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ABSTRACT 
 

 

AUTONOMOUS SPACECRAFT RENDEZVOUS AND DOCKING ON SAFE 
TRAJECTORIES 

 

Büyükkoçak, Ali Tevfik 
M.S., Department of Aerospace Engineering 

Supervisor       : Prof. Dr. Ozan Tekinalp 
 

September 2018, 92 pages 

 

In this thesis, rendezvous and docking operation of a pair of low earth orbit spacecraft 

is addressed. Two different sets of equations for the nonlinear orbital relative motion 

of spacecraft are derived and simulation codes for this motion are developed. First, 

Hill-Clohessy-Wiltshire (HCW) equations are used in chaser-target spacecraft 

configuration with Model Predictive Control (MPC) algorithm including some safety 

considerations such as debris avoidance, direction of approach constraint and slow 

impact requirement. The HCW equations are linearized assuming a circular orbit, and 

used in MPC algorithm. All authority is given to the chaser spacecraft, and the target 

is kept passive. Parametric studies are implemented for different cases with several 

constraint combinations. According to these studies, best planning horizon length and 

optimal weighting parameter are selected for each case. The safe trajectory generated 

by MPC approach, which avoids a relatively moving debris represented as an obstacle, 

is tracked by a novel Lyapunov based control algorithm as well. The algorithm is based 

on dual quaternions for the motion parametrization and provides a combined control 

of both translational and rotational motion. Another set of relative motion dynamics 

including combined attitude and position is derived. An error dual quaternion and its 

derivative are generated from desired attitude and position information. While desired 

attitude trajectory is a time-dependent polynomial function, the reference position 
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trajectory is retrieved from MPC plan. Two control approaches are compared, and 

effectiveness of dual quaternion based control approach is demonstrated. 

 

Keywords: Rendezvous and Docking, Model Predictive Control, Obstacle Avoidance, 

Constrained Optimization, Dual Quaternion Parametrization Based Attitude and 

Position Control 
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ÖZ 
 

 

UZAY ARACININ GÜVENLİ YÖRÜNGELERDE OTONOM OLARAK 
YAKLAŞARAK KENETLENMESİ 

 

Büyükkoçak, Ali Tevfik 
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

                       Tez Yöneticisi     : Prof. Dr. Ozan Tekinalp 
 

Eylül 2018, 92 sayfa 

 

Bu tezde, bir çift uzay aracının alçak yörüngedeki randevu ve kenetlenme problemi 

üzerine çalışılmıştır. İki farklı doğrusal olmayan yörüngedeki bağıl hareket denklem 

takımı elde edilmiş ve benzetim algoritmaları bu takımlarla geliştirilmiştir. İlk olarak, 

Hill-Clohessy-Wiltshire (HCW) denklemleri, yakalayıcı-hedef uzay aracı 

konfigürasyonunda tanımlanmıştır. Dairesel yörünge varsayımıyla doğrusallaştırılan 

bu denklemler Model Öngörülü Kontrol (MÖK) yaklaşımına dahil edilerek bazı 

güvenlik ve operasyon kısıtlarıyla birlikte randevu kontrolünde kullanılmışlardır. Bu 

kısıtlara örnek olarak randevu süresince karşılaşılan engellerden kaçınma, hedefe 

belirlenen bir doğrultuda yaklaşma ya da hedefe düşük hızlarda yaklaşarak, çarpmayı 

önleme verilebilir. Uygulamalarda sadece yakalayıcı araç kontrol edilmiş olup hedef 

pasif tutulmuştur. Farklı kısıtlar içeren dört farklı senaryo için parametrik çalışmalar 

yapılmıştır. Bu çalışmalar sonucunda en uygun planlama ufuk uzunluğu ve ağırlık 

parametresi her bir senaryo için seçilmiştir. Yörüngedeki pozisyon kontrolü kadar 

yönelim kontrolü de önem arz etmektedir. Bu sebeple hem pozisyonu hem de yönelimi 

beraber göstermeye yarayan İkili dörtleç parametrizasyonu yöntemi ile birlikte 

Lyapunov tabanlı doğrusal olmayan bir kontrol algoritması geliştirilmiştir. MÖK 

yaklaşımıyla elde edilen hareketli bir engelden kaçınma senaryolu randevu yörüngesi, 

yeni geliştirilen algoritmaya referans olarak verilip her iki yaklaşım da pozisyon 

kontrolü özelinde doğrulanmıştır. Bu yöntem için pozisyon ve yönelim bilgisini 
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birlikte içeren HCW denklemlerinden farklı bir bağıl hareket denklem takımı 

geliştirilmiş olup böylece her iki yaklaşımdaki benzetim kodları da doğrulanmıştır. 

Referans takibindeki hatayı ölçen bir İkili dörtleç ve onun türevi elde edilmiş ve 

kontrol algoritmasına dahil edilmiştir. Son olarak iki yaklaşım pozisyon kontrolü 

özelinde karşılaştırılmış ve yönelim kontrolünün pozisyon kontrolüne etkisi 

araştırılmıştır. 

 

Anahtar Kelimeler: Randevu ve Kenetlenme, Model Öngörülü Kontrol, Engelden 

Kaçınma, Kısıtlı Optimizasyon, İkili Dörtleç Parametrizasyonu Tabanlı Yönelim ve 

Yörünge Kontrolü 
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 CHAPTER 1  

 

 

INTRODUCTION 
 

 

 

Main theme of this thesis is the development of control methods that yield safe and 

efficient motion planning and application of these plans successfully for spacecraft 

rendezvous and docking (R-D). This chapter creates a background about the work by 

giving an overview of the spacecraft rendezvous and docking problem, and 

summarizing the contributions made in this work. 

In Section 1.1, spacecraft R-D problem is defined, and the critical aspects in this 

problem are underlined. Moreover, the motivation behind to make this process 

autonomous is explained. In Section 1.2, the studies previously conducted on this topic 

are reviewed. Section 1.3 states the original contributions made in this thesis. The 

chapter is concluded with Section 1.4 that presents the organization of the thesis. 

 Motivation 

Rendezvous and docking missions become very frequent including several new 

mission types. In the future, a variety of new types of missions are expected to be 

implemented. These missions require a continuing demand of operations which enable 

more effective use of space and improve conditions of space assets in orbit. 

Rendezvous and docking may be mentioned as such operations in the first place. New 

missions to demonstrate space inspecting and servicing, debris removal, sample 

collecting, on-orbit assembly, and many other tasks are expected to be carried out in 

the coming years. To illustrate, a satellite running out of fuel, it must stop its operations 

unless it is refueled. Refueling satellites which are out of fuel is an option that requires 
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a proper R-D operation. However, since it is hard to transfer fuel to satellites which 

are not designed for refueling operations, missions are focused on moving these dying 

satellites to invaluable orbits [1], [2].  Because, if it is not possible to refuel such a 

satellite due to its design or capabilities, it is inevitable for it to become a space junk. 

At this point, again a R-D mission may be helpful to clean orbit from the space junks. 

Consequently, as access to space improves and mission frequency increases due to 

space commercialization, number of the missions with R-D operation is expected to 

grow significantly. 

Not only rendezvous and docking but also formation flight research become very 

popular since it is believed to reduce costs and provide opportunities in new space 

applications [3]. Examples of these applications may be given as observation satellite 

constellations, distributed small satellites for communication infrastructure or earth 

mapping constellations.  

The space adventure has gained a great acceleration with the travel to the moon in the 

20th century. However, the residuals of these fascinating discoveries and new space 

missions undermine them. Space missions leave behind junk named as space debris, 

and the amount of this junk pile grows day by day. Earth orbits, especially the lower 

ones, have a huge amount of space objects moving with very high velocities. A 

collision with these objects may destroy space assets. There are several reasons for the 

increase in the possibility of space debris threat. With the space journeys starting from 

the 1950’s, the rockets used to reach out of the atmosphere are only designed for the 

early stages of the mission.  The outcomes of leaving rocket stages in orbit with the 

fuel and the pressure inside are never considered. Since the explosions of these rockets 

that may occur in orbits threaten the orbital health, next missions conducted with the 

rockets which evacuate the fuel and pressure inside after the mission.  

Even very small particles can be dangerous due to their high speeds. Especially it takes 

longer for the debris in higher orbits to burn down in the atmosphere. The higher 

amount of space debris constitutes a higher possibility of a crash. 
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The space debris accumulating in valuable orbits make operations in these orbits very 

expensive. Planning and application of obstacle avoidance maneuvers require a 

significant amount of human power and fuel consumption. Although small obstacles 

can be stopped with shield-like structures, to avoid bigger objects, it is an obligation 

to implement avoidance maneuvers. 

Although the most effective precaution is to prevent creating more and new space 

debris, clearing the orbits from them became an essential need for orbit health. Unless 

the precautions are taken, it is unavoidable for some orbits to lose their functionality.  

In debris removal operations, targets are non-collaborating and usually rotating and 

wobbling around an axis. They also do not have a port to dock, and to clean the orbit 

from such objects, different approaches to capture should be evaluated. On the other 

hand, servicing and maintenance of operational spacecraft may be listed in the scope 

of R-D missions with cooperative targets. In such cases, both spacecraft are functional 

and, target has stable dynamics. Also, its flight data can be used, and this makes it 

collaborative or cooperative. For this kind of operations, it is required to approach the 

target spacecraft through its docking port or designated axis for berthing.  

Rendezvous problem constitutes of relative motion dynamics, guidance, navigation 

and control of the spacecraft. In this thesis, the guidance and control problem along 

with the dynamics are handled. 

Autonomy in space applications is desired because it is believed to allow higher 

mission frequency and reliability besides robustness. Possible scheduling conflicts and 

increase in operational costs are unavoidable due to the increasing number of missions 

in the space and its growing commercialization. This situation may cause an increase 

in the possibility of human errors as well. It is evaluated that automation can prevent 

such outcomes, and make space operations more efficient, by enabling higher numbers 

and types of missions in addition to improving robustness and reducing risk [4], [5].  

For this type of autonomous missions, it is critical to understand the dynamics of 

rendezvous and docking operation for both mission planners and operators in addition 
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to engineers designing the computer algorithms that achieve the mission 

autonomously.  

Rendezvous problem may be considered as the trajectory control of two point masses. 

In the literature, it is generally studied that one vehicle (chaser) is to be actively 

controlled, and the other (target) is kept passive like in rendezvous with a space station 

or a Mars Sample Return capture scenario [6]. In a spacecraft formation flying or R-D 

mission design, it is generally important to control the relative states of spacecraft 

rather than their absolute states. In addition, knowledge of the relative states of 

spacecraft in a formation is often far more accurate than the knowledge of the 

formation’s absolute state. So, the problem may be reduced to control of relative 

motion between two objects. This requires the generation of a comprehensive relative 

motion model. The most known model of this relative motion is the Hill-Clohessy-

Wiltshire equations. These equations constitute an LTI system, and they are derived 

for circular Keplerian orbits. In literature different models such as LTI, LTV and LPV 

models are implemented. However, for low Earth orbits that are designated orbits for 

debris removal operations, HCW is enough to model relative motion since near-

circular orbits are the case. Linearized HCW equations written in Hill frame, i.e., the 

LVLH frame may be used in state space form in controller design. Since these 

equations are decoupled as in-plane and out of plane, motion in two planes may be 

treated separately. 

In spacecraft control, decreasing fuel usage is the principal aim. Since attitude control 

torques are supplied by the reaction wheels, which take its energy from solar panels, 

it is not expected to limit the lifetime of a mission. As a result, trajectory or 

translational motion control has the highest priority especially for the rendezvous 

mission, and it should be fuel optimal. The need of optimality arises from the need of 

optimization with constraints, i.e., constrained optimization, to include safety and 

operational requirements into the problem. To illustrate, the chaser should approach 

its target within a safe trajectory and avoid any possible danger.  

In the rendezvous phase, maneuvers with large durations and distances are 

implemented. This makes control methodologies focus on fuel efficiency in the 
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operation. When considered from this point of view, guidance, control and motion 

planning techniques requiring higher computational time but more fuel efficient plans 

may be applicable.  

Not only time and fuel efficiency are required in rendezvous and docking operations 

which has a significant increase in number of applications, but also safe and robust 

algorithms. MPC makes it possible to solve the control problem as an optimization 

problem and its handling constraints systematically by including them to the problem 

enables safer plans. Unlike the other optimal control methods, it considers predicted 

future states inside its cost function to be minimized in a planning horizon. It is a 

discrete-time controller; therefore, it is required to discretize dynamic model. At each 

time step, it predicts the states within the prediction horizon and then builds a cost 

function including these predictions. Solution of minimization problem will be the 

stack of inputs that need to be applied at each time step in the control horizon. Between 

two time steps, the first optimal input of the solution will be applied, and at next step, 

the same calculations will be implemented for the same planning horizon. This is why 

MPC has another name of Receding Horizon Control.  

In such an application, the problem has to be solved in real-time, i.e., within the 

sampling interval of the system, and with available hardware. Hardware selection is 

important because this application requires a high computational effort. This is why it 

is very suitable for space applications which constitutes a considerably slow 

environment, and in long-distance maneuvers on orbit, time steps can be taken as long 

as one minute. Indeed, constraints can be updated online which gives MPC an adaptive 

way of controlling. Contrary to fixed-gain control laws which require high control 

expenses, it is economical to use an online self-adapting control law.  

Online optimization used in MPC approach gives an opportunity to handle time-

varying or invariant constraints systematically. In rendezvous and docking operation 

there may be several possible constraints regarding safety and operational needs. To 

set an example, for cooperative spacecrafts, it is essential to approach in the field of 

view of sensors of the target and through docking port or for tumbling uncooperative 

objects chaser should approach through the axis of rotation. These may be achieved 
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by constraining the direction of approach of the chaser satellite. Another example may 

be given for scientific sample collection missions in which plume impingement to the 

sample may need to be avoided. Several other examples may be given, and some of 

them taken into account in this work may be seen in the following chapters. 

Besides the trajectory control, in space applications controlling the orientation of the 

spacecraft is vital to sustain its operations effectively. First of all, most of the sensors 

and mission-related equipment require a stable orientation without any spinning or 

tumbling. To illustrate, for observatory satellites, it is required to keep camera 

direction on earth. Moreover, most of the satellites use solar panels to generate 

electricity during their operations. Consequently, orientation must be kept accordingly 

to get sunshine on the panels. One another mission type that requires precise attitude 

control is the R-D operation. Although for rendezvous phase, nominal attitude 

trajectories may be followed, in the docking phase controlling attitude considering 

target orientation may pose a challenging task, especially for the missions including 

uncooperative and tumbling or spinning targets. In addition, controlling attitude 

aggressively may affect position control since the same thrusters may be used. As a 

result, attitude or rotational motion should be controlled without losing accuracy in the 

translational motion control. 

 Literature Survey 

R-D and formation flight of spacecraft are widely investigated problems in the 

literature. Some survey papers enlighten the experiences gained and methods 

considered to solve these problems [7], [8], [9], [10], [11], [12], [13], [14]. Literature 

which focus on spacecraft R-D control is comprehensive. Works in [15], [16], [17], 

[18], [19], [20], [21], [22], [23], and [24] with the references therein may be given as 

examples of the studies emphasize the control and guidance methods.  

George William Hill was the first person who published a set of equations to represent 

the motion of the Moon relative to Earth in 1878 [25]. Hill’s work constituted a base 

for Clohessy and Wiltshire’s study in which equations derived by Hill are used to 
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define the relative translational motion for rendezvous and docking of two objects in 

orbit [16].  

In [26], some cases include eccentric orbits. For these cases, target and chaser vehicles 

are modeled separately using general equations for Keplerian orbits given in [27], and 

their difference is counted as relative motion between them. 

To determine relative motion, a number of approaches has been proposed. For example 

in Reference [28] by concurrently running Kalman filters on onboard computers of 

both satellites transmitting raw measurements to each other, states of satellites in the 

formation and the relative states of them are estimated. To do that, each satellite in the 

formation are equipped with a GPS receiver. It is shown in this study that in a 

formation up to four satellites from the distance of 4 km, 1.5 mm and 5 μm/s sensitivity 

can be achieved in position and velocity estimations respectively. As a result, sufficient 

information may be obtained to make rendezvous and docking operation 

autonomously based on the information gained from sensors. 

Several control applications are considered in [29] for formation flying in leader-

follower configuration. This formation flight configuration is very similar to 

rendezvous and docking operation. While in formation flight it is required to control 

relative distance according to formation necessities, in R-D this distance is tried to be 

set to zero. In the study, PD, Lyapunov based and integrator backstepping control 

techniques are shown to be succeeded in stable results in the formation control.  

Another method proposed uses artificial potential functions for trajectory optimization 

[30], [31]. It depends on the definition of a potential function of which minimum exists 

at the desired relative position. Moreover, an obstacle-free rendezvous path is 

guaranteed by a dynamically reconfigurable control law which is guided by this 

artificial potential function method.  

Many MPC approaches for relative motion control may be found in the literature. MPC 

controller uses linear relative motion model with different type of constraints, such as 

linear or quadratic, in an optimization problem which is solved to generate a control 

sequence over a planning horizon. In each step, the first sequence of generated input 
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needs to be applied, and in the next step all process is repeated with the receding 

horizon. In [17] and [32], variable horizon MPC is applied that solves a mixed-integer 

linear programming problem at each step. In [33], the spacecraft guidance problem in 

close proximity of ISS is solved with unconstrained MPC application. For attitude 

control, another controller constrained to keep ISS on LOS of the sensors onboard is 

used. In the same work, a control allocation scheme is also presented for thrust firing. 

Again for safe, close proximity operations, in [34] MPC approach which solves a 

quadratic programming problem with quadratic constraints is proposed. While the 

problem presented becomes a non-convex optimization problem, the robustness of 

controller is improved by statistically modeling of positional uncertainty. 

There is indeed an operation named as PRISMA in which MPC was employed and 

tried successfully in close proximity space operations. This shows the applicability of 

MPC methodology not only in simulations but also in real operations [35], [36], [37]. 

As the space debris get accumulated in high-valued orbits such as LEO’s, a significant 

number of works are dedicated to find methods for the solution of debris removal 

problem by spacecraft designed to make rendezvous with the debris and capture them. 

Studies in [38], [39], and [40] may be given as examples of works in this context. 

In robotics research area, obstacle avoidance problem is common and widely 

investigated [41], [42]. Obstacle avoidance application in spacecraft trajectory 

optimization is also addressed in the literature. In [43], a nonlinear optimal control 

methodology is used to implement a rendezvous operation with minimum fuel usage. 

Collision avoidance is also added to the optimization problem as inequality constraints 

in addition to other operational constraints. A method is proposed in [31] to optimize 

time to dock and terminal relative position which guarantees to avoid any obstacles 

intersected during the flight. Another work states possible obstacle regions may be 

defined as avoidance regions which are kept out during the flight, and flight path is 

constrained accordingly [44]. 

Orbital obstacle avoidance is also achieved by defining the problem as an optimization 

problem and using linear programming techniques to solve it. Optimal maneuver 
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number is found in [45] by the solution of trajectory optimization problem using linear 

programming with added constraints. In [46], obstacle avoidance is modelled as 

dynamically reconfigurable linear constraints, and fuel efficient maneuvers are 

implemented. Mixed-integer linear programming technique is used in [47] to solve 

trajectory optimization problem with obstacle avoidance requirement. 

In [48], the complicated motion of tumbling objects or satellites with changing 

attitudes is addressed and difficulty to approach them is pointed out. For the case of 

LOS cone attached to the target which means that chaser must be kept in LOS of 

sensors placed on the target, changes in attitude of target should be taken into account 

since the LOS orientation changes as well with respect to the LVLH frame. Therefore, 

appropriate transformations should be performed. The same work proposes that an 

adaptive way of controlling may be achieved in the optimization by defining 

“dynamically reconfigurable” constraints in the problem. This would enable a 

replannable trajectory generation and desired motion can be shaped via constraints. 

By considering the above requirements, a linear quadratic MPC approach with 

dynamic constraints in optimization is developed. Due to its replanning nature, 

disturbances and last minute changes in path-tracking commands, which may be 

caused by obstacles or anomalies in target motion, can be handled by this method with 

real-time application and fuel efficient maneuvers in MPC approach.  

The success of the methods for both non-rotating and rotating targets or tumbling 

objects while avoiding a debris placed along the spacecraft’s trajectory is shown in the 

literature. The success of MPC in handling disturbances is also demonstrated. MPC 

problem with dynamic constraints may be reduced to quadratic programming problem 

which requires a reasonable computational cost to be solved, and it makes the approach 

amenable for onboard computers. Avoidance problems generally handled with debris 

or obstacles which have fixed positions relative to the target. However, obstacle 

position may be uncertain, and its relative motion should be taken into account. 
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 Contributions 

In this thesis, MPC methodology is used to achieve a safe rendezvous and docking 

trajectory in the presence of a relatively moving obstacle between the chaser and target. 

A method is proposed to handle combined state and input constraints including the 

moving debris constraint updated in real-time inside the optimization problem. The 

efficiency of moving obstacle consideration instead of obstacle bounds fixed in 

position that represent avoidance zones is revealed.  

Although safety in R-D is mostly concerned with the translational motion, in such 

operations, the interaction between attitude and position control may pose a challenge 

to overcome. To examine this problem, a control algorithm is developed based on dual 

quaternion parametrization with combined attitude and position information. The 

algorithm generates a Lyapunov based control law that includes additional terms with 

desired state and its derivative. In this aspect, it differs from PD-like approaches. 

 Outline 

This thesis is organized as the construction of two separate methodologies and 

comparison of them in the end. 

In Chapter 2, rendezvous and docking problem in terms of the translational motion 

dynamics is defined. Derivation of motion in orbit starts with a two-body problem, and 

the nonlinear dynamics arises in the problem. Relative motion of two objects in orbit 

may be found from differences of their individual orbital motion. HCW equations are 

derived to represent relative orbital motion. With some assumptions, it is possible to 

define these relative dynamics as an LTI system for a circular orbit. Finally, proper 

discretization is implemented for control applications. 

In Chapter 3, MPC methodology and constrained optimization are defined in detail. 

Receding horizon concept and optimization technique used are explained. In the 

presence of both state and input constraints, they should be combined to use only one 
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optimization variable in the optimization process which is the input in this case. In 

other words, constraints on states must be represented as constraints on inputs, and a 

proper transformation between them should be done. In addition, this constraint 

combination process is defined  

In Chapter 4, safety and mission requirements are handled in motion planning. These 

requirements are applied as constraints in the optimization problem, and the plans, in 

which they are met, are generated accordingly. First, how mission requirements may 

be transformed into the optimization constraints is explained. Next, four cases which 

include different combinations of mission requirements are defined. Results for 

application of MPC to these cases and parametric studies implemented concludes the 

chapter including the comparison of MPC with a simpler LQR controller.  

In Chapter 5, a novel combined attitude and position control algorithm is proposed. 

This algorithm uses dual-quaternions for parametrization. The concept of dual 

numbers and dual quaternions are presented briefly. For this nonlinear control 

algorithm, a new set of combined relative attitude and position equations of motion is 

developed. Finally, simulation results are compared with the MPC approach.  

In Chapter 6, two different methods are compared for position control, and general 

results are discussed for each chapter. The thesis is concluded, and future directions of 

this work are discussed. 

In the following chart, organization of the thesis may be seen with chapter contents. In 

brief, two different control approaches with different set of equations of motions are 

considered in parallel, and their results are compared in the end. 
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Figure 1.1: Flowchart of the thesis organization. 
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CHAPTER 2 

 

 

RELATIVE MOTION DYNAMICS  
 

 

 

This chapter describes the rendezvous and docking problem in terms of the 

translational dynamics. Relative motion dynamics that are required to simulate and 

control the motion of the chaser with respect to the target are investigated, and shown 

in detail. 

In Section 2.1, the two-body problem that defines the motion of an object orbiting 

around a much bigger mass is presented.. In Section 2.2, equations of translational 

motion are derived. These nonlinear equations are linearized, and state space 

representation is obtained. Continuous state space matrices are discretized in the end. 

In Section 2.3, disturbances that may affect spacecraft operation are defined.  

 Two-Body Problem 

The motion of satellites may be described with Newton’s 2nd law of motion. 

 F ma=∑  (2.1) 

where F is the magnitude of force, m is the mass, and a is the total acceleration. When 

the two-body problem is considered as the attraction of two point masses, Newton’s 

Law of Gravitation gives the amount of that attraction force, 

 1 2
2

m mF G
r

=  (2.2) 



 
14 

 

Here, G represents gravitational constant, 1m  and 2m are the object masses, and 

2 1r r r= −  represents the distance between the objects shown in Figure 2.1.  

 

Figure 2.1: Two-body problem representation in an Inertial Frame. 

To vectorize the forces, equations of motion belong to the masses may be written as, 

 1 2
1 1 3

m mm r G r
r

=
   (2.3) 

 1 2
2 2 3

m mm r G r
r

= −
   (2.4) 

Here, double dots represent the second derivatives with respect to time. Relative 

acceleration of masses may be found by subtraction of Equation (2.3) from Equation 

(2.4). 

 1 2
3

m mr G r
r
+

= −
   (2.5) 

or,  

 
3r r

r
µ

= −
   (2.6) 

The gravitational parameter µ  may be defined as 1 2( )G m mµ = + . In celestial body 

calculations, it is feasible to use the gravitational parameter of the body with much 
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bigger mass, i.e., 1 2m m>> . For instance, in the calculations for bodies in low earth 

orbits (LEO), earth gravitational parameter is taken as 14 3 23.986004418 10 / ,m sµ⊕ = ×  

independent of flying body mass.  

 Orbital Relative Motion Model 

Several mathematical models for spacecraft rendezvous may be found in the literature 

[49]. In this thesis, “target-chaser” configuration is used to define satellites on the 

formation. Relative motion between the chaser and target is represented in local 

vertical, local horizontal (LVLH) frame shown in Figure 2.2. 

Where x, y, and z are the components of the chaser spacecraft position relative to the 

target in the LVLH frame. In this frame, the x-direction is radial, y is along-track, and 

z completes the orthogonal set.  

 

Figure 2.2: Local Vertical Local Horizontal (Hill) Frame. 

Proposed orbit for the work in this thesis is a LEO, because debris removal missions 

are reasonable for valuable and crowded orbits. Indeed, LEO is the most possible orbit 

type for operational satellites on it to collide with the debris due to high demand in 

placing satellites there which in turn make these orbits the most crowded ones. 
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Table 2.1: Orbital parameters of the proposed orbit. 

Name Notation Value Unit 

Altitude h 550 [km] 

Eccentricity e 0 - 

Orbital angular velocity n 0.0011 [rad/s] 

2.2.1 Nonlinear Dynamics 

Chaser and target space vehicle configuration and the relativity between them 

presented in LVLH frame is shown in Figure 2.3. 

 

Figure 2.3: Chaser-Target spacecraft configuration represented on LVLH frame. 

With the addition of control input as specific force, i.e., acceleration generated through 

thrusters to change chaser vehicle position, equations of motion of the chaser 

spacecraft represented in LVLH frame relative to Earth-Centered Inertial (ECI) frame, 

which has the x-direction on vernal equinox, z-direction on north pole, and y-direction 

completing the orthogonal set as lying on equatorial plane, are obtained as follows: 
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 2 2 2

2 2 2 2 ( )c td r d r d r d r dnu n r n n r
dt dtdt dt dt

 
+  

 
= + + × + × + × ×

    
       (2.7) 

or, 

 
2

3 3 2 2 ( )c t
c t

d r d r dnr r n n r n n r
r r dt dt dt

uµ µ  − + = − + + × + × + × × 
 

  
       

 (2.8) 

where positions of target and chaser spacecraft together with the relative position and 

orbital angular velocity is given by the following: 

 ˆˆ ˆ( )
ˆ

ˆˆ ˆ

c t

t t

r r x i y j z k
r r i

r xi y j z k

= + + +
=

= + +







 (2.9) 

Orbital angular velocity is given as ˆn n k=


 perpendicular to the orbital plane. As a 

result, vectorial representation of nonlinear equations of translational motion may be 

shown as below. 

 

( )
3 3

2 2 2 2

0
0 2 0
0( )

0 0 0
0 0 0

x

y

z

t t

t
t

r x u r x x
y u y y

rz u z n zr x y z

x
y

n z n n

µ µ
           
           +            
                      

       
       
       
              

+
− = − + + ×

+ + +

+ × + × ×

 

 

 



x
y
z

  
  
  
    







 
(2.10) 

In simulations, it is more realistic to use general nonlinear equations of the relative 

motion between chaser spacecraft and the passive target vehicle. These equations may 

be written for circular orbits replacing tr  by 0R  with Keplerian orbit assumption as 

the following:   
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( )

2 0
0 3

2 2 2 2
0

2 ( ) x
R xx ny n R x u

R x y z
µ +

= + + − +
 + + + 

   

( )

2
3

2 2 2 2
0

2 y
yy nx n y u

R x y z
µ= − + − +
 + + + 

   

( )
3

2 2 2 2
0

z
zz u

R x y z
µ= − +
 + + + 

  

(2.11) 

2.2.2 Linearization 

In the above equations, only two-body gravitational equations of motion with no 

perturbations are considered. It is also assumed that the target is in a circular orbit 

about the Earth, and the relative distance between the target and the chaser is much 

smaller than the target’s orbital radius. The above equations may be linearized around 

the origin of the LVLH frame as follows [26]: 

 23 2 xx n x ny u− − =   

2 yy nx u+ =   

2
zz n z u+ =  

(2.12) 

Where orbital mean angular velocity is [50]:   

 
3
0

n
R
µ

=  (2.13) 

In general, Hill-Clohessy-Wiltshire equations are not very precise due to assumptions 

made to derive them. Especially for a target spacecraft moving in an eccentric orbit, 

other perturbations take place [51], [52]. However, for orbits such as LEO, feedback 

controllers are generally enough to compensate other effects.  
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2.2.3 State-Space Representation 

In state space representation, the linearized HCW equations may be written as:  

 x xA Bu= +  (2.14) 

Where x  ∈ℝ6 is the state vector, and u∈ℝ3 is the control input vector,  

 

2

2

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

3 0 0 0 2 0 1 0 0
0 0 0 2 0 0 0 1 0
0 0 0 0 0 0 0 1

A B
n n

n
n

= =

−

−

   
   
   
   
   
   
   
   
   

 (2.15) 

 [ ]x
TT

x y zx y z x y z u u u u= =       (2.16) 

With the increasing distance between chaser and target spacecraft, the accuracy of the 

HCW equations decreases. On the other hand, for close proximity operations and 

feedback control applications, it is possible to use HCW equations without loss of 

generality. 

2.2.4 Discretization 

For discrete-time controllers, it is required to discretize the continuous state space 

representation of relative motion with appropriate sampling times that are chosen 

according to computational capacity. Discrete version of state space representation is 

presented as follows: 

 x( 1) x( ) ( )d dk A k B ku+ = +  (2.17) 

Zero-order hold method is used to discretize the continuous state space model of 

relative translational motion given in Equation (2.14). 
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0

c s

s

c

A T
d

T
A

d c

A e

B B e dτ τ

=

= ∫
 (2.18) 

The time between two consecutive steps, i.e., sT  is the sampling time of the 

discretization process. Explicit versions of discrete system and input matrices may be 

found in the literature widely as follows:  

 ( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

1 24 3cos 0 0 sin 1 cos 0

2 16 sin 1 0 1 cos 4sin 3 0

10 0 cos 0 0 sin

3 sin 0 0 cos 2sin 0
6 1 cos 0 0 2sin 4cos 3 0

0 0 sin 0 0 cos

s s s

s s s s s

d s s

s s s

s s s

s s

nT nT nT
n n

nT nT nT nT nT
n n

A nT nT
n

n nT nT nT
n nT nT nT

n nT nT

 − − 
 
 − − − − 
 

=  
 
 
 
− − − − 
 

−  

 

(2.19) 
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10 0 1 cos
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10 0 sin
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nT nT
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nT T nT
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nT
n

  − −    
 

− − + − 
 
 − 

=  
 −
 
 
 − − +
 
 
 
 

 

(2.20) 

 Disturbances 

As mentioned previously, in addition to gravity and control forces, there are several 

disturbances that affect translational motion of earth orbiting space vehicles. These are 

more pronounced for eccentric orbits [51], [52]. Main disturbances on earth orbits may 

be mentioned as J2-J6 effects due to earth oblateness, 3rd body interactions such as 

moon’s gravity, solar radiation pressure, and drag effect. These effects are widely 

investigated in the literature, and especially for LEO satellites, it is revealed that 

neglecting them does not cost much. Feedback control applications including MPC are 

generally enough to compensate them [48].  
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CHAPTER 3 

 

 

MODEL PREDICTIVE CONTROL THEORY 
 

 

 

This chapter discusses the main control theory applied in this thesis. Model Predictive 

Control (MPC) becomes popular in the literature for spacecraft applications. It takes 

the control problem as an optimization problem, and constraints on states or inputs can 

be added to the optimization problem itself. Its enabling to include future states in 

control methodology yields an effective and robust way of controlling. 

In Section 3.1, MPC theory and receding horizon concept are explained. Mathematical 

backgrounds of MPC and optimization process are reviewed. In Section 3.2, 

constrained optimization with state and input constraints is discussed in detail. In 

Section 3.3, MPC methodology is examined in the sense of stability. 

 Control Algorithm 

MPC is an optimal control problem in which an optimization in terms of mission 

parameters such as fuel, time, etc., is solved. In a mission, there may be several 

limitations which may constrain the states or inputs. Since these constraints limit the 

freedom in mission implementations, optimization problem should be designed such 

that the control approach is applicable for desired mission tasks. 

MPC is a discrete-time controller. For each time step, it predicts the states within the 

prediction horizon, and then calculate the cost function to be minimized including 

these predictions in the same step. 
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MPC result gives a set of optimal inputs defined all over the planning horizon. In each 

time step first input among this set is applied. For the next time step, the same process 

is repeated with the same planning horizon length. In other words, this horizon shifts 

to the next step. For this reason, in literature name of “Receding Horizon Control” is 

widely used to refer MPC. 

 
Figure 3.1: Receding Horizon Control approach.  

Optimal control problem with constraints comprises a constrained optimization 

problem which needs to be solved numerically [9], [53]. This requires the solution of 

a complex optimization problem onboard in real-time with a proper discretization [54], 

[55]. 

To apply the MPC method, discretized HCW state space representation with sample 

time sT  is used. Notation for discrete system with subscript ‘d’ is not necessarily used 

anymore. In other words, discrete state space representation is used in the remaining 

sections as below. 

 x( 1) x( ) ( )k A k Bu k+ = +  (3.1) 
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Optimal control input may be found by the minimization of a quadratic cost function. 

Unlike the conventional Linear Quadratic problems which use a cost function of 

present states and inputs, MPC input minimizes a cost function constituted of predicted 

state and input values over a prediction horizon. 

 1

0
( ) x ( ) x( ) ( ) ( )

x ( ) x( )

N
T T

i
T

J k k i k Q k i k u k i k Ru k i k

k N k Q k N k

−

=

 = + + + + + 

+ + +

∑
 (3.2) 

Vectors including N predictions of states and inputs predicted at step k may be defined 

as, 

 ( ) x( 1 )
( 1 ) x( 2 )

( ) ( )

( 1 ) x( )

u k k k k
u k k k k

k k

u k N k k N k

+

+ +
= =

+ − +

   
   
   
   
   
   

 
u x  (3.3) 

With the predicted states at discrete intervals in time, discrete-time state space model 

defined throughout the prediction horizon may be written as, 

 ( ) ( ) ( )xk k kx u    (3.4) 

where, 
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 (3.5) 

In the following, cost function to be minimized given in Equation (3.2), may be written 

in the matrix form as follows [56]. 
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 (3.6) 

or, 

 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )x x xT T T TJ k k H k k F k k G ku u u    (3.7) 

where, 
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  (3.9) 

For unconstrained case, it is convenient to calculate an explicit solution for optimal 

input offline by equating the gradient of the cost function shown in Equation (3.7) to 

zero. 

 * 1( ) ( )xk H F ku   (3.10) 

It may be realized that optimal input given in Equation (3.10) is the same as the stack 

of LQR controller results at different time steps. When there are constraints on inputs 

and states, there is no explicit solution, and optimization problem should be solved in 

each time step. This requires an online implementation of controller unlike the 

application of a constant feedback gain policies. Consequently, the input that needs to 

be applied becomes the solution of the optimization problem shown as follows: 
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 * ( ) min ( )k J k
u

u   (3.11) 

The optimal solution of Equation (3.11) is a stack vector of future control inputs 

throughout the planning horizon. At each time step, only the first time step input plan 

is applied, i.e., * ( )u k  [ 1 0 0 ] * ( )ku .   

 

Figure 3.2: Block diagram of the controlled system where zero references are given 
to regulate the system to origin. 

 Constrained Optimization 

Since the last term of summation in Equation (3.7) depends on the current and known 

states, it may be omitted from the optimization problem. Then, the cost function to be 

minimized may be rewritten as,  

 1( ) ( ) ( ) ( )
2

T T
quad quadJ k k H k f ku u u   (3.12) 

where, 

 2quadH H       and      2xT T T
quadf F  (3.13) 

In the missions such as R-D, there may be several operational and safety constraints 

that need to be satisfied during the planning and control of the mission. Since MPC 

contains an optimization problem, these constraints may be applied to this problem 

which renders it a constrained optimization problem. In the optimization, cost function 
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given in Equation (3.12) is tried to be minimized in terms of the input as optimization 

variable with linear inequality constraints shown as follows: 

 *

x( 1) x( ) ( )
x

( ) min ( )

x x

u u

k A k Bu k
A
A

k J k

subject to
B

u B

u
u

  






 (3.14) 

The problem in Equation (3.14) with the quadratic cost function to be minimized given 

in Equation (3.12) and linear inequality constraints constitutes a quadratic 

programming problem, and existing solvers can be used for constrained optimization 

in this problem. In this work, Matlab’s ‘quadprog’ solver is used with linear 

constraints. Quadratic programming solver of Matlab use ‘interior-point-convex’ 

algorithm as default that has a low memory usage, and it is faster compared to other 

alternatives. Accuracy problem of that algorithm may be diminished by selecting 

smaller tolerance values. However, in this thesis, its results are quite acceptable. 

Since the optimization variable is the control input in the defined problem, states and 

the constraints on them should be represented in terms of optimization variable. As a 

result, inequality constraint may be written as follows in which the only variable is 

input, and the current state is already known.   

 ( ) ( )0 0 0xG k E k w≤ +u  (3.15) 

Coefficient matrices are obtained to combine state and input constraints to represent 

them in terms of inputs only. Matrices for inputs and states may be derived separately 

and combined after as shown below. 

 
0 0 0

u u u

x x x

G E
G

G
w

E wE w
     
     
     

= = =  (3.16) 
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Matrices to represent constraints on inputs may be derived such that the inequality 

constraint of u uA u B  is extended all over the planning horizon. Resultant constraint 

matrices are given as follows:   

 0 0 0
0 0 0

0 0 0

u

u
u u

u

u

u
u

u

A B
A

E

A

B
w

B

G = = =

    
    
    
    
    

    





    



 (3.17) 

Matrices to represent constraints on states are derived such that the state inequality 

constraint of xx xA B  is extended through the planning horizon. Resultant constraint 

matrices are given as below.   
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     

 (3.18) 

Equalities of x fA A=  and x fB B=  are considered as the case in this thesis. The right-

hand side of the inequality constraint, i.e., ( )0 0xE k w+  is computed in each time step 

with the knowledge of current state values, and resultant constraint matrix summation 

is treated as a constant. For the systems that include constraint matrices changing in 

time, representation in Equation (3.18) may be modified as in Equations (3.19) and 

(3.20). With this representation, linear inequality constraints in matrix forms with the 

entries changing in time can be predicted over the planning horizon and included in 

optimization process. 
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 (3.20) 

 Stability 

Although the MPC approach seems effective to be applied on R-D operations in which 

several safety and operational constraints may take place, closed-loop stability should 

still be ensured in the simulations. Stability in MPC applications may be guaranteed 

by the application of a terminal state constraint which imposes final state in the 

planning horizon to have desired value [57]. In R-D operation aim is to reach origin, 

and the terminal state may be given accordingly as x 0.N =  However, for the missions 

in which planning horizon length is not long enough to include the final desired state 

on it, it is hard to apply terminal state constraint in a feasible way. This constraint, on 

the other hand, may be relaxed by replacing it with a terminal cost term in the cost 

function [58]. Selection of this terminal cost weight matrix is made based on the 

solution of Discrete Algebraic Riccati Equation (DARE) given as, 

 ( ) 1
0T T T TA QA Q A QB B QB R B QA Q

−
− − + + =  (3.21) 

Addition of a terminal cost term, penalizes the controller unless the final state reaches 

a desired value in its plan. In R-D case, the controller is penalized until the final state 

reaches to origin. For this reason, this term may be renamed as “cost-to-go” term in 

the cost function. 

 

 

  



 
29 

 

CHAPTER 4 

 

 

SAFE MISSION PLANNING 
 

 

 

This chapter underlines safety considerations that should be taken into account during 

the mission planning. In an optimal control application, these considerations may be 

reflected as constraints in the optimization problem as soft or hard constraints. In this 

thesis, safety and operational constraints are given as hard constraints because of their 

importance and the urgency to achieve them.  

In Section 4.1, constraints in trajectory generation are mentioned in detail. Their 

conceptual backgrounds and mathematical formulations are given. In Section 4.2, 

scenarios that are considered to simulate a complete rendezvous are introduced. 

Section 4.3 is dedicated to simulations of proposed methods for different rendezvous 

scenarios, and the comparison of MPC with a simpler LQR controller. 

 Constraints 

This section justifies the applied safety and operational constraints. These include 

possible obstacles that may exist in the nominal trajectories, the requirement of 

specific approach directions, constraints in velocities for a slow impact with the target, 

and the input constraints.  

In this thesis, MPC application includes the solution of an optimization problem by 

using linearly constrained quadratic programming (QP). This requires formulation of 

constraints as linear equality or inequalities. The constraints on inputs and states may 
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be represented separately as inequality constraints in the form given below for any 

variable ν  as follows: 

 
cons consA Bν ≤  (4.1) 

In the optimization problem, the variable for optimization is inputs, and it is required 

to derive all constraints in terms of inputs including the constraints on states. This 

process is already mentioned in Section 3.2.  

4.1.1 Constraints on Inputs 

The constraints on control input may arise from the limit on available input that can 

be provided by actuators. In this application, inputs are the acceleration caused by the 

thrust generated through thrusters. These actuators may be chemically driven 

propulsion systems/rockets or electrical thrusters. Available thrust is limited due to 

actuator capacities. Instead of saturating the control inputs as in classical controllers, 

the limitation in available input is considered as a constraint in the optimization 

problem. This maintains controller to be aware of this limitation, and increases the 

possibility to avoid closing to the limit levels during the operation. 

Since the problem is defined in LVLH frame, inputs are also applied in the same frame. 

It is assumed that available input level is the same for all axes in both negative and 

positive directions.  

 
min maxu u u≤ ≤  (4.2) 

or, 

 
availableu u≤  (4.3) 

To adapt the input constraints to the representation given in Equation (4.1), two 

constraint matrices are formed so that the following inequality may be obtained. 
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 u uA u B≤  (4.4) 

where the input is given as 
T

x y zu u u u =   . uA  and uB  represent constraint 

matrices whose contents are shown below. 

 1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
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 
 − 
 

=  − 
 
 

− 
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available

available
u

available

available

available

u
u
u
u
u
u

B

 
 
 
 

=  
 
 
 
 

 (4.5) 

The linear inequality constraint matrices of inputs are formed by considering actuator 

limits only. Another constraint on inputs may be for the avoidance of plume 

impingement to the target surface in close proximity. This is a vital issue especially 

for the missions with cooperative targets or with the targets that should not be damaged 

by thruster fire as in scientific data sample collecting missions. Such additional 

constraints on inputs may be implemented by the addition of related rows to constraint 

matrices given in (4.5). However, since the motivation of this work arises from 

autonomous debris removal operation idea, no such constraint is added in input 

actuation. 

4.1.2 Constraints on States 

Since the ideal sensation assumption is made based on the measurement of all states 

and feeding back them perfectly, operational and safety constraints are applied on 

states directly, not on the outputs. Linear inequality constraints on states may be 

represented in matrix form as below. 

  
x xxA B≤  (4.6) 
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In the following, three main constraints on states are introduced, and constraint 

matrices xA  and xB  are formed. Additional constraints on states or the same 

constraints on different dimensions may also be applied by the addition of associated 

rows to both matrices given in Equation (4.6).  

4.1.2.1 Slow Approach Constraint 

While berthing the target, high velocities and abrupt maneuvers should be avoided. 

Otherwise, it may result in hard impacts and undesired results for both the target and 

the chaser. To control the strength of impact, chaser velocity is decreased while closing 

to the target. This may be achieved by defining a decreasing function of relative 

distance as velocity constraint. The relative distance in three dimensions is given as 

the following: 

 2 2 2r x y z= + +  (4.7) 

With the use of distance information which is updated on each step, a time-varying 

constraint may be formed as follows: 

 ( ) 3 1x 1 r
v eβσ ×≤ − 1  (4.8) 

where [ ]x T
v x y z=    , σ  and β  are tuning parameters of constraint shape. In this 

thesis, the constraint on velocity is applied with the parameters of 100σ =  and 

0.00519β =  so that no hard limitation is given on velocity of chaser when it is far from 

the target. The change of this constraint with the relative distance may be seen in 

Figure 4.1.  

As the chaser becomes closer to the target, the amount of allowable velocity decreases, 

and in very close proximity goes to zero. Tuning parameters are selected such that for 

the long distances constraint does not undermine the feasibility of operation, and 

weight is given to proximity states. 
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Figure 4.1: Decreasing allowable velocity profile as chaser becomes closer to the 
target. 

If a particular direction of approach is defined, this velocity limitation may be reduced 

to the constraint on the velocity in this direction. For example, considering a radial 

approach to the target from +x direction, this constraint may be applied as follows: 

 ( )1 rx eβσ≤ −  (4.9) 

With this constraint, it is provided that the chaser approaching the target becomes 

slower when it is close. To represent the velocity constraint in the form given in 

Equation (4.6), two constraint matrices are created as below such that xslow slowA B≤ .  

 ( )
( )
10 0 0 1 0 0

x
0 0 0 1 0 0 1

r

r

slow slow

e

e

A B

β

β

σ

σ

−
≤

− −

  
  

     

 
(4.10) 

It should be noted that these constraint matrices limit the velocity only in radial 

direction, i.e., along x-direction. 
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4.1.2.2 Approach Cone Constraint 

The first path constraint to ensure a safe trajectory is on the region of approach. For a 

cooperative target, it is necessary for it to keep chaser in the Line of Sight (LOS) of 

the proximity sensors onboard which may be optical or radar sensors. This may be 

achieved by controlling the attitude of the target. Also, chaser trajectory may be 

planned to stay inside the LOS of the target which constrains the approach direction 

of chaser vehicle. On the other hand, for an uncooperative target, there is no such a 

limitation; however, there may be another path constraints or mission requirements 

that force chaser to implement approach maneuvers along some specific directions. 

For example, in debris removal operations it is possible for the debris to tumble or spin 

around a particular axis, and to capture such objects, it is essential to approach the 

target through its spinning/tumbling axis. Besides that, if the target has a docking port, 

again the chaser should approach its target through the docking port axis.  

All path constraints mentioned above may be implemented by defining a region for 

approach that is formed around the direction of approach. Two proposed geometrical 

shapes for these regions are given in Figure 4.2. Given regions imply constraint zones 

whose centerlines are the axis of approach direction. In this thesis, radial approach 

from +x direction is considered. 

 

Figure 4.2: Options for direction of approach constraint geometries. 
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Since states in z-direction are decoupled, for the sake of simplicity relative motion only 

in the orbital xy plane is controlled in this thesis. Therefore, projections of both 

pyramid and cone constraints on this plane reduce to line equations in 2D. The 

constraint is applied such that the chaser stays between these two lines during the 

approach. The line constraints may be seen in Figure 4.2 on the right as the projection 

of cone into xy plane. From now on, since the cone is adopted as the shape for approach 

constraint, this path limitation is named as approach cone constraint. The angle ϕ  is 

the conical half angle which defines hardness of the constraints, and it is selected as 

45ϕ = ° . 

Consequently, the desired approach path should be in the region defined by y x<  and 

y x− < . To represent this approach cone constraint in the form given in Equation (4.6), 

two constraint matrices are created as below such that xcone coneA B≤ .  

 



1 1 0 0 0 0 0
x

1 1 0 0 0 0 0

conecone BA

−
≤

− −
   
   
   

 
(4.11) 

It should be noted that besides its contribution to the trajectory shaping, the cone 

constraint prevents any overshoot in the direction of approach which considered as x+  

direction in this work. This overshoot constraint may be represented as 0x≥  in 

berthing phase. As a result, the chaser never goes behind the docking point. 

4.1.2.3 Obstacle Avoidance Constraint 

Additional constraints on states may arise from safety considerations. In space 

environment, besides the operational space assets, there are numerous remnants of 

previous space operations. Space debris may be hazardous for operational space 

vehicles especially when their planned trajectories intersect with these objects. The 

longer relative distance between chaser and target means the higher possibility of 

coming across a debris during the flight. 
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Collisions with such obstacles should strictly be avoided in the rendezvous path. To 

include this requirement of avoidance as a constraint in the optimization problem, a 

debris object between the chaser and target is assumed as a circular zone with radius 

of debrisr  which should not be gotten inside [48]. As it is required to represent 

constraints as in Equation (4.6) with linear inequalities, obstacle avoidance constraints 

are applied as line equations which are formed as tangents to the debris circle as shown 

in Figure 4.3. During the relative motion between chaser and debris, at each time step, 

a new tangent line equation is calculated online, and chaser becomes constrained to 

stay on the safe side of that line. This dynamically reconfigurable obstacle avoidance 

constraint prevents collisions with objects which has uncertain motions.  

 

Figure 4.3: Lines tangent to the circular obstacle region as linear obstacle avoidance 
constraints. 

The idea behind obstacle avoidance is based on keeping distance between the chaser 

spacecraft and obstacle always larger than the debrisr . First, γ  is defined which is the 

angle between LVLH frame x-direction and the line which bonds chaser and obstacle. 

 
tan debris

debris

y y
x x

γ
−

=
−  (4.12) 
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1tan debris

debris

y y
x x

γ − −
=

−

 
 
 

 (4.13) 

The distance between chaser and obstacle may be calculated by the use of positions of 

both and the angle γ  as shown in Figure 4.4. 

 

Figure 4.4: Geometrical representation of obstacle avoidance constraint elements in 
orbital plane. 

The constraint which imposes chaser vehicle to stay out of obstacle zone may be 

represented as in Equation (4.14). In other words, the distance between the chaser 

spacecraft and obstacle must always be kept larger than the radius of the circular 

obstacle avoidance region.  

 ( ) ( )cos sindebris debris debrisx x y y rγ γ− −+ ≥  (4.14) 

To represent this approach cone constraint in the form given in Equation (4.6), two 

constraint matrices are created such that xdebris debris
avoidance avoidance

A B≤ .  

 



 
38 

 

 cos sin cos sin
0 0 0 0 x 1debris debris

debris debris debris debris

debrisdebris
avoidanceavoidance

x y
r r r r

BA

γ γ γ γ
− − ≤ − − −
 
 
  

 
(4.15) 

 Scenarios to Apply 

In the proximity of cooperative or uncooperative space assets, a safe and fuel or time 

efficient trajectory should be generated to approach target as close as possible. This 

can be achieved by applying constraints mentioned in Section 4.1. Different scenarios 

may be created by applying combinations of aforementioned constraints. In this thesis, 

four different cases or scenarios are considered for rendezvous operation. In all cases, 

available thrust constraint is applied as it is not optional due to actuator limitations, 

and slow impact constraint is imposed in all scenarios as well. It should be noted that 

in slow approach constraint, parameters are changing with time and distance as well 

as in debris avoidance constraint for moving debris case. The distance between chaser 

and target in orbital plane for 2D case with L2 norm is given as, 

 2 2r x y= +         (4.16) 

The following chart explains the methodology used to create scenarios. The first 

decision depends on the requirement of a specific approach direction. If there is no 

such a requirement, operation is implemented with slow impact and input constraints 

only, and named as Case 1. Note that it is the only case without any path constraint. 

The second decision is made under the requirement of obstacle or debris avoidance. If 

there is no such obstacle danger, a path constraint to approach the target within an 

approach cone is defined in addition to Case 1, and this case is named as Case 2: 

Approach Cone Case. The third and final decision is on the relative motion of obstacle. 

If there is a relatively stationary obstacle in addition to Case 2, it is named as Case 3: 

Fixed Debris Case. If the obstacle has a relative motion, this case is the fourth case 

with moving debris. 
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Is there any particular direction to approach?

Is there any 
obstacle to avoid?

Does the 
obstacle move 

relative to 
target?

Case 4: 
Moving Debris

Case 3: Fixed DebrisCase 2:  Approach 
Cone

Case 1: No Path 
Constraint

YES

YES YES

NO
NO

NO

 

Figure 4.5: Flow chart to decide which scenario needs to be considered. 

4.2.1 Case 1: No Path Constraints 

Fully controlled target can arrange its orientation to make a docking with the 

approaching chaser. No path constraint such as approach direction is applied. Only 

state constraint is the one which imposes a slow impact on the target. 

 
x slowA A=        x slowB B=  (4.17) 

Another example to this kind of scenario may be given as a space object capture which 

does not tumble or wobble.  

4.2.2 Case 2: Approach Cone Constraint 

For a collaborating target, approach should be performed through its docking port. For 

tumbling objects, it may not be easy to capture them as in the case for cooperative 

targets. The approach such objects may be performed through their axis of rotation 

similar to the docking port case. Instead of approaching through the docking port, this 
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time, the most stationary part of the target, which is on the spinning axis, is considered 

as the point to dock. 

For such missions which require a specific direction of approach, the rendezvous 

problem is split into two phases. If the chaser initial position is out of the prescribed 

approach cone, its first aim is to get inside that cone. This is achieved by defining an 

avoidance circle of radius avoidancer  which is determined by the initial relative distance 

0r  according to the following formula: 

 ( )( )00.1100 1avoidance
rer −= −  (4.18) 

To get the inside of the approach cone, target vehicle follows a circular path until it 

reaches the cone border. Once it touches to the cone border, control system switches 

to regulate the position to the origin of the LVLH frame where the target is positioned. 

From Figure 4.6, a sample prescribed path may be seen with the red line, and the virtual 

path which is formed to take the chaser inside the approach cone is represented with 

the blue line.   

 
Figure 4.6: Methodology to get inside approach cone first, and then continue to 

rendezvous. 
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In this case, there are two control modes. The first mode is following the virtual path 

until to get inside approach cone, and the second mode is to reach the target. While the 

latter is the regulation problem defined in Chapter 3, the former is a tracking problem 

which may be solved by modifying the regulation problem. Change in desired states 

may be expressed with the same discrete system matrix A as follows: 

 ( ) ( )1 xxd dk A k+ =  (4.19) 

Tracking error between desired and current states may be defined as, 

 x - xdtracke =  (4.20) 

Using Equations (4.19) and (4.20), error based state space representation may be given 

as follows: 

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 x 1 - x 1

x - x
d

d

track

track

k k k

A k B u k A k

A e k B u k

e + = + +

= +

= +
 (4.21) 

The same analogy introduced in Chapter 3 may be used to regulate tracking error 

dynamics given in Equation (4.21). However, constraints on states must this time be 

represented in terms of error. The modified constraint matrices on error is given as 

follows: 

 
e track eA e B  (4.22) 

Where, 

 
e xA A    and   e x x dB B A x   (4.23) 

As stated in Chapter 3, since the optimization variable is the inputs, constraints on 

states must also be represented by inputs. The same analogy defined in Section 3.2 is 

used with new constraint matrices given in Equation (4.23) to combine state and input 

constraints.  
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Resultant state constraint matrices with slow impact and approach cone constraints are 

given as follows: 

 
cone

slow
x

A
A

A  
=  
 

       cone

slow
x

B
B

B
 

=  
 

 (4.24) 

4.2.3 Case 3: Addition of an Obstacle without Relative Motion 

In this case, in addition to Case 2, approach to target is performed considering a 

possible crash danger with the debris orbiting close to the target. The position of this 

obstacle, which is assumed as a debris, is kept stationary or fixed relative to the target. 

In other words, in LVLH frame obstacle position does not change with time. 

Besides the state constraint matrices given in Case 2, additional debris avoidance 

constraint matrices are added. Resultant state constraint matrices are defined as,  

 
cone

slow

fixed debris
avoidance

x

A
A

A
A

 
 
 =
 
 
 

       
cone

slow

fixed debris
avoidance

x

B
B

B
B

 
 
 =
 
 
 

 (4.25) 

4.2.4 Case 4: Addition of an Obstacle with Relative Motion 

More realistic approach for obstacle avoidance case in rendezvous operation is to 

consider obstacles as having individual motions different than the target. Unlike the 

above stationary debris case, this time obstacle has a relative motion with respect to 

the target. Moreover, it follows an unmodeled path which is assumed to be predicted 

by an algorithm and fed into the control system. This requires the real-time sensing of 

the obstacle position. In other words, obstacle or debris position terms included in 

constraint matrices changing in time.  
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In addition, at each time step, predicted motion of obstacle is included in optimization 

problem over the horizon. The resultant state constraint matrices for moving debris 

case are obtained by the integration of related constraint matrices.  

 

( )
( )

slow

moving debris
avoidance

cone

x

A
A

A
A k

k

 
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       ( )
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 
 
 

 (4.26) 

 Applications for Different Scenarios 

Simulations for the scenarios explained in the previous section are implemented with 

nonlinear dynamics of relative motion given in Equation (2.11). While for the control 

algorithm, a linear version of this nonlinear model linearized in Equation (2.12) is 

used. In the simulations, orbital parameter is chosen as 0.0011 /n rad s=  which implies 

that spacecraft are flying in a circular orbit at 550 km of altitude. The sampling period 

is selected as 4sT s= . Control inputs are limited to 20.5 /u m s= .  

The weight matrices of states and inputs namely Q and R may be listed among the 

most important tuning parameters in an optimal control problem. For parametric 

studies, the weighting matrices are selected as, 

 3

3

3

1

1

1

10 0 0 0 0 0
0 10 0 0 0 0

1 0 0
0 0 10 0 0 0

0 1 0
0 0 0 10 0 0

0 0 1
0 0 0 0 10 0
0 0 0 0 0 10

Q R α
−

−

−

 
 
      = =        
 
    

(4.27) 

where, α  is the relative weight between two matrices. α  determines the importance 

of inputs relative to the states. Terminal cost weight matrix Q  is chosen as the solution 

of Discrete Algebraic Riccati Equation (DARE) given below to ensure optimality at 

each step, and stability in the final step as mentioned in Section 3.3. 
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 3 3

3 3

3 3

3 3

3 3

3 3

1.0047 10 0 0 0.0094 10 0 0
0 1.0047 10 0 0 0.0094 10 0
0 0 1.0047 10 0 0 0.0094 10

0.0094 10 0 0 0.0189 10 0 0
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 × × 
 × ×

=  
× × 

 × ×
 

× ×  

 
(4.28) 

Simulations are carried out for different planning horizons and optimization weight 

matrices. Two performance metrics are used as given in Equation (4.29) to evaluate 

performance of controllers in different cases. The former indicates the fuel 

consumption while the latter is the indication of energy used. 

 
1

0
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J u k u k
=

= +∑
          

2 2
2

0
( ) ( )

dockingt

x y
k

J u k u k
=

= +∑
 

(4.29) 

Parameters for performance evaluations are chosen as planning horizon N and 

weighting parameter α . Time to dock is another performance criterion in addition to 

the performance metrics given above. 

4.3.1 Case 1: No Path Constraints 

Only input and slow impact constraints are applied in this case. Nonlinear simulations 

are conducted to make a rendezvous with the target starting from the initial position of 

( )400,200,0 m .  

Performance metrics for different planning horizons with constant weighting 

parameter 1α =  are shown in Table 4.1. From the table, it may be observed a convex 

history in the performance metrics with increasing planning horizon. Because docking 

times are the same for three most efficient planning horizon lengths, it is reasonable to 

select the shortest possible planning horizon. Indeed, longer horizons lead higher 

computational burden. In other words, since at each step, optimization problem is 

solved in this planning horizon, a too long horizon means higher computational cost. 

For this reason, horizon length is chosen as 15N = . In simulations, control and 

prediction horizons are taken to be the same. 
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Table 4.1: Performance of controller with different planning horizon lengths for no 
path constraint case. 

 N=5 N=15 N=25 N=35 

1J  14.4470 12.5206 12.5206 12.5206 

2J  11.3329 9. 6997 9. 6997 9. 7001 

[ ]dockingt s  78.0000 69.2000 69.2000 69.2000 

For the selected prediction horizon 15N = , different weighting parameters are 

applied. Results are given in Table 4.2 including two performance metrics and the 

docking time. A rise in docking time and a decrease in costs are observed with 

increasing α . Therefore, optimum weighting parameter is selected as 1α = . 

Table 4.2: Performance of controller with different weight matrix ratios for no path 
constraint case. 

 610α −=  
310α −=  1α =  310α =  

610α =  

1J  12.5207 12.5207 12.5206 12.4545 11.0809 

2J  9.7001 9.7001 9. 6997 9.6755 8.4159 

[ ]dockingt s  69.2000 69.2000 69.2000 70.0000 >100.0000 

With the application of selected planning horizon length and weighting parameter, 

simulation of R-D to the target is implemented on a path generated by the MPC. Since, 

next cases include additional complex constraints, this case is selected for the 

comparison with Linear Quadratic Regulator (LQR) methodology in which constraints 

are not considered. Two R-D scenarios are simulated in parallel with the same initial 

conditions to see the efficiency and applicability of the MPC algorithm. Weighting 

parameter for LQR is selected as 65 10α = × . In LQR case, input limits are applied to 

saturate them for the value of 20.5 /u m s=  which is the constrained value in MPC 

approach. Same parametric studies are conducted for LQR approach as well, and 

performances of two controllers are compared in Table 4.3.    
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Table 4.3: Comparison of MPC and LQR performances for no path constraint case. 

 MPC LQR 

1J  12.5206 14.2456 

2J  9. 6997 11.0573 

[ ]dockingt s  69.2000 >100.0000 

Results of regulated states are given in Figure 4.7. In addition, there is no obstacle 

avoidance requirement, and the controller is free to choose any path to dock. 

 
Figure 4.7: Time histories of regulated relative positions for no path constraint case. 

Overshoots in the y-direction are observed for both methods after reaching origin 

which may be dangerous for the operation by increasing crash possibility. Indeed, by 

getting beyond the target, chaser may lose its ability to complete mission, because the 

target may become out of FOV of the sensors placed in the chaser vehicle or hit the 

target since chaser’s path intersects with its nominal trajectory along y+  direction. 

Control accelerations applied to achieve this operation are presented in Figure 4.8. It 

may be observed that control inputs obey the limitations imposed.  
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Figure 4.8: Time histories of control accelerations in orbital plane for no path 

constraint case. 

The complete rendezvous path is given in Figure 4.9. Overshoots are evident, and they 

undermine the safety of the operation. However, MPC seems more efficient and 

applicable considering parametric study results and huge overshoot in LQR approach. 

 
Figure 4.9: Complete rendezvous path with overshoots in both x and y directions. 



 
48 

 

This case is a demonstration of the applicability of proposed control algorithms and 

simulation codes. Other cases include harder path constraints. Moreover, this case 

gives an opportunity to compare constrained and unconstrained results for specific 

state constraints. 

4.3.2 Case 2: Approach Cone Constraint 

In addition to input and slow impact constraints, approach cone constraint is also 

applied in this case. In the parametric study, which is implemented to get the best 

planning horizon and weighting parameter, nonlinear simulations are conducted to 

make a rendezvous with the target starting from initial position of ( )400,200,0 m .  

Performance metrics for different planning horizons with constant weighting 

parameter 1α =  are shown in Table 4.4. The same results are obtained for the last 

three planning horizon values. Since docking times are equal for these three most 

efficient planning horizon times, it is reasonable to select the shortest possible planning 

horizon as in the previous case to avoid high computational burden. As a result, 

horizon length is chosen as 15.N =  In simulations, control and prediction horizons are 

taken to be the same. 

Table 4.4: Performance of controller with different planning horizon lengths for the 
case with approach cone constraint only as path constraint. 

 N=5 N=15 N=25 N=35 

1J  16.8275 13.3176 13.3176 13.3176 

2J  12.5385 9.9767 9.9767 9.9767 

[ ]dockingt s  93.2000 78.0000 78.0000 78.0000 

For the selected prediction horizon 15N = , performance metrics are calculated for 

different weighting parameters together with the time past between initial position and 

docking. Results are given in Table 4.5, including two performance metrics and the 

docking time. From the results, it may be concluded that 1α =  results in better 
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performance metrics and shorter docking time. Despite yielding smaller fuel and 

energy metrics, higher α  values cause long docking times as well. 

Table 4.5: Performance of controller with different weight matrix ratios for the case 
with approach cone constraint only as path constraint. 

 610α −=  
310α −=  1α =  310α =  

610α =  

1J  13.3177 13.3177 13.3176 13.2624 10.2424 

2J  9.9769 9.9769 9.9767 9.9414 8.0151 

[ ]dockingt s  78.0000 78.0000 78.0000 82.0000 >100.0000 

With the application of selected planning horizon length and weighting parameter, 

simulation of R-D to the target through an approach cone is implemented on a path 

generated by the MPC. It may be observed from the figures that the rendezvous with 

the target spacecraft is realized successfully within the allowed approach zone. In 

Figure 4.10 and Figure 4.11, regulated relative distances and applied control 

acceleration inputs are given. Besides the states, control inputs also obey the 

limitations imposed. A different profile than the first case is observed due to the 

application of approach cone constraint. 

 
Figure 4.10: Time histories of regulated relative position states for approach cone 

constraint case. 
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Figure 4.11: Time histories of control accelerations in orbital plane for approach 

cone constraint case. 

The complete rendezvous path is given in Figure 4.12. Only path constraint, in this 

case, is to approach target through a prescribed cone.  Chaser becomes steady after its 

first touch to the origin, i.e., the target vehicle, and no overshoot exists. Moreover, 

constraints are successfully satisfied, and no constraint violation is observed.  
 

 
Figure 4.12: The complete rendezvous trajectory with obeying approach cone 

constraint only as path constraint. 
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The same simulation parameters are used to control the chaser vehicle starting from 

different initial positions. In Figure 4.13, results are given. Similar success in satisfying 

constraints and preventing overshoot is achieved for all initial conditions. 

 
Figure 4.13: Rendezvous paths starting from different initial positions for approach 

cone constraint case. 

4.3.3 Case 3: Addition of an Obstacle without Relative Motion 

A debris is placed along the possible trajectories of the chaser vehicle as an obstacle 

on the position of ( )80,0,0 m . The obstacle position is kept fixed relative to the target, 

and represented with a circle, the radius of 10debrisr m= . Remaining requirements are 

the same with the Case 2. In the parametric study, nonlinear simulations are conducted 

to make a rendezvous with the target starting from initial position of ( )400,200,0 m . 

Performance metrics for different planning horizons with constant weighting 

parameter 1α =  are shown in Table 4.6. A convex history in the performance metrics 

with increasing planning horizon is observed. Since docking times are the same for the 

three most efficient options, 15N =  is selected for the planning horizon length as it is 

the most efficient choice. In simulations, control and prediction horizons are the same. 
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Table 4.6: Performance of controller with different planning horizon lengths for 
stationary debris case. 

 N=5 N=15 N=25 N=35 

1J  14.4021 14.2718 14.2739 14.2739 

2J  10.8484 10.9906 10.9918 10.9918 

[ ]dockingt s  97.2000 90.4000 90.4000 90.4000 

For different weighting ratios, i.e., parameter α , performance metrics are calculated 

together with the time spent to dock. Results are shown in Table 4.7 with prediction 

horizon of 15N = . Convex results are obtained, and 1α =  is concluded to have better 

performance and shorter docking time.  

Table 4.7: Performance of controller with different weight matrix ratios for stationary 
debris case. 

 610α −=  
310α −=  1α =  310α =  

610α =  

1J  14.2741 14.2741 14.2718 14.4536 14.6224 

2J  10.9919 10.9919 10.9906 11.0926 11.2154 

[ ]dockingt s  90.4000 90.4000 90.4000 94.4000 >100.0000 

With the application of selected planning horizon length and weighting parameter, 

simulation of R-D to the target with obstacle avoidance consideration is implemented. 

It may be observed from the Figure 4.14 that relative positions are successfully 

regulated. Collision avoidance maneuver may clearly be seen especially in x-direction.   

Control accelerations applied to achieve a collision-free and safe path are presented in 

Figure 4.15. An aggressive input application may be seen especially in x-direction. 

Reason for this profile is the obstacle avoidance task in the mission. Despite the 

aggression in the control, input accelerations still obey the limitations imposed 

successfully, and bring chaser to the origin safely.   
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Figure 4.14: Time histories of regulated relative position states for stationary debris 

case. 

 
Figure 4.15: Time histories of control accelerations in orbital plane for stationary 

debris case. 

The collision-free rendezvous path is given in Figure 4.16. Obstacle position is chosen 

based on the nominal path of obstacle-free missions by aiming intersection of debris 

with the chaser trajectory. Other state and input constraints are also applied as in 
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previous cases. Chaser approaches the target within the prescribed approach cone, and 

avoids the obstacle. It becomes steady after avoiding debris and reaching the target. 

All constraints are met, and a successful rendezvous is achieved.  

 
Figure 4.16: The complete rendezvous trajectory with collision avoidance constraint 

for stationary debris case. 

The same simulation parameters are used to control the chaser vehicle starting from 

different initial positions, and debris position is kept the same as well. In Figure 4.17, 

results are given. Similar success in satisfying constraints and avoiding any collision 

without an overshoot in origin is achieved for all initial conditions. 

As a next step, R-D operation is implemented for a chaser vehicle starting from initial 

position of ( )400,200,0 m  by avoiding obstacles placed in different positions. 

Obstacle placement is done based on the nominal collision-free trajectory in Case 2 to 

put debris against the chaser vehicle. State and input constraints in Case 2 is applied 

in addition to obstacle avoidance. For different obstacle positions, collision-free 

rendezvous paths are given in Figure 4.18, Figure 4.19, and Figure 4.20. 
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Figure 4.17: Rendezvous operation starting from different initial positions for 

stationary debris case. 

  

  

Figure 4.18: Rendezvous path of chaser spacecraft avoiding several different 
stationary debris positions. 
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Sharp avoidance of the debris is a clear demonstration of sensing the debris near its 

proximity. All constraints, including debris avoidance, are successfully satisfied, and 

no overshoot or constraint violation is observed. Chaser approaches the target within 

the prescribed approach cone, and avoids the obstacle. Next, it becomes steady after 

avoiding debris and reaching the target. 

Even in the cases with obstacles placed very close proximity of the target, chaser 

achieves to stay in prescribed approach cone, and completes the rendezvous. 

  

  

Figure 4.19: Rendezvous path of chaser spacecraft avoiding different debris positions 
close to target. 

When debris is placed close to starting point of the chaser, more restrained input 

profiles are observed. 
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Figure 4.20: Rendezvous path of chaser spacecraft avoiding different debris positions 
close to chaser initial position. 

4.3.4 Case 4: Addition of an Obstacle with Relative Motion 

Apart from Case 3, the debris placed along the possible trajectories of the chaser 

vehicle as an obstacle that moves freely between chaser and the target. For the obstacle 

motion, an elliptical path is generated. A prediction is assumed to be provided to 

control system including the predicted motion of the obstacle at each time step. Indeed, 

this predicted obstacle motion is used in the generation of an optimal control plan over 

the horizon. To update the control plan according to obstacle avoidance requirement, 

the debris needs to be sensed online in real-time. Obstacle motion is given in orbital 

plane according to the representation given below. To give obstacle an oscillatory 

motion, debris position in y-direction is defined as follows:  
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 ( ) ( )( )( )30*cos 0.091 37
debris

y k t k= −  (4.30) 

The aim in this representation is the consideration of motion of obstacle after chaser 

vehicle enters the approach cone, i.e., sensing the debris in close proximity. Obstacle 

is given an elliptical path with necessary parameters to intersect with the nominal 

chaser trajectory without the presence of any obstacle as in Figure 4.12 of Case 2. 

 ( )( ) ( )
2 2

2 2

75
1

5 30
debris debris

x k y k−
+ =  (4.31) 

Since the obstacle moves relatively, it is not necessarily as conservative as in the fixed 

debris case. As a result, debris is represented as a moving circle with radius of 

5debrisr m= . Remaining requirements such as state and input constraints are the same 

with the Case 2. In the parametric study, nonlinear simulations are conducted to make 

a rendezvous with the target starting from initial position of ( )400,200,0 m . 

Performance metrics for different planning horizons with constant weighting 

parameter 1α =  are shown in Table 4.8. A convex history in the performance metrics 

with increasing planning horizon is observed. Considering docking times together with 

the costs, 15N =  is selected for the planning horizon length. In simulations, control 

and prediction horizons are taken to be the same. 

Table 4.8: Performance of controller with different planning horizon lengths for 
moving debris case. 

 N=5 N=15 N=25 N=35 

1J  13.9191 13.8384 13.8385 13.8385 

2J  10.4509 10.4893 10.4893 10.4894 

[ ]dockingt s  >100.0000 86.4000 86.4000 86.4000 

For the selected prediction horizon 15N = , performance metrics are calculated for 

different weighting parameters together with the docking times. Results are given in 

Table 4.9, including two performance metrics and times to dock. Convexity in results 

and docking times show that 1α =  is the best value for the weighting parameter.  
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Table 4.9: Performance of controller with different weight matrix ratios for moving 
debris case. 

 610α −=  
310α −=  1α =  310α =  

610α =  

1J  13.8390 13.8390 13.8384 13.6965 10.1367 

2J  10.4899 10.4899 10.4893 10.3823 8.3887 

[ ]dockingt s  86.4000 86.4000 86.4000 90.4000 >100.0000 

With the application of selected planning horizon length and weighting parameter, 

simulation of R-D with avoidance of a moving obstacle relative to the LVLH frame is 

implemented. Figure 4.21 shows the position states. The difference between with and 

without obstacle cases is evident. Relative positions are successfully regulated. 

Control accelerations applied to achieve R-D operation by avoiding a collision with 

moving debris are presented in Figure 4.22. The nominal case is added to observe the 

effects of moving obstacle case on inputs. An aggressive input application may be seen 

compared to nominal case in which there is no obstacle avoidance requirement. 

Despite the aggression in control inputs, applied accelerations still successfully obey 

the limitations imposed, and bring the chaser to the origin without any overshoot.   

 
Figure 4.21: Comparison of regulated position states in orbital plane for the nominal 
case with direction of approach constraint only as path constraint and moving debris 

avoidance case. 
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Figure 4.22: Comparison of time histories of control accelerations in orbital plane for 

the nominal case with direction of approach constraint only as path constraint and 
moving debris avoidance case. 

Debris motion is represented after the chaser gets inside the approach cone. The time 

when the debris is started to be represented may be considered as the time when debris 

is sensed by the chaser sensors as well. Debris is assumed to follow an elliptical path. 

In the Figure 4.23, avoidance maneuver of the chaser spacecraft may be seen in 1.5 s 

intervals.  

The complete rendezvous path generated by MPC including relatively moving 

obstacle avoidance maneuvers is given in Figure 4.24. Obstacle motion is generated 

based on the nominal path of obstacle-free missions by aiming intersection of debris 

path with the chaser trajectory. Nominal trajectory without any obstacle consideration 

is also plotted in the same figure. All aforementioned input and state constraints are 

also applied. As a result, chaser approaches the target within the prescribed approach 

cone, and avoids the moving obstacle. As in the all other cases with approach cone 

constraint, it becomes steady after avoiding debris and reaching to the target without 

overshoot. 
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Figure 4.23: Rendezvous path of chaser spacecraft avoiding a relatively moving 
debris shown in 1.5 seconds intervals. 
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Figure 4.24: The complete rendezvous trajectory with collision avoidance constraint 
for moving debris, and comparison with the nominal case (Case 2). 

4.3.5 Comparison of Case Results 

In all cases, R-D mission is completed successfully. Moreover, input and slow impact 

constraints are met in each application. Although saturation-like profiles are observed 

in inputs, they are not long-lasting, and considering the nonlinear relative motion 

dynamics, it is acceptable to have such profiles in the presence of considerably low 

available inputs as in this study.  

From results, it is observed that having a constraint that limits the direction of approach 

such as approach cone constraint helps to prevent overshoots that may exist after 

reaching origin. In Table 4.10, parametric study results which include two different 

performance costs and the time past between chaser initial position and target are 

revealed for all four cases. Results are for operations started from ( )400,200,0 m .  
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Table 4.10: Comparison of parametric study results including performance metrics 
and docking times for all four cases. 

Case 

Numbers 

Presence of Path 

Constraints 
1J  2J  [ ]dockingt s  

1 No positional constraints 12.5206 9. 6997 69.2000 

2 Only Cone 13.3176 9.9767 78.0000 

3 Cone and fixed debris 14.2718 10.9906 90.4000 

4 Cone and moving debris 13.8384 10.4893 86.4000 

It is clear that applying additional constraints makes the operation costlier, and docking 

times are increasing as well. When Cases 1 and 2 are compared, it is clear that only 

difference is the addition of approach cone constraint, and this causes an increase in 

both parametric costs and docking time as the amount of 8.8 seconds.  

Case 3 is the same with Case 2 except the addition of a debris as an obstacle stationary 

in LVLH frame. Again, both performance metrics and the docking time are increased. 

The increase in time is 12.4 seconds.  

In Case 4, the debris does not have a stationary position anymore. An elliptical path in 

the LVLH frame is defined for the obstacle. Although the only difference between 

Cases 3 and 4 is the relative mobility of the debris, it may be seen that moving debris 

case is more efficient than the stationary debris case based on performance metric 

results. Indeed, docking time is 4.4 seconds less for the Case 4. This phenomenon may 

be explained with the conservativeness in stationary debris case. If the obstacle motion 

is assumed as bounded in some fixed zone, this zone must be selected as a considerably 

bigger avoidance region to ensure that no collision takes place. This bound area was 

selected as a circle with radius of 10debrisr m=  in Case 3, However, for moving 

obstacle case, since the obstacle or debris is sensed in real-time, it is not necessary to 

define a “no enter zone” with a considerably big area. Therefore, debris may be 

represented as a relatively smaller area which is a circle with radius of 5debrisr m=  in 

Case 4. To conclude, instead of bounding the motion of an obstacle in a fixed zone, 

moving obstacle consideration leads to a more efficient mission trajectory. 
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It should be noted that approach angle is not tried to be set to zero during approach in 

none of the scenarios because an uncooperative target is assumed; however, some 

operations may pose a constraint to approach with the zero angle of approach. For such 

operations, an “end game” must be applied considering additional attitude control 

requirements besides the translational path control after reaching close proximity of 

the target with proposed MPC algorithm. 
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CHAPTER 5 

 

 

DUAL-QUATERNION BASED ATTITUDE AND POSITION CONTROL 
 

 

 

Up to now, the only translational motion is examined with the assumption of attitude 

is controlled somehow. Because safety considerations such as obstacle avoidance are 

mostly concerned with the translational motion of spacecrafts. In missions such as      

R-D and formation flying, while controlling the relative position, it is also necessary 

to control the orientation of spacecraft properly to keep the target within the field of 

view (FOV) of the sensors onboard. Coupling in translational and rotational motions 

poses a challenging task to overcome. MPC helps to achieve such operations by 

satisfying several safety constraints. However, both high demand in computational 

power for MPC and requirement of attitude control yield a need to generate alternative 

approaches. 

Space vehicles usually require smooth, low jerk, attitude maneuvers. The attitude 

control of spacecraft is a nonlinear problem which requires nonlinear control methods. 

Most common nonlinear control approaches use energy-like Lyapunov functions [59], 

[27]. Combined attitude and position may also be controlled with the same approach. 

This chapter includes a novel Lyapunov function based nonlinear control algorithm 

which uses dual-quaternion parametrization to control both position and orientation, 

i.e., pose. The algorithm is based on the error dual quaternion formulation that takes 

time-dependent desired attitude and position trajectories into account. A Lyapunov 

candidate function is defined based on this error dual quaternion kinematics. The 

formulation adds new terms containing desired attitude and position information, and 

their derivatives. The algorithm is based on the previously developed attitude control 

algorithm to track a time-dependent attitude trajectory [60]. The algorithm is modified 
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and extended to dual quaternions to control both attitude and position. With that 

algorithm, it is desired to achieve translational trajectory plan generated by MPC 

approach while tracking challenging attitude trajectories as well. 

In Section 5.1, dual-quaternion parametrization based attitude and position 

representation are defined in addition to the conventional quaternion based attitude 

representation. In Section 5.2, derivation of error dual-quaternion that is required to 

track given trajectory is presented. Section 5.3 includes the relative motion dynamics 

derivation by the use of dual-quaternion representation. In Section 5.4, the proposed 

nonlinear tracking control algorithm is developed. Finally, simulation results are 

presented and discussed in Section 5.5. 

 Attitude and Position Parametrization 

In the following, dual quaternions are presented with the background of conventional 

quaternion parametrization. Attitude and position based on these methods are 

examined. 

5.1.1 Quaternions 

This section includes a brief introduction to quaternions. Attitude motion may be 

parametrized by the unit quaternions without any singularity. A unit quaternion 

represents a rotation around an axis λ  with the amount of angle θ . This axis of rotation 

is shown with the orthogonal set of i, j, and k. 

 
sin sin sin cos

2 2 2 2

T

x y zq θ θ θ θλ λ λ        
                

=  (5.1) 

or, 

 
sin sin sin cos

2 2 2 2x y zq θ θ θ θλ λ λ       + + +       
       

= i j k  (5.2) 
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Multiplication of two quaternions to obtain a new attitude representation is presented 

with the following multiplication operation: 

 4 4 4 4
Tq p q p q p⊗ = + + × + −p q q p q p  (5.3) 

Where 4q q= +q  and 4p p= +p  with bold vectorial parts and scalar parts with 

subscripts. Quaternion multiplication may be reduced to the multiplication of matrices 

defined in ℝ4×4 and ℝ4×1 respectively. 

 q p q p
⊗

  ⊗ =  (5.4) 

Where the matrix form of regular quaternion multiplication may be shown as, 

 
4

4
T
q Iq

q

×

⊗

 
    

 

+
=

−
q q

q
 (5.5) 

here, ×q  denotes the skew-symmetric matrix representation of cross product operation. 

 3 2

3 1

2 1

0
0

0

q q
q q
q q

×

 
 
 
  

−
= −

−
q  (5.6) 

5.1.2 Dual Quaternions 

Dual quaternions give the opportunity to combine relative position information with 

the regular attitude quaternions. A dual quaternion dqq  is formed by two parts as real 

part 1q  and dual part 2q  for 0≠  and 2 0=  as in the case for dual numbers.   

 1 2dqq q q= +  (5.7) 

A unit quaternion q representing orientation and the position vector r may be combined 

to represent both position and orientation with a unit dual quaternion. It is also 

convenient to show this dual quaternion in ℝ8×1, column matrix format [61]. This 
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representation is given in Equation (5.8). Dual part may be found by a translation in 

inertial frame followed by a rotation of the amount of q or first the rotation of q 

followed by a translation in body frame. 

 
1

2 8 1
8 1 8 1

1 1
2 2

dq
I B

q q q
q

qr q q r ×
× ×

        = = =     ⊗ ⊗     
 (5.8) 

Dual quaternion multiplication may be reduced to the multiplication of two matrices 

defined in ℝ8×8 and ℝ8×1 with modified quaternion multiplication operator ⊗ .  

 
 (5.9) 

It is quite useful to define the operator of [ ]a
⊗

∗  as in Equation (5.10), which adds 

commutativity to dual quaternion matrix multiplication [61]. 

 
 (5.10) 

This operator’s conventional quaternion version is given as, 

 
[ ] 4

4

T

T

p Ip
p

×
∗

⊗

   +  =
 − 

p p

p  
(5.11) 

Dual quaternion conjugate may be written as, 

 
1

2
dq

q
q

q

∗
∗

∗

 
=  
 

 (5.12) 

where 
41 1q q∗ = − +1q  and 

42 2q q∗ = − +2q . 

1 4 4 1

2 1 2

[ ] 0
[ ]

[ ] [ ]
q p

q p q p
q q p

⊗ ×
⊗

⊗ ⊗

   
⊗ = =   

  

11 4 4

22 1

[ ] 0
[ ] [ ]

[ ] [ ]
qp

q p p q
qp p

∗
∗ ⊗ ×

⊗ ⊗ ∗ ∗
⊗ ⊗

   
= =    

  
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 Derivation of Error Dual Quaternion 

From now on, all letters which are used to symbolize quaternions, represent a dual 

quaternion column-matrix form defined in ℝ8×1. Some parts may have dual quaternion 

multiplications without multiplication symbol. Error dual quaternion e associated with 

the desired pose d and the current pose q, may be defined as follows: 

  (5.13) 

or, 

  (5.14) 

Using the chain rule, error dual quaternion derivative may be shown as below. 

  (5.15) 

Kinematics used to relate regular quaternion, and rotational velocity is valid for dual 

quaternions also with the dual velocity definition [62]. 

  (5.16) 

Where dual velocity is given as w vω= + , or with the matrix form, it may be 

represented as 0 0
TT Tw vω =   . By the substitution of Equations (5.14) and 

(5.16) into Equation (5.15), simplifications may be made on the derivative of error 

dual quaternion e as below.  

 
 (5.17) 

 
 (5.18) 

 
 (5.19) 

q d e= ⊗

e d q∗= ⊗

e d q d q∗ ∗= ⊗ + ⊗ 

*1 1 [ ]
2 2

q q w or q w q⊗= ⊗ = 

*1 [ ]
2

e d de d w de∗ ∗
⊗= +

*1 [ ]
2

e d d d w d e∗ ∗
⊗

 = +  


1 [ ]
2

e d d d d w e∗ ∗
⊗

 = +  

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By defining s d d∗=  , finalized and simplified error kinematics may be obtained as,  

 1
2

e s w e = +  
  (5.20) 

This differential equation of attitude and position propagation of the error dual 

quaternion is used for spacecraft pose control in next sections. 

 Dual Quaternion Representation of Relative Motion Dynamics 

In the following, ( )c   and ( )t  indicate that the quantity is given in chaser body 

frame and LVLH frame respectively relative to inertial frame. ( )c
ct , on the other hand, 

indicates that the quantity is written in chaser’s body-fixed frame relative to the LVLH 

frame. Translational and rotational dynamics may be combined by defining cross 

product operator for dual quaternions.  

 
+ ×

q p  
×  

 

×
=

×
1 1

1 2 2 1

q p
q p q p

 (5.21) 

Translational and rotational equations of motion in chaser body frame are given as 

follows: 

 mv mv F
T

ω
ω ω ω
+ × =
+ × =J J



  (5.22) 

Where, m is the mass of the spacecraft, J is the inertia matrix, F is the force, and T is 

the torque acting on the spacecraft. These two equations are combined with the help 

of operator given in Equation (5.21), and dual quaternion form of them may be written 

as [63], 

 c c c c
c c c cJw w Jw u+ × =  (5.23) 
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Where J   is the invertible matrix with anti-diagonal blocks defined in ℝ8×8. u  is the 

combined input, and w  is the combined translational and rotational velocities or dual 

velocity,   

 3 3

3 3

0 0 0
0 0 0 1

0 0 0
0 1 0 0

mI

J

×

×

 
 
 =
 
 
 

J
 (5.24) 

Relative coupled motion dynamics may be written as [63], 

 ( ) ( )1 1c c c c t c t
ct c c c ct t ct ct ct t ctw J w Jw J u q w q w q w q− − ∗ ∗= − × + − ⊗ ⊗ + × ⊗ ⊗    (5.25) 

If the relative pose is measurable, Equation (5.25) may be modified using 
c c t
c ct ct t ctw w q w q∗= + ⊗ ⊗  to write dynamics in terms of target motion on LVLH frame 

and relative motion on chaser body-fixed frame as below. 

 ( ) ( )( )
( )

1 1c c t c t c
ct ct ct t ct ct ct t ct c

t c t
ct t ct ct ct t ct

w J w q w q J w q w q J u

q w q w q w q

− ∗ ∗ −

∗ ∗

= − + ⊗ ⊗ × + ⊗ ⊗ +

− ⊗ ⊗ + × ⊗ ⊗




 (5.26) 

Other equations that helps to derive above relative dynamic equation are given as 

follows: 

 c t ctq q q= ⊗  

1
2ct ct ctq q w= ⊗  

(5.27) 

It should be noted that relative coupled dynamics are represented in chaser body frame, 

and they should be transformed into LVLH frame to compare results with the MPC 

approach obtained in Chapter 4.  

0 0

0 0

F

w u
v T

ω   
   
   = =
   
   
   
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 Lyapunov Based Control Algorithm 

The nonlinear control of attitude and position may be realized with a properly selected 

Lyapunov function. A positive definite Lyapunov candidate function is given as 

follows: 

  (5.28) 

where, ( )0, 0, ( 1) 0 0TV s w e e= = − = =  as the spacecraft reaches desired attitude and 

position. Derivation of the Lyapunov candidate function leads to the following: 

  (5.29) 

Error dual quaternion derivative on the right-hand side of the summation in Equation 

(5.29) may be found by using the property defined in Equation (5.10). 

 

 (5.30) 

Derivative of w  may be retrieved from the combined dynamics in Equation (5.23). 

Substitution of Equations (5.26) and (5.30) into Lyapunov function in Equation (5.29) 

yields, 

 ( ) ( ) ( )( )
( ) [ ]

1 12 2T c c t c t
p c ct ct t ct ct ct t ct

t c t
ct t ct ct ct t ct

T

V s w K J s J u w q w q J w q w q

q w q w q w q e e

− − ∗ ∗

∗∗ ∗
⊗

 = + + − + ⊗ ⊗ × + ⊗ ⊗ 
− ⊗ ⊗ + × ⊗ ⊗ + 

 



 (5.31) 

For an asymptotically stable system, this derivative must be decaying. By equating the 

derivative to a negative definite function given in Equation (5.32), this decay may be 

guaranteed. 

  (5.32) 

( ) ( ) ( )11, , ( 1) 2 2 1
2

TT T
pV s w e e s w K J s w e e−− = + + + −

( ) ( )12 2 2T T
pV s w K J s w e e−= + + +   

*

*

1[ ]
2

1 [ ]
2

T
T T

e e s w

e s w e

⊗

⊗

 = +  

 = +  





( ) ( )12 2T
p dV s w K K s w−= − + +
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The equalization of these two functions yields, 

 ( ) ( )
( ) ( )( )

1 1(2 ) 2 c c t c t
p d p c ct ct t ct ct ct t ct

t c t
ct t ct ct ct t ct

K K s w K Js u w q w q J w q w q

J q w q J w q w q e

− − ∗ ∗

∗ ∗

− + = + − + ⊗ ⊗ × + ⊗ ⊗
− ⊗ ⊗ + × ⊗ ⊗ +





 (5.33) 

where *[ ]
T

e e e⊗= , and taking u  to the left-hand side, the combined control input may 

be found as follows: 

 ( ) ( )
( )( )2

(2 )

c c t c t
c ct ct t ct ct ct t ct

t c t
ct t ct ct ct t ct

p d

u w q w q J w q w q

J s q w q w q w q

K e K s w

∗ ∗

∗ ∗

= + ⊗ ⊗ × + ⊗ ⊗

− − ⊗ ⊗ + × ⊗ ⊗

− − +

   (5.34) 

It should be noted that the control input comprises the derivative of desired attitude 

and position. Moreover, it is represented on chaser body-fixed frame. The positive 

definite gain matrices may be chosen as, 

 2
4 4 44 4 4

2
4 4 44 4 4

2 00
0 20

mm

JJ

nn
p d

nn

II
K J K J

II

ξωω

ξωω
××

××

   
= =   

     
 (5.35) 

mnω ,
Jnω , and ξ  may be chosen by considering response performances [60]. In this 

work, different values for translational and rotational motions are selected, and weight 

between these motions is determined.   

 Simulation Results 

Automated R-D operation may be implemented by generating time-dependent 

trajectories and tracking of them. The desired attitude and position trajectories may be 

defined using polynomials [64], or employing an optimization routine based on a cost 

function with constraints on control torques and forces [65], [66]. Trajectory planning 

may also be carried out with the intention of avoiding certain attitudes [64] or 

positions. The objective of simulations is to track time-dependent trajectories of 

attitude and position. This may be achieved by keeping the unit error dual quaternion 
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value as [1 0 0 0 0 0 0 0]Te = . Another equilibrium point that represents 

the same motion is [ 1 0 0 0 0 0 0 0]Te = − . Between these two options the 

one with the minimum path length, i.e., avoidance of unwinding phenomenon should 

be selected. Although in this study a precise tracking is implemented, unreasonable 

path selections may still be a problem and should be avoided. This may be achieved 

by the implementation of a proper switch between error dual quaternion definitions 

according to the sign of scalar part of the attitude quaternion as shown below [63]: 

 
4

4

1

1

1, 0

1, 0

e

e
η

≥= − <
 (5.36) 

Regarding the sign of the scalar part in attitude error quaternion, vectorial part is 

modified as below to ensure the avoidance of unwinding.  

 
new

η=1 1e e  (5.37) 

Then simulations are conducted with updated control algorithm including modified 

error dual quaternion of 1 2newdqe e e= +  where modification is on attitude part of 

41 1new new
e e= +1e , and position related part is kept same as 2 2 24

e e= +e . This turns 

control system stated in Section 5.4 into a discontinuous controller with a switch 

mechanism. Chaser spacecraft’s physical properties are selected as, 

 Mass: 100m kg=  

2

10 0.3 0.7
Moment of Inertia: 0.3 18 0.2

0.7 0.2 8
kg m

− −

= − ⋅

−

 
 
 
  

J  
(5.38) 

Attitude quaternion is comprised of, 

 4sin( / 2) cos( / 2)qλ θ θ= =q  (5.39) 
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The rotation angle is taken as a function of time 2 3a bt ct dtθ = + + + . To calculate 

coefficients, initial and final conditions are specified as 0 0θ = , 0 0θ =  , 2 / 3,fθ π=

0fθ =  and [ ]1 2 3 14Tλ =  as in [60]. Desired position trajectory is taken from 

MPC results of Case 4 in Section 4.3.4 which is a rendezvous trajectory with relatively 

moving obstacle avoidance. The desired path may be seen in Figure 4.24. In other 

words, the same translational plan generated by MPC is desired to be tracked while 

controlling the attitude also at the same time by the same control algorithm. This MPC 

plan is fed to the dual quaternion feedback by cubic interpolation between the 

solutions. The final time for simulations is selected as 100ft s= . Controller 

parameters to define gain matrices pK  and dK  are selected as the following: 

 
2 210 0.5 0.7
m Jn nm s rad sω ω ξ= = =  (5.40) 

Since control application and simulations are conducted in chaser body-fixed frame, 

simulation results such as dual velocity, position, and inputs should be transformed 

into LVLH frame to compare results with the MPC approach results obtained in 

Chapter 4. For this reason, at the beginning of simulation desired trajectory obtained 

with MPC and dual quaternion generated with these values are transformed to the 

chaser body-fixed frame. Next, simulations are conducted to follow given attitude and 

position trajectories in the chaser frame. Finally, input and state results are converted 

by following transformations to represent them in the LVLH frame and to compare 

them with MPC results. 

 t c
c ct c ctu q u q∗= ⊗ ⊗  (5.41) 

 t c
ct ct ct ctw q w q∗= ⊗ ⊗  (5.42) 

The time histories of resulting desired and realized dual quaternions and the 

differences between them are given in Figure 5.1. It should be noted that these are 

quaternion entries only, not angles or positions. Tracking error is found as the 
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component-wise difference between the real and dual parts where the real part is the 

attitude quaternion, and dual part may be considered as the position quaternion. 

  

  

  
Figure 5.1: Time histories of the desired and realized dual quaternions as attitude and 

position parts, and the error in the realization of these parts. 

In the realization of the desired attitude quaternion, sensitivity with the amount of 
410−±  is obtained. To evaluate the sensitivity in position tracking, it is reasonable to 
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look at the relative position time histories. In Figure 5.2, realized position and the 

difference between desired and realized positions are given respectively. 

  

Figure 5.2: Position of chaser vehicle relative to target in x and y directions while 
avoiding moving debris, and error in relative position realization. 

As may be observed from the figures above, position control is realized quite 

accurately. Accelerations and torques applied to realize desired trajectories are 

presented in Figure 5.3. Please note that, since translational motion is on orbital plane, 

no input in the out of plane (z-direction) is observed. It may be concluded from these 

results that the realized trajectory is quite accurate and acceptable.   

  

Figure 5.3: Control inputs for relative attitude and position tracking. 

It may also be observed from Figure 5.3 that the control accelerations applied to avoid 

the moving debris are very sharp. However, inputs obey the constraints that are 

imposed by the actuators limitations. 
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 In Figure 5.4 the specific forces or accelerations generated by the MPC method and 

dual quaternion based nonlinear tracking controllers are presented in two different 

directions.  It may be observed from these figures that they are quite close to each 

other.   

  

Figure 5.4: Comparison of control inputs of MPC and dual quaternion based 
nonlinear tracking controllers. 

 

The similarity between two control input sets is evident. MPC control set is smoother 

which is believed to be because of the awareness of the approaching obstacle predicted 

far before. MPC also results in slightly lower control effort. However, it is clear that 

by applying MPC in real time, the computational load would be much bigger than the 

case for a fixed control policy. The realized trajectory of both approaches and the proof 

of their similarities are shown in Figure 5.5. Not much difference is observed, and it 

may be deduced that two different control methods are verified with two different 

relative motion dynamics representations. All constraints, including debris avoidance, 

are successfully satisfied in both cases, and no overshoot or constraint violation is 

observed. Thus, the chaser approaches the target safely within the specified approach 

cone which was shown in Figure 4.24. 
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.  

Figure 5.5: Comparison of followed rendezvous paths for MPC and dual quaternion 
based nonlinear tracking controllers. 
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CHAPTER 6 

 

 

CONCLUSION 
 

 

 

 Concluding Remarks 

In this thesis, spacecraft relative motion planning and control are examined. 

Rendezvous problem is solved by controlling the chaser spacecraft with the use of 

Constrained Model Predictive Control approach and simulating relative motion with 

nonlinear HCW equations. Constraints on both states and inputs arisen from safety and 

operational considerations are combined, and handled in optimization problem 

together. Simulation results show that operation is implemented safely in obedience to 

the constraints imposed such as available input, slow impact at docking, the direction 

of approach, and collision avoidance constraints. It is demonstrated that constraints on 

states keep the chaser within the prescribed approach cone without any overshoot, and 

help to achieve a safe trajectory by avoiding a possible collision with relatively 

stationary or moving space debris obstacles.  

Parametric studies including two separate performance metrics to observe fuel and 

energy consumptions together with the docking times are carried out for four different 

mission scenarios with various constraint combinations to find the best prediction 

horizon length and weighting parameter between state and input weight matrices. 

Results are tabulated, and best values for each scenario are found. It is observed that 

unnecessarily large horizons should be avoided because of both computational burden 

and high fuel consumption.  
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Another control algorithm that uses dual quaternions to parametrize both attitude and 

position together is developed with a Lyapunov based nonlinear method. This dual 

quaternion representation is used to derive a set of equations of combined rotational 

and translational relative motions as well. Two control approaches with separate 

relative dynamics representations are compared concerning the relative position 

accuracy and acceleration inputs. As a result, both simulation codes using different 

nonlinear sets of equations of relative motion and both control methodologies are 

verified. 

Results of MPC application revealed that the control approach is quite suitable for such 

an R-D mission that is planned to be implemented autonomously and includes vital 

safety considerations. Although slow impact and available input considerations are 

operational constraints that are unavoidable to consider, application of additional 

safety constraints results in a safe and efficient implementation of the mission. 

Approach cone helps chaser vehicle to approach the target within a previously 

determined approach direction which may be selected based on mission requirements. 

Indeed, it prevents any possible overshoot, and keeps the chaser inside the prescribed 

mission path until it touches the target and reaches the steady state in the origin of the 

LVLH frame. 

Obstacle avoidance is crucially important especially for crowded orbits such as LEO’s 

in which thousands of space debris are orbiting. Both options of bounding obstacle in 

a fixed obstacle zone and considering it as an individual object that is sensed in real-

time are considered. Since the former requires to be more conservative in terms of the 

size of the avoidance region, the latter results in more efficient plans. 

Dual quaternion based nonlinear control algorithm successfully tracks the MPC 

translational path plan. Comparison of input time histories of both control methods 

shows that MPC application demands slightly less control effort. However, it should 

be remembered that MPC application consumes much more computational energy 

compared to the Lyapunov based controller. Controlling both attitude and position is 

taken as the advantage of dual quaternion parametrization, and an attitude trajectory 
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plan is also tracked in parallel to the position control. Similar success in attitude 

tracking is observed as well as in the position tracking. As a result, it may be stated 

that using MPC in motion planning, and apply Lyapunov based controller as the 

control application may result in an efficient, safe, and accurate R-D mission 

implementation. 

 Future Directions 

This work constitutes an inception to a solution of autonomous rendezvous and 

docking operation proposed to be applicable to missions such as debris removal. The 

suggested methodology of control and motion planning is shown to be quite suitable 

to implement missions with accurate attitude and position trajectory tracking in a safe 

and efficient manner. Future work may focus on complex attitude control cases in an 

R-D mission within the close proximity of a tumbling and uncooperative object, i.e., 

“end game” operation. In this thesis, a safe and fuel-efficient path planning is realized 

for rendezvous and docking phases, and it is shown that challenging attitude 

trajectories can be tracked while following rendezvous path accurately. However, it is 

more complicated than controlling attitude only when the target has an unstable 

tumbling or wobbling motion. An approach including strategies to plan and control 

both attitude and position accordingly to reach desired rotational and translational 

states should be developed. Moreover, thruster placement and number should be 

considered during this process. In this work, they were assumed to generate enough 

specific force in each direction. 

Another aspect to consider while implementing such operations is the mechanisms to 

dock or capture the target, and the collaboration of attitude and position controllers 

onboard with these mechanisms. Robot arms and tethering mechanisms may be given 

as examples to these mechanisms. Controlling the motions of such capture 

mechanisms is another topic that needs to be investigated in R-D applications. 
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