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ABSTRACT

SLIPPAGE ESTIMATION OF A TWO WHEELED MOBILE ROBOT USING
DEEP NEURAL NETWORK

Özçil, İsmail
M.S., Department of Mechanical Engineering
Supervisor : Assoc. Prof. Dr. E. İlhan Konukseven
Co-Supervisor : Assist. Prof. Dr. A. Buğra Koku

September 2018, 59 pages

Mobile robot navigaiton is an important task for the operations of the mobile robots.

Due to the wheel slippages, performance of the dead reckoning in estimating speed

of the robot and the position of the robot is not sufficient. To overcome the errors

in navigation estimates, usage of the recurrent deep neural networks is porposed.

Neural networks are used to understand the behaviour of the linear and nonlinear

systems. Since wheel-ground interaction will be modeled with non-linear models and

the estimating parameters of those models are difficult, usage of the neural networks

is preferable since they do not require system models and parameters. In this work,

a recurrent deep neural network is proposed to estimate the speed and yaw angle of

the 2 wheeled differentially driven mobile robot. By recording data from the training

experiments of the navigation of the mobile robot, network is trained. After that,

performance of the network is evaluated by plotting and tabulating outputs of the

network, sensor data calculation and ground truth. Finally, results are compared with

the results from the literature.
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ÖZ

DERİN SİNİR AĞI KULLANILARAK İKİ TEKERLEKLİ MOBİL
ROBOTUN TEKERLEK KAYMALARININ TAHMİN EDİLMESİ

Özçil, İsmail
Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi : Doç. Dr. E. İlhan Konukseven
Ortak Tez Yöneticisi : Yrd. Doç. Dr. A. Buğra Koku

Eylül 2018 , 59 sayfa

Hareketli robot yöngüdümü ve konumlandırılması hareketli robotlar için önemlidir.

Tekerleklerdeki kaymalara bağlı olarak yalnızca enkoder ve ataletsel ölçüm birim-

leri ile yapılan gözü kapalı konum hesapları ve hız hesapları yüksek hatalara sahip

olmaktadır. Bu hataları azaltmak için geri beslemeli yapay sinir ağlarının kullanımı

önerilmiştir. Tekerlek ile yer arasında olan etkileşim denklemleri doğrusal olmadığı,

bu denklemlerdeki katsayıların kestirimi zor olduğu ve böyle durumlarda yapay si-

nir ağlarının kullanımı herhangi bir sistem modeli veya denklem gerektirmediği için

yapay sinir ağlarının kullanımı tercih edilebilmektedir. Bu çalışmada iki tekerlekli

diferansiyel sürüşlü robotun hızını ve yalpa açısını tahmin edebilmek için geri besle-

meli yapay sinir ağının kullanımı önerilmiştir. Alıştırma deneylerindeki robotun üze-

rindeki algılayıcılar ile toplanan veriler kullanılarak bu yapay sinir ağı eğitilmiştir.

Sonrasında eğitimde kullanılmayan deneylerin verileri kullanılarak, yapay sinir ağı-

nın hız ve yalpa açılarındaki başarımı yer doğrulaması, enkoder ve ataletsel ölçüm

birimi ile kıyaslanıp değerlendirilmiştir.
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Anahtar Kelimeler: mobil robot, yer aracı, gözü kapalı tahmin, yöngüdüm, geri bes-

lemeli yapay sinir ağı
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CHAPTER 1

INTRODUCTION

1.1 Motivation

For the indoor and outdoor wheeled mobile robots, position information of the robot

is important since all tasks depend on positioning of the robot. For the indoor applica-

tions, vision information is used to calculate position of the robot, but there may not

be available camera getting image of whole working ground of the robot, or the cam-

era on the robot may not get known objects to determine position every time. Also,

image processing algorithms are dependent on illumination of the environment and

illumination may not be same through the room. For the outdoor applications, GPS is

widely used, however it may not be available according to Ward and Iagnemma due

to surrounding buildings, trees or weather conditions [1]. Frequency of the GPS data

may not be sufficient or ground truth data may be interrupted. During those times,

dead reckoning is used. Dead reckoning is estimating position of the mobile robot by

using on-board sensors of the mobile robot like IMU, encoder, etc. However, using

those sensors over a time, errors start to propogate and position and velocity esti-

mates starts to have large error due to the sensor drifts and wheel slippages. Hence,

improving performance of dead reckoning algorithms are important to make better

estimations where ground truth data is not supplied to the robot.

Also, frequency of the GPS data may not be sufficient for slip detection and anti-

slippage applications. Slippage is directly affects the trajectory robot is following,

hence it should be compensated to follow the desired trajectory. Moreover, sensing

and compensating wheel slip also improves traction of the robot and it may prevent

unnecessary power usage where wheels of the robot are slipping. Hence, motivation

of the thesis is to estimate wheel slippages and improve speed and yaw angle estima-
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tions during the robot operation. By this way, at the instances where absolute position

data of the robot are not available, robot motion information will have less error.

1.2 Literature Survey

Using only odometry data to estimate position and velocity of the robot causes high

errors since odometry is unable to detect wheel slips. Moreover, error on the position

estimation using odometry is subjected to cumulative error, which makes estimations

with large errors as measurement time increases. Chenavier and Crowley [2] used

mobile robot with a camera mounted on the robot in an environment which contains

some known objects with known positions to determine the position of the mobile

robot. Gustafssont [3] used non-driven wheels to determine actual velocity of the

vehicle. But, this method cannot be applied on all the mobile robots since there are

robots with all of their wheels are driven. Seyr and Jakubek [4] used odometry and

IMU to improve position estimates. First, they compare measurements done by the

IMU and odometry, then if the difference is too high, they assume wheels of the robot

is slipping. In the slipping case, they give more weight to IMU measurements while

calculating position of the robot, but if the difference is low, they assume slip in the

wheels are small, and they give more weight to odometry while calculating position

of the robot. Chonnaparamutt, Winai and Kawasaki [5] used fuzzy estimator to esti-

mate postion of a pruning robot. They also used a fuzzy controller to control speed

of the robot. Ward and Iagnemma [1] used GPS data to improve velocity estimates of

the robot, they update their velocity estimates at nearly 1 Hz, when they got GPS data.

Hwang et al.[6] used images of a object taken by the on-board camera of the mobile

robot to correct velocity and position estimates done by the odometry and IMU. Ojeda

et al.[7] used current drawn by the DC motors connected to wheels to determine the

slippage and amount of the slippage. Their method requires a mobile robot with at

least 4 driven wheels. While cruising a constant speed, they increase speed of the one

of the wheels and record speed of the wheel and current drawn by that wheel. By

this way, they can determine the current drawn and velocity difference function for

that surface, and they can use that function to estimate slip later. One disadvantage of

their method is that method only compensates longitudinal tire slip, lateral slip cannot
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be determined by the current drawn by the motor. Other disadvantage is the function

they found for current drawn and velocity difference is linear for outdoor terrain. For

indoor applications and constructed surfaces like asphalt coated roads, there is not

such function. On those surfaces, nonlinear functions obtained by Dugoff Formula

[8] and Magic Formula [9] are used and obtaining parameters for those formulae are

difficult in the online applications. Bayar et al.[10] used camera positioned above

the working area of a 2 wheeled mobile robot to determine the coefficients of the

traction, lateral and roll force equations derived in previous works. Later, they used

those coeeficients to determine position of the robot. Moreover, they showed that

in different surfaces, current profile of the DC motors connected to wheels differs.

Zabaleta et al.[11] used optical mouse sensors to improve position estimations of the

rehabilitation robot they used in thier work. However, this robot requires to work

on a special textured surface. Bonarini and Matteucci [12] presented equations for a

robot using 2 optical mouses to improve position estimation, but they only presented

modelling, there is not any experiments. Sekimori and Miyazaki [13] used multi-

ple optic mouses to get position of the mobile robot. Optical mouses can be used

to improve position estimations, but optical mouse sensors should be positioned in a

certain narrow height from the surface, installation and operation of those sensors in

unstructured surfaces is not ideal since road surface may not be smooth and distance

from sensor to ground may constantly change. Fujimoto et al. [14] used yaw mo-

ment observer to estimate cornering stiffness of an electric vehicle. But this method

requires model of the vehicle, and model parameters may not be available for a small

robot for indoor applications. Matuso [15] used neural networks to estimate tire-road

friction force. This arcticle shows that neural networks are useful with the non-linear

systems with high number of unknowns. Hence for robotic applications with small

robots where parameters of the robot is unknown, neural netwoks can be used. Melzi

and Sabbioni[16] used a simple neural network with one hidden layer and 10 sigmoid

neurons to determine slip angle of a vehicle. They used 3 neural networks in that

structure, but they changed number of inputs for second and third network. In the

end, they compared performances of those networks. Cirovic et al.[17] used neural

network to adjust brake actuation pressure according to the adhesion coefficient be-

tween the tire and road. Tahami et al.[18] used neural network to generate yaw angle

reference to the fuzzy controller that control the torque and slip of the wheels in case

3



of an emergency like obsticle avoidance for an all-wheel drive electric vehicle.

1.3 Outline of the Thesis

In this chapter, motivation of the thesis and the previous work done related to this

thesis are presented. In the next chapter, two wheeled differentially driven robot used

in the experiments, the experimental set-up, set-up components, sensors used in the

experiments and the basic equations used to manipulate sensor data are presented.

Also, results of the experiments obtained by different sensor data are plotted. In the

third chapter, neural networks and structure of two of the basic deep neural networks

explained. Later, structure, inputs and the training of the deep recurrent neural net-

work used in this work is explained. In the fourth chapter, estimated speed, covered

distance, estimated yaw angle and estimated position of the robot calculated using

odometry data, IMU data and results of the proposed deep recurrent neural network

is plotted and compared. In the last chapter, results, discussion and future work is

presented.
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CHAPTER 2

EXPERIMENTAL SET-UP

2.1 Introduction

In this chapter, robot used in the slip detection and used to collect data is introduced

and schematic of the robot is represented. The set-up and test ground of the robot is

explained, also set-up components are introduced. Image processing algorithm used

to get position of the robot and used as ground truth is explained. Basic equations

to manipulate sensor data collected from the robot are represented. In the end of the

chapter, using those equations, results of a experiment are represented to compare

measurements done by different sensors.

To obseve effects of wheel slip on the position estimates of a mobile robot, a set-up

consisting a 2 wheeled mobile robot and a camera recording the motion of the robot

are used. Camera is used to make ground truth and to compare inertial measurements

and odometry to ground truth to evaluate their performance. Later, this ground truth

data are used to train deep neural network to make position estimations from the on-

board sensors of the mobile robot. Experiments are done on a flat surface, i.e. there

is no inclination on the surface which robot operates. During the experiments, sur-

face properties are not changed and mechanical parameters of the mobile robot like

wheels, wheel radii, center of mass, mass, inertia are not changed. Since changing

one or more of those parameters will change system model, predicted model will not

work after that point.

During the experiments, to see effects of both lateral and longitudinal wheel slip, dif-

ferent angular velocity ramp input are sent controllers of the DC motors connected to

wheels, hence robot will make circular motion or near-circular motion in presence of

high wheel slips. In different experiments, different ramp inputs are sent to wheels.
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Figure 2.1: Two wheeled differentially driven mobile robot

2.2 Set-Up Components

2 wheeled differentially driven robot is used in experiments. There are 2 wheels on

the mobile robot which are connected to DC motors with 896 ppr encoders. Odom-

etry data are obtained using those encoders. There also one caster wheel to stabilize

robot. To get inertial measurement, an inertial measurement unit (IMU) is placed on

the mobile robot. This IMU contains a 3 axis accelerometer, a 3 axis gyro and a 3

axis magnetometer. Encoder, IMU and DC motor current measurement data are mea-

sured and sent simultaneously. In this thesis, those measurements alongside with the

current measurements of the DC motors are combined to make better position and

velocity estimamtes of the mobile robot. However, to evaluate performance of the

estimates and measurements, a camera is placed on the top of the experiment area.

Experiment area is 1.85 m x 1.85 m square area. The camera used to get position has

1280x720 pixels resolution and gives images with 30 frames per second.

Two ACS 712 analog current sensors are connected to DC motors driving the wheels.

Analog current sensor output is measured by a 16 bit ADC. DC motors are controlled

by Faulhaber motion controllers and speed of the DC motors are controlled by a

closed-loop control system.

Sensor data are collected by Arduino Uno and then sent to the Raspberry pi2 placed
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on the mobile robot. Also, control of the robot is done by the same Raspberry pi2.

A sigma profile aluminum beam is connected to chasis of the robot. Heaviest com-

ponent of the system is battery, thus place of the battery is used to change center of

gravity of the robot. By moving center of gravity of the robot to forward or backward,

handling behaviour of the robot is adjusted. If the center of gravity is close to front

of the robot, then robot tends to understeer. If the center of the gravity is close to

rear of the robot, then robot tends to oversteer. Battery is placed on the sigma profile

beam, and since that beam strecth out from beyond front of the robot to beyond rear

of the robot, handling characteristic can be adjusted by moving battery on the beam.

In this work, behaviour of the robot is expected to be understeer and robot is expected

to start sliding in relatively low speeds since maximum speed of the robot is below

2m/s. When the desired characteristic is achieved, battery is fixed at that location on

the beam.

Figure 2.2: Schematic of the Mobile Robot

To prepare ground truth, location data is collected through the camera placed on the

top side of the set-up. To process data, python environment with OpenCV 3 library

is used. One red and one yellow square is placed on the robot (Figure 2.1). While

finding the center of the robot, image processing algorithm finds the red square placed
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on the center axis of the robot. To find direction of the robot, algorithm finds centers

of the red square and yellow square, then finds the angle of the vector starting from

center of the yellow square to center of the red square.

Since a flat surface is being captured by the camera, areas around the center represents

greater area in the image, areas at the corners represented by a smaller area in the

image.

Figure 2.3: Grid showing lines on the ground and their representations on the image
1

Figure 2.4: Placement of camera and Test Ground

1Reprinted from Distortion Module Documentation, In imatest,n.d., Retrieved August 1, 2018, from

http://www.imatest.com/docs/distortion_ instructions/
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Since the angle of the lens is 34.5 degree, this distortion is not as much as wide angle

lenses, however the effects should not be neglected. To calculate this distortion, cam-

era angle is used. Firstly, camera is placed above the test set-up and the angle of the

focal axis is normal to test ground. Also camera is placed above the center of the test

ground.

Focal length of the camera to test ground is calculated by the two reference points on

the test ground. Image processing algorithm finds the centers of the blue rectangles,

then according to the actual distance between those rectangles, it calculates the focal

length of the camera using the following equations.

αcam = 34.5 degrees = 0.6 radians (2.1)

dα =
αcam

0.5
√
12802 + 7202

(2.2)

α =
√
x2r + y2rdα (2.3)

First, positions of the blue rectangles were found with the unknown focal length, then

by using the known distance between blue rectangles, focal length is calculated. In

the following equations, β is the angle of a vector with +x axis.

Figure 2.5: Representations of Vectors and Dimensions used in Calculation of Focal

Length and Coordinates of the Robot
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rb1 = fl cotαb1

rb2 = fl cotαb2

βb1 = arctan
py,b1
px,b1

βb2 = arctan
py,b2
px,b2

xb1 = rb1 cos βb1

yb1 = rb1 sin βb1

xb2 = rb2 cos βb2

yb2 = rb2 sin βb2

db1,b2 =
√
(xb2 − xb1)2 + (yb2 − yb1)2

Here, db1,b2 is known, hence from those equations, focal length fl is calcualted. Then,

position of the robot ond yaw angle ψ of the robot is calculated using following for-

mulas.

rr = fl cotαr (2.4)

ry = fl cotαy (2.5)

βr = arctan
py,r
px,r

(2.6)

βy = arctan
py,y
px,y

(2.7)

xr = rr cos βr (2.8)

yr = rr sin βr (2.9)

xy = ry cos βy (2.10)

yy = ry sin βy (2.11)

ψ = arctan
yy − yr
xy − xr

(2.12)

In these calculations, all position measurements and angular measurements are done

according to the ground reference frame.
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2.3 Mathematical Modelling

Kinematics equations f the mobile robot is required to manipulate sensor data. Sen-

sors are placed in different parts of the mobile robot, hence their measurements are

not according to the center of the robot, except IMU which is placed on the vertical

axis passing through geometrical center of the mobile robot. Moreover, measure-

ments done according to the body fixed refrence frame of the mobile robot should be

converted to the gruond reference frame.

2.3.1 Kinematics of Mobile Robot

In this section, kinematics equations relating the body fixed reference frame to ground

reference frame are explained. Since sensors and the markers for the camera are

placed on the robot, velocity is measured according to the body fixed frame of the

mobile robot. To calculate absolute position of the robot, those velocity values should

be converted to ground reference frame.

Figure 2.6: Ground(G(X,Y)) and body fixed(g(x,y)) reference frames

In the Figure2.6, b = 75mm and a = 125mm.

In the following equations, VX and VY represents velocity of the robot in the +x
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and +y direction of the ground reference frame respectively. Vx and Vy represents

velocity of the robot in the +x and +y direction of the body fixed reference frame

respectively. ψ and ψ̇ represents the yaw angle and yaw rate of the robot.

VX = Vx cosψ − Vy sinψ (2.13)

VY = Vx sinψ + Vy cosψ (2.14)

2.3.2 Basic Equations

Velocity of the robot according to odometry data is calculated by using following

equations. In those equations, Ve1x and Ve2x represent velocity of the wheel 1 and 2

of the mobile robot in the +x direction of body fixed reference frame.Vex represents

the speed of the robot in the +x direction of the robot done by the odometry measure-

ments, ψ̇e represents the yaw angle rate of the robot measured by the combination of

the data from encoders.

Vex =
Ve1x + Ve2x

2
(2.15)

ψ̇e =
Ve2x − Ve1x

2b
(2.16)

2.3.3 Experiment Procedure

Experiments are done on the 1.85mx 1.85m experiment ground and during the ex-

periment, reference velocity input is sent to the motion controllers of the DC motors

connected to wheels of the robot. During the experiment, IMU and encoder data are

collected by the raspberry pi2, and ground truth data is collected using the camera

placed over the experiment set-up. Before starting experiment, position of the robot

is detected by the camera and sent to previously defined start point on the experiment

ground. After the experiment, again robot position is detected by the camera and sent

to the start point. By this way, experiments are done automatically up to the time

when battery of the robot is low or there is an error in the system.

12



2.3.4 Graphical Representation of Sensor Outputs

Sensor data are acquired by Arduino Uno R3, then those data are stored in a text

file during the experiment, later that text file is sent to the main computer which is

getting images of the robot. Finally, main computer calculates position estimates and

prints outputs as a graph. Here, outputs of the different sensors are compared. To

see where wheel slips starts, instead of position graphs velocity graphs are presented.

From those graphs it can be seen when slips starts from the difference between camera

measurement and odometry measurement. In the following figures, comparisons of

robot velocity estimates and yaw angle estimates are represented.

In this experiment, different speed input was given to DC motors connected to wheels

of the robot. In low slip conditions, motion of the robot is expected to be spiral.

Reference for the angular speeds of the each wheel are ramp input, hence each wheel

of the robot turns with a constant angular acceleration, but each of the two wheels

have different angular acceleration. But after some time, due to the longitudinal and

lateral slips, robot goes out of this spiral path. In the end of the experiment, power

sent to the DC motors are cut, thus in the end of the experiment robot slows due to

damping in the system and friction forces. Also, there is no inclination on the test

surface, hence gravity does not disturb lateral forces. In the following test, expected

acceleration of the robot is 0.07m/s2 , according to the angular speed input sent to

the speed controllers of the DC motors connected to wheels.

Figure 2.7: Comparison of Velocity Estimates Obtained by Odometry and Camera
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Figure 2.8: Comparison of Yaw Angle Estimates Obtained by Odometry, Camera and

IMU

In the Figure 2.7, red line represents speed calculated from the odometry data and the

blue line represents speed calculated from images captured by the camera on top of

the test set-up. As it can be seen from the figure, slip starts around 5 s. After that

time, there is significant difference between speed measured with camera and speed

measured by odometry. To improve position estimates done by on-board sensors of

the mobile robot, a slip estimation algorithm is required.

In the Figure 2.8, red line represents yaw angle of the robot calculated from odom-

etry data, blue line represents yaw angle calculated from images of the robot during

experiment and the green line represents the IMU measurement. As expected, slip-

page starts at t = 5s since after that time, odometry and camera calculations start

to differ. In this experiment, IMU measurements performed better than odometry

measurements since they are closer to the results of the image processing algorithm.

Also, from this figure it can be seen that steering behavior of the robot is understeer

since yaw rate sent to the wheels do not translate to actual yaw performance of the

robot. In fact, the center of mass of the robot is adjusted to be close to front end of

to robot to make this understeer behavior. Thus, this understeer on the robot motion

was expected. If the center of mass of the robot was adjusted to close to rear end of

the robot, then oversteer would be in motion of the robot and yaw measured by the
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ground truth would be greater than the yaw angle measured by odometry.

Another effect of the center of mass position is since it is close to front end, robot

starts sliding at lower speeds compared to the case in which center of mass was ad-

justed to close to geometrical center of the robot.

In the second experiment, acceleration of the robot is expected to be 0.037m/s2 ac-

cording to the speed input sent to speed controllers of the DC motors. Here, while

computing the expected acceleration of the robot, eqn(2.15) is used. In the low slip

regions, as in the first experiment, robot is expected to drive with 0.037m/s2, but as

the speed of the robot is increased, after some time longitudinal and lateral traction

force limits are reached, then acceleration of the robot is expected to lower than the

expected acceleration calculated by the eqn(2.15). In this experiment, slippage is ex-

pected to start later than first experiment because of the acceleration input sent in this

experiment is lower than the first experiment. This causes traction forces to reach

their peak point later, and slippage occur later.

Figure 2.9: Comparison of Velocity Estimates Obtained by Different Sensors

In this experiment, a lower acceleration was given to mobile robot, hence velocities

are lower compared to first experiment. Slippage starts around t = 11s (Figure 2.9) .
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Figure 2.10: Comparison of Yaw Angle Estimates Obtained by Different Sensors

IMU measurements repsresented by the green line performs relatively bad at the be-

gining of the experiment (Figure 2.10). Up to around t = 8s, it shows very little

angular movement. Odometry measurement is again has error due to wheel slippage.

Thus, inertial measurements or odometry should not be trusted alone while making

position estimates and both have errors.

2.4 Conclusion and Discussions

In this chapter, 2 wheeled differentially driven robot, set-up and test surface used in

the experiments, components and sensors used in the experiment and basic equations

used to manipulate sensor data is represented. Later, results of the experiments with

graphical outputs are explained. Performance of the different sensors compared to

ground truth is mentioned. In the next chapter, Deep Neural Networks, and structure

of two of the widely used and simplest Deep Neural Networks are explained. Later,

Deep Neural Network used in this work to estimate speed of the robot and yaw angle

of the robot is explained.
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CHAPTER 3

DEEP NEURAL NETWORKS

3.1 Introduction

In this chapter, feedforward neural networks and recurrent neural networks are ex-

plained. Activation functions used in the networks are introduced, advantages and

disadvantages of using them are explained. Then, deep recurrent neural network used

in the work is expressed, and the inputs of the network is tabulated. Lastly, structure

of the network is explained.

Deep neural networks or Deep Learning is used in a variety of areas like image

recognition [19], speech recognition[20], image processing and enhancement [21].

Schmidt and Roth[21] show that deep learning can be used to identify traffic signs,

which is a important task in autonomous driving and navigation.

Figure 3.1: Simple Neural Network with a Single Hidden Layer

Deep networks are a type of artificial neural network, having more than one hidden

layer. These networks were inspired by the structure of the animal brains. In the ani-
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mal brains, there are multiple neurons which are connected by each other by synapses.

Similar to brain structure, artificial neural networks have neurons represented by cir-

cular patterns in the below image, and those neurons are connected by the weights,

which are shown by arrows in the figure. Using the previously done experiments and

previously collected data, activation values for the neurons and the weights of the

connections are found. While finding those parameters, mean square error is used as

loss function and Adam optimaziton method is used.

3.2 Feed Forward Networks and Recurrent Networks

According to Schmidhuber[22], one of the simplest deep networks are feedforward

neural network and recurrent neural network. In the feedforward neural networks,

information flows in one direction and it makes no loop movement. They are the

simplest model of neural networks. They are widely used in areas like image classi-

fication. In the python and TensorFlow environment, they are easy to implement and

train.

In the Figure 3.2, a multi-layer deep feedforward neural network is represented. In-

formation is taken by the input nodes, after that point calculations are made and in-

formation is passed to the all the layers in front of the current layer. There is no

back movement and feedback loop. Flow of the information is represented by the

arrows, and as it can be seen from the figure, a neuron takes information from the

neurons one layer before it, and if that neuron is activated, it passes information to

the neurons one layer after it. They are trained using to the training data, and through

the training, optimal values are found according to loss function and optimization

method. For the activation function, rectified linear unit (ReLU) is used. Accord-

ing to Glorot et al.[23], compared to sigmoid function, rectified linear unit function

has better gradient propogation. Moreover, since it is a very simple function, it does

not bring much computational load to algrorithm. According to the lecture notes of

Sert[24], compared to other activation functions, ReLU (3.1) is around 6 times faster

in computation. Moreover, it does not suffer from gradient vanishing. Sigmoid (3.2)

function is another function that can be used for gating, however, since gradient van-

ishing is a big problem for this function, it is not used. Tangent hyperbolic function
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(3.3) is another activation function, but again gradient vanishing is a big problem for

this function. Hence it is not used in this study. Self-gated activation function (3.2)

is another activation function, but since it is a new function in deep neural network

applications and it is not widely used as ReLU, it is not used as activation function in

this study.

f(x) = max(0, x) (3.1)

f(x) =
1

1 + e−x
(3.2)

f(x) = tanh(x) (3.3)

f(x) = xsigmoid(βx) (3.4)

Because of the computational simplicity and gradient propogation properties of ReLU,

in this study ReLU is used instead of these activation functions.

In the Figure 3.2, a multi-layer neural network is represented. To improve the perfor-

mance of the system, more than one hidden layers can be added to network.

Figure 3.2: Simple Neural Network with Multiple Hidden Layers

The other type of neural networks is recurrent neural networks. Unlike feedforward

neural networks, recurrent neural networks have feedback loop within them. They

have long short term memory(LSTM) or gated recurrent units, hence they can handle

batch of inputs, thus they are widely used in speech recognition [20]. Like feedfor-

ward neural networks, recurrent neural networks can be composed of multiple hidden

layers. Figure 3.3 shows a multi-layer recurrent neural network. Performance of the

fittet function can be increased by adding more hidden layers. However, adding too
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much layers can cause over-fitting and increase training time. Hence, hidden layers

should be added to system one by one starting from the one hidden layer. When the

desired fitting is achieved, required number of hidden layers is found. Also, number

of neurons in a hidden layer should be determined carefully. If there are too much

neurons, then that may cause increase in training time since number of computations

will increase.

Figure 3.3: Recurrent Neural Network with Multiple Hidden Layers

3.3 Deep Network Used in the Study

Since system is dynamic, recurrent neural network is decided to be used. It is known

that tire slips are non-linear functions, and also there is noise on each sensor used

in the system, hence a multi layer recurrent neural network is used to capture non-

linearity of the system. After that, experiments are done and data are collected from

those experiments. In the experiments, robot made a near-circular motion. DC motors

connected to wheels of the robot are controlled by closed-loop controllers. Different

reference velocity values are sent to inner and outer wheels of the robot, hence motion

is near circular. For each inner and outer speed set, 15 experiments are done. In total,

140 experiments are done for one side of the robot,i.e same inner and same outer

wheel. After data are collected from those experiments, some of the experiments are

chosen to be validation data for the recurrent network model. Those data are not sent

to model while training, they are only used to validate and evaluate the performance

of the model. Validation experiments are chosen randomly.

20



3.3.1 Inputs to the Network

Since Recurrent Neural Network is used in the study, input should be scaled. All of

the inputs are scaled between 0 and 1, but before scaling, a low pass filelter used to

filter high frequency noise on the inputs. Those inputs are measured by the sensors

like IMU, camera and encoders, because of this they have some noise on them. Even

the camera captures have some noise, and since they give position information and

later they are used to obtain speed information, errors propogate. To decrease level

of noise, all the measurements are sent to second order low-pass butterworth filter.

For this application, second order low-pass filter with 50 Hz sampling rate and 7.5 Hz

cutoff frequency is chosen.

Figure 3.4: Comparison of Filtered and Unfiltered Speed Estimates obtained from

Image Captures

There are 11 inputs in total sent to the recurrent neural network. Those inputs are

time at the each measurement set are taken, time step(time increment between now

and previous measurement), speed of the each wheel and center of the robot (2.15)

with respect to the ground measured by the encoders, since encoders are used in these

measurements, they only supply longitudinal speed of the wheel with respect to the

ground without considering effects of the slippage, yaw angle of the robot from the
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encoder measurements of the each wheel and speed difference between them (2.16),

current drawn by the DC motors connected to the wheels, acceleration of the robot

along the x and y directions of the body-fixed reference frame measured by the IMU

placed in geometrical center of the robot, and yaw angle with respect to the body-

fixed reference frame again measured by the IMU. While training the network, sample

outputs are the camera capture output, which are speed of the robot calculated from

the position estimates (2.8) (2.9) from the image processing algorithm, and the yaw

angle estimates (2.12) from the image processing algorithm.

Table 3.1: Inputs and Outputs of the Network

Label Measurement Sensor Used

Input 1 Time

Input 2 Time Step

Input 3 Longitudinal Speed Center Encoder 1&2

Input 4 Longitudinal Speed Wheel 1 Encoder 1

Input 5 Longitudinal Speed Wheel 2 Encoder 2

Input 6 Yaw Angle Encoder 1&2

Input 7 Yaw Angle IMU

Input 8 Acceleration +x IMU

Input 9 Acceleration +y IMU

Input 10 Current Motor 1 Current sensor 1

Input 11 Current Motor 2 Current sensor 2

Output 1 Speed Camera

Output 2 Yaw Angle Camera

Current measurement, IMU readings and encoder readings are collected simultameously,

however, images of the robot are not captured simultaneously to those readings. Sam-

ple rate of the images are also lower than the sapmle frequency of other measure-

ments. Because of this, position of the robot at the reading times of the encoders and

other sensors are estimated by the interpolation of the image data. Position and yaw

angle from the image readings are calculated, after that those values sent to second
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order low-pass butterworth filter, then functions for those readings are constructed

using image capture times and values at the encoder readings are calculated from the

interpolation of the reading times and capture times.

Figure 3.5: Scaled Measurements Used to Traing Network

3.3.2 Network Structure

There are 11 inputs in total supplied to the network, and there are 2 outputs, which are

speed of the center of the robot and yaw angle of the robot. When combined, these

two outputs make velocity vector of the robot, which can be used to generate position

output of the robot.

While calculating number of hidden layer required, following formula is used.

Nh =
Ns

α(Ni +No)
(3.5)

In this equation, Ns, NiNo are number of hidden layers, number of inputs and num-

ber of outputs, respectively. While determining number of cells in each hidden layer,

lower than the twice of the number of inputs are chosen to reduce time to calculate

weights in the network while training. Hence, there are 20 cells in each hidden layer.
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The network used in this study composed of 5 hidden layers. In each layer, there are

20 recurrent cells. Training is done with 120 experiments. 10 experiment are saved

as validation data and those are not used in training. While training, 500 epochs are

used.

Since all the inputs are scaled then sent to network, output of the network is scaled

too. This is not a big problem cases where data are observed first, then the remaining

data are estimated. In those cases, observed values are used for re-scaling. How-

ever, in this case, camera output is only used to train the network. For the validation

data, camera output is only used to evaluate the performance of the trained network.

Hence for those experiments, re-scaling is a problem. For re-scaling, a region or a

point should be known to re-scale output of the network. Here, only known point is

at t = 0, v = 0 and ψ = 0, however those cannot be used to re-scale data. In (2.7)

and (2.8), velocity and yaw agnle estimates done by the data from encoders are same

as the camera output up to the point where slip begins. But in the beginning of the

experiment and at the beginning of the movement, odometry gives reliable data. For

re-scaling, this charecteristic can be used.

Figure 3.6: Structure of the Recurrent Neural Network Used in the Study

Re-scaling is done by using the first 200 data points of the experiment. From those

points, speed and yaw angle estimates are calculated from odometry data. Then, mean

of those speed and yaw angle estimates are calculated. Mean of the speed and yaw

angle output of the network is calculated and whole output data re-scaled to have

same mean values for those 200 points. By this way, whole data are re-scaled.
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3.4 Conclusion and Discussion

Feedforward and Recurrent Deep Neural Networks are explained. Then, activation

function and loss function optimization method used in the deep recurrent neural

network used in the work is represented. Inputs sent to the network are tabulated, then

filtering and scaling of the inputs are represented. In the end of the chapter,structure

of the network and training process are explained.
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CHAPTER 4

RESULTS OF THE RECURRENT DEEP NEURAL NETWORK

4.1 Introduction

In this chapter, results of the algorithm obtained from the experiments those did not

used to train the algorithm are presented. Firstly, speed estimates of the camera,

odometry measurements and results of the algorithm are compared. Then, using those

speed estimates, distance covered by the robot is plotted by those three estimates.

Thirdly, yaw angle estimate of the robot is plotted by the camera, IMU, odometry and

result of the algorithm is plotted. Later, position estimates of the camera, odometry

and result of the algorithm which is combination of distance estimates of the algo-

rithm and yaw angle estimate of the algorithm is presented. Lastly, performance of

the odometry, IMU and proposed network output evaluated by the ground truth are

tabulated and discussed.

4.2 Plots and Comparisons

Results of the 7 experiments are plotted and compared. Those experiments are chosen

randomly and acceleration input sent to the wheels of the robot are different in those

experiments, hence, speed profile and yaw angle profiles are different. Also, in each

experiment, acceleration input sent to the each wheel are different too, because of

this, in low slip conditions, robot is expected to follow a near-circular path. In all of

the experiments, there is no inclination on the surface. Same surface and same wheels

are used in all experiments, moreover parameters like mass, mass center, inertia are

not changed, thus wheel-ground interaction parameters are expected to be same in all
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experiments.

4.2.1 Experiment 1

In this experiment, acceleration of the robot is expected to be 0.064m/s2 according

to equation (2.15). The speed estimates in experiment 1 is plotted in Figure (4.1).

Ground truth is camera, hence errors should be evaluated according to camera data.

As it can be seen from the figure, estimates from odometry or encoder data give larger

difference to camera data when compared to output of the recursive deep leraning

algorithm. Moreover, both camera data and output of the networks starts to differ

from odometry data around t = 6 s, which means that algorithm is able to capture

start of the slippage. However, as expected, output of the network does not follow the

ground truth exactly and it has some error. Despite that, network is able to estimate

start of the slippage and able to decrease the error of the odometry.

Figure 4.1: Speed Estimates of Experiment 1

The data in the Figure 4.1 are integrated and the total distance covered by the robot is

plotted (Figure 4.2). Errors in the speed estimates are accumulated, hence output of

the algorithm gives better results compared to odometry or encoder data. From Figure

4.1, it is known that slippage starts around t = 6 s, hence covered distance estimates
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start to differ after t = 6 s.

Figure 4.2: Covered Distance Estimates of Experiment 1

Figure 4.3: Yaw Angle Estimates of Experiment 1

Yaw angle estimates of the robot done by IMU, odometry or encoder data and output

of the recursive deep network are compared to camera data (Figure 4.3). Biggest

difference to camera data is seen on odometry data. IMU output is closer to camera

29



data compared to encoder data, however, output of the network gives closest result to

camera data.

In Figure 4.4, position estimates of the robot which is combination of distance covered

and yaw angle estimates are presented. As expected, due to not being able to detect

longitudinal and lateral slips of the robot, encoder data gives circular motion. Camera

data shown by the red line, is the ground truth data. Output of the algorithm is not as

close to camera data as expected. It is due to errors in the estimates of velocity and

yaw angle causes accumulated errors in integration.

Figure 4.4: Position Estimates of Experiment 1

4.2.2 Experiment 2

Acceleration input sent to the motion controlllers of the DC mototrs connected to

wheels of the robot are lower than the experiment 1. According to the equation 2.15,

robot is expected to have 0.056m/s2 acceleration. In experiment 2, similar to exper-

iment 1, speed estimate of the network is closer to camera data compared to encoder

data. Since acceleration of the robot is lower in this experiment, slippage is expected

to start later, and as it can be seen from the Figure 4.5, slippage starts around t = 7 s.

However, in this experiment, network captures slippage with a lag. According to the

network, slippage starts around t = 8 s. It captures start of slippage with around 1 s
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delay.

Figure 4.5: Speed Estimates of Experiment 2

Since speed estimates of the network is closer to camera data, it has lower accumu-

lated error and covered distance is closer to camer data as expected(Figure 4.6).

Figure 4.6: Covered Distance Estimates of Experiment 2
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Yaw estimates of the network is closest to camera data. Again, IMU output is closer

than encoder data, but it is worse than network output(Figure 4.7).

Figure 4.7: Yaw Angle Estimates of Experiment 2

Accumulated errors in speed estimates and yaw angle estimates resulted in errors big

errors in the position estimate(Figure 4.8).

Figure 4.8: Position Estimates of Experiment 2
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4.2.3 Experiment 3

Compared to first and second experiment, acceleration input sent to the motion con-

trollers of the DC motors are lower than previous experiments in this experiment.

According to the equation 2.15, robot is expected to 0.049m/s2 acceleration in low

slip conditions. In this experiment, speed changes are captured by the deep network,

however, there are some errors in the magnitude of speed(Figure 4.9). Slippage starts

around t = 8 s, however after brief slippage, slippage diminishes, then slippage starts

aroundt = 12 s, later than the experiment 1 and experiment 2, as expected. Network

is able to capture the change at t = 12 s, but the speed estimates at that point have

some error. When slip starts around t = 8s, output of the deep network gives higher

error compared to encoder output. After t = 10s, output of the deep network starts

perform better than the encoder data.

Figure 4.9: Speed Estimates of Experiment 3

Higher errors in the speed estimation makes covered distance estimates worse than

encoder measurements. However after t = 17s, since performance of algorithm is

better in high slip regions compared to odometry, distance estimates are closer to

camera data (Figure 4.10).
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Figure 4.10: Covered Distance Estimates of Experiment 3

In the Figure 4.11, yaw angle esitmates of the experiment 3 is shown. In this ex-

periment, output of the network has performed better compared to IMU output and

odometry, but in the end of the experiment, IMU has given slightly closer result to

camera.

Figure 4.11: Yaw Angle Estimates of Experiment 3
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Again, errors in the speed estimation and yaw angle estimation have accumulated

and caused large errors in the position estimates(Figure 4.12). But, the path of the

network output makes larger near-circular patterns, close to the camera output. Here,

path output of the odometry is circular, and the radius of this path is smallest. As

explained before, center of mass of the robot is adjusted so that handling behaviour

of the robot is understeer. From the odometry output, since it is not be able to capture

lateral and longitudinal slips, cornering radius is expected to be smallest, and actually

it has the smallest cornering radius as it can be seen from Figure 4.12. Since cornering

radius of the network output is close to the cornering radius of the ground truth, it can

be said that network is able to capture lateral and longitudinal slips and reduce the

error.

Figure 4.12: Position Estimates of Experiment 3

4.2.4 Experiment 4

According to the equation 2.15 and the acceleration input sent to the motion con-

trollers, robot is expected to 0.036m/s2 acceleration in low slip conditions. Hence,

slip is expected to start later than slippage start time in the previous experiments. In

this experiment, speed estimates of the network is closer than previous experiments.

Network guessed speed more closer to camera data (Figure 4.13).
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Figure 4.13: Speed Estimates of Experiment 4

Since speed estimates are closer to camera output, distance covered is closer to cam-

era estimates too. Most of the error of the odometry estimate is compansated by the

network (Figure 4.14).

Figure 4.14: Covered Distance Estimates of Experiment 4
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The yaw estimates of the network is significantly better compared to odometry and

IMU (Figure 4.15).

Figure 4.15: Yaw Angle Estimates of Experiment 4

Figure 4.16: Position Estimates of Experiment 4

Again, in this experiment, odometry data reprresents path without lateral and longi-

tudinal slips. Performance of the trained network when capturing and compesating
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lateral and longitudinal wheel slips can be evaluated after examining covered dis-

tance(Figure 4.14) and position(Figure 4.16) plots. Since covered distance estimate

of the network is closer to the ground truth data, it is able to compansate some of the

longitudinal wheel slip. Moreover, since yaw angle estimates of the network is much

closer to the ground truth and radius of cornering of the network output is close to the

ground truth, it is able to capture and compensate some of the lateral slip.

4.2.5 Experiment 5

According to the equation 2.15 and the acceleration input sent to the motion con-

trollers, robot is expected to 0.056m/s2 acceleration like in experiment 1, in low slip

conditions. But in this experiment, acceleration input difference sent to inner and

outer wheels are higher than experiment 1, hence robot is expected to make sharper

turn. Compared to experiment 1, acceleration input of the outer wheel is slightly in-

creased and the acceleration input of the inner wheel is slightly decreased to have a

sharper turning motion during the experiment. Because of the sharper turning motion,

lateral slip will be more effective in this experiment compared to experiment 1.

Figure 4.17: Speed Estimates of Experiment 5

The speed estimates made by network is closer to camera data than odometry data,
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but the later speed fluctuations are not captured by the algorithm. Despite this, even

in this regions output of the deep network is significantly closer to ground truth than

odometry data(Figure 4.17).

Compensation of some of the errors in the speed estimate resulted in significant im-

provement in the covered distance estimates. As it can be seen from Figure 4.18,

output of the network is considerably better than odometry estimates. If the speed es-

timates done by the network is close to the ground data, which means that it is able to

capture and compensate wheel slips, covered distance calculated by those estimates

will be closer to the ground data. Since covered distance estimates are significantly

closer to ground truth compared to odometry data, recurrent deep neural network is

able to capture and compensate some of the wheel slips.

Figure 4.18: Covered Distance Estimates of Experiment 5

Like in the Figure 4.15, yaw angle estimates of the network is so considerably closer

to camera data compared to IMU and odometry (Figure 4.19). While computing yaw

estimates from the odometry data, equation 2.16 is used, thus due to wheel slips, there

will be high error in odometry yaw angle estimates. Because of the closeness of the

network output to ground data and yaw estimate calculated using the odometry data

and yaw angle calculated using IMU data are inputs of the network, it can be said that

network is able to capture and compansate some of the wheel slips and compose IMU
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and odometry data to estimate more accurately yaw angle of the robot.

Figure 4.19: Yaw Angle Estimates of Experiment 5

Like previous experiments, due to the cumulative errors while calculating positions,

position estimates were as not good as expected.

Figure 4.20: Position Estimates of Experiment 5
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4.2.6 Experiment 6

In experiment 6, the accelration of the robot is expected to be 0.049m/s2 according

to equation 2.15 and the acceleration input sent to the motion controllers of the DC

motors.

Trained network is able to capture the start of the slippage and in the beginning of

the slippage, it is able to guess speed of the robot relatively closely. But after around

t = 12 s, network is not able to guess the speed of the robot as in the beginning

of the experiment and up to t = 12 s (Figure 4.21). Although network output does

not follow ground data exactly, it is considerably closer to ground data compared to

odometry output.

Figure 4.21: Speed Estimates of Experiment 6

Trained network compensated some of the slip in the speed estimations (Figure 4.21).

Reducing the speed estimation errors will result in the error in covered distance esti-

mates. Since output of the network is close to the ground truth data in speed estimates,

covered distance calculated by the trained network is significantly closer to the ground

truth data than odometry data (Figure 4.22). Because of the errors in speed estimates,

covered distance estimates calculated from the network output have errors, but those

error is relatively small compared to the odometry data.
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Figure 4.22: Covered Distance Estimates of Experiment 6

Yaw estimates from the trained recurrent neural network are consideraby closer to

the ground truth data compared to the IMU measurements and odometry calcula-

tions(Figure 4.23).

Figure 4.23: Yaw Angle Estimates of Experiment 6
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Figure 4.24: Position Estimates of Experiment 6

Position estimates calculated from the network output have high error due to the cu-

mulative errors in the speed estimate and the yaw angle estimates. Although network

is able to estimate and reduce the slippage at a lower level, it does not completely

corrects speed and yaw angle estimates. But larger path radius compared to odometry

and closer covered distance to ground truth means it is able to estimate some of the

slips.

4.2.7 Experiment 7

In the last experiment, acceleration of the robot is expected to be 0.04m/s2 according

to equation 2.15 and the acceleration input sent to the motion controllers of the DC

motors connected to wheels of the robot.

In this expeiment, network guesses speed of the robot and yaw angle of the robot

much better compared to other experiments, and covered distance and position esti-

mates are much closer to the camera data. Speed estimates of the network is close to

the ground data, as expected(Figure 4.25).
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Figure 4.25: Speed Estimates of Experiment 7

Error of the odometry data while calculating covered distance is reduced by the algo-

rithm by enhancing speed estimates(Figure 4.26).

Figure 4.26: Covered Distance Estimates of Experiment 7

The estimate done by the network is consideraby better than yaw estimates of IMU
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and odometry(Figure 4.27).

Figure 4.27: Yaw Angle Estimates of Experiment 7

Since speed and yaw angle estimates have relatively low errors compared to 6 ex-

periments presented before, position estimates are closer to the camera output(Figure

4.28).

Figure 4.28: Position Estimates of Experiment 7
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Since position estimates of the network are close to the ground truth, network is able

to reduce errors due to slippage. Covered distance, yaw angle and the position esti-

mates are close to the ground truth, moreover radius of the path of position estimates

of the network is close to the radius of path obtained from the ground truth. Hence,

it can be said that network is able to compensate lateral and longitudinal slips of the

robot.

4.3 Error Tables

In this section, errors of the odometry measurements and the output of the trained

network is compared and tabulated for speed of the robot, covered distance by the

robot and yaw angle of the robot. For the yaw angle comparison, output of the IMU

is also considered. In the following equations, Vex, Vc, Vnetwork represent speed of

the robot measured by the encoders, camera and speed output of the network, de,

dc, dnetwork, represent distance covered by the robot measured by encoders, camera

and output of the network, ψe, ψc, ψimu, ψnetwork represent yaw angle of the of the

robot measured by encoders, camera IMU and output of the network respectively.

es,e, es,network represents speed measurement errors of encoders and network, eps,e,

eps,network represents speed measurement error percentages of encoders and network,

ed,e, ed,network represents covered distance measurement errors of encoders and net-

work, epd,e, epd,network represents covered distance measurement error percentages

of encoders and network, ey,e, ey,network, ey,imu represents yaw angle measurement

errors of encoders, network and IMU, epy,e, epy,network, epy,imu represents yaw angle

measurement error percentages of encoders, network and IMU respectively.

es,e =
1

m

m∑
i=1

∣∣Vex(i)− Vc(i)∣∣ (4.1)

es,network =
1

m

m∑
i=1

∣∣Vnetwork(i)− Vc(i)
∣∣ (4.2)
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ed,e =
1

m

m∑
i=1

∣∣de(i)− dc(i)∣∣ (4.3)

ed,network =
1

m

m∑
i=1

∣∣dnetwork(i)− dc(i)
∣∣ (4.4)

ey,e =
1

m

m∑
i=1

∣∣ψe(i)− ψc(i)
∣∣ (4.5)

ey,network =
1

m

m∑
i=1

∣∣ψnetwork(i)− ψc(i)
∣∣ (4.6)

ey,imu =
1

m

m∑
i=1

∣∣ψimu(i)− ψc(i)
∣∣ (4.7)

eps,e =
1

m

m∑
i=1

∣∣Vex(i)− Vc(i)∣∣
Vc(i)

(4.8)

eps,network =
1

m

m∑
i=1

∣∣Vnetwork(i)− Vc(i)
∣∣

Vc(i)
(4.9)

epd,e =
1

m

m∑
i=1

∣∣de(i)− dc(i)∣∣
dc(i)

(4.10)

epd,network =
1

m

m∑
i=1

∣∣dnetwork(i)− dc(i)
∣∣

dc(i)
(4.11)

epy,e =
1

m

m∑
i=1

∣∣ψe(i)− ψc(i)
∣∣

ψc(i)
(4.12)

epy,network =
1

m

m∑
i=1

∣∣ψnetwork(i)− ψc(i)
∣∣

ψc(i)
(4.13)

epy,imu =
1

m

m∑
i=1

∣∣ψimu(i)− ψc(i)
∣∣

ψc(i)
(4.14)

For error equations, all of the measurement points are used and difference to ground

truth is calculated and mean of the error values of the error values for each measure-

ment method are found and tabulated. For the error percentages, same procedure is

followed, but the data points where denominator term is close to zero is excluded due

to the near-singularity. To prevent cancelling-out due to the sign difference, absolute

values of the errors and error percenteges are used in error calculations.
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Table 4.1: Errors of the Speed Estimates

Experiment # Odometry Error (m/s) Trained Network Error (m/s)

Experiment 1 0.16358 0.08626

Experiment 2 0.13586 0.08161

Experiment 3 0.08305 0.06938

Experiment 4 0.04711 0.03259

Experiment 5 0.12101 0.03449

Experiment 6 0.08672 0.02779

Experiment 7 0.05281 0.02808

Mean error of the speed estimates are significantly better in the outputs of the recur-

rent deep network. From this result, proposed recurrent deep neural network can be

said to reduce errors due to the slippages of the wheels.

Table 4.2: Errors of the Covered Distance Estimates

Experiment # Odometry Error (m) Trained Network Error (m)

Experiment 1 1.38230 0.77261

Experiment 2 0.99202 0.68340

Experiment 3 0.63162 0.66094

Experiment 4 0.37933 0.19023

Experiment 5 0.86379 0.15810

Experiment 6 0.53440 0.10066

Experiment 7 0.32364 0.25909

Since speed estimates are enhanced, covered distance estimates are also enhanced.

Mean of the errors of the deep network is better than the odometry measuremets.
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Table 4.3: Errors of the Yaw Angle Estimates

Experiment # Odometry Error (deg) Trained Network Error (deg) IMU Error (deg)

Experiment 1 938.72 57.80 287.15

Experiment 2 802.82 33.79 115.61

Experiment 3 494.99 136.70 270.10

Experiment 4 298.99 47.31 253.95

Experiment 5 929.08 60.12 259.46

Experiment 6 714.56 48.77 242.10

Experiment 7 430.95 31.94 260.41

Mean of the yaw angle errors are considerably decreased by the proposed recurrent

deep neural network. Output of the deep network is significantly better than odometry

and IMU estimates in all experiments.

Table 4.4: Durations to Reach 50% Speed Estimation Errors for IMU and Network

Output

Experiment # IMU Duration (s) Trained Network Duration (s)

Experiment 1 0.81 16.44

Experiment 2 2.74 11.96

Experiment 3 0.76 16.84

Experiment 4 0.81 20.36

Experiment 5 2.02 20.74

Experiment 6 1.97 20.81

Experiment 7 1.45 20.50

In the above table, reaching durations of 50% speed estimation errors for IMU and

trained network is compared. From the table, it can be seen that durations to reach

50% speed estimation error is largely increased by the network, which means this
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system can be used for longer durations in absence of the ground truth.

4.4 Comparisons to Literature Results

There are previously done works in literature for indoor and outdoor applications.

Both 2 wheeled, 4 wheeled and 6 wheeled robots are used in those works and ex-

periments. In tthis section, results of the literature will be compared to the results

obtained in this work. Since robot in this work is adjusted to slide in relatively low

speeds and robot speeds, robot types, ground surface properties, etc. are not the same

with the literature, comparisons will not show exact performance of the proposed net-

work compared to literaure, however it will give general idea about the performance

of the network.

Chonnaparamutt, Winai and Kawasaki [5] used fuzzy estimators to estimate speed of

a pruning robot. In the experiments, robot is moved around 0.1m/s, and in average

encoder measurements have 11.09% error and fuzzy estimator has 2.74% speed es-

timation error.

Sekimori and Miyazaki [13] used four optical mouse sensors to improve covered di-

tance and yaw angle estimations of a differentially driven mobile robot. They moved

robot in a 2.5m path and this path consists of straigths and 90 degree turns. Average

speed of the robot is 500mm/s and in the end of the experiments, encoders are mea-

sured covered distance by an average of 239.4 mm (9.58%), optical mouse sensors

measured covered distance by 61.6mm average error (2.46%). Encoders measured

yaw angle by 19.26 deg average error (5.35%) and optical mouse sensors measured

yaw angle by 8.58 deg average error(2.38%).

Seyr and Jakubek [4] combined odometry and IMU measurements to estimate posi-

tion of a two wheeled differentially driven robot. They did experiments in a rectan-

gular path. Total distance covered during those experiments is 2.4m and in the end

of the experiments, they estimated distance by 2.5% average error.

Ojeda et al.[7] used driven DC motor currents to determine wheel slippages of a 6

wheeled outdoor terrain vehicle. Robot they used covered around 14m during the

experiment and they estimated position of the robot with 0.6% error.

Since those results are presented in percentages, error percentege tables for the pro-
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posed method is presented below.

Table 4.5: Error Percentages of the Speed Estimates

Experiment # Odometry Error (%) Trained Network Error (%)

Experiment 1 31.60 16.40

Experiment 2 26.69 16.73

Experiment 3 14.67 13.01

Experiment 4 9.28 6.36

Experiment 5 24.23 6.83

Experiment 6 16.43 5.26

Experiment 7 10.13 5.63

In all of the experiments, error percentages of the encoders decreased significantly.

From the speed error percentages, it can be seen that even for longer runs and higher

speeds, network output is comparable to Chonnaparamutt, Winai and Kawasaki [5]

in speed estimates especially in experiments 4, 5, 6. In this work, robot is designed to

slide in low speeds, robot is operated in much higher speeds than pruning robot tested

by Chonnaparamutt, Winai and Kawasaki and robot covereed much higher distance

at those experiments. Despite that, results of the proposed network is comparable.

Table 4.6: Error Percentages of the Covered Distance Estimates

Experiment # Odometry Error (%) Trained Network Error (%)

Experiment 1 19.71 12.75

Experiment 2 11.87 9.52

Experiment 3 9.98 12.23

Experiment 4 8.11 5.96

Experiment 5 9.35 2.25

Experiment 6 6.02 1.36

Experiment 7 4.92 5.44
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Covered distance error percentages are comrarable to works of Sekimori and Miyazaki

[13], Seyr and Jakubek [4] in experiments 4, 5 and 6. Network gives better results

in latest experiments since recurrent neural network updates itself and latest train-

ings are more effective. Work of Ojeda et al.[7] gives much better results, however

robot they used is completely different since it has 6 driven wheels. Again, compari-

son, covered distance bby the robot in this work is much higher than literature except

Ojeda et al.[7].

Yaw angle estimates are improved significantly by the network. Sekimori and Miyazaki

[13] improved average error of yaw angle estimates from 5.35% to 2.38%. In this

work, this improvement is much more notable. Moreover, despite running experi-

ments in higher mobile robot speeds and at longer distances, results of the output are

comparable to work of Sekimori and Miyazaki [13].In addition to these, robot used

in this work is adjusted to slide in low speeds and experiments are done in higher

speeds as it can be seen from tha high errors in the encoders measurements of this

work. Later in this section, results of the network and the literature will be compared

again for covered distance of 5.5m .

Table 4.7: Error Percentages of the Yaw Angle Estimates

Experiment # Odometry Error (%) Trained Network Error (%) IMU Error (%)

Experiment 1 43.67 6.20 24.72

Experiment 2 42.06 3.31 9.81

Experiment 3 24.39 7.47 29.81

Experiment 4 14.42 3.56 25.43

Experiment 5 38.45 5.28 23.09

Experiment 6 32.24 4.46 22.12

Experiment 7 19.80 1.93 24.85

Up to this point, experiment results are compared to literature, but in literature, robot

covered around 2.5m distance. Since in dead reckoning errors accumulate, it will be

better to compare results in similar distances. Hence ın the same 7 experiments are

used again, however in this time, experiments are not evaluated after robot is covered
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5.5m distance.

Table 4.8: Error Percentages of the Speed Estimates for 5.5 m Covered Distance

Experiment # Odometry Error (%) Trained Network Error (%)

Experiment 1 22.82 12.24

Experiment 2 16.07 12.49

Experiment 3 8.13 10.77

Experiment 4 7.75 4.86

Experiment 5 15.64 4.76

Experiment 6 8.29 3.47

Experiment 7 6.19 4.95

Trained network gives error percentage around 4.5% in experiments 4, 5, 6 and 7. It

is close to the result obtained by Chonnaparamutt, Winai and Kawasaki [5] despite

using different robot and higher speeds which will increase slippages in the wheels.

Table 4.9: Error Percentages of the Covered Distance Estimates for 5.5 m Covered

Distance

Experiment # Odometry Error (%) Trained Network Error (%)

Experiment 1 13.29 10.15

Experiment 2 5.79 6.25

Experiment 3 7.65 10.52

Experiment 4 7.39 6.16

Experiment 5 4.19 1.58

Experiment 6 2.77 0.91

Experiment 7 3.55 5.00

Covered distance results of the network in experiments 4, 5, 6 and 7n are comparable

to Sekimori and Miyazaki [13], Seyr and Jakubek [4].

53



Table 4.10: Error Percentages of the Yaw Angle Estimates for 5.5 m Covered Distance

Experiment # Odometry Error (%) Trained Network Error (%) IMU Error (%)

Experiment 1 28.50 7.48 26.18

Experiment 2 24.20 3.05 9.47

Experiment 3 12.98 4.76 30.88

Experiment 4 10.62 3.30 25.73

Experiment 5 24.83 6.01 24.81

Experiment 6 19.78 4.89 23.74

Experiment 7 12.61 1.68 25.73

Yaw angle estimates are again comparable to Sekimori and Miyazaki [13] . How-

ever, since test surface conditions, wheel types, dynamics of the robot used in the

experiments and experiment durations are different, to compare and evaluate perfor-

mances of the different algorithms, same experiment with same robots on the same

test ground should be done.

4.5 Conclusion and Discussion

In this chapter, results of the speed estimations, covered distance estimations, yaw

angle estimations and position estimations of the robot obtained from the trained net-

work, odometry and ground truth are plotted and compared for 7 experiments those

not used in the training process of the recurrent deep neural network. For the yaw

angle comparisons and plots, output of the IMU is also considered. Performance of

the estimates are compared by tabulating the errors from ground truth for each exper-

iments. Lastly, results of the this work and the lierature is compared.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this work, errors on the speed and yaw angle data due to the slippages on the wheels

of a 2 wheeled differentially driven mobile robot are reduced using a recurrent deep

neural network. In the first chapter, literature survey and the motivation of this thesis

is explained. Test set-up and the robot used in the experiments, sensors used in the

experiments, basic equations used to mainupulate sensor data and comparison of the

data obtained from different sensors are presented in chapter 2. Two of the basic neu-

ral networks, the recurrent deep neural network used in this work, inputs of this deep

neural network and training process of the proposed network is explained in chapter

3. In the chapter 4, results of the proposed network and comparison of the network

output with odometry, IMU data and the lierature results are presented. Moreover, er-

rors of the network output, odometry and the IMU data are tabulated and compared.

Proposed network’s ability to capture and compensate errors due to the wheel slips

in the speed estimates and the yaw angle estimates is evaluated according to the error

comparisons. Reduced errors in speed and yaw angle estimates mean that is is bet-

ter than dead reckoning, hence deep networks can be used to get position estimates

in when the ground truth data is interrupted. Network is able to reduce erros in all

experiments and it can be used to improve navigation of two wheeled mobile robots.

Since most of the mobile robots have encoders and also an IMU, after a simple train-

ing of the network, navigation data can be obtained from the trained network with

lower error compared to odometry and IMU. Since it is not requires system model

and system parameters, it is easy to apply in different systems. Specifically for the

systems where frequency of the ground data is low or interrupted, this method can
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be used in the intervals between receiving ground truth data. Also, since proposed

network is recurrent, received data can be used to train network to adapt changing

road or surface conditions.

While training network, to improve performance of the network, loads on the tires

of the robot are added to training data. Accelerometer data of the IMU with the

known weight and center of mass of the robot are used to obtaing normal loads on the

wheels. However, since information used in this calculation except the center of mass

and weight, which are constants and are already sent to network, this information is

redundant. Hence it did not improve the performance of the system. Moreover, to

improve position estimates, robot position is used as output of the network instead of

the speed and the yaw angle of the robot. In position calculations, current calcula-

tion depends on all the previous position calculations. Because of this, Errors in the

beginning of the experiment propogates through the experiment and this reduces per-

formance of the nerwork significantly. Output of the network trained by the position

outputs are worse than the network trained by the speed and yaw angle of the robot.

5.2 Future Work

Same surface, same robot and same set of wheels are used in this work. For different

tires, ground surface conditions and for different inclinations, method can be tested.

Using two cascade networks, first surface type can be determined and later according

to the type of the surface, second network can be adjusted to provide required navi-

gation data for the robot.

Secondly, to make proposed network applicable to other mobile robots too, sensors

chosen to be easy to purchase and easy to use. Numbers of the sensors can be in-

creased and different sensors can be added to the system. For example, using a cam-

era on the robot, optic flow can be used as position input to the system, by this way

accuracy of the system can be improved.

Thirdly, network can be tested for four wheeled outdoor robots to evaluate perfor-

mance of the system for outdoor conditions with more than 2 wheeled robots. Since

surface conditions of the road will change constantly, recurrent deep neural network’s

ability to adapt changes can be observed by this way.
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