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ABSTRACT

CONTROL AND USER PLANE SEPARATION IN AD-HOC NETWORKS

Ergenç, Doğanalp

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ertan Onur

September 2018, 120 pages

Separation of user (data) plane from control plane in networks helps scale resources

independently, increase the quality of service and facilitate autonomy. In ad-hoc net-

works, the plane-separation through clustering introduces a hierarchy where control

functions can be carried out by some designated cluster heads and other nodes per-

form according to the outcomes of those functions. Therefore, clustered topologies

can be considered as a natural consequence of the control and user plane separation

(CUPS). Moreover, hierarchical routing protocols, which are constructed upon the

clustered topologies, enable the use of CUPS architecture for the end-to-end com-

munication. However, there is no silver bullet to apply clustering algorithms that are

directly dependent on the network characteristics, and the routing protocols designed

for clustered topologies cannot effectively utilize CUPS since they neglect the role of

the nodes in the data plane. This study investigates the application of CUPS architec-

ture in ad-hoc networks by considering clustering and routing protocols holistically.

First, the adaptability of the clustering techniques is discussed to satisfy different

objectives such as stability, energy efficiency and service quality; and Dependability-
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based Clustering Algorithm (DCA) is proposed. DCA is a dynamic clustering algo-

rithm that exploits a cross-layer architecture. Its different parameters are analyzed

and optimized using the sensitivity analysis technique, Moment-Independent Delta

Analysis. Then, the hierarchical routing protocol CUPS-based Hierarchical Routing

Algorithm (CHRA) is proposed for end-to-end communication. In CHRA, the sepa-

rate functions of the control and data planes are explicitly defined to provide the qual-

ity of service and energy efficiency taking advantage of the clustered topology. The

overall CUPS-centric framework including DCA and CHRA is implemented in the

discrete event-based simulator, OMNeT++. The results show that DCA outperforms

its opponents when it is optimized for different scenarios. Besides, the study reveals

the significant points that are required to be considered for designing clustering al-

gorithms through the discussion of the optimization process. Finally, CHRA offers a

better quality of service and a fair energy consumption thanks to its novel approach

that considers the effective use of the data plane as well as the control plane. The

complete plane-separated approach is utilized for energy efficiency and the quality of

service in ad-hoc networks.

Keywords: cross-layer, clustering, ad-hoc, routing, control and user plane, CUPS
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ÖZ

TASARSIZ AĞLARDA KONTROL VE KULLANICI DÜZLEMLERİNİN
AYRILMASI

Ergenç, Doğanalp

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ertan Onur

Eylül 2018 , 120 sayfa

Kontrol ve veri düzlemlerinin ayrımı ağlarda kaynakların bağımsız şekilde ölçek-

lendirilmesine, servis kalitesinin arttırılmasına ve otonomluğun sağlanmasına yardım

eder. Tasarsız ağlarda, öbekleme vasıtası ile düzlem ayrımı, kontrol işlevlerinin be-

lirlenmiş bazı öbek başları tarafından yürütüldüğü ve kalan düğümlerin bu işlevler

sonucuna göre hareket ettiği sıradüzeni sunar. Bu sebepten, öbekli topolojiler kont-

rol ve kullanıcı düzlemi ayrımının doğal bir sonucu olarak görülebilir. Dahası, öbekli

topolojiler üzerine tasarlanan sıradüzenli yönlendirme protokolleri kontrol ve kulla-

nıcı düzlemi ayrık mimarilerin uçtan uca iletişimde kullanımının önünü açar. Fakat

isterleri farklı senaryolara göre belirlenen öbekleme algoritmalarının uygulamasında

belirli bir kural olmadığı gibi, öbekli ağlar için tasarlanan yönlendirme protokolleri

veri düzlemini oluşturan düğümlerin rolünü ihmal ettiğinden ayrık düzlemlerden et-

kili şekilde faydalanamamaktadır. Bu çalışma, öbekleme ve yönlendirme protokolle-

rinin bütüncül değerlendirilmesiyle tasarsız ağlarda kontrol ve veri düzlemi ayrımının

faydalarını tartışmaktadır. İlk olarak kararlılık, enerji verimliliği ve güvenilirlik is-
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terlerine uygun bir öbekleme algoritmasının uygulanabilirliğini araştırıp, katmanlar-

arası mimariyle dinamik olarak farklı isterlere adapte olabilen öbekleme algoritması

DCA sunulmuştur. DCA’nın parametreleri hassaslık analiziyle değerlendirilmiş ve

eniyilenmiştir. Sonrasında, kontrol ve veri düzlemi işlevlerinin net olarak belirlen-

diği, servis kalitesi ve enerji verimliliğine yoğunlaşan sıradüzenli yönlendirme pro-

tokolü CHRA önerilmiştir. Kontrol ve veri düzlemi ayrımını esas alan bütün mimari,

ayrık olay eksenli gerçekleyici OMNeT++ kullanılarak programlanmıştır. Sonuçlar,

farklı senaryolar için eniyilendiğinde DCA’nın performansının rakiplerinden daha iyi

olduğunu göstermiştir. Ayrıca eniyileme sürecinin tartışılması, benzer algoritmaların

tasarımında dikkat edilmesi gereken noktaları gözler önüne sermiştir. CHRA ise yön-

lendirmede kullandığı yeni yaklaşımlarla servis kalitesini geliştirip adil enerji kul-

lanımı sağlamıştır. Sonuç olarak, bütüncül bir düzlem-ayrımı yaklaşımının tasarsız

ağlarda enerji verimliliğini ve servis kalitesini arttırdığı gösterilmiştir.

Anahtar Kelimeler: katmanlar-arası, öbekleme, tasarsız, yönlendirme, kontrol ve kul-

lanıcı düzlemi
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CHAPTER 1

INTRODUCTION

Ad-hoc networks are fundamentally predicated on multi-hop communication. Its his-

tory can be tracked to 500 BC where Persian King Darius the First had used in-

termittently located archers for communication instead of mounted scouts [1]. The

King decreased end-to-end delay nearly 95% using this method. After more than

1900 years when hop-to-hop communication is born, wireless ad-hoc networks ap-

pear to be discussed in Hawaii, with the project ALOHANet. ALOHANet and its

posterior PRNET project aimed to design multi-hop wireless communication infras-

tructure onto relatively larger geographical areas; and formally Internet Engineering

Task (IETF) Mobile Ad-hoc Networks (MANET) working group started to develop

an open-source standard in this subject.

In wireless communication, there are two major approaches: cellular networks and

ad-hoc networks. The fundamental idea behind ad-hoc networks is having no infras-

tructure. That is, a pre-deployed infrastructure is not required in ad-hoc networks and

the network is generally managed distributedly with end-point rather than an infras-

tructure such as base stations in cellular networks. The differences between cellular

and ad-hoc networks are summarized in Table 1.1.

Ad-hoc networks are significantly used in the emergency, disaster and army-tactical

scenarios. Packets in such networks are forwarded between nodes themselves due to

multi-hop nature of the architecture. In ad-hoc networks with flat topology, scala-

bility is one of the important problems considering such multi-hop communication.

Organization and management of the unlimited number of nodes dynamically (i.e.,

1



Table 1.1: Differences between cellular and ad-hoc networks [1].

Cellular networks Ad-hoc networks

Fixed infrastructure Infrastructureless

Single-hop links Multi-hop links

Guaranteed bandwidth Shared radio channel

Centralized routing Distributed routing

Reliable connection Frequent de-linking under mobility

High cost and time of deployment Quick and cost-effective deployment

Spatial frequency reuse Dynamic frequency reuse

Easy synchronization Bandwidth-required synchronization

High cost of network maintenance Self-organized networks

Scenario-specific architecture Adaptable architecture

without any central controller) are other major challenges. For instance, the size of

a routing table directly depends on the number of nodes in a network. The manage-

ment of the tables is getting harder with the increasing population of the network

and eventually control traffic outnumbers the actual data traffic. Similarly, resource

allocation and link scheduling to orchestrate overall communication are not easy to

handle in the absence of the centralized control mechanisms. A number of techniques

and protocols has been proposed to overcome those challenges for years.

Control and user plane separation (CUPS), on the other hand, has become popular in

a near future for next-generation cellular networks [2][3][4] and software-defined net-

works (SDN) [5][6]. When the networks become more heterogeneous and the number

of network-based services has swelled, the flexible network architectures which can

be easily scaled and modified to satisfy both networks’ infrastructural requirements

and user-level agreements have to be considered. In CUPS, the control plane consists

of (physically or logically) central control elements that have a manager role over data

plane elements. While network configurations and dynamic policies are set via the

control plane, the data plane performs befittingly such decisions taken by the control

plane. For instance, while forwarding rules and bandwidth limit for a user are regu-

lated in the control plane, forwarding the packets in limited flow rate is actuated by

2



the data plane. Moreover, since some other critical components of the network such

as security and monitoring modules are placed in the control plane, they are able to

operate in a wider scope where all data is passing through, the data plane [7].

The separation of the planes in such a way naturally leads to a hierarchy where some

components of the network (i.e., data plane elements) perform according to some

others’ decisions (i.e., control plane elements). In ad-hoc networks, clustering di-

rectly corresponds to that hierarchical structure. It can be defined as grouping of

nodes based on some common properties and is commonly employed for achieving

scalability and manageability [8][9]. Nodes in a clustered topology are categorized

into different roles according to their functionality. While cluster heads (CHs) are

the main nodes that possess the local neighborhoods (or clusters), ordinary nodes are

gathered around cluster heads. Cluster heads can manage routing, scheduling, data

aggregation etc. [10][11] to orchestrate the group of nodes, and ordinary nodes com-

municate under this management in the hierarchy. Therefore, CHs form the control

plane conducting other nodes in clusters and ordinary nodes reside in the data plane

realizing the network communication under CHs’, or control plane’s leading. Even-

tually, it is separated as "controller" nodes and "user" or ordinary nodes and it leads

us to form the control and user planes where the nodes have different importance and

roles with respect to the plane they are logically lying on.

The techniques for end-to-end communication in ad-hoc networks are also directly

affected and inspired by the hierarchical structure that is a consequence of the CUPS.

Routing algorithms, which are designed for clustered structure, use CHs and gateways

for routing discovery and maintenance; and also data forwarding since those are the

main nodes that are aware of the topology. However, they overload CHs with not

only control plane functions but data plane functions. It eventually imposes a high

amount of load on the specific nodes (i.e., CHs and gateways), and also causes losing

many other alternative paths that can be defined through ordinary nodes. Therefore,

the separation of control and data plane, and using them collaboratively for end-to-

end communication may lead to a much more effective routing in terms of energy

efficiency and the quality of service.
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1.1 Problem Definition

Through the thesis, various problems are addressed from the CUPS perspective. In

clustering algorithms, the challenge is generally CH selection to dynamically manage

ad-hoc networks. Different algorithms focus on different aspects of nodes such as

mobility, energy, location-based requirements of the scenarios for which they are

designed. The evaluation of those criteria reveals which node is more suitable for

being a CH. That is, they are considered to understand nodes’ eligibility to be a group

leader. However, clusters themselves are also needed to be evaluated to understand

the effectiveness of related clusters, and also to be able to compare them. Therefore,

it is important to define some measures to comprehend the effectiveness of clustering

and find some techniques to analyze the relative importance of those measures.

CHs in hierarchical structures naturally bring a variety of advantages for management

of the network. However, using them to find routes and forward data together exhausts

those specially-selected nodes, i.e., CHs and gateways and that is the most important

drawback for the most of hierarchical routing algorithms. In those algorithms, many

possible routes that can be defined by ordinary nodes are neglected while focusing on

CHs. Therefore, the hierarchy in a network is not being used effectively. Moreover,

while some of the studies are directly coupled to clustering process, others require

some special nodes (e.g., having longer transmission ranges, GPS) or central pre-

deployed mechanism (e.g., routing servers and managers) to maintain routing and

clustering processes.

1.2 Motivation and Scope

CUPS is popularly studied in different areas such as mobile cellular networks and

SDN. It is also really suitable to compensate for the absence of a centralized controller

and infrastructure in ad-hoc networks by creating a dynamic and distributed manage-

ment scheme through clustering. Even though clustering is a primitive application of

such design, clustering algorithms are generally designed for very specific purposes
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and make lots of assumptions. Moreover, the hierarchical routing algorithms, which

are designed coupled with clustering algorithms, cannot use this structure effectively.

Therefore, a complete solution for ad-hoc networks exploiting the whole nature of the

CUPS is required to be designed and evaluated. In the thesis, the main motivation is

to reshape an overall clustering and routing architecture from the CUPS perspective

for a flexible, energy-efficient and high-performance ad-hoc network design. It con-

sists of two main parts. The first one is the formation of the CUPS architecture. The

technique is a weighted clustering algorithm, Dependability-based Clustering Algo-

rithm (DCA). In that part, DCA is designed and analyzed, also compared with other

clustering algorithms. Through the analysis of the algorithm, a complete sensitiv-

ity analysis framework is proposed to evaluate the impacts of different parameters

in DCA. Therefore, it is the part that the backbone of the CUPS architecture, i.e.,

construction of the hierarchy and control plane, is discussed in length and breadth.

The second part is the establishment of end-to-end communication scheme on the

top of the CUPS architecture. The details of the control and user plane-separated

routing algorithm, which is CUPS-based Hierarchical Routing Algorithm (CHRA),

for clustered ad-hoc networks are presented here. It is a discussion of the effective

use of CUPS for the energy efficiency and end-to-end communication performance.

Both parts are jointly implemented in the discrete event-based network simulator OM-

NeT++. Apart from using built-in methods of the simulator, a cross-layer stack is also

designed from scratch.

The thesis is organized as follows. In Chapter 2, similar studies for clustering and

routing in ad-hoc networks are presented and categorized. Besides, different cross-

layer architectures and some example work are given. In Chapter 3, the design arti-

facts, which are the common terminology and implementation details, used in both

DCA and CHRA are presented. In Chapter 4, the details and dynamics of the clus-

tering algorithm DCA are discussed. Chapter 5 presents the fundamentals of CHRA

step by step with descriptive figures. In Chapter 6, the overall performance evaluation

of DCA and CHRA is given. Besides, the sensitivity analysis for DCA is presented in

this chapter. In the end, Chapter 7 presents the general evaluation of the whole design

and results, and also a discussion for possible improvements and future work.
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1.3 Contributions

The applications and extensions of the CUPS architecture are investigated for (1) the

management of ad-hoc networks and (2) establishment of end-to-end communication

scheme in CUPS. Eventually, DCA and CHRA are designed jointly to constitute a

complete CUPS-centric solution to satisfy (1) and (2). To realize and evaluate such a

complete design,

• A new and flexible topological structure, cluster sight area (CSA), is proposed

to discover a limited area in the network to be able to find end-to-end routes in

the data plane proactively. It is basically a super-structure that is formed by a

number of clusters.

• The whole design is implemented in the discrete event-based simulator OM-

NeT++, and it is compared with opponent clustering and routing algorithms

separately.

For the formation of CUPS architecture in ad-hoc networks,

• DCA is proposed considering both nodes’ and clusters’ benefits. The node and

dependability scores are defined to evaluate (a) eligibility of a node to be cluster

head and (b) dependability of a cluster so that a node can select the best one

among neighbor clusters to increase its own chance to get a guaranteed resource

with high stability and reliability.

• The term "dependability" is propounded to be able to evaluate and compare the

clusters themselves. Basically, it is a cluster-related measure that is considered

by nodes to be able to decide the cluster they join to maximize their own benefit.

• The analytic method, Moment-independent Delta Analysis [12], is embodied to

evaluate the impacts of weighted metrics that are used to calculate the node and

dependability scores to optimize performance metrics in a weighted clustering

algorithm. This method is directly used for DCA and proposed as a generic

framework to evaluate any other weighted clustering algorithm.
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• Through the sensitivity analysis, the significant metrics that need to be con-

sidered for designing a weighted clustering algorithm are revealed. Since the

advantages of those metrics depend on different use cases, their applicability is

discussed considering different goal-based requirements.

• DCA is evaluated for different use cases that aim high-stability, low and fair

energy consumption, high quality of service (QoS). Two different versions of

DCA and other benchmark clustering algorithms are also implemented for the

performance evaluation and comparison.

For the establishment of an end-to-end communication scheme in hierarchical ad-hoc

networks,

• A CUPS-centric routing algorithm, CHRA, is presented for ad-hoc networks as

a natural extension of the clustering for energy efficiency and quality of service.

• New techniques for route recovery in hierarchical routing are proposed focusing

on the communication in the data plane.

1.3.1 Publications

There is a number of outputs of this thesis. Some of them form the major parts of

the thesis while others are prepared as results of a continuous thinking and redesign

iteration throughout the thesis. They are listed as,

• Ergenc, D., Eksert, L., & Onur, E. (2018). Density-Aware Probabilistic Clus-

tering in Ad Hoc Networks. In Proc. of the IEEE International Black Sea

Conference on Communications and Networking(BlackSeaCom).,

doi:10.1109/blackseacom.2018.8433605

• Ergenc, D., & Onur, E. (2018). Cross-layer Stack Design Framework in OM-

NeT++. in Proc. of the 5th OMNeT++ Summit. (to be appeared)

• Ergenc, D., & Onur, E. (2018). CUPSMAN: Control User Plane Separation

Based Routing in Ad-hoc Networks. ArXiv e-prints., eprint:1807.10747
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CHAPTER 2

RELATED WORK

In this chapter, the major studies for clustering and routing protocols in ad-hoc net-

works are presented. Besides, the well-known cross-layer design principles are dis-

cussed giving examples from the literature. Each section presents the literature review

on the related subject and is summarized with a discussion table.

2.1 Clustering

In the literature, there is a number of clustering algorithms that are designed for dif-

ferent environments and with different decisive purposes. Each algorithm aims to op-

timize different performance measures such as power consumption and control over-

head. Therefore, they are applicable only to some specific types of ad-hoc networks.

In this section, some of those studies are selected to cover a wide range of algorithms

that represent different approaches.

There is not a common classification scheme for clustering algorithms. In this study,

they are divided into five categories that are:

1. Identifier-based Clustering: In this approach, each node in the network has a

unique identifier (ID) and clusters are formed with respect to those IDs. Most of

the cases, identifier-based clustering algorithms are seen as a random clustering

technique since the IDs are assigned randomly. Generally, this type of cluster-

ing algorithms tends to be light-weight and easy-to-implement. However, since
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they ignore many important network characteristics like energy consumption,

mobility etc., they do not fit every scenario with different requirements.

2. Energy-based Clustering: Energy-based clustering algorithms generally use

residual energy as the main metric to select cluster heads. Even though they

use the same metric, while some of them focus on fair energy consumption

by changing cluster heads with respect to their residual energy, others directly

promote the nodes with the highest energy to be CH.

3. Topology-based Clustering: Topology-based clustering algorithms take ad-

vantage of topology-related information to select CHs and eventually form clus-

ters. In this algorithms, the topology information (e.g., location, formation and

neighborhood-related information) is one of the most considered criteria to se-

lect more central nodes that can manage high number of nodes as a CH.

4. Mobility-based Clustering: In this approach, the main concerns are the for-

mation and the maintenance of the clustered structure in the networks with

different mobility characteristics. Ad-hoc networks are self-organized (i.e., no

central control mechanism) and such organization becomes harder when nodes

are not stable. Therefore, mobility-based clustering algorithms investigate the

methods to orchestra mobile ad-hoc networks in a reliable way.

5. Score-based Clustering: When there are multiple parameters that need to be

focused for an efficient design, clustering algorithms have to take such param-

eters into consideration at the same time. For example, if one needs to design

an energy-efficient algorithm for high-mobility ad-hoc networks, mobility and

energy-consumption of nodes may be considered to form clusters. Score-based

clustering approach gathers different requirements and calculates a score as a

combination of different parameters. It can be seen as a hybrid approach to

form clusters where nodes are evaluated with respect to their scores to be CH.

6. Optimization-based Clustering: Optimization-based clustering methods trans-

form the clustering process into some optimization problems and attempt to op-

timize different configuration parameters of clustering algorithms to improve

their performance in terms of different measures.
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Figure 2.1: The classification of the clustering algorithms

In the rest of this section, some major studies, which fall under those categories, are

presented. Figure 2.1 shows the classification of those clustering algorithms.

2.1.1 Identifier-based Clustering Algorithms

Identifier-based clustering algorithms use unique IDs of the nodes as the main pa-

rameter to form clusters. Linked Cluster Algorithm (LCA) [13] is one of the most

fundamental clustering algorithms. In LCA, each node broadcasts its own and neigh-

bors’ IDs periodically and the node with the lowest ID is selected as a CH. While LCA

is a quite simple and low-complexity clustering algorithm, since it forces only some

particular nodes to be CH, those nodes tend to be left with drained battery quicker

than the others.

Least Cluster Change (LCC) [14] has a similar CH selection technique to LCA. How-

ever, it also considers if (a) CHs are getting closer to each other, and (b) ordinary

nodes are getting further from their cluster heads to avoid frequent reclustering pro-
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cesses and prevents ordinary nodes from challenging the cluster heads in some scenar-

ios. It decreases the changes in clustered formation and creates more stable clusters.

However, still its maintenance phase depends on node IDs and it tends to change

cluster formation any time considering randomly assigned IDs.

Adaptive Clustering Algorithm (ACA) [15] is another alternative to LCA. In ACA,

the clusters are formed using the similar lowest-ID method, but any node does not

behave as a cluster head. Instead, the clustered structure is used to create cell-like

(i.e., internally-organized cells in cellular networks) structure where each one uses

different signal frequencies to promote spatial frequency reuse. Even if it is increas-

ing resource efficiency, ACA lacks the hierarchical structure that makes an ad-hoc

network manageable.

2.1.2 Energy-based Clustering Algorithms

Hybrid Energy-Efficient Distributed (HEED) clustering [16] is designed for quasi-

stational sensor networks in order to aggregate data to a centralized entity through

cluster heads. In the algorithm, every node elects itself as a cluster head with a prob-

ability depending to the residual energy or joins the cluster head with the strongest

received signal strength as a repetitive process.

Low Energy Adaptive Cluster Hierarchy (LEACH) [17] is proposed for enhancing

scalability and robustness in the data transmission flow that transferring data from the

wireless microsensor nodes to the base station through the cluster heads of each clus-

ter. In each round, nodes acquire the chance of being cluster head role consecutively,

leading to an evenly distributed load of cluster head role and additional energy con-

sumption among the homogeneous sensors. However, both HEED and LEACH only

focus on energy metric and do not take into consideration any of the performance

parameters of communicating nodes such as mobility and signal strength.
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2.1.3 Topology-based Clustering Algorithms

High Connectivity Clustering (HCC) [18] basically selects the node with the highest

number of neighbors as CH. Its main purpose to decrease the total number of clusters

so that the network can be managed with less control overhead. However, since it is

significantly affected by topology changes, HCC has a high reclustering overhead in

high-mobility ad-hoc networks.

Another topology-based clustering algorithm that selects the node with highest-degree

as CH is 3-hop Between Adjacent Clusterheads (3-hBAC) [19]. In 3-hBAC, after

clusters are formed considering the connectivity of nodes, new nodes (i.e., nodes

freshly participate to the network) and other nodes that do not belong to related clus-

ter are called as "cluster guest". Those nodes can connect to CHs indirectly via an

intermediate node, and still can be managed by CHs that they are indirectly connected

to. Therefore, nodes can be related to further cluster heads instead of creating new

clusters and eventually the number of clusters decreases. However, since there need

to be intermediate nodes to maintain clustered structure, 3-hBAC is quite sensitive to

mobility.

Passive Clustering (PC) [20] has a different approach to form clusters: instead of per-

forming a clustering process with control packets, nodes piggyback its own cluster-

related information. Any node receiving those packets becomes aware of the possible

clusters in its neighborhood. In PC, the nodes sending more data packets with pig-

gybacked control information have a higher probability to be cluster head in their

neighborhood. Even if it decreases the control overhead, it is quite hard to form and

maintain clustered structure in the networks with low communication rate with PC.

2.1.4 Mobility-based Clustering Algorithms

Distributed Dynamic Clustering Algorithm (DDCA) [21] focuses on the mobility of

the nodes and creates multi-hop clusters using (α, t) metric. This metric represents if

a node has a path through the related cluster head with probability α during t seconds.
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While this approach leads to the formation of multip-hop clusters in low-mobility net-

works, the probability of single-hop cluster existence is much higher in high-mobility

networks. Eventually, DDCA provides a stable and mobility-sensitive cluster scheme

bringing the maintenance cost for multi-hop clusters.

Multi-hop Clustering Scheme for Vehicular Ad-Hoc Networks (MCSVANET) [22] is

another mobility-based clustering algorithm that focuses on relative mobility.

MCSVANET assumes that if a node has different mobility characteristic than the

others, it tends to change current cluster formation. Therefore, it tries to form clus-

ters among the nodes that have similar mobility patterns, and one of the least mobile

nodes is selected as cluster head. Those clusters may be single or multi-hop. The

relative mobility is measured by calculating the difference of signal strength between

consecutive control beacons. While depending only on signal strength is not a reli-

able measure considering different channel conditions, the extra beacons also increase

clustering overhead.

A mobility-based approach, MOBIC [23], which has a similar mechanism with iden-

tifier based clustering [15], uses relative mobility as the main metric for cluster for-

mation. The node which has the least relative mobility among surrounding nodes

announces itself as a cluster head where the other nodes in its vicinity become cluster

members.

2.1.5 Score-based Clustering Algorithms

Score-based Clustering Algorithm (SBCA) [24] is a weighted clustering algorithm

that uses residual energy, the number of neighbors and node stability to calculate a

node score to select cluster heads. It aims to decrease the number of clusters and

increase energy efficiency. However, the calculation of score is still ambiguous and

need to be optimized to get the targetted results effectively.

Weighted Clustering Algorithm (WCA) [25] aims to create a dominating set of net-

work graph with the cluster heads. WCA elects cluster heads according to the weighted

sum of ideal node degree, transmission power, mobility and battery power metrics of

14



nodes. The reelection of cluster heads is invoked as the relative distance between the

cluster head and ordinary nodes changes. In contrast, Weight-based Clustering Algo-

rithm (WBCA) [26] calculates the weighted average of consumed energy and degree

difference among the neighboring nodes periodically and chooses the node with the

least values among its one-hop neighbors as the cluster head. Weight-based clustering

algorithms basically construct the clusters based on one or a combination of perfor-

mance parameters of the communicating nodes. The weights of these parameters are

determined by the user experiences and performance results of the algorithms are

measured with fixed and predetermined weights.

2.1.6 Optimization-based Clustering Algorithms

Swarm or evolutionary optimization algorithms are used in order to maximize some

quality measures of the network predetermined by the clustering methods. In Com-

prehensive Learning Particle Swarm Optimization (CLPSO) [27], given a MANET,

a set of cluster formation in WCA [25] is generated and the weights in WCA are

optimized with a swarm optimization algorithm in order to maximize a single objec-

tive, the total score of the cluster heads. In contrast, in [28], Multi-Objective Particle

Swarm Optimization (MOPSO) is proposed to optimize the number of clusters in a

MANET as well as energy-consumption in nodes in order to provide energy efficiency

and reduce the network traffic. Degree difference, energy consumption, mobility, and

transmission range are determined as the objectives and the performance of MOPSO

is tested and compared to that of WCA and CLPSO. Although MOPSO outperforms

WCA and CLPSO by finding relatively more optimal number of clusters, neither of

these optimization approaches offer an extensive cluster maintenance mechanism as

introduced in the proposed method. Various swarm optimization techniques such as

ant colony optimization [29] and grey wolf optimization [30] are applied for VANET

clustering as well. Similar to MOPSO, both techniques try to optimize the number

of cluster heads in the network and neither of them does not have a distributed clus-

ter head reelection, cluster maintenance, and cluster discovery mechanisms. How-

ever, another study introduced in [31] differs from the aforementioned optimization
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methods, presenting a comprehensive clustering method, Adaptive Weighted Cluster-

ing Protocol (AWCP) in which cluster head election, cluster maintenance, and clus-

ter merging operations are defined. An evolutionary optimization algorithm, Non-

dominated Sorted Genetic Algorithm version 2 (NSGA-II) [32], aims to regulate a

set of clustering parameters of AWCP in order to optimize three objectives: average

cluster lifetime, packet delivery ratio, and control packet overhead. The clustering

method is run on a network simulator and simultaneously reconfigured by the opti-

mization algorithm operated on an optimization tool. Although this technique devises

a set of clustering parameters and weights similar to the proposed method, the study

does not investigate the correlation between any of the clustering parameters and the

performance measures. Furthermore, stationary scenarios are not tested in network

simulation, preventing to observe the influence of node mobility on the weight values

and performance metrics.

There are also other clustering algorithms that do not fall under those categories.

Some methods provide cluster head reelection, cluster maintenance, and cluster dis-

covery mechanisms as well as cluster formation as a whole. For instance, Adaptable

Mobility-Aware Clustering Algorithm based on Destination positions (AMACAD) [33]

uses GPS and destination data in order to form clusters and elect cluster heads whereas

Distributed Multi-hop Clustering Algorithm for vehicular ad-hoc networks (VANETs)

based on Neighborhood Follow (DMCNF) [34] propagation delay for composition

and maintenance of n-hop clusters. In [35], a clustering algorithm is proposed to gen-

erate and maintain the clusters as well as to suggest a mechanism of merging clusters

for IEEE 802.11p and LTE hybrid network architecture.

Each algorithm in different categories has its own advantages and disadvantages. The

summary of all those clustering algorithms are presented in Table 2.1 in terms of a

number of different comparison metrics. Radius shows the coverage area of clusters

and it is inversely proportional to Number of Clusters. Stability basically represents

how much clustered formation tends to change. Mobility shows the tolerance of al-

gorithms to the changes stem from moving nodes. While energy efficiency repre-

sents if the algorithm promotes efficient energy use for nodes, Load-balancing shows
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if the traffic is distributed fairly between nodes considering intra- and inter-cluster

communication. Lastly, the control overhead for clustering process represented with

Overhead. Since optimization-based clustering algorithms are not directly clustering

designs but optimization methods (mostly from different study areas than wireless

networking), they are not presented in Table 2.1.
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Table 2.1: The comparison of clustering algorithms

Algorithm Category Radius Stability Mobility energy efficiency Load balancing Num. of Clusters Overhead

LCA [13] Identifier 1-hop Low Very low Very low Low High High

LCC [14] Identifier 1-hop Low Very low Low Low High High

ACA [15] Identifier 1-hop Low Low Low Low High High

HEED [16] Energy 1-hop Low Medium High Low Medium Low

LEACH [17] Energy 1-hop Medium Low Medium High Medium High

HCC [18] Topology 1-hop Very low Very low Very low Low Low High

3-hBAC [19] Topology 2-hop Low Medium Low Low Medium High

PC [20] Topology 1-hop Low High High Low Low Low

DDCA [21] Mobility n-hop High High Low Low Low High

MCSVANET [22] Mobility n-hop High High Low Low Low High

SBCA [24] Score 1-hop Medium Medium Medium Low Low High

WCA [25] Score 1-hop Medium Medium Medium Medium Medium High

WBCA [26] Score 1-hop Medium Low Medium Low Low High
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2.2 Routing

Routing algorithms in ad-hoc networks are primarily divided into four categories with

respect to their route discovery and maintenance techniques. Those categories are,

1. Proactive (Table-driven) Routing: In this approach, the nodes, which actively

participate to routing, send topology information (or available routes) of all

discovered nodes periodically. Therefore, the direct and indirect (one-hop and

multi-hop) reachability information of the nodes are kept updated and fresh.

Since routes are constantly maintained, any source node becomes able to send

packets to a destination node spontaneously without extra delay for route dis-

covery. In contrast, the cost of continuous maintenance in terms of resource oc-

cupation is the major drawback of the proactive routing algorithms. Optimized

Link State Routing Protocol (OLSR) [36] and Destination Sequence Distance

Vector (DSDV) [37] are very well-known examples of this category.

2. Reactive (On-demand) Routing: In this approach, nodes send route request

packets to their neighbors whenever they need to communicate with other nodes

that are further than a single hop. The originator node then evaluates alterna-

tive paths which are obtained from route response packets and selects the best

option e.g., the shortest one. Even though the control overhead is relatively less

than the proactive approach, the end-to-end delay per communication increases

due to discovery process being performed right before the traffic demand. Ad-

hoc On-demand Distance Vector (AODV) [38] is one of the on-demand routing

protocols.

3. Hybrid Routing: Hybrid routing algorithms take advantage of both proactive

and reactive routing techniques. Zone Routing Protocol (ZRP) [39] is a stan-

dard hybrid routing algorithm in the literature.

4. Hierarchical Routing: Although it is quite similar to the hybrid approach,

hierarchical routing considers different roles of the nodes i.e., hierarchies to

manage route discovery and maintenance processes. Cluster-based Routing

Protocol (CBRP) [40] is one of the pioneer examples of this approach.
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CBRP, which is one of the fundamental hierarchical routing algorithms, might be im-

portant to discuss the relationship between clustering and routing. Similar to LCC and

LCA, the node with the lowest ID in each group is selected as CH in CBRP. All nodes

discover their 2-hop neighborhood. Different nodes take roles as CH and gateway in

each cluster, and diversity in the roles directly affects tasks of the nodes in routing.

For example, since gateways are connected to multiple CHs by definition, they have

a significant role for inter-cluster communication. Similarly, CHs manage intra- and

inter-cluster communication via gateways. Eventually, the route discovery process is

mostly handled by those nodes with specific roles. Moreover, CHs are responsible for

the management of the routes and orchestration of their cluster members [40].

CBRP basically offers a divide-and-conquer approach to deal with the challenges

of routing in ad-hoc networks and this is the fundamental idea of all hierarchical

routing protocols. Broadcast packets for route discovery are only used in intra-cluster

communication. In contrast, CHs and gateways use unicast and multicast packets to

find inter-cluster routes. This method helps to detect topology changes locally and

increase stability. It also decreases the number of broadcast packets for an efficient

use of bandwidth [41].

As most of the ad-hoc networks are lack of pre-deployed infrastructure for the net-

work management, protocol-based solutions are utterly in need to overcome many

restrictions. Even though CBRP offers a degree of scalability, requirements and limi-

tations such as power consumption, mobility level, and topology characteristics must

be considered for realistic scenarios. Focusing on the main points, hierarchical rout-

ing algorithms can be categorized in itself. Figure 2.2 shows the classification of the

routing algorithms, emphasizing the hierarchical ones.

2.2.1 Position-based Routing Algorithms

Position-based algorithms mainly consider positions of nodes to find reliable routes.

As long as the fixed or relative position of each node is detected, both intra- and

inter-cluster routing can be maintained as stable and reliable.
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Figure 2.2: The classification of the routing algorithms

In Core-location Aided Cluster-based Routing (CLACR), instead of extra effort for

clustering, the whole network is divided into rectangular areas to maximize per-

cluster node density and a central node in each group is selected as the CH. The

division of areas is conducted by a position manager, i.e., a central server collecting

information from each node. New or non-stationary nodes are attended their clusters

by this manager. Nodes use Dijkstra’s the shortest path algorithm on the topology

map obtained from the position manager to find end-to-end routes [42]. This method

eases the selection of CH and also route discovery using a central controller mecha-

nism. However, it is not a case in most of the scenarios in ad-hoc networks to have a

position manager. Therefore, CLACR has its own cost in terms of the infrastructure.

Rather than position detection of the individual nodes, the nodes moving together are

grouped in Cluster-based Inter-domain Routing (CIDR). That is, the nodes which stay

close to each other form a cluster considering their relative mobility patterns. Similar

to Border Gateway Protocol (BGP) [43] used in the Internet architecture, CHs spread

the topology information of their neighborhood, i.e., neighbor domains in BGP, for

the discovery of routes in CIDR [44]. In this manner, CIDR is an easily scalable

routing algorithm.

Even though position detection by a central server significantly helps to both cluster-

ing and routing, it tightly depends on nodes’ capabilities, network homogeneity and
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environmental conditions. Besides, the effectiveness of position-based clustering and

routing is totally up to reliability of the positioning information. Especially in the

tough environments with a number of obstacles, understanding node positions might

be misleading and it negatively affects the reliability of the routing information [45].

2.2.2 Mobility-based Routing Algorithms

Mobility-based routing algorithms focus on the stability of routing in non-stationary

networks. They also aim to establish long-lasting and locally-fixed routes to minimize

control overhead even in disorganized mobile networks.

When cluster-based routing algorithms do not consider mobility for CH selection,

constantly moving nodes might be selected for the role. It generally leads to the

high number of role changes and information lost, since CHs have relatively more

information about routing and clustering than ordinary nodes. From this perspec-

tive, Cross-layer Cluster-based Routing Protocol (Cross-CBRP) considers different

parameters such as mobility and change in signal quality, enhancing with cross-layer

optimization. It uses those information to determine the most convenient CH that

offers maximum stability in CBRP [46]. Apart from CH selection, consideration of

mobility of the intermediary nodes in Cross-CBRP has also increased the reliability

of routes which are established by CBRP.

In the networks with high-mobility, cluster expansion, merge and shrinkage, CH se-

lection should be continuously managed to maintain the hierarchical structure. In

Zone-based Hierarchical Link State Routing Protocol (ZHLS), the environment is

split into non-coincident geographical areas and each node becomes aware of its area

using Global Positioning System (GPS). Those areas also represent the clusters, i.e.,

each area is a different cluster. For intra-cluster communication nodes use their rout-

ing tables. In contrast, they need to forward data packets via gateways nodes for

inter-cluster communication [47]. Eventually, the maintenance cost due to mobility

is minimized using pre-defined areas and GPS information. However, GPS is a quite

specific capability for many types of nodes and it exists only a limited number of
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scenarios. Even if it is an option to manage clustered mobile networks, ZHLS is far

from being a general solution for ad-hoc networks.

2.2.3 Neigborhood-based Routing Algorithms

In neighborhood-based routing algorithms, intra- and inter-cluster neighborhood are

considered to find alternative routes. They minimize the possibility of route errors

that can frequently occur due to leaving nodes, mobility etc.

Cluster-Based Multipath Dynamic Source Routing (CMDSR) uses the multi-level

hierarchical relationship between nodes in addition to their natural positions. By con-

structing a multi-level clustering (i.e., considering multi-hop distance or multi-role

nodes), routing and data forwarding can be separated into those levels for an abstrac-

tion. While the first level includes CH and ordinary node communication, the second

level is formed between only CHs and routing servers that are defined through the

network to effectively share routing information. In this structure, CHs and ordinary

nodes, and routing servers and clusters heads are directly connected to each other in a

single hop. In contrast, ordinary nodes and routing servers are 2-hop neighbors [48].

This multi-level neighborhood relationship increases topology discovery rates and

possible routes that can be found for any end-to-end communication. The existence

of the routing servers also leads easy and in-detail discovery of routes. However,

having that kind of servers is rarely possible for ad-hoc networks.

Hybrid-OLSR (HOLSR) enhances OLSR by using hierarchy between nodes. It de-

creases control overhead in scalable networks with the fish-eye technique, which

sends routing control messages to further nodes less frequently in comparison to

closer ones. This technique also increases bandwidth utilization by decreasing con-

trol messages. The hierarchy definition of HOLSR is not related to the roles as in

clustered structure, it is represented by the number of hops between nodes instead

[49]. HOLSR has similar drawbacks with proactive routing algorithms. However, the

hierarchical approach and the fish-eye technique significantly decrease the overhead

problem. Figure 2.3 simply shows the hop-hierarchy in HOLSR.
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Figure 2.3: Hop-hierarchy in HOLSR

2.2.4 Other Routing Algorithms

Similar to many other clustering algorithms, Hybrid Cluster Routing Protocol (HCR)

elects the node with the lowest ID as CH. The main concern in HCR is the different

requirements of intra- and inter-cluster communication. In a relatively small area and

with a fewer number of nodes, intra-cluster communication is convenient for proac-

tive routing i.e., continuous information sharing between nodes. In contrast, since

there is a higher number of stationary and mobile nodes in the whole network, the

proactive approach would be quite costly. To avoid this cost, reactive (or on-demand)

routing is preferred for inter-cluster communication. Eventually, while it offers a

low-delay intra-cluster communication, HCR aims to decrease control overhead and

increase bandwidth utilization for inter-cluster communication [50]. However, the

clustering approach that HCR takes is not efficient for many other scenarios that are

subject to high mobility, limited resource and node-batteries. Therefore, the gains of

the hybrid routing are still affected by the underlying clustering algorithm.

Nature has its own solutions for communication between living things. For example,

ants left their smell behind so that they can detect the most popular paths considering

flavor intensity. The nature-inspired routing algorithm, Ant Routing Algorithm for
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Mobile Ad-hoc Networks (ARAMA) uses the battery status and the queue delay of

the intermediary nodes as analogous to the ant-smell on a path. The paths containing

higher-battery and lower-queue delay nodes become more popular and are tend to be

selected. When ZHLS and ARAMA are holistically designed, an increase in packet

delivery ratio and a decrease in end-to-end delay observed as presented by the authors

of [51].

Hierarchical Landmark Ad-hoc Routing (HLANMAR) is an enhanced version of

Landmark Ad-hoc Routing (LANMAR). HLANMAR aims to take advantage of some

special roles in heterogeneous networks: the nodes with more transmission power

form a control structure so that the communication can be performed in a fewer num-

ber of hops. Other than the landmark nodes that are specifically selected in LAN-

MAR, some nodes are also selected for communication backbone in HLANMAR.

Routing information of the backbone nodes is managed by the landmark nodes. From

this perspective, while landmark nodes are responsible for the routing control pack-

ets, the backbone nodes take role in data transfer in long ranges. HLANMAR also

proposes a method to detect the optimum size for the backbone nodes [52]. Since it

requires special types of nodes with extra transmission power, HLANMAR can be

used in limited scenarios with such nodes and energy consumption concern.

Table 2.2: The comparison of hierarchical routing algorithms
Algorithm Category Stability Overhead Mobility Convergence Resource

CBRP [41] Other High Low Medium Fast Medium

CLACR [42] Position High High High Very Fast High

CIDR [44] Position Medium Medium Very High Medium High

Cross-CBRP [46] Mobility High Low High Fast Low

ZHLS [47] Mobility High Medium Very High Fast High

CMDSR [48] Neighborhood Very High High High Medium High

HOLSR [49] Neighborhood N/A Low High Fast Low

HCR [50] Other High Medium Medium Fast High

ARAMA [51] Other High Low High Medium Low

HLANMAR [52] Other Very High High Medium Medium High

Apart from those examples, there are some other routing algorithms that focus on en-
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Figure 2.4: The classification of the cross-layer architectures

ergy consumption and a variety of aspects with a weighted average [53]. In Table 2.2,

a comparison of the studies presented here is shown in terms of stability, overhead,

mobility-tolerance, convergence and resource utilization of them. Stability is directly

related to cost and resource utilization since it represents how stable and long-living

routes are established by the related algorithm. Mobility-tolerance and convergence

are related to each other as well, they show the quickness of the protocols for a low-

delay communication.

A significant point that worths underlying is that the existence of CHs and the hierar-

chical architecture have a great importance in the routing protocol design. Therefore,

routing and clustering need to be considered holistically for a complete system. Re-

quirements and characteristics of the networks and scenarios are decisive and reshape

the relationship between those two important concepts, routing and clustering.

2.3 Cross-layer Optimization

Cross-layer optimization is considered for a number of problems such as effective

routing and clustering, energy conservation and caching. The requirements of those

problems are decisive for the cross-layer communication architecture. For instance,

the frequency, quantity and direction of information sharing between layers affect the

overall design [54]. Figure 2.4 shows the types of different architectures briefly. In

this section, the different categories of the cross-layer architecture are discussed.
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2.3.1 Shared Storage

Shared storage in cross-layer communication is accessed by selected layers to both

extract and update commonly-used information. It could be considered as a micro-

level database with layer interfaces. Especially when all layers need to share infor-

mation, defining a single shared storage for common usage is an effective solution.

This architecture is shown in Figure 2.5.

Glitho et al. propose a clustered topology with cross-layer architecture for multimedia

applications named conferences [55]. In the algorithm, battery status and measurable

distance between nodes are considered for clustering and routing. Taking advantage

of the cross-layer design, specific parameters from the network, link, and application

layers are sent to the shared storage. Then, each layer continuously exchanges infor-

mation with the shared storage to update related parameters of itself (or other layers)

using predefined interfaces. While the network and link layer use a common inter-

face, application layer has its own interface. In this scenario, the shared storage and

the interfaces form the complete architecture of the cross-layer design.

27



Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Management 
Layer

Figure 2.6: Vertical management layer

2.3.2 Management Layer

The management layer is (vertically) placed as a proxy layer between multiple layers

and manages different layer-specific parameters interacting with other layers. It is

able to make cross-layer asynchronous requests to fetch or update parameters. In

some scenarios, it is defined as an integrated shared storage and interfaces block.

However, it can actually work as an active and independent layer (or mechanism) that

orchestrates a variety of information and takes action when it is required. In Figure

2.6, the management layer vertically covers all other layers as a part of the cross-layer

architecture.

Especially in cases which require information processing instead of only sharing raw

parameters, the cross-layer architecture with the management layer is priorly pre-

ferred. The study conducted by Denko et al. is an illustrative example of such sce-

nario [56]. Caching while forwarding enables the clients to fetch data from the closest

server (or other edge-point caching hosts) rather than the server that actual data re-

side. In this study, CHs stores cache-indexing of their member nodes to be aware

of the accessible data in related clusters. However, since each member node needs

to be updated cache information constantly, there is a heavy control traffic load in

uplink, i.e., from nodes to CHs. The information flow through the CHs is performed

considering traffic density and clustering information defined in the network layer,

current battery status and cache-indexing of a node by the management layer. In this
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structure, the layers are not interconnected but the overall system is supervised by the

management layer in a cross-layer fashion.

2.3.3 Direct Connection

When a few layers need to work in cooperation in an architecture, connecting them

directly could be the least-cost option. Direct connection in a cross-layer schema

means that related layers are connected without any intermediary mechanism such as

shared storage and the management layer architectures. This architecture can rely on

API calls through well-defined interfaces, layer-to-layer messaging with new packet

definitions or integration of multiple layers into the single one. Apart from the inte-

gration of layers, the other two techniques are performed without consideration of the

levels of the cooperated layers.

In the standard AODV routing, a node knows only the next-hop for an end-to-end

communication. Therefore, it is enough for a node to be aware of only direct-neighbors

to initiate communication via AODV routing. Similarly, in Cross-Layer Energy Ef-

ficient Ad-hoc On-demand Distance Vector (CLEE-AODV), the "best" route is not

defined as the shortest one: it is the one that costs minimum energy-consumption
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instead [57]. Thanks to the cooperation of the link layer and physical layer, each

node can identify the minimum transmission power to be able to communicate with

its neighbors. Eventually, routes are formed with the least-signal power nodes priorly

and overall energy consumption is kept at the minimum. In this architecture, signal

power from the physical layer, one-hop neighborhood from the link layer and routing

information from the network layer are continuously interchanged.

Since different types of services have a variety of requirements to provide high per-

formance, same routes may not satisfy for each service as expected. In Ad-hoc On-

demand Distance Vector Routing Cross-Layer Scheme (AODV-CRS), the authors of-

fer a cross-layer design that covers the network layer and the link layer to obtain

service-specific high-performance routes [58]. In the algorithm, the network layer

plays an active role in the link scheduling, and the neighbor nodes are informed about

the link scheduling scheme continuously. Each node in a neighborhood finds the

most convenient route for each service utilizing the channel capacity. For this utiliza-

tion, the scheduling schemes of the other neighbors are jointly used. The architecture

includes a symmetric connection of link and network layers for cross-layer optimiza-

tion.
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CHAPTER 3

DESIGN ARTIFACTS

Before presenting the architectural details of the design, it is better to explain the

main design artifacts. The design artifacts are the fundamental terms and implemen-

tation details of the overall architecture. In this chapter, first, the two main terms

commonly used in DCA and CHRA are presented in Section 3.1. The first one is the

backbone and it represents the control plane of the architecture, which is constructed

by cluster heads and gateways. The other one is the cluster sight area and represents

the neighborhoods with a certain size measured by a number of clusters. Then, the

implementation details of the network elements (i.e., nodes in ad-hoc networks) that

embody DCA and CHRA are shown in Section 3.2. Basically, non-parametric details

of the simulation design are given in this section.

3.1 Terminology

The backbone and cluster sight area are the core definitions in DCA and CHRA. They

construct the control plane of the network and take essential roles in both clustering

and routing. The backbone is conceptually similar to structures in other cluster-based

routing protocols that use CHs and gateways to maintain both control and data traffic.

In this section, these terms are defined for the comprehensibility of the algorithm.
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3.1.1 Backbone

Instead of flooding through the whole network, the routing control packets are be-

ing forwarded via a specific set of nodes, which are CHs and gateways as shown in

Figure 3.1. Except isolated clusters (i.e., when no node in a cluster has a neighbor

node from a different cluster), all CHs are connected to the others through gateways.

Therefore, CHs and gateways form a complete structure, which is called the back-

bone, in a fully connected network -in terms of clusters-. Since CHs have topology

information of their own clusters, they can easily make routing decisions for an end-

to-end communication that is destined to any cluster-member node. Therefore, the

maintenance and discovery of the routes are narrowed down to the backbone, which

also forms the control plane. From this perspective, control plane and backbone terms

can be used interchangeably for both routing and clustering processes.

Cluster Head Gateway Ordinary Node

Figure 3.1: The backbone is constructed by cluster heads and gateways. Diamonds,

squares and circles represent CHs, gateways and ordinary nodes, respectively.

3.1.2 Cluster Sight Area (CSA)

Apart from the neighborhood of nodes in a flat topology, the neighborhood of cluster

heads can be considered in a hierarchical network. Each CH discovers its sight area
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considering the clusters in -at most- n-CH-hop neighborhood as shown in Figure 3.2.

A CH-hop represents the distance between two clusters in terms of cluster heads. That

is, if two cluster heads can communicate via a single gateway, their clusters are direct

neighbors in a 1-CH-hop distance. For instance, Figure 3.2 represents a 2-CH-hop

neighborhood where the radius of CSA is 2-CH-hop. In this limited area, the whole

topology is known by all CHs, i.e., any link between nodes is identified by each cluster

head. Naturally, each cluster head discovers and maintains its own cluster’s topology

regularly with periodic clustering control packets. Similarly, each CH sends this local

topology information with inter-cluster sight area messages (SAM) to its neighbor

CHs via gateways. To reduce control overhead for maintenance of CSA, inter-cluster

control packets are sent in different periods with a fish-eye approach. That is, while

the control packets are sent in every TSAM seconds to 1-CH-hop neighbors, they are

sent to n-CH-hop neighbors in nTSAM seconds. Eventually, each CH has more fresh

and reliable topology information about closer clusters. In this manner, CSAs are

maintained proactively by CHs, as a natural extension of clusters. TSAM is chosen as

3 s for simulations.

The representation of CSA is a simple adjacency matrix named visibility matrix.

It does not have to contain complete CSA: a CH stores all nodes that it is aware

of in such matrix. Therefore, a visibility matrix is constructed via both clustering

control packets and SAMs over time. Since each node is known with its ID, rows

and columns of the visibility matrix contains those IDs. If two nodes are neighbor,

related cell (i.e., row with ID of first node and column with ID of the second node, and

vice-versa) contains 1, else it contains 0. Note that, it basically shows the existence

of a link. Alternatively, each cell may contain different information that represents a

link. For instance, link quality indicator for each pair of nodes can be used to analyze

overall communication quality through a route.

The radius of CSA in terms of CH-hops, n, is selected as 2 for simulations. Note that,

2-CH-hop distance is not mandatory but a design issue. The most primal fish-eye ap-

proach for inter-cluster information exchange contains (at least) 2-CH-hop distance

so that a pivot cluster head is able to discover neighbor topologies with a relative
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freshness that is proportional to distance in CH-hops. The upper bound for such struc-

ture is the whole network, i.e., sending topology information to all other clusters. In

contrast, 2-CH-hop constructs the minimal structure and eventually minimum control

overhead for topology discovery. The implicit relationship between CH-hop and reg-

ular node neighborhood is also simple. Assuming that cluster heads are connected to

each other via gateways (not directly connected), n-CH-hop contains (4n + 2)-hop

paths at most.

The main reason for the construction of CSA is creating a sense of a smaller network

that is relatively easy to maintain. Since proactive maintenance of the network-wide

routes is costly, a full-discovery only in a smaller area decreases the delay in end-to-

end communication and utilizes the control overhead for routing. Therefore, CSA is

an effective yet easy-to-maintain structure depending on its size.

5 cluster heads

10 hops

1-cluster neighbor

2-cluster neighbor

Figure 3.2: Cluster sight area covers maximum 10-hop and cover 2-cluster-hop.

3.2 Fundamentals of the Implementation

The overall architecture, which contains DCA and CHRA, is implemented in the

discrete event-based simulator OMNeT++ for the performance evaluation. In the
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Figure 3.3: The abstract inheritance scheme of the simulation design in OMNeT++.

implementation, each node (i.e., network entities in a homogeneous ad-hoc network)

is capable to run DCA and CHRA. The architecture of the nodes is constructed upon

the regular TCP/IP stack. All layers in the stack are designed to be controlled by a

cross-layer manager named management layer so that clustering is performed in a

detailed, flexible and collaborative fashion. The management layer takes the major

role in clustering. That is, it gathers all parameters from other layers (e.g., received

information from neighbor nodes through the application layer) and analyzes them as

presented in Chapter 4 and Chapter 5. The management layer also works as a gateway

between layers. In the architecture, there are not directly connected layers (except the

management layer): if two layers need to share parameters between, they must (a)

request or (b) directly send related parameter to the management layer. The cross-

layer architecture mainly depends on the communication interface between layers

and the implementation of the management layer. Apart from them, any layer can be

changed with another, extended and modified. The extensions of OMNet++ modules

for this study is detailedly shown in Figure 3.3.
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Figure 3.4: The cross-layer architecture implemented in OMNeT++.

Figure 3.4 simply shows this structure. Since the management layer is connected to

all layers, it is represented as a vertical module. The interpretation of the different

layer-specifics parameters is actually the main definition of the clustering algorithm.

The reckoner in Figure 3.4 is the core mechanism that performs clustering and also

affects routing. The dynamics of DCA is performed in the reckoner and in this sense,

the deployment of different clustering algorithms is very easy in this architecture only

by changing the implementation of the reckoner. Therefore, it provides a significant

flexibility and modularity while supporting the inherited core architecture.

Lastly, Table 3.1 summarizes the node architecture presenting stack layers and OM-

NeT++ modules which are used to extend those layers. CrossPhyLayer is an exten-

sion of Ieee80211Radio, and used to calculate SNIR values. It deploys a half-duplex

antenna that is able to either send or receive a packet at the same time. Note that,

the channel model and physical layer module is different for DCA and CHRA. While

the signal quality is considered to understand if nodes are getting closer or further in

DCA, the interference and channel errors are omitted in CHRA so that the quality

of end-to-end communication can be observed correctly. The physical layer model

used in CHRA is extended using IdealRadio. For the link layer, CrossIdealMac, is

designed as an extension of IdealMac. In this module, received MAC packets are

forwarded to the management layer to count the number of neighbors in 1-hop. Clus-

teringApp is implemented extending UDPBasicApp for the application layer to share

clustering control packets periodically. Each node broadcasts control packets con-
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taining a variety of node and cluster-specific information with a UDP packet. This

module also forwards received control packets to the management layer so that it

can analyze the information coming from neighbor nodes and realize if there are any

clusters in the node’s neighborhood. The network layer, CrossIPv4NetworkLayer, is

implemented as an extension of IPv4NetworkLayer. Besides, CHRA is the routing

module and it is integrated into the network layer. Once the network layer becomes

aware of the identifier of the cluster head node, routing control packets for end-to-

end communication are started to forward to that node by the network layer. In

this sense, CrossIPv4NetworkLayer is configured to communicate with related clus-

ter head so that it can orchestrate the communication in a cluster. During network

lifetime, the management layer constantly informs CrossIPv4NetworkLayer in case

of changing cluster. Lastly, DataApp is designed to send and receive data packets be-

tween randomly-selected nodes. This scheme is given to clarify overall architecture

to ease the design of such simulation environment to reimplement this study, and also

similar ones required cross-layer structure.

After the presentation of the terminology, it is much easier to understand the funda-

mentals of DCA and CHRA now. In the next chapter, the formation of CUPS structure

is explained through DCA.
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Table 3.1: The stack design and corresponding OMNeT++ modules.

Stack Module OMNeT++ Class Function

Layer 5
ClusteringApp UDPBasicApp Sending and receiving clustering packets with node information

DataApp UDPBasicApp Sending and receiving random data packets

Layer 4 CrossTransLayer UDP Standard UDP protocol connected to managment layer

Layer 3 CrossNetLayer IPv4 Standard IPv4 protocol hosts routing module

Layer 2 CrossMacLayer IdealMac Sending neighborhood information to managment layer

Layer 1 CrossPhyLayer Ieee80211Radio Sending SNIR values of related packets. Deploys isotropic a half-duplex antenna.

Routing Module CHRA AODVRouting Implements CHRA

Vertical ManagementLayer None Analyzes all information coming from other layers
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CHAPTER 4

DEPENDABILITY-BASED CLUSTERING ALGORITHM

In this chapter, the dynamics and the details of Dependability-based Clustering Algo-

rithm (DCA) are presented. DCA is a novel clustering algorithm that approaches to

clustering in ad-hoc networks from a different perspective. It focuses on the depend-

ability of clusters in addition to the reliability of individual nodes as opposed to other

proposals in the literature.

This chapter is divided into three sections. Section 4.1 shows the main phases of

DCA and also gives a brief overview of the general algorithmic flow. In Section 4.2

and 4.3, a number of metrics used in DCA are given and the dynamics of DCA are

discussed, respectively.

4.1 Dynamics of DCA

DCA consists of two sequential phases: bootstrapping phase and maintenance phase.

Bootstrapping phase is an initialization phase to form initial clustered structure quickly.

After this phase, DCA-specific parameters (i.e., metrics for node and cluster score

evaluation) are started to be considered using clustering control packets that are pe-

riodically broadcast. Evaluating the neighborhood information in these packets, (a)

cluster head selection and (b) cluster selection are periodically performed in the main-

tenance phase. Cluster head selection is the process that some nodes are selected as

group leaders (i.e., heads of related clusters) with respect to their scores, i.e., node

score. On the other hand, cluster selection is another process where each node selects
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a cluster to join by comparing the dependability of clusters by dependability score.

Most of the dynamics of DCA are repeated processes such as node and cluster (de-

pendability) score evaluation, cluster head claim, control packet broadcast etc. There-

fore, there are a number of periodic tasks in both phases. For the sake of simplicity,

those periods are presented in Table 4.1. Each of them is explained in related sections

that they are actively used. The analysis of the periods is presented verbally in Table

6.8.

Table 4.1: The periods and time intervals of recurring tasks in DCA.

Parameter Symbol Value

Bootstrap period tboot 4 sec

Control period Tctrl 1.5 sec

Claim period Tclaim 5× Tctrl
Tick period Ttick 3× Tctrl
Cluster period Tclstr Tctrl

Dependability period Tdpnd Tctrl

In the rest of this section, the dynamics of DCA are briefly explained. The cluster

head selection and cluster selection processes are presented detailedly in Section 4.2

and 4.3.

4.1.1 Bootstrapping Phase

Bootstrapping is the initialization phase of DCA. The main purpose of this phase

is creating a clustered network topology where nodes have various roles as soon as

the network is initiated. The clustered topology, which is formed at the end of the

bootstrapping phase, constitutes a primitive structure where DCA can be performed

in the maintenance phase considering a variety of metrics.

The bootstrapping phase is implemented based on lowest-ID-based clustering algo-

rithm proposed by Gerla et al. in [15] with some modifications:
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1. There is not an acknowledgment mechanism (or ACK messages) for clustering

control packets since the main goal of the phase is creating a primitive clustered

topology quickly with a minimum overhead.

2. Each node is initialized as a cluster head. If a node does not get any cluster-

ing control packets (due to link or packet failures because of interference or

collisions). If a node is isolated, it designates itself as a cluster head by default.

This primitive clustering approach taken in the bootstrapping phase works as follows.

Each node broadcasts its unique node identifier (ID ∈ N) and the node with the lowest

ID is selected as a cluster head in each one-hop neighborhood after a quick conver-

gence time. Besides, nodes residing in the coverage area of multiple clusters are

designated as gateways and they become a member of the cluster with the lowest-ID

cluster head. After the bootstrapping period (which is actually a duration, rather than

period) tboot, the maintenance phase begins.

There are two important parameters to be specified in this phase, the bootstrapping

period and the control period. The control period, Tctrl is the control packet broadcast

period to update cluster formations and the roles of nodes. tboot is the duration of

the bootstrapping phase. Those parameters deserve further investigation because they

depend on the density of the network and the degrees of nodes, and an optimal value

may change by different topologies and scenarios. Since the main objectives of the

bootstrapping phase are discovering topology and assigning roles to nodes, this phase

can be considered as a "best effort" phase (far from being optimal) that shifts the

network from flat- to clustered-topology. The maintenance phase starts at the first

control packet transmission cycle, which is a multiple of Tctrl, after tboot seconds.

Basic neighborhood-related information such as centrality, the number of neighbors

and neighbor cluster heads is also collected in this phase. In Section 4.2.1, all those

effective metrics used in the maintenance phase are explained.
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4.1.2 Maintenance Phase

Cluster maintenance is a continuous process that rearranges clustered structure con-

sidering a variety of metrics related to nodes and clusters. Therefore, the mainte-

nance phase starts after tboot seconds and proceeds until the network is dismissed. In

this phase, nodes start to analyze the information obtained from neighbor nodes and

broadcast more comprehensive information at every Tctrl seconds. Eventually, start-

ing from the first control cycle after the bootstrapping phase, nodes elicit some other

details about their neighbors. The collected information and the detailed neighborhood-

awareness (local topology) are evaluated for two purposes: (1) to select cluster head(s)

in a neighborhood and (2) to select a cluster for becoming a member of. Both pro-

cesses are jointly carried out and form the maintenance phase as presented in the next

two sections.

4.2 Cluster Head Selection

Cluster head selection is a repeated process, it could be considered as an attempt to

select a suitable cluster head for each cluster. It also triggers cluster splitting and

merging. The suitability of a node for being a cluster head is measured by node score

that is calculated using some metrics presented in Section 4.2.1. The technique for

computing node score is explained in Section 4.2.2.

4.2.1 Cluster Head Selection Metrics

Node score is calculated using six different metrics: Energy, Link Quality Improve-

ment Ratio, Self-to-cluster Degree Ratio, Clique-to-degree Ratio, Centrality and Ca-

pacity Utilization. Each metric impacts the node score in a certain way that changes

the suitability of the node for being a cluster head. In this section, these metrics are

explained.

42



4.2.1.1 Energy

This metric is defined as the ratio of residual energy to nominal energy, which repre-

sents the current energy ratio. Each node consumes an amount of energy for trans-

mitting and receiving packets. As the consumption scheme, a state-based power con-

sumption model, which depends on the state of the radio equipment, is employed

in this study. In the state-based model, a radio can be in off, sleep, switching, idle,

receiving or transmitting states and each state results in consuming various amounts

of power depending on the characteristics of the equipment. Such power consump-

tions per state are defined by the chips in the market. For instance, to get more

realistic results, the radio state-based power consumption model is scaled according

to well-known chips Microchip RN1810 [59] and SparkLAN WSDB-102GN [60] in

this study. Transmitting and receiving states are the active ones that represent signal

transmission and reception. Off state represents a deactivated radio. Switch state is

also very common when a radio is changing state between receiving and transmitting,

or any of those active states to idle state. Idle is a ready-to-go state which consumes

relatively low power until a signal reception or transmission is triggered. Generally,

while transmission and reception consume relatively higher power; sleep, idle and

switch states are less power-consumer as they are basically internal or passive states.

4.2.1.2 Link Quality Improvement Ratio (LQIR)

Nodes calculate the link quality change (LQC) value for each neighbor node. LQC is

another important metric that represents link quality variations between two nodes. It

is evaluated by comparing the average signal-to-interference-plus-noise ratio (SINR)

values of previous clustering control packets and the latest clustering control packet;

i.e., it shows how link quality changes over time. Each node stores average link

quality for each neighbor and updates it after it receives a clustering control packet.

The update process is shown in Algorithm 1. Using this approach, each node may

roughly infer whether it is getting closer to or further away from its neighbors.

In Algorithm 1, ε represents a threshold value to avoid oscillation in LQC values. It
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Algorithm 1 Update Link Quality Change
1: procedure UPDATELQC(node, SINR)

2: lqc← 0

3: n← neighbors.find(node.ID) . Find the node in main neighbor list

4: avgSINR← n.getSINR()

5: ε← avgSINR ÷10 . 10% threshold

6: if SINR > avgSINR+ε then

7: lqc← 1

8: if SINR < avgSINR−ε then

9: lqc← −1

10: n.updateSINR(SINR) . Update avg. link quality

11: n.update(lqc) . Update link quality change of related node

is defined as 10% of the average link quality with related neighbor and can be se-

lected considering channel models, mobility etc. For instance, the frequently chang-

ing positions of nodes in high-mobility networks directly affect the density of packet

transmissions (and interference) and the distance between nodes in a certain area (and

received signal power). Therefore, SINR value of signals between two nodes (i.e., the

link quality) is constantly changing even the nodes are moving around a small subarea

in long-term. Similarly, the deviation of noise in some particular areas of the network

can affect SINR even if nodes are stationary. Therefore, using a threshold value and

considering the average SINR value lead to a more reliable comparison. If the lat-

est SINR value is higher than the average of the previous ones more than ε, LQC is

set as 1: it means links are getting better. If there is no change, i.e., it is between

[avgSINR−ε, avgSINR+ε] the link is stable so LQC is 0. Otherwise, the link quality

is decreasing and LQC is set to -1.

LQC evaluation is the significant process to calculate link quality improvement ratio

(LQIR). LQIR is the ratio of the number of links that are getting better to the number

of all links that a node has. Keeping LQCs updated, it is trivial to calculate link

improvement ratio of a node as shown in Algorithm 2.

Note that, LQIR is calculated as a natural extension of clustering maintenance pro-

cess. That is, there is no link quality indication packets rather than the clustering
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Algorithm 2 Link Quality Improvement Ratio
1: procedure CALCULATELQIR

2: conv ← 0

3: numNegs← neighbors.size()

4: for each node n in neighbors do

5: if n.getLQC() ≥ 0 then . Check each neighbor if link quality is stable or better

6: conv = conv + 1

7: ratio← conv ÷ numNegs

8: return ratio

control packets. Therefore, LQIR value is updated in every Tctrl seconds.

4.2.1.3 Self-to-Cluster Degree Ratio (SCDR)

SCDR is the ratio of the number of neighbors of a node to the size of CSA that

the node resides. Having larger degrees is expected to indicate better adequacy for

being cluster heads since connectivity increases with the degree and the number of

alternative routes becomes larger.

SCDR is a normalized value in [0,1] because the actual numeric value of the degree

is hard to use in a weighted manner for score calculation. The important point in such

normalization is that the neighbor nodes have to use a common normalization factor

i.e., the size of CSA for a fair comparison.

4.2.1.4 Clique-to-degree Ratio (CDR)

If a network is considered as a graph, it is important to find how strongly a neigh-

borhood is connected since it indicates the possibility of having alternative links and

overall connectivity in that neighborhood. Using simple neighbor lists obtained from

the neighbor nodes, it is possible to calculate completeness (or density) of connec-

tions of a node’s neighborhood, which is cliqueness. Each non-isolated node involves

a clique of at least 2 nodes, and the maximal clique is defined as the largest clique

that a node involves. The maximal clique is identified with the ID of the lowest-ID
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node in that clique.

The clique-to-degree ratio (CDR) represents the ratio of the maximal clique size in

which a node is involved to the degree of the node and is naturally lying between

[0,1]. It indicates a stronger link density among its neighborhood and higher CDR

represents higher resilience to failures. Algorithm 3 [61] shows the method to find

such maximal clique and calculate CDR.

Algorithm 3 Clique-to-degree Ratio [61]
1: procedure CALCULATECDR

2: max_clique← 1

3: clique← {}

4: for each node n in neigbor do

5: common← self.findCommon(n) . Find common neighbors with node n using its

simple neighbor list

6: for each node c in common do

7: tmax← 1

8: tclique← {}

9: for each node d in common do

10: if d.isNeighbor(c) then . Check if node c is a neighbor of node d

11: tmax← tmax+ 1

12: tclique.push(d)

13: if tmax ≥ max_clique then

14: max_clique← tmax . Find size of max clique gradually

15: clique← tclique

16: clique_id← clique.findMin() . Find clique ID by finding the node with lowest-ID in

clique

17: ratio← max_clique÷ simple_neighbor.size()

18: return ratio

Note that, Algorithm 3 guarantees that it can obtain all maximal cliques with at least

3 nodes in the network [61]. Even though the message complexity is O(mn) (consid-

ering the whole network as a graph, n is the number of nodes and m is the number of

edges), since clustering control packets are periodically shared for the maintenance of

the clustered structure there is no extra overhead for discovering cliques. In the worst
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case, all cliques have the same number of nodes and any adjacent cliques have a com-

mon node, O(n) rounds are required. For mobile scenarios, the constantly changing

topology leads nodes to a continuous cliqueness calculation. However, it is also an

integrated process to cluster maintenance throughout the network lifetime.

4.2.1.5 Centrality

Centrality is defined as the ratio of the average degree of all neighbors to the size of

CSA and is defined in [0,1]. Since apart from one-hop neighbors of a node, potential

connectivity through its neighbors is also quite important for communication with

distant nodes. Therefore, centrality represents a different aspect than node degree.

Similar to SCDR, it is a normalized value.

4.2.1.6 Capacity Utilization (CU)

A node may be a source, destination or forwarder of a packet traffic. Independent of

its role in communication, a higher packet traffic flowing over a node implies that it is

located in a more traffic-dense position. This implication also shows how important

this node is for end-to-end communication. The capacity utilization (CU) of a node is

used to evaluate its effectiveness in communication in terms of the total size of data

and control packet it processes. CU is calculated as

σ(t) =
dctrl + ddata

βt
(4.1)

where dctrl and ddata represent the size of all control and data packets processed by

a node in bytes respectively, t is the current time and β is the channel capacity or

byte rate defined as B/s. Eventually, CU is the ratio of processed data to processing

capacity in unit time, in terms of bytes.

CU also shows a location-centrality of a node evaluating its popularity in handling

traffic; i.e., nodes that are located at the center of a network tend to be more exposed

to traffic. Besides, cluster heads and gateways convey more control traffic. Therefore,
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the capacity utilization of those nodes may be higher than ordinary nodes providing

them an advantage of re-designation as a cluster head.

4.2.2 Cluster Head Selection Technique

The information that is required to select cluster heads is sent via clustering control

packets. Figure 4.1 shows the structure of that type of packet. The fields of the packet

are also listed below.

1. Packet Type: This field indicates the packet type. Different packet types are (1)

full clustering control packet (FCP), (2) core clustering control packet (CCP),

or (3) cluster announcement packet (CAP). FCP and CCP are directly related to

cluster head selection, while CAP is used for cluster selection. In CCP packets,

only must-fields for cluster head selection are included. In contrast, FCP con-

tains many other fields that help (a) current cluster heads to calculate depend-

ability score and (b) other ordinary nodes to recalculate node score. Packet type

occupies 2 bit.

2. Node ID: The ID of the sender node is contained here. In Figure 4.1, this field

occupies Tbit where T is dlogNe and N is the number of nodes in the network

assuming each node has a unique ID.

3. Cluster ID: It is basically node ID of the cluster head and indicates which cluster

the related node resides. It occupies Tbit.

4. Node Score: It is the score calculated by using all (or some, depending on

the metrics that are decided to be used for objective-based design) metrics pre-

sented. The calculation of the node score is explained in the rest of this section.

Its size directly depends on the precision of score and defined as 10 bit by de-

fault.

5. LQIR**: It is the parameter defined in Section 4.2.1.2. Its size directly depends

on the precision of the value and defined as 10 bit by default.
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Figure 4.1: The structure of clustering control packet

6. Clique ID**: This field indicates ID of the maximal clique that the node resides.

The details for the need of such field are explained in Section 4.2.1.4. Its size

is Tbit.

7. Clique Size**: The size of the maximal clique is required for cluster heads so

that they can calculate cluster score. This value is bounded by N, therefore it

occupies Tbit.

8. CU**: It is the parameter defined in Section 4.2.1.6. Its size directly depends

on the precision of the value, and defined as 10 bit by default.

9. Neighbor IDs*: The IDs of neighbor nodes are also sent with FCP packets.

They are required to calculate CDR as explained in Section 4.2.1.4. Its length

is indicated with S which is NT or NlogN .

The fields indicated with (*) are required by other nodes to calculate the node score

properly. Others with (**) are required by cluster heads to be able to calculate the de-

pendability score. Both types of fields are optional and do not have to be sent in every

clustering control packet. For instance, while nodes send CCP (i.e., not containing

optional fields) in every Tctrls to maintain current clustered structure, they can send

FCP (i.e containing all packets) to trigger score recalculations in every nTctrls where

n > 1. As seen in Figure 4.1, while the length of CCP packets is 2T +12bit which is

bounded by O(logN), FCP is larger than CCP and takes O(NlogN) in bit. Therefore,
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switching between those types of packets can increase bandwidth utilization while it

negatively affects the freshness and precision of score calculations.

Evaluating all node-specific metrics presented in Section 4.2.1, node n calculates its

score δn as

δn =
6∑
i=1

αini,

6∑
i=1

αi = 1,

αi ≥ 0,

(4.2)

where ni represents a cluster head selection metric shown in Section 4.2.1 and αi is

the related weight for each metric. Since all metrics are normalized, δn is also defined

in [0,1].

The node score, δn, basically represents the eligibility of a node to be a cluster head.

That is, each node periodically compares its score with its neighbors and the associ-

ated cluster head. For any node, there are three conditions to become entitled to claim

itself as a cluster head:

1. δn should be greater than all its neighbors δni
by εwhere ε is a design parameter

and defined as 10% of the current cluster head’s score to avoid oscillations in

cluster head selection. The race conditions are resolved using lower (unique)

node identifiers.

2. Node’s current residual energy should be at least γ so that it has less risk of a

drained battery. Note that, the minimum ratio of energy depends on the devices’

capability. However, since it is assumed that the network is homogeneous, it is

fixed to 30% for all nodes in the simulations. Alternatively, γ can be defined

considering the energy consumption rates of individual nodes. For instance,

higher γ values are more convenient for fast-draining nodes, which are more

busy or popular in terms of data forwarding.

3. Node’s priority (i.e., giving some nodes extra credit to be selected as cluster

50



head) can be added as an additional restriction. If the designer of the system

prefers, priority can be quantized, a weight can be assigned to it and it can be

considered in the overall node score.

Note that, each node metric is defined as a ratio normalized in [0,1] and δn is the

weighted sum of those metrics. The weights are adjustable according to desired im-

portance associated with a metric. δn is calculated in each Tclaim seconds that repre-

sents the claim period. The claim period is a preventive factor for oscillations in clus-

ter head selection: if nodes frequently give up being a cluster head and then reclaim

again, cluster stability would be significantly violated. However, when the claim pe-

riod is large, the chances of having more reliable cluster heads may be wasted. Node

scores are recomputed at every Tclaim seconds. It is also decisive for consumed energy

for computation.

In case of satisfied conditions, nodes may claim leadership (i.e., being a cluster head)

and this situation leads to different scenarios:

1. The former cluster head concedes and the new cluster head continues to orches-

trate the cluster. The new one recalculates cluster-specific metrics and depend-

ability score (as explained in the next section) and becomes a member of the

control backbone in the network.

2. The former cluster head concedes, however, the new cluster head cannot cover

the whole members of the cluster. Then, the nodes that cannot receive infor-

mation from any cluster head, select a new cluster head among themselves.

Eventually, the former cluster is divided into multiple clusters, one with the

self-claimed cluster head and the other that is formed by the nodes left without

a cluster head.

These scenarios are implicitly handled in the maintenance phase of DCA. For in-

stance, when a node is set free (i.e., no cluster head among one-hop neighbors) as in

the second scenario, if there is no neighbor node with a higher node score, it declares

itself as a cluster head and a new cluster is constructed. Moreover, isolated nodes are
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designed as cluster heads in the network by default as a matter of consistency in the

overall network.

Even if δn is periodically updated, the liveness of neighbors is also an important

issue. To ensure liveness, each node controls the last time it received a packet from

its neighbors. A node recalculates the topology-related metrics, which are SCDR,

CDR and Centrality, if a neighbor node is absent. Besides, the absence of a CH sets

nodes free and triggers the re-selection of CHs; i.e., nodes satisfying claim conditions

can declare themselves as CHs. To consider control packet failures, it is important

to respite for re-transmission of the missing control packets and the tick period Ttick

creates a notice time to handle such failures.

4.3 Cluster Selection

When a node joins the network, it also needs to join a cluster (if it is not isolated)

to employ common resources. Similarly, mobility and handovers can force nodes to

join other clusters. In case of receiving control packets from multiple cluster heads,

the node should be able to decide on which cluster it participates in. To be able

to compare clusters and to select one, clusters have to declare their dependability

scores. The dependability score basically represents the dependability of a cluster.

The exact definition of the dependability is going to be more clear in the sequel.

Fundamentally, the cluster with a dependability score is priorly selected by a node in

case of the existence of alternative clusters to join.

The dependability score is calculated using the information collected from the mem-

ber nodes of a cluster. The context of the collected information is as explained in Sec-

tion 4.2.2. However, the semantics of those metrics are quite different for computing

the dependability score. Instead of using them directly, each cluster head calculates a

bunch of cluster-specific metrics that lead to the dependability score calculation.
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4.3.1 Cluster Selection Metrics

The cluster-specific metrics, which are Cliqueness, Contraction, Traffic Density and

Cluster Degree, are defined in this section.

4.3.1.1 Cliqueness

Since each node shares the identifier of maximal clique it involves and the size of

that clique, cluster heads can evaluate the number of different cliques and sizes of the

cliques in their cluster. Cliqueness, as a metric, represents the ratio of the average

size of the cliques in a cluster to the cluster size. It basically shows the density of

connections in different sub-groups of a cluster and is normalized with respect to the

cluster size.

4.3.1.2 Contraction

Contraction metric indicates whether or not the member nodes of a cluster tend to

get further away from each other. Getting further away means worsening link quality

instead of geographically moving away. However, it is still a sign of contraction

in a cluster in terms of link quality. This metric is simply defined as the general

appearance of link states throughout the whole cluster. It is the average of LQIR

values of all nodes in the cluster. Eventually, contracting clusters tend to be more

stable and keep their current conditions.

4.3.1.3 Traffic Density

Taking the average of the CU values of each node in a cluster, cluster head evaluates

mean capacity utilization ratio inside the cluster. This value implies the operability of

a cluster for packet forwarding; a higher traffic density of a cluster shows that related

cluster is more popular to forward data.
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4.3.1.4 Cluster Degree

Cluster degree is directly related to the number of nodes in a cluster. A cluster with a

few nodes brings a certain control overhead and needs resource allocation to manage

only a few number of nodes. In contrast, such resource allocation and link scheduling

become harder and the number of intra-cluster control packets becomes relatively

larger in crowded clusters. For instance, assuming Time-division Multiple Access

(TDMA), if nodes randomly access to the channel, the number of collisions increases

with the increasing number of nodes. Therefore, it is important to keep the cluster size

close to an ideal number of nodes for an optimum resource use and communication

quality. Therefore, free nodes should prefer joining in sparse clusters instead of dense

clusters without overloading a cluster. On the other hand, it is important to join a

cluster with the size that ensures a degree of connectivity. Cluster degree is defined

as

σ(n) =
4n(MAX− n)

MAX2 (4.3)

where n is the number of nodes in a cluster and MAX is the maximum limit of nodes

a cluster can lodge. In this sense, Cluster Degree metric has a positive impact when

the number of nodes in a cluster is closer to the optimal value, which is defined as

MAX/2 and the cluster with optimal number nodes has the highest cluster degree. A

node cannot join in a cluster with MAX number nodes. Therefore, MAX is a control

parameter to avoid clusters from overloading. Figure 4.2 also shows the value of the

Cluster Degree as a ratio depending on the MAX. Note that, MAX is supposed to be

adjusted considering the total number of nodes in a network. It is set to 10 for the

simulation scenarios.

4.3.2 Cluster Selection Technique

The information which is required to select cluster heads is sent via cluster announce-

ment packets. Figure 4.3 shows the structure of that type of packet. Note that, the

sender of this packet is always a cluster head to announce the existence of the cluster

and the dependability score of the related cluster. The fields in the packet are listed
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below.

1. Packet Type: This field indicates the packet type and marked as CAP. Nodes

recognize the field to separate this type of packets from other clustering control

packets. Packet type occupies 2 bit.

2. Cluster ID: It is basically node ID of the cluster head (i.e., its own ID) and

indicates which cluster the related node resides. It occupies Tbit depending on

the number of nodes in the network.

3. Cluster Score: It is the score calculated using the cluster selection metrics. Its

size directly depends on the precision of score and defined as 10 bit by default.

4. CSA Size: It is sent as the normalization degree as explained in Section 4.2.1.3.

As any other parameter depending on the network size, its size is Tbit.

5. Cluster Size: The role of this field is explained in Section 4.3.1.4. Since the

size of a cluster is limited to MAX, its length is log(MAX)bit which is shown as

M in Figure 4.3.

Eventually, the size of the cluster announcement packet is bounded by O(T+S) or

O(log(NMAX)).

Similar to the node score, the dependability score δc of cluster c is a weighted sum of
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Figure 4.3: The structure of cluster announcement packet

those cluster-specific metrics and reflects the characteristics of them as proportional

to metric-weights as

δc =
4∑
i=1

ρici,

4∑
i=1

ρi = 1,

ρi ≥ 0,

(4.4)

where ci represents a cluster selection metric shown in Section 4.2.1 and ρi is the

related weight for each metric. Since all metrics are normalized, δc is also defined in

[0,1].

Similar to CH selection, a node selects the most dependable cluster among many oth-

ers by comparing their dependability score. A node joins the cluster with the highest

dependability score and changes its current cluster if another cluster’s dependability

score is higher than the current one’s by ε, which is defined 10% of the current clus-

ter’s score. However, the computation and declaration of dependability scores bring

some other additional questions that are related to the algorithm design. Dependabil-

ity score can be announced by employing three different methods:

1. It is announced in every Tctrl seconds piggy-backed to node-specific metrics if

the transmitter node is a cluster head.

2. It is announced in every TSAM seconds as an extension to SAM packets to
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neighbor cluster heads since cluster-related information has already been shared

through those packets.

3. It is announced in every Tdpnd seconds which is defined as the dependability

period and is independent of other periods and specifically chosen to announce

the dependability score. Depending on different topologies and scenarios, de-

pendability period can be defined separately and only dependability scores of

the clusters can be announced as a cluster announcement message by cluster

heads. Besides, when (a) nodes’ scores change in a cluster, (b) nodes leave

a cluster, (c) nodes join in a cluster, (d) nodes switch off/on their power, the

dependability score of the cluster changes. It has to be recalculated before it is

shared. It implies that the frequency of announcing the score is also entangled

with the frequency of recalculation. Therefore, the dependability period Tdpnd

needs to be set carefully for energy efficiency. This method is currently being

used in the algorithm.

In this chapter, DCA is proposed as the key protocol to form CUPS architecture in

ad-hoc networks. In the next chapter, the establishment of a hierarchical end-to-end

communication scheme is presented through the routing algorithm, CHRA.
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CHAPTER 5

CUPS-BASED HIERARCHICAL ROUTING ALGORITHM

The previous chapter presented the formation process of CUPS architecture. In this

chapter, the dynamics and the details of CUPS-based Hierarchical Routing Algorithm

(CHRA) are presented as the description of end-to-end communication scheme. In

CHRA, two major distance-dependent approaches are taken in the routing process.

The first one is in-area communication and it represents the communication in short

distances (in terms of hops) inside a CSA. In contrast, long-distance communica-

tion means end-to-end communication outside the CSA where the number of hops

between source and destination nodes is relatively higher. Those techniques are ex-

plained in Section 5.1 and Section 5.2, respectively.

The hybrid approach in CHRA brings different techniques together taking advantage

of the clustered network structure. Table 5.1 summarizes those techniques. Only in

the in-area communication, the data plane is used for end-to-end data transfer and the

control plane is used to find routes with routing control packets through the backbone.

Therefore, an effective use of the plane-separation is observed there. Since the com-

plete topology is discovered in a small area i.e., CSA, the routes including end-to-end

paths (EEP) from source to destination can be discovered. Even if CSAs are proac-

tively maintained, routes are still drawn on-demand. Therefore, it is regarded as a

semi-proactive technique. In contrast, the long-distance communication is totally up

to the backbone for routing and data carriage on-demand. Thus, the type of routing

in long-distance communication is reactive. Algorithm 4 briefly shows this hybrid

routing process as well.
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Table 5.1: Different distance-dependent approaches in CHRA. While in-area com-

munication represents the end-to-end communication inside a CSA, long-distance

communication refers the communication between source and destionation nodes that

belong to different CSAs.

Attribute
Type

In-area Communication Long-distance Communication

Plane Separation Yes No

Route Type End-to-end path Next-hop and distance

Routing Table EEP table Distance table

Routing Maintenance Semi-proactive Reactive

Algorithm 4 Hybrid route discovery process.
procedure ROUTEDISCOVERY

Source node (SN) sends an RREQ to CH containing destination address

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. CH checks;

if Destination node in the visibility matrix then

CH sends RREP containing the shortest EEP to RREQ-source

else if Destination node in distance table then

CH sends RREP containing next-hop information to RREQ-source

else

CH forwards RREQ to other CHs via gateways

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. SN checks;

if No RREP received until timeout then

SN initiates route discovery again

else

if RREP contains full EEP then

SN updates routing table to keep the shortest EEP

else if RREP contains only next-hop then

SN updates distance table
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Note that, the in-area and long-distance communication depend on different types of

routes to forward data. In-area communication employs EEPs that are defined inside

of certain CSAs. On the other hand, only next-hop information is known through

forwarding in the long-distance communication similar to the well-known distance

vector approach. Therefore, there are different types of routing tables for each ap-

proach. In the rest of this section, the distance-dependent approaches are presented

considering those differences.

5.1 In-area Communication

It is possible to find an end-to-end path in a CSA, since at least one CH knows the

complete topology of that area. The control and the data plane are separately con-

sidered for finding a route and forwarding data respectively in this case. That is, an

EEP includes a number of intermediary nodes that do not belong to the control plane

i.e., not a CH or gateway. Therefore, the discovery and maintenance of such routes

require different techniques than the traditional methods that totally depends on the

control plane -or the backbone- for both routing and forwarding. In this section, route

discovery and maintenance methods for the in-area communication are explained.

Route Discovery: The in-area communication is illustrated without the use of the

control plane (i.e., the backbone) for data forwarding in Figure 5.1. In the figure,

node (a) and (f ) are source and destination nodes, respectively. To find the route go-

ing to node (f ), node (a) sends a route request (RREQ) to its CH (g) with packet (1)

containing connection demand to node (f ). Each CH stores its visibility matrix that is

proactively formed using the topology information in periodic SAM packets. When

the CH receives an RREQ, it first checks its visibility matrix if the destination node

(e.g., node (f ) in this scenario) is visible, i.e., contained in the matrix. If it were visi-

ble, the CH would have run Dijkstra’s shortest path algorithm on the visibility matrix

and found the shortest path independent from the backbone.

However, node (f ) is not in the visibility matrix of node (g) Figure 5.1. Consequently,
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Figure 5.1: In-area communication is performed inside a CSA. CH (h) contains both

source node (h) and destination (f ) in its visibility matrix and finds an EEP.

RREQ in packet (1) cannot be responded directly. Instead, node (g) forwards the

RREQ to neighbor CHs via gateways through the backbone. Packets (2)-(3) repre-

sent forwarding of an RREQ to the neighbor CH, (h). Node (h) is aware of the whole

topology shown in Figure 5.1 since every node is placed in 2-CH-hop range with re-

spect to node (h). Therefore, it can find a complete route from node (a) to node (f ) by

running Dijkstra’s shortest path algorithm on its visibility matrix. Note that, Dijkstra’s

shortest path is very well-known and easy to apply on an adjacency matrix in terms of

both implementation and time complexity (that is O(MlogN) where M is the number

of links and N is the total number nodes in CSA). Besides, any other shortest-path

algorithm can be considered after constructing CSA as a visibility matrix.

Afterwards, node (h) sends back the EEP [a-b-c-d-e-f ] to node (g) with packets (4)-

(5). Node (g) notifies the source node (a) with a routing response (RREP) containing

the demanded route and node (a) stores this EEP in its EEP table. EEP table is a

simple routing table that contains the ID of destination node, EEP to destination node

and the length of this EEP. It is constructed for only in-area communication. After

62



route request and response messages have arrived and related EEP is recorded to EEP

tables, the process in the control plane finishes. That is, the whole routing process

(i.e., finding an end-to-end path on the data plane) is handled in the control plane.

Finally, node (a) forwards the data packets tailing EEP to node (b), and the forward-

ing process is continued hop-by-hop through the packets (4)-(7) in the data plane that

consists of ordinary nodes. If an intermediary node is not aware of that particular EEP,

it caches the path and forwards the packet. Otherwise, it assumes that the EEP is used

before and next nodes in this EEP are aware of this path as well, and removes EEP

from the data packet before forwarding to decrease the size of the packet. Note that,

intermediary nodes can use cached EEPs for only data forwarding. It means that they

do not use an indirectly obtained path for initiating an end-to-end communication as

a source node. The reason for this restriction is explained in the next part, Route Error.

Route Error: When a broken link exists in the backbone, it is relatively easy to

detect since CHs have a periodic message exchange scheme for clustering control

packets. However, it is not always possible to detect a broken link between two ordi-

nary nodes. In such cases, any path containing the broken link loses its validity. Other

nodes using related invalid routes need to be informed about the broken links using a

minimum number of control packets. Therefore, the control and data plane separation

requires a route recovery and maintenance mechanism to continuously manage routes

in the data plane.

Figure 5.2 shows a routing error scenario that occurs in the data plane. In the sce-

nario, node (e) is available anymore due to mobility, or a node crash. Since nodes

periodically send keep-alive messages in DCA to maintain the clustered structure as

a common nature of clustering algorithms, its neighborhood becomes aware of the

loss soon depending on the cluster maintenance scheme.

When node (a) sends data using the route that is obtained from its CH with the control

packets (1)-(2), data packets are forwarded through node (d), and node (d) detects

that the EEP is actually broken since node (e) is off. In this scenario, it deletes any

recorded route in which node (e) is included and send a route error (RERR) packet to
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Figure 5.2: Routing error in data plane. Absence of node (e) breaks the EEP con-

structed between node (a) and node f

.

its cluster head with the control message (5a). The first RERR packet (5a) contains

the source of the route (node (a)), ID of the lost node (node (e)) and a timestamp.

When a CH receives an RERR packet, firstly it deletes the lost node from its visibility

matrix and all recorded routes containing that node from its routing table(s). Then,

construct a list of source nodes (source notification list) that requested any of the

deleted routes. Note that, the destination nodes of those routes also added to the list

since they record reverse routes (i.e., route from destination to source node) as well.

Adding the source notification list, it forwards the RERR packet to all neighbor cluster

heads. After the first RERR packet, each cluster head applies the same procedure with

a difference, they also forward RERRs to the nodes which are in source notification

list and update this list if it knows another source node demanding the related broken

path before. Eventually, all cluster heads and source/destination nodes are informed

about a broken link. Note that, this method is only applicable when intermediary

nodes are not allowed to use a cached route to initiate a connection. If they do so,
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source nodes for related routes cannot be tracked and RERR messages need to be

broadcast frequently, and it creates a significant overhead especially for high-mobility

networks.

While a node removes another node (i.e., a lost node) from its visibility matrix, other

CHs which are not aware of this loss yet may send a SAM packet containing the lost

node. It may lead adding the lost node the visibility matrix again. Therefore, it is

necessary to be able to decide the freshness of the information. Each node records the

lost node in its node ban-list after removing related routes. Each entry in node ban-

list contains the ID of a lost node and a timestamp when its loss is detected. In case

of a topology update via a SAM packet, a node firstly checks its ban-list if any node

in SAM appears in its ban-list. If any exists, it checks the timestamp in related ban-

list record to evaluate how long it has been since the node is lost; if more than Tban

seconds passed after the loss, then topology update is considered as "fresh" otherwise

any topology information related to a lost node is discarded. Tban is directly related to

mobility level of a network and in the test scenarios, it is determined as 10 seconds.

When RERR packets are propagated through the network via the backbone, it is pos-

sible to get same RERR packets for a node. Because there are multiple paths to

access CHs, gateways and source nodes. Assuming there is no isolated cluster, all

CHs are connected forming the backbone and it means that all of them would receive

a RERR packet at least once. Each CH records the sequence number of RERRs and

directly discards duplicates. Besides, since EEPs are defined in maximum (4n + 2)-

hop (where CSA has a n-CH-hop radius), TTL of RERR packets for source nodes is

limited to (4n + 2). Eventually, discarding duplicates and the TTL limitation mini-

mize the flooding of RERR packets.

Route Repair: There is also an alternative method to overcome excessive number

of RERRs that may be an issue in high-mobility networks, that is route repair. When

a node detects a broken link, it is able to repair such link before sending a RERR

packet.

In CHRA, there are two types of route repair mechanisms. The first one is local re-
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Figure 5.3: Local repair is completed when a single next-hop alternative is found.

Node (c) detects the absence of node (e) and sends a RPREQ to its CH. An alternative

node, node (d), is found and the EEP is repaired locally.
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pair and it aims for minimum control overhead and modification in an existing route

for repair. The other one is global repair that aims for route reliability with a more

controllable approach. Figure 5.3 shows an example of local repair. The main idea

behind this type of repair is that, instead of finding an alternative route for the EEP

with a broken link or repairing it in an end-to-end fashion, only a single alternative

next-hop node is searched to quickly fix the route. In this sense, related route is

patched with minimum effort and it is not required to spread RERR packets through

the backbone for a lost intermediary node. In Figure 5.3, [a-b-c-e-f ] is constructed for

the communication between node (a) and node (f ). When node (c) detects the broken

link to node (e, it sends a repair request (RPREQ) to its cluster head with (4a)-(5a).

Since the CH g can observe the whole topology (i.e., in the CSA) presented in the

figure, it directly looks for an alternative path going from node (c) to node (f ), instead

of from node (a) to node (f ). Note that, looking for an alternative route from node (c)

to node (f ) is not for directly finding a partial path to destination, it is finding another

next-hop node that completes the original path [a-b-c-e-f ]. The only update in the

route is forwarding through node d) instead of node (e). Whether node (a) is aware of

the loss of node (d) or not, (c) repairs the path without announcing it to the whole net-

work but its cluster head. During repair, the data packets are cached in the node that

detects the broken link (node (c) in this scenario). Eventually, a minimum number

of routing control packets is generated and it leads both higher resource utilization

and low delay communication with a quick fix. However, it is not always possible

to perform local repair considering an alternative next-hop. The alternative method,

global repair, is preferred in such cases.

Figure 5.4 shows the global repair that is performed when a local repair is not possi-

ble. Global repair basically tries to find a full sequence of nodes after a broken link.

It is different than finding a new EEP since it only completes the path after a broken

link. In the figure, when node (d) detects the broken link, it sends an RPREQ packet

to its cluster head with (5a)-(6a). Since CH (h) cannot find a local repair alterna-

tive (a single alternative node instead of node (e), it draws a totally different path to

be replaced with the broken part. For instance, the data packets are forwarded from

node (d) to node (f ) through (8)-(10) rather than (6)-(7). Additionally, CH (h) sends
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Figure 5.4: Global repair is performed when local repair cannot find an alternative

next-hop node instead of the lost node. In the figure, node (d) detects a broken link

to node (e) and asks for repair to its CH. Since local repair fails, a new route is drawn

and announced to rest of the network.

RERR packets through the backbone including (a) updated path and (b) the identifier

of broken EEP with (6b)-(11b) to announce such update to the source and destination

nodes. Note that, while the invalid route is announced to the network in global repair,

it is not a case in local repair. Because the maintenance of a one-hop updated path

is relatively easier than a multi-hop path. That is, when a global repair is performed,

any other repair in formerly-repaired parts leads nodes to maintain multiply-repaired

routes without awareness of other nodes including CHs. To avoid side effects in such

scenarios and keep the maintenance easier, any changeover in routes is announced to

rest of the network via the backbone in global repair.

Lastly, there could be such scenarios where any type of route repair is not possible at

all. However, RPREQ packets are sent in any case since repair cannot be performed

without CHs that manages the CSAs. Therefore, nodes are waiting for RPREQ re-

sponse (RPREP) for a limited time, then drops the cached data packets if related

68



RPREP is not received. RERR packets are triggered by the CHs that receive RPREQ

but cannot repair the broken part. Algorithm 5 briefly concludes the procedure of the

route recovery.

Algorithm 5 Route repair process for end-to-end paths in the data plane.
procedure ROUTEREPAIR

Node sends an RPREQ to CH containing missing node and invalid EEP identifier

. CH checks;

if There is an alternative node to patch the route then

CH sends RPREQ to originator node containing patched route

else if A new path exists from originator node to destination node then

CH sends RPREQ to originator node containing new path drawn from originator to destina-

tion node

CH sends RERR to other CHs and source nodes via backbone

else

CH sends RERR through the backbone containing missing node and invalid path identifier

5.2 Long-distance Communication

For end-to-end communication outside a CSA, there is not a single CH that can find

an EEP. Therefore, instead of separating the control and data plane, data packets are

forwarded through the backbone. That is, both control and data packets are forwarded

via CHs and gateways. In Figure 5.5, the distance between source node (a) and

destination node (f ) is p+1 where p ≥ 4n+2. When node (a) sends an RREQ to its

CH, it cannot find an EEP. Therefore, the CH forwards that RREQ to neighbor CHs

via gateways. Since no intermediary CH has both source and destination nodes in

its visibility matrix, the RREQ is forwarded until it reaches to the cluster where the

destination node (f ) resides. Packets (1)-(p) represent the routing process through the

CH of the destination node’s cluster. Afterward, since the CH knows all members of

its cluster, it sends an RREP back to the originator of the RREQ. Packets (p+1)-(2p) in

Figure 5.5 shows this process. In each packet (p+i), the receiver node records where

the packet comes from and its own distance from the destination node to its distance

table. For instance, the node which receives (p+1). packet becomes aware of that
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it can send packets to node (f ) through the CH in 2 hops. Similarly, the receiver of

RREP (p+i) knows that the destination node is i+1 hops away through the node that

sends this RREP. Note that, when an RREP offering a shorter distance to a destination

node is received, the distance table is updated with this distance and related next-hop

node. In this sense, this approach is quite similar to Ad-hoc On-demand Distance

Vector (AODV) routing that is constructed upon the backbone. Eventually, the route,

which is going from source to destination through the backbone, is found and node

(a) starts to send data via this route forwarding packets to its CH.

a f

(1)

(2p)

(2)

(3)
(p-1)

(p)
. . . . .

(p+1)

(p+2)(2p-1)
(2p-2)

Figure 5.5: Communication in longer distances is constructed on the backbone.

When an RREQ is conducted by any source node, it is not possible to instantly de-

termine if the destination node is in CSA. Besides, RREQ packets are not forwarded

through only a single cluster head. That is, even though the source node sends only a

single RREQ to its own cluster head, it is then forwarded to all neighbor cluster heads

via gateways lying between adjacent clusters. Therefore, it is quite common that mul-

tiple routes, which resides inside or outside of a CSA, are obtained. In Figure 5.6,

two alternative routes are found using two different methods: packets (2)-(n) leads

a backbone-dependent route for long-distance communication. In contrast, packets
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(2a)-(3a) provides a plane-separated EEP since the CH (h) has both source and des-

tination nodes (a) and (g) in its visibility matrix. In this case, for both reducing the

traffic load on the backbone and selecting the shorter path, the path [a-b-c-d-e-f -g] is

selected by source node (a) to forward the data packets.

b
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Figure 5.6: End-to-end path in data plane is priorly preferred over the backbone-

dependent one.

In the long-distance communication, since the routing process is started on-demand,

route errors only appear when a stored route in the distance table is not valid anymore.

In this case, similar to AODV, RERR packets are sent by the source node and the

routing process is retriggered. When the backbone is directly used for route discovery,

the related route would be always discovered unless the cluster that destination node

resides is isolated.

After the presentation of CHRA, the formation of CUPS architecture and hierarchical

end-to-end communication scheme are completed as a whole design. In the next

chapter, the performance evaluation of this design is presented and discussed.
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CHAPTER 6

PERFORMANCE EVALUATION AND DISCUSSION

In previous chapters, the details of CUPS-centric network management and end-to-

end communication scheme are given through clustering and routing. In this chapter,

the performance evaluation and discussion of DCA and CHRA are given. In Section

6.1, the sensitivity analysis for metric-weights is discussed and DCA is compared

with the opponent clustering algorithms. Then, the performance evaluation of CHRA

in stationary and mobile scenarios with uniformly and nonuniformly distributed net-

works is given in Section 6.2.

There is a number of measures to evaluate DCA and CHRA. They are mostly related

to stability of clusters, energy efficiency and quality of service of the overall design.

Those performance measures are listed as,

1. Average number of role changes per node* shows how frequently clusters re-

structure since in each role change a cluster head turns into an ordinary node or

vice-versa. Therefore, it is a negative indicator for cluster stability.

2. Average role duration per node* represents how long a node keeps its role and

it is strongly-coupled with (1). It is, again, used to measure the stability of the

clustered structure.

3. Average number of cluster changes per node* shows how frequently nodes

change their clusters and join a different one. It is not as critical as role change,

however, an indicator for cluster stability.
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4. Average duration for staying in the same cluster per node* is similar to (2), and

directly proportional to cluster stability.

5. Number of control packets for cluster convergence* shows the number of ef-

fective control packets that triggers an action in clusters, e.g role or cluster

changes. This performance measure shows the effective control overhead for

clustering.

6. Packet delivery ratio* represents the success in end-to-end communication and

is directly related to the quality of service. A set of random source and desti-

nation nodes are selected for each scenario to create a continuous data traffic to

measure this one.

7. Number of control messages for routing** shows control overhead in terms of

the number of routing control packets.

8. Data-to-All ratio (DAR)** is defined as the ratio of the total size of successfully

delivered data packets to the total size of all packets including CSA overhead

for CHRA. To measure the total size of control packets, different aspects and

design issues are specifically considered for each algorithm. In CBRP, for the

size of control packets flowing through the backbone, AODV packet size is

selected as 64B which is shown as the optimum size in [62]. The same packet

size is also chosen for the standard AODV algorithm. In contrast, even though

the size of basic control packets is again 64 bytes in CHRA (i.e., route request,

response and repair packets), the cost of topology discovery to form CSA is

varying depending on the size of local topology information that SAM packets

carry.

9. Average end-to-end delay*** is an indicator for the quality of service for users

or nodes in the scenarios.

10. Standard deviation in energy consumption*** shows if nodes generally have a

fair energy consumption scheme, or just a particular group of nodes is drain-

ing. It is important to reveal if only particular nodes such as members of the

backbone are exhausted, or energy consumption is fairly distributed.
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11. Average energy consumption per node*** is self-descriptive and shows the en-

ergy efficiency. It is jointly used with (10) to show even if nodes consume

similar energy on average, it does not mean each of them consumes equally, or

fairly. The same power consumption model, state-based energy consumption,

is used for the whole architecture.

Note that, the measures indicated with (*) are used to evaluate DCA while (**) rep-

resents the measures that are used to evaluate CHRA. Lastly, the measures with (***)

are used in common for both DCA and CHRA.

6.1 Performance Evaluation of DCA

In this section, the sensitivity analysis and the performance evaluation are presented

for DCA. The sensitivity analysis for the metric-specific weights of DCA is presented

in Section 6.1.1. Using the results obtained from the sensitivity analysis, DCA is

optimized and compared with other clustering algorithms in stationary and mobile

scenarios.

One of the main reasons for designing a weighted clustering algorithm is adaptabil-

ity: the algorithm can be adapted different scenarios and conditions by changing

weights. For performance evaluation, three different goals are defined: stability, en-

ergy efficiency and QoS and each of them is measured by the performance measures

presented at the beginning of this chapter. The relationship between the performance

measures and the goals is shown in Table 6.1. Throughout the sensitivity analysis, it is

aimed to find metric-weights that optimize the performance of DCA in terms of such

objective-specific measures. Besides, the overall performance evaluation is given in

Section 6.1.2 considering the measures that are grouped under different goals.
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Table 6.1: The performance measures for different objectives. Those measures are

evaluated separately considering changing weights of cluster head selection metrics

and cluster selection metrics.
Goal CH Selection Metric-weights Cluster Selection Metric-weights

Stability
Num. of role changes Num. of cluster changes

Avg. role duration Avg. duration for staying in same cluster

Energy efficiency
Avg. energy consumption Avg. energy consumption

Std. deviation in energy consumption Std. deviation in energy consumption

QoS Num. of clustering packets
Packet delivery ratio

End-to-end delay

6.1.1 Sensitivity Analysis

In this section, the sensitivity analysis for the metric-weights of DCA is presented.

The sensitivity analysis (SA) is an analytic approach to determine the effects of dif-

ferent parameters on a dependent result i.e., a multivariate function. There are a num-

ber of SA methods in the literature focusing on different aspects of the parameters

that are analyzed. For instance, the dependency and uncertainty of the parameters,

and the size and the randomness of dataset are fundamental characteristics of the data

taken into consideration for the selection of SA method [63]. In this study, Moment-

independent Delta Analysis is used as the sensitivity analysis method [12][64]. The

main reasons for this selection are,

1. Moment-independent Delta Analysis is able to detect both linear and non-linear

relations between parameters and results.

2. It is not a variance-based algorithm. Instead of considering the effect of a sin-

gle parameter at a time, it takes all sample parameters and related results into

consideration to analyze the whole model and cross-relations through all data.

This methodology is convenient especially for dependent input parameters i.e.,

when the sum of all parameters must be 1. Therefore, it is a globally-sensitive

analysis algorithm.

3. It is useful for uncertain parameters. The uncertainty in parameters means that
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none of the parameters has a restriction, priority or difference from the others as

an input. Therefore, all parameters have the same importance for the function

initially.

The SA framework consists of four major phases, (a) statistical analysis, (b) numer-

ical analysis, (c) cross-validation and (d) optimization. Figure 6.1 shows all those

phases step by step. In phase (a), 5000 random metric-weight sets are generated and

used in stationary and mobile scenarios in the simulation environment at step (1) to

obtain the performance results in terms of the performance measures presented in Ta-

ble 6.1. At step (2), Moment-Independent Delta Analysis algorithm is run over those

results and it finds a sensitivity indicator δ for each metric-weight. Basically, δ shows

the relationship between specific parameters and the performance measures. The

most influential metric-weights are identified at step (3) (Section 6.1.1.1). However,

the indicator δ does not directly show if a metric-weight has a positive or negative in-

fluence on the performance measures. It only indicates that the related metric-weight

has a significant impact on the performance measures. Therefore, in phase (b), the

simulations are re-run using a specific set of metric-weights at step (4) and the numer-

ical results are collected at step (5) (Section 6.1.1.2). In phase (c), the positive and

negative effects of the metric-weights are comprehended by validating statistical and

numerical results obtained from phase (a) and phase (b) together (Section 6.1.1.3).

Finally, one becomes able to define optimized metric-weights for different objectives

in phase (d) using the cross-validation results obtained in phase (c) (Section 6.1.1.4).

In the rest of this section, all those phases are discussed presenting their step-by-step

outcomes.

6.1.1.1 Statistical Analysis

The statistical analysis is the first phase of the SA framework. Using randomly gener-

ated 5000 different metric-weight sets for cluster head selection and cluster selection

metrics, the impacts of the metrics on specific goals are found. For example, assume

that 6 random weights wi are assigned to each cluster selection metric and a ver-

sion of DCA embodying those weights is designed at step (1) of Figure 6.1. Then,
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Figure 6.1: The steps for sensitivity analysis. While steps (1), (2) and (3) give the

statistical results of the Moment-independent Delta Analysis, steps (4) and (5) are

required to understand if a metric has a positive or negative effect on the related per-

formance measure. Step (6) gathers the statistical results and metric-effect to reveal

the effects of the impactful parameters. At step (7), the exact weight values are found

to optimize DCA using the factor system.
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a number of simulations are conducted to obtain performance measures presented

in Table 6.1. Such process is repeated for 5000 different set of weights and practi-

cally 5000 different versions of DCA are shaped. All those versions are realized in

the simulation environment to collect performance results for each. Then, all those

performance results and related randomly-defined metric-weight sets are analyzed to-

gether to comprehend the effects of changing weights on the performance measures

at step (2). Moment-Independent Delta Analysis method returns a δ value that indi-

cates the relationship between a metric-weight and performance measure analyzing

all different sets of weights. The interpretation of (δ) is quite straightforward: the

metric-weight with higher δ value is more effective on related performance measure.

In other words, a performance measure is more sensitive to the metric-weights having

higher δ values. At step (3), the results of SA (i.e., indicator δ) are evaluated and the

metrics with the most impactful weights are found for stationary and mobile scenarios

for each goal.

Figure 6.2 shows the sensitivity of all metric-weights in stationary and mobile scenar-

ios to the performance measures for stability. Figure 6.2a shows that the weights of

SCDR, CDR, LQIR and SCDR, CDR, Energy are the most impactful ones on the num-

ber of role changes in stationary and mobile scenarios respectively. δ values in Figure

6.2b shows nearly the same results for the average role duration in both scenarios.

For cluster selection metrics, Contraction and Traffic Density are the top influential

ones as shown in Figure 6.2c and Figure 6.2d.

Figure 6.3 shows the sensitivity of all metric-weights to the performance measures for

energy efficiency. In Figure 6.3a, there is not a significant difference between δ values

of the metric-weights. However, those values are observably different in Figure 6.3b.

In terms of energy efficiency, the weights of SCDR, CDR and Energy are the most

impactful ones for stationary and mobile scenarios. For cluster selection metrics,

Figure 6.3c and Figure 6.3d show quite similar results. While the weight of Clique-

ness is dominant for all scenarios, Traffic Density and Contraction are influential for

stationary and mobile scenarios, respectively.

Figure 6.4 represents SA results for QoS-related performance measures. Figure 6.4a
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Figure 6.2: The SA indicator δ in stationary and mobile scenarios considering stabil-

ity. Figure 6.2a and Figure 6.2b show the evaluation of cluster head selection metrics

and performance measures to find an optimal metric-weight set to calculate a node

score that boosts stability. On the other hand, Figure 6.2c and Figure 6.2d aim to

find optimal metric-weight set for stability-boosting dependability score considering

cluster selection metrics.

shows that SCDR, CDR and Energy are significantly influential in terms of control

overhead. For QoS, the weight of Contraction has an observable effect on both packet

delivery ratio and end-to-end delay as shown in Figure 6.4b and Figure 6.4c. While

the weight of Cluster Degree is more significant for stationary scenarios, Cliqueness

is considered as the second impactful metric for mobile scenarios.

Table 6.2 presents the concrete outcome of the statistical analysis phase. For each

scenario and objective, the most impactful metric-weights are shown in this table.

The next phase, numerical analysis, is the intermediary step before understanding

80



Energy
LQIR

SCDR
CDR

Centra
lity CU

0

0.01

0.02

0.03

0.04

0.05

 f
o
r 

a
v
g
. 
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Stationary

Mobile

(a) δ of each CH selection metrics on the average

energy consumption per node

Energy
LQIR

SCDR
CDR

Centra
lity CU

0

0.01

0.02

0.03

0.04

0.05

0.06

 f
o

r 
s
td

. 
d

e
v
. 

in
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Stationary

Mobile

(b) δ of each CH selection metrics on the standard

deviation in energy consumption

Cliq
ueness

Contra
ctio

n

Traffic
 D

ensity

Cluster D
egree

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 f
o
r 

a
v
g
. 
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Stationary

Mobile

(c) δ of each cluster selection metrics on the average

energy consumption per node

Cliq
ueness

Contra
ctio

n

Traffic
 D

ensity

Cluster D
egree

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 f
o

r 
s
td

. 
d

e
v
. 

in
 e

n
e

g
y
 c

o
n

s
u

m
p

ti
o

n

Stationary

Mobile

(d) δ of each cluster selection metrics on the standard

deviation in energy consumption

Figure 6.3: The SA indicator δ in stationary and mobile scenarios considering energy

efficiency. Figure 6.3a and Figure 6.3b show the evaluation of cluster head selection

metrics and performance measures to find optimal metric-weight set for node score.

Figure 6.3c and Figure 6.3d aim to find optimal metric-weight set for cluster selection

metrics.

if the impacts of those metric-weights are positive or negative on the performance

measures.

6.1.1.2 Numerical Analysis

After the phase (a), the numeric results are collected in this phase to understand the

practical impacts of metrics, i.e., they positively or negatively affect the performance

measures. To obtain the numerical results at step (4), the metric-weights are assigned

as follows. Concentrating one metric at a time, if metric i is weighted as wi, others

are equally weighted as (1 − wi)/(n − 1) where n is the total number of metrics.
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Figure 6.4: The SA indicator δ in stationary and mobile scenarios considering QoS.

Figure 6.4a shows the evaluation of cluster head selection metrics and performance

measures to find the optimal metric-weight set to calculate node score. Figure 6.4b

and Figure 6.4c aim to find the optimal metric-weight set for cluster selection metrics.

Table 6.3 and Table 6.4 are the presentations of example numeric results for different

performance measures in stationary and mobile scenarios. In those tables, each metric

has a different weight degree. If a metric is weighted as "All", it means that its weight

is wi = 1.0 and others are just wi′ = 0.0. "High", for example, means that related

metric-weight is 0.75 and others are equally distributed as (1 − 0.75)/5 for cluster

head selection metrics. Note that, since there are 4 metrics for cluster selection, the

equal distribution becomes (1− 0.75)/3 when a metric is weighted as "High". Simi-

larly, "Medium" and "Low" are weighted as 0.5 and 0.25 respectively. Having "None"

represents wi = 0.0 and it leads wi′ = 0.2 (or wi′ = 0.33 for cluster selection metrics)

for all other metrics. Such tables are generated for each performance measure for sta-

82



Table 6.2: The most influential metrics in descending order for stable and mobile

scenarios.

Goal
CH Selection Metric-weights Cluster Selection Metric-weights

Stationary Mobile Stationary Mobile

Stability

SCDR SCDR Contraction Contraction

CDR Energy Traffic Density Traffic Density

LQIR LQIR

Energy efficiency

SCDR Energy Cliqueness Cliqueness

CDR CDR Traffic Density Contraction

Energy SCDR

Control overhead/QoS

SCDR SCDR Contraction Contraction

CDR CDR Cluster Degree Cliqueness

Energy Energy

tionary and mobile scenarios. However, only Table 6.3 and Table 6.4 are shown here

to exemplify the technique to keep the results comprehensible.

The numeric results show the actual impacts of the metrics on performance measures.

For example, in Table 6.3, the effects of metric-weights on the number of clustering

control packets are given. As seen, while the weight of Energy is decreasing (going

from "All" to "None"), the number of clustering control packets are increasing. It is

concluded as the more weight for Energy leads to less control overhead, therefore it

has a positive (decreasing) impact on control overhead and is represented with the

symbol (↑). However, the situation is vice-versa for SCDR and CDR, thus they are

marked with (↓). Lastly, a regular change cannot be observed in the number of clus-

tering control packets for the other metrics; they are shown as (∼), which implies

irregularity. Note that, the interpretation of Table 6.4 is quite similar. After this pro-

cess is repeated for each performance measure in Table 6.1, the real impact of each

metric-weight (for both cluster head and cluster selection) is revealed.
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Table 6.3: The numeric results of the number of effective cluster control packets

in stationary scenarios. If increasing weight degree decreases the number of control

packets then related parameter has a positive impact on the performance measure. En-

ergy, here, has such positive impact and in contrast, SCDR and CDR have a negative

impact. In others, irregularities are observed.

Parameters
Weight Degree

Impact
All High Medium Low None

Energy 134.42 143.08 146.94 147.83 149.13 ↑

LQIR 136.52 138.04 142.43 139.25 150.27 ∼

SCDR 156.9 152.80 150.12 149.24 146.65 ↓

CDR 180.31 159.68 149.84 147.16 146.24 ↓

Centrality 144.84 143.31 148.09 148.81 146.16 ∼

CU 155.93 147.06 151.45 146.11 149.18 ∼

Table 6.4: The numeric results of the average cluster change duration in mobile sce-

narios. If increasing weight degree increases the duration, it implies more stable clus-

ters and related metric has a positive impact on the performance metric. Contraction

has such impact and Traffic Density does not.

Parameters
Weight Degree

Impact
All High Medium Low None

Cliqueness 20.25 17.27 17.077 18.37 18.99 ∼

Contraction 22.30 19.82 18.92 18.45 17.32 ↑

Cluster Degree 18.82 18.09 18.17 18.36 21.16 ∼

Traffic Density 16.50 17.72 18.04 18.15 18.31 ↓
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6.1.1.3 Cross-validation

After finding the most influential metrics in phase (a) and identifying their actual

effects in phase (b), it is easy to make a cross-validation to get complete results of SA.

Table 6.5 represents the concrete outcome of step (6) combining all the information

obtained in previous phases. For stationary and mobile scenarios, and focusing on

different objectives, almost every case requires different metric-weight assignment

considering varying metrics and their impacts. For example, while CDR metric is

positively affecting energy efficiency in stationary scenarios, its effect is negative on

control overhead and QoS in mobile scenarios. The interpretation of the indicators in

Table 6.5 is quite similar to the ones in Table 6.3. While (↑) symbol means that higher

weights of related parameters have a positive effect, (↓) implies that lower weights

tend to have a positive impact. (↔) shows mediocre values of a weight has the most

positive effect. Lastly, even if the parameters with (∼) have higher impacts, there is

no such regular increasing or decreasing effect of them on the related performance

measure. Note that, those indicators are not related to actual values of those metrics

calculated during the network lifetime; instead they are related to the weights assigned

to such parameters. In the rest of this section, the actual effects of the metric-weights

found after cross-validation are discussed for each goal.

Stability: According to Table 6.5, the different conditions in stationary and mobile

scenarios require to adjust metric-weights considering different goals. In stationary

scenarios, for a more stable network in terms of related performance measure pre-

sented in Table 6.1, SCDR, CDR and Energy are the most influential (or sensitive)

metrics. While Energy positively affects the stability, SCDR and CDR have nega-

tive impacts for cluster head selection. Ideally, SCDR and CDR are not supposed to

change during network lifetime in stationary networks. However, the interference in

the medium due to random packet traffic (and also triggered routing traffic) between

many nodes easily changes the values of those metrics since control packets may be

lost in such conditions. Therefore, their possible and frequent changes also trigger the

selection of new cluster heads when their weights are higher. Note that, deployment
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Table 6.5: The most influential parameters in descending order for stable and mobile

scenarios. While the parameters indicated with (↑) has a positive effect, the others

with (↓) have a negative effect. (↔) indicates a mediocre value gives the best results

and the ones with (∼) do not show a regularity even if they have high impact. The

factorial values that are used to calculate actual weights are also given in the latest

row.

Goal
CH Selection Metric-weights Cluster Selection Metric-weights

Stationary Mobile Stationary Mobile

Stability

SCDR ↓ SCDR ↓ Contraction ↑ Contraction ↑
CDR ↓ Energy ↑ Traffic Density ∼ Traffic Density ↓
LQIR ↑ LQIR ↑

Energy efficiency

SCDR ∼ Energy ↓ Cliqueness ↓ Cliqueness ↓
CDR ↑ CDR ∼ Traffic Density ↔ Contraction ↔

Energy ∼ SCDR ↔

Control overhead/QoS

SCDR ↓ SCDR ↓ Contraction ↑ Contraction ↔
CDR ↓ CDR ↓ Cluster Degree ∼ Cliqueness ↔

Energy ↑ Energy ↑

Factors (↑): 5 (↔): 3 (∼): 1 (↓): 1

of a contention-free link layer protocol would probably change the effects of those

metrics. LQIR, in contrast, positively affects since stronger or stable connections

bring more stable neighborhoods. For cluster selection metric-weights, Contraction

has a positive effect on stability by default since it indicates cluster constancy. Traffic

Density, in contrast, does not have a regular effect but still have a significant impact

on the stability-related performance measures.

In mobile scenarios, SCDR has a negative impact on stability since constantly chang-

ing node degrees due to mobility lead to frequent cluster head reselections, and un-

settle current clustered structure. energy consumption does not dramatically change

from node to node and only CHs consume relatively more energy. Therefore, it does

not directly affect ordinary nodes but only triggers reselection when a CH’s node

score decreases dramatically due to high energy consumption. LQIR and Contraction

have positive effects as they do in stationary scenarios. However, focusing on Traffic

Density negatively affects stability since the randomness in packet traffic can confuse
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nodes to change clusters often and violates stability.

Energy Efficiency: Energy efficiency metrics are mostly affected by SCDR, CDR

and Energy in stationary scenarios. However, SCDR and Energy have no regular ef-

fects in terms of increasing or decreasing metric-weight values. Note that, selecting

nodes with higher energy as cluster head may not lead a better energy efficiency. Even

if it decreases the standard deviation in energy consumption (i.e., provides fairer en-

ergy consumption between nodes), the total energy consumption does not have to be

affected positively. In contrast, CDR indicates highly-connected groups and focusing

on higher-CDR cluster heads have more control over their neighborhood and even-

tually packet traffic with less routing overhead, and energy consumption. However,

while individual CDR value has a positive impact on energy efficiency influencing

cluster head selection, Cliqueness does not show the same effect for cluster selection.

The analysis reveals that Cliqueness, which is strongly related to CDR, decreases en-

ergy efficiency. On the other hand, mediocre metric-weight for Traffic Density gives

the best results. Both high and low traffic clusters are not desired, mediocre values

lead to a decent number of known alternative routes, and also low interference inside

a cluster.

In mobile scenarios, there is no metric having a dominantly positive impact with

a higher metric-weight. Even if CDR is the second most impactful parameter, its

influence does not show regularity. Energy has an observable negative effect when

it is considered for cluster head selection. In fact, selecting the highest-energy node

as cluster head can easily disorganize a mobile network by forcing more inactive

(low-energy consumer) node to be cluster head, and it eventually leads to extra route

discovery and clustering processes. This comment is also held for SCDR. However,

selecting the nodes with higher degrees as cluster heads still saves most of the nodes

from triggering routing processes repeatedly. That is, packet traffic is managed by

fewer number of cluster heads that cover a larger number of ordinary nodes and this

leads to higher energy efficiency. Contraction takes higher weight-share. When nodes

join clusters which do not tend to dismiss, energy efficiency is eventually increasing

due to, for example, using once-determined routes in a stable cluster.
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QoS: In terms of control overhead in both stationary and mobile scenarios, the pic-

ture is the same and very similar to the results in stability case: negative impacts of

SCDR and CDR, and positive impact of Energy. As shown in Table 6.5, SCDR is

not taking high metric-weight values in nearly any case since small degree changes

possibly cause important changes in clustered structure when its weight is increased.

Therefore, networks become more sensitive to degree changes. While stability and

energy efficiency are decreasing, control overhead is increasing due to the increscent

weight of SCDR. In contrast, Energy has a decreasing role for the control overhead

in both scenarios. For cluster selection, Contraction has a positive impact as usual,

promoting more stable clusters it increases QoS in terms of packet delivery ratio and

end-to-end delay. In stationary scenarios, Cluster Degree seems effective for QoS but

no observable pattern exists for it. On the other hand, Cliqueness helps to satisfy QoS

by promoting more connected clusters to join.

All in all, after the first 3 phases of SA framework, it is concluded that each case (con-

sidering different goals) requires to be focused on different metrics and metric-weight

values. Even the sensitivity analysis charts indicate a starting-point to reshape the de-

tails of the algorithm, it is still difficult to validate their results with a high-precision.

Since the node metric-weights are dependent on each other, a direct inference of the

singular effects of them is not possible. Therefore, further investigation with different

weight assignments may show different results. Besides, those sensitivity results are

directly related to the performance measures. Different performance measures that

are related to different goals may reveal more goal-specific results as well.

The final question is how to find some sets of metric-weights that give us the best

results for the related performance measures. In the next phase, this question is an-

swered using the outcomes of the cross-validation.

6.1.1.4 Optimization

In this phase, the optimized metric-weights are found for different objectives. The

main purpose of the cross-validation (and more generally SA) is to decide the op-
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timum weight wi to assign to each metric. The indicators in the last row of Table

6.5 (i.e., (↑), (↔), (↓), and (∼)) are the concrete representations of weight impacts

and need to be correlated among themselves (i.e., finding relative impact of each in-

dicator) to obtain final weight values. Therefore, the row shows this correlation by

factors. Using those factors, the weight for parameter i is calculated as

wi =
fi∑k
j=1 fj

, (6.1)

where fi is the factor of the weight for metric i. The factors are assigned to optimize

the impact of the weights and get the best result for related performance measure.

They are numerical values and represented by indicators as shown in the last row

of Table 6.5. While higher factors try to increase the fraction of the metrics in the

total score (node or dependability score) by giving them higher weights, lower ones

decrease their share. Accordingly, the weights with (↑) are assigned with the highest

factor 5, (↔) have a mediocre factor 3, and (↓) and (∼) have the lowest ones as 1.

Note that, those factors are the design parameters for the framework and reflect the

overall relationship of metric-weights.

j in (6.1) is bounded by [1,k] where k could be any number less than the total number

of metrics. k = 3 is defined in the framework. Therefore, only three most influential

metrics are taken into consideration as shown in Table 6.5. That is, the metrics that

only have the real impact on the actual measurements can be considered. For instance,

the top three impactful (i.e., the three highest δ value in sensitivity analysis results)

for CH selection weights and the top two for cluster selection weights are selected.

Note that, increasing the number of metrics to share between nodes means larger

control messages and overhead. Since others (i.e., not considered parameters) have

no numerable impact according to the analysis, they are just omitted and concluded

as not necessary for particular performance goals.

After step (6) where the cross-validation is performed and Table 6.5 is obtained, one

can evaluate the exact metric-weights to optimize DCA with respect to different ob-

jectives at step (7) of Figure 6.1. Then, the objective-based weight values for both
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Table 6.6: The metric-weights for different objectives and scenarios. Those values in-

dicate the weights for cluster head selection and cluster selection metrics to optimize

DCA considering different goals in stationary and mobile scenarios.

Goal Scenario
CH Selection Metric-weights Cluster Selection Metric-weights

Energy LQIR SCDR CDR Centrality CU Cliq. Cont. Cl. Dg. Tr. Den.

Stability
Stationary 0.00 0.71 0.14 0.14 0.00 0.00 0.00 0.71 0.00 0.29

Mobile 0.45 0.45 0.09 0.00 0.00 0.00 0.00 0.83 0.00 0.17

Energy efficiency
Stationary 0.22 0.00 0.22 0.56 0.00 0.00 0.25 0.00 0.00 0.75

Mobile 0.17 0.00 0.50 0.33 0.00 0.00 0.25 0.75 0.00 0.00

Control overhead/QoS
Stationary 0.71 0.00 0.14 0.14 0.00 0.00 0.00 0.71 0.29 0.00

Mobile 0.71 0.00 0.14 0.14 0.00 0.00 0.50 0.50 0.00 0.00

cluster head and cluster selection metrics are calculated as shown in Table 6.6 using

the factors to find a numerical relationship between weights as defined in (6.1). For

instance, to optimize DCA for stability in stationary scenarios, one needs to consider

the first row of Table 6.6 and assign indicated weight-values to related metrics. There-

fore, those are ready-to-use values to employ for designing the objective-oriented

weighted clustering algorithm, DCA.

6.1.2 Results

All tests are conducted in OMNeT++ using the implementation presented in Chapter

3. The simulation is fixed to 200m× 200m. Considering the number of nodes and

node speeds, each distinct case is examined in 200-repetition batches where each

repetition simulates 60 s network lifetime. The average performance measures and

confidence intervals of each batch are recorded. For the physical channel, free space

path loss is deployed with a fixed −90 dBm background noise. Besides, YANS error

model, which is commonly implemented in most of the network simulators, is used to

evaluate errors stem from channel conditions. The state-based radio model is a built-

in module in OMNeT++ and implements the state-based radio. In this model, while

150mW is consumed for packet transmission, it is 60mW and 2mW for reception

and idle states respectively. Lastly, Random Waypoint mobility model [65] is used to

define node behaviors under mobility. In this model, nodes periodically move through

a random direction with a specific speed, which changes between 2 km/h-10 km/h.
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30% of the nodes are randomly selected to move with increasing speeds in random

directions for mobile scenarios. All parameters are shown in Table 6.7. To measure

the success in data transfer and end-to-end delay, the UDP application sends a packet

in every 2 s between a randomly created set of source and destination nodes. The

size of a data packet is defined as 300B, and the packets are sent at once (i.e., not

fragmented).

Table 6.7: The values of the simulation parameters.

Parameter Value

Area size 200m× 200m

Runs per batch 200

Scenario duration 60 s

Transmission power per node 0.08mW

Node density 0.001 node/m2-0.0015 node/m2

Ratio of mobile nodes 30%

Speed of nodes 2 km/h-10 km/h

Background noise −90 dBm

Path loss model Free space

Error model YANS

Power consumption model

150mW Tx

60mW Rx

2mW Idle

Mobility model Random Waypoint [65]

The results are collected for five different algorithms where two of them are the differ-

ent configurations of DCA. The first one is optimized DCA (DCA-o) which deploys

metric-weights that are obtained as a result of the sensitivity analysis as presented

in Section 6.1.1.4. DCA-o is run for each different objective and scenario using the

metric-weight sets presented in Table 6.6. The 0-weighted metrics are the omitted

ones due to their low impacts. Designing the alternative versions of DCA using the

weight sets, it is aimed to show (a) weight optimization with the sensitivity analysis

gives better results for different cases and (b) DCA-o shows a better performance than
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its opponents being adapted to different goals. The other four algorithms are equal

DCA (DCA-e) where metric-weights are equally distributed among metrics of DCA,

Lowest-ID Clustering (LI) [13], Highest-degree Clustering (HD) [66] and Highest-

energy Clustering (HE) [67]. Last three clustering algorithms are quite popular and

widely used for benchmarking. The comparison is performed in two major scenarios,

stationary and mobile. In each scenario, different goals are separately evaluated with

related performance measures. Note that, even though some of the performance mea-

sures are given as a ratio, they are presented and compared scaling to the percentage

for the sake of clarity.

Another important issue is the different periods used in DCA. They are presented in

Table 4.1 at the beginning and the discussion about those periods is presented in Table

6.8. In the light of this discussion, DCA is performed with different period values and

eventually, a manually-optimized set of values is used for the simulations.

In the rest of this section, the simulation results are discussed for different goals that

are stability, energy efficiency and QoS in stationary and mobile scenarios observing

the effects of node density and node speed.

Stability: Figure 6.5 shows the results for the stability-related measures in station-

ary scenarios. DCA shows better performance than all other algorithms in terms of

the number of role changes and average role duration. Focusing on LQIR and Con-

traction, DCA succeeds in minimizing the number of role changes (i.e., cluster head

to ordinary node or vice-versa) and maximizing role duration as shown in Fig 6.5a

and Figure 6.5b. On the other hand, since HE mostly considers energy consumption

to select cluster heads, nodes become more sensitive to claim themselves as cluster

heads with continuously changing residual energy. However, Fig 6.5c and Figure 6.5d

show that even if DCA-o is better than DCA-e in terms of cluster changes and dura-

tion for staying in the same cluster, there are fewer cluster changes in other algorithms

considering those metrics. Because in DCA, a node changes its cluster depending on

the dependability score which is affected by different metrics. Since DCA keeps clus-

ters dependable, nodes change their clusters as they aim to be a member of the most
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Table 6.8: Possible effects of the related actions in different periods
Parameter Small Periods Large Periods

Tctrl

• Freshness of neighborhood info.

• Updated scores

• More reliable routes

• Large number of broadcast messages

• Higher reliability but lower stability

• Obsolete information of neighborhood

• Obsolete node and dependability scores

• Less reliable routes

• Fewer broadcast messages

• Higher stability but lower reliability

tboot

• Guaranteed convergence

• Proper density-orientation in clusters

• Fast-shift to main algorithm

• Nearly random clustering

Tclaim

• Lower stability

• Higher number of role changes and longer role dura-

tion

• Higher oscillation possibility

• Fairly distributed energy consumption

• Construction onto fresh neighborhood info.

• Higher stability

• Fewer number of role changes and longer role dura-

tion

• Settled backbone

• More energy consumption in particular nodes i.e.,

cluster heads

Ttick

• Less tolerance to broken links

• Increasing false-negatives for neighbor nodes

• Updated neighborhood info.

• Decreasing efficiency in routing

• Not convenient for mobile scenarios

• Less reliable routes

• Obsolete node and dependability scores

TSAM

• Fresh topology info. in a wider range

• More reliable hybrid routing

• More energy consumption in the backbone

• Obsolete topology info.

• Less reliable hybrid routing

• Less control overhead through the backbone

Tdpnd

• Increasing possibility to join another cluster for nodes

• Cluster selection based on fresh info.

• More stability

• Less reliable cluster selection
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dependable (i.e., cluster with the highest score) and this is not a case any of the other

algorithms. Eventually, the stability goal is satisfied keeping clustered formation sta-

ble in DCA. However, nodes always try to get into the most dependable cluster and

this issue increases inter-cluster node changes.
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Figure 6.5: The effects of increasing node density on stability metrics in stationary

scenarios

In mobile scenarios, the results are quite similar to the ones in stationary scenarios

as shown in Figure 6.6. Figure 6.6a and Figure 6.6b show that DCA-o is much more

effective than DCA-e and other algorithms in terms of the number of role changes

and average role duration. Differently, HD becomes more sensitive to mobility. Con-

stantly changing neighborhood and node degree negatively affect due to HD’s cluster

head selection method. Because of the same issue, which is the cluster selection to

join a more dependable cluster, inter-cluster node changes are still higher in DCA in

terms of the number of cluster changing as shown in Figure 6.6c. Besides, Figure

6.6d shows that DCA-o is better in average duration in the same cluster than DCA-

e. However, this measure is higher in other algorithms because they do not have a
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particular cluster-changing mechanism. Considering those metrics, HE is more in-

sensitive to mobility. Apart from those, DCA-o outperforms DCA-e considering any

performance measure in terms of stability.
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Figure 6.6: The effects of increasing speed on stability metrics in mobile scenarios

Energy Efficiency: Figure 6.7 and Figure 6.8 show the simulation results in station-

ary and mobile scenarios, respectively. Figure 6.7a and Figure 6.7b show that DCA-o

is better than DCA-e for overall energy consumption and fair energy consumption in

stationary scenarios. Smaller standard deviation in energy consumption means that

the energy consumption among different nodes is close to each other. Therefore, over-

consumption in a specific set of nodes is not an issue in DCA. As presented in Figure

6.7a, while other algorithms are very similar in terms of energy consumption, DCA

is significantly better than all of them with nearly 10% less consumption. Besides,

DCA is able to keep its performance with increasing number of nodes by selecting

cluster heads effectively and leading them to choose dependable clusters. Therefore,

95



it is concluded that DCA is also a scalable clustering algorithm in terms of energy

efficiency.
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Figure 6.7: The effects of increasing node density on energy efficiency metrics in

stationary scenarios

On the other hand, mobility obviously affects energy efficiency negatively. Even if

the order of compared algorithms is the same with stationary scenarios, nodes con-

sume more energy to handle reclustering and routing processes due to mobility. Be-

sides, Figure 6.8b shows that in mobile scenarios, the standard deviation in energy

consumption for each algorithm is slightly higher than the stationary scenarios.

2 4 6 8 10

Speed (km/h)

10

12

14

16

18

20

22

A
v
g
. 
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 r

a
ti
o
 (

%
)

DCA-o

DCA-e

LI

HD

HE

(a) Average energy consumption ratio

2 4 6 8 10

Speed (km/h)

1.5

2

2.5

3

3.5

4

4.5

5

S
td

. 
d
e
v
. 
in

 e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

DCA-o

DCA-e

LI

HD

HE

(b) Standard deviation in energy consumption

Figure 6.8: The effects of increasing speed on energy efficiency metrics in mobile

scenarios

QoS: DCA-o outperforms DCA-e in stationary scenarios with less control over-

head, a higher PDR and a lower end-to-end delay. For PDR, DCA-o shows 3-6%

better performance than all others as shown in Figure 6.9b. In stationary scenarios,
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PDR mostly depends on effective cluster head selection and the stability in clustered

structure since hop-to-hop packet traffic is performed through cluster heads. Note

that, the main reason for packet loss in all algorithms is interference. PDR after a

certain node density is starting to drop for all algorithms because of interference. Be-

sides, it is also directly related to stability in clusters. For instance, while the number

of role changes is the highest in HE, the packet delivery ratio is the lowest for that

algorithm. In terms of end-to-end delay, DCA-o places in the lowest level in Figure

6.9c. The most important reason for the increase in end-to-end delay is repeating

the routing process: if cluster heads change frequently, the number of route discov-

eries naturally increases to find the cluster in which destination node resides and the

intermediary cluster heads reaching that cluster. Besides, more dependable clusters

(i.e., clusters that can manage packet traffic effectively) promote the packet traffic for

nodes as implied from DCA’s higher performance. However, Figure 6.9a shows that

since cluster changes (i.e., a node joining a different cluster than the current one it

resides) are still frequently happening in DCA to stay in the most dependable clus-

ter, DCA (both DCA-o and DCA-e) has slightly higher overhead than the others in

stationary networks.
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Figure 6.9: The effects of increasing node density on QoS metrics in stationary sce-

narios

Figure 6.10 shows QoS results under mobility. Similar to HE’s situation in stationary

scenarios, as frequent degree changes due to mobility significantly affect HD, it has

the worst performance in terms of the number of effective control packets and PDR in

mobile scenarios as shown in Figure 6.10b. Even though differences are more subtle,
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DCA still outperforms other its opponents in terms of PDR. In contrast to stationary

scenarios, Figure 6.10a shows that DCA-o causes observably less control overhead

in comparison to both DCA-e and other algorithms. However, since mobility has an

important impact on routes/routing, no algorithm is able to show a dominance for the

end-to-end delay in Figure 6.10c.
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Figure 6.10: The effects of increasing speed on QoS metrics in mobile scenarios

Apart from individual node eligibility for being a cluster head, cluster dependability

is also considered to maximize nodes’ benefits and increase overall network perfor-

mance. DCA-o performs better than the equally-weighted version in terms of a va-

riety of performance metrics in different scenarios. Therefore, it is shown that the

proposed SA framework for DCA practically helps adapting it to different scenarios

which require stability, energy efficiency or QoS/low overhead. Note that, it is also

applicable to any weighted clustering algorithm with different selection metrics and

objectives. Besides, it is shown that DCA-o with goal-specific weight distribution

works better than other benchmarking clustering algorithms namely LI, HD, and HE

especially in mobile scenarios.

6.2 Performance Evaluation of CHRA

In this section, the performance evaluation of CHRA is presented. The simulation pa-

rameters are shown in Table 6.9. To represent other cluster-based routing algorithms

which use on the backbone to carry all packets, CBRP is implemented as backbone

routing upon clustered structure. Note that, the backbone routing is the common
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technique that is primarily used in CBRP and then most of the hierarchical routing

algorithms. To validate the advantages of CUPS architecture, CHRA is compared

with (a) CBRP which has the major routing method used in almost all hierarchical

routing algorithms and (b) AODV on flat topologies. Note that, the main purpose in

the simulation design is to show the effects of control-user plane separation on fair

energy consumption, energy efficiency and quality of service in terms of end-to-end

delay and data-to-all ratio. Therefore, the generic implementation of CBRP is the

most important comparison element in this simulation design.

Table 6.9: The values of the simulation parameters

Parameter Value

Area size 200m× 200m

Runs per batch 200

Scenario duration 200 s

Transmission radius per node 40m

Node density 0.001 node/m2-0.0015 node/m2

Ratio of mobile nodes 30%

Speed of nodes 2 km/h-10 km/h

Path loss model Free space

Power consumption model

150mW Tx

60mW Rx

2mW Idle

Background noise −90 dBm

Mobility model Random Waypoint [65]

Fro this study, while CHRA and CBRP are customarily implemented, the AODV al-

gorithm is taken from built-in OMNeT++ modules. Simulations are conducted in both

mobile and stationary scenarios with uniformly and nonuniformly distributed topolo-

gies. Triangular distribution is used for nonuniformly distributed network scenarios.

It represents the topology where the majority of the nodes tend to gather around an

area and some other nodes are spread as outliers. The results of all four cases are

presented and discussed in the rest of this section. Even though some of the perfor-
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mance measures are given as a ratio, they are presented and compared scaling to the

percentage for the sake of clarity.

6.2.1 Stationary Scenarios

Figure 6.11 and Figure 6.12 show the effects of node density (i.e., increasing number

of nodes) in uniform and nonuniform node distributions.

As seen in Figure 6.11b and Figure 6.12b, the energy consumption is nearly the same

for CHRA and CBRP. However, there is a huge -and expected- difference between

AODV and hierarchical routing methods, which are CBRP and CHRA, in the aver-

age energy consumption per node. Since control packets are consequently broadcast

(that causes flooding) in AODV, the energy consumption is much higher than the

others considering both signal transmission and reception costs. Figure 6.11a and

Figure 6.12a reveal that even if the energy consumption is very close to each other,

the standard deviation of the consumption in CHRA is lower than that of CBRP in

both scenarios. It means that the difference in energy consumption between nodes

are observably smaller in CHRA and this is a strong indication of fairer energy con-

sumption. Therefore, the cross-interpretation of the average energy consumption and

the standard deviation in energy consumption is quite important to understand the key

outcomes of the control and data plane separation in terms of energy efficiency. Fig-

ure 6.11a also shows that the standard deviation in energy consumption is minimum

in AODV. The reason is that nearly all nodes tend to broadcast control packets due to

flooding mechanism and every node consumes similar energy even though it is much

higher than the consumption in CBRP and CHRA. In contrast, Figure 6.12a shows

that the standard deviation is the highest in AODV. Because, while the frequency of

broadcast is much higher in a specific dense area in nonuniform distribution than the

rest of the network where isolated nodes are seen. Eventually, the significant dif-

ference in standard deviation in energy consumption between such sparse area and

dense area results with higher standard deviation. Another point is, while the node

density (i.e number of nodes in the same area) is increasing, the standard deviation in

energy consumption in CBRP and CHRA are decreasing because it directly increases
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the number of alternative paths that can be found in both the data and control plane.

Eventually, even fewer number of particular nodes are exhausted due to the prefer-

ence of the same routes for end-to-end communication. This is not the case for AODV

since the flooding of routing control packets still makes the largest proportion of the

energy consumption. Therefore, the effects of the existence of alternative routes are

hard to comprehend for AODV. Note that, the similar effect to increasing density can

be concluded for changing distribution. While the results in Figure 6.11a are lying

in 3-8% range, it is in the range of 1-3% as can be seen in Figure 6.12a. In nonuni-

form scenarios, nodes are gathered in particular areas with higher density creating

many alternative routes, as it happens for increasing node density case in stationary

scenarios.

Figure 6.11e and Figure 6.12e show the number of routing control packets including

route request and reply packets, and also repair, recovery and CSA packets for CHRA.

While the overhead of CHRA is slightly higher than that of CBRP due to repair,

recovery and CSA packets, AODV has the highest overhead in terms of the number

of the control packets due to flooding control packets through the whole network.

The quality of service for three different algorithms is evaluated in terms of DAR

and end-to-end delivery delay. In Figure 6.11c and Figure 6.12c, the DAR generally

remains above 90% for CHRA and CBRP while AODV’s is much lower, 75% at max-

imum. As seen in the figures, the DAR of CHRA and CBRP is nearly the same. Since

the routing control overhead in CHRA is slightly higher due to CSA maintenance and

route recovery, the DAR in CHRA is lower than CBRP around 2%. On the other

hand, AODV shows a quite poor performance in terms of DAR due to high control

overhead. The case is different for the end-to-end delay: after CSA is constructed,

finding the shortest path is trivial for CHRA and both Figure 6.11d and Figure 6.12d

show that CHRA has the lowest end-to-end delay. CBRP has very limited alternatives

to choose a path which is constructed through cluster heads and gateways. Therefore,

it is not easy to find the shortest path for end-to-end communication. Eventually,

CHRA outperforms other two algorithms in terms of the end-to-end delay. Moreover,

the difference between uniform and nonuniform scenarios is notable. Since nonuni-
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Figure 6.11: The effects of the network density in uniformly distributed scenarios
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Figure 6.12: The effects of the network density in nonuniform scenarios
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form deployment causes a denser formation, many nodes are placed around a certain

area and this topology decreases average end-to-end delay in communication.

6.2.2 Mobile Scenarios

Figure 6.13 and Figure 6.14 show the effects of speed (i.e., increasing speed of nodes)

in uniform and nonuniform node distributions. In mobile scenarios, the node density

is fixed to 0.001 25 nodem2.

The average energy consumption is slightly higher than the results in stationary sce-

narios as shown in Figure 6.13b and Figure 6.14b. Because of the mobile nodes,

re-routing, recovery and repair processes are more frequent in mobile scenarios. As

seen in 6.13a and Figure 6.14a, CHRA has a low standard deviation in energy con-

sumption even in higher mobility with increasing speed. Note that, having differ-

ent standard deviations in parallel to the same ratio of energy consumption between

CHRA and CBRP shows that CHRA promotes fairer energy consumption in mobile

scenarios as well. Again, the cross-interpretation of the average energy consumption

and the standard deviation in energy consumption reveals such effect of the con-

trol and user plane separation. In uniform scenarios, the increasing speed of nodes

observably affects the standard deviation in energy consumption since the mobility

strongly changes the already-sparse network distribution. In contrast, it is not af-

fected especially for CHRA since the tolerance to mobility in a denser area that is

mostly covered by CSAs is much higher. Therefore, routes can be maintained more

effectively in CHRA thanks to CSA structure.

Figure 6.13d and Figure 6.14d show that the overall end-to-end delay for all routing

algorithms is lower in nonuniform scenarios than uniform scenarios. The ordering

between the algorithms is the same, CHRA has the lowest end-to-end delay in any

case even if it is increasing with speed of nodes for every algorithm. Interpreting

them in Figure 6.13c and Figure 6.14c, it is seen that CHRA decreases the end-to-end

delay preserving a high DAR as 85%. The DAR is decreasing with the increasing

speed of nodes since the high mobility triggers routing process and eventually in-
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Figure 6.13: The effects of the speed in uniformly distributed scenarios
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crease routing control overhead. Note that, CHRA is affected by mobility more than

CBRP because the routes depend on many ordinary nodes which are mobile instead

of the backbone (i.e., CHs and gateways) that is relatively easy to fix with during the

clustering maintenance. When a new CH is selected, the cluster neighborhood can be

recovered easily and the traffic flows through the backbone. However, thanks to route

repair and recovery process for the data plane-routes in CHRA, even if it is more

sensitive to mobility, there is not a DAR decrease due to increasing speed of nodes.

The difference of DAR results between CHRA and CBRP is caused by extra recovery

process and CSA maintenance in CHRA. Figure 6.13e and Figure 6.14e show such

extra overhead in terms of the number of control packets. Besides, they explain the

low-DAR results of AODV that demonstrates a high control overhead.

6.2.3 The Maintenance of CSA

At the end of the discussion, the control overhead for CSA maintenance is worth

touching. As seen in Figure 6.15, PDR is decreasing with increasing period of SAM

packets, TSAM . In contrast, control overhead is getting less with more infrequent

SAM packets as expected. The reason is, the infrequent SAM packets directly lead

to routing based-on obsolete topology information. In this case, packets cannot be

forwarded through destination when the route repair is not possible. In this manner,

TSAM need to be decided based on mobility characteristics of the network.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter, a brief conclusion for the whole design is given. Besides, future work

and possible extensions of this study are discussed.

7.1 Conclusion

Through the thesis, first, the plane-separated architecture is built to able to manage

and orchestrate ad-hoc networks. The dependability-based clustering technique DCA

for ad-hoc networks is presented and a sensitivity analysis framework is offered to

evaluate any weighted clustering algorithm. DCA is validated by the discrete event-

based simulations. Apart from searching for the optimal weights; the positive, neg-

ative and neutral (e.g., irregular or none) effects of different metrics are discussed

to be able to design a goal-based optimized clustering algorithm. In the sensitivity

analysis, it is also shown that different parameters may have unexpected effects on

the objectives. For instance, degree-related metrics such as SCDR, CDR and Central-

ity do not have observable positive effects on the stability while the metrics which

considers changing communication-quality conditions like LQIR and Contraction

are important for stability according to SA results. Moreover, it is presented that

focusing on cluster stability, or Contraction, is important to provide QoS. To cre-

ate energy-efficient clusters (i.e., fair and efficient energy-consumption for member

nodes), using an energy-dependent metric is not a solution. Instead, SCDR and CDR,

or degree-related metrics, positively affect energy efficiency. The results show that
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the optimization with SA leads to a significant performance improvement for DCA in

stationary and mobile scenarios considering any performance metric presented in the

study. Since the cluster dependability is taken into consideration alongside the node

eligibility, DCA has shown better performance in comparison to its rivals. However,

it is shown that the weighted algorithm, DCA, requires to find optimal weights for an

efficient objective-based design.

After the formation of CUPS architecture, a plane-separated routing algorithm in ad-

hoc networks, CHRA, is presented to establish an end-to-end communication scheme

in the hierarchical network structure. The separation of the control plane and the user

plane leads to finding alternative routes that are not dependent on the backbone in

contrast to many other cluster-based routing algorithms. Using those alternatives pro-

vides a fair energy-consumption scheme since a significant data forwarding burden is

taken from the control plane, and distributed to other nodes which leads to effective

use of the user plane. The results also show that using a proper route recovery mech-

anism and establishing alternative paths in the user plane, CHRA can handle data

transfer with a lower end-to-end delay than the technique that purely uses backbone

for both routing and forwarding, while maintaining a high-level packet throughput

even in mobile scenarios.

The overall study shows that the control and the user plane separation is a quite con-

venient concept that can be applied in ad-hoc networks. While clustering itself is

a CUPS solution by nature, exploiting the hierarchy created by clustered formation

is also an opportunity to design more advance CUPS-centric algorithms like CHRA.

All in all, DCA and CHRA are presented as a complete framework that takes the

plane-separated approach to increase energy efficiency and the quality of service.

7.2 Future Work

There are some possible extensions for the overall design, and also for DCA and

CHRA separately. In this study, a CUPS-centric architecture is designed for ad-hoc

networks in terms of clustering and routing. However, some other important points
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are not touched: resource allocation and link scheduling. When a network is di-

vided into clusters, a huge opportunity for flexible resource allocation (i.e., frequency

reuse) shows up. Moreover, intra- and inter-cluster link scheduling considering the

dynamically allocated resources are directly complementary for the design presented

here. That kind of holistic approach, which is dynamically solving (1) how to or-

ganize ad-hoc networks, (2) how to use resource effectively and (3) how to satisfy

an end-to-end communication with certain QoS requirements, would be an example

architecture for next-generation networks. Apart from that, the deployment of a well-

known link scheduling algorithm such as Carrier-sense Multiple Access (CSMA) and

TDMA may increase the performance of the overall design since there are many pe-

riodic control packets and also random data traffic.

A significant part of Chapter 6 explains the sensitivity analysis framework for DCA.

The difference between optimized and non-optimized versions of DCA is also pre-

sented there. DCA can be also optimized with different optimization methods men-

tioned in Chapter 2 to compare them with the framework presented in this thesis.

However, no other method proposes a detailed analysis as it is discussed here. There-

fore, they are required to be extended to reflect the direct relationship between metrics

and different objectives. Moreover, the different parameters of DCA such as periods

can be analytically discussed and optimized by the sensitivity analysis framework.

An optimization is also applicable to the scenarios with different physical channel

conditions, node distributions etc.

CUPS architecture can be used to satisfy many other QoS requirements for CHRA.

For example, while continuous traffic e.g., a phone call or any session-based applica-

tion layer protocol and non-continuous e.g., text messaging have different character-

istics. Therefore, various modifications on CHRA to decrease control overhead and

end-to-end delay, and increase data-to-all ratio are possible. Moreover, even if CUPS

architecture is focused in this study, CHRA can compete with any other hybrid rout-

ing algorithm. In the future work, such comparison would be performed. Lastly, CSA

directly affects the efficiency of EEPs for the in-area communication. Therefore, the

size of CSA will be investigated in more detail possibly for larger networks.
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