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ABSTRACT

EMPIRICAL COMPARISON OF PORTFOLIO RISK DIVERSIFICATION
ALGORITHMS

Yerli, Çiğdem

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Sevtap Kestel

Co-Supervisor : Dr. Nil̈ufer Schindler

September 2018, 63 pages

The enhanced correlations during global financial crisis has revealed that simple as-
set allocation portfolios prove to be not well-diversified across different risk factors,
which makes the risk based asset allocation strategies popular. However, the strate-
gies still construct the risk concentrated portfolios due to the correlation among the
asset classes. As a result, risk allocation among uncorrelated risk factors instead of
risk allocation among asset classes have become widely used. This thesis aims to dis-
tribute the risk among uncorrelated risk factors in a portfolio to prevent constructing
risk concentrated portfolio. We employ “diversified risk parity strategy”. The first step
in this approach is the construction of the uncorrelated portfolios. To construct uncor-
related portfolios, we follow two different approaches: principal component analysis
and minimum linear torsion model. These uncorrelated portfolios are also known as
uncorrelated risk factors in the literature. In the second step, we apply the risk parity
strategy to these uncorrelated risk factors to obtain equalrisk budget from each risk
source. While the literature evaluates each uncorrelated portfolio as one kind of risk
factor, we focus on three main risk sources, namely equity risk, inflation rate risk and
inflation risk. In this work, we give the background of diversified risk parity strategy
and traditional risk based asset allocation strategies andexplain how uncorrelated port-
folios constructed based on principal component analysis and minimum linear torsion
model with examining their return and risk properties. Thenwe provide an applica-
tion of the strategies to selected asset classes. The poor performance of mean-variance
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strategy due to large estimation errors in estimated mean leads to risk-based strategies
popular. Therefore, to make clear comparison, we also include mean-variance opti-
mization and compare the out-of-sample performance with both risk-based strategies
and diversified risk parity strategies in the empirical analysis.

Keywords: Diversified risk parity strategy, principal component analysis, minimum
linear torsion model, risk based asset allocations, risk diversification.
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ÖZ

PORTFÖY RİSK ÇEŞ̇ITLENDİRME ALGORİTMALARININ AMP İRİK
KARŞILAŞTIRMASI

Yerli, Çiğdem

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Sevtap Kestel

Ortak Tez Ÿoneticisi : Dr. Nil̈ufer Schindler

Eylül 2018, 63 sayfa

Son yaşanan finansal kriz, riski daha çeşitlendirilmişportföylere olan ihtiyacı ortaya
koymuş ve riske dayalı varlık dağıtımı yapan stratejileri pop̈uler yapmıştır. Fakat bu
stratejiler, varlık sınıfları arasındaki korelasyondan dolayı hala riski yŏgun portf̈oyler
oluşturmaktadır. Bu nedenle yeni çalışmalar risk dağıtımında varlık sınıfları yerine
băgımsız risk fakẗoleri üzerine odaklandılar. Bu çalışmanın amacı riski bağımsız risk
faktörlerine dăgıtarak, riski tek fakẗore yŏgunlaşmış portf̈oy elde edilmesini engelle-
mek. Bu çalışma, “çeşitlendirilmiş risk paritesi stratejini” kullanmaktadır.İlk adımda
băgımsız portf̈oyleri oluşturulacaktır. Băgımsız portf̈oyleri oluşturmak için iki farklı
model, temel bileşenler analizi veya minimum doğrusal torsiyon modeli kullanılmaktadır.
Bu băgımsız portf̈oyler aynı zamanda bağımsız risk fakẗorleri olarak da bilinir. Elde
edilen băgımsız porf̈oylere dolayısıyla, risk faktörlerine risk paritesi stratejisi uygula-
narak her bir risk fakẗoründen eşit risk b̈utçesi elde edilmektedir. Her bir portföyü ayrı
bir risk faktörü olarak dĕgerlendiren literaẗurden farklı olarak̈uç temel risk fakẗorüne
(piyasa riski, faiz riski ve enflasyon riski) odaklanılmıştır. Çeşitlendirilmiş risk paritesi
stratejisinin ve geleneksel risk bazlı varlık tahsis stratejilerinin arka planını verilerek
temel bileşen analizi ve minimum doğrusal torsiyon modeline dayanarak bağımsız
portföylerin nasıl oluşturuldŭgu, kar ve risközellikleri de incelenerek açıklanmıştır
ve seçilen varlık sınıflarına stratejilerin bir uygulaması sunulmaktadır. Tahmini ortala-
madaki b̈uyük tahmin hatalarından dolayı ortalama varyans stratejisinin zayıf perfor-
mansı, risk temelli stratejilerin popüler olmasına neden olmaktadır. Bu nedenle, net
bir karşılaştırma yapmak için,̈orneklem dışı performansı testi ortalama varyans opti-
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mizasyonunu da içermekte ve bu tezde bahsedilen stratejilerle karşılaştırılmaktadır.

Anahtar Kelimeler: Çeşitlendirilmiş risk paritesi stratejisi, temel bileşenler analizi,
minimum dŏgrusal torsiyon modeli, risk bazlı varlık dağıtımı, risk çeşitlendirme.
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CHAPTER 1

INTRODUCTION

Asset allocation plays an essential role in investment management. Investors try to
understand how they should invest their capital among different asset classes. For this,
Markowitz mean-variance optimization that is one of the quantitative techniques aims
to find the best asset allocation based on risk-return trade-off. Although this approach
has been used widely due to its theoretical rationality, it has some obstacles due to
large estimation errors [6, 5]. To avoid large estimation errors due to estimated mean,
recent works have been focused on generating more diversified portfolios excluding
the mean called “risk-based asset allocation strategies”.Since these strategies only use
covariance matrix, the strategies are also known as “µ−free strategies”. Due to their
acceptance being as robust in the literature and good performance during the 2008
financial crisis, risk based asset allocation strategies have been popular [21, 32]. The
aim of risk based strategies is to allocate the risk among asset classes instead of the
capital and construct well balanced portfolios in terms of risk. However, the ability of
diversification of risk based strategies limitation depends on the characteristics of the
underlying assets. If chosen assets are highly correlated and dependent on the same
underlying risk factors, the aim of diversification may not be achieved and the portfolio
may have a concentrated risk structure. Especially, this problem can arise during the
financial crisis times, since the correlations generally increase when economy goes
bad.

The high correlation among asset classes results in having more than one risk source.
[29] gives an example to demonstrate how a portfolio is concentrated on one kind of
risk factor. In his example, the portfolio consists of four equity classes and four fixed
income asset classes. The fixed income asset classes are highyield, emerging-market
debt, inflation-linked bonds, and investment-grade bonds.The expectation from the
portfolio to have two different risk sources that are equityrisk and bond risk. Since
majority of the bond classes have different degree of equityrisk, the portfolio is indeed
skewed to equity risk and demonstrates a concentrated risk structure. Generally, many
asset classes are affected by equity risk. As mentioned recently, some of fixed income
classes consist of different degree of equity risk althoughbonds and equities generally
move opposite directions. It is known that high yield is one kind of bond, however there
is generally a high correlation between the equity and high yield. The high correlation
between equity and other classes generally leads that portfolios can heavily skewed to
equity risk. Hence, the underlying risk sources in the assetclasses do not make risk
allocation easier. To overcome this problem, the portfoliodecision puts importance
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on not only risk contributions from asset classes but also risk contributions from risk
factors. The key property is that the desired risk factors should be less correlated, if
possible, uncorrelated.

To obtain uncorrelated risk sources, there are some quantitative methods. One of them
is principal component analysis (PCA), that is a statisticaldimension reduction tech-
nique using orthogonal transformation of variables into the linearly uncorrelated new
variables. Partovi and Caputo (2004) [26] employs PCA approach to construct uncor-
related portfolios that are also called principal portfolios. Furthermore, these portfolios
can be considered as uncorrelated risk sources. This approach is criticized for being
unstable over time, lacking of economic interpretation andnot having unique eigenvec-
tors [25]. Upon these claims, Meucci et al. (2014) [25] put forward another method-
ology, namely minimum linear torsion (MLT), that that extracts uncorrelated variables
that closely follow the original variables. Hence, this methodology is expected to be
more robust than the PCA approach. [26, 24, 25] distribute whole portfolio risk among
these uncorrelated portfolios. In this case, the portfoliorisk is already known and the
total risk is distributed among risk factors to prevent riskconcentration. On the other
hand, Lohre et al. [20] directly construct the portfolio with applying risk parity strategy
to uncorrelated portfolios from PCA and MLT. This strategy iscalled “diversified risk
parity” [20]. Following [20], we use the diversified risk parity strategy in this work.

One of the major questions in the asset management is how manyunderlying risk
factors drive the asset returns. There are two key risk dimensions: growth risk and
inflation risk [29]. Growth risk is divided into two parts: equity risk and interest rate
risk that move oppositely when economic growth change. Along with the inflation risk,
there are real-return premium and nominal return premium, which move oppositely
based on inflation structure. To create a well balanced portfolio that is exposed to
growth and inflation risks, risk based portfolios should be constructed with a balanced
risk budget from three main risk factors: equity risk, interest rate risk and inflation risk
[29]. From this point of view, there are three main risk premiums that are equity risk,
interest rate risk and inflation risk [29]. Other risks are mixture of these three main
risk sources. For example, credit risk is a mixed of interestrate risk and equity risk
[29]. An investor who wants a well diversified portfolio should distribute the overall
portfolio risk among these risk drivers. Therefore, in thisthesis, we focus on only these
risk drivers.

This thesis aims to distribute the portfolio risk among three main risk sources with em-
ploying diversified risk parity strategy based on MLT approach and PCA approach with
following the approach by [20, 2]. We expect that a portfoliobased on MLT approach
should be more balanced in terms of risk compared to diversified risk parity on PCA
and other risk parity strategies. Comparison of these methods is performed on real life
data collected from Bloomberg between years 1988 and 2017. This thesis contributes
to the literature in several ways. First, we give a through comparison of risk based asset
allocation strategies including PCA and MLT to empirical price data between January
1988 to December 2017. This period is long to contain two financial crisis and great
variation, which allows a fine comparison of these algorithms. Second, rather than
using all risk factors in PCA and MLT, we focus on only three risk factors, equity risk,
inflation risk and interest rate risk. Third, to the best of our knowledge, MLT approach
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has so far been applied only to commodity prices; we extend this application to more
general asset classes. Finally, we present out-of-sample performances of the strategies
for different time intervals that help us to capture the economic changes in the market.
In the out-of-sample testing, we include the mean-variancestrategy as well to make a
clear comparison of estimation error across the strategies.

The organization of the thesis is as following. Chapter 1 presents the theoretical back-
ground of risk based asset allocation strategies, namely equally weighted, global mini-
mum variance and risk parity strategies such as inverse volatility strategy and equal risk
contribution. Chapter 2 gives the information about risk-based asset allocation strate-
gies. Chapter 3 presents the diversified risk parity with explaining theoretical frame-
work of PCA and MLT. We explain how diversified risk parity strategy can be applied
to these methodologies and can be generated uncorrelated portfolios based on these
approaches. Their return and risk properties are also given. Chapter 4 presents the em-
pirical analysis results. In this part, we present the performance and risk characteristics
of mentioned strategies. Then, we check the robustness of strategies with rolling win-
dow approach. The poor performance of mean-variance strategy due to large estima-
tion errors in estimated mean has become popular risk-basedstrategies as mentioned
previously. Therefore, to make clear comparison, we also include mean-variance op-
timization and compare the out-of-sample performance withboth risk-based strategies
and diversified risk parity strategies. The conclusion further comments on our results
and points out directions for future research.

1.1 Literature Review

The need of diversification of portfolio risk among underlying factors leads to focus
on constructing risk factors that drive the asset returns. Therefore, capital asset pricing
model [23], arbitrage pricing model [31] and factor models focus on the risk factors
to explain the asset returns. Capital allocation among risk factors instead of individual
stocks have better advantages such as better risk management [14]. Although fac-
tor investing seems attractive, there is still need for better allocation methods since
mentioned factor models do not hold their assumptions in thefinancial markets and
overlook the correlations among the assets, which cause inefficient allocation [13].
Specifically, the disregard generates portfolios that concentrate on few risk sources.

To overcome previous problems, the portfolio literature has emphasized the risk bud-
geting and risk strategies with special focus on risk parityportfolios [30, 21, 32]. The
“risk parity” term was introduced by [30] who demonstrates that a portfolio consisting
of 60% of stocks and 40% of bonds might be balanced in terms of asset allocation but
not be balanced in terms of risk as stocks generate more than 90% of portfolio risk and
the risk contribution by bonds is less than 10%. Therefore, the author suggests equal
risk allocated portfolios with distributing the same risk across asset classes. [29] says
that a well-diversified portfolio should be balanced in equity risk, inflation risk and
interest rate risk. Risk parity strategies have been popularand obtained many atten-
tion among both researchers and investors since 2008 financial crisis. Thus, there are
different kinds of risk parity in the literature. The first implementation of the risk par-
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ity is inverse volatility strategy (IV) that distributes the weights inversely proportional
to variance of assets [7]. This strategy penalizes the assets whose variance is high.
The flaw of IV strategy is not to consider the correlation among asset classes. This
drawback is corrected by equal risk contribution strategy (ERC) which distributes the
portfolio risk according to both variances and correlations of assets, thus it presents
better risk-adjusted returns than the IV strategy [32, 21].Also these strategies are
known as risk-based asset allocation or “µ-free” strategies since they only consider the
covariance matrix as an input parameter. [3] demonstrates that these strategies fail to
distribute the risk among underlying risk factors such thatthese strategies still generate
risk concentrated portfolios due to hidden risk drivers among asset classes. Then, the
new kind of risk parity is generated by principal component analysis and minimum
linear torsion approach that generate uncorrelated risk factors.

To avoid the risk concentrated portfolios, the uncorrelated risk sources have been in-
troduced by [26] who uses principal component analysis to construct the uncorrelated
portfolios that generate the efficient frontier. The uncorrelated portfolios or principal
portfolios represent also uncorrelated risk factors. [24]contributes to the literature
with a comprehensive framework that measures and manages diversification in a stock
investment universe from Russel 3000 index. His work demonstrates how to extract
the main drivers of the asset returns with PCA method. He claims that the portfolio
risk should be distributed among these risk factors to achieve a well-diversified portfo-
lio with exponential entropy approach. [20] follows the approach by [24] to determine
the maximum diversification in a portfolio that consists of various asset classes. Their
investment strategy employs risk budget by principal portfolios instead of individual
assets. This strategy is called as “diversified risk parity strategy”. The authors show
that the diversified risk parity strategy provides better risk-adjusted performance in the
multi-asset class set than risk-based allocation models. [2] applies the same strategy by
[20] to equity domain and reached the same conclusion. [16] also adopts the strategy
of [24] and demonstrates that [24]’s approach equals the application of risk parity to
risk factors. According to theoretical background, diversified portfolio among uncorre-
lated risk factors should should outperform the nominal diversified portfolio. However,
according to backtests by [16], diversification strategiesbased on principal portfolios
performs worse than nominal strategies. Similar results are also found by [27]. These
papers present that PCA may not be the appropriate approach toextract the risk factors
since PCA has some drawbacks such that the eigenvectors are not unique, the factors
may not be interpretable economically [25].

[25] proposes a new model, namely minimum torsion transformation, that extract the
uncorrelated variables with closely following the original data. Hence, this methodol-
ogy is expected to be more robust than the PCA approach. [2] applies the risk parity
strategy with using minimum torsion transformation to commodity data and found
that minimum torsion approach extracts interpretable riskfactors and constructs stable
portfolios compared to PCA method. [17] compares the diversified portfolios gener-
ated by PCA and minimum torsion transformation and concludesthat minimum torsion
model solves the problems related with PCA and extracts risk factors better than PCA.
However, the portfolios generated by minimum torsion may not outperform the nom-
inal strategies, such as minimum variance and maximum diversification, in terms of
Sharpe ratio. Despite this low performance, minimum torsion portfolios significantly
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reduce downside risk and provide low turnover ratio [17].
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CHAPTER 2

RISK BASED ASSET ALLOCATION STRATEGIES

This chapter presents the theoretical background of risk based allocation strategies,
namely, equally weighted (EW), global minimum variance (GMV), and risk parity
(RP) strategies. These strategies are also known asµ-free strategies and have attracted
investment area especially after the 2008 financial crisis.The failure of mean-variance
strategy due to estimation errors in the estimated mean leadto researchers and investors
to use risk based strategies that do not have to estimate the expected mean, but only
the covariance structure. Therefore, these strategies aregenerally accepted as robust in
the literature due to their good performance over the 2008 financial crisis period.

The aim of risk based strategies is to allocate the risk instead of to allocate the capital
among asset classes.

2.1 Properties of Risk Based Strategies

The goal of the investment is to obtain positive returns, butthe gains are subjected to
risk. Risk plays a significant role in portfolio management.

2.1.1 Risk Measure

Let V 2(w) denote the portfolio risk, which is a positive and increasing function and
bounded by below zero. That is for i.e.ǫ > 0, which is

V 2(w) ≥ ǫ ‖ w ‖2 .

An investor aims to reduce the risk, but it is relevant with the market conditions. A
portfolio with more risk will have more earnings in a favorable market, and will have
losses in a unfavorable market conditions.

There are many risk measures such as variance, semi variance, VaR and CVaR. In this
study, we focus on the variance as a risk measure. Variance (σ2) measures the disper-
sion of the data from the mean. Its square root is known as volatility. Variance is the
most popular risk measure due to its computational simplicity and easy interpretation.
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Givenσ2(w) is the portfolio variance, then

σ2(w) = w′Σw (2.1)

wherew is the security weight in the portfolio andΣ denotes the covariance matrix of
security returns.

2.1.2 Marginal risk contribution

The marginal risk contribution (MRC) of the components in a portfolio is calculated
by taking the partial derivative of the whole portfolio riskto each component. The
MRC of asseti is given as following.

Definition 2.1. Letw be vector of asset weights andσ(w) be the portfolio risk measure,
then the marginal risk contribution of theith asset is the first derivative of the risk
measure with respect to its weightwi such that

MRCi(w) =
∂σ(w)

∂wi

.

MRC gives an infinitesimal change in the whole portfolio risk caused by theith com-
ponent. Let denoteMRC(w) as a vector representation, i.e.

MRC(w) =
∂R(w)

∂wi

. (2.2)

The decomposition in Equation 2.2 is possible if the risk of the portfolio is a homoge-
neous function.

Definition 2.2. Let f : x ⊂ Rn → R be a function. Thenf is a homogenous function
of degreed ∈ R if

f(γx) = γdf(x)

for γ ∈ R andx ∈ Rn.

Proposition 2.1. The portfolio volatility,σ(w), is a homogeneous function of degree
one,d = 1. Then the marginal risk contributions of asset returns presented by

∂σ(w)
∂w

=
Σw√
wTΣw

, for w ∈ Rn. (2.3)

Proof. We demonstrate the first statement that the portfolio volatility σ(w) is a homo-
geneous function of degree one. Consider the portfolio volatility as in Equation 2.1
and leta ∈ R, then

0 ≤ σ(aw) = ((aw)TΣ(aw))
1

2 = (a2wTΣw)
1

2 =| a | (wTΣw)
1

2 =| a | σ(w) = aσ(w).

The Equation 2.3 can be shown simply taking the partial derivative of the volatility as
following

∂σ(w)

∂w
=

∂(wTΣw)
1

2

∂w
=

1

2
(wTΣw)

−1

2 2Σw =
Σw

(wTΣw)
1

2

. (2.4)
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MRC of a specific asseti is proportional to theith row of theΣw product matrices
such that

∂σ(w)

∂wi

∝ (Σw) = wiσ
2
i + σi

n
∑

i 6=j

wjσjρij (2.5)

whereρij is the correlation of theith andjth assets.

Then, normalization of the Equation 2.5 by portfolio risk gives that

∂(w)

∂wi

=
(Σw)i
σ(w)

. (2.6)

2.1.3 Total risk contribution

Risk contribution (RC) is a weighted marginal contribution of acomponent.

Definition 2.3. Let σ(w) be the portfolio’s risk measure. Then the risk contributionof
theith component,RCi(w), is

RCi(w) = wiMRCi(w)

whereMRCi is given as in Equation 2.2.

Total risk contribution requires the equalization of risk contributions’ sum to the to-
tal portfolio risk. Euler’s decomposition demonstrates the relationship between the
portfolio risk measureσ(w) and the risk contribution of asseti RCi(w). With Euler
theorem, we obtain the risk measureσ(w) as the sum of the risk contributions of the
components.

Theorem 2.2. (Euler’s Theorem) LetRn → R be a continuous differentiable function.
Thenf is homogenous of degreed if and only if for∀w ∈ Rn, it satisfies the following

df(σ(w)) =
n

∑

i=1

wi
∂f(w)
∂wi

.

Proof. The proof is omitted. One can find detailed proof in [10].

The portfolio volatility can be written as a linear combination of relative risk contribu-
tions of assets such that

σ(w) = w1
∂σ(w)
∂w1

+ w2
∂σ(w)
∂w2

· · ·+ wn
∂σ(w)
∂wn

=
∑n

i=1 wiMRCi(w)
= wTMRC(w)
= 1

TRC(w)

(2.7)

whereMRC(w) andRC(w) aren × 1 vectors that represent the marginal and total
risk contributions, respectively.1 shows the indicator function.
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The percentage risk contribution of theith component is the ratio of respective compo-
nent risk contribution to the portfolio risk, i.e.

%RCi(w) =
RCi(w)

σ(w)
.

2.1.4 Diversification Index

Diversification is another important property in the risk based strategies. There are dif-
ferent approaches to measure diversification such as Gini coefficient, Shannon entropy,
diversification ratio and Herfindall index.

Chaves et. al. (2012) employs the Gini coefficient to measure the diversification level
regarding to both risk contributions and weights of the assets. For each strategyk, the
Gini coefficient based on risk contributions and weights of assets given as

Ginik(risk) =
2

N

N
∑

i=1

(σi,k − σ̄k) and

Ginik(w) =
2

N

N
∑

i=1

(wi,k − w̄k), (2.8)

respectively. Here,σi,k denotes theith asset volatility of thekth strategy and̄σk repre-
sents the volatility of the whole portfolio constructed based on thek strategy.wi,k is
the weight of theith asset in thek strategy and̄wk is the weight of thek strategy.

Gini coefficient takes values between zero and one. If the value is zero, the portfolio
is equally weighted in terms of risk or weights. If the value is one, the portfolio is
concentrated and not well diversified in terms of risk or weights.

Another approach of measuring diversification isShannon entropythat is given as

H = −
n

∑

i=1

RCi,klnRCi,k

whereRCi,k is the risk contribution ofith asset in thek strategy. If the risk contribu-
tions from assets are identical, the Shannon entropy has themaximum value (n) that is
the number of value included in the portfolio. If the portfolio is concentrated in one risk
source, then the Shannon entropy measure is one. This measure will be re-examined
in next chapter.

Diversification ratio and Herfindall Index can be seen in detail in [5], which are not
taken into consideration in this study.
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2.2 Risk Based Asset Allocation Strategies

This section presents commonly used risk based strategies,namely, equally weighted,
global minimum variance, and risk parity strategies. The aim of these strategies is
to minimize the portfolio’s risk with balancing the risk among assets. Their common
characteristic is to exclude the estimation of the expectedmean as an input parameter.

2.2.1 Equally weighted strategy

In equally weighted (EW) strategy, investors hold equal weights from each asset in
their portfolio. It is also known as “naive strategy” since it does not require any opti-
mization methods and it is easy to implement. EW strategy does not have any estimated
parameters contrary to classical mean-variance approach for asset allocation. The es-
timation of the input parameters are not easy and generally leads to errors. Therefore,
EW strategy is considered as robust by excluding estimationparameters. It ignores the
risk, return and correlation information of assets. Briefly,EW strategy is not dependent
on any moments of returns and optimization construction. Moreover, EW approach is
well diversified in terms of weight allocation of assets.

The reason why the EW strategy is counted as a risk-based strategy is it is a kind of
risk management tool. Furthermore, the motivation behind EW is not neither a target
return nor the generation of complex performance skills [5]

The number of assets included in a portfolio determines the weights. In the case ofn
number of securities in a portfolio, each asset weight is

wi =
1

n
, i = 1, . . . , n.

The more assets hold in a portfolio, the lower is the weight allocation. The key role in
this strategy belongs to the number of securities in a portfolio. Therefore, this simple
strategy takes advantage from the law of large numbers and performs better in the long
run for several reasons [5]. First, EW strategy takes benefitfrom the small-cap bias.
Second, it is also interested in smoothing of the asset pricevolatilities effectively.

For ann securities portfolio, the return (average return) and the risk are

R =
1

n

n
∑

i=1

Ri, and

σ =

√

(
1

n
)TΣ

1

n
=

1

n

√
1TΣ1, (2.9)

respectively.
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The marginal and total risk contributions of the asseti become

MRCi =
wi

√

wT
i Σwi

and

TRCi = wi
wi

√

wT
i Σwi

, (2.10)

respectively. Despite of its simplicity and equal capital allocation advantages, this
approach has some drawbacks such as being illiquid and lack of economic interpre-
tations. However, some researchers claim that EW strategy outperforms the mean-
variance model and its sophisticated extended versions based on the Sharpe ratio, and
it demonstrates better out of sample results than advanced models [1, 8]. On the other
hand, in long term estimations EW strategy is not a reasonable option compared to
optimized portfolios [18].

2.2.2 Global minimum variance

Global minimum variance (GMV) strategy aims to construct a portfolio with a lowest
possible variance that lies on the the most left of the efficient frontier that is introduced
by [22]. Despite of being on the efficient frontier, it does not rely on the expected mean
and the covariance matrix is the only input parameter.

The quadratic optimization problem of the strategy to obtain the optimal asset weights
goals to have the portfolio with the minimum risk. The input parameters are correla-
tions and volatilities of assets. The unconstrained GMV optimization problem is

w = argmin
w∈Rn

1

2
wTΣw (2.11)

The solution of Equation 2.11 is

w =
Σ−1

1

1TΣ−11
.

where1 shows indicator function.

If the GMV portfolio is subject to long only and budget constraints, then the optimiza-
tion problem is

w = argmin
w∈Rn

1
2
wTΣw

wT
1 = 1

0 ≤ w ≤ 1.

(2.12)

The marginal and total risk contribution of asseti are given as respectively

MRCi =
wi

√

wT
i Σwi

TRCi = wi
wi

√

wT
i Σwi

. (2.13)
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GMV strategy equalizes the marginal risk contributions by minimizing the assets’
volatilities and correlations. It can be thought that weights are obtained by equaliz-
ing the marginal risk contributions.

Some researchers find that GMV strategy outperforms the market-weighted portfolio
[5, 13] since its low volatility and high return result in high Sharpe ratio as opposed to
market-weighted portfolio. It can be result of the low volatility anomaly such that low
risky assets outperform the high risky assets in terms of returns in the long period.

GMV strategy only pursues the reduction of the portfolio risk therefore it does not pro-
vide a well diversified portfolio as one expects since GMV strategy concentrates on the
low volatility stocks. [8] finds that GMV approach actually generates an undiversified
portfolio. GMV portfolio is not a well diversified in both capital allocation and risk
allocation.

2.2.3 Risk Parity

Risk parity (RP) is an asset allocation strategy that allocates the weights according to
risk characteristics of asset classes. The main concept behind this method is to dimin-
ish the concentrated risk from one market regime by obtaining assets based on their
respective amount of risk. Covariance matrix is the only input parameter to eliminate
the estimation error in the expected return. The aim of the approach is distributing the
whole portfolio risk equally based on the volatility of included asset classes. The risk
contribution of asset classi to overall risk is the center interest of the RP.

Two different approaches in RP strategy are inverse volatility and equal risk contribu-
tion strategies.

2.2.3.1 Inverse Volatility Strategy

Inverse volatility (IV) strategy that is also known as naiverisk parity allocates the
weights of assets inversely to their risk. The volatilitiesof the components determine
the component weights. Investors apply this method assuming the uniform correlations
among all asset classes. In other words, there is no role of the assets’ correlations in
this strategy. The optimal weights of the components are given by

wi =
σ−1
i

∑n
j=1 σ

−1
j

, i, j = 1, 2, . . . , n. (2.14)

The asset class with higher volatility has low weight in IV strategy. Note that if asset
classes have equal volatilities, i.e.σi = σj, then strategy would be equally weighted
strategy, i.e.wi = n−1 for n assets.

If the portfolio consists of only two asset classes, it provides the same results with
the equal risk contribution approach. Furthermore, IV strategy generates an optimal
portfolio when assets have the same Sharpe ratios and identical correlations between
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two assets. However, if there are more than two asset classes, the portfolio becomes
very sensitive to the correlation of the assets. The ignorance of the relationship between
different securities will thus lead to the potential undiversible portfolio risk problem.
The whole portfolio risk is not indeed diminished than one’sexpectations. Therefore,
one who generates an IV portfolio should carefully select the assets since the high
correlation among the assets will still cause the same risk and hence the portfolio will
even be dominated by one specific risk.

2.2.3.2 Equal Risk Contribution Strategy

From the point of risk budgeting, asset allocation should bein terms of risk contribu-
tions of asset classes rather than in terms of asset weights.This means that specify-
ing the preferred risk contributions become starting pointto construct the appropriate
portfolio. Then the obtained portfolio has asset weights determined by the desired risk
allocation.

Risk contribution is redefined by [32] that introduce the riskcontribution constraint of
each asset class, called risk budget. Suppose, there aren asset classes and set the risk
budgets (b1, b2, . . . , bn) and targeted risk contributions are (TRC1, TRC2, . . . , TRCn)
to general risk measureR.

Then the risk budgeting portfolio is given as

TRC1(w1, w2, . . . , wn) = b1
TRC2(w1, w2, . . . , wn) = b2

...
TRCi(w1, w2, . . . , wn) = bi

...
TRCn(w1, w2, . . . , wn) = bn

(2.15)

Risk budgeting portfolio does not require the optimization technique and expected
return estimation. However, there are some drawbacks. First, the component exposures
are not clear. Second, if the assets have negative risk budgets, the portfolio risk is
concentrated on other assets, which is not consistent with the diversification aim. Thus,
to overcome these problems above system can be applied as a nonlinear system, i.e.

wi(Σwi) = bi(wTΣw)

then the optimization problem is

wRB = argmin
∑n

i=1(wi(Σwi))− biw
TΣw)2

∑n
i=1 wi = 1

∑n
i=1 bi = 1

wi, bi ≥ 0

(2.16)

wherewRB is the risk budgeting portfolio weight matrix,wi represents each asset
weights in the portfolio,bi denotes the risk budget vector. However, the analytical
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solution of the system in optimization in Equation 2.16 is not possible since it provides
the more than one optimal solution. Then, [21] proposes an optimal solution that is
also known as “equal risk contribution” strategy (ERC) such that the risk contributions
of each asset are equal. The aim of the approach is to assure that any component does
not have a dominant role on the whole portfolio risk so that the same risk budget or
contribution should be evenly distributed to each component. This can be shown as
following

wi
∂(w)

∂wi

= wj
∂(w)

∂wi

, ∀i, j. (2.17)

Then the objective function is the minimization of the square of the difference between
risk contributions of all pairs of components, i.e.

f(w) =
n

∑

i=1

n
∑

j=1

(wi
∂(w)

∂wi

− wj
∂(w)

∂wi

)2 (2.18)

wERC = argmin
w∈Rn

f(w)

wT
1 = 1

0 ≤ w ≤ 1.

(2.19)

The minimization of objective functionf(w) is required. The optimization problem to
solve forwERC is

min
wERC

∑n
i=1

∑n
j=1(wi

∂(w)
∂wi

− wj
∂(w)
∂wi

)2

s.t.
∑n

i=1 = 1
0 ≤ wi ≤ 1.

(2.20)

The volatility of ERC portfolio is higher than the volatilityof GMV portfolio and
smaller than the volatility of EW portfolio [21], i.e.

σ2
GMV ≤ σ2

ERC ≤ σ2
EW .

Contrary to the IV strategy, ERC strategy considers the correlation among asset classes.
However, it still underestimates the well-diversified portfolio with considering risk
from asset classes and ignoring the underlying risk factors. Likewise IV strategy, ERC
approach may be heavily exposed to few number of risk sourcesand may have con-
centrated risk structure as opposed to risk diversificationgoal.
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CHAPTER 3

DIVERSIFIED RISK PARITY

A general information about diversified risk parity (DRP) based on the works by
Meucci (2010) [24] and Lohre et al. (2011) [20] is presented.This is a special case of
risk parity (RP) with employing uncorrelated portfolios as risk sources. Applying risk
parity strategy to uncorrelated risk sources and maximizing the number of risk sources
in a portfolio is known as “diversified risk parity strategy”. The theory of portfolio con-
struction based on the DRP is given with its terminologies. For detailed information
and proofs, one can see [20, 26, 24, 25].

In the previous chapter, we examine the RP strategy that aims to distribute the portfolio
risk equally among the included asset classes in the portfolio. To accomplish this goal,
the asset classes are required to be minimum correlated or ifpossible uncorrelated to
each other.

As mentioned before, correlation among asset classes have become more unstable and
higher than expected, especially in market drops. Bhansali et al. [3] demonstrates
that RP portfolio constructed with asset classes is not a well-diversified portfolio. The
overlap of correlations between asset classes lead to poor diversification of RP strategy.
Specifically, during the financial crisis, correlations increase significantly exceeding
90%.

Even if the portfolio is constructed from different asset classes, the portfolio is gen-
erally equity risk concentrated since almost all asset classes have a correlation with
equity market [3]. Therefore, each asset class is exposed tomore than one risk and
investing in different asset classes do not guarantee a diversified portfolio in terms of
risk. The hidden risk concentration problem leads to academics and investors to focus
on independent and underlying drivers of asset returns for awell-diversified portfolio.
These drivers are called risk factors.

For a well-diversified portfolio, the key point is that the risk sources or risk factors
should be uncorrelated. Partovi and Caputo (2004) [26] use the principal component
analysis (PCA) to generate uncorrelated portfolios that arealso called as uncorrelated
risk sources. However, PCA has some drawbacks and does not provide the robust re-
sults in backtesting [27]. Therefore, Meucci et al. [25] propose a new approach namely
minimum linear torsion (MLT) model to extract uncorrelatedrisk factors. Lohre et al.
[20] apply RP strategy to uncorrelated portfolios using PCA and MLT and maximizes
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the number of risk sources in a portfolio. This strategy is called “diversified risk parity”
[20].

Contrary to the RP strategy based on asset classes in the previous part, we focus on
the RP approach that aims diversification based on the main risk sources driving the
asset returns. In this part, we apply DRP strategy to both PCA and MLT approaches.
First, we give some theoretical background of PCA and MLT transformations, then we
introduce the synthetic portfolios or risk sources generated from these strategies.

3.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical dimension reduction
technique that uses an orthogonal transformation of variables into the linearly uncorre-
lated synthetic variables, namely principal components (PCs). The general aim of the
PCA approach is to find another basis that denotes a linear combination of the original
basis and furthermore, this new basis redefines the data optimally.

For calculating PCA, the key point is to determine the new basis that re-expresses
the data in a best way. Thus, it is important to construct the new basis based on the
independence between principal components. The variance of the original data is taken
into consideration to define the independence from the pointof PCA. PCA decorrelates
the original data by obtaining the directions that have maximum variance and the found
directions are utilized to determine the new basis.

Consider a multivariate data matrixX. This matrix is centered without loss of general-
ity, i.e. X = X −m−1

11X, wherem denotes the number of observations. Then× n
covariance matrixS of matrixX is

S = n−1XTX.

Then, the linear combination of new variables are written asfollowing

pi =
n

∑

j=1

αjxij = αTxi, i = 1, . . . , n, (3.1)

whereα is a weighting vector(α1, . . . , αn)
T and xi represents the vector of obser-

vations, i.e.(xi1, . . . , xip)
T . To define sets of normalized weights, the maximization

of variation in thepi’s is required with using PCA. The first step is to find a vector
e1 = (e11, . . . , en1)

T that decomposes the covariance matrixS as large as possible
such that

Cov[Xe1] = E[(Xe1)TXe1]− E[Xe1]TE[Xe1] (3.2)

= E[eT1X
TXe1]−XeT1E[X]TE[X]eT1 (3.3)

= eT1Cov[X]e1 = eT1 Se1. (3.4)

To guarantee not to obtain arbitrary large values, the next constraint is applied

|| e1 ||2= eT1 e1 = 1. (3.5)
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Rearranging formula in Equation 3.1 with the constraint 3.5 gives a maximizing prob-
lem of mean square as following

1

n

n
∑

i=1

p2i1 subject to || e1 ||2= 1,

wherepj1 =
∑n

i=1 ej1xij = e1xi. The linear combinationpi1 is known as a “principal
component score”. To continue to define the basis of new variables, each projection
must be uncorrelated from previous ones, i.e.

n
∑

j=1

ejkejl = eTk el = 0, k < t ≤ n,

wheret is taken number of steps that are restricted by the number ofn variables. This
ensures orthogonal projections of the new basis.

Above problem with constraints can be defined as an optimization problem

max
e1

eT1 Se1 − λ(eT1 e1 − 1), (3.6)

that has a solution of
(S − λI)e1 = 0

Se1 = λe1.
(3.7)

Above optimization problem finds the eigenvaluesλ and corresponding eigenvectors
ej of the covariance matrixS. An eigenvector demonstrates the component direction in
the new space and its eigenvalue explains how much variance there is in the component
direction.

The semi-definite covariance matrixS can be decomposed into an orthogonal matrix
U and a diagonal matrixΛ, whose entries are eigenvaluesλ1 > · · · > λn. Then the
decomposition is

S = ETΛE =
n

∑

j=1

λjejeTj . (3.8)

Using Equation 3.6 and let definẽe1 = Ue1, where

|| ẽ1 ||2= ẽ1
T ẽ1 = (Ue1)TUe1 = eT1U

TUe1 = eT e1 =|| e1 ||2,

then the optimization problem in Equation 3.6 is rearrangedas

max
ẽ1 :̃eT1 ẽ1=1

ẽT1Λẽ1 = max
ẽ1 :̃eT1 ẽ1=1

n
∑

j=1

ẽ21jλj.

This reaches its maximum value whenẽ11 = 1 andẽ1 = a1. a1 is the unit vector that
has one in the first entry. We know that each component is uncorrelated from each
other such that

0 = Cov[Xe1, Xe2] = eT1Cov[X,X]e2 = eT1U
TΛUe2 = ẽT1Λẽ2. (3.9)
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Sinceẽ1 = a1, 0 = λ1ẽ21 ⇔ ẽ21 = 0. Then, the new optimization problem is

max
ẽ2 :̃eT2 ẽ2=1;̃e21=0

ẽT2Λẽ2 = max
ẽ2:ẽT2 ẽ2=1;ẽ21=0

n
∑

j=1

ẽ22jλj.

This reaches its maximum value whenẽ22 = 1 andẽ2 = a2. a2 is the unit vector that
has one in the second entry.

This optimization is repeated untilp principal components are found.

3.1.1 Principal Portfolios

In real-life applications, portfolios consist of securities with non-zero covariances. Par-
tovi and Caputo (2004) [26] employs PCA to construct the uncorrelated portfolios,
called principal portfolios. The definitions and theorems in this section are based on
[26, 24]. These portfolios are realizable whenever there isno constraint on short-
selling. Furthermore, these portfolios can be evaluated asuncorrelated risk sources.

Definition 3.1. [Principal Portfolios (PP)] LetΣ be ann × n covariance matrix. Ap-
plying principal component decomposition toΣ as in Equation 3.8, we obtain that
ETΣE = Λ = diag(λ1, . . . , λn). It is equivalent toE−TΛE−1 = Σ. The columns of
E are called principal portfolios.

Definition 3.2. Let w be ann × 1 weight vector of original portfolio, andE is an
eigenvector matrix of covariance matrixΣ of original data. Then, unique vectors̃wPP

satisfying
w = Ew̃PP

and equivalently
w̃PP = E−1w = ETw

are called principal portfolio weights.

Remark3.1. LetR be a matrix consisting of returns of original securities, thenR̃PP is
a vector of combination of asset returns that are represented in the principal component
space. TheñRPP satisfies that

ER̃PP = R

which implies to
R̃PP = E−1R.

Using Definition 3.1, next proposition is presented.

Proposition 3.1. The return ofith principal portfolio r̃PP,i is linear combination of
original return matrixR = (r1, r2, . . . , rn). r̃PP,i is given as

r̃PP,i = eTi R, i = 1, 2, . . . , n.

The variance of̃rPP,i is
σ2(r̃PP,i) = eTi Σei = λi
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with the covariance between different principal portfoliosith andjth

Cov(r̃PP,i, r̃j) = eTi Σej = 0.

This refers that theith andjth principal portfolios are mutually uncorrelated, thus an
investor is able to invest in uncorrelated principal portfolios or risk sources. Further-
more, these principal portfolios are constructed with the variances as large as possible
via the constrainteT e = 1. Hence the first principal portfolio has the largest variance
λ1, second portfolio has the second largest varianceλ2. This continuesn principal
portfolios withn variances andnth principal portfolio has the smallest varianceλ1.

Total variance of principal portfolios is established by next proposition.

Proposition 3.2. LetR be return of original assets andσ2(R) denotes the variance of
original securities, then total variance of principal portfoliosσ2(R̃PP ) is represented
as

σ2(R) = σ2(R̃PP ) = tr(Σ) =
n

∑

i=1

λi =
n

∑

i=1

σ2(r̃PP,i)

whereΣ is a covariance matrix of original data,λi represents eigenvalues ofΣ and
σ2(r̃PP,i) is a variance of each principal portfolio.

As the synthetic portfolios are uncorrelated, we can add thevariances directly.

Remark3.2. Since the sum of the each principal portfolio variance is equal to total
variance, the risk contribution of each principal portfolio to total variance can be writ-
ten as

σ2(r̃PP,i)

σ2(R)
=

λi

λ1 + λ2 + · · ·+ λn

.

As seen from the Proposition 3.2, total variances of original data return (R) and total
variance of artificial principal portfolio returns (R̃PP ) are the same. However, total
variance of uncorrelated principal portfolios are directly additive. The Remark (3.2)
indicates the variance contribution of each individual principal portfolios to total risk.

Remark3.3. The marginal risk contribution of each principal portfoliois equal to

MRCPP =
∂σ(R̃PP )

∂wi

=
1

2
√

∑n
i=1 w̃

2
PP,iλi

2w̃PP,iλi =
w̃PP,iλi

σ(R̃PP )
. (3.10)

Since covariances in the principal space are equal to zero, the risk contribution of each
principal portfolio is given by

R̃CPP,i =
w̃2

PP,iλi
√

∑n
i=1 w̃

2
PP,iλi

=
w̃2

PP,iλi

σ(R̃PP )
. (3.11)
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3.1.2 Diversified risk parity using Principal Component Analysis

Lohre et al. (2011) [20] apply risk parity strategy to uncorrelated portfolios and dis-
tribute the portfolio risk among uncorrelated risk sources. To prevent the risk concen-
tration, a portfolio should have maximum number of risk sources and the risk should be
allocated among these risk sources uniformly [24]. To achieve this goal, exponential
of Shannon entropy should reach its maximum value. The definitions and theorems in
this section are based on [24, 20].

First, we examine how Meucci (2010) [24] utilizes Shannon Entropy as a risk diversifi-
cation measure, and then we explain how risk parity strategyis applied to uncorrelated
risk factors.

It starts with introducing some terminologies which are used by Meucci (2010) for risk
diversification in principal space. Following Meucci’s (2010) path, firstly the variance
concentration curve is introduced as

vPP,i = w̃2
PP,iλi, i = 1, 2, . . . , n (3.12)

wherevPP,i denotes the variance of theith principal portfolio, whose weight is̃wPP,i

and variance isλi. Due to uncorrelated link among weighted principal portfolios, the
total variance is

σ2
P (w) = w′Σw

= w′EΛE ′w
= w̃′

PPΛw̃PP

= σ2
P (w̃PP )

=
∑n

i=1 w̃
2
PP,iλi

=
∑n

i=1 vPP,i.

(3.13)

Then, the standard deviation of portfolioP (w̃PP ) isσ(w̃PP ) that is utilized in volatility
concentration curve given as

sPP,i =
vPP,i

σP (w̃PP )
=

w̃2
PP,iλi

√

∑n
i=1 w̃

2
PP,iλi

, i = 1, 2, . . . , n. (3.14)

In fact, Equation 3.14 also demonstrates the sensitivity ofvariance contribution from
each principal portfolio to changes in portfolio weights. In other words, the volatility
concentration curve is a decomposition of portfolio volatility regarding the correspond-
ing weighted principal portfolios [19].

After that, the diversification distributionp is given as following [24]

pPP,i =
vPP,i

σ2
P (w̃PP )

=
w̃2

PP,iλi
∑n

i=1 w̃
2
PP,iλi

, i = 1, 2, . . . , n. (3.15)
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Considering the given expressions, it can be intuitively said that each principal portfo-
lio should affect the portfolio risk equally. Since the principal portfolios are uncorre-
lated, the manager who wants the well-diversified portfolioshould invest the principal
portfolios to achieve the uniform diversification distribution. This uniform diversi-
fication distribution leads the principal portfolios to have the same exposures to the
shocks.

When the variance concentration curve (vPP,i) is normalized, the following property is
obtained

n
∑

i=1

pPP,i = 1, 0 ≤ pPP,i ≤ 1.

Then, if probability massespPP,i are almost equal for eachi, a well-diversified port-
folio is constructed. An investor should avoid concentrated probability masses. With
utilizing the probability massespPP,is, this challenge is achieved by maximum entropy.

Entropy, a concept used in Physics to measure the level of uncertainty of a system, has
also a relationship with portfolio diversification. The relation between portfolio diver-
sification and entropy is based on the notion of uncertainty.Also, entropy is utilized
as the level of predictability of a stochastic system in Information Theory. Higher en-
tropy means less predictable system. If additional information enters the system, this
decreases entropy value. From the same point of view, investors use risk diversification
in the case of lack of information or uncertain financial markets. Thus, especially the
Principle of Maximum Entropy plays an important role in measuring diversification.
The principle is based on the foundation that estimation of the probability distribution
requires the selection of distribution which leaves the largest uncertainty (i.e. maxi-
mum entropy) consistent with the applied constraints. Thus, any additional assump-
tions are not needed in the calculation. More details and proofs for entropy can be
found in [34, 12, 35].

Definition 3.3. Let p be a discrete probability function on given setz1, z2, . . . , zn with
pi = p(zi), theentropyof p is given as

H = −
n

∑

i=1

pilogpi. (3.16)

The link between risk diversification and exponential of Shannon entropy is given in
next definition.

Definition 3.4. Consider Shannon Entropy given in Definition 3.3 and diversification
distribution of principal portfolios in Equation 3.15. Thenumber of uncorrelated fac-
tors,NEnt, that are the exponential entropy of the diversification distribution is defined
as

NPP,Ent = exp(−
n

∑

i=1

pPP,ilogpPP,i). (3.17)

Remark3.4. From Definition 3.3 and 3.4, the following results can be reached:
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(i) NPP,Ent reaches its maximal value (i.e.NPP,Ent = n) if the system is completely

unpredictable, where all principal portfolios are equallylikely i.e, pPP,i =
1

n
for

all i. This case represents the well-diversified portfolio.

(ii) NPP,Ent has the minimum value,NPP,Ent = 1, if the system is completely de-
terministic where the probability of one principal portfolio is one. In this case,
a sharp peak happens in the diversification distribution andleads ill-diversified
portfolio.

(iii) If probability massespPP,is are uniform onk (such thatk < n) principal portfo-
lios thenNPP,Ent = m.

NPP,Ent ranges from one (highest concentration) ton (highest diversification). The ex-
ponential of entropy measure is defined for long-only portfolios whose sum of weights
is one. In fact, the maximal value of measure is achieved whenthe naive risk parity
strategy (i.e. weights are inversely proportional to assets’ volatility) is applied [28].
Also the number of risk sources in the risk space are denoted by NPP,Ent.

Given a portfolio without constraints, maximum entropy is achieved ifpPP,i has uni-
form distribution. This achievement is a sign that each riskequally contribute to total
risk.

Definition 3.5 (Diversified risk parity). If the diversification distribution in Equa-
tion 3.15 is close to uniform, the strategy is called diversified risk parity.

The optimization problem is

argmax
wPP

NPP,Ent

subject to1
TwPP = 1

−1 ≤ wPP ≤ 1.

(3.18)

DRP is also obtained by applying ERC optimization in Equation 2.20 to principal
portfolios with using Remark 3.3 gives that

w̃∗
PP = argmin f(w̃PP )
subject to1

T w̃PP = 1
0 ≤ w̃PP ≤ 1

where f(w̃PP ) =
∑n

i=1

∑n
j=1(R̃Ci − R̃Cj)

2

(3.19)

Due to zero covariances in the principal space, the weights can be calculated from a
closed-form solution as in Equation 2.14. Then the optimal weights of the principal
portfolios are given by

w̃∗
PP,i =

(
√
λi)

−1

∑n
i=1(

√
λi)−1

. (3.20)

Therefore, the optimal weightsw∗
PP,i provide the equal risk contribution from each risk

factor.
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ERC to principal portfolios and DRP strategies are based on different risk measures.
While ERC strategy aims equal risk contributions, DRP approachtargets the uniform
diversification distribution. However, the optimization solutions in Equation 3.19 and
Equation 3.18 give the same results without any further constraints since the risk con-
tributionsR̃CPP,i in principal space almost equal the diversification distributionpPP,i.

3.2 Minimum Linear Torsion Transformation

PCA approach has some drawbacks such that the factors from PCA cannot be econom-
ically interpretable and the factors are presented by low eigenvalues may be unstable
over the time. Furthermore, it does not provide robust results in backtests [27, 16].
Minimum linear torsion (MLT) model is a way to extract uncorrelated risk factors.
The definitions and theorems in this section are based on [25,2].

LetX (= X1, X2, . . . , Xn)
T be a random vector that gives the return ofn number of

assets. represent then×m random matrix withn variables andm observations. Then,
the orthogonal variables,Xt, can be obtained as

Xt = t×X,

wheret is ann× n transformation matrix that is generated by MLT of original data.

The MLT approach guarantees that synthetic variables represent the nearest uncorre-
lated representation of original data. Furthermore, new variables have the same volatil-
ity with the original variables. Thus, the covariance matrix of new dataD2 can also
rewritten as

D2 = diag(Σ)

whereΣ denotes the covariance matrix of original data.

Diagonalizing covariance matrixΣ is equivalent to diagonalizing the correlation matrix
C, i.e.

C = Σ = diag(Σ)1/2Cdiag(Σ)1/2

wherediag(.) presents the diagonal elements of a square matrix and its square root is
the square root of the diagonal elements.

Let us consider Cholesky decomposition of correlation matrix C as below

C = LDL′ (3.21)

= LD1/2D1/2L′ (3.22)

= (LD1/2L′)(LD1/2L′), (3.23)

whereL is a lower triangular matrix andD is a diagonal matrix. Define

c = LD1/2L′ and c = c′, (3.24)

then
C = cc′ = c2. (3.25)
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The minimum linear torsion transformation requires the minimization of the net track-
ing errors between the generated variables and original variables. The optimization
problem is

t = argmin
Corr(tX)=In×n

√

√

√

√

1

n

n
∑

i=1

V ar(
(tX)i −Xi

σi

) (3.26)

whereσ represents the volatility of original data. Transformation matrixt ensures new
variables are uncorrelated.

The minimum linear torsion transformation is obtained by minimizing the squared net
tracking errors between the original data and new syntheticdata. Then, Equation 3.26
can be rearranged as

t = argmin
Corr(tX)=In×n

[NTE{xt1 , x1}2 + · · ·+ {xtn , xn}2] (3.27)

wheren is the number of original variables andNTE{.} represents the net tracking
error (NTE) function. Then the solution for the NTE becomes

n
∑

i=1

NTE{xti , xi}2 =
n

∑

i=1

Var(xti − xi) =
n

∑

i=1

Var(a′ix− b′ix) (3.28)

=
n

∑

i=1

Var([ai − bi]
′x) =

n
∑

i=1

Var[ai − bi]
′Σ[ai − bi] (3.29)

= tr([t− In]
′Σ[t− In]) = tr(t′Σt− t′Σ− Σt+ Σ) (3.30)

= tr(D2) + tr(Σ)− 2tr(t′Σ), (3.31)

whereai is theith column of matrixt andbi is theith elementary factor. The mini-
mization theNTE can be obtained by maximizingtr(t′Σ) (for details see [25]).

First, let decompose the matrixΣ by PCA, i.e.Σ = EΛ2E, E is an eigenvector matrix
andΛ2 represent the eigenvalue matrix. Then,tr(t′Σ) can be expanded as

tr(t′Σ) = tr(DD−1t′EΛΛE ′). (3.32)

Let P ′ = D−1t′EΛ, then Equation 3.32 can be rewritten as

tr(t′Σ) = tr(P ′ΛE ′D) (3.33)

whereP holds the propertyPP ′ = In andIn denotes then× n identity matrix. Next,
we apply the singular value decomposition toΛE ′D as

ΛE ′D = USV ′ (3.34)

whereU andV are orthogonal matrices to each other. The diagonal matrixS has
singular values ofΛE ′D. The substitution ofΛE ′D to Equation 3.34 gives

tr(P ′ΛE ′D) = tr(P ′USV ′) = tr(V ′P ′US). (3.35)
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Let V ′P ′US denote asZ that satisfiesZZ ′ = In. Then substituting theZ to Equa-
tion 3.35 gives

tr(V ′P ′US) = tr(ZS) =
n

∑

i=1

ziisii ≤
n

∑

i=1

sii. (3.36)

Equation 3.36 is maximized whenzii = 1 for all i, i.e. Z = In. Solving the Equa-
tion 3.36 forP ′, we obtain

Z = V ′P ′U = In

then,
P ′ = UV ′.

SinceP ′ = D−1t′EΛ, the transformation matrix can be solved as following

P ′ = D−1t′EΛ (3.37)

UV ′ = D−1t′EΛ (3.38)

t = EΛ−1UV ′D. (3.39)

Then the transformation matrix is

t = EΛ−1UV ′D. (3.40)

Definition 3.6. [Minimum-Torsion Transformation] Consider a random vectorX(=
X1, X2, . . . , Xn)

T which represents asset returns. Minimum-torsion transformation
minimizes the tracking error between vectorX and new vectortX and ensures that the
vectorsX andtX are uncorrelated. Torsion matrixt is given below

t = argmin
Corr(tX)=In×n

√

√

√

√

1

n

n
∑

i=1

V ar(
(tX)i −Xi

σi

) (3.41)

whereσi represents the volatility of the vectorXi.

Theorem 3.3. LetX(= X1, X2, . . . , Xn) be a random vector,t is ann × n rotation
or torsion matrix, then minimum linear torsion transformation exists as described in
Definition 3.6. The transformation matrixt in Definition 3.6 is equivalent to

t = diag(σ)αc−1diag(σ)−1 (3.42)

wherediag(.) takes the diagonal entries by making the diagonal matrix whose non-
diagonal entries are zero and diagonal entries consist ofn × 1 vectorv, c is given in
Equation 3.25,α is a perturbation matrix computed with using a recursive algorithm
as given in Table 3.1.

The Equation 3.41 is equivalent in solving below optimization

t∗ = argmin tr(Cov{diag(σ)−1tµ− diag(σ)−1)µ})
subject toCorr{tµ} = I

(3.43)

where Cov{.} is then× n covariance matrix of the inside subject,µ denotes the mean
of the variables,Corr{.} is then × n correlation matrix of the inside subject andI is
then×n identity matrix.diag(.) extracts the diagonal entries of the covariance matrix.
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LetQ = diag(σ)−1µ denote as the normalized means. Then

ΣQ = Ωµ = diag(σ)−1Σµdiag(σ)−1 (3.44)

whereΩ is the correlation matrix of means of the variables.

t∗ = argmin tr(Cov{diag(σ)−1tdiag(σ)Q−Q}). (3.45)

Rewriting Equation 3.45 in a different way gives as

t∗ = diag(σ)αdiag(σ)−1 (3.46)

whereα solves that

α∗ = argmin tr(Cov{(α− I)Q}) (3.47)
= argmin tr((α− I)Ω(α′ − I)) (3.48)
= argmin tr(αΩα′ − αΩ− Ωα′ + Ω) (3.49)
= argmin tr(αΩα′ − 2αΩ) + ā. (3.50)

We can decompose the correlation matrixΩ with Cholesky decomposition as in Equa-
tion ??. Then Equation 3.50 becomes

α∗ = argmin tr(αcc′α′ − 2αcc) (3.51)

We denoteτ = αc, then
α∗ = τ ∗c−1 (3.52)

where
τ ∗ = argmin tr(ττ ′ − 2τc). (3.53)

Meucci (2014) uses the solution from [9], the optimization in Equation 3.53 has an
iterative process with two steps.

First, denote
τ = xy

wherex is a diagonal matrix andy is orthonormal matrix. In step 1, we assume the
diagonal matrixx written asττ ′ = x2. Then the optimization in Equation 3.53 is
re-written with using the symmetry of Cholesky decomposition as following

τ ∗ = argmin tr(ττ ′ − 2τc) = argmax tr(cτ) (3.54)

The Procrustes problem seeks an orthogonal matrix that closely transforms a matrix
into a second matrix. The optimization in Equation 3.54 requires employing the solu-
tion of orthogonal Procrustes problem from [33] whose solution is given by [25]

τ ∗ = x(
√

(xc2x))−1xc (3.55)

y∗ = x−1τ ∗ = (
√

(xc2x))−1xc (3.56)

x∗ = diag(diag−1(yc)). (3.57)

The solution ofτ ∗ is obtained by alternating thex∗ andy∗ in Equations 3.56 and 3.57.
The algorithm ofτ is given as

Goal: Perturb (c)
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Table 3.1: The algorithm of perturbation matrixτ [25, p. 7]

Step1 Fix diagonal matrixx as an identity matrix,
x = I.

Step2 We know thatc = e
√
λe′. Then, using the solution of orthogonal Procrustes problem,

u comes from the Cholesky decomposition in 3.24
u = (xc2x)1/2.

Step3 Rotation property of the transformation matrixt comes from
y = u−1xc.

Step4 Stretching property of the torsion matrixt comes from
x = diag(diag−1(yc))

wherediag−1(.) extracts ann× 1 vector on the principal diagonal.
Step5 Finally, perturbation is

τ = xy

Step6 If the outcomes ofτ converges, the algorithm stops, otherwise it goes to1.

Proposition 3.4. LetΣ be ann× n matrix. It can be decomposed by torsion matrixt
as following

Σ = (t′)−1Σtt
−1 (3.58)

whereΣt consists of only diagonal entries, i.e.σt = σt,1, σt,2, . . . , σt,n.

3.2.1 Minimum Linear Torsion Portfolios

The design of the principal portfolios is based on capturingthe most of the original
assets’ volatility. They are statistical factors that do not exhibit clear economic inter-
pretation and depict unstable character over period as mentioned before. To overcome
these problems, Meucci et al. (2015) propose a factor model that produces uncorrelated
portfolios. We design minimum linear torsion portfolios asfollowing. The definitions
and theorems in this section are based on [25, 2].

Definition 3.7. [Minimum linear torsion portfolios (MTP)] Lett is ann × n mini-
mum torsion transformation matrix as given is Theorem 3.3. Each column oft ma-
trix, t1, t2, . . . , tn for n number of assets, is called “minimum linear torsion portfolio”
(MTP).

Definition 3.8. Let w be ann × 1 weight vectors of original portfolio, andt is a
minimum torsion matrix of covariance matrixΣ of original data. Then, unique vectors
w̃MTP satisfying

w̃MTP = t′−1w

are called minimum torsion portfolio weights.

Remark3.5. LetR be a matrix consisting of returns of original securities, thenR̃MTP,i

is a vector of combination of asset returns that are represented in the minimum torsion
space. TheñRMTP satisfies that

R = t′R̃MTP

which implies to
R̃MTP = t′−1R.
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Using Definition 3.7, next proposition is presented.

Proposition 3.5. The return ofith minimum torsion portfoliõrMTP,i is linear combi-
nation of original return matrixR = (r1, r2, . . . , rn). r̃MTP,i is given as

r̃MTP,i = t′−1
i R, i = 1, 2, . . . , n.

The variance of̃ri is
σ2(r̃MTP,i) = t′−1

i Σtt
−1
i

with the covariance between different principal portfoliosith andjth

Cov(r̃MTP,i, r̃MTP,j) = 0.

This refers that theith andjth minimum portfolios are mutually uncorrelated, thus an
investor is able to invest in uncorrelated principal portfolios or risk sources.

Total variance of minimum torsion portfolios is established by next proposition.

Proposition 3.6. LetR be return of original assets andσ2(R) denotes the variance of
original securities, then total variance of principal portfoliosσ2(R̃MTP ) is represented
as

σ2(R) = σ2(R̃MTP ) =
n

∑

i=1

λi =
n

∑

i=1

σ2
t,i(r̃MTP,i)

whereΣ is a covariance matrix of original data,σt,i is the variance of each minimum
torsion portfolio.

As the synthetic portfolios are uncorrelated, we can add thevariances directly.

Remark3.6. Since the sum of the each minimum torsion portfolio varianceis equal to
total variance, the risk contribution of each minimum torsion portfolio to total variance
can be written as

σ2(r̃i)

σ2(R)
=

σ2
t,i

σ2
t,1 + σ2

t,2 + · · ·+ σ2
t,n

.

As seen from the Proposition 3.6, total variances of original data return (R) and total
variance of artificial minimum linear torsion (MT) portfolio returns ( ˜RMTP ) are the
same. However, total variance of uncorrelated MT portfolios are directly additive. The
Remark (3.6) indicates the variance contribution of individual MT portfolios to total
risk.

Remark3.7. The marginal risk contribution of each minimum torsion portfolio is equal
to

MRCMTP =
∂σ(R̃)

∂wi

=
1

2
√

∑n
i=1 w̃

2
MTP,iσt,i

2w̃MTP,iσt,i =
w̃MTP,iσt,i

σ(R̃MTP )
. (3.59)
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Since covariances in the minimum torsion space are equal to zero, the risk contribution
of each minimum torsion portfolio is given by

R̃CMTP,i =
w̃2

MTP,iλi
√

∑n
i=1 w̃

2
MTP,iσt,i

=
w̃2

MTP,iσt,i

σ(R̃MTP )
. (3.60)

3.2.2 Diversified Risk Parity using Minimum Torsion Transformation

The derivation of diversified risk parity from minimum torsion portfolios (DRPMTP )
follows the similar path as in 3.1.2. Firstly the variance concentration curve is intro-
duced as

vMTP,i = w̃2
MTP,iσ

2
t,i, i = 1, 2, . . . , n (3.61)

wherevMTP,i denotes the variance of theith minimum torsion portfolio, whose weight
is w̃MTP,i and variance isσt,i. Due to uncorrelated link among weighted minimum
portfolios, the total variance is

σ2
P (wMTP ) = w′Σw = w′t′−1Σtt

−1w = w̃′
MTPΣtw̃MTP = σ2

P (w̃MTP )
=

∑n
i=1 w̃

2
MTP,iσ

2
t,i =

∑n
i=1 vMTP,i.

(3.62)

Then, the standard deviation ofP (w̃MTP ) is σ(w̃MTP ) that utilized in volatility con-
centration curve given as

sMTP,i =
vMTP,i

σP (w̃MTP )
=

w̃2
MTP,iσ

2
t,i

√

∑n
i=1 w̃

2
MTP,iσ

2
t,i

, i = 1, 2, . . . , n. (3.63)

In fact, Equation 3.63 also demonstrates the sensitivity ofvariance contribution from
each MT portfolio to changes in portfolio weights. In other words, the volatility con-
centration curve is a decomposition of portfolio volatility regarding the corresponding
weighted MT portfolios [19].

After that, the diversification distribution is given as following

pMTP,i =
vMTP,i

σ2
P (w̃)

=
w̃2

MTP,iσ
2
t,i

∑n
i=1 w̃

2
MTP,iσ

2
t,i

, i = 1, 2, . . . , n. (3.64)

Considering the given expressions, it can be intuitively said that each minimum tor-
sion portfolio should affect the portfolio risk equally. Since the MT portfolios are
uncorrelated, the manager who wants the well-diversified portfolio should invest these
portfolios to achieve the uniform diversification distribution. This uniform diversifica-
tion distribution leads the minimum torsion portfolios to have the same exposures to
the shocks.
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When the variance concentration curve (vMTP,i) is normalized, the following property
is obtained

n
∑

i=1

pMTP,i = 1, 0 ≤ pi ≤ 1.

Then, if probability massespMTP,is are almost equal, a well-diversified portfolio is
constructed. An investor should avoid concentrated probability masses. With utiliz-
ing the probability massespMTP,is, this challenge is achieved by maximum entropy.
Since the entropy is introduced before, we give directly thedefinition the number of
uncorrelated risk factors based on minimum torsion transformation.

Definition 3.9. Consider Shannon Entropy given in Definition 3.3 and diversification
distribution of MT portfolios in Equation 3.64. The number of uncorrelated risk fac-
tors,NMTP,Ent, that are the exponential entropy of the diversification distribution is
defined as

NMTP,Ent = exp(−
n

∑

i=1

pMTP,ilogpMTP,i). (3.65)

NMTP,Ent ranges from one (highest concentration) ton (highest diversification). The
exponential of entropy measure is well-designed for long-only portfolios whose sum
of weights is one. In fact, the maximal value of measure is achieved when the naive
risk parity strategy, i.e. weights are inversely proportional to assets’ volatility, is ap-
plied [28]. Also average number of relevant assets in the risk space are denoted by
NMTP,Ent.

Given a portfolio without constraints, maximum entropy is achieved ifpMTP,i has uni-
form distribution. This achievement is a sign that each riskequally contribute to total
risk.

Definition 3.10 (Diversified risk parity using minimum torsion transformation). If the
diversification distribution in Equation 3.64 is close to uniform, the strategy is called
diversified risk parity.

The optimization problem becomes

argmax
wMTP

NMTP,Ent

subject to1
TwMTP = 1

−1 ≤ wMTP ≤ 1.

(3.66)

DRP is also obtained by applying ERC optimization in Equation 2.20 to MT portfolios
with using Remark 3.7 gives that

w̃∗
MTP = argmin f(w̃MTP )
subject to1

T w̃MTP = 1
0 ≤ w̃MTP ≤ 1

where f(w̃MTP ) =
∑n

i=1

∑n
j=1(R̃C i − R̃Cj)

2

(3.67)
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Due to zero covariances in the minimum torsion space, the weights can be calculated
from a closed-form solution as in Equation 2.14. Then the optimal weights of the
principal portfolios are given by

w̃∗
MTP,i =

(
√
λi)

−1

∑n
i=1(

√
λi)−1

. (3.68)

Therefore, the optimal weightsw∗ provide the equal risk contribution from each risk
factor.

ERC to principal portfolios and DRP strategies are based different risk measures.
While ERC strategy aims equal risk contributions, DRP approachtargets the uniform
diversification distribution. However, the optimization solutions in Equation 3.67 and
Equation 3.66 give the same results without any further constraints since the risk con-
tributionsR̃C i in principal space almost equal the diversification distributionpMTP,i.

To sum up the methodologies are mentioned in this study, Table 3.2 and Table 3.3 are
constructed.

Table 3.2: Summary table of portfolio weights with respect to strategies

Portfolio Strategy Weights

EW wi = n−1

GMV wi = min
w

∑n
i=1

∑n
j=1

wiwjσi,j

IV wi =
σ−1

i∑
n
j=1

σ−1

j

ERC wi = argmin
w

∑n
i=1

∑n
j=1

(wi(Σw)i − wj(Σw)j)
2

DRPPP w̃i =
λ−1

i∑
n
j=1

λ−1

j

DRPMTP w̃i =
σ−1

MTP,i∑
n
j=1

σ−1

MTP,j
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Table 3.3: Summary of definitions used in asset, principal and minimum torsion spaces

Asset Space [[16]] Principal Space [[16]] Minimum Torsion Space

Weights wi w̃i w̃i

Portfolio σ2
P (w) =

∑n
i=1 w

2
i σ

2
i +

∑n
i 6=j wiwjσi,j σ2

P (w̃) =
∑n

i=1 w̃
2
i λi σ2

P (w̃) =
∑n

i=1 w̃
2
i σMTP,i

Variance

Marginal Risk ∂wi
σ2
P (w) =

wiσ
2

i +
∑n

i 6=j wjσi,j

σP (w)
∂w̃i

σ2
P (w̃) = w̃iλi

σP (w̃)
∂w̃i

σ2
P (w̃) =

w̃iσ
2

MTP,i

σP (w̃)

Contribution

Risk RCi=
w2

i σ
2

i +
∑n

i 6=j wiwjσi,j

σP (w)
R̃C i =

w̃2

i λi

σP (w̃)
R̃C i =

w̃2

i σ
2

MTP,i

σP (w̃)

Contribution

34



CHAPTER 4

EMPRICAL ANALYSIS

In this chapter, we provide an empirical analysis to examinethe strategies that are
discussed in the previous chapters and to see the differenceof risk allocation among
asset classes versus uncorrelated risk factors. The methodology corresponds to the
related work of [24, 25, 20] to generate the uncorrelated risk factors. We also follow
[29]’s work in defining the set of risk factors. Then, we present the performance of
both diversified risk parity strategies and risk based assetallocation strategies. The
poor performance of mean-variance strategy due to large estimation errors in estimated
mean has become popular risk-based strategies as mentionedpreviously. Therefore, to
make clear comparison, we also include mean-variance optimization and compare the
out-of-sample performance with both risk-based strategies and DRP strategies.

4.1 Data

This work focuses on seven broad asset classes representingequity, bond and com-
modity indices to construct the asset allocation strategies. Monthly prices of the assets
between January 1988 and December 2017 are retrieved from Bloomberg [4]. The
logarithmic return is calculated based on the closed pricesat the end of each month.
The analyses are run in Matlab 2014. Two equities, four bondsand one commodity in-
dices are chosen to set up the portfolios as shown in Table 4.1. The reason of working
with these asset classes is that they are enough broad and widely used to represent the
corresponding risk factors.

The data used in this thesis are summarized in Table 4.1. We employ the MSCI World
Total Return Index for developed equities and MSCI Emerging Markets Total Return
Index for emerging countries, which are denoted by M1WO and M1EF, respectively.
High yield index that is a kind of fixed income tracks the performance of US dollar
denominated below investment grade rated corporate debt publicly issued in the US
domestic market, which is represented by H0A0. The bond indices are Citi WGBI Cur-
rency Hedged USD for world government bonds hedged, Citi WBGI USD for world
government bonds and Barclay’s U.S. Aggregate for U.S. aggregate bonds, which are
represented by SBWGC, SBWGU and LBUSTRUU, respectively. The commodity is
given by S&P GSCI index that is denoted by SPGSCITR. The abbreviations are kept
as in Bloomberg tickers. Since we focus on the risk distribution among risk factors,
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Table 4.1: Summary of asset classes

Bloomberg Index Index Asset Representation
ticker name definition type of risk source

M1WO MSCI World Total Return Developed equity Equity Equity risk
Index for developed equities

M1EF MSCI World Total Return Emerging equity Equity Equity risk
Index for emerging equities

H0A0 ICE BofAML US High Yield High Yield Fixed income Equity risk∗

Master II Index value
SBWGC Citi WGBI World government Fixed income Interest rate risk

Currency-Hedged USD bonds hedged
SBWGU Citi WGBI USD World government bonds Fixed income Interest rate risk
LBUSTRUU U.S. Aggregate bonds U.S. Aggregate Fixed income Interest rate risk
SPGSCITR S&P GSCI Total Return CME The measure of general Commodity Inflation risk

commodity price
movements and inflation

∗ Although high yield is a kind of bond, it represents the equity risk since it hasgenerally high correlation with
equity.

we also give which data represents what kind of risk. Two equity indices represent
the equity risk factor. High yield demonstrates a differentstructure from other bonds.
Although it is a kind of bond, it also represents equity risk factor since it has generally
high correlation with equity [29]. Remaining bonds represent the interest rate risk.
Commodity index represents the inflation risk [29, 20].
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The monthly asset prices and their cumulative returns can beseen in Figure 4.1. Com-
modity and developed equity demonstrate a volatile price pattern over the period. The
remaining asset prices present more stable pattern. As for the cumulative returns,
emerging equities give the highest return, which is followed by high yield index. Their
reaction to 2008 financial crisis can be seen in the same figure. Most of the prices
are declined sharply except bonds. The returns of the emerging are decreased mostly
among all asset classes. The returns of high yield, commodity and developed equity
indices are also decreased. There is not remarkable decrease in the returns of bonds.

Table 4.2: Descriptive statistics of the selected assets

Return Risk Sharpe Ratio MDD

M1WO 6.83% 15.63% 0.22 14.00%
M1EF 12.43% 24.70% 0.36 16.03%
H0A0 8.78% 8.79% 0.61 8.67%
SBWGC 6.84% 3.17% 1.09 1.33%
SBWGU 6.93% 6.79% 0.52 2.34%
LBUSTRUU 7.34% 3.87% 1.02 1.34%
SPGSCITR 6.52% 21.27% 0.15 17.65%

Table 4.2 reports the descriptive statistics of the data. The developed equity has an-
nualized return of6.83% at a risk of15.63%. On the other hand, emerging equity
demonstrates higher return and volatility compared to developed equity, which are
12.43% and24.70%, respectively. High yield index is a bond index but it has similar
return and volatility as equity indices. High yield index has higher return and volatility
compared to bonds. Bonds indices have the lowest volatility and return in all asset
classes. The final asset class commodity draws a similar figure with developed coun-
tries with respect to return and risk. In evaluating the performances of the asset classes
with regarding to Sharpe Ratio, the lowest ratio belongs to commodity index (0.15).
This can be the result of the high volatility of the oil priceswith low return. The unex-
pected results come from the bond indices having the highestSharpe ratio. This may
be the result of2008 and subsequent financial crises, since bonds generally givethe
high performance during the bad times [5]. High yield also performs well with the
Sharpe ratio of 0.61. Developed equity presents the poor Sharpe ratio (0.22) compared
to emerging equity that has the ratio of 0.36. World government bonds hedged and
world government bonds have the highest Sharpe ratios of 1.09 and 1.02, respectively.
Aggregate bond also has a good Sharpe ratio of 0.52 compared to equity asset classes
and high yield asset class. The highest drawdowns belong to commodity and equity in-
dices. High yield also have high drawdown compared to bond indices. The drawdowns
of bonds are around 1% and 2%.

It is seen in Table 4.3 that there is a high correlation between equity indices and high
yield index. This leads to high yield being categorized as anequity index although it
is a kind of bond index. Bond indices have a low correlation with the remaining asset
classes. The correlation structure of the asset classes is also evaluated for the crisis
period between August 2007 and February 2008 as in Table 4.4.

A general positive increase of the correlation among asset classes is observed. The
correlation between equity indices and high yield index is over 90%. The increase
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Table 4.3: Correlation matrix of asset classes between January 1988 and December
2017

Asset type Equity Equity High yield Bond Bond Bond Commodity
M1WO M1EF H0A0 SBWGC SBWGU LBUSTRUU SPGSCITR

M1WO 1
M1EF 0.74 1
H0A0 0.61 0.58
SBWGC 0.01 -0.11 0.01 1
SBWGU 0.26 0.06 0.09 0.55 1
LBUSTRUU 0.12 0.01 0.24 0.85 0.57 1
SPGSCITR 0.24 0.28 0.22 -0.16 0.12 -0.02 1

Table 4.4: Correlation matrix of asset classes between August 2008 and February 2008

Asset type Equity Equity High yield Bond Bond Bond Commodity
M1WO M1EF H0A0 SBWGC SBWGU LBUSTRUU SPGSCITR

M1WO 1
M1EF 0.95 1
H0A0 0.92 0.87
SBWGC -0.20 -0.15 -0.14 1
SBWGU 0.19 0.28 0.29 0.68 1
LBUSTRUU 0.45 0.46 0.50 0.72 0.79 1
SPGSCITR 0.62 0.64 0.62 -0.54 -0.04 0.02 1

happens from 0.61 to 0.92 and from 0.58 to 0.87 for developed and emerging equities
respectively. Furthermore, the correlation increases between both equities and com-
modity, which is from 0.24 to 0.62 and from 0.28 to 0.64 for developed and emerging
equities respectively. As for the bonds, only SBWGC index thatshows increased neg-
ative correlation with other asset classes is separated from other bond indices. Other
bond indices have increased positive correlations with other asset classes. The cor-
relation between high yield index and commodity index also increases from 0.22 to
0.62. Briefly, asset classes have correlations among themselves, specifically over the
bad economic times they demonstrate highly correlated behavior contrary to the ex-
pectation and desire of the uncorrelated structure.

4.2 Constructing Uncorrelated Portfolios

To extract the uncorrelated risk factors hidden in the multi-asset classes, we apply two
methods: PCA ad MTP.

4.2.1 Principal portfolios

The economic interpretation of the principal portfolios isbased on the coefficients of
the asset classes in the eigenvectors. The asset that has high coefficients in absolute
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value drives the volatility of the eigenvector. We know thateach eigenvector represent
uncorrelated principal portfolios (PPs) as given in Definition 3.1. There exists seven
PPs as shown in Table 4.5 which presents the eigenvector matrix of asset classes’
monthly returns based on the sample period from January 1988to December 2017.
The economic interpretation of each eigenvector is presented as well as with their
variances. Bold numbers demonstrate high coefficients.

Table 4.5: Eigenvector matrix

PP1 PP2 PP3 PP4 PP5 PP6 PP7
Equity M1WO 0.44 -0.18 -0.74 0.22 0.41 -0.08 -0.01
Equity M1EF 0.79 -0.33 0.48 -0.20 -0.03 -0.01 0.00
High Yield H0A0 0.19 -0.06 -0.23 0.42 -0.84 0.17 0.07
Bond SBWGC -0.01 -0.02 -0.12 -0.27 -0.15 -0.53 0.78
Bond SBWGU 0.03 0.02 -0.26 -0.76 -0.17 0.50 -0.01
Bond LBUSTRUU 0.01 -0.01 -0.16 -0.28 -0.28 -0.65 -0.62
Commodity SPGSCITR 0.38 0.92 0.01 0.01 0.02 -0.03 0.01

Risk Equity + Inflation Equity Not Not Interest Not
type Commodity risk risk defined defined rate defined

risk risk
Variance 4.22% 2.59% 1.19% 1.04% 0.81% 0.38% 0.17%

The first principal portfolio (PP1) is dominated by both equity and commodity risks
with the weights of0.44, 0.79 and0.38 for developed equity, emerging equity and com-
modity indices, respectively. We know that first eigenvector has the highest variance,
besides the first eigenvector is driven by high volatile assets, i.e. equities and com-
modity, yielding the highest variance with4.22%. Second principal portfolio (PP2) is
purely driven by commodity index whose weight is 0.92. Therefore, PP2 is inflation
risk with the variance of2.60%. In the third principal portfolio (PP3), developed and
emerging equities have the highest weights, hence PP3 represents the equity risk that
accounts for1.19% of the total variance. The fourth principal portfolio (PP4)and the
fifth principal portfolio (PP5) cannot have economic interpretation since high weights
do not belong to one asset class. The sixth principal portfolio is dominated by bonds,
and therefore it represents the interest rate risk with a volatility of 0.38%. Again, the
seventh principal portfolio (PP7) is not defined since thereis no one type of asset class
having high coefficients to dominate this eigenvector. In PP7, two bonds have high co-
efficients in absolute value of 0.78 and 0.62 but the other bond has quite low coefficient,
which prevents the domination of bonds in the seventh principal portfolio. Therefore,
we extract three main uncorrelated risk sources with using PCA. PP2, PP3 and PP6
represent the inflation risk, equity risk and interest rate risk respectively. Based on the
selection made using PCA, the variance of each risk is given as

σ2
PP,equity = 1.19%

σ2
PP,inflation = 2.59%

σ2
PP,interestrate = 0.38%.
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4.2.2 Minimum torsion portfolios

MLT model is another approach to obtain the uncorrelated risk sources. On the con-
trary to PCA, MLT gives the uncorrelated risk factors that closely track the original
factors. This property helps to extract and interpret the torsion portfolios straightfor-
wardly. Seven portfolios represented by MTP are presented in Table 4.6 that presents
the torsion matrix of asset classes’ monthly returns based on the sample period from
January 1988 to December 2017. The economic interpretationof each column of tor-
sion matrix is presented as well as with their variances. Boldnumbers in the table
demonstrate the high coefficients.

Table 4.6: Torsion matrix

MTP1 MTP2 MTP3 MTP4 MTP5 MTP6 MTP7
Equity M1WO 1.32 -0.03 -0.50 -0.02 -0.45 0.20 -0.02
Equity M1EF -0.75 1.28 -0.61 0.27 0.15 0.30 -0.11
High Yield H0A0 -0.16 -0.08 1.20 0.38 0.10 -0.64 -0.02
Bond SBWGC 0.00 0.00 0.05 1.55 -0.10 -0.68 0.02
Bond SBWGU -0.08 0.01 0.58 -0.47 1.16 -0.38 -0.03
Bond LBUSTRUU 0.01 0.00 -0.12 -1.01 -0.12 1.57 -0.01
Commodity SPGSCITR -0.04 -0.08 -0.12 0.96 -0.30 -0.21 1.04

Risk Equity Equity Equity Interest Interest Interest Inflation
type risk risk risk rate rate rate risk

risk risk risk
Variance 0.14% 0.35% 0.05% 0.06% 0.03% 0.07% 0.34%

In Table 4.6, each column has the highest score for only one asset. Therefore, it is
easy to match the risk sources. First two columns represent the equity indices with the
variances0.14% and0.35% respectively. Third column has the highest score for the
high yield that is assessed as the equity. Therefore, first three columns represent the
equity risk. Forth, fifth and sixth columns are for the bond indices with the volatility
of 0.06%, 0.03% and0.07% respectively. These columns denote the inflation rate risk.
The last column with the volatility of0.34% presents the commodity risk. Therefore,
we obtain three main uncorrelated risk sources. The variance of each risk is the sum
of variances of the corresponding representative columns’variances since they are
uncorrelated. For example, the variance of equity risk is the sum of the variances of
first, second and third columns.

Therefore, the variance of each risk is stated as

σ2
MTP,equity = σ2

MTP1 + σ2
MTP2 + σ2

MTP3 = 0.54%

σ2
MTP,inflation = σ2

MTP4 + σ2
MTP5 + σ2

MTP6 = 0.16%

σ2
MTP,interestrate = σ2

MTP7 = 0.34%.
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4.3 Portfolio performances based on strategies

According to the risk and asset categories, the performanceof portfolios with respect
to diversified risk parity (PP and MTP), equally weighted, global minimum variance,
inverse volatiliy and equal risk contribution strategies are evaluated. The performance
measures are selected as annualized return, risk, Sharpe ratio, maximum drawdown
(MDD), Gini coefficient.

Table 4.7 presents the performance and risk results of two DRPstrategies with risk-
based benchmark strategies. The table shows both the performance and risk character-
istics results of chosen asset allocation strategies according to the period from January
1988 to December 2017. Return, risk and Sharpe ratio are annualized results. Sharpe
ratio is computed with the monthly risk-free rate that is taken from Fama-French web-
site [11]. MDD is reported over one year during the whole sample period.Giniweight is
calculated with portfolio weights andGinirisk is calculated with risk decompositions
of asset classes for asset allocation strategies and risk decompositions of uncorrelated
risk sources for diversified risk parity strategies. The number of uncorrelated risks
gives the result of the uncorrelated risk sources with usingthe exponential entropy of
risk decompositions.

DRPMTP has the return of 6.3% at 5.8% volatility. Given thatDRPMTP has the
highest Sharpe ratio of 0.63.DRPPP approach gains 5.9% return with 5.7% risk,
which gives the Sharpe ratio of 0.37.DRPPP portfolio has the second lowest risk but
the return is also relatively low and this results in the lowest Sharpe ratio among all
strategies. This meets the expectation of the low risk low return case.

As for the benchmark strategies, the highest return (7.9%) belongs to the EW strategy
with the highest volatility (8.3%). Furthermore, this approach demonstrates the highest
drawdown among all strategies. In contrast, GMV strategy has the lowest return of
5.2%, yielding the benefit of the lowest volatility (2.3%). Moreover, its Sharpe ratio
is 0.61, which is a favorable performance and it has the lowest drawdown among all
strategies. The good performance of GMV portfolio is also found in several works
[5, 13]. DRP strategies have slightly higher drawdown ratio than the GMV has.

Table 4.7: Performance results of asset allocation strategies

Return Risk Sharpe MDD Giniweight Ginirisk Number of
(%) (%) Ratio (%) uncorrelated risks

DRPMTP 6.3 5.8 0.63 44.5% 0.39 0.00 3.00
DRPPP 5.9 5.7 0.37 48.5% 0.56 0.00 3.00
EW 7.9 8.3 0.49 50.7 0.00 0.57 1.08
GMV 5.2 2.9 0.48 22.5 0.91 0.90 1.01
IV 6.5 6.9 0.39 31.7 0.45 0.10 1.90
ERC 6.4 6.3 0.41 34.8 0.47 0.00 2.10

Like Maillard et al. (2010) [21], two risk parity strategies, namely IV and ERC, place
between EW and GMW strategies in terms of both return and risk. ERC strategy has
the return of 6.9% with 5.6% risk, which gives the Sharpe ratio as 0.55. IV strategy
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earns higher return of 7.2% with the cost of higher risk of 6.2%. This results slightly
lower Sharpe ratio of 0.54. However, IV strategy has higher drawdown (15.7%) than
the ERC strategy has (13.4%). The drawdown results are low when compared to the
EW approach.

When considering the aim of the risk based asset allocation strategies, Sharpe ratio is
not enough to evaluate the performance of the strategies. Therefore, their risk char-
acteristics are examined as well. The risk contributions ofthe asset classes for each
strategy can be found in the Table 4.8.

First, both DRP strategies are examined.DRPMTPhas positive weights in all asset
classes except high yield (H0A0), which leads to negative risk contribution from high
yield (Table 4.8). The weights are not well distributed and hence this unbalanced
weight allocation is also demonstrated by Gini coeeficient of 0.39 (Table 4.7). The
highest risk contribution comes from the commodity with 34.7% that is almost one
third of the portfolio risk. Then the emerging equity with 22% and world government
bond with 13.9% contribute to the total portfolio risk. The risk contribution of the
remaining asset classes to the whole risk is relatively low.The risk is well diversified
among three main risk sources and coefficient ofGinirisk is zero (Table 4.7). Fur-
thermore, this is also supported by the number of uncorrelated risk factors, which is
three. As for the other DRP strategy,DRPPP has four shorted asset classes, which
are emerging equity, high yield, world government bond and commodity. The skewed
weight distribution is also supported byGiniweight with 0.56 (Table 4.7). The highest
risk contribution comes from the developed equity index with 41%. The U.S. aggre-
gate bond has the second highest risk contribution (26%), almost equal to 1/3 of the
whole risk. Then, the commodity and world government bond risk contributions are
high. The remaining asset classes risk contributions are relatively low (Table 4.8).
However, the risk contributions among three risk risk sources are equal andGinirisk
with zero and the number of uncorrelated factors with three supports the equal risk
sources distribution (Table 4.7).

Next, we examine the benchmark strategies. First examiningEW strategy, we observe
that 70% of the all portfolio risk is driven by equities including high yield. The highly
volatile emerging equity contributes the greatest proportion of the risk budget (36.2%).
The commodity index consist of the most of the remaining portfolio risk (24.1%) and
the bonds are close being irrelevant due to their low risk contributions (Table 4.8). EW
is well balanced in terms of weights, which is demonstrated by Giniweight with zero.
On the other hand, the distortion of risk contribution by asset classes is supported
by Ginirisk of 0.78, which is highly unfavorable. Also, the number of uncorrelated
risk factors is 1.08 (Table 4.7). This portfolio is concentrated in one risk source. We
know that almost 70% of the risk comes from the equities, thenthe portfolio risk is
concentrated in equity risk. Briefly, the risk of the portfolio is not distributed well
among three risk sources.

Second, GMV strategy exhibits heavily concentrated portfolio risk structure. In details,
the low risk asset class, i.e bonds, has the major share of theportfolio as a total almost
88%. Therefore, their risk contributions are over 90%. The distorted weight structure
is also shown byGiniweight of 0.91, which is the highest unbalanced weight allocation
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Table 4.8: Weights and risk contributions of asset classes based on the strategies (in
%)

Asset Asset EW GMV IV
type name Weights MRC RC Weights MRC RC Weights MRC RC

Equity M1WO 14.3 156.5 22.4 0.8 131.5 1.0 6.6 248.4 16.5
Equity M1EF 14.3 253.2 36.2 0.5 147.7 0.7 4.2 353.7 14.9
High yield H0A0 14.3 74.8 10.7 7.8 100.9 7.8 11.9 133.7 15.9
Bond SBWGC 14.3 3.2 0.5 85.6 98.6 84.4 31.3 38.6 12.1
Bond SBWGU 14.3 31.4 4.5 0.6 139.2 0.8 14.9 102.5 15.3
Bond LBUSTRUU 14.3 12.3 1.8 1.7 112.5 1.9 26.3 59.4 15.6
Commodity SPGSCITR 14.3 168.6 24.1 3.2 106.1 3.4 4.7 206.3 9.7

Asset ERC DRPPP DRPMTP

name Weights MRC RC Weights MRC RC Weights MRC RC

M1WO 5.8 244.7 14.3 39.5 113.4 44.8 7.8 178.3 13.9
M1EF 4.1 352.0 14.3 -10.0 25.5 -2.5 8.8 250.5 22.0
H0A0 10.8 132.2 14.3 -10.6 28.3 -3.0 -4.3 53.5 -2.3
SBWGC 36.0 39.7 14.3 62.9 31.0 19.5 34.1 34.6 11.8
SBWGU 13.7 104.4 14.3 -43.2 11.9 -5.2 25.8 59.4 15.3
LBUSTRUU 23.6 60.4 14.3 73.4 35.5 26.0 15.5 30.0 4.6
SPGSCITR 6.0 237.9 14.3 -11.9 -170.9 20.4 12.4 279.5 34.7

ratio among all strategies. Then, theGinirisk demonstrates the concentrated risk with
0.90. Also, the number of uncorrelated factors of 1.01 demonstrates the portfolio risk
is concentrated in one risk source (Table 4.7). It is obviousthat the risk source of this
portfolio is interest rate risk.

Finally, we examine the risk parity strategies. IV portfolio distributes the weights
mostly low risk asset class (i.e. bonds) and lower weights goto high volatile asset
classes as expected. The high volatile assets (equities andcommodity) have weights
of 6.6%, 4.2% and 4.7%, respectively. The bonds have more weights, i.e. 31.3%,
14.9% and 26.3% (Table 4.8). Therefore, this leads to almostequal risk contribution
among asset classes. The concentration of weights is shown by Giniweight of 0.45.
However, the balanced risk distribution is supported byGinirisk of 0.10, which is
highly favorable (Table 4.7). As for the ERC approach, the weights of the asset classes
exhibit the similar pattern with the weights of IV strategy.Therefore,Giniweight is
0.47. Contrary to IV strategy, this approach distributes therisk among asset classes
equally, then theGinirisk is zero. Although these strategies distribute the risk well
among asset classes, they do not show the same performance for the risk distribution
among risk sources. The number of uncorrelated risk factorsare 1.90 and 2.10 for
IV and ERC strategies respectively (Table 4.7). These strategies are concentrated on
almost two risk sources.

As summary, diversified risk parity strategy based on minimum torsion approach ex-
hibits the best performance among all strategies in terms ofboth risk/return tradeoff
and risk distribution. The diversified risk parity based on principal portfolios has the
lowest Sharpe ratio contrary to work by [20]. Among the benchmark strategies, EW
and GMV demonstrates good reward to volatility ratio but they have concentrated risk
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Figure 4.2: Scaled Return of Asset Allocation Strategies
The y-axis represents the percentage returns while the x-axis represents the years1

structure. Risk parity strategies are well balanced in termsof risk from asset allocation
but they are actually driven by few risk sources, hence they do not meet the expecta-
tions. The findings are also supported by the results of [20, 32, 16].

4.3.1 Time impact on portfolio strategies

In this part, we test the performance and risk characteristics of the strategies with ap-
plying rolling window approach. We use three-year and five-year rolling window es-
timation. Initial backtest period uses first three years of the data for three-year rolling
window and first five years data for five-year rolling window estimation. Thus, the es-
timation results start from 1991 and 1993 for three-year andfive-year rolling windows,
respectively. The rolling window approach is used for the out-of-sample testing over
the period. Furthermore, we examine the stability of the results in terms of weights
and risk contribution with respect to each strategy. Three-year and five-year rolling
window estimations are compared.

Rolling window estimation is applied as following. LetT andM give the length of
the data set and the size of the estimation window, respectively. In this work, the
estimation window sizes are chosenM = 60 months (5 years) andM = 36 months (3
years). Each month,t, starts fromt=M+1 . The required parameters for each portfolio
strategy over theM previous months are estimated. The estimated parameters are used
to calculate the asset weights in each portfolio strategy. The calculated asset weights
are employed for the calculation of return and covariance matrix in montht+1. Finally,
we compute the portfolio return in periodt from the weights ofM previous months. To
keep the estimation window size is fixed, we drop the earliestreturn and add the return
to the next month. The steps are repeated until the data is ended. Given a T-month
length data set, the rolling window estimation producesT −M monthly out-of-sample
returns.

The scaled returns of different strategies are shown in Figure 4.2 for three-year and
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Figure 4.3: Variances of the Principal Portfolios
The x-axis represents the years while y-axis represents the scaled variance.2
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Figure 4.4: Variances of the Torsion Portfolios
The x-axis represents the years while y-axis represents the scaled variance.3
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five-year rolling windows. In both figures, EW portfolio generally outperforms other
strategies. It is followed by risk parity strategies, namely IV and ERC. Sometimes,
ERC strategy outperforms the EW strategy. The return ofDRPMTP follows the risk
parity strategies’ gains.DRPPP and GMV portfolios demonstrate similar pattern over
the period. The return performance of the strategies followconsistent pattern and they
do not have sharp behaviors.

4.3.2 The analyses on portfolio variances

We examine how the variances of each uncorrelated portfoliochange over the period as
presented in Figures 4.3 and 4.4. The first and second principal portfolios’ variances
demonstrate a volatile pattern over the periods, so they arenot stable. the variances
of third, fourth and fifth principal portfolios are relatively stable. The final principal
portfolio’s variance is almost irrelevant. For the torsionportfolios, their variances are
not stable and seem more volatile than the variances of principal portfolios as can be
seen in Figure 4.4. The change of variances during the periodaffects the portfolio con-
struction since the diversified risk parity strategy is constructed based on the variances
of uncorrelated portfolios.

Then, we check whether principal components and minimum torsions give the same
economic interpretations over the time. Figures 4.5 and 4.6demonstrate the weights of
each principal portfolio for five-year and three-year rolling window estimations. First
principal portfolio (PP1) is mostly dominated by commodityand equity risks over
the period. However, between 1999-2005 equity risk seems less effective. Therefore,
there is no consistency. Second principal portfolio (PP2) is dominated by the commod-
ity risk, in short times equity risk demonstrates itself, but it is not very effective. In
general, it can be said that PP2 represents the commodity risk but it is not strictly stable
over the time. Third principal portfolio is obviously equity risk, however commodity
risk is shown only over 2008 for a short time. Forth and fifth principal portfolios do
not demonstrate a clear pattern, thus they are not defined. Sixth principal portfolio is
more robust than the others. Over the period, it exhibits theinterest rate risk. The
last portfolio is not defined as well. In general, principal portfolios do not demonstrate
consistent pattern according to the three-year and five-year rolling windows.

As for the torsion portfolios, they have the most robust results and each torsion port-
folio clearly tracks the original corresponding factor. Therefore, it makes the easy for
economic interpretation. First three torsion portfolios present the equity risk, follow-
ing three torsion portfolios represent the interest rate risk and the remaining exhibit the
commodity risk.

We explain how the asset classes’ weights in chosen portfolio and their risk contri-
butions change over time by examining Figures 4.9 and 4.11. The weights of asset
classes in EW strategy do not change over time. EW portfolio is dominated by high
risky stocks i.e. equities and commodity. Mostly, EW portfolio is concentrated on
equity risk. Furthermore, the risk contribution by commodity increases over the period
while the risk contribution by emerging equity decreases. The other assets almost con-
tribute the same risk budget over the period and do not show volatile pattern. GMV
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Figure 4.5: Weights of Principal Portfolios-a
The individual asset weights of each principal portfolio are calculated with using rolling window estimation.

Left-hand side presents the five-year rolling window results, while the right-hand side presents the three-year

rolling window results.4
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Figure 4.6: Weights of Principal Portfolios-b
The individual asset weights of each principal portfolio are calculated with using rolling window estimation.

Left-hand side presents the five-year rolling window results, while the right-hand side presents the three-year

rolling window results.5
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(d) MTP2
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Figure 4.7: Weights of Torsion Portfolios-a
The individual asset weights of each torsion portfolio are calculated with using rolling window estimation.

Left-hand side presents the five-year rolling window results, while the right-hand side presents the three-year

rolling window results.6

49



93 96 99 02 05 08 11 14 17
−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
Equity Developed
Equity Emerging
High Yield
Bond
Bond
Bond
Commodity

(a) MTP5

91 94 97 00 03 06 09 12 15 17
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
Equity Developed
Equity Emerging
High Yield
Bond
Bond
Bond
Commodity

(b) MTP5
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(c) MTP6
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(d) MTP6
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(e) MTP7
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Figure 4.8: Weights of Torsion Portfolios-b
The individual asset weights of each principal portfolio are calculated with using rolling window estimation.

Left-hand side presents the five-year rolling window results, while the right-hand side presents the three-year

rolling window results.7
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strategy gives the most of the weight to world government bond and the most of the
contribution comes from this asset class. The remaining assets’ weights and risk con-
tributions are relatively low. Over the time, the result is consistent. For IV and ERC,
we know that they allocate the weights inversely proportional to the volatility of asset
classes. ERC approach considers the correlations among the asset classes while IV
strategy does not. However, both strategies give more weights to low volatility assets
and lessen the domination of high volatile assets. As for theIV strategy, the weights
of all asset classes follow the smooth path and do not change sharply over the period.
Also, the same behavior is observed for risk contributions.It presents the almost stable
structure during whole period in both 3-year and 5-year rolling window estimations.
As for the ERC strategy, the portfolio is mostly dominated by bonds in terms of weight
allocation. Contrary to IV strategy that presents smooth path in risk contribution, the
risk contributions from asset classes are exactly equal in ERC portfolio.

4.3.3 The analyses of weights and risk contribution

Finally, we investigate the DRP strategies as exhibited in Figures 4.10 and 4.12. In
these strategies, we mainly focus on the risk distribution among uncorrelated risk
sources instead of asset classes. There are three main risk sources considered in this
study: equity risk, inflation risk and interest rate risk. First we give details ofDRPPP

strategy results. In this strategy, the risk is equally distributed among three risk sources
over the period while majority of weights consists of bond, which is almost equal to
70% of the portfolio. 20% of the weights come from the equity and the remaining
belongs to commodity. However, we know that principal portfolios are not stable over
the time. Sometimes, principal portfolios are not dominated by the same asset classes.
Thus even in a short time the principal portfolio may reflect different kind of risk
source. Although the risk is distributed among three uncorrelated portfolios we cannot
be sure that the risk is distributed among three main risk sources. This is the one of the
major drawbacks of the PCA strategy. In details, the risk contributions from the assets
exhibit a volatile structure. The risk contribution from equities and commodity seem
almost irrelevant. The risk contributions from the bonds have the highest proportion.
During the crisis periods such as 1999-2000 and 2007-2008, the portfolio is driven by
the risky assets. However, it is expected that the portfolioshould be driven by low
risky assets especially during the crisis periods. The reason may be that the principal
portfolios sometimes can represent the different type of risk and thereforeDRPPP

does not distribute the risk among the uncorrelated risk sources. The risk contributions
from risk factors vary over the time forDRPPP portfolio. DRPMTP approach also
demonstrates the equal risk distribution among three main risk sources. In details, the
most of the risk comes from the commodity while equities and bonds have less risk
contribution. Both diversified risk parity strategies do notdemonstrate a consistent
pattern when we consider the risk contributions from the asset classes.

As a conclusion, three-year and five-year rolling window estimation supports the re-
sults we reach in previous part. The strategies demonstratea consistent results in both
weights and risk contributions except the principal portfolios. Principal portfolios do
not represent the same economic interpretations all the time. Diversified risk parity
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(b) EW Risk contributions by assets
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(c) GMV Weights
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(d) GMV Risk contributions by assets
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(e) IV Weights
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(f) IV Risk contributions by assets

93 96 99 02 05 08 11 14 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Equity Developed
Equity Emerging
High Yield
Bond
Bond
Bond
Commodity

(g) ERC Weights
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(h) ERC Risk contributions by assets

Figure 4.9: Weights and Risk Contributions of Risk-based Strategies for 5-year rolling
window 52
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(c) DRPPP Risk contribu-
tions by assets
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(e) DRPMTP Risk contribu-
tions by risk sources
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Figure 4.10: Weights and Risk Contributions of DRP Strategies based on PCA and
MTP for 5-year rolling window
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(a) EW Weights

91 94 97 00 03 06 09 12 15 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Equity Developed
Equity Emerging
High Yield
Bond
Bond
Bond
Commodity

(b) EW Risk contributions by assets
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(c) GMV Weights
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(d) GMV Risk contributions by assets
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(e) IV Weights
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(f) IV Risk contributions by assets
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(g) ERC Weights
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(h) ERC Risk contributions by assets

Figure 4.11: Weights and Risk Contributions of Risk-based Strategies for 3-year
rolling window 54
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(c) DRPPP Risk contribu-
tions by assets
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(e) DRPMTP Risk contribu-
tions by risk sources
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Figure 4.12: Weights and Risk Contributions of DRP Strategies based on PCA and
MTP for 3-year rolling window
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portfolio based on the minimum torsion demonstrates a stable risk distribution among
the uncorrelated risk factors however the risk contributions from the asset classes are
more volatile.

4.3.4 Out-of sample testing

This part presents the result of out-of-sample testing. Oneof the reasons why risk-
based strategies have become popular is that mean-variance(MV) optimization demon-
strates poor performance in out-of-sample testing due to large estimation errors. Thus,
we include MV strategy to make a clear comparison among strategies. We have four
different periods. The reason of employing different periods is to capture the changes
in the economy. The Table 4.9 presents the results. The left-hand side of the table
provides the weights to be used in the right-hand side out-of-sample periods. Percent
estimation error is calculated based on Sharpe ratios by following [27]. Besides Sharpe
ratio, we also provide the results of return, risk, the gini coefficient of risk and number
of uncorrelated risks. The returns, risks and Sharpe ratiosare annualized.

According to first out-of-sample results (2003-2007), MV strategy has the highest esti-
mation error (91.7%) in its Sharpe ratio. The second highestestimation error (45.7%)
belongs to the GMV strategy. EW portfolio shoes the lowest estimation error of 19.8%.
Risk parity strategies and DRP strategies demonstrate close results about 25%. Then,
we examine the risk characteristics of the portfolios. In sample period, DRP strategies
distribute the risk among three risk factors. In the out-of sample period,DRPMTP still
spreads the risk among almost three factors whileDRPPP distributes the risk almost
two risk factors. The remaining portfolios demonstrate risk concentrated risk structure
in the out-of-sample results.

The second out-of-sample period (2004-2008) shows that MV portfolio has the highest
estimation error of 104.4%. GMV strategy has th second highest estimation error of
70.2%. The lowest estimation error (52.6%) belongs to theDRPMTP but there is not
remarkable difference with the remaining strategies. Compared to the first period, the
estimation errors in this period are high. The reason of thisincrease might be the
result of 2008 financial crisis. As for the risk characteristics, the portfolios show the
risk concentration on one risk factor exceptDRPMTP strategy.DRPMTP portfolio
distributes the risk among almost three risk factors.

According third out-of-sample period (2009-2013) results, the highest estimation error
(189%) is shown by the MV strategy. GMV has the second highestestimation error of
49.2%. The lowest error (9%) belongs to the EW portfolio. DRP strategies (PP and
MTP) also demonstrate favorably low estimation errors (10%and 12.3%, respectively).
In this period, there is large decrease in returns. Despite of these decreases, the Sharpe
ratios are not such low and there are not large estimation errors (except MV startegy)
compared to previous periods. After financial crisis, interest rates are reduced to almost
zero. Therefore, in the period, the risk-free rate is very low so that the excess returns
of the portfolios remain high, which leads to high Sharpe ratios. ExceptDRPMTP

strategy, all strategies are concentrated on one risk source. DRPMTP strategy again
distributes the risk almost three risk factors.
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In the last out-of-sample testing, MV strategy has the highest estimation error of
144.3%. Different from other periods, ERC portfolio has the second highest estimation
error of 71%. EW shows the lowest estimation error of 18.3%. DRP strategies also
have low estimation errors. As for the risk structure, ERC andDRPPP distribute the
risk among almost two risk sources.DRPMTP spreads the risk across almost three
risk factors. The remaining portfolios have risk concentrated structure.

To sum up, MV strategy has the highest estimation errors in all out-of-sample results.
This drawback of MV optimization is also shown by different researches such as [8,
15]. The reason of the poor performance is that MV strategy includes the expected
mean estimation which leads to large estimation errors. EW portfolio has the lowest
estimation errors in all results except in one period. DRP strategies also demonstrate
much lower estimation errors than MV strategy. Contrary to the works by [27, 16],
we obtain good out-of-sample results based on Sharpe ratio for the DRP strategies.
As for the risk structures, all strategies have risk concentrated on risk source except
DRPMTP portfolio. The reason of well-diversified structure ofDRPMTP , it defines
each risk properly as shown in Figures 4.7 and 4.8.
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Table 4.9: Out-of-sample Testing

1998 - 2002 2003 - 2007
Return Risk Sharpe Ginir Number of Return Risk Sharpe Ginir Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error

MV 10.37 7.20 0.75 0.42 1.73 4.72 4.60 0.39 0.80 1.02 91.7
EW 8.22 9.51 0.34 0.60 1.44 6.59 8.65 0.42 0.76 1.05 19.8
GMV 6.33 3.01 0.45 0.85 1.02 5.51 3.15 0.82 0.82 1.01 45.7
IV 8.17 5.58 0.57 0.46 1.71 7.05 5.49 0.75 0.42 1.33 24.1
ERC 8.19 4.92 0.65 0.30 2.10 8.08 5.86 0.88 0.34 1.44 25.9
DRPPP 8.02 4.08 0.74 0.00 3.00 7.52 6.96 0.66 0.26 1.32 12.4
DRPMTP 8.24 4.15 0.79 0.00 3.00 8.65 6.81 0.84 0.05 2.79 6.7

1988 - 2003 2004 - 2008
Return Risk Sharpe Ginir Number of Return Risk Sharpe Ginir Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error

MV 10.92 5.10 1.29 0.34 2.47 4.15 6.47 0.63 0.36 1.64 104.4
EW 7.54 8.60 0.37 0.47 1.56 7.58 8.92 0.84 0.64 1.52 55.7
GMV 5.32 3.98 0.25 0.95 1.00 2.07 2.38 0.85 0.95 1.04 70.2
IV 7.33 5.18 0.58 0.11 1.87 8.34 6.49 1.28 0.81 1.39 54.5
ERC 7.33 5.92 0.51 0.10 1.99 8.05 6.82 1.17 0.83 1.35 56.6
DRPPP 6.32 5.57 0.36 0.00 3.00 3.57 4.51 0.78 0.10 2.59 53.8
DRPMTP 7.51 5.61 0.57 0.00 3.00 7.35 6.07 1.20 0.04 2.94 52.6

1988 - 2008 2009 - 2013
Return Risk Sharpe Ginir Number of Return Risk Sharpe Ginir Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error

MV 7.16 2.97 1.58 0.49 2.11 2.80 4.76 0.55 0.78 1.26 189.0
EW 5.96 7.00 0.50 0.67 1.10 2.77 4.69 0.57 0.54 1.16 9.00
GMV 3.95 2.90 0.51 0.90 1.01 2.81 2.70 0.96 0.76 1.03 47.2
IV 7.37 5.19 0.94 0.40 1.90 2.54 3.69 0.78 0.33 1.19 49
ERC 7.32 5.10 0.95 0.39 2.00 2.81 3.34 0.78 0.19 1.27 21.6
DRPPP 6.56 5.98 0.68 0.00 3.00 2.56 4.31 0.55 0.13 1.35 10.0
DRPMTP 7.14 6.22 0.75 0.00 3.00 2.94 4.13 0.66 0.07 2.66 13.6

1988 - 2012 2013 - 2017
Return Risk Sharpe Ginir Number of Return Risk Sharpe Ginir Number of % Estimation
(%) (%) Ratio Uncorrelated risks (%) (%) Ratio Uncorrelated risks Error

MV 9.51 7.07 0.67 0.56 1.47 4.37 3.57 0.27 0.57 1.41 144.3
EW 9.01 10.52 0.40 0.85 1.32 7.88 9.10 0.49 0.77 1.10 18.3
GMV 5.68 3.05 0.30 0.86 1.21 3.95 2.94 0.19 0.87 1.01 57.6
IV 8.45 3.87 0.95 0.55 1.73 6.73 5.22 0.64 0.58 1.30 48.7
ERC 8.51 3.99 0.94 0.20 2.30 6.59 5.82 0.55 0.29 1.79 71.0
DRPPP 7.85 4.99 0.62 0.00 3.00 6.41 6.08 0.50 0.15 2.06 24.5
DRPMTP 8.74 5.17 0.77 0.00 3.00 6.95 5.67 0.63 0.08 2.94 22.4
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CHAPTER 5

CONCLUSION

In this thesis, we aim to maximize risk diversification of a portfolio with distributing
the risk among the uncorrelated risk factors. To achieve ourgoal, we examine the
diversified risk parity strategies compared to risk based asset allocation strategies.

We apply the proposed strategies to different asset class indices consisting of equities,
bonds and commodity. DRP strategy is determined based on two approaches: PCA
and MTP. TheDRPMTP strategy has a well balanced risk structure with distributing
the whole risk among three main risk sources. The result is consistent according to the
three-year and five-year rolling window estimations. The other diversified risk parity
strategy based on principal component analysis also demonstrates the similar result.
However, compared to MTP, we observe that principal portfolios are not stable over
the time and thus do not give the same economic interpretations. The portfolio may
actually concentrate on one or few risk sources.

The benchmark strategies created ill-diversified portfolios in terms of risk. Contrary
to diversified risk parity strategies, the risk contribution of these strategies comes from
the asset classes instead of the risk factors. The risk contributions from GMV and
EW strategies exhibit the most unbalanced structure. On theother hand, ERC and
IV strategies distribute the risk quite balanced among the asset classes. However they
do not demonstrate the same performance distributing the risk among the risk factors.
As for the return performance, risk based strategies exceptGMV outperformed the
diversified risk parity strategies. However,DRPMTP has the best reward to volatility
ratio. Our results are consistent with [16, 27] but contradict with the results by [20, 2].

One of the reasons why risk-based strategies have become popular is that mean-variance
(MV) optimization demonstrates poor performance in out-of-sample testing due to
large estimation errors. Thus, we include MV strategy to make a clear comparison
among strategies in out-of-sample testing. MV strategy hasthe highest estimation er-
rors in all out-of-sample results. This drawback of MV optimization is also shown by
different researches such as [8, 15]. The reason of the poor performance is that MV
strategy includes the expected mean estimation which leadsto large estimation errors.
EW portfolio has the lowest estimation errors in all resultsexcept in one period. DRP
strategies also demonstrate much lower estimation errors than MV strategy. Contrary
to the works by [27, 16], we obtain good out-of-sample results based on Sharpe ratio
for the DRP strategies. As for the risk structures, all strategies have risk concentrated
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on risk source exceptDRPMTP portfolio.

As a conclusion, to construct well-diversified portfolio for distributing the risk among
three factors, DRP strategies demonstrate good performancein both Sharpe ratio and
risk diversification in out-of-sample testing. Specifically, DRPMTP constructs a well-
diversified portfolio spreading the risk among three factors. The remarkable result of
this strategy is good performance in out-of-sample testing. This strategy may help the
investors to construct risk concentrated portfolios, evenin financial crisis.

The future work may examine the long-short constraint sincewe only focused on the
long only case. The effect of the transaction cost also has a key role when evaluating
the performance of the portfolios thus it may be examined forfuture research. In this
work, we used the variance as risk measure however, there areother kind of risk mea-
sures such as value at risk, expected shortfall. The DRP strategies may be examined
when employing other risk measures.
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