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ABSTRACT

SUPERVISED AND UNSUPERVISED MODELS OF BRAIN NETWORKS
FOR BRAIN DECODING

Alchihabi, Abdullah
M.S., Department of Computer Engineering
Supervisor : Prof. Dr. Fatog T. Yarman Vural

Co-Supervisor : Dr. Itir Onal Ertugrul

September 2018, [89 pages

In this thesis, we propose computational network models for human brain. The mod-
els are estimated from fMRI measurements, recorded while subjects perform a set
of cognitive tasks. We employ supervised and unsupervised machine learning tech-

niques to represent high level cognitive tasks of human brain by dynamic networks.

In the first part of this thesis, we propose an unsupervised multi-resolution brain net-
work model. First, we decompose the signal into multiple sub-bands using Wavelet
transform and estimate a set of local meshes at each sub-band. Then, we use stacked
denoising auto-encoders to learn low-dimensional connectivity patterns from con-
structed mesh networks. Finally, learned connectivity patterns are concatenated across
different frequency sub-bands and clustered using a hierarchical clustering method.
Results show that our proposed model successfully decodes the cognitive states of

Human Connectome Project, yielding high rand and adjusted rand indices.

In the second part of this thesis, we propose a supervised dynamic brain network

model to decode the cognitive subtasks of complex problem solving. First, the raw



fMRI images are passed through a preprocessing pipeline that decreases their spatial
resolution while increasing their temporal resolution. Then, dynamic functional brain
networks are constructed using neural networks. Constructed networks successfully
distinguish the phases of complex problem solving. Finally, we analyze the network
properties of constructed brain networks to identify potential hubs and clusters of
densely connected anatomic regions during planning and execution subtasks. Results
show that there are more potential hubs during planning and that clusters are more

strongly connected in planning compared to execution.

Keywords: Brain Networks, Brain Decoding, Complex Problem Solving, Human

Connectome Project, fMRI
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0z

BEYIN DURUMU TANIMA ICIN GOZETIMLI VE GOZETIMSIZ OLARAK
OLUSTURULAN BEYIN AGLARI

Alchihabi, Abdullah
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Fatos T. Yarman Vural

Ortak Tez Yoneticisi : Dr. Itir Onal Ertugrul

Eyliil 2018 ,[89]sayfa

Bu tezde insan beyni i¢in islemsel a§ modelleri onerildi. Modeller, denekler belli
biligsel gorevleri gerceklestirirken kaydedilen fMRI 6l¢iimlerinden elde edildi. Dina-
mik aglarla insan beynindeki iist seviye biligsel gorevler modellendi. Bu gorevlerden

temsil edebilmek i¢in gdzetimli ve gdzetimsiz makine 6grenimi teknikleri kullanildi.

Tezin ilk kisminda, gozetimsiz cok-¢oziiniirliiklii beyin ag1 modeli 6nerdik. Ilk ola-
rak, dalgacik (wavelet) doniisiimiinii kullanarak sinyali ¢oklu alt-bantlara ayristirip
sonra her alt-bant icin ayr1 ayri yerel beyin ag1 olusturduk. Daha sonra, olusturulan
beyin aglarinin alt boyutlardaki baglanim Oriintiilerini 6grenmek icin y1ginlanmis gii-
riiltii giderici oto-kodlayict denilen derin 6grenme mimarisini kullandik. Son olarak,
ogrenilen baglanim Oriintiileri farkli alt-bantlar boyunca u¢ uca eklenip hiyerarsik
kiimeleme ile gruplandi. Rand indeks ve ayarlanmis rand indeks degerlerini 6lcerek,
onerilen modelin "Human Connectome Project"” verilerinin icerdigi biligsel durumlari

bagarili sekilde ayristirdigini gosterdik.
Bu tezin ikinci kisminda, karmasik problem ¢dzmenin alt gorevlerini modellemek
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ve ayristirmak icin gozetimli dinamik fonksiyonel beyin aglar1 olusturduk. Ilk ola-
rak, fMRI goriintiilerinin uzamsal ¢oziiniirliigiinii diisiiriip zamansal ¢oziintirligtinti
yiikselten yeni bir 6n isleme yontemi Onerdik. Sonra, yapay sinir aglar1 kullanarak
dinamik fonksiyonel beyin aglar1 olusturduk. Olusturulan aglar, karmagik problem
¢ozmenin fazlarini basarili sekilde ayirt etti. Son olarak, olusturulan beyin Oriintiileri-
nin ag ozelliklerini, planlama ve uygulama fazlar1 sirasindaki merkezleri ve birbirine
yogun sekilde bagl anatomik bolgeleri aciga ¢ikarmak icin analiz ettik. Sonuglar,
planlama fazinda, uygulama fazindan daha fazla merkezin oldugunu ve kiimelerin

daha sik baglanim yaptigini agikca gosterdi.

Anahtar Kelimeler: Beyin Aglari, Beyin Durumu Tanima, Karmagik Problem C6zme,

Human Connectome Project, fMRI
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The cognitive task of human brain is the task that the brain performs while the subject
is exposed to certain stimuli or while performing certain processes, such as problem
solving, gambling, memory retrieval and so on. The cognitive state corresponding to a
cognitive task is represented by the activation patterns of participating brain anatomic

regions along with their interactions and dependencies.

The cognitive state can be measured to a certain extent, by functional magnetic reso-
nance imaging (fMRI) technology. fMRI images partition the human brain into tiny
cubes called voxels, where each voxel contains thousands of neurons. fMRI images
measure the changes in the oxygenation level in the voxels of the brain as the oxy-

genation level and the activation of the neurons are tightly coupled.

Cognitive state decoding, also known as brain decoding, is the problem of identifying
the cognitive state of human brain under a pre-defined set of stimuli. The aim is to
develop computational models that make use of the fMRI recordings measured from
human brain in order to distinguish and analyze the cognitive state of each fMRI

recording.

The main reason that cognitive state decoding is a challenging problem is firstly due
to the very high spatial resolution of the collected fMRI images, hundreds of thou-
sands of voxels per image, which causes a curse of dimensionality as the number
of features collected is significantly larger than the number of samples (number of

subjects). Secondly, a relatively small number of the collected voxels actively partic-
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ipates and is involved with the studied cognitive state. Thirdly, the remaining voxels
that do not contribute to the studied task are not simply idle, they might be performing
other involuntary tasks, such as regulating breathing and metabolism, collecting sen-
sory information from the environment, which makes the collected data very noisy.
Also, the very high inter-subject variability due to individual indifferences makes the

problem of brain decoding significantly harder.

Various approaches have been proposed in the literature in order to solve the brain
decoding problem. The most common approach is to use the raw voxel intensity val-
ues, also known as blood oxygenation level dependent (BOLD) response, as features
in the computational model proposed. The proposed models can be categorized as
supervised and unsupervised models, where the supervised models make use of the
cognitive task labels during the training phase of the computational model. While
the unsupervised models do not make use of the cognitive task labels during model

development and training [} 2} 134, 5,16} [7 [8].

Furthermore, numerous studies proposed models to construct brain networks in order
to perform brain decoding rather than using the raw voxel intensity values, due to the
findings that connectivity patterns in the brain provide more information about cogni-
tive tasks compared to the isolated behavior of individual voxels groups or anatomic

regions [3} 19, 16].

1.2 Proposed Computational Models

In this thesis, we suggest both supervised and unsupervised machine learning tech-

niques to model the cognitive states of human brain as dynamical networks.

First, we propose an unsupervised multi-resolution model to construct brain func-
tional networks that is built on the previous work in [10], in order to decode the cogni-
tive state of human connectome project. Since the fMRI recordings are known to con-
tain information at multiple frequency resolutions, we decompose the collected raw
intensity values of anatomic regions into frequency sub-bands using discrete wavelet
transform [[10]]. Then, we construct local mesh networks around each anatomic region

at all frequency sub-bands, motivated by the finding that brain networks formed by
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the correlation of voxel pairs’ in fMRI signals provide more information for brain
decoding than the temporal information of individual voxels [7, 8]. Since the data
obtained from functional Magnetic Resonance Imaging (fMRI) is high-dimensional
and sometimes not suitable for analyzing the cognitive states [11]], learning efficient
low-dimensional features from high-dimensional complex input spaces is crucial for
decoding of cognitive processes. In order to achieve that, we train stacked denoising
auto-encoders at all frequency sub-bands using the constructed ensembles of mesh
networks in order to learn low-dimensional connectivity patterns (features) that cap-
ture the underlying activation patterns of the brain during the studied cognitive tasks.
Finally, we concatenate the learned connectivity patterns from different frequency

resolutions and cluster them using hierarchical clustering.

In the second part of this thesis, we suggest a supervised learning approach to ana-
lyze the complex problem solving task of human brain. For this purpose, we propose
a dynamic mesh network representation of the brain in order to study the relative acti-
vation patterns of the brain during complex problem solving task. In order to achieve
this goal, we first select the most informative voxels using mutual information aim-
ing to reduce the spatial resolution of the fMRI images. Then, we find the closest
neighbors of each one of the selected voxels within its brain anatomic region defined
by the Automated Anatomical Labeling (AAL) atlas [12] in functional neighborhood
using Pearson correlation. Then, we construct dynamic mesh brain networks around
each selected voxel (seed voxel) using Levinson-Durbin autoregressive estimator. We
concatenate the mesh networks of all the voxels located in the same anatomic region
into vectors of ensembles of mesh networks. Finally, we calculate the accumulated
cosine distances between the ensemble vectors across time during planning and dur-
ing execution subtasks in order to measure the relative activation of each anatomic

region during both subtasks.

In order to further analyze the activation patterns of anatomic regions during com-
plex problem solving, we propose a supervised learning model to construct dynamic
brain networks. At first, we pass the fMRI images through a preprocessing pipeline
in order to reduce the spatial resolution of the images and increase their temporal
resolution using Anova voxel selection method, cubic spline temporal interpolation

and Gaussian colourful noise. Thus, making the fMRI images more suitable for con-



structing brain networks. Then, we construct dynamic mesh networks around each
selected brain anatomic region using neural networks as suggested in [13]]. The net-
work properties of the constructed brain networks are studied in detail in order to
identify potential hubs and densely connected anatomic regions during both planning
and execution phases of complex problem solving task. The differences between

planning and execution brain networks are examined as well.

1.3 Contributions and Novelties

The novelties of this thesis are as follows:

e A new unsupervised multi-resolution brain networks model to perform brain
decoding is proposed. The proposed model makes use of discrete wavelet trans-
form and ridge regression to construct brain networks at multiple frequency
resolutions. Then, it employs a deep learning architecture namely stacked de-
noising auto-encoders in order to learn low-dimensional connectivity patterns
(features) of human brain. The learned features obtained from stacked denois-
ing auto-encoders, successfully cluster the cognitive tasks of human connec-

tome project using a hierarchical clustering algorithm.

e A new dynamic mesh network representation of the brain that examines the
relative activation patterns of brain anatomic regions during complex problem
solving is presented. The model reduces the spatial resolution of the data using
voxel selection then constructs local mesh networks around each selected voxel.
Then, it organizes the constructed meshes into vectors of ensemble of mesh
networks and measures the cosine distance between the vectors across time

during both planning and execution subtasks.

e A new preprocessing pipeline to increase the temporal resolution and decrease
the spatial resolution of the fMRI images is proposed. It applies Anova voxel
selection method, temporal interpolation and colourful Gaussian noise to raw
fMRI data. The preprocessing pipeline successfully increases the brain decod-
ing power of raw fMRI images. It also allows us to construct dynamic func-

tional brain networks using the tower of London dataset. The established net-
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works successfully decode the cognitive phase of the complex problem solving

task.

e The network properties of the constructed brain networks, during complex
problem solving are studied in detail. Potential hubs and clusters of densely
connected anatomic regions during both planning and execution phases are
identified. Furthermore, the differences between the brain networks of plan-

ning and execution are examined.

The work presented in this thesis has appeared in the following publications:

e Alchihabi, A., Kivilicim, B. B., Ekmekci, O., Newman, S. D., & Vural, E T. Y.
(2018, May). Decoding cognitive subtasks of complex problem solving using
fMRI signals. In 2018 26th Signal Processing and Communications Applica-
tions Conference (SIU). IEEE.

e Alchihabi, A., Kivilicim, B. B., Newman, S. D., & Vural, FE. T. Y. (2018, April).
A dynamic network representation of fMRI for modeling and analyzing the
problem solving task. In Biomedical Imaging (ISBI 2018), 2018 IEEE 15th
International Symposium on (pp. 114-117). IEEE.

e Rahnama, A., Alchihabi, A., Gupta, V., Antsaklis, P. J., & Vural, F. T. Y. (2017,
October). Encoding Multi-Resolution Brain Networks Using Unsupervised
Deep Learning. In Bioinformatics and Bioengineering (BIBE), 2017 IEEE 17th
International Conference on (pp. 75-80). IEEE.

1.4 The Outline of the Thesis

Chapter 2 introduces the complex problem solving task and the various studies that
used Tower of London (TOL) to study complex problem solving abilities. It, also,
presents the cognitive tasks included in the Human Connectome Project (HCP), the
technical details concerning both TOL and HCP datasets, their experimental setup

and data collection methods. Then, chapter 2 provides an overview of the various
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methods proposed in the literature in order to construct brain networks. It also dis-
cusses the examined network properties of brain networks in the literature and their

neuro-biological interpretations.

Chapter 3 presents our unsupervised multi-resolution hierarchical model to decode
the cognitive tasks of human connectome project. The details of the proposed model
are provided, then the experimental results for brain decoding are introduced. Visu-
alizations of the constructed brain networks across different subjects conclude this

chapter.

Chapter 4 starts with our model for preliminary analysis of the Tower of London
(TOL) problem. The results of the preliminary analysis concerning relative activa-
tion patterns of anatomic regions are presented. Then, our supervised brain decoding
pipeline to construct dynamic functional brain networks is presented in detail. Next,
the brain decoding powers of the proposed preprocessing pipeline and model are ex-
amined. Finally, the network properties of the constructed brain networks are studied
in detail highlighting important anatomic regions to the complex problem solving task
as well as the differences between the brain networks of the two phases of complex

problem solving.

Chapter 5 provides a brief summary of the entire thesis, it also presents potential
directions for future work that move forward with the proposed models in chapters 3
and 4.



CHAPTER 2

COGNITIVE TASKS AND MACHINE LEARNING TOOLS

In this chapter, we explore the basic literature of cognitive tasks including complex
problem solving and its findings. Then, we focus on the Tower of London (TOL)
game as a representative of complex problem solving tasks. We provide an overview
of the various applications and experiments, where TOL game was performed by
the subjects, in order to analyze complex problem solving abilities of human brain.
Then, we discuss the cognitive tasks included in the Human Connectome Project
(HCP) along with the related experimental setup. Next, we provide an overview of
the brain networks’ construction methods applied to fMRI data. Finally, we investi-
gate the literature on network properties of the constructed brain networks and their

neuroscientific meanings.

2.1 Cognitive Tasks of Human Brain

What is a cognitive task? Although there are many definitions, in this thesis when we
mention a cognitive task, we mean a task of human brain which is accomplished while
the subject is exposed to certain stimuli or performing certain task such as problem
solving, gambling, memory retrieval etc. It can be roughly measured by the activa-
tion patterns of participating brain anatomic regions along with their interactions and

dependencies.



2.1.1 Complex Problem Solving

Complex problem solving process of human brain has the been the focus of numerous
studies in the field of neuroscience for over 30 years given the large number of high-
level cognitive tasks that fall under its umbrella. Complex problem solving includes:
strategy formation, coordination and sequencing of mental functions, and holding

information on-line.

Complex problem solving arises from the cooperation among neurons within and
across brain anatomic regions. This cooperation takes the form of functional con-
nectivity between the participating anatomic regions that is dynamic and constantly

changing across time adapting to both previous and current experiences.

This dynamically changing connectivity is an important trait of intelligence, namely
fluid intelligence [[14]], where being able to switch between solution strategies for a
given task contributes to the ability of solving problems. Artificial neural networks
that are capable of adjusting their own connections as a response to environment
stimuli score higher on fluid intelligence tests [[15]. This highlights the importance
of the functional connectivity as well as its dynamic nature in providing insights into

complex problem solving and its biological underpinnings.

Nevertheless, current research in neuroimaging has not yet studied this dynamic con-
nectivity during problem solving. The main reason behind that is that most stud-
ies aim to propose models that will support a given theoretical cognitive hypothesis
which may produce misleading findings. On the other hand, using the nueroimaging
data solely to investigate the underlying brain networks that support complex problem

solving behavior can lead to more accurate results.

A problem-solving model was proposed in [16, [17] where complex problem solving
is made up of three sequential cognitive subtasks. The first subtask is the construction
of problem representation, where a memory representation of the problem is created
that includes all the information available concerning the problem [18]]. The second
subtask is called elaboration, which includes searching for a suitable sequence of
operations to solve the problem. The aforementioned two subtasks constitute what is

referred to as planning subtask. The third cognitive subtask is execution where the



solution constructed in the elaboration phase is implemented [18,[19, 20].

However, planning sometimes occurs during the execution phase, which can be then
referred to as online planning. In some cases, instead of planning the entire solution
sequence, subjects plan only the initial sequence of moves then the planning and
execution phases overlap [21, 22]. Several studies have supported this hypothesis
with Tower of London in [23]] and with Pittsburgh problems in [24]. This can explain
the overlap of activation patterns of planning and execution subtasks in problems that

requires the completion of multiple subgoals.

2.1.1.1 Tower of London Game

The Tower of London (TOL) game was developed by Tim Shallice in 1982 to exam-
ine patients with prefrontal damage [25], since then it has been one of the standard
problems in the literature to study complex problem solving capabilities. The Tower
of London problem consists of three bins having different capacities with coloured
balls placed in the bins, where the aim is to rearrange the balls from their initial state
to a predetermined goal state while moving one ball at a time and taking into consid-

eration the limited capacity of each bin.

TOL game has been used to investigate the effect of various clinical disorders on
problem solving abilities. It is utilized to identify executive dysfunction in children
and adolescents suffering from epilepsy and seizures [26]]. It is also used to compare
the cognitive activation patterns of people suffering from depressions against those
of healthy adults [27]. TOL is employed to examine the cognitive impairment in
patient’s diagnosed with Parkinson disease [28]. In another study, TOL along with
functional Magnetic Resonance Imaging (fMRI) technology was employed to study
the differences in the neural basis of planning and executive function between first-
episode schizophrenia patients and healthy subjects [29]. Furthermore, it has been
used to examine prefrontal processing in Parkinson’s, schizophrenia, and autism pa-

tients [30, 131, 132].

Besides clinical disorders, TOL has also been employed to study the effect of various

parameters on the performance of healthy subjects. The predictive power of working
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memory, inhibition, and fluid intelligence on TOL performance is explored [33} 34].
Also, the effect of physical activity and exercise, age and impairment in the executive
function due to aging process as well as gender on planning and problem-solving
ability and its underlying neural basis have been studied [35,136,137,38]. Furthermore,
the performance of chess players against non-chess players is studied in an attempt to
gain an insight into problem solving skills and whether practicing problem solving in

a given setting would generalize to a better performance in other settings [39].

TOL problem itself has many variations due to its large number of parameters such
as goal hierarchy, demand for subgoal generation, start position hierarchy, number of
solution paths, and the existence of suboptimal alternatives. Several studies have ex-
amined the effect of the aforementioned structural parameters along with numerous
other non-structural parameters including procedure instructions, experience, envi-
ronment and problem-solving strategy on the performance of subjects when solv-
ing TOL puzzles, where performance is measured in preplanning time and accuracy

[40, 41,42, 123, 143,44, 145]].

Despite the popularity of TOL studies in the literature and the wide range of cases it
is used to investigate, relatively few works have explored its underlying neural net-
works in detail. In [46], the involvement of the parietal cortex, prefrontal cortex, basal
ganglia and anterior cingulate in the problem solving task has been reported. The
activation patterns of the dorsolateral and rostrolateral subregions of the prefrontal
cortex during planning has been examined [47]. The focus of another study has been
the hemispheric deferences in the per-frontal cortex during planning and execution
as well as the contribution of the superior parietal region to spatial working memory
[48]]. In addition, some work has been done to investigate the variance in the neural
basis of planning between standard and expert subjects [49]. Expert subjects activated
more spatially widespread regions of the left dorsolateral prefrontal cortes while stan-
dard subject had higher levels of activation in the anterior cingulate [49]. Given all of
this literature, it is clear that a holistic understanding of the anatomical brain regions
and their respective roles and interactions during complex problem-solving is both

lacking and important.
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2.1.1.2 Tower of London Dataset

In this section, we present the details of the TOL experiment and the corresponding
dataset, which is provided by Indiana University [46]]. At first, the participants in the
experiments are introduced, then the experimental setup of the procedure is detailed.

Finally, data collection and preprocessing methods are discussed.
Participants and Stimuli

18 college students aged between 19 and 38 participated in the experiment after sign-
ing informed, written consent documents approved by the Indiana university Insti-
tutional Review Board. The subjects solved a computerized version of TOL, two
configurations are presented at the beginning of each puzzle: the initial state and the
goal state. The subjects were asked to transform the initial state into the goal state
using the minimum number of moves. However, the subjects were not informed of
the minimum number of moves needed to solve a given puzzle nor of the existence of

multiple solution paths.
Procedure

Each subject underwent a practice session before entering the scanning session aim-
ing to get subjects acquainted with the TOL problem. The subjects were given the
following instructions: “You will be asked to solve a series of puzzles. The goal of
the puzzle is to make the ‘start’ or ‘current’ state match the ‘goal’ state (They were
shown an example). Try to solve the problems in the minimum number of moves by
planning ahead. Work as quickly and accurately as possible, but accuracy is more

important than speed.”

The practice session was made up of two parts, the first part consisted of 24 un-timed
single-path 4-move puzzles. The second part was made up of 12 7-move puzzles with
a time-limit of 15 seconds. Subjects were allowed to continue planning after the 5

seconds planning only time slot, if they chose to do so.

The scanning session consisted of 4 runs, each run included 18 timed puzzles, with a
5 seconds planning only time slot during which subjects are not allowed to move the

balls. However, they were allowed to continue planning after the 5 seconds planning
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only time slot, if they chose to do so. Following every puzzle, there was a 12-second
resting period where subjects focused on a plus sign in the center of the screen. Each

run was also followed by a 28-second fixation period.
Data acquisition & preliminary analysis

The fMRI images where collected using a 3T Siemens TRIO scanner with an 8-
channel radio frequency coil located in the Imaging Research Facility at Indiana Uni-
versity. The images were acquired in 18 5 mm thick oblique axial slices using the
following set of parameters: TR=1000 ms, TE=25 ms, flip angle=60°, voxel size =

3.125 mm X 3.125 mm x 5 mm with a 1 mm gap.

The statistical parametric mapping toolbox was used to perform the preliminary data
analysis that included: image correction for slice acquisition timing, re-sampling to
2x2x2 mm voxels, spatial smoothing using a Gaussian filter of 8 mm at full-width at
half maximum [S0]]. Then, the data was passed through a high-pass filter with 1/128
Hz cutoff frequency to discard low frequency signals. Next, motion correction and
normalization to the Montreal Neurological Institute (MNI) EPI template were per-
formed. Further details concerning the procedure and data acquisition can be found

in [46].

2.1.2 Tasks of Human Connectome Project

We use the fMRI data from the Human Connectome Project (HCP) of 300 subjects
performing different cognitive tasks. Each subject performs 7 distinct cognitive tasks
during the experiment procedure namely Emotion Processing, Gambling, Language,

Motor, Relational Processing, Social Cognition, and Working Memory (WM) [51].

In the emotion processing task, subjects are presented with two faces at the bottom
of the screen and one face at the top of the screen, where the faces express fear or
anger. Then, subjects are asked to determine which of the faces at the bottom match
the face at the top of the screen. In the gambling task, subjects guess the number
written on a card, where they win or lose money based on the correctness of their
guess. The language task is made up of two parts. In the first part, subjects listen to

a short story then answer questions related to it. As for the second part, subjects are
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Table 2.1: Scans per task and duration for each task (min:sec).

Emotion Gambling Language Motor Relational Social WM
Scans 176 253 316 284 232 274 405
Durations 2:16 3:12 3:57 3:34 2:56 3:27  5:01

presented with a math problem and they are asked to choose the correct answer from
two possible choices. In the motor task, the subjects are asked to move one of their
body parts from a list of five potential body parts. As for the relational processing
task, the subjects are presented with objects and they are asked to determine whether
the objects match or differ from each other given a predefined characteristic feature
of the presented objects. In social cognition task, subjects determine whether a group
of objects on the screen are interacting, moving randomly or subjects are not certain
if the objects adhere to the first or second options. As for the working memory task,
subjects complete two-back working and zero-back memory tasks using 4 different

types of visual stimuli (places, tools, faces, body parts).

Different cognitive tasks have different duration length. However, the duration of
each cognitive task is equal across all subjects. Table [2.1| shows the duration of each
cognitive task along with the corresponding number of brain scans collected during

the cognitive task [S1]].

Each task j consists of s; scans of the brain volume representing the brain activation
pattern during the task where the total number of scans across all tasks is .S = 1940.
As for the spatial resolution of the brain images collected, the BOLD responses of
all the voxels located in each anatomic region defined by the Automated Anatomical
Labeling (AAL) [12] are averaged in order to obtain the BOLD response of each

anatomic region as shown in equation [2.1]

1
Ty(t) = tol_vor \;Lvi(t)y 2.1

where tot_vox represents the total number of voxels in region u, v;(t) represents the
BOLD response of voxel 7 at time ¢, and ,(t) is the BOLD response of region u

at time t. Then, the anatomic regions located in Cerebellum and Vermis regions are
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discarded yielding a total of 90 anatomic brain regions. Further details concerning

the experimental setup and data collection methods can be found in [S1].

2.2 Extracting Brain Networks from fMRI Data

Numerous studies have proposed various computational models in order to build
brain networks from fMRI images, both during cognitive tasks or during resting state.
These works represent a shift in the literature towards brain decoding algorithms that
are based on the connectivity patterns in the brain motivated by the finding that these
patterns provide more information about cognitive tasks than the isolated behavior of

individual voxel groups or anatomic regions [3, 9, 6, [7, [8].

Some of these studies focus on the pairwise relationships between voxels or brain
anatomic regions. For example, Pearson correlation have been used in order to con-
struct undirected functional connectivity graphs at different frequency resolutions in
[S]. Also, pairwise correlations and mutual information have been used in order build
functional brain networks in various studies aiming to investigate the network differ-
ences between patients with Schizophrenia or Alzheimer’s disease and healthy sub-
jects [S52,153),154]. Partial correlation along with constrained linear regression was also

used to generate brain networks in [S5]].

Other studies take advantage of the locality property of the brain by constructing local
mesh networks around each brain anatomic region then representing the entire brain
network as an ensemble of local meshes. In such studies, the blood oxygenation level
dependent (BOLD) response of each brain region is estimated as a linear combination
of the responses of its closest neighboring regions. Levinson-Durbin recursion has
been applied in several studies in order to estimate the edge weights of each local star
mesh, where the nodes are the neighboring regions of the seed anatomic brain region
[S6]]. Ridge regression was also used to estimate edge weights while constructing

local mesh networks across windows of time [57, |6].

Another study have established resting-state brain networks as sparse constrained
networks using both L1 and L2 regularization to introduce sparsity and control for

the cross-subject variability [38]. A two-step model was also used in order to build
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functional brain networks, where at first sparse multivariate autoregressive model is
employed with penalized regression to estimate the brain networks. Then, false dis-
covery rate (FDR) is used to prune low probability connections to introduce sparsity

in the brain network [59]].

A recent study [[13]] has proposed a model to build brain networks using neural net-
works where the loss function is minimized jointly for all anatomic regions rather
than estimating a mesh network for each anatomic region independently from other

regions.

2.3 Connectivity Properties of Brain Networks

After constructing the brain networks, the statistical properties of the established net-
works are studied in order to obtain neuroscientific insights related to the experiment
at hand. Several network properties have been investigated in detail in the context of

brain networks given their neuroscientific interpretations[l60].

The small-world property of the brain networks have been studied extensively in nu-
merous studies, namely measured by the clustering coefficient, minimum path length,
global and local efficiency [61, 62]. Also, the node degree distribution of the net-
works has also been investigated and compared to power law and truncated power
law distributions[61]. The modularity of the brain networks, the existence of rich-

club hubs as well as betweenness centrality of nodes have been explored [[62, 63]].

Other studies extended the literature to weighted functional brain networks and de-
fined a null model for weighted undirected functional brain networks [64]]. Further
work focused on controlling for family-wise error (FWE) that complements false dis-

covery rate (FDR) [65]].

Several studies have compared the network properties of functional brain networks
across different age groups [66, 163]]. Other studies performed similar analysis to
compare the properties between healthy individuals and those suffering from diseases

related to cognitive impairment (Alzheimer, epilepsy, Schizophrenia) [67]].
The following are the most commonly studied network properties of brain networks
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categorized based on what they aim to quantify. Brain network N = (V, W) is made
up of the set of nodes of the network V' where the nodes can be either voxels or brain
anatomic regions, M 1is the total number of nodes in V. W is the set of directed
weighted edges between the network nodes, where w; ; is the weight of the edge from
node 7 to node j. Matrix A is defined as the binarized version of matrix W, where a; ;

takes value O if (w; ; == 0) and takes value 1 otherwise.

2.3.1 Measures of Centrality

Measures of centrality aim to identify brain regions that play a central role in the flow

of information in the brain network, or nodes that can be identified as hubs.

2.3.1.1 Node Degree

The degree of a node is the total number of its edges as shown in equation 2.2 where
degree; is the degree of node ¢, V' is the set of all nodes in the graph and q; ; is the

binary edge between node ¢ and node ;.

degree; = Z ;. j 2.2)

JjeEV

In the case of a directed graph, we distinguish two different metrics: node in-degree

out
7

degree!™ and node out-degree degree?™ metrics which are shown in equations

and [2.4] respectively where a; ; is the directed edge from node 4 to node j.

degreel" = Z aj; (2.3)
jev

degreef™ = Z ;. j 2.4)
jev
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Node degree is a measure of centrality of the given nodes, where it aims to quantify
the hub brain regions interacting with a large number of anatomic brain regions. Thus,

a node with high degree indicates its central role in the network.

2.3.1.2 Node Strength

Node strength is the sum of the weights of edges connected to a given node[2.5] where

w; ; 1s the weight of the edge between node ¢ and node j.

strength; = Z (e 2.5

jev
Similar to node degree, node strength also distinguishes two metrics in the case of
directed graphs namely: node in-strength strengthi™ and out-strength strength?*
shown in equations [2.6|and 2.7 respectively, where w; ; is the weight of the edge from

node ¢ to node j.

strength!™ = Z Wi (2.6)
jev

strength?" = Z W 2.7
jev

Node strength is a node centrality measure that is similar to node degree, which is
used in the case of weighted graphs. Nodes with large strength value are tightly

connected to other nodes in the network forming hub nodes.

2.3.1.3 Node Betweenness Centrality

Betweenness centrality of node 7 is the fraction of the shortest paths in the network

that pass through node ¢ as shown in equation [2.8]
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1 Pi g
betweenness; = Z 2 (2.8)
(OF = DT~ 2) 2 pyu

where p; ;. is the number of shortest paths between nodes j and k, p’, is the number
of shortest paths between nodes j and & that pass through node i, where nodes i, j

and k are distinct nodes.

However, before measuring the betweenness centrality of a node, the connection
weights matrix needs to be converted into connection lengths matrix since between-
ness centrality is a distance-based metric. In the weights matrix, larger weights imply
higher correlation and shorter distance while it is the opposite for the lengths matrix.
A connection length matrix is obtained by inverting the weights of the connection
weights matrix. The algorithm suggested in [68] can be applied in order to calculate

the node betweenness centrality for each anatomic region.

Nodes with high centrality are expected to participate in many of the shortest paths of

the networks. Thus, taking a crucial role in the information flow in the network.

2.3.2 Measures of Segregation

Measures of segregation aim to quantify the existence of subgroups within brain net-
works where the nodes are densely interconnected. These subgroups are commonly
referred to as clusters or modules. The existence of such clusters in functional brain

networks is a sign of interdependence among the nodes forming the cluster.

2.3.2.1 Clustering Coefficient

The clustering coefficient of a node 7 is the fraction of triangles around node ¢ which
is calculated as shown in equation [2.9] as proposed in [69]. It is equivalent to the

fraction of the neighbors of node 7 that are also neighbors of each other.

Xi
Ci = ou in ou in (29)
[(d** + di") (dg™ + i — 1) — 2 Zje\/ ;]
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where di" is the in-degree of node i and d¢* is the out-degree of node i. Y; is the

weighted geometric mean of triangles around node 7 that is calculated as shown in

equation [2.10]

Xi = 5 Z (wi jw; pw; )" (2.10)

2.3.2.2 Transitivity

Transitivity of a node is similar to its clustering coefficient. However, transitivity is
normalized over all nodes while cluster coefficient for each node is normalized inde-
pendently which makes clustering coefficient biased towards nodes with low degree.

Transitivity can be expressed as the ratio of triangles to triplets in the network.

It is calculated as shown in equation [2.1T] [69]:

Xi

T = . .
2jev (@ + di)(df + di* = 1) = 2320y ajnan)

2.11)

2.3.2.3 Global & Local Efficiency

The global efficiency of a brain network is a measure of its functional integration,
where functional integration is a measure of how easy it is for brain anatomic regions
to communicate with each other. The global efficiency is the average of the inverse
shortest path length between all pairs of nodes in the network. It is closely related to
small-world property of a network. Equation [2.12] shows how to calculate the global
efficiency of a brain network, where g;’; is the weighted shortest path length between

the distinct nodes 7 and 7 [60].

1 >iev(of)™!
Eyopg = — y =107 2.12
global M ZGZV M—_1 ( )
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As for the local efficiency of a network, it is the global efficiency calculated over the
neighborhood of a single node. The local efficiency is thus a measure of segrega-
tion rather than functional integration as it is closely related to clustering coefficient.
While the global efficiency is calculated for the entire network, the local efficiency is

calculated for each node in the network [60].
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CHAPTER 3

UNSUPERVISED BRAIN DECODING MODEL USING DEEP
HIERARCHICAL MULTI-RESOLUTION MESH NETWORKS

In this chapter, we introduce our computational model, named Deep Hierarchical
Multi-Resolution Mesh networks (DHMMNSs) for unsupervised brain decoding. The
proposed architecture is tested in task data-set of Human Connectome Project (HCP),
where we extract multi-resolution low-dimensional connectivity patterns using deep

learning architectures, each of which corresponds to a cognitive task.

At the first level of the architecture, we decompose the fMRI images into multiple
sub-bands using Wavelet decomposition. At the second level, for each sub-band, we
estimate a brain network, called mesh network, extracted from short time windows of
the fMRI images. At the third level, we feed the adjacency matrices of each mesh net-
work at each time-resolution to an unsupervised deep learning architecture, namely,
Stacked Denoising Auto-Encoder (SDAE). The output of SDAE provides a compact
low-dimensional connectivity pattern for each time window at each sub-band of the
fMRI images. At the final level, we concatenate the learned representations of all
sub-bands at each window, to cluster them using a hierarchical algorithm to find the

natural groupings across the windows.

We visualize the median values and the precisions of the mesh networks at each com-
ponent of the cluster mixture. The median mesh networks at cluster centers show
between-cluster variances and the precision of each cluster shows the within class

variability of mesh networks, across the subjects.
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3.1 Deep Hierarchical Multi-Resolution Mesh networks (DHMMNs)

In this section, we introduce our proposed model to perform unsupervised cognitive
state decoding. Our model firstly decomposes the original fMRI signal into multiple
frequency sub-bands using discrete wavelet transform. Then, it constructs functional
brain networks at every sub-band using Ridge regression and Pearson correlation.
Next, it employs stacked denoising auto-encoders (SDAE) in order to learn an effi-
cient low-dimensional representation of the established brain networks that captures
that activation patters of each one of the cognitive tasks. Finally, the learned low-
dimensional connectivity patterns at different frequency sub-bands are concatenated

and clustered using hierarchical clustering in order to perform brain decoding.

Figure [3.1] shows the pipeline of our proposed model. The representative time series
of each anatomic region is decomposed into a set of multi-resolution signals (orange
box). Next, mesh networks at each sub-band are estimated from time windows of 30
samples at each subject (gray box). The stacked denoising auto-encoders are used to
learn a set of compact connectivity patterns from the constructed mesh arch-weights
(white box) at every frequency sub-band. The connectivity patterns are concatenated
(blue box) and fed to a hierarchical clustering algorithm to obtain mixture density of

connectivity patterns (right box).

HIERARCHICAL
CLUSTERING

Multi-Resolution Estimating the Stacked De-noising
Wavelet Analysis Mesh Arc Weights Auto-Encoder P

Figure 3.1: Overview of the proposed Deep Hierarchical Multi-Resolution Mesh net-

works (DHMMNSs) model.
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3.1.1 Multi-Resolution Signal Decomposition

At first, we decompose the representative time series of BOLD response of each
anatomic region into a set of BOLD responses at different frequency resolutions. As it
is expected, the BOLD response at each frequency sub-band provide complementary

information about the underlying brain activities.

In order to represent the BOLD responses in multiple resolution, the representative
time-series 7, (t), for each anatomic region u is decomposed into a set of time series
at different resolution. This allows us to estimate and analyze how the anatomical re-
gions process information in different frequency sub-bands [[70]. We employ Discrete

Wavelet Transform (DWT) as our main tool [71]].

We apply the DWT to r,,(t) for all brain regions in order to decompose the signals into
[ sub-bands where [ = 1,2, ..., L, (L = 11). At sub-band level [, we obtain two sets of
orthonormal components named as sets of approximation coefficients A = {a, 1}
and detail coefficients D = {d,;} where k represents the location of the wavelet
waveform in discrete-time [[71]. These coefficients then may be utilized to reconstruct
the fMRI signals at each frequency level, yielding the total of (2 x L)+ 1 fMRI time-
series. Formally, the representative time-series at sub-band j (j € [0, 1, ..., 2L]) may

be defined as shown in equation [3.1

ru(t), ifj=0
Tiu(t) = 43, auin®ri(t) and | = j if1<j<L (3.1

S duikVik(t)andl =5 —L+1 ifj>1L

where ®, ;, and ¥, ;, are called the mother wavelet and the father wavelet respectively.
Further details concerning applying discrete wavelet transform to decompose fMRI

signals into multiple frequency sub-bands are available in [10].
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3.1.2 Constructing Brain Mesh Networks

After decomposing the BOLD response of each anatomic region into multiple fre-
quency sub-bands, we aim to build ensembles of local mesh networks at each of the
frequency sub-bands. Building local mesh networks is motivated by the fact that the
structure of the brain is highly interconnected and that neurons influence each other

based on the strengths of their synaptic connections [/2].

As the first step, we divide the BOLD response into non-overlapping fixed-sized win-
dows. Then for each window, we build local mesh networks around each anatomic
region by representing its BOLD response as a linear combination of its P closest
neighbors. Next, we group the constructed local mesh networks of all anatomic re-

gions to obtain an ensemble of local mesh networks in each window.

For this purpose, we divide the entire experiment session (S = 1940 number of scans)
into unlabeled windows of length Win_Size = 30 consisting of 30 discrete scans,
thus obtaining a total of 64 windows, with indices ¢ = 1, ..., 64 for each subject for the
entire experiment. The length of the window, Win_Size, is determined empirically,
as the shortest time-interval which provides the highest Rand index, at the output of
clustering. It is important to note that the windows are unlabeled and may consist of

overlapping data points from different cognitive tasks.

In order obtain a mesh network, we form a set of local meshes by connecting the node
of an anatomic region to its p-nearest neighboring anatomic regions. The neighbor-
hood system used is the functional neighborhood, where distance between each pair
of anatomic regions is measured using Pearson correlation. As a result, the nearest
p neighbors of anatomic region u are the ones with the largest Pearson correlation

scores with region u.

For each mesh formed around an anatomic region u, the mesh arc weights for the

window : are estimated at the sub-band ; using the following regularized linear model

3.2

2
i = Y WiiuaTiiw T MWjiusl” + Gin 3.2)

vEnp[u]
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where the regularization parameter is . The mesh arc weights w; ; ,, ., defined in the
np|u] neighborhood of region u are estimated by minimizing the error €;;,. 7jiu
is a vector representing the average voxel time-series in region u at sub-band j for

window %, such that:

Tj,i,u = [Tj,i,u(:l), Tj,i,u(z); ceey T’jﬂ"u(gO)]. (33)

The relation defined in equation [3.2] is solved for each region u with its neighbors,
independently by minimizing the mean square error function. In other words, we

obtain an independent local mesh around each region w.

After estimating all the mesh arc weights, we organize them under the vector W) ; =
{w; i uw }%, called Mesh Arc Descriptors (MADs), where M = 90 is the total number
of anatomic regions. Then, we represent the mesh network N;; as an ensemble of all

local meshes.

Note that, the local meshes are estimated for the original fMRI signal, and its approxi-
mation and detail parts of different resolutions. Consequently, we form 2L +-1 distinct
mesh networks for the frequency sub-bands { Ay, A1, As, ..., A, D1, Ds, ..., Dy }. The
multi-resolution mesh network for a subject is defined by a graph, N;, = (V,W},),

for each unlabeled window ¢ and for each sub-band j.

The set of vertices V' corresponds to the ordered set of anatomic regions and is of
size M. Vertex attributes are the time-series r;; ,, contained in the window ¢, at the
sub-band j. The arc weights, W;; = {wj,i,u,v}% between regions u and v, for each
window ¢ are obtained from the local meshes of the representative time-series data

points at sub-band ;.

This process results in 2L + 1 distinct mesh networks represented by an adjacency
matrix of size M x M made up of (V, ,w;;.,) for each window ¢. We concatenate
the arc weights under a vector (f;;) of size 1 x M? and embed the brain network for
all windows, ¢ = 1, ..., 64, at sub-band j. This means that for each level j and each

subject, we represent the entire experiment by an unlabeled matrix of size 64 x (M?)

i.e. Fj,subs = [fj,la ...,fj764]T.
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3.1.3 Representation Learning for the Connectivity Patterns by Stacked De-

noising Auto-encoders

After constructing ensembles of local mesh networks at each frequency sub-band
for all time windows, we aim to use deep learning architectures, namely, stacked
denoising auto-encoders, in order to learn a set of compact connectivity patterns from
the embedded brain networks. Consequently, clustering the windows w into similar
connectivity patterns where each cluster of connectivity pattern corresponds to one of

the cognitive tasks of HCP dataset.

The embedded mesh networks model the connectivity among the anatomic regions
at different sub-bands of fMRI images under each window ¢, for each subject. We
utilize a deep learning architecture to extract a set of compact connectivity patterns
from the mesh networks where the learned connectivity patterns form natural clusters

corresponding to the cognitive states of the underlying experiment.

In order to achieve that, we design a multi-layer stacked denoising sparse auto-encoder
[73]. For each sub-band j, we train an auto-encoder that takes the windows in the em-
bedded brain network associated with subject sub, i.e. f;; € Fjsu,,t = 1,...,64 as
its input, and produces a vector y of size 1 X 7 where the size of output vector corre-

sponds to the number of the cognitive tasks in HCP dataset.

The learned features represent the connectivity patterns at sub-band j for subject,

subg, during time window 7, as shown in equation 3.4

Yo (Fjsub,) = POWE; sup, + B) (3.4)

with the auto-encoder parameter set © = [W, ], where W is the collection of
weights {W,}1.4, B is the collection of biases {83;}.4 at each neuron and ® rep-
resents the activation function arctan. Our sparse auto-encoder design includes an
input layer of size ]Tl with three hidden layers [500, 64, 21] and an output layer of
size 7 and the sparsity parameter p. The output of each neuron y; may be represented
as y; = Z?Zl w;x; + b;, where n and x;’s indicate the total number of neurons and

the neurons’ outputs from the previous layer respectively.
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The objective function J is to minimize the mean-squared loss function
LW, B|Fj su,) in the presence of an L,-Ridge regularization with parameter Ay

which adds stability and robustness to the learning process as shown in equation 3.5]

J = argmin{ LV, B|Fjup,) + Aol [W1J3} (3.5)
The training procedure of the stacked denoising auto-encoders is shown in algorithm
[[] where i = 4 (3 hidden layer + 1 output layer). The algorithm [I] shows the steps
of training the stacked auto-encoder layer by layer in order to minimize the mean-
squared loss function. Then, after the training procedure is complete, the constructed
mesh networks are fed to the stacked auto-encoder in order to obtain the learned

connectivity patterns.

Algorithm 1 Training stacked denoising auto-encoders

Input: Mesh networks for subject suby at sub-band j (F} sup,)
Output: Learned connectivity patterns for subject sub, at sub-band j (Y} sus,)
for layer; of stacked auto-encoder do
Initialize W; and B; of layer;
if i==1 then
input; = Fj sup,
end if
for each epoch do
Feed input; to layer;
Obtain output;
Measure the mean-squared loss function L(W;, B;|input;)
Adjust weights W, and B; to minimize the loss function
end for
Feed input; to trained layer;
Obtained learned the features output; of layer;
input; 1 = output;
end for
Feed F 5., to the trained stacked auto-encoder

Return the learned connectivity patterns Y o,
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Furthermore, we use dropout during training procedure where at each learning epoch,
20% of the data points are removed. Using dropout manages to regularize the data
and adds a denoising effect that controls for over-fitting [[74]. After training the afore-

mentioned auto-encoder, we extract the feature matrices for subject suby at sub-band
(64x7)
Y. )

j,subs

J to attain (

The proposed deep learning architecture manages to remove the large intra-class vari-
ance among input mesh network representation as it gives an effective representation
of the brain networks in a low-dimensional space, which can be expressed as a non-
linear mapping model from a high-dimensional space to a low-dimensional space

suited for clustering.

3.1.4 Multi-Resolution Hierarchical Clustering

Following the construction of low-dimensional representation of mesh networks us-
ing auto-encoders, we perform hierarchical clustering on a combination of learned
connectivity patterns from different frequency levels in order to distinguish the dif-

ferent cognitive tasks.

The clustering algorithm clusters a subject’s brain features matrix

Yf6 x(mxT) [(Yl(giZ:)) Fyeees (Ynf;l:b?) ] consisting of the concatenation of the fea-
ture matrices from m different frequency levels selected from the the frequency sub-
bands {Ag, A1, As, ..., A1, D1, Do, ..., D11 }. The reason to concatenate the feature
matrices from different frequency sub-bands is that each frequency level carries com-
plementary information concerning the cognitive tasks performed during the experi-

ment.

Given the 64 discrete-time windows, the clustering algorithm attempts to divide the
data points into 7 clusters (clusty, h = 1,...,7), by minimizing the following cost
function[3.6]:

7 7
A= ZAh = Z( Z dis(y;, clusty)) (3.6)
h=1

h=1 y;€clust,Ny; €Yy
where the distance matrix dis(y;, clust),) is based on the Pearson Correlation between
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the learned representation vectors which closely models the functional connectivity
pattern in the brain from one task to another. The distance metric used by the hierar-

chical clustering algorithm is show in equation [3.7]

dis(y;, clusty) = 1 — Corr?(y;, clusty,) 3.7)

The entries of the correlation matrix Coorr(y;, clust),) indicate the degree to which
the learned connectivity pattern, y;, for window j is correlated with cluster clust,.
The above equation captures the coupling between windows and consequently closely

models the flow of change in brain features from one cognitive state to another [75]].

We measure the performance of clustering using Rand index and adjusted Rand in-
dex. These indices measure the agreement between two partitions; one given by the
clustering process and the other defined by the ground-truth labels of time windows.
The values of Rand index (RI) lie between 0 and 1, while the Adjusted Rand index
(ARI) may take negative values due to its sensitivity to randomness compared with

RI [76]].

3.2 Experiments and Results

In this section, we introduce the experimental results of our proposed model where
we perform within-subject clustering and average the results over 100 subjects. We
present the results of brain decoding before and after applying each step of our
pipeline in order to show the incremental increase in brain decoding power as the
computational model is applied. The Rand index (RI) and Adjusted Rand index (ARI)
are used to measure the performance of the clustering process employed. Then, we
visualize the constructed brain mesh networks across subjects and cognitive tasks to

highlight the inter-task and inter-subject variabilities in the networks.

The design parameters of the proposed model are selected empirically through a
cross validation process based on the obtained clustering performance. We search
for the optimal design parameters based on the sets, p € {10, 20, 30,40,50}, A €
{16,32,128,256}, p € {0.01,0.001,0.0001}, and Ay € {0.00001, 0.00055,0.0001}.
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Table 3.1: Clustering performance of raw fMRI images and mesh arc-weight descrip-

tors.

RI | ARI
Raw fMRI 0.68 | -0.07
Mesh Arc-weight Descriptors | 0.84 | 0.37

We select the following model parameters, p = 40 and A\ = 32 for the mesh networks,

and p = 0.001 and A\, = 0.00055 for the SDAE design as optimal values.

At first, we compare the clustering performance of the raw fMRI images against that
of the constructed mesh networks at the original frequency sub-band AQ. Table [3.1]
shows the performance comparison between the clustering of the raw fMRI images
(i.e. representative time series of each anatomic region) and the clustering of the mesh
arc weights descriptors of constructed brain networks (MADs). It is clear from the
table[3.1|that the mesh arc-weight networks increase the performance when compared
with that of the raw fMRI images from 68% to 84% and from -0.07% to 0.37% of the
Rand index and the Adjusted Rand index respectively.

Then, we compare the performance of mesh networks against the connectivity pat-
terns obtained using the stacked denoising auto-encoders (SDAE) across all frequency
sub-bands. Table [3.2] shows the clustering performance of both mesh networks and
the connectivity patterns of SDAE measured in Rand index and Adjusted Rand index.
The table clearly shows that, for both mesh networks and SDAE connectivity pat-
terns, all frequency sub-bands obtain good clustering performance which highlights

the existence of complementary information in different frequency sub-bands.

The table also shows that the clustering performance ranges between 68-86% mea-
sured in Rand index across all sub-bands for both the mesh networks and SDAE con-
nectivity patterns. Note that, sub-bands AS to A11, D5 to D7 and D9 to D11 show
relatively higher performance compared to the other sub-bands when SDAE connec-
tivity patterns are used for clustering, indicating that these frequency bands contain
more information than the rest of the sub-bands. Furthermore, the SDAE connectiv-

ity patterns obtain performance that is better than mesh networks in some frequency
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sub-bands while obtaining slightly worse performance in other sub-bands this can be
explained by using the same hyper-parameters for all stacked denoising auto-encoders
across all sub-bands rather than fine-tuning the hyper-parameters of each frequency
sub-band individually. However, given the significant reduction in dimensionality ob-
tained by the SDAE connectivity patterns against the very high dimensionality of the
mesh networks, the performance obtained is significantly superior to that of the mesh

networks.

Then, we examine the clustering performance by ensembling multiple frequency sub-
bands. Table [3.3] shows the clustering performance of concatenating the mesh net-
works and SDAE connectivity patterns at multiple frequency sub-bands. The ob-
tained Rand index and adjusted Rand index values clearly show a significant boost in
performance compared to using a single frequency sub-band. The Rand index values
jumped from a score between 68-86% to 90-93%. This shows that not only the brain
networks constructed at multiple time-resolutions provide complementary informa-
tion for the clustering algorithm but that the proposed deep learning architecture is
capable of detecting distinct connectivity patterns in the brain for a given cognitive

task, independent of subjects.

The high ARI values in Table [3.3] confirm that utilizing the complementary infor-
mation gained from different time-resolutions results in clusters with relatively low

within-cluster variances and high between-cluster variances.

Furthermore, when we increased the number of subjects to 200, by fusing the brain
networks obtained from the entire 23 sub-bands and clustering their connectivity pat-
tern extracted by the SDAE architecture, we are able to achieve similar performance
of 93% RI and 71% ARI. This clearly shows that increasing the number of subjects

does not affect the clustering performance.

Finally, we aim to visualize the constructed brain mesh networks obtained in the
original time resolution of fMRI images in order to observe the inter-task and inter-
subject variability of the brain networks. Recall that we performed the clustering
within the fMRI data of individual subjects. The reason behind performing within-
subject clustering rather than across-subject clustering in this study is the high inter-

subject variability, that may prevent the clustering algorithm from finding natural
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Table 3.2: Clustering performance of mesh arc-weight descriptors (MAD) and
learned connectivity patterns (SDAE). A; indicates the approximation part and D;

indicates the detail part, while A, corresponds to the raw fMRI images.

MAD | RI | ARI | SDAE | RI | ARI
A0 084|037 A0 |0.78 | 0.11
Al | 083034 | Al |0.76| 0.02
D1 |0.81]0.28 | DI 0.75 | -0.04
A2 10771015 A2 |0.74 | -0.06
D2 | 086|047 | D2 |0.76 | 0.11
A3 1075|012 | A3 |0.74 | 0.07
D3 [0.72|0.15| D3 |0.74 | -0.34
A4 068|006 A4 |0.77 | 0.06
D4 |0.77 1024 | D4 |0.78 | 0.15
A5 |0.68|0.08| A5 |0.80] 0.17
D5 | 074 |0.17 | D5 |0.80] 0.16
A6 [ 075]0.18 | A6 |0.81 | 0.20
D6 |0.75]0.17| D6 |0.80 | 0.20
A7 1087050 A7 |0.80| 0.21
D7 1084|037 D7 |0.82] 0.26
A8 | 085|037 A8 |0.80] 0.16
D8 | 082027 D8 |0.79| 0.14
A9 1085(039| A9 |0.83| 0.30
D9 | 082028 | D9 |0.80] 0.12
A10 | 0.82]0.29 | Al10 | 0.86 | 0.41
D10 | 0.83 | 0.30 | D10 | 0.84 | 0.20
All | 0.79 020 | All | 0.82 | 0.25
D11 | 0.81 | 0.26 | D11 | 0.83 | 0.29
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Table 3.3: Clustering performance for combinations of sub-bands.

MAD Rand | A. Rand | SDAE Rand | A. Rand
All Sub-bands | 0.91 0.64 All Sub-bands | 0.93 0.71
Sub-bands 7-9 | 0.92 0.66 Sub-bands 7-9 | 0.90 0.59
Sub-bands 7-11 | 0.92 0.66 Sub-bands 7-11 | 0.91 0.60
Sub-bands 3-8 | 0.89 0.57 Sub-bands 3-8 | 0.91 0.64
Sub-bands 3-11 | 0.90 0.59 Sub-bands 3-11 | 0.91 0.63

groupings in the data.

In order to illustrate the inter-subject variability, we plot the mesh networks of three
different subjects in Figure [3.2] for each cognitive task. Each row in Figure [3.2] cor-
responds to a distinct subject, and each column corresponds to one of the cognitive
tasks of HCP dataset. The selected subjects have the RI of 99%, which indicates that
the proposed model has successfully estimated the natural groupings for each one of
the three subjects. The brain networks shown in the aforementioned figure represent

the medoids of the clusters which corresponds to each one of the seven different tasks.

The mesh networks corresponding to each of the subjects have been pruned to reach
1% sparsity for simplification by eliminating the mesh arc weights with values less
then a threshold thus deleting weak connection in the constructed brain networks. A
detailed analysis of the mesh networks corresponding to each task for the subjects
shows that the mesh networks corresponding to the same task have practically very
small similarities across the three subjects. This validates our prior claim on the
existence of very high inter-subject variability. In order to further investigate the
inter-subject variability, we select a subgroup of subjects with Rand indices higher
than 90% from the HCP task dataset of 300 individuals. Then, we define the precision
of the mesh networks across the set of subjects as the inverse of variance across the
selected subjects. Figure [3.3] shows the pruned precision of the mesh networks of
the aforementioned set of subjects with 1% sparsity. The thickness and the colors of
the edges are proportional to their corresponding precision values. It is clear from
Figure [3.3] that the majority of the edges are thin-blue while very few of them are

thick-red. This indicates that the majority of the mesh network connections have very
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high variance across subjects.

3.3 Chapter Summary

In this chapter, we proposed a framework called Deep Hierarchical Multi-Resolution
Mesh networks (DHMMNSs) for constructing a set of brain networks in multiple
time-resolutions in order to model and analyze the connectivity patterns between the
anatomic regions for different cognitive states. We proposed an unsupervised deep
learning architecture that utilized these brain networks in multiple frequency sub-
bands in order to learn the natural groupings of connectivity patterns in the human
brain for a given cognitive task. We showed that our proposed pipeline is capable
of clustering the representative groupings into their corresponding cognitive states.
We examined our suggested architecture on a task data-set from Human Connectome
Project and achieved a clustering performance of 93% Rand index and 71% Adjusted
Rand index for 100 subjects. In addition, we visualized the median networks and the
precisions of the mesh networks at each component of the cluster mixture. We showed

that the median mesh networks at each cluster have high inter-subject variabilities.

Finally, it is important to note that the nature of HCP dataset, large number of subjects
and large number of fMRI recordings for each cognitive task, made it suitable for the
type of analysis contained in our proposed model. As our proposed model requires
abundant data to train the deep learning architectures, as well as large number of fMRI
recordings per task in order to properly apply multi-resolution analysis. However,
the proposed model in this chapter may not suit well datasets with small number of
subjects or small number of fMRI recordings collected for the cognitive tasks studied.
As applying multi-resolution analysis as well as employing deep architectures to such
datasets is not appropriate. Therefore, in the following chapter we propose a different
computational model more suitable for smaller datasets with smaller number of fMRI

recordings per task.
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Figure 3.2: Brain mesh networks of 3 subjects.
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CHAPTER 4

SUPERVISED BRAIN DECODING MODEL FOR COMPLEX PROBLEM
SOLVING

In this chapter, we introduce our supervised network model for the complex prob-
lem solving task using the Tower of London (TOL) dataset. Firstly, we introduce
our model for preliminary analysis of TOL that aims to identify the relative acti-
vation patterns during both phases of complex problems solving, namely planning
and execution. Then, we present our proposed model to decode the cognitive sub-
tasks of the complex problem solving task. The proposed model is made up of two
parts, the first part is a preprocessing pipeline that reduces the spatial resolution of
the data while increasing its temporal resolution. Then, we construct dynamic func-
tional brain networks using neural networks that represent the underlying cognitive
subtasks of problem solving. The results of the proposed preprocessing pipeline and
brain decoding model are provided. Finally, the network properties of the constructed
brain networks are examined in detail in order to identify potential hubs and clusters

of densely connected brain regions during both planning and execution subtasks.

4.1 Preliminary Analysis of Tower of London Problem

In this section, we discuss the preliminary analysis performed on the Tower of London
dataset. The aim of the preliminary analysis is to investigate the activation patterns
and relations of brain anatomic regions during the planning and execution phases of

the problem solving task.

In order to do that, we propose a dynamic sparse network representation estimated

from the fMRI brain volumes at all time instances. This representation, called Dy-
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namic Mesh Network, enables us to analyze the activation levels of the brain under
planning and execution stages of a TOL problem. Before applying our model, we
define the ground-truth labels for each puzzle by assuming that all the brain volumes
prior to the first move of the participant are categorized as planning whereas the re-

maining volumes belong to the execution phase.

4.1.1 Dynamic Mesh Network Representation of Brain

The proposed network model is computed in three steps. First, we select the active
voxels, from the entire brain volume, that contribute to the problem solving task. Sec-
ond, we form a dynamic network and estimate its arc weights, at each time instant
of fMRI brain volumes, for each of the 18 subjects across all the sessions. Third, we
measure the cosine distance between the estimated arc weights of the selected vox-
els after grouping the voxels into their corresponding anatomic regions. The cosine
distance is measured across time for both planning and execution tasks in order to

evaluate the activity changes of each anatomic region.

4.1.1.1 Voxel Selection

Given the very large number of voxels (185,405 voxels per time instant), the com-
putational and time complexity of any analysis to be conducted on the entire brain
volume is infeasible. Thus, there is a crucial need to reduce the number of voxels by

selecting a subset of the voxels containing the most informative ones.

A variety of methods have been applied to select the most informative discriminative
voxels [[77, (78,79, 180} 4]. We apply mutual information method, which measures the
reduction of the entropy of the class labels vector y;4pe; given the BOLD response of
vector ¢ (v;) which indicates the amount of information that voxel ¢ contains about

class labels yjqper [77]. Mutual information can be calculated as shown in equation

4.1l
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p(via ylabel)
] aobe ;U’L - / ’va aobe 10 (41)
(yl bel Z Yiab l g p(vi)p(ylabel)

Yiabel=1

where yjqper 18 the class label vector, v; is the BOLD response of voxel ¢ and C is the
number of class labels which is equal to 2 in the case of problem solving (planning
and execution). The joint distribution p(v;, Yiaper) Of v; and Yiqper is calculated using
the chain rule along with Parzen-Rosenblatt window kernel method [77]]. At First, we
get rid of all the voxels that have a constant value across time as they provide no infor-
mation concerning whether the task is planning or execution. Then, we measure the
mutual information between each one of the remaining voxels and the corresponding
class labels. Finally, we retain only the top 20% of the voxels which amounts to over

36 thousand discriminating voxels.

4.1.1.2 Building Dynamic Mesh Networks

After having selected the most informative voxels, we build the mesh networks around
each one of the selected voxels, which will be referred to as seed voxels. The motiva-
tion behind building mesh networks to represent a voxel rather than its corresponding
blood oxygenation level dependent (BOLD) response is due to the finding that the
connectivity between the voxels contains more information than the corresponding
individual BOLD signals of the voxels [3) 3]. In order to build mesh networks, we
first need to define the neighborhood for the voxels. For this purpose, we compute the
functional connectivity matrix, where each row corresponds to the Pearson correlation
value between the time series of a seed voxel and that of the rest of the voxels located
in its anatomic region, which means that the distance between each pair of voxels is
measured by the Pearson correlation score between their corresponding BOLD sig-
nals. Pearson correlation between two voxels BOLD signals can be calculated as

depicted in equation

cov(v;, v;)

o(01)o(v;) 2

cor(v;, vj) =
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where v; represents the time series of BOLD response of voxel i, recorded during the
cognitive states. cov(v;, v;), is the covariance between the corresponding BOLD re-
sponses of voxels 7 and 7 and o is the standard deviation function. Thus, the higher the
Pearson correlation between two voxels the closer they are to each other in functional
neighborhood system. Then, we select the voxels with the highest Pearson correlation
values around each seed voxel and connect the seed voxel to the neighboring voxels

to form a local star mesh.

After having defined the functional neighborhood of the voxels, we now represent the
BOLD response of each seed voxel as a linear combination of the BOLD responses of
its (P) closest neighbors located within the same anatomical region as the seed voxel

as shown in equation .3]

Bi(t) = > wigvi(t) + e (4.3)

J€npld]

In equation4.3] 9;(¢) represents the estimated BOLD value of voxel i at time instance
t. j € np[i] indicates voxel j in the P-closest functional neighbors of the seed voxel i.
Number of neighbors around each seed voxel defines the size of the local mesh. As P
gets higher the mesh size grows and a denser brain network is generated. In this study,
P is empirically selected as 5. We refer to w, ;; as the mesh arc-weight descriptors
(MAD) between voxel pair (¢, j), estimated at time ¢ [10]. The reason we restrict the
neighborhood of each voxel to its anatomical region is due to the high computational
complexity of measuring the functional neighborhood at the entire brain level due to
the very high number of voxels. As for the parcellation of the brain into anatomical
regions, we use Automated Anatomical Labeling (AAL) to divide the brain into 116

different anatomical regions [[12]. ¢, indicates the error of the representation.

In order to estimate the mesh arc weights w, ;; of a seed voxel ¢ as a linear combi-
nation of its P closest neighbors, for all neighboring voxels, j € npli], at each time
instant ¢, we use Levinson-Durbin autoregressive estimator to minimize the expected

squared error, E[(e;;)?],
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El(es)’] = E[(®:(t) = > wi;i0;(t))’] (4.4)

jenpli]

with respect to mesh arc weights w, ; ;. Expectation is taken over all the voxels located
in the same mesh. Finally, we aggregate all the local meshes obtained at time instant
t to form the Dynamic Mesh Network N(¢) = (V,W(t)) , where the set of nodes,
v € V represents the seed voxels together with their neighboring voxels. The set of
edges, wy ;; € W (t) represents the estimated mesh arc weights. Note that the edges
are directed from the neighbors to the seed voxels, and the arc weights dynamically
change over time. Note also that, some of the nodes may correspond to unselected

voxels if they are in the P-closest functional neighbors set of a seed voxel.

4.1.1.3 Cosine Distance Between Mesh Arc Weights

We measure the percentage change in local meshes during the planning and execution
phases for each anatomic region. The aim is to estimate the relative activity of the

anatomic regions during planning and execution subtasks.

First, we group the seed voxels into 116 anatomic regions using Automated Anatom-
ical Labeling (AAL) and partition the Dynamic Mesh Network, N(t) = (V,W(t))
into 116 subnetworks N*“(t) = (V* W"(t)), each of which represents an anatomic
region. We group the selected voxels into their corresponding anatomic regions de-
fined by the AAL template in order to investigate the high level functional activation

patterns of the anatomic regions. Therefore, the suggested Dynamic Mesh Network

can be considered as a collection of subnetworks, i.e. N(t) = {N“(¢)}115. In sub-
network N*, the set of nodes V" consists only of the seed voxels located in region
u and their P-closest functional neighbors. The arc weights W* consists of the mesh

arc weights which belong to the seed voxels located in region .

In each anatomic region u, we concatenate the mesh arc weights of the local meshes
obtained at each time point, as shown in equation where the vector w,(t) repre-
sents the vector of mesh arc weights of anatomic region u at time point ¢, obtained by

concatenation of all (¢, j) pairs of mesh arc weights, w ;; between seed voxels 7 and
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its neighbors j at time point ¢. As a result of applying equation 4.5] each anatomic
region is represented by a variable length vector of mesh arc weights as the length of

the vector representation depends on the number of seed voxels located in that region.

wy(t) = concat(wy ), Vi€ u,Vj € nplil (4.5)

Then, we measure the cosine similarity between each pair of consecutive time in-
stances w,,(t— 1) and w,(¢) to find the relative change of mesh arc weights in anatomic
regions during the planning and execution subtasks. The angle ¢ is the acute angle
between the two vectors defined as expressed in equation where y(t) is the task
performed at time point t which can be either planning or execution. The accumulated
cosine distance measured represents the activation level of an anatomic brain region
during the TOL experiment. Regions which are active will have varying mesh vectors
across time, thus the measured cosine distance will be large. While regions which are

relatively inactive will have similar mesh vectors leading to small cosine distance.

0.(t) = accute — angle — between(w, (t — 1), w,(t)) 4.6)
where y(t —1) = y(t) .

4.1.2 Experiments and Results

In this section, firstly we perform voxel selection and keep only the 20% most dis-
criminating voxels, which amounts to more than 36 thousand voxels distributed all
over the brain. Increasing the number of voxels more then 20% does not change the
structure of the plots. Figure .Tashows the mean percentage of voxels selected from
each anatomic region across all subjects and the corresponding standard deviation.
It can be observed from the figure that superolateral and inferior parietal lobes and
occipital lobe contribute between 30 to 50 percent of their voxels as well as Angular
and Calcarine regions. While the temporal lobe contributes between 10 to 20%. The
remaining regions have relatively low contributions, below 10%, and the cerebellum

has varying contributions across different anatomic regions.
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Secondly, we build local meshes around each seed voxel by selecting its P=5 closest
neighboring voxels. Taking higher values of P results in similar behavior of the plots,
shown in Figure .1b] In this step, we reduce the number of selected voxels to the top
5% of the voxels for computational efficiency. Then, we measure the cosine distance
between each consecutive pair of dynamic brain networks across time under both

planning and execution tasks for all of the anatomic regions.

Figure [4.1b| shows the mean accumulated cosine distances for each anatomic region
across all subjects while Figure 4.2 shows the mean accumulated cosine distances for
each brain lobe across all subjects. It is observed from both figures that all anatomic
regions and brain lobes have higher accumulated cosine distance during the planning
task compared to the execution task. This indicates that all regions are more active

during the planning phase compared to execution phase.

0.00020 T T T T

1 L 1 1 —
. 0.00018 | |I:I Planning IE ExecutionL
A 0.00016 - g
O 0.00014 |- g
. 0.00012 -
& 0.00010 F
U 0.00008 |
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Prefrontal Prefrontal Cingulate Precentral Precentral Parietal Parietal Basal
Cortex Cortex Gyrus Gyrus Gyrus Lobule Lobule Ganglia

Figure 4.2: Accumulated cosine distances of planning and execution tasks for brain

lobes of interest.

4.1.3 Brain Network Visualization of Planning and Execution Phases

In this section, we aim to explore the relationship among the anatomic regions, except
for Vermis and Cerebellum regions, during the planning and execution tasks. For this
purpose, we build a mesh network between the anatomic regions where the BOLD
responses of the selected voxels are averaged into their corresponding anatomic re-
gions. We construct two mesh networks from each puzzle, one that represents the
planning phase and another for the execution phase. The constructed mesh networks

are built in functional neighborhoods. However, rather than using a scalar represent-
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ing the voxel intensity value at time-instance t, we use a vector representing the voxel
time series during an entire phase of planning or execution. Therefore, we use ridge
regression rather than Levinson-Durbin to approximate the activation of an anatomic
region by its closest neighbors. Then, we prune the mesh arc weights by discarding
the weakest connections within and across the subjects, where the strength of a con-
nection is measured by its estimated mesh arc-weight value. We plot the resulting
brain networks for planning and execution tasks where edge thickness and color in-
dicate the strength of connection between two regions as shown in Figure 4.3] using
[81]. The figure indicates that the planning network has several strong connections
extending all across frontal lobe and cerebral cortex, while the execution network has

a significantly smaller number of strong connections.

4.1.4 Section Summary

In this section, we proposed a dynamic sparse network model to represent the activ-
ity within and across the anatomic regions of the brain during problem solving task.
Several steps introduce the sparsity into our model: selecting a subset of the vox-
els, building mesh networks of the P closest neighbors only, grouping the voxels into
anatomic regions. Furthermore, using ridge regression to build the mesh networks
leads to a sparser mesh network due to L2 regularization. We investigated the relative
activation levels of the anatomic regions during both planning and execution phases
as well as the contribution of each region. The proposed model highlights the brain
anatomic regions that contribute to complex problem solving task. It also shows that
most anatomic regions are more active during planning subtask than during execution
subtask. We, finally, constructed the underlying mesh networks for both planning
and execution tasks. The mesh networks indicate stronger connectivity during the

planning phase compared to the execution phase.

4.2 Decoding the Phases of Complex Problem Solving

In this section, we introduce our proposed model for cognitive state decoding using

brain networks. At first, we perform data preprocessing and data augmentation using
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Figure 4.3: Underlying neural network of anatomic regions during planning (Top)

and execution (Bottom) tasks.
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voxel selection, temporal interpolation and injecting Gaussian colourful noise in order
to adapt the data such that it is appropriate to build dynamic functional brain networks.
Then, we construct directed weighted dynamic brain networks using neural networks

in order to estimate the weights of the edges.

4.2.1 Preprocessing Pipeline

Given the small number of subjects in TOL dataset, and the large number of voxels
in each brain image (185,405 voxels per time instant), voxel selection is used to re-
duce the spatial resolution of the collected brain images and dampen the noise that
is inherent to voxel readings. Furthermore, due to the short duration of each puzzle
(max 15 seconds) and the relatively low sampling rate (TR = 1 sec), temporal inter-
polation is needed in order to increase the number of brain volumes in each puzzle.
Finally, Gaussian colourful noise is used in order to regularize the data and improve

generalization.

4.2.1.1 Voxel Selection

In this first phase of data preprocessing, we use ANOVA feature selection method
to choose the most discriminative subset of voxels and discard the remaining ones
[77, 79, 180]]. In order to do that, we calculate the f-value score of each voxel v; as

shown in equation 4.7}

MSB(’Uz', ylabez)
MSW (v, Yiabet)

4.7)

F _score; =

where y;qper 15 the label indicating the subtask (Planning or Execution),
M S B(v;, Yiaper) 18 the mean square value between voxel 7 and the label vector Yjaper-
While M SW (v;, Yiaber) is the mean square value within voxel 7 and the label vector

Yiaber- Equations {8 and show how to calculate the mean square value between
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and mean square value within respectively.

SSB(W, ylabel)
dfbetween

MSB(vi, Yiaber) = (4.8)
In equation SSB(V;, Yraper ) 18 the sum of squares between Yyaper and v;, dfperween
is the number of groups minus one. As for equation SSW (V;, Yraber) is the sum
of squares within group and df ,;inin is the degree of freedom within (total number of

elements in v; and Y;qpe; Minus the number of groups).

SSW (vi, Yiabet)
dfwithin

MSW (v;, Yiabet) = 4.9)
Then, we order the voxels according to their f-value scores. Next, the distribution of
f-value scores of all voxels is plotted in order to determine the appropriate number
of voxels to retain. Voxel selection is applied to the voxels of all brain regions except

the ones located in Cerebellum and Vermis anatomic regions.

Voxel selection successfully manages to significantly reduce the number of voxels in
each brain volume thus making the space and time complexity of the analysis on the
dataset feasible, given the large total number of voxels in each brain volume, 185,405
voxels per time instant. Then, the BOLD response of the selected voxels is averaged
into their corresponding anatomic brain regions defined by the automated anatomical

labeling (AAL) atlas [[12] as shown in equation .10}

Zie([u] v;

4.10
Clull (10

Ty =
where 7, is the BOLD response of region u, v; is the BOLD response of voxel ¢ and
C[u] is the set of selected voxels located in region u. Averaging the selected voxels
into their anatomic regions smooths the noise to a certain degree, and further reduces
the dimensionality of each brain volume. As a result, each brain volume would be
represented by one BOLD response for every anatomic region thus enabling us to
investigate the role and contribution of each anatomic region to both phases of the

problem solving task.
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4.2.1.2 Temporal Interpolation

The TOL dataset has relatively low temporal resolution given the short duration of
each puzzle (maximum of 15 seconds per puzzle) and the low sampling rate (TR =
1000 ms). Therefore, temporal interpolation is used to increase the temporal res-
olution by generating artificial brain volumes located between the measured brain

volumes.

Using temporal interpolation, z artificial estimated brain volumes are inserted be-
tween each pair of measured brain volumes, where z depends on the interpolation
rate. As a result, the total number of available brain volumes for each puzzle be-
comes n + z * (n — 1) where n is the number of measured brain volumes of a given

puzzle.

We use the cubic spline interpolation function rather than linear interpolation methods
in order to prevent edge effects and smoothing out the spikes between the measured
brain volumes [82]. Equation shows the cubic spline interpolation function for a

given piecewise cubic polynomial function between two measured brain volumes:

where a;, b;, ¢; and d; are the estimated arguments of the spline function C;. Further-
more, we apply Fast Fourier Transform in order to analyze the amplitude spectrum
of the signal before and after interpolation. The original single-sided amplitude of
the signal and the one obtained after interpolation are compared in order to ensure
that interpolation is preserving the smooth peaks of the data in the frequency domain

[83, 84].

4.2.1.3 Colorful Gaussian Noise

The final phase of preprocessing is injecting noise to the BOLD response of each
anatomic region. For this purpose, instead of just injecting white noise, a rather in-
formed noise, colorful noise, is introduced. In order to reflect the corresponding brain

region’s properties, for each sample the additive noise is generated from a Gaussian
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distribution having mean and variance of that anatomical region. This newly gener-
ated samples not only act like a natural regularizer to improve generalization but also
help making mesh construction algorithms to be more stable while generating brain

networks [85, 86].

Given a time series from a particular brain region, let it be anatomic region u, new
samples are generated with vector addition of noise while preserving the signal-to-
noise ratio (SNR) as in », = 7, + T,, where T, is a noise vector sampled from

N (noise 11(T4)s Broise 02(T))s Qnoise and Broise being scaling factors.

4.2.2 Building Brain Networks with Neural Networks

After applying the preprocessing pipeline, we aim to construct functional brain net-
works. In order to do that, we divide the BOLD response of the anatomic brain regions
into fixed-size windows where each window win(t) is centered around measured
brain volume at time instance ¢. The size of each window equals Win_Size = z + 1
brain volumes, z is the number of estimated brain volumes in each window. Equation

shows the time instances included in each window.

(4.12)

win(t) = [t— GJ,..,t,..,t—l— EW

We construct brain networks N (t) = (V, W (t)) for each time window win(t) where

V' is the set of nodes of the graph where each node corresponds to an anatomic brain

region, while W (t) = {w;,.|Vu,v € V} represents the directed weighted edges
between the nodes of the graph within time window win(t). The nodes of the graph
are the anatomic brain regions defined AAL [12], except for the regions located in
Cerebellum and Vermis anatomic regions. The nodes are then pruned using voxel
selection, as some anatomic regions contribute no voxels at all as a result get deleted

from the set of nodes of the graph V.

In this section, we describe how we estimate the weights of the edges W (¢) of the
brain graphs N (t) where we employ the proposed method [[13] in the literature in

order to achieve that.
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For each window win(t), we define the functional neighborhood matrix €2, which is
an ensemble of the neighborhood matrices of each anatomic region u estimated using
Pearson correlation, which means that the number of rows and number of columns
of the matrix is equal to the number of anatomic regions M. The functional neigh-
borhood matrix contains no self-connections € (u,u) = 0Vu € [1, M]. Also, the
anatomic brain regions pruned by voxel selection contributing no voxels have no in-
/out connections thus the corresponding entries in {2; are all zeros. Finally, for the
remaining regions we calculate their corresponding entries in {2, using Pearson cor-
relation as follows. At first, for every region u we measure the Pearson correlation
between its BOLD response 7, ; and the BOLD responses of all the other remaining

regions as shown in equation :

cov(Tyt, Tot)

a(ru,t)a(rv,t)

COT(Tuyt, Tot) = (4.13)
Where 7, is the BOLD response of anatomic region v across time window win(t)
, COV(Tyt, T,t) 18 the covariance between the corresponding BOLD responses of re-
gions v and v, and o is the standard deviation of the BOLD response of a given
anatomic region. Thus, the higher the Pearson correlation between two regions the

closer they are to each other in the functional neighborhood system.

Then, we select the P anatomic regions with the highest correlation scores with re-
gion u thus obtaining the set 7,[u] which contains the P closest anatomic brain regions
to region u. Finally, we fill the remaining entries in €2; using the constructed neigh-

borhood sets as follows:

1, if
Qt(u"l}) _ ) v e np[u] (414)

0, otherwise

After having determined the edges of the brain graph using the functional neighbor-
hood matrix €);, all that is left is to estimate the weights of these edges. In order
to do that, we represent the response of each anatomic region u (7r,+) as a linear

combination of its closest (P) functional neighbors as shown in equation
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Pug = D WipuTvp+ €us (4.15)

vEnp[u]

In equation T, represents the estimated BOLD response of anatomic region u
within time window win(t), wy,, are the estimated arc-weight descriptors. 7,[u] is

the (P) closest functional neighbors of region .

Previous work [[10] has estimated the mesh arc-weight descriptors for every anatomic
region u for each time window win(t) by minimizing the mean-squared error loss
function using ridge regression. In there, the mean-squared error loss function is
minimized for each region independently from other regions where the expectation is

taken over all the time-instances in window win(t) as shown in equation4.16].

E[<€u,t)2] = EK"’;u,t - Z wt,v,urv,t)2] + )\||wt,v,u“2 (416)

vEN[u]

A is the L2 regularization parameter whose value is optimized using cross-validation,
L2 regularization is used in order to improve the generalization of constructed mesh

networks.

However in this work, we use neural networks to estimate the value of mesh arc-
weight descriptors for all anatomic regions jointly in each time window as proposed in
[13]. In this method, we estimate the entire weight matrix W (t) = {w;,.|v,u € V'}
using a feed forward neural network. The neural network used is made up of an input
layer and an output layer both containing M nodes corresponding to each anatomic
brain region. The edges of this network are constructed using the neighborhood ma-
trix {2, if and only if ;(u, v) = 1 then there is an edge between node u of the output

layer and node v from the input layer.

Therefore, the loss function is as shown in equation where W is the weight
matrix of the entire neural network that corresponds to directed weighted edges of the

graph and W, is the entire row of matrix W corresponding to anatomic region u:
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Loss(Output,) = E|(eus)?] + \AWIW,
=E[(rus— > WipuTor)’] + AW, W,

vENp[u]

4.17)

We train the aforementioned neural network in order to obtain the weights of the
network that minimize the mean squared error loss function by applying gradient

descent optimization method as shown in equation §.18]:

(| _ (D) OE[(ews)?]

w =w — ;
to,u tou learning
(9wt,v7u

(4.18)

(%)

where w;

is the weight of the edge from node v to node u at epoch (iteration) x,
Qlearning 18 the learning rate. The number of epochs and learning rate used to train the

network are optimized empirically using cross-validation.

Finally, when the network weights are obtained, our brain graphs are fully con-
structed. As a result, we have one brain graph N(¢) = (V,W(t)) for each time
window win(t). Thus, we refer to the brain graphs using their window indices in
order to obtain a set of dynamic brain networks 7" = {N(1), N(2),...N(tot_win)},
where N(t) is the brain network for time window win(t) and tot_win is the total

number of time windows.

4.2.3 Section Summary

In this section, we introduced the three phases of our data preprocessing pipeline. At
first, we performed feature selection using ANOVA to reduce the spatial dimensional-
ity of each brain image. Then, we performed data augmentation using temporal inter-
polation in order to increase the sample size of brain images in each puzzle. Next, we
regularized and smoothed our brain images by injecting them with Gaussian colorful

noise.

Following the preprocessing pipeline, we constructed weighted directed mesh net-

works around each brain anatomic region centered at each measured brain image,
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where we estimated the edge weights of those networks using neural networks, thus

obtaining dynamic functional brain networks for each subject.

4.3 Experiments and Results

In this section, we introduce the experimental setup as well as the results obtained
for each one of the preprocessing steps. Then, we quantify the improvement in brain
decoding power of MVPA methods before and after our preprocessing pipeline. Next,
we compare the brain decoding power of our dynamic functional brain networks
which are constructed using neural networks against other methods proposed in the

literature. Finally, we study the network properties of the established brain networks.

4.3.1 Voxel Selection

At first, we discard all of the voxels located in Vermis and Cerebellum regions. Then,
we calculate the f-score for each one of the remaining voxels between its bold re-
sponse and the ¥4, vector. Next, we order the obtained f-scores then we plot the
ordered f-scores of the voxels in order to determine the appropriate number of voxels
to retain. Figure shows the ordered f-scores of the voxels averaged across all
subjects. It is clear from this figure that a relatively small number of voxels is crucial
for discriminating the subtasks of problem solving while the remaining voxels have
very small contributions. Given the clear elbow distribution of the f-scores of voxels,

we keep 10,000 voxels with the highest f-scores and discard the remaining voxels.

After selecting the 10,000 voxels with the highest f-scores in each session, we mea-
sure the contribution of each one of the 90 anatomic regions. In order to do that, we
calculate the number of voxels selected from each anatomic region out of the selected
10,000 voxels as well as the percentage of voxels selected from each anatomic region
relative to its total number of voxels. Figure shows the average number of voxels
contributed by each anatomic region across all subjects with its corresponding stan-
dard deviation, Figure {4.5b] shows the average percentage of voxels contributed by

each anatomic region across all subjects with its corresponding standard deviation.
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Figure 4.4: Ordered F-score of voxels across subjects.

It is clear from both figures that a large number of regions contribute little to no voxels
at all, such as the Amygdala, caudate, Heschl, hippocampus, pallidum, putamen, tem-
poral Pole, temporal Sup, olfactory, Thalamus and parahippocampal regions. While
a small number of regions carry discriminative power concerning the phases complex
problem solving as they contribute over 300 voxels each, such as the Occipital mid,

Precentral, Precuneus and Parietal regions.

Furthermore, Figure [4.5b] ensures that there is no bias against tiny anatomic regions
with small number of voxels by normalizing the number of voxels selected from each
anatomic region by its total number of voxels. Figure {.5b] clearly shows that in
frontal med orb L and occipital inf regions a significant percentage of their voxels are
active during complex problem solving task. Both figures also shows high standard

deviation across subjects, which indicates high inter-subject variability.

4.3.2 Temporal Interpolation

After selecting the most discriminative voxels and averaging them into their corre-
sponding anatomic regions, we use temporal interpolation to increase temporal reso-

lution of the data.
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As aresult, the total number of obtained brain volumes is equal to n+z*(n—1) where
n is the number of measured brain volumes of a given puzzle and z is the number
of estimated brain volumes plugged between each pair of measured brain volumes.
The optimal value of z is equal to 8 which is determined empirically using cross-
validation. Figure 4.6 shows the interpolated BOLD response of a randomly selected
anatomic region from a given subjects, where the blue dots represent the measured
BOLD responses of the regions and the orange dashes are the interpolated values.
It is clear from the figure that the interpolated points using cubic spline function do
not introduce sharp edges nor do they smooth out the spikes between measured brain

volumes.

0 25 50 75 100 125 150 175 200 225
time (sec)

Figure 4.6: Interpolated BOLD response of anatomic region.

Furthermore, Figure [.7] shows the single-sided amplitude spectrum of a randomly
selected anatomic region from a given subject before interpolation, after interpolation
and finally after adding Gaussian colourful noise. The figure clearly demonstrates
that both interpolation and injecting Gaussian colourful noise preserve the smooth

peaks of the signal in the frequency domain.
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Figure 4.7: Single-Sided Amplitude Spectrum before interpolation (Left), after inter-

polation (Middle) and after injecting colourful Gaussian noise (Right).

4.3.3 Colorful Gaussian Noise

In order to control the signal-to-noise ration (SNR), we use cross-validation to choose
the optimal pair of values for o, and (3,0, the ratios of mean and standard de-
viation of the added noise respectively. As a result, the optimal values obtained are

Qnoise = 0.025 and S5 = 0.075 from the following set of values av,pise; Snoise €

[0.025, 0.05, 0.075, 0.1].

4.3.4 Brain Decoding with Preprocessing Pipeline

In this section, we use brain decoding in order to quantify the effect of our proposed
preprocessing steps on the TOL dataset. We aim to distinguish the two phases of

complex problem solving namely: planning and execution.
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At first, we use Anova to select the 10,000 voxels that discriminate the planning and
execution phases with the highest f-scores then average the selected voxels into their
corresponding anatomic regions defined by AAL [12]. Next, we use temporal inter-
polation to increase the temporal resolution of each puzzle by estimating 2 = 8 brain
volumes between each pair of measured brain volumes. Finally, we use Gaussian
colourful noise in order to regularize the BOLD responses of each anatomic regions

to improve generalization.

K -fold Cross validation for each subject is used in all of the experiments introduced
in this section, where k& = 8. The results obtained are first averaged across differ-
ent folds, then the average and standard deviation are calculated across all subjects.
We use both supervised and unsupervised brain decoding methods, linear support-
vector machines (SVM) [87] is used for supervised brain decoding, while K-means

clustering is used for unsupervised brain decoding.

Table [4.1] shows the effect our preprocessing pipeline on brain decoding of complex
problem solving subtasks. The first row shows the results of brain decoding of the
raw dataset without any preprocessing, we simply average all of the voxels into their
corresponding anatomic regions. While the second row shows the results of applying
voxel selection then averaging the selected voxels into their corresponding anatomic
regions. The third row shows the results of brain decoding after applying temporal
interpolation, while the forth row shows the results after injecting Gaussian colourful

noise.

It is clear from the table that voxel selection improves the brain decoding performance
for both supervised and unsupervised methods from %60 to %74 and from %63 to
%85 respectively. This can be attributed to voxel selection retaining only the most
discriminative voxels and trashing the remaining uninformative ones. Also, voxel
selection manages to sparsify the representation of the data since some brain anatomic

regions contribute no voxels at all thus have a flat BOLD response.

The table also shows that temporal interpolation further improves the supervised brain
decoding performance from %74 to %81, this increase is due to increasing the number
of brain volumes thus increasing the number of training samples for the classifier.

However, temporal interpolation slightly reduces the performance of unsupervised
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methods from %85 to %84 which can be partially attributed to the estimated brain
volumes during transitions between the two phases of problem solving, planning and
execution reducing the separation between the two natural subgroups. This is due to
the way estimated brain volumes are labeled, where an estimated brain volume takes

the label of its closest neighboring measured brain volume.

Finally, injecting Gaussian colourful noise slightly boosts the performance of both su-
pervised and unsupervised methods from %81 to %82 and from %84 to %85 respec-
tively. The table also shows high standard deviation across subjects which ,similar to

voxel selection plot, highlights the high inter-subject variability.

Table 4.1: Preprocessing pipeline brain decoding results.

Accuracy SVM k-Means

Raw data 0.60 +0.11 | 0.63 + 0.09
Voxel Selection | 0.74 £ 0.12 | 0.85 £ 0.06
Interpolation 0.81 £ 0.08 | 0.84 4+ 0.06
Colorful Noise 0.82+£0.8 | 0.85+0.06

4.3.5 Brain Decoding with Brain Networks

In this section, we compare our model for building dynamic functional brain networks
with some of the other methods proposed in the literature in terms of their brain
decoding power. Brain decoding can verify that the constructed brain networks are
good representatives of the underlying cognitive subtasks. Otherwise, the constructed
networks do not capture the connectivity and correlated activation patterns of the

anatomic brain regions during the subtasks of complex problem solving.

In order to do that, we build brain networks as explained in the previous sections af-
ter having applied the preprocessing pipeline. The optimal values for learning rate
Qearning and number of epochs are chosen empirically using cross-validation obtain-
ing the following values respectively 1 * 1078 and 10. As for p, the number of neigh-
bors we use to represent each anatomic region, we chose p equal to the total number
of anatomic regions which is 90, in this way we obtain a fully-connected brain net-

work at each time window. However, the total number of nodes will be less than 90
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given that some regions have flat BOLD responses, therefore they are pruned along

with all their edges from the brain network.

We also construct brain networks using Pearson correlation and ridge regression as
proposed in [S) [10] and [6, I57] respectively in order to compare the performance of
our method with other works in the literature. First, we apply our proposed prepro-
cessing pipeline to the raw fMRI recordings before constructing brain networks using
Pearson correlation and ridge regression. In the case of Pearson correlation, the func-
tional brain networks are constructed using Pearson correlation scores between each
pair of anatomic brain regions [5, [10]. As for the case of ridge regression, the mesh
arc-weight descriptors are estimated using ridge regression in order to estimate each

anatomic region as a linear combination of its neighbors [6}57]].

Table [4.2] shows the brain decoding results of the aforementioned brain network
construction methods compared against the results of multi-voxel pattern analysis
(MVPA). The first row shows the brain decoding results of MVPA, while the second
and third rows show the results of Pearson correlation and ridge regression methods
respectively. The last row shows the brain decoding results of the neural networks
model. The table clearly shows that both Pearson correlation and ridge regression
fail to construct valid brain networks that are good representatives of the underlying
cognitive tasks. However, our model manages to get brain decoding results similar
or slightly better than those obtained from MVPA both in the cases of supervised
and unsupervised methods. This can be attributed to the challenging nature of TOL
dataset, Pearson correlation does not manage to capture the interdependencies be-
tween the anatomic regions over short time windows. While ridge regression fails
to correctly estimate the mesh arc-weights as it estimates the arc-weights for each
anatomic region independently of the other ones. Our proposed model, with a rela-
tively small number of epochs manages to obtain mesh arc-weight values that capture

the activation patterns of anatomic regions and their relationships.

4.3.6 Networks Properties of Brain Networks

In this section, we aim to analyze the network properties of the constructed functional

brain networks. We investigate the network properties for each anatomic region dur-
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Table 4.2: Brain networks brain decoding results.

Accuracy SVM k-Means
MVPA 0.82 £ 0.08 | 0.85 % 0.06
Pearson 0.58 £0.05 | 0.57 £ 0.04

Ridge Regression | 0.56 +0.05 | 0.55 4+ 0.02
Neural Networks | 0.82 +0.10 | 0.87 £ 0.06

ing both planning and execution subtasks in order to understand which regions are
most active, which regions work together during each one of the two subtasks of

complex problem solving.

Given that the constructed brain functional networks are both weighted, directed,
fully-connected and contain both negative and positive weights, we preprocess the
networks before we measure their network properties. At first, we get rid of all the
negative weights by shifting all the mesh arc-weights values by a positive quantity
equal to the absolute value of the largest negative arc-weight. Then, we normalize
the weights of the mesh arc-weights to ensure that all of them are within the range
of [0,1]. Finally, we measure the network properties on the pruned brain network,
where the the brain anatomic regions (nodes) which contribute no voxels (have a flat
BOLD response) and all of their corresponding arc-weights (edges) are deleted from
the brain graph. Thus, the brain graphs will contain less than 90 anatomic regions
with their corresponding edges. We use brain connectivity toolbox to calculate the

studied network properties [60].

As for measures of centrality, since we choose the number of neighbors for each
anatomic region (P) to be equal to 89, which is equal to the total number of neigh-
bors for any given node, since the total number of anatomic regions defined by the
AAL atlas [12] after deleting the regions residing in Vermis and Cerebellum regions
equals 90. Also, since we prune the nodes that correspond to anatomic regions from
which no voxels are selected, as a result our constructed brain networks are weighted
directed fully-connected networks. Therefore, the in-degree, out-degree and total de-
gree of all nodes in the graph will be equal to the total number of anatomic regions

remaining after voxel selection.
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Therefore, we use node strength and node betweenness centrality to identify nodes
with high centrality which are potential hubs in the brain networks controlling the
flow of information in the network. In our proposed model, the node in-strength of
node 7 is the sum of the mesh arc-weight values which are estimated using neural
network method in order to minimize the reconstruction error of the BOLD response
of anatomic region ¢ using its neighbors. Thus, node in-strength is not used as part
of our network properties analyses, we rather use node out-strength to measure the

centrality of all anatomic regions.

As for measures of segregation, we aim to quantify the existence of subgroups within
brain networks where the nodes are densely interconnected. These subgroups are
commonly referred to as clusters or modules. The existence of such clusters in func-
tional brain networks is a sign of interdependence among the nodes forming the clus-
ter. Therefore, we measure clustering coefficient, transitivity and local efficiency to

identify potential clusters with dense interconnections in the brain networks.

4.3.6.1 Planning Brain Networks & Execution Brain Networks

In this subsection, we aim to identify the brain anatomic regions with high central-
ity, as well as clusters of densely connected anatomic regions in both planning and
execution networks. In order to do that, for each one of the aforementioned network
metrics, we rank the brain anatomic regions in descending order according to their
score on that network measure for all subjects across all sessions. Then, we retain
the 10 anatomic regions with the highest scores. Next, we measure the frequency of
occurrence of each brain anatomic region among the top 10 anatomic regions across
all session aiming to identify the shared across subject patterns of activation for both

planning and execution.

The following tables show the results of the aforementioned analysis aiming to iden-
tify important regions in both planning and execution networks. Table 4.3| shows the
brain anatomic regions that have high scores for each one of the reported network
properties during planning subtask. While table 4.4 shows the brain anatomic regions
that have high scores for each of the reported network properties during execution

subtask.
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Table 4.3: Planning brain network, anatomic regions showing consistent network

property.
Transitivity Local efficiency | Clustering coefficient Betweenness Out-strength
Angular Calcarine Calcarine Cueneus R Cueneus R
Calcarine Cuneus Cuneus Frontal Sup L Frontal Sup L
Cingulum Ant Frontal Mid R Frontal Mid R Fusiform R Fusiform R
Cingulum Mid Frontal Sup Frontal Sup Paracentral Lobule L. | Paracentral Lobule L
Cuneus Fusiform Fusiform Parietal Sup R Supp Motor Area R
Frontal Inf Oper L Occipital Inf R Occipital Inf R Precuneus L Temporal Inf R
Precentral Parietal Sup R Supp Motor Area R Temporal Mid R
Supp Motor Area R Precentral Temporal Inf R
Temporal Inf R Supp Motor Area R Temporal Mid R
Temporal Inf R

The first three columns of table show that the indicated anatomic regions, which
are located in the parietal lobe, occipital lobe, frontal lobe and the temporal lobe, form
a cluster of densely interconnected brain regions. The forth and fifth columns show
the anatomic regions with high centrality that are potential hubs which are located in

the occipital lobe, frontal lobe, parietal lobe and temporal lobe.

The same goes for the corresponding columns in table 4.4 The results presented
in both tables are similar to an extent which can be caused by subjects performing
online planning during execution phase. However, there are some differences to be
noted between the two tables, Frontal Inf Oper R and Precentral L. anatomic regions
do not participate in the cluster of densely interconnected anatomic regions during
execution phase. Also, the Parietal Sup R region does not have high centrality in
execution subtask, but Fusiform L and Frontal Sup R are potential hubs in the case of

execution subtask.

Figures and [4.8b] visualize the reported brain anatomic regions in tables 4.3]and
4.4 respectively using Brain Net Viewer [81]]. In Figures [4.8a) and .8b] the colour of
the node (anatomic brain region) imply the following: the red colour indicates that
the anatomic region has high transitivity, clustering coefficient or local efficiency. The
green colour indicates that the node has high node centrality measured by node out-
strength and node betweenness. As for the blue colour, it shows the nodes that have

high node centrality and are part of subgroup of densely interconnected anatomic
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Table 4.4: Execution brain network, anatomic regions showing consistent network

property.
Transitivity Local efficiency | Clustering coefficient Betweenness Out-strength
Angular Calcarine L Calcarine L Cueneus R Frontal Sup
Calcarine Cuneus Cuneus Frontal Sup L Fusiform
Cingulum Ant Frontal Sup L Frontal Mid R Fusiform R Paracentral Lobule L
Cingulum Mid Fusiform Frontal Sup Paracentral Lobule L | Supp Motor Area R
Cuneus Occipital Inf R Fusiform Precuneus L Temporal Inf R
Frontal Inf Oper | Supp Motor Area R Occipital Inf R Supp Motor Area R Temporal Mid R
Temporal Inf R Parietal Sup R Temporal Inf R
Precentral R Temporal Mid R
Supp Motor Area R
Temporal Inf R
regions.

Results also show that all of the following brain anatomic regions do not play a sig-
nificant role in discriminating the phases of complex problem solving task: Amyg-
dala, Caudate, Heschl, Hippocampus, Olfactory, Pallidum, ParaHippocampal, Puta-
men Left, Temporal Pole Mid L, Tempole Pole Sup and Thalamus.

4.3.6.2 Differences Between Planning and Execution Brain Networks

In this subsection, we aim to highlight the differences between planning networks
and execution networks. Therefore, for each session we take the difference between
the network property scores for brain anatomic regions during planning and the net-
work property scores for brain anatomic regions during execution. Then, we count
the frequency of times a given anatomic region is more active during planning than
execution and vice-versa in order to identify consistent patterns of the disagreements

between planning networks and execution networks across all subjects.

Results obtained show that the following brain regions have higher node out-strength
in planning networks than in execution networks: Calcarine, Cuneus, Frontal Sup
R, Fusiform, Lingual, Parietal Sup, Precuneus. While the following regions have

higher node out-strength in execution networks than in planning networks: Angular
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L, Frontal Sup Medial.

As for node betweenness, the following brain regions have higher node between-
ness in planning networks than in execution networks: Calcarine, Cuneus, Fusiform,
Lingual, Occipital Mid R, Occipital Sup R, Parietal Sup, Postcentral L, Precuneus.
While the following regions have higher node betweenness in execution networks

than in planning networks: Frontal Sup Medial.

The results for node betweenness and node out-strength show that: Calcarine, Cuneus,
Frontal Sup R, Fusiform, Lingual, Occipital Mid R, Occipital Sup R, Parietal Sup,
Precuneus and Postcentral L brain anatomic regions play a more central role in the

flow of information during planning phase compared to execution phase.

The reported functionality of the aforementioned anatomic regions in the literature
are as follows: Calcarine, Cuneus, Occipital Mid and Occipital Sup are involved in
visual processing. Frontal Sup region participates in coordination of action with sen-
sory system [88]]. Lingual participates in selective visual attention [89], logic-based
conditions [90], and memorization [91]. Parietal Sup takes part in spatial orientation.
Precuneus is involved with episodic memory retrieval [92], visuospatial processing,
directing attention in space (both when an individual is making the movements and
when imagining the movements) [93,94] and shifting attention to different spatial lo-
cations [95]]. As for the regions that have higher centrality during execution compared
to planning. The Frontal Sup Medial is involved in executive functions and Angular

controls attentions shift in space [96] and plays a role in memory retrieval [97].

Figures [4.9a and [1.9b] visualize the brain anatomic regions with higher node out-

strength during planning and during execution respectively.

Figures|d.10aland4.10b| visualize the brain anatomic regions with higher betweenness

during planning and during execution respectively.

As for clustering coefficient, the following brain regions have higher clustering co-
efficient in planning networks than in execution networks: Cuneus, Occipital Mid L,
Precuneus R. As for local efficiency, the following brain regions have higher local
efficiency in planning than in execution networks: Cuneus, Occipital Mid L, Pre-

cuneus R. In the case of transitivity, the following brain regions have higher transitiv-
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ity in planning than in execution networks: Angular, Calcarine, Cuneus, Frontal Mid,
Frontal Sup, Fusiform, Lingual, Occipital Inf, Occipital Mid, Occipital Sup, Pari-
etal Sup, Parietal Inf, Postcentral, Precentral, Precuneus, Supp Motor Area, Supra-
marginal R, Temporal Inf R, Temporal Mid R. While no brain anatomic regions have
a clear pattern of having higher transitivity, higher local efficiency or higher clustering

coefficient during execution phase compared to planning phase.

This demonstrates that the aforementioned brain regions are significantly more in-
terconnected forming densely connected cluster during planning than during execu-
tion. Furthermore, even though there is a clear tendency of some brain anatomic
regions to form connected clusters during execution phase as reported in the previous
subsection, the clusters are significantly more interconnected during planning phase

compared to the execution phase.

Figure visualizes the brain anatomic regions with higher local efficiency and
higher clustering coefficient during planning phase compared to execution phase.
While Figure d.1Tb| visualizes the brain anatomic regions with higher transitivity dur-

ing planning than during execution phase.

4.3.6.3 Global Efficiency

Since global efficiency is measured over the entire brain network, not for a given node
in the network, we measure the global efficiency for all planning and execution brain
networks within all sessions across subjects. Then, we compare the global efficiency

of planning networks against that of execution networks.

Results show that the majority of the sessions have higher global efficiency scores
during planning than during execution, 43 out of 72 sessions have higher global ef-
ficiency during planning than execution. Furthermore, table [4.5] shows the number
of sessions where global efficiency was higher during planning and during execution
subtasks across all subjects for all 4 sessions of each subject. The first column shows
the number of subjects that have a higher global efficiency score during planning
than during execution. The second column shows the number of subjects that have a

higher global efficiency score during execution than during planning. From the table,
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it is clear that the majority of the first sessions for all subjects have higher global
efficiency during planning subtask compared to execution subtask. While in the case
of the following sessions, the number of subjects that have an execution subtask with
higher global efficiency than the planning subtask is almost equal to the number of
subjects that have a planning subtask with higher global efficiency than the execution

subtask.

The table {.5]indicates that information flows more easily and brain anatomic regions
are more interconnected during planning phase of the first sessions compared to ex-
ecution phase across all subjects. This finding along with the results of the previous
subsection which showed that brain anatomic regions are more interconnected and
clustered together during planning than during execution, these two findings could
explain the results of table[4.5]as follows. During the first session, subjects do not per-
form online planning during execution phase thus the brain anatomic regions during
the planning phase is more interconnected compared to the execution phase. How-
ever, during the remaining sessions, subjects perform online planning relatively more
during execution phase compared to the first session, thus global efficiency of those
sessions during execution phase increases to be roughly similar to that during plan-

ning phase.

Table 4.5: Global efficiency of planning and execution brain networks.

Session Number | Planning | Execution
session 1 15 3
session 2 9 9
session 3 10 8
session 4 9 9

4.3.7 Section Summary

In this section, we discussed the experimental setup and the results obtained of the
proposed supervised brain decoding model. The results of each step of the prepro-
cessing pipeline are introduced along with their effect on the brain decoding power

of the fMRI images. Then, the brain decoding power of the constructed functional
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brain networks is compared against other methods in the literature. Next, the net-
work properties of the constructed brain networks are studied identifying potential
hubs and clusters of densely interconnected brain regions during both phases com-
plex problem solving. Finally, the differences between the planning networks and

execution networks are highlighted.

4.4 Chapter Summary

In this chapter, we have performed preliminary analysis on the TOL dataset aiming
to identify the anatomic regions that contribute to the complex problem solving task.
To do that, we have proposed a Dynamic Mesh Network representation of the brain
that selects the most discriminative voxels. Then, it constructs dynamic mesh net-
works around each selected voxel. Finally, it measures the relative activation of each
anatomic region during planning and execution phases using the accumulated cosine
distance. Obtained results show that most anatomic regions are more active during

planning phase compared to the execution phase.

Then, we proposed a supervised learning model to decode the cognitive subtasks of
problem solving by constructing functional brain networks. At first, we passed the
raw fMRI recordings through a preprocessing pipeline to reduce their spatial resolu-
tion and increase their temporal resolution. Next, we constructed dynamic functional
brain networks using neural networks. The constructed brain networks successfully

decode the phases complex problem solving task.

Finally, we studied the network properties of the established brain networks and iden-
tified potential hubs and clusters of connected anatomic regions for both planning and
execution subtasks. The results of the conducted analysis showed an overlap between
the planning brain networks and execution brain networks. In addition, it showed
that there are more potential hubs during the planning phase as well as the clusters
of densely interconnected anatomic regions are more strongly connected during the

planning phase compared to the execution phase.
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(a) Planning brain network, active anatomic regions.

(b) Execution brain network, active anatomic regions.

Figure 4.8: Active anatomic regions of planning (Top) and execution (Bottom).
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(a) Anatomic regions with higher node out-strength during planning.

(b) Anatomic regions with higher node out-strength during execution.

Figure 4.9: Anatomic regions with higher node out-strength during planning (Top)

and during execution (Bottom)

71



(a) Anatomic regions with higher node betweenness during planning.

(b) Anatomic regions with higher node betweenness during execution.

Figure 4.10: Anatomic regions with higher node betweenness during planning (Top)

and during execution (Bottom).
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(a) Anatomic regions with higher local efficiency and clustering coefficient during planning.
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(b) Anatomic regions with higher transitivity during planning.

Figure 4.11: Anatomic regions with higher local efficiency and clustering coefficient

(Top) and higher transitivity (Bottom) during planning.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we propose two different computational brain network models in order
to represent, understand and analyze various high-level cognitive tasks represented
by the Tower of London (TOL) game and the Human Connectome Project (HCP)

datasets.

The first model is an unsupervised brain network model to study the cognitive tasks
included in the HCP dataset. This model is built on top of the work proposed in
[10], where in [10] the raw fMRI images are decomposed into different frequency
sub-bands using discrete wavelet transform. Then, it builds a mesh network around
each anatomic region using Pearson correlation and Ridge regression [[10]. Our work
employs a deep learning architecture, namely, stacked denoising auto-encoder, in or-
der to learn lower dimensional connectivity patterns (features) from the constructed
functional brain networks. Therefore, we train an auto-encoder for each subject at
each frequency sub-band in order to learn a low-dimensional representation from the
constructed brain mesh networks. Unfortunately, stacked denoising auto-encoders
significantly increase the computational complexity of our proposed model, it also
requires abundant data in order to successfully train the auto-encoders to capture the
activation patterns of the anatomic regions. On the other hand, auto-encoders allevi-
ate the curse of dimensionality problem and improve the brain decoding performance.
After obtaining the connectivity patterns from the trained auto-encoders, we concate-
nate the learned features from all frequency sub-bands, then, employ a hierarchical
clustering method in order to perform unsupervised brain decoding. Our proposed
model successfully finds natural groupings in the learned connectivity patterns ob-

taining a Rand index and adjusted Rand index of 0.93 and 0.71 respectively.
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When comparing our proposed model with the work presented in [[10], our model is
completely unsupervised, where the task labels are only used to evaluate the brain
decoding performance of the proposed model. This allows our model to be applied to
datasets where labeling the underlying cognitive tasks is challenging or the aim is to
study the existence of natural subtasks (phases) within a high level cognitive task. On
the other hand, our model is computationally more expensive compared to the model
proposed in [10] as we train a stacked denoising auto-encoder for every subject at each
frequency sub-band which is both computationally expensive and requires abundant

data.

In order to create sufficient amount of training data, our model constructs the brain
networks over significantly smaller time windows, compared with [[10]. As a result,
using smaller time windows increases the difficulty of the brain decoding problem
as the activation patterns of each task are divided into shorter and harder to detect
activation patterns. However, using shorter time windows provides our model with
the flexibility and adaptiveness to be applied to a wider range of datasets where it is
suitable to record the brain activation under the studied brain stimuli for relatively

short durations of time.

Still, our proposed model can be improved by fine-tuning the hyper-parameters of the
stacked denoising auto-encoders for each frequency sub-band individually in order to
optimize the brain decoding performance. Furthermore, we aim to develop spatio-
temporal models that take advantage of both the spatial and temporal information
contained in the brain images while constructing brain networks. For this purpose,
recurrent neural networks and recurrent auto-encoders are potential architectures to

be incorporated with our current computational model.

The second proposed model is a supervised brain network model that aims to distin-
guish the two phases of complex problem solving, namely planning and execution.
The model is made up of two parts, the first part is the preprocessing pipeline that
processes the raw fMRI images in order to reduce their high spatial resolution and
increase their low temporal resolution. The preprocessing pipeline achieves that us-
ing Anova voxel selection and cubic spline interpolation as well as Gaussian noise,

where it increased the brain decoding power of the raw fMRI images from 0.6 to 0.82
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with support vector machine and from 0.63 to 0.8 with k£-means clustering.

The preprocessing pipeline provides a generic framework to process raw fMRI im-
ages by reducing the high spatial dimensionality while increasing their inherently low
temporal resolution using cubic spline interpolation, which is one of the novelties of
this work. It also regularizes the obtained images using Gaussian noise while preserv-
ing the signal-to-noise ratio. Still, the preprocessing pipeline can be further improved
by using more adaptive methods to estimate brain volumes. For this purpose, learning
methods can be employed in order to estimate brain volumes rather than deterministic

methods such as cubic spline method which is used in this work.

The second part of this computational model is concerned with constructing weighted
directed dynamic functional brain networks using neural networks. The constructed
brain networks successfully classify the cognitive phases of complex problem solving
task. The obtained brain decoding accuracy is 0.82 and 0.87 for SVM and k-means
respectively. While other common solutions in the literature such as Pearson correla-
tion [5,10] and ridge regression [6, 57] fail to capture the interdependencies between
the brain anatomic regions, the proposed model clearly succeeds in representing the

underlying cognitive subtasks of complex problem solving.

In this thesis, we also studied the network properties of the constructed brain net-
works leading to successfully identifying potential hubs (using node out-strength and
node betweenness as centrality measures) and clusters of densely interconnected brain
anatomic regions (using transitivity, local efficiency and clustering coefficient as mea-
sures of segregation) during both planning and execution phases. Also, the differ-
ences and similarities between the planning and execution networks are highlighted,
where obtained results clearly show that there are more potential hubs during plan-
ning compared to execution, and the clusters of densely connected anatomic regions
are significantly more strongly interconnected during planning than during execution

subtask.

Furthermore, future work on the tower of London (TOL) task will aim to identify
online planning during the execution task. To achieve that, an unsupervised brain de-
coding model needs to be developed in order to successfully cluster the brain images

of complex problem solving task into planning, execution and online planning sub-
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tasks. After that, the network properties of each one of the subtasks is to be studied
in detail and the differences as well as the similarities between the networks of the
subtasks is to be examined. Furthermore, we will perform an in-depth analysis on
the individual differences between the subjects aiming to identify the differences in
the brain networks of planning and execution between good problem solver and bad
problem solvers. In addition, we aim to study the differences between the network
properties of each subject across different sessions, where the goal is to identify how

experience and learning affect the brain networks of complex problem solving.

It is worth noting that the unsupervised and supervised network models that we pro-
pose in this thesis are not related, as we apply two different computational models to
two different datasets. However, given the nature of each dataset (number of subjects
and number of fMRI recordings per cognitive task) and the type of analysis included
in each model, we were obligated to develop two different models. Therefore, we
could not apply our proposed model in chapter 3 to the Tower of London dataset.
We, also could not apply our proposed model in chapter 4 to the Human Connectome

Project dataset.
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