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ABSTRACT 

 

 

EXPERIMENTAL INVESTIGATION OF THE TURBULENT NEAR WAKE 

FLOW FIELD OF MULTISCALE/FRACTAL GRIDS 

 

 

Amiri Hazaveh, Hooman 

Ph.D., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Oğuz Uzol 

 

September 2018, 176 pages 

 

Turbulent near-field flow of three different fractal grids, as well as conventional square 

grid, is investigated using two-dimensional particle image velocimetry. All grids are 

designed to maintain similar solidity, effective mesh size, and the smallest thickness 

for comparison. Experiments are conducted at a Reynolds number of 1.2 × 104 based 

on effective mesh size. The instantaneous velocity field is realized on four sets of 35 

equally spaced horizontal planes downstream of turbulence-generating-grids. Three-

dimensional mean flow is reconstructed by stitching aforementioned horizontal 

planes, extending to 22 effective mesh size downstream of each grid. Additional mean 

flow variables are then obtained by rotating horizontal planes to the corresponding 

vertical ones in grids comprising geometrical symmetry. Turbulent mixing 

characteristics in the near-wake region are assessed and turbulent kinetic energy 

production, decay, and dissipation rate as well as estimation of length scales 

downstream of turbulence-generating-grids are carried out. It has been shown that 

grids with different fractal patterns can be used as a passive devices to custom tailor 

turbulence even in the non-homogeneous anisotropic near grid region. Dissipation rate 

coefficient is also shown to be not constant in the near-wake region.  

 

 

Keywords: Turbulence, Fractal grids, Multi-scale grids, Turbulence-generating-grids, 

Particle Image Velocimetry 
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ÖZ 

 

 

ÇOK ÖLÇEKLİ/FRAKTAL IZGARA KAYNAKLI AKIŞIN YAKIN İZ 

BÖLGESİNİN DENEYSEL İNCELENMESİ  

 

  

Amiri Hazaveh, Hooman 

Doktora, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç.Dr. Oğuz Uzol  

 

Eylul 2018, 176 Sayfa 

  

Bu tezde geleneksel kare ağın yanında üç farklı fraktal ağların yakın akış bölgesini 2-

boyutlu parçacık görüntülemeli hız ölçümleri yapılmıştır. Karşılaştırma amacıyla 

bütün gridler benzer katılıkta, etkin ağ boyutunda ve en küçük kalınlıkta tasarlanmıştır. 

Deneyler, 1.2 × 104 etkin ağ boyutu Reynolds sayısında yapılmıştır. Anlık hız alanı 

ölçümleri türbülans üretici ağlarin arkasında 35 eşit boşluklu yatay düzlemde dört set 

olarak yapılmıştır. Üç-boyutlu ortalama akış alanı bu yatay düzlemler birleştirilerek 

gridlerin arkasında 22 etkin ağ boyutu mesafesine kadar oluşturulmuştur. Diğer 

ortalama akış değişkenleri simertrik gridlerde yatay düzlemlerin karşılık geldiği 

şekilde dikey hale döndürülmesiyle elde edilmiştir. Yakın iz bölgeindeki türbülanslı 

karışım karakteristikleri hesaplanmış ve türbülansli kinetik enerji üretimi, türbülans 

bozuşması, ve yayılım oranı ile birlikte türbülans üretici gridlerin arkasında uzunluk 

ölçekleri değerlendirilmiştir. Farklı fraktal yapıların, ağa yakın bölgede homejen 

olmayan akışta bile pasif araçlar olarak kullanarak isteğe uyarlanmış türbülans 

oluşturulabileceği gösterilmiştir. Yakın iz bölgesinde yayılım oranı katsayısının sabit 

olmadığı da gösterilmiştir. 

 

Anahtar kelimeler: Türbülans, Fraktal ağlar, Çok ölçekli ağlar, Türbülans üretici ağlar, 

Parçacık Görüntülemeli Hız Ölçer  
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CHAPTER 1 
 

 

1 INTRODUCTION   

 

 

1.1 Motivation 

Turbulent flow generated by grids and screens has been the most common 

experimental configuration used to achieve nearly homogeneous and isotropic 

turbulence (HIT) where the theoretical study concentrates [1–4]. In fact, until more 

recent progress wherein turbulent flow is generated experimentally [5] or numerically 

[6], the only way to study on the isotropic flow is grid turbulence. It was shown that 

flow characteristics such as turbulence decay [7,8], Reynolds shear stress [9], self-

preservation and similarity [10], spectra and rms vorticity distribution [11] are highly 

influenced by the grid geometry (i.e., initial conditions). Since then, the study on the 

near-field of the turbulence grids has received considerable attention [12–19]; Near-

field flow is highly inhomogeneous due to the presence of simultaneous wakes and 

jets [3,13,20]. It was found that, close to the grid, the turbulence is in a “non-

equilibrium” condition where the mean flow inhomogeneity causes severe turbulent 

kinetic energy (TKE) transport and production in transverse direction [21].  

The study on the turbulence generated in the near-field and produced by conventional 

grids was accompanied by the introduction of a new generation of turbulence grids, 

called fractal/multi-scale grids [22]. It was discovered that specifically downstream of 

a “space-filling fractal square grid”, turbulence intensities, as well as Reynolds 

number, are unusually high. There is also an ‘exponential like’ fast decay of TKE 

which was in broad contrast to the classical power law decay [23]. It was shown later 

that the range where this exponential decay applies is rather short and a classical power 

law fit to the data is also possible [13]. However, still, there are some unanswered 

questions about the multi-scale/fractal-generated turbulence. For example, the ratio of 

the integral length scale to the Taylor microscale during the decay was found to be 
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constant while local Reynolds number is decreasing which contradicts the assumption 

of a constant ‘coefficient of dissipation rate’ in an isotropic turbulent flow. Numerical 

studies and experiments ensure that the near-field of the grid-generated turbulence 

(GGT) is undeniably worth studying.  

It has been almost a century since the first measurement of velocity fluctuations by 

Simmons and Salter [1] utilizing hotwire anemometry (HWA). Since then, a vast 

amount of the grid experiments was focused on the far-field region using HWA as a 

measurement technique [7,12,22,24,25]. Unlike the far-field of turbulence generator 

grids, the flow is highly three-dimensional in the near-field; specifically near the grid, 

turbulence properties such as the temporal and spatial development of coherent 

structures are very complex. Typically, there exists a large recirculation zone behind 

solid bars, where the flow is strongly reversed. This recirculation zone (the distance 

between the grid and the possible apparent stagnation point) is reported to be extended 

from 
𝑥

𝑀
≈ 1 to 1.75 [13,15] where 𝑥 is the downstream distance from the grid and 𝑀 

is the grid mesh size1. The existence of regions with mean flow reversal and high 

turbulent intensities in the vicinity of the grid solid bars, make HWA useless to 

measure the flow correctly [18]. In this respect, Particle Image Velocimetry (PIV) and 

Laser Doppler Anemometry (LDA) are more suitable candidates to investigate the 

near-field region. PIV itself gives spatial information at an acceptable spatial 

resolution that can be used to obtain velocity gradients and derive correlation 

functions. This is the benefit on the point measurement techniques such as LDA. On 

the other hand, PIV techniques are still in a lack of spatial filtering effects and the 

ability of PIV to effectively resolve all turbulent scales has yet to be established [26]. 

1.2 Literature Survey on Fractal Grid-Generated-Turbulence 

Line, square and cube are simple geometries defined in Euclidean space with integer 

dimensions of 1, 2, and 3, respectively. Fractals are special geometries with non-

integer (fractional number) dimensions.  The concept of non-integer dimension was 

generalized by Hausdorff [27] in the early-1900s. Although it was just a mathematical 

object to the 1980s, in the late-1970s, Mandelbrot turned this purely mathematical 

                                                 

1 Mesh size for regular grids is defined as the spacing between two nearby rods. 
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concept into a realizable sense. He could convince scientists that shapes with “non-

integer dimensions” are not exceptional but very common. Fractals are everywhere. 

In nature, they appear in clouds, trees, rivers, leaves, water drops, pinecone seeds, ice 

crystals, and air bubbles. Geological sites, coastlines, fluid turbulence, polymers, and 

fractures are all made of fractal shapes. The word “fractal” was originated since then 

from a Latina word “Fractus” meaning “Broken” or “Fractured” to describe such 

shapes. By that time, it was figured out that fractal shapes could fit an effectively 

infinite length within a limited surface, or at a higher order an infinite surface within 

a finite volume. In other words, a fractal shape can maximize contact within a finite 

boundary. Human lungs as a part of the respiratory system rely on their fractal 

character maximizing the delivery of oxygen to the blood, as well as trees where the 

photosynthesis is maximized through their fractal shape [28].  

Fractals are ‘scale-similar’; i.e., by zooming to a fractal body and proceeding to the 

infinite level, only repeating patterns are seen. As an example, we can point to Koch 

curves [29] – also known as Koch snowflakes – which is depicted in Figure 1-1. 

Mathematically, fractals could be generated by “self-iterative process”.  

It has been nearly two decades since the pioneering studies on fractal – tree-like – 

objects obstructing a steady laminar flow. Queiros-Conde and Vassilicos [30] 

designed the first fractal object for wind tunnel experiments. Staicu et al. [31] 

measured the statistics of turbulence in the wake of fractal tree-like generators. 

Although the results were not conclusive to individuate the effects of the fractal 

elements and their self-similar structure, an elongated production region was reported 

downstream of the fractal bodies compared with regular grids. This led to some early 

attempts on computer simulation of fractal/multi-scale-forced turbulence [32–34] and 

after a while to the first extensive experimental study of turbulent flow generated by 

mono-plane fractal grids by Hurst and Vassilicos [22] who introduced three different 

patterns to generate fractal grids. Schematic of these turbulence-generating-grids are 

shown in Figure 1-2. The three fractal-generating patterns and corresponding fractal 

grids, from left to right, cross, I, and square, from Hurst and Vassilicos [22]. Hurst and 

Vassilicos reported remarkable features in turbulent flow generated by fractal square 

grids – i.e., an exponential fit to turbulent kinetic energy decay instead of well-known 
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power law fit – have inspired a chain of discussion and debate both on experimental 

[13,14,17–19,35–55] and numerical [28,56–62] point of view.  

 

Figure 1-1 Koch curve as an example of fractal geometry [29]. 

There is no agreement on the actual extension of the near-field even in the case of 

regular grids. Batchelor [63] proposed that the near-field of conventional grid extends 

to 𝑥 ≤ 20𝑀, while it is reported to be extended down to 40𝑀 by Corrsin [64].  

   

  
 

Figure 1-2. The three fractal-generating patterns and corresponding fractal grids, from 

left to right, cross, I, and square, from Hurst and Vassilicos [22]. 
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To the best of the authors’ knowledge, the literature on PIV measurements in the near-

field region can be summarized in a few following attempts.  

Bai et al. [65] studied the structure of turbulent flow and mixing length in the near 

wake of a fractal tree-like model. They demonstrated the significance of the multi-

scale structure of trees for the actual modeling of the flow. 

Cardesa et al. measured turbulence statistics immediately downstream of a two 

different biplane regular grids made of circular and square rods [66]. They reported 

spanwise homogenization in Reynolds shear stresses for 
𝑥

𝑀
≥ 7. To check for the 

isotropy, they used an isotropic relation between longitudinal and lateral correlation 

functions of velocity fluctuations and conclude that the flow has yet far from being 

isotropic at the furthermost downstream measurement location (
𝑥

𝑀
= 14). In another 

study [15] by the same group, the rate of dissipation of turbulent kinetic energy (TKE) 

was assessed and its value was examined by changing the number of derivatives 

involved in the dissipation relation. They believed that the assumptions of isotropy or 

axisymmetric condition do not influence the dissipation estimation.  

Gomes-Fernandes et al. performed 2-D PIV on fractal square grids inside a water 

tunnel with non-negligible free-stream turbulence intensity. Succeeded in 

characterizing the effects of background turbulence fluctuations on the grid-generated 

flow, they proposed a ‘generalized wake-interaction length scale’ [14]. This was an 

improvement to the ‘wake-interaction length scale’ which was first suggested by 

Mazellier and Vassilicos [52]. This scale characterizes the longitudinal extent of the 

production region and is shown by 𝑥∗. The generalized wake-interaction length scale 

made it possible to compare the results for regular and fractal square grids as well as 

being a good estimator of the location of peak turbulence intensity. Gomes-Fernandes 

et al. assessed the local global and local isotropy of the flow using the velocity 

gradients.  

Earl et al. performed tomographic PIV (Tomo-PIV) on the regular grids in an open 

water channel [67]. They were able to visualize the instantaneous structure in the flow 

passing through different grids. They analyzed the turbulent kinetic energy decay and 

measured dissipation from the three-dimensional velocity field data.  
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Among the fractal patterns introduced by Hurst and Vassilicos [22], fractal square grid 

got more attention because of their unusual flow characteristics. Gomes-Fernandes et 

al. [50] studied on a space-filling fractal square grid with low solidity using 

stereoscopic PIV in a water channel. They obtained all components of the fluctuating 

velocity gradient in three downstream stations, on planes parallel to the grid. The 

planes are located in the production region, at the peak turbulence intensity and in the 

“non-equilibrium” decay region, respectively. They discussed on the flow structure 

using the 𝑄 − 𝑅 diagram and the strain-rate-tensor eigenvalues. Later on, they used 2-

D PIV to study on different terms of the “non-homogeneous Kármán-Howarth-Monin 

equation” in the production region of a fractal square grid [17]. They found out that in 

the centerline of the grid and around the center of the production zone, the two-point 

advection term, the transport term, as well as the production are very high and the 

interscale energy transfer is highly anisotropic both in forward and inverse directions. 

However, the resultant flux of interscale energy is negative which shows the forward 

cascade. In addition, the -5/3 power law is detected in the energy spectrum of the 

streamwise component of fluctuating velocity.  

Uijttewaal and Jirka [68] studied the near-field of grid turbulence in the shallow water. 

The grids were square and round cross-section vertical columns put in a row inside a 

basin with shallow water depth. Using PIV, they could capture the large-scale 

phenomena, and with the help of LDA, flow statistics were accurately determined.  

In comparison to the results of enhanced heat transfer by fractal grids [69], Cafiero et 

al. [16] studied the near-wake flow of a round-jet with a fractal grid insert using 2-D 

2-C PIV. They analyzed the effect of the fractal grid on the distribution of turbulence 

intensity as well as the planar component of the Reynolds stress tensor. They also 

applied proper orthogonal decomposition (POD) to show the high contribution of 

intermittent wakes shed from the largest bars to the modal energy.  

In a recent study by Gan and Krogstad [18] which was inspired by the works of 

Cardesa et al. [15] and is built on the works of Krogstad and Davidson [13], a detailed 

2-D PIV was performed on three monoplane square grids two of which are multiscale 

and the third one is of a conventional type. They found out that the multiple length 

scales forced to the flow by the different bar sizes in the grids lose their impact on the 
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flow much earlier than the turbulence turns into homogeneous at about 6𝑀. Because 

of the simplicity in the grid geometries, they were able to select a few generic 

characteristic lines which were representative of many of the grid sections. They 

showed that there was no significant difference among the three grids in terms of the 

mean and integral quantities, whereas the rate of decay of peak vorticity magnitude 

and sectional vortex circulation show a clear difference specifically after the initial 

development region (𝑥 < 4𝑀). They linked the difference between decay rates to the 

multiple length scales introduced to the flow.  

It is worth mentioning some PIV studies on fractal-generated flows, in the far-field 

region. Geipel et al. [70] carried out a parametric study on the turbulent flow generated 

by opposing jets with fractal cross grids. Grids are located at the outlet section of 

nozzles. They reported an increase of up to 100% of the turbulence intensity compared 

to conventional perforated plates. 

Suzuki et al. [54] used planar laser-induced fluorescence (PLIF) in addition to PIV to 

look at the mixing of a passive scalar with a high-Schmidt-number in the flow 

generated by regular and fractal square grids. An appreciable stirring and scalar 

transfer improvement are reported by the use of the fractal square grid.  

The capability of stereoscopic PIV to measure moderately low turbulence intensity 

flows –where the noise can take over the signal– was evaluated by Discetti et al. [55]. 

They used fractal square grid to generate turbulence and discovered a problem of noise 

far downstream of the grid where the turbulence intensity has reduced too much. 

However, they concluded that “PIV is capable of detecting many of the flow features” 

reported by [22], [51] and [52]. The result is that PIV is well appropriate to the near-

field of grid-generated turbulence.  

It is necessary to remark some of the studies in the near-field region of turbulence 

generator grids, in which measurements tools other than PIV is used. Hotwire 

anemometry (HWA) has been used as the major experimental apparatus to investigate 

the flow. The studies cover the field from the very near neighborhood of the grid to 

the far downstream. As mentioned before, flow reversal and high turbulence intensity 

regions are big trouble to hotwire measurements in the near-field of any bluff body. 
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Not only in the near-field but everywhere inside the flow, only single point statistics 

can be acquired by HWA which is not enough to assess the global structure of the flow 

– or spatial information [15]. 

Krogstad & Davidson [13] performed Laser Doppler Anemometry (LDA) and HWA 

measurements in the near-field region of cross-grids. They found that the flow is 

analogous to that produced by a square fractal grid.  

Hearst and Lavoie [43] designed a novel fractal square grid in which several fractal 

square patterns are mounted to a conventional grid with a large mesh size of 𝐿0. 

Because of the reduction in 𝐿0 comparing to older studies where used only one space 

filling fractal inside the tunnel, the downstream measurement range relative to the 

largest element of the grid has increased. They reported a very inhomogeneous and 

anisotropic turbulence in the near grid region (
𝑥

𝐿0
< 20) with a large power law decay 

exponent of −2.79 and growing dissipation coefficient 𝐶𝜀. Their results reconcile with 

classical grid turbulence measurements.  

Thormann and Meneveau [8] proposed an active grid which is made up of fractal 

winglets to generate turbulence with the multi-scale forcing of kinetic energy at more 

elevated Reynolds numbers. They verified the rate of power-law decay in the near and 

far-field and reported a dependency of decay exponent and dissipation coefficient on 

the initial condition.  

In a very recent study by Nagata et al. [19], turbulence development and decay 

characteristics has been investigated in different types of turbulence generator grids 

including regular, fractal, combined regular, and a newly proposed ‘quasi-fractal’ 

grids; the latter has been obtained by replacing the region of fractal iterations with 

regular grids. It was shown that the presence of fractal pattern is not obligatory to 

create an elongated non-equilibrium region, which is the specific nature of fractal grid 

turbulence.  

Despite the extensive experimental studies on fractal-generated turbulent flow, there 

are remarkable computational efforts as well. Some near-field studies using direct 

numerical simulation (DNS) are as follows. It is worth to note that because of 
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computational limitations, the Reynolds number in DNS is typically one order of 

magnitude smaller than that in experiments.  

To compare the experimental and numerical results of isotropic turbulence 

approximation, Djenidi [71] used the lattice-Boltzmann method (LBM) to perform 

DNS of grid-generated turbulence. The grid was similar to the conventional square 

grids in a four by four array. The results were in agreement with existing experimental 

data, and they showed the importance of the mesh resolution and computational 

domain size in the turbulence decay. 

Nagata et al. [57] simulated the turbulent mixing of heat in grid-generated turbulence 

(GGT) using DNS. They used different types of grids and investigated the effect of 

Prandtl number on the turbulent mixing and heat transfer.  

Ertunc et al. [72] investigated the homogeneity of turbulence generated by static grids 

using hot-wire measurements and direct numerical simulations based on the LBM. 

Their experimental grid solidity was lower than that suggested in the literature to 

establish homogeneous turbulent flow. However, they could perform DNS over a wide 

range of solidities to explain the possible reasons for inhomogeneity. DNS results 

showed that the homogeneity is only found in the mean velocity behind the symmetric 

grids. In the case of slightly non-uniform grid, the flow is neither homogeneous in the 

mean quantities nor the turbulence quantities.  

1.2.1 Applications 

In addition to the interesting physical properties, multi-scale/fractal grids have also 

been examined in a wide range of engineering applications including 

 Enhance mixing by energy-efficient turbulent mixers in which it is required to 

have high turbulence intensities with low-pressure drops (i.e., less power loss) 

[37], and its usage in inline static mixers [54,73]; 

 Fractal fluid-mixers used in high-precision epoxies, sugar manufacturing, and 

chromatography, developed by Amalgamated Research Inc. [74];  

 Fractal blades to be used instead of solid paddles in stirring mixers [75];  

 Enhancing pressure drop while maintaining turbulence intensities as low as 

possible in airbrakes [28]; 
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 Enhance heat transfer from impinging jets passing through grids [69]; 

 Flow metering and flow conditioning using fractal shape orifices [76,77]; 

 Acoustic noise reduction from wings by modifying the geometry of spoilers 

[78]; 

 Reducing the vortex shedding intensity of flows past normal plates [79]; 

 Turbulence generators for combustion process [80–82]; 

 Applications in wind energy as in wind fences comprising fractal geometries 

[83][84]; 

 Enhancing convective and radiative heat transfer in fins or heat sinks [85];  

 Microscale heat sinks used in electronic microchips [86,87];  

 Fractal Antennas produced for applications such as cell phones and Wi-Fi 

systems [88,89].  

1.2.2 The Interest on the study of fractal grid generated turbulence 

The existence of unusual turbulence properties (high 𝑇𝐼 and Reynolds number 

compared to conventional square grids) downstream of relatively low blockage ratio 

fractal square grids (FSG) (𝜎 ≈ 0,25) was previously shown in different experiments 

[51][52][35][14][39]. This is the main idea behind introducing CSG and FSG with 

more or less the same blockage ratio to produce a similar value of drag, so the near 

wake flow of these two can be compared. In addition, DNS of FSG [90] reveals much 

longer production and non-equilibrium decay region downstream of the fractal grids. 

Also from the point of view of industrial applicability, the most attractive feature of 

square fractals is the possibility to tune the position of the turbulent energy peak 

intensity with a simple geometrical scaling [16].  

The planar fractal I-grid introduced by Hurst & Vassilicos [22] is, in fact, the analogus 

2-D type of the 3-D fractal structures used by Queiros-Conde & Vassilicos [30] and 

Staicu et al. [31] resembling trees. There exist very limited study of turbulence 

generated by fractal I-grids after Hurst and Vassilicos [22]. Chester et al. [91] and 

Chester and Meneveau [92] numerically studied fractal trees similar to fractal I trees 

of [30]. The focus of these studies was on the calculation of drag using renormalized 

numerical simulation to understand the interaction of turbulent flows with boundaries 

characterized by multiple length scales and model the drag of unresolved branches of 
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a fractal tree. Mazellier & Vassilicos [93] used fractal I-grid and fractal cross grid data 

from Hurst & Vassilicos [22] to demonstrate the dependency of turbulence dissipation 

constant to inlet conditions. More recently, Bai et al. carried out PIV measurements in 

the near-field of a fractal-like tree to demonstrate the significance of the multi-scale 

structures of trees for the actual modeling of the flow in sparse vegetation canopies 

[65]. 

 

1.3 Objectives and Scope 

In this study, we perform two-dimensional particle image velocimetry (2-D PIV) on 

three different pattern fractal grids as well as a conventional (regular) square grid. The 

main objectives and contributions of this thesis to the turbulence and its applications 

are as follows: 

 To characterize fractal-generated-turbulent-flow in more details. These include 

statistical quantities (e.g., turbulence intensity, homogeneity and isotropy, 

skewness and flatness of the streamwise velocity, correlation functions, and 

length scales, etc.) 

 Propose a new generation of fractal turbulence generating grids with circular 

elements (FCG) to compare with the well-known fractal square grid (FSG). 

 To examine a method to reproduce mean three-dimensional flow using two-

dimensional data for axisymmetric flows. This will provide an opportunity to 

investigate the evolution of fractal-generated turbulence flow in more detail 

since the spatial development of cross-sectional profiles, at least for mean 

values are available.  

 To investigate the flow development in the near wake of different grids to come 

up with the most effective design in mixing performance (i.e., homogeneity 

and turbulence intensities), etc.  

 Trends of longitudinal integral length scales as well as Taylor microscale in 

the near-field region of the turbulence-generating grids. Previously, Hurst and 

Vassilicos [22] showed that these values are almost constant along the 

centerline of the space filling, low-blockage fractal square grids in the decay 

region.  
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 Investigation on turbulent kinetic energy budget, concerning two-dimensional 

production rate and estimated mean dissipation rates.  

1.4 Thesis outline 

The present thesis is structured as follows. In chapter 2 general details and technical 

properties of the experimental facility and measurement methods are described. These 

include a wind tunnel, details of the turbulence-generating grids and 2-D PIV 

components. In chapter 3, results are given and discussed.  Final discussions and 

conclusions are presented in the closing chapter four.  
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CHAPTER 2 
 

 

2 EXPERIMENTAL SETUP AND MEASUREMENT DETAILS 

 

 

 

In this chapter, we first explain the wind tunnel in which the measurements are done. 

Fractal grids design, geometric parameters, and manufacturing process, as well as PIV 

equipment such as Laser, optics, and camera, are reviewed, and experimental 

procedure and data processing are described. In the end, some notes on the uncertainty 

of PIV experiments are included. 

 

2.1 Wind Tunnel 

Measurements are conducted in an open-circuit suction type wind tunnel. Schematics 

of the tunnel is shown in Figure 2-1. Incoming air flow passes through a honeycomb, 

a screen, and a 1.0 meter long settling chamber, then enters into a 9:1 contraction 

before reaching the test section. The test section is made of 10mm thick transparent 

Plexiglas with dimensions of 340×340×1000 mm3, specifically designed to mount the 

turbulence-generator-grids at its front section. The flow is then diffused through a 

2.0m long diffuser. The divergence angle is 2.43° to prevent adverse pressure gradient. 

A 1.7m long adapter is turning the square cross section into circular one to attach to 

the fan casing. A 4.0 KW electric motor drives the fan.  

The inlet speed (𝑈∞) is adjusted according to the frequency-velocity diagram shown 

in Figure 2-2. In this figure 𝑇𝐼𝑢 refers to the streamwise turbulence intensity. The 

velocity is obtained at the center of the test section entrance using hotwire anemometry 

(HWA). Maximum velocity of about 20 m/s can be achieved inside the test section. 

The free stream background turbulence intensity approaching the grid is estimated to 

be about 0.5% of the mean flow velocity of 10 m/s. 
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Figure 2-1 Schematics of the open loop wind tunnel and the coordinate system. 

2-D PIV Measurements were carried out from February, 8th to March, 4th 2017. The 

ambient air properties were monitored during the experiments with the help of a 

barometric pressure/humidity/temperature data logger. Distribution of these variables 

is briefly expressed in Figure 2-2. Global Reynolds number variation is therefore 

considered to be negligible. 

 

Figure 2-2 (Left) Streamwise velocity and turbulence intensity in the centerline of the 

test section entry, as a function of driver motor frequency, (Right) Variation of relative 

humidity, temperature, and atmospheric pressure throughout the experiments. 

Uniformity of the flow entering the test section is investigated twice both for 

streamwise velocity and turbulence intensity. The coordinate system is fixed at the 

centerline of the tunnel where the grids are mounted. The streamwise direction (x) is 
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along the tunnel, the spanwise direction (y) is from the center to the test section vertical 

walls, and the vertical direction (z) is governed by the right-hand rule. The coordinate 

system is shown in Figure 2-1.  HWA is carried out along y=0 line at the entrance of 

the test section. The results are illustrated in Figure 2-3. Characterization is carried out 

at three different frequencies corresponding to three inlet speeds (5, 10, and 15 m/s). 

 

Figure 2-3 Test section characterization at three different inlet velocities. 

A picture of the tunnel and traversing unit for HWA is shown in Figure 2-4. For the 

rest of the measurements, the frequency of the electric motor is kept at 19.3 Hz. 

 

Figure 2-4 Open loop suction type wind tunnel and traversing unit at the top of the test 

section to measure the incoming flow using HWA. 
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2.2 Turbulence-generating Grids 

Four mono-plane turbulence-generating grids (TGG’s) made of 4 mm thick Plexiglas, 

are installed 100 mm downstream of the entrance of the test section. Grids are cut in 

a CO2 glass tube type Laser cutting machine with a resolution of 0.5 mm. The Laser 

cutting machine is shown in Figure 2-5.  

 

Figure 2-5 Laser cutting machine. 

Grids are covered with black spray paint to avoid laser light reflections. The first grid 

is of a conventional type with regular repeating square holes (denoted as CSG standing 

for the classical square grid). Other grids are of three different fractal patterns; I-type, 

Square, and Circular (denoted as FIG, FSG, and FCG respectively). These grids are 

shown in Figure 2-6. Various parameters required to define grid geometry are 

summarized in Table 2-1.  

Table 2-1 Parameters defining conventional and fractal grids geometry. 

GRID 𝑆 𝑁 𝐷𝑓 𝑡𝑚𝑖𝑛 (mm) 𝑡𝑟 𝑅𝑡 
𝐿0
𝑇

 𝑅𝐿 
𝑀𝑒𝑓𝑓 

(mm) 
𝜎 (%) 

CSG 2 1 2 2.10 1.0 1.00 ≈ 0.06 0.5 20.0 20.0 

FIG 3 4 2 2.00 8.5 0.49 ≈ 0.53 0.5 25.34 29.4 

FSG 4 4 2 1.20 8.5 0.49 ≈ 0.53 0.5 19.76 23.7 

FCG N/A 4 2 1.20 8.5 0.49 ≈ 0.73 0.5 20.43 24.6 

The pattern type is embedded in the parameter (S) which is the number of rectangular 

bars in each pattern. Since there is no rectangular element in FCG, the value of S 
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cannot be defined for this grid. (N) is the number of fractal iterations, and (𝐷𝑓) – the 

fractal dimension – is defined as in [22], 

 
𝐷𝑓 =

log𝐵

log
1
𝑅𝐿

 
(2.1) 

where (𝐵) is the number of patterns at each iteration and (𝑅𝐿) is the length ratio of 

each element (bar) at each successive iteration. Fractal dimension is the scaling 

exponent that characterizes the fractal perimeter. For FCG, this length is considered 

to be the mean diameter of each circle. 

All grids are designed to have the largest possible value for 𝐷𝑓 to maximize flow 

homogeneity [22]. For this purpose, 𝑅𝐿 and 𝐵 in equation (2.1), are fixed to 0.5 and 

4.0 respectively. Grids with a maximum value of 𝐷𝑓 (i.e. 2.0) are called ‘space-filling’ 

grids [22]. Other parameters listed in the table are as follows:  

 Minimum thickness (𝑡𝑚𝑖𝑛) which is the “spanwise” thickness of the smallest 

element and is shown in Figure 2-6; 

 Thickness ratio (𝑡𝑟) which is the ratio between the thickness of the thickest bar 

and of the thinnest bar. Note that minimum thickness is adjusted to maintain 

the same value of 𝑡𝑟 for all fractal grids. The thickness ratio for the fractal grids 

was fixed at 8.5. In [22], different values of 𝑡𝑟 were investigated for different 

grid types involving 2.5, 5.0, 8.5, 13.0, and 17.0. Although the value of 8.5 for  

𝑡𝑟, was not very high compared to previous studies, there are evidences that 

this value is also acceptable (see for example [52], [14], [50]).  

 Maximum bar length (diameter for FCG) is denoted as 𝐿0 (displayed in Figure 

2-6) and its ratio to the test section width (
𝐿0

𝑇
) is given in Table 2-1. For CSG, 

𝐿0 is considered equal to its mesh size.  

 Parameter 𝑅𝐿 refers to the ratio of bar lengths in one iteration which is kept 

constant for all the grids as 0.5 (i.e., in one iteration the length of bars – or the 

diameter of a circle in FCG – becomes half).  

It is worth to note that conventional grids can be considered as a special case of fractal 

grids where S=2, 𝑅𝐿 = 0.5, 𝐷𝑓 = 2 and 𝑡𝑟 = 1. [22]. According to [22], minimum 
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four parameters are required to define a complete fractal grid geometry, provided that 

(S) – i.e. Fractal pattern – is known. In this study T, N , 𝑡𝑚𝑖𝑛, 𝑡𝑟, and 𝐷𝑓 are chosen as 

the geometry defining parameters. 

 

𝐿0 

𝐿1 

𝐿2 

𝐿3 = 𝐿𝑚𝑖𝑛  

𝑡0 

𝑡1 

𝑡2 

𝑡3 = 𝑡𝑚𝑖𝑛  

 

(a) (b) 
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𝑡2 
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𝐿1 
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𝑡0 

𝑡1 
𝑡2 

𝑡3 = 𝑡𝑚𝑖𝑛  

 
(c) (d) 

Figure 2-6 Bar lengths and thicknesses in (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 

 The mesh size for a conventional grid is the repeating pattern size (center-to-

center bar spacing) as illustrated in Figure 2-6.  

It is obvious that common definition of mesh size cannot be applied to fractal grids as 

they have multiple bars with different sizes placed at different distances. Instead, the 

“effective mesh size” is defined as, 

 𝑀𝑒𝑓𝑓 =
4𝑇2

𝑷
√1 − 𝜎 (2.2) 
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where 𝑷 is the fractal perimeter’s length, i.e., the total length of the grid when it is 

stripped of its thickness [22]. The highest value of 𝑀𝑒𝑓𝑓 – for FIG – is still smaller 

than 10% of the test section height (or width) which is a common practice in turbulence 

generating grids [94].  

 Solidity – or blockage ratio – (𝜎) is the ratio of solid area to the total area 

covered by the grid (𝑇2). It was tried to keep 𝜎 similar for all grids to maintain 

the same drag coefficient. In the case of the conventional grid, it is easy to 

derive the solidity as a function of bar width (𝑏) and mesh size (𝑀), 

 𝜎 =
𝑏

𝑀
(2 −

𝑏

𝑀
) (2.3) 

For fractal I and square grids this formula is more complex,  

 𝜎 =
𝐿0𝑡0∑ 4𝑗+1𝑅𝐿

𝑗
𝑅𝑡
𝑗𝑁−1

𝑗=0 − 𝑡0
2 ∑ 22𝑗+1𝑅𝑡

2𝑗−1𝑁−1
𝑗=1

𝑇2
 (2.4) 

where 𝑡0 = 𝑡𝑟 . 𝑡𝑚𝑖𝑛 is the bar thickness of the largest iteration and 𝑅𝑡 = √𝑡𝑟
1−𝑁  refers 

to the ratio of bar thickness in one iteration (i.e. 𝑡𝑗 = 𝑅𝑡
𝑗
. 𝑡0). The same holds for the 

length of the bars (i.e. 𝐿𝑗 = 𝑅𝐿
𝑗
. 𝐿0) [22]. Another representation for (2.4) which is 

taken from [22] is, 

 𝜎 =
𝑆𝐿0𝑡0
𝑇2

∑(𝐵𝑅𝐿𝑅𝑡)
𝑗

𝑁−1

𝑗=0

=
𝑆𝐿0𝑡0
𝑇2

1 − (𝐵𝑅𝐿𝑅𝑡)
𝑁

1 − 𝐵𝑅𝐿𝑅𝑡
 (2.5) 

For the fractal circular grid, a straightforward formula like (2.4) could not be obtained. 

Instead, areas of each iteration are calculated separately and summed up to calculate 

the solidity. This was also performed for the perimeter of all four iterations to be 

included in the effective mesh size calculation. The perimeter and area of a 4-iteration 

circular grid can be estimated by, 
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𝑷𝐹𝐶𝐺 = 2𝜋𝐷0 (1 − 2.844𝑅𝐷
3 +∑4𝑗𝑅𝐷

𝑗

𝑁−1

𝑗=1

)

− 4𝑡0(79𝑅𝑡
3 + 72𝑅𝑡

2 + 45𝑅𝑡 + 20)

= 2𝜋𝐷0 (1 − 2.844𝑅𝐷
3 +

(4𝑅𝐷)[1 − (4𝑅𝐷)
𝑁−1]

1 − 4𝑅𝐷
)

− 4𝑡0(79𝑅𝑡
3 + 72𝑅𝑡

2 + 45𝑅𝑡 + 20) 

(2.6) 

 

 

𝑨𝐹𝐶𝐺 = [𝜋𝐷0𝑡0∑(𝑁𝑅𝐿𝑅𝑡)
𝑗

𝑁−1

𝑗=0

]

− 2𝑁−1 𝑡0
2𝑅𝑡 [1 + 𝑅𝑡 + (1.117

𝐷0
𝑡0
𝑅𝐿
3 + 6)𝑅𝑡

2

+ 8𝑅𝑡
3 + 15𝑅𝑡

4]

= [𝜋𝐷0𝑡0
1 − (𝑁𝑅𝐿𝑅𝑡)

𝑁

1 − 𝑁𝑅𝐿𝑅𝑡
 ]

− 2𝑁−1 𝑡0
2𝑅𝑡 [1 + 𝑅𝑡 + (1.117

𝐷0
𝑡0
𝑅𝐿
3 + 6)𝑅𝑡

2

+ 8𝑅𝑡
3 + 15𝑅𝑡

4] 

(2.7) 

where 𝑅𝐷 = 𝑅𝐿 to be consistent with circular pattern notation. The estimated error in 

perimeter and area was ≤ 3.0% and ≤ 0.6%, respectively. The blockage ratio for 

CSG, FSG, and FCG is below than 25% while for I grid, due to cutting restrictions, 

this value is about 29%. Nevertheless, the solidity ratio is kept well below the critical 

solidity above which the homogeneity cannot be satisfied. This will be discussed in 

more details in chapter 3. In addition to that, the value of solidities for the grids used 

in previous experiments is in the same order; see for example [17,22,51–53,72]. 

In addition to what is defined above, it is required to use more parameters to compare 

the results with the literature. One important parameter which is defined by Mazellier 

and Vassilicos [52] is the wake-interaction length scale, and the distance turbulence 

intensity reaches its peak denoted by 𝑥∗ and 𝑥𝑝𝑒𝑎𝑘, respectively. 

 𝑥∗ =
𝐿0
2

𝑡0
 (2.8) 
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 𝑥𝑝𝑒𝑎𝑘 ≈ 0.45𝑥∗ (2.9) 

A regular square grid is made of equally spaced bars with equal thicknesses (width). 

Therefore, the wakes from the neighboring bars meet at the same distance from the 

grid which scales as,  

 𝑥∗ =
𝑀2

𝑏
  (2.10) 

where 𝑀 and 𝑏 are the mesh size and bar width for the regular grid, respectively as 

defined in Equation (2.3). Equation (2.10) is obtained using the wake growth relation, 

i.e., the wakes grow with downstream distance (𝑥) as [52], 

 𝑦𝑤𝑎𝑘𝑒~√𝑏𝑥  (2.11) 

and two neighboring wakes meet where 𝑥 = 𝑥∗ and 𝑦𝑤𝑎𝑘𝑒 = 𝑀.  

For the fractal grids, there is no unique distance since there are different bar widths as 

well as bar lengths. However, the distance obtained from the largest bar length and 

width using Equation (2.8) includes the other interaction distances due to smaller 

iterations. So one can expect increased turbulence where the largest interaction 

happens [37]. A schematic for wake interactions from a four iteration fractal square 

grid is shown in Figure 2-7. Since these values are determined by the geometric 

characteristics of the grids and test section, an estimation of those for our grids are 

presented in Table 2-2. From the values of 𝑥𝑝𝑒𝑎𝑘 in this table, one can understand that 

this study is carried out in the “very near wake” region of fractal grids.  

Another estimation of turbulence intensity peak point is from Hurst and Vassilicos 

[22], and we call this as 𝑥𝑝𝑒𝑎𝑘𝐻𝑉: 

 𝑥𝑝𝑒𝑎𝑘𝐻𝑉 ≈ 75
𝑡𝑚𝑖𝑛
𝐿𝑚𝑖𝑛

𝑇  (2.12) 

However, the peak of turbulence intensity along the centerline of CSG should be 

captured since it is still inside the current measurement region. 
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Figure 2-7 Schematic of wake interactions in a four-iteration fractal grid [52]. 

A set of space-filling (𝐷𝑓 = 2.0) fractal square grids with different thickness ratios 

and a conventional grid were studied by Mazellier and Vassilicos [52] (hereafter 

denoted by MV(2010)), among which SFG8 grid is very similar to FSG in the current 

study. SRG grid in [52] is also comparable to our CSG  grid. Details of these grids are 

given in Table 2-3. 

 

Table 2-2 Wake interaction length scale and the peak of turbulence intensity for 

various grids; 𝑥𝑝𝑒𝑎𝑘 values are obtained according to [17] and [32]. 

Grid Symbol 
𝑡𝑚𝑖𝑛 
(mm) 

𝐿𝑚𝑖𝑛 
(mm) 

𝑡0 
(mm) 

𝐿0 
(mm) 

𝑀𝑒𝑓𝑓 

(mm) 
𝑥∗ (mm) 

𝑥𝑝𝑒𝑎𝑘𝐻𝑉 

(mm) 

[22] 

𝑥𝑝𝑒𝑎𝑘 

(mm) 

[52] 

CSG + 2.11 2.11 2.11 20.0 20.0 ≅189 - ≅85 

FIG I 2.0 22.5 17.0 180.2 25.34 ≅1910 N/A N/A 

FSG  1.2 22.58 10.2 180.7 19.76 ≅ 3201 ≅1355 ≅1440 

FCG  1.2 31.1 10.2 249 20.43 ≅6078 ≅984 ≅2735 
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Table 2-3 Comparison between similar previous studies and the current study. 

 
Ref. [52] 

MV(2010) 

Ref. [18] 

GK(2016) 

Ref. [35] 

V(2011) 

Ref. [40] 

Disc(2013) 
Current study 

Grid SFG8 
Conv 

(SRG) 
CONV SFG 

Conv 

(RG) 

FSG 

(𝑡𝑟=13) 

FSG 

(𝑡𝑟=17) 
FSG CSG 

𝑇 (𝑚𝑚) 460 900×500 460 154 340 

𝐿𝑇𝑆 (𝑚𝑚) 9100 8000 9100 1500 1000 

𝑁 4 1 1 4 1 4 4 4 1 

𝐷𝑓 2 2 2 2 2 2 2 2 2 

𝜎 0.25 0.34 0.44 0.25 0.32 0.34 0.32 0.237 0.2 

𝑅𝐿 0.5  1 0.5 1   0.5 1 

𝑅𝑡 ≅ 0.49  1 1 0.39 1   ≅ 0.49  1 

𝑡𝑟 ≅ 8.5  1 1 17 1 13 17 8.5 1 

𝑀𝑒𝑓𝑓  (𝑚𝑚) 26.4 32 37.5 26.2 60 15.3 15.7 19.76 20.00 

𝑥∗ (𝑚𝑚) ≅ 3972  ≅ 171  ≅ 150  2945 360 804 748 ≅ 3201  ≅ 189  

𝐿0(𝑚𝑚) 237.5 32 37.5 237.8 60 80.8 80.3 180.69 20.0 

𝐿1(𝑚𝑚) 118.8 - - 118.9 -   90.34 - 

𝐿2(𝑚𝑚) 59.4 - - 59.45 -   45.17 - 

𝐿3(𝑚𝑚) 29.7 - - 29.72 - 10.1 10.0 22.58 - 

𝑡0(𝑚𝑚) 14.2 6 9.4 19.2 10 8.12 8.62 10.2 2.11 

𝑡1(𝑚𝑚) 6.9 - - 7.46 -   4.99 - 

𝑡2(𝑚𝑚) 3.4 - - 2.9 -   2.45 - 

𝑡3(𝑚𝑚) 1.7 - - 1.129 - 0.62 0.5 1.2 - 

𝑈0 (𝑚𝑠
−1) 5.2, 10, 15 0.5 ± 0.02 10, 15 

10, 15, 

20 
3.5, 11.5 10.2376 

𝑅𝑒𝑀𝑒𝑓𝑓 

≅ 9080 

≅ 17470 

≅ 26200 

≅

 11000  

≅ 21170 

≅ 31760 

18750

± 750 
    11885 12064 

𝑅𝑒𝐿0 
81680-

235700 

11000-

31760 
     108680 12064 

𝑅𝑒𝑡0  
4880-

14090 

2060-

5950 
     6153 1273 

𝑅𝑒𝜆 [140-370] 840
1

     [90-260] 
[50-

200] 

∆𝑥
𝑥∗⁄  

[0.06-

17300] 
[53-560]   [0.45-0.75] 

[0.0025-

0.139] 

[0.1-

2.38] 

∆𝑥
𝑀𝑒𝑓𝑓
⁄  [10-115] [10-105]   [21.4-35.7] [0.4-22.5] 

[1-

22.5] 

 

 

2.3 Particle Image Velocimetry Measurements 

Two-dimensional particle image velocimetry (2-D PIV) is carried out in the near-field 

of four types of turbulence-generating-grids. DynamicStudio® commercial software is 

used to record the data and analyzing afterward. Details of 2-D PIV components, as 

                                                 

1 Measured at 𝑥 ≈ 1𝑀 where Turbulence intensity is maximum. 
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well as the analysis method, are listed in Table 2-4. The components of the 2-D PIV 

experiment are discussed in the next section.  

2.3.1 Measurement procedure 

Shown in Figure 2-8, is emitted a 532 nm (green light) beam from the Laser head. 

Using Mirror 1, this beam is reflected upwards (+Z direction) to the desired height. 

The beam is then directed in +Y direction into a set of spherical and cylindrical lenses, 

using Mirror 2. The first lens makes the beam focused on the measurement region 

while the second one turns it into a laser sheet. The first illuminated plane, which is 

shown in Figure 2-8, is at the center of the test section, i.e., the XY plane (Z=0), just 

behind the grid. The calibration image is taken at this position so that a PIV field of 

128 × 204 𝑚𝑚2 (in X and Y directions, respectively) is obtained. The whole optical 

system (mirrors and lenses) and the camera stays on a 3-axis ISEL heavy-duty traverse 

system and all but the Mirror 1 are fixed onto the Z arm as shown in Figure 2-8.  

 

Figure 2-8 . 2-D PIV horizontal configuration. 
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Table 2-4 2-D PIV experimental parameters. 

Seeding 

Type Olive oil 

Nominal diameter ≈ 1𝜇𝑚  

Specific gravity (at 15ºC) 0.91 

Refractive index [95] 1.5 

Seeding generator 
six-jet oil droplet generator 

utilizing Laskin nozzle 

Laser Sheet 

Laser type Nd: YAG 

Manufacturer New Wave research 

Model Solo 120XT 

Maximum Energy 120 mJ/pulse 

Wavelength 532 nm 

Thickness ≈ 2𝑚𝑚  

Repetition rate 21 Hz 

Optics 

Mirrors Dielectric Mirror, 532 nm 

Spherical Lens Plano-convex, 500mm FL 

Cylindrical Lens Plano-concave, -6.4mm FL 

Camera 

Sensor type CMOS 

Sensor resolution 2560 × 1600 pixel2  

Sensor size 25.6 × 16.0 mm2  

Pixel pitch (size) 10 𝜇𝑚  

Depth 12 bit 

Repetition rate 
1400 fps @ Full resolution 

2500 fps @ 1920 × 1080 

Internal memory buffer 16 GB 

Camera Lens 

Manufacturer Nikon 

focal length 60 mm 

f# 2.8 

Imaging 

Image magnification 0.125 

Field of view (FOV) 128 ×  204 𝑚𝑚2  

Camera-object distance 540 mm 

Time between pulses (Δt) 50 𝜇𝑠  

PIV analysis 

Correlation method Cross-correlation 

Interrogation area (IA) 32 ×  32 pixel2  

Overlap between IAs 50% 

Post-processing 
Moving average validation 

3 × 3 neighborhood  

Vector spacing ≈ 1.28 𝑚𝑚  
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Therefore, the distance from the camera to the object (Laser light sheet) is not 

changing while traversing along the vertical direction and is always equal to 540mm. 

Thus, the magnification factor of the image is always fixed and equal to 0.125. 

Olive oil particles are uniformly seeded into the flow from the tunnel inlet. Oil 

particles with 1𝜇𝑚 diameter are generated using a six-jet oil droplet generator which 

utilizes a Laskin nozzle. Pressurized air atomizes oil in the generator reservoir to 

produce the droplets. The Reynolds number based on the effective mesh size, 

𝑅𝑒𝑀𝑒𝑓𝑓 =
𝑈0𝑀𝑒𝑓𝑓

𝜈𝑎𝑖𝑟
, for CSG, FSG, and FCG is about 12000 while it is about 15000 for 

FIG. 𝑈0 is the free stream mean velocity at the grid position when the test section is 

empty. 𝑈0 was measured using a single hot-wire probe, prior to the PIV experiments. 

The wire has a 5 𝜇𝑚 diameter and 1.25 𝑚𝑚 sensor length. 𝜈𝑎𝑖𝑟 is the kinematic 

viscosity of the air at the time of the experiments. 1003 image pairs are recorded with 

the time delay of 50 𝜇𝑠 between each two pulses. This provides a good convergence 

of turbulence statistics. The images are transferred to PC, and the traverse is moved to 

the next vertical position (+5mm in the Z direction). 35 horizontal planes are recorded 

this way to cover the upper half of the test section. The streamwise location is marked 

as window 1 (see Figure 2-9).  

 

Figure 2-9 Horizontal planes captured by 2-D PIV. 
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The traverse is then moved to the second streamwise position – marked as window 2 

– which is 108mm downstream of the first one. Two more stations in the x-direction 

are captured, and the overlap between neighboring windows is 20mm corresponding 

to 14 to 15 processed vectors. These Four window positions are schematically shown 

in Figure 2-9. At the end of the measurements, there exist 140 PIV windows, each 

having 1003 image pairs, for each grid. 

Measurements are carried out in the region 0 < 𝑥 < 445 𝑚𝑚, −168 < 𝑦 < 34 𝑚𝑚, 

and 0 < 𝑧 < 168 𝑚𝑚, corresponding to 0 <
𝑥

𝑇
< 1.308, −0.495 <

𝑦

𝑇
< 0.1, and 0 <

𝑧

𝑇
< 0.495, respectively. Since the effective mesh size for each grid is different than 

the other, these values are normalized by the corresponding mesh size and listed in 

Table 2-5. The cross section of the measurement volume for each grid is shown in 

Figure 2-10.  

(a) (b)

(c)
(d)

 

Figure 2-10 The cross-section of the whole measurement volume in CSG (a), FSG (b), 

FCG (c), and FIG (d). 
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Table 2-5 Measurement volume normalized by effective mesh size for each grid. 

Grid 
𝑥

𝑀𝑒𝑓𝑓
 

𝑦

𝑀𝑒𝑓𝑓
 

𝑧

𝑀𝑒𝑓𝑓
 

CSG [0,22.25] [−8.40,1.70] [0,8.40] 

FSG [0,22.52] [−8.50,1.72] [0,8.50] 

FCG [0,21.78] [−8.22,1.66] [0,8.22] 

FIG [0,17.56] [−6.63,1.34] [0,6.63] 

 

2.3.2 Data analysis 

PIV Image analysis is carried out in DynamicStudio software. A pre-processing is 

applied to raw images in order to enhance the contrast and reduce the background 

noise. It is followed by cross-correlation between each two image pair with 

interrogation window size of 32 ×  32 pixel2. Using a 50% overlap for the 

interrogation windows results in a resolved field of view of about 128 ×  204 𝑚𝑚2 

with a vector resolution of about 1.28 mm, i.e., 99 ×  159 vectors. The vector spacing 

is comparable to the smallest bar thickness according to Table 2-3, however, it is not 

enough to resolve the wakes of the small iterations. As for post-processing, moving 

average validation on the resultant vector maps in a 3x3 neighborhood is applied. The 

instantaneous flow fields (x, y, U, and V) were exported as data files for further 

analysis using MATLAB and Tecplot. 

 

2.4 Uncertainties 

A typical PIV algorithm has its particular uncertainty in obtaining the instantaneous 

velocity field, and this uncertainty propagates into statistical quantities which are 

derived from the instantaneous velocity field [96]. As stated in [97], roughly 90% of 

the total uncertainty in 2-D-PIV comes from the determination of the displacement in 

pixels from raw images and the remainder 10% is due to camera calibration. There is 

a minor and negligible uncertainty on the time interval between the two laser pulses. 

Since the current measurements were carried out using 2-D PIV technique, the out-of-

plane velocity is not accessible, and thus, the contribution of that to bias errors cannot 

be quantified.  
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However, with a light sheet thickness of 2mm, no significant errors were expected 

from the out-of-plane motion. Since the camera pixel size (10 𝜇𝑚) is larger than the 

averaged particle diameter (~1 𝜇𝑚) the present data set is not affected by peak locking 

which is a major source of systematic (bias) errors in PIV [95].  

A typical PIV algorithm finds peaks and evaluates the displacement shift. In many 

experimental studies, a displacement uncertainty of 0.05-0.1 pixel is reported [97]. 

The uncertainty on the instantaneous velocity field is obtained based on the particle 

disparity method [98] and peak height ratio method [99]. Both methods were carried 

out on one randomly chosen instantaneous vector map in each measured window of 

each grid. The maximum uncertainty in the instantaneous velocity is calculated about 

0.1 pixel which is in agreement with typical values in the literature [18]. As the 

measurement of velocity in the presence of large velocity gradient is affected by larger 

uncertainty [100], the values are calculated specifically in regions with large velocity 

gradients (e.g., a shear layer in the jet-wake combination) rather than to be averaged 

on the whole window.  

The uncertainty in turbulent statistics depends on the quantity of interest. Using a 95% 

confidence level, the uncertainty in averaged velocity 〈𝑈〉 is estimated to be, 

 Ʉ〈𝑈〉 = ±1.96
𝜎𝑈

√𝒏
  (2.13) 

where 𝜎𝑈is the standard deviation of 𝑈 and 𝒏 is the number of finite samples [18]. The 

uncertainty in mean velocities 〈𝑈〉 and 〈𝑉〉 is estimated where the fluctuations are the 

highest levels.  

For the normal components of the Reynolds stress tensor, the uncertainty is computed 

with [96],  

 Ʉ〈𝑢2〉 = 〈𝑢
2〉√

2

𝒏
= 𝜎𝑈

2√
2

𝒏
 (2.14) 

Uncertainty in turbulent kinetic energy can be determined by [96], 

 Ʉ〈𝑇𝐾𝐸〉 = √〈𝑢2〉2 + 〈𝑣2〉2 + 〈𝑤2〉2√
1

2𝒏
 (2.15) 
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with the assumption of diagonal symmetry (〈𝑤𝑤〉 = 〈𝑣𝑣〉), 

 Ʉ〈𝑇𝐾𝐸〉 = √𝜎𝑈4 + 2𝜎𝑣
4√
1

2𝒏
 (2.16) 

The values are listed in Table 2-6 for selected high fluctuating regions in the flow field 

of each grid.  

Table 2-6 Uncertainty in statistical quantities. Points are sampled at a high fluctuating 

region inside the wake of bars. 

Grid Window 

Elevation 

(
𝑧

𝑀𝑒𝑓𝑓
) 

Selected point 

[x,y] (mm) 

{x,y} (grid) 

𝑇𝐼𝑢 

Uncertainty (%) 

〈𝑈〉 〈𝑉〉 〈𝑢2〉 〈𝑣2〉 

CSG 1 0 [19,-30] - {10,107} 22% 8.7% 10% 8.8% 11% 

FSG 1 0 [25,-92] - {15,61} 46% 7% 4% 7% 2% 

FCG 1 0 [89,-125] - {70,35} 52% 11% 17% 15% 34% 

FIG 1 0 [100,0] - {79,133} 60% 9% 10% 11% 12% 
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CHAPTER 3 
 

 

3 RESULTS AND DISCUSSION 

 

 

 

This chapter consists of four sections. In the first section, the process of reconstruction 

of the three-dimensional mean flow field through symmetry is explained. In the second 

section, the mean flow characteristics of TGG’s in the near-field region are analyzed, 

and turbulent mixing is quantified. Third section concerns mean turbulent kinetic 

energy (TKE) and estimation of its dissipation and production rates. In the last section 

length scales in the near-field of TGG’s being investigated.  

 

3.1 General aspects 

3.1.1 Instantaneous velocity field 

An example of instantaneous velocity map for CSG is shown in Figure 3-1. This image 

belongs to the centerline (𝑧 𝑀𝑒𝑓𝑓⁄ = 0) data in the vicinity of the grid (Window 1 in 

Figure 2-9). Square region on the instantaneous velocity field is zoomed in at the right 

of Figure 3-1 involving streamwise velocity vectors while the mean velocity is 

subtracted. The wakes of two individual bars at the top and bottom are clearly seen 

and Coherent structures can be distinguished. Instantaneous velocity fields are 

employed to calculate some flow properties like Reynolds stress tensor, dissipation 

and production rates, length scales, etc. while the combination of ensemble averaged 

of these instantaneous fields would result in a three-dimensional like mean data in the 

near-field of TGG’s.  
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Figure 3-1 Sample map of instantaneous streamwise velocity 𝑈 as obtained from 2-D 

PIV for CSG at Z=0 (left). Y=0 represents the test section and grid centerline. 

Zoomed-in region of a jet-wake interaction (right) with vectors of the magnitude 

of "𝑈 − 〈𝑈〉".  

3.1.2 Diagonal Symmetry 

Looking at the geometry of CSG, FSG, and FCG (Figure 2-6) one can notice a 

diagonal symmetry. In other words, the ensemble-averaged airflow is expected to hold 

a 90-degree rotational symmetry about the test section centerline (X-axis), keeping in 

mind that this is not valid for the fractal I-grid. It is also important to note that this 

assumption is only valid if the incoming flow is inherently uniform. Effects of non-

uniformities existing in the test section inlet – shown in the characterization plot of 

Figure 2-3 – on the symmetry of the downstream mean flow are inevitable. The 

assumption of conventional grid generated turbulent averaged-flow to be diagonally 

symmetric is fair according to the literature [3]. This has been validated for the fractal 

cross and square grids ([39][46]). However, the diagonal symmetry feature of the flow 

is validated by comparing mean and rms velocities and Reynolds stress components 

on some horizontal planes to those on corresponding vertical planes. A vertical laser 

sheet is configured as shown in Figure 3-2. All specifications for 2-D vertical planes 

are kept the same as in horizontal configuration. Only downstream windows next to 

the grids are captured.  
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Figure 3-2 Vertical Laser sheet configuration. 

Sample vertical windows and corresponding horizontal ones are shown in Figure 3-3 

with contours of the mean streamwise velocity 〈𝑈〉. Here, 〈 〉 denotes the ensemble 

average and is used interchangeably with ( ). FIG vertical planes are also shown in 

order to compare the available mean velocity components (〈𝑈〉 and 〈𝑉〉) to those in the 

volumetric data later in this section. Exact position of the planes are listed in Table 

3-1.  

According to the literature [39] and based on our analysis, the diagonal symmetry in 

the flow can be shown by comparing mean velocities, mean vorticity, and components 

of the Reynolds stress tensor. To understand the diagonal symmetry in the flow and 

check the validity of our hypothesis in the case of symmetrical grids, directly measured 

vertical planes (𝑎’ to 𝑒’ in Figure 3-3) were compared to the corresponding rotated 

planes, i.e., those planes resulted from rotating horizontal ones (𝑎 to 𝑒 in Figure 3-3). 

Furthermore, after generating volumetric data, profiles of transverse rms velocities can 

be examined to check whether they are in line with literature or not [39]. As an 

example of this comparison, a contour plot of the mean vorticity component in the 
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spanwise direction (Ω𝒚) for FSG is shown in Figure 3-4. The window is the middle 

vertical one (𝑎’ in Figure 3-3-C). Data is extracted along a vertical line at 𝑥 = 3 𝑀𝑒𝑓𝑓. 

Table 3-1  Position of the horizontal and vertical planes for CSG, FSG, FCG, and FIG. 

Grid 

Horizontal plane 
Corresponding  

vertical plane 
Grid 

Horizontal plane vertical plane 

Label 
Position 

(𝑧/𝑀𝑒𝑓𝑓) 
Label 

Position 

(𝑦/𝑀𝑒𝑓𝑓) 
Label 

Position 

(𝑧/𝑀𝑒𝑓𝑓) 
Label 

Position 

(𝑦/𝑀𝑒𝑓𝑓) 

CSG 

a 0 a' 0 

FIG 

a 0 f 0 

b 2 b' -2 b 1.578 g -1.578 

c 4 c' -4 c 3.157 h -3.157 

d 6 d' -6 d 4.735 i -4.735 

e 8 e' -8 e 6.314 j -6.314 

FSG 

a 0 a' 0  

b 2.024 b' -2.024 

c 4.048 c' -4.048 

d 6.072 d' -6.072 

e 8.097 e' -8.097 

FCG 

a 0 a' 0 

b 1.958 b' -1.958 

c 3.915 c' -3.915 

d 5.873 d' -5.873 

e 7.831 e' -7.831 

 

This is somewhere within the wake of the largest horizontal bar (upper horizontal bar 

in Figure 3-3-C at around 𝑧 = 5 𝑀𝑒𝑓𝑓) and the mean streamwise velocity profile along 

this line is plotted on the contours. In Figure 3-4, (a) represents the vertical window 

that was originally measured while in (b) the result of 90 degree rotation of the original 

horizontal window at Z=0 is shown. The former is marked as “Measured” in the plots 

to the right while the latter is marked as “Rotated” there. The mean vorticity fields on 

(a) and (b) are in a good agreement as it is shown in Figure 3-4, and the profiles of 

mean streamwise velocity are almost identical (c), while there is a small difference in 

the upper half of the wake for the vertical mean velocity component (d). This similarity 

is still visible in available Reynolds stress components (e and f).  

As another example, the diagonal symmetry is investigated in CSG. The mean 

transverse vorticity field Ω𝑦, in the vertical plane marked by (𝑎’) in Figure 3-3-a is 

represented in Figure 3-5-a. The corresponding vertical window obtained by rotating 

the Z=0 plane (plane a in Figure 3-3-a) is also shown in Figure 3-5-b. 
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Figure 3-3 Measured horizontal and corresponding vertical planes of 2-D PIV for (A) 

CSG, (B) FSG, and (C) FCG; Measured horizontal and vertical planes for FIG (D). 

 

Figure 3-4 Plots of mean transverse vorticity on (a) measured vertical window(Y=0), 

(b) corresponding vertical window obtained by rotating the (Z=0) window in FSG, (c) 

to (f) represent profiles of mean streamwise and vertical velocities and Reynolds stress 

components extracted along a line cutting the wake of a bar. The solid line is the 

originally measured data, and the dashed line is the rotated data. The vertical extracted 

line is shown in both (a) and (b). 
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Figure 3-5 Plots of mean transverse vorticity on (a) measured vertical window(Y=0), 

(b) corresponding vertical window obtained by rotating the (Z=0) window in CSG, (c) 

to (f) represent profiles of mean streamwise and vertical velocities and Reynolds stress 

components extracted along a line passing consecutive wakes and jets formed by bars 

and holes. The solid line is the originally measured data, and the dashed line is the 

rotated data. The vertical extracted line is shown in both (a) and (b). 

Again the whole vorticity fields seem to show similar behavior, and the profiles of 

mean velocities and Reynolds stresses on the right of Figure 3-5 prove this claim. The 

profiles are extracted along a vertical line at 𝑥 𝑀𝑒𝑓𝑓⁄ = 3.0 for both cases.  

3.1.3 Reconstruction of the three-dimensional mean flow field 

Using 2-D PIV data, one can obtain some information about the 2-D flow field which 

is listed in the first column of Table 3-2. As it is mentioned before, there exist 140 

windows captured for each grid in an array of 35 × 4 (Figure 2-9). Each set of 4 

streamwise windows at the same height are patched together. Thus a region with 35 

long horizontal planes distributed in typically 5mm distance in Z-direction is formed. 

Considering the diagonal symmetry in the flow, the third component of the mean 

velocity 〈𝑊〉 can be obtained by rotating these horizontal planes to the corresponding 

vertical ones. An example of a corresponding vertical plane to that of horizontal ones 

is shown in Figure 3-6-left for FCG. In this example, the horizontal plane is the center 

plane (Z=0) which was rotated 90 degrees clockwise to yield the corresponding 

vertical plane (Y=0). The mean transverse velocity component 〈𝑉〉 in the horizontal 
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window would be the mean vertical velocity component in the vertical one with a 

negative sign 〈−𝑊〉. Subsequently, the components of the Reynolds stress tensor and 

mean velocity strain rate are changed to the rotated components in the vertical planes 

as listed in Table 3-2. 

 

Figure 3-6 Sample rotation of horizontal planes to corresponding vertical ones in FCG; 

Z=0 plane is rotated 90 degrees clockwise to result in Y=0 plane; Overlay is the mean 

streamwise velocity (Left) 35 horizontal and 35 corresponding vertical planes in FCG 

creating a volume-like region. The overlay is the mean streamwise velocity (Right). 

Rotating all 35 planes to corresponding vertical ones creates a volume-like region, as 

shown in Figure 3-6-right. Additional variables on the vertical planes (Table 3-2) are 

then interpolated to the horizontal planes. This is done by selecting all vertical planes 

as a source of interpolation and each horizontal plane as a destination. This results in 

35 horizontal planes with complementary data on mean variables as it is seen in Table 

3-3. Two other mean vorticity components (Ω𝑥 and Ω𝑦) are calculated knowing all the 

three mean velocities. Two components of the Reynolds stress tensor (𝑢𝑤 = 𝑤𝑢, 𝑤𝑤) 

as well as other components of the mean velocity gradient tensor (𝑆13̅̅ ̅̅ = 𝑆31̅̅ ̅̅ , 𝑆23̅̅ ̅̅ =

𝑆32̅̅ ̅̅ , 𝑆33̅̅ ̅̅ ) are also obtained. The only variable which remains unknown is the shear 

stress on the planes parallel to the grid, i.e. 𝑣𝑤 = 𝑤𝑣. As a result, a set of 35 horizontal 

planes with more information on the mean flow variables are produced. These planes 

are sufficiently close to each other (distance is 5mm) to allow smooth interpolation of 

the statistical fields, to show the development of the mean flow using parallel planes 

to the grid. The inverse-distance interpolation is applied in the Z direction to create a  
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3-D volumetric dataset. This volume is extended only in a quarter of the whole grid. 

It is also possible to mirror the volume data along XZ and XY planes to create a full 

volumetric data. A detailed discussion of velocity fields and statistics are presented in 

the results section. 

Table 3-2 Data obtained by 2-D PIV on horizontal planes (original) and corresponding 

data on vertical planes (rotated). 

 Horizontal plane 

(original) 

Vertical plane 

(rotated) 

Coordinate vector 

X X 

Y −Z 

Z −Y 

Mean velocity vector 
〈U〉 〈U〉 
〈V〉 〈−W〉 

Reynolds stress tensor 

〈uu〉 〈uu〉 
〈uv〉 = 〈vu〉 〈−uw〉 = 〈−wu〉 
〈vv〉 〈ww〉 

Mean velocity strain rate Tensor 

〈S11〉 〈S11〉 
〈S12〉 = 〈S21〉 〈−S13〉 = 〈−S31〉 

〈S22〉 〈S33〉 

 

Table 3-3 Mean flow data obtained by 2-D PIV and complementary data after 

interpolating the vertical planes variables. 

 2-D PIV data (original) Rotated data 

Mean velocity field 〈U〉 〈V〉 〈U〉 〈V〉 〈W〉 

Mean vorticity field Ω𝐳 [Ω𝐱 Ω𝐲 Ω𝐳] 

Mean velocity strain rate tensor [

S11̅̅ ̅̅ S12̅̅ ̅̅ 

S21̅̅ ̅̅ S22̅̅ ̅̅ 

  S33̅̅ ̅̅
] [

S11̅̅ ̅̅ S12̅̅ ̅̅ S13̅̅ ̅̅

S21̅̅ ̅̅ S22̅̅ ̅̅ S23̅̅ ̅̅

S31̅̅ ̅̅ S32̅̅ ̅̅ S33̅̅ ̅̅
] 

Reynolds stress tensor [
uu uv 

vu vv 

  

] [
uu uv uw
vu vv 

wu  ww

] 
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3.1.4 Characteristic lines 

To investigate the mean flow evolution in the near-field, in addition to the general 

patterns which are obtained by the area averaged values in 𝑥 = 𝑐𝑡𝑒 planes, one could 

extract variables along some generic lines.  

      

    
(a) (b) (c) (d) 

Figure 3-7 Starting point of characteristic lines in grids under investigation. (a) CSG, 

 centerline (C1),  middle of the horizontal bar (C2),  middle of the vertical bar 

(C3), and  cross of horizontal and vertical bars (C4). (b) FSG,  centerline (FS1), 

 middle of the horizontal bar in the largest square (FS2),  top left corner of the 

largest square (FS3), and  middle of the vertical bar in the largest square (FS4). (c) 

FCG,  centerline (FC1),  middle of the largest circle at the top (FC2),  middle 

of the largest circle on the diagonal of the grid at the top left (FC3), and  middle of 

the largest circle at left (FC4). (d) FIG,  centerline (FI1),  middle of the largest I 

at the top (FI2),  top left corner of the largest I (FI3), and  diagonally reflected 

point of FI2.  

Table 3-4 Characteristic lines for grids under investigation, their symbol and location. 

Grid 

Starting 

point 

of the line 

Symbol Location 

CSG 

C1  Centerline (opening) 

C2  Middle of horizontal bars 

C3  Middle of vertical bars 

C4  Cross of horizontal and vertical bars 

FSG 

FS1  Centerline 

FS2  Middle of the 1st iteration bar at the top of the grid  

FS3  Top left corner of the 1st iteration bar  

 FS4  Middle of the vertical bar in the largest square 

FCG 

FC1  Centerline 

FC2  Middle of the 1st iteration circle at the top of the grid 

FC3  Top left corner of the 1st iteration circle 

 FC4  Middle of the largest circle at the left side of the grid 

FIG 

FI1  Centerline 

FI2  Middle of the 1st iteration bar at the top of the grid 

FI3  Top left corner of the 1st iteration bar 

 FI4  Diagonally reflected point of FI2 
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These lines are called characteristic lines as they represent a distinct location on each 

grid. The starting point is chosen very near to the grid, and each line extends through 

the whole domain under investigation. The starting point of the lines are schematically 

shown in Figure 3-7 and listed in Table 3-4. Variation of many statistics of the 

turbulent flow along these lines are presented in following sections. 

 

3.2 Mean flow characteristics 

Effects of the growth of test section boundary layer can be investigated while there 

was no grid installed inside the test section. Some planes at different heights (Z) were 

captured with the help of PIV. Boundary layer thickness defined by the height with 

〈𝑈〉 = 0.95𝑈0 was started from 𝛿|𝑥
𝑇
=0.15 = 0.0247𝑇 at the test section entrance and 

grows to 𝛿|𝑥
𝑇
=1.32 = 0.0536𝑇 at the rear part of the measurement region. The free 

stream flow uniformity outside the boundary layer was confirmed by extracting some 

spanwise lines from the PIV planes.  

3.2.1 Center plane 

Distribution of the mean streamwise velocity 〈𝑈〉, on the horizontal center plane 

(𝑧 𝑀𝑒𝑓𝑓⁄ = 0) is shown in Figure 3-8. 〈𝑈〉 is normalized by the free stream velocity 𝑈0. 

For conventional grid (Figure 3-8-a), the streamwise velocity is recovered to about 

0.85𝑈0 after almost 10 mesh sizes downstream and the field seems to get uniform 

afterwards. This is not the case for all other fractal grids and the flow field is still under 

the influence of the wakes of the largest iterations (elements) even at the endpoint of 

the measurement region. It is clear that for fractal square (Figure 3-8-b) and fractal 

circular (Figure 3-8-c) grids the wakes still require more space to get fully merged. 

This shows the importance of the central plane flow field which was at the focus of 

study in most of the earlier works [22]. Normalized mean velocities (
〈𝑈〉

𝑈0
,
〈𝑉〉

𝑈0
) and 

streamwise turbulence intensity 𝑇𝐼𝑢 =
𝑢′

〈𝑈〉
 across the test section, are extracted at three 

downstream locations, 𝑥 = 1,17,22 𝑀𝑒𝑓𝑓 – start, the endpoint of the FIG 

measurement region, and the endpoint of the measurement region of the rest of grids 

– and profiles are accordingly shown in Figure 3-9, Figure 3-10, and  Figure 3-11, 
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respectively. It is clear from Figure 3-9 that close to the grid, particularly downstream 

of the grid’s bars, deficits of mean velocity is very high. These deficits are surrounded 

by high mean flow gradients with local maximum turbulence intensity as one 

compares Figure 3-9 and Figure 3-11. 

 

Figure 3-8 Normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 distribution on 𝑧 𝑀𝑒𝑓𝑓⁄ = 0  

plane for CSG (a), FSG (b), FCG (c), and FIG (d). 

Unlike the symmetric grids (CSG, FSG, and FCG), FIG does not possess diagonal 

symmetry and the mean streamwise velocity on 
𝑦
𝑀𝑒𝑓𝑓⁄ = 0 plane is not the same as 

in 𝑧 𝑀𝑒𝑓𝑓⁄ = 0  plane. Normalized mean streamwise velocity at 
𝑦
𝑀𝑒𝑓𝑓⁄ = 0  is shown 

in Figure 3-12. Minor differences in the plots of mean streamwise velocity in 

horizontal and vertical planes are due to the fact that the vertical planes are produced 

from the reconstructed 3-D volume where the actual data belongs to the horizontal 

planes. 
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Figure 3-9 Spanwise distribution of mean streamwise velocity 〈𝑈〉 normalized by free 

stream velocity 𝑈0, at 𝑥 = 1𝑀𝑒𝑓𝑓 (a), 𝑥 = 17𝑀𝑒𝑓𝑓 (b), and 𝑥 = 22𝑀𝑒𝑓𝑓 (c) on the 

center plane. 
𝑦

𝑇
= 0 is the centerline of the test section. 〈𝑈〉 = 𝑈0 is shown by vertical 

dashed line.  

 

 

Figure 3-10 Spanwise distribution of mean spanwise velocity 〈𝑉〉 normalized by free 

stream velocity 𝑈0, at 𝑥 = 1𝑀𝑒𝑓𝑓 (a), 𝑥 = 17𝑀𝑒𝑓𝑓 (b), and 𝑥 = 22𝑀𝑒𝑓𝑓 (c) one the 

center plane. 
𝑦

𝑇
= 0 is the centerline of the test section. 〈𝑉〉 = 0 is shown by a vertical 

dashed line.  
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Figure 3-11 Spanwise distribution of streamwise turbulence intensity 𝑇𝐼𝑢 =
𝑢′

〈𝑈〉
, at 𝑥 =

1𝑀𝑒𝑓𝑓 (a), 𝑥 = 17𝑀𝑒𝑓𝑓 (b), and 𝑥 = 22𝑀𝑒𝑓𝑓 (c) on the center plane. 
𝑦

𝑇
= 0 is the 

centerline of the test section. Vertical dashed line is zero turbulence intensity. 

 

 

Figure 3-12 Normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 distribution on the plane 

𝑦
𝑀𝑒𝑓𝑓⁄ = 0 for CSG (a), FSG (b), FCG (c), and FIG (d). 
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Normalized mean out-of-plane vorticity 〈𝛺𝑧〉
𝑀𝑒𝑓𝑓

𝑈0
, is shown in Figure 3-13. Vortices 

shed by the thickest vertical bar are appropriately resolved. These dominant vortices 

are better shown in Figure 3-14, which is an instantaneous data for normalized in-

plane vorticity at 
𝑧

𝑀𝑒𝑓𝑓
= 0 plane in the vicinity of FSG. According to Table 2-1, the 

width of the thinnest element among these grids is 1.2mm which is even smaller than 

the spatial resolution of the measurements. Thus, the vortices shed by the small bars 

could not be properly resolved.  

 

 

Figure 3-13 Normalized mean out-of-plane vorticity 〈𝛺𝑧〉
𝑀𝑒𝑓𝑓

𝑈0
 on 𝑧 𝑀𝑒𝑓𝑓⁄ = 0 plane 

for (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 
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Figure 3-14 Instantaneous map of normalized Z-vorticity, belonging to FSG, window 

1,𝑧 𝑀𝑒𝑓𝑓⁄ = 0 where the wake of the biggest bar is dominant and completely resolved. 

The velocity vector map of the rectangular region is shown in a zoomed view at right. 

Grid centerline is shown by the dashed line at 
𝑦
𝑀𝑒𝑓𝑓⁄ = 0. 

3.2.2 Off-center planes 

The resolution of the current PIV images, make it possible to capture all flow 

characteristics behind two largest (zeroth and first) iterations of fractal grids. We here 

exclude FIG since it creates a very different turbulent flow field. Therefore, additional 

horizontal planes rather than the central one are extracted from the mean flow data. 

These planes typically cut sections from two largest iterations of fractal square and 

circular grids, hence can be thought as some generic planes available to investigate 

flow properties. Vertical position (𝑧/𝑀𝑒𝑓𝑓) of these planes are listed in Table 3-5. 

Plane 2 corresponds to a cut from the middle of a horizontal bar in CSG and a cut form 

the middle of the largest horizontal iteration in FSG and FCG. Plane 3 cuts the second 

iteration of FSG (FCG) from the corner of square (circle).  

 



 

46 

 

 

Figure 3-15 Normalized streamwise velocity 
〈𝑈〉

𝑈0
 distribution over selected horizontal 

planes of CSG (a-b), FSG (c-e), and FCG (f-h). Vertical position of planes is listed in 

Table 3-5. 

Table 3-5 Vertical positions of extracted planes from the reconstructed 3-D mean flow 

field. Letters refer to the contour plots in Figure 3-15.  

Grid 
Center plane Plane 2 Plane 3 

𝑍/𝑀𝑒𝑓𝑓 Letter 𝑍/𝑀𝑒𝑓𝑓 Letter 𝑍/𝑀𝑒𝑓𝑓 Letter 

CSG 0 a 0.50 b - - 

FSG 0 c 4.57 d 2.43 e 

FCG 0 f 6.10 g 2.20 h 

 

Complex wake-jet interactions between different blockage-opening pairs create very 

different flow pattern in the near-wake of fractal grids. Even the range of advancement 

of jet-like flow on the central plane (Figure 3-15-c,f) is different. An example where 

3-D flow field shows itself can be found in the wake of the largest bar of FSG in Figure 

3-15-d. Although this plane is cut from the middle of the bar, an alternating wake 

pattern with peaks of slightly positive and valleys of recirculating zones indicates the 
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effects of neighbor bars along the vertical direction. Starting from the left corner of 

the largest horizontal bar, a small recirculating zone is captured at 
𝑦

𝑀𝑒𝑓𝑓
≅ −5.0. 

Moving along the +y axis, the horizontal bar is surrounded by another two horizontal 

bars belonging to the smallest (3rd) iteration (−4 <
𝑦

𝑀𝑒𝑓𝑓
< −2.75). The interaction of 

two different shear layers from these two different thicknesses within this distance, 

shrinks the recirculation zone along the largest bar and results in a positive streamwise 

velocity. At the intersection of the two largest iterations (−2.5 <
𝑦

𝑀𝑒𝑓𝑓
< −1.9), a 

relatively big recirculating zone does exist. The pattern of two surrounding 3rd iteration 

bars is repeated in the range of −1.8 <
𝑦

𝑀𝑒𝑓𝑓
< −0.4, and around the centerline 

−0.35 <
𝑦

𝑀𝑒𝑓𝑓
< +0.35, flow recirculates without the effects of any surrounding bars. 

To get more quantitative results, it is better to extract data at different downstream 

stations and compare them. First, we will focus on the center plane flow. 

The important point to note about the FCG is the collision of the wake of the 0th 

iteration to the test section walls during its evolution (Figure 3-15-f,h). This could 

leave some effects in the flow which are not directly related to fractal grid-generated-

turbulence and has to be kept in mind. 

In the following, we used upstream air velocity corresponding to each grid (𝑈∞) for 

normalization. The velocity of air approaching each grid is measured with the help of 

HWA and is equal to 8.117, 8.321, and 8.171 m/s for CSG, FSG, and FCG, 

respectively. As it has been mentioned FIG is excluded in these comparisons as it 

produces a completely different turbulent flow. Minor differences in the mean flow 

field are found between the center plane and plane 2 of CSG (Figure 3-15-a,b). These 

initial, geometry-dependent variances are shown in Figure 3-16 for normalized 

streamwise velocity distribution. These differences all vanish after about 𝑥 = 10𝑀𝑒𝑓𝑓 

downstream of the grid. Only in the very near wake region of CSG, one can find 

recirculation regions. A sample is shown in Figure 3-16-c which is extracted at a 

downstream distance of 𝑥 = 0.51𝑀𝑒𝑓𝑓 within the wake of three consecutive vertical 

bars in the spanwise direction.  
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Figure 3-16. Normalized mean streamwise velocity distribution on the center plane (a) 

and plane 2 (b) of CSG, at three downstream locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical 

green line shows the PIV laser sheet and the horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 =

y/T = 0 is the grid centerline. Zoomed view of mean streamwise velocity very near 

to the grid (at 𝑥/𝑀𝑒𝑓𝑓 = 0.51) (c), showing recirculation region with negative velocity 

magnitudes behind horizontal bars and off-jet-center maximum velocities on plane 2 

(solid black line). Center plane data is shown by the dashed black line. Schematics of 

CSG geometry is shown at the background.  

At 𝑥 = 1𝑀𝑒𝑓𝑓, streamwise velocity fluctuates within 0.04 and 0.18 of 𝑈∞ in the center 

plane (Figure 3-17-a), while its fluctuations behind the horizontal bar (plane 2) is 

within 0.15 and 0.25 of 𝑈∞. However, after 𝑥 = 10𝑀𝑒𝑓𝑓, there is no significant 

difference between streamwise velocity fluctuations on both planes, such that it decays 

to about 6% and 4% of 𝑈∞ at 10𝑀𝑒𝑓𝑓 and 22𝑀𝑒𝑓𝑓, respectively. Mean velocities and 

rms values are in a good agreement with similar studies previously done using PIV 

technique [15]. 

Spanwise distribution of the normalized streamwise velocity component 
〈𝑈〉

𝑈∞
 in FSG is 

shown in Figure 3-18, at three different downstream distances over the center plane as 

well as two off-center planes as listed in Table 3-5. Over the center plane (𝑧/𝑀𝑒𝑓𝑓 =

0), just behind the grid (Figure 3-18-a), mean flow is highly inhomogeneous and both 

wake-like and jet-like flows are observed. Maximum velocity is not in the centerline 

but in the shear layer of the largest vertical bars where the streamwise velocity 

overshoots from 1.258𝑈∞ (at centerline) to about 1.435𝑈∞. At the farthest point from 

the grid (
𝑥

𝑀𝑒𝑓𝑓
= 22) centerline velocity is slightly decreased to about 1.19𝑈∞. At this 
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location, effects of the wake of the largest vertical bars still exist with maximum deficit 

of 23% in the streamwise velocity. Another point to note is by examining the minimum 

spanwise location of the wake which suggests a diverging mean flow from the 

centerline which was numerically shown before [61]. 

 

Figure 3-17. Normalized rms streamwise velocity distribution on the center plane (a) 

and the plane cutting the horizontal bars, i.e., plane 2 (b) of CSG, at three downstream 

locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical green line shows the PIV laser sheet and the 

horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 = y/T = 0 is the grid centerline. Zoomed view of 

rms streamwise velocity very near to the grid (at 𝑥/𝑀𝑒𝑓𝑓 = 0.51) (c), on plane 2 (solid 

black line). Center plane data is shown by the dashed black line. Schematics of CSG 

geometry is shown at the background. 

On the second plane (𝑧 = 4.57𝑀𝑒𝑓𝑓), so called effects of the smallest iterations on the 

wake of the largest iteration’s horizontal bar, is obvious with alternating velocity 

profile (Figure 3-18-b). On this plane, however, the maximum streamwise velocity at 

the farthest measurement point reaches to about 1.06𝑈∞. One of the most complex 

distributions can be found on the third plane (𝑧 = 2.43𝑀𝑒𝑓𝑓) where the interactions of 

three iterations and the effects of the smallest ones exist such that wherever there are 

two smallest iterations surrounding a larger element, a recirculating zone fades away 

and turns into the jet-like flow.  This is obvious in Figure 3-18-c, e.g., in the ranges of 

−6.5 <
𝑦

𝑀𝑒𝑓𝑓
< −5.3, −4.2 <

𝑦

𝑀𝑒𝑓𝑓
< −3.0, and −1.8 <

𝑦

𝑀𝑒𝑓𝑓
< −0.6.  
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Figure 3-18. Normalized mean streamwise velocity distribution on the center plane 

(𝑧 = 0) (a), 𝑧 = 4.57𝑀𝑒𝑓𝑓  plane (b), and 𝑧 = 2.43𝑀𝑒𝑓𝑓 plane (c) of FSG, at three 

downstream locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical green line shows the PIV laser 

sheet and the horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 = y/T = 0 is the grid centerline. 

Schematics of the grid is shown at the background. 

For FSG, fluctuations of streamwise velocity are normalized by 𝑈∞, and shown in 

Figure 3-19. Very near to the grid, high shear (≈34% of 𝑈∞) exists at both sides of the 

grid’s largest bar (Figure 3-19-a), and everywhere else there is a constant level of 

fluctuations in the order of 2.5% of free stream velocity. This value remains preserved 

only about the centerline of FSG until the endpoint of the measurement region. On the 

second plane (
𝑧

𝑀𝑒𝑓𝑓
= 4.57), vertical bar belonging to the first iteration square (at 𝑦 ≈

±7.2𝑀𝑒𝑓𝑓) creates levels of turbulence (≈37% of 𝑈∞) even higher than that of the 0th 

iteration, and the cross of 0th and 1st iterations, comparing Figure 3-19-b with Figure 

3-19-a and Figure 3-19-c at 𝑥 = 1𝑀𝑒𝑓𝑓, respectively. The values of turbulence 

intensity are also in a good agreement with previous DNS results [61].  

Distributions of mean streamwise velocity and turbulence intensity for FCG, are 

shown in Figure 3-20 and Figure 3-21, respectively. Over the center plane (𝑧/𝑀𝑒𝑓𝑓 =

0), again there is an overshoot of streamwise velocity from 1.23𝑈∞ (at centerline) to 

about 1.46𝑈∞ (at the shear layer of the largest circular element) (Figure 3-20-a). 

Maximum deficit in the streamwise velocity is about 26% at the endpoint of the 

measurement region over the center plane. 
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Figure 3-19. Normalized rms streamwise velocity distribution on the center plane (𝑧 =
0) (a), 𝑧 = 4.57𝑀𝑒𝑓𝑓 plane (b), and 𝑧 = 2.43𝑀𝑒𝑓𝑓 plane (c) of FSG, at three 

downstream locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical green line shows the PIV laser 

sheet and the horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 = y/T = 0 is the grid centerline. 

Schematics of the grid is shown at the background. 

 

Figure 3-20. Normalized mean streamwise velocity distribution on the center plane 

(𝑧 = 0) (a), 𝑧 = 6.1𝑀𝑒𝑓𝑓 plane (b), and 𝑧 = 2.2𝑀𝑒𝑓𝑓 plane (c) of FCG, in three 

downstream locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical green line shows the PIV laser 

sheet and the horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 = y/T = 0 is the grid centerline. 

Schematics of the grid is shown at the background. 

The second plane in FCG cuts from the middle of the largest circular element. 

However, the smallest iterations are ordered asymmetrically on either side of this 

plane, whereas in the FSG, the smallest squares are symmetrically arranged (compare 

Figure 3-18-b with Figure 3-20-b). Because of this, one cannot find the alternating 

velocity distribution in the vicinity of the FCG, just like that is found in FSG case. On 
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this plane, however, velocity distribution seems to be more uniform (within ±0.07𝑈∞) 

at the farthest measurement point, compared to FSG case. On the third plane of FCG 

at 𝑧 = 2.2𝑀𝑒𝑓𝑓, interactions between the wakes of the first three iterations are detected 

near to the grid (Figure 3-20-c). Due to the presence of the smallest circular elements 

on either sides of the plane 3, reverse flow only occurs at the largest iteration, and 

everywhere else the mean streamwise velocity is larger than the free stream velocity. 

Maximum turbulence intensity ((≈37% of 𝑈∞) induced by the largest element of FCG 

is higher than that of FSG (Figure 3-21-a). At the intersection of 0th and 1st iterations, 

the level of fluctuations reaches to almost 0.4𝑈∞ (Figure 3-21-b). 

 

Figure 3-21. Normalized rms streamwise velocity distribution on the center plane (𝑧 =
0) (a), 𝑧 = 6.1𝑀𝑒𝑓𝑓 plane (b), and 𝑧 = 2.2𝑀𝑒𝑓𝑓 plane (c) of FCG, at three downstream 

locations (𝑥/𝑀𝑒𝑓𝑓 = 1,10,22). Vertical green line shows the PIV laser sheet and the 

horizontal dashed line at 𝑦/𝑀𝑒𝑓𝑓 = y/T = 0 is the grid centerline. Schematics of the 

grid is shown at the background. 

3.2.3 Cross-sectional planes 

To further investigate the near flow field, it is valuable to extract some planes parallel 

to the grid (
𝑥

𝑀𝑒𝑓𝑓
= 𝑐𝑡𝑒) to show the flow development. As an example, cross sectional 

profiles of the mean streamwise velocity are shown in Figure 3-22 to qualitatively 

understand the mean flow development in the near grid region of conventional and 

fractal grids. Nagata et. al. [39] divided the flow into ‘upstream’ and ‘downstream’ 

sections where 
𝑥

𝑥∗
= 0.3 − 0.4 discriminates these two, since the decay of turbulence 

occurs after 0.45𝑥∗. Based on their classification, measurement region for fractal grids 

in the current study falls inside the ‘upstream’ section where the turbulence is being 
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produced. However, for CSG the measurement region extends to more than twice of 

𝑥∗ value according to Table 2-3.  

The regular wake-jet pattern in conventional grid continuously merges into a nearly 

homogeneous flow, and at the end of the measurement region, streamwise flow is 

almost homogeneous (Figure 3-22-a). This is also clear from the spanwise distribution 

of 〈𝑈〉 in Figure 3-16-b. In that figure, the boundary layer velocity profile is clearly 

seen near the test section walls.  

 

Figure 3-22 Normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 distribution on the planes 

𝑥
𝑀𝑒𝑓𝑓⁄ = 1,10, 𝑎𝑛𝑑 20 for CSG (a), FSG (b), FCG (c), and planes 𝑥 𝑀𝑒𝑓𝑓⁄ =

1,7.5, 𝑎𝑛𝑑 15 for FIG (d).  

Wakes of the 0th and 1st iterations of fractal grids are persistently dominant in the flow, 

and unlike the conventional grid, streamwise flow is still buckling with some degree 

of inhomogeneity at the end of the measurement region (Figure 3-22). Also, the 

distribution and magnitudes of 〈𝑈〉 at similar downstream distances are different. For 

example, the jet region formed around the centerline (
𝑦

𝑀𝑒𝑓𝑓
=

𝑧

𝑀𝑒𝑓𝑓
= 0) seems to be 
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stronger in FSG. Interestingly the cross sectional shape of this jet seems to have a 

circular pattern in FSG while in FCG it is in the shape of a cross sign. 

Results of cross-sectional planes are in good agreement with previously hotwire 

measurements [39] at similar locations (
𝑥

𝑥∗
 =0.05, 0.1, and 0.2 corresponding to about 

6, 12, and 24 𝑀𝑒𝑓𝑓). Supplementary analysis on the mean flow evolution is carried out 

in the following section to assess mixing characteristics.   

3.2.4 Near-field mixing quantification  

Flow becomes turbulent as it moves through the grids. This turbulence determines the 

random stirring which causes transfers and turbulent diffusion [37]. The diffusivity of 

turbulence increases rates of momentum, heat, and mass transfer. Since the scalar 

transfer represents the degree of mixing inside the flow, the higher the turbulence, the 

more efficient the mixing. In general, there are two mechanisms responsible for scalar 

transfer: a) advection by velocity field and b) diffusion by molecular processes. It has 

been shown that the transfer of a scalar is mainly due to the turbulent field in the 

transverse direction; see Figure 2(c) in [37]. Laizet and Vassilicos reported a new 

mechanism to increase the scalar transfer and turbulent diffusion in fractal grids. They 

called it ‘space scale unfolding’ (SSU) mechanism [37]. From the Lagrangian 

viewpoint, when a particle enters the wake of a regular grid bar, it will probably remain 

at the similar transverse location inside that wake, since these wakes are almost equal 

and ordered. However, the particle passing the smallest iteration of a fractal grid has 

a chance to get involved with a larger neighboring wake, and when traveling 

downstream with even larger and larger wakes with larger and larger eddy turnover 

length-scales [37]. This increases the probability of finding the particle in a very 

different transverse location when compared to the regular grid. 

Maximizing the degree of mixing is important in some applications; e.g., to enhance 

combustion process in scramjet engines where air with supersonic speeds enters the 

combustor. This requires rapid fuel-air mixing in a relatively short distance [101,102]. 

There are evidences of high turbulence levels in the near-field region of fractal square 

grids, concluding a better mixing performance than the single square grid so that they 

can be considered as an “efficient additional turbulence generators” in the near-field 
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[54,61,103]. DNS was carried out in the near-field of a fractal grid and a single square 

grid [61]. Streamwise velocity contours, as well as transverse distributions of the 

velocity and turbulence intensity, suggest better characteristics of mixing for fractal 

grids. They also conclude the small fractal iterations provide a high mixing rate in the 

near-field region. These results were in qualitative agreement with the experimental 

data of fractal cross grids [13]. Krogstad and Davidson showed that for the fractal 

cross grids, the distribution of mean streamwise velocity is considerably more uniform 

than that in the regular grids [13].  

3.2.4.1 Homogeneity 

Studies above suggest that to evaluate the mixing performance, homogeneity in 

velocity and turbulence intensity are two important criteria. Higher turbulence 

intensities increase the spread of the embedded wakes and lead to a higher mixing 

speed [61] while the homogeneity of the mean flow variables shows the equal 

distribution of those variables. It is clear from Figure 3-22 that the flow passing the 

conventional grid (CSG) gets the most homogeneity in velocity distribution among 

the grids under investigation. However, by the act of turbulent diffusion, it is seen that 

the non-uniformities in mean streamwise velocity are smoothed out further 

downstream as well in fractal grids. Evolution of the normalized mean streamwise 

velocity is illustrated in Figure 3-23 toFigure 3-26 for CSG, FSG, FCG, and FIG. 

Similar cross sectional (𝑥 = 𝑐𝑡𝑒) planes are illustrated as contours for streamwise 

turbulence intensity in Figure 3-28 to Figure 3-31. As one can notice in the plots of 

velocity and turbulence intensity, there exist local differences at each downstream 

location (
𝑥

𝑀𝑒𝑓𝑓
) between FSG and FCG grids. This implies the fact that turbulence can 

be custom tailored. In other words depending on the application, one can adjust the 

peak of turbulence in the center of any flow domain, while there might be high levels 

of fluctuations needed in the corners. Contour plots are useful for qualitative 

representations; however to compare the effects of different grids on turbulence 

properties quantitatively, a single value for each 𝑥 = 𝑐𝑡𝑒 plane can be considered; that 

is the average of any desired flow property. Here, we call it “area-averaged” value. 
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This is useful when interpreting turbulence properties for engineering applications 

where average values are more comprehensible.  

 

 

Figure 3-23 Development of normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 in the near grid 

region of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-24 Development of normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 in the near grid 

region of FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 

(v). 
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Figure 3-25 Development of normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 in the near grid 

region of FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-26 Development of normalized mean streamwise velocity 
〈𝑈〉

𝑈0
 in the near grid 

region of FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 

(q). 

Variation of streamwise velocity along characteristic lines of TGG’s as well as area 

averaged of those is shown in Figure 3-27. Interestingly the area averaged value is not 

changing very much in the near grid region of all TGG’s. In Figure 3-27-a, a jet flow 

along C1 and wake along C4 show almost mirrored behavior regarding streamwise 

velocity variation, while velocity distribution along C2 and C3 from horizontal and 

vertical bars wake are almost the same. All streamwise velocities converge to about 

0.85𝑈0 after 𝑥/𝑀𝑒𝑓𝑓 ≈ 19. The jet region of FSG and FCG (FS1 and FC1 in Figure 
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3-27-b and c, respectively), always possess higher streamwise velocity than the area 

averaged flow. The opposite behavior can be found in the wake of I grid (FI1 in Figure 

3-27-d). 

 

 

Figure 3-27 Normalized mean streamwise velocity averaged on 𝑥 = 𝑐𝑡𝑒 planes (red 

line) and along characteristic lines of TGG’s. (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 

characteristic lines are specified in section 3.1.4. 
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Figure 3-28 Development of the streamwise turbulence intensity 𝑇𝐼𝑢 in the near grid 

region of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-29 Development of the streamwise turbulence intensity 𝑇𝐼𝑢 in the near grid 

region of FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 

(v). 
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Figure 3-30 Development of the streamwise turbulence intensity 𝑇𝐼𝑢 in the near grid 

region of FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-31 Development of the streamwise turbulence intensity 𝑇𝐼𝑢 in the near grid 

region of FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 

(q). 

Streamwise turbulence intensity along characteristic lines are shown in Figure 3-32 

along with area-averaged values depicted in red. Along centerline of CSG, the peak of 

turbulence intensity (𝑥𝑝𝑒𝑎𝑘) is estimated to be at about 4.25 𝑀𝑒𝑓𝑓 using Equation (2.9). 

However, our result (Figure 3-32-a) shows a peak starting at about 
𝑥

𝑀𝑒𝑓𝑓
= 6.0 which 

lasts until 
𝑥

𝑀𝑒𝑓𝑓
= 15.0 and then decays. Turbulence intensity along centerline will 

remain at about 2-3% for FSG and FCG while it always preserves higher values in 

CSG case. Although FIG geometry is too different from other TGG’s to declare any 
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explicit comparison, very high area averaged turbulence intensity in the region 0 <

𝑥

𝑀𝑒𝑓𝑓
< 6 (Figure 3-32-d) is found.  

 

 

Figure 3-32 Streamwise turbulence intensity (𝑇𝐼𝑢) averaged on 𝑥 = 𝑐𝑡𝑒 planes (red 

line) and along characteristic lines of TGG’s. (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 

characteristic lines are specified in section 3.1.4. 

3.2.4.2 Isotropy 

In addition to homogeneity in the mean velocity and turbulence intensity, isotropy of 

scales inside the flow is also important, since the calculation of mean dissipation rate 

will be simplified in homogeneous isotropic turbulence (HIT). To assess the isotropy, 

skewness, and flatness of streamwise flow as well as large-scale and small-scale 

isotropy factors are considered.  
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The Gaussian distribution has been found to be a good approximation for each 

component of the velocity fluctuation in the turbulent motion behind a grid [104]. The 

confidence of this fitting can be examined regarding the third and fourth normalized 

central moments, skewness and flatness, respectively,  

 𝑆(𝑢) =
〈𝑢3〉

〈𝑢2〉
3
2

 (3.1) 

 𝐹(𝑢) =
〈𝑢4〉

〈𝑢2〉2
 (3.2) 

where 𝑢 is the fluctuating streamwise velocity. In isotropic flow (i.e., Gaussian 

distribution) these factors should have the values of zero and three, respectively. 

Skewness and flatness for velocity derivative 
𝜕𝑢

𝜕𝑥
, which was first presented by Isaza et 

al. [105] for regular biplane turbulence grids is used as a characteristic for the 

transition from near-field to far-field regions. This was validated by Hearst and Lavoie 

[44] for the case of FSG. Though, in this study, we do not present moments of velocity 

gradients. Evolution of 𝑆(𝑢) and 𝐹(𝑢) for all 4 types of TGG’s are presented in 

appendix (B). In the following, the main focus is on the area averaged values of 𝑆(𝑢) 

and 𝐹(𝑢). 

Generally, at large Reynolds numbers, small scales of turbulence are isotropic [106], 

i.e., the velocity gradient statistics are invariant to rotations and reflections about all 

axes [14]. This is also known as local isotropy [107]. The velocity derivative and 

vorticity statistics are more representative of the small-scale motions than the global 

isotropy parameter (
〈𝑢2〉

〈𝑣2〉
). For locally isotropic turbulence [7], 
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In the case of 2-D PIV results where only two components of fluctuating velocities 

and two gradients are available, according to derivations by Taylor [2], one can find 

the ratios,  

 𝐾1 = 2

⟨(
𝜕𝑢
𝜕𝑥
)
2

⟩

⟨(
𝜕𝑣
𝜕𝑥
)
2

⟩

,       𝐾3 = 2

⟨(
𝜕𝑢
𝜕𝑥
)
2

⟩

⟨(
𝜕𝑢
𝜕𝑦
)
2

⟩

 

 

(3.4) 

equal to 1.0 where the small scales are isotropic. It explains the responsibility of the 

small scales for the behavior of the velocity derivatives [14]. It is shown that local 

isotropy parameters do not converge to unity even far downstream of the grids (
𝑥

𝑥∗
𝑝𝑒𝑎𝑘 >

35) and this applies to both regular and fractal grids, however values 𝐾1 and 𝐾3 are 

shown not to be very different in the case of fractal grids. On the other hand, in many 

studies the ratio,  

 𝑲 =
(
𝜕𝑣
𝜕𝑥
)
2

(
𝜕𝑢
𝜕𝑥
)
2
 (3.5) 

is considered to be a criterion for small-scale isotropy [7,35,43,61,105,108,109] such 

that at large Reynolds numbers it is equal to 2. The evolution of area-averaged 

streamwise velocity, turbulence intensity, skewness, flatness, and large and small scale 

isotropy factors are presented in Figure 3-33.  

The so-called isotropy factor is the ratio of longitudinal to transverse (span-wise) root-

mean-square velocity fluctuation, i.e. 

 
𝑢′

𝑣′
=
√(𝑈−〈𝑈〉)2

√(𝑉−〈𝑉〉)2
)  (3.6) 

Isotropy factor was found to be 1.15 in the far-field region of regular grids [110]. 

While some studies are showing the dependency of 𝑢′
𝑣′
⁄  to the Reynolds number 

[111], it is still being used as an indicator of large scale anisotropy [14] and the criteria 

of homogeneity in the spanwise direction [22].  
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Figure 3-33 Area averaged values for normalized mean streamwise velocity (a), 

streamwise turbulence intensity (b), streamwise velocity skewness (c), streamwise 

velocity flatness (d), large-scale isotropy factor (e), and small-scale isotropy factor (f), 

in the near wake region of conventional and fractal grids. 
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Distribution of large-scale isotropy factor along the test section span, at the beginning 

of measurement region (𝑥 = 1𝑀𝑒𝑓𝑓) and the last point (𝑥 = 22𝑀𝑒𝑓𝑓 for CSG, FSG, 

and FCG) and (𝑥 = 17𝑀𝑒𝑓𝑓) for FIG, is presented in Figure 3-34.  

 

Figure 3-34 Spanwise distribution of large-scale isotropy factor (𝑢’/𝑣’) at 𝑥 =
1, 17, 22 𝑀𝑒𝑓𝑓. 

In Figure 3-35 to Figure 3-38, 𝑢′ 𝑣′⁄  distribution on cross sectional planes is shown in 

the near grid region of TGG’s. The aim here is not to assess the local isotropy of the 

flow, but to find to how much extent one can rely on the simplifications based on this 

criteria to obtain/estimate length scales of grid-generated turbulence. In other words, 

if one assumes isotropy in small scales, many turbulence properties such as Taylor and 

Kolmogorov scales and coefficient of dissipation can be easily calculated [45],  

 𝜆2 =
15𝜈𝑢′2

𝜀
           𝜂 = (

𝜈3

𝜀
)

1

4
           𝐶𝜀 =

𝜀

(
𝑢′3

𝐿𝑢
)
=
(
𝐿𝑢
𝜆
)

𝑅𝑒𝜆
 

 

(3.7) 

where 𝑢′ is the rms of streamwise fluctuating velocity (i.e. √〈(𝑈 − 〈𝑈〉)2〉). The aim 

here, is to show how much deviation does exist between actual values and simplified 

ones. Local Taylor length-scale Reynolds number (𝑅𝑒𝜆) is by definition,  

 𝑅𝑒𝜆 ≡
√〈𝑢2〉. 𝜆

𝜈
 

 

(3.8) 
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Figure 3-35 Development of large-scale isotropy factor 
𝑢′

𝑣′
 in the near grid region of 

CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-36 Development of large-scale isotropy factor 
𝑢′

𝑣′
 in the near grid region of 

FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-37 Development of large-scale isotropy factor 
𝑢′

𝑣′
 in the near grid region of 

FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-38 Development of large-scale isotropy factor 
𝑢′

𝑣′
 in the near grid region of 

FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 (q). 

 

 

3.2.4.3 Grid efficiency (Pressure drop) 

The total pressure drop across the grid is due to static pressure drop and change in the 

kinetic energy of the flow,  

 ∆𝑃𝑇 = ∆𝑃𝑆 +
1

2
𝜌∆(𝑽2) (3.9) 

where ∆𝑃𝑇 (∆𝑃𝑆) is the difference between total (static) pressures upstream and 

downstream of the grid and ∆(𝑽2) is the difference in squared mean velocity between 
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downstream and upstream locations. Measurements of static pressure drop across 

conventional grids show that ∆𝑃𝑠 ∝ 𝑈𝑢
2 [22]. Thus, one can express (3.9) in the form 

of pressure coefficients as,  

 𝐶∆𝑃𝑇 = 𝐶∆𝑃𝑆 +
∆(𝑽2)

𝑈𝑢2
 (3.10) 

where 𝑈𝑢 is the upstream velocity and, 

 𝐶∆𝑃𝑆 =
𝑃𝑆 − 𝑃𝑆𝑢
1
2𝜌𝑈𝑢

2
 (3.11) 

where, 𝑃𝑆𝑢 is the static pressure measured upstream of the grid. To estimate the total 

pressure drop (𝐶∆𝑃𝑇) across turbulence-generating grids, one needs data for static 

pressure. It has been already shown that the drop in static pressure coefficient (𝐶∆𝑃𝑆) 

is minimum when the grids are space-filling, i.e. 𝐷𝑓 = 2.0 [22]. It is also known that 

for conventional type screens in an incompressible flow, 𝐶∆𝑃𝑆 is particularly a function 

of the solidity and the Reynolds number based on the thickness of the bars [112,113]. 

In other words, the static pressure loss is literally the drag of the grid. Since the solidity 

and the minimum thickness of FSG and FCG are kept similar, one could conclude that 

the total pressure drop in these two grids can be determined by the kinetic energy drop. 

This is not the case for CSG and FIG, since the solidity and minimum thicknesses are 

not comparable.  

Static pressure is measured upstream and downstream of TGG’s with the help of a 16 

channel digital pressure scanner manufactured by DSA Scanivalve, and a Pitot-static 

tube which is placed along the test section centerline. Data is taken at two upstream 

and 13 locations downstream of grids. 4000 samples are taken at each channel with a 

sampling frequency of 31Hz. In Figure 3-39, centerline streamwise velocity data 

extracted from PIV measurements is compared to that obtained from Pitot-static 

measurements. The pitot-static probe is aligned with x-direction, and the vertical line 

at x=0 represents the place where grids are mounted. Note that, here, velocities are 

normalized by 𝑈0 which is the velocity at the inlet when no grid is placed inside the 

test section. Deviation of results in FIG (within 0 ≤ 𝑥/𝑀𝑒𝑓𝑓 ≤ 5.5) is due to error 
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arising in Pitot-static measurement within the large wake region of the largest I-

element wherein majority of the flow is reversed and Pitot-tube cannot measure 

negative velocities, while PIV result shows complete negative velocity in this region, 

where the flow is very much turbulent and local flow is not aligned with the Pitot tube. 

 

Figure 3-39 Normalized mean velocity along the centerline of TGGs. PIV data 

(curves) is compared to pitot-static (symbols) measurement. Vertical line at 
𝑥

𝑀𝑒𝑓𝑓
= 0 

shows the grid place. 

Development of 𝐶∆𝑃𝑆 and 𝐶∆𝑃𝑇 along centerline for each TGG are illustrated in Figure 

3-40. Variation of ∆(𝑉2) 𝑈𝑢
2⁄  is also depicted in Figure 3-41. For FIG, additional point 

(FIG-Jet) is also considered where it starts from (𝑥 = 0, 𝑦 = 0, 𝑧 = 5.5𝑀𝑒𝑓𝑓), (see 

Figure 2-10) i.e., where there is no blockage to the flow. Static pressure drop for CSG 

(𝐶∆𝑃𝑆 ≅ −0.4 in Figure 3-40-left) is in agreement with that reported for a classic grid 

of the same solidity (𝜎) [22]. It is also clear that due to the higher solidity of FIG (about 

29%) compared to other grids, drop in static pressure is higher even though it is 

measured whether along wake (blockage) or jet (opening) region. Solidity magnitude 

(See Table 2-1) supports the existing difference between static pressures of CSG and 

two fractal grids, FSG and FCG. On the other hand, initial changes in 𝐶∆𝑃𝑆 (0 <

𝑥

𝑀𝑒𝑓𝑓
≤ 7) for FSG and FCG cannot be explained by blockage ratio. In fact, different 

geometry (bar positions) in FSG and FCG will create local differences which shows 

itself in the very near wake flow pressure distribution. However, since the solidity 
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values of FSG and FCG are very close, static pressure drop converges to a single value 

(𝐶∆𝑃𝑆 ≅ −0.52) after about 
𝑥

𝑀𝑒𝑓𝑓
= 7. 

 

Figure 3-40 Coefficient of static pressure (left), and total pressure (right) difference 

across TGGs. Values are obtained along the centerline. The vertical dashed line 

represents the location of the grid. The horizontal dashed line represents zero pressure 

difference. 

According to Figure 3-40, drop in total pressure (𝐶∆𝑃𝑇) is very low (less than 2%) 

along the centerline of FSG and FCG compared to CSG and FIG. This implies that to 

evaluate the efficiency of these grids, one either should capture the whole cross 

sectional distribution of total pressure (traversing a Kiel probe is suggested) or should 

rely on static pressure values which seems to be more promising.  

In Figure 3-41, dynamic pressure (0.5𝜌𝑈2) is normalized by its upstream value 

(0.5𝜌𝑈𝑢
2). ∆(𝑈2) 𝑈𝑢

2⁄  is the difference between downstream and upstream points. 

Values presented by symbols are directly obtained from the readings of the Pitot-static 

tube. Hence, the existence of incompatible results within the wake of FIG (1 ≤
𝑥

𝑀𝑒𝑓𝑓
≤

5.5) where the readings of Pitot-tube are not correct, is explicable. Coefficient of 

dynamic pressure difference along centerline as well as the jet region of FIG obtained 

by PIV are shown in Figure 3-41 by dashed and solid lines. It is clear that along any 

line in the jet (opening) regions, the coefficient of dynamic pressure difference is 
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positive, unlike the region behind the wake of I bar which shows whole negative 

values.  

 

Figure 3-41 Coefficient of dynamic pressure difference across TGGs. Values are 

obtained along the centerline. The vertical dashed line represents the location of the 

grid. The horizontal dotted line represents zero velocity difference. 

For grids to be used as a mixing device, the aim is to obtain the highest turbulence 

intensity, with the lowest pressure loss, while maintaining the geometry of grid as 

simple as possible so the production cost will be minimum. Therefore, it is valuable 

to compare turbulence intensity to static pressure drop as representatives for gain and 

loss, respectively, in the system. Turbulence intensity averaged on 𝑥 = 𝑐𝑡𝑒 planes is 

introduced before. Values of the static pressure drop coefficient (𝐶∆𝑃𝑠) are available at 

13 downstream locations. Data for 𝑇𝐼𝑢 is extracted at the same locations and compared 

to the loss. This tells us how much turbulence intensity (on average) is obtained in 

return of static pressure loss. Since the geometry of FIG is irrelevant to other three 

grids, only the results of CSG, FSG, and FCG are shown in the “performance-chart” 

in Figure 3-42.  
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Figure 3-42 Ratio of streamwise turbulence intensity to static pressure drop coefficient 

along the centerline of TGG’s. Downstream distance 𝑥 is normalized by effective 

mesh size (𝑀𝑒𝑓𝑓). 

It is clear that fractal grids with square and circular patterns would be advantageous 

over conventional grid if a limited distance is required for turbulence enhancement. 

However, after about 
𝑥

𝑀𝑒𝑓𝑓
= 14.0 square and circular grids show almost the same 

performance but still almost 100% higher than the conventional grid. In the very near 

wake region (1 <
𝑥

𝑀𝑒𝑓𝑓
< 5) the performance of FCG is twice that of CSG and 20% 

higher than that of FSG.  

As solidities of all grids are different, one can normalize the performance, i.e., 

𝑇𝐼𝑢/𝐶∆𝑃𝑆 with respect to grid solidity. Variation of (
𝑇𝐼𝑢

𝐶∆𝑃𝑆
⁄ )/𝜎 is shown in Figure 

3-43, including FIG. According to this figure, normalization introduces minor changes 

only in the case of CSG. In fact, this chart indicates more or less the same performance 

of conventional and fractal grids, again excluding FIG from this evaluation.  
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Figure 3-43 Performance of conventional and fractal grids normalized by grid solidity 

(
𝑇𝐼𝑢

𝐶∆𝑃𝑆
⁄ /𝜎). Downstream distance 𝑥 is normalized by effective mesh size (𝑀𝑒𝑓𝑓). 

3.2.4.4 Reynolds Stresses 

Reynolds stress tensor (RST) plays an important role in momentum transport and 

mixing efficiency in turbulent flows because it represents the rate of mean momentum 

transfer by turbulent fluctuations [96]. Fractal grids were shown to produce larger 

turbulent stress values resulting from different length scale interactions [114]. 

Reynolds stress tensor is defined as, 

 [

〈𝑢2〉 〈𝑢𝑣〉 〈𝑢𝑤〉

〈𝑣𝑢〉 〈𝑣2〉 〈𝑣𝑤〉

〈𝑤𝑢〉 〈𝑤𝑣〉 〈𝑤2〉

] (3.12) 

where the velocity fluctuations are the difference between instantaneous and ensemble 

averaged quantities. 
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Figure 3-44 Development of the Reynolds normal stress 〈𝑢2〉 in the near grid region 

of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-45 Development of the Reynolds normal stress 〈𝑢2〉 in the near grid region 

of FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-46 Development of the Reynolds normal stress 〈𝑢2〉 in the near grid region 

of FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-47 Development of the Reynolds normal stress 〈𝑢2〉 in the near grid region 

of FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 (q). 

It has been shown previously that the whole RST would be obtained if all velocity 

components are available. From 2-D PIV data 〈𝑢𝑤〉 = 〈𝑤𝑢〉 is estimated as long as 

the assumption of symmetric flow is valid. However, distributions of Reynolds normal 

stress (RNS) 〈𝑢2〉 and Reynolds shear stress (RSS) 〈𝑢𝑣〉 normalized by the free stream 

velocity 𝑈0, are obtained and some examples are illustrated in Figure 3-44 to Figure 

3-51. When averaging Reynolds shear stresses on 𝑥 = 𝑐𝑡𝑒 planes, due to symmetry 

the values near zero are expected. Average of Reynolds normal stress 〈𝑢2〉 will show 

the same trend as in TKE. Normalized Reynolds shear stress (NRSS) 
〈𝑢𝑣〉

𝑈𝑢
2  obtained 

from PIV data is also compared to the magnitude of the static pressure drop |𝐶∆𝑃𝑠| in 
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Figure 3-52. It should be noted that the values are selected along the centerline of 

TGG’s; therefore high shear in the case of FIG should not confuse the reader. This 

time, CSG dominates over fractal grids.   

 

 

Figure 3-48 Development of the Reynolds shear stress 〈𝑢𝑣〉 in the near grid region of 

CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-49 Development of the Reynolds shear stress 〈𝑢𝑣〉 in the near grid region of 

FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-50 Development of the Reynolds shear stress 〈𝑢𝑣〉 in the near grid region of 

FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-51 Development of the Reynolds shear stress 〈𝑢𝑣〉 in the near grid region of 

FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 (q). 

 

Again, the “Reynolds shear stress performance” is normalized with respect to grid 

solidity to obtain better evaluation. This is depicted in Figure 3-53. 
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Figure 3-52 Normalized Reynolds shear stress as a function of static pressure drop 

coefficient along the centerline of TGG’s. Downstream distance 𝑥 is normalized by 

effective mesh size (𝑀𝑒𝑓𝑓). 

 

Figure 3-53 Performance of conventional and fractal grids normalized by grid solidity 

(
𝑇𝐼𝑢

𝐶∆𝑃𝑆
⁄ /𝜎). Downstream distance 𝑥 is normalized by effective mesh size (𝑀𝑒𝑓𝑓). 
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3.3 Turbulent kinetic energy 〈𝑘〉 

Turbulent kinetic energy (TKE) is important in two aspects. Physically, it is often used 

as an experimental benchmark to evaluate existing turbulence theories and models 

since it provides an empirical approximation of homogeneous isotropic turbulence 

(HIT) [43]. Second, if the place and the peak values of turbulent kinetic energy 

(turbulence intensity equivalently) can be modified or custom tailored, it can be used 

as a tool to control the turbulence in many engineering applications, such as 

combustors and burners. In this section, we will look at the distribution of turbulent 

kinetic energy in the near-wake region of the conventional and fractal grids.  

Turbulent kinetic energy (TKE) is the energy of the velocity fluctuations. Mean TKE 

is then,  

 〈𝑘〉 =
1

2
(〈𝑢2〉 + 〈𝑣2〉 + 〈𝑤2〉) (3.13) 

where 𝑢, 𝑣, and 𝑤 are fluctuating part of the velocity. Reconstruction of the 3-D mean 

flow field for CSG, FSG, and FCG, makes it possible to give a full approximation of 

TKE, while for FIG there exist only in-plane fluctuations, therefore TKE is computed 

based on the isotropic turbulence assumption, i.e. 

  〈𝑤2〉 =
1

2
(〈𝑢2〉 + 〈𝑣2〉) (3.14) 

thus, 

 〈𝑘〉𝐼𝑆𝑂 =
3

4
(〈𝑢2〉 + 〈𝑣2〉) (3.15) 

TKE development in the near-grid region is qualitatively shown in Figure 3-54 to 

Figure 3-57 for CSG, FSG, FCG, and FIG, respectively. These as well as rms 

streamwise velocity fluctuations (not shown here to save space) suggest that these 

grids can be used in applications in which a specific level of turbulence at desired 

locations and especially in the limit of short distances is required. As it is stated 

previously [61] in the case of FSG, fractal grids can be used as an efficient additional 

turbulence-generator in the near-field.  
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The assumption of grid generated turbulent flow to be symmetric is fair according to 

the literature [3,39,46]. Thus the variance of spanwise and vertical velocity 

fluctuations can be thought of as equal,  

 〈𝑤2〉 ≅ 〈𝑣2〉 (3.16) 

Therefore in case of diagonally symmetric grids, one can estimate TKE as,  

 〈𝑘〉𝑅𝑆 =
1

2
(〈𝑢2〉 + 2〈𝑣2〉) (3.17) 

To check the validity of either isotropy or reflectional symmetry in the grids, we 

present the variation of the TKE along characteristic lines shown in the previous 

section for CSG, FSG, and FCG. These straight streamwise lines start from the grid 

and extend through the whole domain under investigation.  

Variation of normalized mean TKE 
〈𝑘〉

𝑈0
2, normalized TKE based on isotropy assumption 

〈𝑘〉𝐼𝑆𝑂

𝑈0
2  and normalized TKE based on reflectional (diagonal) symmetry 

〈𝑘〉𝑅𝑆

𝑈0
2  in CSG is 

shown in Figure 3-58 along four characteristic lines, C1 to C4. It is clear that the only 

deviation of estimated TKE (
〈𝑘〉𝐼𝑆𝑂

𝑈0
2  and 

〈𝑘〉𝑅𝑆

𝑈0
2 ) from that obtained by full velocity 

components (
〈𝑘〉

𝑈0
2) belongs to the region in the vicinity of the grid which extends at most 

to 𝑥 = 5𝑀𝑒𝑓𝑓. 

Values of estimated and actual TKE in the jet region of CSG (Figure 3-58-a) are more 

or less the same while the largest deviations exist in the middle of horizontal/vertical 

bars (C4). Looking at Figure 3-33-e one can realize that the global isotropy factor 

(area-averaged value of 𝑢’/𝑣’) stays more or less constant after about 5𝑀𝑒𝑓𝑓. This 

confirms the convergence of isotropic and actual TKE values in CSG. Criteria in (3.16) 

is validated by plotting the ratio of spanwise to vertical velocity fluctuations variance, 

〈𝑣2〉

〈𝑤2〉
 and shown in Figure 3-58. The scale is on the right side vertical axis and values 

are depicted in blue color. These variations also suggest a good symmetry after a 

downstream distance of 𝑥 = 5𝑀𝑒𝑓𝑓.  
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Figure 3-54 Development of the normalized TKE 𝑘 𝑈0
2⁄  in the near grid region of 

CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-55 Development of the normalized TKE 𝑘 𝑈0
2⁄  in the near grid region of FSG. 

Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-56 Development of the normalized TKE 𝑘 𝑈0
2⁄  in the near grid region of 

FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-57 Development of the normalized TKE 𝑘 𝑈0
2⁄  in the near grid region of FIG. 

Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 (q). 

 

For FSG, different values of normalized TKE are compared along three characteristic 

lines FS1, FS2, and FS3 in Figure 3-59. Through the jet-like flow in the center of the 

grid and the corner of the largest iteration (Figure 3-59-a and c) all three TKE values 

match, while along the horizontal bar and up to location about  𝑥 = 16𝑀𝑒𝑓𝑓  the 

assumption of isotropy and symmetry will result in underestimated TKE (Figure 3-59-

b). This is also clear from the deviation of symmetry parameter (
〈𝑣2〉

〈𝑤2〉
⁄ ).  
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Figure 3-58 Comparison of TKE values obtained by three velocity components 

(𝑘 𝑈0
2⁄ ), isotropy assumption 𝑘𝐼𝑆𝑂 𝑈0

2⁄ , and reflectional symmetry 

assumption 𝑘𝑅𝑆 𝑈0
2⁄ , for CSG; along the centerline (a), along a line starting from the 

middle of horizontal bars (b), along a line starting from the middle of a vertical bar 

(c), and along a line starting from the cross of horizontal and vertical bars (d). 

Horizontal axis (𝑥/𝑀𝑒𝑓𝑓) is shown in logarithmic increment to emphasize on the near-

grid region. Right side vertical axis scales  〈𝑣2〉/〈𝑤2〉 which is the representative of 

reflectional symmetry when equals to 1.  

In FCG, while there is conformity of all three TKE values along grid center-line (FC1) 

as well as line FC2, there exist underestimation along FC3. It is worth to note that the 

symmetry criteria is always less than unity in the FCG case.  
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Figure 3-59 Comparison of TKE values obtained by three velocity components (
〈𝑘〉

𝑈0
2), 

isotropy assumption 
〈𝑘〉𝐼𝑆𝑂

𝑈0
2 , and reflectional symmetry assumption 

〈𝑘〉𝑅𝑆

𝑈0
2 , for FSG; along 

FS1 (a), FS2 (b), and FS3(c). Right side vertical axis scales 〈𝑣2〉/〈𝑤2〉 which is the 

representative of reflectional symmetry when equals to 1. 

 

Figure 3-60 Comparison of TKE values obtained by three velocity components (
〈𝑘〉

𝑈0
2), 

isotropy assumption 
〈𝑘〉𝐼𝑆𝑂

𝑈0
2 , and reflectional symmetry assumption 

〈𝑘〉𝑅𝑆

𝑈0
2 , for FCG; 

along FC1 (a), FC2 (b), and FC3(c). Right side vertical axis scales 〈𝑣2〉/〈𝑤2〉 which 

is the representative of reflectional symmetry when equals to 1. 

 

3.3.1 The decay of turbulent kinetic energy in the near-grid region 

The production and decay of TKE are qualitatively shown in contour plots above in 

Figure 3-54 through Figure 3-57. This increasing–decreasing trend is also visible 

along characteristic lines of grids in Figure 3-58, Figure 3-59, and Figure 3-60. While 

the near-field is intrinsically non-homogeneous and anisotropic, there is still a matter 

of question that the decay in TKE can still be fitted as power-law or not.  
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In homogeneous and isotropic turbulence (HIT), the kinetic energy of the fluctuating 

velocities decays following a power law, according to the von Kármán–Howarth 

equation ([115]), 

 〈𝑞2〉~(𝑡 − 𝑡0)
𝑛 (3.18) 

where 〈𝑞2〉 = 〈𝑢2〉 + 〈𝑣2〉 + 〈𝑤2〉 is twice the total turbulent kinetic energy of the 

flow. ‘𝑡’ is time, and ‘𝑡0’ is a virtual origin [43]. The exponent value ‘𝑛’ is reported to 

fall in the range of [−1.4, −1] according to ([7,12,25,116,117]). The temporal decay 

could be converted to spatial one using Taylors frozen turbulence1 relation, 𝑡 =
𝑥

𝑈
, if 

the velocity (𝑈) remains constant throughout the test section [43]. The power-law may 

then be expressed as  

 〈𝑞2〉~ (
𝑥

𝑈
−
𝑥0
𝑈
)
𝑛

→ 〈𝑞2〉 = 𝐴 (
𝑥

ℒ
−
𝑥0
ℒ
)
𝑛

 (3.19) 

where 𝐴 is the constant of proportionality. ℒ is normalizing length scale which is 

chosen to be mesh size (M) for the case of classical grids. The virtual origin 𝑥0, can 

be considered equal to zero according to [117]. 

Normalized TKE (
〈𝑘〉

𝑈0
2) is averaged on 𝑥 = 𝑐𝑡𝑒 planes and the results are plotted along 

the normalized streamwise distance (
𝑥

𝑀𝑒𝑓𝑓
) in Figure 3-61. Vertical dashed lines point 

to the peak location of TKE for each grid. A power function (i.e., 
〈𝑘〉

𝑈0
2 = 𝐴 (

𝑥

𝑀𝑒𝑓𝑓
)
−𝑛

) is 

fitted to the curves (from the peak point to the last available data and erroneous data 

is blanked). The values for coefficient and slope of power fit as well as the goodness 

of the fits are listed in Table 3-6. A narrow production in the region between 0.4 ≤

𝑥

𝑀𝑒𝑓𝑓
≤ 0.55 is detected for CSG.  

                                                 

1 Taylor’s frozen flow hypothesis supposes that turbulence advects with the local mean velocity without 

any distortion [131]. 
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Figure 3-61 Power function fit to the decay region of area-averaged TKE of TGG’s. 

Only every 10th point is plotted. 

Table 3-6 Results of power function fit to area averaged TKE in the near grid region 

of TGG’s. 

Grid 

Number of 

x-planes 

used 

Peak of 

TKE (
𝑥

𝑀𝑒𝑓𝑓
) 

Power function 

coefficient (A) 

Power function 

slope (n) 

Goodness 

of fit 

(𝑅2) 
CSG 203 ~0.53 0.0176 0.795 0.9016 

FSG 197 ~1.9 0.0432 0.72 0.99 

FCG 211 ~2.0 0.1178 1.076 0.9819 

FIG 161 ~3.7 0.0527 0.772 0.9761 

 

Production and decay of TKE is investigated in more detail by considering the changes 

of normalized TKE (
〈𝑘〉

𝑈0
2) along characteristic lines in each grid. These lines were first 

introduced in section 3.1.4. The variation of 
〈𝑘〉

𝑈0
2 along each line is shown in Figure 

3-62. A power-law curve (
〈𝑘〉

𝑈0
2 = 𝐴(

𝑥

𝑀𝑒𝑓𝑓
)
−𝑛

) as well as an exponential curve 

(
〈𝑘〉

𝑈0
2 = 𝐴

′e
−𝑛′(

𝑥

𝑀𝑒𝑓𝑓
)
) are fitted on the decay region to compare the best fit in the near-

field of the grids. Lines are extending between 0.4 ≤ 𝑥 𝑀𝑒𝑓𝑓⁄ ≤ 22.5 for CSG and 
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FSG, 0.4 ≤ 𝑥 𝑀𝑒𝑓𝑓⁄ ≤ 22  for FCG and 0.4 ≤ 𝑥 𝑀𝑒𝑓𝑓⁄ ≤ 17.75 for FIG. FS1 and FC1 

pertain to the center of the FSG and FCG. Since there is an opening in this region, the 

flow would behave like a jet flow and there is no/very small forcing from to grid bars 

to this region. From Figure 3-62-b,c it is also clear that the TKE is changing slightly 

along the centerline in the near grid region. Within the measurement region, the change 

of the TKE is 1.6% and 0.9% for FS1 and FC1, respectively. In CSG, C1 belongs to a 

similar jet region but since this region is surrounded by very close bars, the effect of 

the shear is clearly seen along that line and a production region is extended 

to 𝑥 𝑀𝑒𝑓𝑓⁄ ~ 5.8. 

Table 3-7 Results of power and exponential fits on the decay region of TKE along 

characteristic lines in grids under investigation. 

Grid Line 

Peak of 

TKE 

(
𝑥

𝑀𝑒𝑓𝑓
) 

Power 

function 

coefficient 

(𝐴) 

Power 

function 

slope 

(𝑛) 

Goodness 

of fit (𝑅2) 

Exp. 

function 

coefficient 

(𝐴′) 

Exp.  

function 

slope 

(𝑛′) 

Goodness 

of fit (𝑅2) 

CSG 

C1 ~5.8 0.0196 1.031 0.98 0.0048 0.082 0.91 

C2 ~0.78 0.0224 1.074 0.95 0.0093 0.13 0.95 

C3 ~0.53 0.0283 1.119 0.98 0.0114 0.135 0.87 

C4 ~0.66 0.0238 1.11 0.98 0.0093 0.131 0.88 

FSG 

FS1 N/A - - - - - - 

FS2 ~3.61 0.2248 1.087 0.98 0.0536 0.095 0.94 

FS3 ~3.48 0.3194 1.352 0.99 0.0544 0.119 0.94 

FCG 

FC1 N/A - - - - - - 

FC2 ~2.53 0.6849 1.53 0.99 0.1131 0.149 0.95 

FC3 ~1.84 0.4813 1.538 0.99 0.0911 0.159 0.93 

FIG 

FI1 ~6.0 0.3524 1.158 0.89 0.0759 0.108 0.96 

FI2 ~7.77 0.148 1.0 0.96 0.0331 0.08 0.92 

FI3 ~4.1 0.13 -1.271 0.97 0.0276 0.128 0.94 

 

In FIG, the peak location of TKE along FI2 is unclear since it preserves the peak in 

the range between 3.1 to 7.7 𝑀𝑒𝑓𝑓. This is visible in Figure 3-62-c. The power and 
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exponential curves are fitted to the data after the last peak at 𝑥 𝑀𝑒𝑓𝑓⁄ = 7.77. Variation 

of TKE along FI3 is also interesting. There are two distinct peaks at 𝑥 𝑀𝑒𝑓𝑓⁄ ~1.0 and 

𝑥
𝑀𝑒𝑓𝑓⁄ ~4.11. Again, curves are fitted after the last peak point in TKE.  

As it can be realized from the values in Table 3-7, power-law fit almost always gives 

better results on the decay of TKE in the near wake of the grids. The only exception 

is for the wake region in the center of FIG (FI1 point).  

 

Figure 3-62 Production and decay of normalized TKE along characteristic lines for 

the grids under investigation. (a) CSG, (b) FSG, (c) FCG, and (d) FIG. Lines are 

specified in section 3.1.4.  
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3.3.2 Turbulent kinetic energy mean dissipation rate 〈𝜀〉 

Turbulent kinetic energy dissipation rate (𝜀) is governed by the large (energy-

containing) scales of turbulence [118]. In fact, one of the cornerstone assumptions in 

the theory of turbulence is the scaling between the rate of dissipation of energy at small 

scales and large ones, i.e., 𝜀 scales as, 

 𝜀 ∝
𝑢′3

𝐿
 (3.20) 

in which 𝑢′ = √〈𝑢2〉 is the rms velocity fluctuation of the large scales and 𝐿 pertains 

to the integral length scale. Dissipation rate (𝜀) can be simply explained by the cascade 

of energy. In the cascade process, each eddy has energy of 𝑢2. If we assume it takes 

some time equal to 𝑇𝑒 – which is known as eddy turnover time – for the eddy to turn 

one complete round and transfer its energy to smaller scales, then the rate of loss of 

energy to smaller scales is 
𝑢2

𝑇𝑒
. The eddy turnover time is almost equal to 

𝐿

𝑢
 where 𝐿 is 

the diameter or length scale of that typical eddy. Therefore, the rate of loss of energy 

to the smallest scales ∼
𝑢3

𝐿
= ε (dissipation rate of turbulent kinetic energy). If the flow 

is in equilibrium (meaning that the rate of the production is equal to the rate of the 

dissipation, locally), this energy is transferred to smaller scales without any loss, where 

it is ultimately dissipated to heat by the action of viscosity. In this case, we can write 

 𝜀 = 𝐶𝜀
𝑢′3

𝐿
 (3.21) 

which is the classic estimate for the scaling of dissipation rate and known as Taylor’s 

scaling. Here,  𝐶𝜀 is a universal and non-dimensional coefficient, i.e., it is independent 

of Reynolds number, time and space, at least for conventional turbulent flows (there 

were evidence of variable 𝐶𝜀 in the case of turbulence generated by fractal square 

grids).  

If the turbulence produced by a grid is homogeneous and isotropic (HIT) –which we 

believe to occur only in the far-field– mean kinetic energy dissipation rate is obtained 

from the turbulent energy budget [43], 
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 〈𝜀〉𝑑 = −
〈𝑈〉

2

𝑑〈𝑞2〉

𝑑𝑥
 (3.22) 

The subscript 𝑑 denotes that the dissipation is determined from kinetic energy decay. 

The gradient of 〈𝑞2〉 in (3.22) is commonly estimated using a power function fit 

to 〈𝑞2〉. Since, there is non-negligible turbulence production and transverse transport 

of turbulent kinetic energy in the near-field [41][107], equation (3.22) is not a proper 

approximation of 〈𝜀〉.  

Dissipation rate of turbulent kinetic energy per unit mass (i.e. 
1

2
〈𝑢𝑖𝑢𝑖〉) is given by,  

 𝜀 = 2𝜈〈𝑠𝑖𝑗𝑠𝑖𝑗〉 = 𝜈 ⟨[(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗
]⟩ (3.23) 

where 𝑠𝑖𝑗 is the fluctuating rate of strain tensor. This means dissipation is due to 

viscosity and strain rate. If all nine components of the fluctuating velocity gradient 

tensor are available, the mean energy dissipation rate can be found as [67], 

 

〈𝜀〉 = 𝜈 {2 [⟨(
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
)⟩ + ⟨(

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
)⟩ + ⟨(

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
)⟩]

+ ⟨(
𝜕𝑢

𝜕𝑦
)⟩ + ⟨(

𝜕𝑣

𝜕𝑥
)⟩ + ⟨(

𝜕𝑢

𝜕𝑧
)⟩ + ⟨(

𝜕𝑤

𝜕𝑥
)⟩

+ ⟨(
𝜕𝑣

𝜕𝑧
)⟩ + ⟨(

𝜕𝑤

𝜕𝑦
)⟩

+ 2 [⟨(
𝜕𝑢

𝜕𝑥
)
2

⟩ ⟨(
𝜕𝑣

𝜕𝑦
)
2

⟩ ⟨(
𝜕𝑤

𝜕𝑧
)
2

⟩]} 

(3.24) 

In isotropic turbulence [119], 

 

{
 
 
 

 
 
 ⟨(

𝜕𝑢

𝜕𝑥
)
2

⟩ = ⟨(
𝜕𝑣

𝜕𝑦
)
2

⟩ = ⟨(
𝜕𝑤

𝜕𝑧
)
2

⟩                                                           

⟨(
𝜕𝑢

𝜕𝑦
)
2

⟩ = ⟨(
𝜕𝑢

𝜕𝑧
)
2

⟩ = ⟨(
𝜕𝑣

𝜕𝑥
)
2

⟩ = ⟨(
𝜕𝑣

𝜕𝑧
)
2

⟩ = ⟨(
𝜕𝑤

𝜕𝑥
)
2

⟩ = ⟨(
𝜕𝑤

𝜕𝑦
)
2

⟩

⟨(
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
)⟩ = ⟨(

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
)⟩ = ⟨(

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
)⟩ = ⋯                                    

 (3.25) 
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Therefore, the relation for the dissipation becomes,  

 〈𝜀〉𝐼𝑆𝑂 = 6𝜈 [⟨(
𝜕𝑢

𝜕𝑥
)
2

⟩ + ⟨(
𝜕𝑢

𝜕𝑦
)
2

⟩ + ⟨(
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
)⟩] (3.26) 

On the other hand, assuming local isotropy (isotropy in small scales which is always 

true at large Reynolds numbers [106]), one can obtain the dissipation as 

[43,51,52,119], 

 〈𝜀〉𝑖𝑠𝑜 = 15𝜈 ⟨(
𝜕𝑢

𝜕𝑥
)
2

⟩ (3.27) 

Note that there is a distinction between the local isotropy and the whole flow field 

isotropy so we use two different notations “𝑖𝑠𝑜” and “𝐼𝑆𝑂” for locally isotropic and 

isotropic flow, respectively. The value obtained with (3.27) is within 10% from the 

dissipation calculated by integrating the corresponding energy spectra [105], 

 𝜀 = 𝜈 [15∫ 𝜅1
2𝐸11(𝜅1)𝑑𝜅1

∞

0

] (3.28) 

When there is a possibility of measuring two components of the velocity vector, using 

x-wire data [41,43], the less restrictive form of (3.27) is, 

 〈𝜀〉𝑖𝑠𝑜 = 3𝜈 ⟨(
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑥
)
2

⟩ (3.29) 

According to Tanaka and Eaton [120], assuming local isotropy and using 2-D PIV data 

the equivalent form of (3.27) is,  

 〈𝜀〉2−𝐶 𝑃𝐼𝑉 ≈ 3𝜈 ((
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

) (3.30) 

In fact, as four (out of 9) components of the fluctuating velocity gradient tensor are 

available, and the fifth one can indirectly be obtained from incompressibility equation, 

Tanaka and Eaton [120] suggested an approximation of energy dissipation from 2-D 

PIV data as, 
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 𝜀 ≈ 3𝜈(〈𝑠11
2 〉 + 〈𝑠22

2 〉) + 12𝜈〈𝑠12
2 〉 (3.31) 

which is the same as (3.30) with the assumption of locally isotropic turbulence. In the 

case of diagonal (reflectional) symmetry of the flow field (for CSG, FSG, and FCG), 

the assumption 〈𝑠33
2 〉 =

〈𝑠11
2 〉+〈𝑠22

2 〉

2
 would be better replaced by 〈𝑠33

2 〉 = 〈𝑠22
2 〉 [40,43]. 

Then (3.31) will be, 

 𝜀 ≈ 2𝜈[〈𝑠11
2 〉 + 2〈𝑠22

2 〉 + 6〈𝑠12
2 〉] (3.32) 

alternatively, regarding fluctuating velocity gradients,  

 〈𝜀〉2−𝐶 𝑃𝐼𝑉 (𝑅𝑆) ≈ 2𝜈 ((
𝜕𝑢

𝜕𝑥
)
2

+ 2 (
𝜕𝑣

𝜕𝑦
)
2

+
3

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

) (3.33) 

where 〈𝜀〉2−𝐶 𝑃𝐼𝑉 (𝑅𝑆) indicates the value of the mean dissipation rate obtained for 2-C 

PIV data in the case of reflectional symmetry.  

An important issue in the estimation of the mean dissipation rate of TKE out of PIV 

data is the high dependency to resolution. When the resolution is bigger than the 

Kolmogorov length scale, since the small-scale fluctuations are filtered, the values for 

〈𝜀〉 are underestimated. On the other hand, if the resolution is higher than the 

Kolmogorov scale, amplification of noise in the numerical differentiation procedure 

would tremendously increase the error [120]. The energy dissipation rate using 2-D 

PIV data is estimated with the help of (3.30) for all four grids and with the help of 

(3.33) for CSG, FSG, and FCG. The procedure starts with loading the instantaneous 

velocity fields into MATLAB®. The mean and fluctuating velocity fields are then 

obtained and the gradients of the fluctuating velocity components as in (3.30) are 

calculated. Then, estimated values for mean dissipation rate (〈𝜀〉2−𝐶 𝑃𝐼𝑉, 

and 〈𝜀〉2−𝐶 𝑃𝐼𝑉 (𝑅𝑆)) at each (x,y) coordinate system are obtained. The data is stored as 

‘.dat’ file for further interpretations.  

Despite knowing the degrading spatial resolution of the available data set (1.28 mm), 

we combined the whole 4 × 35 windows for each grid to create a 3-D field for mean 

dissipation, to study on the distribution and evolution of 𝜀 in the near-grid region. 
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Figure 3-63 through Figure 3-66 show the evolution of 〈𝜀〉2−𝐶 𝑃𝐼𝑉 in the near-wake 

region of all 4 grid types.  

 

 

Figure 3-63 Development of 2-D estimated mean dissipation rate 〈𝜀〉2𝐷 in the near grid 

region of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-64 Development of 2-D estimated mean dissipation rate 〈𝜀〉2𝐷 in the near grid 

region of FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 

(v). 
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Figure 3-65 Development of 2-D estimated mean dissipation rate 〈𝜀〉2𝐷 in the near grid 

region of FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-66 Development of 2-D estimated mean dissipation rate 〈𝜀〉2𝐷 in the near grid 

region of FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 

(q). 

Mean dissipation rate approximated by 2-D PIV data, is averaged over 𝑥 = 𝑐𝑡𝑒 planes 

to show the distribution of dissipation, qualitatively. Results are depicted in Figure 

3-69 and Figure 3-70 and compared to the rate of dissipation along characteristic lines 

of TGG’s in Figure 3-69.  

Knowing the mean dissipation rate, the equation,  

 𝜂 =
𝜈3

𝜀
 (3.34) 

is used in section 3.4.4 to estimate the Kolmogorov microscale. 
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Figure 3-67 Mean dissipation rate of TKE, averaged on planes parallel to TGG’s (red 

curve), and along characteristic lines of (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 

 
Figure 3-68 Streamwise evolution of area-averaged mean dissipation rate for all 

TGG’s. Every 4th symbols are plotted to reduce the clutter. 
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3.3.3 The rate of production of turbulent kinetic energy 

The production term shows itself as a source in the equation for the turbulent kinetic 

energy. It is generally positive and can be calculated from the multiplication of 

Reynolds stress and the mean velocity gradient at any point. The production rate is 

scalar, hence, invariant of the coordinate system.  

 Ƥ ≡ −𝑢𝑖𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

 (3.35) 

The terms inside (3.35) can be shown by a matrix in which elements are 

multiplications of the stress and the mean velocity gradient,  

 Ƥ3𝐷 =

[
 
 
 
 
 
 −〈𝑢𝑢〉

𝜕〈𝑈〉

𝜕𝑥
−〈𝑢𝑣〉

𝜕〈𝑈〉

𝜕𝑦
−〈𝑢𝑤〉

𝜕〈𝑈〉

𝜕𝑧

−〈𝑣𝑢〉
𝜕〈𝑉〉

𝜕𝑥
−〈𝑣𝑣〉

𝜕〈𝑉〉

𝜕𝑦
−〈𝑣𝑤〉

𝜕〈𝑉〉

𝜕𝑧

−〈𝑤𝑢〉
𝜕〈𝑊〉

𝜕𝑥
−〈𝑤𝑣〉

𝜕〈𝑊〉

𝜕𝑦
−〈𝑤𝑤〉

𝜕〈𝑊〉

𝜕𝑧 ]
 
 
 
 
 
 

 (3.36) 

Then the production is the sum of all nine components of the above. Using data 

obtained with planar PIV, one can calculate the in-plane production rate which we call 

2-D production (Ƥ2−D). Then (3.35) becomes, 

 Ƥ2−D = −⟨𝑢𝑢⟩
𝜕⟨𝑈⟩

𝜕𝑥
− ⟨𝑢𝑣⟩

𝜕⟨𝑈⟩

𝜕𝑦
− ⟨𝑣𝑢⟩

𝜕⟨𝑉⟩

𝜕𝑥
− ⟨𝑣𝑣⟩

𝜕⟨𝑉⟩

𝜕𝑦
 (3.37) 

Using diagonal symmetry condition in the case of CSG, FSG, and FCG, there might 

be three more terms added to the above, and since it includes more terms than 2-D 

version but still is far from the complete version, we call it 2.5-D production (Ƥ2.5D),  

 Ƥ2.5𝐷 = Ƥ2−D − ⟨𝑢𝑤⟩
𝜕⟨𝑈⟩

𝜕𝑧
− ⟨𝑤𝑢⟩

𝜕⟨𝑊⟩

𝜕𝑥
− ⟨𝑤𝑤⟩

𝜕⟨𝑊⟩

𝜕𝑧
 (3.38) 

One can realize that both Ƥ2−D and Ƥ2.5𝐷 are just estimations of the whole production 

rate. Therefore, some deviation may exist while interpreting production whether as 

2.5-D or 2-D. For example, there are some minor regions where the production rate is 
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slightly negative. However, the in-plane rate of production (2-D production) is 

calculated for all grids.  

Using MATLAB®, instantaneous velocity field on each window is loaded. This data 

field consists of 1003 velocity maps with coordinates 𝑥 and 𝑦 and velocity components 

𝑈 and 𝑉. Fluctuating data fields (𝑢, 𝑣) are calculated by subtracting the mean values 

(〈𝑈〉, 〈𝑉〉). At each (𝑥, 𝑦) position, the 2-D production rate is calculated using three 

Reynolds stress tensor components (⟨𝑢𝑢⟩, ⟨𝑢𝑣⟩ = ⟨𝑣𝑢⟩, and ⟨𝑣𝑣⟩) and four mean 

velocity gradients (mean strain rate tensor components), i.e. 
𝜕⟨𝑈⟩

𝜕𝑥
, 
𝜕⟨𝑈⟩

𝜕𝑦
, 
𝜕⟨𝑉⟩

𝜕𝑥
, and 

𝜕⟨𝑉⟩

𝜕𝑦
 as 

in (3.37). The results are stored in a ‘.dat’ file to use in Tecplot afterwards. Two cases 

for CSG and FSG are shown in the following.  

CSG is not a perfect case to validate the production in TKE budget since the spatial 

resolution is not enough to resolve the wake of the grid bars. The thickness of each bar 

is 2.1 mm, and the spatial resolution is 1.28 mm. However, some characteristics of 

wakes are in agreement with typical results in [107]. In-plane production data (Ƥ2−D) 

was generated for 𝑧 𝑀𝑒𝑓𝑓⁄ = 0 plane. Contour plot of 2-D production is shown in 

Figure 3-69. It is clear that the production region is extended only a few downstream 

distance from the grid (~ 1𝑀𝑒𝑓𝑓) and then it vanishes. In the figure, 
𝑦
𝑀𝑒𝑓𝑓
⁄ = 0 is 

the grid center in which region a jet is flowing. The profiles of the production rate 

across the jet-wake combination are illustrated at the right of Figure 3-69, each along 

specified transverse lines at 
𝑥

𝑀𝑒𝑓𝑓
= 0.65, 1.0, 2.0, and 3.0. As the flow develops 

downstream of the grid, the production is continuously decreased where it reaches zero 

after 
𝑥

𝑀𝑒𝑓𝑓
= 1.2. The production distribution of the wakes are in agreement with the 

literature (see figure 5.29 in [107]).  

As another example, a bigger – thus resolved – wake belonging to the largest bar in 

FSG grid is investigated. On 𝑧 𝑀𝑒𝑓𝑓⁄ =0 plane, there are two large wake regions 

emanating from two vertical bars (look at Figure 3-8-b). A wake region downstream 

of the left side bar is shown in Figure 3-70 along with values of 2-D production rate. 
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Figure 3-69 Map of in-plane production rate in the near-field of CSG at 
𝑍

𝑀𝑒𝑓𝑓
=0 plane 

(left). Profiles of production rate along lines specified in the production map (right).  

 

Figure 3-70 Map of in-plane production rate in the near-field of FSG at Z=0 plane. 

The area under investigation is the wake of the largest vertical bar in FSG (left). 

Profiles of production rate along lines specified in the production map (right). 

Along the center of the bar (
𝑦
𝑀𝑒𝑓𝑓⁄ ≅ −4.8), there is a very low and almost zero 

production region. However, there are two side regions with higher production rates 

originated from the edges of the bar. The rate of production calculated using only in-

plane variables (Ƥ2−D) is non-negative in almost entire region under investigation. 
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Since the spatial resolution (1.28mm) is enough to resolve the wake behind this bar 

with the thickness of 10.2mm, the results clearly follow the production shape in the 

self-similar axisymmetric wake (see figure 5.29 in [107]). 

 

 

Figure 3-71 Evolution of the 2-D mean production rate 𝑃2𝐷 in the near grid region of 

CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-72 Evolution of the 2-D mean production rate 𝑃2𝐷 in the near grid region of 

FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-73 Evolution of the 2-D mean production rate 𝑃2𝐷 in the near grid region of 

FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-74 Evolution of the 2-D mean production rate 𝑃2𝐷 in the near grid region of 

FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 17 𝑀𝑒𝑓𝑓 (v). 

 

One can obtain a 3-D map of the production rate to study on the distribution of 

production and its evolution in the near grid region. This can be done by patching all 

4 × 35 windows. Parallel planes to the grid are extracted from the resultant volume 

data in every effective mesh size step. These 𝑥 = 𝑐𝑡𝑒 planes are shown in Figure 3-71 

through Figure 3-74 to give idea about the distribution of 2-D production rate in the 

near-field of TGG’s. Also, the 2-D production rate is averaged on these planes and 

depicted as red curves in Figure 3-75, together with its values along characteristic lines 

of each TGG.  
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Figure 3-75 2-D production rate of TKE, averaged on planes parallel to TGG’s (red 

curve), and along characteristic lines of (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 

 

One is able to compare the production rate and the estimated dissipation rate. In the 

near wake region, there exist regions with non-equilibrium condition (production is 

not equal to dissipation). This is depicted in Figure 3-76. In fact, production mainly 

occurs in the proximity of the grid (
𝑥

𝑀𝑒𝑓𝑓
≤ 5.0) and with two orders of magnitude 

smaller than dissipation.  
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Figure 3-76 Comparison between rate of dissipation (red curve) and 2-D production 

rate (black curve) of TKE, averaged on parallel planes to TGG's for (a) CSG, (b) FSG, 

(c) FCG, and (d) FIG. 

 

Area averaged 2-D production rate for all four types of TGG’s is compared in Figure 

3-77. The Highest rate of production belongs to FSG which happens at about 1.5 𝑀𝑒𝑓𝑓 

and just behind it, there is FCG which has its peak of production at about 1.8 𝑀𝑒𝑓𝑓. 

The rate at which the production decreases is the highest in CSG where Ƥ2−D reaches 

literally zero at 3Mesh sizes downstream. After about 12 𝑀𝑒𝑓𝑓 there exist very small 

2-D production rate for all grids.  
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Figure 3-77 Streamwise evolution of area-averaged 2-D production rate for all TGG’s. 

Every 4th symbols are plotted to reduce the clutter. Also, streamwise distance is plotted 

in logarithmic increment to emphasize on the very near grid region (1 <
𝑥

𝑀𝑒𝑓𝑓
< 10). 

3.4 Length scales in grid-generated-turbulence 

There exist three standard length scales in a general turbulent flow. The one that  is a 

measure of the largest separation distance over which the eddy’s velocity components 

at two separate points are correlated, the one for which viscous dissipation begins to 

affect the eddies, and the one which characterizes the smallest dissipative eddies, 

Integral length scale, Taylor microscale, and Kolmogorov microscale, respectively 

[106,119,121]. Integral and Taylor scales can be obtained from the autocorrelation of 

the velocity fluctuations, i.e. 〈𝑢(𝑡)𝑢(𝑡 + 𝜏)〉. The time separation (𝜏) is exchangeable 

to space separation (𝑟) by Taylor’s frozen turbulence hypothesis, 

 
𝜕

𝜕𝑟
≈
1

〈𝑈〉

𝜕

𝜕𝜏
  (3.39) 

Integral and Taylor scales are schematically shown in Figure 3-78. The vertical axis 

is the autocorrelation coefficient. By definition, the area underneath 𝑓(𝑟) − (𝑟) is the 
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integral scale and the curvature of 𝑓(𝑟) at the origin is the Taylor microscale. In the 

following, we will obtain theses length scales as well as estimation of the Kolmogorov 

length scale in the near-field of the grids. 

 

Figure 3-78 A sketch of an autocorrelation coefficient, Integral (L) and Taylor (λ) 

length scales. 

3.4.1 Integral length scales 

Integral length scale (ILS) is a rough measure of the interval over which the fluctuating 

velocity is correlated with itself [106,108]. Physically, ILS shows the size of energetic 

eddies [122,123], and in the case of GGT, it shows the geometry of the turbulence 

generator [124] and the scale at which turbulence is forced [125]. If the turbulence is 

homogeneous and isotropic, the integral length scale also shows the scale at which the 

kinetic energy of the flow (k) is injected into the turbulence [107]. Integral length scale 

𝐿𝑝𝑞 is defined as [40], 

 𝐿𝑝𝑞 =
1

〈𝑢𝑝2〉
∫ 𝑅𝑝𝑝(𝑟1, 𝑟2)𝑑𝑟𝑞

∞

0

 (3.40) 

where ‘p’ and ‘q’ stand for the velocity component and the component over which the 

direction of separation is chosen, respectively. The autocorrelation function for the 

velocity fluctuations is 𝑅 and 𝑑𝑟 is the separation distance. Data obtained from 2-D 

PIV, will give four different integral scales (𝐿𝑢𝑢, 𝐿𝑢𝑣, 𝐿𝑣𝑢, and 𝐿𝑣𝑣) among which 𝐿𝑢𝑢 

and 𝐿𝑣𝑣  are more common than other two, called longitudinal and lateral integral 

length scales, respectively. We will use 𝐿𝑢 instead of 𝐿𝑢𝑢 for the sake of simplicity.  

𝑓(𝑟) 

𝑟 
𝜆 𝐿 

1 

0 
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It is rather hard for PIV measurements to result in integral length scale 𝐿𝑢 and the 

Taylor microscale λ simultaneously. Former requires a field of view (FOV) at least 6-

7 times of the integral length scale, while latter calls for high resolution to resolve the 

Taylor microscales. A lack of high dynamic spatial range in two-pulse digital PIV 

technique makes it difficult to easily reach such a high resolution [40]. In case of FOV 

sizes in the same order of 𝐿𝑢, it has been shown that fitting a function with exponential 

decay to the tails of the longitudinal two-point correlation function (𝑅𝑢𝑢), will result 

in a good estimation of longitudinal integral length scale (LILS) 𝐿𝑢 [126]. The validity 

of the exponential fit was checked for the 2-D PIV data obtained at the centerline of a 

fractal square grid inside a water tunnel [14] and the data from a similar experiment in 

the wind tunnel [55]. It is expected to have integral length scale to be of the order of 

magnitude of the effective mesh size [40] while in [35] the integral scale of the order 

of 1/10 of the test section dimension is reported for the fractal grids.  

Integral length scales can be estimated from the spatial two-point correlation of 

longitudinal and transverse velocity fluctuations, 𝑢 = 𝑈 − 〈𝑈〉 and v= 𝑉 − 〈𝑉〉, for a 

separation “r” as defined by [107]. Integrating the two-point correlation coefficient of 

velocity fluctuation along any dimension results the integral length scale along that 

direction. Here we report the LILS by integrating the two-point correlation coefficient 

of velocity fluctuations along the ‘x’ axis. Two-point correlation of velocity 

fluctuation along ‘x’ direction is written as, 

 𝑓(𝑟) = 〈𝑢(𝑥, 𝑦)𝑢(𝑥 + 𝑟, 𝑦)〉 (3.41) 

where 〈 〉 indicates the spatial average over ‘x’ and ‘y’ and ensemble average over 

all the fluctuating velocity fields 𝑢(𝑥, 𝑦) – For each PIV window there are 1003 

realizations – and the correlation function of velocity fluctuations is defined as, 

 𝑓(𝑟) =
𝑓(𝑟)

𝑓(0)
=
〈𝑢(𝑥, 𝑦)𝑢(𝑥 + 𝑟, 𝑦)〉

〈𝑢2(𝑥, 𝑦)〉
 (3.42) 

The LILS is defined as [52], 

 𝐿𝑢 = ∫ 𝑓(𝑟) 𝑑𝑟
∞

0

 (3.43) 
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The upper bound of the integration is usually taken as the first zero-crossing of the 

correlation function (i.e., where 𝑓(𝑟) = 0) [127]. Due to the limited field of view, 

𝑓(𝑟) may not always cross zero, in which case, the value for 𝐿𝑢 is blanked over the 

corresponding starting point.  

To calculate for 𝐿𝑢, each PIV window is divided by sections of five neighboring rows, 

taking the middle one as the destination row. Note that all windows are horizontal 

windows with ‘x’ and ‘y’ coordinates in streamwise and spanwise directions 

respectively. Hence, five rows of data includes 5 successive ‘y’ values, i.e. 

𝑦𝑗−2,  𝑦𝑗−1, 𝑦𝑗 , 𝑦𝑗+1, and 𝑦𝑗+2. Longitudinal cross correlation function is then 

calculated for a starting point (i.e. 𝑥𝑖) to the endpoint (i.e. 𝑥𝑓) on the central row, i.e. 

𝑦𝑗
th one, averaged over 1003 vector maps and all the cells in the cropped section. If 

the correlation function crosses zero somewhere in the (𝑥𝑓−𝑥𝑖) range, then the 

integration (3.43) yields a true value for 𝐿𝑢. In this situation, some index as a true 

value (i.e., 1) is assigned to the 𝑥𝑖 point. Otherwise, the integration is calculated over 

the entire distance (𝑥𝑓−𝑥𝑖) with false index (i.e., 0) assigned to the 𝑥𝑖 point and the 

result is called as 𝐿𝑢𝑖𝑛𝑓. As an example, the longitudinal correlation function 

 〈𝑢(𝑥, 𝑦)𝑢(𝑥 + 𝑟, 𝑦)〉 of streamwise component of velocity fluctuations along the 

centerline in W1 of CSG is shown in Figure 3-79 . 

 

Figure 3-79 Longitudinal correlation function  〈𝑢(𝑥, 𝑦)𝑢(𝑥 + 𝑟, 𝑦)〉 of streamwise 

component of velocity fluctuations calculated for W1 in CSG, MATLAB® output. 
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Corresponding values for LILS are 𝐿𝑢𝑖𝑛𝑓 = 4.3859 𝑚𝑚 and 𝐿𝑢 = 4.3535 𝑚𝑚, 

where 𝐿𝑢𝑖𝑛𝑓 indicates the integration upper bound to the maximum separation distance 

which is limited to the PIV window size along ‘x’ direction, and 𝐿𝑢 is the length scale 

based on the first zero-crossing of the correlation function (i.e., where 𝑓(𝑟) = 0).  

There are also two other values calculated for the longitudinal length scale, 𝐿𝑢0.1 

and 𝐿𝑢0.2 indicating two different criteria for integration limit. When the value of 𝑓(𝑟) 

reaches to 
1

10
𝑓(0), i.e., when the correlation strength drops to 90% of its initial value, 

one can calculate 𝐿𝑢0.1 by,  

 𝐿𝑢0.1 = ∫ 𝑓(𝑟) 𝑑𝑟
𝑟|𝑓(𝑟)=0.1𝑓(0)  

0

 (3.44) 

the same applies to 𝐿𝑢0.2 such that, 

 𝐿𝑢0.2 = ∫ 𝑓(𝑟) 𝑑𝑟
𝑟|𝑓(𝑟)=0.2𝑓(0)  

0

 (3.45) 

The idea of calculating 𝐿𝑢 by (3.44) and (3.45) is that due to small FOV, the 

longitudinal extent of each window (typically 128 mm) may not be enough for 

correlation to pass zero – especially at some locations starting from the endpoints of 

the FOV – hence resulting in a true value for 𝐿𝑢.  

Using integration limit 𝑟|𝑓(𝑟)=0.1𝑓(0) instead of 𝑟|𝑓(𝑟)=0, has to be justified. In order to 

do that, a comparison is made between the results of all longitudinal and lateral length 

scales calculated based on both criteria. As an example, evolution of ILS 𝐿𝑢𝑢 and 𝐿𝑣𝑢 

along characteristic lines of CSG, is shown in Figure 3-80. Values of 𝐿0 and 𝐿0.1 are 

shown by filled (solid) and hollow (dashed) symbols (lines), respectively.  
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Figure 3-80 Comparison between values of ILS 𝐿𝑢𝑢 and 𝐿𝑣𝑢, along characteristic lines 

(a) C1, (b) C2, (c) C3, and (d) C4, of CSG. Length scales are calculated based on 

integration limits 𝑟|𝑓(𝑟)=0.1𝑓(0) and 𝑟|𝑓(𝑟)=0, indicated by 𝐼𝐿𝑆0 and 𝐼𝐿𝑆0.1, 

respectively. 

In Figure 3-81, 𝐿𝑢𝑢 and 𝐿𝑣𝑢 along characteristic lines of FSG are compared.  
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Figure 3-81 Comparison between values of ILS 𝐿𝑢𝑢 and 𝐿𝑣𝑢, along characteristic lines 

(a) FS1, (b) FS2, (c) FS3, and (d) FS4, of FSG. FS4 is at the center of the largest 

vertical bar. Length scales are calculated based on integration limits 𝑟|𝑓(𝑟)=0.1𝑓(0) 

and 𝑟|𝑓(𝑟)=0, indicated by 𝐼𝐿𝑆0 and 𝐼𝐿𝑆0.1, respectively. 

Another example is the variation of ILS 𝐿𝑣𝑣 and 𝐿𝑢𝑣 on the center-plane of TGG’s 

which is shown in Figure 3-82. To conclude, values of 𝐿0.1 always are underestimated 

which is normal due to lower integration limit. Nevertheless, its value is acceptable 

within 20% of 𝐿0 value at most points. Of course center line data is excluded in this 

case.  
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Figure 3-82 Comparison between values of ILS 𝐿𝑣𝑣 and 𝐿𝑢𝑣, on the center-plane of 

(a) CSG, (b) FSG, (c) FCG, and (d) FIG. Length scales are calculated based on 

integration limits 𝑟|𝑓(𝑟)=0.1𝑓(0) and 𝑟|𝑓(𝑟)=0, indicated by 𝐼𝐿𝑆0 and 𝐼𝐿𝑆0.1, 

respectively. 

Evolution of LILS (𝐿𝑢𝑢 and 𝐿𝑣𝑣) along characteristic lines and planes of interest, 

mentioned in section 3.1.4 and Table 3-5, respectively, is shown in Figure 3-83. In 

total, values of LILS downstream of CSG are smaller than fractal grids and stay more 

or less constant (or with a little increase). For FSG and FCG, the largest 𝐿𝑣𝑣 is found 

on the center plane wherein FCG it drops faster than FSG. Centerline of both grids 

shows the same variation of  𝐿𝑢𝑢 while it is very different in FIG due to its completely 

different geometry and flow field.  
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Figure 3-83 Comparison between values of LILS 𝐿𝑢𝑢 and 𝐿𝑣𝑣, on characteristic lines 

and planes of interest in (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 𝐿𝑢𝑢 is calculated 

along characteristic lines while 𝐿𝑣𝑣 is calculated along spanwise lines on the plane of 

interest. Plane 4 in case of FCG is a horizontal plane passing point FC3 on the corner 

of the largest circular element.  

After calculating the LILS on each PIV window, all windows are patched together to 

form a volume. Mirroring this quarter volume about XY and XZ axes gives a complete 

volume of near grid data. Previous studies mainly focused on the centerline variation 

of integral scales since the majority of experiments were performed in the far-field 

region. In this study, we are so close to the grid that the local differences make it 

impossible to rely on the centerline. The evolution of 𝐿𝑢0.1 on some planes parallel to 

the grids are shown in Figure 3-84 to Figure 3-87, where these local differences are 

clearly seen. 
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Figure 3-84 Evolution of longitudinal integral length scale (𝐿𝑢0.1) in the near-grid 

region of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

22 𝑀𝑒𝑓𝑓 (v). Blanked regions are those at which the calculation of 𝐿𝑢0.1 does not 

provide any result.  
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Figure 3-85 Evolution of longitudinal integral length scale (𝐿𝑢0.1) in the near-grid 

region of FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 20 𝑀𝑒𝑓𝑓 

(t). Blanked regions are those at which the calculation of 𝐿𝑢0.1 does not provide any 

result. 
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Figure 3-86 Evolution of longitudinal integral length scale (𝐿𝑢0.1) in the near-grid 

region of FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

20 𝑀𝑒𝑓𝑓 (t). Blanked regions are those at which the calculation of 𝐿𝑢0.1 does not 

provide any result. 
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Figure 3-87 Evolution of longitudinal integral length scale (𝐿𝑢0.1) in the near-grid 

region of CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 

15 𝑀𝑒𝑓𝑓 (o). Blanked regions are those at which the calculation of 𝐿𝑢0.1 does not 

provide any result. 

It is interesting that contours of LILS stay more or less constant within a certain 

window. This can imply that the eddy size is either very small or very large comparing 

to the window streamwise extension. To show the variation of LILS in the near grid 

region, one can do averaging on the planes parallel to the grid (i.e., planes shown in 

Figure 3-84 to Figure 3-87). Two first contours of 𝐿𝑢0.2 in Figure 3-84 suggests that 

the overall LILS is about 4mm for CSG grid. Note that the largest geometry size for 

CSG is in fact the thickness of the Plexiglas material the grid is made of which is 4mm. 
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For the rest of fractal grids, the imposed ILIS in the region 
𝑥

𝑀𝑒𝑓𝑓
≤ 2 obeys from the 

largest thickness of the corresponding grid, though when wakes of different size bars 

are interacting, then 𝐿𝑢 is not a good approximation of largest eddy size. This is also 

explained in [18] for multiscale cross grids.  

As one approaches to the endpoint of measurement region, there are still regions of 

very high and very low LILS (contour ‘t’ in Figure 3-85 and Figure 3-86). While the 

distribution of LILS is different for FSG and FCG at this location (𝑥/𝑀𝑒𝑓𝑓 ≈ 20), the 

area averaged LILS shown in Figure 3-88 suggest the same magnitude of about 13mm 

for LILS in both cases. Comparing the maximum values of estimated LILS and the 

extent of FOV (128 𝑚𝑚) reveals that there would exist at least five ILS inside each 

PIV measurement region. This assures us a thorough capture of LILS within the 

measurement area [128].  

It is beneficial to compare the trend of area-averaged values of LILS which are 

illustrated in Figure 3-88. According to this figure, LILS is always increasing for 

fractal grids. This is in agreement with the results of [35,40,52]. For CSG, until 

about 
𝑥

𝑀𝑒𝑓𝑓
= 10, it is increasing and then it remains almost constant until the end of 

the measurement region. The results from CSG are in agreement with those from [18] 

in the range 0 <
𝑥

𝑀𝑒𝑓𝑓
< 10 but there is no certain justification to explain why the 

trends are quite opposite after 
𝑥

𝑀𝑒𝑓𝑓
= 10. FSG and FCG result in more or less similar 

LILS magnitudes and on cross sections at the end of measurement region they both 

end up with averaged LILS of about 13mm. LILS for FIG also start at the same order 

of that in FSG and FCG but with a higher rate of growth. A linear function (
𝐿𝑢

𝑀𝑒𝑓𝑓
=

𝑎 + 𝑏 (
𝑥

𝑀𝑒𝑓𝑓
)) as well as a power function (

𝐿𝑢

𝑀𝑒𝑓𝑓
= 𝐴(

𝑥

𝑀𝑒𝑓𝑓
)
𝐵

) is fit onto these 

variations and the details are given in Table 3-8.  
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Figure 3-88 Streamwise development of 𝐿𝑢0.1 in the near grid region, averaged on 

x=cte planes (symbols). Power function fit (left) and linear function fit (right) are 

shown by lines. For CSG, the power function is fit only in the region 0 <
𝑥

𝑀𝑒𝑓𝑓
< 6.  

Table 3-8 coefficients and slopes of power function fit to the area averaged LILS in 

the near grid region of TGG’s.  

 Linear Function Power function 

Grid a b R2 A B R2 

CSG-W1    0.2171 0.1201 0.993 

CSG 0.2934 0.0006 0.05    

FSG 0.2783 0.01991 0.986 0.2589 0.2624 0.887 

FCG 0.3395 0.01679 0.965 0.2722 0.2435 0.979 

FIG 0.3077 0.02734 0.985 0.2331 0.3694 0.99 

 

Except for the near grid region (0 <
𝑥

𝑀𝑒𝑓𝑓
< 2) wherein a very sharp change in LILS 

were observed, anywhere inside the same window along characteristic lines (see 

section 3.1.4) LILS seem to be constant. Therefore, the value for LILS along 

characteristic lines are reported with a symbol at each window. These values are 

compared to the area averaged LILS in Figure 3-89.  
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Figure 3-89 𝐿𝑢𝑢0.1 as a function of downstream distance averaged on cross sectional 

planes (red live) and along characteristic lines (symbols) of (a) CSG, (b) FSG, (c) 

FCG, and (d) FIG.  

Characteristic lines can be considered as representatives for local variations. From 

Figure 3-89 one can notice that the local variations are not so different from the 

averaged values in the case of CSG which is due to its uniform geometry. In the case 

of fractal square and circular grids, centerline always shows very low LILS, while 

along largest element LILS are higher than the cross-sectional averaged ones. It is 

interesting that at the last window (
𝑥

𝑀𝑒𝑓𝑓
≈ 16.0) 𝐿𝑢𝑢 along FS2 and FS3 and along 

FC2 and FC3, both converge to about 0.8𝑀𝑒𝑓𝑓. This is valid also for FIG, along 

centerline and FI2 lines.  
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A set of space-filling (𝐷𝑓=2.0) fractal square grids with different thickness ratios and 

a conventional grid were studied by Mazellier and Vassilicos [52] (denoted by 

MV(2010)), among which SFG8 grid is very similar to FSG in the current study. SRG 

grid in [52] is also comparable to our CSG grid. Details of these grids are given in 

Table 2-3 and the near grid data for CSG is compared to that of [52] and [18] in Figure 

3-90. Although there exist limited data to compare with current results, Figure 3-90 

clearly shows that effective mesh size is not an appropriate length scale to collapse 

values of LILS obtained from different experiments. There seems to be a sudden jump 

in LILS along centerline both in GK(2016) (around 2 − 3.5𝑀𝑒𝑓𝑓) and in current 

results (around 10 − 12𝑀𝑒𝑓𝑓) and using effective mesh size, they still do not collapse.  

 

Figure 3-90 Comparison of ILIS for conventional grids from [52] (MV2010) and [18] 

(GK2016) to the results of the current study (C1 and C3). 
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3.4.2 Taylor microscale 

Taylor microscale marks the transition from inertial subrange to the dissipation range 

[121]. It is called in honor of G. I. Taylor who first defined it [106]. Unfortunately, 

Taylor incorrectly claimed that it is the average size of the dissipative eddies since he 

came up with this length scale during the calculation of TKE dissipation rate. By 

definition, 𝜆 is the curvature of the autocorrelation coefficient at the origin (see Figure 

3-78), i.e.  

 
𝑑2𝑓

𝑑𝑟2
|
𝑟=0

≡ −
2

𝜆2
 (3.46) 

If the autocorrelation function (𝑓) is expanded in Taylor series about the origin, for 

the stationary variable 𝑈 = 〈𝑈〉 + 𝑢 [106],  

 ⟨(
𝜕𝑢

𝜕𝑥
)
2

⟩ ≡
〈𝑢2〉

𝜆2
 (3.47) 

Dimensional analysis would also result in the same expression for Taylor microscale, 

assuming isotropic turbulence. In fact, this length scale is defined in a way that it is 

associated with the energy dissipation, i.e., it could be a ratio of dissipative (what 

Taylor was thinking as dissipative eddies back in his time) eddy’s velocity (〈𝑢2〉) to 

it’s velocity gradient (⟨(
𝜕𝑢

𝜕𝑥
)
2

⟩). Since there exist neglected terms in the Taylor 

expansion of the correlation coefficient, the value obtained for 𝜆 from equation (3.47), 

is estimated. From (3.46) it is possible to write Taylor microscale  for any fluctuating 

velocity component along any direction [40], 

 
𝜆𝑖𝑗 =

√

〈𝑢𝑖
2〉

−
𝜕2

𝜕𝑟𝑗
2 𝑅𝑖𝑖(𝑟1, 𝑟2)|

𝑟1,𝑟2=0

 

 
(3.48) 

The expression (3.47) is used to calculate Taylor microscale at each PIV window. The 

gradient is calculated using the central difference method [52]. By patching all 

horizontal planes, a volumetric zone in the near grid region is formed. Taylor 
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microscale averaged on cross-sectional planes is compared to that along the 

characteristic lines for each grid in Figure 3-91. 

 

Figure 3-91 Evolution of Taylor microscale 𝜆 averaged on x=cte planes (red line) and 

along characteristic lines for grids (a) CSG, (b) FSG, (c) FCG, and (d) FIG. Only every 

10th point is plotted to reduce clutter. 

Taylor microscale was shown to increase slowly along the centerline [35,40]. 

According to Table 2-3, the measurement region and the FSG grid thickness ratio in 

[40] and [35] is not similar to those of FSG in this study. However, a small increase 

from 3.5mm to about 4mm in Taylor length scale can be seen from Figure 3-91-b for 

fractal square grid under investigation.  
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Hurst and Vassilicos [22] found that the longitudinal and lateral integral length scales 

(𝐿𝑢, 𝐿𝑣) and the Taylor microscale are approximately constant during the decay of 

space-filling FSG. In our study, the decay region is not captured for any of fractal 

grids, but the shape of area averaged λ suggests that the Taylor microscale is moving 

towards some constant values much downstream. Increase in cross-sectionally 

averaged 𝜆 in the near-field is in agreement with previously reported DNS results 

[129]. Another method to calculate Taylor microscale is introduced in [40]. There a 

parabola is fit using the first 6 points on the correlation function, and a range of 

uncertainty of about 10-15% is reported in calculating λ. 

 

3.4.3 Normalized dissipation rate (𝐶𝜀) in the near-field  

It has been shown in (dissipation part) that dissipation rate of TKE is governed by the 

large scales of turbulence, assuming the forward cascade model proposed by 

Richardson in 1922 [130], i.e., the rate of turbulent energy dissipation is determined 

by the rate of transfer of energy from large-scale eddies to the small-scale ones, 

 𝜀 ∝
𝑘
3
2

𝐿
 ∝
𝑢′3

𝐿
 (3.49) 

Where 𝑘 is TKE, 𝐿 is ILS usually the longitudinal one based on 𝑢 and 𝑢′ is the 

characteristic velocity scale (rms fluctuating velocity 〈𝑢2〉
1

2). When the turbulence is 

isotropic, the dissipation rate can be expressed as [2], 

 〈𝜀〉𝑖𝑠𝑜 =
15𝜈𝑢′2

𝜆2
 (3.50) 

where 〈𝜀〉 is the mean dissipation rate of TKE. It should be noted that 𝜆 does not refer 

to a physical diameter for eddies; yet, because this length scale is associated with 

energy dissipation through (3.50), it is still broadly used by experimentalists. Equation 

(3.49) can be converted into an equation using a constant 𝐶𝜀,  

 〈𝜀〉𝑖𝑠𝑜 = 𝐶𝜀
𝑢′3

𝐿
 (3.51) 
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This constant is non-dimensional, independent of Reynolds number, time and space 

[119]. A significant result of ‘forward energy cascade’ is the independence of ‘non-

dimensional mean energy dissipation rate’ – or simply ‘normalized dissipation rate’ – 

(𝐶𝜀) also from viscosity  [2,63]. Therefore, 𝐶𝜀 is defined as,  

 𝐶𝜀𝑖𝑠𝑜 = 〈𝜀〉𝑖𝑠𝑜
𝐿

𝑢′3
 (3.52) 

This is the most common method to estimate the normalized dissipation rate because 

it is based on the isotropy assumption [21], that is why the subscript “iso’ is used in 

(3.52). The order of magnitude of 𝐶𝜀 is found to be unity [131].  

On the other hand, one can combine (3.50) and (3.51) to obtain, 

 𝐶𝜀
𝑢′3

𝐿
=
15𝜈𝑢′2

𝜆2
=
15𝑢′2

𝜆
.
𝜈𝑢′

𝜆𝑢′
 (3.53) 

Defining local Reynolds number 𝑅𝑒𝜆 (Reynolds number based on the Taylor 

microscale),  

 𝑅𝑒𝜆 ≡
𝑢′𝜆

𝜈
 (3.54) 

Equation (3.53) can be written as,  

 𝐶𝜀
𝑢′3

𝐿
=
15𝑢′2

𝜆
. 𝑢′.

1

𝑅𝑒𝜆
→ 𝐶𝜀

1

𝐿
=
15

𝜆

1

𝑅𝑒𝜆
→
15𝐿

𝜆
= 𝐶𝜀𝑅𝑒𝜆 (3.55) 

Equation (3.55) was used to assess the constancy of normalized dissipation rate in the 

decay region of fractal-generated-grid turbulence [35,105,132]. It has been observed 

by Valente and Vassilicos [35,132] that far downstream of FSG, in the decay region 

where the turbulence is nearly isotropic, and the basic assumption of Kolmogorov 

theory seems to be valid, 𝑅𝑒𝜆 decreases but 
𝐿

𝜆
 stays more or less constant. Looking at 

(3.55), this implies an increase in 𝐶𝜀 to maintain the equation balance. Non-constant 

𝐶𝜀 is in contradiction with the Kolmogorov turbulence model and as stated in [40], it 

conflicts with Reynolds-averaged Navier-Stokes (RANS) modelling in which the 

semi-empirical quantity 𝐶𝜀 is assumed to be constant. To make it clear, in the two-
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equation model (𝑘 − 𝜀) in which the turbulent kinetic energy and dissipation rate are 

modeled using transport equations including some empirically constants, the 

turbulence dissipation rate follows as, 

 
𝜀 =

𝐶𝜇

3
4𝑘
3
2

𝐿
 

(3.56) 

where 𝐶𝜇 is considered equal to 0.09 as a constant [133]. Thus the value of 𝐶𝜀 = 𝐶𝜇

3

4 is 

0.164. On the other hand, there are plenty of studies on 𝐶𝜀 concentrating in the near-

field of regular and fractal grids [19,43,44,105]. Since turbulence is not isotropic in 

the near-field of TGGs and 𝐶𝜀 is inherently not constant, these studies try to relate the 

growth of 𝐶𝜀 to some initial and local characteristics of the flow. Valente and 

Vassilicos [132] showed that in the near-field of grid turbulence, 

 𝐶𝜀~
𝑅𝑒𝑀

1
2

𝑅𝑒𝜆
 

(3.57) 

where 𝑅𝑒𝑀 =
𝑈0𝑀𝑒𝑓𝑓

𝜈
 implies the initial condition. Isaza et. al. [105] showed that 

𝐿𝑢

𝜆
 is 

independent of 𝑅𝑒𝜆 but it depends on 𝑅𝑒𝑀. They found their results in agreement with 

the bi-planar regular grid (See Fig.5 in [132]). Hearst and Lavoie [43] used a fractal 

square grid attached to a background regular grid primarily to study on the decay of 

TKE in the near and far-fields. They obtained the same results as with [35] and [132] 

that 
𝐿𝑢

𝜆
 is approximately constant in the near-field of such grids (see Fig.10 in [43]). In 

a later study searching for a link between the evolution of 𝑆 (
𝜕𝑢

𝜕𝑥
) to that of 𝐶𝜀, they 

[44] found that 𝐶𝜀 in the near-field changes (grows) by,  

 𝐶𝜀~
𝑅𝑒𝑀

𝛼

𝑅𝑒𝐿
𝛽

 (3.58) 

They found that and 𝛼 = 𝛽 = 1 is satisfying for the estimation. In equation (3.58), 

𝑅𝑒𝐿 =
𝑢′𝐿

𝜈
 is the local Reynolds number based on the integral length scale and the 

velocity fluctuations. They stated that rapid energy decay and non-constant 𝐶𝜀 are the 

characteristics of “non-equilibrium” turbulence. “Non-equilibrium” turbulence is 
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summarized by Vassilicos [134] and is not just a property of fractal grids [41,43], but 

also has been seen in the near-field of regular grids wake [132].  Since the near-field 

of different TGGs are reconstructed in this study and many flow characteristics has 

been investigated so far, it is also beneficial to obtain the distribution of 𝐶𝜀 in the near-

field. Prior to that, evolution of 
𝐿𝑢

𝜆
 in all four types of grids is shown in Figure 3-92. In 

all fractal grids, after a sudden reduction in the proximity of grids (0.4 ≤
𝑥

𝑀𝑒𝑓𝑓
≤ 2), 

𝐿𝑢

𝜆
 slowly increases whereas in the conventional grid it stays more or less constant 

after 
𝑥

𝑀𝑒𝑓𝑓
≅ 15. This is in agreement with results in [105]. 

 

Figure 3-92 
𝐿𝑢0.1

𝜆
 as a function of normalized streamwise distance, averaged on x=cte 

planes (red curves) and along characteristic lines of (a) CSG, (b) FSG, (c) FCG, and 

(d) FIG.  
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Streamwise development of 𝑅𝑒𝜆 averaged on planes parallel to grids is shown in 

Figure 3-93. While 𝑅𝑒𝜆 is always decreasing in case of the regular grid, it shows a 

plateau – just the same as turbulence intensity variation – with different increment and 

decrement rates. Neglecting the rising part, 𝑅𝑒𝜆 is always decreasing with streamwise 

distance. This has to be compensated by increment in 
𝐿𝑢

𝜆
 to balance Equation (3.55). 

In addition, one can calculate 𝐶𝜀 using (3.55).  

 

Figure 3-93 𝑅𝑒𝜆 as a function of normalized streamwise distance, averaged on x=cte 

planes for different grid types. 

Distribution of dissipation rate coefficient (𝐶𝜀) in the near-field of regular and fractal 

grids is shown in Figure 3-94 to Figure 3-97. Blanked contours are those at which 

calculation of 𝐿𝑢0.1 does not provide meaningful results due to a limited streamwise 

extension. Looking at the distribution, it seems that high 𝐶𝜀 can be found in the central 

jet region of FSG and FCG, while it is working just opposite in FIG case. 𝐶𝜀 seems to 

be distributed more homogeneously in the near-field of CSG.  
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Figure 3-94 Distribution of dissipation rate coefficient (𝐶𝜀) in the near grid region of 

CSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 22 𝑀𝑒𝑓𝑓 (v). 
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Figure 3-95 Distribution of dissipation rate coefficient (𝐶𝜀) in the near grid region of 

FSG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 20 𝑀𝑒𝑓𝑓 (t). 
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Figure 3-96 Distribution of dissipation rate coefficient (𝐶𝜀) in the near grid region of 

FCG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 20 𝑀𝑒𝑓𝑓 (t). 

 

 



 

146 

 

 

Figure 3-97 Distribution of dissipation rate coefficient (𝐶𝜀) in the near grid region of 

FIG. Distributions are given in 1 𝑀𝑒𝑓𝑓 increment from 1 𝑀𝑒𝑓𝑓 (a) to 15 𝑀𝑒𝑓𝑓 (o). 

 

While different values (𝐿𝑢, 𝐿𝑢0.1, 𝐿𝑢0.2) for ILS are included to obtain 𝐶𝜀 using 

Equation (3.55), only 𝐿𝑢0.1is used to put into Equation (3.52). Notice that the value 

for isotropic dissipation is replaced by the value of the mean dissipation rate obtained 

using 2-D 2-C PIV estimation (〈𝜀〉2−𝐶 𝑃𝐼𝑉). Comparison between 𝐶𝜀 values obtained 

by different magnitudes of ILS is made in Figure 3-98. Here, 𝐶𝜀 is averaged on planes 

parallel to the grid (𝑥 = 𝑐𝑡𝑒 planes) and 𝐶𝜀|𝜀𝐼𝑆𝑂 is the one calculated from Equation 

(3.52).  
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Figure 3-98 Comparison of 𝐶𝜀 obtained by different ILS values for (a) CSG, (b) FSG, 

(c) FCG, and (d) FIG. Area averaged values are used. Blue dashed line is 𝐶𝜀 = 0.164 

as a constant value used in the 𝑘 − 𝜀 model. 

Looking at Figure 3-98-a, one can notice the area averaged 𝐶𝜀 for the regular grid is 

consistently increasing after some initial distance (
𝑥

𝑀𝑒𝑓𝑓
≅ 5) and the trend is the same 

whether 𝐶𝜀 is calculated from dissipation rate – equation (3.52) – or from length scales 

in Equation (3.55). This increase in 𝐶𝜀 also shows itself in fractal grids but with a 

smaller rise. Comparing to the constant 𝐶𝜀 value in the 𝑘 − 𝜀 model, deviations are 

clearly visible.  
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Figure 3-99 Evolution of 𝐶𝜀 on parallel planes to the grid (red curve) and along 

characteristic lines of (a) CSG, (b) FSG, (c) FCG, and (d) FIG. Blue dashed line is 

𝐶𝜀 = 0.164 as a constant value used in 𝑘 − 𝜀 model. 

Values of 𝐶𝜀 averaged on parallel planes are compared to above mentioned scaling 

models of Valente and Vassilicos [132] and Hearst and Lavoie [43] in Figure 3-100. 

Table 3-9Table 3-9 also provides information on the coefficients of equations (3.57) 

and (3.58) pertaining to those aforementioned scalings. Value of 𝑐1 and 𝑐2 coefficients 

are obtained in a region far from the “very-near-field”, where there exist sudden 

variations according to Figure 3-100. Numbers inside parentheses are error estimation 

of the coefficient for each grid in the scaling model.  
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Figure 3-100 Ratio of area averaged values of 𝐶𝜀 to the scaling proposed by Valente 

and Vassilicos (top) and the scaling proposed by Hearst and Lavoie (bottom), 

developing in the near-field region of conventional and fractal grids.  
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Table 3-9 Coefficient of equality of normalized dissipation rate scaling models in 

Equations (3.57) and (3.58). 

Grid CSG FSG FCG FIG 

𝑐1 = 𝐶𝜀 (
𝑅𝑒𝑀

0.5

𝑅𝑒𝜆
⁄ )⁄  

0.2944 

(±4%) 

0.0005 

(±3%) 

0.0004 

(±7%) 

0.0005 

(±7%) 

𝑐2 = 𝐶𝜀 (
𝑅𝑒𝑀

𝑅𝑒𝐿
⁄ )⁄  

0.005564 

(±8%) 

0.0157 

(±12%) 

0.0126 

(±17%) 

0.0178 

(±10%) 

 

The model proposed by Valente and Vassilicos gives better estimations that that of 

Hearst and Lavoie. Since there is an uptrend in coefficient 𝑐2 in the latter scaling, the 

magnitude of error goes beyond 10% according to Table 3-9. 

3.4.4 Kolmogorov microscale 

Kolmogorov microscale is used to characterize the smallest dissipative eddies. At this 

scale, the rate at which the kinetic energy is supplied must be equal to the rate at which 

it is depleted by viscosity. The parameters available to calculate the Kolmogorov 

length scale are the TKE dissipation rate and the fluid kinematic viscosity. 

 𝜂 = (
𝜈3

𝜀
)

1
4

 (3.59) 

and the corresponding Reynolds number (𝑅𝑒𝜂) is equal to one1. If the turbulence is 

isotropic, one can calculate the Kolmogorov microscale as [52], 

 𝜂 = (
𝜈2

15 〈(
𝜕𝑢
𝜕𝑥
)
2

〉

)

1
4

 (3.60) 

Variation of Kolmogorov microscale estimated in the near grid region is shown in 

Figure 3-101. 𝜂 is calculated using the mean dissipation rate calculated from 2-D PIV 

data, i.e. 〈𝜀〉2−𝐶 𝑃𝐼𝑉. The red line expresses the area averaged quantity (on x=cte 

planes). Changes along centerline are shown by filled dots in all grids. As it is 

mentioned before, the limited spatial resolution could introduce some error in the 

                                                 

1 By dimensional analysis one finds, 𝑅𝑒𝜂 = 𝜂𝑢𝜂 𝜈⁄ = 𝑙𝑅𝑒−
3

4𝑢′𝑅𝑒−
1

4 𝜈⁄ = 𝑅𝑒𝑅𝑒−1 = 1 
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calculation of Kolmogorov microscale because of velocity gradients included in any 

formulation of η (see dissipation rate part). As long as this error is considered as a part 

of overall measurement uncertainty, it can be neglected [46].  

Values of Kolmogorov microscale can be compared to that from [108], a DNS study 

of fractal generated turbulence (See Figure 2.2 there). The ranges of length scales in 

two different wind tunnels are presented in Table IV in [52]. The ranges of Taylor and 

Kolmogorov microscales, there, are in agreement with the ones calculated in this 

study. However, the range of 𝐿𝑢 is far larger than that in our case.  

 

Figure 3-101 Estimated Kolmogorov microscale (𝜂) averaged on x=cte planes (red 

line) and along characteristic lines for grids (a) CSG, (b) FSG, (c) FCG, and (d) FIG. 
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CHAPTER 4 
 

 

4 CONCLUSIONS 

 

 

 

The focus of this study is to experimentally investigate the near-field of turbulent flow 

generated by grids. For this purpose, one conventional as well as three different pattern 

fractal grids are designed and manufactured, and two-dimensional particle image 

velocimetry technique was used as the measurement method. Turbulence-generating 

grids are designed such a way that their effective mesh size and solidity are similar. 

This wat one can ensure the pressure drop induced by grids is more or less in the same 

order of magnitude. Thirty-five horizontal (X-Y) planes separated by five milimeter 

distance (different Z locations) are illuminated, and 1000 image pairs are taken. These 

planes are extended to more than a half of the grid in the spanwise (y) direction. This 

configuration is repeated for three more streamwise locations to reach almost 22 

effective mesh sizes downstream of grids; hence, an array of 4 × 35 two-dimensional 

PIV images is formed for each grid and analyzed to obtain instantaneous velocity data. 

Mean flow quantities (〈𝑈〉, 〈𝑉〉, 〈𝑢2〉, 〈𝑣2〉, 〈𝑢𝑣〉) are then calculated over each plane. 

With the help of symmetry in the geometry of conventional, fractal square and fractal 

circular grids, additional mean variables (〈𝑊〉, 〈𝑤2〉, 〈𝑢𝑤〉) are obtained on horizontal 

planes. Moreover, all components of mean vorticity 〈𝛺𝑖〉 and mean strain rate 〈𝑆𝑖𝑗〉, as 

well as turbulent kinetic energy (𝑘) are obtained. In the case of the Reynolds stress 

tensor, five out of six components are obtained (〈𝑣𝑤〉 is still unknown). By combining 

the improved two-dimensional mean (ensemble averaged) velocity fields, a three-

dimensional mean flow pattern is reconstructed for each turbulence-generating-grid. 

Mixing characteristics – those regarding to turbulence – in the near wake region of 

TGG’s are obtained by investigating the homogeneity and isotropy of the mean flow, 

turbulence intensity, and Reynolds shear stress. The static pressure drop across grids 

are obtained using a Pitot-static probe, and the efficiency of each TGG is quantified 

as the ratio of turbulence intensity/shear stress to the pressure loss.  
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To investigate turbulence characteristics in the near-field region of TGG’s, turbulent 

kinetic energy is obtained by assuming isotropic flow and diagonally symmetric flow. 

Nonconformities does exist mostly in the very near grid region (𝑥 ≤ 5𝑀𝑒𝑓𝑓) after 

which both approaches converge. Although defining a power law decay is not 

appropriate for the very near grid region, this is evaluated by fitting a power function 

to cross sectional area averaged TKE, and also along some characteristic lines of 

TGG’s. These generic lines are starting from the centerline, and the largest iterations 

of TGSS’s where the resolution is enough to resolve the wakes. Power decay is also 

compared to exponential decay. In fractal square and circular grids, TKE averaged on 

cross sections peaks at a similar downstream distance (
𝑥

𝑀𝑒𝑓𝑓
) but with a higher 

magnitude as well as steeper decay for FCG. For CSG a narrow production region is 

detected in the range 0.4 <
𝑥

𝑀𝑒𝑓𝑓
< 0.55. The production region for I grid is extended 

to about 𝑥 = 4𝑀𝑒𝑓𝑓.  

Mean dissipation rate of TKE is evaluated using 2-D PIV data. Although effective 

mesh size is not an appropriate length to scale the dissipation rate, CSG shows the 

fastest decay of dissipation rate among the grids. The rate of production of TKE in the 

near grid region is also calculated on 2-D PIV planes. CSG also shows the fastest 

decay in production rate among TGG’s, and the production of TKE is limited to 2-3 

mesh sizes. However, the magnitude of production reaches zero almost after 10-12 

mesh sizes downstream of all fractal grids. Different distributions of mean velocity, 

turbulence intensity, and TKE suggest that these grids can be used in applications 

where a specific level of turbulence at desired locations is required. As it is stated 

previously in the case of FSG, and shown here, fractal grids can be used as an efficient 

additional turbulence-generator in the near-field which is essential in applications 

where there is a limit of downstream distance, e.g., combustors and etc. Significant 

differences between the evolution of turbulence parameters along the centerline of 

TGG’s and averaged on the parallel planes to the grid, once again show the high 

geometry dependent flow in the very near grid region and the importance of the whole 

flow rather than the centerline.  

Integral length scales are important to us since they are measures of the size of the 

energetic eddies, the geometry of the turbulence generator and the scale at which 
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turbulence is forced. In this study longitudinal and lateral ILS’s are obtained by 

integrating velocity fluctuation correlation functions along streamwise and spanwise 

directions. For the specific case of LILS along x-axis (𝐿𝑢𝑢), a complete 3-D map is 

reconstructed to reveal the distribution and evolution of integral scales in the near-

field region. Evolution of 𝐿𝑢𝑢 along characteristic lines of TGG’s also shows this 

variances. Curve fits to the variations of area averaged 𝐿𝑢𝑢, shows good conformity 

with power function (𝐿𝑢𝑢 = 𝐴𝑥
𝐵). Also, it turns out that the largest LILS belong to 

FIG, mainly due to its completely different geometry, while both FSG and FCG force 

the flow to generate scales with the same lengths. LILS for CSG case follow the power 

function only in some mesh sizes (0 <
𝑥

𝑀𝑒𝑓𝑓
< 5) downstream and then it maintains a 

constant value of length scale.  

Taylor microscale is calculated in the near-field to evaluate the constancy of the 

dissipation rate coefficient (𝐶𝜀) assumed by Richardson forward cascade model. This 

model is used in RANS calculations. Results show that the near grid region of fractal 

grids, the ratio 
𝐿𝑢𝑢

𝜆
 first drops sharply and then increases by the order of about 50%. 

These results are obtained on the averaged cross section planes. However, a jet region 

along the centerline of FSG and FCG shows constant 
𝐿𝑢𝑢

𝜆
 until 10-15 

𝑥

𝑀𝑒𝑓𝑓
 and then it 

is increasing. Considering the region 
𝑥

𝑀𝑒𝑓𝑓
> 10, where local Reynolds number (𝑅𝑒𝜆) 

is always decreasing, 𝐶𝜀 results not to be a constant but increasing value. Kolmogorov 

microscale which characterizes the smallest dissipative-eddies is also estimated with 

the assumption of isotropic turbulence.  

For future works, some suggestions are listed below.  

Effects of additional iterations of fractal elements are studied numerically before on 

fractal square grids [61]. To get more insight into the interactions of smaller iterations 

as well as to compare existing results to the higher Reynolds number results it is 

suggested to study on these effects experimentally by designing proper fractal grids 

with square and circular patterns with 0th, 1st, 2nd, and 3rd iterations.  

In this study, dissipation rate is calculated with the assumption of local isotropy and 

based on 2-D PIV data. In fact, it is shown that in the near grid region, small scales 
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are still anisotropic to a large extent. Study on the level of influence of local anisotropy 

to the dissipation rate is suggested provided that the spatial resolution is enough to rely 

on the values of velocity gradient.  

It is shown in this study that the dissipation rate coefficient (𝐶𝜀) has some distribution 

in the near wake region and is not always constant as it is assumed in RANS based 

turbulence modeling. In fact, this validates the non-equilibrium condition in the near 

wake region of the grids as it was shown before through non-common decay rates of 

TKE. In addition to that, the divergence of Reynolds stress components from mean 

velocity strain rates can be investigated to check the Boussinesqu assumption.   

Upstream data is essential for testing of large eddy simulation (LES) codes. It is 

beneficial to obtain upstream data – typically with more samples and probably 

resolved in time – for good convergence of higher order statistics, to be used as input 

in LES simulations.  

Structure functions and scaling, energy spectra, as well as probability density 

functions can be studied in the near wake region. This requires lower spatial and 

temporal resolutions and therefore, a time-resolved PIV equipped with high-resolution 

camera(s). In this sense, Stereo/Tomographic PIV could also be carried out to study 

on the wake-jet interactions.  

A proper-orthogonal-decomposition (POD) analysis can be carried out on a time-

resolved data, to extract the information on dominating structures of the flow. This is 

beneficial to get insight into the underlying dynamics of TGG flows. For example, 

instantaneous turbulence structures contribute significantly to the first and second 

POD modes, i.e., TKE. Forcing dominating structures leads to controlling the 

turbulence. POD analysis would result in a much reduced computational cost to CFD 

modeling since almost all the necessary information can be extracted within some first 

modes (POD bases) to reproduce a close match to the original flow. 

 

 

  

 



 

157 

 

 

 

REFERENCES 
 

 

 

[1] L.F.G. Simmons, C. Salter, Experimental Investigation and Analysis of the 

Velocity Variations in Turbulent Flow, Proc. R. Soc. London. 106 (1934) 463–

477. doi:10.1103/RevModPhys.4.87. 

[2] G.I. Taylor, Statistical Theory of Turbulence, Proc. R. Soc. A Math. Phys. Eng. 

Sci. 151 (1935) 444–454. doi:10.1098/rspa.1935.0159. 

[3] G. Comte-Bellot, S. Corrsin, The use of a contraction to improve the isotropy 

of grid-generated turbulence, J. Fluid Mech. 25 (1966) 657. 

doi:10.1017/S0022112066000338. 

[4] H.S. Kang, S. Chester, C. Meneveau, Decaying turbulence in an active-grid-

generated flow and comparisons with large-eddy simulation, J. Fluid Mech. 480 

(2003) 129–160. doi:10.1017/S0022112002003579. 

[5] G.A. Voth, K. Satyanarayan, E. Bodenschatz, Lagrangian acceleration 

measurements at large Reynolds numbers, Phys. Fluids. 10 (1998) 2268. 

doi:10.1063/1.869748. 

[6] E.D. Siggia, Numerical study of small-scale intermittency in three-dimensional 

turbulence, J. Fluid Mech. 107 (1981) 375. doi:10.1017/S002211208100181X. 

[7] P. Lavoie, L. Djenidi, R. a. Antonia, Effects of initial conditions in decaying 

turbulence generated by passive grids, J. Fluid Mech. 585 (2007) 395. 

doi:10.1017/S0022112007006763. 

[8] A. Thormann, C. Meneveau, Decay of homogeneous, nearly isotropic 

turbulence behind active fractal grids, Phys. Fluids. 26 (2014). 

doi:10.1063/1.4865232. 

[9] I. Wygnanski, F. Champagne, B. Marasli, On the large-scale structures in two-

dimensional, small-deficit, turbulent wakes, J. Fluid Mech. 168 (1986) 31–71. 

doi:10.1017/S0022112086000289. 

[10] W.K. George, The self-preservation of turbulent flows and its relation to initial 

conditions and coherent structures, Adv. Turbul. (1989) 39–73. 



 

158 

 

[11] Y. Zhou, R.A. Antonia, Memory effects in a turbulent plane wake, Exp. Fluids. 

19 (1995) 112–120. doi:10.1007/BF00193857. 

[12] P.-Å. Krogstad, P. Davidson, Freely-Decaying, Homogeneous Turbulence 

Generated by Multi-scale Grids, J. Fluid Mech. 032042 (2011) 417–434. 

doi:10.1088/1742-6596/318/3/032042. 

[13] P.A. Krogstad, P.A. Davidson, Near-field investigation of turbulence produced 

by multi-scale grids, Phys. Fluids. 24 (2012). doi:10.1063/1.3693132. 

[14] R. Gomes-Fernandes, B. Ganapathisubramani, J.C. Vassilicos, Particle image 

velocimetry study of fractal-generated turbulence, J. Fluid Mech. (2012) 1–31. 

doi:10.1017/jfm.2012.394. 

[15] J.I. Cardesa, T.B. Nickels, J.R. Dawson, 2D PIV measurements in the near field 

of grid turbulence using stitched fields from multiple cameras, Exp. Fluids. 52 

(2012) 1611–1627. doi:10.1007/s00348-012-1278-4. 

[16] G. Cafiero, S. Discetti, T. Astarita, Flow field features of the near-wake of jets 

with fractal inserts, 115103 (2014) 7–10. doi:10.1063/1.4935185. 

[17] R. Gomes-Fernandes, B. Ganapathisubramani, J.C.C. Vassilicos, The energy 

cascade in near-field non-homogeneous non-isotropic turbulence, J. Fluid 

Mech. 771 (2015) 676–705. doi:10.1017/jfm.2015.201. 

[18] L. Gan, P.A. Krogstad, Evolution of turbulence and in-plane vortices in the near 

field flow behind multi-scale planar grids, Phys. Fluids. 28 (2016). 

doi:10.1063/1.4960025. 

[19] K. Nagata, T. Saiki, Y. Sakai, Y. Ito, K. Iwano, Effects of grid geometry on 

non-equilibrium dissipation in grid turbulence, Phys. Fluids. 29 (2017). 

doi:10.1063/1.4973416. 

[20] M. Hideharu, Realization of a large-scale turbulence field in a small wind 

tunnel, Fluid Dyn. Res. 8 (1991) 53–64. doi:10.1016/0169-5983(91)90030-M. 

[21] R.J. Hearst, Fractal, Classical, and Active Grid Turbulence: From Production 

to Decay, University of Toronto, 2015. 

[22] Hurst D. and Vassilicos J. C., Scalings and decay of fractal-generated 

turbulence, Phys. Fluids. 19 (2007). doi:10.1063/1.2676448. 

[23] P. Saffman, The large-scale structure of homogeneous turbulence, J. Fluid 

Mech. 27 (1967) 581–593. http://authors.library.caltech.edu/10122/. 

[24] J.C.C. Bennett, S. Corrsin, Small Reynolds number nearly isotropic turbulence 



 

159 

 

in a straight duct and a contraction, Phys. Fluids. 21 (1978) 2129. 

doi:10.1063/1.862168. 

[25] P.A. Krogstad, P.A. Davidson, Is grid turbulence Saffman turbulence?, J. Fluid 

Mech. 642 (2010) 373. doi:10.1017/S0022112009991807. 

[26] N.A. Buchmann, C. Atkinson, J. Soria, Tomographic and Stereoscopic PIV 

measurements of Grid generated Homogeneous Turbulence, Int. Symp. Appl. 

Laser Tech. to Fluid Mech. (2010) 5–8. 

[27] F. Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1919) 157–179. 

[28] S. Laizet, J.C. Vassilicos, Multiscale Generation of Turbulence, J. Multiscale 

Model. 01 (2009) 177–196. doi:10.1142/S1756973709000098. 

[29] Koch Snowflake, (n.d.). https://en.wikipedia.org/wiki/Koch_snowflake. 

[30] J.C. Queiros-Conde, D. Vassilicos, Turbulent wakes of 3-D fractal grids, in: 

J.C. Vassilicos (Ed.), Intermittency Turbul. Flows, Cambridge University 

Press, 2001. 

[31] A. Staicu, B. Mazzi, J.C. Vassilicos, W. van de Water, Turbulent wakes of 

fractal objects., Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 67 (2003) 066306. 

doi:10.1103/PhysRevE.67.066306. 

[32] B. Mazzi, F. Okkels, J.C. Vassilicos, A shell-model approach to fractal-induced 

turbulence, Eur. Phys. J. B. 28 (2002) 243–251. doi:10.1140/epjb/e2002-

00226-6. 

[33] L. Biferale, M. Cencini, A.S. Lanotte, M. Sbragaglia, F. Toschi, Anomalous 

scaling and universality in hydrodynamic systems with power-law forcing, New 

J. Phys. 6 (2004) 37–37. doi:10.1088/1367-2630/6/1/037. 

[34] B. Mazzi, J.C. Vassilicos, Fractal-generated turbulence, J. Fluid Mech. 502 

(2004) 65–87. doi:10.1017/S0022112003007249. 

[35] P. Valente, C. Vassilicos, The decay of turbulence generated by a class of multi-

scale grids, J. Fluid Mech. 687 (2011) 300–340. doi:10.1017/jfm.2011.353. 

[36] P.C. Valente, J.C. Vassilicos, Comment on “Dissipation and decay of fractal-

generated turbulence” [Phys. Fluids 19, 105108 (2007)], Phys. Fluids. 23 

(2011) 10–12. doi:10.1063/1.3657088. 

[37] S. Laizet, J.C. Vassilicos, Fractal space-scale unfolding mechanism for energy-

efficient turbulent mixing, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 86 

(2012) 1–11. doi:10.1103/PhysRevE.86.046302. 



 

160 

 

[38] P.C. Valente, J.C. Vassilicos, Dependence of decaying homogeneous isotropic 

turbulence on inflow conditions, Phys. Lett. Sect. A Gen. At. Solid State Phys. 

376 (2012) 510–514. doi:10.1016/j.physleta.2011.11.040. 

[39] K. Nagata, Y. Sakai, T. Inaba, H.H. Suzuki, O. Terashima, H.H. Suzuki, 

Turbulence structure and turbulence kinetic energy transport in 

multiscale/fractal-generated turbulence, Phys. Fluids. 25 (2013). 

doi:10.1063/1.4811402. 

[40] S. Discetti, I.B. Ziskin, T. Astarita, R.J. Adrian, K.P. Prestridge, PIV 

measurements of anisotropy and inhomogeneity in decaying fractal generated 

turbulence, Fluid Dyn. Res. 45 (2013) 061401. doi:10.1088/0169-

5983/45/6/061401. 

[41] R.J. Hearst, P. Lavoie, Scale-by-scale energy budget in fractal element grid-

generated turbulence, J. Turbul. 15 (2014) 540–554. 

doi:10.1080/14685248.2014.916041. 

[42] P.C. Valente, J.C. Vassilicos, The non-equilibrium region of grid-generated 

decaying turbulence, J. Fluid Mech. 744 (2014) 5–37. doi:10.1017/jfm.2014.41. 

[43] R.J. Hearst, P. Lavoie, Decay of turbulence generated by a square-fractal-

element grid, J. Fluid Mech. 741 (2014) 567–584. doi:10.1017/jfm.2013.684. 

[44] R.J. Hearst, P. Lavoie, Velocity derivative skewness in fractal-generated, non-

equilibrium grid turbulence, Phys. Fluids. 27 (2015). doi:10.1063/1.4926356. 

[45] G. Melina, P.J.K. Bruce, J.C. Vassilicos, Vortex shedding effects in grid-

generated turbulence, Phys. Rev. Fluids. 1 (2016) 044402. 

doi:10.1103/PhysRevFluids.1.044402. 

[46] J. Nedić, S. Tavoularis, Measurements of passive scalar diffusion downstream 

of regular and fractal grids, J. Fluid Mech. 800 (2016) 358–386. 

doi:10.1017/jfm.2016.385. 

[47] R.J. Hearst, P. Lavoie, Effects of multi-scale and regular grid geometries on 

decaying turbulence, J. Fluid Mech. 803 (2016) 528–555. 

doi:10.1017/jfm.2016.515. 

[48] S. Weitemeyer, N. Reinke, J. Peinke, M. Hölling, Multi-scale generation of 

turbulence with fractal grids and an active grid, Fluid Dyn. Res. 45 (2013) 

061407. doi:10.1088/0169-5983/45/6/061407. 

[49] P. Baj, P.J.K. Bruce, O.R.H. Buxton, The triple decomposition of a fluctuating 



 

161 

 

velocity field in a multiscale flow, Phys. Fluids. 27 (2015) 1–43. 

doi:10.1063/1.4923744. 

[50] R. Gomes-Fernandes, B. Ganapathisubramani, J.C. Vassilicos, Evolution of the 

velocity-gradient tensor in a spatially developing turbulent flow, J. Fluid Mech. 

756 (2014) 252–292. doi:10.1017/jfm.2014.452. 

[51] E.R. Seoud, C.J. Vassilicos, Dissipation and decay of fractal-generated 

turbulence, Phys. Fluids. 19 (2007). doi:10.1063/1.2795211. 

[52] N. Mazellier, J.C. Vassilicos, Turbulence without Richardson-Kolmogorov 

cascade, Phys. Fluids. 22 (2010) 1–25. doi:10.1063/1.3453708. 

[53] R. Stresing, J. Peinke, R.E. Seoud, J.C. Vassilicos, Defining a new class of 

turbulent flows, Phys. Rev. Lett. 104 (2010) 1–4. 

doi:10.1103/PhysRevLett.104.194501. 

[54] H. Suzuki, K. Nagata, Y. Sakai, R. Ukai, High-Schmidt-number scalar transfer 

in regular and fractal grid turbulence, Phys. Scr. T142 (2010) 014069. 

doi:10.1088/0031-8949/2010/T142/014069. 

[55] S. Discetti, I.B. Ziskin, R.J. Adrian, K. Prestridge, PIV study of fractal grid 

turbulence, 9Th Int. Symp. Part. Image Velocim. (2011) 15–18. 

[56] S. Laizet, J. Nedić, J.C. Vassilicos, The spatial origin of −5/3 spectra in grid-

generated turbulence, Phys. Fluids. 27 (2015) 065115. doi:10.1063/1.4923042. 

[57] K. Nagata, H. Suzuki, Y. Sakai, T. Hayase, T. Kubo, Direct numerical 

simulation of turbulent mixing in regular and fractal grid turbulence, Phys. Scr. 

T142 (2010) 014065. doi:10.1088/0031-8949/2008/T132/014054. 

[58] S. Laizet, E. Lamballais, J.C. Vassilicos, A numerical strategy to combine high-

order schemes, complex geometry and parallel computing for high resolution 

DNS of fractal generated turbulence, Comput. Fluids. 39 (2010) 471–484. 

doi:10.1016/j.compfluid.2009.09.018. 

[59] S. Laizet, J.C. Vassilicos, DNS of fractal-generated turbulence, Flow, Turbul. 

Combust. 87 (2011) 673–705. doi:10.1007/s10494-011-9351-2. 

[60] S. Laizet, J.C. Vassilicos, C. Cambon, Interscale energy transfer in decaying 

turbulence and vorticity–strain-rate dynamics in grid- generated turbulence, 

Fluid Dyn. Res. 45 (2013) 61408. doi:10.1088/0169-5983/45/6/061408. 

[61] Y. Zhou, K. Nagata, Y. Sakai, H. Suzuki, Y. Ito, O. Terashima, T. Hayase, 

Relevance of turbulence behind the single square grid to turbulence generated 



 

162 

 

by regular- and multiscale-grids, Phys. Fluids. 26 (2014). 

doi:10.1063/1.4890746. 

[62] S. Laizet, J.C. Vassilicos, Stirring and scalar transfer by grid-generated 

turbulence in the presence of a mean scalar gradient, J. Fluid Mech. 764 (2015) 

52–75. doi:10.1017/jfm.2014.695. 

[63] G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge Science 

Classics), Cambridge University Press, 1982. 

http://www.amazon.com/Homogeneous-Turbulence-Cambridge-Science-

Classics/dp/0521041171 (accessed August 10, 2017). 

[64] S. Corrsin, Turbulence: Experimental Methods, in: Strömungsmechanik II / 

Fluid Dyn. II. Ser. Handb. Der Phys. / Encycl. Physics, ISBN 978-3-662-10110-

0. Springer Berlin Heidelb. (Berlin, Heidelberg), Ed. by C. Truesdell, Vol. 3 / 

8 / 2, Pp. 524-590, 1963: pp. 524–590. doi:10.1007/978-3-662-10109-4_4. 

[65] K. Bai, C. Meneveau, J. Katz, Near-Wake Turbulent Flow Structure and Mixing 

Length Downstream of a Fractal Tree, Boundary-Layer Meteorol. 143 (2012) 

285–308. doi:10.1007/s10546-012-9700-2. 

[66] J.I. Cardesa-Dueñas, T.B. Nickels, J.R. Dawson, Experimental study of 

homogenisation in grid turbulence, J. Phys. Conf. Ser. 318 (2011) 032041. 

doi:10.1088/1742-6596/318/3/032041. 

[67] T. Earl, L. Thomas, S. Cochard, R. Ben-Salah, B. Tremblais, L. David, 

Volumetric Measurements by Tomographic PIV of Grid Generated Turbulence 

in an Open Channel Flow, in: Eighth Int. Symp. Turbul. Shear Flow Phenom., 

France, 2013: pp. 1–6. 

[68] W.S.J. Uijttewaal, G.H. Jirka, Grid turbulence in shallow flows, J. Fluid Mech. 

489 (2003) 325–344. doi:10.1017/S0022112003005020. 

[69] G. Cafiero, S. Discetti, T. Astarita, Heat transfer enhancement of impinging jets 

with fractal-generated turbulence, Int. J. Heat Mass Transf. 75 (2014) 173–183. 

doi:10.1016/j.ijheatmasstransfer.2014.03.049. 

[70] P. Geipel, K.H.H. Goh, R.P. Lindstedt, Fractal-generated turbulence in opposed 

jet flows, Flow, Turbul. Combust. 85 (2010) 397–419. doi:10.1007/s10494-

010-9288-x. 

[71] L. Djenidi, Lattice-Boltzmann simulation of grid-generated turbulence, J. Fluid 

Mech. 552 (2006) 13. doi:10.1017/S002211200600869X. 



 

163 

 

[72] Ö. Ertunç, N. Özyilmaz, H. Lienhart, F. Durst, K. Beronov, Homogeneity of 

turbulence generated by static-grid structures, J. Fluid Mech. 654 (2010) 473–

500. doi:10.1017/S0022112010000479. 

[73] G.R. Coffey, C. J.; Hunt, Mixing effectiveness of fractal grids for inline static 

mixers, Proof Concept …. (2007). 

http://workspace.imperial.ac.uk/tmfc/public/proof_FG.PDF. 

[74] Amalgamated Research LLC (ARi), (n.d.). http://www.arifractal.com/ 

(accessed March 22, 2017). 

[75] Fractal Blade Fluid Mixers, (n.d.). 

https://www.imperialinnovations.co.uk/industry/available-

technologies/fractal-blade-fluid-mixers/ (accessed January 22, 2018). 

[76] F.C.G.A. Nicolleau, S.M.M. Salim, A.F. Nowakowski, Experimental study of 

a turbulent pipe flow through a fractal plate, J. Turbul. 12 (2011) N44. 

doi:10.1080/14685248.2011.637046. 

[77] B. Manshoor, F.C.G.A.C.G.A. Nicolleau, S.B.M.B.M. Beck, The fractal flow 

conditioner for orifice plate flow meters, Flow Meas. Instrum. 22 (2011) 208–

214. doi:10.1016/j.flowmeasinst.2011.02.003. 

[78] J. Nedic, B. Ganapathisubramani, J.C. Vassilicos, J. Borée, L.E. Brizzi, A. 

Spohn, J. Nedić, B. Ganapathisubramani, J.C. Vassilicos, J. Borée, L.E. Brizzi, 

A. Spohn, Aeroacoustic Performance of Fractal Spoilers, AIAA J. 50 (2012) 

2695–2710. doi:10.2514/1.J051387. 

[79] J. Nedić, B. Ganapathisubramani, J.C. Vassilicos, Drag and near wake 

characteristics of flat plates normal to the flow with fractal edge geometries, 

Fluid Dyn. Res. 45 (2013) 061406. doi:10.1088/0169-5983/45/6/061406. 

[80] A.A. Verbeek, T.W.F.M. Bouten, G.G.M. Stoffels, B.J. Geurts, T.H. van der 

Meer, Fractal turbulence enhancing low-swirl combustion, Combust. Flame. 

162 (2015) 129–143. doi:10.1016/j.combustflame.2014.07.003. 

[81] T. Sponfeldner, N. Soulopoulos, F. Beyrau, Y. Hardalupas, A.M.K.P. Taylor, 

J.C. Vassilicos, The structure of turbulent flames in fractal- and regular-grid-

generated turbulence, Combust. Flame. 162 (2015) 3379–3393. 

doi:10.1016/j.combustflame.2015.06.004. 

[82] K.H.H. Goh, P. Geipel, R.P. Lindstedt, Lean premixed opposed jet flames in 

fractal grid generated multiscale turbulence, Combust. Flame. 161 (2014) 



 

164 

 

2419–2434. doi:10.1016/j.combustflame.2014.03.010. 

[83] S.M. Mcclure, Experimental investgation of turbulent flow induced by new-

generation wind fences with multi-scale fractal structure, (2016) 88. 

[84] Ş. Çoşkun, H.A. Hazaveh, O. Uzol, Ö. Kurç, Experimental investigation of 

wake flow field and wind comfort characteristics of fractal wind fences, J. Wind 

Eng. Ind. Aerodyn. 168 (2017) 32–47. doi:10.1016/j.jweia.2017.05.001. 

[85] D.M. Calamas, D.G. Dannelley, G.H. Keten, Experimental Effectiveness of 

Sierpinski Carpet Fractal Fins in a Natural Convection Environment, J. Heat 

Transfer. 139 (2017) 092501. doi:10.1115/1.4036595. 

[86] A.Y. Alharbi, A Study of Micro-Scale, Fractal-Like Branching Flow Networks 

for Reduced Pumping Power and Improved Temperature Uniformity, Oregon 

State University, 2001. 

[87] D.B. Heymann, On the Optimization of Performance in Fractal-like Branching 

Microchannel Heat Transfer Devices, Oregon State University, 2010. 

[88] Fractal Antenna Systems: The World’s Smallest Wideband and Multiband 

Antennas, (n.d.). http://www.fractenna.com/ (accessed March 22, 2017). 

[89] Fractus Antennas - miniature antennas for smartphones, wireless and IoT 

Newserver, (n.d.). http://www.fractusantennas.com/ (accessed March 22, 

2017). 

[90] S. Laizet, J.C. Vassilicos, C. Cambon, Interscale energy transfer in decaying 

turbulence and vorticity–strain-rate dynamics in grid- generated turbulence 

Interscale energy transfer in decaying turbulence and vorticity–strain-rate 

dynamics in grid-generated turbulence, Fluid Dyn. Res. 45 (2013) 61408. 

doi:10.1088/0169-5983/45/6/061408. 

[91] S. Chester, C. Meneveau, M.B. Parlange, Modeling turbulent flow over fractal 

trees with renormalized numerical simulation, J. Comput. Phys. 225 (2007) 

427–448. doi:10.1016/j.jcp.2006.12.009. 

[92] S. Chester, C. Meneveau, Renormalized numerical simulation of flow over 

planar and non-planar fractal trees, Environ. Fluid Mech. 7 (2007) 289–301. 

doi:10.1007/s10652-007-9026-7. 

[93] N. Mazellier, J.C. Vassilicos, The turbulence dissipation constant is not 

universal because of its universal dependence on large-scale flow topology, 

Phys. Fluids. 20 (2008). doi:10.1063/1.2832778. 



 

165 

 

[94] P.E. Roach, The generation of nearly isotropic turbulence by means of grids, 

Int. J. Heat Fluid Flow. 8 (1987) 82–92. doi:10.1016/0142-727X(87)90001-4. 

[95] A. Sciacchitano, Uncertainty quantification in particle image velocimetry, Delft 

University of Technology, 2014. 

[96] A. Sciacchitano, B. Wieneke, PIV uncertainty propagation, Meas. Sci. Technol. 

27 (2016). doi:10.1088/0957-0233/27/8/084006. 

[97] C. Brossard, J.-C. Monnier, P. Barricau, F.-X. Vandernoot, Y. Le Sant, F. 

Champagnat, G. Le Besnerais, Principles and applications of particle image 

velocimetry, Onera AerospaceLab J. AL01-03 (2009) 1–11. 

[98] A. Sciacchitano, B. Wieneke, F. Scarano, PIV uncertainty quantification by 

image matching, Meas. Sci. Technol. 24 (2013) 045302. doi:10.1088/0957-

0233/24/4/045302. 

[99] J.J. Charonko, P.P. Vlachos, Estimation of uncertainty bounds for individual 

particle image velocimetry measurements from cross-correlation peak ratio, 

Meas. Sci. Technol. 24 (2013) 065301. doi:10.1088/0957-0233/24/6/065301. 

[100] M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical 

Guide, Springer Berlin, 2002. http://www.amazon.com/dp/3540636838 

(accessed April 20, 2018). 

[101] G. Northem, G. Anderson, Survey of supersonic combustion ramjet research at 

Langley, in: 24th Aerosp. Sci. Meet., 1986. doi:10.2514/6.1986-159. 

[102] J.A. Schetz, F.S. Billing, Studies of scramjet flowfields, in: 43rd AIAA Aerosp. 

Sci. Conf., 1987. 

[103] H. Suzuki, K. Nagata, Y. Sakai, Y. Hasegawa, Fractal analysis of turbulent 

mixing in fractal-generated turbulence by planar laser-induced fluorescence, 

Phys. Scr. 88 (2013). doi:10.1088/0031-8949/2013/T155/014062. 

[104] C.C. LIN, W.H. REID, Turbulent Flow, Theoretical Aspects., in: Sel. Pap. C. 

C. Lin with Comment., WORLD SCIENTIFIC, 1987: pp. 175–260. 

doi:10.1142/9789814415651_0014. 

[105] J.C.C.C. Isaza, R. Salazar, Z. Warhaft, On grid-generated turbulence in the 

near- and far field regions, J. Fluid Mech. 753 (2014) 402–426. 

doi:10.1017/jfm.2014.375. 

[106] H. (Hendrik) Tennekes, J.L. (John L. Lumley, A first course in turbulence, MIT 

Press, 1972. https://mitpress.mit.edu/books/first-course-turbulence (accessed 



 

166 

 

March 9, 2018). 

[107] S.B. Pope, Turbulent Flows, 1st ed., cambridge university press, Cambridge, 

2000. doi:10.1088/1468-5248/1/1/702. 

[108] Y. Zhou, Direct Numerical Simulations on Grid-Generated Turbulence, 

Nagoya University, 2015. 

[109] R.A. Antonia, T. Zhou, Y. Zhu, Three-component vorticity measurements in a 

turbulent grid flow, J. Fluid Mech. 374 (1998) 29–57. 

doi:10.1017/S0022112098002547. 

[110] H.L. Grant, I.C.T. Nisbet, The inhomogeneity of grid turbulence, J. Fluid Mech. 

2 (1957) 263–272. doi:10.1017/S0022112057000117. 

[111] A.L. Kistler, T. Vrebalovich, Grid turbulence at large Reynolds numbers, J. 

Fluid Mech. 26 (1966) 37. doi:10.1017/S0022112066001071. 

[112] E.M. Laws, J.L. Livesey, Flow Through Screens, Annu. Rev. Fluid Mech. 10 

(1978) 247–266. doi:10.1146/annurev.fl.10.010178.001335. 

[113] R.A. Pinker, M. V. Herbert, Pressure loss Associated with Compressible flow 

through Square-Mesh wire Gauzes, J. Mech. Eng. Sci. 9 (1967) 11–23. 

doi:10.1243/JMES_JOUR_1967_009_004_02. 

[114] A. Omilion, J. Turk, W. Zhang, Turbulence Enhancement by Fractal Square 

Grids : Effects of Multiple Fractal Scales, (2018) 1–16. 

doi:10.3390/fluids3020037. 

[115] T. van Karman, L. Howarth, On the statistical theory of isotropic turbulence, 

Proc. R. Soc. Lond. A. Math. Phys. Sci. 164 (1938) 192–215. 

http://rspa.royalsocietypublishing.org/content/164/917/192 (accessed 

September 2, 2017). 

[116] M. Gad-El-Hak, S. Corrsin, Measurements of the nearly isotropic turbulence 

behind a uniform jet grid, J. Fluid Mech. 62 (1974) 115. 

doi:10.1017/S0022112074000607. 

[117] M.S. Mohamed, J.C. Larue, The decay power law in grid-generated turbulence, 

J. Fluid Mech. 219 (1990) 195. doi:10.1017/S0022112090002919. 

[118] P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coherent 

Structures, Dynamical Systems and Symmetry, Cambridge University Press, 

Cambridge, 2012. doi:10.1017/CBO9780511919701. 

[119] J.O. Hinze, Turbulence, McGraw-Hill, 1975. 



 

167 

 

[120] T. Tanaka, J.K. Eaton, A correction method for measuring turbulence kinetic 

energy dissipation rate by PIV, Exp. Fluids. 42 (2007) 893–902. 

doi:10.1007/s00348-007-0298-y. 

[121] A.A. (Albert A. Townsend, The structure of turbulent shear flow, Cambridge 

University Press, 1976. https://catalogue.nla.gov.au/Record/1822067 (accessed 

March 9, 2018). 

[122] S. Corrsin, S. Corrsin, Estimates of the Relations between Eulerian and 

Lagrangian Scales in Large Reynolds Number Turbulence, J. Atmos. Sci. 20 

(1963) 115–119. doi:10.1175/1520-

0469(1963)020<0115:EOTRBE>2.0.CO;2. 

[123] K.R. Sreenivasan, On the scaling of the turbulence energy dissipation rate, 

Phys. Fluids. 27 (1984) 1048. doi:10.1063/1.864731. 

[124] C.M. White, A.N. Karpetis, K.R. Sreenivasan, High-Reynolds-number 

turbulence in small apparatus: Grid turbulence in cryogenic liquids, J. Fluid 

Mech. 452 (2002) 189–197. doi:10.1017/S0022112001007194. 

[125] P.K. Yeung, S.B. Pope, Lagrangian statistics from direct numerical simulations 

of isotropic turbulence, J. Fluid Mech. 207 (1989) 531. 

doi:10.1017/S0022112089002697. 

[126] J. De Jong, L. Cao, S.H. Woodward, J.P.L.C. Salazar, L.R. Collins, H. Meng, 

Dissipation rate estimation from PIV in zero-mean isotropic turbulence, Exp. 

Fluids. 46 (2009) 499–515. doi:10.1007/s00348-008-0576-3. 

[127] F.H. Champagne, V.G. Harris, S. Corrsin, Experiments on nearly homogeneous 

turbulent shear flow, J. Fluid Mech. 41 (1970) 81. 

doi:10.1017/S0022112070000538. 

[128] P. Lavoie, G. Avallone, F. De Gregorio, G.P. Romano, R.A. Antonia, Spatial 

resolution of PIV for the measurement of turbulence, Exp. Fluids. 43 (2007) 

39–51. doi:10.1007/s00348-007-0319-x. 

[129]  et al. Nagata, K., Direct numerical simulation of turbulence characteristics 

generated by fractal grids, Int. Rev. Phys. 2 (2008) 400–409. 

[130] L.F. Richardson, Weather Prediction by Numerical Process, Cambridge 

University Press, Cambridge, 1922. 

[131] K. Sreenivasan, The energy dissipation rate in turbulent shear flows, in: S.M. 

Deshpande and A. Prabhu and K.R. Sreenivasan (Ed.), Dev. Fluid Mech. 



 

168 

 

Aerosp. Eng., Interline Publishers, Viswanath, Bangalore, 1995: pp. 159–190. 

https://nyuscholars.nyu.edu/en/publications/the-energy-dissipation-rate-in-

turbulent-shear-flows (accessed September 6, 2017). 

[132] P.C. Valente, J.C. Vassilicos, Universal dissipation scaling for nonequilibrium 

turbulence, Phys. Rev. Lett. 108 (2012) 1–5. 

doi:10.1103/PhysRevLett.108.214503. 

[133] H. Versteeg, Malalasekera W., An introduction to computational fluid 

dynamics. The finite volume method itle, 1995. 

[134] J.C. Vassilicos, Dissipation in Turbulent Flows, Annu. Rev. Fluid Mech. 47 

(2015) 95–114. doi:10.1146/annurev-fluid-010814-014637. 



 

169 

 

 

 

APPENDICES 
 

 

(A) Budget for turbulent kinetic energy 

 

 

Budget for turbulent kinetic energy is the equation for kinetic energy of the velocity 

fluctuations. What will come next, is the tedious exercise of obtaining this equation. 

We will start with the famous Navier-Stokes equation; Continuity and momentum 

equations in tensorial form read, 

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (App.1) 

and  

 
𝜕𝑢𝑗

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑃

𝜕𝑥𝑗
− 𝑔𝛿𝑖3 + 𝜈∇

2𝑢𝑗 (App.2) 

then, apply Reynolds decomposition, i.e.  

 
𝑢𝑖 = 𝑢𝑖 + 𝑢

′
𝑖 

𝑃 = 𝑃 + 𝑃′ 
(App.3) 

Continuity equation (App.1) will then become, 

 

𝜕

𝜕𝑥𝑖
(𝑢𝑖 + 𝑢

′
𝑖) = 0 →

𝜕𝑢𝑖
𝜕𝑥𝑖

+
𝜕𝑢′𝑖
𝜕𝑥𝑖

= 0
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑛𝑔
→        

𝜕𝑢𝑖
𝜕𝑥𝑖

+ 0

= 0 →
𝜕𝑢𝑖
𝜕𝑥𝑖

=
𝜕𝑢′𝑖
𝜕𝑥𝑖

= 0 

(App.4) 

Momentum equation (App.2) also becomes, 
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𝜕

𝜕𝑡
(𝑢𝑗 + 𝑢

′
𝑗) +

𝜕

𝜕𝑥𝑖
(𝑢𝑖  𝑢𝑗 + 𝑢𝑖𝑢′𝑗 + 𝑢′𝑖𝑢𝑗 + 𝑢′𝑖𝑢′𝑗)

= −
1

𝜌

𝜕

𝜕𝑥𝑗
(𝑃 + 𝑃′) + 𝜈∇2(𝑢𝑖 + 𝑢

′
𝑖) + 0 

(App.5) 

Where body forces due to gravity are ignored. Averaging (App.5) gives:  

 
𝜕

𝜕𝑡
(𝑢𝑗) +

𝜕

𝜕𝑥𝑖
(𝑢𝑖  𝑢𝑗 + 𝑢′𝑖𝑢′𝑗) = −

1

𝜌

𝜕

𝜕𝑥𝑗
(𝑃) + 𝜈∇2(𝑢𝑖) (App.6) 

Remainder terms – i.e., subtracting (App.6) from (App.5) – would be, 

 

𝜕

𝜕𝑡
(𝑢′𝑗) +

𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑢′𝑗 + 𝑢′𝑖𝑢𝑗 + 𝑢′𝑖𝑢′𝑗 − 𝑢′𝑖𝑢′𝑗)

= −
1

𝜌

𝜕

𝜕𝑥𝑗
(𝑃′) + 𝜈∇2(𝑢′𝑗) 

(App.7) 

In which, −𝑢′𝑖𝑢′𝑗  is the Reynolds stress.  

Turbulent kinetic energy is defined as, 

 𝑘 =
1

2
(𝑢′𝑗𝑢′𝑗) (App.8) 

To obtain the equation for turbulent kinetic energy we need to search for the velocity 

fluctuation term (𝑢′𝑗) then. Such a term can be found in (App.7). Multiplying (App.7) 

by 𝑢′𝑗 gives, 

 

𝑢′𝑗
𝜕

𝜕𝑡
(𝑢′𝑗) + 𝑢

′
𝑗

𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑢′𝑗 + 𝑢′𝑖𝑢𝑗 + 𝑢′𝑖𝑢′𝑗 − 𝑢′𝑖𝑢′𝑗)

= −
1

𝜌
𝑢′𝑗

𝜕

𝜕𝑥𝑗
(𝑃′) + 𝜈𝑢′𝑗∇

2(𝑢′𝑗) 

(App.9) 

Rearranging (App.9): 
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𝜕

𝜕𝑡
(
1

2
𝑢′𝑗𝑢

′
𝑗) + 𝑢′𝑗

𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑢′𝑗 + 𝑢′𝑖𝑢𝑗 + 𝑢′𝑖𝑢′𝑗 − 𝑢′𝑖𝑢′𝑗)

⏞                        
𝐴

= −
1

𝜌

𝜕

𝜕𝑥𝑗
(𝑢′𝑗𝑃

′) + 𝜈
𝜕

𝜕𝑥𝑖
(𝑢′𝑗

𝜕𝑢′𝑗

𝜕𝑥𝑖
)

− 𝜈 (
𝜕𝑢′𝑗

𝜕𝑥𝑖
)

2

 

(App.10) 

keeping in mind that,  

 

−
1

𝜌
𝑢′𝑗

𝜕

𝜕𝑥𝑗
(𝑃′) = −

1

𝜌
[
𝜕

𝜕𝑥𝑗
(𝑢′𝑗𝑃

′) − 𝑃′
𝜕𝑢′𝑗

𝜕𝑥𝑗

⏞
=0

]

= −
1

𝜌

𝜕

𝜕𝑥𝑗
(𝑢′𝑗𝑃

′) 

(App.11) 

and  

 

𝜈𝑢′𝑗∇
2(𝑢′𝑗) = 𝜈𝑢

′
𝑗

𝜕

𝜕𝑥𝑖
(
𝜕𝑢′𝑗

𝜕𝑥𝑖
)

= 𝜈 [
𝜕

𝜕𝑥𝑖
(𝑢′𝑗

𝜕𝑢′𝑗

𝜕𝑥𝑖
) − (

𝜕𝑢′𝑗

𝜕𝑥𝑖
)(
𝜕𝑢′𝑗

𝜕𝑥𝑖
)] 

(App.12) 

Arranging of triple terms (A) using continuity equation (
𝜕𝑢𝑖

𝜕𝑥𝑖
=
𝜕𝑢𝑖

′

𝜕𝑥𝑖
= 0) repeatedly,  

 

(𝐴): 𝑢′𝑗
𝜕

𝜕𝑥𝑖
(𝑢𝑖 ⃖  𝑢′𝑗 + 𝑢′𝑖 ⃖   𝑢𝑗 + 𝑢′𝑖 ⃖   𝑢′𝑗 − 𝑢′𝑖𝑢′𝑗)

= 𝑢′𝑗      𝑢𝑖
𝜕𝑢′𝑗

𝜕𝑥𝑖
+ 𝑢′𝑗𝑢′𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑢′𝑗      𝑢′𝑖

𝜕𝑢′𝑗

𝜕𝑥𝑖

− 𝑢′𝑗
𝜕

𝜕𝑥𝑖
(𝑢′𝑖𝑢′𝑗) 

(App.13) 

where  ⃖   and      denote taking the corresponding value outside/inside the 

differentiation, respectively. Further arrangements on (App.13) yields,  
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(𝐴): 𝑢𝑖
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑗𝑢

′
𝑗) + 𝑢

′
𝑗𝑢′𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑢′𝑖     

𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑗𝑢

′
𝑗)

− 𝑢′𝑗
𝜕

𝜕𝑥𝑖
(𝑢′𝑖𝑢′𝑗)

= 𝑢𝑖
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑗𝑢

′
𝑗) + 𝑢

′
𝑗𝑢
′
𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑖𝑢

′
𝑗𝑢
′
𝑗) − 𝑢

′
𝑗

𝜕

𝜕𝑥𝑖
(𝑢′𝑖𝑢′𝑗) 

(App.14) 

Taking average on (App.14) gives,  

 𝐴: 𝑢𝑖
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑗𝑢′𝑗) + 𝑢′𝑗𝑢′𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑖𝑢′𝑗𝑢′𝑗) − 0 (App.15) 

Taking the average of (App.10) yields, 

 

𝜕

𝜕𝑡
(
1

2
𝑢′𝑗𝑢′𝑗)

+ 𝑢𝑖
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑗𝑢′𝑗) + 𝑢′𝑗𝑢′𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑖
(
1

2
𝑢′𝑖𝑢′𝑗𝑢′𝑗)

⏞                              
𝐴

= −
1

𝜌

𝜕

𝜕𝑥𝑗
(𝑢′𝑗𝑃

′)
⏟          

=−
1
𝜌
𝜕
𝜕𝑥𝑖

(𝑢′𝑖𝑃
′)

+ 𝜈
𝜕

𝜕𝑥𝑖
(𝑢′𝑗

𝜕𝑢′𝑗

𝜕𝑥𝑖
) − 𝜈 (

𝜕𝑢′𝑗

𝜕𝑥𝑖
)

2

 

(App.16) 

In a more compact form, taking 
1

2
(𝑢′𝑗𝑢′𝑗) = 𝑘 and grouping full derivatives,  

 

𝜕𝑘

𝜕𝑡
+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖

⏞      

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘 
𝑏𝑦 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑜𝑤

+ 𝑢′𝑗𝑢′𝑖
𝜕𝑢𝑗

𝜕𝑥𝑖

⏞      
𝑠ℎ𝑒𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

=
𝜕

𝜕𝑥𝑖
[𝜈 (𝑢′𝑗

𝜕𝑢′𝑗

𝜕𝑥𝑖
) − (

1

2
𝑢′𝑖𝑢′𝑗𝑢′𝑗) −

1

𝜌
(𝑢′𝑖𝑃′)]

⏟                              
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

− 𝜈 (
𝜕𝑢′𝑗

𝜕𝑥𝑖
)

2

⏟      
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 

(App.17) 
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keeping in mind that,  

 
𝜕𝑘

𝜕𝑡
+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖
=
𝐷𝑘

𝐷𝑡
 (App.18) 

is the total derivative of the turbulent kinetic energy. 

Equation (App.17) is the budget for the turbulent kinetic energy. It simply says that 

the rate of change in ‘k’ is equal to the rate of production of ‘k’ + rate of redistribution 

of ‘k’ + rate of dissipation of ‘k’. Hence, it reveals the interaction between the 

turbulence and the mean flow. Spatial redistribution consists of pressure-gradient 

work, transport by turbulent velocity fluctuations, and transport by viscous stresses. 

Shear production and viscous dissipation are kinds of deformation works [106]. Note 

that the viscous dissipation term is always negative. 

We can rewrite equation (App.17) such that,  

 

𝐷𝑘

𝐷𝑡
= −

𝜕

𝜕𝑥𝑗
(
1

𝜌
𝑢𝑗𝑝 +

1

2
𝑢𝑖𝑢𝑖𝑢𝑗 − 2𝜈𝑢𝑖𝑠𝑖𝑗) − 𝑢𝑖𝑢𝑗𝑆𝑖𝑗

− 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗 

(App.19) 

where  

 

𝑠𝑖𝑗 ≡
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

𝑆𝑖𝑗 ≡
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(App.20) 

are the fluctuating and mean rate of strains, respectively. If the flow is steady and 

homogeneous, Equation (App.19) reduces to  

 −𝑢𝑖𝑢𝑗𝑆𝑖𝑗 = 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗 (App.21) 

In other words, the rate of production of turbulent energy by Reynolds stresses equals 

the rate of viscous dissipation. This is not the case in many turbulent flows. 
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(B) Details on turbulence-generating-grids geometry and flow properties 

 

Grid CSG FSG FCG FIG 

𝑇2 (𝑚𝑚2) 340 × 340 

𝐿𝑇𝑆 (𝑚𝑚) 1000 

𝑈0 (𝑚𝑠
−1) 10.2376 

𝑆 2 4 N/A 3 

𝑁 1 4 4 4 

𝐷𝑓 2 2 2 2 

𝜎 (%) 20 23.7 24.6 29.4 

𝑅𝐿 1.0 0.5 0.5 0.5 

𝑅𝑡 1.0 0.49 0.49 0.49 

𝑡𝑟 1.0 8.5 8.5 8.5 

𝑀𝑒𝑓𝑓 (mm) 20.0 19.76 20.43 25.34 

𝑥∗ (𝑚𝑚) ≅ 189  ≅ 3201  ≅ 6078  ≅ 1910  

𝐿0(𝑚𝑚) 20.0 180.69 249.0 180.26 

𝐿1(𝑚𝑚) - 90.34 124.54 90.13 

𝐿2(𝑚𝑚) - 45.17 62.273 45.06 

𝐿3 = 𝐿𝑚𝑖𝑛(𝑚𝑚) - 22.58 31.136 22.53 

𝑡0(𝑚𝑚) 2.11 10.2 10.2 17 

𝑡1(𝑚𝑚) - 4.99 4.99 8.33 

𝑡2(𝑚𝑚) - 2.45 2.45 4.08 

𝑡3 = 𝑡𝑚𝑖𝑛(𝑚𝑚) - 1.2 1.2 2 

𝐿0
𝑇

 0.06 0.531 0.732 0.53 

𝑅𝑒𝑀𝑒𝑓𝑓 12060 11880 12320 15240 

𝑅𝑒𝐿0 =
𝑈𝐿0
𝜈

 12060 108600 150200 108420 

𝑅𝑒𝑡0 1270 6150 6150 10225 

∆𝑥
𝑥∗⁄  [0.04-2.38] [0.0025-0.139] [0.0013-0.074] [0.005-0.235] 

∆𝑥
𝑀𝑒𝑓𝑓⁄  [0.4-22.5] [0.4-22.5] [0.4-22.0] [0.4-17.7] 

 

 

 

 

 

 



 

175 

 

 

CURRICULUM VITAE 
 

 

PERSONAL INFORMATION 

 

Surname, Name: Amiri Hazaveh, Hooman 

Nationality: Iranian 

Date and Place of Birth: 15 September 1985, Tehran, Iran 

Marital Status: Married 

Phone: +90 538 030 5856 

Email: hooman.hazaveh@metu.edu.tr 

 

 

EDUCATION 

 

Degree Institution Year of Graduation 

M.Sc. Azad University, Tehran, Iran 2012 

B.Sc. Azad University, Tehran, Iran 2009 

High School SAMA High School, Tehran, Iran 2003 

 

 

WORK EXPERIENCE 

 

Year Place Enrollment 

2016-Present METU Center for Wind Energy (RÜZGEM) Scientific Project 

Expert 

2012-2016 METU Center for Wind Energy (RÜZGEM) Researcher 

2010-2012 Azad University – Science and Research 

branch, Tehran, Iran 

Laboratory Assistant 

   

PUBLICATIONS 

 

Journals 

 

 Şemsi Çoşkun, Hooman Amiri Hazaveh, Oğuz Uzol, Özgür Kurç, “Experimental 

investigation of wake flow field and wind comfort characteristics of fractal wind 

fences”, Journal of wind engineering and industrial aerodynamics, 168, 32-47, 

2017. DOI: https://doi.org/10.1016/j.jweia.2017.05.001  

mailto:hooman.hazaveh@metu.edu.tr


 

176 

 

 S.M. Nima Shojaee, Hooman Amiri Hazaveh, “Investigation of Total Pressure 

Distribution at Aerodynamic Interface Plane of an “S-shaped” Air Intake at 

Sideslip Condition”, International Journal of Natural and Engineering Sciences 

ISSN: 1307-1149, E-ISSN: 2146-0086, Vol. 6(3), 2012, pp 87-94.  

 

 

 

Conferences and Proceedings 

 

 

 Uluocak S., Amiri Hazaveh H., Perçin M., Akpolat M.T., Uzol O., “Experimental 

Investigation of the Effect of Helicopter Blade Tip Shapes on Aerodynamic 

Performance and Tip Vortex characteristics”, (In Turkish) 7th National 

Aerospace Conference (VII. UHUK 2018). September 12-14, 2018. Samsun, 

Turkey. 

 

 Amiri Hazaveh H., Uzol O., “Experimental Study on the Near Wake Flow 

Characteristics of Fractal Turbulence Grids”, Wind Energy Science Conference 

(WESC), Technical University of Denmark, Lyngby Campus, 26 June - 29 June 

2017.  

 

 Alican O., Amiri Hazaveh H., and Uzol O., “Experimental Investigation of the 

effects of squealer tips on the blade tip leakage characteristics in a linear cascade 

facility of a gas turbine”, (In Turkish) 6th National Aerospace Conference (VI. 

UHUK 2016). September 28-30, 2016. Kocaeli, Turkey.  

 

 Amiri Hazaveh H., Uzol O., “Investigation of the Near Wake Steady Flow 

development of a Fractal Square Grid using Particle Image Velocimetry”, 2nd 

International Conference on New Research Achievements in Mechanics, 

Industrial and Aerospace Engineering, September 29, 2016. Tehran, Iran.  

 

 Amiri Hazaveh H., Uzol O., “PIV study of wall bounded Fractal-grid-generated 

Turbulence”, 11th EAWE PhD Seminar on Wind Energy in Europe, September 

22-25, 2015, Stuttgart, Germany.  

 

 Ostovan Y., Amiri H., Uzol O., “Aerodynamic Characterization of NREL S826 

Airfoil at Low Reynolds Numbers”, RUZGEM 2013 Conference on Wind Energy 

Science and Technology, October 3-4, 2013, METU Ankara Campus.  

 

 

 

RESEARCH INTERESTS 

 

Turbulence, Flow control, Experimental Aerodynamics, Wind tunnel experiments and 

design

 


