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ABSTRACT

EMPIRICAL COMPARISON OF PORTFOLIO RISK DIVERSIFICATION
ALGORITHMS

Yerli, Cigdem
M.S., Department of Financial Mathematics
Supervisor : Prof. Dr. Sevtap Kestel
Co-Supervisor : Dr. Nilfer Schindler

September 2018, 63 pages

The enhanced correlations during global financial crisis fexealed that simple as-
set allocation portfolios prove to be not well-diversifiect@ss different risk factors,
which makes the risk based asset allocation strategiedgropgdowever, the strate-
gies still construct the risk concentrated portfolios dodhte correlation among the
asset classes. As a result, risk allocation among unctecelesk factors instead of
risk allocation among asset classes have become widely Uibégithesis aims to dis-
tribute the risk among uncorrelated risk factors in a pdidfto prevent constructing
risk concentrated portfolio. We employ “diversified riskipastrategy”. The first step
in this approach is the construction of the uncorrelatedf@@s. To construct uncor-
related portfolios, we follow two different approachesinpipal component analysis
and minimum linear torsion model. These uncorrelated plog are also known as
uncorrelated risk factors in the literature. In the secaeg@,swe apply the risk parity
strategy to these uncorrelated risk factors to obtain egsialbudget from each risk
source. While the literature evaluates each uncorrelatefbpo as one kind of risk
factor, we focus on three main risk sources, namely equsty; mflation rate risk and
inflation risk. In this work, we give the background of diviies] risk parity strategy
and traditional risk based asset allocation strategie®apldin how uncorrelated port-
folios constructed based on principal component analysiswanimum linear torsion
model with examining their return and risk properties. Thenprovide an applica-
tion of the strategies to selected asset classes. The pdorrpance of mean-variance
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strategy due to large estimation errors in estimated mesafs e risk-based strategies
popular. Therefore, to make clear comparison, we also declmean-variance opti-

mization and compare the out-of-sample performance with hiek-based strategies
and diversified risk parity strategies in the empirical gal.

Keywords Diversified risk parity strategy, principal component lgse, minimum
linear torsion model, risk based asset allocations, rig&rdification.

viii



0z

PORTROY RISK CESTLENDIRME ALGORITMALARININ AMP IRIK
KARSILASTIRMASI

Yerli, Cigdem
Y iiksek Lisans, Finansal MatematiloBimi
Tez Yoneticisi : Prof. Dr. Sevtap Kestel
Ortak Tez Yoneticisi : Dr. Nilufer Schindler

Eylil 2018[63 sayfa

Son yasanan finansal kriz, riski daha cesitlendirilpugtfoylere olan ihtiyaci ortaya
koymus ve riske dayali varlik dgtimi yapan stratejileri paper yapmistir. Fakat bu
stratejiler, varlik siniflari arasindaki korelasyondatagiohala riski y@un portbyler
olusturmaktadir. Bu nedenle yeni calismalar risgitianinda varlik siniflari yerine
bagimsiz risk fakbleri Uizerine odaklandilar. Bu ¢alismanin amaci risldibasiz risk
faktorlerine d@itarak, riski tek fakbre yajunlagsmis portly elde edilmesini engelle-
mek. Bu calisma, “cesitlendirilmis risk paritesi g&@ni” kullanmaktadir.llk adimda
bagimsiz portbyleri olusturulacaktir. Bgamsiz portdyleri olusturmak icin iki farkli
model, temel bilesenler analizi veya minimuntdasal torsiyon modeli kullaniimaktadir.
Bu bayimsiz portbyler ayni zamanda Bamsiz risk fakdrleri olarak da bilinir. Elde
edilen b&@imsiz porbylere dolayisiyla, risk fakirlerine risk paritesi stratejisi uygula-
narak her bir risk fakirinden esit risk btcesi elde edilmektedir. Her bir pootfu ayri

bir risk faktorli olarak dgerlendiren literatrden farkh olarakiic temel risk fakibriine
(piyasa riski, faiz riski ve enflasyon riski) odaklaniltmisCesitlendirilmis risk paritesi
stratejisinin ve geleneksel risk bazli varlik tahsis siikgrinin arka planini verilerek
temel bilesen analizi ve minimum gJousal torsiyon modeline dayanarakgioasiz
portfoylerin nasil olusturuldgu, kar ve riskozellikleri de incelenerek aciklanmistir
ve secilen varlik siniflarina stratejilerin bir uygulamsisnulmaktadir. Tahmini ortala-
madaki liyuk tahmin hatalarindan dolayi ortalama varyans stratéjisiayif perfor-
mansi, risk temelli stratejilerin pdger olmasina neden olmaktadir. Bu nedenle, net
bir karsilastirma yapmak icirgrneklem disi performansi testi ortalama varyans opti-
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mizasyonunu da icermekte ve bu tezde bahsedilen steatejkarsilastiriimaktadir.

Anahtar Kelimeler Cesitlendirilmis risk paritesi stratejisi, temel églenler analizi,
minimum dayrusal torsiyon modeli, risk bazli varlik gaimi, risk ¢cesitlendirme.
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CHAPTER 1

INTRODUCTION

Asset allocation plays an essential role in investment mameant. Investors try to
understand how they should invest their capital amongrdiffeasset classes. For this,
Markowitz mean-variance optimization that is one of thergitative techniques aims
to find the best asset allocation based on risk-return todideklthough this approach
has been used widely due to its theoretical rationalityag Bome obstacles due to
large estimation error§[[6] 5]. To avoid large estimatiaer due to estimated mean,
recent works have been focused on generating more divergi@igfolios excluding
the mean called “risk-based asset allocation strateginate these strategies only use
covariance matrix, the strategies are also knownasftee strategies”. Due to their
acceptance being as robust in the literature and good peafuze during the 2008
financial crisis, risk based asset allocation strategige baen populai [21, 32]. The
aim of risk based strategies is to allocate the risk amonet atasses instead of the
capital and construct well balanced portfolios in termsisif.rHowever, the ability of
diversification of risk based strategies limitation depend the characteristics of the
underlying assets. If chosen assets are highly correlatédlependent on the same
underlying risk factors, the aim of diversification may netdrhieved and the portfolio
may have a concentrated risk structure. Especially, tlablpm can arise during the
financial crisis times, since the correlations generalréase when economy goes
bad.

The high correlation among asset classes results in havang than one risk source.
[29] gives an example to demonstrate how a portfolio is cotraéed on one kind of
risk factor. In his example, the portfolio consists of foguey classes and four fixed
income asset classes. The fixed income asset classes argditlemerging-market
debt, inflation-linked bonds, and investment-grade boridse expectation from the
portfolio to have two different risk sources that are equisk and bond risk. Since
majority of the bond classes have different degree of eqjisky the portfolio is indeed
skewed to equity risk and demonstrates a concentratedtrisitsre. Generally, many
asset classes are affected by equity risk. As mentionedtigceome of fixed income
classes consist of different degree of equity risk althdoghds and equities generally
move opposite directions. Itis known that high yield is omelof bond, however there
is generally a high correlation between the equity and higldy The high correlation
between equity and other classes generally leads thabposttan heavily skewed to
equity risk. Hence, the underlying risk sources in the aslssises do not make risk
allocation easier. To overcome this problem, the portfdézision puts importance
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on not only risk contributions from asset classes but akso contributions from risk
factors. The key property is that the desired risk factomukhbe less correlated, if
possible, uncorrelated.

To obtain uncorrelated risk sources, there are some gatwveimethods. One of them
is principal component analysis (PCA), that is a statistittadension reduction tech-
nigue using orthogonal transformation of variables in® lthearly uncorrelated new
variables. Partovi and Caputo (2004)][26] employs PCA appré@construct uncor-
related portfolios that are also called principal portisli Furthermore, these portfolios
can be considered as uncorrelated risk sources. This agpi®ariticized for being
unstable over time, lacking of economic interpretation aoichaving unique eigenvec-
tors [25]. Upon these claims, Meucci et al. (2014)|[25] putvard another method-
ology, namely minimum linear torsion (MLT), that that exdtauncorrelated variables
that closely follow the original variables. Hence, this hwatology is expected to be
more robust than the PCA approach.|[26,24, 25] distributdevbortfolio risk among
these uncorrelated portfolios. In this case, the portfogik is already known and the
total risk is distributed among risk factors to prevent riskcentration. On the other
hand, Lohre et al[ [20] directly construct the portfolio kvétpplying risk parity strategy
to uncorrelated portfolios from PCA and MLT. This strateggadled “diversified risk
parity” [20]. Following [20], we use the diversified risk figrstrategy in this work.

One of the major questions in the asset management is how maisrlying risk
factors drive the asset returns. There are two key risk démes: growth risk and
inflation risk [29]. Growth risk is divided into two parts: eidy risk and interest rate
risk that move oppositely when economic growth change. dlwith the inflation risk,
there are real-return premium and nominal return premiufichvmove oppositely
based on inflation structure. To create a well balanced @artthat is exposed to
growth and inflation risks, risk based portfolios should bestructed with a balanced
risk budget from three main risk factors: equity risk, iegrrate risk and inflation risk
[29]. From this point of view, there are three main risk prems that are equity risk,
interest rate risk and inflation risk [29]. Other risks areximie of these three main
risk sources. For example, credit risk is a mixed of interas risk and equity risk
[29]. An investor who wants a well diversified portfolio shdwlistribute the overall
portfolio risk among these risk drivers. Therefore, in thissis, we focus on only these
risk drivers.

This thesis aims to distribute the portfolio risk among éneain risk sources with em-
ploying diversified risk parity strategy based on MLT apmimand PCA approach with
following the approach by [20, 2]. We expect that a portfddased on MLT approach
should be more balanced in terms of risk compared to divedsifsk parity on PCA
and other risk parity strategies. Comparison of these mettsgoerformed on real life
data collected from Bloomberg between years 1988 and 201i3.tAésis contributes
to the literature in several ways. First, we give a throughgarison of risk based asset
allocation strategies including PCA and MLT to empiricalcgrdata between January
1988 to December 2017. This period is long to contain two firercrisis and great
variation, which allows a fine comparison of these algorghn$econd, rather than
using all risk factors in PCA and MLT, we focus on only thredfigctors, equity risk,
inflation risk and interest rate risk. Third, to the best of kmowledge, MLT approach



has so far been applied only to commodity prices; we exteiscaibplication to more
general asset classes. Finally, we present out-of-sarepiermances of the strategies
for different time intervals that help us to capture the exoit changes in the market.
In the out-of-sample testing, we include the mean-variaticgegy as well to make a
clear comparison of estimation error across the strategies

The organization of the thesis is as following. Chapter 1qmesthe theoretical back-
ground of risk based asset allocation strategies, namelgliggveighted, global mini-
mum variance and risk parity strategies such as inverséhtglatrategy and equal risk
contribution. Chapter 2 gives the information about riskdzhasset allocation strate-
gies. Chapter 3 presents the diversified risk parity with @xghg theoretical frame-
work of PCA and MLT. We explain how diversified risk parity s&gy can be applied
to these methodologies and can be generated uncorrelateédlips based on these
approaches. Their return and risk properties are also gi@kapter 4 presents the em-
pirical analysis results. In this part, we present the perénce and risk characteristics
of mentioned strategies. Then, we check the robustnessatégies with rolling win-
dow approach. The poor performance of mean-variance gyralige to large estima-
tion errors in estimated mean has become popular risk-b=issggies as mentioned
previously. Therefore, to make clear comparison, we alsludte mean-variance op-
timization and compare the out-of-sample performance bath risk-based strategies
and diversified risk parity strategies. The conclusionhfertcomments on our results
and points out directions for future research.

1.1 Literature Review

The need of diversification of portfolio risk among undenlyifactors leads to focus
on constructing risk factors that drive the asset returheréfore, capital asset pricing
model [23], arbitrage pricing model [31] and factor modelsus on the risk factors
to explain the asset returns. Capital allocation among &stofs instead of individual
stocks have better advantages such as better risk managfsgen Although fac-
tor investing seems attractive, there is still need fordvedilocation methods since
mentioned factor models do not hold their assumptions irfittencial markets and
overlook the correlations among the assets, which caugfciart allocation [13].
Specifically, the disregard generates portfolios that eatrate on few risk sources.

To overcome previous problems, the portfolio literature Bmphasized the risk bud-
geting and risk strategies with special focus on risk paristfolios [30,21[ 3R]. The
“risk parity” term was introduced by [30] who demonstrateatta portfolio consisting
of 60% of stocks and 40% of bonds might be balanced in termss#taallocation but
not be balanced in terms of risk as stocks generate more @Raro9portfolio risk and
the risk contribution by bonds is less than 10%. Therefdre,author suggests equal
risk allocated portfolios with distributing the same risit@ss asset classes. [29] says
that a well-diversified portfolio should be balanced in éguisk, inflation risk and
interest rate risk. Risk parity strategies have been populdrobtained many atten-
tion among both researchers and investors since 2008 falamigis. Thus, there are
different kinds of risk parity in the literature. The firstjplementation of the risk par-
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ity is inverse volatility strategy (IV) that distributesehweights inversely proportional
to variance of assets![7]. This strategy penalizes the asgedse variance is high.
The flaw of IV strategy is not to consider the correlation amasset classes. This
drawback is corrected by equal risk contribution stratdéfg€) which distributes the
portfolio risk according to both variances and correladiah assets, thus it presents
better risk-adjusted returns than the IV strategy [32, 2Also these strategies are
known as risk-based asset allocation p+fee” strategies since they only consider the
covariance matrix as an input parametér. [3] demonstrhgdshiese strategies fail to
distribute the risk among underlying risk factors such thatse strategies still generate
risk concentrated portfolios due to hidden risk drivers aghasset classes. Then, the
new kind of risk parity is generated by principal componemalgsis and minimum
linear torsion approach that generate uncorrelated righrfs.

To avoid the risk concentrated portfolios, the uncorrelatsk sources have been in-
troduced by[[26] who uses principal component analysis testract the uncorrelated
portfolios that generate the efficient frontier. The unetaited portfolios or principal
portfolios represent also uncorrelated risk factors.| [@ditributes to the literature
with a comprehensive framework that measures and managasitication in a stock
investment universe from Russel 3000 index. His work denmatest how to extract
the main drivers of the asset returns with PCA method. He ddimat the portfolio
risk should be distributed among these risk factors to aelaewell-diversified portfo-
lio with exponential entropy approach. [20] follows the eggch by [24] to determine
the maximum diversification in a portfolio that consists afieus asset classes. Their
investment strategy employs risk budget by principal g instead of individual
assets. This strategy is called as “diversified risk paititgtegy”. The authors show
that the diversified risk parity strategy provides bettsk+adjusted performance in the
multi-asset class set than risk-based allocation mod@sapjplies the same strategy by
[20] to equity domain and reached the same conclusion. [[§6]adopts the strategy
of [24] and demonstrates that |24]'s approach equals thécapipn of risk parity to
risk factors. According to theoretical background, diifeed portfolio among uncorre-
lated risk factors should should outperform the nominag¢diified portfolio. However,
according to backtests by [16], diversification stratedpi@sed on principal portfolios
performs worse than nominal strategies. Similar resuéisadso found by([27]. These
papers present that PCA may not be the appropriate approagtraot the risk factors
since PCA has some drawbacks such that the eigenvectorstaraigoe, the factors
may not be interpretable economically [25].

[25] proposes a new model, namely minimum torsion transétion, that extract the
uncorrelated variables with closely following the orididata. Hence, this methodol-
ogy is expected to be more robust than the PCA approach. [Zpaghe risk parity
strategy with using minimum torsion transformation to coodlity data and found
that minimum torsion approach extracts interpretablefaskors and constructs stable
portfolios compared to PCA method. [17] compares the difietsportfolios gener-
ated by PCA and minimum torsion transformation and concltititsminimum torsion
model solves the problems related with PCA and extracts aistofs better than PCA.
However, the portfolios generated by minimum torsion matyaugperform the nom-
inal strategies, such as minimum variance and maximum sifigation, in terms of
Sharpe ratio. Despite this low performance, minimum taergortfolios significantly
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reduce downside risk and provide low turnover ratio [17].






CHAPTER 2

RISK BASED ASSET ALLOCATION STRATEGIES

This chapter presents the theoretical background of risledballocation strategies,
namely, equally weighted (EW), global minimum variance (GM¥nd risk parity
(RP) strategies. These strategies are also knownfeee strategies and have attracted
investment area especially after the 2008 financial cridie failure of mean-variance
strategy due to estimation errors in the estimated mearideadearchers and investors
to use risk based strategies that do not have to estimatepieeted mean, but only
the covariance structure. Therefore, these strategiegearsally accepted as robust in
the literature due to their good performance over the 20@hGial crisis period.

The aim of risk based strategies is to allocate the risk st to allocate the capital
among asset classes.

2.1 Properties of Risk Based Strategies

The goal of the investment is to obtain positive returns,tbatgains are subjected to
risk. Risk plays a significant role in portfolio management.

2.1.1 Risk Measure

Let V2(w) denote the portfolio risk, which is a positive and incregdianction and
bounded by below zero. That is for i.e> 0, which is

Viw) > e[ w*.

An investor aims to reduce the risk, but it is relevant witk tharket conditions. A
portfolio with more risk will have more earnings in a favolaarket, and will have
losses in a unfavorable market conditions.

There are many risk measures such as variance, semi vari@aiR@nd CVaR. In this
study, we focus on the variance as a risk measure. Variari¢@neasures the disper-
sion of the data from the mean. Its square root is known agiNiylaVariance is the
most popular risk measure due to its computational simpland easy interpretation.
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Giveno?(w) is the portfolio variance, then
o?(w) = w'Sw (2.2)

wherew is the security weight in the portfolio arxidenotes the covariance matrix of
security returns.

2.1.2 Marginal risk contribution

The marginal risk contribution (MRC) of the components in atfodio is calculated
by taking the partial derivative of the whole portfolio riskk each component. The
MRC of asset is given as following.

Definition 2.1. Letw be vector of asset weights andv) be the portfolio risk measure,
then the marginal risk contribution of th& asset is the first derivative of the risk
measure with respect to its weight such that

MRC,(w) = agfuw).

MRC gives an infinitesimal change in the whole portfolio riskused by thé!” com-
ponent. Let denoté/ RC'(w) as a vector representation, i.e.

OR(w)
M =7 2.2
ROw) = =5 (22)
The decomposition in Equatign 2.2 is possible if the riskhaf portfolio is a homoge-
neous function.
Definition 2.2. Let f : * C R™ — R be a function. Therf is a homogenous function

of degreel € R if
flyz) =~"f(x)

fory € Randx € R".

Proposition 2.1. The portfolio volatility,o(w), is a homogeneous function of degree
one,d = 1. Then the marginal risk contributions of asset returns preésd by
o (w) Yw
= " 2.3
o ST for weR (2.3)

Proof. We demonstrate the first statement that the portfolio Vdlat (w) is a homo-
geneous function of degree one. Consider the portfolio Mityaas in Equatiod 211
and leta € R, then

0 < olaw) = ((aw)"S(aw))z = (>W'SW)2 =| a | (W'SwW)? =| a | o(W) = ac(w).

The Equation 213 can be shown simply taking the partial dévig of the volatility as
following
do(w)  owisw)z 1

= = —(W'Sw)z 25w = W
ow ow 2 (W' Sw)

(2.4)

[
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MRC of a specific assetis proportional to theé* row of the Xw product matrices
such that
Jdo(w)
8wi

o (W) = w0} + o; Z W;i0;Pij (2.5)
i#j

wherep;,; is the correlation of th¢’"” and ;" assets.

Then, normalization of the Equatién 2.5 by portfolio riskeg that

ow) _ (Ew);
ow;  o(w)’ (2.6)

2.1.3 Total risk contribution

Risk contribution (RC) is a weighted marginal contribution afanponent.

Definition 2.3. Let o(w) be the portfolio’s risk measure. Then the risk contributién
the i’ componentRC;(w), is

whereM RC; is given as in Equation 2.2.

Total risk contribution requires the equalization of rigkntributions’ sum to the to-
tal portfolio risk. Euler's decomposition demonstrates tklationship between the
portfolio risk measurer(w) and the risk contribution of assetRC;(w). With Euler
theorem, we obtain the risk measur@v) as the sum of the risk contributions of the
components.

Theorem 2.2. (Euler's Theorem) Le™ — R be a continuous differentiable function.
Thenf is homogenous of degreaf and only if forvw € R", it satisfies the following

o) =3 w I

i=1 i

Proof. The proof is omitted. One can find detailed proof(in/[10].

The portfolio volatility can be written as a linear combioatof relative risk contribu-
tions of assets such that

O'(W) = w1 Bgzivlv) ) Bgé}v;/) oWy, 657197\:)
=w'MRC(w)
= 1TRC(w)

where M RC(w) and RC(w) aren x 1 vectors that represent the marginal and total
risk contributions, respectively. shows the indicator function. O
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The percentage risk contribution of tit& component is the ratio of respective compo-
nent risk contribution to the portfolio risk, i.e.

RC;(w)

N RC; (W) = W)

2.1.4 Diversification Index

Diversification is another important property in the rislsed strategies. There are dif-
ferent approaches to measure diversification such as Gifficent, Shannon entropy,
diversification ratio and Herfindall index.

Chaves et. al. (2012) employs the Gini coefficient to measwea@iversification level
regarding to both risk contributions and weights of the &sdeor each strategy, the
Gini coefficient based on risk contributions and weights of assets given as

N
Ginig(risk) Z Oik — Ok) and

Giniy (1) — % S (wis — ), 2.8)

respectively. Hereg, ;. denotes theé' asset volatility of the:' strategy ands;, repre-
sents the volatility of the whole portfolio constructed &ad®n thek strategy.w; ; is
the weight of the" asset in thé: strategy andu,, is the weight of the: strategy.

Gini coefficient takes values between zero and one. If theeve zero, the portfolio
is equally weighted in terms of risk or weights. If the valseone, the portfolio is
concentrated and not well diversified in terms of risk or viaesg

Another approach of measuring diversificatiofsisannon entropythat is given as

= — i RC’i,klnRC’@k

=1

whereRC; ;, is the risk contribution of!" asset in the: strategy. If the risk contribu-
tions from assets are identical, the Shannon entropy hasdikenum valuerf) that is
the number of value included in the portfolio. If the porifak concentrated in one risk
source, then the Shannon entropy measure is one. This reeasiupe re-examined
in next chapter.

Diversification ratio and Herfindall Index can be seen in ll@tg[5], which are not
taken into consideration in this study.

10



2.2 Risk Based Asset Allocation Strategies

This section presents commonly used risk based strategiagly, equally weighted,

global minimum variance, and risk parity strategies. Tha af these strategies is
to minimize the portfolio’s risk with balancing the risk angpassets. Their common
characteristic is to exclude the estimation of the expectedn as an input parameter.

2.2.1 Equally weighted strategy

In equally weighted (EW) strategy, investors hold equal Weigrom each asset in
their portfolio. It is also known as “naive strategy” sint@€loes not require any opti-
mization methods and it is easy to implement. EW strategg doehave any estimated
parameters contrary to classical mean-variance appraaass$et allocation. The es-
timation of the input parameters are not easy and genegealyslto errors. Therefore,
EW strategy is considered as robust by excluding estimaéoameters. It ignores the
risk, return and correlation information of assets. BricE strategy is not dependent
on any moments of returns and optimization constructionredeer, EW approach is
well diversified in terms of weight allocation of assets.

The reason why the EW strategy is counted as a risk-basddggtris it is a kind of
risk management tool. Furthermore, the motivation behidi& not neither a target
return nor the generation of complex performance skKills [5]

The number of assets included in a portfolio determines thights. In the case of
number of securities in a portfolio, each asset weight is

1 .
w; = —, 1=1,...,n.
n

The more assets hold in a portfolio, the lower is the weiglotcation. The key role in
this strategy belongs to the number of securities in a pavtfdherefore, this simple
strategy takes advantage from the law of large numbers afalpes better in the long
run for several reasons![5]. First, EW strategy takes befrefit the small-cap bias.
Second, it is also interested in smoothing of the asset padlailities effectively.

For ann securities portfolio, the return (average return) and isleare

R:%ZZ:;RZ-, and

o=/ (Gyrst = Ly (2.9)

n n n

respectively.
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The marginal and total risk contributions of the asdetcome
w;

\/wiTEwi

MRC; = and

Wi
T )
Vw; Yw;

respectively. Despite of its simplicity and equal capitbbeation advantages, this
approach has some drawbacks such as being illiquid and faekomomic interpre-

tations. However, some researchers claim that EW stratagpedorms the mean-
variance model and its sophisticated extended versioredl@sthe Sharpe ratio, and
it demonstrates better out of sample results than advanoeels[1/8]. On the other
hand, in long term estimations EW strategy is not a reasenafifion compared to
optimized portfolios[[18].

(2.10)

2.2.2 Global minimum variance

Global minimum variance (GMV) strategy aims to construcbéfplio with a lowest
possible variance that lies on the the most left of the efitdi@ntier that is introduced
by [22]. Despite of being on the efficient frontier, it does rely on the expected mean
and the covariance matrix is the only input parameter.

The quadratic optimization problem of the strategy to abtae optimal asset weights
goals to have the portfolio with the minimum risk. The inpargmeters are correla-
tions and volatilities of assets. The unconstrained GM\inojzation problem is

1
w = argmin —w’ Sw (2.11)
weR"™

The solution of Equation 2,11 is

wherel shows indicator function.

If the GMV portfolio is subject to long only and budget comstits, then the optimiza-
tion problem is
w = argmin sw’Lw
weR™
0<w<1.
The marginal and total risk contribution of assetre given as respectively

MRC; = — %
VwlYw;
W

VwlYw; ‘
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GMV strategy equalizes the marginal risk contributions byimizing the assets’
volatilities and correlations. It can be thought that wésgare obtained by equaliz-
ing the marginal risk contributions.

Some researchers find that GMV strategy outperforms theetar&ighted portfolio
[5,[13] since its low volatility and high return result in higharpe ratio as opposed to
market-weighted portfolio. It can be result of the low vdiat anomaly such that low
risky assets outperform the high risky assets in terms afmetin the long period.

GMV strategy only pursues the reduction of the portfolid tiserefore it does not pro-
vide a well diversified portfolio as one expects since GM\at&ggy concentrates on the
low volatility stocks. [8] finds that GMV approach actuallgnerates an undiversified
portfolio. GMV portfolio is not a well diversified in both c#pl allocation and risk
allocation.

2.2.3 Risk Parity

Risk parity (RP) is an asset allocation strategy that allectite weights according to
risk characteristics of asset classes. The main concepid#iis method is to dimin-
ish the concentrated risk from one market regime by obtgiassets based on their
respective amount of risk. Covariance matrix is the only tgarameter to eliminate
the estimation error in the expected return. The aim of tipeagxh is distributing the
whole portfolio risk equally based on the volatility of inded asset classes. The risk
contribution of asset claggo overall risk is the center interest of the RP.

Two different approaches in RP strategy are inverse vdiathd equal risk contribu-
tion strategies.

2.2.3.1 Inverse Volatility Strategy

Inverse volatility (IV) strategy that is also known as nangk parity allocates the
weights of assets inversely to their risk. The volatilittéthe components determine
the component weights. Investors apply this method asguthewniform correlations
among all asset classes. In other words, there is no roleecdigbets’ correlations in
this strategy. The optimal weights of the components arergiy

-1

0;

Z?:laj_p

The asset class with higher volatility has low weight in IVaseégy. Note that if asset
classes have equal volatilities, i.e; = o, then strategy would be equally weighted
strategy, i.ew; = n~! for n assets.

w; = ii=1,2,...,n (2.14)

If the portfolio consists of only two asset classes, it pdeg the same results with
the equal risk contribution approach. Furthermore, IVtetyga generates an optimal
portfolio when assets have the same Sharpe ratios andadkeadirrelations between
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two assets. However, if there are more than two asset clabseportfolio becomes
very sensitive to the correlation of the assets. The igraanthe relationship between
different securities will thus lead to the potential undsible portfolio risk problem.
The whole portfolio risk is not indeed diminished than orexXpectations. Therefore,
one who generates an IV portfolio should carefully seleetdlsets since the high
correlation among the assets will still cause the same nigkh@nce the portfolio will
even be dominated by one specific risk.

2.2.3.2 Equal Risk Contribution Strategy

From the point of risk budgeting, asset allocation shoulthiderms of risk contribu-
tions of asset classes rather than in terms of asset weights.means that specify-
ing the preferred risk contributions become starting ptortonstruct the appropriate
portfolio. Then the obtained portfolio has asset weightsheined by the desired risk
allocation.

Risk contribution is redefined by [32] that introduce the gskitribution constraint of
each asset class, called risk budget. Suppose, thereamset classes and set the risk
budgets &, bs, . .., b,) and targeted risk contributions atERC,, T RCs, ..., TRC})

to general risk measure.

Then the risk budgeting portfolio is given as

TRCl(wl,wg, Ce ,wn) = bl
TRCQ(wl,UJQ, s 7wn) - b2

TRC;(wy,wa, . .., w,) = b, (2.15)

TRC,(wy,ws, ..., w,) = b,

Risk budgeting portfolio does not require the optimizatiechinique and expected
return estimation. However, there are some drawbackd, fiescomponent exposures
are not clear. Second, if the assets have negative risk tsjdppe portfolio risk is
concentrated on other assets, which is not consistentmettiversification aim. Thus,
to overcome these problems above system can be applied aireeao system, i.e.

then the optimization problem is

wrp = argmin
(2.16)

wherewpgp is the risk budgeting portfolio weight matrixy; represents each asset
weights in the portfoliop; denotes the risk budget vector. However, the analytical
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solution of the system in optimization in Equatfon 2.16 ispassible since it provides
the more than one optimal solution. Then,|[21] proposes démap solution that is
also known as “equal risk contribution” strategy (ERC) sudt the risk contributions
of each asset are equal. The aim of the approach is to assti@ihcomponent does
not have a dominant role on the whole portfolio risk so thatsame risk budget or
contribution should be evenly distributed to each compan&his can be shown as
following
O(w) O(w)

‘ 8wl — 8wz '
Then the objective function is the minimization of the seuaifrthe difference between
risk contributions of all pairs of components, i.e.

Vi, . (2.17)

fw) =303 2, W, (2.18)
i=1 j=1 ' ¢
Were = argmin f(w)
W 1 (2.19)
0<w<1.

The minimization of objective functiofi(w) is required. The optimization problem to

solve forwgpc is
v@knc Dict Zj:l(wif;TV\? - wja(_l\:f\?)2
g o (2.20)
0<w; <1.

The volatility of ERC portfolio is higher than the volatilitgf GMV portfolio and
smaller than the volatility of EW portfolia [21], i.e.

2 2 2
oemv < Ogre < Opw-

Contrary to the IV strategy, ERC strategy considers the arogl among asset classes.
However, it still underestimates the well-diversified fpalib with considering risk
from asset classes and ignoring the underlying risk factokewise 1V strategy, ERC
approach may be heavily exposed to few number of risk sowedsnay have con-
centrated risk structure as opposed to risk diversificajimal.
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CHAPTER 3

DIVERSIFIED RISK PARITY

A general information about diversified risk parity (DRP) éason the works by
Meucci (2010)[[24] and Lohre et al. (2011) [20] is presentEhis is a special case of
risk parity (RP) with employing uncorrelated portfolios a&krsources. Applying risk
parity strategy to uncorrelated risk sources and maxirgi#tie number of risk sources
in a portfolio is known as “diversified risk parity strategyrhe theory of portfolio con-
struction based on the DRP is given with its terminologies: d&tailed information
and proofs, one can see [20] 26] 24, 25].

In the previous chapter, we examine the RP strategy that aidisttibute the portfolio

risk equally among the included asset classes in the piortfod accomplish this goal,
the asset classes are required to be minimum correlategosgible uncorrelated to
each other.

As mentioned before, correlation among asset classes leaoaie more unstable and
higher than expected, especially in market drops. Bhansall. e[3] demonstrates
that RP portfolio constructed with asset classes is not adwadirsified portfolio. The
overlap of correlations between asset classes lead to passiication of RP strategy.
Specifically, during the financial crisis, correlationsre@se significantly exceeding
90%.

Even if the portfolio is constructed from different assetsses, the portfolio is gen-
erally equity risk concentrated since almost all assetsela$ave a correlation with
equity market[[3]. Therefore, each asset class is exposetbte than one risk and
investing in different asset classes do not guarantee asiieel portfolio in terms of
risk. The hidden risk concentration problem leads to acackeand investors to focus
on independent and underlying drivers of asset returns Wegladiversified portfolio.
These drivers are called risk factors.

For a well-diversified portfolio, the key point is that thekisources or risk factors
should be uncorrelated. Partovi and Caputo (2004) [26] usetimcipal component
analysis (PCA) to generate uncorrelated portfolios thatlse called as uncorrelated
risk sources. However, PCA has some drawbacks and does midgtbe robust re-
sults in backtesting [27]. Therefore, Meucci et al.|[25]pwse a new approach namely
minimum linear torsion (MLT) model to extract uncorrelatesk factors. Lohre et al.
[20] apply RP strategy to uncorrelated portfolios using PCA BT and maximizes
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the number of risk sources in a portfolio. This strategy ledd'diversified risk parity”

[20].

Contrary to the RP strategy based on asset classes in theymseaat, we focus on
the RP approach that aims diversification based on the m&irsoigrces driving the
asset returns. In this part, we apply DRP strategy to both PGIAVAAT approaches.
First, we give some theoretical background of PCA and MLTdfarmations, then we
introduce the synthetic portfolios or risk sources gereetfitom these strategies.

3.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate stiaas dimension reduction
technique that uses an orthogonal transformation of vi@sahto the linearly uncorre-
lated synthetic variables, namely principal componen&sjP The general aim of the
PCA approach is to find another basis that denotes a linearinatidn of the original
basis and furthermore, this new basis redefines the dataalpti

For calculating PCA, the key point is to determine the new D#sat re-expresses
the data in a best way. Thus, it is important to construct #e basis based on the
independence between principal components. The varidnice original data is taken
into consideration to define the independence from the pdiRCA. PCA decorrelates
the original data by obtaining the directions that have maxn variance and the found
directions are utilized to determine the new basis.

Consider a multivariate data mate. This matrix is centered without loss of general-
ity, i.e. X = X — m~ 111X, wherem denotes the number of observations. The n
covariance matri¥ of matrix X is

S=n"'XTX.

Then, the linear combination of new variables are writtefollswing

Pi = Zajxij :OéTXZ', 1=1,...,n, (31)
j=1
where« is a weighting vectofas, ..., a,)" andx; represents the vector of obser-
vations, i.e.(z;1,...,z;)". To define sets of normalized weights, the maximization
of variation in thep;’s is required with using PCA. The first step is to find a vector
e = (e,...,e,n)? that decomposes the covariance maffivas large as possible
such that
Cov[Xe] = E[(Xe)" Xe] - E[Xe] E[Xe|] (3.2)
= Elel X" Xe] - Xel E[X]" E[X]e] (3.3)
=€l Cov[X]e, = €] Se,. (3.4)
To guarantee not to obtain arbitrary large values, the naxstcaint is applied
e |P=ele, = 1. (3.5)
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Rearranging formula in Equati¢n 8.1 with the constraint 3v8ga maximizing prob-
lem of mean square as following

1 — .
—E P subjectto || e |[*=1,
n

=1

wherep;; = Z?Zl e;17;; = €%;. The linear combinatiop;; is known as a “principal
component score”. To continue to define the basis of new basaeach projection
must be uncorrelated from previous ones, i.e.

n
Zejkeﬂ:e;‘fel:O, k<t<n,

j=1
wheret is taken number of steps that are restricted by the numbewafiables. This
ensures orthogonal projections of the new basis.

Above problem with constraints can be defined as an optimizgroblem

max e’ Se — \(ele — 1), (3.6)
€1
that has a solution of

(S—=Al)eg =0

Se, ~ e (3.7)

Above optimization problem finds the eigenvalueand corresponding eigenvectors
e; of the covariance matri%. An eigenvector demonstrates the component direction in
the new space and its eigenvalue explains how much varibeoeis in the component
direction.

The semi-definite covariance matigkcan be decomposed into an orthogonal matrix
U and a diagonal matrid, whose entries are eigenvalugs> --- > \,. Then the
decomposition is

S=E"AE =) \eel. (3.8)
j=1
Using Equation 3]6 and let defigg = Ue;, where
& |f=e"6 = (Ue) Ue =eU'Ue =c'e; =[ e |,
then the optimization problem in Equatibn13.6 is rearraragd

mxeAel_ max e
Taoq - Zu

er: eele =1

This reaches its maximum value whén = 1 ande; = a;. a; is the unit vector that
has one in the first entry. We know that each component is veleded from each
other such that

0= Cov[Xe, Xe] = eTCov[X, X]e, = el UTAUe, = &] A&,. (3.9)
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Sinceé; = a;,0 = \1é91 < €91 = 0. Then, the new optimization problem is

max élA& = max Z Y

eg :1 =0 gez 1621 0

This reaches its maximum value whén = 1 andé, = a,. a, is the unit vector that
has one in the second entry.

This optimization is repeated untilprincipal components are found.

3.1.1 Principal Portfolios

In real-life applications, portfolios consist of seclegiwith non-zero covariances. Par-
tovi and Caputo (2004) [26] employs PCA to construct the uretared portfolios,
called principal portfolios. The definitions and theoremghis section are based on
[26, [24]. These portfolios are realizable whenever thereoionstraint on short-
selling. Furthermore, these portfolios can be evaluatathasrrelated risk sources.

Definition 3.1. [Principal Portfolios (PP)] LeE be ann x n covariance matrix. Ap-
plying principal component decomposition Ibas in Equation_318, we obtain that
ETYE = A = diag(\, ..., \,). Itis equivalent toE~"AE~! = 3. The columns of
E are called principal portfolios.

Definition 3.2. Let w be ann x 1 weight vector of original portfolio, and’ is an
eigenvector matrix of covariance matdixof original data. Then, unique vectais p
satisfying
w = E?I)pp

and equivalently

’Ll~)pp = Eilw = ETw
are called principal portfolio weights.
Remark3.1 Let R be a matrix consisting of returns of original securitiegn® »» is
a vector of combination of asset returns that are repred@mthe principal component

space. ThetRpp satisfies that i
ERpp =R

which implies to B
Rpp = E~'R.
Using Definitio 3.1, next proposition is presented.

Proposition 3.1. The return ofi®" principal portfolio 7»p; is linear combination of
original return matrixR = (ry,rq,...,7,). Tpp; IS given as

~ T .
Tppi=¢ R, 1=12....n

The variance O;FPP,i is
2/~ T
o (’r'ppﬂ') =¢ Ye; = /\z
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with the covariance between different principal portfoliisand j**

CO’U(pr’i, 77]) = 6?26]' =0.

This refers that thé'" andj* principal portfolios are mutually uncorrelated, thus an
investor is able to invest in uncorrelated principal pditi® or risk sources. Further-
more, these principal portfolios are constructed with theances as large as possible
via the constraint”e = 1. Hence the first principal portfolio has the largest var@anc
A1, second portfolio has the second largest variakce This continues: principal
portfolios withn variances ana'* principal portfolio has the smallest variankg

Total variance of principal portfolios is established bxtgroposition.

Proposition 3.2. Let R be return of original assets angf(?) denotes the variance of

original securities, then total variance of principal ptotios o2(Rpp) is represented
as

o*(R) = 0*(Rpp) = tr(S Z)\ —ZU Tpp,i)

whereX: is a covariance matrix of original data); represents eigenvalues bfand
o?(Tpp;) is a variance of each principal portfolio.

As the synthetic portfolios are uncorrelated, we can adddni@nces directly.

Remark3.2 Since the sum of the each principal portfolio variance isa¢do total
variance, the risk contribution of each principal portidio total variance can be writ-

ten as
o*(Fppi) Ai
02(R) A+t +A,

As seen from the Proposition 8.2, total variances of origitsaa return ) and total
variance of artificial principal portfolio returns?(p) are the same. However, total
variance of uncorrelated principal portfolios are dirg@tiditive. The RemarK(3.2)
indicates the variance contribution of each individuahpipal portfolios to total risk.

Remark3.3. The marginal risk contribution of each principal portfoigoequal to

. ) Dom \s
3U(RPP) B 2U~JPP1')\1' _ Wppiti (3.10)

awi 2 \/ Zz 1 wPPz , U(RPP)

Since covariances in the principal space are equal to 2zexaigk contribution of each
principal portfolio is given by

MRCPP =

2 2
Wpp,Ai wPPz)‘

RCpp; = = (3.11)
Dic1 Whphi o(Rpp)
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3.1.2 Diversified risk parity using Principal Component Andysis

Lohre et al. (2011).[20] apply risk parity strategy to unetated portfolios and dis-
tribute the portfolio risk among uncorrelated risk sources prevent the risk concen-
tration, a portfolio should have maximum number of risk sesrand the risk should be
allocated among these risk sources uniformly [24]. To aehtlis goal, exponential
of Shannon entropy should reach its maximum value. The diefisiand theorems in
this section are based dn [24 20].

First, we examine how Meucci (2010) [24] utilizes Shannotr&py as a risk diversifi-
cation measure, and then we explain how risk parity strateggplied to uncorrelated
risk factors.

It starts with introducing some terminologies which aredisg Meucci (2010) for risk
diversification in principal space. Following Meucci’'s @) path, firstly the variance
concentration curve is introduced as

VPP = Whpi\i, i=1,2,...,n (3.12)

wherevpp; denotes the variance of ti& principal portfolio, whose weight i8pp;
and variance is;. Due to uncorrelated link among weighted principal porti®| the
total variance is

oh(w) = w'Sw

w EAE w
= 0 p(Ung)
Ziﬁl wPP,i)‘i

= D i1 VPP

(3.13)

Then, the standard deviation of portfoli{wpp) iso(wpp) that is utilized in volatility
concentration curve given as

~2
Vpp; Wpp A
Spp; = (Pf’z = PRI i=1,2,...,n. (3.14)
n ~
op\WpP Z¢:1 w%P,i)\i

In fact, Equatiori_3.14 also demonstrates the sensitivityaofance contribution from
each principal portfolio to changes in portfolio weighta.dther words, the volatility
concentration curve is a decomposition of portfolio vdigtregarding the correspond-
ing weighted principal portfolios [19].

After that, the diversification distributionis given as following[[24]

Upp w%Pi)‘i 1.9 (3.15)
Ppp; = —— = =5 =2 , 1=1,2,...,n. )
op(Wpp) Do WhpNi
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Considering the given expressions, it can be intuitivelg siaat each principal portfo-
lio should affect the portfolio risk equally. Since the mmial portfolios are uncorre-
lated, the manager who wants the well-diversified portfshould invest the principal
portfolios to achieve the uniform diversification distritmn. This uniform diversi-
fication distribution leads the principal portfolios to leathe same exposures to the
shocks.

When the variance concentration curvg £;) is normalized, the following property is
obtained

ZpPP,i =1, 0<ppp; <1
i1

Then, if probability massespp; are almost equal for eaagha well-diversified port-
folio is constructed. An investor should avoid concentigieobability masses. With
utilizing the probability masses-p;s, this challenge is achieved by maximum entropy.

Entropy, a concept used in Physics to measure the level efrtaiaty of a system, has
also a relationship with portfolio diversification. Theatbn between portfolio diver-
sification and entropy is based on the notion of uncertaiAtgo, entropy is utilized

as the level of predictability of a stochastic system in tnfation Theory. Higher en-
tropy means less predictable system. If additional infdromeenters the system, this
decreases entropy value. From the same point of view, iorgegse risk diversification
in the case of lack of information or uncertain financial nedsk Thus, especially the
Principle of Maximum Entropy plays an important role in maasg diversification.

The principle is based on the foundation that estimatiomefarobability distribution

requires the selection of distribution which leaves thgdat uncertainty (i.e. maxi-
mum entropy) consistent with the applied constraints. Thuoyg additional assump-
tions are not needed in the calculation. More details andfprfor entropy can be

found in [34 /12 3B].

Definition 3.3. Let p be a discrete probability function on given setz,, . . ., z, with
pi = p(z;), theentropyof p is given as

H=-— Zpilogpi. (3.16)
i=1

The link between risk diversification and exponential of @@ entropy is given in
next definition.

Definition 3.4. Consider Shannon Entropy given in Definitlon]3.3 and diveraifon
distribution of principal portfolios in Equatidn 3.15. Thember of uncorrelated fac-
tors, Ng,.¢, that are the exponential entropy of the diversificatiotrithstion is defined
as

Npp pnt = exp(— ZPPP,ilogpPP,i)~ (3.17)

=1

Remark3.4. From Definition 3.8 an@ 314, the following results can be heak
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() Npp g reaches its maximal value (i.8/pp g, = n) if the system is completely

. . : . . 1
unpredictable, where all principal portfolios are equiikely i.e, ppp, = — for
n
all 7. This case represents the well-diversified portfolio.

(i) Nppgn: has the minimum valueVpp g, = 1, if the system is completely de-
terministic where the probability of one principal porttols one. In this case,
a sharp peak happens in the diversification distributionlaads ill-diversified
portfolio.

(iii) If probability massepp ;s are uniform ork (such that < n) principal portfo-
lios thenNpp gne = m.

Npp en ranges from one (highest concentrationp thighest diversification). The ex-
ponential of entropy measure is defined for long-only pdidfowhose sum of weights
is one. In fact, the maximal value of measure is achieved vihemaive risk parity
strategy (i.e. weights are inversely proportional to assetlatility) is applied [28].
Also the number of risk sources in the risk space are denotedyp ...

Given a portfolio without constraints, maximum entropy chi@ved ifppp; has uni-
form distribution. This achievement is a sign that each eiglally contribute to total
risk.

Definition 3.5 (Diversified risk parity) If the diversification distribution in Equa-
tion[3.15 is close to uniform, the strategy is called diviegdirisk parity.

The optimization problem is
argmax Npp, g

wpp
subject to17wpp = 1 (3.18)
—1<wpp <1

DRP is also obtained by applying ERC optimization in EqualicZd2o principal
portfolios with using Remark 3.3 gives that

Wpp = argmin  f(Wpp)
subjectto1”Wpp = 1
O<wpp<1 )
where f(Wpp) = 377, >0 (RC; — RCy)?

(3.19)

Due to zero covariances in the principal space, the weiginisbe calculated from a
closed-form solution as in Equatign 2114. Then the optimeights of the principal

portfolios are given by
N (20

Wpp; = —Z?:l(\/x),l-

Therefore, the optimal weightg;. . ; provide the equal risk contribution from each risk
factor.

(3.20)
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ERC to principal portfolios and DRP strategies are based derdiit risk measures.
While ERC strategy aims equal risk contributions, DRP apprdacdets the uniform
diversification distribution. However, the optimizationlstions in Equatioi 3.19 and
Equatior3.18 give the same results without any further tcaims since the risk con-
tributions RC' pp; in principal space almost equal the diversification distitn ppp;.

3.2 Minimum Linear Torsion Transformation

PCA approach has some drawbacks such that the factors from &@Wiche econom-
ically interpretable and the factors are presented by Igeraialues may be unstable
over the time. Furthermore, it does not provide robust tesnlbacktests [27, 16].
Minimum linear torsion (MLT) model is a way to extract uncelated risk factors.
The definitions and theorems in this section are based 6iP]25,

LetX (= X1, Xy, ..., X,)T be arandom vector that gives the returmafumber of
assets. represent thex m random matrix withn variables andn observations. Then,
the orthogonal variablesy;, can be obtained as

Xt — t X X,
wheret is ann x n transformation matrix that is generated by MLT of originatal

The MLT approach guarantees that synthetic variables septehe nearest uncorre-
lated representation of original data. Furthermore, navakiles have the same volatil-
ity with the original variables. Thus, the covariance matf new dataD? can also
rewritten as

D? = diag(%)

whereX: denotes the covariance matrix of original data.

Diagonalizing covariance matriX is equivalent to diagonalizing the correlation matrix
C,ie.
C =X = diag ¥)*Cdiag ¥)'/?

wherediag(.) presents the diagonal elements of a square matrix and itsesqoot is
the square root of the diagonal elements.

Let us consider Cholesky decomposition of correlation matras below

C =LDL (3.21)
= LD'Y2DY2[/ (3.22)
= (LDY2L)(LDY?L), (3.23)
wherelL is a lower triangular matrix an@ is a diagonal matrix. Define
¢c=LDY?L' and c¢=/¢, (3.24)
then
C=cd=c (3.25)
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The minimum linear torsion transformation requires theimination of the net track-
ing errors between the generated variables and originéblas. The optimization
problemis

, 1 & (tX); — X;
_ 2 N T A 2
t argmin . ;:1 Var( - ) (3.26)

Corr(tX)=Inxn

whereo represents the volatility of original data. Transformatatrixt ensures new
variables are uncorrelated.

The minimum linear torsion transformation is obtained byimizing the squared net
tracking errors between the original data and new syntldetia. Then, Equatidn 3.26
can be rearranged as

t= —argmin [NTE{x;,z:}*+ -+ {2, 1.} (3.27)
Corr(tX)=Inxn

wheren is the number of original variables andl’E{.} represents the net tracking
error (NTE) function. Then the solution for the NTE becomes

> ONTE{z,,,2;}* = ) Var(z, —2;) = Y _Var(ajz — bjz) (3.28)
i=1 =1 =1

= iVar([ai — bz]lﬂi) = Zn:Var[ai — bz]’E[a, — bl] (329)

([t LIS — L)) = tr(fSt— % -t %) (3.30)
= tr(D?) + tr(X) — 2tr(t'S), (3.31)

whereq; is thei?" column of matrixt andb; is thei'" elementary factor. The mini-
mization theNT E can be obtained by maximizirig(¢'Y) (for details se€ [25]).

First, let decompose the matiixby PCA, i.e.X = FA?LE, E is an eigenvector matrix
andA? represent the eigenvalue matrix. Ther(}'S) can be expanded as

tr(t'S) = tr(DD ' EAAE). (3.32)
Let P = D~ EA, then Equation 3.32 can be rewritten as
tr(t'Y) = tr(P'AE'D) (3.33)

whereP holds the property’ P’ = I,, and,, denotes the: x n identity matrix. Next,
we apply the singular value decomposition/t&’ D as

AE'D = USV' (3.34)

whereU andV are orthogonal matrices to each other. The diagonal méatiras
singular values o\ E’D. The substitution of\ £’ D to Equatiori3.34 gives

tr(P'AE'D) = tr(P'USV') = tr(V'P'US). (3.35)
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Let V/P'US denote asZ that satisfies7Z’ = I,,. Then substituting th& to Equa-
tion[3.35 gives

tr(V'PUS) = tr(ZS) = 3 zusu < Y i (3.36)
=1 =1

Equation 3.3b is maximized whes, = 1 for all 7, i.e. Z = I,. Solving the Equa-
tion[3.36 forP’, we obtain

Z=V'PU=1,
then,
P =UV".
SinceP’ = D~'#'EA, the transformation matrix can be solved as following
P =D 'WEA (3.37)
UV' =D YWEA (3.38)
t=FEAN'UV'D. (3.39)

Then the transformation matrix is
t=EANT'UV'D. (3.40)

Definition 3.6. [Minimum-Torsion Transformation] Consider a random vectf=
X1, X, ..., X,)T which represents asset returns. Minimume-torsion transéion
minimizes the tracking error between veciorand new vectot X and ensures that the
vectorsX and¢X are uncorrelated. Torsion matrixs given below

n

- | 1 (tX); — X,
t= argmin - ; Var( . ) (3.41)

Corr(tX)=Inxn

whereo; represents the volatility of the vectar;.

Theorem 3.3.Let X (= X;, Xs, ..., X,) be a random vectot, is ann x n rotation
or torsion matrix, then minimum linear torsion transfornoat exists as described in
Definition[3.6. The transformation matrixn Definition[3.6 is equivalent to

t = diag(c)ac 'diag(o) (3.42)

wherediag(.) takes the diagonal entries by making the diagonal matrixsehmn-
diagonal entries are zero and diagonal entries consist>ofl vectorwv, c is given in
Equation 3.2b¢ is a perturbation matrix computed with using a recursivetlgm
as given in Table3]1.

The Equatiol 3.41 is equivalent in solving below optimiaati

t* = argmin tr(Cov{diag(o) 'tu — diag(o) ') u})

subjecttoCorr{tu} =1 (3.43)

where Coy.} is then x n covariance matrix of the inside subjegtdenotes the mean
of the variablesCorr{.} is then x n correlation matrix of the inside subject ahés
then x n identity matrix.diag(.) extracts the diagonal entries of the covariance matrix.
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Let Q = diag(c) ' 1 denote as the normalized means. Then

Yo = Q, = diaglo) 'S, diago) ! (3.44)
where( is the correlation matrix of means of the variables.
t* = argmin tr(Cov{diagic) ‘tdiagc)Q — Q}). (3.45)
Rewriting Equatioi 3.45 in a different way gives as
t* = diag(c)adiag(c) " (3.46)
wherea solves that
o = argmin tr(Cov{(a — I)Q}) (3.47)
= argmin tr((a — 1)Q(a' = I)) (3.48)
= argmin tr(aQa’ — aQ — Qa’ + N) (3.49)
= argmin tr(afa’ — 2aQ) + a. (3.50)

We can decompose the correlation mafinith Cholesky decomposition as in Equa-
tion ??. Then Equatiof 3.50 becomes

o = argmin tr(acda’ — 2acc) (3.51)
We denoter = ac, then
of =1t (3.52)
where
7F = argmin tr(r7’ — 27¢). (3.53)

Meucci (2014) uses the solution froml [9], the optimizationBquatior 3.53 has an
iterative process with two steps.

First, denote
T=uxy

wherez is a diagonal matrix ang is orthonormal matrix. In step 1, we assume the
diagonal matrixz written as77’ = 2. Then the optimization in Equatidn_3]53 is
re-written with using the symmetry of Cholesky decompositks following

7F = argmin tr(r7’ — 27¢) = argmax tr(cr) (3.54)

The Procrustes problem seeks an orthogonal matrix thaglgltansforms a matrix
into a second matrix. The optimization in Equation 3.54 negguemploying the solu-
tion of orthogonal Procrustes problem from[33] whose sotuts given by [25]

™ = 2(y/(2c2x)) tae (3.55)
vt =1 = ((2c22)) e (3.56)
r* = diag(diag ' (yc)). (3.57)

The solution ofr* is obtained by alternating the' andy* in Equation$ 3.596 arld 3.57.
The algorithm ofr is given as

Goal: Perturb ¢)
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Table 3.1: The algorithm of perturbation matrif25, p. 7]

Stepl Fix diagonal matrixc as an identity matrix,
xz=1.
Step2  We know thatc = ev/Ae’. Then, using the solution of orthogonal Procrustes proplem
u comes from the Cholesky decomposition[in_3.24
u = (zc?x)'/2.
Step3 Rotation property of the transformation mattigomes from
Y= utze.
Step4  Stretching property of the torsion matrfixxomes from
z = diag(diag ™ (yc))
wherediag ™! (.) extracts am x 1 vector on the principal diagonal.
Step5 Finally, perturbation is
T =2y
Step6  If the outcomes of converges, the algorithm stops, otherwise it goels to

Proposition 3.4. Let Y be ann x n matrix. It can be decomposed by torsion matrix
as following
Y=)t8 ! (3.58)

whereX, consists of only diagonal entries, i€, = 0,1,0:2, ..., 0.

3.2.1 Minimum Linear Torsion Portfolios

The design of the principal portfolios is based on captuthmgmost of the original
assets’ volatility. They are statistical factors that do exhibit clear economic inter-
pretation and depict unstable character over period asiomexat before. To overcome
these problems, Meucci et al. (2015) propose a factor mbdeptroduces uncorrelated
portfolios. We design minimum linear torsion portfoliosfaBowing. The definitions
and theorems in this section are based on([25, 2].

Definition 3.7. [Minimum linear torsion portfolios (MTP)] Let is ann x n mini-

mum torsion transformation matrix as given is Theofem 3.8chHecolumn oft ma-
trix, t1, 19, ..., t, for nnumber of assets, is called “minimum linear torsion pordfol
(MTP).

Definition 3.8. Let w be ann x 1 weight vectors of original portfolio, andis a
minimum torsion matrix of covariance matnxof original data. Then, unique vectors
wyrp Satisfying

Wyrp =t w
are called minimum torsion portfolio weights.
Remark3.5. Let R be a matrix consisting of returns of original securitiee,rtﬁMTP’i

is a vector of combination of asset returns that are reptedeém the minimum torsion
space. ThemR,,;rp satisfies that

R =t'Ryrp
which implies to 3
RMTP == t/_lR.
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Using Definitio 3.7, next proposition is presented.

Proposition 3.5. The return ofi’> minimum torsion portfolia ;7 p; is linear combi-
nation of original return matrixR = (71,72, ..., 7). Tarp, IS given as

~ /1—1 .
Tvmrpi =t;, R, 1=1,2,...,n.

The variance of; is
o (Farps) =t 5t
with the covariance between different principal portfoliisand ;"

Cov(Tyrp,i, Tmrpy) = 0.

This refers that the/” and j** minimum portfolios are mutually uncorrelated, thus an
investor is able to invest in uncorrelated principal pditi®or risk sources.

Total variance of minimum torsion portfolios is establidh®y next proposition.

Proposition 3.6. Let R be return of original assets anef(R) denotes the variance of

original securities, then total variance of principal pmﬁ0502(RMTp) is represented
as

o*(R) = o*(Ryrp) = Z A = Z ari(Farre)
i=1 i=1

whereX is a covariance matrix of original datay; ; is the variance of each minimum
torsion portfolio.

As the synthetic portfolios are uncorrelated, we can addahni@nces directly.

Remark3.6. Since the sum of the each minimum torsion portfolio variasa@xual to
total variance, the risk contribution of each minimum torsportfolio to total variance

can be written as )
o? (73) O

o*(R) o-t2,1+0’t2,2+"'+0-1€2,n‘

As seen from the Propositién 8.6, total variances of origitaéa return ) and total
variance of artificial minimum linear torsion (MT) portfolireturns R,,rp) are the
same. However, total variance of uncorrelated MT port®éce directly additive. The
Remark [[(3.6) indicates the variance contribution of indi&dMT portfolios to total
risk.

Remark3.7. The marginal risk contribution of each minimum torsion palit is equal
to

GJ(R) 1 WMTPiOti

MRCyrp = 5 = = 2WnMTPi0L; =
i 2\/Zi=1 w%JTP,iUM

(3.59)

g (RMTP)
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Since covariances in the minimum torsion space are equalt the risk contribution
of each minimum torsion portfolio is given by

~9 ~9
- W A\ W Oy

MTPiNi MTP,iOt,i
RCyrpi = = = . (3.60)

\/EL w%/]TP,iO-t,i o(Rurp)

3.2.2 Diversified Risk Parity using Minimum Torsion Transformation

The derivation of diversified risk parity from minimum toosi portfolios (O R Py;rp)
follows the similar path as in-3.1.2. Firstly the variance@entration curve is intro-
duced as

VMTPi = WiirpiOss: i=1,2,...,n (3.61)

wherev,,rp,; denotes the variance of th& minimum torsion portfolio, whose weight
is wyrp,; and variance isr, ;. Due to uncorrelated link among weighted minimum
portfolios, the total variance is

P(’wMTp) = w ZU) = U},t/ 12 t~ 2U} = wMTPEthTP = O'P<wMTp)
= Zz 1 wMTPthz = Zz 1 UMTP-

(3.62)

Then, the standard deviation 6wy, rp) is o(wyrp) that utilized in volatility con-
centration curve given as

~9 2
UMTP WyrpiOt .
! b (3.63)

1=1,2,...,n.
UP wMTP
Zz 1wMTPzUtz

SMTP; =

In fact, Equatiorh_3.63 also demonstrates the sensitivityaofance contribution from
each MT portfolio to changes in portfolio weights. In othesrds, the volatility con-
centration curve is a decomposition of portfolio volajiliegarding the corresponding
weighted MT portfolios([19].

After that, the diversification distribution is given asl@Ving

) w2 o2

MTP;i MTPiOt .

DPMTPi = —5 =\ — —=n 5 1=1,2,...,n. (3.64)
op(W) D i wMTPzOtz

Considering the given expressions, it can be intuitively shat each minimum tor-
sion portfolio should affect the portfolio risk equally. f8e the MT portfolios are
uncorrelated, the manager who wants the well-diversifietf@m should invest these
portfolios to achieve the uniform diversification distritan. This uniform diversifica-
tion distribution leads the minimum torsion portfolios tavie the same exposures to
the shocks.
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When the variance concentration curvg;{p;) is normalized, the following property
Is obtained

ZPMTP,Z‘: 1, 0<p <1
i1

Then, if probability masses,rp;s are almost equal, a well-diversified portfolio is
constructed. An investor should avoid concentrated pridibamasses. With utiliz-
ing the probability massesy;rp;S, this challenge is achieved by maximum entropy.
Since the entropy is introduced before, we give directlydaénition the number of
uncorrelated risk factors based on minimum torsion transébion.

Definition 3.9. Consider Shannon Entropy given in Definition]3.3 and diveraiion
distribution of MT portfolios in Equation 3.64. The numbdrumcorrelated risk fac-
tors, Nyrpent, that are the exponential entropy of the diversificationritistion is
defined as

N MTP,Ent = 6351?(— ZPMTP,il()gpMTP,i>- (3.65)
i=1

Nurp.ent Yanges from one (highest concentration)t¢highest diversification). The
exponential of entropy measure is well-designed for lonly-portfolios whose sum

of weights is one. In fact, the maximal value of measure iseaeldl when the naive
risk parity strategy, i.e. weights are inversely proporéibto assets’ volatility, is ap-

plied [28]. Also average number of relevant assets in tHesjmce are denoted by
Narrp,Ent-

Given a portfolio without constraints, maximum entropydsi@ved ifpy,7p; has uni-
form distribution. This achievement is a sign that each eiglally contribute to total
risk.

Definition 3.10 (Diversified risk parity using minimum torsion transfornaat). If the
diversification distribution in Equatidn 364 is close tafarm, the strategy is called
diversified risk parity.

The optimization problem becomes

argmax Narp,Ent
wArTP

subjectto1”wyrp = 1 (3.66)
-1 <wyrp <L

DRP is also obtained by applying ERC optimization in Equdfi@@20 MT portfolios
with using Remark317 gives that

Wisrp = argnT1in f(Wyrrp)
subjecttol1’ wy,rp =1
0 <Wyrp <1 (3.67)

where f(Warp) = Y1, Y1, (RC; — RC;)?
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Due to zero covariances in the minimum torsion space, thghteican be calculated
from a closed-form solution as in Equatibn 2.14. Then thenugdtweights of the
principal portfolios are given by

b _ W) (3.68)

T L A

Therefore, the optimal weights* provide the equal risk contribution from each risk
factor.

ERC to principal portfolios and DRP strategies are basedrdiiferisk measures.
While ERC strategy aims equal risk contributions, DRP apprdacjets the uniform
diversification distribution. However, the optimizationltions in Equatioft 3.67 and
Equatior3.66 give the same results without any further traimés since the risk con-
tributions RC'; in principal space almost equal the diversification distitm py;7p;.

To sum up the methodologies are mentioned in this studyeTall and Table 3.3 are
constructed.

Table 3.2: Summary table of portfolio weights with respecttrategies

Portfolio Strategy  Weights

EW w; =n"1t
. n n
GMV w; = min Doim1 D jmy Wil
—1
[n
v W; = =<5 —1
=19 n n 2
ERC w; = argmin iy >y (wi(Xw); — wj(Zw);)
. >\\Nfl
DRPpp Wi = =1
]:ilj
~ g .
DRPyrp Wy = —TMTPi

=
i=1%MTP,j

33



Table 3.3: Summary of definitions used in asset, principdlramimum torsion spaces

Asset Space/([[16]] Principal Space [[16]] Minimum TorsiopaSe
Weights w; W; ny
Portfolio op(w) = Y wioy + 30 wwioiy  op(W) =33 wiN op(W) = DL WiomTp
Variance
wio? N Wi - Y . W02 )
Marginal Risk 0,,0% (W) = ——=212-% +§;(f\;) J707 D, 05(W) = Jﬁz&;) O, 0p (W) = — L2 IﬁVva
Contribution
w2o? N WWio ~ W2\ ~ w202 )
Risk RC;= M RCi = 2 RCi = =&

Contribution
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CHAPTER 4

EMPRICAL ANALYSIS

In this chapter, we provide an empirical analysis to exantiveestrategies that are
discussed in the previous chapters and to see the diffeadnsk allocation among

asset classes versus uncorrelated risk factors. The nutigydcorresponds to the
related work of[[24] 25, 20] to generate the uncorrelatedfastors. We also follow

[29]'s work in defining the set of risk factors. Then, we prasthe performance of
both diversified risk parity strategies and risk based asi@tation strategies. The
poor performance of mean-variance strategy due to largeasbn errors in estimated
mean has become popular risk-based strategies as menpicwaolusly. Therefore, to
make clear comparison, we also include mean-variance @atilon and compare the
out-of-sample performance with both risk-based strategnel DRP strategies.

4.1 Data

This work focuses on seven broad asset classes represeqtiity, bond and com-
modity indices to construct the asset allocation strasedwonthly prices of the assets
between January 1988 and December 2017 are retrieved froomBlerg [4]. The
logarithmic return is calculated based on the closed ptdke end of each month.
The analyses are run in Matlab 2014. Two equities, four bandsone commaodity in-
dices are chosen to set up the portfolios as shown in TaBlerid reason of working
with these asset classes is that they are enough broad aely ws®d to represent the
corresponding risk factors.

The data used in this thesis are summarized in Table 4.1. \[ogrihe MSCI World
Total Return Index for developed equities and MSCI Emergingkigls Total Return
Index for emerging countries, which are denoted by M1WO arddEN] respectively.
High yield index that is a kind of fixed income tracks the perfance of US dollar
denominated below investment grade rated corporate dddbicjyuissued in the US
domestic market, which is represented by HOAO. The bonaésdare Citi WGBI Cur-
rency Hedged USD for world government bonds hedged, Citi WBGD W@ world
government bonds and Barclay’s U.S. Aggregate for U.S. gadeebonds, which are
represented by SBWGC, SBWGU and LBUSTRUU, respectively. The cmalrtynis
given by S&P GSCI index that is denoted by SPGSCITR. The ablirengaare kept
as in Bloomberg tickers. Since we focus on the risk distrdoutimong risk factors,
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Table 4.1: Summary of asset classes

Bloomberg Index Index Asset Representation

ticker name definition type of risk source

M1WO MSCI World Total Return Developed equity Equity Equity risk
Index for developed equities

M1EF MSCI World Total Return Emerging equity Equity Equity risk
Index for emerging equities

HOAO ICE BofAML US High Yield  High Yield Fixed income  Equity risk
Master Il Index value

SBWGC Citi WGBI World government Fixed income Interest rate risk
Currency-Hedged USD bonds hedged

SBWGU Citi WGBI USD World government bonds ~ Fixed income  Interet risk

LBUSTRUU U.S. Aggregate bonds U.S. Aggregate Fixed income Istteate risk

SPGSCITR S&P GSCI Total Return CME  The measure of general Cdalityno Inflation risk
commodity price
movements and inflation

* Although high yield is a kind of bond, it represents the equity risk since igeagrally high correlation with
equity.

we also give which data represents what kind of risk. Two tyguaidices represent
the equity risk factor. High yield demonstrates a differstnticture from other bonds.
Although it is a kind of bond, it also represents equity rigktbr since it has generally
high correlation with equity [29]. Remaining bonds reprédbe interest rate risk.
Commodity index represents the inflation riskI[29)], 20].

Monthly asset prices between January 1988 and December 2017
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Figure 4.1: Monthly asset prices and their cumulative regur
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The monthly asset prices and their cumulative returns caeér in Figure 4]1. Com-
modity and developed equity demonstrate a volatile pri¢eepaover the period. The
remaining asset prices present more stable pattern. Adéocumulative returns,
emerging equities give the highest return, which is folldveg high yield index. Their
reaction to 2008 financial crisis can be seen in the same figuiest of the prices
are declined sharply except bonds. The returns of the enteage decreased mostly
among all asset classes. The returns of high yield, commadi developed equity
indices are also decreased. There is not remarkable dedrethe returns of bonds.

Table 4.2: Descriptive statistics of the selected assets

Return  Risk Sharpe Ratio MDD

M1WO 6.83%  15.63% 0.22 14.00%
M1EF 12.43% 24.70% 0.36 16.03%
HOAO 8.78%% 8.79%  0.61 8.67%
SBWGC 6.84% 3.17% 1.09 1.33%
SBWGU 6.93% 6.79%  0.52 2.34%
LBUSTRUU 7.34%  3.87% 1.02 1.34%
SPGSCITR  6.52%  21.27% 0.15 17.65%

Table[4.2 reports the descriptive statistics of the datee ddweloped equity has an-
nualized return 06.83% at a risk of15.63%. On the other hand, emerging equity
demonstrates higher return and volatility compared to ld@esl equity, which are
12.43% and24.70%, respectively. High yield index is a bond index but it hasikm
return and volatility as equity indices. High yield indexsttagher return and volatility
compared to bonds. Bonds indices have the lowest volatifity r@turn in all asset
classes. The final asset class commodity draws a similaefigith developed coun-
tries with respect to return and risk. In evaluating the arniances of the asset classes
with regarding to Sharpe Ratio, the lowest ratio belongs toroodity index (0.15).
This can be the result of the high volatility of the oil pricegh low return. The unex-
pected results come from the bond indices having the higblestpe ratio. This may
be the result 02008 and subsequent financial crises, since bonds generallytiygve
high performance during the bad timés [5]. High yield alsdfgens well with the
Sharpe ratio of 0.61. Developed equity presents the poap8atio (0.22) compared
to emerging equity that has the ratio of 0.36. World govemintends hedged and
world government bonds have the highest Sharpe ratios 8fah@ 1.02, respectively.
Aggregate bond also has a good Sharpe ratio of 0.52 compassqliity asset classes
and high yield asset class. The highest drawdowns belormponodity and equity in-
dices. High yield also have high drawdown compared to bodit@s. The drawdowns
of bonds are around 1% and 2%.

It is seen in Tablé 413 that there is a high correlation betwesiity indices and high
yield index. This leads to high yield being categorized agauity index although it

is a kind of bond index. Bond indices have a low correlatiorhvlite remaining asset
classes. The correlation structure of the asset classésoigealuated for the crisis
period between August 2007 and February 2008 as in Talle 4.4.

A general positive increase of the correlation among adastes is observed. The
correlation between equity indices and high yield indexvsra®0%. The increase
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Table 4.3: Correlation matrix of asset classes between 3ai988 and December

2017

Asset type Equity  Equity Highyield Bond Bond Bond Commaodity
M1WO MI1EF HOAO SBWGC SBWGU LBUSTRUU SPGSCITR

M1WO 1

M1EF 0.74 1

HOAO 0.61 0.58

SBWGC 0.01 -0.11  o0.01 1

SBWGU 0.26 0.06 0.09 0.55 1

LBUSTRUU 0.12 0.01 0.24 0.85 0.57 1

SPGSCITR  0.24 0.28 0.22 -0.16 0.12 -0.02 1

Table 4.4: Correlation

matrix of asset classes between A@d8 and February 2008

Asset type Equity Equity Highyield Bond Bond Bond Commodity
M1WO MI1EF HOAO SBWGC SBWGU LBUSTRUU SPGSCITR

M1WO 1

M1EF 0.95 1

HOAO 0.92 0.87

SBWGC -0.20 -0.15  -0.14 1

SBWGU 0.19 0.28 0.29 0.68 1

LBUSTRUU 0.45 0.46 0.50 0.72 0.79 1

SPGSCITR 0.62 0.64 0.62 -0.54 -0.04 0.02 1

happens from 0.61 to 0.92 and from 0.58 to 0.87 for developédeanerging equities
respectively. Furthermore, the correlation increasewdwn both equities and com-
modity, which is from 0.24 to 0.62 and from 0.28 to 0.64 for eleped and emerging
equities respectively. As for the bonds, only SBWGC index shakvs increased neg-
ative correlation with other asset classes is separated dtber bond indices. Other
bond indices have increased positive correlations witlero#sset classes. The cor-
relation between high yield index and commaodity index alsreases from 0.22 to
0.62. Briefly, asset classes have correlations among theesselpecifically over the
bad economic times they demonstrate highly correlatedvi@heontrary to the ex-
pectation and desire of the uncorrelated structure.

4.2 Constructing Uncorrelated Portfolios

To extract the uncorrelated risk factors hidden in the magset classes, we apply two
methods: PCA ad MTP.

4.2.1 Principal portfolios

The economic interpretation of the principal portfoliodesed on the coefficients of
the asset classes in the eigenvectors. The asset that tasdafjicients in absolute
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value drives the volatility of the eigenvector. We know thath eigenvector represent
uncorrelated principal portfolios (PPs) as given in Defimif3.1. There exists seven
PPs as shown in Table_4.5 which presents the eigenvectoixnohtasset classes’
monthly returns based on the sample period from January i®8&cember 2017.
The economic interpretation of each eigenvector is preseas well as with their
variances. Bold numbers demonstrate high coefficients.

Table 4.5: Eigenvector matrix

PP1 PP2 PP3 PP4 PP5 PP6 PP7
Equity M1WO 0.44 -0.18 -0.74 0.22 0.41 -0.08 -0.01
Equity M1EF 0.79 -0.33 0.48 -0.20 -0.03 -0.01 0.00
High Yield  HOAO 0.19 -0.06 -0.23 042 -0.84 0.17 0.07
Bond SBWGC -0.01 -0.02 -0.12 -0.27 -0.15 -0.53 0.78
Bond SBWGU 0.03 0.02 -0.26 -0.76 -0.17 0.50 -0.01
Bond LBUSTRUU 0.01 -0.01 -0.16 -0.28 -0.28 -0.65 -0.62
Commodity SPGSCITR 0.38 0.92 0.01 0.01 0.02 -0.03 0.01
Risk Equity + Inflation  Equity  Not Not Interest  Not
type Commodity  risk risk defined defined rate defined
risk risk
Variance 4.22% 2.59% 1.19% 1.04% 0.81% 0.38% 0.17%

The first principal portfolio (PP1) is dominated by both a@guwnd commodity risks
with the weights 0f).44, 0.79 and0.38 for developed equity, emerging equity and com-
modity indices, respectively. We know that first eigenvetias the highest variance,
besides the first eigenvector is driven by high volatile tss9ee. equities and com-
modity, yielding the highest variance with22%. Second principal portfolio (PP2) is
purely driven by commodity index whose weight is 0.92. Theme, PP2 is inflation
risk with the variance 0£.60%. In the third principal portfolio (PP3), developed and
emerging equities have the highest weights, hence PP3sexisethe equity risk that
accounts for.19% of the total variance. The fourth principal portfolio (PR#)d the
fifth principal portfolio (PP5) cannot have economic intetiation since high weights
do not belong to one asset class. The sixth principal pastfsldominated by bonds,
and therefore it represents the interest rate risk with atity of 0.38%. Again, the
seventh principal portfolio (PP7) is not defined since th&re one type of asset class
having high coefficients to dominate this eigenvector. 17 RR0o bonds have high co-
efficients in absolute value of 0.78 and 0.62 but the othedthas quite low coefficient,
which prevents the domination of bonds in the seventh graigortfolio. Therefore,
we extract three main uncorrelated risk sources with usi@g.AFPP2, PP3 and PP6
represent the inflation risk, equity risk and interest rélke respectively. Based on the
selection made using PCA, the variance of each risk is given as

2
O PP,equity — 1.19%
2
Oppinflation = 2-59%

2 _
UPP,interestrate - 038%
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4.2.2 Minimum torsion portfolios

MLT model is another approach to obtain the uncorrelatddsmirces. On the con-
trary to PCA, MLT gives the uncorrelated risk factors thatselly track the original
factors. This property helps to extract and interpret thsiom portfolios straightfor-
wardly. Seven portfolios represented by MTP are presemtddlhle 4.6 that presents
the torsion matrix of asset classes’ monthly returns basetth® sample period from
January 1988 to December 2017. The economic interpretatieach column of tor-
sion matrix is presented as well as with their variances. Bmichbers in the table

demonstrate the high coefficients.

Table 4.6: Torsion matrix

MTP1 MTP2 MTP3 MTP4 MTP5 MTP6  MTP7
-0.50 -0.02 -0.45 0.20 -0.02

Equity M1WO 1.32 -0.03
Equity M1EF -0.75 1.28 -0.61 0.27 0.15 0.30 -0.11
High Yield HOAO -0.16 -0.08 1.20 0.38 0.10 -0.64 -0.02
Bond SBWGC 0.00 0.00 0.05 1.55 -0.10 -0.68 0.02
Bond SBWGU -0.08 0.01 0.58 -0.47 1.16 -0.38 -0.03
Bond LBUSTRUU 0.01 0.00 -0.12 -1.01 -0.12 1.57 -0.01
Commodity SPGSCITR  -0.04 -0.08 -0.12 0.96 -0.30 -0.211.04

Risk Equity Equity Equity Interest Interest Interest Infiat

type risk risk risk rate rate rate risk

risk risk risk
Variance 0.14% 0.35% 0.05% 0.06% 0.03% 0.07% 0.34%

In Table[4.6, each column has the highest score for only osetad herefore, it is
easy to match the risk sources. First two columns repreBergquity indices with the
varianced).14% and0.35% respectively. Third column has the highest score for the
high yield that is assessed as the equity. Therefore, firsetbolumns represent the
equity risk. Forth, fifth and sixth columns are for the bondices with the volatility

of 0.06%, 0.03% and0.07% respectively. These columns denote the inflation rate risk.
The last column with the volatility ofi.34% presents the commodity risk. Therefore,
we obtain three main uncorrelated risk sources. The vagiaheach risk is the sum
of variances of the corresponding representative columasances since they are
uncorrelated. For example, the variance of equity risk ésshm of the variances of

first, second and third columns.

Therefore, the variance of each risk is stated as

2 _ 2 2 2 _
OMTPequity — OMmTP1 T OMrpe + O3 = 0.54%

2 _ 2 2 2 _
OMT Pyin flation = OmTPa T Onirps T Oyrpg = 0.16%

2 2 -
JMTP,interestrate = O0OyTP7T = 034%
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4.3 Portfolio performances based on strategies

According to the risk and asset categories, the performahpertfolios with respect
to diversified risk parity (PP and MTP), equally weightedylgdl minimum variance,
inverse volatiliy and equal risk contribution strategies evaluated. The performance
measures are selected as annualized return, risk, Shdimemaximum drawdown
(MDD), Gini coefficient.

Table[4.Y presents the performance and risk results of two &iRfegies with risk-
based benchmark strategies. The table shows both the parioe and risk character-
istics results of chosen asset allocation strategies dicapto the period from January
1988 to December 2017. Return, risk and Sharpe ratio are bredizgesults. Sharpe
ratio is computed with the monthly risk-free rate that isstakrom Fama-French web-
site [11]. MDD is reported over one year during the whole siappriod.Gini,eign: iS
calculated with portfolio weights an@inz,;. is calculated with risk decompositions
of asset classes for asset allocation strategies and riskrgmsitions of uncorrelated
risk sources for diversified risk parity strategies. The bamof uncorrelated risks
gives the result of the uncorrelated risk sources with utiegexponential entropy of
risk decompositions.

DRPyrp has the return of 6.3% at 5.8% volatility. Given thaiR P,,rp has the
highest Sharpe ratio of 0.63DRPpp approach gains 5.9% return with 5.7% risk,
which gives the Sharpe ratio of 0.3D.R Ppp portfolio has the second lowest risk but
the return is also relatively low and this results in the lstv&harpe ratio among all
strategies. This meets the expectation of the low risk ldwnecase.

As for the benchmark strategies, the highest return (7.9@nlgs to the EW strategy
with the highest volatility (8.3%). Furthermore, this apach demonstrates the highest
drawdown among all strategies. In contrast, GMV strategytha lowest return of
5.2%, yielding the benefit of the lowest volatility (2.3%).ok&over, its Sharpe ratio
is 0.61, which is a favorable performance and it has the lodesvdown among all
strategies. The good performance of GMV portfolio is alsonid in several works
[5,13]. DRP strategies have slightly higher drawdown rdtemtthe GMV has.

Table 4.7: Performance results of asset allocation siegeg

Return Risk Sharpe MDD Giniweight Ginirisi,  Number of

(%) (%) Ratio (%) uncorrelated risks
DRPyrp 6.3 5.8 0.63 445% 0.39 0.00 3.00
DRPpp 5.9 57 037 48.5% 0.56 0.00 3.00
EW 7.9 8.3 049 50.7 0.00 0.57 1.08
GMV 5.2 29 048 22.5 0.91 0.90 1.01
v 6.5 6.9 0.39 31.7 0.45 0.10 1.90
ERC 6.4 6.3 041 34.8 0.47 0.00 2.10

Like Maillard et al. (2010)[[21], two risk parity strategiggamely IV and ERC, place
between EW and GMW strategies in terms of both return and ESC strategy has
the return of 6.9% with 5.6% risk, which gives the Sharpeorag 0.55. |V strategy
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earns higher return of 7.2% with the cost of higher risk o£6.2T'his results slightly
lower Sharpe ratio of 0.54. However, IV strategy has highhanmdown (15.7%) than
the ERC strategy has (13.4%). The drawdown results are lomwbmpared to the
EW approach.

When considering the aim of the risk based asset allocatrategies, Sharpe ratio is
not enough to evaluate the performance of the strategiesreidre, their risk char-
acteristics are examined as well. The risk contributionthefasset classes for each
strategy can be found in the Table]4.8.

First, both DRP strategies are examined R P,;7phas positive weights in all asset
classes except high yield (HOAO), which leads to negatisie contribution from high
yield (Table[4.8). The weights are not well distributed amhde this unbalanced
weight allocation is also demonstrated by Gini coeeficidr@.89 (Table[4.]7). The
highest risk contribution comes from the commodity with734.that is almost one
third of the portfolio risk. Then the emerging equity with%a2and world government
bond with 13.9% contribute to the total portfolio risk. Thskrcontribution of the
remaining asset classes to the whole risk is relatively Bl risk is well diversified
among three main risk sources and coefficienGohi, ., is zero (Tablé_417). Fur-
thermore, this is also supported by the number of uncoeelask factors, which is
three. As for the other DRP strategy,RPpp has four shorted asset classes, which
are emerging equity, high yield, world government bond andmodity. The skewed
weight distribution is also supported 8}ini,.ign: With 0.56 (Tablé4]7). The highest
risk contribution comes from the developed equity indexwii%. The U.S. aggre-
gate bond has the second highest risk contribution (26%)ostl equal to 1/3 of the
whole risk. Then, the commodity and world government bosk dontributions are
high. The remaining asset classes risk contributions datively low (Table[4.8).
However, the risk contributions among three risk risk searare equal an@ini,.;s
with zero and the number of uncorrelated factors with thrgeperts the equal risk
sources distribution (Table4.7).

Next, we examine the benchmark strategies. First examiBWgstrategy, we observe
that 70% of the all portfolio risk is driven by equities indiag high yield. The highly
volatile emerging equity contributes the greatest propomf the risk budget (36.2%).
The commodity index consist of the most of the remainingfpbat risk (24.1%) and
the bonds are close being irrelevant due to their low riskrdmutions (Tablé 418). EW
is well balanced in terms of weights, which is demonstrated:ni, ;4. With zero.
On the other hand, the distortion of risk contribution byedsdasses is supported
by Gini,;s Of 0.78, which is highly unfavorable. Also, the number of amelated
risk factors is 1.08 (Table—4.7). This portfolio is concadd in one risk source. We
know that almost 70% of the risk comes from the equities, thenportfolio risk is
concentrated in equity risk. Briefly, the risk of the portfols not distributed well
among three risk sources.

Second, GMV strategy exhibits heavily concentrated pbaotfisk structure. In details,
the low risk asset class, i.e bonds, has the major share pbitilio as a total almost
88%. Therefore, their risk contributions are over 90%. Tiséodted weight structure
is also shown by+ini,.,n: 0f 0.91, which is the highest unbalanced weight allocation
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Table 4.8: Weights and risk contributions of asset classsed on the strategies (in
%)

Asset Asset EW GMV 1\

type name Weights MRC RC  Weights MRC RC Weights MRC RC
Equity M1WO 14.3 156.5 224 0.8 1315 1.0 6.6 248.4 16.5
Equity M1EF 14.3 2532 36.2 0.5 147.7 0.7 4.2 353.7 149
High yield HOAO 14.3 74.8 10.7 7.8 1009 7.8 11.9 133.7 159
Bond SBWGC 14.3 3.2 0.5 85.6 98.6 844 31.3 38.6 12.1
Bond SBWGU 14.3 314 45 0.6 139.2 0.8 14.9 1025 15.3
Bond LBUSTRUU 14.3 12.3 1.8 1.7 1125 1.9 26.3 59.4 15.6
Commodity SPGSCITR 14.3 168.6 241 3.2 106.1 34 4.7 206.3 9.7
Asset ERC DRPpp DRPyrp

name Weights MRC RC  Weights MRC RC  Weights MRC RC
M1WO 5.8 24477 143 395 1134 448 7.8 178.3 13.9
M1EF 4.1 352.0 143 -10.0 255 -25 8.8 250.5 22.0
HOAO 10.8 132.2 143 -10.6 28.3 -3.0 -43 53.5 -2.3
SBWGC 36.0 39.7 143 62.9 31.0 195 341 34.6 11.8
SBWGU 13.7 104.4 143 -43.2 11.9 -52 258 59.4 15.3
LBUSTRUU 23.6 60.4 143 734 355 26.0 155 30.0 4.6
SPGSCITR 6.0 2379 143 -119 -170.9 204 124 279.5 34.7

ratio among all strategies. Then, tGéni,;,,, demonstrates the concentrated risk with
0.90. Also, the number of uncorrelated factors of 1.01 destrates the portfolio risk
is concentrated in one risk source (Tabl€ 4.7). It is obvibas the risk source of this
portfolio is interest rate risk.

Finally, we examine the risk parity strategies. IV portfotlistributes the weights
mostly low risk asset class (i.e. bonds) and lower weightsogbigh volatile asset
classes as expected. The high volatile assets (equitiesamohodity) have weights
of 6.6%, 4.2% and 4.7%, respectively. The bonds have morghigii.e. 31.3%,
14.9% and 26.3% (Table 4.8). Therefore, this leads to aleqsal risk contribution
among asset classes. The concentration of weights is shpwii .y, Of 0.45.
However, the balanced risk distribution is supportedyi,;,,. of 0.10, which is
highly favorable (Table 417). As for the ERC approach, theghts of the asset classes
exhibit the similar pattern with the weights of IV strategiherefore,Gini,cign: is
0.47. Contrary to IV strategy, this approach distributesrible among asset classes
equally, then the&7ini,;. is zero. Although these strategies distribute the risk well
among asset classes, they do not show the same performartbe ftsk distribution
among risk sources. The number of uncorrelated risk facoesl.90 and 2.10 for
IV and ERC strategies respectively (Tablel4.7). These gliegeare concentrated on
almost two risk sources.

As summary, diversified risk parity strategy based on mimmtarsion approach ex-
hibits the best performance among all strategies in ternmotf risk/return tradeoff
and risk distribution. The diversified risk parity based omgipal portfolios has the
lowest Sharpe ratio contrary to work by [20]. Among the bemnalk strategies, EW
and GMV demonstrates good reward to volatility ratio bugthave concentrated risk
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Figure 4.2: Scaled Return of Asset Allocation Strategies
The y-axis represents the percentage returns while the x-axis retzése yearﬂ

structure. Risk parity strategies are well balanced in terinisk from asset allocation
but they are actually driven by few risk sources, hence tleega meet the expecta-
tions. The findings are also supported by the results 6{[2018].

4.3.1 Time impact on portfolio strategies

In this part, we test the performance and risk charactesisti the strategies with ap-
plying rolling window approach. We use three-year and fiearyrolling window es-
timation. Initial backtest period uses first three yearshefdata for three-year rolling
window and first five years data for five-year rolling windowiestion. Thus, the es-
timation results start from 1991 and 1993 for three-yearfaedyear rolling windows,
respectively. The rolling window approach is used for theatsample testing over
the period. Furthermore, we examine the stability of thelltssn terms of weights
and risk contribution with respect to each strategy. Tiyem- and five-year rolling
window estimations are compared.

Rolling window estimation is applied as following. L&andM give the length of
the data set and the size of the estimation window, resgdygtiMn this work, the
estimation window sizes are choskéh= 60 months (5 years) antl/ = 36 months (3
years). Each month, starts fromi=M+1. The required parameters for each portfolio
strategy over th& previous months are estimated. The estimated parameteused
to calculate the asset weights in each portfolio stratedne dalculated asset weights
are employed for the calculation of return and covarianceiria month¢+1. Finally,
we compute the portfolio return in peribdrom the weights oM previous months. To
keep the estimation window size is fixed, we drop the eanlegstn and add the return
to the next month. The steps are repeated until the data sden@iven a T-month
length data set, the rolling window estimation produ€es M/ monthly out-of-sample
returns.

The scaled returns of different strategies are shown inreidi2 for three-year and
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(a) 5 years rolling window (b) 3 years rolling window

Figure 4.3: Variances of the Principal Portfolios
The x-axis represents the years while y-axis represents the scaiaacedd

(a) 5 years rolling window (b) 3 years rolling window

Figure 4.4: Variances of the Torsion Portfolios
The x-axis represents the years while y-axis represents the scaiaacedi
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five-year rolling windows. In both figures, EW portfolio gealty outperforms other
strategies. It is followed by risk parity strategies, nam® and ERC. Sometimes,
ERC strategy outperforms the EW strategy. The returf &P, p follows the risk
parity strategies’ gaind) R Ppp and GMV portfolios demonstrate similar pattern over
the period. The return performance of the strategies fotlomsistent pattern and they
do not have sharp behaviors.

4.3.2 The analyses on portfolio variances

We examine how the variances of each uncorrelated porttbbmge over the period as
presented in Figurds 4.3 ahdl4.4. The first and second painegstfolios’ variances
demonstrate a volatile pattern over the periods, so theyairstable. the variances
of third, fourth and fifth principal portfolios are relatiyestable. The final principal
portfolio’s variance is almost irrelevant. For the torsjportfolios, their variances are
not stable and seem more volatile than the variances ofipahportfolios as can be
seen in Figure4l4. The change of variances during the pefiedts the portfolio con-
struction since the diversified risk parity strategy is ¢canged based on the variances
of uncorrelated portfolios.

Then, we check whether principal components and minimusidos give the same
economic interpretations over the time. Figure$ 4.9 anddnsonstrate the weights of
each principal portfolio for five-year and three-year rajliwindow estimations. First
principal portfolio (PP1) is mostly dominated by commodagd equity risks over
the period. However, between 1999-2005 equity risk seeassdtfective. Therefore,
there is no consistency. Second principal portfolio (PB&pminated by the commod-
ity risk, in short times equity risk demonstrates itselff lius not very effective. In
general, it can be said that PP2 represents the commodktyuist is not strictly stable
over the time. Third principal portfolio is obviously equitisk, however commodity
risk is shown only over 2008 for a short time. Forth and fiftmpipal portfolios do
not demonstrate a clear pattern, thus they are not definath [@incipal portfolio is
more robust than the others. Over the period, it exhibitsitkerest rate risk. The
last portfolio is not defined as well. In general, principattfolios do not demonstrate
consistent pattern according to the three-year and fiverpiang windows.

As for the torsion portfolios, they have the most robust itssand each torsion port-
folio clearly tracks the original corresponding factor.eféfore, it makes the easy for
economic interpretation. First three torsion portfolioegent the equity risk, follow-

ing three torsion portfolios represent the interest rale and the remaining exhibit the
commodity risk.

We explain how the asset classes’ weights in chosen partéold their risk contri-
butions change over time by examining Figures 4.9[and 4.1fe Weights of asset
classes in EW strategy do not change over time. EW portfslidoiminated by high
risky stocks i.e. equities and commodity. Mostly, EW pditfas concentrated on
equity risk. Furthermore, the risk contribution by comntgdicreases over the period
while the risk contribution by emerging equity decreasd® dther assets almost con-
tribute the same risk budget over the period and do not shoatilopattern. GMV
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Equity Developed

Equity Developed

(a) PP1

(c) PP2 (d) PP2

(9) PP4 (h) PP4

Figure 4.5: Weights of Principal Portfolios-a
The individual asset weights of each principal portfolio are calculaitfiwging rolling window estimation.
Left-hand side presents the five-year rolling window results, while the-tighd side presents the three-year
rolling window result§]
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Figure 4.6: Weights of Principal Portfolios-b
The individual asset weights of each principal portfolio are calculaiédwsing rolling window estimation.
Left-hand side presents the five-year rolling window results, while the-Hghd side presents the three-year
rolling window result§]
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Equity Developed
Equity Emerging
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Commodity

(e) MTP3 (f) MTP3

(9) MTP4 (h) MTP4

Figure 4.7: Weights of Torsion Portfolios-a
The individual asset weights of each torsion portfolio are calculated witiguolling window estimation.
Left-hand side presents the five-year rolling window results, while the-tighd side presents the three-year
rolling window result§]
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Figure 4.8: Weights of Torsion Portfolios-b
The individual asset weights of each principal portfolio are calculaiédwging rolling window estimation.
Left-hand side presents the five-year rolling window results, while the-Hghd side presents the three-year
rolling window result§]
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strategy gives the most of the weight to world governmenidbamd the most of the
contribution comes from this asset class. The remainingtsisseights and risk con-
tributions are relatively low. Over the time, the result @sistent. For IV and ERC,
we know that they allocate the weights inversely proposida the volatility of asset
classes. ERC approach considers the correlations amongsbe dasses while 1V
strategy does not. However, both strategies give more wgetgHow volatility assets
and lessen the domination of high volatile assets. As fot\th&trategy, the weights
of all asset classes follow the smooth path and do not charayply over the period.
Also, the same behavior is observed for risk contributidiysresents the almost stable
structure during whole period in both 3-year and 5-yeatinglivindow estimations.
As for the ERC strategy, the portfolio is mostly dominated bydbs in terms of weight
allocation. Contrary to IV strategy that presents smooth patisk contribution, the
risk contributions from asset classes are exactly equaRi@ Rortfolio.

4.3.3 The analyses of weights and risk contribution

Finally, we investigate the DRP strategies as exhibited guféis4.10 and 4.12. In
these strategies, we mainly focus on the risk distributiotorg uncorrelated risk
sources instead of asset classes. There are three maimuisies considered in this
study: equity risk, inflation risk and interest rate risktewe give details oD R Ppp
strategy results. In this strategy, the risk is equallyritisted among three risk sources
over the period while majority of weights consists of bondhieh is almost equal to
70% of the portfolio. 20% of the weights come from the equitgl ahe remaining
belongs to commodity. However, we know that principal pmitls are not stable over
the time. Sometimes, principal portfolios are not domiddig the same asset classes.
Thus even in a short time the principal portfolio may refleitedent kind of risk
source. Although the risk is distributed among three uretated portfolios we cannot
be sure that the risk is distributed among three main riskcgsu This is the one of the
major drawbacks of the PCA strategy. In details, the riskrdomions from the assets
exhibit a volatile structure. The risk contribution fromugties and commodity seem
almost irrelevant. The risk contributions from the bondgehthe highest proportion.
During the crisis periods such as 1999-2000 and 2007-2@6@&adrtfolio is driven by
the risky assets. However, it is expected that the portfstiould be driven by low
risky assets especially during the crisis periods. Theoreasay be that the principal
portfolios sometimes can represent the different type sK and thereford) RPpp
does not distribute the risk among the uncorrelated riskcgsu The risk contributions
from risk factors vary over the time fab R Ppp portfolio. DRP,;rp approach also
demonstrates the equal risk distribution among three niskrspurces. In details, the
most of the risk comes from the commodity while equities andds have less risk
contribution. Both diversified risk parity strategies do wemonstrate a consistent
pattern when we consider the risk contributions from thetdasses.

As a conclusion, three-year and five-year rolling windowneation supports the re-
sults we reach in previous part. The strategies demonstredesistent results in both
weights and risk contributions except the principal pdigkg Principal portfolios do
not represent the same economic interpretations all the. tibiversified risk parity
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Figure 4.9: Weights and Risk Contributions of Risk-based &giiat for 5-year rolling
window 52



(b) DRPpp Risk contribu- (c) DRPpp Risk contribu-
tions by risk sources tions by assets

(e) DRPyrp Risk contribu-(f) DRPy;rp Risk contribu-
tions by risk sources tions by assets

(d) DRPyrp Weights

Figure 4.10: Weights and Risk Contributions of DRP Strategaesed on PCA and
MTP for 5-year rolling window
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(g9) ERC Weights (h) ERC Risk contributions by assets

Figure 4.11: Weights and Risk Contributions of Risk-basedt&gias for 3-year
rolling window o4



(b) DRPpp Risk contribu- (c) DRPpp Risk contribu-

() DRPpp Weights 0 by risk sources tions by assets

(e) DRPyrp Risk contribu-(f) DRPy;rp Risk contribu-
tions by risk sources tions by assets

(d) DRPyrp Weights

Figure 4.12: Weights and Risk Contributions of DRP Strategaesed on PCA and
MTP for 3-year rolling window
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portfolio based on the minimum torsion demonstrates aetadi distribution among
the uncorrelated risk factors however the risk contrimgifrom the asset classes are
more volatile.

4.3.4 Out-of sample testing

This part presents the result of out-of-sample testing. @frtbe reasons why risk-
based strategies have become popular is that mean-va(iig@ptimization demon-
strates poor performance in out-of-sample testing duerge lastimation errors. Thus,
we include MV strategy to make a clear comparison amongesfied. \We have four
different periods. The reason of employing different pesics to capture the changes
in the economy. The Table 4.9 presents the results. Thédeft side of the table
provides the weights to be used in the right-hand side ogtaiple periods. Percent
estimation error is calculated based on Sharpe ratios lowfivlg [27]. Besides Sharpe
ratio, we also provide the results of return, risk, the goefticient of risk and number
of uncorrelated risks. The returns, risks and Sharpe rat@snnualized.

According to first out-of-sample results (2003-2007), Mkastgy has the highest esti-
mation error (91.7%) in its Sharpe ratio. The second higéstsiation error (45.7%)
belongs to the GMV strategy. EW portfolio shoes the lowetstrestion error of 19.8%.
Risk parity strategies and DRP strategies demonstrate adgséis about 25%. Then,
we examine the risk characteristics of the portfolios. Imgke period, DRP strategies
distribute the risk among three risk factors. In the outawhple periodD R P,;rp still
spreads the risk among almost three factors whilePrp distributes the risk almost
two risk factors. The remaining portfolios demonstratk aencentrated risk structure
in the out-of-sample results.

The second out-of-sample period (2004-2008) shows that bitfgdio has the highest
estimation error of 104.4%. GMV strategy has th second lsgastimation error of
70.2%. The lowest estimation error (52.6%) belongs tolitieP,,rp but there is not
remarkable difference with the remaining strategies. Caoatpto the first period, the
estimation errors in this period are high. The reason of ithesease might be the
result of 2008 financial crisis. As for the risk charactécstthe portfolios show the
risk concentration on one risk factor excdpfR P,,rp Strategy. DR P,,rp portfolio
distributes the risk among almost three risk factors.

According third out-of-sample period (2009-2013) resuhe highest estimation error
(189%) is shown by the MV strategy. GMV has the second higbststhation error of
49.2%. The lowest error (9%) belongs to the EW portfolio. DRBtsgies (PP and
MTP) also demonstrate favorably low estimation errors (H0fb12.3%, respectively).
In this period, there is large decrease in returns. Despiteese decreases, the Sharpe
ratios are not such low and there are not large estimatianse(except MV startegy)
compared to previous periods. After financial crisis, ieg¢rates are reduced to almost
zero. Therefore, in the period, the risk-free rate is very $o that the excess returns
of the portfolios remain high, which leads to high Sharp&gat ExceptD RPyrp
strategy, all strategies are concentrated on one risk soWr& Py, p Strategy again
distributes the risk almost three risk factors.
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In the last out-of-sample testing, MV strategy has the hsglestimation error of
144.3%. Different from other periods, ERC portfolio has temd highest estimation
error of 71%. EW shows the lowest estimation error of 18.3%RPDstrategies also
have low estimation errors. As for the risk structure, ERC AP, distribute the
risk among almost two risk source®) RP,,rp Spreads the risk across almost three
risk factors. The remaining portfolios have risk conceteftiastructure.

To sum up, MV strategy has the highest estimation errord iougdof-sample results.
This drawback of MV optimization is also shown by differeesearches such as [8,
[15]. The reason of the poor performance is that MV strategludes the expected
mean estimation which leads to large estimation errors. Bwfglio has the lowest
estimation errors in all results except in one period. DR&eagjies also demonstrate
much lower estimation errors than MV strategy. Contrary @ works by [27] 16],
we obtain good out-of-sample results based on Sharpe w@tithé DRP strategies.
As for the risk structures, all strategies have risk cormagedl on risk source except
DRPyrp portfolio. The reason of well-diversified structure DR Py, rp, it defines
each risk properly as shown in Figufesl4.7 4.8.
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Table 4.9: Out-of-sample Testing

1998 - 2002 2003 - 2007
Return Risk  Sharpe Gini, Number of Return Risk  Sharpe Gini,  Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error
MV 1037 720 0.75 0.42 1.73 4.72 460 0.39 0.80 1.02 91.7
EW 8.22 951 0.34 0.60 1.44 6.59 8.65 0.42 0.76 1.05 19.8
GMV 6.33 3.01 045 0.85 1.02 5.51 3.15 0.82 0.82 1.01 45.7
\Y, 8.17 5,58 0.57 0.46 1.71 7.05 549 0.75 0.42 1.33 24.1
ERC 8.19 492 0.65 0.30 2.10 8.08 5.86 0.88 0.34 1.44 259
DRPpp 8.02 408 0.74 0.00 3.00 7.52 6.96 0.66 0.26 1.32 12.4
DRPyrp 824 415 0.79 0.00 3.00 8.65 6.81 0.84 0.05 2.79 6.7
1988 - 2003 2004 - 2008
Return Risk  Sharpe Gini, Number of Return Risk  Sharpe Gini, Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error
MV 10.92 5.10 1.29 0.34 2.47 4.15 6.47 0.63 0.36 1.64 104.4
EW 7.54 8.60 0.37 0.47 1.56 7.58 8.92 0.84 0.64 1.52 55.7
GMV 5.32 398 025 0.95 1.00 2.07 238 0.85 0.95 1.04 70.2
\ 7.33 5.18 0.58 0.11 1.87 8.34 6.49 1.28 0.81 1.39 54.5
ERC 7.33 592 051 0.10 1.99 8.05 6.82 1.17 0.83 1.35 56.6
DRPpp 6.32 557 0.36 0.00 3.00 3.57 451 0.78 0.10 2.59 53.8
DRPyrp 7.51 561 057 0.00 3.00 7.35 6.07 1.20 0.04 2.94 52.6
1988 - 2008 2009 - 2013
Return Risk  Sharpe Gini, Number of Return Risk  Sharpe Gini,  Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error
MV 7.16 297 158 0.49 211 2.80 476 0.55 0.78 1.26 189.0
EW 5.96 7.00 0.50 0.67 1.10 2.77 469 0.57 0.54 1.16 9.00
GMV 3.95 290 051 0.90 1.01 2.81 2,70 0.96 0.76 1.03 47.2
\Y, 7.37 519 094 0.40 1.90 2.54 3.69 0.78 0.33 1.19 49
ERC 7.32 510 0.95 0.39 2.00 2.81 3.34 0.78 0.19 1.27 21.6
DRPpp 6.56 598 0.68 0.00 3.00 2.56 431 0.55 0.13 1.35 10.0
DRPyrp  7.14 6.22 0.75 0.00 3.00 2.94 4.13 0.66 0.07 2.66 13.6
1988 - 2012 2013 - 2017
Return Risk  Sharpe Gini, Number of Return Risk Sharpe Gini. Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error
MV 9.51 7.07 0.67 0.56 1.47 4.37 3,57 0.27 0.57 141 144.3
EW 9.01 10.52 0.40 0.85 1.32 7.88 9.10 0.49 0.77 1.10 18.3
GMV 5.68 3.05 0.30 0.86 1.21 3.95 294 0.19 0.87 1.01 57.6
\Y, 8.45 3.87 0.95 0.55 1.73 6.73 5.22 0.64 0.58 1.30 48.7
ERC 8.51 3.99 094 0.20 2.30 6.59 582 0.55 0.29 1.79 71.0
DRPpp 7.85 499 0.62 0.00 3.00 6.41 6.08 0.50 0.15 2.06 24.5
DRPyrp 874 5.17  0.77 0.00 3.00 6.95 5.67 0.63 0.08 2.94 22.4
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CHAPTER 5

CONCLUSION

In this thesis, we aim to maximize risk diversification of atfaio with distributing
the risk among the uncorrelated risk factors. To achievegoal, we examine the
diversified risk parity strategies compared to risk baseétaallocation strategies.

We apply the proposed strategies to different asset cldgseim consisting of equities,
bonds and commodity. DRP strategy is determined based onpgpaches: PCA
and MTP. TheD RP,,;rp strategy has a well balanced risk structure with distrimyti
the whole risk among three main risk sources. The resulinsistent according to the
three-year and five-year rolling window estimations. Thweeotiversified risk parity
strategy based on principal component analysis also ddrates the similar result.
However, compared to MTP, we observe that principal pad$oare not stable over
the time and thus do not give the same economic interpratatidhe portfolio may
actually concentrate on one or few risk sources.

The benchmark strategies created ill-diversified poxfoln terms of risk. Contrary
to diversified risk parity strategies, the risk contributmf these strategies comes from
the asset classes instead of the risk factors. The riskibations from GMV and
EW strategies exhibit the most unbalanced structure. Orotiher hand, ERC and
IV strategies distribute the risk quite balanced among Hsetaclasses. However they
do not demonstrate the same performance distributing $keamong the risk factors.
As for the return performance, risk based strategies exGdf¥ outperformed the
diversified risk parity strategies. Howevé? R Py, has the best reward to volatility
ratio. Our results are consistent with [16] 27] but conttwdith the results by [20,/2].

One of the reasons why risk-based strategies have becormkapthat mean-variance
(MV) optimization demonstrates poor performance in outsample testing due to
large estimation errors. Thus, we include MV strategy to enakclear comparison
among strategies in out-of-sample testing. MV strategythasighest estimation er-
rors in all out-of-sample results. This drawback of MV optiation is also shown by
different researches such as|[8] 15]. The reason of the préormance is that MV
strategy includes the expected mean estimation which keddsge estimation errors.
EW portfolio has the lowest estimation errors in all resalitsept in one period. DRP
strategies also demonstrate much lower estimation eimars MV strategy. Contrary
to the works by[[2]7], 16], we obtain good out-of-sample resshétsed on Sharpe ratio
for the DRP strategies. As for the risk structures, all sgji@ehave risk concentrated
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on risk source excefd R Py;rp portfolio.

As a conclusion, to construct well-diversified portfolio ftistributing the risk among

three factors, DRP strategies demonstrate good performartih Sharpe ratio and
risk diversification in out-of-sample testing. Specifigalb R Py;7p constructs a well-

diversified portfolio spreading the risk among three faxtdrhe remarkable result of
this strategy is good performance in out-of-sample tesflings strategy may help the
investors to construct risk concentrated portfolios, emdimancial crisis.

The future work may examine the long-short constraint simeenly focused on the
long only case. The effect of the transaction cost also hay ade when evaluating
the performance of the portfolios thus it may be examineduture research. In this
work, we used the variance as risk measure however, therglagekind of risk mea-

sures such as value at risk, expected shortfall. The DRRegiestmay be examined
when employing other risk measures.
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