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ABSTRACT

NUMERICAL STUDIES OF KORTEWEG-DE VRIES EQUATION WITH
RANDOM INPUT DATA

Üreten, Mehmet Alp

M.S., Department of Scientific Computing

Supervisor : Assist. Prof. Dr. Hamdullah Yücel

Co-Supervisor : Prof. Dr. Ömür Uğur

September 2018, 97 pages

Differential equations are the primary tool to mathematically model physical phe-
nomena in industry and natural science and to gain knowledge about its features.
Deterministic differential equations does not sufficiently model physically observed
phenomena since there exist naturally inevitable uncertainties in nature. Employing
random variables or processes as inputs or coefficients of the differential equations
yields a stochastic differential equation which can clarify unnoticed features of phys-
ical events. Korteweg-de Vries (KdV) equation with the random input data is a funda-
mental differential equation for modeling and describing solitary waves occurring in
nature. It can be represented by employing time dependent additive randomness into
its forcing or space dependent multiplicative randomness into derivative of the solu-
tion. Since analytical solution of the differential equation with the random data input
does not exist, quantifying and propagating uncertainty employed on the differential
equation are done by numerical approximation techniques. This thesis will focus on
numerical investigation of the Korteweg-de Vries equation with random input data
by employing stochastic Galerkin in probability space, local discontinuous Galerkin
method in spatial dimension, and theta (weighted average) method in temporal di-
mension. In numerical implementations, both additive noise and multiplicative noise
cases are considered by comparing with other numerical techniques such as Monte
Carlo and stochastic collocation methods for the probability space and finite differ-
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ence method for the spatial discretization.

Keywords: uncertainty quantification, stochastic Galerkin method, Korteweg-de Vries
equation, local discontinuous Galerkin method
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ÖZ

RASTGELE GİRDİLERİ OLAN KORTEWEG-DE VRİES DENKLEMİNİN
SAYISAL ÇALIŞMASI

Üreten, Mehmet Alp

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Hamdullah Yücel

Ortak Tez Yöneticisi : Prof. Dr. Ömür Uğur

Eylül 2018, 97 sayfa

Diferansiyel denklemler, endüstri ve doğa bilimlerindeki fiziksel fenomenleri ma-
tematiksel olarak modellemenin ve özellikleri hakkında bilgi edinmenin temel ara-
cıdır. Deterministik diferansiyel denklemler, doğadaki kaçınılamaz belirsizliklerden
dolayı fiziksel olarak gözlenen fenomenleri yeterince modelleyememektedir. Dife-
ransiyel denklemlerin girdileri ya da katsayılarının rassal değişkenler olarak kullanıl-
ması, fiziksel olayların fark edilmeyen özelliklerini netleştirebilen bir stokastik dife-
ransiyel denklemi ortaya çıkarır. Rassal girdili Korteweg-de Vries (KdV) denklemi
doğada oluşan tekil dalgaların modellenmesi ve tanımlanması için temel bir diferan-
siyel denklemdir. Bu denklemler zamana bağlı toplama rassalığı veya uzaya bağlı
çarpımsal rassallığı ile ifade edilebilir. Rassal girdili diferansiyel denklemlerin genel-
likle analitik çözümü bulunmadığından, diferansiyel denklem üzerinde kullanılan be-
lirsizliğin nicelleştirilmesi ve yayılması sayısal yaklaşım teknikleriyle yapılır. Bu tez,
olasılık uzayında stokastik Galerkin, mekansal boyutta yerel süreksiz Galerkin yön-
temi ve zamansal boyutta teta (ağırlıklı ortalama) yöntemi kullanılarak Korteweg-de
Vries denkleminin rassal girdi verileriyle sayısal olarak incelenmesine odaklanacak-
tır. Sayısal uygulamalarda, hem olasılıksal gürültü hem de çarpımsal gürültü durum-
ları Monte Carlo ve stokastik kolokasyon gibi yöntemler ve uzaysal yaklaşım için
sonlu farklar yöntemi gibi diğer sayısal tekniklerle karşılaştırılarak değerlendirilmek-
tedir.
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Anahtar Kelimeler: belirsizlik hesaplaması, stokastik Galerkin yöntemi, Korteweg-de
Vries denklemi, yerel süreksiz Galerkin yöntemi
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CHAPTER 1

INTRODUCTION

Mathematical modeling with differential equations is the main tool in various fields

of science and engineering for understanding crucial behaviors of complex physical

phenomena. Since solving the differential equations analytically is quite impractical

and sometimes impossible, scientific computing has become an essential tool to make

numerical simulations of physical events efficiently and effectively. The primary goal

of the scientific computing is to develop numerical techniques whose numerical er-

rors are well established and to implement them to the problems induced by natural

sciences. As the need of natural sciences grows considerably, understanding complex

structure of interested models has become a necessity. Therefore, comprehension of

how errors/uncertainties in model or data impact behaviors of the system have be-

come a significant numerical tool in the past years. Uncertainty quantification (UQ)

in the differential equations may uncover obscure features of the physical events.

The uncertainties can be classified into two different categories with respect to their

sources [33]. The first one is related to inevitable random variability appearing in the

nature, known as aleatory or statistical uncertainty. The second one, called epistemic

uncertainty, arises from a lack of knowledge about the physical event involved and the

assumptions made while modeling. Epistemic uncertainty can be reduced by making

additional observations and by using improved measuring devices. Despite these pro-

cesses augment on the knowledge about physical event, they are quite impractical to

measure all features. These uncertainties can be studied as random inputs or oper-

ator of the mathematical model. In other words, the randomness can be introduced

in the system by random variable or processes which depends on how sophisticated
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uncertainties exist in the physical event. The most common problems interested in

natural sciences and engineering mostly involve partial differential equations (PDEs)

with random coefficients. Moreover, the random coefficients is classically defined as

some idealized stochastic processes, which can be analyzed using elegant mathemat-

ical theory, such as Ito calculus [20]. In this case, the governing stochastic PDE has a

solution as stochastic process which is generally not suitable to analytical solutions.

The treatment to stochastic equations consists of two steps, which are defining the

properties of the stochastic system with random variables/processes having a proper

probability distribution and solving corresponding differential equation to obtain their

second order statistical information. In this thesis, our concern is mainly on the solv-

ing corresponding differential equation.

1.1 Model Equation

In this thesis, we will investigate the numerical solution of the Korteweg-de Vries

(KdV) equation with random input data. Korteweg-de Vries equation is a mathemat-

ical model for solitary water waves with finite amplitudes, which was named after

its discoverers Diederik Korteweg and Gustav de Vries [26]. John Scott Russel [38]

made first experimental observation of such a solitary wave, then Boussinesq [5] de-

veloped first mathematical theory to support Russel’s observations. In 1965, Zabusky

and Kruskal’s numerical study on the KdV equation revealed that solitary waves pre-

serve their form in the collision with each other [56]. The KdV equation has been

a primary tool to mathematically modeling and clarifying some events in the nature

such as long internal waves in a ocean [41], ion acoustic waves in a plasma [25, 49].

However, deterministic KdV equation is not enough to clarify all the features of the

physical events since uncertainties are inherently inevitable. Stochastic Korteweg-

de Vries (sKdV) equation can be defined by presenting additive randomness in the

forcing term or multiplicative randomness in the single derivative term of the KdV

equation. Additive randomness in the KdV equation can be used to model traveling

waves in noisy plasmas [47, 48], whereas KdV equation with multiplicative noise can

be used to describe diffusive behavior of the solitons [19]. Moreover, dissipation and

dispersion effects of uncertainties on the solitons are studied numerically in [23, 29].
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1.2 Numerical Techniques

The widely used numerical techniques for quantifying uncertainty can be classically

separated into two groups which are non-intrusive and intrusive methods [28]. While

non-intrusive methods are based on generating identically independent samples of the

random input with respect to their probability distribution, intrusive methods depend

directly on spectral expansions of the solution on the predefined stochastic subspace.

One of the most popular class of the non-intrusive numerical techniques is Monte

Carlo (MC) sampling methods [11] since it is straightforward to implement and can

naturally be parallelized. The MC methods are built on generating pseudo-random

samples of the random input of the system and on forming a set of realizations by

solving corresponding deterministic system at each pseudo-random sample. Then,

relevant statistical information can be derived from this set of realizations. The MC

methods require only a recurrent deterministic solver, however, to obtain a conve-

niently small error in solution statistics takes a large number of samples to examine in

this classical technique. The other popular non intrusive method is called Stochastic

Collocation (SC) method [2, 52] which basically seeks an interpolation of the stochas-

tic system output on the random sample space, where collocation points are chosen

appropriately. The SC method requires only a deterministic solver and achieves fast

convergence rate provided that stochastic outputs are sufficiently smooth on the ran-

dom domain. However, the SC method suffers from the curse of dimensionality [53].

In this thesis, we mainly focus on one of the most powerful and recently developed

intrusive approach called stochastic Galerkin method [14]. The formulation of this

technique is a natural extension of the elementary idea behind Galerkin method in

deterministic setting based on polynomial (homogeneous) chaos (PC) expansion. An

important feature of this discretization technique for stochastic PDEs is the separation

of the spatial and stochastic variables. This allows a reuse of established discretization

techniques. The stochastic discretization, which is independent of the spatial one,

results in a discretization of the range space of a collection of independent random

variables, which are used for the representation of all random fields involved in the

model. Stochastic Galerkin method inherits fast convergence from Galerkin method

when the solution is smooth on its domain [28].
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After the PDE with random input data is transformed into a deterministic setting, we

need to discretize spatial and temporal dimensions by any appropriate discretization

schemes. In this thesis, we use local discontinuous Galerkin (LDG) scheme [10] as

a space discretization method. Local discontinuous Galerkin (LDG) method is one

of several discontinuous Galerkin methods which are being vigorously studied, es-

pecially as applied to hyperbolic equations because of their applicability to a wide

range of problems and their properties of local conservativity and higher degree of

locality. The fundamental idea behind the LDG methods is to rewrite the differential

equation with higher order derivatives into a first-order system. In the LDG method,

the local conservativity holds because the conservation laws are weakly enforced ele-

ment by element. In order to do that, suitable discrete approximations of the traces of

the fluxes on the boundary elements are provided by the so-called numerical fluxes.

These numerical fluxes enhance the stability of the method, and hence, the quality

of its approximation. This is why the LDG method is strongly related to stabilized

mixed finite elements.

On the other hand, the well-known weighted average (theta) method will be used for

discretization of the temporal dimension. Moreover, the rational deferred correction

method [17] will be introduced as a post-processing technique in order to enhance

numerical solutions of time-dependent problem. This method can be considered as

an extrapolation scheme which improves the accuracy of a low-order integrator it-

eratively. The idea is to construct representation of residual based on polynomial

interpolation of the solution over the time interval.

The numerical techniques introduced above are displayed in the Figure 1.1.

1.3 Outline of Thesis

This thesis will focus on the implementation of Korteweg-de Vries equation having

additive or multiplicative uncertainties in its input data. In Chapter 2 some basic con-

cepts about polynomial approximation, probability and random field representation,

which consists of Karhunen-Loève (KL) and polynomial chaos (PC) expansions, are

outlined. Chapter 3 gives a brief introduction to deterministic/stochastic KdV equa-
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Figure 1.1: Numerical approaches.

tion and derivations of their exact solution if it exists. In Chapter 4, intrusive and

non-intrusive methods are discussed, furthermore, Monte Carlo (MC) simulation,

stochastic collocation (SC) and stochastic Galerkin (SG) methods are implemented

to discretize the random domain of KdV equation with random input data. In Chapter

5, approximation of the KdV equation with random input data is completed by ap-

plying finite difference and local discontinuous Galerkin methods in spatial domain

and the theta method in temporal domain. Moreover, some numerical examples are

presented. Finally, the thesis ends with Chapter 6 which includes some discussions

and prospective points for the future work.
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CHAPTER 2

PRELIMINARIES

Uncertainty quantification (UQ) is a branch of scientific computing that quantifies un-

certainties and characterizes the impacts of minor differences in both computational

and real world systems. It tries to identify how likely outcomes occur if some features

of the system are uncertain. The sources of uncertainty have distinct origins, which

may be rooted in incomplete knowledge of numerical models and measurement er-

rors. We refer to [14] and references therein for more information about the origin

of uncertainty. Our starting point of numerical study will be a partial differential

equation (PDE) formulation where input parameters, initial or boundary conditions

are uncertain. Because of the nature of the uncertainty, random processes are used

to characterize the uncertainties and a spectral series representation is then used to

represent the solution to the problem of interest.

In this thesis, we focus on quantifying the uncertainty that propagates from the input

of a mathematical model. Therefore, randomness is needed to be inserted into de-

terministic system. The fundamental elements of the probability theory and spectral

methods help us in order to overcome this problem. In this chapter, we firstly intro-

duce orthogonal polynomials that are used in spectral expansions and polynomial ap-

proximation theory. Then, the notion of randomness will be given for understanding

in characterization of stochastic parameters presented in a numerical model. Lastly,

basics of Karhunen-Loève expansion, well-known decomposition technique to repre-

sent processes as an expansion by linear combination of orthogonal functions, will be

presented.
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2.1 Orthogonal Polynomials

In this section, introductory definitions concerning the theory of orthogonal polyno-

mials will be given. An interested reader can find further information on the subject

in [7, 45] and references therein. First of all, a polynomial of degree n can be written

in the general form:

Qn(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0, an 6= 0, (2.1)

where an is called the leading coefficient. The monic version of this polynomial

means that its leading coefficient equals to one. Therefore, monic form can be com-

posed by dividing polynomial (2.1) with its leading coefficient an such that

Pn(x) =
Qn(x)

an
= xn +

an−1

an
xn−1 + · · ·+ a1

an
x1 +

a0

an
, an 6= 0.

A system of polynomials {Qn(x), n ∈ N0} is said to be an orthogonal system of

polynomials with respect to some real positive measure α if it satisfies the following

orthogonality relation∫
D
Qn(x)Qm(x)dα(x) = γnδmn, m, n ∈ N0, (2.2)

where δmn is the Kronecker delta function, D is the support of the measure α, and γn

is the normalization constant which obviously can be stated as

γn =

∫
D
Q2
n(x)dα(x), n ∈ N0.

A system of orthogonal polynomials is called orthonormal if normalization constant

γn of every polynomial belonging to system equals to one. To normalize a set of

orthogonal polynomials, every individual polynomial is divided by its corresponding

normalization factor such that

Q̃n(x) =
Qn(x)
√
γn

.

Here, if the measure α(x) on the setD is absolutely continuous, then the orthogonality

relation (2.2) reduces to∫
D
Qn(x)Qm(x)w(x)dx = γnδmn, m, n ∈ N0, (2.3)

8



where w(x) is a non-negative Lebesgue measurable function called as a weight func-

tion on D. The weight function w(x) is equal to zero outside of the support D and

the total mass of the set D can be computed by
∫
D w(x)dx.

Knowing thatw(x) is the weight function on the supportD, a space of vectors defined

by the set of real valued functions f(x) belonging to the (weighted) Hilbert space L2
w

on D can be formulated as

L2
w = {f : D → R |

∫
D

f 2(x)w(x)dx <∞}

and the corresponding norm is defined by the (weighted) inner product such that

‖f‖w = 〈f, f〉1/2w =

(∫
D
f 2(x)w(x)dx

)1/2

.

As a result, the orthogonality relation (2.3) can be restated with the inner product as

〈Qn, Qm〉w =

∫
D
Qn(x)Qm(x)w(x)dx = γnδmn, m, n ∈ N0,

where its normalization constant is

γn = 〈Qn, Qn〉w = ‖Qn‖2
w , n ∈ N0.

2.1.1 Three-Term Recurrence Relation

A well known three-term recurrence relation can be formulated for system of orthog-

onal polynomials {Qn(x)} with x ∈ R by stating that

−xQn(x) = bnQn+1(x) + anQn(x) + cnQn−1(x), n ≥ 1,

where bn, cn 6= 0, and cn
bn−1

> 0 as defined in [52]. The three-term recurrence

relation is often rewritten in different equivalent form for system of monic orthogonal

polynomials which is referred as Favard’s theorem [7].

Theorem 2.1. [7, Theorem 4.4] Let {Pn(x)} be a system of monic orthogonal poly-

nomials. For n ≥ 1 we have a recurrence relation

Pn+1(x) = (x− an)Pn(x)− bnPn−1(x)

9



together with P0(x) = 1 and P−1(x) = 0, where {an}, {bn} are sequences of real

numbers such that

an =
〈xPn, Pn〉
〈Pn, Pn〉

, bn =
〈Pn, Pn〉
〈Pn−1, Pn−1〉

.

In the implementation of the stochastic Galerkin method, the most frequently used

classes of orthogonal polynomials are members of the Askey family of hypergeomet-

ric orthogonal polynomials [54]. Now, we will introduce the well-known members of

the Askey family, which are Hermite and Legendre polynomials.

2.1.2 Hermite Polynomials

An important example of hypergeometric orthogonal polynomials is the class of Her-

mite polynomials. In the literature, there exist two widely used definitions of the

Hermite polynomials defined on real line, i.e., x ∈ R. The one which is mostly used

in polynomial chaos expansion in order to represent the random quantities is denoted

by {Hn(x)} and the second one is denoted by {Hen(x)}.

The Hermite polynomials Hn(x) of degree n are given as defined in [28] with its

explicit representation such that

Hn(x) =
1

(−1)n e−
x2

2

dn

dxn

[
e
−x2
2

]
= n!

bn/2c∑
k=0

(−1)k
1

k!2k(n− 2k)!
xn−2k,

where bnc denotes the greatest integer function. The three-term recurrence relation

for polynomials Hn(x) is

Hn+1(x) = xHn(x)− nHn−1(x), n > 0,

together with H0(x) = 1 and H1(x) = x. Moreover, they satisfy the following

orthogonality relation∫ ∞
−∞

Hm(x)Hn(x)w(x)dx = n!δmn, n ∈ N0,

where w(x) is the weight function for Hn(x), that is,

w(x) =
1√
2π
e−x

2/2.
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Figure 2.1: The first five Hermite polynomials, i.e, Hn(x), n = 0, . . . , 4.

Further, the first few Hermite polynomials Hn(x), plotted in Figure 2.4, are

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3.

(2.4)

The second definition of Hermite polynomials Hen(x) of degree n has the following

explicit representation:

Hen(x) =
1

(−1)ne−x2
dn

dxn

[
e−x

2
]

= n!

bn/2c∑
k=0

(−1)k
1

k!(n− 2k)!
(2x)n−2k.

The three-term recurrence relation for the polynomials Hen(x) is formulated with

Hen+1(x) = 2xHen(x)− 2nHen−1(x), n > 0

and they satisfy the following relation:∫ ∞
−∞

Hen(x)Hem(x)w̃(x)dx = 2nn!δmn, n ∈ N,

11



where w̃(x) is the weight function for Hen(x) defined as

w̃(x) =
1√
π
e−x

2/2.

Further, the first five Hermite polynomials Hen(x) are

He0(x) = 1,

He1(x) = 2x,

He2(x) = 4x2 − 2,

He3(x) = 8x3 − 12x,

He4(x) = 16x4 − 48x2 + 12.

(2.5)

2.1.3 Legendre Polynomials

Another frequently used member of the hypergeometric orthogonal polynomials is

the class of Legendre polynomials. The class of Legendre polynomials {Ln(x)} con-

structs an orthogonal basis for L2
w on the interval [−1, 1] with respect to the weight

function w(x) = 1/2. The normalized Legendre polynomials Ln(x) of degree n can

be formulated as

Ln(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] =

1

2n

bn/2c∑
k=0

(−1)k

n
k

2n− 2k

n

xn−2k.

Let first two of Legendre polynomials be L0(x) = 1 and L1(x) = x, then Legendre

polynomials Ln(x) satisfy the following three-term recurrence relation:

Ln+1 =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x), n > 0.

The orthogonality relation with Legendre polynomials can be represented as∫ 1

−1

Ln(x)Lm(x)w(x)dx =
1

2n+ 1
δmn, n ∈ N0,

where the weight function in the orthogonality relation is a constant, i.e., w(x) = 1/2.

12
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Figure 2.2: The first five Legendre polynomials, i.e, Ln(x), n = 0, . . . , 5.

The first few Legendre polynomials, plotted in Figure 2.2, are

L0(x) = 1,

L1(x) = x,

L2(x) =
3

2
x2 − 1

2
,

L3(x) =
5

2
x3 − 3

2
x,

L4(x) =
35

8
x4 − 15

4
x2 +

3

8
.

It is noted that class of Legendre polynomials is a specific case of Jacobi polynomials

Pα,β
n (x) with parameters α = β = 0. Jacobi polynomials {Pα,β(x)} form a general

class of orthogonal polynomials with respect to the weight function w(x) = (1 −
x)α(1 + x)β on the interval [−1, 1].

2.2 Polynomial Approximation

Approximation theory is concerned with approximating complex functions by using

elementary functions and characterizing the approximation errors. Since polynomials

are simple functions, it is natural to demand using them in approximations. The

Weierstrass approximation theorem generalizes theoretically that polynomials can be

13



used for approximating continuous functions.

Theorem 2.2. [46, Theorem 1.1] Let f be a continuous real-valued function defined

on the bounded and closed interval D. Then for any ε > 0, there exists a polynomial

p ∈ Pn and n ∈ N0 such that

|f(x)− p(x)| < ε, ∀x ∈ D.

One of the theoretical and practical outcome of the Weierstrass Theorem is that inter-

polation can be used as an approximation tool.

2.2.1 Interpolation

Interpolation is simply fitting some function f to given data set so that the function

f satisfies the same given values at the given nodes. In one dimensional case, the

general interpolation problem can be formed as seeking a function f satisfying

f(xi) = yi, i = 1, . . . , n

for given data set (xi, yi), i = 1, . . . , n. The function f is called an interpolating

function for the given data set.

The interpolating function is required to be a component of a function space that

is spanned by basis functions {φ1, φ2, . . . φn}. Then, the interpolating function f is

chosen to be a linear combination of these basis functions

f(x) =
n∑
j=1

cjφj(x),

where the parameters cj are needed to be determined. Moreover, the function f has

to satisfy the following system of equations

f(xi) =
n∑
j=1

cjφj(xi) = yi, i = 1, . . . , n,

which can be expressed particularly as

Ac = y,

14



where the entries of the matrix A are Aij = φj(xi), the vector of the known data

values is y = (y1, . . . , yn)T , and the vector of parameters to be determined is c =

(c1, . . . , cn)T .

One of the basic choice for basis function in interpolation is the monomial polyno-

mials and they generate the space of polynomials, i.e., Pn = span{1, x, x2, . . . , xn}.
For n data points (xi, yi), i = 1, . . . , n, the interpolating polynomial with monomial

basis

φj(x) = xj−1, j = 1, . . . , n

can be generally expressed as

Pn−1(x) =
n∑
j=1

cjφj(x) = c1 + c2x+ . . .+ cnx
n−1.

Then, the suitable n× n linear system Ac = y can be constructed such that
1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
... . . . ...

1 xn · · · xn−1
n




c1

c2

...

cn

 =


y1

y2

...

yn

 ,

where the matrix A is called a Vandermonde matrix.

Another common choice for interpolation basis is the Lagrange polynomials. The

Lagrange basis function are determined by

lj(x) =
n∏

k=1,k 6=j

(x− xk)
(xj − xk)

.

More clearly, the basis functions are equivalent to

lj(xi) =

1, if i = j,

0, if i 6= j,

for the set of data points (xi, yi), i = 1, . . . , n. The Lagrange interpolating polynomi-

als can be given by

Pn−1(x) =
n∑
j=1

cjlj(x) = c1l1(x) + c2l2(x) + . . .+ cnln(x),
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thus, the matrix A of the corresponding linear system Ac = y is the n × n identity

matrix.

2.2.2 Orthogonal Projection

Any class of orthogonal polynomials can be used as basis functions for interpolation.

Let {φk(x), k ∈ N0} be a set of orthogonal polynomials of degree at most n with re-

spect to the positive weight w(x) on the support D. Interpolating polynomial Pnf(x)

for approximating a function f(x) with given a set of data {xi, f(xi)}, i = 0, . . . , n

can be similarly stated by

f(x) ≈ Pnf(x) =
n∑
j=0

cjφj(x) = c0φ0(x) + c1φ1(x) + . . .+ cnφn(x).

Since sequence of orthogonal polynomials {φk(x), k ∈ N0} forms a basis for the

weighted Hilbert space L2
w on the support D, the function f ∈ L2

w can be projected

onto the space of polynomials of degree at most n, i.e., Pn, with the help of the

associated inner product such that

〈f(x), φk(x)〉 =
n∑
j=0

cj 〈φj(x), φk(x)〉

= ck 〈φk(x), φk(x)〉 , k = 0, 1, . . . , n.

Thus, the coefficients ck can be computed as

ck =
〈f, φk〉
〈φk, φk〉

=
1

γk

∫
D
f(x)φkw(x)dx, k = 0, 1, . . . , n.

The coefficients {ck} are the generalized Fourier coefficients [12]. The interpolating

polynomial Pnf : L2
w(D) → Pn with the generalized Fourier coefficients is called

orthogonal projection of function f(x) onto Pn of L2
w. Then, we have the following

result.

Theorem 2.3. [46, Theorem 2.1] For any f ∈ L2
w on a supportD and any n ∈ N0, the

orthogonal projection Pnf of f is the best approximation in the associated L2-norm

such that

‖f − Pnf‖L2
w

= inf
ψ∈Pn
‖f − ψ‖L2

w
.
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2.2.3 Gaussian Quadrature

Numerical quadrature is an approximation of definite integral of a function with a

weighted sum. The integral we wish to compute can be written in the form of a

n-point quadrature formula with n ≥ 1∫
D
f(x)dα(x) =

∫
D
f(x)w(x)dx ≈

n∑
i=1

f(xi)wi, (2.6)

where xi’s are nodes, wi’s are integration weights, i = 1, . . . , n. The general quadra-

ture problem consists of finding weights wi that satisfy the quadrature formula (2.6)

when the nodes xi are fixed.

Gaussian quadrature rules are based on the polynomial interpolation. Let xi ∈ D,

i = 1, . . . , n be the nodes and li be the n-th degree Lagrange polynomials through

the node xi. Given an interpolating polynomial f̂ of a function f(x), then the definite

integral can be approximated by a n-point Gaussian quadrature formula∫
D
f(x)w(x)dx ≈

∫
D
f̂w(x)dx

=

∫
D

[
n∑
i=1

f(xi)li(x)

]
w(x)dx (2.7)

=
n∑
i=1

f(xi)

∫
D
li(x)w(x)dx.

Thus, the weights wi of the quadrature formula can be computed with

wi =

∫
D
li(x)w(x)dx, i = 1, . . . , n.

Remark 2.1. If the quadrature nodes xi are chosen to be the zeros {zk}nk=1 of orthog-

onal polynomial {Qn, n ∈ N} with respect to w(x) of degree n, then the Gaussian

quadrature formula (2.7) is exact for approximating any polynomial f(x) ∈ Pn of

degree less than 2n [12].

2.3 Basic Concept of Probability Theory

In this section, a brief introduction to some basic concepts of probability theory which

are used in uncertainty quantification will be presented. Some essential definitions
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about distributions and their statistics have to be introduced since stochastic parame-

ters within equations will be investigated. Moreover, we would like to refer [30, 31]

for detailed descriptions of the probability and measure theory and the references

therein.

2.3.1 Random Variable and Probability

The uncertainty quantification discussed in this thesis generally involves random co-

efficients in the model problem. In other words, the stochastic system to be solved is

formed by combining a deterministic system with stochastic input parameters. Math-

ematical treatment of this kind of systems requires a characterization of the stochastic

parameters.

The stochastic parameters of a mathematical model can be classified as random vari-

ables. A random variable is a quantity on a set of random outcomes of an experiment.

Let Ω be an abstract outcome space and ω ∈ Ω be an outcome, a mapping from Ω

to real space R, i.e., X(ω) : Ω → R, is called a random variable. Moreover, it can

be generalized as a random field α(i, ω), which is a collection of random variables

indexed by a parameter i ∈ I ⊂ Rn. The random fields can often be analyzed by its

properties such as expectation, variance, covariance, etc.

In order to study with random variables, it is insightful to collect a set of events, which

are subsets of the outcome space. The relevant collection of events is called σ-algebra

and denoted by Σ.

Definition 2.1. The collection Σ is called σ- algebra on Ω if the following conditions

are satisfied

• Σ is not empty; ∅ ∈ Σ and Ω ∈ Σ.

• If A ∈ Σ, then Ac ∈ Σ, where Ac is the complement of A.

• If A1, A2, . . . ∈ Σ, then

∞⋃
i=1

Ai ∈ Σ and
∞⋂
i=1

Ai ∈ Σ.
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Two fundamental examples of σ-algebra on the space Ω are

Σ1 = {∅, ω},

Σ2 = 2Ω ≡ {A : A ⊂ Ω},

where Σ1 is the smallest and Σ2 is the largest σ-algebra on the set Ω. Σ2 contains all

subsets of Ω, and therefore is called power set of Ω [52].

The other essential concept is the probability which is used to measure likelihood of

occurrence of certain events. The probability measure can be defined as:

Definition 2.2. For σ-algebra Σ on a countable event space Ω, P is a probability

measure if

• 0 ≤ P (A) ≤ 1, ∀A ∈ Σ,

• P (Ω) = 1,

• For A1, A2, . . . ∈ Σ and Ai ∩ Aj = ∅, ∀i, 6= j the following equality holds

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

Some elementary properties of the probability measures are outlined as; for events

A,B ∈ Σ

P (A ∪B) = P (A) + P (B)− P (A ∩B),

P (Ac) = 1− P (A), P (∅) = 0,

and

P (A) ≤ P (B) for A ⊆ B.

The outcome space Ω, σ-algebra Σ, and probability P constitute the triplet (Ω,Σ, P ),

which is called the probability space.

2.3.2 Distributions and Statistics

Basic definitions about distributions and statistics are need to be presented in order to

understand and work on the stochastic problems accounted in this thesis. First of all,
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a random variable X yields a collection of probabilities, which is called (cumulative)

distribution function.

Definition 2.3. The collection of the probabilities defined as

FX(x) = P (X ≤ x) = P ({ω : X(ω) ≤ x}), x ∈ R

is called as the distribution function FX of X .

The cumulative distribution function holds that 0 ≤ FX ≤ 1 due to the definition

of the probability. Moreover, it can be used to compute the probability of a random

variable that belongs to any particular interval. That is, the probability of random

variable X belongs to an interval (a, b] ⊂ R can be obtained by

P ({ω : a < X(ω) ≤ b}) = FX(b)− FX(a).

2.3.2.1 Continuous Distribution

A continuous random variable maps infinitely many values. Probability of a continu-

ous random variable in any particular value is 0, that is,

∀x ∈ R, P (X = x) = 0.

Probability density function fX of a continuous random variable interprets the prob-

ability value at any single point in the sample space. Furthermore, continuous distri-

bution function FX is defined with a probability density function fX such that

FX(x) =

∫ x

−∞
fX(y)dy, x ∈ R,

where the probability density function fX satisfies

∀x ∈ R, fX(x) ≥ 0,

∫ ∞
−∞

fX(y)dy = 1.

Some of important characteristics of a continuous random variable are its expectation,
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variance, and mth moment which are

µX = E[X] =

∫ ∞
−∞

x fX(x)dx,

σ2
X = Var[X] =

∫ ∞
−∞

(x− µX)2 fX(x)dx,

E[Xm] =

∫ ∞
−∞

xm fX(x)dx, m ∈ N0,

respectively, where fX is the density function. For a real-valued function g, the ex-

pectation of g(X) is defined in a similar way

E[g(X)] =

∫ ∞
−∞

g(x) fX(x)dx.

The two of important continuous distributions are uniform distribution and normal

distribution because of their powerful characteristics.

The uniform distribution is a probability distribution of events each of which has equal

probability within a distribution support. The probability density function (PDF) of

the uniform distribution U(a, b), on the interval [a, b], is defined as

fX(x) =


1
b−a , x ∈ [a, b],

0, otherwise,

and its cumulative distribution function is

FX(x) =


0, x ∈ (−∞, a),

x−a
b−a , x ∈ [a, b),

1, x ∈ [b,∞).

The PDF and CDF of the uniform distribution with support [−1, 1] are demonstrated

in Figure 2.3.

On the other hand, the normal distribution, also called Gaussian distribution, is a prob-

ability distribution which is often used to represent random variables with unknown

distributions by well-known result the central limit theorem [21]. The probability

distribution function (PDF) of the normal distribution N (µ, σ), where µ ∈ R is the
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Figure 2.3: Probability distribution function (left) and cumulative distribution func-

tion (right) of the uniform distribution with a = −1, b = 1.

mean value, σ2 > 0 is the variance, and σ is the standard deviation is defined as

fX(x) =
1√

2πσ2
e
−

(x− µ)

2σ2 , x ∈ R.

The distribution is called as standard normal distribution if the parameters are µ = 0

and σ2 = 1, i.e., N (0, 1). The PDF and CDF of the standard normal distribution are

displayed in Figure 2.4.
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Figure 2.4: Probability distribution function (left) and cumulative distribution func-

tion (right) of the standard normal distribution with µ = 0, σ = 1.

Remark 2.2 (Discrete Distribution). The set of outcomes is either finite or countably

infinite. Unlike a continuous distribution, an experiment having a finite set of possible

outcomes such as coin toss or roll of a dice is characterized by a discrete distribution.

A discrete random variable maps only finite or countably infinite number of values
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xk with probabilities, pk = P (X = xk), where k = 1, . . . , N . Then, corresponding

discrete distribution function can be defined as

FX(x) =
∑
k:xk≤x

pk, x ∈ R,

where

∀k, 0 ≤ pk ≤ 1,
N∑
k=1

pk = 1.

A discrete random variable also has important characteristics including its expecta-

tion, variance, and moments. For a discrete random variable X with probabilities pk,

k = 0, . . . , N , m ∈ N, the expectation, variance, and mth moment are defined as

µX = E[X] =
N∑
k=1

xk pk,

σ2
X = Var[X] =

N∑
k=1

(xk − µX)2 pk,

E[Xm] =
N∑
k=1

xmk pk,

respectively.

2.3.2.2 Multiple Dimensions

In multiple dimensions, random vectors can be defined as a collection of a finite

number of random variables. Consequently, an n-dimensional random vector X =

(X1, . . . , Xn) is a vector whose componentsX1, . . . , Xn are one-dimensional random

variables. In the case of n-dimensional random vector, definition of a distribution

function can be extended similarly as done in [52].

Definition 2.4. The collection of the probabilities defined as

FX(x) = P (X1 ≤ x1, . . . , Xn ≤ xn), x = (x1, . . . , xn) ∈ Rn

is called distribution function FX of a random vector X.
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If the distribution of a random vector X has a joint probability density function fX,

then distribution function FX can be represented as

FX(x) =

∫ x1

−∞
. . .

∫ xn

−∞
fX(y1, . . . , yn)dy1 · · · dyn,

where the density of X satisfies

fX(x) ≥ 0, x = (x1, . . . , xn) ∈ Rn

and

∫ ∞
−∞

. . .

∫ ∞
−∞

fX(y1, . . . , yn)dy1 . . . dyn = 1.

If a random vector X has density fX, then any component Xi has also a density

function defined as

fXi(xi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(y1, . . . , yn)dy1 · · · dyi−1dyi+1 · · · dyn,

which is called marginal density function of Xi. This definition can also be extended

to vector of pairs (Xi, Xj), triples (Xi, Xj, Xk), and so on.

Random variablesX1, X2, . . . , Xn are said to be independent if their joint distribution

function FX can be written as a product of their marginal distribution functions

FX(x1, x2, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn).

Furthermore, expectation of a random vector X naturally is given by

µX = E[X] = (E[X1], . . . ,E[Xn])

and covariance between components Xi and Xj is defined as

cov(Xi, Xj) = E[(Xi − µXi)(Xj − µXj)]

= E[XiXj]− µXiµXj .

Since the variance of a random variable measures its variability, the covariance of

two random variable measures their joint variability. The collection of covariances

constructs the covariance matrix of random vector X such that

[CX]ij = cov(Xi, Xj), i, j = 1, . . . , n.
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The covariance matrix generalizes the concept of covariance to multiple dimensions.

Moreover, a covariance matrix has a basic but important property that it is symmetric

and positive semidefinite [21]. It is also practical to define a statistical relationship

between two or more random variables, called correlation coefficient, such that

corr(X1, X2) =
cov(X1, X2)

σX1σX2

.

The two random variables X1, X2 are called uncorrelated if corr(X1, X2) = 0, and

strongly correlated if |corr(X1, X2)| ≈ 1. It is also significant to know that if X1 and

X2 have normal (Gaussian) distribution, then uncorrelated random variables are also

independent [21].

2.3.3 Convergence

The collection of real valued random variables X defined on the probability space

(Ω,Σ, P ) such that

L2(Ω,Σ, P ) = {X : E[X2] <∞}

forms a vector space, called L2 space [28]. In other words, for a random variable

X ∈ L2(Ω,Σ, P ) it holds that

E[X2] =

∫
D
X2(s)dFX(s) =

∫
D
X2(s)fX(s)ds <∞,

where D is the support of the probability measure. Furthermore, the associated norm

||X||L2 is

||X||L2 = E[X2]
1
2 =

(∫
D
X2(s)fX(s)ds

) 1
2

(2.8)

and the expectation E[XY ] defines an inner product on L2(Ω,Σ, P ) such that

〈X, Y 〉 = E[XY ] =

∫
D
X(s)Y (s)fX(s)ds, (2.9)

where X, Y ∈ L2(Ω,Σ, P ).

While working with the collection of stochastic variables, it is useful to introduce

definitions of convergence for a sequence of random variables. These convergence

definitions are based on the ones in [21].
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Definition 2.5. Let p > 0, the sequence {Xn} is said to converge in Lp to a random

variable X , written as Xn
Lp→ X , if it holds that

E[|Xn −X|p]→ 0 as n→∞,

where X,Xn ∈ Lp for all n ∈ N.

Note that for the case p = 2 it is said that Xn converges to X in a mean square. It is a

convergence in the Hilbert space which is L2 = L2(Ω,Σ, P ) space equipped with the

norm (2.8) and the associated inner product (2.9).

Definition 2.6. The sequence {Xn} is said to converge in distribution to a random

variable X , written as Xn
d→ X , if for all bounded and continuous functions f , it

holds

E[f(Xn)]→ E[f(X)] as n→∞.

The convergence in distribution holds if and only if there is a convergence in the

distribution function. In other words, for all continuous points x ∈ D the relation

FXn(x)→ FX(x) as n→∞

is satisfied. Convergence in distribution are often referred to as a weak convergence,

whereas Lp convergence, namely mean square convergence, are referred to as a strong

convergence.

2.3.4 Central Limit Theorem

Central limit theorem (CLT) plays a crucial role in many applications of probability

theory and it is the main idea behind some numerical tools such as the Monte Carlo

sampling, which will be introduced in Section 4.1.1.

Theorem 2.4. [21, Theorem 21.1] LetX1, X2, . . . , Xn be independent and identically

distributed (i.i.d.) random variables with their expectation E[Xi] = µ and variance

Var[Xi] = σ2. Then, the cumulative distribution function of

Y =
1

n

n∑
i=1

Xi
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will converge to a Gaussian distribution N (µ, σ√
n
) as n → ∞. Furthermore, distri-

bution function of

Ȳ =
√
n

(
Y − µ
σ

)

converges towards the standard Gaussian distribution, N (0, 1).

This theorem can be read as the numerical average of a set of independent and iden-

tically distributed (i.i.d.) random variables Xi converges to a Gaussian distribution,

as n → ∞, where µ and σ2 are the expectation and variance of the i.i.d random

variables, respectively. The proof and detailed information about the central limit

theorem can be found in [28, 30, 52].

2.4 Karhunen - Loève Expansion

In this section, fundamental aspects of representations of a random variable will be

discussed. The main focus will be on a specific class of random process in L2 and

their representations in Fourier-like expansions that are convergent with respect to the

norm associated with the corresponding inner product in L2 space. The Karhunen-

Loève (KL) expansion is a Fourier-like series for representing a stochastic process

as a linear combination of orthogonal functions. It is also known as proper orthogo-

nal decomposition (POD), which decomposes the random dimensions and the spatial

dimensions of the stochastic process.

Let α(x, ω) be a zero mean random process where the vector x defined over the

bounded domain D, ω belongs to the space on random events Ω, and Cα(x1,x2) de-

notes its covariance function. By definition of the covariance function, it is bounded,

symmetric, and positive definite [14]. As a result, its spectral decomposition can be

defined as

Cα(x1,x2) =
∞∑
i=0

λiφi(x1)φi(x2), (2.10)

where λi and φi(x) are, respectively, the eigenvalues and the eigenfunctions of the co-

variance operator. In other words, they are determined through the Fredholm integral
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equation of the second kind∫
D
Cα(x1, x2)fi(x1)dx1 = λifi(x2), (2.11)

where the eigenfunctions φi are orthogonal and form a complete set since the covari-

ance operator is symmetric and positive definite.

The stochastic process represented by α(x, ω) can be expanded in terms of eigen-

functions φi(x) and eigenvalues λi of the covariance function as done in [14]

α(x, ω) =
∞∑
i=0

ξi(ω)
√
λiφi(x), (2.12)

where ξi(ω) is a random variable. An explicit expression for a single random variable

ξi(ω) can be obtained by multiplying the equation (2.12) with an eigenfunction φi(x)

and integrating over the domain D,

ξi(ω) =
1√
λi

∫
D
α(x, ω)φi(x)dx. (2.13)

Then, second order properties of the random variable ξi, i.e., mean and variance, can

be derived such that

〈ξi(ω)〉 =
1√
λi

∫
D
〈α(x, ω)〉φi(x)dx = 0,

Cξ(ξi(ω), ξj(ω)) = 〈ξi(ω), ξj(ω)〉

=
1√
λiλj

∫
D

∫
D

〈αi(x1, ω), αj(x2, ω)〉φi(x1)φj(x2)dx1dx2

=
1√
λiλj

∫
D

∫
D

Cα(x1,x2)φi(x1)φj(x2)dx1dx2

=
1√
λiλj

∫
D
φi(x1)

(∫
D
Cα(x1,x2)φj(x2)dx2

)
dx1

=
1√
λiλj

∫
D

√
λjφi(x1)φj(x1)dx1

=
1√
λi

√
λiδij

= δij.

28



Assuming that ᾱ(x) is the mean of a process α(x, ω), Karhunen-Loève expansion of

the stochastic process α(x, ω) can be written as

α(x, ω) = ᾱ(x) +
∞∑
i=0

ξi(ω)
√
λiφi(x), (2.14)

where

〈ξi(ω)〉 = 0, 〈ξi(ω), ξj(ω)〉 = δij,

and λi, φi(x) are eigenvalues and eigenfunctions of the covariance operator Cα of the

process α(x, ω), respectively.

2.4.1 Properties of Karhunen-Loève Expansion

Karhunen-Loève expansion provides an approximation for a stochastic process α(x, ω)

by truncating the series with M ∈ N such that

α(x, ω) ≈
M∑
i=0

ξi(ω)
√
λiφi(x).

Then, the mean-square error of the approximation can be written as

ε2M = 〈εM , εM〉 ,

where εM is its truncation error

εM =
∞∑

i=M+1

ξi(ω)
√
λiφi(x).

As the number of terms used in the KL expansion increases, the mean-square error

decreases monotonically at a rate depending on the decay of covariance Cα spectrum

[28]. In other words, smaller number of terms are needed to achieve the desired error

threshold when the stochastic process is more correlated.

Furthermore, the mean-square error resulting from the KL expansion is optimal,
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which means that it is the minimum of all. That is,

ε2M = 〈εM , εM〉

=
∞∑

i=M+1

∞∑
j=M+1

〈ξi(ω), ξj(ω)〉
√
λiλjφi(x)φj(x)

=
∞∑

i=M+1

∞∑
j=M+1

φi(x)φj(x)

∫
D

∫
D
〈α(x1, ω), α(x2, ω)〉φi(x1)φj(x2)dx1dx2

=
∞∑

i=M+1

∞∑
j=M+1

φi(x)φj(x)

∫
D

∫
D
Cα(x1,x2)φi(x1)φj(x2)dx1dx2.

Integrating the equation above over the domain D and using the orthonormality of

eigenfunctions, we obtain∫
D

ε2M =
∞∑

i=M+1

∫
D

∫
D
Cα(x1,x2)φi(x1)φi(x2)dx1dx2.

Thus, the problem remains to minimize
∫
D ε

2
M subject to the constraint that eigen-

functions φi(x) is normalized. That is constructed as,

F [φi(x)] =
∞∑

i=M+1

∫
D

∫
D
Cα(x1,x2)φi(x1)φi(x2)dx1dx2−λm

[∫
D
φi(x1)φi(x1)dx1 − 1

]
.

Differentiating the equation F [φi(x)] with respect to φi(x) and setting it equal to zero

yield

∂F [φi(x)]

∂φi(x)
=

∞∑
i=M+1

∫
D

[∫
D
Cα(x1,x2)φi(x2)dx2 − λiφi(x1)

]
dx1 = 0,

which is satisfied when φi(x) are chosen to be the eigenfunctions of the covariance

operator Cα(x1,x2), that leads to the integral equation∫
D
Cα(x1,x2)φi(x2)dx2 = λiφi(x1), ∀i ∈ N.

Hence, the truncated Karhunen–Loève expansion is the best approximation to the

original process in the sense that the mean-square error of approximation is mini-

mized.
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Consider that a Gaussian process U is characterized by its variance σ2
U and its covari-

ance function CU(x1,x2) which is given by the equation

CU(x1,x2) = σ2
Ue
−|x1−x2|/b, (2.15)

where b > 0 is the correlation length. The exact covariance function (2.15) is dis-

played in Figure 2.5.

0
1

1

0.5

CU (x1; x2)

x2

0

x1

1

0

-1 -1

Figure 2.5: The covariance function of a Gaussian process on [−1, 1] with σU = 1.

Assuming that a Gaussian process is defined over one dimensional interval D =

[−a, a], the eigenfunctions and eigenvalues of the exponential covariance function

are the solutions of the following integral equation∫ a

−a
σ2
Ue
−|x1−x2|/bφ(x2)dx2 = λφ(x1). (2.16)

Although this type of integral equations are generally solved with numerical meth-

ods, analytical expressions of eigenfunctions and eigenvalues can be found for this

particular integral equation (2.16) in the case of Gaussian process. Moreover, the

eigenfunctions and the corresponding eigenvalues are, respectively,

φi(x) =


cos(ωix)√
a+

sin(2ωia)

2ωi

, if i is even,

sin(ωix)√
a− 2 sin(ωia)

2ωi

, if i is odd,
(2.17)
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and

λi = σ2
U

2b

1 + (ωib)2
, (2.18)

where ωi are the ordered positive roots of the characteristic equation,

c(ωi) =

1− bωi tan(aωi) = 0, if i is even,

bωi + tan(aωi) = 0, if i is odd.

Moreover, Figure 2.6 shows the eigenfunctions (2.17) and eigenvalues (2.18) of the

exponential covariance function defined in (2.15).
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Figure 2.6: Eigenfunctions φi(x) (left) and eigenvalues λi (right) of the exponential

covariance kernel (2.15) on [−1, 1] with b = 1 and σU = 1.

Hence, the KL expansion to the exponential covariance function (2.15) can be con-

structed by truncating the series such that

CU(x1,x2) ≈ C̃M
U (x1,x2) =

M∑
i=0

λiφi(x1)φi(x2).

Moreover, the absolute error of the KL expansion can be defined as a functionRN
U (x1, x2):

RN
U (x1, x2) =

∣∣∣C̃M
U (x1,x2)− CU(x1,x2)

∣∣∣
=

∣∣∣∣∣
M∑
i=0

λiφi(x1)φi(x2)− σ2
Ue
−|x1−x2|/b

∣∣∣∣∣ .
Unlike exponential covariance function, eigenvalues and eigenfunctions can not be

defined explicitly for large number of covariance functions. Therefore, we need
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some effective numerical techniques to approximate the values of the eigenvalues and

eigenvectors of the covariance function, such as Collocation and Galerkin methods.

Using collocation methods is a decent choice for approximating the eigenpairs {λj, φj}
resulting from the eigenvalue problem (2.11). Let xi, i = 1, . . . , N , be collocation

points in domain D and define residual as

Rj =

∫
D
Cα(x, y)φj(y)dy − λ̂φ̂j(x). (2.19)

If the collocation points xi are chosen to be the same as quadrature nodes whose

weights are wk, then the integral in (2.19) can be estimated as
N∑
i=1

Cα(xk, y)φj(xi) ≈
∫
D
Cα(xk, y)φj(y)dy.

Then, setting the residual Rj(xk) = 0 for all collocation points k = 1, . . . , N leads a

system of equations
N∑
i=1

Cα(xk, xi)φj(xi) = λ̂φ̂j(xk). (2.20)

By solving the resulting system of equations (2.20) the numerical approximation of

the eigenpairs {λ̂j, φ̂j} can be obtained.

Another convenient choice of numerical method for solving the corresponding eigen-

value problem is the Galerkin technique. Let VN be a subspace of L2(D) with basis

functions ϕ1(x), . . . , ϕN . Then, we can represent numerical approximation by a lin-

ear combination

φ̂j =
N∑
k=1

ajkϕj(x)dx, ajk ∈ D. (2.21)

Multiplying the eigenvalue problem (2.11) with each basis function ϕi and integrating

it over D result in a Galerkin system as∫
D

(∫
D
Cα(x, y)φ̂j(y)dy

)
ϕi(x)dx = λ̂j

∫
D
φ̂jϕi(x)dx. (2.22)

Then, substituting (2.21) into (2.22) we obtain a system of equations
N∑
k=1

ajk

∫
D

∫
D
Cα(x, y)ϕj(x)ϕi(x)dydx = λ̂j

N∑
k=1

ajk

∫
D
ϕj(x)ϕi(x)dx. (2.23)
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In order to construct a compact matrix notation for the system of equation (2.23), we

can form N ×N stiffness matrix K and N ×N mass matrix M such that

[K]ij =

∫
D

∫
D
Cα(x, y)ϕj(x)ϕi(x)dydx, [M ]ij =

∫
D
ϕj(x)ϕi(x)dx.

Finally, we have the following matrix eigenvalue problem

Kaj = λ̂jMaj,

where the vector aj contains investigated coefficients aj .

Until now it can be seen that the Karhunen-Loève expansion is implemented for pro-

cesses only whose their covariance function is known. However, profound informa-

tion about most of the stochastic processes is not known priori. In such cases, an

alternative spectral expansion, polynomial chaos expansion, is needed for approxi-

mating specifically the solution process [54].

2.5 Polynomial Chaos Expansion

The polynomial chaos expansion is a tool for representing second order stochastic

processes whose covariance function is not known. This concept was introduced

firstly by Wiener [50] as a series of nonlinear functionals of the Brownian motion.

Then, Cameron and Martin [6] proved that a Fourier-like series with an orthogonal

basis converges to these nonlinear functionals with Gaussian measure in L2 sense.

Let {ξi(ω)}∞i=1 be a sequence of centered, orthonormal, Gaussian random variables

defined on the space L2(Ω,Σ, P ) of second-order random variables. Consider the

space Γ̂p of all polynomials of {ξi(ω)}∞i=1 having degree at most p. Let Γp denotes

the set of polynomials in Γ̂p that are orthogonal to polynomials in Γ̂p−1 and the space

Γp is called the polynomial chaos of order p. Finally, let Γ̄p denotes the space spanned

by Γp which is called the pth Homogeneous Chaos.

Based on the definitions, the polynomial chaos of order p consists of all orthogonal

polynomials of order p which involves any possible combination of the random vari-

ables {ξi(ω)}∞i=1. A second-order random variable U(ξ(ω)) ∈ L2(Ω,Σ, P ) can be
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represented with a polynomial chaos (PC) expansion of the form [6]

U(ω) = u0Γ0 +
∞∑
i1=1

ui1Γ1(ξi1(ω))

+
∞∑
i1=1

i1∑
i2=1

ui1i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4Γ3(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω))

+ · · · , (2.24)

where Γp are successive polynomial chaoses of order p.

The original polynomial chaoses introduced by Wiener result on the Hermite poly-

nomials, also called Hermite-Chaos, in terms of Gaussian random variables and the

details related to construction of Hermite-Chaoses can be found in [14]. By construc-

tion, polynomial chaoses whose order greater than one have zero mean

E[Γp] = 0, p > 0.

If there is a one-to-one correspondence between the functions Γn(ξi1 , . . . , ξin) and

Ψi(ξ1, ξ2, . . .), then the equation (2.24) can be rewritten in the form

U(ω) =
∞∑
i=0

uiΨi(ξ), ξ = {ξ1, ξ2, . . .}, (2.25)

where the deterministic coefficients ui are simply called polynomial chaos (PC) co-

efficients. According to the definition proposed in [6] by Cameron-Martin, strong

approximation of a functional f(ξ) in L2 can be defined as

PNf =
N∑
i=0

fiΨi(ξ),

where fi are the PC coefficients

fi =
〈f(ξ),Ψi(ξ)〉
〈Ψi(ξ),Ψi(ξ)〉

.
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Moreover, the PC representation of functional f(ξ) converges to f(ξ) in L2 sense [6]

lim
N→∞

E
[
(PNf − f(ξ))2] = 0.

When the PC representation PNf converges in mean square sense, it implies that

PNf converges in probability, PNf
P→ f , then it consequently leads the convergence

in distribution, PNf
d→ f . Furthermore, the optimality property can be obtained by

applying the best approximation theorem 2.3 for orthogonal approximations

‖f − PNf‖ = inf
g∈PN
‖f − g‖ .

It means that the PC approximation PNf is optimal among the linear space PN of all

polynomials of degree at most N .

Remark 2.3. Besides the PC expansion is an effective tool for approximating stochas-

tic processes with Gaussian inputs, it is also generalized to be convergent for non-

Gaussian random inputs [54]. While the polynomial basis of PC expansions is the set

of Hermite polynomials, the generalized polynomial chaos (gPC) expansions have

their polynomial basis chosen from the Askey-scheme [54].

Askey scheme is a system of organizing the hypergeometric orthogonal polynomials

[24]. The probability density functions of some types of random distributions are

same as the weight functions of some particular types of orthogonal polynomials

from the Askey-scheme. In practice, the type of polynomials in the Askey-scheme

is chosen according to the type of distribution of independent random input as given

in Table 2.1. Similar to expansion (2.25), we represent the general random process

U(ξ(ω)) in L2(Ω,Σ, P ) as

U(ξ) =
∞∑
i=0

uiΦi(ξ), (2.26)

where Φi are orthogonal polynomial basis from the Askey-scheme. Since each type of

polynomials from the Askey-scheme form a complete orthogonal basis for the Hilbert

space determined by their corresponding weight function, generalized result of theo-

rem of Cameron-Martin can be used to obtain convergence. Therefore, each type of

generalized Polynomial Chaos expansion converges to a functional f(ξ) which is an

element of the corresponding Hilbert space [6].
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Table 2.1: Correspondence between gPC polynomials an Askey-scheme.

Distribution of ξ gPC basis {Φ(ξ)} Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, . . . , N}
Negative Binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, . . . , N}

The original PC is a subset of the gPC since the basis of the original polynomial chaos

corresponds to the Hermite polynomials in the Askey-scheme in order to represent

Gaussian random variable.

2.5.1 Statistics

When the gPC expansion is used to represent stochastic process f(Z), important

statistical information of f(Z) can be derived from the gPC representation. Consider

a stochastic process f(x, t, Z) with x ∈ D, t ∈ T and Z ∈ Rd, then the N th order

gPC approximation can be expressed as

PNf(x, t, Z) =
∑
|i|≤N

fi(x, t)Φi(Z) ∈ PdN

for any fixed x ∈ D and t ∈ T , i.e., f ≈ PNf . Hence, the mean of gPC approximation

is derived as

µf = E[f(x, t, Z)] ≈ E[PNf(x, t, Z)]

=

∫ ∑
|i|≤N

fi(x, t)Φi(Z)

 dFZ(Z)

=

∫ ∑
|i|≤N

fi(x, t)Φi(Z)

Φ0(Z)dFZ(Z)

= f0(x, t)

by using the orthogonality condition of the gPC basis. Similarly, the variance of gPC
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approximation is

Var[f(x, t, Z)] = E[(f(x, t, Z)− µf (x, t))2]

≈ E[(PNf(x, t, Z)− µf (x, t))2]

=

∫ ∑
|i|≤N

fi(x, t)Φi(Z)− f0(x, t)

2

dFZ(Z)

=

∫  ∑
0<|i|≤N

fi(x, t)Φi(Z)

2

dFZ(Z)

=
∑

0<|i|≤N

f 2
i (x, t)γi.

Other statistical quantities of the stochastic process f can also be estimated by simply

applying to the gPC approximation PNf to their analytic expressions.
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CHAPTER 3

THE MODEL EQUATION

Many practices of applied sciences such as ion-acoustic waves in collisionless plasma,

shallow-water gravity waves, long internal waves in the atmosphere, and ocean are

described with solitons [25, 41, 49]. A soliton is a solitary wave packet that preserves

its shape while it is traveling at a constant velocity in uniform direction and a soliton

can interact strongly with other solitons and retain its identity. The first experimental

observation of such solitary waves with similar characteristics was made in 1834 by

John Scott Russell [38]. Solitons can be obtained from a widespread class of weakly

nonlinear dispersive partial differential equations (PDEs) as their solutions.

Korteweg-de Vries (KdV) equation is a fundamental mathematical model for simulat-

ing long nonlinear wave propagation on the surface of a narrow and shallow channel.

It was derived firstly by Boussinesq [5], then rediscovered by Diedrik Korteweg and

Gustav de Vries [26] in the aim of modeling solitary waves that was discovered in na-

ture by Russell. In 1965 Martin Zabusky and Norman Kruskal showed that the KdV

equation can be solved numerically for a class of initial conditions which led to the

discovery that solitary waves preserves their original form and speed in the interac-

tion with each other [56]. Existence of infinitely many conservation laws for the KdV

equation corresponding to specific properties of its solution was proved in [34]. For

certain initial states, inverse scattering transform (IST) method was used to evaluate

exact solutions of the KdV equation [13].

In particular, the KdV is a prototypical model, formed as an exactly solvable non-

linear PDE, that provides a delicate balance between nonlinearity and dispersion ef-

fects. In this chapter, we firstly introduce the original KdV equation, then we present
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the KdV equation with random input data by imposing some random parameters

which is the main model of our study.

3.1 Korteweg de Vries Equation

In the original study [26], the KdV equation is defined within parameters, the depth

of the water l and the elevation of the surface above equilibrium η, such that

∂η

∂t
=

3

2

√
g

l

∂

∂x

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
, (3.1)

where σ = 1
3
l2 − T l

ρg
depends on water density ρ, surface tension T , and an arbitrary

constant α. The equation (3.1) can be rewritten in non-dimensional form by defining

transformations

η = −2

3
α(6u+ 1), τ =

√
2α3g

σl
t, ξ = −

√
2α

σ
x.

When these transformations are applied on the equation (3.1), it becomes

uτ − 6uuξ + uξξξ = 0, (3.2)

where the coefficient of nonlinear term 6 is a scaling factor for a complete integrabil-

ity. All of the coefficients can be rescaled to arbitrary nonzero values through appro-

priate transformations. Then, an initial value problem (IVP) can be formed with the

non-dimensional KdV equation (3.2)

ut + βuux + uxxx = 0, β 6= 0,

u(x, 0) = f(x).
(3.3)

For appropriate class of initial conditions Sjöberg proved the existence and unique-

ness of traveling wave solution of the KdV equation analytically [42].

Theorem 3.1. [42, Theorem 1] If the nonlinear coefficient is nonzero, β 6= 0, and if

the initial condition f(x) is a periodic function where f ′(x) ∈ L2, then there exists a

unique solution to the initial value problem (3.3).
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Later, Lax showed that a localized traveling-wave solution of the KdV equation cor-

responds to the solitary waves described by Russel [27]. Since we are interested

in traveling wave solution of the form u(x, t) = f(ξ) such that u, uξ, uξξ → 0 as

ξ → ±∞, where ξ = x − ct, then c denotes the speed of the wave. Substituting the

trial solution into the KdV equation (3.2) leads to an ordinary differential equation

(ODE)

−cfξ +−6ffξ + fξξξ = 0.

Integration of this equation gives us

−cf − 3f 2 + fξξ = A,

where A is a constant of integration. Multiplying the equation by fξ and integrating

one more yield
1

2
(fξ)

2 = f 3 +
1

2
cf 2 + Af +B,

where B is another constant of integration. Since f, fξ, fξξ → 0 as ξ → ±∞, it

follows that A = B = 0. Thus, the differential equation takes its final form:

(fξ)
2 = f 2(2f + c).

It is obvious that 2f + c ≥ 0 must hold for the existence of a real solution. By

separation of variables, the last equation can be written as∫
df

f
√

2f + c
= ±

∫
dξ.

Here, integration can be done by the following transformation

f = − c
2

sech2θ,

which yields the solution

f(ξ) = − c
2

sech2

(
1

2

√
c(ξ − ξ0)

)
.

Re-substituting u(x, t) = f(ξ) = f(x− ct), the traveling wave solution corresponds

to

u(x, t) = − c
2

sech2

(
1

2

√
c(x− ct− x0)

)
, (3.4)

41



where the constant x0 is the starting position of the wave. A traveling wave solution

of the KdV equation (3.2) with a constant speed is displayed in the Figure 3.1.
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Figure 3.1: Single solitary wave with c = 1 at times: t = 0, t = 5, and t = 10.

An important characteristic of the KdV equation is that it has infinitely many integrals

of motion which are constant [34]. A constant of motion is a quantity that is conserved

throughout the motion which represents a physical constraint. First three integrals of

motion (I1, I2, I3) are

I1 =

∫
u(x, t)dx, I2 =

∫
u2(x, t)dx, I3 =

∫ [
2u3(x, t)− (ux(x, t))

2
]
dx,

where they represent mass, momentum, and energy of the wave motion, respectively.

Moreover, they are called as the first invariants of the KdV solution.

Although the KdV equation is a good model for describing physical wave phenomenons

in the real-life applications, it cannot govern all the attributes of real world practices

sufficiently because of incomplete knowledge of physical model and imprecise cal-

culations of the data. Therefore, modeling and simulating the real-world studies by

the KdV equations with random input data can establish a better understanding and

anticipating the wave phenomena.
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3.2 Korteweg de Vries Equation with Random Input Data

The general KdV equation with random input data forms an initial value problem

with periodic boundary conditions such that

ut + (−6u+ δα(x, ω))ux + uxxx = εβ(t, ω),

u(x, 0) = − c
2

sech2

(
1

2

√
cx

)
,

(3.5)

where α(x, ω) and β(t, ω) are the space and time dependent random noises with their

amplitudes δ and ε. The noise β(t, w) is called the additive noise, whereas α(t, w)

is called as multiplicative noise. In this thesis, we consider three kind of cases: only

additive noise (δ = 0); only multiplicative noise (ε = 0); both additive and multi-

plicative noises.

In the first case that only additive noise exists in the equation (3.5), δ = 0, the IVP

corresponds to

ut − 6uux + uxxx = εβ(t, ω),

u(x, 0) = − c
2

sech2

(
1

2

√
cx

)
,

(3.6)

where c is the wave speed.

The stochastic Korteweg-de Vries equation defined with additive noise describes ef-

fects of motion of solitons under the external noise. Wadati [47] showed that the

stochastic KdV equation with additive Gaussian noise has an analytic solution for a

single soliton whose mean propagates with its width increasing proportional to t3/2

and its height decreasing proportional to t−3/2 for a large t. Assume that the time-

dependent additive noise β(t, ω) is integrable in time, i.e.,

W (t, ω) = ε

∫ t

0

β(ε, t′)dt′, (3.7)

and define

U(x, t, ω) = u(x, t)−W (t, ω). (3.8)

Then, putting transformation (3.8) into the equation (3.6) leads to

Ut − 6W (t)Ux − 6U Ux + Uxxx = 0. (3.9)
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Set the Galilean transformation

X = x+m(t, ω), (3.10)

where

m(t, ω) = 6

∫ t

0

W (t1, ω)dt1.

With the help of the Galilean transformation (3.10), the equation (3.9) can then be

rewritten as

Ut(X, t)− 6U(X, t)UX(X, t) + UXXX(X, t) = 0. (3.11)

Then, the equation (3.11) is similar to a standard KdV equation and the analytical

solution is

U(X, t) = − c
2

sech2

(
1

2

√
c(x− ct)

)
,

where c is the wave speed. Thus, the analytical single-soliton solution to the stochastic

KdV equation (3.6) is

u(x, t, ω) = W (t, ω) + U(X, t)

= W (t, ω)− c

2
sech2

(
1

2

√
c(x− ct)

)
.

If time-dependent noise is fully correlated, β can be described as a Gaussian random

variable with zero mean and unit variance ξ, i.e., β(t, ω) = ξ(ω). Thus, W (t, ω) =

εξt. Thus, the exact solution becomes

u(x, t, ω) = εξt− c

2
sech2

(
1

2

√
c(x− ct− x0)

)
. (3.12)

Then, the corresponding exact mean and variance of the solution (3.12), plotted in the

Figure 3.2, are

E[u(x, t, ω)] =
1

2π

∫ ∞
−∞

u(x, t, ω)e−
ξ2

2 dξ, (3.13)

Var[u(x, t, ω)] =
1

2π

∫ ∞
−∞

u2(x, t, ω)e−
ξ2

2 dξ − E[u(x, t, ω)]2. (3.14)

In the case that time dependent noise is partially correlated Gaussian, β can be ex-

pressed with a random process β(t, ω) with zero mean. Assuming that covariance
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Figure 3.2: The mean values (left) and the variances (right) of −u(x, t, ω) with c = 1

and ε = 0.01 at times: t = 0, t = 5, and t = 10.

function of the partially correlated Gaussian process is given by the exponential ker-

nel, the stochastic input β(t, ω) can be approximated with the Karhunen-Loève ex-

pansion such that

β(t, ω) =
N∑
i=1

√
λiφi(t)ξi, (3.15)

where N is the number of random dimensions, ξi is the Gaussian random variable, λi

and φi are the eigenvalues and eigenfunctions of the correlation function, respectively.

When the approximated Gaussian noise (3.15) is integrated in time, we obtain

W (t, ω) =
N∑
i=1

ε
√
λiξi

∫ t

0

φi(t
′)dt′.

Then, the analytic solution of a single soliton becomes

u(x, t, ω) =W (t, ω)− c

2
sech2

(
1

2

√
c(x− ct) + 3

√
c

∫ t

0

W (t′, ω)dt′
)

=ε
N∑
i=1

√
λiξk

∫ t

0

φi(t
′)dt′

− c

2
sech2

(
1

2

√
c(x− ct) + 3

√
cε

N∑
i=1

√
λiξk

∫ t

0

∫ t1

0

φi(t
′)dt′dt1

)
.

Hence, the exact mean is

E[u(x, t, ω)] =
1

(2π)N

∫ ∞
−∞
· · ·
∫ ∞
−∞

u(x, t, ω)e
ξ20+···+ξ

2
N

2 dξ0 · · · dξN ,
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whereas the exact variance is

Var[u(x, t, ω)] =
1

(2π)N

∫ ∞
−∞
· · ·
∫ ∞
−∞

u2(x, t, ω)e
ξ20+···+ξ

2
N

2 dξ0 · · · dξN

− E[u(x, t, ω)]2.

In the second case, we consider the stochastic KdV equation (3.5) with only multi-

plicative noise, ε = 0. Then, we obtain the following IVP problem

ut + (−6u+ δα(x, ω))ux + uxxx = 0, (3.16)

u(x, 0) = − c
2

sech2

(
1

2

√
cx

)
.

The effect of multiplicative noise with long range correlation was studied by Iizuka

theoretically in [19], and then Scalerandi and Romano studied numerically [39].

In the last case, we are interested in the stochastic KdV equation (3.5) with additive

and multiplicative noises combined as mentioned earlier. In both multiplicative noise

and combined cases, there is no analytical solution for the equations (3.16), (3.5),

respectively. Therefore, numerical methods have to be used in order obtain solutions

for such kind of the stochastic KdV equations. In the following chapter, we men-

tion various numerical approaches such as non-intrusive methods (Monte Carlo and

stochastic collocation) and intrusive methods (stochastic Galerkin) to solve this kind

of problems numerically.
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CHAPTER 4

SPECTRAL METHODS

The main objective of uncertainty quantification (UQ) is to study the effects of hav-

ing uncertainty on the input variables to a mathematical model. Although mathemati-

cal models are not restricted with differential equations, partial differential equations

(PDEs) with random inputs are one of the most powerful tools for modeling real

world phenomenons. There have been studies recently on several numerical methods

to approximate the solutions to such PDEs with the uncertain coefficients. Common

numerical techniques can be divided into two categories which are non-intrusive and

intrusive methods.

Non-intrusive methods are sampling based, in other words, they rely on a set of de-

terministic model resolutions corresponding to some specific samples of the random

input. Here, the deterministic PDE corresponding to each realization could be dis-

cretized using any numerical methods for solving differential equations. One of the

most traditional non-intrusive approach is Monte Carlo method which firstly gen-

erates a set of random realizations for the predefined random inputs and then uti-

lizes repetitive deterministic solvers for each realization. Monte Carlo method has

widespread applications because of its simplicity and natural parallelization. The

other popular non-intrusive method is Stochastic Collocation, which principally seeks

an interpolated polynomial representation of the random field generated by solutions

of the stochastic PDE model. The implementation of this method is straightforward

because it approximates the solution on a finite set of interpolation points on the ran-

dom coefficient field. Although the non-intrusive methods are easy to implement,

Monte Carlo method have insufficiently low convergence rate [11] and stochastic
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collocation method suffers from curse of dimensionality [2].

On the other hand, intrusive methods seek for a spectral stochastic representation for

the solution of the PDE with random inputs. As the name suggest, these methods

appreciate the random field by predefined stochastic input while solving the PDE

model. The stochastic Galerkin method is the principally major example of the in-

trusive methods. As similarly in the standard Galerkin methods, they are built on

weighted residual formalism for determining coefficients of the spectral stochastic

representation of the solution. Assuming that solutions of stochastic PDEs are suf-

ficiently smooth in the random space, these methods result in fast convergence rates

[28]. However, designing the resulting system of equation can be very complicated if

the differential equation model has nontrivial and nonlinear forms.

In this chapter, the non-intrusive methods such as Monte Carlo sampling and stochas-

tic collocation methods will be first introduced. Then, intrusive method, stochastic

Galerkin method, will be presented by utilizing stochastic Korteweg de-Vries equa-

tion introduced in Section 3.2.

4.1 Non-Intrusive Methods

The non-intrusive methods generally rely on the set of realizations of the stochastic

systems which are deterministic solutions of the model for some specific values of

random inputs. This is the most significant feature of the non-intrusive methods for

approximating stochastic models since it requires only deterministic solver without

any particular adaptation. In addition, solving deterministic model for each specific

values can be decoupled naturally so that computation can be done in parallel. How-

ever, the numerical cost of non-intrusive methods grows exponentially with the num-

ber of deterministic model resolution, which means that the non-intrusive methods

are computationally intensive. Now, we introduce two non-intrusive methods; Monte

Carlo simulation and stochastic collocation.
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4.1.1 Monte Carlo Simulation

The Monte Carlo simulation (MCS) is one of the simplest and the most commonly

used method for solving stochastic differential equations. The fundamental idea be-

hind MCS is to generate a set of independent realizations of the random inputs based

on their probability distribution. Then, the stochastic PDE becomes deterministic for

each realization generated. Solving the deterministic problem for all set of indepen-

dent realizations yields an ensemble of realizations of the random solution. Hence,

statistical information, e.g., mean and variance, can be extracted from these set of

realizations.

The general procedure of the MCS for solving the model problem (3.5), i.e., the KdV

equation with random input data, is as follows:

1. Generate identically and independently distributed random numbers ξ(i) =

{α(i), β(i)}, i = 1, . . . ,M with respect to their distributions;

2. Solve the corresponding deterministic PDE with its coefficients for each i =

1, . . . ,M to form a sample set from solutions u(i)(x, t) = u(x, t, ξ(i));

3. Approximate the required solution statistics by using proper schemes from the

sample set {u(i)(x, t)}.

For instance, the expectation of the stochastic solution, as a result of the Central Limit

Theorem (CLT), see Theorem 2.4, can be immediately approximated as

E[u] ≈ ū(x, t) =
1

M

M∑
i=1

u(x, t, ξ(i)).

Inherently, error estimation of the mean derived by MCS also follows from the CLT

given in Section 2.3.4. Since the solutions {u(i)(x, t)} are independent and iden-

tically distributed, the distribution of ū(x, t) converges to a Gaussian distribution

N (E[u], σu√
M

) as M → ∞. Hence, it is deduced that the convergence rate of the

MCS statistics is O(M−1/2).

Although the MCS is one of the most powerful and the most flexible mathematical

tool for solving the stochastic PDEs, the convergence rate, O(M−1/2), is the main
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limitation of the MCS. In the aim of obtaining a decent accuracy of the statistical

estimates, computational cost is dominated by increasing number of deterministic

resolution of the governing equation. Herewith, there have been developments on

sampling methods that improve their accuracy and efficiency such as quasi-Monte

Carlo [35], multi-level Monte Carlo [15], and Latin hypercube sampling method [32].

4.1.2 Stochastic Collocation

The fundamental idea behind the deterministic collocation methods is to ensure the

residue of the governing differential equation to be zero at the discrete nodes on the

spatial domain, which are called collocation points. This definition can also be imple-

mented to the random domain of the stochastic differential equations, which stands for

stochastic collocation (SC) methods. Implementation of the SC methods is straight-

forward since it also naturally leads to uncoupled deterministic differential equations.

Furthermore, these methods achieve exponential convergence under the assumption

that the random coefficients are infinitely differentiable with respect to random vari-

ables [2].

Let us choose a set of collocation points Z = {Zj}Nj=1 in the random space of the

stochastic KdV equation with the additive noise (3.6). Then the governing PDE with

stochastic input which is needed to be solved for j = 1, . . . , N , each collocation

point, becomes

ut(x, t, Z
j)− 6u(x, t, Zj)ux(x, t, Z

j) + uxxx(x, t, Z
j) = εβ(Zj, t). (4.1)

Since value of random parameter Z is fixed at each collocation point Zj , this stochas-

tic collocation method consists of solving N deterministic equations. Then solving

the PDE system (4.1) for each collocation node results in a set of deterministic so-

lutions {u(Zj)}Nj=1, where u(Zj) = u(x, t, Zj) represents the solution of the model

(4.1) at any collocation node Zj . Then, the solution can be extracted from the set of

realizations by using the interpolation approach.

The SC solution u(Z) of the governing model (4.1) can be represented by using La-

grange interpolating approach, described in Section 2.2.1. Hence the solution u(Z)
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can be approximated as

u(Z) ≈ uN(Z) =
N∑
j=1

u(Zj)Lj(Z), (4.2)

where Lj(Z) are the Lagrange polynomials

Lj(Z
i) = δij, 1 ≤ i, j ≤ N.

It is an important feature of the interpolation that solution uN(Z) is equal to the exact

solution in each of the N collocation points. As in the Monte Carlo simulation, the

statistical information of the stochastic solution uN(Z) can be derived from the set of

N deterministic solutions computed for each the collocation points. For instance, the

mean of the SC solution (4.2) can be computed as

E[uN(Z)] =
N∑
j=1

u(Zj)

∫
IZ

Lj(z)fZ(z)dz, (4.3)

where IZ is the support of the random variable Z and fZ(z) is the probability density

function of the distribution of the random variable Z. The evaluation of the expecta-

tion requires knowledge of the Lagrange polynomial and it can be computed by use

of an inverted Vandermonde matrix as done in [53]. Besides computing the integral in

(4.3) analytically, another common approach is approximating it by using quadrature

rules. Approximation of the integrals can be done exactly by quadrature if its order is

chosen to be equal to N Lagrange polynomials order such that

E[uN(Z)] =
N∑
j=1

u(Zj)
N∑
k=1

Lj(zk)fZ(zk)wk, (4.4)

where zk are the quadrature points and wk are the quadrature weights. Furthermore,

if the quadrature nodes are chosen as same as the collocation points so that they rep-

resent the distribution of the random parameters as given in Table 2.1, and then the

mean of the interpolation (4.4) can be analytically simplified. Choosing the colloca-

tion points as the quadrature points, i.e., zj = Zj , ensures that Lagrange interpolating

functions Lj(Zj) = δij vanishes for i, j ∈ [1, . . . , N ]. Therefore, the equation (4.4)
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reduces to

E[uN(Z)] =
N∑
j=1

u(Zj)
N∑
k=1

δjkfZ(Zj)wk

=
N∑
j=1

u(Zj)fZ(Zj)wj.

In a similar way, the variance of SC solution (4.2) can be derived such that

Var[uN(Z)] = E[(uN(Z)− E[uN(Z)])2]

=

∫
IZ

(uN(Z)− E[uN(Z)])2 fZ(z) dz

=

∫
IZ

(
N∑
j=1

u(Zj)Lj(z)− E[uN(Z)]

)2

fZ(z) dz

=
N∑
j=1

(
N∑
k=1

u(Zj)Lj(zk)− E[uN(Z)]

)2

fZ(zk)wk, (4.5)

where wk and zk are the quadrature weights and nodes, respectively. In order to

simplify the variance equation (4.5), the quadrature points and collocation points are

chosen to be same points, zj = Zj . Hence, the variance equation (4.5) reduces to

Var[uN(Z)] =
N∑
j=1

(
N∑
k=1

u(Zj)δjk − E[uN(Z)]

)2

fZ(Zj)wk

=
N∑
j=1

(
u(Zj)− E[uN(Z)]

)2
fZ(Zj)wj.

Consider again the stochastic KdV equation under the effect of only additive noise

(4.1), where β is the fully-correlated time dependent Gaussian noise, i.e., β(Zj, t) =

Zj with its amplitude ε, then Gauss-Hermite quadrature rules should be applied in or-

der to establish corresponding probability space. The general procedure of SC method

for solving the stochastic KdV equation (4.1) is outlined as:

1. Compute all quadrature points and weights {zi, wi}, i = 1, . . . , N ;

2. Evaluate random coefficient β(t, zi) at the quadrature nodes zi;

3. Solve deterministic system to ensemble realizations {u(zi)} at the each node

zi, i = 1, . . . , N ;
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4. Compute the expectation E[uN(Z)] =
∑N

j=1 u(zj)fZ(zj)wj;

5. Compute the variance Var[uN(Z)] =
∑N

i=1 (u(zi)− E[uN(Z)])2 fZ(zi)wi

from the set of realizations.

The other statistical information of the SC solution can be computed with this inter-

polation approach as well. Besides interpolation, there is another well established

approach for the stochastic collocation methods which is called pseudo-spectral ap-

proach. The pseudo-spectral approach uses a discrete projection, about which any

further information can be found in [52, 53].

Stochastic collocation method can also be extended to the case that the model equa-

tion has multivariate stochastic inputs by using tensor product approach. Let Z =

{Z1, . . . , Zd} be a d-dimensional random vector and Z = Z1⊗ . . .⊗Zd be the collo-

cation points, where Zi = {Zj
i }

Ni
j=1 is the set of collocation points in the ith random

dimension, then the solution u(Z) is approximated as

u(Z) ≈ uN(Z) = uN1(Z1)⊗ · · · ⊗ uNd(Zd), (4.6)

where uNi(Zi) is a one-dimensional SC approximation (4.2) for only ith random di-

mension and N = N1× · · · ×Nd. Hence, the d-dimensional approximation (4.6) can

be clarified as

uN(Z) =

N1∑
j1=1

· · ·
Nd∑
jd=1

u(Zj1
1 , . . . , Z

jd
d )L1

j1
(Z1) . . . Ldjd(Zd), (4.7)

where Li is the Lagrange polynomial for the ith stochastic dimension. The statistical

information, i.e., expectation and variance, can be accomplished in the same way as

done in the one-dimensional case by using a multi-dimensional quadrature rule [28].

Let us choose a set of collocation points Z = Z1⊗Z2, whereZ1 = {Z1
1 , . . . , Z

N1
1 } and

Z2 = {Z1
2 , . . . , Z

N2
2 } in the multidimensional random space of the stochastic KdV

equation with two random input (3.5). Then, for each collocation point j = 1, . . . , N ,

the following model equation is required to be solved

ut(x, t,Z
j) + (−6u(x, t,Zj) + δα(Zj

1 , x))ux(x, t,Z
j) + uxxx(x, t,Z

j) = εβ(Zj
2 , t),
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where α and β are the fully-correlated space and time dependent Gaussian noises with

their amplitude δ and ε, respectively. The general procedure of multi-dimensional SC

method for solving a model equation is summarized as:

1. Compute the sets of quadrature points z1 = {z1
i}N1
i=1, z2 = {z2

j}N2
j=1;

2. Compute the sets of combined weightsw1 = {fZ1(z1
j)w1

i}N1
i=1,w2 = {fZ2(z2

j)

w2
j}N2
j=1, wherewij is quadrature weight and fZi(z) is distribution weight of the

random variable Zi ;

3. Evaluate random coefficients α(x, z1
i), β(t, z2

j) at each quadrature nodes z1
i,

z2
j;

4. Compute the tensor product of the sets of the quadrature nodes z = z1⊗ z2 and

sets of combined weights w = w1 ⊗ w2;

5. Solve deterministic system for i = 1, . . . , N in order to obtain a set of realiza-

tion where N = N1 ×N2;

6. Compute the expectation E[uN(Z)] =
∑N

j=1 u(zj)wj;

7. Compute the variance Var[uN(Z)] =
∑N

i=1 (u(zi)− E[uN(Z)])2 wi from the

set of realizations.

The multi-dimensional stochastic collocation methods yield a numerical challenge

that the total number of collocation points N = N1 × · · · × Nd outgrows as the

random dimension d increases, which is widely known as curse of dimensionality. In

order to overcome this problem different strategies are proposed such as sparse grids

[43, 53] and adaptive sparse grids [58].

4.2 Intrusive Methods

Intrusive methods rely on modifying the stochastic model with its corresponding ran-

dom field in order to seek a spectral representation for the solution of a PDE with

random inputs by modifying the initial model problem. In other words, these methods

benefit from random and deterministic dimensions, simultaneously. The modification
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of the initial stochastic model results in a system of equations that are analytically

and numerically different from the usual deterministic system to be solved. Despite

the extra analytical and numerical operations, the intrusive methods provide spectral,

exponentially fast, convergence [28].

4.2.1 Stochastic Galerkin Method

The stochastic Galerkin (SG) method is a major intrusive spectral method that ap-

preciates (generalized) polynomial chaos (PC) expansion to form a weighted residual

formalism. As in the classic (deterministic) Galerkin method, the idea behind the SG

method is to seek a solution for the model equation such that the residue is orthogonal

to the space of polynomials, and then this notion leads that the SG solution has opti-

mal error in the L2 sense [28]. In addition, the discretization procedure performed in

the SG method results in a system of coupled deterministic differential equations in

which any spatial/time discretization scheme can be used.

Let model equation be the stochastic KdV equation (3.6) with a time dependent noise

ut(x, t, ω)− 6u(x, t, ω)ux(x, t, ω) + uxxx = εβ(ω, t), (4.8)

where the initial condition is deterministic, periodic function and β(t, ω) is a Gaussian

random variable with an amplitude ε. Since β(t, ω) ∼ N (µ, σ) the PC basis {Ψ}Ni=0

is chosen to be Hermite polynomials, see Table 2.1. The random input β(t, ω) can be

expressed with N th degree PC approximation

βN(t, ω) =
N∑
i=0

βiΨi(ξ(ω)), (4.9)

where β0 = µ, β1 = σ, and βi = 0 for i > 1. Moreover, the solution u(x, t, ω) is

represented by a PC approximation

u(x, t, ω) ≈ uN(x, t, ω) =
N∑
i=0

ui(x, t)Ψi(ξ(ω)), (4.10)

where the total number of PC basis is determined by the dimension M of the random
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vector ξ and the highest order K of the basis polynomials Ψi such that

N + 1 =
(M +K)!

M !K!
.

Then, the PC approximation of the solution (4.10) and random input approximation

(4.9) are substituted into the model equation (4.8), which results in

N∑
i=0

(ui)tΨi − 6
N∑
i=0

N∑
j=0

ui(uj)xΨiΨj +
N∑
i=0

(ui)xxxΨi = ε

N∑
i=0

βiΨi, (4.11)

where ui ≡ ui(x, t) and Ψi ≡ Ψi(ξ) for i = 0, . . . , N . Multiplying the equation

(4.11) by a test function Ψk for k = 0, . . . , N and taking (weighted) inner product,

Galerkin procedure yields (M + 1) coupled deterministic equations

N∑
i=0

(ui)t 〈ΨiΨk〉−6
N∑
i=0

N∑
j=0

ui(uj)x 〈ΨiΨjΨk〉+
N∑
i=0

(ui)xxx 〈ΨiΨk〉 = ε
N∑
i=0

βi 〈ΨiΨk〉 .

With the help of orthogonality of PC basis polynomials, we obtain

N∑
i=0

(ui)t
〈
Ψ2
k

〉
δik−6

N∑
i=0

N∑
j=0

ui(uj)x 〈ΨiΨjΨk〉+
N∑
i=0

(ui)xxx
〈
Ψ2
k

〉
δik = ε

N∑
i=0

βi
〈
Ψ2
k

〉
δik.

By the definition of Kronecker delta function δik, we acquire

(uk)t
〈
Ψ2
k

〉
− 6

N∑
i=0

N∑
j=0

ui(uj)x 〈ΨiΨjΨk〉+ (uk)xxx
〈
Ψ2
k

〉
= εβk

〈
Ψ2
k

〉
.

Then, the system of equations is simplified to

(uk)t −
6

γk

N∑
i=0

N∑
j=0

ui(uj)xeijk + (uk)xxx = εβk, (4.12)

where eijk = 〈ΨiΨjΨk〉 and γk = 〈Ψ2
k〉 for i, j, k = 0, . . . , N . Further, the system

can be rewritten in a compact form by defining (N+1)×(N+1) matrices E(i) whose

elements are

E
(i)
kj =

1

γk
eijk
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and a (N + 1) vector β = (β0, . . . , βN)T for each j, k = 0, . . . , N . Hence the system

of equations (4.12) can be defined conveniently in a matrix form as

ut − 6

[
N∑
i=0

ū(i)E(i)

]
ux + uxxx = εβ, (4.13)

where u = (u0, . . . , uN)T and

ū(i) =


ui 0 0 0

0
. . . 0

...
... 0 ui 0

0 · · · 0 ui

 .

If the initial condition is assumed to be a deterministic function u(x, 0, ω) = u(x),

the initial condition of the system of equation becomes vector of N + 1 length such

that u(x, 0) = (u(x), 0, . . . , 0) by applying Galerkin procedure 〈u(x)Φk〉 = u(x) for

k = 0, . . . , N . The general procedure of the SG method for solving the KdV equation

with random input data (4.8) is summarized as follows:

1. Compute the random coefficient vector β;

2. Compute the matrices of PC basis E(i) for i = 0, . . . , N ;

3. Compute the initial condition u(x, 0);

4. Construct the system by using PC and spatial discretization matrices;

5. Solve the system by using a numerical solver to obtain the solution vector u;

6. Compute the expectation E[uN(x, t, ω)] = u0;

7. Compute the variance Var[uN(x, t, ω)] =
∑N

i=1 γiu
2
i .

Now we consider the stochastic KdV equation with multiplicative noise (3.16) as our

second model

ut + (−6u+ δα(x, ω))ux + uxxx = 0, (4.14)

where initial condition is deterministic, periodic function and α(x, ω) is a Gaussian

random variable with an amplitude δ. As additive noise model, the random input α
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and the solution u are defined by the N th PC approximations as

αN(x, ω) =
N∑
i=0

αiΨi(ξ),

uN(x, t, ω) =
N∑
i=0

ui(x, t)Ψi(ξ),

(4.15)

where {Ψi}Ni=0 is set of Hermite polynomials since α(x, ω) ∼ N (µ, σ). Then, substi-

tuting the expansions (4.15) into equation (4.14), we obtain
N∑
i=0

(ui)tΨi − 6
N∑
i=0

N∑
j=0

ui(uj)xΨiΨj + δ

N∑
i=0

N∑
j=0

αj(ui)xΨiΨj +
N∑
i=0

(ui)xxxΨi = 0.

Last, an application of the Galerkin procedure results in a system of N + 1 equations

(uk)t −
6

γk

N∑
i=0

N∑
j=0

ui(uj)x eijk +
δ

γk

N∑
i=0

N∑
j=0

αi(uj)x eijk + (uk)xxx = 0, (4.16)

where eijk = 〈ΨiΨjΨk〉 and γk = 〈Ψ2
k〉 for i, j, k = 0, 1, . . . , N . The system of

equation (4.16) can be stated with a matrix notation such that

ut − 6

[
N∑
i=0

ū(i)E(i)

]
ux + δAux + uxxx = 0, (4.17)

where A and E are (N + 1)× (N + 1) matrices which are defined as

Akj =
1

γk

N∑
i=0

αieijk,

E
(i)
kj =

1

γk
eijk,

and a vector u = (u0, . . . , uN)T . For the stochastic KdV equation (3.5) under the ef-

fect of both additive and multiplicative noises, stochastic Galerkin system can simply

be derived as a combination of both cases, (4.13) and (4.17). Moreover, statistical

information, i.e., expectation and variance, of the SG solution can be computed by

using formulas derived in Section 2.5.

Remark 4.1. The terms ux, uxxx in the equations (4.13) (4.17) are defined as a vector

consisting of first and third order derivatives of the PC coefficients in the solution

vector u. The first and third order derivatives of PC coefficients are required to be

discretized with a spatial discretization techniques, as done in Section 5.1.
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The stochastic Galerkin method is based on minimizing the residue of the stochas-

tic governing equation. The error occurring in implementation of the SG method is

optimal in mean-square sense which means that the SG method is preferred over in-

trusive methods for getting more accurate results [54]. However, implementation of

the SG method requires analytical derivation of a large system of equation where the

coefficients of the PC expansion are coupled. Moreover, solving the resulting coupled

system of equations can be very cumbersome due to the large matrix system. . Decou-

pling strategies [51] can be utilized into the SG system since solving each equation

for the PC coefficients is easier than solving coupled system or preconditioning [36]

can be also used in order to overcome these numerical challenges.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, the influences of two different types of uncertainty, which are additive

(time dependent) and multiplicative (space dependent) noises, imposed on Korteweg-

de Vries equation will be investigated. The analytical solution of stochastic KdV

equation resulting from time dependent noise exists, whereas there does not exist any

analytical solution of stochastic KdV equations containing space dependent noise.

Therefore, special numerical methods are needed to perform the discretization of ran-

dom dimension of the stochastic KdV equations. Our attention will be mainly on

stochastic Galerkin (SG) method, and then SG method will be compared to Monte

Carlo (MC) simulation and stochastic collocation (SC) methods in terms of their con-

vergence rates and efficiency.

After the PDE with random input data is transformed into a deterministic form, we

need to discretize spatial and temporal dimensions by any appropriate discretization

schemes. In this thesis, the finite (central) difference (FD) and local discontinuous

Galerkin (LDG) schemes are chosen to discretize spatial dimensions, whereas the

weighted average (theta) method will be used for discretization of the temporal di-

mension. Moreover, the rational deferred correction method will be introduced to

improve accuracy of the time stepping scheme. Now, the spatial and temporal dis-

cretization techniques will firstly be introduced upon the deterministic KdV equation.

Then, fully discretized stochastic Galerkin system matrices will be constructed, and

finally the computational results will be presented.
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5.1 Spatial Domain Discretization

5.1.1 Finite Difference Method

The finite difference (FD) is one of the simplest and the oldest numerical method

to approximate differential equation in the spatial dimension. The finite difference

method approximates the solution of a differential equation by replacing the deriva-

tives in the equation with their primitive depictions at each grid point. First the spatial

domain Ω = [0, L] is needed to be partitioned in order to constitute a finite grid such

that

xi = i∆x, i = 0, 1, . . . ,Mx,

where x0 = 0, xMx = L, and ∆x is the spatial step size, i.e., ∆x = L
Mx

. Then, the

central difference formulation of the first order derivative is given as

∂u(xi, t)

∂x
≈ u(xi+1, t)− u(xi−1, t)

2∆x
(5.1)

and the central difference formulation for approximating the third order derivative is

presented as

∂3u(xi, t)

∂x3
≈ u(xi+2, t)− 2u(xi+1, t) + 2u(xi−1, t)− u(xi−2, t)

2∆x3
(5.2)

for each spatial grid points xi, i = 0, 1, . . . ,Mx. Last, the finite difference formula-

tions (5.1) and (5.2) are required to be substituted into the deterministic KdV equation

(3.3) with periodic boundaries u(0, t) = u(L, t), which results in, i = 0, 1, . . . ,Mx,

∂u

∂t
+
u(xi+2, t)− 2u(xi+1, t) + 2u(xi−1, t)− u(xi−2, t)

2∆x3
+

1

2

u2(xi+1, t)− u2(xi−1, t)

2∆x
= 0.

Now, we will construct a semi–discrete matrix form by using the system of equa-

tions resulting from implementation of finite difference approximations. Let x =

(x0, . . . , xMx−1) be the vector of spatial grid and u(x, t) ≡ (u(x0, t), . . . , u(xMx−1, t))
T

be the solution vector, then the semi-discrete form is

∂u(x, t)

∂t
+Dxxxu(x, t) +

1

2
Dxu

2(x, t) = 0, (5.3)
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where Dx and Dxxx are a (Mx×Mx) matrices which are stencils of the first and third

order derivatives in the forms of

Dx =
1

2∆x



0 1 −1

−1 0 1
. . . . . . . . .

. . . . . .

1 0 −1 0


(5.4)

and

Dxxx =
1

2(∆x)3



0 −2 1 −1 2

2 0 −2 1 −1

−1
. . . . . . . . .
. . . . . . . . . . . .

. . . . . . . . . 1

1
. . . . . . . . . −2

−2 1 −1 2 0


, (5.5)

respectively.

5.1.2 Local Discontinuous Galerkin Method

Although the implementation of finite difference method is simple, it is ill-suited

to deal with complex geometries, both in terms of general computational domains

and internal discontinuities. Therefore, standard continuous finite element method

[3] become popular due to its efficiency and high-order convergence rate. On the

other hand, it does not satisfy local mass conservation, which is a crucial property in

hyperbolic problems [9, 44].

In recent years, discontinuous Galerkin (DG) methods have been developed rapidly

and applied into various areas such as computational fluid dynamics, environmen-

tal modeling, reservoir simulation and groundwater aquifer simulation, etc. Though

these methods are known since the 1970s, much attention has been paid only in the

past few years due to the availability of cheap computing resources. We would like

to refer to [1, 18, 37] for more details of about discontinuous Galerkin methods. Lo-

cal discontinuous Galerkin (LDG) method is one of several discontinuous Galerkin
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methods which are being vigorously studied, especially as applied to hyperbolic equa-

tions because of their applicability to a wide range of problems and their properties

of local conservativity and higher degree of locality. In addition, they may be advan-

tageous because of the ease with which the method handles hanging nodes, elements

of general shapes, and local spaces of different types.

The fundamental idea behind the LDG methods is to rewrite the differential equation

with higher order derivatives into a first-order system. In the LDG method, the lo-

cal conservativity holds because the conservation laws are weakly enforced element

by element. In order to do that, suitable discrete approximations of the traces of

the fluxes on the boundary elements are provided by the so-called numerical fluxes.

These numerical fluxes enhance the stability of the method, and hence, the quality

of its approximation. This is why the LDG method is strongly related to stabilized

mixed finite elements. The stabilization is associated with the jump of the approxi-

mate solution across the element boundaries, see [1, 8].

Let f(u(x, t)) = 3u2 and p(x, t), q(x, t) be auxiliary variables, then a first order

system of Korteweg-de Vries equation (3.3) can be stated as

q − ∂u

∂x
= 0, p− ∂q

∂x
= 0,

∂u

∂t
+
∂p

∂x
+
∂f(u)

∂x
= 0. (5.6)

Let Th denote a partition of the spatial domain Ω = [a, b], which is divided into

N computational interval whose step sizes are hn = xn+1 − xn. Assuming that

h = max
0≤n≤N

hn, a finite dimensional space Dk is defined as a space of piecewise

polynomials of degree k in each cell such that

Dk(Th) = {v : v|In ∈ Pk(In),∀n = 0, ..., N − 1}.

One sided-values of a scalar quantity v = v(x) can be stated by

v(x+
n ) = lim

ε→0
v(xn + ε) and v(x−n ) = lim

ε→0
v(xn − ε).

Then, the jump and average of v at the end points of each subintervals In are

[v(xn)] = v(x−n )− v(x+
n ), [v(x0)] = −v(x+

0 ), [v(xN)] = v(x−N),

{v(xn)} =
1

2
(v(x−n ) + v(x+

n )), {v(x0)} = v(x+
0 ), {v(xN)} = v(x−N),
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respectively.

Now, we can apply formal Galerkin projection to the first order system (5.6) on each

subinterval In in order to construct a variational form. For each test function v, w,

z ∈ Dk(Th), we have

∫ xn+1

xn

q vdx+

∫ xn+1

xn

u v′dx−
[
û(xn+1)v(x−n+1)− û(xn)v(x+

n )
]

= 0, (5.7)∫ xn+1

xn

pwdx+

∫ xn+1

xn

q w′dx−
[
q̂(xn+1)w(x−n+1)− q̂(xn)w(x+

n )
]

= 0, (5.8)∫ xn+1

xn

ut zdx−
∫ xn+1

xn

p z′dx+
[
p̂(xn+1)z(x−n+1)− p̂(xn)z(x+

n )
]

−
∫ xn+1

xn

f(u)z′dx+
[
f̂(u(xn+1))z(x−n+1)− f̂(u(xn))z(x+

n )
]

= 0, (5.9)

where û(xn), p̂(xn), q̂(xn), f̂(u(xn)) denote numerical fluxes. They have to be suit-

ably defined in order to ensure the stability of the method and to enhance its accuracy.

The numerical fluxes related to the dispersive term uxxx are chosen to be based on

upwind-scheme such that

û(xn) =


u(x−n ), n = 1, ..., N − 1,

u(x−0 ), n = 0,

u(x+
N), n = N,

(5.10)

and

q̂(xn) =


q(x+

n ), n = 1, ..., N − 1,

q(x+
0 ), n = 0,

q(x−N), n = N,

(5.11)

and

p̂(xn) =


p(x+

n ), n = 1, ..., N − 1,

p(x+
n ), n = 0,

p(x−n ), n = N.

(5.12)
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The upwind-scheme guarantees stability and convergence of the LDG method for

KdV type equations [55]. On the other hand, the convective flux f̂(u(xn)) is chosen

simply as Lax-Friedrichs flux,

f̂(u(xn)) =
1

2
(f(u(x−n )) + f(u(x+

n ))− α(u(x+
n )− u(x−n )), (5.13)

where α = maxu |f ′(u)|. Since all the fluxes are defined, we can construct a vari-

ational formulation explicitly for the first order system of the KdV equation (5.6).

On each subinterval In = [xn, xn+1], n = 0, 1, . . . , N − 1, the discrete solutions are

defined by

qh =
k∑
j=0

qnj (t)φnj (x), (5.14)

ph =
k∑
j=0

pnj (t)φnj (x), (5.15)

uh =
k∑
j=0

unj (t)φnj (x), (5.16)

where φni ∈ Dk(Th) are basis polynomials and k is maximum degree of basis poly-

nomials. Find qh, ph, and uh ∈ Dk(Th), for all test functions v, w, z ∈ Dk(Th), such

that

N−1∑
n=0

∫ xn+1

xn

qh vdx+
N−1∑
n=0

∫ xn+1

xn

uh v
′dx

−
N−1∑
n=0

[
ûh(xn+1)v(x−n+1)− ûh(xn)v(x+

n )
]

= 0, (5.17)

N−1∑
n=0

∫ xn+1

xn

phwdx+
N−1∑
n=0

∫ xn+1

xn

qhw
′dx

−
N−1∑
n=0

[
q̂h(xn+1)w(x−n+1)− q̂h(xn)w(x+

n )
]

= 0, (5.18)
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N−1∑
n=0

∫ xn+1

xn

(uh)t zdx−
N−1∑
n=0

∫ xn+1

xn

ph z
′dx

+
N−1∑
n=0

[
p̂h(xn+1)z(x−n+1)− p̂h(xn)z(x+

n )
]

−
N−1∑
n=0

∫ xn+1

xn

f(uh)z
′dx

+
N−1∑
n=0

[
f̂(uh(xn+1))z(x−n+1)− f̂(uh(xn))z(x+

n )
]

= 0. (5.19)

Putting the discrete solutions (5.14)–(5.16) and the numerical fluxes (5.10)–(5.12)

into (5.17)–(5.19) and summing over all subintervals In, we obtain the following

system:

M q(t) + Lu(t)−O1 u(t) = J 1
D, (5.20)

M p(t) + L q(t)−O2 q(t)−H2 q(t) = 0, (5.21)

M ∂u(t) +O3 u(t) +H3 u(t)− Lu(t) +ONL(u)−NL(u)− J NL
D = 0, (5.22)

where mass Mn, advection Ln, nonlinear NLn matrices, for each subinterval In, are

(Mn)ij =

∫
In

φnj φ
n
i dx,

(Ln)ij =

∫
In

φni (φnj )′dx,

(NLn)ij =

∫
In

3(φnj (x))2(φi(x))dx,

interior/exterior boundary matrices O1
n, O2

n, O3
n, ONL

n ,H2
n,H3

n are

(O1
n)ij = φj(x

−
n )φi(x

−
n )− φj(x−n )φi(x

+
n ),

(O2
n)ij = φj(x

+
n )φi(x

−
n )− φj(x+

n )φi(x
+
n ),

(O3
n)ij = φj(x

+
n )φi(x

−
n )− φj(x+

n )φi(x
+
n ),

(H2
n)ij = φj(x

−
N)φi(x

−
N)− φj(x+

0 )φi(x
+
0 ),

(H3
n)ij = φj(x

−
N)φi(x

−
N)− φj(x+

0 )φi(x
+
0 ),

(ONL)ij =
1

2
[3(φj(x

−
n ))2 + 3(φj(x

+
n ))2 − α(φj(x

+
n )− φj(x−n ))]φi(x

−
n )

−1

2
[3(φj(x

−
n ))2 + 3(φj(x

+
n ))2 − α(φj(x

+
n )− φj(x−n ))]φi(x

+
n ),
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and boundary vectors J 1
D, J NL

D are

(J 1
D)i = u(x−N)φi(x

−
N)− u(x−0 )φi(x

+
0 ),

(J NL
D )i = f̂(u(xN))φj(x

−
N)− f̂(u(x0))φj(x

+
0 ).

Hence, a semi-discrete form of the KdV equation (5.6), discretized by LDG method,

can be written in a matrix form as
0

0

M∂tu

+


M L−O1

L−O2 −H2 M

O3 +H3 − L




q

p

u



+


0

0

ONL(u)−NL(u)

 =


J 1
D

0

−J NL
D

 , (5.23)

where q, p, u are the discretized solutions. Let discrete solution vector Y ∈ R3N(K+1),

matrix A,W ∈ R3N(K+1)×3N(K+1) and right-hand-side vector J ∈ R3N(K+1) be

Y =


q

p

u

 , A =


M L−O1

L−O2 −H2 M

O3 +H3 − L

 ,

W =


0 0 0

0 0 0

0 0 M

 , J =


J 1
D

0

−J NL
D

 ,

and the matrix N ∈ R3N(K+1)×3N(K+1) corresponding to nonlinear part in KdV equa-

tion be

N =


0 0 0

0 0 0

0 0 ONL(u)−NL(u)

 .

Then, we can rewrite the system of equations (5.23) as

W∂tY + AY + N(Y) = J. (5.24)
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5.2 Temporal Domain Discretization

5.2.1 The Weighted Average (Theta) Method

Now, we will discretize temporal space by the weighted average (theta) method. The

temporal domain [0, T ] is partitioned as

tj = i∆t, j = 0, 1, . . . , Nt,

where t0 = 0, tNt = T , and ∆t is the temporal step size, i.e., ∆t = T
Nt

. The weighted

average (theta) method is formed by assembling forward and backward Euler time

discretization schemes with a weight θ ∈ [0, 1].

The semi-discretized KdV equation (5.3) obtained by finite difference scheme in

space can be approximated in temporal dimension such that
u(x, tj+1)− u(x, tj)

∆t
+ (1− θ)

[
Dxxxu(x, tj) +

1

2
Dxu

2(x, tj)

]
+ θ

[
Dxxxu(x, tj+1) +

1

2
Dxu

2(x, tj+1)

]
= 0

for a given initial conditions u(x, t0).

On the other hand, the discrete system (5.24) obtained via the LDG discretization in

space can be stated simply as, θ ∈ [0, 1],

W
Yt+1 −Yt

∆t
+ (1− θ) [AYt + N(Yt)] + θ [AYt+1 + N(Yt+1)]− J = 0.

5.2.2 Rational Deferred Correction Method

Rational deferred correction framework is an efficient post-processing technique that

enhance numerical solutions of time-dependent problems. The method can be consid-

ered as an extrapolation scheme which improves the accuracy of a low-order integra-

tor iteratively. The idea is to construct representation of residual based on polynomial

interpolation of the solution over the time interval [0, T ] [16].

Let us assume that a semi-discretized initial value problem (IVP) is defined as

u′(t) = f(t,u), u(0) = u0, (5.25)
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where u is a vector valued function, i.e., u : [0, T ] → RN and u0 is the initial

condition. Moreover, approximations uj at partitioned temporal domain 0 = t0 <

t1 < . . . < tn = T are assumed to be available and the interpolant is stated as

ũ =
n∑
j=0

lj(t)uj,

where lj(t) are differentiable Lagrange functions, i.e., lj(ti) = σij .

With the help of the Picard formulation on the semi-discretized IVP (5.25), we obtain

u(t) = u0 +

∫ t

0

f(τ,u(τ))dτ. (5.26)

Equivalently, the equation (5.26) can be rewritten as

ũ(t) + e(t) = u0 +

∫ t

0

f(τ, ũ + e(τ))dτ, (5.27)

where e(t) corresponds to error. Then, the residual can be defined by

r(t) = u0 +

∫ t

0

f(τ, ũ(τ))dτ − ũ(t). (5.28)

Using (5.27) and (5.28), it is easy see that

e(t) = r(t) +

∫ t

0

f(τ, ũ(τ) + e(τ))− f(τ, ũ(τ))dτ

= r(t) +

∫ t

0

h(τ, e(τ))dτ, (5.29)

where h(τ, e(τ)) = f(τ, ũ + e(τ)) − f(τ, ũ(τ)). Now we can represent the residual

r(t) by integrating a smooth interpolant fj = f(tj,uj) such that

r(t) ≈ u0 +
n∑
j=0

fj

(∫ t

0

lj(τ)dτ

)
− ũ(t).

The estimation to the residual r(tj) at times tj can be written as

[r0, r1, . . . , rn] = u0[1, 1, . . . , 1] + [f0, f1, . . . , fn]C− [u0,u1, . . . ,un],

where C ∈ R(n+1)×(n+1) is a collocation matrix whose entries are

ci,j =

∫ tj

0

li(τ)dτ, i, j = 0, 1, . . . , n.
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Since the integrand (5.29) is assumed to be smooth, a time-stepping method for the

error e(t) at the time points tj can be written by applying a low-order quadrature rule

to the integral. Starting with e0 = 0 an implicit Euler scheme can be stated as

ej = ej−1 + (rj − rr−1) + (tj − tt−1)h(tj, ej), j = 1, . . . , n. (5.30)

Finally, one deferred correction step is concluded with an update on the temporal

estimation, i.e., ũ = ũ + e. The general procedure of the rational deferred correction

scheme is summarized as follows:

1. Initialize uj = u0 for all j = 0, 1, . . . , n;

2. Compute the residuals rj of ũ(t) by applying a quadrature rule to

r(t) = u0 +

∫ t

0

f(τ, ũ(τ)dτ − ũ(t));

3. Compute the errors ej as defined in (5.30);

4. Update the approximations uj = uj + ej;

5. If error criterion is satisfied, stop. Otherwise, go to step 2.

Now, we investigate effects of the rational deferred correction method on linear KdV

equation, see Tables 5.1 and 5.2. The solution accuracy is improved significantly by

employing only one deferred correction sweep without a need of substantial amount

of time steps.

Table 5.1: L2 and L∞ errors in solutions, discretized by the LDG scheme, of linear
KdV equation at t = 1 with θ = 1.

n ‖·‖L2(Ω) ‖·‖L∞(Ω)

10 8.261e− 02 5.008e− 02

20 3.741e− 02 2.238e− 02

40 1.650e− 02 9.768e− 03

80 7.049e− 03 4.513e− 03

160 4.191e− 03 2.690e− 03
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Table 5.2: L2 and L∞ errors in solutions, discretized by LDG scheme post-processed
with the rational deferred correction method, of linear KdV equation at t = 1 with
n = 10 and θ = 1.

#sweeps ‖·‖L2(Ω) ‖·‖L∞(Ω)

0 8.261e− 02 5.008e− 02

1 4.364e− 03 3.129e− 03

5.3 Additive Noise

In this section, the numerical results of stochastic KdV equation with time depen-

dent additive noise, formulated as (3.6), will be presented. In the numerical simu-

lations, the random domain is estimated by three different methodologies which are

Monte Carlo (MC), stochastic collocation (SC), and stochastic Galerkin (SG) meth-

ods, while the spatial domain is discretized with local discontinuous Galerkin (LDG)

and the second order finite difference (FD) methods. Moreover, the temporal domain

is approximated with weighted average (theta) scheme.

In the following simulations, the number of computational subintervals used in LDG

method is Mx = 800, the number of spatial grid points used in FD method is Mx =

1600 and the temporal domain [0, 1] is discretized with weighted average method

where θ = 0.5 and step sizes ∆t = 10−2.

Figure 5.1 shows the exact mean of the KdV equation with the additive noise (3.13)

whose amplitude is ε = 0.5 and wave speed is c = 2.

The error between exact and numerical solutions occurs due to the spatial, the tem-

poral discretizations, and the random space approximations. In this study, L2 norm

is used to compute the error in the numerical solutions for the convergence analysis

of the stochastic approximations. Since there exists the analytical solution (3.12) for

the stochastic KdV equation with additive noise, the L2 error in the mean and the

variance at time t are computed by

Error(ū) =

√
(ūtnum,i − ūtexact,i)

2

Mx

,

Error(Var[u]) =

√(
Var[u]tnum,i − Var[u]texact,i

)2

Mx

,
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Figure 5.1: The exact mean values of u(x, t, ω) with the additive noise amplitude

ε = 0.5 and the wave speed c = 2.

where Mx is the total number of computational subinterval used in the LDG method

or the total number of grid points used in the FD method. The simulations for the L2

error are done for different number of grid points and subintervals in order to observe

the influence of the error due to the spatial/temporal discretizations on the total error.
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Figure 5.2: The mean value (left) and the variance (right) of u(x, t, ω) obtained by

MC method at time t = 1 with the speed c = 2 and the amplitude ε = 0.3.

In Figure 5.2, the exact and the approximated statistics of the solutions u(x, t, ω) at

t = 1 are plotted together. The dots indicate the results approximated from the set
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generated by Monte Carlo simulations with 2500 samples. A sufficient agreement be-

tween the MC and the exact solutions is observed. Moreover, the theoretical conver-

gence rate of the Monte Carlo simulationsO(M−1/2) is observed through Figure 5.3,

where M is the number of the samples.
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Figure 5.3: Convergence rate of L2-error of the mean and variance with ε = 0.3 at

t = 1 with respect to sample size M .

Then, the stochastic collocation method with 5 collocation points is implemented

to approximate the stochastic KdV equation with additive noise (3.6), the amplitude

ε = 0.3. The resulting deterministic KdV systems for all collocation points are solved

with the second order FD method with Mx = 1600. In Figure 5.4, the approximated

statistics with SC method are plotted with the exact statistics. When the collocation

points N are increased, the SC approximation becomes more accurate.

In Figure 5.5, the exponential convergence rate is realized with respect to the col-

location order N . It can be noticed that the convergence rate of the variance is not

affected deeply when the number of the spatial grid points is increased, while the

convergence rate of the mean is affected. Therefore, it can be inferred that the error

in the mean obtained by the SC approximation of random domain can be decreased

when the number of Mx is increased.

74



0 10 20 30 40
x

0

0.2

0.4

0.6

0.8

!
7u
(x

;t
;!

)

Exact
SC

0 10 20 30 40
x

0

0.1

0.2

0.3

V
a
r[
u
]

Exact
SC

Figure 5.4: The mean value (left) and the variance (right) of u(x, t, ω) with c = 2 and

ε = 0.3 at time t = 1, obtained by the SC method.

4 5 6 7 8
N

0

0.5

1

1.5

2

E
rr

(7u
)

#10-3

Mx = 400
Mx = 800
Mx = 1600

4 5 6 7 8
N

0

1

2

3

4

5

E
rr

(V
a
r[
u
])

#10-3

Mx = 400
Mx = 800
Mx = 1600

Figure 5.5: Convergence rate of L2-error in the mean (left) and variance (right) com-

puted with the SC method at t = 1, with ε = 0.3, as a function of collocation order

N for different number of grid points Mx.

The mean and the variance of the KdV equation with additive noise with the am-

plitude ε = 0.3 approximated with the stochastic Galerkin method is displayed in

Figure 5.6 at t = 1. The SG method is implemented with a fifth order PC expansion

of Hermite polynomials, the LDG method with the number of subintervalsMx = 800,

and the weighted average method with θ = 0.5. When the number of spatial grid is

chosen sufficiently high, it can be seen that exponential convergence of the mean and

variances of the SG solutions is achieved as in the theory [54], see Figure 5.7. It can

also be said that the spatial and the temporal discretization errors can easily dominate

the total L2 error in the mean obtained by SG method. On the contrary, the L2 error

in the variance is not strongly affected by the these discretization errors as obtained
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in the SC case.
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Figure 5.6: The mean value (left) and the variance (right) of u(x, t, ω) with c = 1 and

ε = 0.3 at time t = 1, obtained by the SG method.
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Figure 5.7: Convergence rate of L2-error in the mean (left) and variance (right) com-

puted with SG method at t = 1, with ε = 0.3, as a function of PC expansion order N

for different number of subintervals Mx.

The solitons obtained from the deterministic KdV equation travel along the spatial

domain without changing its form. On the contrary, the mean of the single soli-

ton solution of the stochastic KdV equation is variating its form through time. In

other words, the height of the mean decreases, while the width of the mean in-

creases over time. In order to analyze the variation in the form of the mean of the

solitons, the mean soliton height (MSH) is defined to be maxx |ū(x, t, ω)| and also

the mean soliton width (MSW) is defined to be |x1 − x2|, where x1 and x2 satisfy

ū(x1, t, ω) = ū(x2, t, ω) = maxx|ū(x,t,ω)|
2

and x1 6= x2. In Figure 5.8, MSH and MSW

variating over time t is displayed for increasing values of the amplitude of the noise
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ε. The displayed MSH and MSW are computed by using SG method with 5th order

PC expansion and Mx = 800 subintervals. Furthermore, Figure 5.9 indicates a strong

correlation between MSH and MSW for different amplitudes.
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Figure 5.8: MSH (left) and (MSW) (right) as a function of time t with different noise

amplitudes ε = 0.1, 0.3, 0.5.
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Figure 5.9: Correlation between MSH and MSW obtained by SG methods for time

up to t = 1 with different noise amplitudes ε = 0.1, 0.3, 0.5.

Now, we investigate the effect of the distribution on the mean and variance of the

solutions of the stochastic KdV equation with time dependent noise. Figure 5.10

exhibits the results for the Gaussian and uniform distribution at t = 1. As the height of

mean obtained under the effect of Gaussian noise decreases more deeply, its variance

also propagates accordingly.
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Figure 5.10: The mean (left) and variance (right) of u(x, t, ω) computed by the SG

method at t = 1 with the speed c = 2 and the amplitude ε = 0.3 for the Gaussian and

uniform distribution.

Now, we discuss error estimates of stochastic mean and deterministic solutions at

t = 1 obtained by the LDG and the second order FD methods by L∞–norm:

‖u‖L∞ = max |uexact − unum|.

The L∞ errors in deterministic solutions and stochastic mean of the KdV equation

with additive random input (3.6) are presented in Table 5.3 and Table 5.4. It can be

concluded that higher accuracy can be achieved by using LDG method for discretizing

the spatial dimension of stochastic Galerkin approach.

Table 5.3: L∞ errors in solutions, discretized by FD scheme, of KdV equation (3.2)
and KdV equation with additive random input (3.6) with ε = 0.3, at t = 1, θ = 1.

Number of Vertices 100 200 300

Deterministic 4.700e− 03 1.300e− 03 8.4384e− 04

Stochastic 3.000e− 03 1.100e− 03 9.3720e− 04

Table 5.4: L∞ errors in solutions, discretized by LDG scheme, of KdV equation (3.2)
and KdV equation with additive random input (3.6) with ε = 0.3, at t = 1, θ = 1.

Number of Vertices 100 200 300

Deterministic 1.039e− 03 5.127e− 04 4.113e− 04

Stochastic 2.100e− 03 9.520e− 04 7.482e− 04
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5.4 Multiplicative Noise

In this section, the numerical results of the stochastic KdV equation under the effect

of only space dependent multiplicative noise, formulated as (3.16), will be presented.

Figure 5.11: The mean values of u(x, t, ω) obtained by SG method having 5th order

PC expansion with the multiplicative noise amplitude δ = 0.5 and the wave speed

c = 2.

Similarly to the additive case, the spatial domain is estimated with the local discon-

tinuous Galerkin (LDG), the second order finite difference (FD) and the temporal do-

main is estimated with weighted average. Moreover, the random domain is approx-

imated by Monte Carlo (MC), stochastic collocation (SC), and stochastic Galerkin

(SG) methods. As in the additive noise case, the number of spatial grid points used in

FD method isMx = 1600, the number of computational subintervals used in the LDG

method is Mx = 800 and the weighted average method with θ = 0.5, and ∆t = 10−2

is used to discretize the temporal domain [0, 1] in all of the simulations performed.

Figure 5.11 demonstrates the mean of the sKdV (3.16), denoted by ū(x, t, ω), with

the multiplicative noise amplitude δ = 0.5 and c = 2, computed by the SG method

with 5th order PC expansion. The height of the wave descends and the width of the

wave grows while the wave is traveling along the x-axis in the time.
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Figure 5.12: The mean value (left) and the variance (right) of u(x, t, ω) with c = 2

and δ = 0.3 at time t = 1, obtained by the SC method.

Since the analytical solution for sKdV (3.16) does not exist, Monte Carlo simulation

with 5000 samples implemented with the LDG and FD discretization composes bases

for comparing the numerical solutions obtained by other stochastic domain discretiza-

tions. As a result, the L2 error in the mean and the variance at time t are computed

by

Error(ū) =

√
(ūtnum,i − ūtmc,i)

2

Mx

,

Error(Var[u]) =

√(
Var[u]tnum,i − Var[u]tmc,i

)2

Mx

,

where Mx is the total number of subintervals used in the LDG method or grid points

used in the FD method. The simulations for the L2 error are done for different number

of grid points so that the effect of the spatial and temporal discretization errors on the

total error will be studied.

Now, we will solve the stochastic KdV equation (3.16) having a multiplicative noise

with the amplitude δ = 0.3, using the stochastic collocation method with 5 collocation

points. The deterministic system originated from each collocation points is solved by

FD method with Mx = 1600. The approximated statistics of the solutions u(x, t, ω)

at t = 1 by the SC and MC methods are compared in the Figure 5.12. Moreover, the

convergence rate computed between the SC and MC approximations with respect to
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the collocation order N is displayed in the Figure 5.13. While the total convergence

rate of the variance is not affected deeply by the spatial discretization error, the total

convergence rate of the mean is affected deeply. Thus, the total error in the mean

obtained by the SC method can be reduced considerably by increasing the number of

grid points after 4th collocation point.
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Figure 5.13: Convergence rate of L2-error in the mean (left) and variance (right)

computed with the SC method at t = 1, with δ = 0.3, as a function of collocation

order N for different number of grid points Mx.

In Figure 5.14, we compare the mean and variance of the problem obtained by us-

ing the SG method and the reference solution based on the MC simulation. The SG

method is applied with 5th order PC expansion of Hermite polynomials, the LDG

method with Mx = 800, and the weighted average method with θ = 0.5. More-

over, Figure 5.15 displays the convergence rate in the variance and in the mean as a

function of PC expansion orderN . It can be seen that the spatial and the temporal dis-

cretization errors dominate the total L2 error in the mean after the 3rd PC basis order

while the total L2-error in the variance is not strongly affected by the spatial/temporal

discretization errors.

The mean of the soliton solutions of the stochastic KdV equation varies as an uncer-

tainty is enforced into the KdV equation. In other words, the height of the soliton

descends and the width of the solution grows as the soliton is traveling along x–axis.

The mean soliton height (MSH) and the mean soliton width (MSW) are defined as

in Section 5.3. The MSH and MSW as a function of time t are showed for different
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Figure 5.14: The mean value (left) and the variance (right) of u(x, t, ω) with c = 1

and δ = 0.3 at t = 1, obtained by the SG method.

2 4 6 8
N

0.6

0.8

1

1.2

1.4

E
rr

(7u
)

#10-3

Mx = 200
Mx = 400
Mx = 800

2 4 6 8
N

0

2

4

6

8

E
rr

(V
a
r[
u
])

#10-4

Mx = 200
Mx = 400
Mx = 800

Figure 5.15: Convergence rate of L2-error in the mean (left) and variance (right)

computed with the SG method at t = 1, with δ = 0.3, as a function of PC expansion

order N for different number of grid points Mx.

values of the multiplicative noise amplitude in Figure 5.16. The demonstrated MSH

and MSW are obtained by using the SG method with 5th order PC expansion. More-

over, a strong correlation between MSH and MSW for different multiplicative noise

amplitudes is displayed in the Figure 5.17. The correlation obtained in the case of

multiplicative noise is more linear than obtained in the case of the additive noise.

In the Figure 5.18, the effect of the distribution with noise amplitude δ = 0.3 on the

mean and variance of the solutions of the stochastic KdV equation with the multi-

plicative noise is investigated. The mean of the solution with uniform noise changes
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Figure 5.16: MSH (left) and (MSW) (right) as a function of time twith different noise

amplitudes δ = 0.1, 0.3, 0.5.
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Figure 5.17: Correlation between MSH and MSW obtained by SG methods for time

up to t = 1 with different noise amplitudes δ = 0.1, 0.3, 0.5.

more slower than the mean of solution with Gaussian noise. Moreover, the variance

computed for the uniform noise is much less than the variance computed for the Gaus-

sian noise.
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Figure 5.18: The mean (left) and variance (right) of u(x, t, ω) computed by the SG

method at t = 1 with the speed c = 2 and the amplitude δ = 0.3 for the Gaussian and

uniform distribution.

5.5 Additive and Multiplicative Noises

Last, the numerical results of the stochastic KdV equation under the effect of both ad-

ditive time dependent and multiplicative space dependent noises, formulated as (3.5),

will be discussed. In the numerical simulations, the spatial domain is discretized with

the local discontinuous (LDG) method with Mx = 800 and the second order finite

difference method (FD) with Mx = 1600. The temporal domain is discretized with

the weighted average (theta) method with the step size ∆t = 10−2 and θ = 0.5. Since

the stochastic KdV equation (3.5) has two different random inputs, the random do-

main generated by the problem is two dimensional. Furthermore, the random space

is estimated by implementing standard Monte Carlo (MC) simulation, stochastic col-

location (SC), and stochastic Galerkin (SG) methods defined for multi-dimensional

random spaces.

Figure 5.19 displays how the mean of the sKDV (3.5), denoted by ū(x, t, ω), evolves

over time t which is obtained by implementing the SG method with 5th order PC

expansion, where the additive and multiplicative noise amplitudes are δ = 0.5 and

ε = 0.5, respectively.

The stochastic collocation method with 5 collocation points in each random dimen-

sion is implemented to the sKdV equation with both noises having amplitudes ε = 0.3
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Figure 5.19: The mean values of u(x, t, ω) obtained by SG method having 5th order

PC expansion with the multiplicative noise amplitude δ = 0.5, the additive noise

amplitude ε = 0.5, and the wave speed c = 2.

and δ = 0.3. Since the analytical solution of sKdV (3.5) with both noises does not

exist, Monte Carlo simulation having 5000 samples is implemented with the FD and

LDG scheme in order to constitute bases for verifying the other stochastic domain ap-

proximations. In Figure 5.20 the approximated statistics of the solutions u(x, t, ω) at

t = 1 obtained by the 5th order SC method are compared with the statistics obtained

by the MC simulation.
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Figure 5.20: The mean value (left) and the variance (right) of u(x, t, ω) with c = 2,

δ = 0.3, and ε = 0.3 at time t = 1, obtained by the SC method.

Now, the effect of the spatial and temporal discretization error in the numerical sim-
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ulations is studied through L2 error. Moreover, the L2 error in the mean and the vari-

ance at time t are computed with respect to solutions obtained by the Monte Carlo

simulation, as done in the Section 5.4. The convergence rate computed between the

SC and MC approximations with respect to the collocation orderN in a single random

dimension is displayed in the Figure 5.21. In the SC approximation of the mean, it

can be deduced that error arising from random space discretization dominantly affects

the total error since refinement over number of spatial subintervals does not reduce

the total error efficiently. As in the previous cases the variance approximation is not

affected by improvement of the number of spatial subintervals.
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Figure 5.21: Convergence rate of L2-error in the mean (left) and variance (right)

computed with the SC method at t = 1, when the noise amplitudes are ε = 0.3 and

δ = 0.3, as a function of collocation order N for different number of grid points Mx.

The stochastic Galerkin method with a 5th order PC expansion generated by 2–

dimensional Hermite polynomials is applied to the sKdV equation with the noise

amplitudes ε = 0.3 and δ = 0.3. The mean and variance approximated by the SG

method and MC simulations are displayed together in Figure 5.22. Moreover, L2

error in the mean and in the variance are computed with respect to the Monte Carlo

approximation and displayed in Figure 5.23 as a function of PC expansion order N

for different number of grids. After the 6th order of PC basis, the total L2 error in SG

approximation of the mean can be reduced by refining the spatial grid. However, the

random space estimation has a large influence on total error in the variance so that it

can be reduced influentially by increasing the SG approximation order.
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Figure 5.22: The mean value (left) and the variance (right) of u(x, t, ω) with c = 1,

ε = 0.3, and δ = 0.3 at t = 1, obtained by the SG method.
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Figure 5.23: Convergence rate of L2-error in the mean (left) and variance (right)

computed with the SG method at t = 1, when the noise amplitudes are ε = 0.3 and

δ = 0.3, as a function of PC expansion order N for different number of grid points

Mx.

In Figure 5.24, the change in the single soliton through time which are solution of the

stochastic KdV equation under the effect of both the additive and multiplicative noises

is analyzed. The mean soliton height (MSH) and the mean soliton width (MSW)

are obtained from the solitons approximated by the SG method with 5th order PC

expansion. The MSH and MSW are computed as defined in the Section 5.3. It is

observed that the MSH decays and MSH increases faster than the other two cases.

The relationship obtained between MSH and MSW, in Figure 5.25, is conveniently

correlated also when both additive and multiplicative noises are enforced into the
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KdV equation.
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Figure 5.24: MSH (left) and (MSW) (right) as a function of time twith different noise

amplitudes ε = δ = 0.1, 0.3, 0.5.
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Figure 5.25: Correlation between MSH and MSW obtained by SG methods for time

up to t = 1 with different noise amplitudes ε = δ = 0.1, 0.3, 0.5.

Lastly, the effect of the distribution type on the uncertainty is investigated. The mean

and variance of the solutions of the sKdV with additive and multiplicative inputs

having Gaussian and uniform distributions are displayed in Figure 5.26. While the

height of the soliton reduces more slowly with uniform noises, the width stays almost

same. Moreover, the variance obtained for the uniform inputs is considerably less

than the variance computed for the Gaussian inputs.
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Figure 5.26: The mean (left) and variance (right) of u(x, t, ω) computed by the SG

method at t = 1 with the speed c = 2, the noise amplitudes ε = 0.3 and δ = 0.3 for

the Gaussian and uniform distributions.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we have investigated the numerical solutions of the Korteweg-de Vries

(KdV) equation with the random input data. The randomness is considered in the

right-hand side of the equation as additive noise and in the coefficients of the sin-

gle derivative term as the multiplicative noise. Then, the probability space emerged

from the random input data has been handled by mainly using Stochastic Galerkin

method however Monte Carlo and Stochastic Collocation methods are also used to

make comparison in the numerical implementations. On the other hand, the local

discontinuous Galerkin method is chosen to discretize the physical domain due to its

local conservativity property, which is crucial for hyperbolic PDEs.

The numerical results show that the effect of spatial discretization error on the mean

of solution becomes dominant over the total error as random domain discretization

gets finer. In other words, when the order of Stochastic Galerkin (or Stochastic Col-

location) method is taken as fixed, the global error obtained can be decreased deeply

by refining the spatial mesh. However, we have deduced that the global error in the

variance is not affected by the spatial discretization error as strong as the global error

in the mean.

It is well known that the soliton solutions of the KdV equation under the effect of

uncertainties do not preserve their original form as they travel along spatial axis.

Therefore in the thesis, we have examined the dissipation and dispersion effects of

random inputs on the solitons by computing their height and width. We have ob-

served that the height of mean of solitons decreases while their width increases, and

there exists a strong correlation between them for both additive and multiplicative
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noises. Moreover, the rate of the decrease/increase in the height/width of solitons

is the heaviest in the combined case, moderate in the additive case, and the modest

in the multiplicative case. Additionally, we have noticed dissipation and dispersion

effects of uncertainties differ with different kinds of probability distributions. The de-

crease in height of mean is more severe with Gaussian distribution than with uniform

distribution, whereas their increase in width is almost similar.

Polynomial chaoses (PC) basis for Stochastic Galerkin methods yields a increasing

dimensionality of the system as the number of random variables increases. Therefore,

as future work, the implementation of SG method with sparse high order polynomial

chaos basis can overcome this problem [4]. Moreover, the numerical results of lin-

ear KdV equation, obtained by using the rational deferred correction method as a

post-processing method, are promising in order to improve the accuracy using mini-

mum number of time steps. Further, the strategies applied to one-dimensional KdV

equation with the random input data in this thesis can be extended to two dimen-

sional nonlinear PDEs such as Kadomtsev–Petviashvili (KP) equation [22, 40] and

Zakharov–Kuznetsov (ZK) equation [57] including random input data.
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