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ABSTRACT 

 

 

NUMERICAL CALCULATION OF ROUGH TURBULENT BOUNDARY 

LAYER FOR INCOMPRESSIBLE FLUIDS 

 

 

 

Atay, Görkem 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Özgür Bayer 

Co-supervisor: Prof. Dr. Cahit Çıray 

 

September 2018, 81 pages 

 

 

In this thesis, a numerical code for calculating turbulent boundary layer parameters is 

developed. Two-dimensional turbulent flow over a rough flat plate with zero pressure 

gradient is numerically solved by using the integral method. Fluid mechanics 

formulations, such as momentum integral equation are coupled with the results of 

Nikuradse’s experiment. Throughout the calculation, turbulent boundary layer 

parameters, such as boundary layer thickness, displacement thickness, momentum 

thickness, local skin-friction coefficient etc. are obtained.  

 

Development of turbulent boundary layer (TBL) is taken into consideration in the 

present study. This notion is quite important in terms of accuracy of the calculation of 

TBL parameters. Because, flow conditions may change from fully-rough flow to 

hydraulically smooth flow, and this may reduce the drag force severely. For a precise 

TBL solution, the calculation method considers the relative size of the TBL sublayers 

thicknesses and the surface roughness height with respect to each other at every 
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computation step along the developing TBL. Furthermore, one of the parameters of 

TBL is the wake parameter and has a vital importance in the calculations. It is at the 

same time a function of TBL thickness, local skin-friction coefficient and surface 

roughness. By using a method developed during this study, wake parameter is 

computed and embedded into the relevant equations at every solution-point on the 

calculation domain.  

 

The developed code is tested against experimental data, a numerical study in the 

literature and Schlichting skin-friction formula. Generally, the full flow conditions are 

not detailed in the experimental cases found in the literature. Hence, the comparisons 

are reliable much more on the cases for which full details were available. The 

developed code shows very good agreement within its range. For the fully-rough flow 

regime, the present study’s relative mean discretization error in 𝐶𝑓 is 0.6% whereas it 

is 2.1% for the numerical study in the literature. For the transition flow regime, the 

relative mean discretization error in 𝐶𝑓 is found to be 1.9% in the present work and it 

is 8.0% for the numerical study in the literature. 

 

Keywords: Turbulent Boundary Layer, Surface Roughness, Numerical, Skin-Friction 

Coefficient.
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ÖZ 

 

 

TÜRBÜLANSLI SINIR TABAKANIN SIKIŞTIRILAMAZ AKIŞKANLAR 

İÇİN SAYISAL OLARAK HESAPLANMASI 

 

 

 

Atay, Görkem 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Danışmanı: Dr. Öğ. Üy. Özgür Bayer 

Ortak Tez Danışmanı: Prof. Dr. Cahit Çıray 

 

Eylül 2018, 81 sayfa 

 

 

Bu tezde, türbülanslı sınır tabakaya ait çoklukları hesaplayan sayısal bir kod 

geliştirilmiştir. İki boyutlu türbülanslı akım, üzerinde basınç değişimi olmayan pürüzlü 

düz plakalar için, integral metotu kullanılarak çözülmüştür. Momentum integral 

denklemi gibi akışkanlar mekaniği formülleri, Nikuradse’nin deneysel sonuçları ile 

birleştirilmiştir. Hesaplama boyunca, türbülanslı sınır tabakaya ait; sınır tabaka 

kalınlığı, yer değiştirme kalınlığı, momentum kalınlığı, yerel yüzey-sürtünme katsayısı 

ve benzeri çokluklar elde edilmiştir.  

 

Türbülanslı sınır tabakasının (TST) gelişimi gerçekleştirilen çalışmada dikkate 

alınmıştır. TST çokluklarının doğrulukla hesaplanması açısından bu değerlendirme 

yaklaşımı oldukça önemlidir. Çünkü, akım koşulları tam pürüzlü akımdan hidrolikli 

pürüzsüz akıma değişebilir, ve bu durum sürükleme kuvvetinin oldukça azalmasına 

neden olabilir. Hassas bir TST çözümü için, hesaplama yöntemi TST’ye ait alt sınır 

tabaka kalınlıklarının ve yüzey pürüzlülüğü yüksekliğinin birbirlerine göre olan 

göreceli büyüklüklerini her hesaplama adımında göz önünde bulundurmaktadır. Buna 
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ilaveten, TST çokluklarından bir tanesi olan profil parametresi, TST’ye ait 

parametrelerin hesaplanmasında oldukça önem taşımaktadır. Profil parametresi aynı 

zamanda TST kalınlığının, yüzey-sürtünme katsayısının ve yüzey pürüzlülüğünün bir 

fonksiyonudur. Profil parametresi, çalışma süresince geliştirilen bir yöntem ile 

hesaplama ağının her çözüm noktasında elde edilmiş ve ilgili denklemlerin içerisine 

yerleştirilmiştir. 

 

Geliştirilen kod; deneysel veriler, literatürdeki sayısal bir çalışma ve Schlichting’in 

yüzey-sürtünmesi formülasyonu ile test edilmiştir. Literatürden elde edilmiş deneysel 

çalışmalarda, akım koşulları genelde detaylı olarak verilmemiştir. Bundan dolayı, 

akım koşullarının detaylı olarak sunulduğu deneysel çalışmalar ile gerçekleştirilen 

karşılaştırmalar daha güvenilirdir. Geliştirilen kod, çalışma limitleri içerisinde oldukça 

tatmin edici sonuçlar vermiştir. Tam-pürüzlü akım bölgesinde yüzey pürüzlülük 

katsayısındaki ortalama bağıl hata gerçekleştirilen çalışma için %0.6 iken, bu değer 

literatürdeki sayısal çalışma için %2.1’dir. Geçiş akım bölgesi için ise, yüzey 

pürüzlülük katsayısındaki ortalama bağıl hata gerçekleştirilen çalışma için %1.9 olarak 

hesaplanırken, literatürdeki sayısal çalışma için %8.0 olarak bulunmuştur. 

 

Anahtar Kelimeler: Türbülanslı Sınır Tabaka, Yüzey Pürüzlülüğü, Sayısal, Yüzey-

Sürtünme Katsayısı. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

1.1 Highlights of Drag Force and Boundary Layer Theory 

 

All kind of fluid flows over solid bodies, such as air flows around automobiles, 

motorcycles, airplanes, zeppelins, missiles, submarines, are designed to produce 

minimum drag force. This is one of the most important problems of a modern design 

process. Producing solutions to such problems result in industrial gains. Obtaining 

high velocities, reduction in fuel consumption, aircraft with stealthy characteristics can 

be given as examples [1]. Figuring out the physical phenomenon behind external flows 

improves the design capability. Thus, it is possible to design any geometry, which is 

exposed to flow more efficiently in terms of both aerodynamics and cost.  

 

It is well known that any object moving in a fluid encounters a resistance. This 

resistance results in drag force which is composed of pressure and frictional 

components on a solid body. A part of the drag force of a body due to frictional stresses 

is referred to skin-friction drag [2]. The drag is not a desired effect and it should be 

maintained at a minimum level. Nevertheless, in some cases, drag is helpful like in the 

case of parachute effect.  

 

Hence, understanding the drag phenomenon before improving the aerodynamic design 

of an object is essential and it can be achieved by conceiving the boundary layer (BL) 

theory. 
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To solve BL and obtain the interested values belong it, Navier-Stokes equations 

(conservation of linear momentum equations) took place in the scientific world both 

theoretically and experimentally through the end of the nineteenth century. For some 

flows, these equations can be solved and their validation with experiments was done. 

But, velocities at the solid boundary is a controversial topic. For low-speed flows, the 

velocities at the solid boundary are accepted to be zero, but for high-speed flows, there 

are some who claim that velocity at the solid boundary has a finite value [3]. L. Prandtl 

is the first academician who enlightened the physical background of a flow in the 

vicinity of the solid surface. According to the Prandtl’s study; there is a layer that is 

thin and close to the solid boundary in which the viscosity is dominant and the flow 

out of this layer can be considered as irrotational [3]. In the outer layer, there exist no 

large velocity gradients and the effectiveness of viscosity is insignificant [4].  

 

The exact solution of L.Prandtl equations for a laminar boundary layer approach was 

first done by his student, H. Blasius in 1908. Because the solution is not handy to use, 

Prandtl boundary layer theory was drawn attention by neither mathematicians nor 

engineers. In 1921, Theodore von Kármán introduced the momentum integral 

equation. In the same year, K. Pohlhausen gave a practical way to solve this equation 

and finally, the boundary layer and its theory attracted the expected interest [3].  

 

It is known that the BL theory can be applied not only to laminar flows (LF) but also 

to turbulent flows (TF) [3].  

 

There are significant distinctions between the characteristics of laminar and turbulent 

boundary layers (TBL). One of the differences between them is; an ordinary TBL 

velocity profile on a flat plate at zero pressure gradient is more uniform throughout its 

thickness except for adjacent to the solid boundary. Hence, the velocity gradient at the 

solid surface is much higher in the TF than in the LF. Since the frictional stress (or 

shear stress) at the wall is proportional to this velocity gradient, frictional stress or drag 

is generally much higher in TF than that of laminar one [2].  
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The drag force is affected by the surface condition as well, which can be smooth or 

rough. A smooth surface in contact with the fluid is generally considered as the surface 

of glass or polished timber material. In reality, even these surfaces have very small 

protrusions. 

 

For the rough surface, the frictional drag force is larger compared to that of the smooth 

one. This is because small roughness elements behave like bluff bodies and eddies are 

pushed out which disrupt the laminar boundary layer and provoke transition to TF 

resulting in a boost in drag force. If the roughness elements are larger, its effect on 

drag force is higher as shown in Figure 1.1 [2]. 

 

 

 
 

Figure 1.1 Variation of drag coefficient with respect to Reynolds number for 

different roughness height on a flat plate at zero incidence [2] 

 

 

1.2 Highlights of the Methods to Solve Boundary Layer Equations 

 

Even a slight decrease in the drag-count is a desired objective in the fluid mechanics 

field and industry. One way to accomplish this is to reduce the skin-friction drag on 

the objects (such as aircraft, automobiles etc.). There are a number of methods which 
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decrease the skin-friction drag, such as extension of LF, relaminarization of TF, 

modification to the turbulence characteristics of the flow adjacent to the wall [5].  

 

During a numerical solution, the skin-friction drag can be obtained by means of a more 

precise BL calculation. Hence, it is important to perform an as much as possible correct 

BL computation at a design phase. Today there are mainly two types of methods which 

help to calculate the BL numerically. 

 

Since the capability of the computers in solving a complex system of partial 

differential equations (PDEs) raised in the 1960s, the attention in the solution of TBL 

equations in their partial differential form has increased. Consequently, differential 

methods have been developed and used since that time [6]. 

 

The differential method is composed of two different approaches. One of them is the 

mean-flow approach and the other one is the transport-equation approach [6]. For the 

transport-equation treatment; mean continuity equation, mean momentum and the 

converted form of turbulent kinetic energy (TKE) equations create a hyperbolic system 

together, and by solving this system of equations, TBL parameters can be obtained. In 

the mean-flow approach of the differential method, parameters of TBL can be acquired 

by using only mean continuity and mean momentum equations. For the solution 

procedure, in general, the pressure change in the flow direction should be known and 

an appropriate turbulence model should be used for the turbulence stress term in the 

TBL equations. Both solution technics has superiority with respect to each other. 

 

On the other hand, before the high-speed computers became prevalent, the integral 

methods were used for the BL calculation. Therefore, mathematical difficulties to 

solve the nonlinear BL equations in their partial differential form were avoided [6]. 

According to Schlichting [4], a full calculation of a BL for a given object with the aid 

of differential equations is so complex and time-consuming that it is not logical to 

carry out in practical life. Hence, it is desired to find an approximate method for the 

solution of BL. Such methods can be taken into consideration if one does not try to 

provide differential equations for every fluid particle and deals only with the mean 
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values of a BL parameters. This kind of mean value can be acquired from the 

momentum integral equation that is obtained from the equation of motion by 

integrating throughout the boundary layer thickness. The momentum integral approach 

is one of the approximate methods to predict the boundary layer's parameters which 

are interested in engineering purposes. 

 

Some studies related to the calculation of TBL or merely the skin-friction coefficient, 

𝐶𝑓, are presented in Section 1.4. 

 

1.3 Motivation of the Present Study 

 

In the present study, it is focused to obtain a numerical code which calculates the TBL 

parameters as accurate as possible for incompressible, two-dimensional, steady-state 

turbulent flow over a rough surface with zero pressure gradient. Throughout the 

numerical calculation, integral method is used. 

 

One of the most important characteristics of the present study is that the solution 

technique considers the TBL developing. According to such consideration, the relative 

size of sublayers thicknesses in a TBL and surface roughness height with respect to 

each other is a crucial matter to obtain the correct values of TBL parameters. As a 

result of this notion, TBL parameters can be obtained more precisely.  

 

Another important characteristic of the present work is that the fluid mechanics 

formulations, such as momentum integral equation, is coupled with the results of 

Nikuradse’s experiment. These formulations form a different system of equations 

compared to the studies in the literature for the solution of TBL parameters. 

 

In the literature review of TBL calculation studies where the integral method is used, 

most of the time momentum integral formulation forms a closed system of equations 

with the additional relations to equalize the number of unknowns and equations to 

obtain the TBL parameters. According to Cebeci [6], there is not universal relationship 

between them, and hence assumptions should be made. As a result, the accuracy of the 
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calculation of TBL parameters highly relies on the assumptions. Examples from the 

literature which are about the numerical calculation of TBL by using the integral 

method is presented in Section 1.4.  

 

The detailed explanation related to the consideration which takes into account the TBL 

developing are given in the following paragraphs. 

 

In a TBL there are three sublayers named; viscous sublayer, buffer layer and fully 

turbulent layer as shown in Figure 1.2. In a viscous sublayer, the viscosity is dominant, 

and the effect of the turbulence can be neglected compared to that of viscous effects. 

In a buffer layer; whereas viscous effects are dominant at the lower limit of this layer, 

at the upper limit of it, turbulence effects are prevailing. In a fully turbulent layer, 

almost only the turbulence effects are determinant on the flow character.  

 

There are principally three types of flow regime on a rough solid surface. These are; 

hydraulically smooth, transition and fully-rough flow regimes. 

 

The flow type is determined with respect to the region where the roughness elements 

are confined in the TBL sublayers as shown in Figure 1.2. In the hydraulically smooth 

flow, the viscous sublayer is assumed to be thick enough such that roughness remains 

in this layer. Hence the fluid particles move through the rough elements smoothly and 

the flow is not affected by roughness like domain-3 in Figure 1.2. Thus, in the viscous 

sublayer, flow parameters are the only a function of Reynolds number (Re). In the 

transition regime, the roughness remains in the buffer layer and affects the flow like 

domain-2 in Figure 1.2. Thus, the flow parameters are a function of both the Re and 

the roughness. Finally, if the roughness remains in the fully turbulent layer, the flow 

parameters are the only a function of roughness and not Re like domain-1 in Figure 

1.2. This regime is called “hydraulically rough flow” [7].  
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Figure 1.2 Variation of relative thicknesses of TBL sublayers and the roughness 

height (schematic) 

 

 

According to the explanations above, drag may be affected by the surface roughness 

and the more realistic drag force on a solid body in a fluid flow can be obtained when 

the more precise skin-friction coefficient is used in both analytical or numerical 

calculations. 

 

The mathematical model used in the present study to calculate TBL parameters, which 

is explained detailed in CHAPTER 2, considers relative size of sublayers thicknesses 

in a TBL and surface roughness height with respect to each other at every calculation 

step. This is because thicknesses of TBL sublayers are increasing in flow direction. As 

a result, roughness elements which are in fully turbulent layer at the beginning of a flat 

plate may lie within viscous sublayer after some distance away. Such a situation causes 

a dramatic decrease in 𝐶𝑓 value. Hence, a control mechanism that checks where 

roughness elements are in TBL is used for every solution-point in the present study. 

 

In the computational domain, any points in fully-developed turbulent regime of flow 

can be selected as a starting point for the TBL calculation.  
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1.4 Literature Review 

 

Former TBL calculation over rough flat plates started with analytical and experimental 

studies. 

 

In 1911, Blasius made a very significant study on pipe flow [4]. He obtained an 

empirical skin-friction factor named “Blasius formula”, Eqn. (1.1), for the pipe flow 

by using numerous experimental results and arranging them in the dimensionless form 

resembling Reynolds’ similarity law. 

 

 
0.25

0.3164

Re
 =   (1.1) 

where; 

𝜆  : skin-friction factor. 

 

On the other hand, Nikuradse conducted an experimental investigation into the law of 

friction and velocity distribution in smooth pipes [4]. As a result, he introduced an 

empirical velocity distribution equation named power-law: 

 

 

1/

1

( )
r

yUU y
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U



 

 
=  

 
  (1.2) 

where; 

𝑈  : velocity distribution in streamwise direction, 

𝑈𝜏  : friction velocity, which is used in nondimensionalization operation, 

𝑦 : cartesian, spatial coordinate for wall normal direction, 

𝜈 : fluid kinematic viscosity, 

𝑆1 : semiempirical constant depending on Re, 

𝑟 : semiempirical constant depending on Re. 

 

The power-law equation and the Blasius formula are related to each other. Such a 

relationship is first discovered by Prandtl and allowed him to draw a conclusion from 

pipe experiments which are valid for the flat plate [8].  
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The relationship between pipe flows and boundary layer flows is necessary. Because 

in many cases, such as flow over aircraft or ships, the Re is so high that it cannot be 

measured in a laboratory. Furthermore, even at moderate Re number, it is still hard to 

measure boundary layer characteristics on a flat plate compared to measuring 

boundary layer characteristics inside a pipe. Hence, by means of pipe experiments 

results, skin-friction coefficient on a flat plate can be obtained for high Re by using 

the method of Prandtl. The calculation is available for both smooth and rough surfaces 

[4]. 

 

In the light of the information, Prandtl and Schlichting performed the earliest 

calculation of two-dimensional TBL on a smooth surface for moderate Re. The 

calculation procedure depends on the analogy between the pipe flow and the boundary 

layer flow by assuming the velocity profile on a flat plate is identical with that of the 

inside of a circular pipe. The assumption well meets with the experimental studies 

conducted by Burgers and Hansen [9] at least for moderate Re.  

 

Prandtl’s and Schlichting’s work distinguished by the result that the velocity profile in 

a pipe flow can be used for the flat plate by applying a power formula, Eqn. (1.2) [4]. 

After having obtained the integral parameters belong to TBL by means of Eqn. (1.2) 

and the formulation of momentum thickness and displacement thickness, the skin-

friction coefficient is derived by using momentum integral equation. Eventually, 

substituting the proper values of 𝐶1 and 𝑛; the local 𝐶𝑓 formulation turns out to be: 

 

 

1

5 750.0576Re 5 10 Re 10fC
−

=      (1.3) 

 

For the high Re fluid flow, Prandtl used power-law velocity distribution instead of 

using logarithmic-law. This is because logarithmic-law can be considered as an 

asymptotic law which is applicable to very large Re by means of extrapolation. Hence 

performing experiments for high Re is not required, in contrast with power-law. As 

mentioned, the calculation of skin-friction for high Re flow depends on pipe 

experiments results. With the help of a mathematical method of Prandtl, skin-friction 



 

 

10 

coefficient on a flat plate was achieved as a function of Re and presented in a table 

[10]. 

 

The results were evaluated as exceedingly inconvenient. Hence, Schlichting put the 

Prandtl’s relation between 𝐶𝑓 and Re into an empirical equation for smooth surfaces 

and named it “Prandtl-Schlichting skin-friction formula for a smooth flat plate at zero 

incidences” [10]. 

 

 
2.58 5 90.455(logRe) 5 10 Re 10fC −=      (1.4) 

 

Its version for a rough surface is: 

 

 ( )
2.5

2 62.87 1.58log 70 and 10 / 10f s s

s

x
C k x k

k

−

+ 
= +    
 

  (1.5) 

where; 

𝑥 : cartesian, spatial coordinate for streamwise direction, 

𝑘𝑠 : equivalent sand roughness, defined as defined as diameter of sand grains 

which create same drag effect with surface roughness interested. 

 

Although logarithmic-law based 𝐶𝑓 formulations, Eqn. (1.4) and Eqn. (1.5), are widely 

used, they are still overestimating the 𝐶𝑓 value compared to experimental results.  

 

According to the measurement of the boundary layer on a plate, as shown in Figure 

1.3, Schultz-Grunow states that the velocity profile in the outer portion (shown as outer 

layer in Figure 1.4) of the boundary layer of a plate deviates from the logarithmic 

velocity distribution inside a circular pipe. 
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Figure 1.3 Velocity distribution in the boundary layer on a flat plate at zero 

incidence after Schultz-Grunow [4]; curve (1) and (2) stands for the circular pipe and 

plate respectively 

 

 

 
 

Figure 1.4 Velocity distribution in TBL for a flat plate 
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Therefore, F. Schultz-Grunow suggested new formulations for the mean and the local 

skin-friction coefficients by using the same system of equation that Schlichting used. 

However, F. Schultz-Grunow took also velocity measurement results in the boundary 

layer on a flat plate at zero incidence into consideration, as shown in Figure 1.3. The 

suggested local skin-friction coefficient for smooth surfaces is presented in the Eqn. 

(1.6). 

 

 ( )
2.584

0.370 logRefC
−

=   (1.6) 

 

Another important subject concerning the physical problem in the literature is the 

numerical calculation of TBL in which either integral or differential method is 

used. Such studies are conducted for the flow over a smooth and rough surface with 

and without a pressure gradient. Furthermore, whereas some of them consider the main 

three regimes (named hydraulically smooth, transition and fully-rough flow), others 

take into account only the fully-rough flow regime.  

 

In the Bettermann’s study [11], he used the integral method to calculate the skin-

friction coefficient of turbulent flow over a rough and smooth surface with zero 

pressure gradient. Furthermore, he performed his work for the fully-rough flow 

regime. 

 

For the smooth surface, he used the formulation: 
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  (1.7) 

where; 

𝑥 : cartesian, spatial coordinate for streamwise direction, 

𝑈̅𝐸 : free-stream velocity. 
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If the values of 𝑈/𝑈̅𝐸  is drawn as a function of 𝑦𝑈̅𝐸/𝜈, Eqn. (1.7) can be represented 

by a family of lines. Then, the local skin-friction coefficient is calculated from the 

slope of the lines. 

 

And for the rough surface, he used the equation: 

 

 15.6 log 5.6log 5.2
2 2 2

Ef f f

E

C C C UU yU

UU 

 
= + + − 

 
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  (1.8) 

where; 

∆𝑈1 : roughness contribution to logarithmic-law, empirical. 

 

After having determined the values of ∆𝑈1/𝑈𝜏 experimentally, the same procedure 

used in the case of the smooth surface can be applied for the Eqn. (1.8). To check the 

value of the obtained skin-friction coefficient Eqn. (1.9) is used. 

 

 
2

2

fCd

dx


=   (1.9) 

where; 

𝛿2 : momentum thickness. 

 

Another study for the calculation of TBL parameters over a smooth surface with a 

pressure gradient depends on Head’s technique which presents the integral method.  
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2
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E

Cd dU
H

dx dxU

 
+ + =   (1.10) 

where; 

𝐻  : shape parameter, 𝛿1/𝛿2. 

 

In the Eqn. (1.10), there are three unknowns; 𝛿2, 𝐻 and 𝐶𝑓 for a given velocity 

distribution. To solve the Eqn. (1.10), two more relations are necessary. Since there is 
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not a universal relationship among them, assumptions should be made. As a result, the 

precision of the solution of Eqn. (1.10) highly depends on the assumptions [6]. 

 

According to Head’s method, the first relationship is: 

 

 ( )2 1E E

d
U H U F

dx
 =   (1.11) 

where; 
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and the last relationship is: 

 

 
2

0.678 0.2680.246 10 ReH

fC 

−=    (1.15) 

 

For a given free-stream velocity (𝑈̅𝐸) and the values of 𝛿2, 𝐻, 𝐶𝑓, TBL parameters can 

be calculated numerically by using the three main equations, Eqn (1.10), Eqn (1.11), 

Eqn. (1.15) [6]. 

 

Dvorak [12] performed the calculation of TBL on a rough surface in the pressure 

gradient. In the calculation procedure, momentum integral method was used and 

attempted to extend the applicability of Bettermann’s [13] skin-friction law to a wider 

range of roughness shapes, to nonzero pressure gradient and to the transition regime.  
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In the calculation procedure, Eqn. (1.10), Eqn. (1.11) and Eqn. (1.16) are integrated 

simultaneously. For the values of 𝐹, 𝐺, ∆𝑈1 and  ∆𝑈2, the original paper should be 

referred. 
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where; 

∆𝑈2 : pressure gradient contribution to velocity-defect law, empirical. 

 

The comparison with experiments is good in general. However, roughness shapes are 

limited to two-dimensional types of roughness and distributed sand. 

 

Arndt and Ippen [14] also considered turbulent flow over a rough flat plate with a 

pressure gradient in which the momentum integral method is used. In their study, the 

pressure gradient term took part in their skin-friction law which is presented as: 
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where; 

𝐹1 : roughness factor, 

𝐹2 : pressure gradient factor. 

 

The skin-friction coefficients which are obtained by using this technique are compared 

with the ones which are achieved by the standard von Kármán momentum integral 

technique. The agreement is good. Unfortunately, the functions 𝐹1 and 𝐹2 must be 

experimentally determined in addition to displacement thickness Re (𝑅𝑒𝛿1
), that is 

𝑈̅𝐸𝛿1/𝜈. 

 

In the Cebeci and Keller’s study [15], they used the differential method to solve the 

TBL and their method is used for several boundary layer applications. In the solution 

procedure, Falkner-Stan transformation was applied to the TBL equations to provide 
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a mathematical suitableness for the calculation technic. By means of a similarity 

parameter, Eqn. (1.18) and a dimensionless stream function, Eqn. (1.19), and with the 

definition of the eddy viscosity,  
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Prandtl’s BL equations for TF can be written in the form: 
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where; 

𝑏 : (1 + 𝜖𝑚
+ ), 

𝑔 : functional dependence, 

𝜖𝑚 : eddy-viscosity, 

𝜖𝑚
+  : 𝜖𝑚/𝜈, 

𝑚 : pressure gradient parameter. 

 

The solution of Eqn. (1.20) can be achieved by subjecting it the proper boundary 

conditions. 

 

In their study, a modified version of the Coles’ velocity profile was used and for a 

given skin-friction coefficient (𝐶𝑓) and momentum thickness Re (𝑅𝑒𝛿2
), boundary 

layer thickness (𝛿) and the wake parameter (𝜛) are obtained.  

    

Cebeci and Chang also performed numerical work [16]. In the study, TBL is calculated 

for rough surfaces by using modified eddy viscosity model of Cebeci and Smith. Also, 

they extended the study of Cebeci and Keller to consider the roughness effect with and 
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without a pressure gradient. Compared to the method of Bradshaw et al. [17] (in which 

the transport equation approach of differential method is used), one fewer equation 

was solved. In addition, Keller Box scheme [15], which allows proper and economical 

solutions to differential equations, was used. 

 

In order to take the effect of the surface roughness into consideration, modifications to 

the near-wall approach were applied to the eddy viscosity model of Cebeci and Smith 

which is based on Rotta’s method [16]. For modified eddy-viscosity, the mixing length 

was changed to reflect the roughness effect to the TBL calculation.  

 

The method is valid for 4.535 < 𝑘𝑠
+ < 2000, where the upper limit corresponds to 

Rotta’s displaced model and the lower limit corresponds to the upper bound of the 

hydraulically smooth surface. In addition, in the cases where the 𝑘𝑠 is not provided, 

Dvorak’s correlation [12] within the range of applicability can be used to obtain the  

𝑘𝑠 value.  

 

The method was used for a limited roughness geometry and limited pressure gradient 

value. Nevertheless, the model provides enough precision according to the comparison 

with respect to the experimental results, at least for the design purposes [16]. 

 

In the differential method of  Bradshaw et al. [17], the transport equation approach is 

employed. Turbulence energy equation (TEE) with some assumptions was utilized 

which allows the hyperbolic equations to be solved.  

 

Generally, numerical studies are based on “Mixing length” or the “eddy-viscosity” 

assumption. According to the assuming, the shear stress at any station related to the 

mean-velocity gradient at this station [18]. However, according to Bradshaw and 

Ferriss [19] turbulent (or Reynolds) stress, −𝜌𝑢𝑣̅̅̅̅ , is rather related to the turbulent 

kinetic energy (TKE) which is governed by TEE. In addition, the connection between 

the mean-flow and the shear stress profile is not valid for the boundary layers with a 

pressure gradient. This is because the solution method of Navier-Stokes equations is a 

result of the parabolic equation system [17].  
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If the relationship between the intensity, dissipation, diffusion and the shear stress 

terms is known, the TKE equation can be converted into an equation which is 

responsible for the rate of change of turbulent shear stress, −𝜌𝑢𝑣̅̅̅̅ . The mean continuity 

equation, the mean momentum equation and the converted form of  TKE create a 

hyperbolic system together [17]. Any hyperbolic system can be solved with ease by 

characteristics method. 

 

According to the experimental study of Antonia and Wood [20], calculation of TBL, 

in which method of Bradshaw and et al. is used, gives satisfactory results for d-type 

roughness. Another study is conducted by Antonia and Luxton [21]. As a result of their 

study; for the larger roughness changes, such as k-type roughness, separation from the 

equilibrium-layer is significant. Therefore, a different equation for the length scale of 

the modified turbulence field should be used. 

 

Another important classification in the literature is how CFD tools represent the effect 

of surface roughness on the numerical calculations of TBL. 

 

Today, plenty of engineering tools depend on “wall similarity theory of Townsend” to 

represent the roughness effect on the flow. According to the wall similarity theory, 

influence of roughness effect on the surface is imprisoned in the inner layer (Figure 

1.4) and, overlap and outer part of the boundary layer is not affected from the surface 

roughness. The assumption behind the theory is that the TBL thickness is relatively 

high compared to the roughness element height. As a result of this approach, an 

important practical solution is achieved for TBL calculation both numerically and 

analytically [22].  

 

Hama [23] pointed out that the velocity-defect law in zero pressure gradient flow, that 

is used to define velocity distribution over wall-bounded turbulent flow, is not affected 

by roughness. With the light of such finding, Clauser [24] and Rotta [25] introduced 

roughness function, ∆𝑈+. According to Clauser and Rotta’s studies, the fundamental 

effect of roughness is the shift in the mean velocity profile in the logarithmic-law. 

Shifting downward is represented by ∆𝑈+. 
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Figure 1.5 Roughness function for mesh and sand grain roughness [22] 

 

 

Eqn. (1.21) is the velocity distribution for TF and ∆𝑈+ represents the effect of 

roughness. 
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where; 

𝑈+  : nondimensional velocity distribution,  

𝜅  : von Kármán constant, 

𝑦+ : nondimensional wall distance perpendicular to solid boundary,  

𝐴 : smooth wall intercept constant that represents the effect of geometric 

boundaries shape and length on the velocity distribution, 

𝛥𝑈+  : roughness function,  

𝜛 : wake parameter, 

𝑊 : wake function, 



 

 

20 

𝛿 : TBL thickness, 

𝑦 : spatial coordinate for wall normal direction in cartesian coordinate system. 

 

In the velocity distribution equation, Eqn. (1.21), there are terms named wake 

parameter and wake function. The latter one represents the deviation of the outer layer 

profile from the logarithmic-law, Figure 1.4, and according to the experiments, its 

character is universal. By performing an empirical fit to the measured velocity profile, 

it is obtained as 1 − 𝑐𝑜𝑠(𝜋𝑦 𝛿⁄ ) [15]. For the all cases, 𝑊(1) is equal 2, hence 𝑊 is 

the normalized shape function and its variation in the flow direction is represented by 

the wake parameter, 𝜛. 

 

As an example; CFD solvers, such as Star-CCM+ and ANSYS Fluent, calculate the 

drag force based on roughness function (𝛥𝑈+) approach. To consider the roughness 

effect, 𝑘𝑠 should be determined. For a uniform sand-grain roughness, value of 𝑘𝑠 can 

be taken as the height of the sand-grain (diameter of the sand-grain). For the other 

types of roughness, equivalent sand-grain roughness could be used by a correction 

factor, 𝐶𝑠, and its value depends on the type of the roughness given. 

 

Although calculating TF over a rough surface with the help of roughness function is a 

practical way and it is used by a number of CFD tools, defining a proper roughness 

function is not easy. Because there is no universal 𝛥𝑈+ and it is a function of roughness 

geometry, size and density [12]. Hence, a number of studies in the literature are 

focused on obtaining more general roughness function. Therefore; while obtaining 

𝛥𝑈+, less assumptions can be done and accordingly more realistic TBL solutions can 

be achieved by CFD tools. 

 

1.5 Outline of the Thesis 

 

The literature survey, given in Section 1.4, summarizes the former methods to obtain 

the skin-friction coefficient. Schlichting skin-friction formula is discussed by 

introducing the physic of the flow. Moreover, some studies related to the numerical 
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calculation of rough TBL with and without pressure gradient are summed up with 

respect to the solution method (integral or differential). Finally, how today’s CFD tools 

represent the effect of surface roughness on the numerical calculations of TBL is 

introduced. 

 

The mathematical model used throughout the numerical solution of TBL are obtained 

and presented in CHAPTER 2. Solution technique to calculate the TBL parameters for 

the present work is submitted. The flow diagram for the developed code is shared. 

Eventually, the convergence of solution and grid independence studies (which are 

performed to be sure that the results of the developed code are independent of the 

discretization used in the numerical implementation and the solution converges) are 

presented. 

 

In CHAPTER 3, comparison of the present study is done with the help of experimental 

studies, Cebeci and Chang’s numerical study [16] and Schlichting skin-friction 

formula [4]. 

 

Discussions related to the results of the present study are carried out in CHAPTER 4. 

The success of the solution technique (which considers the relative size of the 

thicknesses of the sublayers and the roughness height with respect to each other, and 

in which the fluid mechanics equations conjugation with Nikuradse’s experiment 

results) is emphasized. Finally, ideas for the future work and the expectations based 

on them are given. 
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CHAPTER 2  

 

 

 MATHEMATICAL MODEL AND CALCULATION METHOD 

 

 

 

The main idea behind the calculation of TBL for the present study is; if all TBL 

parameters are known at a solution-point (SP-1), it is possible to obtain the 𝛿2 for the 

next solution-point (SP-2) by using the momentum integral equation. Furthermore, if 

the velocity distribution is known for the SP-2, it is also possible to find the TBL 

parameters which belong to the SP-2 as well. Therefore, their equality gives rise to an 

equation to find the unknown parameter used to formulate the velocity distribution. In 

our case this is 𝐶𝑓. 

 

To obtain the velocity distribution for SP-2; knowing 𝐴′, 𝐶𝑓 , 𝜛  are necessary. By using 

the relationship between 𝐶𝑓 and 𝛿, and assuming the 𝐶𝑓 value for the SP-2, the velocity 

distribution for the SP-2 can be achieved. 

 

This logic works for all kind of two-dimensional TF over a rough surface. In the 

present study, its special condition which is flow with zero pressure gradient is 

examined. 

 

2.1 Mathematical Model 

 

In the present study, mainly five fluid mechanics equations are used which are given 

as in the following: 

 

i. The momentum integral equation,  

ii. Velocity distribution for whole turbulent boundary layer thickness, 
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iii. Rough wall intercept constant, 𝐴′, variation according to Nikuradse’s sand 

roughness experiments [4], 

iv. Momentum thickness equation, 

v. Non-dimensional local skin-friction coefficient equation. 

 

In order to use the equations above more coordinately in the calculation steps of the 

present study, they should be simplified and converted into useful forms. After the 

conversion process, the solution technique of the present study is clarified in Section 

2.2.  

 

2.1.1 Momentum Integral Equation 

 

For two-dimensional incompressible TBLs, the momentum integral equation is 

defined as in the Eqn. (1.10). Under the condition of zero pressure gradient; the 

𝑑𝑈̅𝐸/𝑑𝑥 term in the Eqn. (1.10) goes to zero inherently. Hence it is converted into the 

form: 

 

 2

2

fCd

dx


=   (2.1) 

 

To obtain 𝛿2 for any solution-points (SPs), first order finite difference approximation 

which is presented in Eqn. (2.2) is used. 

 

 ( ) ( ) 2
2 2

x

d
x x x x

dx


 + = +   (2.2) 

 

By substituting Eqn. (2.1) into Eqn. (2.2), the formulation which gives the momentum 

thickness for any SP is obtained. 

 

 ( ) ( )2 2
2

f

x

C
x x x x +  = +    (2.3) 
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2.1.2 Velocity Distribution Equation 

 

For a TF over a rough surface, velocity distribution can be written as: 

 

 ' ln
s

y y
U A B W

k



 

+  
= + +  

 
  (2.4) 

where; 

𝐴′ : rough wall intercept constant that represents the effect of geometric 

boundaries shape and length on the velocity distribution. 

 

When the boundary condition  “𝑦 = 𝛿 → 𝑈̅(𝑦) = 𝑈̅𝐸” is applied to the velocity 

distribution, Eqn. (2.4), the following equation can be obtained. 

 

 ' ln 2
E

s

U
A B B

U k


= + +  (2.5) 

 

Another form of the velocity distribution (named velocity-defect law) is also used in 

the calculation steps of the present study. Subtracting Eqn. (2.5) from the velocity 

distribution, Eqn. (2.4), the velocity-defect law can be obtained as: 

 

 ln 2
EU U y y y

f B W
U


  

 −       
= = − + −       

       

  (2.6) 

where; 

𝑓 : velocity-defect law which is a function to be determined by experiments [2]. 

 

At-large Re, the velocity-defect law takes universal form. Especially in the flow over 

a flat plate in the zero pressure gradient, it is not affected by surfaces roughness and 

therefore is independent of Re [26]. 

 

One explanation of velocity-defect law’s independence from surface roughness may 

be done by considering the constant shear layer concept, the mixing length theory and 

the energy spectrum of a TF. 
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(a) Constant Shear Layer 

 

In most wall-bounded TF, there is a region adjacent to the wall in which total shear 

stress is approximately constant. This region is named constant-shear-stress layer and 

composed of three main regions named; viscous sublayer, buffer layer and fully 

turbulent layer [7]. 

 

 

 
 

Figure 2.1 Constant shear layer in TBL (schematic) 

 

Therefore, in the constant shear layer, the total shear can be considered as: 

 

 

in the viscous sublayer

in the buffer layer

in the fully turbulent layer

tot W V

tot W V T

tot W T

  

   

  

= =

= = +

= =

  (2.7) 

where; 

𝜏𝑡𝑜𝑡 : total shear stress, 

𝜏𝑤 : wall shear stress, 

𝜏𝑣 : viscous shear stress, 

𝜏𝑇 : turbulence shear stress. 
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(b) Turbulent Mixing Length Theory 

 

In the derivation process of the momentum integral equation, terms in mean continuity 

and mean momentum equations (RANS) for a TF of incompressible fluids are 

multiplied by “𝑑𝑦” elementary length and taken the integral from 0 to ∞ [3]. In the 

RANS equation (for TFs of incompressible fluids), there is an additional term named 

turbulence stress, unlike the RANS equation of laminar flows. This term is responsible 

for the extra the momentum flux between TBL sublayers. 

 

Defining turbulence stress in terms of flow parameters is impossible at least for today. 

Because, there are ten unknowns and only four equations to obtain the TF’s 

parameters. This situation is named “Turbulence Flow Closure Problem”. To 

overcome this problem, turbulence modeling concept is used. 

 

Mixing length theory assumes that a mass of fluid maintains its identity over a certain 

distance after which it loses its momentum to the neighborhood environment and 

naturalizes the properties of its surrounding [27].  

 

Prandtl defined it as [4]: 

 
2

T m

dU dU
l

dy dy
 =   (2.8) 

where; 

𝑙𝑚 : mixing length. 

 

In a flat wall-bounded flow, mixing length is described as: 

 

 
ml y=   (2.9) 

where; 

𝜅  : von Kármán constant, 

𝑦 : perpendicular distance between the solid boundary and any point in the 

boundary layer.  
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(c) Energy Spectrum of Turbulent Flow 

 

In the energy spectrum (Figure 2.2), there are mainly three regions. The 𝑓𝑟𝐸 represents 

the wave number which corresponds to the maximum energy, whereas the 𝑓𝑟𝐷 stands 

for the wave number that corresponds to the minimum energy in the spectrum. 

 

 

 
 

Figure 2.2 Three-dimensional energy spectrum with critical regions [7] 

 

 

The first region in Figure 2.2 represents the large eddies, which are responsible for the 

chaotic structure of a TF. Hence, the region is called “Largest eddies region” and the 

solid boundaries are the source for the large eddies in TF. Briefly, eddies are related 

to geometric boundaries shape and length. 

 

The second region, the individual energy dissipation of the eddies is lower compared 

to the energy dissipation in the first region. Hence, the energy intensity in the second 

region reaches its maximum value. Therefore, the region is named “Energetics eddies 

region”. 
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The third region extends from 𝑓𝑟𝐸 to 𝑓𝑟𝐷. In the case of Re is large enough, that is 

(𝑓𝑟𝐸 ≪ 𝑓𝑟𝐷), and if the viscous dissipation can be neglected, the total energy of the 

eddies in the TF maintains a constant value. Therefore, the eddies in the third regime 

are in the “equilibrium state” in terms of statistical, and they gradually become 

independent from the effect of the large eddies. Hence, eddies between 𝑓𝑟𝐸 − 𝑓𝑟𝐷 

range are independent from the boundary conditions (such as surface roughness). Since 

such physical mechanism is universal, the third region is named “Universal 

equilibrium range” (UER).  

 

To obtain the velocity-defect law for wall-bounded TF (in which Re is high) the mixing 

length theory is used. The characteristics of the approach adopted in TML derivation 

is very similar to the UER in the energy spectrum. Therefore, it can be said that TML 

theory represents the UER. One of the most significant characteristics of the UER is 

the motion of fluid particles are independent of the direct wall effect. Consequently, 

independence of the velocity-defect formulation from surface roughness is an expected 

result. 

 

On the other hand, if Re is not large enough to use velocity-defect law, laminar-friction 

exerts some of its effects outside the thin sublayer (sum of viscous sublayer and buffer 

layer) [4]. Hence, the validity of logarithmic-law and accordingly velocity-defect law 

loses its applicability. 

 

2.1.3 Rough Wall Intercept Constant, 𝑨′, Determination 

 

In the velocity distribution equation, Eqn. (2.4), there is a term named rough wall 

intercept constant, 𝐴′. It represents the effect of the large eddies in a TF. Because solid 

boundaries are source for large eddies, values of 𝐴′ related to geometric boundaries 

shape and length. Whereas its value is 5.5 for a smooth surface, it changes between 

8.5 and 9.5 for a rough surface in a TF over a flat plate with zero pressure gradient [7]. 

 

Nikuradse used equivalent sand grains in his pipe experiments to generate a roughness 

on a surface. Thus, he was able to express the effect of the roughness on the fluid flow 
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by using the equivalent sand roughness height, 𝑘𝑠. It is defined as diameter of sand 

grains, and a surface spreaded with these closely packed sand grains creates the same 

drag effect with surface roughness interested. Hence, the variation of 𝐴′ was graphed 

as a function of 𝑘𝑠 by Nikuradse, as presented in Figure 2.3. 

 

 

 
 

Figure 2.3 𝐴′ variation in terms of 𝑘𝑠𝑈𝜏 𝜈⁄  for Nikuradse’s sand roughness [4] 

 

For the 𝑘𝑠
+ variation according to Nikuradse’s sand roughness experimental results 

(Figure 2.3), Yalın and Da Silva’s [28] correlation is employed. The correlation is 

given as: 
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  (2.10) 

where; 

𝑘𝑠
+ : nondimensional equivalent surface roughness, 𝑘𝑠𝑈𝜏 𝜈⁄ . 
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2.1.4 Momentum Thickness Equation 

 

Momentum thickness can be derived by considering the loss of momentum compared 

to potential flow in a 2D TBL for incompressible fluids, and it is defined as: 

 

 
( ) ( )

2

0

1
E E

U y U y
dy

U U


  
= −  

 
   (2.11) 

where; 

𝑈̅(𝑦) : velocity distribution of TBL in perpendicular direction to the solid boundary. 

 

By multiplying and dividing the Eqn. (2.11) with friction-velocity (𝑈𝜏), introducing 

𝑦 𝛿⁄ = 𝜂 and using the velocity-defect law, Eqn. (2.6), the following form of 

momentum thickness equation can be achieved: 

 

 

2

2
1 2

E E

U U
C C

U U

 



 
= −  
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  (2.12) 

 

Having combined the Eqn. (2.12) and Eqn. (2.5), the momentum thickness equation is 

converted into the form: 
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  (2.13) 

where; 
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𝐶1 and 𝐶2 values used by different researchers are presented in Table 2.1. Considering 

the value of 𝐶1 and 𝐶2 as a constant may give satisfactory results in the calculation of 
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a rough TBL parameters. However, better results may be obtained by calculating the 

values of 𝐶1 and 𝐶2  at every solution-point (SP) on the calculation domain. Since the 

velocity-defect law is a function of 𝜛 and 𝛿, 𝐶1 and 𝐶2 are also functions of them. 

Thus, it is necessary to compute 𝐶1 and 𝐶2  at every SP on the solution domain and 

which are calculated in such manner in the present study.  

 

 

Table 2.1 Different values of 𝑪𝟏and 𝑪𝟐 expressed by three different researchers 

 

 𝐶1 𝐶2 

Clauser [24] 3.6 22 

Schulz-Grunow [29] 3.34 - 

Coles [30] 4.05 29 

 

 

2.1.5 Skin-Friction Coefficient Equation 

 

Nondimensional local skin-friction coefficient is defined as: 
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2

2 w
f
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


=   (2.15) 

where; 

𝜏𝑤 : wall shear stress, 

𝜌 : density of the fluid. 

 

By substituting 𝜌𝑈𝜏 into the 𝜏𝑤 in Eqn. (2.15), the following equation can be obtained: 
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By means of Eqn. (2.5), skin-friction coefficient can be written as: 
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  (2.17) 

 

2.2 Solution Technique 

 

In the computational domain, in Figure 2.4, any points in the fully-developed turbulent 

regime can be selected as a starting point for the TBL calculation in the present study. 

Throughout the calculation process, forward marching method, which calculates the 

TBL parameters step by step, is employed. The method allows the determination of 

parameters at solution-point-2 (SP-2) by knowing initial conditions at solution-point-

1 (SP-1). Then, parameters can be calculated at SP-3 by using the obtained values of 

SP-2. The procedure is repeated for the all SPs in a chosen computation domain. At 

the end of the calculation, TBL thickness, displacement thickness, momentum 

thickness and skin-friction coefficient, which are called TBL parameters, are obtained 

for all SPs. 

 

For the present study, it is essential and enough to know the initial values of: 

 

a. the wake parameter, 𝜛,  

b. the local skin-friction coefficient, 𝐶𝑓,  

c. the momentum thickness, 𝛿2, 

 

at a starting point, SP-1 in Figure 2.4. In addition, the flow parameters, such as free-

stream velocity, 𝑈𝐸, fluid viscosity, 𝜇, and the flat plate features, such as equivalent 

sand roughness height, 𝑘𝑠, have to be known. 

 

Steps followed throughout the numerical calculation of TBL are itemized below: 
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i. The calculation process starts at the SP-1, in Figure 2.4. By using the initial 

value of 𝜛 and the Eqn. (2.14), both 𝐶1, and 𝐶2 constants are obtained for the 

SP-2, 

 

ii. For the next solution-point (SP-2), the momentum thickness, 𝛿2, is obtained by 

using the Eqn. (2.3), 

 

iii. By using the initial value of the 𝐶𝑓, and by means of the Eqn. (2.16),  𝑘𝑠
+ value 

and the Eqn. (2.10), 𝐴′ is acquired, 

 

iv. The TBL thickness, 𝛿, (of which calculation depends on the Newton-Raphson 

method since Eqn. (2.13) presents an implicit equation) is calculated by using 

the Eqn. (2.13). 

 

All the obtained values except for the 𝛿2 are the estimated values for the SP-2. Because 

in step (ii), the value of 𝐴′ is obtained by using the 𝐶𝑓 value at the SP-1. However, its 

value depends on the 𝐶𝑓 value at the SP-2. Hence, before proceeding to calculate the 

TBL parameters for the SP-3, values at the SP-2 should be checked whether they are 

correct or not. For this purpose: 

 

v. The Eqn. (2.17) is used to check whether the obtained 𝐶𝑓 value for SP-2 is 

correct or not. If not, as far as the 𝐶𝑓  value converges, steps i, ii, iii and iv are 

repeated. 

 

The convergence criterion for 𝐶𝑓 values and accordingly for the other TBL parameters 

is that; for a SP, if the absolute percentage change between the obtained 𝐶𝑓 values in 

consecutive iterations is lower than the value of 1, its value which is obtained in the 

last iteration is considered as the correct value. 

 

At the end of the step (v), TBL parameters at the SP-2 are achieved by using the 𝜛 

value at the SP-1, and throughout the calculation between the SP-1 and the SP-2, the 
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value of 𝜛 does not change (and accordingly the values of the terms in which 𝜛 is 

used to the compute them). However, for a given free-stream velocity, the 𝜛 is a 

function of the 𝐶𝑓, 𝛿 and 𝑘𝑠 according to the Eqn. (2.17). From this point of view, the 

value of 𝜛 should change at the SP-2. Therefore, the calculated TBL parameters at the 

SP-2 are still not the exact values.  

 

To overcome such complication, it was in searched of a different method to achieve a 

correct value of 𝜛 at SP-2, and after having obtained its accurate value, it can be used 

to obtain the exact values of TBL parameters at SP-2. 

 

In the present study, wake parameter is computed and embedded in the relevant 

equations at every SP on the calculation domain by using a method developed during 

this study. The method used a relationship between 𝐶𝑓 and 𝜛 values which is tested 

with the experimental works in the literature. The relationship can be summarized as: 
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where; 

𝜛𝑆𝑃(𝑛)  : 𝜛 value at SP-n, 

𝜛𝑆𝑃(𝑛−1) : 𝜛 value at SP-(n-1), 

𝐶𝑓_𝑆𝑃(𝑛) : 𝐶𝑓 value at interested SP-n, 

𝐶𝑓_𝑆𝑃(𝑛−1) : 𝐶𝑓 value at the previous interested SP-(n-1) (with respect to Figure 

2.4). 
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Figure 2.4 Solution-points (SPs) and the distance between them (∆𝑥) in the present 

study 

 

 

It is also noticed that the 𝜛 is not needed to be calculated at every SP throughout the 

flat plate, and its frequency can be larger than the distance between two consecutive 

SPs (∆𝑥) (such as the distance between SP-5 and SP-6 or SP-n and SP-(n-1)). 

Therefore, time consumption for the calculation of TBL parameters can be decreased. 

 

On the other hand, since one of the main purposes of the present study is calculating 

the mean skin-friction coefficient (𝐶𝐷), the frequency of the points in which 𝜛 is 

computed is important. This is due to the fact that the more computed wake parameter 

values used, the more accurate the 𝐶𝑓 values, and accordingly, the 𝐶𝐷 value are going 

to be obtained for a flat plate. Hence, in Section 2.4, the grid independence study of 

the present work is performed, and the optimal value for the frequency of points in 

which 𝜛 computed is clarified. 
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In the light of the explanations above, the last step for the calculation of TBL 

parameters at SP-2 is: 

 

vi. After having converged 𝐶𝑓 value at SP-2, a proper 𝜛 value for SP-2 is obtained 

by using the Eqn. (2.18) and repeating the steps i, ii, iii, iv, v three times. At 

the end of the last repetition, the TBL parameters exact values for the SP-2 are 

achieved. 

 

For the solution of TBL, the calculation steps (i, ii, iii, vi, v, vi, vii) are reflected for 

the all SPs in a chosen computation domain. 

 

Moreover; if the displacement thickness (𝛿1) wished to be calculated, the Eqn. (2.20) 

should be used, which is obtained by substituting the Eqn. (2.5) into the displacement 

thickness equation, Eqn. (2.19). 
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Flow diagram of the developed code which performs such calculation procedure is 

presented in Figure 2.5. 
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Figure 2.5 Flow diagram of the developed code 
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2.3 Convergence of Solution Study 

 

In the present study, numerical calculation of TBL parameters is an iterative process, 

which is one of the numerical solution methods. At the end of an iterative calculation, 

the method may lead to a solution or lead away from solution. If the method leads to 

a solution, then it is said that the method is convergent. Otherwise, the method is said 

to be divergent. 

 

In the present study, the 𝐶𝑓 and the remaining TBL parameters are obtained by using 

a system of equations mentioned in CHAPTER 2. One of them is the Eqn. (2.17), and 

it is used to check the accuracy (or convergence) of obtained 𝐶𝑓 value at a SP.  

 

In Figure 2.6, the convergence of 𝐶𝑓 value at an arbitrary SP is presented. Until the 

convergence of 𝐶𝑓 values are to be ensured with respect to the convergence criterion 

for the present study (mentioned in Section 2.2), the new 𝐶𝑓 values are acquired for 

this SP. 

 

Because of the convergence criterion algorithm in the developed code, similar results 

are obtained for the all SPs throughout a calculation process. Therefore, it can be said 

that the convergence of the solution to obtain the TBL parameters is achieved. 

 

 
 

Figure 2.6 𝑪𝒇 variation with respect to number of iterations at an arbitrary SP 
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2.4 Grid Independence Study 

 

To obtain a numerical solution of a fluid flow, any geometry in any dimensions need 

to be discretized. The result of the discretized fluid flow domain is named as the 

solution grid. 

 

In the derivation process of the momentum integral equation, Eqn. (1.10), terms in 

mean continuity and mean momentum equations (RANS) are multiplied by “𝑑𝑦” 

elementary length and taken the integral from 0 to ∞ [3]. Because the integration 

operation is performed in the y-direction, the equations’ dependency to “𝑦” disappears. 

Hence, the final equation is an ordinary differential equation and its dependency is 

only in the flow direction, that is x-direction (Figure 2.7) in the present study. Hence, 

it is appropriate to generate a one-dimensional grid only in the x-direction. 

 

 

 
 

Figure 2.7 Obtaining momentum integral equation [3]; the 𝑀 is momentum, the 𝑚̇ is 

mass flow and the 𝑉̅ is velocity component in y-direction 

 

 

For the grid independence study (GIS), different grids lengths (or the different number 

of SPs) are used. However, electronic numerical calculator’s (ENC) memory 

requirement increases as the number of SPs is increased. Hence, reduction of SPs is a 

necessity for the memory consumption of ENC. On the other hand, decreasing the 
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number of SPs can cause degradation in solution precision. Hence, while reducing the 

number of SPs, the results should be conserved. Therefore, the grid should include the 

lowest number of elements, while not affecting the results in the solution domain. 

 

In the calculation domain, there are mainly two types of points (as presented in Figure 

2.8), on which the calculation of TBL parameters performed. The blue ones are named 

solution-point (SP), and the red ones are named output-point (OP). In other words, 

some specific OP is named SP. At the SPs, except for the wake parameter value (𝜛), 

all TBL parameters are calculated. On the other hand, at the OPs, all TBL parameters 

are computed. Therefore, GIS is performed for both the SPs and the OPs. 

 

 

 
 

Figure 2.8 Grid length (∆𝑥), solution-points (SPs), output-points (OPs), length of the 

plate’s portion interested in fully-turbulent flow (𝐿) 

 

 

During the GIS, a workstation with Intel(R) Core(TM) i7 CPU M620 @ 2.67Ghz core 

and 4GB RAM is used. 
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2.4.1 Grid Independence Study for the Solution-Points 

 

In the present study, the GIS is performed by using different grid lengths, ∆𝑥, which 

is defined as the distance between two consecutive SPs (such as the distance between 

SP-4 and SP-5) on the calculation domain shown in Figure 2.8. The 𝐶𝑓 is calculated 

for the different 𝐿/∆𝑥𝑆𝑃 values which equal to 2, 4, 8, 20, 40, 200, 400, 2000, 4000, 

20000 and 40000 respectively. 

 

The 𝐶𝑓 variation with respect to the different 𝐿/∆𝑥𝑆𝑃 values is drawn and presented in 

Figure 2.9. Furthermore, the results and the calculation times for the different 𝐿/∆𝑥𝑆𝑃 

values are submitted as a table in Table 2.2. 

 

 

 
 

Figure 2.9 𝐶𝑓 variation with respect to the different 𝐿/∆𝑥𝑆𝑃 values 

 

 

According to Figure 2.9; grid independence is achieved when the 𝐿/∆𝑥𝑆𝑃 value equals 

to 4000. However, it should be noted that the higher the number of SPs (or higher 

value of 𝐿/∆𝑥𝑆𝑃) is the higher the requirement for ENC memory. It is inferred from 

Table 2.3 that by accepting the < 0.13% error, the 𝐿/∆𝑥𝑆𝑃 value which equals 20 can 



 

 

43 

be used instead of using the 𝐿/∆𝑥𝑆𝑃 value which equals 4000. Therefore, the 

computation time is reduced approximately 78 times, which is tremendous. Results of 

such evaluations are presented in Table 2.3. In the table, the relationship between the 

errors and the computational time reductions with respect to the grid independent 

𝐿/∆𝑥𝑆𝑃 value which equals 4000 can be found. 

 

 

Table 2.2 Local skin-friction coefficient (𝐶𝑓) values at the end of the plate for the 

different 𝐿/∆𝑥𝑆𝑃 values 

 

∆𝑥 [mm] 𝑳/∆𝒙𝑺𝑷 𝑪𝒇 value at 2 m Calculation time [s] 

1000 2 0.004296192 0.6 

500 4 0.004302095 1.1 

250 8 0.004303036 2.2 

100 20 0.004336861 4.2 

50 40 0.00429647 7.4 

10 200 0.004330485 19.4 

5 400 0.004326677 41.6 

1 2000 0.004342475 147.1 

0.5 4000 0.004342305 329.0 

0.1 20000 0.004342305 1165.8 

0.05 40000 0.004342305 2820.3 

 

 

Table 2.3 The computation time reductions and the errors for the different 𝐿/∆𝑥𝑆𝑃 

values with respect to (wrt) its grid independent value (4000) 

 

∆𝑥 [mm] 𝑳/∆𝒙𝑺𝑷 
Calculation 

time [s] 

Error wrt 𝑳/∆𝒙𝑺𝑷 

value of 4000 [%] 

Calc. time reduction wrt 

𝑳/∆𝒙𝑺𝑷 value of 4000 [times] 

1000 2 0.6 1.073 583.9 

500 4 1.1 0.935 289.9 

250 8 2.2 0.913 150.2 

100 20 4.2 0.126 78.3 

50 40 7.4 1.067 44.5 

10 200 19.4 0.273 16.9 

5 400 41.6 0.361 7.9 

1 2000 147.1 -0.004 2.2 

0.5 4000 329.0 0.000 1.0 

0.1 20000 1165.8 0.000 0.3 

0.05 40000 2820.3 0.000 0.1 
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2.4.2 Grid Independence Study for the Output-Points 

 

For the GIS of OPs, 𝐿/∆𝑥𝑆𝑃 value is taken as constant and only the value of 𝐿/∆𝑥𝑂𝑃 is 

changed. It should be noted that the distance between the two OPs should be equal to 

or more than the distance between two SPs, the contrary is not meaningful. Hence, the 

minimum distance between two OPs should be the same with the distance between the 

two SPs, ∆𝑥. The 𝐶𝑓 is calculated for the different 𝐿/∆𝑥𝑂𝑃 values which equal to 2, 4, 

8, 20, 40, 80, 200 respectively. 

 

The 𝐶𝑓 variation with respect to the different 𝐿/∆𝑥𝑂𝑃 values is drawn and presented in 

Figure 2.10 Furthermore, the results and the calculation times for the different of 

𝐿/∆𝑥𝑂𝑃 values are submitted as a table in Table 2.4. 

 

According to Figure 2.10, grid independence is achieved when the 𝐿/∆𝑥𝑆𝑃 value 

equals to 200. However, it is inferred from Table 2.5 that by accepting < 0.5% error, 

the 𝐿/∆𝑥𝑆𝑃 value of 20 may be used instead of 200. Therefore, computation time can 

be reduced approximately 90.5 times, which is tremendous. The relationship between 

the errors and time reductions with respect to the grid independent 𝐿/∆𝑥𝑆𝑃 value which 

equals 200 can be found in Table 2.5. 

 

 
 

Figure 2.10 𝐶𝐷 values variation with respect to the different 𝐿/∆𝑥𝑂𝑃 values 
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Table 2.4 Mean skin-friction coefficient (𝐶𝐷) values at the end of the plate for the 

different 𝐿/∆𝑥𝑂𝑃 values  

 

∆𝑥 [mm] 𝑳/∆𝒙𝑶𝑷 𝑪𝑫 values for 2 m Calculation time [s] 

1000 2 0.005180008 3.8 

500 4 0.004856939 12.9 

250 8 0.004774955 31.7 

100 20 0.00473371 90.5 

50 40 0.00472102 186.0 

25 80 0.00471432 377.7 

10 200 0.00471054 992.4 

 

 

Table 2.5 The computation time reductions and the errors for the different 𝐿/∆𝑥𝑂𝑃 

values with respect to (wrt) its grid independent value (200) 

 

∆𝑥 [mm] 𝑳/∆𝒙𝑶𝑷 
Calculation 

time [s] 

Error wrt 𝑳/∆𝒙𝑶𝑷 

value of 200 [%] 

Calc. time reduction wrt 

𝑳/∆𝒙𝑶𝑷 value of 200 [times] 

1000 2 3.8 9.06 260.1 

500 4 12.9 3.01 76.9 

250 8 31.7 1.35 31.3 

100 20 90.5 0.49 11.0 

50 40 186.0 0.22 5.3 

25 80 377.7 0.08 2.6 

10 200 992.4 0.00 1.0 

 

 

In the study of grid independence; for the SPs, the 𝐿/∆𝑥𝑆𝑃 value of 10 brings error less 

than 1% in 𝐶𝑓 with respect to 𝐿/∆𝑥𝑆𝑃 grid independent value which is 4000. For the 

OPs, the 𝐿/∆𝑥𝑂𝑃 value of 10 brings error less than 1.35% in 𝐶𝐷 with respect to 𝐿/∆𝑥𝑂𝑃 

grid independent value which is 200. Therefore, in the developed code, for both the 

𝐿/∆𝑥𝑆𝑃 and 𝐿/∆𝑥𝑂𝑃 values, the number of 10 is used. 
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CHAPTER 3  

 

 

COMPARISON OF THE PRESENT STUDY 

 

 

 

Comparison of the present study is performed with the experimental works [13], [14], 

[31]–[34] and another numerical study in the literature that is Cebeci and Chang’s 

work [16] in which the calculation of TBL parameters for incompressible fluids is 

performed. 

 

3.1 Evaluation of the Comparison Data 

 

For comparison study, it is essential to find experimental works which provide initial 

conditions (𝛿2, 𝐶𝑓 , 𝜛), fluid and flow properties (𝑈̅𝐸, ν) and 𝑘𝑠 value of the rough 

surface. In the literature survey, two studies are encountered which possess substantial 

information.  

 

One of them is the study of Cebeci and Chang [16] which is a numerical calculation 

of rough TBL for incompressible fluids. To compare their numerical study, Cebeci and 

Chang chose seven different experimental works. According to Cebeci and Chang, 

these experimental studies are particularly chosen because the works supply a wide 

range of free-stream conditions and geometries. Furthermore, they give enough 

information to generate initial data at the starting point which helps to avoid the 

uncertainties error related to predicted initial values.  

 

Out of seven experimental studies, only five are evaluated as suitable for the 

comparison purpose. Because, remaining studies are about the TF with a pressure 
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gradient. Furthermore, these four experimental works supply eleven different flow 

cases for the comparison purpose of the present study. 

 

The other study encountered in the literature survey belongs to Pimenta et al.’s [34]. 

In their work, there are three main objectives. The most important one for the present 

study is to provide documentation of the heat-transfer and the hydrodynamic 

measurement data to generate new and more advanced TBL prediction model. In their 

experimental works, three different flow cases are evaluated as suitable for the 

comparison purpose of the present study. 

 

In total, fourteen different flow cases are assessed as appropriate comparison aim. All 

are about TF of incompressible fluids over a rough flat plate with zero pressure 

gradient. However, most of them do not specifically target to calculate TBL 

parameters. For instance, in the study of Arndt and Ippen [14], it is aimed to understand 

the cavitation phenomenon associated with bubble dynamics in TBL and its effect on 

the skin-friction coefficient. Yet, these kinds of studies also provide information about 

TBL parameters. Such experimental work belongs to Arndt and Ippen [14], Scottron 

and Power [33], Bettermann [13], Liu et al. [32], Coleman [31] and Pimenta et al. [34].  

 

Except for the work of Pimenta et al., remaining studies partially provide relevant 

initial information for the present study. Therefore; 𝑘𝑠, 𝛿2 and 𝜛 have to be calculated 

by the researchers. Values of 𝑘𝑠, 𝛿2 are presented in the Cebeci and Chang’s numerical 

study [16], and calculation methods are explained briefly in the paper as well. Yet, 𝜛 

values which are needed as an input for the present study, are still unanswered.  

 

Approaching to obtain initial values of the 𝜛 by making assumptions, information 

deficiency related to the 𝜛 is overcome. Nevertheless, it should be noted that such lack 

of information situation for 𝑘𝑠 , 𝛿2, 𝜛 and trying to complete them by assumptions and 

calculations brings some amount of errors. However, because one of the fundamental 

objectives of Pimenta et al.’s study is to provide data to generate new and more 

advanced TBL prediction models, all the parameters, properties and the features 

interested in the presented code are clearly found in Pimenta et al.’s work. Therefore, 
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large incompatibility is not expected to be encountered while comparing the present 

study with Pimenta et al.’s work.  

 

3.2 Evaluation of the Results 

 

The local and mean 𝐶𝑓 value is one of the main physical quantities relevant to 

engineering purposes, and 𝛿 , 𝛿1, 𝛿2 are the integral-lengths which help to compute 𝐶𝑓. 

Hence, most part of the results section is covered with the comparison of 𝐶𝑓 values, 

and results are submitted as graphs. Other computed TBL parameters results, such as 

𝛿 , 𝛿1, 𝛿2 are presented as a table, in Table 3.1. However, because there is no 

comparison of 𝛿 except for the Pimenta et al.’s study, only its value at the end of the 

plate is presented. 

 

There are four curves on each graph with which the comparison results of the 𝐶𝑓 values 

are expressed. The orange, blue, grey and yellow color ones stand for the 𝐶𝑓 results of 

the present study, experimental measurements, Cebeci and Chang’s numerical work 

and Schlichting skin-friction formula, Eqn. (1.5) respectively.  

 

Error calculation of the present work, Cebeci and Chang’s study [16] and Schlichting 

skin-friction formulation (1.5) with respect to experimental data are performed based 

on relative mean discretization error (RMDE), which is given as: 

 

 
_comp _exp

1 _exp

1 n
f f

i f

C C
RMDE

n C=

−
=    (3.1) 

where; 

𝑛  : total number of OPs, 

𝐶𝑓_𝑐𝑜𝑚𝑝 : 𝐶𝑓 values that are compared with the experiment results, 

𝐶𝑓_𝑒𝑥𝑝  : 𝐶𝑓 values obtained from the experimental results. 
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RMDEs for the specific locations (OPs) on the flat plate (which are expressed as a 

marker on the curves in the each 𝐶𝑓 results graphs) are calculated. These points are 

specifically chosen, because the TBL parameters data in the experimental studies are 

measured on them.  

 

3.2.1 Results of Skin-Friction Coefficient 

 

(i) Experimental Data from Arndt and Ippen’s Study 

 

In Arndt and Ippen’s study [14], the free-stream velocity is kept constant and the 

surface roughness is varied as presented in the figures below. All experiment cases are 

conducted for fully-rough flow regime where the 𝑘𝑠
+ > 70. 

 

For the first case, presented in Figure 3.1; RMDE for the local skin-friction value, 𝐶𝑓, 

is about 1.5% between the experimental data and the present study whereas it is 1.9% 

for the experiment and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 3.7% for the present study and 4.7% for the 

numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

214 to 209 and the 𝑥/𝑘𝑠 values change from 1320 to 1878. Therefore, the experimental 

data and Schlichting skin-friction formulation, Eqn. (1.5) can be compared. Results 

show that the RMDE between the experiment and Schlichting formulation is about 

41.1% for the 𝐶𝑓 value. 
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Figure 3.1 Results of Arndt and Ippen’s experiment: 𝑈𝐸=12.27 m/s, 𝑘𝑠=0.3048 mm, 

ν=8.83x10-7 m2/s, Re=8.47x106 

 

 

For the second case, presented in Figure 3.2; the RMDE for the 𝐶𝑓 is about 7.4% 

between the experimental data and the present study whereas it is 3.1% for the 

experimental data and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 15.8% for the present study and 8% for the 

numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

574 to 552 and the 𝑥/𝑘𝑠 values change from 578 to 820. The RMDE for the 𝐶𝑓 is about 

41.0% between the experimental data and Schlichting formulation, Eqn. (1.5). 
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Figure 3.2 Results of Arndt and Ippen’s experiment: 𝑈𝐸=12.27 m/s, 𝑘𝑠=0.7010 mm, 

ν=8.83x10-7 m2/s, Re=8.47x106 

 

 

For the third and the last case, presented in Figure 3.3; the RMDE for the 𝐶𝑓 is about 

2.0% between the experimental data and the present study whereas it is 2.1% for the 

experimental data and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 4.0% for the present study and 5.5% for the 

numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

2354 to 2248 and the 𝑥/𝑘𝑠 values change from 161 to 229. The RMDE for the 𝐶𝑓 is 

about 25.8% between the experimental data and Schlichting’s formulation, Eqn.(1.5). 
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Figure 3.3 Results of Arndt and Ippen’s experiment: 𝑈𝐸=12.27 m/s, 𝑘𝑠=2.5 mm, 

ν=8.83x10-7 m2/s, Re=8.47x106 

 

 

(ii) Experimental Data from Bettermann’s Study 

 

In Bettermann study [13], the free-stream velocity is kept constant and the surface 

roughness is varied just like the cases examined in the work of Arndt and Ippen. The 

experiments are conducted for fully-rough flow regime where the 𝑘𝑠
+ > 70 in their 

study. 

 

For the first case, presented in Figure 3.4; the RMDE for the 𝐶𝑓 is about 5.3% between 

the experimental data and the present study whereas it is 1.6% for the experimental 

data and Cebeci and Chang’s numerical study [16]. On the other hand, the maximum 

discrepancy values are 9.6% for the present study and 3.4% for the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

151 to 142 and the 𝑥/𝑘𝑠 values change from 394 to 909. The RMDE for the 𝐶𝑓 is about 

50.8% between the experimental data and Schlichting formulation, Eqn. (1.5). 

0.007

0.0085

0.01

0.0115

0.013

0.0145

0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61

C
f

x [m]

Experimental data [14] Present Study Cebeci&Chang [16] Schlichting formula [4]



 

 

54 

 
 

Figure 3.4 Results of Bettermann’s experiment: 𝑈𝐸=30 m/s, 𝑘𝑠=1.26 mm, 

ν=1.44x10-5 m2/s, Re=2.50x106 

 

 

For the second case, presented in Figure 3.5; the RMDE for the 𝐶𝑓 is about 2.5% 

between the experimental data and the present study which has the same value for 

Cebeci and Chang’s numerical study [16] with respect to experimental study. On the 

other hand, the maximum discrepancy values are 4.6% for the present study and 3.6% 

for the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

513 to 480 and the 𝑥/𝑘𝑠 values change from 131 to 303. The RMDE for 𝐶𝑓 is about 

48.5% between the experimental data and Schlichting’s formulation Eqn. (1.5). 
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Figure 3.5 Results of Bettermann’s experiment: 𝑈𝐸=30 m/s, 𝑘𝑠=3.80 mm, 

ν=1.44x10-5 m2/s, Re=2.50x106 

 

 

For the third and the last case examined, presented in Figure 3.6; the RMDE for the 𝐶𝑓 

is about 3.0% between the experimental data and the present study whereas it is 0.6% 

for the experimental data and Cebeci and Chang’s numerical study [16]. On the other 

hand, the maximum discrepancy values are 6.7% for the present study and 1.6% for 

the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

1409 to 1308 and the 𝑥/𝑘𝑠 values change from 54 to 124. Although parts of the range 

of the 𝑥/𝑘𝑠 values are out of the validity limit of Schlichting skin-friction formulation, 

the RMDE is presented at least to give an idea. The RMDE for the 𝐶𝑓 is about 65.2% 

between Schlichting formulation, Eqn. (1.5), and the experimental data. 
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Figure 3.6 Results of Bettermann’s experiment: 𝑈𝐸=30 m/s, 𝑘𝑠=9.26 mm, 

ν=1.44x10-5 m2/s, Re=2.50x106 

 

 

(iii) Experimental Data from Coleman’s Study 

 

In Coleman work [31], there is only one case which can be used for the comparison 

purpose of the present study. If one refers to his original paper, there is more than one 

case which includes the flow with pressure gradient as well. Furthermore, all the 

experiments he performed cover the fully-rough flow regime. 

 

In the considered case, presented in Figure 3.7; the RMDE for the 𝐶𝑓 is about 2.4% 

between the experimental data and the present study whereas it is 2.7% for the 

experimental data and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 5.7% for the present study and 3.0% for the 

numerical study. 
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Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

75 to 70 and the 𝑥/𝑘𝑠 values change from 593 to 1493. The RMDE for the 𝐶𝑓 is about 

36.5% between the experimental data and Schlichting’s formulation, Eqn. (1.5). 

 

 

 
 

Figure 3.7 Results of Coleman’s experiment: 𝑈𝐸=26.43 m/s, 𝑘𝑠=0.7925 mm, 

ν=1.51x10-5 m2/s, Re=4.26x106 

 

 

(iv)  Experimental Data from Liu et al.’s Study 

 

In Liu et al.’s work [32], the free-stream velocity is kept constant and the surface 

roughness value is changed. Such roughness difference is performed not by changing 

the roughness height but by changing the roughness density. Reynolds numbers of 

experiments are relatively low and resulting values of the  𝑘𝑠
+ change from 20 to over 

100 in which some parts of the range include transition flow regime. Therefore, Liu et 

al’s experimental data help to test the present study for low Re and also for the 

transition flow regime. 
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For the first case, presented in Figure 3.8; the RMDE for the 𝐶𝑓 is about 4.7% between 

the experimental data and the present study whereas it is 5.4% for the experimental 

data and Cebeci and Chang’s numerical study [16]. Because calculated 𝑘𝑠
+ value is 

approximately 25, and the 𝑘𝑠 value is the lowest one in the experimental data, this case 

is thought to serve as a test case representing the transition flow regime. On the other 

hand, the maximum discrepancy values are 13.3% for the present study and 12.1% for 

the numerical study. 

 

Furthermore, the 𝑥/𝑘𝑠 values change from 527 to 1126. Since the flow regime is not 

fully-rough, the validity of Schlichting’s formulation is not expected. Nevertheless, 

the RMDE is submitted to give an idea. The RMDE for the 𝐶𝑓 is about 44.1% between 

the experiment and Schlichting’s formulation, Eqn. (1.5). 

 

 

 
 

Figure 3.8 Results of Liu et al.’s experiment: 𝑈𝐸=0.15 m/s, 𝑘𝑠=3.05 mm,  

ν=9.66x10-7 m2/s, Re=5.77x105 
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For the second case, presented in Figure 3.9; the RMDE, for the 𝐶𝑓 is about 7.2% 

between the experimental data and the present study whereas it is 5.7% for the 

experimental data and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 16.7% for the present study and 10.3% for the 

numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

147 to 137 and the 𝑥/𝑘𝑠 values change from 115 to 246. The RMDE for the 𝐶𝑓 is about 

41.0% between the experimental data and Schlichting’s formulation, Eqn. (1.5). 

 

 

 
 

Figure 3.9 Results of Liu et al.’s experiment: 𝑈𝐸=0.15 m/s, 𝑘𝑠=13.87 mm, 

ν=9.66x10-7 m2/s, Re=5.77x105 
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(v) Experimental Data from Scottron and Power’s Study 

 

In this experimental work of Scottron and Power [33]; whereas the surface roughness 

is kept constant, the free-stream velocity is changed. All relevant experiments are 

conducted for fully-rough flow regime where the 𝑘𝑠
+ > 70 in their study. 

 

For the first case, presented in Figure 3.10; the RMDE for the 𝐶𝑓 is about 0.8% between 

the experimental data and the present study whereas it is 2.8% for the experimental 

data and Cebeci and Chang’s numerical study [16]. On the other hand, the maximum 

discrepancy values are 1.8% for the present study and 5.6% for the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

578 to 535 and the 𝑥/𝑘𝑠 values change from 176 to 354. The RMDE for the 𝐶𝑓 is about 

52.6% between the experimental data and Schlichting’s formulation, Eqn. (1.5). 

 

 

 
 

Figure 3.10 Results of Scottron and Power’s experiment: 𝑈𝐸=11.28 m/s, 𝑘𝑠=11.89 

mm, ν=1.50x10-5 m2/s, Re=3.22x106 
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For the second case, presented in Figure 3.11; the RMDE for the 𝐶𝑓 is about 1.5% 

between the experimental data and the present study whereas it is 3.8% for the 

experimental data and Cebeci and Chang’s numerical study [16]. On the other hand, 

the maximum discrepancy values are 6.2% for the present study and 5.4% for the 

numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

1047 to 968 and the 𝑥/𝑘𝑠 values change from 176 to 354. The RMDE for the 𝐶𝑓 is 

about 57.0% between the experimental data and Schlichting’s formulation, Eqn.(1.5). 

 

 

 
 

Figure 3.11 Results of Scottron and Power’s experiment: 𝑈𝐸=20.73 m/s, 𝑘𝑠=11.89 

mm, ν=1.50x10-5 m2/s, Re=5.91x106 
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(vi)  Experimental Data from Pimenta et al.’s Study 

 

Pimenta et al. conduct an experimental study [34] in which rough surfaces are 

examined for isothermal and non-isothermal, zero pressure gradient flows with and 

without blowing (or transpiration). In addition to flow in the fully-rough flow regime, 

the transitionally flow rough regime is also investigated. They perform the experiments 

at three different velocities, 15.8 m/s, 27.1 m/s, 39.6 m/s. While the lowest one serves 

for the transitionally-rough flow regime, the other two are for fully-rough flow 

regimes. By maintaining the maximum flow velocity below 39.6 m/s, they ensure that 

they are able to use constant fluid properties, which can vary due to the high velocities. 

 

For the first case, which serves for the transition flow regime, presented in Figure 3.12; 

the RMDE for the 𝐶𝑓 is about 1.9% between the experimental data and the present 

study whereas it is 8% for the experimental data and Cebeci and Chang’s numerical 

study [16]. On the other hand, the maximum discrepancy values are 4.1% for the 

present study and 11.4% for the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

42 to 39 and the 𝑥/𝑘𝑠 values change from 1149 to 2674. Although Schlichting’s skin-

friction formulation, Eqn. (1.5) is not valid for this regime, the RMDE is still submitted 

to give an idea for the transition state. The RMDE for the 𝐶𝑓 is about 29.0% between 

the experimental data and Schlichting’s formulation. 
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Figure 3.12 Results of Pimenta et al.’s experiment: 𝑈𝐸=15.84 m/s, 𝑘𝑠=0.7925 mm, 

ν=1.50x10-5 m2/s, Re=2.58x106 

 

 

For the second case, which serves for the fully-rough flow regime, presented in Figure 

3.13; the RMDE for the 𝐶𝑓 is about 1.0% between the experimental data and the 

present study whereas it is 3% for the experimental data and Cebeci and Chang’s 

numerical study [16]. On the other hand, the maximum discrepancy values are 2.9% 

for the present study and 5.1% for the numerical study. 

 

Furthermore, according to the result of the present study the, 𝑘𝑠
+ values change from 

72 to 68 and the 𝑥/𝑘𝑠 values change from 1152 to 2692. The RMDE for the 𝐶𝑓 is about 

35.0% between the experimental data and Schlichting formulation, Eqn. (1.5). 
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Figure 3.13 Results of Pimenta et al.’s experiment: 𝑈𝐸=27.13 m/s, 𝑘𝑠=0.7925 mm, 

ν=1.50x10-5 m2/s, Re=4.42x106 

 

 

For the third and the last case, which serves for the fully-rough flow regime, presented 

in Figure 3.14; the RMDE for the 𝐶𝑓 is about 0.6% between the experimental data and 

the present study whereas it is 2.1% for the experimental data and Cebeci and Chang’s 

numerical study [16]. On the other hand, the maximum discrepancy values are 1.8% 

for the present study and 4.4% for the numerical study. 

 

Furthermore, according to the result of the present study, the 𝑘𝑠
+ values change from 

105 to 99 and the 𝑥/𝑘𝑠 values change from 1139 to 2687. The RMDE for the 𝐶𝑓 is 

about 33.8% between the experiment and Schlichting’s formulation, Eqn. (1.5). 
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Figure 3.14 Results of Pimenta et al.’s experiment: 𝑈𝐸=39.62 m/s, 𝑘𝑠=0.7925 mm, 

ν=1.50x10-5 m2/s, Re=6.46x106 
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3.2.2 Results of TBL, Displacement and Momentum Thicknesses 

 

As mention at the beginning of Section 3.2; except for the skin-friction coefficient, 

TBL parameters results, such as 𝛿 , 𝛿1, 𝛿2 are presented as a table, in Table 3.1.  
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CHAPTER 4  

 

 

DISCUSSION AND CONCLUSION 

 

 

 

One of the most important characteristics of the present work to obtain the TBL 

parameter precisely, the solution technique considers the TBL developing. According 

to such consideration, the relative size of sublayers thicknesses in a TBL and surface 

roughness height with respect to each other is a crucial matter to obtain the correct 

values of TBL parameters. 

 

Another characteristic of the present study is that fluid mechanics formulations, such 

as momentum integral equation are coupled with the results of Nikuradse’s 

experiment. These formulations form a different system of equations compared to the 

works to solve TBL in the literature. 

 

4.1 Discussion of the Results 

 

Most of the results of the present study show that there is good agreement with the 

experimental results. The compatibility is at its highest level when full experimental 

data of references were available, such as being in Pimenta et al.’s study. Because, in 

those cases, it was not necessary to make any assumption. For other cases where the 

full experimental data was not available, it was necessary to make some assumptions 

as related to the equations used in the present study. Normally, for the latter cases, it 

is had to be assumed either the equivalent sand roughness or some parameters, or both. 

 

Wake parameter, 𝜛, has a high impact on the calculation of TBL parameters. Except 

for the Pimenta et al.’s experimental study, an approach is used to obtain its initial 
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value. According to the approach, the initial values of 𝜛 are obtained by changing its 

value until the measured (experimental) 𝐶𝑓 and calculated 𝐶𝑓 values match with each 

other. The same treatment can also be observed in T. Cebeci and C. Chang’s work. 

Furthermore, again except for the study of Pimenta et al, equivalent sand roughness is 

not defined as 𝑘𝑠 in the experimental works used for comparison. Hence, all roughness 

length scales presented in the experimental studies are converted to 𝑘𝑠 by using 

Dvorak’s correlation [12].  

 

Such approaching and calculations about 𝜛 and 𝑘𝑠 are obligated to be performed since 

the experiments main purpose is not to provide data for the numerical calculation of 

TBL. Hence, they are calculated by the researchers. As a result, these the approaching 

and calculations bring some amount of error. Another possible error factor may be the 

inaccuracy of processing experimental data from graphs in which they are submitted. 

 

However, in the study of Pimenta et al., because one of the main objectives is to 

provide data which help to generate new and more advanced TBL prediction models, 

full experimental data is clearly found in Pimenta et al.’s work. Hence, incompatibility 

due to the lack of information is not expected to be encountered while comparing 

Pimenta et al.’s study and the present work. As a result; the best conformality with 

experimental cases and the comparison with Cebeci and Chang’s numerical study is 

achieved by using Pimenta et al.’s measurement data.  

 

For the fully-rough flow regime, the present study gives the RMDE in 𝐶𝑓 as 0.6% 

according to the comparison result of it with Pimenta et al.’s experimental work 

whereas it is 2.1% according to the comparison result of Cebeci and Chang’s numerical 

study with Pimenta et al.’s experimental work. For the transition flow regime, the the 

RMDE in 𝐶𝑓 is found to be 1.9% in the present work and it is 8.0% for Cebeci and 

Chang’s numerical study when they are compared with Pimenta et al.’s experimental 

study. 
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Schlichting’s skin-friction formula, Eqn. (1.5) overestimates the skin-friction value, 

and accordingly the frictional drag occurring in reality. An explanation of this situation 

can be done by considering the F. Schultz-Grunow [29] experimental study.  

 

According to the F. Schultz-Grunow’s experimental results that the velocity profile in 

the outer portion of the boundary layer of a plate deviates from the logarithmic velocity 

distribution inside a circular pipe with respect to his measurement on the boundary 

layer for a plate as presented in Figure 1.3 [4]. By considering the velocity-defect 

formulation as momentum loss in TBL (that is frictional drag), the 𝐶𝑓 values (which 

are obtained for the flat plate directly from the J. Nikuradse pipe flow experiments by 

the analogy) should be higher than that of the experimental results for a flat plate.  

 

The physical reason behind such phenomenon may be that the methodology for 

obtaining Schlichting’s skin-friction formula, Eqn. (1.5), depends on the analogy 

between the pipe flow and the boundary layer flow by making the assumption that the 

velocity profile inside the pipe flow is similar to that of on the flat plate. While working 

with moderate Re, power-law can be used for both pipe and boundary layer flow and 

the assumption keeps its validity. Hence, calculated 𝐶𝑓 values are in accordance with 

experimental results. However, for arbitrarily large Re, using power-law is not 

appropriate and logarithmic-law should be used [4]. In the logarithmic-law, there is an 

additional term named wake function, 𝑊. It is responsible for the main difference 

between the pipe and the boundary layer flow velocity distribution. Because, the effect 

of the 𝑊 increases while Re is rising, its impression becomes dominant on the velocity 

distribution at high Re. Hence, the applicability of the assumption, which is the 

velocity distribution in a pipe identical with that in the boundary layer on a plate, loses 

validity. 

  

The RMDE in the local skin-friction coefficient, 𝐶𝑓, changes between 25.8% and 57% 

according to the comparison of experimental data and Schlichting’s skin-friction 

formula. It should be noted that, because the constraints of Schlichting’s skin-friction 
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formula, Liu et al. Case-1 and Pimenta et al. Case-1, and Bettermann’s case-3 are not 

evaluated for comparison. 

 

The 𝜛 changes throughout the flow. Such phenomenon brings the requirement of 

calculation of the 𝜛 for every SP just as the 𝐶𝑓 is being calculated throughout the 

computation domain. Instead of computing the 𝜛 at every SP, it is calculated only 

some specific SPs named OPs. Therefore, time consumption for the numerical 

calculation is decreased. For this purpose, a method is developed during the present 

study, and it uses the relationship between the 𝐶𝑓 and 𝜛 values. The calculation 

methodology of 𝜛 exhibits its success according to the comparison results. 

   

In the study of grid independence; for the SPs, the 𝐿/∆𝑥𝑆𝑃 value of 10 brings error less 

than 1% in 𝐶𝑓 with respect to 𝐿/∆𝑥𝑆𝑃 grid independent value which is 4000. For the 

OPs, the 𝐿/∆𝑥𝑂𝑃 value of 10 brings error less than 1.35% in 𝐶𝐷 with respect to 𝐿/∆𝑥𝑂𝑃 

grid independent value which is 200. The values of error both for 𝐶𝑓 and 𝐶𝐷 are quite 

acceptable. 

 

In order to work with the developed code; firstly, Reynolds number based on plate 

length should be of the order of 106 or higher. Because, according to A. D. Young et 

al. [2] the form of velocity-defect law is acceptable for such Reynolds numbers.  

 

Secondly, the mathematical model requires the knowledge of equivalent sand 

roughness, 𝑘𝑠 . Hence, it is important to know the 𝑘𝑠 value for the surface of interest.  

 

Finally, as a remember, to find the value of the 𝐴′, results of Nikuradse’s experiment 

are used. In the experiments the 𝑘𝑠
+ value approximately change between 1.58 and 

1584. This range covers most of the problems of the type consşdered in this work. 

Therefore the code has a big range applicability. 

 

 



 

 

71 

4.2  Concluding Remarks 

 

The present study gave much better results when full experimental data of references 

were available. 

  

As a future work, items below can be considered: 

 

• Developed code can be improved for an attached TF over a rough surface with 

a pressure gradient. 

 

• The developed code can be embedded into a CFD solver algorithm after having 

performed proper modifications on it if they are necessary. 

 

• It may be possible to obtain a diagram that represents a qualitatively and 

quantitatively 𝐶𝑓 better than Schlichting’s diagram offers, which is still used in 

present-day engineering hand-calculations. Moreover, semiempirical local and 

mean 𝐶𝑓 correlations for fully-rough flow regime can be developed by using 

the data of this diagram. 

 

• TBL solution can be obtained for a complete plate which starts from laminar 

flow. However, transition regime of TF on a rough surface is expected to be 

short. If the conditions are such that transition of rough surface has a sizeable 

length; this problem is worth to be investigated on its own respect. 
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APPENDIX A 

 

 

THE DEVELOPED CODE 

 

 

 

The developed code is written by using “Python” programming language, and the 

“Jupyter Notebook” version 5.4.0 is used for the interactive computing environment. 

It is presented below in the text format. 

 

# SI UNITS ARE USED 

 

 

# Libraries used in the developed code 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

import scipy.integrate as integrate 

import time as tm 

 

 

# Steps calculating the TBL parameters 

 

def BLT(D2): 

    D = D_lit_s * 3 

    while True: 

        leftF = D2 / D  

        rightF = (c1 * (1 / (Ap + B * np.log(D / ks) + (2 * B * w)))) - (c2 

* (1 / (Ap + B * np.log(D / ks) + (2 * B * w))) ** 2) 

        D = D - 0.0001 

        if (rightF - leftF <= 0): 

            break 

    return D 
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start = tm.time() 

 

L_plate = 3 

ml_Cf_y = [] 

ml_L = np.linspace(L_plate/10, L_plate, L_plate*10) 

 

for element in ml_L: 

    L = element 

     

    first_iteration = True 

     

    for j in [0, 1, 2]: 

 

        if first_iteration == True: 

            ml_w = [0.75] 

            w = ml_w[-1] 

 

        else: 

            w = (Cf / ml_Cf[0]) * ml_w[-1] 

            ml_w.append(w) 

 

        Ue = 27.1272 

        ks = 0.00079248 

        k_vis = 0.00001495738944 

        rho = 1.1770 

        B = 2.5 

         

        DX = 0.1 

 

        result_c1 = integrate.quad(lambda x: (-2.5 * np.log(x) +  2 * 2.5 * 

w * (1 - (np.sin(np.pi / 2 * x)) ** 2)) ** 1, 0,1) 

        c1 = result_c1[0]  

        result_c2 = integrate.quad(lambda x: (-2.5 * np.log(x) +  2 * 2.5 * 

w * (1 - (np.sin(np.pi / 2 * x)) ** 2)) ** 2, 0,1) 

        c2 = result_c2[0] 

 

        ml_U_tau = [] 
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        ml_Cf = [0.00539076] 

        ml_Ap = [] 

        ml_ks_p = [] 

        ml_D = [] 

        ml_D1 = [] 

        ml_D2= [0.002052760944] 

 

        Re = Ue * L / k_vis 

        D_lit_s = (0.38 * L) / (Re ** ( 1 / 5)) 

 

        for element in np.arange(1, (L/DX + 1)): 

 

            D2 = ml_D2[-1] + DX * (ml_Cf[-1] / 2) 

            ml_D2.append(D2) 

 

            Cf = ml_Cf[-1] 

 

            U_tau = Ue * ((Cf / 2) ** 0.5)  

            ks_p = ks * U_tau / k_vis 

            Ap = (2.5 * np.log(ks_p) + 5.5) * np.exp(-0.0705 * (np.log(ks_p)

) ** 2.55) + 8.5 * (1 - np.exp(-0.0594 * ((np.log(ks_p)) ** 2.55))) 

            D = BLT(D2) 

            D1 = (D * c1 * (1 / (Ap + B * np.log(D / ks) + (2 * B * w)))) 

 

            Cf_c = 2 / (Ap + B * np.log(D / ks) + (2 * B * w)) ** 2                                                          

 

            if (abs((Cf_c - Cf) / Cf)) * 100 < 1: 

 

                ml_Cf.append(Cf) 

                ml_U_tau.append(U_tau) 

                ml_ks_p.append(ks_p) 

                ml_Ap.append(Ap) 

                ml_D.append(D) 

                ml_D1.append(D1) 

 

 

            else: 

                while True: 

                    if (abs((Cf_c - Cf) / Cf)) * 100 < 1: 
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                        ml_Cf.append(Cf) 

                        ml_U_tau.append(U_tau) 

                        ml_ks_p.append(ks_p) 

                        ml_Ap.append(Ap) 

                        ml_D.append(D) 

                        ml_D1.append(D1)                

 

                        break 

 

                    else: 

 

                        Cf = Cf_c 

 

                        U_tau = Ue * ((Cf / 2) ** 0.5) 

                        ks_p = ks * U_tau / k_vis 

                        Ap = (2.5 * np.log(ks_p) + 5.5) * np.exp(-0.0705 * (

np.log(ks_p)) ** 2.55) + 8.5 * (1 - np.exp(-0.0594 * ((np.log(ks_p)) ** 2.55

))) 

                        D = BLT(D2) 

                        D1 = (D * c1 * (1 / ((Ap + (B * np.log(D / ks)) + (2 

* B * w)))))                

 

                        Cf_c = 2 / (Ap + (B * np.log(D / ks)) + (2 * B * w) 

) ** 2 

 

                        continue 

 

        first_iteration = False 

         

        ml_Cf.pop(0) 

         

    ml_Cf_y.append(Cf) 

 

     

 

 

# Calculating the mean skin-friction value by integrating the computed local 

skin-friction coefficient values with respect to the plate length 

x = ml_L 

y = ml_Cf_y 
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def fit_func(x, a, b, c, d, e): 

    return a*x**4 + b*x**3 + c*x**2 + d*x + e 

 

params = curve_fit(fit_func, x, y) 

[a, b, c, d, e] = params[0] 

 

result= integrate.quad(lambda x: a*x**4 + b*x**3 + c*x**2 + d*x + e, 0,L) 

answer= result[0] 

 

Cd = answer/L 

 

print(Cd, D, D1, D2) 

print(tm.time()-start) 

 


