 

2007b). The average diagonal line length (AvD) can be derived from the 𝐷𝑚𝑎𝑥: 

〈𝐷〉 =
∑ 𝑙 𝐻𝐷(𝑙)𝑁

𝑙=𝑑𝑚𝑖𝑛

∑ 𝐻𝐷(𝑙)𝑁
𝑙=𝑑𝑚𝑖𝑛

(11) 

where 𝑙 is the length of a diagonal line and 𝑑min sets the lower bound on the definition of 

a line. The average diagonal length designates the mean time that the two segments of the 

two trajectories remain close to each other.  

The fourth measure is the Shannon entropy of the frequency distribution of the 

diagonal line lengths (ENT): 

𝐸𝑁𝑇 = − ∑ 𝑝(𝑙) ln 𝑝(𝑙)

𝑁

𝑙=𝑑𝑚𝑖𝑛

    𝑤ℎ𝑒𝑟𝑒    𝑝(𝑙) =
𝐻𝐷(𝑙)

∑ 𝐻𝐷(𝑙)𝑁
𝑙=𝑑𝑚𝑖𝑛

(12) 

where 𝑁 is the number of cells in the 𝐶𝑅 matrix, 𝑙 is the length of a diagonal line, 𝑑min 

sets the lower bound on the definition of a line and 𝑝(𝑙) is the probability of a diagonal 

line with length 𝑙 occurring in the cross-recurrence plot. The ENT is a measure of the 

complexity of the deterministic structure in the interaction between the two systems. The 

ENT is measured in 
𝑏𝑖𝑡𝑠

𝑏𝑖𝑛
. The higher the ENT the more complex the dynamics. For 

instance, the value of ENT for uncorrelated noise or oscillations is low indicating their 

low complexity. The ENT is sensitive to the choice of different parameters like the 

recurrence threshold 𝜀 and 𝑙𝑚𝑖𝑛. 

All the cross-recurrence quantification analysis (CRQA) measures aforementioned, 

can also be computed separately for diagonals parallel to the diagonal with the indices 𝑖 =
𝑗. We will denote these measures computed on a single diagonal by a subscript in the form 

of an asterisk from now on, e.g. 𝑅𝑅∗. The measures calculated on a single diagonal are 

useful for investigating the periodicity of a signal (Zbilut & Marwan, 2008), periodic 

orbits (Gilmore, 1998; Lathrop & Kostelich, 1989; Mindlin & Gilmore, 1992) and the 

interrelationship between complex systems (Norbert Marwan, Thiel, & Nowaczyk, 2002). 

The fifth measure is called the trend (TND). The trend is a linear regression coefficient 

over the recurrence point density 𝑅𝑅∗ of the diagonals of the CRP as a function of the 

time distance between the diagonals and the diagonal with indices 𝑖 = 𝑗. 

 

 

where the final result means that the Lyapunov exponents is a time average of log |
𝑑𝐹

𝑑𝑥
| at every state along 

the trajectory (Sayama, 2015). 
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𝑇𝑁𝐷 =
∑ (

𝑖 − �̃�
2 ) (𝑅𝑅∗ − 〈𝑅𝑅∗〉)�̃�

𝑖=𝑙

∑ (
𝑖 − �̃�

2 )
2

�̃�
𝑖=𝑙

(13) 

where �̃� is the subset of the cells of the 𝐶𝑅 matrix which are being considered, 𝑙 is the 

length of a diagonal line and 𝑅𝑅∗ is the recurrence rate on a specific diagonal of the 𝐶𝑅 

matrix. The TND gives information about the stationarity of the process. The TND value 

for quasi-stationary systems will be near zero and for nonstationary systems will be far 

from zero. This is because nonstationary systems usually show a drift in the system 

dynamics, often because the system is en route between more stationary states. In 

computing the TND, the edges of the RP are ignored (�̃� < 𝑁) because the diagonals near 

the edges are too short to hold any significant information. 

As mentioned previously and as can be seen from (5), repeated below, this equation is 

designed to accommodate only two time series. 

𝐶𝑅𝑖,𝑗
𝒙,𝒚(𝜀) = 𝛩(𝜀 − ‖𝒙𝑖 − 𝒚𝑗‖),    𝑖 = 1, … , 𝑁,    𝑗 = 1, … , 𝑀 (5) 

However, in the current study, we want to study the relative evolution of more than two 

time series. For the purposes of the current study we need to extend the definition of the 

CRP so that it can consider a higher number of time series. To do this we need to define 

the cross-recurrence plot as an M dimensional matrix. We consider a state recurrent if the 

largest distance between the M states from the M time series is less than the recurrence 

threshold. The CRP is given by: 

𝐶𝑅𝑖1,𝑖2,…,𝑖𝑀

𝒙𝟏,𝒙𝟐,…,𝒙𝑴(𝜀) = 𝛩(𝜀 − max(‖𝑥1 − 𝑥2‖ , ‖𝑥1 − 𝑥3‖ , … , ‖𝑥𝑀−1 − 𝑥𝑀‖)),    

𝑖1 = 1, … , 𝑁1,    𝑖2 = 1, … , 𝑁2 ,   …    ,    𝑖𝑀 = 1, … , 𝑁𝑀 (14)
 

where 𝑁1, 𝑁2, … , 𝑁𝑀 are the lengths of the time series and the 𝑚𝑎𝑥 function chooses the 

largest mutual distance between the set of the considered M number of states. 

Furthermore, we need to look at a single diagonal at a time (the diagonal with the indices 

𝑖1 = 𝑖2 = ⋯ = 𝑖𝑀 specifically in section 4.2). Hence all the measures will be subscripted 

by an asterisk. This is because we are primarily interested in investigating the segments 

of the M time series that evolve concurrently with each other or with a certain set of delays 

(a set of 
𝑀(𝑀−1)

2
 time delays to be explicit) mutually between the M time series. 

2.5.Eye Tracking 

Previous research show that there is a close relation between eye gaze and attention 

(Duchowski, 2017b; Kuhn, Tatler, Findlay, & Cole, 2008; Vickers, 2009). Accordingly, 

gaze data may provide insights into the cognitive processes during the course of performing 

a task. This reasoning has become the incentive for the interest into eye tracking devices in 

cognitive sciences. Recently, due to the advances in technology, eye trackers have become 

more accessible and affordable compared to the previous years. Manufacturers like Tobii, 



18 

 

 

Gazepoint, The EyeTribe3, etc. manufacture professional eye trackers both for commercial 

and academic use. 

Eye tracking technology in research has been used in many fields of study like 

psychology and neuroscience, infant and child research, virtual reality, marketing and 

consumer research, professional performance, user experience and interaction, sports 

performance and research, education and clinical research (Duchowski, 2017a; Holmqvist 

et al., 2011; Liversedge, Gilchrist, & Everling, 2011; K Rayner, 1997; Keith Rayner, 2009). 

In the context of cognitive sciences dual eye tracking was the starting point for studying 

the cognitive processes behind human interaction. Dual eye tracking has been used to study 

mutual gaze during conversation, collaborative game playing and collaborative problem 

solving (Acarturk, Kalkan, & Arslan Aydın, 2018; Broz, Lehmann, Nehaniv, & 

Dautenhahn, 2012; Jermann, Nüssli, & Li, 2010; Nüssli, 2011) among others. Group eye 

tracking is the extension of dual eye tracking to study group cognition. In the scope of the 

group eye tracking (GET) platform in METU, a first study was conducted on group eye 

tracking based on a whack-a-mole game to investigate gaze behavior and the effect of gaze 

awareness in different group conditions (Deniz, 2016). 

Although there are many models and versions of eye tracker devices, the basic 

technology is quite similar in most of them. The physics of eye tracking involves a light ray 

(usually infrared) to be radiated towards the eye. The radiated ray, then, is reflected once 

from the cornea and once from the retina. As the eye moves, the reflection from the cornea 

does not change direction; however, the reflection from the retina does. By calculating the 

difference between these two reflections, an eye tracker can detect where the eye is looking 

at (Figure 6 and Figure 7). There are layers of post analysis (etc. calibration) for the location 

of the gaze to be detected accurately (Nyström & Holmqvist, 2010). 

 

 

3 This company was purchased and shut down by Facebook in 2017. This may be conceived as an evidence 

of expected closer interest in eye tracking soon by large companies. 
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Figure 6 A subject in front of an eye tracker (https://www.tobii.com/group/about/this-is-eye-tracking) 

 
Figure 7 The difference between the infrared reflection from cornea and fovea help in calculating where the 

eye is gazing at (https://www.ecse.rpi.edu/~cvrl/zhiwei/gazetracking/gazetracking.html) 

In this chapter, we made a summary of the relevant research literature along with an 

outline of the underlying theories needed for recurrence quantification analysis. In the 

next chapter we will see these theories implemented in a package for R programming 
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language along with a description of the software developed for collecting data in group 

eye tracking experiments. 
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CHAPTER 3 

 

3. METHODOLOGY 

In this section an overview of the structure and architecture of the Group Eye Tracking 

(GET) data collection framework, namely the GETapp, is presented. Also, the R package 

for cross-recurrence quantification analysis, viz. generalRQA, is described along with 

an explanation of the functions and algorithms used in it for data processing. 

3.1. The Group Eye Tracking Platform (GETapp) 

The GETapp platform is an application written by the author in the JavaScript 

language for data collection in group eye tracking experiments 4 . The GETapp was 

designed to be generic, meaning that it is not specific to the experiment in the current 

study. Experiment designers can feed their experiments as HTML documents to the 

application. The version of the application used in the current study is version 0.1.1. This 

is an early version of the application where experiment designers may need to tweak the 

source code slightly in order for their HTML-based experiment to work completely. Effort 

is being made to make the application more modular and user friendly in the upcoming 

versions so that experiment designers can feed their entire design as bundles of HTML, 

CSS and JavaScript codes (https://gitlab.com/GETters/GETapp.git). 

3.1.1. The choice of language.  

GETapp was written mainly in JavaScript. The rationale for this choice was that 

firstly, JavaScript is a programming language which is currently getting more and more 

widespread and powerful despite its potential for compatibility issues. The support and 

the community around it are comprehensive and the resources are plentiful recently. 

Secondly, the new Node.js server environment, a JavaScript run-time built on Chrome’s 

V8 JavaScript engine, is scalable, which is important for the use case in this research and 

as will be pointed out subsequently, the server will have to work with many clients 

concurrently. 

 

 

4 The application has reached its functional state thanks to the efforts of Mine Cuneyitoglu Ozkul for her 

review, bug fixing, refactoring and checking robustness of the code. 
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Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and 

efficient. This is why it is mainly used for serving websites that have a high traffic load. 

The JavaScript language, contrary to many other programming languages, is a single 

threaded, asynchronous language, which means that it does not always execute a script 

from top to bottom. While an I/O operation or any process that can be carried out in a non-

blocking way is being run, other functions which take much shorter time to terminate get 

executed. This is especially useful in the case of this research, because a stream of eye 

tracking data is constantly being transferred to the server, written to a file and broadcasted 

back to the clients while other functions must be executed. 

 

3.1.2. The architecture.  

The system is made up of three sets of physical components: The server computer 

(referred to as server from now on), the client computers (referred to as client from now 

on) and eye trackers. Each client computer has an eye tracking device connected to it 

which in turn is run by a server program on the client computer (Figure 8). This server 

program will be referred to as the eye tracker server from now on. While the platform is 

in use, eye tracking data are transferred from all the eye tracker servers directly to the 

server. The sever takes the streams of data and while recording them to a file, also 

broadcasts them back to all the clients at once. In this way each client receives all the data 

that other clients send to the server in real time with a small delay (as will be mentioned 

later) so that each participant can see, in real time, where the other participants are gazing 

on the display. 
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Figure 8 In this diagram 3 clients are connected to the server. One Eye Tracker is connected to each client 

and runs a server program on it. 

 

3.1.3. Overview of the program. 

The general case of the function envisioned for the GET platform consists of multiple 

screens designed by the experimenter. The particular form and function of a screen 

depends mostly on the experiment design. Usually there are screens where the participants 

perform a task, screens where participants make some choices and screens that inform the 

participants of some achievement, some event to come or some instruction. 

Eye trackers need to be calibrated before the experiment begins. The EyeTribe eye 

tracker’s server application has a utility to calibrate the device. This utility is used 

immediately before the experiment begins. During this calibration process, the participant 

is required to gaze at a circle until the circle moves to a new location on the screen at 

which point, the participant should relocate her gaze to a new location. The relocation can 

be configured to occur 9, 12 or 16 times (9 times in the current study). While the test taker 

gazes at a certain circle, the gaze positions are recorded and then compared to the position 

of the circle, from the deviance of which the device gets calibrated accordingly. 

Nevertheless, the device can lose its calibration after some time. It is not practical to stop 

the experiment, switch to the EyeTribe calibration utility and calibrate the device. Instead, 

GETapp implements a function for calibrating the device by using the EyeTribe’s API. 

The function implements the EyeTribe’s API, which takes commands in JSON format 

containing the start and stop commands and the position of the calibration point. This 
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function can be implemented anywhere in the screens or in its own screen. The GETapp’s 

calibration function first performs a test in which the participant gazes at a target with a 

position predefined by the experiment designer on a screen. After a delay, the gaze 

positions are recorded for a certain amount of time. Subsequently, if the mean of the 

recorded gaze positions is closer than a threshold to the target’s position and the standard 

deviation is under a certain threshold, the test is passed and the screen proceeds to the next 

state; however, if the test is not passed, a process of calibration, as mentioned above, will 

commence for that particular participant, while other participants are waiting. Once the 

device is calibrated, the experiment continues as usual. The parameters of the calibration 

process, namely the delay time, the recording time, the thresholds for the mean and 

standard deviation in the test stage and the positions of all the calibration circles in the 

calibration stage, are definable by the experiment designer.  

Another component of the experiment in this platform is the visualization modality 

(previously mentioned as the “marker”). This visualization modality is often represented 

as a circle, a plus sign, a heat-map or any other custom-made marker. As mentioned 

before, the marker is to designate, for each participant, positions on the screen where other 

participants are looking at simultaneously 5 . These locations can be visualized 

individually, where one can see many markers moving on the screen, or collectively, 

where a marker represents the mean location of all the gaze locations. The marker can 

also, as in the case of the heat-map, depict the concentration of the other’s gazes. One such 

visualization modality, which is available in GETapp, is the heat-map. This marker is in 

the form of a red, semi-transparent circle which is darker at the center and gets lighter and 

fades into the background, getting closer to the periphery. The center of the circle is at the 

mean of the gaze positions and its diameter corresponds to the standard deviation of the 

gaze positions from the mean. As the circle grows in size, its color gets lighter. The 

purpose of this design is to draw the participants’ attention to a location where other 

participants are most concentrated. 

 

 

5 In the current study the visualization modality was designed and implemented by Mine Cuneyitoglu 

Ozkul. 
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Figure 9 The HeatMap visualization modallity with various radii 

The smoothing of visualization modalities’ movement, the calibration process and the 

flow of screens are all controlled on the server side6. The server also records the data that 

came from the eye tracker servers (the server application that runs on client computers 

and manages the eye tracker device) and the clients to a file in JSON format. The 

experiment designer can specify multiple variables to be written in the data file. The most 

common ones are presented below: 

• Participants’ unique Ids: Each participant is assigned a unique ID to make them 

trackable. 

• Screen number: Each experiment is made up of a set of screens that recur in 

some order during the experiment. For example, in the current experiment, 

there is a screen on which the participants should look at the symbol at the 

center, a screen where calibration takes place and a screen where the search 

 

 

6 This design choice was made, based on comparing performance when the mentioned operations are done 

on the server side vs. the client side. As the number of participants increases it may be better for some 

operations (e.g. smoothing the movement of visualization modality) to be done on the client side. 
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task is performed. The screen number is the number assigned to each of these 

screens. 

• Question number: Each condition of the experiment is assigned a number 

called the question number. For example, in the current study, each search 

target with a specific configuration (the color and the position) is assigned a 

question number. This is to control how many times and in which order each 

condition appears. 

• Group size: The number of participants performing a task. 

• Visualization modality: The marker that depicts where the participants are 

looking at. 

The client time stamp (cts), is the time stamp assigned to the data point by the client 

when the data leave the client, whereas the server time stamp (sts) is the time stamp that 

the server assigns to the data when received by the server. There may be cases where an 

experimenter would need cts; however, because it is difficult to synchronize client 

computers’ clocks to match with a high enough precision for the purposes of the current 

study (about 10 milliseconds), it is better to use sts to avoid artifacts created by differences 

in client computers’ clocks. Moreover, the difference between cts and sts may be the lag 

between the client and the server caused by the algorithms used (not by the network). 

Measuring the lag will be addressed in later sections. 

3.2. The generalRQA Package for R 

In this section the algorithms and functions in the generalRQA package for the R 

language will be presented. The package has been developed by the author and used for 

the analysis of the data in the present study. There exist other packages in the R community 

written for recurrence analysis, such as the crqa package (Coco, with contributions of 

James D. Dixon, & Nash, 2015); however, they have a major limitation for the purposes 

of the current study. The main limitation is that the available packages work with 

recurrence matrices of only two dimensions, whereas the goal in the present study is to 

analyze multiple time series concurrently. In other words, the recurrence matrices may be 

more than two dimensional in group eye tracking. As presented before in section 2.4, the 

mathematical description, from which the algorithms in this package were derived, are 

also defined on one (for the RQA case) and two time series (for the CRQA and JRQA 

cases) only (Webber Jr & Marwan, 2015). This is the reason that the mathematical 

descriptions had to be generalized to fit the multi-time-series situation, as well. 

The information provided in this section is an integration of the individual function 

documentations in the package and the package vignette which provides a high-level 

description of how to use the package through an example. The generalRQA package 
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can be used to implement Cross Recurrence Quantification Analysis (CRQA), Joint 

Recurrence Quantification Analysis (JRQA) and simple Recurrence Quantification 

Analysis (RQA). 

3.2.1. The workflow 

The general workflow of CRQA involves embedding the data (section 2.3), creating 

distance matrix from the trajectories, creating recurrence matrix from the distance matrix, 

choosing which line or lines parallel to the main diagonal in the matrix to work on, creating 

line histograms for each one of the diagonal lines and calculating RQA measures for each 

one of them. In simple RQA, length histogram of the whole recurrence matrix is used for 

calculating recurrence measures, whereas in CRQA, one may need to investigate the 

length histogram of individual diagonal lines to analyze concurrent behavior among 

multiple time series (Norbert Marwan et al., 2007a). In this case, each diagonal line 

corresponds to a specific lag combination among the times series. 

3.2.2. Hands on 

The functions and algorithms in the package will be illustrated by going through 

calculating CRQA measures of two logistic maps with slightly different initial conditions. 

The logistic map is a difference equation which is a simple model of population growth. 

The model below shows exponential growth of a population, and also convergence to a 

certain population limit. If we define k as the carrying capacity, 𝑥𝑡  as the current 

population we can write: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑥𝑡 (1 −
𝑥𝑡

𝑘
) (15) 

where r is a coefficient defining how fast the population would grow were there no 

limitation to growth. We can confirm that the equation above satisfies the requirements of 

the model description; if the current population is near zero the equation will become 

𝑥𝑡+1 = (1 + 𝑟)𝑥𝑡  which shows an exponential growth. If the current population size 

approaches the carrying capacity, the equation will become 𝑥𝑡+1 = 𝑥𝑡  which stays 

constant (Niazi, 2016). 

If we replace 𝑥 with 𝛼𝑥 and simplify the equation we will have: 

𝛼𝑥𝑡+1 = 𝛼𝑥𝑡 + 𝛼𝑟𝑥𝑡 (1 −
𝛼𝑥𝑡

𝑘
) 

= 𝑥𝑡 + 𝑟𝑥𝑡 (1 −
𝛼𝑥𝑡

𝑘
) 

= 𝑥𝑡 (1 + 𝑟 (1 −
𝛼𝑥𝑡

𝑘
)) 

= 𝑥𝑡 (1 + 𝑟 −
𝑟𝛼𝑥𝑡

𝑘
) 

= (1 + 𝑟)𝑥𝑡 (1 −
𝛼𝑟𝑥𝑡

𝑘(1 + 𝑟)
) 
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replacing 𝛼 with 
𝑘(1+𝑟)

𝑟
 we will get: 

𝑥𝑡+1 = (1 + 𝑟)𝑥𝑡(1 − 𝑥𝑡) 

and replacing 1 + 𝑟 with 𝑟 we will finally arrive at the below equation, called the logistic 

map: 

𝑥𝑡+1 = 𝑟𝑥𝑡(1 − 𝑥𝑡) (16) 

which is the same as (15) written in a more compact form by introducing new variables. 

In this system, if for example 𝑟 = 2, the asymptotic state of the system will converge 

to a certain value regardless of the initial condition. If 𝑟 is set to 3.1, the asymptotic state 

of the system will oscillate between two values. Likewise, as 𝑟 increases, in progressively 

smaller increments of 𝑟, the period of the oscillating asymptotic state will double. This 

cascade eventually leads to the divergence of the period to infinity at 𝑟 = 3.569946. At 

this point the system loses any periodicity of finite length and its behavior seems random. 

This regime is called a chaotic regime (Mitchell, 2009). 

A hallmark of chaotic regimes is their sensitivity to the initial conditions. This means 

that if two trajectories of the system start from two initial conditions, arbitrarily close to 

each other, they will diverge eventually. To showcase this phenomenon two trajectories 

of the logistic map with 𝑟 = 3.9  and with two initial conditions 𝑥0 = 0.5  and 𝑥0 =
0.500001 are plotted in Figure 10. 

The two trajectories start overlapping each other but after about 50 steps they begin to 

diverge; however, after diverging, the trajectories are not completely uncorrelated. They 

show a pattern of recurrences. To investigate the recurrence pattern of these two 

trajectories we will use the CRQA method and showcase the use of the generalCRQA 

package.  

Figure 10 Two trajectories of the logistic map with slightly different initial conditions 
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Figure 11  Mutual information diagram 

The first step towards CRQA is to embed the data in a higher dimensional space 

(theory of embedding has been explained in 2.3 above). The two important parameters for 

embedding are the time-delay and the embedding dimension. The appropriate time-delay 

can be found using the mutual information formula which is implemented by the function 

mutual in the package tseriesChaos (Antonio & Narzo, 2013). Plotting the mutual 

information vs. different time-delay values (Figure 11), the optimal time-delay parameter 

is chosen as the first local minimum of the plot (Coco & Dale, 2016). This minimizes the 

dependencies between consecutive time steps in the embedded time series. 

The local minimum occurs at a mutual information value of 10, in the case of the two 

time series from the logistic map (Figure 11). Having determined the appropriate time-

delay, we can use that information to find the optimal embedding dimension. As 

mentioned in section 2.3, one method of accomplishing this is through calculating false 

nearest neighbors. False nearest neighbors can be calculated by the false.nearest 

function from tseriesChaos package. The function calculates the number of false 

nearest neighbors for the time-delay parameter input to the function and an array of 

different dimensions. Figure 12 shows the plot of the number of false nearest neighbors 

decreasing as the dimension increases. The optimum dimension is chosen as the 

dimension where the plot shows a rapid change in the number of false neighbors which 

can be detected as an elbowing in the plot (Chelidze, 2017). 

In Figure 12 below the elbowing occurs at dimension 2. Having decided on the time-

delay and the dimension parameters, the embedding can be realized by the embed 

function from the generalRQA package. 
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The embed function gets the time series, the time-delay and the dimension as 

parameters and outputs a data frame. Each column in the data frame corresponds to one 

dimension and each row corresponds to a state in the state space (Figure 12). 

 

Figure 12 False nearest neighbors diagram 

 embed(timeSeries, delay, dimension){ 

  out ← list() 

  lengthOfEmbeddedTimeSeries ← length(timeSeries) - (delay * (dimension - 1)) 

  strt ← 0 

  for (i in 1 : dimension) { 

       out[i] ← ts[(1 + (strt * delay)) : ((strt * delay) +   

lengthOfEmbeddedTimeSeries)] 

       strt ← strt + 1 

    } 

  return(columnBind(out)) 

 } 
 

Code 1 The function returns a data frame in which each column in the data frame corresponds to one 

dimension and each row corresponds to a state in the state space. 
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The steps so far included finding the optimum time-delay parameter and the optimum 

dimensionality of the state space. Using the time-delay and the dimension we created a 

time-delayed embedded version of the original time series. We will use these new time 

series to calculate a distance matrix. The distance matrix will contain the largest Euclidean 

distance between corresponding data points in the embedded time series. By enforcing a 

threshold on the distance matrix, it will be converted into a binary matrix called the 

recurrence matrix. As mentioned in section 2.4, the recurrence matrix identifies locations 

along the time series where a recurrence between the time series occurs by assigning value 

1 to the corresponding cell in the matrix and 0 to all the cells. The recurrence matrix will 

be the base for calculating all the CRQA measures. 

The time-delayed embedded time series can be fed into the makeDistanceMatrix 

function from generalRQA package to obtain a distance matrix. The format in which 

the matrices are represented in the generalRQA package is specific to the package and 

is designed to optimize speed of the calculations. The distance matrix is defined as a multi-

dimensional matrix where each dimension corresponds to a time series. The value of each 

cell in the matrix designates the largest Euclidean distance between the data points in the 

embedded time series corresponding to the indices of that cell. For example, the cell 

designated by indices [2, 4, 6] in a three-dimensional matrix is the largest Euclidean 

distance between the 2nd point in the first embedded time series, the 4th point in the second 

embedded time series and the 6th point in the third embedded time series. However, the 

matrix in the package is defined as a data frame where each column contains a diagonal 

of the multi-dimensional matrix (A diagonal here means a line in the matrix grid parallel 

to the main diagonal). The names of the columns correspond to the starting indices of that 

diagonal. For example, the diagonal that starts from index [1, 1, 1] in a three-dimensional 

matrix (which is the main diagonal) corresponds to the column with the name 1.1.1 and 

the diagonal that starts from index [1, 3, 2] corresponds to the column with the name 1.3.2. 

Because the length of the diagonals in a matrix are different, to make a data frame out of 

the diagonals, zeroes are appended to the beginning of the columns of the data frame to 

make their lengths even. Figure 13 top, shows an ordinary two-dimensional matrix with 

values 1 to 25 arranged column-wise. Under it we can see the representation of the same 

matrix in the specific format of the generalRQA package. 
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Figure 13 Top: an ordinary two-dimensional matrix with values 1 to 25 arranged column-wise. Bottom: 

the same matrix in the specific format of the generalRQA package. 

In the generalRQA package, the makeDistanceMatrix function takes a list of 

time series and a parameter k as input and returns a recurrence matrix (Code 3). k specifies 

the distance from the main diagonal in which the diagonals will be considered. For 

example, if the matrix is two dimensional (two time series) and 𝑘 = 2, only the 1.1, 1.2 

and 2.1 diagonals will be calculated. For a matrix of dimension three and 𝑘 = 3, diagonals 

1.1.1, 1.1.2, 1.2.2, 1.2.1, 2.2.1, 2.1.1, 2.1.2, 1.1.3, 1.2.3, 1.3.3, 1.3.2, 1.3.1, 2.3.1, 3.3.1, 

3.2.1, 3.1.1, 3.1.2, 3.1.3, 2.1.3 are the diagonals that will be calculated. In general, the 

number of diagonals considered given the dimension and k is 𝑘𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − (𝑘 −
1)𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. 

The makeDistanceMatrix calls prepareIndex function which takes 

dimension, k and a vector containing the lengths of each dimension of the matrix 

(dimensionLengths) as input. The function returns a matrix of indices (Code 2). Using the 

indecies matrix the makeDistanceMatrix function will choose corresponding data 

points from the input time series to calculate the Euclidian distance. 
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  prepareIndex(dimension, k, dimensionLengths){ 
   tmp ← list() 
  for(i in dimensionLengths){ 
   append(tmp, 1 : i) 
  } 
  indeces ← all the element vise combinations of vectors in tmp 
  indeces ← keep only the elements in indeces which have at least one element 1 
  indeces ← a data frame where each column is one element of indeces 
  while(maximum(last row of indeces) < min(dimensionLengths)){ 
   append(indeces, last row of indeces + 1) 
  } 
  return(indeces) 
  }  

Code 2 The function prepares a matrix of indices from which the makeDistanceMatrix will choose 

corresponding data points from the input time series to calculate the Euclidian distance. 

  makeDistanceMatrix(listOfTimeSeries, k){ 
   index ← prepareIndex(length(listOfTimeSeries), k, lengthsOfTimeSeries) 
  tmp ← vector() 
  for(i in index){ 
   tmp ← vector() 
   for(j in rows(i)){ 
    positions ← vector() 
    for(p in 1 : length(j)){ 
     append(positions, listOfTimeSeries[p][j[i]] 
    } 
    append(tmp, maximum(dist(p))) 
   } 
   i ← tmp 
  } 
  return(index) 
  }  

Code 3 The function takes a list of time series and a parameter k as input and returns a recurrence matrix. 

The dist function above calculates the Euclidean distances between all elements of its input. 

The makeDistanceMatrix function, thus, returns a matrix in the specific format 

of the generalRQA package where each value is the largest distance between data points 

from the input time series corresponding to the indices of that value. 

The next step is to convert the distances in the previous matrix into binary values. This 

task is accomplished by the makeRecurrenceMatrix function (see Code 7). The 

critical parameter in this function, as pointed out in section 2.4, is the threshold. There are 

two ways to define the threshold parameter. The first is to directly input the threshold by 

setting the radius parameter in the function. The second way is to specify a range for the 

recurrence rate (section 2.4), which is the ratio of recurrent points to all the points in the 

matrix, so that the function calculates a threshold with which the recurrence rate falls into 
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that range. The makeRecurrenceMatrix takes the distanceMatrix, dimension, maxR, 

range (see the next paragraph for a description of maxR and range) and radius as inputs 

and outputs a recurrence rate, a radius (the threshold) and a recurrence matrix. The 

returned recurrence matrix is in the same format as the distance matrix except that binary 

values replace distances in the matrix. 

If maxR and range are specified in the parameters, the function will do a binary search 

in the domain 0 to maxR to find a threshold so that the recurrence rate falls into the range. 

However, if the radius is specified in the parameters, it will be directly regarded as the 

threshold. 

The makeRecurrenceMatrix incorporate three other functions. The function 

recurrenceFromDistance, given a threshold value and a distance matrix, simply 

converts the distance matrix to a binary format (Code 4). It replaces distance values less 

than the threshold with 1 and distance values more than the threshold with 0. The function 

radiusFinder takes the distanceMatrix and two parameters maxR and range and as 

mentioned in the previous paragraph, searches for a radius upon which the recurrence rate 

falls into the range (Code 5). radiusFinder returns the recurrence rate (so that there 

is no need to calculate it again), the found radius (the threshold) and the recurrence matrix 

as output. The function findRR returns the recurrence rate given the recurrence matrix 

as input by dividing the number of 1’s in the recurrence matrix with the size of the matrix 

(Code 6). 

 recurrenceFromDistance(distanceMatrix, radius){ 
   for(i in distanceMatrix){ 
   if(i$distance < radius){ 
    i$recurrence ← 1 
   } else { 
    i$recurrence ← 0 
   } 
  } 
  }  

Code 4 The function converts a distance matrix to a binary matrix by replacing the distance values with ones 

and zeroes based on the threshold value. 
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  radiusFinder(distanceMatrix, maxR, range){ 
   rad = maxR 
    maximumR = maxR 
    minimumR = 0 
    rMtrx = recurrenceFromDistance(distanceMatrix, rad) 
    RR = findRR(rMtrx) 
    while ((RR < range[1]) | (RR > range[2])) { 
       if((((maximumR + minimumR)/2)-rad) < 0.001){ 
          break 
       } 
       rad = (maximumR + minimumR)/2 
       rMtrx = recurrenceFromDistance2(distanceMatrix, rad) 
       RR = findRR2(rMtrx) 
       if(RR > range[2]){ 
          maximumR = rad 
       }else if(RR < range[1]){ 
          minimumR = rad 
       } 
    } 
    return(list(rad, RR, rMtrx)) 
  }  

Code 5 The function searches for a radius (threshold) between 0 and maxR upon which the recurrence rate 

falls into the range. 

 

findRR(recurrenceMatrix) { 

 RR <- (number of 1’s in the recurrenceMatrix)/(number of cells in the 
recurrenceMatrix) 

 return(RR) 

} 
 

Code 6 The function calculates the recurrence rate given the recurrence matrix. 

  makeRecurrenceMatrix(distanceMatrix, dimension, maxR, range, radius){ 
   if(radius){ 
       tmp = recurrenceFromDistance(distanceMatrix, radius) 
       RR = findRR(tmp) 
       return(list(tmp, RR, radius)) 
    } else { 
       tmp = radiusFinder(distanceMatrix, maxR, range) 
       return(list(tmp$recurrenceMatrix, tmp$RR, tmp$radius)) 
    }  
  }  

Code 7 The function returns the recurrence matrix, the recurrence rate and the radius (threshold). 
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At this point one CRQA measure, the recurrence rate (RR) is available. To calculate 

the other measures, a line histogram is needed on the diagonal that the measures are to be 

calculated from. A line histogram in this case is a data structure specifying the number of 

lines with different lengths that can be found on the particular diagonal. A line here means 

any succession of 1’s in the recurrence matrix in the direction of the main diagonal and 

with a minimum length which is specified by the minLength parameter.  

The line histogram can be computed by the findLengthHistogram function 

(Code 8). The function takes a diagonal from the recurrenceMatrix and a minimum line 

length (which is 2 by default) as input. The output of the function is a data frame in which 

the first column specifies the length of the line and the second column specifies the 

frequency of that line occurring. 

  findLengthHistogram(diagonalOfrecurrenceMatrix, minLength ← 2){ 
   appendAtBeggining(diagonalOfRecurrenceMatrix, 0) 
  appendAtEnd(diagonalOfRecurrenceMatrix, 0) 
  tmp ← indeces(which(diagonalOfRecurrenceMatrix = 0)) 
  tmp ← (subtract each element in tmp from the next element) – 1 
  tmp ← tmp < minLength 
  return(count(tmp)) 
  }  

Code 8 The function returns a histogram of line lengths given a diagonal of the recurrence matrix. A line 

here means any succession of 1’s in the direction of the main diagonal of the recurrence matrix with the 

minimum length given by the minLength parameter.  

The measure DET is calculated by the function findDET (Code 9). The function 

takes recurrence rate, length histogram and recurrence matrix as input and outputs a 

number as DET.  

  findDET(RR, lengthHistogram, recurrenceMatrix){ 
   nrows ← vector() 
  for(i in recurrenceMatrix){ 
   append(rowNumber(i)) 
  } 
  nrows ← sum(nrows) 
  DET ← (sum(lengthHistogram$lengths * lengthHistogram$frequency))/RR 
  return(DET) 
  }  

Code 9 The function calculates the DET measure as mentioned in section 2.4 

RATIO is the ratio of DET over RR. It is calculated by the findRATIO function 

(Code 10). 



37 

 

 

  findRATIO(RR, DET){ 
   return(DET/RR) 
  }  

Code 10 The function calculates the RATIO measure by dividing DET with RR. 

Dmax is the length of the longest line in the length histogram. It is found by the 

findDmax function (Code 11). 

  findDmax(lengthHistogram){ 
   return(maximum(lengthHistogram$lengths)) 
  }  

Code 11 The function finds the longest line in the length histogram. 

AvD is the average length of lines in the length histogram calculated by the findAvD 

function (Code 12). 

  findAvD(lengthHistogram){ 
   return(sum(lengthHistogram$lengths * 
lengthHistogram$frequency)/sum(lengthHistogram$frequency)) 
  }  

Code 12 The function finds the average length of all the lines in the length histogram. 

The last measure, the Shannon entropy is calculated by the findShannonEntropy 

function (Code 14). The mathematics of this measure is explained in section 2.4. The 

findShannonEntropy function incorporates the function probL (Code 13). The 

probL function takes the length histogram and a length value (as parameter l) as input 

and simply returns the frequency value corresponding to that line length. 

  probL(lengthHistogram, l){ 
   return(lengthHistogram[which(lengths = l)]$frequency) 
  }  

Code 13 The function returns the corresponding frequency value for the input line length. 

  findShannonEntropy(lengthHistogram){ 
   tmp = 0 
  for(i in 1 : numberOfRows(lengthHistogram)){ 
   tmp ← tmp + probL(lengthHistogram, lengthHistogram.row(i)$lengths) * 
log(probL(lengthHistogram, lengthHistogram.row(i)$lengths) 
  } 
  return(tmp) 
  }  

Code 14 The function calculates the Shannon Entropy based on the mathematical description of the measure 

in section 2.4. 

Returning to the logistic map example, because there are two time series and hence 

the dimension of the recurrence matrix is 2, it is possible to visualize the matrix (Figure 
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14). In this case, after embedding, k in makeDistanceMatrix has been chosen to 

cover the whole matrix (all the diagonals). In the makeRecurrenceMatrix the 

parameters are maxR = 5 and range = [0.03, 0.05].  

Measures are as follows: 

RR = 0.03601108 

DET = 0.5730769 

RATIO = 15.91391 

Dmax = 54 

AvD = 3.497653 

ENT = -1.505847 

In this chapter we presented a description of the software tool, the GETapp, developed 

for data collection in group eye tracking. We gave explanation of the structure of the 

software system and various design choices in the development of the software. We also 

Figure 14 cross recurrence plot of the two trajectories of the logistic map with r = 3.7 and initial conditions 

0.5 and 0.50001 
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provided an explanation of the generalRQA R package. We illustrated how we have 

implemented the methods described in Chapter 2 in program and showed the logic of the 

functions by providing pseudo-codes. We also used the generalRQA package to 

calculate CRQA measures on an example data set. In the next chapter we will go through 

the same process to calculate CRQA measures for the real data from the experiment. 
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CHAPTER 4 

 

4. EXPERIMENT 

4.1.Experiment Setup  

The experiment was made in two sessions. In the first session, six groups of three 

participants and then in the second session two groups of five participants (19 male 9 

female). All the participants were students at METU. The participants were admitted into 

the room in groups and each participant was seated in front of a separate computer. After 

calibrating the eye tracking devices and after the instructions, the participants were asked 

not to talk to each other during the experiment. When all the players passed the calibration 

phase they proceeded with the next screen. Otherwise, the ones who failed the calibration 

was presented the calibration screen again and the others waited until all the participants 

finish calibration.  

In the next screen, participants were to look for a small circle (i.e., to conduct visual 

search). The color of the circle was an experimental factor with three conditions. It was 

either black (thus relatively easy to find), gray (which was close to the background color 

thus relatively difficult to find), or there was no circle on the screen (but participants did 

not know that and they were asked to actively search for a circle on the screen).  

The other experimental factor was visualization modality with two conditions. There 

was either no visualization of the other participants on the screen, or there was a heat-

map, which was basically a visual representation of the other participants during the 

course of their visual search, as described in the previous sections.  

The participants were instructed to click the left mouse button (it did not matter where 

they clicked) once they found the circle. When all the participants clicked, they proceeded 

with the next screen, which was again the calibration test screen. The session was 

composed of 23 trials as such. The initial three trials were warm ups and the rest displayed 

the three experimental conditions with equal chance in random order. 

4.2. Analysis Without Embedding 

The data were recorded by GETapp in JSON format and imported as data-frame into 

R. The function importAndClean(file) in the generalRQA package automates 

this process. It reads the data from the file, makes it into a data-frame format and checks 

for data integrity where it deletes rows having NA, Nan, Inf or -Inf values. 
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The analysis was first conducted on the x coordinates of the eye tracking data. The 

radius in this case was chosen to be 30 pixels, which corresponds to approximately 4 

degrees of visual angle given the current experiment setting. After creating distance 

matrices from the time series and acquiring recurrence matrices from the distance 

matrices, the recurrence rates were obtained. After calculating the line histograms from 

the recurrence matrices, the DET and ENT measures were calculated (these steps were 

outlined in section 3.2.2). The plots below visualize the RR (Figure 15), DET (Figure 16) 

and ENT (Figure 17) measures for three conditions (Black, Gray and None circle) and the 

two conditions of heat-map modality and no heat-map modality for groups of 3. It should 

be pointed out that in all our analyses, the group factor has not been considered. This is to 

say that each group has performed multiple trials of various target point and visualization 

modality conditions, but each one of these trials is considered independently. In the plots 
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below the error bars correspond to standard error. 

Figure 15 RR for HeatMap vs NoHeatMap conditions and three point colors 
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Figure 16 DET for HeatMap vs NoHeatMap conditions and three point colors 

 

Figure 17 ENT for HeatMap vs NoHeatMap conditions and three point colors 

 

 

 



45 

 

 

4.3. Statistical Tests 

4.3.1. Groups of 3, x axis 

A two-way ANOVA test was conducted on the data for groups of 3 for RR (recurrence 

rate), DET (percent determinism) and ENT (Shannon entropy) measures. The design was 

a 2*3 unbalanced design (Table 1). The inputs of the ANOVA test were the x-axis values 

of the gaze location in three conditions of the point to be found (black, grey and none) and 

two conditions of the visualization modality (HeatMap and NoHeatMap). We assumed 

that the x values of the gaze locations were enough to study the recurrences in group eye 

tracking. The experiment data for 6 groups of three participants consisted of 41 trials of 

black point with heat-map modality, 36 trials of grey point with heat-map modality, 36 

trials of no point with heat-maomodality, 32 trials of black point with no heat-map 

modality, 44 trials of grey point with no heat-map modality and 43 trials of no point with 

no heat-map modality (see Table 1). 

Table 1 The ANOVA unbalanced design for groups of 3 

 

For the RR measure the ANOVA test results are shown in Table 2. 

Table 2 ANOVA results for RR for groups of 3, x axis 

Anova Table (Type II tests) 
 
Response: RR 
                    Sum Sq  Df F value    Pr(>F)     
pointColor          4.6282   2 56.9528 < 2.2e-16 *** 
modality            1.0802   1 26.5846 5.504e-07 *** 
pointColor:modality 0.3044   2  3.7458    0.0251 *   
Residuals           9.1829 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 2 shows that the pointColor are associated with significantly different 

recurrence rates (p-value << 0.001) and levels of modality are also associated with 

significant different recurrence rates (p-value < 0.001). The p-value for the interaction 

between pointColor and modality is 0.02 (significant), which indicates that the 

relationship between modality and recurrence rate depends on pointColor, too. This 

means that the participants exhibited different gaze distribution under the three conditions 

(black, gray, none) and they were also influenced by the type of visualization modality 
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(HeatMap vs. NoHeatMap) in groups of three. Follow-up pairwise t-test was conducted 

on the RR data. The results are shown in Table 3. 

Table 3 Pairwise t-test for three point colors 

 Pairwise comparisons using t tests with pooled SD  
  
 data:  tmp$RR and tmp$pointColor  
  
      black   grey    
 grey 0.65    -       
 none 4.6e-15 < 2e-16 
  
 P value adjustment method: BH   

Table 3 shows that the significant difference in recurrence rates between point colors is 

mainly between Black and None and between Gray and None conditions but not between 

Black and Gray conditions.  

In summary, the three conditions of the target point (black, grey and none) and two 

conditions of the visualization modality (HeatMap and NoHeatMap) had significant effect 

on the number of recurrent states of the three time series. In the case of the target point 

conditions, black vs. none and black vs. none were significantly different in RR; however, 

black vs. grey conditions showed no significant difference in recurrence rate. 

 

 

For the DET measure the ANOVA test results are shown in Table 4. 

Table 4 ANOVA results for DET fir groups of 3, x axis 

Anova Table (Type II tests) 
 
Response: DET 
                    Sum Sq  Df F value    Pr(>F)     
pointColor           0.120   2  0.4002 0.6706804     
modality             1.876   1 12.5299 0.0004862 *** 
pointColor:modality  0.043   2  0.1422 0.8675675     
Residuals           33.831 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 4 suggests that pointColor has no significant effect on the DET values in the 

data; however, modality is associated with significantly different DET values between the 

HeatMap and NoHeatMap conditions (p-value < 0.05). The effect of interaction between 

pointColor and modality is not significant which means that the relation between DET and 

modality is independent of pointColor. This means that the pattern of synchronization 

between the eye gazes of participants (pattern of group formations) showed different 
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levels of predictability (determinism) between HeatMap and NoHeatMap conditions of 

the visualization modality but not between target point colors. 

In summary, visualization modality had a significant effect on the DET measure but 

the effect of target point color on the DET measure was insignificant. In other words, if 

one were to use some method of prediction of the group formations of group eye tracking 

in a search task, the values of the prediction error probability would be significantly 

different for the two conditions of HeatMap vs. NoHeatMap. 

 

 

 

 

For the ENT measure the ANOVA test results are shown in Table 5. 

Table 5 ANOVA results for ENT for groups of 3, x axis 

Anova Table (Type II tests) 
 
Response: ENT 
                    Sum Sq  Df F value    Pr(>F)     
pointColor           0.557   2  0.8198    0.4418     
modality             9.202   1 27.0772 4.383e-07 *** 
pointColor:modality  0.140   2  0.2053    0.8145     
Residuals           76.802 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 5 suggests that pointColor has no significant effect on the ENT values in the 

data; however, modality is associated with significantly different ENT values between the 

HeatMap and NoHeatMap conditions (p-value < 0.05). The interaction between 

pointColor and modality is not significant meaning that the relation between modality and 

ENT is independent from pointColor. This means that the pattern of synchronization 

between the eye gazes of participants (pattern of group formations) showed different 

levels of complexity between HeatMap and NoHeatMap conditions of the visualization 

modality but not between target point colors. 

In summary, the target point color (black, grey and none) had no significant effect on 

the ENT measure but the ENT measure for different visualization modality conditions 

(HeatMap and NoHeatMap) were significantly different. 
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For Dmax measure, the ANOVA results are shown in Table 6 below: 

Table 6 ANOVA results for Dmax for groups of 3, x axis 

Anova Table (Type II tests) 
 
Response: Dmax 
                    Sum Sq  Df F value    Pr(>F)     
pointColor            1410   2  4.3062   0.01461 *   
modality              5602   1 34.2140 1.718e-08 *** 
pointColor:modality    442   2  1.3495   0.26145     
Residuals            37002 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 6 shows that the pointColor are associated with significantly different Dmax (p-

value < 0.05) and levels of modality are also associated with significant different Dmax 

(p-value < 0.001). This means that the trajectories of participants’ eye movements 

exhibited different divergence rates from each other under the three conditions (black, 

gray, none) and also different divergence rates from each other under two conditions of 

the visualization modality (HeatMap vs. NoHeatMap) in groups of three. Follow-up 

pairwise t-test was conducted on the Dmax data. The results are shown in Table 7. 

Table 7 Pair-wise t-test results for three conditions of the target point 

Pairwise comparisons using t tests with pooled SD  
 
data:  tmp$Dmax and tmp$pointColor  
 
     black grey 
grey 0.10  -    
none 0.16  0.60 
 
P value adjustment method: BH  

Table 7 suggests that the divergence rate between trajectories of the participants’ eye 

movements were significantly different between black vs. none and black vs. grey but not 

between grey vs. none. 
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For the AvD measure the ANNOVA test results are shown in Table 8 below: 

Table 8 ANOVA results for AvD for groups of 3, x axis 

Anova Table (Type II tests) 
 
Response: AvD 
                     Sum Sq  Df F value    Pr(>F)     
pointColor            184.0   2  1.7029    0.1845     
modality              991.1   1 18.3492 2.721e-05 *** 
pointColor:modality    17.6   2  0.1625    0.8501     
Residuals           12207.5 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 8 suggests that pointColor has no significant effect on the AvD values in the data; 

however, modality is associated with significantly different AvD values between the 

HeatMap and NoHeatMap conditions (p-value < 0.001). The interaction between 

pointColor and modality is not significant meaning that the relation between modality and 

ENT is independent from pointColor. The AvD is another parameter for measuring the 

divergence of the trajectories. This means that the trajectories of participants’ eye 

movements showed different rates of divergence from each other under two conditions of 

the visualization modality (HeatMap and NoHeatMap) but not between target point 

colors. 

4.3.2. Groups of 5, x axis 

Two group of five participants took place in the experiment. A two-way ANOVA test 

was conducted on the data for groups of 5 for RR, DET and ENT measures, similar to the 

analyses reported above for group of three participants. The design was a 2*3 unbalanced 

design (Table 9). The experiment data for two groups of 5 participants consisted of 13 

trials of black point with heat-map modality, 10 trials of grey point with heat-map 

modality, 13 trials of no point with heat-map modality, 14 trials of black point with no 

heat-map modality, 12 trials of grey point with no heat-map modality and 11 trials of no 

point with no heat-map modality (see Table 9). 

Table 9 The ANOVA unbalanced design for groups of 5 

 

For the RR measure the ANOVA test results are shown in Table 10 below: 
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Table 10 ANOVA results for RR for groups of 5, x axis 

Anova Table (Type II tests) 
 
Response: RR 
                      Sum Sq Df F value Pr(>F) 
pointColor          0.001057  2  0.6711 0.5145 
modality            0.002004  1  2.5442 0.1154 
pointColor:modality 0.001235  2  0.7839 0.4608 
Residuals           0.052774 67  

It can be concluded from Table 10 that neither the pointColor, nor the levels of 

modality have significant effect on recurrence rates. 

For the DET measure the ANOVA test results are shown in Table 11 below: 

Table 11 ANOVA results for DET for groups of 5, x axis 

Anova Table (Type II tests) 
 
Response: DET 
                    Sum Sq Df F value Pr(>F) 
pointColor          0.0698  2  0.5007 0.6084 
modality            0.1289  1  1.8499 0.1784 
pointColor:modality 0.1583  2  1.1352 0.3275 
Residuals           4.6701 67    

Table 11 suggests that neither the pointColor, nor the levels of modality have 

significant effect on recurrence rates. 

 

 

For the ENT measure the ANOVA test results are shown in Table 12 below: 

Table 12 ANOVA results for ENT for groups of 5, x axis 

Anova Table (Type II tests) 
 
Response: ENT 
                     Sum Sq Df F value Pr(>F) 
pointColor          0.03415  2  0.5928 0.5556 
modality            0.07500  1  2.6036 0.1113 
pointColor:modality 0.03681  2  0.6390 0.5310 
Residuals           1.93000 67  

It can be concluded from Table 12 that neither the pointColor, nor the levels of 

modality had significant effect on the ENT measure. 

For the Dmax measure, the ANOVA test results are shown in Table 13 below: 
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Table 13 ANOVA results for Dmax for groups of 5, x axis 

Anova Table (Type II tests) 
 
Response: Dmax 
                    Sum Sq Df F value Pr(>F) 
pointColor           0.657  2  0.2648 0.7681 
modality             1.326  1  1.0682 0.3051 
pointColor:modality  4.260  2  1.7160 0.1876 
Residuals           83.164 67  

It can be concluded from Table 13 that neither the pointColor, nor the levels of 

modality had significant effect on the Dmax measure. 

For the AvD measure, the ANOVA test results are shown in Table 14 below: 

Table 14 ANOVA results for AvD fir groups of 5, x axis 

Anova Table (Type II tests) 
 
Response: AvD 
                    Sum Sq Df F value Pr(>F) 
pointColor           0.506  2  0.3561 0.7017 
modality             0.449  1  0.6325 0.4293 
pointColor:modality  2.840  2  1.9991 0.1435 
Residuals           47.587 67  

It can be concluded from Table 14 that neither the pointColor, nor the levels of 

modality had significant effect on the AvD measure 

In summary, in groups of 5 participants, no condition had any significant effect on the 

recurrence rate (RR), the percent determinism (DET), the Shannon entropy (ENT), the 

length of the longest diagonal line (Dmax) or the average length of diagonal lines (AvD) 

measures. 

4.3.3. Groups of 3, y axis 

The Anova analysis results for the y axis data were the same as for the x axis data for 

both groups of three and 5 participants, as shown below. 

Two-way Anova on the y axis data for groups of three participants on the recurrence 

rate (RR), 
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Table 15 ANOVA results for RR for groups of 3, y axis 

Anova Table (Type II tests) 
 
Response: RR 
                    Sum Sq  Df F value    Pr(>F)     
pointColor          1.1378   2 25.2687 1.248e-10 *** 
modality            0.1073   1  4.7662   0.03005 *   
pointColor:modality 0.0027   2  0.0589   0.94284     
Residuals           5.0884 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 15 shows that the pointColor are associated with significantly different 

recurrence rates (p-value << 0.001) and levels of modality are also associated with 

significant different recurrence rates (p-value < 0.05). This means that the participants 

exhibited different gaze distribution under the three conditions (black, gray, none) and 

they were also influenced by the type of visualization modality (HeatMap vs. 

NoHeatMap) in groups of three. Follow-up pairwise t-test was conducted on the RR data. 

The results are shown in Table 16. 

Table 16 Pair-wise t-test for three point colors 

Pairwise comparisons using t tests with pooled SD  
 
data:  tmp$RR and tmp$pointColor  
 
     black   grey    
grey 0.59    -       
none 2.5e-09 1.1e-08 
 
P value adjustment method: BH  

For the percent determinism (DET), 

Table 17 ANOVA results for DET for groups of 3, y axis 

Anova Table (Type II tests) 
 
Response: DET 
                     Sum Sq  Df F value   Pr(>F)    
pointColor           0.3879   2  1.4394 0.239233    
modality             1.3358   1  9.9143 0.001861 ** 
pointColor:modality  0.5773   2  2.1426 0.119728    
Residuals           30.4493 226                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 17 suggests that pointColor has no significant effect on the DET values in the data; 

however, modality is associated with significantly different DET values between the 

HeatMap and NoHeatMap conditions (p-value < 0.05). The effect of interaction between 

pointColor and modality is not significant which means that the relation between DET and 
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modality is independent of pointColor. This means that the pattern of synchronization 

between the eye gazes of participants (pattern of group formations) showed different 

levels of predictability (determinism) between HeatMap and NoHeatMap conditions of 

the visualization modality but not between target point colors. 

For the Shannon entropy (ENT), 

Table 18 ANOVA results for ENT for groups of 3, y axis 

Anova Table (Type II tests) 
 
Response: ENT 
                    Sum Sq  Df F value    Pr(>F)     
pointColor           3.629   2  5.8195  0.003432 **  
modality             4.965   1 15.9225 8.919e-05 *** 
pointColor:modality  1.292   2  2.0716  0.128364     
Residuals           70.467 226                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 18 shows that the pointColor are associated with significantly different ENTs 

(p-value < 0.05) and levels of modality are also associated with significant different ENTs 

(p-value < 0.001). This means that the pattern of synchronization between the eye gazes 

of participants (pattern of group formations) showed different levels of complexity 

between HeatMap and NoHeatMap conditions of the visualization modality and between 

different target point colors (black, grey and none). Follow-up pairwise t-test was 

conducted on the RR data. The results are shown in Table 19 below. 

Table 19 Pair-wise t-test results for three conditions of the target point 

Pairwise comparisons using t tests with pooled SD  
 
data:  tmp$ENT and tmp$pointColor  
 
     black grey  
grey 0.748 -     
none 0.018 0.019 
 
P value adjustment method: BH  

Table 19 suggests that the complexity of the synchronization patterns between 

participants trajectories are significantly different for target point color black vs. none and 

grey vs. none but not for black vs. grey. 

For the length of the longest diagonal line (Dmax), 
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Table 20 ANOVA results for Dmax for groups of 3, y axis 

Anova Table (Type II tests) 
 
Response: Dmax 
                    Sum Sq  Df F value   Pr(>F)    
pointColor           340.0   2  5.3011 0.005625 ** 
modality             259.0   1  8.0747 0.004899 ** 
pointColor:modality  188.0   2  2.9316 0.055340 .  
Residuals           7247.8 226                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Table 20 shows that the pointColor are associated with significantly different Dmax (p-

value < 0.05) and levels of modality are also associated with significant different Dmax 

(p-value < 0.05). This means that the trajectories of participants’ eye movements exhibited 

different divergence rates from each other under the three conditions (black, gray, none) 

and also different divergence rates from each other under two conditions of the 

visualization modality (HeatMap vs. NoHeatMap) in groups of three. Follow-up pairwise 

t-test was conducted on the Dmax data. The results are shown in Table 21 below. 

Table 21 Pair-wise t-test results for the target point conditions 

Pairwise comparisons using t tests with pooled SD  
 
data:  tmp$Dmax and tmp$pointColor  
 
     black grey  
grey 0.516 -     
none 0.038 0.010 
 
P value adjustment method: BH  

Table 21 suggests that the divergence rate for trajectories of the participants’ eye 

movements were different for the target point colors black vs. none and grey vs. none but 

not for black vs. grey. 

For the average length of diagonal lines (AvD), 

Table 22 ANOVA results for AvD for groups of 3, y axis 

Anova Table (Type II tests) 
 
Response: AvD 
                     Sum Sq  Df F value Pr(>F) 
pointColor            16.68   2  0.7265 0.4847 
modality              11.48   1  1.0005 0.3183 
pointColor:modality   11.92   2  0.5191 0.5958 
Residuals           2594.14 226  

Table 22 shows that the AvD measure was not significantly different either for the target 

point colors nor for visualization modality conditions. 
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4.3.4. Groups of 5, y axis 

Two-way Anova on the y axis data for groups of 5 participants on the recurrence rate 

(RR) (Table 23), 

Table 23 ANOVA results for RR for groups of 5, y axis 

Anova Table (Type II tests) 
 
Response: RR 
                       Sum Sq Df F value  Pr(>F)   
pointColor          0.0009976  2  2.5674 0.08426 . 
modality            0.0000476  1  0.2449 0.62230   
pointColor:modality 0.0005185  2  1.3345 0.27019   
Residuals           0.0130164 67                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

shows that target point color has a significant effect (𝑝 < 0.1) on the RR measure, but RR 

is not significantly different for the two visualization modalities. 

For the percent determinism (DET), 

Table 24 ANOVA results for DET for groups of 5, y axis 

Anova Table (Type II tests) 
 
Response: DET 
                     Sum Sq Df F value Pr(>F) 
pointColor          0.04344  2  0.8774 0.4206 
modality            0.02257  1  0.9119 0.3430 
pointColor:modality 0.01874  2  0.3786 0.6863 
Residuals           1.65849 67    

Table 24 shows that there is no significant effect of either the target point color or the 

visualization modality on the DET measure for groups of 5. 

For the Shannon Entropy (ENT), the data set was not large enough for the ANOVA 

test to yield meaningful results. 

For the longest diagonal line (Dmax), 

Table 25 ANOVA results for Dmax for groups of 5, y axis 

Anova Table (Type II tests) 
 
Response: Dmax 
                    Sum Sq Df F value Pr(>F) 
pointColor          0.2397  2  1.4764 0.2358 
modality            0.0660  1  0.8131 0.3704 
pointColor:modality 0.0435  2  0.2678 0.7659 
Residuals           5.4397 67  
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Table 25 shows that there was not significant different in Dmax for either the target point 

colors of the visualization modalities. 

For the average diagonal line length (AvD), 

Table 26 ANOVA results for AvD for groups of 5, y axis 

Anova Table (Type II tests) 
 
Response: AvD 
                    Sum Sq Df F value Pr(>F) 
pointColor          0.2397  2  1.4764 0.2358 
modality            0.0660  1  0.8131 0.3704 
pointColor:modality 0.0435  2  0.2678 0.7659 
Residuals           5.4397 67    

Table 26 shows that neither the target point color nor the visualization modality had a 

significant effect on the AvD measure. 

The results of analysis for x axis data and y axis data being almost the same for both 

group sizes suggests that there is a correlation between the recurrences and hence the 

group formations in the x axis and the recurrences and group formations in the y axis. 

4.3.5. Concatenating the data 

At this point we can see that the time series of the grey and black conditions being 

short causes some problems like the impracticality of embedding and the analysis results 

being inconclusive for the 5 participant groups. One way to overcome this is to design 

the experiment so that the time series become longer and also collect data from more 

groups of 5 participants; however, with the data in hand, another way that may produce 

useful results is to concatenate the data of trials for various conditions to construct one 

long time-series for each of the six conditions (black-HeatMap, black-NoHeatMap, 

grey-HeatMap, grey-NoHeatMap, none-HeatMap and none-NoHeatMap). The results 

for the concatenated data without embedding are shown in plots Figure 18 to Figure 22 

for x and y data for groups of three participants. 
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        Figure 18 The RR plot for groups of 3. left: x-axis data    right: y-axis data 

 

        Figure 19 the DET plot for groups of 3. left: x-axis data    right: y-axis data 

 

       Figure 20 The ENT plot for groups of 3. left: x-axis data    right: y-axis data 
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     Figure 21 The Dmax plot for groups of 3. left: x-axis data    right: y-axis data 

 

     Figure 22 The AvD plot for groups of 3. left: x-axis data    right: y-axis data 

After concatenating the data sets, we have a data set long enough for embedding. To 

embed the time-series we need to decide the time-delay and the dimension parameters (see 

Section 2.3). To decide the time-delay parameter we use the mutual information formula. 

The plot for time-delay values from 1 to 50 are shown in Figure 23 for black, grey and 

none and for the HeatMap condition for x-axis data. 
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Figure 23 Mutual information plot for groups of 3 for x-axis data. top-left: Black-HeatMap, top-right: Grey-

HeatMap, bottom: None-HeatMap 

The local minimum seems to be somewhere between 30 and 40, so we set it to 35. 

Using this time-delay value and the false nearest neighbor method we can find the 

appropriate dimensions for embedding. The false nearest neighbor plots are shown in  

Figure 24 for black, grey and none conditions and for the HeatMap condition. 
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Figure 24 False nearest neighbor plot for groups of 3 for x-axis data. top-left: Black-HeatMap, top-right: 

Grey-HeatMap, bottom: None-HeatMap 

The plot for time-delay values from 1 to 50 are shown in Figure 25 for black, grey and 

none and for the NoHeatMap condition for x-axis data. 
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Figure 25 Mutual information plot for groups of 3 for x-axis data. top-left: Black-NoHeatMap, top-right: 

Grey-NoHeatMap, bottom: None-NoHeatMap 

Again, we set the time-delay value to 35 time-delay. The false nearest neighbor plots 

are shown in Figure 26 for black, grey and none conditions and for the NoHeatMap 

condition. 
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Figure 26 False nearest neighbor plot for groups of 3 x-axis data. top-left: Black-NoHeatMap, top-right: 

Grey-NoHeatMap, bottom: None-NoHeatMap 

The bar plots for RR, DET, ENT, Dmax and AvD are shown in Figure 27 to Figure 

31 along with the same plots for the non-embedded data for the sake of comparison. 
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Figure 27 The RR plot for groups of 3. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 28 The DET plot for groups of 3. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 29 The ENT plot for groups of 3. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 



66 

 

 

 

Figure 30 The Dmax plot for groups of 3. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 31 The AvD plot for groups of 3. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 

As for the groups of 5 participants, we had to set the threshold at a higher value than 

30 pixels to get meaningful results for the CRQA measures. To embed the data for the 

groups of 5 participants the mutual information plots and the false nearest neighbor plots 

for the three conditions of black, grey and none and two conditions of HeatMap and 

NoHeatMap are shown in Figure 32 to Figure 35 for x-axis data. 
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Figure 32 Mutual information plot for groups of 5 for x-axis data. top-left: Black-HeatMap, top-right: Grey-

HeatMap, bottom: None-HeatMap 

The local minimum is set to 35. 
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Figure 33 False nearest neighbor plot for groups of 5 x-axis data. top-left: Black-NoHeatMap, top-right: 

Grey-NoHeatMap, bottom: None-NoHeatMap 
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Figure 34 Mutual information plot for groups of 5 for x-axis data. top-left: Black-NoHeatMap, top-right: 

Grey-NoHeatMap, bottom: None-NoHeatMap 

The time-delay value is set to 25. 



71 

 

 

 

Figure 35 False nearest neighbor plot for groups of 5 x-axis data. top-left: Black-NoHeatMap, top-right: 

Grey-NoHeatMap, bottom: None-NoHeatMap 

The bar plots for RR, DET, ENT, Dmax and AvD are shown in Figure 36 to Figure 

40 along with the same plots for the non-embedded data for the sake of comparison. 
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Figure 36 The RR plot for groups of 5. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 37 The DET plot for groups of 5. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 38 The ENT plot for groups of 5. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 39 The Dmax plot for groups of 5. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 
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Figure 40 The AvD plot for groups of 5. top-left: x-axis data non-embedded, top-right: y-axis data non-

embedded, bottom-left: x-axis data embedded, bottom-right: y-axis embedded 

By examining Figure 18 to Figure 40, we conclude that the results for the embedded 

data are more cohesive than that of not embedded data. The plots for the various measures 

of CRQA for embedded data suggest that the measures generally have lower values in the 

case of NoHeatMap condition than HeatMap condition except for the DET measure. 
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CHAPTER 5 

 

5. CONCLUSION 

5.1.Discussion 

An individual in a group is affected, constrained and guided by the group action. 

Accordingly, it is necessary to understand how actions, processes and changes, occur 

inside a group and between groups. This is called the group dynamics or the study of how 

groups change over time. Eye tracking is a fruitful means for studying group dynamics 

because the eye movement give insights about the cognitive processes behind them. 

In this thesis we evaluated alternative measures for describing the group formation 

patterns (synchronization patters) of eye movements in a visual search task through a 

group eye tracking experiment. To do this we introduced a software tool for the group eye 

tracking paradigm (GET) called the GETapp (see section 3.1). Using this software, we 

collected data from groups of participants who performed a search task collectively. The 

target of the search task was a point which appeared in three conditions of black, grey and 

none (not visible) in random. While searching for the target point, the participants were 

either provided with a visualization modality in the form of a heat-map or were not 

provided with such a modality. 

The methods for analyzing the data were part of a nonlinear time-series analysis theory 

called the recurrence quantification analysis (RQA). We introduced a specific part of the 

RQA, namely a version of it called the cross-recurrence quantification analysis (CRQA) 

for analyzing two different time-series. We provided the basics of its theory and an 

explanation of how to expand it to be able to analyze an arbitrary number of time-series. 

For the analysis of the data, we introduced a software tool, the generalRQA package for 

the R programming language which implements methods for calculating CRQA measures 

based on the CRQA theory. We calculated five CRQA measures for 6 groups of three 

participants and two groups of 5 participants with the target point in three conditions of 

target point color (black, grey and none) and the visualization modality in two conditions 

of visualization modality (HeatMap and NoHeatMap).  

The CRQA method works on the concept of recurrence. In the current study a 

recurrence is defined as when the time-series of the participants’ eye gazes become 

focused in a neighborhood of a certain radius. The measures were the recurrence rate 

(RR) which is related to the definition of the correlation sum and designates the ratio of 

recurrences of the participants time-series, the percent determinism (DET) which is a 
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measure of the predictability of the group formation patterns of the participants’ time-

series, the Shannon entropy (ENT) which is a measure of the complexity of the group 

formation patterns of the participants’ time-series, the lengths of the longest diagonal line 

(Dmax) which is a measure of the divergence rate of the trajectories of participants’ eye 

movements and the average length of diagonal lines (AvD) which is another measure for 

the divergence rate of the trajectories of participants’ eye movements. 

The radius can either be set directly or by setting a range for the recurrence rate, so 

that the radius is calculated so that the recurrence rate falls into the predefined range. The 

choice of a method for setting the radius depends on the experiments. In the current study 

we set the radius to be 30 pixels corresponding to 4 degrees of visual angle. This is chosen 

thus, because 4 degrees of visual angle subsumes the focus area of the human eye. 

Among the aforementioned CRQA measures, in the case of groups of three 

participants, only for the HeatMap vs. NoHeatMap conditions of the visualization 

modality all the aforementioned CRQA measures exhibited significant differences both 

for the x axis and y axis data (except the AvD measure which showed no significant 

difference for any condition). In the case of groups of 5 participants, none of the measures 

were significantly different for any of the conditions, neither for the x axis or the y axis 

data. However, when the data are concatenated CRQA analysis showed similar results for 

groups of three and groups of 5 which is that the values of CRQA measures are generally 

lower in the case of NoHeatMap than HeatMap. This makes the results promising but 

difficult to choose an appropriate CRQA measure for differentiating between group 

formation patterns; however, it may be that by collecting data from more groups of 5 

participants, some of the CRQA measures show statistically significant difference for 

different conditions of visualization modality. 

5.2.Limitations and Future Work 

The goal of this thesis was to find a measure that can differentiate between different 

group formation patterns in group eye tracking search tasks. The results were promising 

for groups of three participants; however, for groups of 5 participants, none of the 

proposed CRQA measures showed significant difference for different target point color 

and visualization modality conditions. This may be resolved by collecting data from more 

groups of 5. The number of groups that we collected data from in this study may have 

been too low to reach a convergence. 

In proposing ways to find appropriate measures for group formation patterns, we have 

only considered 4 of the five classic RQA measures (Dmax and AvD considered the same 

measure) and not experimented with all the measures available in the recurrence 

quantification analysis. The other classic measure of RQA is the TREND (TND) (see 

section 1). Other than these classic measures, five extended measures and other more 

modern measures have been proposed (Webber Jr & Marwan, 2015). A modern approach 
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is to consider the recurrence matrix (section 2.4) as the adjacency matrix of a network. 

This allows to use measures from complex networks statistics like clustering coefficient, 

betweenness coefficient and average shortest path length as measures for differentiating 

patterns of group formation (R. V. Donner et al., 2011; Reik V. Donner et al., 2010; Reik 

V Donner, Zou, Donges, Marwan, & Kurths, 2010; Norbert Marwan, Donges, Zou, 

Donner, & Kurths, 2009). Another measure for characterizing group formation patterns 

can be extracted from the recurrence time. The recurrence time is the time it takes for a 

state to recur in a phase space. Measures based on recurrence time, like recurrence period 

density entropy (Little, McSharry, Roberts, Costello, & Moroz, 2007), mean recurrence 

time and number of the most probable recurrence time (Ngamga et al., 2008), can be 

considered measures of complexity, like Shannon entropy (ENT). 

In section 2.3, we introduced Takens’ embedding theorem and in section 2.4 we 

embedded our example data set before doing cross-recurrence quantification analysis; 

however, in the case of the real data we did not embed out 1-dimensional time-series into 

a higher dimensional phase space. This was due to the length of our time-series where the 

target point color was either black or grey. The lengths of these time-series ranged from 

30 to 50 time steps approximately. This is due to the fact that when the target point has 

high saliency, it takes a relatively short time to detect it. We can infer from the embedding 

theorem and its implementation in the generalRQA package that if the length of a time 

series is 𝑛 time steps, the length of the embedded time-series would be 𝑛 − (𝜏(𝑑 − 1)) 

where 𝜏 is the delay-parameter and 𝑑 is the embedding dimension. Thus, the lengths of 

the time-series for the black and grey conditions of the target point were too short to allow 

embedding. This being said, analyzing recurrences with embedded time-series may reveal 

insights into the group formation patters not available otherwise. The time-series for the 

none condition of the target point can be embedded as their lengths range from 200 to 800 

approximately. 

In the future endeavor, we are hoping that we could make the GET platform available 

online. The eye tracking devices are getting more accessible and they may soon be 

implemented on personal computers (as some of them have). This would open a range of 

possibilities for data collection on group eye tracking. Having this perspective in mind, 

we have chosen JavaScript as the programming language for the GETapp. the fact that 

JavaScript and its related technologies are primarily web-based technologies, is in 

accordance with the outlook for the GET platform which is to further develop it to use 

over the web with a large number of participants. 

Furthermore, the design of the experiment was so that all the participants started from 

the same location of the screen which was a way of simplifying he experiment; however, 

were this limitation to be lifted, it may result in additional insights into group formation 

patterns. As another simplification, we used two-way ANOVA statistical test to assess the 

CRQA analysis results; however, using a Hierarchical Linear Model may better suite the 

structure of the data. 
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Another aspect that can be considered in future work, is the use of different 

visualization modalities. In the current study we used the heat map as a visualization 

modality; however, the complex dynamics of the heat map visualization modality could 

have had a negative effect on the results of the experiment. Using a simpler visualization 

modality in the form of a Donut, may result in better outcomes. 

 

 

 

 

 

 

  



81 

 

 

 

 

 

6. REFERENCES 

 

Acarturk, C., Kalkan, S., & Arslan Aydın, Ü. (2018). A Multimodal Framework for 

Analysing Gaze in Dyadic Communication (MAGiC v1.0). 

Anderson, N. C., Bischof, W. F., Laidlaw, E. W. K., Risko, F. E., & Kingstone, A. (2013). 

Recurrence quantification analysis of eye movements. Behavior Research Methods, 

45(3), 842–856. https://doi.org/10.3758/s13428-012-0299-5 

Antonio, & Narzo, F. Di. (2013). tseriesChaos: Analysis of nonlinear time series. 

Retrieved from https://cran.r-project.org/package=tseriesChaos 

Broz, F., Lehmann, H., Nehaniv, C. L., & Dautenhahn, K. (2012). Mutual gaze, 

personality, and familiarity: Dual eye-tracking during conversation. In RO-MAN, 

2012 IEEE (pp. 858–864). 

Chelidze, D. (2017). Reliable Estimation of Minimum Embedding Dimension Through 

Statistical Analysis of Nearest Neighbors. Journal of Computational and Nonlinear 

Dynamics, 12(5). https://doi.org/10.1115/1.4036814 

Coco, M. I., & Dale, R. (2016). Cross-Recurrence Quantification Analysis of Categorical 

and Continuous Time Series: an R package. Frontiers in Psychology, 5(355), 1–31. 

https://doi.org/10.3389/fpsyg.2014.00510 

Coco, M. I., with contributions of James D. Dixon, R. D., & Nash, J. (2015). crqa: Cross-

Recurrence Quantification Analysis for Categorical and Continuous Time-Series. 

Retrieved from https://cran.r-project.org/package=crqa 

Conradt, L., & List, C. (2009, March 27). Group decisions in humans and animals: A 

survey. Philosophical Transactions of the Royal Society B: Biological Sciences. The 

Royal Society. https://doi.org/10.1098/rstb.2008.0276 

Deniz, O. (2016). Group Eye Tracking. Retrieved from 

http://etd.lib.metu.edu.tr/upload/12620362/index.pdf 

Donner, R. V., Heitzig, J., Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2011). The 

geometry of chaotic dynamics - A complex network perspective. In European 



82 

 

 

Physical Journal B (Vol. 84, pp. 653–672). https://doi.org/10.1140/epjb/e2011-

10899-1 

Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., & Kurths, J. 

(2010). Recurrence-based time series analysis by means of complex network 

methods. International Journal of Bifurcation and Chaos, 21(04), 1019–1046. 

https://doi.org/10.1142/S0218127411029021 

Donner, R. V, Zou, Y., Donges, J. F., Marwan, N., & Kurths, J. (2010). Recurrence 

networks-a novel paradigm for nonlinear time series analysis. New Journal of 

Physics, 12(3), 033025. https://doi.org/10.1088/1367-2630/12/3/033025 

Duchowski, A. T. (2017a). Eye tracking methodology: Theory and practice: Third edition. 

Eye Tracking Methodology: Theory and Practice: Third Edition. Cham: Springer 

International Publishing. https://doi.org/10.1007/978-3-319-57883-5 

Duchowski, A. T. (2017b). Visual Attention. In Eye Tracking Methodology (pp. 3–13). 

Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-57883-

5_1 

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical 

Systems. Europhysics Letters (EPL), 4(9), 973–977. https://doi.org/10.1209/0295-

5075/4/9/004 

Faure, P., & Korn, H. (1998). A new method to estimate the Kolmogorov entropy from 

recurrence plots: its. Physica D: Nonlinear Phenomena. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8245&rep=rep1&type

=pdf 

Forsyth, D. R. (2014). Group Dynamics. Annu. Rev. Psychol. (Vol. 15). 

https://doi.org/10.1146/annurev.ps.15.020164.002225 

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors 

from mutual information. Physical Review A, 33(2), 1134–1140. 

https://doi.org/10.1103/PhysRevA.33.1134 

Furstenberg, H. (1981). Poincaré recurrence and number theory. Bulletin of the American 

Mathematical Society. https://doi.org/10.1090/S0273-0979-1981-14932-6 

Fusaroli, R., & Tylén, K. (2016). Investigating Conversational Dynamics: Interactive 

Alignment, Interpersonal Synergy, and Collective Task Performance. Cognitive 

Science, 40(1), 145–171. https://doi.org/10.1111/cogs.12251 



83 

 

 

Gilmore, R. (1998). Topological analysis of chaotic dynamical systems. Reviews of 

Modern Physics, 70(4), 1455–1529. https://doi.org/10.1103/RevModPhys.70.1455 

Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors. Physical 

Review Letters, 50(5), 346–349. https://doi.org/10.1103/PhysRevLett.50.346 

Hirata, Y., Horai, S., & Aihara, K. (2008). Reproduction of distance matrices and original 

time series from recurrence plots and their applications. European Physical Journal: 

Special Topics, 164(1), 13–22. https://doi.org/10.1140/epjst/e2008-00830-8 

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Weijer, J. Van 

De. (2011). Eye Tracking: A comprehensive guide to methods and measures. 

Retrieved from 

https://www.google.com/books?hl=en&lr=&id=5rIDPV1EoLUC&oi=fnd&pg=PR1

2&dq=Eye+Tracking:+A+Comprehensive+Guide+to+Methods+and+Measures&ot

s=_w1zQUsNsP&sig=x347fMl0bvtN-m-1IeszlmSojuU 

Jermann, P., Nüssli, M.-A., & Li, W. (2010). Using dual eye-tracking to unveil 

coordination and expertise in collaborative Tetris. In Proceedings of the 24th BCS 

Interaction Specialist Group Conference (pp. 36–44). 

Kantz, H., & Schreiber, T. (2004). Nonlinear Time Series Analysis. Nonlinear Time Series 

Analysis (Vol. 47). https://doi.org/10.1198/tech.2005.s306 

Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embedding 

dimension for phase-space reconstruction using a geometrical construction. Physical 

Review A, 45(6), 3403–3411. https://doi.org/10.1103/PhysRevA.45.3403 

Koebbe, M., & Mayer-Kress, G. (1992). Use of Recurrence Plots in the Analysis of Time-

Series Data. In Nonlinear modeling and forecasting (Vol. XXI, pp. 361–378). 

Retrieved from 

https://pdfs.semanticscholar.org/37ae/58bae759a7d719fdcf1cb44e7d5b6752d22d.p

df 

Kuhn, G., Tatler, B. W., Findlay, J. M., & Cole, G. G. (2008). Misdirection in magic: 

Implications for the relationship between eye gaze and attention. Visual Cognition, 

16(2–3), 391–405. https://doi.org/10.1080/13506280701479750 

Lathrop, D. P., & Kostelich, E. J. (1989). Characterization of an experimental strange 

attractor by periodic orbits. Physical Review A, 40(7), 4028–4031. 

https://doi.org/10.1103/PhysRevA.40.4028 

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A. E., & Moroz, I. M. (2007). 



84 

 

 

Exploiting nonlinear recurrence and fractal scaling properties for voice disorder 

detection. BioMedical Engineering Online, 6(1), 23. https://doi.org/10.1186/1475-

925X-6-23 

Liversedge, S. P., Gilchrist, I. D., & Everling, S. (2011). The Oxford handbook of eye 

movements. Oxford library of psychology. 

https://doi.org/10.1093/oxfordhb/9780199539789.001.0001 

Ludvigsen, S., Law, N., Rose, C. P., & Stahl, G. (2017, June 10). Frameworks for mass 

collaboration, adaptable scripts, complex systems theory, and collaborative writing. 

International Journal of Computer-Supported Collaborative Learning, 12(2), 127–

131. https://doi.org/10.1007/s11412-017-9257-7 

Marwan, N. (2008, October 26). A historical review of recurrence plots. European 

Physical Journal: Special Topics. Springer-Verlag. 

https://doi.org/10.1140/epjst/e2008-00829-1 

Marwan, N. (2010). How to avoid potential pitfalls in recurrence plot based data analysis. 

World Scientific. https://doi.org/10.1142/S0218127411029008 

Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007a). Recurrence plots for 

the analysis of complex systems. Physics Reports. 

https://doi.org/10.1016/j.physrep.2006.11.001 

Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007b, January 1). Recurrence 

plots for the analysis of complex systems. Physics Reports. North-Holland. 

https://doi.org/10.1016/j.physrep.2006.11.001 

Marwan, N., Donges, J. F., Zou, Y., Donner, R. V., & Kurths, J. (2009). Complex network 

approach for recurrence analysis of time series. Physics Letters A, 373(46), 4246–

4254. https://doi.org/10.1016/j.physleta.2009.09.042 

Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross 

recurrence plots. Physics Letters, Section A: General, Atomic and Solid State 

Physics, 302(5–6), 299–307. https://doi.org/10.1016/S0375-9601(02)01170-2 

Marwan, N., Thiel, M., & Nowaczyk, N. R. (2002). Cross recurrence plot based 

synchronization of time series. ArXiv Preprint Physics/0201062. 

Matassini, L., Kantz, H., Hołyst, J., & Hegger, R. (2002). Optimizing of recurrence plots 

for noise reduction. Physical Review E - Statistical Physics, Plasmas, Fluids, and 

Related Interdisciplinary Topics, 65(2). 

https://doi.org/10.1103/PhysRevE.65.021102 



85 

 

 

Mindlin, G. B., & Gilmore, R. (1992). Topological analysis and synthesis of chaotic time 

series. Physica D, 58, 229–242. Retrieved from 

https://www.sciencedirect.com/science/article/pii/016727899290111Y 

Mitchell, M. (2009). Complexity: A Guided Tour. Proceedings of the Seventh 

International Conference on Language Resources and Evaluation (LREC’10). 

https://doi.org/10.1063/1.3326990 

Ngamga, E. J., Buscarino, A., Frasca, M., Fortuna, L., Prasad, A., & Kurths, J. (2008). 

Recurrence analysis of strange nonchaotic dynamics in driven excitable systems. 

Chaos, 18(1), 036222. https://doi.org/10.1063/1.2897312 

Niazi, M. A. (2016). Introduction to the modeling and analysis of complex systems: a 

review. Complex Adaptive Systems Modeling, 4(1), 3. 

https://doi.org/10.1186/s40294-016-0015-x 

Nüssli, M.-A. (2011). Dual eye-tracking methods for the study of remote collaborative 

problem solving. 

Nyström, M., & Holmqvist, K. (2010). An adaptive algorithm for fixation, saccade, and 

glissade detection in eyetracking data. Behavior Research Methods, 42(1), 188–204. 

https://doi.org/10.3758/BRM.42.1.188 

Orsucci, F., Giuliani, A., Webber, C., Zbilut, J., Fonagy, P., & Mazza, M. (2006). 

Combinatorics and synchronization in natural semiotics. Physica A: Statistical 

Mechanics and Its Applications, 361(2), 665–676. 

https://doi.org/10.1016/j.physa.2005.06.044 

Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a 

time series. Physical Review Letters, 45(9), 712–716. 

https://doi.org/10.1103/PhysRevLett.45.712 

Poincaré, H. (1890). Sur le probléme des trois corps et les équations de la dynamique. 

Acta Mathematica, 13(1), 5–7. https://doi.org/10.1007/BF02392506 

Rayner, K. (1997). Eye movements in reading and information processing: 20 years of 

research. Psychological Bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-

2909.124.3.372 

Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual 

search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506. 

https://doi.org/10.1080/17470210902816461 



86 

 

 

Robinson, G., & Thiel, M. (2009). Recurrences determine the dynamics. Chaos, 19(2), 

023104. https://doi.org/10.1063/1.3117151 

Sauer, T., Yorke, J. a., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 

65(3), 579–616. https://doi.org/10.1007/BF01053745 

Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. 

Retrieved from http://lib.hpu.edu.vn/handle/123456789/21480 

Schinkel, S., Dimigen, O., & Marwan, N. (2008). Selection of recurrence threshold for 

signal detection. European Physical Journal: Special Topics, 164(1), 45–53. 

https://doi.org/10.1140/epjst/e2008-00833-5 

Stahl, G. (2006). GROUP COGNITION Computer Support for Building Collaborative 

Knowledge. 

Takens, F. (1981). Detecting strange attractors in turbulence (pp. 366–381). 

https://doi.org/10.1007/BFb0091924 

Thiel, M., Romano, M. C., & Kurths, J. (2003). Analytical description of Recurrence Plots 

of white noise and chaotic processes. Izvestija Vyssich Ucebnych Zavedenij 

Prikladnaja Nelinejnaja Dinamika Applied Nonlinear Dynamics, 11(3), 14. 

Retrieved from https://arxiv.org/abs/nlin/0301027 

Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., & Arecchi, F. T. (2002). 

Influence of observational noise on the recurrence quantification analysis. Physica 

D: Nonlinear Phenomena, 171(3), 138–152. https://doi.org/10.1016/S0167-

2789(02)00586-9 

Vaidyanathan, P., Pelz, J., Alm, C., Shi, P., & Haake, A. (2014). Recurrence quantification 

analysis reveals eye-movement behavior differences between experts and novices. In 

Proceedings of the Symposium on Eye Tracking Research and Applications - ETRA 

’14 (pp. 303–306). https://doi.org/10.1145/2578153.2578207 

Vickers, J. N. (2009). Advances in coupling perception and action: the quiet eye as a 

bidirectional link between gaze, attention, and action. Progress in Brain Research, 

174, 279–288. https://doi.org/10.1016/S0079-6123(09)01322-3 

Webber, C. L., Ioana, C., & Marwan, N. (Eds.). (2016). Recurrence Plots and Their 

Quantifications: Expanding Horizons (Vol. 180). Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-319-29922-8 

Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and 



87 

 

 

states using recurrence plot strategies. Journal of Applied Physiology, 76(2), 965–

973. https://doi.org/10.1152/jappl.1994.76.2.965 

Webber, C. L., & Zbilut, J. P. (2005). Recurrence Quantification Analysis of Nonlinear 

Dynamical Systems. In Tutorials in contemporary nonlinear methods for the 

behavioral sciences (pp. 26–94). Retrieved from 

http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.pdf 

Webber Jr, C. L., & Marwan, N. (2015). Recurrence quantification analysis. Theory and 

Best Practices. 

Whitney, H. (1936). Differentiable Manifolds. The Annals of Mathematics, 37(3), 645. 

https://doi.org/10.2307/1968482 

Wikipedia contributors. (2018). Poincare recurrence theorem --- {Wikipedia}{,} The Free 

Encyclopedia. 

Zbilut, J. P., Giuliani, A., & Webber, C. L. (1998). Detecting deterministic signals in 

exceptionally noisy environments using cross-recurrence quantification. Physics 

Letters A, 246(1–2), 122–128. https://doi.org/10.1016/S0375-9601(98)00457-5 

Zbilut, J. P., & Marwan, N. (2008). The Wiener-Khinchin theorem and recurrence 

quantification. Physics Letters, Section A: General, Atomic and Solid State Physics, 

372(44), 6622–6626. https://doi.org/10.1016/j.physleta.2008.09.027 

Zbilut, J. P., & Webber, C. L. (1992). Embeddings and delays as derived from 

quantification of recurrence plots. Physics Letters A, 171(3–4), 199–203. 

https://doi.org/10.1016/0375-9601(92)90426-M 

Zbilut, J. P., & Webber, C. L. (2007). Recurrence Quantification Analysis: Introduction 

and Historical Context. International Journal of Bifurcation and Chaos, 17(10), 

3477–3481. https://doi.org/10.1142/S0218127407019238 

Zbilut, J. P., Zaldivar-Comenges, J. M., & Strozzi, F. (2002). Recurrence quantification 

based Liapunov exponents for monitoring divergence in experimental data. Physics 

Letters, Section A: General, Atomic and Solid State Physics, 297(3–4), 173–181. 

https://doi.org/10.1016/S0375-9601(02)00436-X 

 

 

 

 


